
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2795–2806
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Neural Sequence-Labelling Models for Grammatical Error Correction

Helen Yannakoudakis, Marek Rei, Øistein E. Andersen and Zheng Yuan
The ALTA Institute

Computer Laboratory
University of Cambridge

{hy260,mr472,oa223,zy249}@cl.cam.ac.uk

Abstract

We propose an approach to N -best list re-
ranking using neural sequence-labelling
models. We train a compositional model
for error detection that calculates the prob-
ability of each token in a sentence being
correct or incorrect, utilising the full sen-
tence as context. Using the error detec-
tion model, we then re-rank the N best
hypotheses generated by statistical ma-
chine translation systems. Our approach
achieves state-of-the-art results on error
correction for three different datasets, and
it has the additional advantage of only us-
ing a small set of easily computed features
that require no linguistic input.

1 Introduction

Grammatical Error Correction (GEC) in non-
native text attempts to automatically detect and
correct errors that are typical of those found in
learner writing. High precision and good coverage
of learner errors is important in the development of
GEC systems. Phrase-based Statistical Machine
Translation (SMT) approaches to GEC have at-
tracted considerable attention in recent years as
they have been shown to achieve state-of-the-art
results (Felice et al., 2014; Junczys-Dowmunt and
Grundkiewicz, 2016). Given an ungrammatical in-
put sentence, the task is formulated as “translat-
ing” it to its grammatical counterpart. Using a par-
allel dataset of input sentences and their corrected
counterparts, SMT systems are typically trained
to correct all error types in text without requir-
ing any further linguistic input. To further adapt
SMT approaches to the task of GEC and tackle
the paucity of error-annotated learner data, previ-
ous work has investigated a number of extensions,
ranging from the addition of further features into

the decoding process (Felice et al., 2014) via re-
ranking the SMT decoder’s output (Yuan et al.,
2016) to neural-network adaptation components to
SMT (Chollampatt et al., 2016a).

In this paper, we propose an approach to N -best
list re-ranking using neural sequence-labelling
models. N -best list re-ranking allows for fast ex-
perimentation since the decoding process remains
unchanged and only needs to be performed once.
Crucially, it can be applied to any GEC system
that can produce multiple alternative hypotheses.
More specifically, we train a neural compositional
model for error detection that calculates the prob-
ability of each token in a sentence being correct
or incorrect, utilising the full sentence as context.
Using the error detection model, we then re-rank
the N best hypotheses generated by the SMT sys-
tem. Detection models can be more fine-tuned to
finer nuances of grammaticality and acceptability,
and therefore better able to distinguish between
correct and incorrect versions of a sentence.

Our approach achieves state-of-the-art results
on GEC for three different datasets, and it has the
additional advantage of using only a small set of
easily computed features that require no linguis-
tic information, in contrast to previous work that
has utilised a large set of features in a supervised
setting (Hoang et al., 2016; Yuan et al., 2016).

2 Previous work

The first approaches to GEC primarily treat the
task as a classification problem over vectors of
contextual lexical and syntactic features extracted
from a fixed window around the target token. A
large body of work has investigated error-type-
specific models, and in particular models targeting
preposition and article errors, which are among the
most frequent ones in non-native English learner
writing (Chodorow et al., 2007; De Felice and Pul-

2795



man, 2008; Han et al., 2010; Tetreault et al., 2010;
Han et al., 2006; Tetreault and Chodorow, 2008;
Gamon et al., 2008; Gamon, 2010; Rozovskaya
and Roth, 2010; Rozovskaya et al., 2012; Dale and
Kilgarriff, 2011; Leacock et al., 2014). Core com-
ponents of one of the top systems in the CoNLL
2013 and 2014 shared tasks on GEC (Ng et al.,
2013, 2014) include Averaged Perceptron clas-
sifiers, native-language error correction priors in
Naive Bayes models, and joint inference frame-
works capturing interactions between errors (e.g.,
noun number and verb agreement errors) (Ro-
zovskaya et al., 2012, 2014, 2011; Rozovskaya
and Roth, 2011). The power of the classification
paradigm comes from its ability to generalise well
to unseen examples, without necessarily requir-
ing error-annotated learner data (Rozovskaya and
Roth, 2016).

One of the first approaches to GEC as an SMT
task is the one by Brockett et al. (2006), who gen-
erate artificial data based on hand-crafted rules
to train a model that can correct countability er-
rors. Dahlmeier and Ng (2011) focus on correct-
ing collocation errors based on paraphrases ex-
tracted from parallel corpora, while Dahlmeier and
Ng (2012a) are the first to investigate a discrim-
inatively trained beam-search decoder for full-
sentence correction, focusing on five different er-
ror types: spelling, articles, prepositions, punc-
tuation insertion, and noun number. Yoshimoto
et al. (2013) utilise SMT to tackle determiner and
preposition errors, while Yuan and Felice (2013)
use POS-factored, phrase-based SMT systems,
trained on both learner and artificially generated
data to tackle determiner, preposition, noun num-
ber, verb form, and subject–verb agreement errors.
The SMT approach has better capacity to correct
complex errors, and it only requires parallel cor-
rected sentences as input.

Two state-of-the-art systems in the 2014
CoNLL shared task on correction of all errors re-
gardless of type use SMT systems: Felice et al.
(2014) use a hybrid approach that includes a
rule-based and an SMT system augmented by a
large web-based language model and combined
with correction-type estimation to filter out error
types with zero precision. Junczys-Dowmunt and
Grundkiewicz (2016) investigate parameter tuning
based on the MaxMatch (M2) scorer, the shared-
task evaluation metric (Dahlmeier and Ng, 2012b;
Ng et al., 2014), and experiment with different op-

timisers and interactions of dense and sparse fea-
tures.

