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Abstract

Knowledge of the creation date of documents
facilitates several tasks such as summarization,
event extraction, temporally focused informa-
tion extraction etc. Unfortunately, for most
of the documents on the Web, the time-stamp
metadata is either missing or can’t be trusted.
Thus, predicting creation time from document
content itself is an important task. In this
paper, we propose Attentive Deep Document
Dater (AD3), an attention-based neural docu-
ment dating system which utilizes both con-
text and temporal information in documents
in a flexible and principled manner. We per-
form extensive experimentation on multiple
real-world datasets to demonstrate the effec-
tiveness of AD3 over neural and non-neural
baselines.

1 Introduction

Many natural language processing tasks require
document creation time (DCT) information as a
useful additional metadata. Tasks such as infor-
mation retrieval (Li and Croft, 2003; Dakka et al.,
2008), temporal scoping of events and facts (Al-
lan et al., 1998; Talukdar et al., 2012b), document
summarization (Wan, 2007) and analysis (de Jong
et al., 2005a) require precise and validated cre-
ation time of the documents. Most of the docu-
ments obtained from the Web either contain DCT
that cannot be trusted or contain no DCT informa-
tion at all (Kanhabua and Nørvåg, 2008). Thus,
predicting the time of these documents based on
their content is an important task, often referred to
as Document Dating.

A few generative approaches (de Jong et al.,
2005b; Kanhabua and Nørvåg, 2008) as well as a
discriminative model (Chambers, 2012) have been
previously proposed for this task. Kotsakos et al.
(2014) employs term-burstiness resulting in im-
proved precision on this task.

Recently proposed NeuralDater (Vashishth
et al., 2018) uses a graph convolution network
(GCN) based approach for document dating, out-
performing all previous models by a significant
margin. NeuralDater extensively uses the syntac-
tic and temporal graph structure present within the
document itself. Motivated by NeuralDater, we
explicitly develop two different methods: a) Atten-
tive Context Model, and b) Ordered Event Model.
The first component tries to accumulate knowl-
edge across documents, whereas the latter uses the
temporal structure of the document for predicting
its DCT.

Motivated by the effectiveness of attention
based models in different NLP tasks (Yang et al.,
2016a; Bahdanau et al., 2014), we incorporate at-
tention in our method in a principled fashion. We
use attention not only to capture context but also
for feature aggregation in the graph convolution
network (Hamilton et al., 2017). Our contributions
are as follows.

• We propose Attentive Deep Document Dater
(AD3), the first attention-based neural model
for time-stamping documents.

• We devise a novel method for label based
attentive graph convolution over directed
graphs and use it for the document dating
task.

• Through extensive experiments on multiple
real-world datasets, we demonstrate AD3’s
effectiveness over previously proposed meth-
ods.

AD3 source code and datasets
used in the paper are available at
https://github.com/malllabiisc/AD3

2 Related Work

Document Time-Stamping: Initial attempts

https://github.com/malllabiisc/AD3
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Figure 1: Two proposed models a) Ordered Event Model (left) and b) Attentive Context Model (right), where wi are the words
of a document (D), ei are the words signifying events and ti are the temporal tokens as detected in the document. Both models use
Bi-LSTM and S-GCN (Syntactic-GCN, see Section 3.2.2) in the initial part of their pipeline. Ordered Event Model (OE-GCN)
uses a label based attentive graph convolutional network for encoding the DCT, whereas Attentive Context Model (AC-GCN)
uses a word attention based model to encode the document. αi(∀ i ∈ [1, n]) denotes attention over the words of document and
αa, αb and αs denote attention over nodes connected with edge labels AFTER, BEFORE and SIMULTANEOUS, respectively.
OE-GCN provides the probability scores over the years given the encoded DCT, while AC-GCN provides the probability scores
given the context of the document. Both the models are trained separately.

made for document time-stamping task include
statistical language models proposed by de Jong
et al. (2005b) and Kanhabua and Nørvåg (2008).
(Chambers, 2012) use temporal and hand-crafted
features extracted from documents to predict DCT.
They propose two models, one of which learns the
probabilistic constraints between year mentions
and the actual creation time, whereas the other one
is a discriminative model trained on hand-crafted
features. Kotsakos et al. (2014) propose a term-
burstiness (Lappas et al., 2009) based statistical
method for the task. Vashishth et al. (2018) pro-
pose a deep learning based model which exploits
the temporal and syntactic structure in documents
using graph convolutional networks (GCN).

