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Abstract

Discourse parsing has long been treated as
a stand-alone problem independent from
constituency or dependency parsing. Most
attempts at this problem are pipelined
rather than end-to-end, sophisticated, and
not self-contained: they assume gold-
standard text segmentations (Elementary
Discourse Units), and use external parsers
for syntactic features. In this paper
we propose the first end-to-end discourse
parser that jointly parses in both syntax
and discourse levels, as well as the first
syntacto-discourse treebank by integrating
the Penn Treebank with the RST Tree-
bank. Built upon our recent span-based
constituency parser, this joint syntacto-
discourse parser requires no preprocessing
whatsoever (such as segmentation or fea-
ture extraction), achieves the state-of-the-
art end-to-end discourse parsing accuracy.

1 Introduction

Distinguishing the semantic relations between
segments in a document can be greatly beneficial
to many high-level NLP tasks, such as summariza-
tion (Louis et al., 2010; Yoshida et al., 2014), sen-
timent analysis (Voll and Taboada, 2007; Soma-
sundaran et al., 2009; Bhatia et al., 2015), ques-
tion answering (Ferrucci et al., 2010; Jansen et al.,
2014), and textual quality evaluation (Tetreault
et al., 2013; Li and Jurafsky, 2016).

There has been a variety of research on dis-
course parsing (Marcu, 2000a; Soricut and Marcu,
2003; Pardo and Nunes, 2008; Hernault et al.,

∗ The source code and the joint treebank are available at
https://github.com/kaayy/josydipa.

† Current address: Google Inc., New York, NY, USA.

2010; da Cunha et al., 2012; Joty et al., 2013; Joty
and Moschitti, 2014; Feng and Hirst, 2014; Ji and
Eisenstein, 2014; Li et al., 2014a,b; Heilman and
Sagae, 2015; Wang et al., 2017). But most of them
suffer from the following limitations:

1. pipelined rather than end-to-end: they as-
sume pre-segmented discourse, and worse
yet, use gold-standard segmentations, except
Hernault et al. (2010);

2. not self-contained: they rely on external syn-
tactic parsers and pretrained word vectors;

3. complicated: they design sophisticated fea-
tures, including those from parse-trees.

We argue for the first time that discourse parsing
should be viewed as an extension of, and be per-
formed in conjunction with, constituency parsing.
We propose the first joint syntacto-discourse tree-
bank, by unifying constituency and discourse tree
representations. Based on this, we propose the first
end-to-end incremental parser that jointly parses at
both constituency and discourse levels. Our algo-
rithm builds up on the span-based parser (Cross
and Huang, 2016); it employs the strong general-
ization power of bi-directional LSTMs, and parses
efficiently and robustly with an extremely simple
span-based feature set that does not use any tree
structure information.

We make the following contributions:

1. We develop a combined representation of
constituency and discourse trees to facilitate
parsing at both levels without explicit conver-
sion mechanism. Using this representation,
we build and release a joint treebank based on
the Penn Treebank (Marcus et al., 1993) and
RST Treebank (Marcu, 2000a,b) (Section 2).

2. We propose a novel joint parser that parses at
both constituency and discourse levels. Our
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Figure 1: Examples of the RST discourse treebank and our syntacto-discourse treebank (PTB-RST).

parser performs discourse parsing in an end-
to-end manner, which greatly reduces the ef-
forts required in preprocessing the text for
segmentation and feature extraction, and, to
our best knowledge, is the first end-to-end
discourse parser in literature (Section 3).

3. Even though it simultaneously performs con-
stituency parsing, our parser does not use any
explicit syntactic feature, nor does it need any
binarization of discourse trees, thanks to the
powerful span-based framework of Cross and
Huang (2016) (Section 3).

4. Empirically, our end-to-end parser outper-
forms the existing pipelined discourse pars-
ing efforts. When the gold EDUs are pro-
vided, our parser is also competitive to other
existing approaches with sophisticated fea-
tures (Section 4).