Susanto et al. (2014) and Rozovskaya and Roth
(2016) explore combinations of SMT systems and
classifiers, the latter showing substantial improve-
ments over the CoNLL state of the art. Chol-
lampatt et al. (2016a) integrate a neural net-
work joint model that has been adapted using
native-language-specific learner text as a feature
in SMT, while Chollampatt et al. (2016b) inte-
grate a neural network global lexicon model and
a neural network joint model to exploit continuous
space representations of words rather than discrete
ones, and learn non-linear mappings. Yuan and
Briscoe (2016) present a Neural Machine Transla-
tion (NMT) model and propose an approach that
tackles the rare-word problem in NMT.

Yuan et al. (2016) and Mizumoto and Mat-
sumoto (2016) employ supervised discriminative
methods to re-rank the SMT decoder’s N -best
list output based on language model and syntac-
tic features respectively. Hoang et al. (2016) also
exploit syntactic features in a supervised frame-
work, but further extend their approach to generate
new hypotheses. Our approach is similar in spirit,
but differs in the following aspects: inspired by
the work of Rei and Yannakoudakis (2016) who
tackle error detection rather than correction within
a neural network framework, we develop a neu-
ral sequence-labelling model for error detection to
calculate the probability of each token in a sen-
tence as being correct or incorrect; using the error
detection model, we propose a small set of features
that require no linguistic processing to re-rank the
N best hypotheses. We evaluate our approach
on three different GEC datasets and achieve state-
of-the-art results, outperforming all previous ap-
proaches to GEC.

3 Datasets

We use the First Certificate in English (FCE)
dataset (Yannakoudakis et al., 2011), and the NUS
Corpus of Learner English (NUCLE) (Dahlmeier
et al., 2013) that was used in the CoNLL GEC
shared tasks. Both datasets are annotated with
the language errors committed and suggested cor-
rections from expert annotators. The former con-
sists of upper-intermediate learner texts written by
speakers from a number of different native lan-
guage backgrounds, while the latter consists of es-
says written by advanced undergraduate university

2796



students from an Asian language background. We
use the public FCE train/test split, and the NUCLE
train/test set used in CoNLL 2014 (the test set has
been annotated by two different annotators).

We also use the publicly available Lang-8 cor-
pus (Mizumoto et al., 2012; Tajiri et al., 2012)
and the JHU FLuency-Extended GUG corpus (J-
FLEG) (Napoles et al., 2017). Lang-8 contains
learner English from lang-8.com, a language-
learning social networking service, which has
been corrected by native speakers. JFLEG is a
newly released corpus for GEC evaluation that
contains fluency edits to make the text more
native-like in addition to correcting grammatical
errors, and contains learner data from a range of
proficiency levels.

We use Lang-8 and the FCE and CoNLL train-
ing sets to train our neural sequence-labelling
model, and test correction performance on JFLEG,
and the FCE and CoNLL test sets. For JFLEG,
we use the 754 sentences on which Napoles et al.
(2017) have already benchmarked four leading
GEC systems. As our development set, we use a
subset of the FCE training data.

4 Neural sequence labelling

We treat error detection as a sequence labelling
task and assign a label to each token in the input
sentence, indicating whether it is correct or incor-
rect in context. These binary gold labels can be
automatically extracted from the manual error an-
notation available in our data (see Section 3). Sim-
ilarly to Rei and Yannakoudakis (2016), we con-
struct a bidirectional recurrent neural network for
detecting writing errors. The system receives a se-
ries of tokens [w1...wT ] as input, and predicts a
probability distribution over the possible labels for
each token.

Every token wt is first mapped to a token rep-
resentation x̃t, which is also optimised during
training. These embeddings are composed to-
gether into context-specific representations using
a bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997):

−→
ht = LSTM(x̃t,

−−→
ht−1) (1)

←−
ht = LSTM(x̃t,

←−−
ht+1) (2)

ht = [
−→
ht ;
←−
ht ] (3)

where x̃t is the token representation at position
t,
−→
ht is the hidden state of the forward-moving

LSTM,
←−
ht is the hidden state of the backward-

moving LSTM, and ht is the concatenation of
both hidden states. A feedforward hidden layer
with tanh activation is then used to map the rep-
resentations from both directions into a more suit-
able combined space, and allow the model to learn
higher-level features:

dt = tanh Wdht (4)

where Wd is a weight matrix. Finally, a softmax
output layer predicts the label distribution for each
token, given the input sequence:

P (yt|w1...wT ) = softmax Wodt (5)

where Wo is an output weight matrix.
We also make use of the character-level archi-

tecture proposed by Rei et al. (2016), allowing the
model to learn morphological patterns and capture
out-of-vocabulary words. Each individual char-
acter is mapped to a character embedding and a
bidirectional LSTM is used to combine them to-
gether into a character-based token representation.
This vector m, constructed only from individual
characters, is then combined with the regular to-
ken embedding xt using an adaptive gating mech-
anism:

z = σ
(
Wz1 · tanh(Wz2xt + Wz3m)

)
(6)

x̃t = z · xt + (1− z) ·m (7)

where Wz1 , Wz2 and Wz3 are weight matrices, z is
a dynamically calculated gating vector, and x̃t is
the resulting token representation at position t.

