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Abstract

Several recent studies have shown the bene-
fits of combining language and perception to
infer word embeddings. These multimodal
approaches either simply combine pre-trained
textual and visual representations (e.g. fea-
tures extracted from convolutional neural net-
works), or use the latter to bias the learning
of textual word embeddings. In this work,
we propose a novel probabilistic model to for-
malize how linguistic and perceptual inputs
can work in concert to explain the observed
word-context pairs in a text corpus. Our ap-
proach learns textual and visual representa-
tions jointly: latent visual factors couple to-
gether a skip-gram model for co-occurrence in
linguistic data and a generative latent variable
model for visual data. Extensive experimen-
tal studies validate the proposed model. Con-
cretely, on the tasks of assessing pairwise word
similarity and image/caption retrieval, our ap-
proach attains equally competitive or stronger
results when compared to other state-of-the-art
multimodal models.

1 Introduction

Continuous-valued vector representation of words
has been one of the key components in neural archi-
tectures for natural language processing (Mikolov
et al., 2013; Pennington et al., 2014; Levy and Gold-
berg, 2014). The main idea is based on the distribu-
tional hypothesis (Harris, 1954), which states that
words used in similar contexts have similar seman-
tic meanings. To this end, words are mapped to
points in an Euclidean space such that the displace-
ment between their coordinates (i.e., embeddings)
reflects similarity and difference in semantics (Pen-
nington et al., 2014). As such, word embeddings
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have been shown to be useful in determining se-
mantic and syntactic similarity between individual
words (Mikolov et al., 2013; Baroni et al., 2014;
Levy et al., 2015), as well as in downstream NLP
tasks, e.g., sentiment analysis, question answering,
and coreference resolution, just to name a few.

Most existing approaches rely solely on text cor-
pora to infer word representations. While success-
ful, the embeddings produced by such models do
not necessarily reflect all inherent aspects of human
semantic knowledge, such as the perceptual aspect
(Feng and Lapata, 2010). This has motivated many
researchers to explore different ways to infuse vi-
sual information, often represented in the form of
pre-computed visual features, into word embed-
dings (Kiela and Bottou, 2014; Silberer et al., 2017;
Collell et al., 2017; Lazaridou et al., 2015). The
main theme is to take either the text embeddings,
or the visual features or both as such to derive mul-
timodal embeddings: through concatenation (Kiela
and Bottou, 2014), or by treating visual features as
regression targets (Lazaridou et al., 2015; Collell
et al., 2017).

Despite the success of these prior efforts in yield-
ing multimodal embeddings and applying them to
downstream NLP tasks, there are still several defi-
ciencies. In particular, the visual features (as such)
are not guaranteed to be suitable for the word em-
bedding task since they are typically optimized
independently for another objective (e.g., image
classification). Hence, fusing pre-computed word
representations and visual features may not be a
good strategy.

To address the above issues, we explore a new
way to integrate linguistic and perceptual infor-
mation. We develop a new model which jointly
learns word embeddings from text and extracts la-
tent visual information, from pre-computed visual
features, that could supplement the linguistic em-
beddings in modeling the co-occurrence of words
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and their contexts in a corpus. Instead of using
pre-trained visual features as it is or as regression
targets, we posit that they contain latent perceptual
information that could complement text in repre-
senting words.

More specifically, the proposed model consists
of two components. The visual component is an
unsupervised probabilistic model for learning latent
factors that generates the visual data. The linguistic
component is a revised SKIP-GRAM model in which
the text embeddings work in concert with the latent
visual factors to explain the occurrence of word-
context pairs in a corpus. One advantage of our
joint modeling is that it allows two-way interaction.
On one hand, the linguistic information can guide
the extraction of latent visual factors. On the other
hand, the extracted visual factors can improve the
modeling of word-context co-occurrences in text
data. Another appealing property of our model is its
natural ability to propagate perceptual information
to the embeddings of words lacking visual features
(e.g., abstract words) during learning.

We conduct extensive quantitative and qualita-
tive experiments to examine and understand the
effectiveness of our approach, on the tasks of word
similarity and image/caption retrieval. We show its
matching or stronger performance when compared
to other state-of-the-art approaches for learning
multimodal embeddings.

2 Our Approach

We start by introducing the problem setup and
notations. We then describe our model, namely
PIXIE (ProbabIlistic teXtual Image Embeddings),
for joint learning of word representations from text
and perceptual information.

2.1 Setup and Background

We are given a corpus of H tokens (words):
w1, . . . , wi, . . . , wH . From the corpus, we form
a collection of word-context pairs δw,c = (w, c),
such thatw ∈ Vw, c ∈ Vc, with Vw and Vc denoting
respectively the word and context vocabularies. As
in most previous work, the contexts for wordwi are
the words that surround it in a L-sized window. We
introduce the binary indicator variables ywc, such
that ywc = 1 if δw,c appears in our collection, and
ywc = 0 otherwise.

