
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1691–1701
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

1691

DeepCx: A transition-based approach for shallow semantic parsing with
complex constructional triggers

Jesse Dunietz
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA
jdunietz@cs.cmu.edu

Jaime Carbonell and Lori Levin
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA
{jgc,lsl}@cs.cmu.edu

Abstract

This paper introduces the SURFACE CON-
STRUCTION LABELING (SCL) task, which ex-
pands the coverage of Shallow Semantic Pars-
ing (SSP) to include frames triggered by com-
plex constructions. We present DeepCx, a neu-
ral, transition-based system for SCL. As a test
case for the approach, we apply DeepCx to
the task of tagging causal language in English,
which relies on a wider variety of construc-
tions than are typically addressed in SSP. We
report substantial improvements over previous
tagging efforts on a causal language dataset.
We also propose ways DeepCx could be ex-
tended to still more difficult constructions and
to other semantic domains once appropriate
datasets become available.

1 Introduction

Shallow semantic parsing (SSP) aims to tag the trig-
gers of semantic relations and the phrases between
which those relations hold. However, words are not
the only bearers of relational meaning: multi-word
expressions (MWEs) and even arbitrarily complex
constructions can express relations and evoke se-
mantic frames (see, e.g., Fillmore et al., 2012). For
example, causation, concession, and comparison
are frequently expressed using complex construc-
tions (see Table 1). MWE research has made strides
in identifying MWE strings (see, e.g., Baldwin and
Kim, 2010), but little work has addressed tagging
arguments of such constructional triggers; many
of the examples in Table 1 remain a challenge for
conventional SSP.

This paper introduces the broader task of SUR-
FACE CONSTRUCTION LABELING (SCL; §3). Like
SSP, SCL aims to tag the surface elements of a
sentence that express and participate in relational
meanings. But in SCL, triggers are not just words
or lexical units, but instances of constructions of
the sort described by CONSTRUCTION GRAMMAR

(1) WE must regulate to inhibit unsound practices.
(2) THIS opens the way to applying the law more widely.
(3) Judy’s comments were SO OFFENSIVE that I left.

(4) We headed out in spite of the bad weather.
(5) We value any contribution, no matter its size.
(6) Strange as it seems, there’s been a run of crazy dreams!

(7) More boys wanted to play than girls.
(8) Andrew is as annoying as he is useless.
(9) I’m poorer than I’d like.

Table 1: Examples of causal (1–3), concessive (4–
6), and comparative (7–9) constructions, with triggers
bolded. Arguments of causal examples are annotated
as in the BECAUSE annotation scheme, with CAUSES
in blue small caps, effects in red italics, and means in
purple typewriter text.

(CxG; Fillmore et al., 1988; Goldberg, 1995): arbi-
trarily complex sets of tokens that carry meaning.
These constructions can consist of single words,
fixed MWEs, gappy MWEs, or even grammatical
patterns.

We propose a transition system for SCL that can
tag multi-word, possibly gappy sequences of to-
kens as triggers and arguments (§4). As a test case
for the approach, we address English causal lan-
guage, a valuable target for semantic analysis in
its own right. (Extensions to arbitrary frame and
role types would be straightforward with appropri-
ate data; see §8.) The transitions can handle most
types of constructions, including those with multi-
ple arguments, missing arguments, and even trig-
gers that overlap or are interleaved with arguments.
We present DeepCx, a neural network that tags
causal language using this transition system (§5).
We also describe experiments applying DeepCx to
the BECAUSE corpus (§6), showing that DeepCx
significantly outperforms prior construction-based
work on predicting causal frames (§7). Finally, we
discuss how the transition system and tagger model
could be adapted to more difficult SCL tasks (§8).

1692

2 Background and related work

2.1 Shallow semantic parsing
SCL of course inherits from SSP, which has a vener-
able tagging tradition. For PropBank data, dozens
of taggers have been developed (see Carreras and
Màrquez, 2004, 2005; Surdeanu et al., 2008; Hajič
et al., 2009). These typically focus on argument tag-
ging, since PropBank triggers are readily identified
by their POS tags. One popular design is a multi-
stage pipeline that identifies argument spans and
then labels them. Another alternative is BIO-style
classification of argument words, either with con-
ventional classifiers or with neural networks (e.g.,
Collobert et al., 2011; Foland and Martin, 2015).
More recent systems (e.g., Täckström et al., 2015;
Roth and Lapata, 2016) use neural networks to
score and label possible argument spans or heads.

FrameNet-based tagging is more difficult, as trig-
gers must be identified and disambiguated. Many
FrameNet taggers have taken a pipeline approach
(see, e.g., Baker et al., 2007; Das et al., 2014) in
which targets are first identified with a whitelist
or simple rules. They are then assigned frames,
which determine the available frame elements, and
finally the frame elements are identified and la-
beled. Again, neural networks have also been used
to score argument spans and heads (Täckström
et al., 2015; FitzGerald et al., 2015; Roth, 2016).

Systems in both paradigms are constrained by
their underlying representations. PropBank cov-
ers only verbs and certain nominal and adjectival
predicates. FrameNet’s frame-evoking elements
are broader, including verbs, prepositions, adverbs,
conjunctions, and even some MWEs, but must
still be single words or MWEs that act like words.
As Table 1 demonstrates, some semantic domains,
such as causality, demand a more flexible approach.

