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Abstract

In this work, we propose a new model for
aspect-based sentiment analysis. In contrast to
previous approaches, we jointly model the de-
tection of aspects and the classification of their
polarity in an end-to-end trainable neural net-
work. We conduct experiments with different
neural architectures and word representations
on the recent GermEval 2017 dataset. We were
able to show considerable performance gains
by using the joint modeling approach in all set-
tings compared to pipeline approaches. The
combination of a convolutional neural network
and fasttext embeddings outperformed the best
submission of the shared task in 2017, estab-
lishing a new state of the art.

1 Introduction

Sentiment analysis (Pang and Lee, 2008) is the au-
tomatic detection of the sentiment expressed in a
piece of text. Typically, this is modeled as a clas-
sification task with at least two classes (positive,
negative), sometimes extended to three (neutral) or
more fine-grained categories. Aspect-based senti-
ment analysis (ABSA) aims at a finer analysis, i.e.
it requires that certain aspects of an entity in ques-
tion be distinguished and the sentiment be classi-
fied with regard to each of them. An example can
be seen in Figure 1.

This introduces several new challenges. First,
labeled data, which are needed to train statistical
models, are more difficult to obtain. Therefore
the amount of available training data is limited.
Thus a good model for ABSA has to make the
best possible use of the available data. Second,
the detection of the subset of aspects that occur in
a given piece of text is non-trivial. Errors intro-
duced at this stage severely limit the performance
on the overall ABSA task. Third, the general sen-
timent and the sentiment of each aspect can each

German: Alle so “Yeah, Streik beendet” Bahn
so “Okay, dafür werden dann natürlich die Tick-
ets teurer” Alle so “Können wir wieder Streik
haben?”

Translation: Everybody’s like “Yeah, strike’s
over” Bahn goes “Okay, but therefore we’re go-
ing to raise the prices” Everybody’s like “Can we
have the strike back?”

General sentiment: neutral
Aspect sentiment: Ticket purchase:negative

General:positive

Figure 1: Example sentence with contained aspects and
their polarity.

be completely different from each other (cf. Fig-
ure 1). This means that a model has to be able to
distinguish aspects in the text and make indepen-
dent decisions for each of them.

We want to address each of these challenges by
(1) leveraging unlabeled data by modeling word
representations and (2) modeling aspect detection
and classification of their polarity jointly in an
end-to-end trainable system.

We evaluate our approach on the GermEval
2017 data, i.e. customer reviews about Deutsche
Bahn AG on social media. We particularly address
subtask C as the typical setting where two pieces
of information have to be detected from raw text:

1. Which aspects are mentioned?

2. For each mentioned aspect, what is the polar-
ity of its sentiment?

From the new state-of-the-art results we obtain,
we conclude that modeling of word representa-
tions and joint modeling of aspects and polarity
have not yet received the attention they deserve.



1110

2 Related Work

Two recent shared tasks address ABSA: SemEval
2016 Task 5 (Pontiki et al., 2016) and GermEval
2017 (Wojatzki et al., 2017). The SemEval dataset
is extremely small. The English laptop reviews,
e.g., only contain 395 training instances for the
prediction of 88 aspect categories and their po-
larities. Because of this sparsity, top-ranked sys-
tems rely on feature engineering and hand-crafted
rules. GermEval is a larger dataset (~20K train-
ing instances, 20 aspect categories) and thus suited
for our goal of evaluating the quality of fully au-
tomatic methods for learning aspect and polarity
predictions. Furthermore the top systems at Se-
mEval 2016, XRCE (Brun et al., 2016) and IIT-
TUDA (Kumar et al., 2016), not only rely heavily
on feature engineering but also separate the tasks
of aspect detection and aspect polarity classifica-
tion into two different parts of their pipeline.