We optimise the model by minimising cross-
entropy between the predicted label distributions
and the annotated labels. In addition to training
the error detection objective, we make use of a
multi-task loss function and train specific parts of
the architecture as language models. This provides
the model with a more informative loss function,
while also encouraging it to learn more general
compositional features and acting as a regulariser
(Rei, 2017). First, two extra hidden layers are con-
structed:

−→mt = tanh
−→
Wm
−→
ht (8)

2797



Figure 1: Error detection network architecture that
is repeated for all the words in a sentence (illustra-
tion for the word “cat”).

←−mt = tanh
←−
Wm
←−
ht (9)

where
−→
Wm and

←−
Wm are direction-specific weight

matrices, used for connecting a forward or back-
ward LSTM hidden state to a separate layer. The
surrounding tokens are then predicted based on
each hidden state using a softmax output layer:

P (wt+1|w1...wt) = softmax
−→
Wq
−→mt (10)

P (wt−1|wt...wT ) = softmax
←−
Wq
←−mt (11)

During training, the following cost function is
minimised, which combines the error detection
loss function with the two language modeling ob-
jectives:

E =−
T∑

t=1

log P (yt|wt...wT )

− γ

T−1∑
t=1

log P (wt+1|w1...wt)

− γ
T∑

t=2

log P (wt−1|wt...wT )

(12)

where γ is a weight that controls the importance of
language modeling in relation to the error detec-
tion objective. Figure 1 shows the error detection
network architecture.

4.1 Experimental settings

All digits in the text are replaced with the char-
acter ‘0’. Tokens that occur less than 2 times
in the training data share an out-of-vocabulary
(OOV) token embedding, whereas the character-
level component still operates over the original to-
kens. The model hyperparameters are tuned based
on F0.5 on the FCE development set (Section 3)
and γ is set to 0.1.1 The model is optimised us-
ing Adam (Kingma and Ba, 2015), and training
is stopped when F0.5 does not improve on the de-
velopment set over 5 epochs. Token representa-
tions have size 300 and are initialised with pre-
trained word2vec embeddings trained on Google
News (Mikolov et al., 2013). The character rep-
resentations have size 50 and are initialised ran-
domly. The LSTM hidden layers have size 200 for
each direction.

4.2 Error detection performance

Rei and Yannakoudakis (2016)’s error detection
framework uses token-level embeddings, bidirec-
tional LSTMs for context representation, and a
multi-layer architecture for learning more com-
plex features. They train their model on the
public FCE training set, and benchmark their re-
sults on the FCE and CoNLL test sets (Baseline
LSTMFCE). We also train and test our detection
model on the same data and evaluate the effec-
tiveness of our approach (LSTMFCE). In Table 1,
we can see that our architecture achieves a higher
performance on both FCE and CoNLL, and par-
ticularly for FCE (7% higher F0.5) and CoNLL
test annotation 2 (around 2% higher F0.5). When
we use a larger training set that also includes the
CoNLL training data and the public Lang-8 cor-
pus (see Section 3), performance improves even
further (LSTM), particularly for CoNLL test an-
notation 1 (at least 8% higher F0.5 compared to
LSTMFCE). We use this model in the experiments
reported in the following sections.

5 Statistical machine translation

SMT attempts to identify the 1-best correction hy-
pothesis c∗ of an input sentence s that maximises
the following:

c∗ = arg max
c

pLM(c) p(s|c) (13)

1Lower γ values tend to give better error detection results
as this essentially prioritises the error detection objective.

2798



FCE test set CoNLL test set annotation 1 CoNLL test annotation 2
System P R F0.5 P R F0.5 P R F0.5

Baseline LSTMFCE 46.10 28.50 41.10 15.40 22.80 16.40 23.60 25.10 23.90
LSTMFCE 58.88 28.92 48.48 17.68 19.07 17.86 27.62 21.18 25.88
LSTM 79.10 21.19 51.14 54.51 8.69 26.53 69.60 7.91 27.18

Table 1: Token-level error detection performance of our detection models (LSTMFCE and LSTM) on
FCE and the two CoNLL 2014 test set annotations. Baseline LSTMFCE and LSTMFCE are trained only
on the public FCE training set.

A Language Model (LM) is used to estimate the
correction hypothesis probability pLM(c) from a
corpus of correct English, and a translation model
to estimate the conditional p(s|c) from a paral-
lel corpus of corrected learner sentences. State-
of-the-art SMT systems are phrase-based (Koehn
et al., 2003) in that they use phrases as “trans-
lation” units and therefore allow many-to-many
“translation” mappings. The translation model is
decomposed into a phrase-translation probability
model and a phrase re-ordering probability model,
and the 1-best correction hypothesis is of the fol-
lowing log-linear form (Och and Ney, 2002):

c∗ = arg max
c

exp
K∑

i=1

λi hi(c, s) (14)

where h represents a feature function (e.g., phrase-
translation probability) and λ the feature weight.

In this work, we employ two SMT systems:
Yuan et al. (2016)2 and Junczys-Dowmunt and
Grundkiewicz (2016). We apply our re-ranking
approach to each SMT system’s N -best list us-
ing features derived from the neural sequence-
labelling model for error detection described in
the previous section, improve each of the SMT
systems, and achieve state-of-the-art results on all
three GEC datasets: FCE, CoNLL and JFLEG.