2.2 Construction grammar
CxG, which posits that the fundamental units of
language are CONSTRUCTIONS—pairings of mean-
ings with arbitrary linguistic forms. For instance,
so X that Y (example 3) is characterized by a sin-
gle construction, where the form is so 〈adjective
X〉 〈finite clausal complement Y 〉 and the mean-
ing is X to an extreme that causes Y . Follow-
ing Dunietz et al. (2017a,b), we borrow two core
insights of CxG: first, that morphemes, words,
MWEs, and grammar are all on equal footing as
“learned pairings of form and function” (Goldberg,
2013); and second, that constructions pair patterns

of surface forms directly with meanings. Thus,
we can tag any surface realizations of construc-
tions as meaning-bearing triggers (hence “surface
construction labeling”).

2.3 Causal language
To test the SCL approach, we examine causal lan-
guage, which conveys essential semantic informa-
tion and is especially rich in constructional triggers.

Our data representation for causal language
comes from the BECAUSE 2.1 corpus (Dunietz
et al., 2017b), which focuses on what causal mean-
ings are explicitly stated in the text. It defines
causal language as any construction which presents
one event, state, action, or entity as promoting
or hindering another, and which includes at least
one lexical trigger to anchor the annotation. For
each instance of causal language, up to three spans
are annotated: the causal connective (the trigger
of the causal relation), the cause span, the effect
span, and occasionally a means span (if a means
by which the cause produces the effect is specified).
See Table 1 for examples of analyses of causal lan-
guage under the BECAUSE scheme. The corpus
includes 4,867 sentences (123,674 tokens) of news
articles and Congressional hearing transcripts fully
annotated for causal language.

The only prior work on construction-based se-
mantic parsing that we know of is Causeway (Duni-
etz et al., 2017a), also based on the BECAUSE cor-
pus. Causeway detects causal connectives using
lexico-syntactic patterns, then applies heuristics
and classifiers to tag arguments and remove false
positives. It achieves moderate performance, but
requires extensive tuning and feature engineering.

2.4 Transition-based systems
Transition-based systems have primarily been used
for dependency parsing (e.g., Nivre et al., 2007;
Nivre, 2008; Chen et al., 2014; Choi and Palmer,
2011a). Indeed, our system borrows many imple-
mentation elements from Dyer et al. (2015), who
describe a shift-reduce parser that embeds the stack
and buffer as LSTMs. This parser employs the
novel STACK LSTM data structure—an LSTM
augmented with a stack pointer, enabling it to be
rewound to a previous state.

Transition systems have been developed for se-
mantic tasks, as well. Titov et al. (2009), Hender-
son et al. (2008), and Swayamdipta et al. (2016)
explore extensions of dependency parsing that in-
terleave semantic parsing actions with syntactic

1693

parsing actions. Google’s SLING (Ringgaard et al.,
2017) applies a custom-designed transition scheme
for frame-based parsing and coreference resolution.
Vilares and Gómez-Rodríguez (2018) develop a
transition system for Abstract Meaning Representa-
tion parsing, and TUPA (Hershcovich et al., 2017)
does the same for Universal Conceptual Cognitive
Annotation. Both can handle discontinuous or reen-
trant graph structures. Most directly relevant to
DeepCx is Choi and Palmer’s (2011b) work, which
defines a novel transition system for PropBank pars-
ing. Our similar scheme for parsing causal con-
structions builds on this one, extending it for cases
where the spans are not contiguous.

3 The SCL task for causal language

An SCL task closely resembles an SSP task, except
that the triggers can be complex constructions. As a
corollary, the arguments can also be discontinuous
and/or overlap with each other or the trigger.

In the case of causal language, we define the
task as reproducing the core elements of the BE-
CAUSE scheme: connective, cause, effect, and
means spans. Following Dunietz et al. (2017a),
we split the task into two parts: discovering causal
connectives (connective discovery) and delimit-
ing and labeling the arguments (argument ID).
Producing the additional metadata that BECAUSE

records for each instance is left to future work.
Each span is defined as a set of tokens. This

excludes sublexical constructions; we return to this
limitation in §8.

4 Transition system

Like Choi and Palmer, DeepCx’s transition system
first searches for a connective word, and once it has
found one, compares it with each word to the right
and to the left. In each comparison, it selects a tran-
sition that labels the word as unrelated to the cur-
rent connective word, as another connective word
(or FRAGMENT), or as a member of some argument
span(s). Once all words have been compared to the
current connective, the system advances to the next
possible initial connective word. In the worst case,
then, each sentence takes O(n2) transitions.

Table 2 gives the full set of transitions. The tran-
sitions act on a state tuple (λ1, λ2, a, λ3, λ4, s, A).
a is the index of the current possible “connective
anchor”—the word being tentatively treated as the
initial (i.e., leftmost) word of a connective. λ1 is
the list of word indices to a’s left that have not

yet been compared with it, and λ2 represents the
words to the left of a that have already been com-
pared. Likewise, λ3 and λ4 contain the indices of
compared and uncompared words, respectively, to
the right. Thus, words move from λ1 to λ2 and
from λ4 to λ3 as they are compared with a. s is a
boolean indicating whether we are currently com-
paring words in the sentence to a, i.e., whether
a has been confirmed as a connective anchor. A
is a set of partially-constructed causal language
instances. Each instance consists of a set of con-
nective word indices plus one set of argument word
indices for each argument type. For formal descrip-
tion, we represent A as a set of labeled arcs. The
head a of each arc is the connective anchor of a
causal language instance i (an arbitrary identifier).
The label of the arc indicates what role the tail t
plays with respect to i: Cause, Effect, or Means if t
is a member of the corresponding argument span,
and Frag if t is a connective fragment other than a.