For some words with visual grounding (we will
refer to them as visual words), we have access to a
visual representation xw. In practice, we use con-

xw ywc vc

ewzw

θ

W C

Figure 1: Plate representation of our model PIXIE. The
model consists of a generative model for visual data
and a conditional model for text data. The latent visual
factors z and text embedding e jointly predict the word-
context pair’s label y.

volutional net features (see Section 4 for details).

SKIP-GRAM WITH NEGATIVE SAMPLING
(SGNS) The SGNS’s objective is to learn word
representations that are good at distinguishing
the observed pairs (ywc = 1) from non-observed
or “negative” pairs (ywc = 0), using logistic
regression. Formally, SGNS maximizes the
following log-likelihood:

∑
w,c

[ywc log σ(v
T
c ew)+(1−ywc) log σ(−vTc ew)], (1)

where σ(·) is the sigmoid function, vc, ew denote
respectively the vectors for the context c and target
word w. The second term in (1) is intractable due
to the large number of possible negative pairs, and
is approximated by sampling N negative examples
{c′i}Ni=1 for every observed pair of words and their
contexts. This gives rise to the following objective
function for each observed pair:

log σ(vTc ew) +
N∑
i=1

log σ(−vTc′iew), (2)

where c′i is a (negative) context that does not ap-
pear in the context of w (Mikolov et al., 2013). In
practice, criterion (2) is optimized in an online fash-
ion, by using Stochastic Gradient Descent (SGD)
over the observed pairs δwc in the corpus. Each
observed pair δwc typically occurs several times
in the corpus, therefore performing SGD over the
corpus amounts to weighting equation (2) by the
number of occurrence of each pair.

2.2 Joint Visual and Text Modeling
We now describe our model, namely PIXIE (Proba-
bIlistic teXtual Image Embeddings) illustrated in
Fig. 1, for joint learning of word representations
from textual and perceptual information.
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Formally, PIXIE is a probabilistic model of image
features x and word-context pairs’ labels y. Simi-
lar to SKIP-GRAM, PIXIE represents each word w
and context c with low dimensional embeddings
noted respectively ew ∈ RK and vc ∈ RK . PIXIE

further assumes latent visual factors, zw ∈ RK , for
each word’s visual representation xw. Next we de-
scribe the two main components of PIXIE, namely
textual and perceptual, in more details.

Perceptual Component Each visual vector xw

is drawn conditional on its latent representation
zw, i.e., xw ∼ pθ(x|zw), with pθ(z) = N (0, I).
Since xw is real valued, we let pθ(xw|zw) be a
Gaussian parameterized by a generative neural net-
work (or decoder). That is,

pθ(xw|zw) = N (xw|µθ(zw),Σθ(zw)). (3)

For tractability purposes, Σθ is restricted to be
diagonal. Moreover, both the co-variance Σθ(zw)
(its diagonal) and the mean µθ are the outputs of a
decoder network with parameters θ and input zw.

Textual Component To model the occur-
rence/absence of word-context pair δwc in the lin-
guistic corpus, we adopt a Bernoulli (Ber) model:

p(ywc| ew,vc, zw) = Ber(σ[f(ew,vc, zw)]) (4)

The function f(·) defines how multimodal em-
beddings are fused. While many choices can be
experimented, we use the simple additive model:

f(ew,vc, zw) = v
T
c (ew + zw). (5)

For words without visual representation, we sim-
ply set the corresponding latent factors zw to the
zero vector. Note that, without the visual factors
zw, equation (4) reduces to the Skip-Gram with
negative sampling objective (1).

Joint Model The perceptual and the textual infor-
mation interact through the shared latent zw. The
joint model of the above two sources of information
takes the following form:

p(xw, ywc| ew,vc) =∫
pθ(zw)pθ(xw|zw)p(ywc| ew,vc, zw)dzw (6)

The intuition behind our joint formulation is to
let the textual information guide the extraction of
latent visual factors zw. Through equations (4)

and (5), the model will put high probability on fac-
tors zw reflecting patterns that can supplement the
linguistic embeddings ew in explaining the word-
context co-occurrences. Thus, the extracted latent
visual factors can contribute to improve the perfor-
mance on predicting the occurrence of a word and
its contexts in the linguistic corpus, which would
encourage the model to leverage the perceptual in-
formation. The underlying assumption here is to
infer visual and textual embeddings that can work
in concert to represent words.