5.1 N -best list re-ranking

For each SMT system, we generate the list of all
the 10 best candidate hypotheses. We then use the
following set of features (tuned on the FCE de-
velopment set, see Section 3) to assign a score to
each candidate, and determine a new ranking for
each SMT model:

Sentence probability: Our error detection
model outputs a probabilty indicating whether a

2Yuan et al. (2016) propose a supervised N -best list re-
ranking approach; however, we only use their baseline SMT
system.

token is likely to be correct or incorrect in context.
We therefore use as a feature the overall sentence
probability, calculated based on the probability of
each of its tokens being correct:

∑
w

log P (w)

Levenshtein distance: We first use Levenshtein
distance (LD) to identify which tokens in the orig-
inal/source sentence have been corrected by the
candidate hypothesis. We then identify the tokens
that our detection model predicts as incorrect (i.e.,
the probability of being incorrect is greater than
0.5). These give us two different sets of annota-
tions for the source sentence: tokens in the source
sentence that the candidate hypothesis identifies as
incorrect; and tokens in the source sentence that
the error detection model identifies as incorrect.
We then convert these annotations to binary se-
quences – i.e., 1 if the token is identified as in-
correct, and 0 otherwise – and use as a feature the
LD between those binary representations. More
specifically, we would like to select the candidate
sentence that has the smallest LD from the binary
sequence created by the detection model: 1

LD

True and false positives: Given the binary se-
quences described above, we also use as a feature
the ratio of true positives (TP) to false positives
(FP) by treating the error detection model as the
“gold standard”. Specifically, we count how many
times the candidate hypothesis agrees or not with
the detection model on the tokens identified as in-
correct: TP

FP
We use a linear combination of the above three

scores together with the overall score (i.e., original
rank) given by the SMT system (we do not include
any other SMT features) to re-rank each SMT sys-
tem’s 10-best list in an unsupervised way. The new
1-best correction hypothesis c∗ is then the one that
maximises:

c∗ = arg max
c

K∑
i=1

λi hi(c) (15)

2799



FCE test set CoNLL test set JFLEG
P R F0.5 GLEU P R F0.5 GLEU P R F0.5 GLEU

Baseline
CAMB16SMT 63.27 31.95 52.90 70.15 45.39 21.82 37.33 64.90 65.56 29.12 52.44 46.10
Our work
CAMB16SMT + LSTM 65.03 32.45 54.15 70.72 49.58 21.84 39.53 65.68 65.86 30.56 53.50 46.74
CAMB16SMT + LSTMcamb 64.25 36.13 55.60 71.76 51.09 25.30 42.44 66.42 65.41 32.97 54.66 47.72
Oracle 80.53 49.62 71.60 78.54 68.77 35.90 58.13 70.42 73.45 38.03 61.92 50.64

Baseline
AMU16SMT (reported) − − − − 61.27 27.98 49.49 − − − 43.20 41.70
AMU16SMT (replicated) 46.94 13.75 31.66 63.73 61.15 27.84 49.34 68.23 69.22 18.56 44.77 41.98
Our work
AMU16SMT (replicated) + LSTM 40.67 17.36 32.06 63.57 58.79 30.63 49.66 68.26 60.68 22.65 45.43 42.65
AMU16SMT (replicated) + LSTMcamb 43.34 19.88 35.07 64.78 59.88 32.16 51.08 68.69 64.12 25.06 48.88 43.26
Oracle 71.54 26.69 53.54 69.52 76.47 35.97 62.41 71.18 79.10 27.47 57.49 45.00

Other baselines
VT16SMT + classifiers − − − − 60.17 25.64 47.40 − − − − −
NUS16SMT+NNJM − − − − − − 44.27 − − − 52.70 46.30
NUS16SMT + re-ranker − − − − 50.35 23.84 41.19 − − − − −
CAMB16NMT − − 53.49 71.16 − − 39.90 65.59 − − 50.80 47.20

Table 2: Using the neural sequence-labelling model for error detection (‘+ LSTM’ or ‘+ LSTMcamb’) to
re-rank the 10-best lists of two SMT systems – Yuan et al. (2016) (CAMB16SMT) and Junczys-Dowmunt
and Grundkiewicz (2016) (AMU16SMT).

where h represents the score assigned to candidate
hypothesis c according to feature i; λ is a param-
eter that controls the effect feature i has on the fi-
nal ranking; and K = 4 as we have four different
features (three features presented in this section,
plus the original score output by the SMT system).
λs are tuned on the FCE development set and are
set to 1, except for the sentence probability feature
which has λ = 1.5.3

6 Evaluation

We evaluate the effectiveness of our re-ranking ap-
proach on three different datasets: FCE, CoNLL
2014 and JFLEG. We report F0.5 using the shared
task’s M2 scorer (Dahlmeier and Ng, 2012b), and
GLEU scores (Napoles et al., 2015). The latter
is based on a variant of BLEU (Papineni et al.,
2002) that is designed to reward correct edits and
penalise ungrammatical ones. As mentioned in
Section 5, we re-rank the 10-best lists of two
SMT systems: Yuan et al. (2016) (CAMB16SMT)
and Junczys-Dowmunt and Grundkiewicz (2016)
(AMU16SMT). The results are presented in Table
2.

We replicate the AMU16SMT system to obtain
the 10-best output, and report results using this

3We experimented with a small set of values (from 0 to 2
with increments of .1), though not exhaustively.

version (AMU16SMT (replicated)). Compared to the
original results on CoNLL reported in their paper
(AMU16SMT (reported)), we obtain slightly lower
performance.4 We can see that AMU16SMT is
the current state of the art on CoNLL, with an
F0.5 of 49.49. On the other hand, CAMB16SMT
generalises better on FCE and JFLEG: 52.90 and
52.44 F0.5 respectively. The lower performance of
AMU16SMT can be attributed to the fact that it is
tuned for the CoNLL shared task.