2 Combined Representation & Treebank

We first briefly review the discourse structures in
Rhetorical Structure Theory (Mann and Thomp-
son, 1988), and then discuss how to unify dis-
course and constituency trees, which gives rise to
our syntacto-discourse treebank PTB-RST.

2.1 Review: RST Discourse Structures
In an RST discourse tree, there are two types of
branchings. Most of the internal tree nodes are

binary branching, with one nucleus child contain-
ing the core semantic meaning of the current node,
and one satellite child semantically decorating the
nucleus. Like dependency labels, there is a rela-
tion annotated between each satellite-nucleus pair,
such as “Background” or “Purpose”. Figure 1(a)
shows an example RST tree. There are also non-
binary-branching internal nodes whose children
are conjunctions, e.g., a “List” of semantically
similar EDUs (which are all nucleus nodes); see
Figure 2(a) for an example.

2.2 Syntacto-Discourse Representation

It is widely recognized that lower-level lexical and
syntactic information can greatly help determin-
ing both the boundaries of the EDUs (i.e., dis-
course segmentation) (Bach et al., 2012) as well as
the semantic relations between EDUs (Soricut and
Marcu, 2003; Hernault et al., 2010; Joty and Mos-
chitti, 2014; Feng and Hirst, 2014; Ji and Eisen-
stein, 2014; Li et al., 2014a; Heilman and Sagae,
2015). While these previous approaches rely on
pre-trained tools to provide both EDU segmenta-
tion and intra-EDU syntactic parse trees, we in-
stead propose to directly determine the low-level
segmentations, the syntactic parses, and the high-
level discourse parses using a single joint parser.
This parser is trained on the combined trees of
constituency and discourse structures.

We first convert an RST tree to a format similar
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Figure 2: Another example of RST vs. PTB-RST, demonstrating a discourse tree over two sentences and
a non-binary relation (List). The lower levels of the PTB-RST tree are collapsed due to space contraints.

to those constituency trees in the Penn Treebank
(Marcus et al., 1993). For each binary branching
node with a nucleus child and a satellite child, we
use the relation as the label of the converted parent
node. The nucleus/satellite relation, along with the
direction (either← or→, pointing from satellite to
nucleus) is then used as the label. For example, at
the top level in Figure 2, we convert

◦
. . .

•
. . .

Elaboration

to

←Elaboration

. . .. . .

For a conjunctive branch (e.g. “List”), we simply
use the relation as the label of the converted node.

After converting an RST tree into the con-
stituency tree format, we then replace each leaf
node (i.e., EDU) with the corresponding syntactic
(sub)tree from PTB. Given that the sentences in
the RST Treebank (Marcu, 2000b) is a subset of
that of PTB, we can always find the correspond-
ing constituency subtrees for each EDU leaf node.
In most cases, each EDU corresponds to one sin-
gle (sub)tree in PTB, since the discourse bound-
aries generally do not conflict with constituencies.
In other cases, one EDU node may correspond to
multiple subtrees in PTB, and for these EDUs we
use the lowest common ancestor of those subtrees
in the PTB as the label of that EDU in the con-
verted tree. E.g., if C–D is one EDU in the PTB
tree A

DCB

it might be converted to Purpose→
A

DC

B

if the relation annonated in RST is B
Purpose−→ C–D.

Figures 1–2 are two examples of discourse trees
and their combined syntacto-discourse trees.

2.3 Joint PTB-RST Treebank
Using the conversion strategy described above we
build the first joint syntacto-discourse treebank
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Figure 3: PTB-RST: length distribution (# tokens).

based on the Penn Treebank and RST Treebank.
This PTB-RST treebank is released as a set of
tools to generate the joint trees given Penn Tree-
bank and RST Treebank data. During the align-
ment between the RST trees and the PTB trees,
we only keep the common parts of the two trees.