Visual Information Propagation Equation (5)
implies that the embeddings z, e and v will af-
fect each other during the learning process. Inter-
estingly, if a non-visual word w1 shares a similar
context c with a visual word w2, then the factor
zw2 will affect ew1 via vc. In other words, our for-
mulation makes it possible to implicitly propagate
perceptual information from one word to another
through shared contexts. We illustrate this aspect
in our experiments.

2.3 Approximate Inference and Learning
Training PIXIE amounts to inferring the posterior
over the visual latent factors, pθ(z|x, y), as well
as finding the decoder’s parameters θ, the word
and context embeddings, e and v, that maximize
the likelihood (6). However, as in many complex
probabilistic models, the likelihood (due to the
integral over z) and the posterior are intractable.
We therefore resort to approximation techniques.
More precisely, we rely on Variational Inference
(VI) (Blei et al., 2017). The idea of VI is to intro-
duce a tractable approximate posterior distribution
qφ(z|x) (the variational distribution) and optimize
a lower bound on the likelihood, known as Evi-
dence Lower BOund (ELBO). The latter can be
written for each word w as follows:

Lw = Eq[log pθ(xw|zw) +
∑
c

log p(ywc|ew,vc, zw)]

−KL(qφ(zw|xw)‖pθ(zw)) (7)

where KL(·‖·) is the Kullback-Leibler divergence.
The variational distribution is chosen to be a multi-
variate Gaussian parameterized by an inference net-
work (or encoder) which takes x as input, namely

qφ(zw|xw) = N (zw|µφ(xw),Σφ(xw)), (8)

where we drop the dependency on all ywc variables
to be computationally tractable. The pair of en-
coder and decoder neural networks gives rise to the
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interpretation of PIXIE’s visual component (formed
by z and x) as a probabilistic autoencoder. In fact,
if we drop the textual part in PIXIE, namely y, e and
v, then we recover the Variational Auto-Encoder
(VAE) (Kingma and Welling, 2013).

Lastly, we approximate the intractable (i) ex-
pectation with respect to qφ(z|x) and the (ii)
sum over the negative pairs in (7), by relying on
a Monte Carlo estimator of L. Concretely, for
(ii) we use negative sampling as in (2). Con-
cerning (i), for every observed xw, we sample
{z(j)w }Jj=1 from qφ(zw|xw) using the reparame-
terization trick (Kingma and Welling, 2013), i.e.,
z
(j)
w = µφ(xw) + Σφ(xw)ε, with ε ∼ N (0, I).

Then we approximate L with:

L̃w =

1
J

∑
j

log pθ(xw|z(j)w )−KL(qφ(zw|xw)‖pθ(zw))

+ 1
J

∑
c,j

ywc log σ[v
T
c (ew + z

(j)
w )]

+ 1
J

∑
c,j

N∑
i=1

ywc log(σ[−vTc′i(ew + z
(j)
w )]). (9)

The last two summands correspond to the familiar
conditional likelihood term in the SGNS model,
augmented with latent visual factors.

We optimize the objective (9) via SGD with re-
spect to both the encoder/decoder networks param-
eters (θ and φ) and the embeddings (e and v). We
evaluate the gradients of L̃, with respect to θ and
φ using backpropagation. Similarly, the gradient
with respect to e and v can be easily carried out
using automatic differentiation tools. Our learning
procedure is summarized in Algorithm 1.

Algorithm 1 Variational PIXIE
Input: x, y, sample sizes B and J
Steps:
Randomly initialize θ, φ, e and v
repeat
• Draw a minibatch WB of words: w(1), . . . , w(B)

• For each xw with w ∈ WB , sample {z(j)
w }Jj=1 from

qφ(zw|xw) using the reparameterization trick. For each
observed pair δwc draw N negative examples {c′i}Ni=1.
• Compute the estimator L̃WB ←

∑
w∈WB L̃w

• Compute the gradient: G← ∇θ,φ,e,vL̃WB

• Use G to update θ, φ, e and v (e.g., with ADAM)
until convergence
return θ, φ, e and v

Inference Once the parameters of the model are
learned, for any given word with or without visual
representation, we can compute its multimodal em-
bedding. As a short hand, let the binary variable

mw denote whether or not the word w has a visual
representation. The multimodal embedding for w
can be written as

sw = ew +mwµ(xw), (10)

where µ(xw) = Eq(zw) is the output of the encod-
ing neural network, cf. Eq. (8).

In our experiments, we have also studied an al-
ternative way to compose multimodal embeddings
by concatenating the two vectors ew and µ(xw)

tw = [ew mwµ(xw)]. (11)

Note that for non-visual words, only zeros are ap-
pended to ew. One advantage of t over s is that
if one uses distances to measure similarity, t can
be seen as a simple summation of distances in two
different spaces (in terms of e and µ respectively).