Event Ordering System: The task of extract-
ing temporally rich events and time expressions
and ordering between them is introduced in the
TempEval challenge (UzZaman et al., 2013; Ver-
hagen et al., 2010). Various approaches (Mc-
Dowell et al., 2017; Mirza and Tonelli, 2016)
made for solving the task use sieve-based archi-

tectures, where multiple classifiers are ranked ac-
cording to their precision and their predictions
are weighted accordingly resulting in a temporal
graph structure. A method to extract temporal
ordering among relational facts was proposed in
(Talukdar et al., 2012a).

Graph Convolutional Network (GCN): GCN
(Kipf and Welling, 2016) is the extension of con-
volutional networks over graphs. In different NLP
tasks such as semantic-role labeling (Marcheg-
giani and Titov, 2017), neural machine transla-
tion (Bastings et al., 2017), and event detection
(Nguyen and Grishman, 2018), GCNs have proved
to be effective. We extensively use GCN for cap-
turing both syntactic and temporal aspect of the
document.

Attention Network: Attention networks have
been well exploited for various tasks such as doc-
ument classification (Yang et al., 2016b), question
answering (Yang et al., 2016a), machine transla-
tion (Bahdanau et al., 2014; Vaswani et al., 2017).
Recently, attention over graph structure has been
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shown to work well by Veličković et al. (2018).
Taking motivation from them, we deploy an atten-
tive convolutional network on temporal graph for
the document dating problem.

3 Background: GCN & NeuralDater

The task of document dating can be modeled as
a multi-class classification problem. Following
prior work, we shall focus on DCT prediction at
the year-granularity in this paper. In this section,
we summarize the previous state-of-the-art model
NeuralDater (Vashishth et al., 2018), before mov-
ing onto our method. An overview of graph convo-
lutional network (GCN) (Kipf and Welling, 2016)
is also necessary as it is used in NeuralDater as
well as in our model.

3.1 Graph Convolutional Network
GCN for Undirected Graph: Consider an undi-
rected graph, G = (V, E), where V and E are the
set of n vertices and set of edges respectively. Ma-
trix X ∈ Rn×m, whose rows are input represen-
tation of node u, where xu ∈ Rm, ∀ u ∈ V , is
the input feature matrix. The output hidden repre-
sentation hv ∈ Rd of a node v after a single layer
of graph convolution operation can be obtained by
considering only the immediate neighbours of v,
as formulated in (Kipf and Welling, 2016). In or-
der to capture information at multi-hop distance,
one can stack layers of GCN, one over another.
GCN for Directed Graph: Consider a labelled
edge from node u to v with label l(u, v), denoted
collectively as (u, v, l(u, v)). Based on the as-
sumption that information in a directed edge need
not only propagate along its direction, Marcheg-
giani and Titov (2017) added opposite edges viz.,
for each (u, v, l(u, v)), (v, u, l(u, v)−1) is added
to the edge list. Self loops are also added for
passing the current embedding information. When
GCN is applied over this modified directed graph,
the embedding of the node v after kth layer will
be,

hk+1
v = f

 ∑
u∈N (v)

(
W k

l(u,v)h
k
u + bkl(u,v)

) .

We note that the parameters W k
l(u,v) and bkl(u,v)

in this case are edge label specific. hku is the input
to the kth layer. Here, N (v) refers to the set of
neighbours of v, according to the updated edge list
and f is any non-linear activation function (e.g.,
ReLU: f(x) = max(0, x)).