We follow the standard training/testing split of
the RST Treebank. In the training set, there are
347 joint trees with a total of 17,837 tokens, and
the lengths of the discourses range from 30 to
2,199 tokens. In the test set, there are 38 joint
trees with a total of 4,819 tokens, and the lengths
vary from 45 to 2,607. Figure 3 shows the dis-
tribution of the discourse lengths over the whole
dataset, which on average is about 2x of PTB sen-
tence length, but longest ones are about 10x the
longest lengths in the Treebank.

3 Joint Syntacto-Discourse Parsing

Given the combined syntacto-discourse treebank,
we now propose a joint parser that can perform
end-to-end discourse segmentation and parsing.

3.1 Extending Span-based Parsing
As mentioned above, the input sequences are sub-
stantially longer than PTB parsing, so we choose
linear-time parsing, by adapting a popular greedy
constituency parser, the span-based constituency
parser of Cross and Huang (2016).

As in span-based parsing, at each step, we main-
tain a a stack of spans. Notice that in conventional
incremental parsing, the stack stores the subtrees
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Figure 4: Deductive system for joint syntactic
and discourse parsing. scsh(·, ·), sccomb(·, ·, ·),
sc labelX (·, ·, ·), and scnolabel(·, ·, ·) are scoring
functions evaluated in the neural network.

constructed so far, but in span-based constituency
parsing, the stack only stores the boundaries of
subtrees, which are just a list of indices ...iSome text and the symbol or scaled

1

kSome text and the symbol or scaled

1

j .
In other words, quite shockingly, no tree structure
is represented anywhere in the parser. Please refer
Cross and Huang (2016) for details.

Similar to span-based constituency parsing, we
alternate between structural (either shift or com-
bine) and label (labelX or nolabel) actions in an
odd-even fashion. But different from Cross and
Huang (2016), after a structural action, we choose
to keep the last branching point k, i.e., iSome text and the symbol or scaled

1

k j

(mostly for combine, but also trivially for shift).
This is because in our parsing mechanism, the dis-
course relation between two EDUs is actually de-
termined after the previous combine action. We
need to keep the splitting point to clearly find the
spans of the two EDUs to determine their rela-
tions. This midpoint k disappears after a label ac-
tion; therefore we can use the shape of the last
span on the stack (whether it contains the split
point, i.e., iSome text and the symbol or scaled

1

k j or iSome text and the symbol or scaled

1

j) to determine the par-
ity of the step and thus no longer need to carry the
step z in the state as in Cross and Huang (2016).

The nolabel action makes the binarization of the
discourse/constituency tree unnecessary, because
nolabel actually combines the top two spans on the
stack σ into one span, but without annotating the
new span a label. This greatly simplifies the pre-
processing and post-processing efforts needed.

Prec. Recall F1
Constituency 87.6 86.9 87.2

Discourse 46.5 40.2 43.0
Overall 83.5 81.6 82.5

Table 1: Accuracies on PTB-RST at constituency
and discourse levels.

3.2 Recurrent Neural Models and Training

The scoring functions in the deductive system
(Figure 4) are calculated by an underlying neu-
ral model, which is similar to the bi-directional
LSTM model in Cross and Huang (2016) that eval-
uates based on span boundary features. Again, it
is important to note that no discourse or syntactic
tree structures are represented in the features.

During the decoding time, a document is
firstl passed into a two-layer bi-directional LSTM
model, then the outputs at each text position of the
two layers of the bi-directional LSTMs are con-
catenated as the positional features. The spans at
each parsing step can be represented as the fea-
ture vectors at the boundaries. The span features
are then passed into fully connected networks with
softmax to calculate the likelihood of perform-
ing the corresponding action or marking the cor-
responding label.

We use the “training with exploration” strat-
egy (Goldberg and Nivre, 2013) and the dynamic
oracle mechanism described in Cross and Huang
(2016) to make sure the model can handle unseen
parsing configurations properly.

4 Empirical Results

We use the treebank described in Section 2 for em-
pirical evaluation. We randomly choose 30 docu-
ments from the training set as the development set.

