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Abstract

Although end-to-end neural machine transla-
tion (NMT) has achieved remarkable progress
in the recent years, the idea of adopting multi-
pass decoding mechanism into conventional
NMT is not well explored. In this paper, we
propose a novel architecture called adaptive
multi-pass decoder, which introduces a flexi-
ble multi-pass polishing mechanism to extend
the capacity of NMT via reinforcement learn-
ing. More specifically, we adopt an extra pol-
icy network to automatically choose a suit-
able and effective number of decoding passes,
according to the complexity of source sen-
tences and the quality of the generated trans-
lations. Extensive experiments on Chinese-
English translation demonstrate the effective-
ness of our proposed adaptive multi-pass de-
coder upon the conventional NMT with a sig-
nificant improvement about 1.55 BLEU.

1 Introduction

In the past several years, end-to-end neural ma-
chine translation (NMT) (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2014) has attracted increas-
ing attention from both academic and industry
communities. Compared with conventional sta-
tistical machine translation (SMT) (Brown et al.,
1993; Koehn et al., 2003), which needs to explic-
itly model latent structures, NMT adopts a uni-
fied encoder-decoder framework to directly trans-
form a source sentence into a target sentence. Fur-
thermore, the introduction of attention mechanism
(Bahdanau et al., 2014) enhances the capability of
NMT in capturing long-distance dependencies.

Recently, a number of authors have endeav-
ored to adopt the polishing mechanism into NMT.
Similar to human cognitive process for writing a
good paper, their models first create a complete
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Source

héshı̀zhù xiānshēng dē wěirènqı̄ wéi yı̄ nián ,
yı̌ pèihé qı́ wéi fángwěihuı̀ wěiyuán dē
rèngqī jièmǎn rı̀qı̄ , qı́tā xı̄n wěirèngwěiyuān
dē rèngqı̄ zé wéi liǎngnı́an .

Reference

all appointments are for two years , except
that of mr ho sai - chu ’s which is for one
year in order to tie in with the expiry date of
his appointment as an ha member .

1st-pass
mr ho sai - chu ’s UNK is a year - long term
of two years with a term of two years as the
term of his term of office of the ha .

2nd-pass
mr ho sai - chu ’s UNK is a year - long term
of two years with a term of two years to serve
as the term of office of the ha .

3rd-pass
mr ho sai - chu ’s UNK is a year - long term
of two years with a term of two years to tie
in with the expiry date of his term of office .

4th-pass
mr ho sai - chu has been serving as a member
of authority for a term of two years with a
term of two years .

Table 1: Translation examples of more decoding passes
with the proposed multi-pass decoder.

draft and then polish it based on global under-
standing of the whole draft (Niehues et al., 2016;
Chatterjee et al., 2016; Zhou et al., 2017; Xia
et al., 2017; Junczys Dowmunt and Grundkiewicz,
2017) . Moreover, Zhang et al. (2018) introduces
a backward decoder to better exploit the right-to-
left target-side contexts. Generally these methods
employ two separate decoders to accomplish the
polishing task.

Although these polishing mechanism-based ap-
proaches demonstrate their effectiveness with two-
pass decoding, the idea of multi-pass decoding is
not well explored for NMT. Motivated by it, we
first propose a novel multi-pass decoder to per-
form the translation procedure with a fixed number
of decoding passes, referred to as decoding depth.
According to the preliminary results, just as ex-
pected, multi-pass decoding really benefit to most
translations. However, in some cases, the more
decoding passes perhaps lead to the poor trans-
lation. For example in Table 1, the 3rd-pass de-
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coding achieves a better result compared to 1st-
and 2nd-pass decoding. Nevertheless, a drastic de-
crease arises, when we perform the 4th-pass de-
coding. Therefore, it’s necessary to introduce a
flexible multi-pass decoding, which has the ability
to adaptively choose the suitable decoding passes.