As the algorithm scans from left to right, it as-
signs a to each word index in turn. If it decides a
is not a connective anchor, it issues a NO-CONN
and moves on. If a is deemed to start a connective,
a new instance is initialized with a NEW-CONN.
DeepCx proceeds to compare a with each word to
its left, in right-to-left order (i.e., starting from
the closest word), then each word to the right
(in left-to-right order). For each comparison, it
issues a LEFT/RIGHT-ARC, CONN-FRAG, or NO-
ARC, depending on whether the comparison word
is deemed part of an argument, part of the connec-
tive, or neither. For simplicity, we always consider
the leftmost connective word to anchor the connec-
tive, so all CONN-FRAG transitions occur between
a connective word and a word to its right. After
all words have been compared with a (i.e., once λ1
and λ4 are empty), an automatic SHIFT transition
advances a to the next connective anchor candidate.

The initial state is: λ1 = λ2 = λ3 = [], a = 1,
λ4 = [w1 . . wn], s = f, and A = ∅, where wi

is the ith word in the sentence. The algorithm
terminates when a = n and either λ3 = λ4 = [] or
s is false—i.e., when no words remain to a’s right,
and either a is not a connective anchor or all words
in the sentence have been compared with it. An
example transition sequence is shown in Table 3.

Some transitions have preconditions, shown in-
line Table 2 in a smaller font. In addition, several
transitions have constraints on their ordering to en-
sure semantic well-formedness. These constraints

1694

Transition schema Effect and preconditions

NO-CONN (λ1, λ2= [],a, λ3= [], [w | λ4], s=f, A)⇒ ([λ1 | a], λ2,w, λ3,λ4, s, A)

NEW-CONN (λ1, λ2, a, λ3, λ4, s=f, A)⇒ (λ1, λ2, a, λ3, λ4, t, A)

NO-ARC-LEFT ([λ1 | w],λ2, a, λ3= [], λ4, s=t, A)⇒ (λ1, [w | λ2], a, λ3, λ4, s, A)

NO-ARC-RIGHT (λ1= [], λ2, a,λ3, [w | λ4], s=t, A)⇒ (λ1, λ2, a, [λ3 | w],λ4, s, A)

LEFT-ARCx ([λ1 | w],λ2, a, λ3= [], λ4, s=t,A)⇒ (λ1, [w | λ2], a, λ3, λ4, s,A∪ {a
xi
//w})

RIGHT-ARCx (λ1= [], λ2, a,λ3, [w | λ4], s=t,A)⇒ (λ1, λ2, a, [λ3 | w],λ4, s,A∪ {a
xi
//w})

CONN-FRAG (λ1= [], λ2, a 6= w, λ3, [w | λ4], s=t,A)⇒ (λ1, λ2, a, λ3, [w | λ4], s=t,A∪ {a
FRAGi
//w})

SHIFT (λ1= [],λ2,a, [w|λ3],λ4= [], s=t, A)⇒ (λ2, [],w, [],λ3, f, A)

SPLIT See text (§4.1)

Table 2: The DeepCx transitions. Pre- and post-transition states are expressed as tuples (λ1, λ2, a, λ3, λ4, s, A). x
stands for Cause, Effect, Means, or any combination thereof. i indicates the instance under construction; thus, xi
denotes an argument or fragment arc of instance i. Elements changed by the transition are bolded. Preconditions
(small font in the starting states) enforce a consistent transition order by delaying rightward actions until all leftward
actions are completed.

Transition λ1 λ2 a λ3 λ4 s A

– [] [] 1 [] [1 . . 7] f ∅
NO-CONN [1] [] 2 [] [2 . .7] f ∅
NO-CONN [1,2] [] 3 [] [3 . .7] f ∅
NO-CONN [1 . .3] [] 4 [] [4 . .7] f ∅
NEW-CONN [1 . . 3] [] 4 [] [4 . . 7] t {because4 (•, •)}
LEFT-ARCEffect [1,2] [3] 4 [] [4 . . 7] t {because4 (moved3, •)}
LEFT-ARCEffect [1] [2,3] 4 [] [4 . . 7] t {because4 (they2 moved3, •)}
NO-ARC-LEFT [] [1 . .3] 4 [] [4 . . 7] t {because4 (they2 moved3, •)}
NO-ARC-RIGHT [] [1 . . 3] 4 [4] [5 . .7] t {because4 (they2 moved3, •)}
CONN-FRAG [] [1 . . 3] 4 [4,5] [6,7] t {because4/of5 (they2 moved3, •)}
RIGHT-ARCCause [] [1 . . 3] 4 [4 . .6] [7] t

{
because4/of5 (they2 moved3, the6)

}
RIGHT-ARCCause [] [1 . . 3] 4 [4 . .7] [] t

{
because4/of5 (they2 moved3, the6 schools7)

}
SHIFT [1 . .4] [] 5 [] [5 . .7] f

{
because4/of5 (they2 moved3, the6 schools7)

}
NO-CONN [1 . .5] [] 6 [] [6,7] f

{
because4/of5 (they2 moved3, the6 schools7)

}
NO-CONN [1 . .6] [] 7 [] [7] f

{
because4/of5 (they2 moved3, the6 schools7)

}
NO-CONN – – – – – – –

Table 3: The sequence of oracle transitions and states for Well1, they2 moved3 because4 of5 the6 schools7. Elements
altered by the transition are bolded. Causal language instances are notated as connective(Cause, Effect).

are listed in the supplementary material (§A.3).

4.1 SPLIT transitions

In BECAUSE, a word from one connective can also
be part of another connective. This most often oc-
curs with conjoined arguments where portions of
the connective are repeated. For example, in it’ll
take luck for us to succeed or even to survive, suc-
ceed and survive are considered Effects of two dif-
ferent causal instances whose connectives share the
for. The SPLIT action handles such cases by com-
pleting the current causal language instance and
starting a new one, copying all connective and ar-
gument words up to the repeated connective word.

