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Abstract

In this paper we introduce a practical
first step towards the creation of an auto-
mated debate agent: a state-of-the-art re-
current predictive model for predicting de-
bate winners. By having an accurate pre-
dictive model, we are able to objectively
rate the quality of a statement made at a
specific turn in a debate. The model is
based on a recurrent neural network ar-
chitecture with attention, which allows the
model to effectively account for the entire
debate when making its prediction. Our
model achieves state-of-the-art accuracy
on a dataset of debate transcripts anno-
tated with audience favorability of the de-
bate teams. Finally, we discuss how future
work can leverage our proposed model for
the creation of an automated debate agent.
We accomplish this by determining the
model input that will maximize audience
favorability toward a given side of a debate
at an arbitrary turn.

1 Introduction

Conversational agents are a well-researched area
of natural language generation (Pilato et al.,
2007; Bigham et al., 2008; Augello et al., 2008;
Agostaro et al., 2005; Bessho et al., 2012). Else-
where in the field of natural language generation,
there is work that seeks to generate persuasive text
(Carenini and Moore, 2006; Reiter et al., 2003;
Rosenfeld and Kraus, 2016), which is a logical
first step towards creating an automated debate
agent. One major deficiency of existing work in
this area is its assessment of how convincing (or
compelling) a piece of text is; the approaches use
theory-driven models of persuasion, rather than
being empirically motivated. Furthermore, none

of these works provide a model that can optimize
persuasiveness at an arbitrary point in a conversa-
tion.

One of the main reasons for a lack of
empirically-driven persuasive generation systems
is the absence of labeled data. In order to allevi-
ate this problem (though not directly for the sake
of producing an automated debate agent), Zhang
et al. (2016) have introduced a dataset of debate
transcripts from the “Intelligence Squared” (IQ2)1

debates. In these debates, two teams are present,
arguing either for or against a given topic. For
each debate, an audience poll is conducted both
prior to and after the debate. Whichever team has
the largest gain in audience support between the
pre/post debate polls is the winner. This is a natu-
ral way to account for the fact that some sides of a
debate may be harder to argue than others, and that
audience members may be initially biased given a
debate topic.

Because of the sequential nature of debating, a
Recurrent Neural Network (RNN) is an attractive
choice for modeling the problem. Rather than just
using the final hidded state for prediction, which
likely has lost information from early in the de-
bate, we propose to use an attention mechanism
(Bahdanau et al., 2014) that creates a weighted
sum over all hidden states, and is subsequently
used for the final prediction. We motivate the use
of an RNN, as opposed to a temporally flat clas-
sifier, for several reasons. First, using an RNN
allows us to naturally incorporate predicting au-
dience favorability at each turn while explicitly
modeling the turn sequence. Logistic regression,
on the other hand, would not allow us to model the
sequence explicitly. Secondly, our model allows
us to take raw features as input, without having to
compute summary statistics necessary for the fea-

1http://www.intelligencesquaredus.org/
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tures used in the model of Zhang et al. (2016). Fi-
nally, since our end goal is debate automation, an
RNN is a natural choice for debate turn generation.

There are two major difficulties dealing with
the IQ2 dataset: first, since the construction of
the dataset is non-trivial, there are only 108 data
points, resulting in Zhang et al.’s proposal for
leave-one-out (LOO) evaluation. Second, con-
sidering the use of an RNN, the sequences are
long, with an average length of 246 (and a stan-
dard deviation of 67). In order to overcome this,
we incorporate signals based on implicit audience
feedback during the debate into the model’s loss
function. Instead of just training the model based
on error from the audience’s final verdict, pro-
pogated through a substantial amount of timesteps,
there are intermittent errors propogated backward
through the network based on audience reactions,
such as applauding or laughing. These internal
signals also help regularize the network. In a way,
they help generalize the hidden representation of
the RNN, allowing it to better contain a distributed
representation of the audience’s favorability to-
wards a given team.