Towards above goal, we further propose a novel
framework called adaptive multi-pass decoder to
automatically choose a proper decoding depth us-
ing reinforcement learning. Our model considers
multi-pass decoding as a sequential decision mak-
ing process, where continuing decoding or halt is
chosen at each step. An extra policy network is
employed to learn to automatically choose to con-
tinue next pass decoding or halt via reinforcement
learning. For the purpose of making accurate and
effective choices, the policy network employs re-
current neural network to capture the complexity
of source sentence as well as the difference be-
tween the consecutive generated translations. Ex-
tensive experiments on Chinese-English transla-
tion show the proposed adaptive multi-pass de-
coder is capable of choosing a suitable decoding
depth and significantly improves translation per-
formance over conventional NMT model.

2 Background

Given a source sentence x = x1, . . . , xm, . . . , xM
and a target sentence y = y1, . . . , yn, . . . , yN ,
end-to-end neural machine translation directly
models translation probability word by word as a
single, large neural network:

P (y|x; θ) =
N∏
n=1

P (yn|x,y<n; θ) (1)

where θ is a set of model parameters and y<n de-
notes a partial translation. Prediction of n-th word
is generally made in an encoder-decoder frame-
work:

P (yn|x,y<n; θ) = g(yn−1, sn, cn) (2)

where g(·) is a non-linear function, yn−1 denotes
the previously generated word, sn is n-th decoding
hidden state, and cn is a context vector for gener-
ating n-th target word. The decoder state sn is
computed by RNNs as follows:

sn = f(sn−1,yn−1, cn) (3)

where f(·) is an activation function. Actually
it’s found gated RNN alternatives such as LSTM

(Hochreiter and Schmidhuber, 1997) or GRU
(Cho et al., 2014) often achieve better performance
than vanilla ones. cn is a dynamic vector that se-
lectively summarizes certain parts of source sen-
tence at each decoding step:

cn =

M∑
m=1

αn,mhm (4)

where αm,n measures how well xm and yn are
aligned, calculated by attention model (Bahdanau
et al., 2014; Luong et al., 2015), and hm is the en-
coder hidden state of the m-th source word. For
the purpose of capturing both forward and back-
ward contexts, bidirectional RNN (Schuster and
Paliwal, 1997) is often employed as the encoder
which converts the source sentence into an annota-
tion sequence h = {h1, . . . ,hm, . . . ,hM}, where
hm = [

−→
hm,
←−
hm] captures information about m-

th word with respect to the preceding and follow-
ing words in the source sentence respectively.

Although the introduction of RNNs as a de-
coder has resulted in substantial improvements in
terms of translation quality, simultaneously it im-
poses a serious restriction on the capability of
encoder-decoder framework caused by the struc-
ture of RNNs. That is, when the RNN decoder
generates the t-th word yt in decoding phase,
only y<t can be utilized, while the possible words
y>t are directly neglected. Thus, it’s difficult
to capture global information especially the un-
generated words for the current dominant RNN
decoder without new significant innovation. Un-
der the premise of preserving the original struc-
ture, a promising alternative to address the afore-
mentioned issue is to incorporate with auxiliary
neural networks to extend the RNN decoder.

Towards above goal, polishing mechanism-
based methods first capture the global information
through a complete draft created by SMT or NMT,
and then take it as input to finally generate a trans-
lation. Compared with conventional NMT, polish-
ing mechanism-based methods make a more accu-
rate prediction at each time-step due to the extra
global understanding, resulting in more fluent and
grammatically correct translation. While these
approaches have demonstrated the effectiveness,
previous approaches follow pre-defined routes to
perform the decoding procedure, not considering
choosing a suitable decoding depth for the com-
plexity of source sentences completely.

Therefore, it’s important to develop a novel
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framework for making an accurate and effective
choice about which decoding depth is appropriate
for the source sentence.

3 Adaptive Multi-pass Decoder

In this section, we present an adaptive multi-pass
decoder for neural machine translation, as illus-
trated in Figure 1. It could choose a proper de-
coding depth, depending on the complexity of the
source sentence. As shown in Figure 1, our model
includes three major components: an encoder to
summarize source sentences with parameter set θe,
a multi-pass decoder for multi-pass decoding with
parameter set θd, and a policy network to choose
a suitable depth with parameter set θp. The en-
coder of our model is identical to that of the domi-
nant NMT which is modeled using a bidirectional
RNN. Please refer to Bahdanau et al. (2014) for
more details. We will elaborate the multi-pass de-
coder and policy network for adaptive multi-pass
decoding in the following subsections.