3.2 NeuralDater

In this sub-section, we provide a brief overview
of the components of the NeuralDater (Vashishth
et al., 2018). Given a document D with n tokens
w1, w2, · · ·wn, NeuralDater extracts a temporally
rich embedding of the document in a principled
way as explained below:

3.2.1 Context Embedding
Bi-directional LSTM is employed for embedding
each word with its context. The GloVe represen-
tation of the words X ∈ Rn×k is transformed to a
context aware representationHcntx ∈ Rn×k to get
the context embedding. This is essentially shown
as the Bi-LSTM in Figure 1.

3.2.2 Syntactic Embedding
In this step, the context embeddings are further
processed using GCN over the dependency parse
tree of the sentences in the document, in order
to capture long range connection among words.
The syntactic dependency structure is extracted by
Stanford CoreNLP’s dependency parser (Manning
et al., 2014). NeuralDater follows the same for-
mulation of GCN for directed graph as described
in Section 3.1, where additional edges are added
to the graph to model the information flow. Again
following (Marcheggiani and Titov, 2017), Neu-
ralDater does not allocate separate weight matri-
ces for different types of dependency edge labels,
rather it considers only three type of edges: a)
edges that exist originally, b) the reverse edges that
are added explicitly, and c) self loops. The S-GCN
portion of Figure 1 represents this component.

More formally, Hcntx ∈ Rn×k is transformed
to Hsyn ∈ Rn×ksyn by applying S-GCN.

3.2.3 Temporal Embedding
In this layer, NeuralDater exploits the Event-Time
graph structure present in the document. CATENA
(Mirza and Tonelli, 2016), current state-of-the-art
temporal and causal relation extraction algorithm,
produces the temporal graph from the event time
annotation of the document. GCN applied over
this Event-Time graph, namely T-GCN, chooses
nT number of tokens out of total n tokens from the
document for further revision in their embeddings.
Note that T is the total number of events and time
mentions present in the document. A special node
DCT is added to the graph and its embedding is
jointly learned. Note that this layer learns both
label and direction specific parameters.
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3.2.4 Classifier
Finally, the DCT embedding concatenated with
the average pooled syntactic embedding is fed to
a softmax layer for classification. This whole pro-
cedure is trained jointly.

4 Attentive Deep Document Dater
(AD3): Proposed Method

In this section, we describe Attentive Deep Doc-
ument Dater (AD3), our proposed method. AD3
is inspired by NeuralDater, and shares many of its
components. Just like in NeuralDater, AD3 also
leverages two main types of signals from the doc-
ument – syntactic and event-time – to predict the
document’s timestamp. However, there are crucial
differences between the two systems. Firstly, in-
stead of concatenating embeddings learned from
these two sources as in NeuralDater, AD3 treats
these two models completely separate and com-
bines them at a later stage. Secondly, unlike Neu-
ralDater, AD3 employs attention mechanisms in
each of these two models. We call the result-
ing models Attentive Context Model (AC-GCN)
and Ordered Event Model (OE-GCN). These two
models are described in Section 4.1 and Section
4.2, respectively.

4.1 Attentive Context Model (AC-GCN)
Recent success of attention-based deep learning
models for classification (Yang et al., 2016b),
question answering (Yang et al., 2016a), and ma-
chine translation (Bahdanau et al., 2014) have mo-
tivated us to use attention during document dating.
We extend the syntactic embedding model of Neu-
ralDater (Section 3.2.2) by incorporating an atten-
tive pooling layer. We call the resulting model AC-
GCN. This model (right side in Figure 1) has two
major components.

• Context Embedding and Syntactic Em-
bedding: Following NeuralDater, we used
Bi-LSTM and S-GCN to capture context and
long-range syntactic dependencies in the doc-
ument (Please refer to Section 3.2.1, Section
3.2.2 for brief description). The syntactic
embedding, Hsyn ∈ Rn×ksyn is then fed to
an Attention Network for further processing.
Note that, ksyn is the dimension of the out-
put of Syntactic-GCN and n is the number of
tokens in the document.