In our proposed model, the audience’s opinion
is directly a function of the weighted hidden repre-
sentations. Since the previous hidden representa-
tions are all fixed at a given timestep, and the cur-
rent hidden representation is directly a function of
these previous hidden representations as well as
the current input, the audience’s current poll de-
pends directly on the timestep’s input. Therefore,
at a given timestep, our framework allows us to
determine the input that would maximize the audi-
ence’s favorability toward the orating team. This
is due to the fact that the inputs are themselves rep-
resentations of a given team’s statement at a par-
ticular turn in the debate.

We evaluate our model on the dataset from
Zhang et al., posting state-of-the-art accuracy. Our
results show that our proposed regularization tech-
nique is imperative for the RNN-based model to
perform competitively with the models previously
proposed by Zhang et al.. The attention mecha-
nism also contributes to the best performing sys-
tem. Afterward, we show how our model can be
used to track audience favorability throughout the
debate, as well as the aforementioned input opti-
mization, using it in a case study to instruct a de-
bate team about optimal debate strategy at a given
turn.

2 Related Work

Previous work that focuses on conversational
language seeks to predict such qualities as
disagreements (Allen et al., 2014; Wang and
Cardie, 2016), divergence (Niculae and Danescu-
Niculescu-Mizil, 2016), and participant stance
(Sridhar et al., 2015; Somasundaran and Wiebe,
2010; Thomas et al., 2006; Rosenthal and McK-
eown, 2015). What is most relevant for our pur-
poses are the methods these models use for dealing
with conversational data. Allen et al. (2014) apply
discourse parsing (Joty et al., 2013) and fragment
quotation graph (Carenini et al., 2007) tools to
detect disagreement in online discussion threads.
Wang and Cardie (2016) believe that disagreement
can be predicted by the presence of substantially
long sequences of negative sentiment, motivating
them to build a sequential sentiment prediction
model using a particular kind of Conditional Ran-
dom Field (Mao and Lebanon, 2007). Niculae
and Danescu-Niculescu-Mizil (2016) use several
novel features that capture the flow of ideas in the
data, as well as team dynamics. Ultimately, how-
ever, all these models apply manually derived, pre-
processed features and use a basic classifier, like
Random Forest or Logistic Regression. In con-
trast, an RNN model is able to learn which inter-
actions and overall sequences of rhetoric are im-
portant for predictive power.

There is much less work that approaches the
problem of predicting persuasiveness of text. This
is due primarily to the lack applicable datasets.
However, Habernal and Gurevych (2016b) have
recently presented a dataset where argument pairs
are annotated for argument convincingness, as
well as finer-grained annotations related to the ef-
fectiveness of arguments (Habernal and Gurevych,
2016a). The authors experimented with feature-
based classifiers, as well as various RNN architec-
tures to construct predictive models for the dataset.

The most relevant work for this paper is of
course Zhang et al. (2016). The authors use a set
of features derived from the notion of idea flow
in the debate. More specifically, they follow the
method of Monroe et al. (2008) to identify talk-
ing points used by the sides present in a debate.
The authors then create features based on the cov-
erage of talking points during the debate. Finally,
a Logistic Regression model uses these features to
predict which team wins the debate. We also note
the work of Santos et al. (2016), which also makes
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predictions on a dataset derived from the IQ2 de-
bates. In contrast, their work analyses speech sig-
nals, as opposed to textual data.

3 Predictive Model

In this section we explain how we apply an RNN
to the task of predicting debate winners. We start
by addressing the fact that for IQ2 dataset, each
timestep involves a text span, as opposed to single
tokens, and explaining how we convert this text
span into a vector representation for RNN input.
Secondly, we explain our RNN model architec-
ture, including our use of an attention mechanism
to create a weighted sum over all hidden states,
as well as a regularization technique based on im-
plicit audience reaction.