3.1 Multi-pass Decoder
The multi-pass decoder is extended from the one
of the dominant NMT model to leverage the
target-side context. Similar to the dominant NMT
model, our multi-pass decoder also performs the
decoding under the semantic guide of source-side
context captured by the encoder, whereas more
importantly and differently, the global understand-
ing through the target-side context provided by last
pass decoding, is able to strongly assist our model
to produce a better translation.

Given the source-side and target-side contexts
separately captured by the encoder and last pass
decoding, the multi-pass decoder learns to gener-
ate next target word, based on previous generated
words. Using the multi-pass decoder with parame-
ter set θd, we calculate the conditional probability
of the translation ŷl at the l-th decoding pass as
follows:

P (ŷl|x, ŷl−1; θe, θd)

=

Nl∏
n=1

P (ŷln|x, ŷl<n, ŷl−1; θe, θd)

=

Nl∏
n=1

gdec(ŷln−1, s
l,dec
n , cl,encn , cl,decn ) (5)

where gdec(·) is a non-linear function, and sl,decn

denotes the n-th decoding state within the l-th de-
coding pass. Nl indicates the length of generated

translation at the l-th decoding pass. The decoding
state sl,decn is obtained by RNNs as follows:

sl,decn = fdec(sl,decn−1 , ŷ
l
n−1, c

l,enc
n , cl,decn ) (6)

where fdec(·) is the GRU activation function.
cl,encn and cl,decn denote source-side and target-side
contexts at the n-th time step within the l-th de-
coding pass, respectively. It should be noted that
when the multi-pass decoder performs the first de-
coding, there doesn’t exist any generated transla-
tion. To address this case, the first-pass target-side
context c1,dec is set to zero.

Among the aforementioned contexts, cl,encn is
obtained as the weighted sum of the source-side
hidden states {hm}, while we take the target-side
hidden states {sl−1,decn } produced by last pass de-
coding as input to compute cl,decn . Similar to
the dominant NMT model, we adopt the atten-
tion model (Bahdanau et al., 2014; Luong et al.,
2015) to calculate the weights, which indicate the
alignment probability. We assume that attnenc de-
notes the encoder-decoder attention model, which
takes the source annotations {hm} as input, while
attndec are introduced to calculate the weight
which measures how well the decoding state sl,dec

attends the last-pass hidden states {sl−1,decn }.
Assuming sa indicates the decoding state,

which attends the annotations {sbk} with a length
K, our attention model calculates the context vec-
tor sc as follows:

sc =

K∑
k=1

αks
b
k (7)

αk =
exp(ek)∑K

k′=1 exp(ek′)
(8)

ek = (va)
T tanh(Was

a + Uas
b
k) (9)

where va, Wa and Ua are the parameters of atten-
tion model.

Given a training (x,y), the translation route can
be demonstrated as: x → ŷ1 → . . . → ŷl →
. . . → ŷL(x,y)−1 → y.The intermediate transla-
tions {ŷl} are generated by decoding. Given a
training corpus D = {x,y}, we define the object
function using cross-entropy at last pass decoding
as follows:

Jdec(θe, θd) = −
1

|D|
argmin
θe,θd

∑
(x,y)∈D

{logP (y|x, ŷL(x,y)−1; θe, θd)} (10)
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Figure 1: The architecture of our adaptive multi-pass decoder. Given the annotation sequence produced by the
encoder, a policy network is adopted to choose a suitable action from the set {Continue, Stop}, which indicates
continuing next pass decoding, or halt respectively. Different from the conventional decoder which only obtains
the source-side context with the source attention model attnenc, our multi-pass decoder also captures the target-
side context of last-pass decoding with decoder attention model attndec. The policy network also use attnpolicy

to collect useful information from the multi-pass decoding to choose an accurate and effective action to generate
a good translation. Note that in this work the same parameters set of decoder and the corresponding attention
is shared among different decoding passes. For this figure, we demonstrate a translation procedure with 3-pass
decoding controlled by adaptive multi-pass decoder.

where P (y|x, ŷL(x,y)−1; θe, θd) is conditional
probability computed by multi-pass decoder.
L(x,y) indicates the decoding depth for the in-
stance (x,y). For effectiveness, note that all the
intermediate translations {ŷl} are generated by
greedy search in training and testing phase.

