
Proceedings of the 2017 EMNLP System Demonstrations, pages 49–54
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Interactive Visualization for Linguistic Structure

Aaron Sarnat, Vidur Joshi, Cristian Petrescu-Prahova
Alvaro Herrasti, Brandon Stilson, and Mark Hopkins

Allen Institute for Artificial Intelligence
Seattle, WA

Abstract

We provide a visualization library and
web interface for interactively exploring a
parse tree or a forest of parses. The li-
brary is not tied to any particular linguis-
tic representation, but provides a general-
purpose API for the interactive exploration
of hierarchical linguistic structure. To fa-
cilitate rapid understanding of a complex
structure, the API offers several important
features, including expand/collapse func-
tionality, positional and color cues, ex-
plicit visual support for sequential struc-
ture, and dynamic highlighting to convey
node-to-text correspondence.

1 Introduction

Interpreting visual representations of linguistic
structure can be challenging and time-consuming.
Consider the examples provided in Figure 1,
which visualize syntactic parses of the sentence
“Although some people have provided negative re-
views, her restaurants have reliably great music,
good food, and excellent service, and they de-
liver!” These representations can result in cogni-
tive overload, due to several concrete issues:

• The visualizations are static. If one is us-
ing the visualization for debugging purposes,
then typically one cares about only a part of
the linguistic structure, not every last detail.
Unfortunately, a static visualization must in-
clude all information that could possibly be
relevant.

• The visualizations are large. The screen
real estate in Figure 1 is dominated by arrows
that must be carefully tracked by the eye, in
order to understand the relationships between

nodes. Visualizations of long sentences of-
ten run off the side of the screen, requiring
the user to scroll to discover the endpoints of
these arrows.

• All node relationships look identical.
Predicate-argument relationships (e.g.
“restaurants” as the subject of “have”)
get the same visual treatment as modifier
relationships (e.g. “good” as a modifier of
“food”) and sequence elements (e.g. “good
food” as an element of the sequence “great
music, good food, and excellent service”).

In this work, we provide a library and web in-
terface for the interactive visualization of linguis-
tic structure, seeking to minimize the cognitive
load required to understand syntactic and seman-
tic parses. Figure 2 shows a screenshot of our web
UI for the same sentence as Figure 1. It reflects
several of our visualization strategies (described in
more detail in Section 3):

• Instead of a static visualization, we pro-
vide an interactive visualization with an ex-
pand/collapse functionality that allows the
user to focus on what is relevant to her. For
instance, the subclause “although some peo-
ple have provided negative reviews” is col-
lapsed in Figure 2, but can be expanded by
clicking on it.

• To reduce the size of the visualization, we use
a box layout, and use badging to eliminate
simple leaf nodes (e.g. instead of creating a
separate node for the article “her”, it is repre-
sented by a badge on the node “restaurant”).

• We use positional cues to highlight predicate-
argument relationships (subjects appear to
the left, objects to the right, modifiers attach

49



Figure 1: Typical visualizations of a constituency parse (top) and a dependency parse (bottom) for
the sentence “Although some people have provided negative reviews, her restaurants have reliably great
music, good food, and excellent service, and they deliver!”

to the bottom) and we provide specialized vi-
sualization for sequential structures (this oc-
curs at two different levels in Figure 2, both
for the clause sequence as well as the entity
sequence “reliably great music, good food,
and excellent service”).

Our library is not tied to any particular linguistic
formalism. In Section 4, we describe the flexible
and configurable API. While our primary use case
has been for creating custom grammars for math-
ematical language (Hopkins et al., 2017), we also
provide a demonstration of how our API can be
used to visualize output from the Stanford Parser
(Socher et al., 2013).

2 Related Work

Most parse visualizations use the source sentence
as an anchor, leaving it readable left-to-right. For
constituency parses (where the words of the sen-
tence are the leaves of the tree), this gives a rep-
resentation like Figure 1 (top). For dependency
parses (where the words of the sentences are the

nodes of the tree), this gives a representation like
Figure 1 (bottom).

Figure 1 was generated from (Podgursky,
2015), which provides open-source code and a
web interface for a static rendering of a con-
stituency parse. There are a number of libraries
(Stenetorp et al., 2012; Montani, 2016; Athar,
2010; Yimam et al., 2013) that provide static ren-
derings of dependency parses similar to Figure 1
(bottom). Among these, Brat (Stenetorp et al.,
2012) provides some interactive elements (like
mouseover highlighting of subtrees, and the abil-
ity to add dependencies via drag-and-drop). Dis-
placy (Montani, 2016) provides a general API
for the static rendering of various dependency
parsing schemes, e.g. Universal Dependencies
(Nivre et al., 2016) and Stanford Dependencies
(De Marneffe and Manning, 2008).