3.1 Representing Debate Turns

Our work follows that of Zhang et al. (2016), and
uses talking point-based features, specifically a
‘bag of talking points’. Talking points for each de-
bate are identified using a term frequency inverse
document frequency (tfidf) metric applied to text
tokens. Token counts, whether at a document or
corpus level, occur only for the introduction text,
as done by Zhang et al. This is based on the belief
that the introductory arguments best showcase po-
tential talking points. We take the 10 tokens with
highest tfidf scores for each debate, and, across all
debates, each token ranking maps to a fixed index
in the turn representation. This representation is
binary.

Zhang et al.’s results suggest that the interaction
of talking points between debate teams can pos-
sess strong predictive power. Therefore, we also
calculate talking points at a team level within de-
bates. We accomplish this by simply taking term
frequency counts for tokens spoken by a given
team. Like with the overall debate talking points,
we chose the 10 highest ranked talking points from
each side and include them in the input represen-
tation. Moreover, we believe we can use a simpler
talking point metric than that proposed by Monroe
et al. (2008) (and used by Zhang et al.) because the
recurrent nature of the model will naturally cap-
ture the interaction, coverage, and ignorance of the
two team’s (and overall) talking points.

Aside from talking point-based features, we in-
clude the following linguistic features: 1) bag-of-
words for tokens that have been used in at least
50 debates; 2) GloVe embeddings of tokens (Pen-

nington et al., 2014). We use max pooling over
all the tokens’ embeddings to create the embed-
ding features. We also use the following non-
linguistic features: 1) whether the turn occurs dur-
ing the opening, discussion, or conclusion phase
of the debate; 2) whether the turn is from the ‘for’
or ‘against’ team, as well as moderator or other
speakers, such as show host etc; 3) the initial audi-
ence poll is provided at each timestep. This is sim-
ilar in spirit to Cho et al. (2014)’s decoder model
that accesses the final encoder hidden state at each
timestep.

We acknowledge that it would be possible
to model individual turns (sequences of tokens)
with a separate RNN. We choose to use hand-
engineered features for two reasons: First, the
current representation, mainly the talking points
and BOW features, are easily interpretable given
the goal of providing rhetorical strategy for de-
baters. Using an RNN for this purpose would re-
quire training a decoder in order to interpret the
optimal rhetoric at a given turn (see Section 7).
Secondly, it follows that having a trainable rep-
resentation would introduce additional parameters
into the model, which is a concern, given the lim-
ited amount of data.

3.2 Recurrent Architecture

Our RNN model uses a long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
component. At each timestep, the model re-
ceives as input a turn representation defined in
Section 3.1. After consuming all turn represen-
tations, a simple model without attention woud
pass the final hidden state, hf , through two fully-
connected layers (with an intermediate represen-
tation ha to which we apply sigmoid activation),
whose weights have subscripts post to identify
that this transformation happens after the debate:

ha = σ(W 1
posthf + b1post) (1)

a = W 2
postha + b2post (2)

where σ is the sigmoid function. This transforma-
tion outputs a vector with three dimensions, which
corresponds to the fact that the audience poll has
three possibilities: for, against, and undecided.

Since the polling is given as a percentage break-
down, we apply softmax to create a valid prob-
ability probability distribution for the audience,
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Figure 1: An illustration of our training objective from Equation 9 unrolled over time. FCpre and FCpost

refer to Equations 1/2 and 8, respectively.

p(A):
p(A|Θ) = softmax(a) (3)

which is for a given set of model paramters, Θ.
We train the model to minimize the Kullback-

Leibler (KL) divergence between the target and
predicted audience poll percentages. Given a
training corpus of debates D with target post-
debate audience polls Atarget

i , the optimization
objective is:

arg min
Θ

∑
d∈D

DKL(p(Atarget
d )||p(Ad|Θ)) (4)

which simply sums the KL-Divergence of the tar-
get and predicted audience poll percentages (prob-
abilities) across all training examples. At test time,
the model uses the percentages from p(A|Θ) to
calculate which team increased their support from
the audience the most, using the pre-debate audi-
ence poll, which is given. For notation purposes,
we refer to this KL-divergence for post debate
audience polling Dpost

KL . The optimization objec-
tive from Equation 4 describes our base model.
Shortly, we will describe how we regularize this
base model using implicit audience feedback.