3.2 Policy Network

The multi-pass decoding can be converted into se-
quential decision making process, in which a pol-
icy is adopted to choose next pass decoding or halt.
It’s expected to automatically choose an accurate
and effective decoding depth to generate a good
translation. For example, if the source sentence
is exhausted to obtain the corresponding transla-
tion such as the long sentences, we assume more
decoding passes are needed to improve the trans-
lation, while only one pass decoding is enough to
tackle the simple case.

Our main idea is to use reinforcement learn-
ing to control the decoding depth. We parameter-
ize the available action al ∈ {Continue, Stop},
where Continue and Stop indicate continuing
next decoding pass and halt respectively, by a pol-
icy network π(al|spolicyl ; θp), where spolicyl repre-
sents the policy state at the l-th decoding pass. For
the purpose of making a better choice about the de-
coding depth and direction, it’s necessary to con-
sider whether or not the source sentence is easy to

obtain a good translation and compared with the
last pass decoding, whether the quality of trans-
lation can be improved. Thus, supervised by this
guideline, the policy state spolicyl is calculated by
GRU to model the difference between the consec-
utive two decoding passes as follows:

spolicyl = fpolicy(spolicyl−1 ,ml) (11)

where fpolicy is the activation function, and ml

captures the useful information with respect to the
policy network at the l-th decoding pass. In this
work, we use the attention models attnpolicy to
collect the decoding progress, denoted as ml of
the l-th decoding pass. In order to take account of
the complexity of source sentence itself, the ini-
tial policy state spolicy0 is computed by spolicy0 =
tanh(WinithM ), where hM is last state source an-
notations, and Winit is the parameters of initializ-
ing the policy state. Finally, we take the policy
state spolicyl as input to calculate the policy as fol-
lows:

π(al|spolicyl ; θp) = softmax(Wps
policy
l + bp)

(12)
where Wp and bp are the parameters of the policy
network. In this work we use REINFORCE algo-
rithm (Williams, 1992), which is an instance of a
broader class of algorithms called policy gradient
methods (Sutton and Barto, 1998), to learn the pa-
rameter set θp such that the sequence of actions
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a = {a1, . . . ,al, . . . ,aL(x,y)
} maximizes the to-

tal expected reward. The expected reward for an
instance is defined as:

Jpolicy(θp) = Eπ(a|spolicy ;θp)r(ŷ
L(x,y)) (13)

where r(ŷL(x,y)) is the reward at the L(x,y)-th de-
coding pass. In this work, we use BLEU (Papineni
et al., 2002) of the final translation ŷL(x,y) gener-
ated by greedy search as input to compute our re-
ward as follows:

r(ŷL(x,y)) = BLEU(ŷL(x,y) ,y) (14)

4 Experiments

In this section, we describe experimental settings
and report empirical results.

4.1 Setup
We evaluated the proposed adaptive multi-
pass decoder on Chinese-English translation
task. The evaluation metric was case-insensitive
BLEU (Papineni et al., 2002) calculated by the
multi-bleu.perl1 script. The training cor-
pus2 consisted of 1.25M bilingual sentences with
27.9M Chinese words and 34.5M English words.
We used the NIST 2002 (MT02) as the validation
set for hyper-parameter optimization and model
selection, and NIST 2003 (MT03), 2004 (MT04),
2005 (MT05) and 2006 (MT06) as test sets.

To effectively train the NMT model, we trained
each model with sentences of length up to 50
words. Besides, we limited vocabulary size to
30K for both languages and map all the out-of-
vocabulary words in the Chinese-English corpus
to a special token UNK. We applied Rmsprop
(Graves, 2013) to train models and selected the
best model parameters according to the model per-
formance on the development set. During this
procedure, we set the following hyper-parameters:
word embedding dimension as 620, hidden layer
size as 1000, learning rate as 5× 10−4, batch size
as 80, gradient norm as 1.0, and dropout rate as
0.3.

