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Abstract

The SimpleQuestions dataset is one of the
most commonly used benchmarks for studying
single-relation factoid questions. In this pa-
per, we present new evidence that this bench-
mark can be nearly solved by standard meth-
ods. First, we show that ambiguity in the data
bounds performance at 83.4%; many questions
have more than one equally plausible interpre-
tation. Second, we introduce a baseline that
sets a new state-of-the-art performance level at
78.1% accuracy, despite using standard meth-
ods. Finally, we report an empirical analysis
showing that the upperbound is loose; roughly
a quarter of the remaining errors are also not
resolvable from the linguistic signal. Together,
these results suggest that the SimpleQuestions
dataset is nearly solved.

1 Introduction

We present new evidence that the SimpleQues-
tions benchmark (Bordes et al., 2015) can be
nearly solved by standard methods. First, we
show that ambiguity in the data bounds perfor-
mance; there are often questions have more than
one equally plausible interpretation. Second, we
introduce a baseline that sets a new state-of-the-art
performance level, despite using standard meth-
ods. Finally, we report an empirical analysis
showing that the upperbound is loose.

The simple questions task involves mapping an
English question (e.g. “Who wrote Gulliver’s
travels?”) to an analogous Freebase (Bollacker
et al., 2008) query, used to answer the ques-
tion. The query consists of a Freebase rela-
tion (e.g. /film/film/story by) and subject (e.g.
090s 0 [gulliver’s travels]). To understand how we
might bound performance on the SimpleQuestions
dataset, our first contribution in this paper, con-
sider the following examples:

a. who wrote gulliver’s travels?
(film/film/story by, 090s 0 [gulliver’s travels,

TV miniseries])

b. Name a character from gullivers travels.
(book/book/characters, 0btc7 [
gulliver’s travels])

In example (a) the phrase “Gulliver’s travels”
is mapped to a TV miniseries, while in (b) it is
mapped to a book. This introduces an unintended
ambiguity, since either mapping is equally plau-
sible for both examples (i.e. both books and TV
miniseries have authors and characters). We intro-
duce a method for automatically identifying many
such ambiguities in the data, for both the entities
and relations, and show that performance is upper-
bounded at 83.4%.

Our second main contribution is a baseline that
sets a new state-of-the-art performance level, de-
spite using standard methods. Our approach in-
cludes (1) a CRF used to tag the mention of the
subject in a question and (2) a BiLSTM used to
classify the Freebase relation. Despite its simplic-
ity, this approach achieves 78.1% accuracy for pre-
dicting Freebase subject-relation queries, surpass-
ing all previous models.

Finally, we present an empirical error analy-
sis of this model which shows the upperbound
is loose and that there is likely not much more
than 4% of performance to be gained with fu-
ture work on the data. Together, these re-
sults suggest that the SimpleQuestions dataset is
nearly solved. Our code and pretrained models
are available at github.com/PetrochukM/
Simple-Question-Answering.

2 Background

Single-relation factoid questions (simple ques-
tions) are common in many settings (e.g. Mi-
crosoft’s search query logs (Yih et al., 2014) and
WikiAnswers web questions (Fader et al., 2013)).
The SimpleQuestions dataset is one of the most

github.com/PetrochukM/Simple-Question-Answering
github.com/PetrochukM/Simple-Question-Answering
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commonly used benchmarks for studying such
questions.

The Freebase knowledge graph (KG) pro-
vides the facts for answering the questions in
the SimpleQuestions dataset. It includes 3 bil-
lion triples of the form (subject, relation, ob-
ject) (e.g. [04b5zb (Fires Creek), location/lo-
cation/containedby, 0f80hy (Nantahala National
Forest)]). We denote such triples as (s, r, o).

The SimpleQuestions task is to rewrite ques-
tions into subject-relation pairs of the form (sub-
ject, relation), denoted in this paper as (s, r). Each
pair defines a graph query that can be used to
answer the corresponding natural language ques-
tion. The subject is a Freebase object with a
identifier called an MID (e.g. 04b5zb ). Free-
base objects also typically include one or more
string aliases (e.g. MID 04b5zb is named “Fires
Creek”), which we will use later when comput-
ing our upper bounds. The relation is an ob-
ject property (e.g. location/location/containedby)
defined by the Freebase ontology. For example,
the question “which forest is fires creek in” cor-
responds with the subject-relation pair (04b5zb
[Fires Creek], location/location/containedby). Fi-
nally, the SimpleQuestions task is evaluated on
subject-relation pair accuracy.

The SimpleQuestions dataset provides a set of
108,442 simple questions; each question is accom-
panied by a ground truth triple (s, r, o). This
dataset also provides two subsets of Freebase:
FB2M and FB5M.1

3 Dataset Ambiguity and Upperbound

The ambiguity in the SimpleQuestions dataset
likely comes from the way the data was created.
Annotators were shown a single Freebase triple
and asked to write a question. For example, given
any of the following triples:

• (0btc7 [Gulliver’s Travels, Book],
book/written work/author, o3 dj [Dean
Swift])

• (06znpjr [Gulliver’s Travels, American film],
film/film/written by, 03whnyn [Nicholas
Stroller])

1The FB2M and FB5M subsets of Freebase KG can com-
plete 7,188,636 and 7,688,234 graph queries respectively;
therefore, the FB5M subset is 6.9% larger than the FB2M
subset. More previous research has cited FB2M numbers than
FB5M; therefore, we report our numbers on FB2M.