3.2.1 Attention Mechanism
The model we have described to this point uses the
final hidden state to predict the final audience poll.
A concern with this approach is that the final hid-
den state has a difficult time encoding the activity
from the earlier parts of the debate. We propose to
rectify this issue by creating a weighted sum over
all hidden states, following the the attention mech-
anism from Bahdanau et al. (2014). Given hidden

states from all RNN timesteps, (h1, ..., hf ), we de-
termine the weight for hi as follows. First, we
compute a raw attention score:

ri = vT tanh(Wahi + ba) (5)

where v,Wa, ba are model parameters. hi’s
weight is computed from applying softmax to r:

αi = softmax(r)i (6)

which we use to compute the weighted sum across
all hidden states:

hs =
f∑

i=1

αihi (7)

Therefore, the attention version of our model uses
hs in Equation 1 to predict the final audience poll.

3.2.2 Initializing RNN Hidden State
As we have mentioned, audience polls occur both
before and after the debate. Thus, we continue
the theme of using the RNN hidden state to ex-
press audience polling by exploiting the initial au-
dience poll to initialize the RNN hidden state, h0.
The model uses the initial audience poll, apre, and
applies a fully-connected layer with parameters
Wpre and bpre:

h0 = tanh(Wpreapre + bpre) (8)

We choose tanh for the activation function be-
cause it is the same activation function used by the
LSTM cell. The RNN now is initialized with a
hidden state that reflects the audience’s initial atti-
tude towards a given debate topic.
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3.2.3 Regularization via Implicit Audience
Feedback

The IQ2 dataset offers two challenges for imple-
menting an RNN-based approach. First, which is
a difficulty for any type of supervised model, is
the small dataset size. There are a total of 108
data points, which, even with LOO evaluation,
leaves only 107 examples for training a model.
For neural networks in particular, there is worry
that overfitting easily occurs when the amount of
model parameters is much greater than the dataset
size (Lawrence et al., 1998; Ingrassia and Mor-
lini, 2005). Aside from the dataset size, the se-
quences of debate turns are long, averaging 246.
This means that, on average, our model will run
for 246 timesteps, making it difficult to train the
network (Bengio et al., 1994) (the structure of the
LSTM memory cell was designed to solve this is-
sue, which motivates our use of it in our model).

In order to overcome these difficulties, we pro-
pose to regularize our network based on implicit
audience feedback that occurs during the debate,
and is provided as metadata with the debate tran-
script. Specifically, provided along side each de-
bate turn, there is a ‘non-text’ field that indicates
if any sounds occurred during the turn such as ap-
plause or laughter from the audience. We view
the presence of applause or laughter from the au-
dience as a sign of endorsement during that par-
ticular turn. Therefore, at that particular timestep,
the hidden state should be able to directly predict
this occurrence. Considering applause as a sign
of endorsement is not controversial, but laughter
could be viewed as more ambiguous. However,
consider the audience of the debates: the debates
air on the Bloomberg network and National Pub-
lic Radio, suggesting a higher level of maturity of
the audience, which is less likely to laugh at the
participants, rather than at their jokes. For exam-
ple, here is a turn in the debate ‘Men are Finished’
wherein laughter occurs: “Wait. What was that
phrase you used, surviving off the fumes of sex-
ism? I think we are our finest example there.” This
is an intentional joke by the speaker, who is part of
of the winning team in the debate.