4.2 Differences from Choi and Palmer

Our scheme differs fourfold from Choi and Palmer:

1. They assume oracle PropBank predicates.
DeepCx, lacking oracle connectives, starts new
causal language instances with NEW-CONNs,
and adds s to the state to track whether such a
transition has occurred.

2. Unlike PropBank, BECAUSE allows a connec-
tive to include multiple content words. Our sys-
tem therefore adds a CONN-FRAG transition.

3. A connective word can be part of an argument—
e.g., in enough food to live, the connective and
Cause both include enough. DeepCx therefore

1695

compares each connective anchor with itself.
(This is why for each new connective anchor a,
λ4 starts out with a as its first element. It is also
why the CONN-FRAG action does not advance to
the next potential argument word: a connective
fragment can be part of an argument.)

4. PropBank never posits two predicates for a sin-
gle verb, but in BECAUSE, multiple connectives
can share a connective word. This case is han-
dled by the new SPLIT transition (see §4.1).

5 DeepCx neural network architecture

Given the experience of previous shallow seman-
tic parsers (e.g., Roth, 2016), we expected perfor-
mance to depend heavily on syntactic information.
We therefore built our system on top of Dyer et al.’s
LSTM parser, allowing us to directly incorporate
the parser’s embeddings. For example, a token’s
embedding can incorporate the parser’s internal
embedding of the subtree rooted at that token.

At each step, the network computes a high-di-
mensional state vector summarizing the internal
data structures. That state feeds into a k-dimen-
sional output layer, where k is the number of transi-
tion types seen in training. Each vector component
is the predicted log probability that the correspond-
ing transition should come next. At test time, the
highest-scoring predicted action is taken; in train-
ing, gold-standard actions are executed instead.

Figure 1 shows a schematic of the neural network
structure. We elaborate on its components below.

5.1 Final state and prediction layers
Beyond λ1−4, the inputs to the state vector are:

• h, the history of actions so far for the sentence.

• d, the path in the dependency parse tree between
anchor a and the token being compared with it.

• The lists of tokens making up the connective (o),
Cause (c), Effect (e), and Means (m) spans for
the causal instance currently under construction.

The parser state s at each timestep is defined as:

s = max {0,Ws [λ1;λ2;a;λ3;λ4;

o; c; e;m;d;h] + bs} ,

where bs is a bias term, W is a learned parameter
matrix, and any other bold variable x indicates an
embedding of a variable x (described in §5.2). max
indicates a component-wise ReLU.

The predicted probability of each transition T is
computed from s using a softmax unit:

p (T | s) = exp
(
g>T s+ qT

)
/z,

where gT is a learned embedding of T , qT is a bias
for T , and z is a normalizing constant.

5.2 Embedding the inputs to the state
5.2.1 Embedding a token
Following Dyer et al. (2015), each token t is repre-
sented as a concatenation of three vector inputs:

• w̃t, a fixed word embedding for t’s surface form.

• wt, a small additional word embedding of t,
which allows the network to learn task-specific
representations of words related to causality.
This is the only component of a token’s repre-
sentation that is trained specifically for this task
(i.e., that does not use an embedding from a pre-
trained language model or a syntactic parsing
model).

• pt, the LSTM parser’s internal embedding of the
POS tag it assigned to t in preprocessing.

The concatenation is passed through a linear
transformation V (with a bias bt) and a ReLU:

t = max {0,V [w̃t;wt;pt] + bt}

5.2.2 Embedding a list of tokens
For each input to the final state vector that is a list
of tokens, we add an LSTM cell to the network.

For the spans of the instance under construction—
i.e., the connective, Cause, Effect, and Means
spans—embedding token lists is straightforward:
whenever a transition adds a token to one of these
lists, that token’s embedding is added to the cor-
responding LSTM’s input sequence. The LSTM’s
updated output is then used for all subsequent ac-
tions until another transition modifies the span.

The procedure for embedding the λ’s is more in-
volved. As transitions are taken, tokens may need
to be moved between lists—e.g., the argument to-
ken is moved from λ1 to λ2 after a LEFT-ARC tran-
sition, and the connective anchor token is moved
from λ4 to λ1 on a NO-CONN.

We implement these transfers using stack
LSTMs. Initially, all tokens’ embeddings are input
to λ4, but in reverse order, so that the leftmost to-
ken is added last. Then, whenever λ4’s leftmost to-
ken t is to be moved—i.e., on a SHIFT, NO-CONN,

1696

Action log probabilities

k

State

72

Connective tokens

32

Cause tokens

32

Effect tokens

32

Means tokens

32

Action history

32

Parse path

20

λ1

48

λ2

48

λ3

48

λ4

48

Figure 1: Schematic of the overall neural network architecture. Each lone box represents a vector. Stacked boxes
represent LSTMs: at any given time, the state is a single vector, but that state encodes a series of inputs.

RIGHT-ARC, or NO-ARC-RIGHT—the λ4 LSTM is
rewound one step to its state before t was added.
Storing λ4 in reverse order offers the added benefit
of tokens closer to the anchor holding greater sway,
since LSTMs favor recently added inputs.
λ1 and λ2 are a mirror image of λ4 and λ3, re-

spectively. Tokens are added to λ1 on either a
SHIFT or a NO-CONN. Thus, the λ1 LSTM ends up
representing an in-order list of tokens up to the cur-
rent a. If a is then flagged as a connective anchor,
tokens to its left are moved from λ1 to λ2 as they
are compared. The rightmost token t in λ1 is the
first to be compared, so the λ1 LSTM is rewound
to remove t. t’s embedding is then added to λ2,
leaving λ2 with a reversed list of compared tokens.