• Attentive Embedding: In this layer, we

learn the representation for the whole docu-
ment through word level attention network.
We learn a context vector, us ∈ Rs with re-
spect to which we calculate attention for each
token. Finally, we aggregate the token fea-
tures with respect to their attention weights
in order to represent the document. More for-
mally, let hsynt ∈ Rksyn be the syntactic rep-
resentation of the tth token in the document.
We take non-linear projection of it in Rs with
Ws ∈ Rs×ksyn . Attention weight αt for tth

token is calculated with respect to the context
vector uTt as follows.

ut = tanh(Wsh
syn
t ),

αt =
exp(uTt us)∑
t exp(u

T
t us)

.

Finally, the document representation for the
AC-GCN is computed as shown below.

dAC−GCN =
∑
t

αth
syn
t

This representation is fed to a softmax layer
for the final classification.

The final probability distribution over years pre-
dicted by the AC-GCN is given below.

PAC−GCN(y|D) = Softmax(W · dAC−GCN + b).

4.2 Ordered Event Model (OE-GCN)

The OE-GCN model is shown on the left side of
Figure 1. Just like in AC-GCN, context and syn-
tactic embedding is also part of OE-GCN. The
syntactic embedding is fed to the Attentive Graph
Convolution Network (AT-GCN) where the graph
is obtained from the time-event ordering algorithm
CATENA (Mirza and Tonelli, 2016). We describe
these components in detail below.

4.2.1 Temporal Graph
We use the same process used in NeuralDater
(Vashishth et al., 2018) for procuring the Temporal
Graph from the document. CATENA (Mirza and
Tonelli, 2016) generates 9 different temporal links
between events and time expressions present in
the document. Following Vashishth et al. (2018),
we choose 5 most frequent ones - AFTER, BE-
FORE, SIMULTANEOUS, INCLUDES, and IS
INCLUDED – as labels. The temporal graph
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is constructed from the partial ordering between
event verbs and time expressions.

Let ET be the edge list of the Temporal
Graph. Similar to (Marcheggiani and Titov, 2017;
Vashishth et al., 2018), we also add reverse edges
for each of the existing edge and self loops for
passing current node information as explained in
Section 3.1. The new edge list E ′T is shown below.

E ′T = ET ∪ {(j, i, l(i, j)−1) | (i, j, l(i, j)) ∈ ET}
∪ {(i, i, self) | i ∈ V)}.

The reverse edges are added with reverse labels
like AFTER−1, BEFORE−1 etc . Finally, we get
10 labels for our temporal graph and we denote the
set of edge labels by L.

4.2.2 Attentive Graph Convolution
(AT-GCN)

Since the temporal graph is automatically gener-
ated, it is likely to have incorrect edges. Ide-
ally, we would like to minimize the influence of
such noisy edges while computing temporal em-
bedding. In order to suppress the noisy edges in
the Temporal Graph and detect important edges
for reasoning, we use attentive graph convolu-
tion (Hamilton et al., 2017) over the Event-Time
graph. The attention mechanism learns the aggre-
gation function jointly during training. Here, the
main objective is to calculate the attention over
the neighbouring nodes with respect to the current
node for a given label. Then the embedding of
the current node is updated by mixing neighbour-
ing node embedding according to their attention
scores. In this respect, we propose a label-specific
attentive graph convolution over directed graphs.

Let us consider an edge in the temporal graph
from node i to node j with type l, where l ∈ L and
L is the label set. The label set L can be divided
broadly into two coarse labels as done in Section
3.2.2. The attention weights are specific to only
these two type of edges to reduce parameter and
prevent overfitting. For illustration, if there exists
an edge from node i to j then the edge types will
be,

• L(i, j) =→ if (i, j, l(i, j)) ∈ E ′T ,
i.e., if the edge is an original event-time edge.