In the experiments, we compared our approach
against the following state-of-the-art SMT and
NMT systems:

1https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/generic/multi-
bleu.perl

2The training corpus includes LDC2002E18,
LDC2003E07, LDC2003E14, part of LDC2004T07,
LDC2004T08 and LDC2005T06

1. Moses3: an open source phrase-based transla-
tion system with default configuration and a
4-gram language model trained on the target
portion of training data. Note that we used all
data to train MOSES (Koehn et al., 2007).

2. RNNSearch: a variant of the attention-based
NMT system (Bahdanau et al., 2014) with
slight changes from dl4mt tutorial4.

3. Deliberation Network5: a re-implementation
of attention-based NMT system with two in-
dependent left-to-right decoders (Xia et al.,
2017). The first-pass decoder is identical to
one of RNNSearch to generate a draft transla-
tion, while the second-pass decoder polishes
it with an extra attention over the first pass de-
coder. The second-pass decoder is integrated
with the first-pass decoder via reinforcement
learning.

4. ABDNMT: As a comparison with the De-
liberation Network, ABDNMT utilizes first-
pass backward decoder to generate a trans-
lation with greedy search, and the second-
pass forward decoder refines it with attention
model (Zhang et al., 2018). For fairness, we
replace the first-pass backward decoder with
a forward decoder.

We set the beam size of all above-mentioned
models as 10 in our work. Deliberation Net-
work and ABDNMT were initialized with the pre-
trained RNNSearch as Xia et al. (2017) and Zhang
et al. (2018) described. Our multi-pass decoder
was also initialized with RNNSearch and other pa-
rameters were randomly initialized from a uniform
distribution on [−0.1, 0.1]. Besides, for effective-
ness, we set the maximum decoding depth of our
adaptive multi-pass decoder as 5.

4.2 Results on Chinese-English Translation

The experimental results of our model and base-
line models on Chinese-English machine transla-
tion datasets are depicted in Table 2 .

3http://www.statmt.org/moses
4https://github.com/nyu-dl/dl4mt-tutorial
5We reproduce the deliberation network based on REIN-

FORCE and gumbel-softmax (Jang et al., 2016), separately,
but there still exists a gap with its best performance. We
attribute this to that our reimplementation may be different
from the original model in some unknown details.
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System #Params Speed MT02 MT03 MT04 MT05 MT06 Ave.
Moses – – 33.79 30.86 32.71 30.02 30.49 31.02

RNNSearch 83.99M 87 39.68 36.51 40.20 36.87 36.43 37.50
Deliberation Network 125.16M 162 40.98 37.82 40.56 37.67 37.20 38.31

ABDNMT 122.86M 132 41.12 38.01 41.20 38.07 37.59 38.71
2-pass decoder 87.81M 160 41.18 37.76 41.06 38.02 37.41 38.56
3-pass decoder 87.81M 245 41.28 37.99 40.72 37.86 37.63 38.55
4-pass decoder 87.81M 293 41.05 37.86 40.87 38.18 37.57 38.62
5-pass decoder 87.81M 322 40.88 37.70 40.84 38.06 37.97 38.64

Adaptive multi-pass decoder 96.01M 180 41.42 38.39 41.43 38.54 37.86 39.05

Table 2: Evaluation of the NIST Chinese-English translation task. The BLEU scores are case-insensitive. “Params”
denotes the number the parameters in each model. The “Speed” denotes the generation speed in seconds on
the development set. RNNSearch is an attention-based neural machine translation model(Bahdanau et al., 2014)
with one-pass left-to-right decoding. RNNSearch(R2L) is a variant of RNNSearch with one-pass right-to-left
decoding. As a comparison, Deliberation Network (Xia et al., 2017) and ABDNMT (Zhang et al., 2018) involve
two independent decoders to adopt polishing mechanism to extend the ability of conventional NMT. Deliberation
Network utilizes two left-to-right decoders coupled with reinforcement learning. However, ABDNMT exploits
a backward decoder to perform first-pass right-to-left decoding. {2,3,4,5}-pass decoder utilizes our multi-pass
decoder with a fixed number of decoding passes. Furthermore, adaptive multi-pass decoder involves a policy
network to enhance our multi-pass decoder to choose a proper decoding depth.