The winners of GermEval 2017 rely on neural
methods (Lee et al., 2017). They try to link all as-
pects to a sequence of tokens and model the task as
a sequence labeling problem. This leads to prob-
lems because some aspects are not assigned to any
token but still have to be detected and classified.
Our approach always considers the complete doc-
ument and produces the set of all detected aspects
at once. Although Lee et al. (2017) incorporate
some aspects of multi-task learning, the predic-
tion of aspect category and polarity remains sep-
arated in each of their approaches. In our work,
we show that a joint learning of these two tasks
achieves better performance. The approach by Lee
et al. (2017) also relies more heavily on external
sources than ours. While we only collected a cor-
pus of ~113K unlabeled German tweets, Lee et al.
(2017) include annotated English data as well as a
much larger unlabeled German corpus (Wikipedia,
cf. Al-Rfou et al. (2013)) in their setting.

Ruder et al. (2016) propose another neural
model for ABSA. Similarly to the approaches
mentioned above, they assume that aspects have
already been detected by some other system in a
pipeline architecture, and they concentrate on po-
larity classification on the sentence level by unify-
ing information from other sentences on the docu-
ment level. We compare ourselves to this baseline
and show improvements over pipeline approaches.

3 Proposed Model

3.1 Embedding Algorithm
Word2vec skip-gram (Mikolov et al., 2013) is a
widely used algorithm to obtain pretrained vector
representations for input words. Notably, Lee et al.
(2017) use it for their experiments on the Germ-
Eval data. FastText (Grave et al., 2017) works in
a similar fashion but has the advantage of incor-
porating subword information in the embedding
learning process. So it can not only learn sim-
ilar embeddings for word forms sharing a com-
mon stem but also generate embeddings for un-
seen words in the test set by combining the learned
character ngram embeddings. This can be cru-
cial when dealing with a morphologically rich lan-
guage such as German. Glove (Pennington et al.,
2014) — similar to word2vec — does not incor-
porate character-level information, but uses global
rather than local information to learn its word em-
beddings.

We have trained each of these embedding learn-
ing algorithms on a corpus of ~113K tweets men-
tioning at least one of @DB info and @DB Bahn,
two official accounts of Deutsche Bahn AG offer-
ing information and replying to questions. We col-
lected these tweets specifically to build a docu-
ment collection that is closely related to the do-
main of GermEval 2017. We also included the
GermEval training set for the embedding training.

3.2 Pipeline LSTM (baseline)
We compare our proposed approach to the model
described in (Ruder et al., 2016). They first encode
each sentence with glove word embeddings and
a bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997). Then this output is concatenated with
an embedding of the aspect addressed in the cur-
rent sentence and finally fed in a document-level
BiLSTM. As we are dealing with social media
texts, our documents are already very short. So
we do not split them into shorter units (sentences).
Therefore the second hierarchy level of (Ruder
et al., 2016), that combines the output of consec-
utive sentences in a document, is superfluous and
omitted in our experiments. In all other aspects
— including hyperparameters — we do as (Ruder
et al., 2016), i.e. we duplicate a tweet for each
aspect detected in it, concatenate an aspect em-
bedding of size 15 to the output of the BiLSTM
encoder, use dropout of 0.5 after the embedding
layer and after LSTM cells, and apply a gradient
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clipping norm of 5. As Ruder et al. (2016) rely
on the detected aspects to be given at test time,
for a realistic comparison, we feed in the aspects
as detected by the strong GermEval baseline sys-
tem based on support vector machines. The so ob-
tained system serves as our first baseline, repre-
senting a state-of-the-art pipeline system.

3.3 End-to-end LSTM

We modify the pipeline model described in the
last section as follows: the aspect detection is in-
tegrated into the neural network architecture per-
mitting an end-to-end optimization of the whole
model during training. This is achieved by for-
matting the classifier output as a vector z ∈

{ 0, 1, 2, 3 }|A|, where A is the set of all 20 aspects
(e.g., General, Ticket purchase, Design, Safety,
. . . ). This corresponds to predicting one of the
four classes N/A, positive, negative and neutral for
each aspect. Specifically, we obtain a hidden rep-
resentation of an input document X in the follow-
ing manner:

v = DO(BiLSTM(DO(embed(X)))) (1)

where embed ∈ {word2vec, glove, fasttext }
and DO = dropout (Hinton et al., 2012).
The design choices for the BiLSTM in this step
remain the same as in the baseline model.