• L(i, j) =← if (i, j, l(i, j)−1) ∈ E ′T ,
i.e., if the edge is added later.

First, we take a linear projection (W atten
L(i,j) ∈

RF×ksyn) of both the nodes in RF in order to map

beforebefore

abefore

α2α1

W
be

fo
re

W
before

ReLU (∑) ReLU (∑)ReLU (∑)

Figure 2: Attentive Graph Convolution (AT-GCN). In this
layer, we learn attention weights for every edge based on la-
bel and direction. The attention weights are learnt using a
context vector. The final representation of every node is a
summation of weighted convolution over neighboring nodes
based on labels.

both of them in the same direction-specific space.
The concatenated vector [W atten

L(i,j) × hi;W
atten
L(i,j) ×

hj ], signifies the importance of the node j w.r.t.
node i. A non linear transformation of this con-
catenation can be treated as the importance feature
vector between i and j.

eij = tanh[W atten
L(i,j) × hi;W

atten
L(i,j) × hj ].

Now, we compute the attention weight of node j
for node i with respect to a direction-specific con-
text vector aL(i,j) ∈ R2F , as follows.

α
l(i,j)
ij =

exp
(
aTL(i,j)eij

)
∑

k∈N l(i,·)
i

exp
(
aTL(i,j)eik

) ,

where, αl(i,j)
ij = 0 if node i and j is not con-

nected through label l. N l(i,·) denotes the sub-
set of the neighbourhood of node i with label l
only. Please note that, although the linear trans-
form weight (W atten

L(i,j) ∈ RF×ksyn) is specific to
the coarse labels L, but for each finer label l ∈ L
we get these convex weights of attentions. Figure
2 illustrates the above description w.r.t. edge type
BEFORE.
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Figure 3: Variation of validation accuracy with λ (for APW
dataset). We observe that AC-GCN and OE-GCN are both
important for the task as we get optimal λ = 0.52.

Finally, the feature aggregation is done accord-
ing to the attention weights. Prior to that, another
label specific linear transformation is taken to per-
form the convolution operation. Then, the updated
feature for node i is calculated as follows.

hk+1
i = f

(∑
l∈L
∑

j∈N l(i,·)
i

α
l(i,j)
ij

(
Wl(i,j)hj + bl(i,j)

))
.

where, αii = 1, N l(i,·) denotes the subset of the
neighbourhood of node i with label l only. Note
that, αl(i,j)

ij = 0 when j /∈ N l(i,·). To illustrate for-
mally, from Figure 2, we see that weight α1 and α2

is calculated specific to label type BEFORE and
the neighbours which are connected through BE-
FORE is being multiplied with Wbefore prior to
aggregation in the ReLU block.

Now, after applying attentive graph convolu-
tion network, we only consider the representa-
tion of Document Creation Time (DCT), hDCT ,
as the document representation itself. hDCT is
now passed through a fully connected layer prior
to softmax. Prediction of the OE-GCN for the doc-
ument D will be given as

POE−GCN(y|D) = Softmax(W · dDCT + b).

4.3 AD3: Attentive Deep Document Dater

In this section, we propose an unified model by
mixing both AC-GCN and OE-GCN. Even on val-
idation data, we see that performance of both the
models differ to a large extent. This significant
difference (McNemar test p < 0.000001) moti-
vated the unification. We take convex combina-
tion of the output probabilities of the two models

Datasets # Docs Start Year End Year

APW 675k 1995 2010
NYT 647k 1987 1996

Table 1: Details of datasets used. Please refer Section 5 for
details.

as shown below.

Pjoint(y|D) = λPAC−GCN(y|D)

+ (1− λ)POE−GCN(y|D).