3 Related Work

Combining language and perception has been re-
cently considered in various NLP tasks such as
machine translation (Calixto and Liu, 2017), visual
question generation (Mostafazadeh et al., 2016),
image captioning (Klein et al., 2015), etc. In this
work, we focus on learning word embeddings from
images and texts.

Multimodal embeddings have been studied in
several recent research work. One strategy is to
obtain word embeddings from linguistic data and
visual data independently and then proceed with
some kind of fusion steps. Kiela and Bottou (2014)
simply concatenates pre-trained linguistic word em-
beddings and visual features computed by convo-
lutional nets. Bruni et al. (2014) performs an addi-
tional step of dimensionality reduction via singular
value decomposition. Silberer et al. (2017) extend
on this work by feeding the linguistic embedding
and visual features into a stacked auto-encoder for
nonlinear dimensionality reduction. The above-
mentioned approaches perform a two-stage process
to derive multimodal representations (unimodal in-
ference followed by fusion) and have been evalu-
ated only on words for which both perceptual and
textual representations are available.

A standing question is how to propagate visual
information from words with visual features to
words lacking them (for instance, abstract words).
While the previous methods fall short on that, the
recent work by Collell et al. (2017) addresses this
challenge by learning a mapping from language to
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vision, using a set of words with known linguistic
embeddings and visual features. This mapping can
then be used to infer visual representations for new
words from their textual embeddings.

All the aforementioned methods rely on inde-
pendently pre-trained linguistic embeddings and
visual features. In this work, we propose a differ-
ent strategy, which consists in adapting those rep-
resentations so that the information can be fused in
earlier stages. In this respect, the closest work to
ours is (Lazaridou et al., 2015), which proposes to
augment the SKIP-GRAM objective function with
a term mapping the textual embeddings to the vi-
sual features. Crudely, the linguistic embeddings
must therefore predict both the text co-occurrences
and (pre-trained) visual features. We emphasize
two key differences with our approach. First, in-
stead of performing a regression or mapping from
the textual embeddings to the visual features, our
model learns to infer perceptual latent factors to
retain only the portion of visual information that
can supplement the linguistic embeddings in rep-
resenting words. Second, while Lazaridou et al.
(2015) combines two objectives, we use a joint
probabilistic model integrating both visual and text
information in a principled way. Specifically, our
model seeks latent factors that are good at explain-
ing the word-context co-occurrences. For instance,
a visual feature of (an image of) OCEAN often con-
tains information about SKY and BLUE — such
visual information could be beneficial to predict co-
occurrence of tokens in the context of OCEAN. This
desiderata further strengthens the learned embed-
dings to be visually grounded. In our experiments,
we show that our approach tends to group concrete
visually similar concepts together.

4 Experiments

In this section, we evaluate our model and contrast
it to other competing approaches on two different
tasks: word similarity and image/caption retrieval.

4.1 Setup
Text corpus We use the Text8 WIKIPEDIA cor-
pus1 containing over 17 million tokens. Text8 was
pre-processed to contain only letters and noncon-
secutive spaces. After removing infrequent words,
we obtain a vocabulary of 50, 000 unique words.

Image features We use the ImageNet dataset
(Russakovsky et al., 2015), including the fall Ima-

1http://mattmahoney.net/dc/textdata

geNet 2011 release (Deng et al., 2009). It contains
14, 188, 125 images organized according to 21, 842
synsets of WordNet (Fellbaum, 1998). Each synset
contains 600 images on average. To extract image
features, we rely on the Caffe toolkit (Jia et al.,
2014) and use the GoogLeNet convolutional neural
nets (Szegedy et al., 2015) pre-trained on the 1000
synsets of ILSVRC 2012. The 1024-dimensional
activation of the pooling units (before the softmax
layer) are then taken as our image features.

Visual representation of words For each word
in the vocabulary, we recover all the synsets that
it belongs to using the WordNet interface of the
NLTK module (Python) (Bird et al., 2009). We
then remove the synsets not covered by our Im-
ageNet dataset. This results in 9,713 words, out
of the 50,000 words in the vocabulary. For each
visual word, we randomly draw 1,000 distinct im-
ages in ImageNet. If the number of images for a
word is less than 1,000, we increase the coverage
using images belonging to the hypernyms of the
considered word’s synsets, as in (Kiela and Bottou,
2014). We then take the average of these features
as the word’s visual representation x.