The current state of the art on FCE is a neural
machine translation system, CAMB16NMT (Yuan
and Briscoe, 2016), which is also the best model
on JFLEG in terms of GLEU. The rest of the base-
lines we report are: Rozovskaya and Roth (2016),
who explore combinations of SMT systems and
classifiers (VT16SMT + classifiers); Chollampatt
et al. (2016a), who integrate a neural network
joint model that has been adapted using native-
language-specific learner text as a feature in SMT
(NUS16SMT+NNJM); and Hoang et al. (2016), who
perform supervised N -best list re-ranking using a
large set of features, and further extend their ap-
proach to generate new hypotheses (NUS16SMT +
re-ranker).5

4The differences are likely to be caused by different ver-
sions of the NLTK tokeniser and/or Moses.

5We note that Napoles et al. (2017) use an updated version
of GLEU to evaluate AMU16SMT (reported), NUS16SMT+NNJM
and CAMB16NMT on JFLEG. We therefore also use this up-
dated version throughout all GLEU evaluations on JFLEG.

2800



CAMB16SMT + LSTMcamb

Ablated feature F0.5 GLEU
None 55.60 71.76
Sentence probability 54.13 70.65
Levenshtein distance 55.42 71.78
True/false positives 55.14 71.75

Table 3: Ablation tests on the FCE test set when
removing one feature of the re-ranking system at a
time.

When using our LSTM detection model to re-
rank the 10-best list (+ LSTM), we can see that
performance improves across all three datasets
for both SMT systems. F0.5 performance of
CAMB16SMT on FCE improves from 52.90 to
54.15, on CoNLL from 37.33 to 39.53, and on JF-
LEG from 52.44 to 53.50 (the latter demonstrat-
ing that the detection model also helps with flu-
ency edits). This improved result is also better
than the state of the art CAMB16NMT on FCE.6

When looking at AMU16SMT, we can see that re-
ranking (+ LSTM) further improves the best re-
sult on CoNLL from 49.34 (replicated) to 49.66
F0.5, and there is a similar level of improvement
for both FCE and JFLEG.

As a further experiment, we re-train our er-
ror detection model on the same training data as
CAMB16SMT (+ LSTMcamb). More specifically,
we use the Cambridge Learner Corpus (CLC)
(Nicholls, 2003), a collection of learner texts of
various proficiency levels, written in response to
exam prompts and manually annotated with the
errors committed (around 2M sentence pairs). In
Table 2, we can see that the detection model fur-
ther improves performance across all datasets and
SMT systems. Compared to just doing SMT
with CAMB16SMT, re-ranking improves F0.5 from
52.90 to 55.60 on FCE (performance increases
further even though CAMB16SMT’s training set
includes a large set of FCE data), from 37.33 to
42.44 on CoNLL, and from 52.44 to 54.66 on
JFLEG. The largest improvement is on CoNLL
(5%), which is likely because CoNLL is not in-
cluded in the training set. AMU16SMT (replicated)
is specifically tuned for CoNLL; nevertheless, the
detection model also improves F0.5 on CoNLL
from 49.34 to 51.08. Re-ranking using a small
set of detection-based features produces state-of-

6We note that CAMB16NMT outperforms the re-ranking
approach by Yuan et al. (2016).

the-art results on all three datasets (we note that
CAMB16SMT generalises better across all).

We next run ablation tests to investigate the
extent to which each feature contributes to per-
formance. Results obtained on the FCE test
set after excluding each of the features of the
‘CAMB16SMT + LSTMcamb’ re-ranking system
are presented in Table 3. Overall, all features have
a positive effect on performance, though the sen-
tence probability feature does have the biggest im-
pact: its removal is responsible for a 1.47 and 1.11
decrease of F0.5 and GLEU respectively. A similar
pattern is observed on the other datasets too.

6.1 Oracle
To calculate an upper bound per SMT system per
dataset, we calculate character-level LD between
each candidate hypothesis in the 10-best list and
the gold corrected sentence. We then calculate an
oracle score by selecting the candidate hypothe-
sis that has the smallest LD. Essentially the or-
acle is telling us the maximum performance that
can be obtained with the given 10-best list on each
dataset. For datasets for which we have more than
one annotation available, we select the oracle that
gives the highest F0.5.

In Table 2, we can see that, overall,
CAMB16SMT has a higher oracle performance
compared to AMU16SMT. More specifically, the
maximum attainable F0.5 on FCE is 71.60, on
CoNLL 58.13, and on JFLEG 61.92. This shows
empirically that the 10-best list has great potential
and should be exploited further. AMU16SMT
has a lower oracle performance overall, though
again this can be attributed to the fact that it is
specifically tuned for CoNLL.

6.2 N -best list size
Next, we examine performance as the N -best list
varies in size, ranging from 1 to 10 (Table 4). We
observe a positive effect: the larger the size, the
better the model for all datasets. F0.5 does not
seem to have reached a plateau with n < 10,
which suggests that increasing the size of the list
further can potentially lead to better results. We
do, however, observe that large improvements are
obtained when increasing the size from 1 to 3, sug-
gesting that, most of the time, better alternatives
are identified within the top 3 candidate hypothe-
ses. This, however, is not the case for the ora-
cle (Foracle

0.5 ), which consistently increases as n gets
larger.