The combination hyper-parameter λ is tuned
on the validation data. We obtain the value of
λ to be 0.52 (Figure 3) and 0.54 for APW and
NYT datasets, respectively. This depicts that the
two models are capturing significantly different
aspects of documents, resulting in a substantial
improvement in performance when combined.

5 Experimental Setup

Dataset: Experiments are carried out on the Asso-
ciated Press Worldstream (APW) and New York
Times (NYT) sections of the Gigaword corpus
(Parker et al., 2011). We have used the same 8:1:1
split as Vashishth et al. (2018) for all the models.
For quantitative details please refer to Table 1.

Evaluation Criteria: In accordance with prior
work (Chambers, 2012; Kotsakos et al., 2014;
Vashishth et al., 2018) the final task is to predict
the publication year of the document. We give a
brief description of the baselines below.

Baseline Methods:

• MaxEnt-Joint (Chambers, 2012): This
method engineers several hand-crafted tem-
porally influenced features to classify the
document using MaxEnt Classifier.

• BurstySimDater (Kotsakos et al., 2014):
This is a purely statistical method which uses
lexical similarity and term burstiness (Lappas
et al., 2009) for dating documents in arbitrary
length time frame. For our experiments, we
used a time frame length of 1 year.

• NeuralDater (Vashishth et al., 2018): This is
the first deep neural network based approach
for the document dating task. Details are pro-
vided in Section 3.2.
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Figure 4: Mean absolute deviation (in years; lower is bet-
ter) between a model’s top prediction and the true year in
the APW dataset. We find that all of our proposed methods
outperform the previous state-of-the-art NeuralDater. Please
refer to Section 6.1 for details.

Method APW NYT

BurstySimDater 45.9 38.5
MaxEnt-Joint 52.5 42.5
NeuralDater 64.1 58.9

Attentive NeuralDater [6.2] 66.2 60.1
OE-GCN [4.2] 63.9 58.3
AC-GCN [4.1] 65.6 60.3

AD3 [4.3] 68.2 62.2

Table 2: Accuracy (%) of different methods on the APW
and NYT datasets for the document dating problem (higher
is better). The unified model significantly outperforms all
previous models.

Israel's consumer price index increased by 1.2 percent 
 in December, bringing the overall inflation rate for 1995 
to 8.1 percent, well within the government's target rate 
for the year, officials said Friday. Israel radio said that  
it was the lowest annual inflation rate in twenty years.

Figure 5: Visualization of the attention of AC-GCN. AC-
GCN captures the intuitive tokens as seen in the figure.
Darker shade implies higher attention. The correct DCT is
1996.

Hyperparameters: We use 300-dimensional
GloVe embeddings and 128-dimensional hidden
state for both GCNs and BiLSTM with 0.8
dropout. We use Adam (Kingma and Ba, 2014)
with 0.001 learning rate for training. For OE-GCN
we use 2-layers of AT-GCN. 1-layer of S-GCN is
used for both the models.

6 Results

6.1 Performance Analysis

In this section, we compare the effectiveness of
our method with that of prior work. The deep
network based NeuralDater model in (Vashishth
et al., 2018) outperforms previous feature engi-

Method Accuracy

T-GCN of NeuralDater 61.8
OE-GCN 63.9

S-GCN of NeuralDater 63.2
AC-GCN 65.6

Table 3: Accuracy (%) comparisons of component models
with and without Attention. This results show the effective-
ness of both word attention and Graph Attention for this task.
Please see Section 6.2 for more details.
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Figure 6: Visualization of the average edge attention of
the temporal graph as learnt by OE-GCN for the document
shown in Figure 5. Darker color implies higher attention.
The correct DCT is 1996.

neered (Chambers, 2012) and statistical methods
(Kotsakos et al., 2014) by a large margin. We ob-
serve a similar trend in our case. Compared to
the state-of-the-art model NeuralDater, we gain,
on an average, a 3.7% boost in accuracy on both
the datasets (Table 2).