We tune the hyperparameters of the neural
model on the development set. For most of the hy-
perparameters we settle with the same values sug-
gested by Cross and Huang (2016). To alleviate
the overfitting problem for training on the relative
small RST Treebank, we use a dropout of 0.5.

One particular hyperparameter is that we use a
value β to balance the chances between training
following the exploration (i.e., the best action cho-
sen by the neural model) and following the correct
path provided by the dynamic oracle. We find that
β = 0.8, i.e., following the dynamic oracle with a
probability of 0.8, achieves the best performance.
One explanation for this high chance to follow the
oracle is that, since our combined trees are signif-
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description syntactic feats. segmentation structure +nuclearity +relation
Bach et al. (2012) segmentation only Stanford 95.1 - - -

Hernault et al. (2010) end-to-end pipeline Penn Treebank 94.0 72.3 59.1 47.3
joint syntactic & discourse parsing - 95.4 78.8 65.0 52.2

Table 2: F1 scores of end-to-end systems. “+nuclearity” indicates scoring of tree structures with nucle-
arity included. “+relation” has both nuclearity and relation included (e.g.,←Elaboration).

syntactic feats structure +nuclearity +relation
human annotation (Ji and Eisenstein, 2014) - 88.7 77.7 65.8

sparse

Hernault et al. (2010) Penn Treebank 83.0 68.4 54.8
Joty et al. (2013) Charniak (retrained) 82.7 68.4 55.7

Joty and Moschitti (2014) Charniak (retrained) - - 57.3
Feng and Hirst (2014) Stanford 85.7 71.0 58.2

Heilman and Sagae (2015) ZPar (retraied) 83.5 68.1 55.1
Wang et al. (2017) Stanford 86.0 72.4 59.7

neural

Li et al. (2014a)
Stanford

82.4 69.2 56.8
+ sparse features 84.0 70.8 58.6

Ji and Eisenstein (2014)
MALT

80.5 68.6 58.3
+ sparse features 81.6 71.1 61.8

span-based discourse parsing - 84.2 67.7 56.0

Table 3: Experiments using gold segmentations. The column of “syntactic feats” shows how the syntactic
features are calculated in the corresponding systems. Note that our parser predicts solely based on the
span features from bi-directionaly LSTM, instead of any explicitly designed syntactic features.

icantly larger than the constituency trees in Penn
Treebank, lower β makes the parsing easily divert
into wrong trails that are difficult to learn from.

Since our parser essentially performs both con-
stituency parsing task and discourse parsing task.
We also evaluate the performances on sentence
constituency level and discourse level separately.
The result is shown in Table 1. Note that in con-
stituency level, the accuracy is not directly com-
parable with the accuracy reported in Cross and
Huang (2016), since: a) our parser is trained on a
much smaller dataset (RST Treebank is about 1/6
of Penn Treebank); b) the parser is trained to opti-
mize the discourse-level accuracy.

Table 2 shows that, in the perspective of end-
to-end discourse parsing, our parser first outper-
forms the state-of-the-art segmentator of Bach
et al. (2012), and furthermore, in end-to-end pars-
ing, the superiority of our parser is more pro-
nounced comparing to the previously best parser
of Hernault et al. (2010).

On the other hand, the majority of the conven-
tional discourse parsers are not end-to-end: they
rely on gold EDU segmentations and pre-trained
tools like Stanford parsers to generate features.
We perform an experiment to compare the per-

formance of our parser with them given the gold
EDU segments (Table 3). Note that most of these
parsers do not handle multi-branching discourse
nodes and are trained and evaluated on binarized
discourse trees (Feng and Hirst, 2014; Li et al.,
2014a,b; Ji and Eisenstein, 2014; Heilman and
Sagae, 2015), so their performances are actually
not directly comparable to the results we reported.

5 Conclusion

We have presented a neural-based incremental
parser that can jointly parse at both constituency
and discourse levels. To our best knowledge, this
is the first end-to-end parser for discourse parsing
task. Our parser achieves the state-of-the-art per-
formance in end-to-end parsing, and unlike previ-
ous approaches, needs little pre-processing effort.
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