Parameters RNNSearch, Deliberation Network
and ABDNMT have 83.99M, 125.16M and
122.86M parameters, respectively. And the pa-
rameter size of our {2,3,4,5}-pass decoder and
adaptive multi-pass decoder are about 87.81M and
96.01M, respectively.

Fixed Decoding Depth {2,3,4,5}-pass decoders
perform the left-to-right decoding by the multi-
pass decoder with a fixed number of decoding
passes. In contrast to the related machine transla-
tion systems, our fixed number-pass decoder sig-
nificantly outperforms Moses and RNNSearch by
7.53 and 1.05 BLEU points at least, as Table 2
presents. More importantly, our proposed multi-
pass decoder obtains much better performance
with an increase of only 3.82M parameters over
RNNSearch. As a comparison with Deliberation
Network involves two-pass decoding, the multi-
pass decoder has a minimum increase of 0.24
BLEU score. Nevertheless, our multi-pass de-
coder proves its effectiveness due to the less pa-
rameters consumption of 37.35M in contrast to
Deliberation Network. These results verify our
hypothesis that the more decoding passes can pol-
ish the generated output to improve the translation
quality. The underlying reason is that the attention
component attndec within our multi-pass decoder
can capture the extra target-side contexts to obtain
a global understanding to assist the translation pro-
cedure.

Towards the effect of the decoding depth set
{2,3,4,5}, our multi-pass decoders obtain the ap-
proximate results, but the whole curve of BLEU

is on an upward trend. Specifically, the multi-pass
decoder with decoding depth 5 achieves the best
performance with 38.64 BLEU, while the one with
decoding depth 3 performs the worst among the
decoding depth set with 38.55 BLEU. Although
the average results of {2,3,4,5}-pass decoder are
approximate, the distinction of {2,3,4,5}-pass de-
coder on NIST03, NIST04, NIST05, NIST06 and
NIST08 is not negligible. These results indirectly
prove the necessity of flexibility mechanism.

Adaptive Decoding Depth our proposed adap-
tive multi-pass decoder involves an extra pol-
icy network which controls the decoding depth
according to the complexity of the source sen-
tence and the differences between the consecu-
tive generated translations. As shown in Table
2, the proposed adaptive multi-pass decoder ob-
tains an improvement about 0.41 to 0.5 BLEU on
average over the {2,3,4,5}-pass decoder, which
demonstrates the effectiveness of the policy net-
work. Specifically, the adaptive multi-pass de-
coder outperforms the multi-pass decoder with
a fixed decoding depth by 0.69, 0.71, 0.68 and
0.45 BLEU scores on NIST03, NIST04, NIST05
and NIST06 datasets at most. In contrast to the
Moses, RNNSearch, Deliberation Network and
ABDNMT, the adaptive multi-pass decoder has
the corresponding improvement about 8.03, 1.55,
0.74 and 0.34 BLEU points, respectively. More
importantly, our adaptive multi-pass decoder out-
performs ABDNMT, Deliberation Network model
with a decrease of 26.85M, 29.15M parameters.

In order to further demonstrate the effective-
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Figure 2: Performance of the generated translations
with respect to the lengths of the source sentences on
the development dataset.

ness of adaptively choosing the decoding depth,
we investigate the ratio of decoding passes con-
sumed by our multi-pass decoder on the devel-
opment dataset, as shown in Table 3. Our adap-
tive multi-pass decoder chooses one-pass decod-
ing in a high ratio of 46.57%, while in most about
53.43% cases our model leverages more than one
pass decoding to produce a translation. The av-
erage decoding depth of our model is calculated
as: (1 × 46.36% + 2 × 20.84% + 3 × 13.10% +
4× 13.55%+ 5× 6.15%) = 2.12. Moreover, our
ratio of the samples tends to decrease as the decod-
ing depth rises on a whole. Since time consump-
tion correlates with decoding depth, our adap-
tive multi-pass decoder proves its superior perfor-
mance due to fewer parameters and less decoding
passes.