2801



CAMB16SMT

FCE test set CoNLL test set JFLEG
N-best list F0.5 Foracle

0.5 F0.5 Foracle
0.5 F0.5 Foracle

0.5

1 52.90 52.90 37.33 37.33 52.44 52.44
2 54.28 62.10 39.87 47.03 53.04 55.64
3 54.96 65.93 41.00 51.12 53.24 57.69
4 55.18 68.05 41.83 53.13 53.47 58.93
5 55.33 69.47 42.12 54.80 54.01 59.66
6 55.43 70.24 42.49 55.53 54.18 60.34
7 55.48 70.74 42.60 56.54 54.45 61.14
8 55.47 71.00 42.63 57.04 54.47 61.28
9 55.51 71.27 42.65 57.23 54.64 61.55
10 55.60 71.60 42.44 58.13 54.66 61.92

Table 4: Re-ranking performance using
LSTMcamb as the N -best list varies in size
from 1 to 10 for CAMB16SMT and its oracle.

6.3 Error type performance

In Table 5, we can see example source sentences,
together with their corrected counterparts (refer-
ence), 1-best candidates by CAMB16SMT and 1-
best candidates by CAMB16SMT + LSTMcamb.
Re-ranking seems to fix errors such as subject–
verb agreement (“the Computer help” to “the com-
puter helps”) and verb form (“I recommend you to
visit” to “I recommend visiting”). In this section,
we perform an analysis of performance per type to
get a better understanding of where the strength of
the re-ranking detection model comes from.

Until recently, GEC performance per error type
was only analysed in terms of recall, as sys-
tem output is not annotated. Recently, however,
Bryant et al. (2017) proposed an approach to
automatically annotating GEC output with error
type information, which utilises a linguistically-
enhanced alignment to automatically extract the
edits between pairs of source sentences and their
corrected counterparts, and a dataset-independent
rule-based classifier to classify the edits into er-
ror types. Human evaluation showed that the pre-
dicted error types were rated as “Good” or “Ac-
ceptable” 95% of the time. We use their pub-
licly available code to analyse per-error-type per-
formance before and after re-ranking.

Table 6 presents the performance for a sub-
set of error types that are affected the most
before and after re-ranking CAMB16SMT on
the FCE test set. The error types are inter-
preted as follows: Missing error; Replace er-
ror; Unnecessary error. The largest improve-
ment is observed in replacement errors referring
to possessive nouns (R:NOUN:POSS) and verb

Source
I work with children an the Computer help my Jop bat affeted to
CAMB16SMT

I work with children and the Computer help my Jop bat affeted to
CAMB16SMT + LSTMcamb

I work with children and the computer helps my Jop bat affeted to
Reference

I work with children and the computer helps me in my job but affects it too
Source

It takes 25 minutes that is convenient to us
CAMB16SMT

It takes 25 minutes that is convenient for us
CAMB16SMT + LSTMcamb

It takes 25 minutes , which is convenient for us
Reference

It takes 25 minutes , which is convenient for us
Source

I recommend to visit
CAMB16SMT

I recommend you to visit
CAMB16SMT + LSTMcamb

I recommend visiting
Reference

I recommend visiting it
Source

Especially youngsters misuse this kind of invention
CAMB16SMT

Especially youngsters misuse this kind of invention
CAMB16SMT + LSTMcamb

In particular , youngsters misuse this kind of invention
Reference

Especially youngsters misuse this kind of invention

Table 5: Source sentences along with gold
corrections (reference), 1-best candidates by
CAMB16SMT and by CAMB16SMT + LSTMcamb.

agreement (R:VERB:SVA); and in unnecessary
errors referring to adverbs (U:ADV), determin-
ers (U:DET), pronouns (U:PRON), and verb tense
(U:VERB:TENSE).

The LSTM architecture allows the network to
learn advanced composition rules and remem-
ber dependencies over longer distances (e.g.,
R:VERB:SVA improves from 58.38 to 69.40).
The network’s language modelling objectives al-
low it to learn better and more general com-
positional features (e.g., U:ADV improves from
13.51 to 22.73), while the character-level archi-
tecture facilitates modelling of morphological pat-
terns [e.g., replacement errors referring to verb
form (R:VERB:FORM) improve from 53.62 to
58.06]. Between M, R, and U errors, the largest
improvement is observed in U, for which there is
at least 5% improvement in F0.5.7

Overall, re-ranking improves F0.5 across error
types; however, there is a small subset that is

7U improves from 38.44 to 43.77; M from 43.43 to
45.40; R from 53.25 to 55.33.

2802



CAMB16SMT CAMB16SMT + LSTMcamb

Type F0.5 F0.5

M:ADV 25.00 31.25
M:VERB 25.42 29.85
R:NOUN:NUM 56.60 62.50
R:NOUN:POSS 35.71 55.56
R:OTHER 34.99 38.75
R:PRON 26.88 33.33
R:VERB:FORM 53.62 58.06
R:VERB:SVA 58.38 69.40
R:VERB:TENSE 31.94 36.29
U:ADV 13.51 22.73
U:DET 46.27 55.30
U:NOUN 10.10 15.72
U:PREP 47.62 53.40
U:PRON 30.77 39.33
U:PUNCT 51.22 58.38
U:VERB:TENSE 28.41 41.67
M:PREP 43.69 39.43
M:VERB:FORM 50.00 38.46
R:ADJ 45.45 37.67
R:CONTR 50.00 27.78
R:WO 53.63 48.74

Table 6: Error-type performance before and af-
ter re-ranking on the FCE test set (largest impact
highlighted in bold; bottom part of the table dis-
plays negative effects on performance).

negatively affected (Table 6, bottom part); for
example, performance on missing errors refer-
ring to verb form (M:VERB:FORM) drops from
50.00 to 38.46, and on replace contraction errors
(R:CONTR) from 50.00 to 27.78. Importantly,
such an analysis allows us to examine the strengths
and weaknesses of the models, which is key for the
deployment of GEC systems.