Then, we transform the feature vector v ex-
tracted from the text X to a score vector ŷ(a) for
each aspect a ∈ A and apply softmax normaliza-
tion:

ŷ(a) = softmax(W(a)v + b(a)) (2)

where

softmax(x)i =
exp(xi)∑3

k=0 exp(xk)
for i = 0, . . . , 3 (3)

Thus for each aspect, we predict its presence or
absence as well as its polarity in one step:

z(a) = arg max
i

ŷ(a)
i (4)

The loss is simply the cross entropy summed over
all aspects:

L(θ) =
∑
a∈A

H(y(a), ŷ(a)) (5)

with
H(y, ŷ) = −

∑
i

yi · log(ŷi) (6)
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Figure 2: Schematic view of end-to-end CNN architec-
ture.

3.4 End-to-End CNN

Keeping the formalization as an end-to-end task,
we replace the BiLSTM by a convolutional neu-
ral network (CNN) as described in (Kim, 2014).
As in their setting CNN-non-static, we use 300-
dimensional word embeddings, a max-over-time
pooling operation, filter sizes of 3, 4, 5, and
dropout with a rate of 0.5 (as before). We use
ReLu ( f (x) = max(0, x)) as our activation func-
tion, and 300 filters of each size, a number also
found in related work on sentiment analysis (dos
Santos and Gatti, 2014). Following (Kim, 2014),
we do not apply dropout after the embedding
layer:

v = DO(CNN(embed(X))) (7)

With Equation 7 replacing Equation 1, the aspect-
wise classification for the end-to-end CNN then
follows the same definitions as described in the
previous section.

3.5 Pipeline CNN

In order to compare the effects of joint end-to-
end and pipeline approaches across neural archi-
tectures, we also include an experiment where the
CNN model from the previous section replaces the
BiLSTM in the pipeline setting described in sec-
tion 3.2.
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4 Experiments

We conduct our experiments on the GermEval
2017 data (Wojatzki et al., 2017), i.e. customer
feedback about Deutsche Bahn AG on social me-
dia, microblogs, news, and Q&A sites. The data
were collected over the time of one year and manu-
ally annotated, resulting in a main dataset of about
26K documents, divided into a training, develop-
ment, and test set using a random 80%/10%/10%
split. About 1,800 documents from the last 3
months of the data collection period constitute a
diachronic test set that can be used to test the ro-
bustness of a system over time. We keep the pro-
posed data split and filter out training instances
where the same aspect category was assigned two
different polarity classes (which affects approxi-
mately 4% of the data). The development and test
data remain the same.

We choose our hyperparameters based on the
development data using the following procedure:
we train initial models with a hyperparameter
setting based on values we found in the liter-
ature, stochastic gradient descent with a learn-
ing rate of 0.01 (as in dos Santos and Gatti
(2014)) and a mini-batch size of 10 (as in Ruder
et al. (2016)). For the best-performing CNN and
LSTM architectures (end-to-end + fasttext), we
then refine the learning rate and batch size on
the development data using random search in the
range { 0.001, 0.003, 0.01, 0.03, 0.1 } for learning
rate and { 5, 10, 20 } for batch size. For the CNN
setting, this results in a learning rate of 0.03 and a
batch size of 5 (which we then use for all CNN
architectures in the final experiments). For the
LSTM setting, this results in a learning rate of 0.01
and a batch size of 10 (which we then use for all
LSTM architectures).

Training our models takes between 1-3 minutes
per epoch on a GeForce GTX 1080 GPU, the end-
to-end CNN being the fastest model to train.

5 Discussion

Aspect polarity Table 1 shows the results of our
experiments, as well as the results of our strong
baselines. Note that the majority class baseline al-
ready provides good results. This is due to highly
unbalanced data; the aspect category “Allgemein”
(“general”), e.g., constitutes 61.5% of the cases.
This imbalance makes the task even more chal-
lenging.

Over all architectures, we observe a comparable

or better performance when using fasttext embed-
dings instead of word2vec or glove. This backs
our hypothesis that subword features are important
for processing the morphologically rich German
language. Leaving everything else unchanged, we
can furthermore see an increase in performance
for all settings, when switching from the pipeline
to an end-to-end approach. The best performance
(marked in bold) is achieved by a combination
of CNN and FastText embeddings, which outper-
forms the highly adapted winning system of the
shared task.