Depth 1 2 3 4 5
Ratio(%) 46.57 20.45 13.00 13.60 6.38

Table 3: The ratio of decoding depth chosen by adap-
tive multi-pass decoder on the development dataset.

Time Consumption Due to the multi-pass de-
coding mechanism, the major limitation of our
proposed multi-pass decoder is time cost. In train-
ing phrase, we spend more time training the multi-
pass decoder than RNNSearch, Deliberation Net-
work and ABDNMT. However, in testing phrase,
as illustrated in Table 2, our adaptive multi-pass
decoder spends about 180s completing the entire
testing procedure, in comparison with the corre-
sponding 87s, 162s, 132s of RNNSearch, Deliber-
ation Network and ABDNMT, due to the auxiliary
policy network. These results are consistent with
above conclusion drew according to the decoding

Figure 3: Ratio of decoding depth set {1,2,3,4,5} con-
trolled by our adaptive multi-pass decoder with respect
to each length segment of the source sentences on the
development dataset.

depth. Therefore, it’s proven the necessity of our
proposed auxiliary policy network to choose the
decoding depth.

4.3 Effect of Source Sentence Length
Following Bahdanau et al. (2014), we group sen-
tences of similar lengths together and compute the
BLEU score for each group, as shown in Figure 2.
Obviously, our proposed adaptive multi-pass de-
coder outperforms RNNSearch in all length seg-
ments. Compared with {2,3,4,5}-pass decoders,
our adaptive multi-pass decoder outperforms most
even all the multi-pass decoders with fixed decod-
ing depth in the length segments.

For the purpose of investigating the flexibility of
policy network, we calculate the ratios of decoding
depth set {1,2,3,4,5} on each sentence group with
similar length, as illustrated in Figure 3. The ratio
of one-pass decoding remains high level on each
length segment, but explicitly is dominant on the
length segment [0, 10). In contrast, the ratios of
remaining decoding depths show upwards trends
on a whole. These results indirectly proves that
our policy network has the capability of choos-
ing the proper decoding depth. That is, when the
source sentence is difficult to be translated such
as some long sentences, more decoding passes are
consumed to improve the translation quality, while
in simple cases such as short source sentences,
one-pass decoding is adequate.

4.4 Case Study
To better understand the effectiveness of flexi-
ble polishing mechanism adopted by policy net-
work, Table 4 provides a Chinese-English transla-
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Source xı̄nhuáshè běijı̄ng 4 yuè 5 rı̀ diàn dàmı́ngdı̌ngdı̌ng dē wēiruǎn gōngsı̄ zǒngcái bı̌ěr · gàicı́ rı̀qıán bèi
jiānádà yı̀ jiā guǎngbō diàn tái ” shuàn le ” yı̀ bǎ , zài yúrénjié nàtiān bèi kāi le yīgè dàwángxiào .

Reference xinhua news agency, beijing, april 5 , bill gates , the all - famous microsoft chairman, was duped by
a canadian radio station the the other day and fell a victim to a big prank on april fools ’ day.

1st-pass
xihua news agency report of april 5 th from beijing (by staff reporter UNK UNK ) - the president of
microsoft ’s microsoft corporation , gates , was recently ” UNK ” by a radio station in canada
and was hit by a UNK day on the day of the day .

2nd-pass xinhua news agency, beijing, april 5, a fews days ago, microsoft ’s president , microsoft corporation ,
was ” UNK ” by a radio station in canada .

3rd-pass xinhua news agency, beijing, april 5 , microsoft ’s president bill gates, the president of microsoft ,
was ” UNK ” by a radio station in canada in few days ago .

4th-pass xinhua news agency, beijing, april 5 , microsoft ’s president bill gates, the president of microsoft ,
was ” UNK ” by a radio station in canada in few days ago .

5th-pass xinhua news agency, beijing, april 5 , microsoft ’s president bill gates, the president of microsoft ,
was ” UNK ” by a radio station in canada in few days ago .