This signal can be integrated in a supervised
manner into the loss function by converting the
audience reaction at a given timestep into a three-
dimensional vector, representing the current, im-
plied audience favorability. We create such a vec-
tor at a debate turn if either applause or laughter

occurs at that timestep, and the speaker is one of
the debate teams. On possibility is to create have a
one-hot vector implying the audience favorability
at the turn, with the mapping of side to index dic-
tated by the target vector,Atarget

i , and is set for the
corpus. There is a major problem with using a one-
hot vector: the probability distributions learned by
the model will become too skewed, since the ulti-
mate goal is to better generalize the prediction of
debate polls, rarely are the polls so unbalanced to-
ward one side. Moreover, the one-hot vector will
only ever have mass in the indices for the ‘for’ and
‘against’ teams, and neglecting the ‘undecided’ in-
dex, which is an important sector in the polling.
Therefore, we create a soft vector as follows: a
random number, n, is chosen in the interval (1

3 , 1).
The index corresponding to the speaking team at
timestep i has value n. The remaining two indices
have value 1−n

2 . This vector is notated Atarget
it

,
specifying that the reaction occurred at timestep t
for debate i. On average, such reactions occur 21
times during a debate, with a standard deviation of
10. Consequently, this approach adds 2,268 more
supervised signals to the dataset.

As we did with the post-debate poll, we can
compute a lost based on the kl-divergence between
Atarget

it
and the prediction probability at timestep

t, which is a function of ht using the same trans-
formations described in Equations 1, 2, and 3, but
replacing hf with ht. The attention model can
been used as well. In this case, we compute hst

by slicing r (from equation 5) to only include in-
dices up to t. We denote the KL-divergence be-
tween target and prediction distributions across all
timesteps of a training example is Dreact

KL , since
these signals are based on audience reaction.

The same strategy can be applied to hi using
the pre-debate polls. Although this signal does not
propagate through the RNN, it can still train the
weights of the fully-connected layers used in our
model. We refer to this KL-divergence as Dpre

KL,
since it uses the pre-debate poll. Bringing together
these separate error signals, we arrive at the train-
ing objective of our full model:

arg min
Θ

∑
d∈D

Dpre
KL +Dreact

KL +Dpost
KL (9)

where Θ is the model parameters used to produce
the prediction probabilities. Figure 1 provides an
illustration of our training objective, unrolled over
time.
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With this new optimization objective, each ex-
ample now trains our model based on (on average)
23 supervised signals. As a result, each training
example allows the model to become more gen-
eralizable, particularly because the hidden states
are now better-tuned to encode audience favora-
bility. This methodology allows the model to bet-
ter leverage the small dataset size. Moreover, the
intermittent error signals from audience reaction,
Dreact

KL , combined with the pre-debate error signal,
Dpre

KL, help assuage the difficulties of training our
model based on a final error signal propagated for
many timesteps. We would like to reiterate that
this regularization technique is only used to train
the model, and not used for prediction, and there-
fore will not be an issue when making predictions
for new debates, nor will it create an unrealistic
circumstance for using the model for creating a de-
bate agent.

4 Experimental Design

Our experiments are conducted on the IQ2 dataset
(Zhang et al., 2016). We use LOO evaluation, re-
sulting in a training set of 107 examples. The eval-
uation metric is simply prediction accuracy for de-
bate winners. The winning team is based on audi-
ence polling. Polls are conducted before and af-
ter the debate, and audience members can vote as
being either for or against a given debate topic,
as well as being undecided. The team that has
the highest increase in audience support from the
pre to post debate poll is the winning team. The
model trains for 100 epochs. Once training is com-
plete, we test on the held-out data point. As Zhang
et al. note, there are three debates in the dataset
that have a tie between the debate teams. Follow-
ing their procedure, we do not test on these data
points. However, we still include these examples
in the training sets, because our training objective
is to predict polls, not debate winners. The final
test accuracy is averaged across the remaining 105
LOO runs. Furthermore, we note that the dataset
is effectively balanced, as there are 53 and 52 ex-
amples with the two possible labels.