Hyper-parameter setting For all models, we set
the dimension of linguistic and visual embeddings,
e and z, to 100, following many previous works.
In our model, the encoder/decoder neural networks
are implemented as one-hidden-layer neural nets
with 500 hidden units each. The dimensions of
the inputs and the outputs of the decoder neural
networks are 100 and 1, 024 respectively (1, 024
and 100 for the encoder). For the encoder, the
hidden units are hyperbolic tangent, and the output
units are linear. For the decoder, the hidden units
are hyperbolic while the outputs are sigmoid. For
SGNS, we set the window size L to 10 and the
number of negative samples to 64. Our model is
learned by Stochastic Gradient Descent using the
ADAM optimizer (Kingma and Ba, 2014) with a
learning rate set to 0.001.

Table 1: Datasets for the task of word similarity.
Datasets #word pairs

MEN (Bruni et al., 2014) 3000
EN-MC (Miller and Charles, 1991) 31

EN-RG (Rubenstein and Goodenough, 1965) 65
SimLex (Hill et al., 2015) 999

MTurk (Radinsky et al., 2011; Halawi et al., 2012) 287
WORDSIM (Finkelstein et al., 2001) 350

REL (Agirre et al., 2009) 150
SIM (Agirre et al., 2009) 200

SEMSIM (Silberer and Lapata, 2014) 5494
VISSIM (Silberer and Lapata, 2014) 5494
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Table 2: Results on word similarity task. Reported are the Spearman’s rank order correlation between model
prediction and human judgment (higher is better and bolds highlight the best methods). See text for details.

Semantic/taxonomic similarity General relatedness Visual similarity REL+SIM

Models
SEMSIM SimLex SIM EN-RG EN-MC MEN REL MTurk VISSIM WORDSIM

100% 98% 100% 39% 100% 44% 100% 72% 100% 73% 100% 54% 100% 53% 100% 26% 100% 98% 100% 39%

CNN - 0.49 - 0.41 - 0.49 - 0.54 - 0.46 - 0.54 - 0.20 - 0.18 - 0.53 - 0.28
VAE - 0.65 - 0.43 - 0.51 - 0.56 - 0.55 - 0.62 - 0.22 - 0.40 - 0.62 - 0.37

SGNS 0.50 0.50 0.33 0.35 0.66 0.66 0.60 0.55 0.60 0.52 0.65 0.67 0.56 0.51 0.65 0.63 0.38 0.38 0.61 0.60

CNN⊕SGNS† - 0.67 - 0.48 - 0.65 - 0.60 - 0.55 - 0.74 - 0.44 - 0.51 - 0.63 - 0.56
VAE⊕SGNS - 0.70 - 0.51 - 0.67 - 0.61 - 0.60 - 0.76 - 0.45 - 0.55 - 0.63 - 0.56

V-SGNS‡ 0.58 0.58 0.29 0.30 0.66 0.71 0.73 0.73 0.69 0.69 0.64 0.65 0.51 0.52 0.60 0.65 0.42 0.42 0.59 0.64
IV-SGNS§ (LINEAR) 0.49 0.50 0.31 0.33 0.55 0.61 0.58 0.56 0.59 0.65 0.60 0.62 0.41 0.38 0.57 0.71 0.36 0.37 0.46 0.51

IV-SGNS§ (NONLINEAR) 0.44 0.44 0.30 0.32 0.53 0.59 0.54 0.53 0.59 0.63 0.57 0.59 0.40 0.37 0.56 0.71 0.32 0.33 0.44 0.48

PIXIE+ 0.63 0.63 0.35 0.48 0.63 0.72 0.65 0.60 0.62 0.62 0.64 0.73 0.46 0.56 0.55 0.55 0.54 0.54 0.50 0.59
PIXIE⊕ 0.71 0.71 0.39 0.53 0.68 0.71 0.73 0.73 0.69 0.71 0.68 0.76 0.52 0.59 0.60 0.59 0.60 0.61 0.58 0.65

†:(Kiela and Bottou, 2014), ‡: (Lazaridou et al., 2015), §: (Collell et al., 2017)

4.2 Task 1: Word Similarity

Datasets Word similarity is a common type of
evaluation task for measuring the effectiveness of
word embeddings. To this end, we retain 10 bench-
mark datasets consisting of pairs of words associ-
ated with similarity scores given by human judges.
Table 1 summarizes their basic properties. There
are different types of similarities being assessed.
SEMSIM, SimLex, SIM, EN-RG and EN-MC fo-
cus on semantic or taxonomic similarity — e.g.
CAR is similar to AUTOMOBILE. MEN, REL and
MTurk consider general relatedness — e.g. CAR is
related to GARAGE. VISSIM is about visual simi-
larity — e.g. GOOSE looks like SWAN. Note that
SIM and REL are the similarity and relatedness
subsets of the full WORDSIM dataset (Finkelstein
et al., 2001) respectively. VISSIM contains the
same word pairs as SEMSIM.