Aspect category only Even though our archi-
tectures are designed for the task of joint predic-
tion of aspect category and polarity, we can also
evaluate them on the detection of aspect categories
only. Table 2 shows the results for this task. First
of all, we can see that the SVM-based GermEval
baseline model has very decent performance as it
is practically on par with the best submission for
the synchronic and even outperforms the best sub-
mission on the diachronic test set. It is therefore
well-suited to serve as input to the pipeline LSTM
model we compare with in our main task.

Comparing our architectures, we see again that
fasttext embeddings always lead to equal or better
performance. And even though we do not directly
optimize our models for this task only, our best
model (CNN+fasttext) outperforms all baselines,
as well as the GermEval winning system.

Impact of domain-specific corpus We compare
the domain-specific FastText embeddings to Fast-
Text embeddings trained on Wikipedia1, which is
approximately 100 times the size of our domain-
specific corpus. We report the results in Ta-
ble 3. The embeddings trained on Wikipedia
show slightly lower performance on the dev set
but slightly higher or equal performance on the
test sets. We conclude that the main positive im-
pact of FastText stems from its capability to model
subword information and that a large domain-
independent corpus or a small domain-specific
corpus lead to similar performance gains.

6 Conclusion

We have presented a new approach to ABSA.
By solving the two classification problems (aspect

1Downloaded from https://github.com/
facebookresearch/fastText/blob/master/
pretrained-vectors.md.

https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
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development set synchronic test set diachronic test set
Pipeline LSTM + word2vec .350 .297 .342
End-to-end LSTM + word2vec .378 .315 .383
Pipeline CNN + word2vec .350 .298 .343
End-to-end CNN + word2vec .400 .319 .388
Pipeline LSTM + glove .350 .297 .342
End-to-end LSTM + glove .378 .315 .384
Pipeline CNN + glove .350 .298 .342
End-to-end CNN + glove .415 .315 .390
Pipeline LSTM + fasttext .350 .297 .342
End-to-end LSTM + fasttext .378 .315 .384
Pipeline CNN + fasttext .342 .295 .342
End-to-end CNN + fasttext .511 .423 .465
majority class baseline – .315 .384
GermEval baseline – .322 .389
GermEval best submission – .354 .401

Table 1: Results on the GermEval data, aspect + sentiment task. Micro-averaged F1-scores for both aspect
category and aspect polarity classification as computed by the GermEval evaluation script. In the bottom part of
the table, we report results from (Wojatzki et al., 2017).

development set synchronic test set diachronic test set
End-to-end LSTM + word2vec .517 .442 .455
End-to-end CNN + word2vec .521 .436 .470
End-to-end LSTM + glove .517 .442 .456
End-to-end CNN + glove .537 .457 .480
End-to-end LSTM + fasttext .517 .442 .456
End-to-end CNN + fasttext .623 .523 .557
majority class baseline – .442 .456
GermEval baseline – .481 .495
GermEval best submission – .482 .460

Table 2: Micro-averaged F1-scores for the prediction of aspect categories only (i.e. without taking polarity into
account at all) as computed by the GermEval evaluation script. The results in the bottom part of the table are taken
from (Wojatzki et al., 2017).

dev synchr. test diachr. test
aspect + sent. .502 .423 .465
aspect only .610 .544 .571

Table 3: Results of the end-to-end CNN model with
fasttext embeddings trained on the German Wikipedia.

categories + aspect polarity) inherent to ABSA
in a joint manner, we observe significant perfor-
mance gains for both of these tasks on the Germ-
Eval 2017 data. Our experiments also showed that
word representations leveraging subword informa-
tion are crucial for a challenging task like ABSA
in a morphologically rich language, such as Ger-
man. Furthermore we observed consistently bet-
ter performance of CNN architectures in otherwise

comparable scenarios, which suggests that CNNs
cope better with the irregularities of user-written
texts on social media, a research question we leave
to future work. By establishing a new state of the
art in aspect detection and polarity classification,
we provide a new practical baseline for future re-
search in this area.
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