We implement all our models in TensorFlow
(Abadi et al., 2016). We use the LSTM cell
equipped with peephole connections (Gers et al.,
2002). This architecture allows the gates to see the
current cell state, along with the hidden state. We
believe that because of the long sequences present
in the dataset, it is important to have all the gates

Model Accuracy
LR BOW 0.50
LR React 0.60
LR Flow 0.63
LR Flow* 0.65
LSTM 0.55
LSTM + Att 0.57
LSTM + Reg 0.64
LSTM + Att, Reg 0.71
LSTM + Att, Drpt 0.60

Table 1: The results of LOO evaluation on the IQ2
dataset. See the beginning of Section 5 for an ex-
planation of the models.

take into account the cell state when producing a
hidden layer. This adds a stronger notion of mem-
ory to the model. While we expect the hidden state
to represent audience favorability, we believe the
cell state can capture the further latent notion of
debate strategy, observable through the interaction
of talking points between the debate teams. The
models have cell and hidden size of 128, and the
intermediate layer from Equation 2 has size 16.
Lastly, we use a batch size of 8.

5 Results

The results of our experiment are presented in
Table 1. Att means the model has the attention
mechanism from Section 3.2.1; Reg means the
model uses the optimization objective from Equa-
tion 9 (all other models use the optimization ob-
jective from Equation 4); Drpt means the model
uses dropout (a popular regularization technique
for neural networks (Srivastava et al., 2014)) of
0.5. We compare our results against the best mod-
els from Zhang et al. (2016). Each model uses
a Logistic Regression (LR) classifier, and distin-
guishes itself by the features it uses. The main
features developed by the authors relate to the in-
teraction (flow) of talking points between the de-
bate teams. There are two types of models that
use the flow features: LR Flow and LR Flow*.
Whereas the former uses all developed flow fea-
tures, the latter uses feature selection to keep the
most powerful flow features. LR React uses fea-
tures based on audience reaction metadata, and LR
BOW uses bag-of-words features.

The results show that the LSTM attention model
regularized by audience reaction achieves the
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highest accuracy. Furthermore, the results high-
light the importance of this regularization tech-
nique, since the simple LSTM model records the
second lowest accuracy of any of the models pre-
sented. This leads us to believe that the regular
LSTM model falls victim to the lack of training
data, preventing the larger amount of model pa-
rameters (compared to a logistic regression model)
from generalizing. The results also show that the
attention model has higher performance than the
regular LSTM model, and the difference in per-
formance is heightened when the regularization
technique is applied. We believe this is because
the attention mechanism adds additional param-
eters to the model, so it seems reasonable that
adding additional training signals helps the model
to generalize better. Lastly, our proposed regular-
ization technique is far superior for generalization
than the popular dropout method. We believe the
strong performance of the proposed regularization
technique is because it causes the LSTM’s hidden
states to better generalize the notion of encoding
audience favorability. Furthermore, our model’s
goal is to predict distributions, as opposed to la-
bels. Whereas dropout can be effective at aiding
in collapsing representations of the same class into
neighboring points of a latent space, our model
needs to be able to predict polls that it may have
not encountered in training. Our regularization
technique aids in this as well by providing more
training data, more polls.

6 Tracking Audience Favorability

One of the advantages of mapping a recurrent
model’s hidden states to audience favorability is
that we can produce a favorability poll at any turn
(timestep) during the debate. In contrast, a tem-
porally flat model, such as the logistic regression
models from Zhang et al., produce a prediction of
audience favorability based on features extracted
from the entire debate. Using our mapping of hid-
den states to audience favorability, we can deter-
mine, at each turn, the current audience favorabil-
ity, and track it throughout the entire debate. Fig-
ure 2 shows this applied to the “men are finished”
debate, wherein the lines on the graph, cut verti-
cally, represent predicted audience polls at a given
debate turn. This debate saw the greatest increase
in audience support from the pre to post debate
poll: the ‘for’ increased their favorability by 46%
(46 points). The three lines correspond to the three