Competing models We benchmark our model
PIXIE against several strong uni- and multi-modal
models listed below:
• SGNS: Skip-Gram with Negative Sampling

(Mikolov et al., 2013). Without the visual com-
ponent, PIXIE reduces to SGNS. We can thus
assess the impact of the perceptual information
by comparing PIXIE to SGNS.
• VAE: Vatiational Auto-Encoder (Kingma and

Welling, 2013), which corresponds to the visual-
specific component of PIXIE.
• CNN: Visual features extracted from a convolu-

tional neural net as described in Section 4.1.
• CNN⊕SGNS (Kiela and Bottou, 2014): Concate-

nation of CNN and SKIP-GRAM embeddings.
• VAE⊕SGNS: Concatenation of VAE and SKIP-

GRAM embeddings.

• V-SGNS (Lazaridou et al., 2015): A multimodal
approach which augments SGNS with a term that
treats CNN visual features as regression targets.
Comparisons with V-SGNS will allow us to eval-
uate the impact of our modeling assumptions.
• IV-SGNS (Collell et al., 2017): Learns a mapping

from SGNS embeddings to CNN visual features.
Due to a large degree of discrepancies in experi-

mental setups across previously published methods
and results,2 we re-implemented all the baselines
and evaluate them under the same conditions.3 For
(Lazaridou et al., 2015), we implemented its model
“A” as model “B” is comparable according to the
original authors. For (Collell et al., 2017), we im-
plemented both linear and nonlinear variants.

Evaluation metrics We use the cosine to mea-
sure the similarity between word representations.
To assess the coherence between human ratings and
models’ predictions, we use the Spearman correla-
tion coefficient.

4.2.1 Main results
The results across different datasets are shown in
Table 2. We perform evaluations under two set-
tings: by considering (i) word similarity between
visual words only and (ii) between all words (col-
umn 100% in Table 2). For the models CNN, VAE

and their concatenation with SGNS embeddings,
the latter setting is not applicable. The two last
rows correspond to the multimodal embeddings
inferred from our model. In particular, PIXIE+

2For instance, Lazaridou et al. (2015) reports only 5,100
visual words, nearly half of what we have defined. Collell
et al. (2017) used pre-trained GloVe word vectors obtained
from a different corpus.

3For each method we use the hyper-parameters recom-
mended by the authors.
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(resp. PIXIE⊕) represents the multimodal embed-
dings built using Eq. (10) (resp. Eq. (11)).

Overall, we note that PIXIE⊕ offers the best per-
formance in almost all situations. This provides
strong empirical support for the proposed model.
Below, we discuss the above results in more depth
to better understand them and characterize the cir-
cumstances in which our model performs better.

How relevant is our formulation? Except
PIXIE and V-SGNS, most of the multimodal compet-
ing methods rely on independently pre-computed
linguistic embeddings. As Table 2 shows, PIXIE

and V-SGNS are often the best performing multi-
modal models, which provides empirical evidence
that accounting for perceptual information while
learning word embeddings from text is beneficial.
Moreover, the superior performance of PIXIE⊕ over
V-SGNS suggests that our model does a better job at
combining perception and language to learn word
representations.

Joint learning is beneficial PIXIE⊕ outperforms
VAE⊕SGNS in almost all cases, which demonstrates
the importance of joint learning.

Where does our approach perform better?
On datasets that focus on semantic/taxonomic simi-
larity, our approach dominates all other methods.

On datasets focusing on general relatedness, our
approach obtains mixed results. While dominat-
ing other approaches on MEN, it tends to perform
worst than SGNS on MTurk and REL (under the
100% setting). One possible explanation is that
general relatedness tends to focus more on “ex-
trapolating” from one word to another word (such
as SWAN is related to LAKE), while our approach
better models more concrete relationships (such as
SWAN is related to GOOSE). The low performance
of CNN and VAE confirms this hypothesis.

On the VISSIM dataset focusing on visual simi-
larity, both CNN⊕SGNS and VAE⊕SGNS perform
the best, strongly suggesting that visual and linguis-
tic data are complementary. Our approach comes
very close to these two methods. Note that our
learning objective is to jointly explain visual fea-
tures and word-context co-occurrences. Thus, two
visually similar words, which never occur within
the same context, could be mapped into slightly
different directions in the latent space.

Visual Propagation Here we wish to evaluate
the ability of our model to propagate perceptual
information to words lacking visual features. To

Table 3: Spearman’s score on subsets of visual words.
The symbol (∗) indicates the visual features for the sub-
set of 2K words have been ignored when training. Bold
highlights the best performing method. Blue color high-
lights the best performing model under the (∗) setting.