We are not aware of any recent tools for explor-
ing parse forests. Historically, the REDWOODS

annotation environment (Oepen et al., 2004) pro-
duced a static parse forest from a hand-built gram-
mar, and then allowed users to select the best

50



Figure 2: A screenshot of our parse visualization tool for the sentence “Although some people have
provided negative reviews, her restaurants have reliably great music, good food, and excellent service,
and they deliver!”

Figure 3: Three screenshots of our visual-
izer for the question “How much wood would a
woodchuck chuck, if a woodchuck could chuck
wood?”: partially expanded (top), fully collapsed
(middle), and fully expanded (bottom).

parse from this forest by repeatedly specifying
constraints (called discriminants in the paper).

3 Key Features

In this section, we describe our key features for fa-
cilitating a rapid understanding of linguistic struc-
ture. As a companion to this section, we invite
readers to use our web demonstration at http://
hierplane.allenai.org/explain to in-
teractively explore examples.1

1The user may experience some slowness when parsing
certain sentences. This is due to the speed of the back-end
parser, not the visualization library.

3.1 Expand/Collapse Functionality

Rather than a static rendering, our dynamic ex-
pand/collapse functionality allows the user to fo-
cus on relevant parts of the linguistic structure,
while the rest is conveniently summarized at a
coarser granularity. In Figure 3, the top screenshot
shows a partially expanded structure that delves
into the internal structure of the if-clause. The
middle and bottom screenshots respectively show
the fully collapsed and expanded visualizations.

3.2 Positional Cues to Distinguish Node
Relations

Linguistic relationships can often be organized
into intuitive clusters. For instance, subjects and
objects can be roughly viewed as required argu-
ments of a verb (exactly one per verb), while mod-
ifiers are optional (a verb can take any number
of them, including zero). Our library allows the
visual expression of these “relationship families”
through positional cues. In Figure 3, the subject
is attached to the left of its verb, the object is at-
tached to the right of its verb, and all modifiers are
attached beneath. For consistency, the object of
the preposition “if” is also attached to its right. At
a glance, this representation allows the user to read
a gloss of the main clause by simply skimming the
top line of the visualization (i.e. “a woodchuck
would chuck how much wood?”).

3.3 Color Cues to Distinguish Node Types

Our library provides support for using color to
distinguish node types. In Figure 3, green rep-
resents events, blue represents entities, red repre-
sents modifiers, and gray is a catch-all for anything
else.

51



Figure 4: Dynamic highlighting of the correspondence between the linguistic structure and the source
text: “If Peter and Paula had really picked a peck of pickled peppers, how many peppers did they pick?”

3.4 Badging

Some leaf nodes of linguistic structures convey
very simple information about their parent node.
We allow these nodes to be represented as badges
rather than separate nodes. In Figure 3, the de-
terminers (“a” for “a woodchuck”) and modals
(“would” for “would chuck”) are represented as
badges.

3.5 Sequence Support

Sequential structure is a fundamental linguistic el-
ement that is often difficult to access in a parse vi-
sualization. We make sequences visually explicit
as a container of linked nodes. Examples include
“Peter and Paula” in Figure 4 or the sequence of
top-level clauses “her restaurants have...excellent
service” and “they deliver” in Figure 2. Contrast
this to the undistinguished representations of se-
quential structure found in Figure 1.

3.6 Dynamic Node-to-Text Highlighting

It can be difficult (particularly in semantic parses)
to ascertain how the source text and the linguis-
tic representation correspond. Upon mouse-over
of a node, our visualizer highlights the part of the
source text corresponding to the subtree rooted at
that node. Parts that do not also correspond to
some descendant node in the subtree are strongly
highlighted. In Figure 4, upon mouse-over of
the lower “pick” node, the corresponding segment
“Peter and Paula had really picked a peck of pick-
led peppers” is weakly highlighted. The tokens
“had” and “pecked” are strongly highlighted, be-

Figure 5: Before-and-after screenshots of forest
exploration for the sentence “Because he ate the
pasta with chopsticks, he chipped a tooth.”

cause they do not correspond to any of the node’s
descendants.

3.7 Modular Forest Exploration
Our interactive setting permits a convenient explo-
ration of parse forests. For instance, see Figure 5.
The subtree rooted at “eat” has two interpretations,
attaching “with chopsticks” to the verb or to the
object. An indicator in the node’s upper-right al-
lows the user to browse these interpretations. We
localize ambiguities to the lowest possible node to
allow the user to explore the forest in a convenient,
modular fashion (rather than cycling through an

52



exponential number of parses at the root).

Figure 6: System architecture for our web inter-
face. Similar architectures are employed by Brat
and WebAnno.