5.2.3 Embedding a dependency path
The syntactic relationship between the connective
anchor a and a candidate argument word t is given
to the network as a DEPENDENCY PATH—the series
of labels on the dependency arcs between a and t.
For instance, consider the dependency parse below:

I worry because I care

nsubj

advcl

nsubj
mark

Here, the path from the first I to because would

be #
nsubj
oo # advcl

// # mark
//#, where the blank

nodes take the place of the words I, worry, care,
and because in the dependency graph.

To embed a dependency path, we again use the
output of an LSTM cell, where each input is an
embedding of a dependency label: for a label x, we
directly use the LSTM parser’s embedding for the

syntactic parse action LEFT-ARC(x), if available,
or RIGHT-ARC(x) otherwise. We add one extra bit
to each arc’s embedding to indicate whether it was
traversed forward or backward in this path.1

5.2.4 Embedding the action history
During training, DeepCx learns vector representa-
tions of each action. To embed the action history,
these action embeddings are fed as inputs into yet
another LSTM cell. This LSTM’s output is the
embedding of the history thus far.

5.3 Implementation details

DeepCx is implemented using a refactored version
of the LSTM parser codebase that performs iden-
tically to the original.2 The neural network frame-
work, which also underlies the LSTM parser, is an
early version of DyNet (Neubig et al., 2017). The
LSTM parser model is pretrained on the usual Penn
Treebank (Marcus et al., 1994) sections (training:
02–21; development: 22).

For w̃, we use the same “structured skip n-
gram” word embeddings as the LSTM parser. See
Dyer et al. (2015) for details about the embedding
approach, hyperparameters, and training corpora.
DeepCx gives no special treatment to out-of-vocab-
ulary items, other than using the 0 vector for words
not included in the pretrained embeddings.

1This embedding is similar to that proposed by Roth and
Lapata (2016). However, their dependency paths include the
words encountered along the way and their POS tags. We
experimented with adding these elements to our dependency
paths, but found that they consistently reduced performance.

2https://github.com/clab/lstm-parser/
tree/easy-to-use.

https://github.com/clab/lstm-parser/tree/easy-to-use
https://github.com/clab/lstm-parser/tree/easy-to-use

1697

The code for DeepCx is available on GitHub.3

5.3.1 Dimensionalities
The pretrained LSTM parser model uses the same
dimensionalities as the original LSTM parser.

Token embeddings are 48-dimensional; w is 10-
dimensional. The remaining DeepCx neural net-
work dimensionalities used in the experiments re-
ported below are shown in Figure 1. All LSTM
cells use two layers of LSTMs before the final
output. These values were chosen as an intuitive
balance between values that worked well for other
projects and what we could reasonably expect to
train with the amount of data we have. Early exper-
iments showed little sensitivity to dimensionality.

6 Experiments

6.1 Experimental setup and training setup
Due to the small corpus size, all experiments use
20-fold cross-validation, split by sentence. Within
each fold, the available data—i.e., everything but
the fold’s held-out test set—is randomized, then
split into 80% training and 20% development. Af-
ter each sentence has been fed through the network,
taking gold-standard transitions (see §5), backprop-
agation is run on all predictions for the sentence.
Development set performance is evaluated every
2500 sentences. After each epoch, the training and
development sets are re-randomized and re-split.4

Training ends when either the connective-level F1

score5 on the development data hits 0.999 or 85%
of the past five epochs’ evaluations have yielded
lower scores than their immediate predecessors.
All systems used the same folds. See the supple-
mentary materials (§A.4) for training parameters.

6.2 Network variants tested in experiments
Ablation studies In addition to the vanilla con-
figuration described above, we examined which
non-essential model components contribute to per-
formance. We were particularly interested in the
effects of parse information. We tested eliminating
the following components of the DeepCx model:
(1) w, the task-specific word embeddings, which

3https://github.com/duncanka/
lstm-causality-tagger.

4Reusing the development data means the network can end
up memorizing. However, early experiments with dedicated
development data showed lower scores, presumably because
too much training data was lost from each fold. Of course, our
final evaluation is still performed on the fold’s held-out data.

5For the experiment with oracle connectives, action-level
prediction accuracy is used instead of F1 score.

could contribute to overfitting; (2) a, the action
history; and (3) d, the parse path between the con-
nective anchor and the current comparison token.

Argument identification alone DeepCx has no
separate argument tagging phase, so we tested per-
formance on the subtask of argument identification
by providing DeepCx with oracle transitions only
for actions that act on the connective—i.e., NO-
CONN, NEW-CONN, CONN-FRAG, and SPLIT. The
system was then responsible for deciding between
NO-ARC, LEFT-ARC, and RIGHT-ARC transitions.

Restricting generalization One of the strengths
of the transition-based approach is its ability to rec-
ognize previously unseen forms of causal language
that resemble known connectives semantically and/
or linguistically. Given our relatively small dataset,
however, it seemed possible that the system would
not have enough data to make meaningful gener-
alizations. We therefore tested a variant where
DeepCx would refuse to allow a test-time NEW-
CONN or CONN-FRAG transition unless adding the
putative connective word would match the initial
word sequence of some connective seen in training.

6.3 Evaluation metrics

For connective discovery we measure precision,
recall, and F1, requiring connectives to match ex-
actly. For argument ID, we split metrics for Causes
and Effects (we omit Means, as there are too few in
the corpus to evaluate reliably). For each argument
type, we report F1 of connective/argument pairs,
where matches must match exactly; F1 of connec-
tive/argument pairs, where half of the larger span’s
tokens must match; and the average Jaccard index
for gold vs. predicted spans, given a correct con-
nective. Punctuation is excluded from evaluation.