Semantic/taxonomic Relatedness Visual REL

+SIM

models

SE
M

SI
M

Si
m

L
ex

SI
M

E
N

-R
G

E
N

-M
C

M
E

N

R
E

L

M
Tu

rk

V
IS

SI
M

W
O

R
D

SI
M

SGNS 0.55 0.40 0.67 0.57 0.52 0.68 0.53 0.75 0.41 0.63

V-SGNS 0.61 0.32 0.72 0.71 0.69 0.69 0.52 0.75 0.44 0.66
IV-SGNS (LINEAR) 0.50 0.40 0.60 0.59 0.60 0.66 0.41 0.72 0.37 0.54

PIXIE⊕ 0.71 0.59 0.72 0.73 0.71 0.77 0.57 0.74 0.60 0.62

V-SGNS(∗) 0.58 0.29 0.72 0.68 0.61 0.67 0.44 0.76 0.43 0.60

IV-SGNS(∗) 0.50 0.40 0.61 0.58 0.58 0.65 0.40 0.72 0.37 0.54

PIXIE⊕
(∗) 0.60 0.43 0.72 0.65 0.60 0.70 0.56 0.76 0.45 0.63

this end, we randomly select a subset of 2, 000
words for which we have visual features, and we
train our model under two different settings: the
visual features of the selected 2K words (i) are
taken into account (PIXIE⊕), (ii) are ignored, i.e.
set to zero (PIXIE⊕

(∗)). We then perform evalu-
ations, under the two settings, on the datasets of
Table 1 considering only pairs composed of words
in the above subset of 2K words. As baselines for
this experiment, we consider SGNS and the multi-
modal approaches which can propagate perceptual
information, namely V-SGNS and IV-SGNS, as well
as their outputs when the 2K visual features are
ignored (denoted by V-SGNS(∗), and IV-SGNS(∗)).

The results are given in Table 3. We observe that
PIXIE⊕

(∗) outperforms SGNS in almost all cases.
Recall that, if we ignore the visual features for all
words, PIXIE reduces to SGNS. We can therefore at-
tribute the performance improvement of PIXIE⊕

(∗)

over SGNS to the propagation of visual informa-
tion to the subset of 2K words. Compared to mul-
timodal methods, PIXIE⊕

(∗) (resp. PIXIE⊕) per-
forms better than V-SGNS(∗) (resp. V-SGNS) and
IV-SGNS(∗) (resp. IV-SGNS) in almost situations.
This suggests that our formulation allows percep-
tual information to propagate better.

Table 4: Word pair cosine similarity computed based
on SGNS and PIXIE⊕

(∗) embeddings.
Word pairs SGNS PIXIE⊕

(∗)

(chicken, turkey) 0.35 0.55
(helicopter, jet) 0.63 0.76
(falcon, hawk) 0.49 0.70

(cathedral, chapel) 0.69 0.80
(cup, mug) 0.39 0.46
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Table 5: 10 nearest neighboring words to the query words in different embedding spaces generated by different
methods. Only "visual" words contain direct visual representations in our dataset. The concreteness score of each
query word is reported between parenthesis (see text for details).

Query word SGNS V-SGNS PIXIE⊕

V
is

ua
l goose (4.81) quail, pig, shark, gull, smoky, sooty, bald,

owl, guppy, bird
fowl, quail, duck, bat, bulldog, puppy,
warbler, blossom, wolfhound, crows

geese, duck, swans, swan, teal, loon, al-
batross, ostrich, gull, eider

brave (1.26)
courageous, young, man, fearless,
heroic, thief, horrible, adventures,
carefree, cowardly

heroes, valiant, ominous, wondrous, fear-
less, wanton, sabers, beast, excalibur,
carefree

bodyguard, wives, benefactors, woman-
izer, heroes, valiant, immortal, house-
wives, fearless, warrior

N
on

V
is

ua
l

birthstone (4.25)
heaviest, yeti, koala, snowfall, intrusions,
mourning, amalthea, gleaming, inciden-
tally, dolly

emerald, lily, lavender, earthy, olive, del-
icacy, acacia, belladonna, flower, poppy

beryl, emerald, lily, sandalwood, hula,
guinevere, pearls, holly, jasmine, jewels

savagery (1.73) swamp, man, crazy, madman, mysteri-
ous, thief, jeffrey, rage, mad, hardy

mad, zombies, beast, fabulous, mysteri-
ous, nightmare, ghosts, alien, mayhem,
bandits

cannibals, evil, legends, werewolves,
beast, haunting, ghosts, zombies, may-
hem, thrillers

In Table 4, we report the cosine similarity be-
tween 5 semantically/visually coherent word pairs
(from our subset of 2K words). Although the vi-
sual vectors of these words were removed during
training, the PIXIE’s word embeddings of each pair
correlate better as compared to their SGNS counter-
parts, which provides further support to the propa-
gation of visual information under PIXIE.