7 Conclusion

To the best of our knowledge, no prior work has in-
vestigated the impact of detection models on cor-
rection performance. We proposed an approach
to N -best list re-ranking using a neural sequence-
labelling model that calculates the probability of
each token in a sentence being correct or incor-
rect in context. Detection models can be more
fine-tuned to finer nuances of grammaticality, and
therefore better able to distinguish between correct
and incorrect versions of a sentence. Using a lin-
ear combination of a small set of features derived
from the detection model output, we re-ranked the
N -best list of SMT systems and achieved state-of-
the-art results on GEC on three different datasets.
Our approach can be applied to any GEC system
that produces multiple alternative hypotheses. Our

results demonstrate the benefits of integrating de-
tection approaches with correction systems, and
how one can complement the other.

Acknowledgments

Special thanks to Christopher Bryant, Mariano Fe-
lice, and Ted Briscoe, as well as the anonymous
reviewers for their valuable contributions at vari-
ous stages.

References

Chris Brockett, William B Dolan, and Michael Gamon.
2006. Correcting ESL errors using phrasal SMT
techniques. In Proceedings of the 21st International
Conference on Computational Linguistics and the
44th annual meeting of the Association for Compu-
tational Linguistics, pages 249–256. Association for
Computational Linguistics.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of er-
ror types for grammatical error correction. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics.

Martin Chodorow, Joel R Tetreault, and Na-Rae Han.
2007. Detection of grammatical errors involving
prepositions. In Proceedings of the fourth ACL-
SIGSEM workshop on prepositions, pages 25–30.
Association for Computational Linguistics.

Shamil Chollampatt, Duc Tam Hoang, and Hwee Tou
Ng. 2016a. Adapting grammatical error correction
based on the native language of writers with neural
network joint models. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 1901–1911.

Shamil Chollampatt, Kaveh Taghipour, and Hwee Tou
Ng. 2016b. Neural network translation models
for grammatical error correction. arXiv preprint
arXiv:1606.00189.

Daniel Dahlmeier and Hwee Tou Ng. 2011. Correcting
semantic collocation errors with L1-induced para-
phrases. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
pages 107–117. Association for Computational Lin-
guistics.

Daniel Dahlmeier and Hwee Tou Ng. 2012a. A beam-
search decoder for grammatical error correction. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
568–578. Association for Computational Linguis-
tics.

2803



Daniel Dahlmeier and Hwee Tou Ng. 2012b. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568–572. Association for Computational Linguis-
tics.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
english: The NUS corpus of learner English. In
Proceedings of the Eighth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 22–31.

Robert Dale and Adam Kilgarriff. 2011. Helping our
own: The HOO 2011 pilot shared task. In Proceed-
ings of the 13th European Workshop on Natural Lan-
guage Generation, pages 242–249. Association for
Computational Linguistics.

Rachele De Felice and Stephen G Pulman. 2008. A
classifier-based approach to preposition and deter-
miner error correction in L2 English. In Proceed-
ings of the 22nd International Conference on Com-
putational Linguistics, pages 169–176. Association
for Computational Linguistics.

Mariano Felice, Zheng Yuan, Øistein E. Andersen, He-
len Yannakoudakis, and Ekaterina Kochmar. 2014.
Grammatical error correction using hybrid systems
and type filtering. In Proceedings of the 18th Con-
ference on Computational Natural Language Learn-
ing: Shared Task, pages 15–24. Association for
Computational Linguistics.

Michael Gamon. 2010. Using mostly native data to
correct errors in learners’ writing: a meta-classifier
approach. In Human Language Technologies: The
2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 163–171. Association for Computa-
tional Linguistics.

Michael Gamon, Jianfeng Gao, Chris Brockett,
Alexandre Klementiev, William B Dolan, Dmitriy
Belenko, and Lucy Vanderwende. 2008. Using con-
textual speller techniques and language modeling for
ESL error correction. In IJCNLP, volume 8, pages
449–456.

Na-Rae Han, Martin Chodorow, and Claudia Leacock.
2006. Detecting errors in English article usage by
non-native speakers. Natural Language Engineer-
ing, 12(1):115–129.

Na-Rae Han, Joel Tetreault, Soo-Hwa Lee, and Jin-
Young Ha. 2010. Using error-annotated ESL data
to develop an ESL error correction system. In Pro-
ceedings of LREC. Emi Izumi, Kiyotaka Uchimoto
and Hitoshi Isahara.

Duc Tam Hoang, Shamil Chollampatt, and Hwee Tou
Ng. 2016. Exploiting n-best hypotheses to improve
an smt approach to grammatical error correction.
arXiv preprint arXiv:1606.00210.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2016. Phrase-based machine translation is state-of-
the-art for automatic grammatical error correction.
arXiv preprint arXiv:1605.06353.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam: a
method for stochastic optimization. In International
Conference on Learning Representations.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Pro-
ceedings of the 2003 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics on Human Language Technology, pages
48–54. Association for Computational Linguistics.

Claudia Leacock, Martin Chodorow, Michael Gamon,
and Joel Tetreault. 2014. Automated grammatical
error detection for language learners, second edition.
Synthesis lectures on human language technologies,
7(1):1–170.