Subject Description
0btc7 Gulliver’s Travels (Book)
090s 0 Gulliver’s Travels (TV miniseries)
06znpjr Gulliver’s Travels (American film)
02py9bj Gulliver’s Travels (French film)

Table 1: FB2M entities with the alias “gulliver’s trav-
els”

Relation Count
book/written work/author 132
film/film/written by 67
film/film/story by 9
. . . . . .

Table 2: SimpleQuestions dataset abstract predicate
“who wrote e?” relation count

• (06znpjr [Gulliver’s Travels, American film],
film/film/story by, o3 dj [Dean Swift])

The annotator might reasonably contribute the
question “who wrote gulliver’s travels?” However,
adding all of these pairs to the data is problematic.
Systems are evaluated on producing the correct
subject-relation pair, and cannot learn a determin-
istic mapping that would get these three examples
correct. In this section, we present a simple heuris-
tic method for finding many such instances of am-
biguity, and use it to upper bound performance on
this benchmark.

3.1 Approach

Given an example question q with the ground truth
(s, r, o), our goal is to determine the set of all other
subject-relation pairs that are equally supported by
the text in q.

We first determine a string alias a for the subject
by matching a phrase in q with a Freebase alias
for s, in our example yielding “gulliver’s travels”.
For 97% of questions q, some string alias a ex-
actly matched a question q phrase. We then find
all other Freebase entities that share this alias a
and add them to a set S, in our example S is the
subject column of Table 1.

We define an abstract predicate p (e.g. “who
wrote e?”) as q with alias a abstracted. We de-
termine the set of potential relations R as the re-
lations p co-occurs with in the SimpleQuestions
dataset, in our example R is the relation column
of Table 2.

Finally, if there exists a subject-relation pair
(s, r) ∈ KG such that r ∈ R ∧ s ∈ S we de-
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fine that as an accurate semantic interpretation of
q. q is unanswerable if there exists multiple valid
subject-relation pairs (s, r). In our example above,
the question is unanswerable because of the many
different subject, relation pairs that co-occur with
“gulliver’s travels” and “who wrote e?”

3.2 Results

We find that 33.9% of examples in the Simple-
Questions dataset are unanswerable. In these
cases, we can predict a majority baseline (i.e. al-
ways guess the most commonly seen Freebase en-
tity or relation), yielding an upperbound of 85.2%.

Finally, we also found that 1.8% of example
questions were noisy. For example, “Which book
is written about?” does not reference the corre-
sponding ground truth subject 01n7q (california).
We also consider these examples unanswerable,
yielding a final upperbound of 83.4%.

4 Baseline Model

Our second main contribution is a baseline that
sets a new state-of-the-art performance level, de-
spite using standard methods. Our approach in-
cludes (1) a CRF tagger to determine the subject
alias, and (2) a BiLSTM to classify the relation.

4.1 Approach

Given a question q (e.g. “who wrote gulliver’s
travels?”) our model must predict the correspond-
ing subject-relation pair (s, r). We predict (s, r)
with a pipeline that first runs top-k subject recog-
nition and then relation classification.

We make use of two learned distributions. The
subject recognition model P (a|q) ranges over text
spans A within the question q, in our example
A includes the correct subject “gulliver’s travels”.
This distribution is modeled with a CRF, as de-
fined in more detail below. The relation classifica-
tion model P (r|q, a) will be used to select a Free-
base relation r that matches q. The distribution
ranges over all relations in Freebase that co-occur
with a subject that is named a. It is modeled with
an LSTM, that encodes q, again as defined in more
detail below.

Given these distributions, we predict the final
subject-relation pair (s, r) as follows. First, we
determine the most likely subject alias a according
to P (a|q) that also matches a subject alias in the
KG. We define set S as all Freebase entities named
a, in our example S is the subject column of Table

1. Second, we define all potential relations R such
that ∀(s, r) ∈ KG{r ∈ R ∧ s ∈ S}. Using the
relation classification model p(r|q, a), we predict
the most likely relation rmax ∈ R.

Now, the answer candidates are subject-relation
pairs such that (s, rmax) ∈ KG{r ∈ R ∧
s ∈ S}. In our example question, if rmax is
film/film/story by then S includes both subjects
06znpjr (Gullivers Travels, American film) and
02py9bj (Gullivers Travels, French film). Be-
cause there is no explicit linguistic signal to dis-
ambiguate this choice, we pick the subject that co-
occurs most often with rmax in Freebase.

4.2 Model Details

Our approach requires two models, in this section
we cover training and configuring these models.

Top-K Subject Recognition We model top-k
subject recognition P (a|q) using a linear-chain
conditional random field tagger (CRF) with a con-
ditional log likelihood loss objective. k candidates
are inferred with the top-k Viterbi algorithm.