Jaccard indices convey how close argument tag-
ging is when it does not match exactly. This metric
is computed only over true positive connectives,
as argument overlap cannot be evaluated automati-
cally for false positives. Thus, Jaccard indices are
not directly comparable between systems—they
represent how well argument ID works given the
previous stage, rather than in an absolute sense.

7 Results and analysis

Results are shown in Table 4. For comparison, we
also report on the best Causeway configurations.

All significance tests below are paired, two-
tailed t-tests on the results from all 20 folds.

https://github.com/duncanka/lstm-causality-tagger
https://github.com/duncanka/lstm-causality-tagger

1698

Connectives Causes Effects
System variant P R F1 F1 F1@.5 J F1 F1@.5 J

Best Causeway-S 62.8 46.2 53.1 37.9 42.5 81.0 24.8 38.7 73.3
Best Causeway-L 63.4 45.1 52.5 38.8 43.5 83.7 30.4 40.7 78.4

Vanilla DeepCx 63.4 55.8 59.2 43.9 50.6 83.0 41.0 51.7 82.2
No w 62.7 56.2 59.1 42.8 49.0 81.9 41.8 51.7 82.5
No d 62.7 56.5 59.2 42.7 49.1 80.9 39.6 51.1 80.5
No a 61.3 54.1 57.3 40.3 48.3 81.6 36.9 50.4 81.1

No novel connectives 65.4 56.5 60.5 44.7 51.0 82.6 42.8 52.6 82.1
Oracle connectives – – – 73.5 80.9 79.7 67.8 82.8 80.7

Table 4: Results for all variants of DeepCx tested. As before, J indicates Jaccard index. For P /R/F1 scores, the
best non-oracle results are bolded, and the best results within each of the top two sections are italicized.

7.1 Overall performance

The results show the DeepCx transition system to
be a promising approach for SCL.

The vanilla configuration unmistakably eclipses
Causeway at connective discovery with a margin of
6.1 F1 points, driven primarily by recall. Both F1

scores have high standard deviations across folds
(3.6–4.7 points), but the scores covary; some folds
are simply harder. DeepCx usually leads Cause-
way by at least 5 points, making the difference
highly statistically significant (p � 0.001). The
gap comes primarily from recall, where DeepCx
averages 9.6–10.7 points higher than Causeway. 6

On end-to-end argument identification, DeepCx
again outperforms Causeway, particularly on recall,
with a 5–6-point gap in F1. The Jaccard indices for
Causes and Effects are in the low 80’s, indicating
extensive overlap with gold-standard spans. They
are on par with Causeway for Causes and higher for
Effects, despite the fact that DeepCx’s higher recall
gives it more chances to be docked for mismatches.

7.2 Argument identification alone

Argument ID scores remain high when oracle con-
nectives are provided. Naturally, the end-to-end
argument scores improve dramatically compared
to non-oracle connectives, but the more important
question is what fraction of the previous errors re-
main when connective discovery is no longer a
source of error. With oracle connectives, DeepCx
achieves 73.5% F1 on Causes and 67.8% on Effects,
implying that the vanilla configuration’s argument
error was split roughly half and half between con-
nective discovery failures and argument ID failures.

However, the F1 metrics reflect exact span
matches; it is counted as a mismatch if even a

6Recall should perhaps have even been higher: in at least
three cases, DeepCx was penalized for correctly flagging con-
nectives that had been missed by annotators.

single word is off. Because in this experiment the
system’s entire task is to tag arguments, the Jac-
card indices give an absolute measure of overlap
between predicted and gold argument spans. By
that measure, the neural network’s treatment of ar-
gument identification transitions looks quite robust.
Jaccard indices do drop by a few points compared
to non-oracle connectives, as expected: with the
oracle, arguments are evaluated for every gold-stan-
dard instance, including more difficult ones that the
vanilla configuration misses. But despite the more
exhaustive assessment, DeepCx maintains Jaccard
indices of ∼80% for Causes and Effects.

7.3 Model ablation studies

No pieces of the model beyond the bare essentials
improved connective scores. Removing these com-
ponents did marginally lower argument ID scores,
but few differences were statistically significant.

The meager effects of parse paths came as a
surprise; indeed, our reason for building on the
LSTM parser was to lean on its parse embeddings.
That these paths made little difference suggests that
the bulk of the information they provide is available
in some isomorphic form from simpler inputs.

7.4 Constraining to known connectives

Constraining DeepCx to known connectives yields
an interesting tradeoff. On the one hand, it boosts
precision (p < 0.036) and raises F1 slightly (p <
0.09). Inspecting the vanilla system’s outputs ac-
centuates the risks of letting it run wild inventing
connectives: its odder proposals included an unfair
effort to, is insanity, eight, and the dollar sign.

On the other hand, some generalizations were
surprisingly perceptive. For instance, the phrase
allowing states greater opportunity to regulate was
not marked by annotators because allowing here
seems to mean “providing.” But DeepCx proposed

1699

allowing opportunity to as a connective—a plausi-
ble candidate for annotation. Elsewhere DeepCx
tagged catalyst for and fuel (as in fueled skepti-
cism), both arguably annotator omissions.

Ultimately, then, whether to permit novel con-
nectives depends on the user’s prioritization of pre-
cision, recall, and discovery.