Tomáš Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of the Inter-
national Conference on Learning Representations
(ICLR 2013).

Tomoya Mizumoto, Yuta Hayashibe, Mamoru Ko-
machi, Masaaki Nagata, and Yu Matsumoto. 2012.
The effect of learner corpus size in grammatical
error correction of ESL writings. In 24th Inter-
national Conference on Computational Linguistics,
pages 863–872.

Tomoya Mizumoto and Yuji Matsumoto. 2016. Dis-
criminative reranking for grammatical error correc-
tion with statistical machine translation. In Proceed-
ings of the North American Chapter of the Associ-
ation for Computational Linguistics, pages 1133–
1138.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and
Joel Tetreault. 2015. Ground truth for grammati-
cal error correction metrics. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing, vol-
ume 2, pages 588–593.

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2017. JFLEG: A fluency corpus and
benchmark for grammatical error correction. arXiv
preprint arXiv:1702.04066.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Nat-
ural Language Learning: Shared Task, pages 1–
14, Baltimore, Maryland. Association for Compu-
tational Linguistics.

2804



Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 shared task on grammatical error correction.
In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning: Shared
Task, pages 1–12. Association for Computational
Linguistics.

Diane Nicholls. 2003. The Cambridge Learner Cor-
pus - error coding and analysis for lexicography and
ELT. In Proceedings of the Corpus Linguistics 2003
Conference.

Franz Josef Och and Hermann Ney. 2002. Discrimina-
tive training and maximum entropy models for sta-
tistical machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, pages 295–302. Association for
Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Marek Rei. 2017. Semi-supervised multitask learn-
ing for sequence labeling. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics.

Marek Rei, Gamal K. O. Crichton, and Sampo Pyysalo.
2016. Attending to characters in neural sequence
labeling models. In Proceedings of the 26th Inter-
national Conference on Computational Linguistics
(COLING-2016).

Marek Rei and Helen Yannakoudakis. 2016. Composi-
tional sequence labeling models for error detection
in learner writing. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics.

Alla Rozovskaya, Kai-Wei Chang, Mark Sammons,
Dan Roth, and Nizar Habash. 2014. The Illinois-
Columbia system in the CoNLL-2014 shared task.
In Proceedings of the Eighteenth Conference on
Computational Natural Language Learning: Shared
Task, pages 34–42. Association for Computational
Linguistics.

Alla Rozovskaya and Dan Roth. 2010. Generating
confusion sets for context-sensitive error correction.
In Proceedings of the 2010 Conference on Empiri-
cal Methods in Natural Language Processing, pages
961–970. Association for Computational Linguis-
tics.

Alla Rozovskaya and Dan Roth. 2011. Algorithm
selection and model adaptation for ESL correction
tasks. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 924–933. Asso-
ciation for Computational Linguistics.

Alla Rozovskaya and Dan Roth. 2016. Grammati-
cal error correction: Machine translation and clas-
sifiers. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 2205–2215.

Alla Rozovskaya, Mark Sammons, Joshua Gioja, and
Dan Roth. 2011. University of Illinois system in
HOO text correction shared task. In Proceedings of
the 13th European Workshop on Natural Language
Generation, pages 263–266. Association for Com-
putational Linguistics.

Alla Rozovskaya, Mark Sammons, and Dan Roth.
2012. The UI system in the HOO 2012 shared task
on error correction. In Proceedings of the Seventh
Workshop on Building Educational Applications Us-
ing NLP, pages 272–280. Association for Computa-
tional Linguistics.

Raymond Hendy Susanto, Peter Phandi, and Hwee Tou
Ng. 2014. System combination for grammatical er-
ror correction. In Proceedings of the Conference on
Empirical Methods in Natural Language Process-
ing, pages 951–962.

Toshikazu Tajiri, Mamoru Komachi, and Yuji Mat-
sumoto. 2012. Tense and aspect error correction for
ESL learners using global context. In Proceedings
of the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers-Volume 2,
pages 198–202. Association for Computational Lin-
guistics.

Joel Tetreault, Jennifer Foster, and Martin Chodorow.
2010. Using parse features for preposition selection
and error detection. In Proceedings of the ACL 2010
conference short papers, pages 353–358. Associa-
tion for Computational Linguistics.

Joel R Tetreault and Martin Chodorow. 2008. The
ups and downs of preposition error detection in
ESL writing. In Proceedings of the 22nd Inter-
national Conference on Computational Linguistics,
pages 865–872. Association for Computational Lin-
guistics.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
180–189. Association for Computational Linguis-
tics.

Ippei Yoshimoto, Tomoya Kose, Kensuke Mitsuzawa,
Keisuke Sakaguchi, Tomoya Mizumoto, Yuta
Hayashibe, Mamoru Komachi, and Yuji Matsumoto.
2013. NAIST at 2013 CoNLL grammatical error
correction shared task. In CoNLL Shared Task,
pages 26–33.

Zheng Yuan and Ted Briscoe. 2016. Grammatical error
correction using neural machine translation. In Pro-
ceedings of the North American Chapter of the As-
sociation for Computational Linguistics, pages 380–
386.

2805



Zheng Yuan, Ted Briscoe, and Mariano Felice. 2016.
Candidate re-ranking for SMT-based grammatical
error correction. In Proceedings of the 11th Work-
shop on Innovative Use of NLP for Building Educa-
tional Applications, pages 256–266.

Zheng Yuan and Mariano Felice. 2013. Constrained
grammatical error correction using statistical ma-
chine translation. In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task, pages 52–61.

2806