Our model is trained on a dataset of questions
each with their corresponding subject alias span
delimited with IO tagging. The gold standard sub-
ject alias spans are determined by heuristically
matching a phrase in the question with a Freebase
alias for the subject.

All hyperparameters are hand tuned and then a
limited set are further tuned with grid search to in-
crease validation accuracy. In total we evaluated
at most 100 hyperparameter configurations. The
word embeddings are initialized with GloVe (Pen-
nington et al., 2014) and frozen. Adam (Kingma
and Ba, 2014), initialized with a learning rate of
0.001, is employed to optimize the model weights.
Finally, we halve the learning rate if the validation
accuracy has not improved in 3 epochs.

Relation Classification The relation classifica-
tion distribution P (r|q, a) is modeled with a one
layer BiLSTM batchnorm softmax classifier. The
BiLSTM encodes an abstract predicate string (e.g.
“who wrote e?”), as described in Section 4.1. The
last LSTM output vector is provided as input to
an output block consisting of batch normalization,
ReLU, and softmax.

All hyperparameters are hand tuned and then a
limited set are further tuned with Hyperband (Li
et al., 2017) to increase validation accuracy. Hy-
perband is allowed at most 30 epochs per model
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Previous Work Acc.
Random guess (Bordes et al., 2015) 4.9
Memory NN (Bordes et al., 2015) 61.6
Attn. LSTM (He and Golub, 2016) 70.9
GRU (Lukovnikov et al., 2017) 71.2
BiGRU-CRF & BiGRU 73.7
(Mohammed et al., 2017)
BiLSTM & BiGRU 74.9
(Mohammed et al., 2017)
BiGRU & BiGRU (Dai et al., 2016) 75.7
CNN & Attn. CNN & 76.4
BiLSTM-CRF (Yin et al., 2016)
HR-BiLSTM & CNN & 77.0
BiLSTM-CRF (Yu et al., 2017)
BiLSTM-CRF & BiLSTM (Ours) 78.1

Table 3: Summary of past results on the SimpleQues-
tions benchmark along with the neural models em-
ployed. Note that an “&” indicates multiple neural
models.

and a total of 1000 epochs. In total we evalu-
ated at most 500 hyperparameter configurations.
The word embeddings are initialized with Fast-
Text (Bojanowski et al., 2017) and frozen. We
use the AMSGrad variant of Adam (Reddi et al.,
2018), initialized with an learning rate of 0.001.
Finally, we double the batch size (Smith et al.,
2017) if the validation accuracy has not improved
in 3 epochs.

4.3 Results

Finally, we present our results on the SimpleQues-
tions test set.

SimpleQuestions Task Our model achieves
78.1% accuracy on the SimpleQuestions test set,
a new state-of-the-art without ensembling or data
augmentation (Table 3). These results suggest that
relatively standard architectures work well when
carefully tuned, and approach the level set by our
upper bound earlier in the paper. This further con-
firms the results of Mohammed et al. 2017.

Further Qualitative Analysis We also analyze
the remaining errors, to point toward directions for
future work.

In Section 3, we showed that questions can pro-
vide equal evidence for multiple subject-relation

1Türe and Jojic 2017 reported a 86.8% accuracy but we
and Mohammed et al. 2017 have not been able to replicate
their results. Wang et al. 2017 scored 77.5% but removed
0.5% of the test examples.

pairs. To remove this ambiguity, we count any
of these options as correct, and our performance
jumps to 91.5%.

The remaining 8.5% error comes from a number
of sources. First, we find that 1.9% of examples
were incorrect due to noise, as described in Sec-
tion 3. To better understand the remaining 6.5%
gap, we do an empirical error analysis on a sample
of 50 negative examples.

First we found that for 14 of 50 cases the
question provided equal linguistic evidence for
both the ground truth options and the predicted
subject-relation pair, similar to the dataset am-
biguity found in Section 3, suggesting that our
upper bound is loose. We note that Section 3
did not cover all possible question-subject-relation
pair ambiguities. The approach relied on exact
string matching to discover ambiguity; therefore,
missing other paraphrases. For example, the ab-
stract predicate “what classification is e” had more
examples than “what classification is the e” al-
lowing our approach to programmatically define
more subject-relation pair ambiguities for the for-
mer predicate than the latter.

The remaining 36 of 50 cases were linguistic
mistakes by our model. Among the 36 cases, we
identified these error cases:

• Low Shot (16 of 36) The relation label was
seen in the training data less than 10 times.

• Span Identification (14 of 36) The subject
span was incorrectly labeled.

• Noise (2 of 36) The question did not make
grammatical sense.

Together, this error analysis shows that the up-
perbound is loose. There is likely not much more
than 4% of performance to be gained with future
work on the data.

5 Conclusions and Future Work

The SimpleQuestions dataset is one of the most
commonly used benchmarks for studying single-
relation factoid questions. In this paper, we pre-
sented new evidence to suggest that this bench-
mark can be nearly solved by standard methods.
These results suggest there is likely not much more
than 4% to be gained with future work on the data.

Finally, other KG (e.g. Freebase) query datasets
should consider providing a set of correct subject-
relation pairs when there is ambiguity in the lin-
guistic input.
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