8 What’s needed for other constructions
and domains?

Although the DeepCx transitions were designed for
BECAUSE, it would be straightforward, given ap-
propriate corpora, to extend the transition scheme
and model structure to arbitrary frames and role la-
bels as in PropBank and FrameNet. The scheme’s
arc transitions would need variants for each possi-
ble role type, as is standard in existing transition-
based SSP (e.g., SLING, Choi and Palmer). Like-
wise, NEW-CONN could be changed to NEW-
CONN(frame); the space of arc transitions for con-
structing the rest of that instance could then be
pruned to those relevant to the frame. As for the
tagger state, there are several straightforward ways
to modify it for open-ended role and frame labels.
One option is to represent each instance’s argu-
ments as a list of 〈role label, list of tokens〉 tuples,
and to add a frame label variable that is embedded
as part of the state. Alternatively, we could fol-
low SLING in providing the tagger a list of 〈 frame
label, role label, token〉 tuples.

Applying SCL to domains beyond causality
would be particularly useful for relations like com-
parison and concession (see Table 1), where com-
plex constructions abound. But as Fillmore et al.
(2012) observe, many frames possess the odd non-
lexical-unit trigger. For example, the Motion frame
can be evoked by the “verb-way” construction
(sang our way across Europe), and Measurement
by the abstract pattern 〈number〉 〈unit〉 〈noun〉 (as
in twelve-inch-thick). Expanding SSP to cover con-
structions would allow parsing these cases, which
are individually rare but collectively form a fat tail
of frame instances.

DeepCx already covers most constructional
quirks that interfere with SSP, including discontin-
uous trigger and argument spans, overlaps between
arguments, overlaps between trigger words and
arguments, and overlaps between triggers. Still,
several extensions might be needed for the full
gamut of arbitrary constructions. Most notably,
our scheme operates on words, but plenty of con-

structions are sub-lexical (e.g., the comparative -er).
One solution would be to operate on morphemes in-
stead. Unfortunately, tagging would then be subject
to errors in morphological analysis, and morpheme-
or character-based embeddings would be needed.
A simpler but less elegant solution would be to
tag the entire word containing the morpheme (e.g.,
bigger) as part of the construction.

A second challenge is constructions with no lex-
ical trigger, as in I can’t come; I have rehearsal.
The simplest fix would be to add a JUXT transition
as a sibling of NEW-CONN. This transition would
anchor a new relation instance at the boundary be-
tween the words currently being compared, indi-
cating that the mere juxtaposition of two argument
spans conveys a relation between them.

Cross-sentential constructions—e.g., discourse
connectives whose arguments can be in another
sentence—pose a third challenge: our sentence-
oriented scheme ignores sentential juxtaposition
and cross-sentential grammatical relations as con-
struction possibilities. While it would not be too
difficult to alter the scheme to allow, say, argu-
ments in the previous k sentences, it might make
randomized training more difficult.

Finally, SPLITs make strong assumptions about
how two connectives sharing words will interact.
Constructions violating these assumptions may re-
quire more drastic surgery on the scheme.

9 Contributions and takeaways

This paper has introduced surface construction la-
beling as an expansion of shallow semantic parsing.
It has also presented DeepCx, a neural transition
framework unifying connective discovery and argu-
ment ID for causal constructions. DeepCx achieves
strong performance on parsing such constructions.
Although the transition system targets causal lan-
guage, its flexibility makes it promising for other
domains, as well. We hope DeepCx will inspire
further work on SCL. This includes applying more
sophisticated tagging techniques such as bidirec-
tional LSTMs, attention, and dynamic oracles, but
most importantly developing new data and tasks to
which the approach can be applied.

Acknowledgments

The authors thank Miguel Ballesteros, Chris Dyer,
Eduard Hovy, Nathan Schneider, and Todd Snider
for their invaluable help in developing these ideas,
offering feedback, and critiquing draft writeups.

1700

References
Collin Baker, Michael Ellsworth, and Katrin Erk. 2007.

SemEval’07 task 19: frame semantic structure ex-
traction. In Proceedings of the 4th International
Workshop on Semantic Evaluations (SemEval 2007),
pages 99–104. Association for Computational Lin-
guistics.

Timothy Baldwin and Su Nam Kim. 2010. Multiword
expressions. In Nitin Indurkhya and Fred J. Dam-
erau, editors, Handbook of Natural Language Pro-
cessing, volume 2, pages 267–292. CRC Press, Boca
Raton, USA.

Xavier Carreras and Lluís Màrquez. 2004. Introduction
to the CoNLL-2004 shared task: Semantic role la-
beling. In Proceedings of the Eighth Conference on
Computational Natural Language Learning (CoNLL
2004), pages 89–97. Association for Computational
Linguistics.

Xavier Carreras and Lluís Màrquez. 2005. Introduc-
tion to the CoNLL-2005 shared task: Semantic role
labeling. In Proceedings of the Ninth Conference on
Computational Natural Language Learning (CoNLL
2005), pages 152–164. Association for Computa-
tional Linguistics.

Wenliang Chen, Yue Zhang, and Min Zhang. 2014.
Feature embedding for dependency parsing. In Pro-
ceedings of the 25th International Conference on
Computational Linguistics: Technical Papers (COL-
ING 2014), pages 816–826. Association for Compu-
tational Linguistics.

Jinho D. Choi and Martha Palmer. 2011a. Getting
the most out of transition-based dependency pars-
ing. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies (HLT ’11), volume 2,
pages 687–692. Association for Computational Lin-
guistics.

Jinho D Choi and Martha Palmer. 2011b. Transition-
based semantic role labeling using predicate argu-
ment clustering. In Proceedings of the ACL 2011
Workshop on Relational Models of Semantics, pages
37–45. Association for Computational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.