Figure 2: A visualization of audience favorabil-
ity for the debate “men are finished”. At each
turn in the debate, our model predicts the audi-
ence favorability. The y-axis shows the percent-
age of the audience that supports a given side, and
the x-axis show the turn number for a given poll.
Even though these are purely predictions from the
model, it is able to show the rise in audience fa-
vorability for the ‘for’ team, as well as the decline
in favorability for the ‘against’ team. From the
graph, we can see that the ‘for’ team had a large
spike in audience support roughly between turns
20 and 40, which corresponds to the beginning of
the debate’s discussion section.

possible positions an audience member can take
regarding the debate topic. This visualization can
be particularly useful for rhetorical analysis of de-
bate performance, because the resulting graph al-
lows us to see inflection points in audience favora-
bility. These inflection points suggest that a debate
team used very effective (or ineffective) rhetoric at
that particular turn.

7 Optimizing Input for Audience
Favorability

Aside from achieving a new state-of-the-art result
on the IQ2 debate corpus, the main appeal of the
model we have introduced is that it creates a map-
ping between the hidden states and audience fa-
vorability of the debate teams. This mapping is
given in Equations 1 and 2, where a weighted sum
over all over all hidden states (the actual notation
in these equation apply the fully-connected trans-
formation to a final hidden state, hf , unlike the
attention model which uses hs from Equation 7) is
transformed into a real-valued 3-dimensional vec-
tor a. The values of the vector indicate ‘raw’ fa-
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vorability, which is realized as a probability dis-
tribution (or alternatively, a poll of the audience)
after applying the softmax activation. Further-
more, given fixed model parameters Θ, the current
hidden state is a function of the previous hidden
states, previous cell state (if, like our model, an
LSTM cell is used), as well as the current input.
At a given timestep, the previous hidden and cell
states are known. Therefore, a is directly a func-
tion of the current input x at a given timestep. This
notion of optimizing input for a target ‘class’ is
akin to the work of Simonyan et al. (2013), who
use a trained convolutional neural network to find
the optimal input image for a desired object class.

7.1 Input Optimization Objective
Similar to our approach in Section 3.2.3 to en-
code implicit audience feedback, we can construct
a three-dimensional one-hot vector with the index
switched on that corresponds to the debate team
whose favorability we seek to optimize. We will
call this vector Afav. Given input xi at timestep
i, we seek to to optimize the probability of Afav

given xi:

arg max
xi

p(Afav|xi, h1, ..., hi−1, ci−1; Θ) (10)

Where i ∈ (1, ..., T ) and T is the maximum num-
ber of timesteps (turns) for a debate. In practice,
we achieve this optimization by minimizing the
cross-entropy between the the target one-hot vec-
tor and the output of applying the softmax function
to a, as in Equation 3.

7.2 Applying Optimized Input for Persuasive
Strategy

In the debate ‘men are finished’, the ‘for’ team
won the debate, increasing their favorability by an
astonishing 46% (conversely, the ‘against’ team
saw a 25% decrease in favorability). According
to our model’s sequential predictions (and visible
in Figure 2), a major turning point occurred at
turn 27. Quantitatively, we can examine the
turn-by-turn change in audience favorability:
from this we see that one of the largest increases
in audience favorability occurred at turn 27. It is
not a surprise to find out that the team that spoke
during turn 27 was the ‘for’ team. When asked by
the moderator if there can be equality between the
sexes without deeming men as being finished, the
‘for’ team said the following (the text is annotated
for the presence of talking points, marked by a

subscript that specifies whose talking point it is:
A (against), F (for), or G, a general talking point
based on overall token frequency (see Section
3.1)):

It is possible, but it just doesn’t work that
way. I mean, if we can all agree that there
was male dominance for a long time and
that male dominance is over, then I think
we agree that menG,A are finished. So the
resolution is about male dominance which
we’ve taken for granted for so many tens
of thousands of years. And so, even if
you have parity, you have the end of male
dominance. I mean, if you have womenF

rising and catching up to menG,A, then
you no longer have male dominance. And
so that’s what I meant when I, early on,
tried to define the resolution as menG,A are
finished, the era of male dominance, it’s
finished, which we’ve taken for granted
for all this time.

