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Abstract

We demonstrate that for sentence-level re-
lation extraction it is beneficial to consider
other relations in the sentential context
while predicting the target relation. Our
architecture uses an LSTM-based encoder
to jointly learn representations for all rela-
tions in a single sentence. We combine the
context representations with an attention
mechanism to make the final prediction.

We use the Wikidata knowledge base to
construct a dataset of multiple relations
per sentence and to evaluate our approach.
Compared to a baseline system, our method
results in an average error reduction of 24%
on a held-out set of relations.

The code and the dataset to replicate
the experiments are made available at
https://github.com/ukplab.

1 Introduction

The main goal of relation extraction is to determine
a type of relation between two target entities that
appear together in a text. In this paper, we consider
the sentential relation extraction task: to each oc-
currence of the target entity pair 〈e1,e2〉 in some
sentence s one has to assign a relation type r from
a given set R (Hoffmann et al., 2011). A triple
〈e1,r,e2〉 is called a relation instance and we refer
to the relation of the target entity pair as target re-
lation. Relation extraction is a fundamental task
that enables a wide range of semantic applications
from question answering (Xu et al., 2016) to fact
checking (Vlachos and Riedel, 2014).

For relation extraction, it is crucial to be able to
extract relevant features from the sentential context
(Riedel et al., 2010; Zeng et al., 2015). Modern ap-
proaches focus just on the relation between the tar-
get entities and disregard other relations that might

be present in the same sentence (Zeng et al., 2015;
Lin et al., 2016). For example, in order to correctly
identify the relation type between the movie e1 and
the director e2 in (1), it is important to separate out
the INSTANCE OF relation between the movie and
its type e3:

(1) [e1 Star Wars VII] is an American [e3
space opera epic film] directed by [e2 J.
J. Abrams].

We present a novel architecture that considers other
relations in the sentence as a context for predicting
the label of the target relation. We use the term
context relations to refer to them throughout the pa-
per. Our architecture uses an LSTM-based encoder
to jointly learn representations for all relations in
a single sentence. The representation of the target
relation and representations of the context relations
are combined to make the final prediction.

To facilitate the experiments we construct a
dataset that contains multiple positive and nega-
tive relation instances per sentence. We employ a
fast growing community managed knowledge base
(KB) Wikidata (Vrandečić and Krötzsch, 2014) to
build the dataset.

Our main contribution is the new neural net-
work architecture for extracting relations between
an entity pair that takes into account other relations
in the sentence.

2 Related Work

We employ a neural network to automatically en-
code the target relation and the sentential context
into a fixed-size feature vector. Mintz et al. (2009)
and Riedel et al. (2010) have used manually engi-
neered features based on part-of-speech tags and
dependency parses to represent the target relations.
Recently, Zeng et al. (2015) and Zhao et al. (2015)
have shown that one can successfully apply convo-
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lutional neural networks to extract sentence-level
features automatically.

Most of the methods (Riedel et al., 2010; Zeng
et al., 2015; Lin et al., 2016) focus on predicting
a single relation type based on the combined evi-
dence from all of the occurrences of an entity pair.
Hoffmann et al. (2011) and Surdeanu et al. (2012)
assign multiple relation types to each entity pair,
such that the predictions are tied to particular oc-
currences of the entity pair. We regard the relation
extraction task similarly and predict relation types
on the sentence level.

We use a distant supervision approach (Mintz
et al., 2009) to construct the dataset. Mintz et al.
(2009) and Riedel et al. (2010) have applied it to
create relation extraction datasets for a large-scale
KB. In contrast to our dataset, their data contains a
single relation instance per sentence. That makes it
incompatible with our method.

All of the aforementioned approaches consider
just the relation between the target entities and dis-
regard other relations that might be present in the
same sentence. Our method uses context relations
to predict the target relation. One can also use other
types of structured information from the nearby
context to improve relation extraction. Roth and
Yih (2004) have combined named entity recogni-
tion and relation extraction in a structured predic-
tion approach to improve both tasks. Later, Miwa
and Bansal (2016) have implemented an end-to-end
neural network to construct a context representa-
tion for joint entity and relation extraction. Finally,
Li et al. (2013) have designed global features and
constraints to extract multiple events and their ar-
guments from the same sentence.

We don’t implement global constraints in our
approach, since unlike events and arguments, there
are no restrictions as to what relations can appear
together. Instead we encode all relations in the
same context into fixed-size vectors and use an
attention mechanism to combine them.

3 Data generation with Wikidata

Wikidata is a collaboratively constructed KB that
encodes common world knowledge in a form
of binary relation instances (e.g. CAPITAL:P36
(Hawaii:Q782, Honolulu:Q18094))1. It contains
more than 28 million entities and 160 million re-

1Unique IDs in Wikidata have a Q-prefix for entities and a
P-prefix for relations.

Train Validation Held-out

# of relation triples 284,295 113,852 287,902
# of relation inst. 578,199 190,160 600,804

Table 1: Statistics of the generated dataset.

lation instances.2 A broad community oversight,
similar to Wikipedia, ensures a higher data quality
compared to other KBs (Färber et al., 2015).