Among individual models, OE-GCN performs
at par with NeuralDater, while AC-GCN outper-
forms it. The empirical results imply that AC-
GCN by itself is effective for this task. The rela-
tively worse performance of OE-GCN can be at-
tributed to the fact that it only focuses on the
Event-Time information and leaves out most of
the contextual information. However, it captures
various different (p < 0.000001, McNemar’s test,
2-tailed) aspects of the document for classifica-
tion, which motivated us to propose an ensemble
of the two models. This explains the significant
boost in performance of AD3 over NeuralDater as
well as the individual models. It is worth mention-
ing that although AC-GCN and OE-GCN do not
provide significant boosts in accuracy, their pre-
dictions have considerably lower mean-absolute-
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deviation as shown in Figure 4.
We concatenated the DCT embedding provided

by OE-GCN with the document embedding pro-
vided by AC-GCN and trained in an end to end
joint fashion like NeuralDater. We see that even
with a similar training method, the Attentive Neu-
ralDater model on an average, performs 1.6% bet-
ter in terms of accuracy, once again proving the ef-
ficacy of attention based models over normal mod-
els.

6.2 Effectiveness of Attention

Attentive Graph Convolution (Section 4.2.2)
proves to be effective for OE-GCN, giving a 2%
accuracy improvement over non-attentive T-GCN
of NeuralDater (Table 3). Similarly the efficacy of
word level attention is also prominent from Table
3.
We have also analyzed our models by visualiz-
ing attentions over words and attention over graph
nodes. Figure 5 shows that AC-GCN focuses on
temporally informative words such as ”said” (for
tense) or time mentions like “1995”, alongside im-
portant contextual words like “inflation”, “Israel”
etc. For OE-GCN, from Figure 6 we observe that
“DCT” and time-mention ‘1995’ grabs the high-
est attention. Attention between “DCT” and other
event verbs indicating past tense are quite promi-
nent, which helps the model to infer 1996 (which
is correct) as the most likely time-stamp of the
document. These analyses provide us with a good
justification for the performance of our attentive
models.

7 Discussion

Apart from empirical improvements over previ-
ous models, we also perform a qualitative analy-
sis of the individual models. Figure 7 shows that
the performance of AC-GCN improves with the
length of documents, thus indicating that richer
context leads to better model prediction. Figure
8 shows how the performance of OE-GCN im-
proves with the number of event-time mentions in
the document, thus further reinforcing our claim
that more temporal information improves model
performance.

Vashishth et al. (2018) reported that their model
got confused by the presence of multiple mislead-
ing time mentions. AD3 overcomes this limitation
using attentive graph convolution, which success-
fully filters out noisy time mentions as is evident
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Figure 7: Variation of validation accuracy (%) with respect
to length of documents (for APW dataset) for AC-GCN. Doc-
uments having more than 100 tokens are selected for this
analysis. Please see Section 7.
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Figure 8: Variation of validation accuracy (%) with number
of event-time mentions in documents (for APW dataset) for
OE-GCN. Documents with more than 100 tokens are selected
for this analysis. Please see Section 7.

from Figure 8.

8 Conclusion

We propose AD3, an ensemble model which ex-
ploits both syntactic and temporal information in
a document explicitly to predict its creation time
(DCT). To the best of our knowledge, this is the
first application of attention based deep models
for dating documents. Our experimental results
demonstrate the effectiveness of our model over all
previous models. We also visualize the attention
weights to show that the model is able to choose
what is important for the task and filter out noise
inherent in language. As part of future work, we
would like to incorporate external knowledge as
a side information for improved time-stamping of
documents.
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ing temporal language models for determining time
of non-timestamped documents. In Proceedings
of the 12th European Conference on Research and
Advanced Technology for Digital Libraries, ECDL
’08, pages 358–370, Berlin, Heidelberg. Springer-
Verlag.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Dimitrios Kotsakos, Theodoros Lappas, Dimitrios
Kotzias, Dimitrios Gunopulos, Nattiya Kanhabua,
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