4.2.2 Qualitative analysis

Table 5 displays several qualitative examples of
word similarity. We have selected 4 words: goose,
brave, birthstone and savagery. The first two have
visual feature representations in our training dataset
and the last two do not. Furthermore, for each case,
we chose one concrete and one abstract word.4 For
each word, we identify their nearest neighbors in
the embedding space.

For the visual words, there is a noticeable differ-
ence between our method and others. For instance,
for word goose, SGNS expresses more “general”
relatedness and returns other animals like pig or
shark, while our approach is more specific and
tends to give visually similar neighbors by focusing
on goose looks-like birds. V-SGNS’s result is some-
what in between. On the abstract word brave, we
observe that PIXIE⊕ tends to select more explicit
embodiments of the adjective brave than SGNS and
V-SGNS.

Moving towards the non-visual words, we do
not seem to find a consistent discrepancy pattern
between V-SGNS and PIXIE⊕, though, as for visual
words, both methods seem to select more explicit
exemplars compared to SGNS. For instance, for
the abstract word savagery, both multimodal ap-
proaches suggest cannibals and zombies.

4We rely on the concreteness ratings made available by
Brysbaert et al. (2014), ranging from 1 to 5.

Table 6: Results for image (I)↔ sentence (S) retrieval.
Models

I→ S S→ I
K=1 K=5 K=10 K=1 K=5 K=10

SGNS 23.1 49.0 61.6 16.6 41.0 53.8
V-SGNS 21.9 51.7 64.2 16.2 42.0 54.8

IV-SGNS (LINEAR) 22.7 50.5 61.7 17.1 42.6 55.4
PIXIE+ 24.2 52.5 65.4 17.5 43.8 56.2
PIXIE⊕ 25.7 55.7 67.7 18.4 44.9 56.9

4.3 Task 2: Image and Caption Retrieval
We now study the usefulness of the learned word
embeddings for the tasks of image and caption
retrieval. Our hypothesis is that multimodal word
embeddings will perform better for downstream
tasks involving multimodal information.

Experimental setup We use the Flickr30K
dataset (Young et al., 2014) containing 31,000 im-
ages and 155,000 sentences (5 captions per image).
The sentences describe the images. The task is to
identify the best sentence describing an image or
to identify the best image depicting a sentence. We
follow the data split setting provided by Karpathy
and Fei-Fei (2015), in which 1,000 images are used
for validation and 1,000 for testing. The rest is
used for training.

The retrieval models compute the proximity be-
tween the image features and the sentence em-
beddings. For image features, we use the pre-
computed features provided by Faghri et al. (2017),
which are extracted from the FC7 layer of VGG-19
(Simonyan and Zisserman, 2014). These 4,096-
dimensional features are then linearly mapped to
1,024-dimensional features. For sentences, we use
an one GRU-layer over the sequences of the word
embeddings, resulting in 1,024-dimensional sen-
tence embeddings.

We use a triplet loss to train the retrieval model
such that the inner product between the correspond-
ing image feature and the sentence is greater than
the inner products with incorrect sentences (or im-
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ages) (Kiros et al., 2014). The linear mapping and
the GRU layer are then optimized to minimize the
loss. We use the ADAM optimizer with the learn-
ing rate of 0.0002 and divide it by 10 every 15
epochs and we train the model for 30 epochs. Note
that we do not fine-tune either the original visual
feature or the word embeddings.

Results Table 6 summarizes the results. The eval-
uation metrics are accuracies at top-K (K=1, 5, or
10) retrieved sentences or images. Our model con-
sistently outperforms SGNS and other competing
multimodal methods, which provides additional
support for the benefits of our approach.

5 Conclusion

We propose PIXIE, a novel probabilistic model join-
ing textual and perceptual information to infer mul-
timodal word embeddings. In our model, both
linguistic and visual latent factors work in concert
to explain the co-occurrences of words and their
contexts in a corpus. Empirical results show that
our model achieves equally competitive or stronger
results when compared to state-of-the-art methods
for multimodal embeddings.

Currently our model relies on unsupervised
learning to infer visual factors. Explicit knowl-
edge of similar and dissimilar visual categories
could potentially disentangle latent factors better
for alignment with linguistic data. How to incor-
porate visual domain knowledge more explicitly
into the model would be an interesting direction
for future research. While we build on skip-gram,
the idea of PIXIE could be extended to other word
embedding models, e.g., Glove (Pennington et al.,
2014), ELMO (Peters et al., 2018), etc.
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