We use the complete English Wikipedia corpus
to generate training and evaluation data. Wikipedia
and Wikidata are tightly integrated which enables
us to employ manual wiki annotations to extract
high quality data. From each sentence in a com-
plete article we extract link annotations and retrieve
Wikidata entity IDs corresponding to the linked arti-
cles. There is an unambiguous one-to-one mapping
between Wikidata entities and Wikipedia articles.
For example:

1: Input Born in [[Honolulu|Honolulu,
Hawaii]], Obama is a graduate of
[[Columbia University]].

2: Links to Wikidata Ids Honolulu 7→ Q18094
Columbia University 7→ Q49088

For further processing, we filter out sentences
that contain fewer than 3 annotated entities, since
we need to have multiple relations per sentence for
training (see Section 4).

We extract named entities and noun chunks from
the input sentences with the Stanford CoreNLP
toolkit (Manning et al., 2014) to identify entities
that are not covered by the Wikipedia annotations
(e.g. Obama in the sentence above). We retrieve
IDs for those entities by searching through entity
labels in Wikidata. We use HeidelTime (Strötgen
and Gertz, 2013) to extract dates.

For each pair of entities, we query Wikidata for
relation types that connect them. We discard an
occurrence of an entity pair if the relation is am-
biguous, i. e. multiple relation types were retrieved.
For comparison, Surdeanu et al. (2012) report that
only 7.5% of entity pairs have more than one corre-
sponding relation type in the distantly supervised
dataset of Riedel et al. (2010). The entity pairs that
have no relation in the knowledge base are stored
as negative instances.

The constructed dataset features 353 different re-
lation types (out of approximately 1700 non-meta
relation types in the Wikidata scheme). We split

2https://www.wikidata.org/wiki/Special:
Statistics
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Figure 1: The architecture of the relation encoder

it into train, validation and held-out sets, ensuring
that there is no overlap in either sentences or rela-
tion triples between the three sets. Table 1 summa-
rizes the statistics about the dataset. We assessed
the quality of the distant supervision set-up on 200
manually verified sentences from the training set:
79.5% of relations in those sentences were cor-
rectly labeled with distant supervision (86.9 if one
entity is linked, 74.7 if both are linked).

4 Model architecture

4.1 Relation encoder

The relation encoder produces a fixed-size vector
representation os of a relation between two entities
in a sentence (see Figure 1).

First, each token of the sentence x =
{x1,x2 . . .xn} is mapped to a k-dimensional embed-
ding vector using a matrix W ∈ R|V |×k, where |V |
is the size of the vocabulary. Throughout the exper-
iments in this paper, we use 50-dimensional GloVe
embeddings pre-trained on a 6 billion corpus (Pen-
nington et al., 2014).

Second, we mark each token in the sentence as
either belonging to the first entity e1, the second
entity e2 or to neither of those. A marker embed-
ding matrix P ∈ R3×d is randomly initialized (d
is the dimension of the position embedding and
there are three marker types). For each token, we
concatenate the marker embedding with the word
embedding: (Wn,Pn).

We apply a recurrent neural network (RNN)
on the token embeddings. The length n naturally
varies from sentence to sentence and an RNN pro-
vides a way to accommodate inputs of various
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Figure 2: Incorporation of the context relations.
For the ContextSum model variant ai = 1.

sizes. It maps a sequence of n vectors to a fixed-
size output vector os ∈ Ro. We take the output
vector os as the representation of the relation be-
tween the target entities in the sentence. We use
the Long Short-Term Memory (LSTM) variant of
RNN (Hochreiter and Schmidhuber, 1997) that was
successfully applied to information extraction be-
fore (Miwa and Bansal, 2016).

4.2 Model variants
LSTM baseline As the first model variant, we feed
the output vector os of the relation encoder to a
softmax layer to predict the final relation type for
the target entity (see the upper part of Figure 1):

p(r|〈e1,e2〉,x;θ) =
exp( fr)

∑nr
i=1 exp( fi)

, (1)

fi = yi ·os +bi,

where yi is a weight vector and bi is a bias.
ContextSum We argue that for predicting a re-

lation type for a target entity pair other context
relations in the same sentence are relevant. Some
relation types may tend to co-occur, such as DI-
RECTED BY and PRODUCED BY, whereas others
may be restrictive (e. g. one can only have a single
PLACE OF BIRTH).

Therefore, in addition to the target entity pair, we
take other entities from the same sentence that were
extracted at the data generation step. We construct a
set of context relations by taking each possible pair
of entities.3 Example (2) shows a target entity pair
〈e1,e2〉 and context entities highlighted in bold.

3We limit the maximum number of relations in a sentence
to 7 for computational reasons.
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(2) [Swag It Out] is the official [debut sin-
gle] by [American singer] [e1Zendaya],
known for starring in the series [e2 Shake
It Up].

We apply the same relation encoder on the target
and context relations (see Figure 2). That ensures
that representation for target and context relations
are learned jointly. We sum the context relation
representations: oc = ∑m

i=0 oi, where each element
oi is a vector representation of a single context
relation. The resulting context representation oc ∈
Ro is concatenated with the vector representation
of the target relation: o = [os,oc]. We feed the
concatenated vector to the softmax layer in Eq. 1
to predict the final relation type for the target entity
pair (see the upper part of Figure 2).