Dipanjan Das, Desai Chen, André FT Martins, Nathan
Schneider, and Noah A Smith. 2014. Frame-
semantic parsing. Computational Linguistics,
40(1):9–56.

Jesse Dunietz, Lori Levin, and Jaime Carbonell. 2017a.
Automatically tagging constructions of causation
and their slot-fillers. In Transactions of the As-
sociation for Computational Linguistics, volume 5,
pages 117–133. Association for Computational Lin-
guistics.

Jesse Dunietz, Lori Levin, and Jaime Carbonell. 2017b.
The BECauSE corpus 2.0: Annotating causality and
overlapping relations. In Proceedings of the 11th
Linguistic Annotation Workshop (LAW XI), pages
95–104. Association for Computational Linguistics.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2015), pages 334–343. Association
for Computational Linguistics.

Charles J. Fillmore, Paul Kay, and Mary Catherine
O’Connor. 1988. Regularity and idiomaticity in
grammatical constructions: The case of let alone.
Language, 64(3):501–538.

Charles J. Fillmore, Russell Lee-Goldman, and Russell
Rhodes. 2012. The FrameNet constructicon. Sign-
Based Construction Grammar, pages 309–372.

Nicholas FitzGerald, Oscar Täckström, Kuzman
Ganchev, and Dipanjan Das. 2015. Semantic role
labeling with neural network factors. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2015),
pages 17–21. Association for Computational Lin-
guistics.

William Foland and James Martin. 2015. Dependency-
based semantic role labeling using convolutional
neural networks. In Proceedings of the Fourth Joint
Conference on Lexical and Computational Seman-
tics, pages 279–288. Association for Computational
Linguistics.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence
and Statistics, volume 9 of Proceedings of Machine
Learning Research, pages 249–256. Proceedings of
Machine Learning Research.

Adele Goldberg. 1995. Constructions: A Construc-
tion Grammar Approach to Argument Structure.
Chicago University Press.

Adele E. Goldberg. 2013. Constructionist approaches.
In The Oxford Handbook of Construction Grammar,
Oxford Handbooks in Linguistics, pages 15–31. Ox-
ford University Press USA.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martí, Lluís
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 shared task: Syntactic and semantic dependen-
cies in multiple languages. In Proceedings of the
Thirteenth SIGNLL Conference on Computational
Natural Language Learning (CoNLL 2009): Shared
Task, pages 1–18. Association for Computational
Linguistics.

1701

James Henderson, Paola Merlo, Gabriele Musillo, and
Ivan Titov. 2008. A latent variable model of syn-
chronous parsing for syntactic and semantic depen-
dencies. In Proceedings of the Twelfth Confer-
ence on Computational Natural Language Learn-
ing (CoNLL 2008), pages 178–182. Association for
Computational Linguistics.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for ucca. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1127–1138.
Association for Computational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60. Association for Computational Lin-
guistics.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schasberger.
1994. The Penn Treebank: Annotating predicate
argument structure. In Proceedings of the Work-
shop on Human Language Technology (HLT ’94),
pages 114–119. Association for Computational
Linguistics.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel Cloth-
iaux, Trevor Cohn, Kevin Duh, Manaal Faruqui,
Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng
Kong, Adhiguna Kuncoro, Gaurav Kumar, Chai-
tanya Malaviya, Paul Michel, Yusuke Oda, Matthew
Richardson, Naomi Saphra, Swabha Swayamdipta,
and Pengcheng Yin. 2017. DyNet: The dynamic
neural network toolkit. ArXiv:1701.03980.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4):513–553.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Gülşen Eryigit, Sandra Kübler, Svetoslav
Marinov, and Erwin Marsi. 2007. MaltParser: A
language-independent system for data-driven depen-
dency parsing. Natural Language Engineering,
13(2):95–135.

Michael Ringgaard, Rahul Gupta, and Fernando C. N.
Pereira. 2017. SLING: a framework for frame se-
mantic parsing. ArXiv:1710.07032.

Michael Roth. 2016. Improving frame semantic pars-
ing via dependency path embeddings. In Book of Ab-
stracts of the 9th International Conference on Con-
struction Grammar, pages 165–167.

Michael Roth and Mirella Lapata. 2016. Neural se-
mantic role labeling with dependency path embed-

dings. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (ACL
2016), pages 1192–1202. Association for Computa-
tional Linguistics.

Mihai Surdeanu, Richard Johansson, Adam Meyers,
Lluís Màrquez, and Joakim Nivre. 2008. The
CoNLL-2008 shared task on joint parsing of syntac-
tic and semantic dependencies. In Proceedings of
the Twelfth Conference on Computational Natural
Language Learning (CoNLL 2008), pages 159–177.
Association for Computational Linguistics.

Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer,
and Noah A. Smith. 2016. Greedy, joint syntactic-
semantic parsing with stack lstms. In Proceedings of
the 20th SIGNLL Conference on Computational Nat-
ural Language Learning (CoNLL 2016), pages 187–
197. Association for Computational Linguistics.

Oscar Täckström, Kuzman Ganchev, and Dipanjan Das.
2015. Efficient inference and structured learning for
semantic role labeling. Transactions of the Associa-
tion for Computational Linguistics, 3:29–41.

Ivan Titov, James Henderson, Paola Merlo, and
Gabriele Musillo. 2009. Online graph planarisa-
tion for synchronous parsing of semantic and syn-
tactic dependencies. In Proceedings of the 21st In-
ternational Jont Conference on Artifical Intelligence
(IJCAI ’09), pages 1562–1567, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

David Vilares and Carlos Gómez-Rodríguez. 2018. A
transition-based algorithm for unrestricted amr pars-
ing. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 142–149. As-
sociation for Computational Linguistics.