Note that the term ‘women’ is only a talking point
for the ‘for’ team. In their response the ‘against’
team says:

They are not finished. That’s absurd.
You agreed to it in your opening that you
didn’t want to say menG,A are finished.
You thought there might be inklings of a
suggestion that it may be happening. But
what you’re defending now is that menG,A

are finished. I’m saying it’s absurd. I’m
saying that some menG,A are in trouble.
But rather than declare their extinction, we
should be doing what we can to help them.

To determine our model’s strategy immediately af-
ter the 27th turn, we apply the previous hidden and
cell states to the optimization objective in Equa-
tion 10, taking the place of h1, ..., hi− 1 and ci−1,
respectively. We fit the training objective to the
current states, as well as the weights of the pre-
viously trained predictive model, and examine the
resulting optimized input vector. We train the opti-
mized input model for 15,000 epochs, which goes
very fast because there is a ‘single’ training data
point, and the model is not recurrent. As we can
see in the actual ‘against’ team’s response, the
only talking point brought up is ‘men’, which can
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hardly be viewed as an enlightening notion in the
context of the debate. Alternatively, the highest
rated talking point from the optimized input is in
fact the exact talking point brought up by the ‘for’
team: ‘women’. This suggestion by our model is
in line with the hypothesis of Zhang et al. (2016),
that winning teams are effective in adopting their
opponent’s talking points. In terms of bag-of-word
features: the optimized input ranks the following
tokens as the ten highest (in descending order of
score, and note the tokens have been stemmed):
‘sound’, ‘present’, ‘recent’, ‘line’, ‘decid’, ‘veri’,
‘spent’, ‘save’, ‘moder’, and ‘found’. Most of
these tokens remain somewhat vague with respect
to their relevance to the debate. The token ‘re-
cent’ seems relevant, given that the debate topic
has an inherent temporal nature. ‘Save’ is rel-
evant in that some of the debate discussion ap-
proaches the question of whether men need saving.
In the top 20 tokens we also find ‘done’, ‘com-
par’, ‘grow’, and ‘without’, which are all rele-
vant: ‘done’ is synonymous with ‘finished’, ‘com-
par’ given that the debate is often comparing men
to women, ‘grow’ could refer to the growth of
women in society, and ‘without’ is a token specif-
ically in the question the moderator asked prior to
turn 27 (equality between the sexes without deem-
ing men as being finished).

8 Conclusion

We have presented an RNN model for predicting
debate winners, with the specific goal of predict-
ing the final (or intermediate) audience poll. The
model takes at each timestep a representation of
a given debate turn. The model uses an attention
mechanism that creates a weighted sum over all
hidden states. In order to achieve state-of-the-art
results on a corpus of debate transcripts (Zhang
et al., 2016), we regularize the RNN model by
propagating errors based on implicit audience re-
action. Our results show that this regularization
technique is critical for obtaining a state-of-the-art
result. We have also shown the practical appli-
cation of our model in two scenarios. First, the
model can be used to make a prediction of au-
dience polling at every debate turn. This allows
for an analysis of the key turning points during
the debate, based on inflections in audience fa-
vorability. Second, the model can be used to de-
termine the optimal input at a given debate turn.
Knowledge of this input can inform debaters as to

the best current persuasive strategy. Future work
can leverage optimal inputs to create a language
model that can become an automated debate agent.
However, since the input is partially based on the
knowledge of talking points, there is a potential for
an information retrieval-based task to provide the
talking points for the debate agent (if one desires
a fully-automated system than can work without
the presence of introductory remarks, from which
talking points are currently extracted). Finally, fu-
ture work can also examine the trained model itself
in further detail, seeking to understand the debate
strategy.
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