ContextAtt In this variant, we use a weighted
sum of the context relation representation at the
penultimate step:

oc =
m

∑
i=0

aioi, ai =
exp(g(oi,os))

∑m
j=0 exp(g(o j,os))

, (2)

where gi computes an attention score for a con-
text relation with respect to the target relation:
g(oi,os) = oiAos, and A is a weight matrix that
is learned.

5 Experiments

5.1 Training the models

All models were trained using the Adam optimizer
(Kingma and Ba, 2014) with categorical cross-
entropy as the loss function. We use an early stop-
ping criterion on the validation data to determine
the number of training epochs. The learning rate
is fixed to 0.01 and the rest of the optimization pa-
rameters are set as recommended in Kingma and
Ba (2014): β1 = 0.9, β2 = 0.999, ε = 1e−08. The
training is performed in batches of 128 instances.

We apply Dropout (Srivastava et al., 2014) on
the penultimate layer as well as on the embeddings
layer with a probability of 0.5. We choose the size
of the layers (RNN layer size o = 256) and entity
marker embeddings (d = 3) with a random search
on the validation set.4
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Figure 3: Aggregated precision-recall curves for
the implemented models.
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Figure 4: Aggregated macro precision-recall curves
for the implemented models.

5.2 Held-out evaluation

As an additional baseline, we re-implement a
sentence-level model based on convolutional neu-
ral networks (CNNs) described in Lin et al. (2016).
This is a state-of-the-art model for fine-grained re-
lation extraction that was previously tested on the
single-relation dataset from Riedel et al. (2010).
In addition to CNNs, their architecture uses a dif-
ferent position encoding scheme: position markers
encode a relative position of each word with respect
to the target entities.5 We use the same GloVe word
embeddings for this model and perform a hyper-
parameter optimization on the validation set.

Our dataset lets us compare the baseline models
and the models that use context relations on the
same data. Following the previous work on rela-

4We test for the RNN layer size the values
{64,128,256,512}, for entity marker embeddings the
values {1,3,5,7} and for the Dropout rate the values in the
range 0.0–0.75.

5We have briefly experimented with such position markers
for our models, but found no improvements.
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LSTM-Baseline ContextAtt
Relation type P R P R

COUNTRY 0.8899 0.9344 0.9130 0.9382
LOCATED IN 0.8329 0.8832 0.8655 0.8994
SHARES BORDER 0.7579 0.7078 0.7962 0.8075
INSTANCE OF 0.7864 0.8568 0.8478 0.8401
SPORT 0.9753 0.9828 0.9822 0.9823
CITIZENSHIP 0.9001 0.9448 0.9041 0.9417
PART OF 0.5623 0.4854 0.6269 0.5113
SUBCLASS OF 0.5230 0.4390 0.5272 0.5908

Table 2: Precision (P) and recall (R) for the top
relations.

tion extraction, we report the aggregated precision-
recall curves for each model on the held-out data
(Figure 3).6 To compute the curves, we rank the
predictions of each model by their confidence and
traverse this list top to bottom measuring the preci-
sion and recall at each step.

The models that take the context into account
perform similar to the baselines at the smallest re-
call numbers, but start to positively deviate from
them at higher recall rates. In particular, the
ContextAtt model performs better than any other
system in our study over the entire recall range.
Compared to the competitive LSTM-baseline that
uses the same relation encoder, the ContextAtt
model achieves a 24% reduction of the average
error: from 0.2096±0.002 to 0.1590±0.002. The
difference between the models is statistically sig-
nificant (p = 0.009).7

We also compute macro precision-recall curves
that give equal weights to all relations in the dataset.
Figure 4 shows that the ContextAtt model performs
best over all relation types. One can also see that
the ContextSum doesn’t universally outperforms
the LSTM-baseline. It demonstrates again that us-
ing attention is crucial to extract relevant informa-
tion from the context relations.

On the relation-specific results (Table 2) we ob-
serve that the context-enabled model demonstrates
the most improvement on precision and seems to
be especially useful for taxonomy relations (see
SUBCLASS OF, PART OF).

6We do not compare against the approach of Surdeanu et al.
(2012) that also performs sentence-level relation extraction,
since the provided implementation does not feature the com-
plete pipeline and is only applicable on a particular Freebase
dataset.

7The average error and the standard deviation are estimated
on 5 training iterations for each model. The statistical signifi-
cance is computed using the Wilcoxon rank-sum test on the
error rates.

6 Conclusions

We have introduced a neural network architecture
for relation extraction on the sentence level that
takes into account other relations from the same
context. We have shown by comparison with com-
petitive baselines that these context relations are
beneficial for relation extraction with a large set of
relation types.

Our approach can be easily applied to other types
of relation extraction models as well. For instance,
Lin et al. (2016) extract sentence-level features
and then combine features from multiple sentences
with a selective attention mechanism. It would
be possible to replace their sentence-level feature
extractor with our model.
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