Table 4: Translation examples at each decoding depth of adaptive multi-pass decoder.

tion example. Our proposed adaptive multi-pass
decoder has the ability to polish the generated hy-
pothesis again and again. As shown in Table 4,
we force our adaptive multi-pass decoder to per-
form the multi-pass decoding with fixed depth sets
{1,2,3,4,5}. The translation quality has an up-
wards trend with decoding depth 1 to 3, and the
decoding with depth set {4,5} generates the iden-
tical translation as the decoding depth 3. More-
over, given the same source sentence, we use the
proposed adaptive multi-pass decoder to choose
the decoding depth. As expected, our adaptive
multi-pass chooses 3-pass decoding which gen-
erates best translation and consumes least time,
rather than {4,5}-pass decoding. Therefore, these
results proves the effectiveness of our adaptive
multi-pass decoder.

5 Related Work

In this work, we mainly focus on how to adopt
adaptive polishing mechanism into NMT model,
which has attracted intensive attention in recent
years. We will elaborate polishing mechanism-
based methods in the following pages.

The polishing mechanism-based approaches
first generate a complete draft, and then improve
the quality of it based on the global understanding
of the whole draft. A related work is post-editing
(Niehues et al., 2016; Chatterjee et al., 2016;
Zhou et al., 2017; Junczys Dowmunt and Grund-
kiewicz, 2017): a source sentence e is first trans-
lated to f , and then f is refined by another model.
Niehues et al. (2016) used phrase-based statisti-
cal machine translation (PBMT) to pre-translate
the source sentence into target language, which
was taken as input of NMT to generate the final
translation. Zhou et al. (2017) combined phrase-
based statistical machine translation (PBMT), hi-

erarchical phrase-based statistical machine trans-
lation (HPMT) and NMT with a unified architec-
ture, similar to the dominant NMT model. Com-
pared with the dominant NMT model, two atten-
tion models were involved to compute the context
vectors. Specifically, an attention model is utilized
to calculate the context vector for each machine
system, while the other attention model obtains the
context vector over the all context vectors of ma-
chine systems.

In above works, the generating and refining are
two separate processes. As a comparison, Xia
et al. (2017) proposed deliberation network, which
consists of two decoders: a first-pass decoder gen-
erates a draft, which is taken as input of second-
pass decoder to obtain a better translation. All
the components of deliberation network are cou-
pled together and jointly optimized in an end-to-
end way via reinforcement learning. Instead of
first-pass forward decoder, Zhang et al. (2018)
adopted a backward decoder to capture the right-
to-left target-side contexts, which is taken as input
to assist the second-pass forward decoder to ob-
tain a better translation. Besides, the another dif-
ference with deliberation network is the second-
pass decoder is integrated with the first-pass de-
coder without reinforcement learning.

For the purpose of exploring polishing mech-
anism, our model adopts adaptive multi-pass de-
coding strategy. Compared with the previous
works which consumes no more than two decod-
ing passes, our multi-pass decoder makes an at-
tempt to perform the multi-pass decoding. More
importantly, we adopt adaptive decoding depth
controlled by policy network to extend the capac-
ity of our multi-pass decoder.
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6 Conclusion

In this paper, we propose a novel architecture
called adaptive multi-pass decoder to adopt pol-
ishing mechanism into the NMT model via rein-
forcement learning. Towards this goal, a novel
multi-pass decoder is introduced to generate the
translation, conditioned on the source- and target-
side contexts. Simultaneously, the multi-pass de-
coding is supervised by a policy network which
learns to choose a suitable action from continu-
ing next pass decoding or halt at each time step to
maximize the BLEU of the final translation. As a
result, our model has the capability of controlling
the decoding depth to generate a better translation.
Extensive experiments on Chinese-English trans-
lation demonstrate the effectiveness of the pro-
posed adaptive multi-pass decoder.

In this paper, we focus on utilizing multi-pass
decoder to polish the translation. Our proposed
multi-pass decoder performs the multi-pass decod-
ing mechanism with only forward decoding. One
promising direction is to incorporate the backward
decoding into our architecture. More specifically,
we can extend the policy network to choose the
backward decoding except for forward decoding
and halting.
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