4 APIs

Our web interface, hosted at http:
//hierplane.allenai.org/explain,
has the architecture shown in Figure 6. The
front-end accepts text input from the user. It
forwards this text to the back-end and receives
a JSON that contains an annotated tree and
styling instructions. Figure 7 shows a simplified
version of the JSON that renders the “He ate
pasta with chopsticks” subtree in Figure 5. This
JSON is passed to the visualization library, which
renders it in HTML and returns this HTML to the
front-end.

4.1 Basic Features
A key feature of our architecture is that the back-
end is in charge of defining the node and edge
types, and specifying how these should be dis-
played. This allows the visualization library to be
independent of any particular linguistic annotation
scheme. To demonstrate this flexibility, our demo
provides two alternative back-ends. By default, it
uses a custom grammar that we have been devel-
oping for parsing mathematical language (e.g.

http://hierplane.
allenai.org/explain/He%
20ate%20pasta%20with%
20chopsticks

utilizes the default back-end). However, we have
also wrapped the Stanford Parser (Socher et al.,
2013) as an alternative back-end. For any given
sentence, one can try out this alternative by replac-
ing the URL prefix

Figure 7: A simplified version of the JSON that
describes the parse tree for “He ate pasta with
chopsticks.”

http://hierplane.allenai.
org/explain/

with

http://hierplane.allenai.
org/explain/stanford/

For instance:

http://hierplane.allenai.
org/explain/stanford/

53



He%20ate%20pasta%20with%
20chopsticks

will parse “He ate pasta with chopsticks” using the
Stanford parser.

In the JSON returned by the back-end, each
node in the tree is annotated with its kind and la-
bel (“word”), the type of edge (“link”) connecting
it to its parent, and its badges (“attributes”). The
linkToPosition map allows each node to be posi-
tioned according to its relation to its parent (e.g.
subjects are positioned to the left of their parents,
according to the example JSON). The kindToStyle
map specifies colors for the various node types.

4.2 Advanced Features
To enable interactive node-to-text highlighting,
nodes in the input JSON tree can each be anno-
tated with a span field that contains the indexes of
the start and end characters of the substring cor-
responding to the node. To enable modular for-
est navigation, each node with a next or previous
subtree can be annotated with codes identifying
these subtrees. Navigation arrows are only ren-
dered when they lead to another subtree. When a
user clicks on one, the front-end sends the code
identifying the desired subtree to the back-end,
and expects the requested subtree as a response.

5 Conclusion

In this work, we have tried to rethink the visu-
alization of hierarchical linguistic structure from
the ground up, first identifying the problems that
cause cognitive load (large, static visualizations
with no cues to distinguish node or edge families),
and then designing new tactics to counter these
problems (e.g. expand/collapse functionality, po-
sitional cues to distinguish node relations, explicit
sequence visualization, and dynamic node-to-text
highlighting). We have also created the first tool
to explore parse forests using modern web design.
We plan to make our visualizer freely available as
an open-source library and a web interface.

References
Awais Athar. 2010. Dependensee: A

dependency parse visualization tool.
http://chaoticity.com/dependensee-a-dependency-
parse-visualisation-tool. Accessed: 2017-04-27.

Marie-Catherine De Marneffe and Christopher D Man-
ning. 2008. Stanford typed dependencies manual.

Technical report, Technical report, Stanford Univer-
sity.

Mark Hopkins, Cristian Petrescu-Prahova, Roie Levin,
Ronan Le Bras, Alvaro Herrasti, and Vidur Joshi.
2017. Beyond sentential semantic parsing: Tackling
the math sat with a cascade of tree transducers. In
EMNLP.

Ines Montani. 2016. Displacy dependency vi-
sualizer. https://demos.explosion.ai/
displacy. Accessed: 2017-04-27.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependen-
cies v1: A multilingual treebank collection. In Pro-
ceedings of the 10th International Conference on
Language Resources and Evaluation (LREC 2016),
pages 1659–1666.

Stephan Oepen, Dan Flickinger, Kristina Toutanova,
and Christopher D Manning. 2004. Lingo red-
woods. Research on Language and Computation,
2(4):575–596.

Ben Podgursky. 2015. Nlpviz. http://nlpviz.
bpodgursky.com. Accessed: 2017-04-27.

Richard Socher, John Bauer, Christopher D Manning,
and Andrew Y Ng. 2013. Parsing with composi-
tional vector grammars. In ACL (1), pages 455–465.

Pontus Stenetorp, Sampo Pyysalo, Goran Topic,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for nlp-assisted text
annotation. In EACL.

Seid Muhie Yimam, Iryna Gurevych, Richard
Eckart de Castilho, and Chris Biemann. 2013.
Webanno: A flexible, web-based and visually
supported system for distributed annotations. In
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics: Sys-
tem Demonstrations, pages 1–6, Sofia, Bulgaria.
Association for Computational Linguistics.

54


