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Abstract

Adversarial training is a mean of regu-
larizing classification algorithms by gen-
erating adversarial noise to the training
data. We apply adversarial training in re-
lation extraction within the multi-instance
multi-label learning framework. We eval-
uate various neural network architectures
on two different datasets. Experimental re-
sults demonstrate that adversarial training
is generally effective for both CNN and
RNN models and significantly improves
the precision of predicted relations.

1 Introduction

Despite the recent successes of deep neural net-
works on various applications, neural network
models tend to be overconfident about the noise
in input signals. Adversarial examples (Szegedy
et al., 2013) are examples generated by adding
noise in the form of small perturbations to the
original data, which are often indistinguishable for
humans but drastically increase the loss incurred
in a deep model. Adversarial training (Goodfel-
low et al., 2014) is a technique for regularizing
deep models by encouraging the neural network to
correctly classify both unmodified examples and
perturbed ones, which in practice not only en-
hances the robustness of the neural network but
also improves its generalizability. Previous work
has largely applied adversarial training on straight-
forward classification tasks, including image clas-
sification (Goodfellow et al., 2014) and text clas-
sification (Miyato et al., 2016), where the goal is
simply predicting a single label for every exam-
ple and the training examples are able to provide
strong supervision. It remains unclear whether ad-
versarial training could be still effective for tasks
with much weaker supervision, e.g., distant super-

vision (Mintz et al., 2009), or a different evalu-
ation metric other than prediction accuracy (e.g.,
F1 score).

This paper focuses on the task of relation ex-
traction, where the goal is to predict the relation
that exists between a particular entity pair given
several text mentions. One popular way to han-
dle this problem is the multi-instance multi-label
learning framework (MIML) (Hoffmann et al.,
2011; Surdeanu et al., 2012) with distant super-
vision (Mintz et al., 2009), where the mentions
for an entity pair are aligned with the relations in
Freebase (Bollacker et al., 2008). In this setting,
relation extraction is much harder than the canon-
ical classification problem in two respects: (1)
although distant supervision can provide a large
amount of data, the training labels are very noisy,
and due to the multi-instance framework, the su-
pervision is much weaker; (2) the evaluation met-
ric of relation extraction is often the precision-
recall curve or F1 score, which cannot be repre-
sented (and thereby optimized) directly in the loss
function.

In order to evaluate the effectiveness of adver-
sarial training for relation extraction, we apply it to
two different architectures (a convoluational neu-
ral network and a recurrent neural network) on two
different datasets. Experimental results show that
even on this harder task with much weaker super-
vision, adversarial training can still improve the
performance on all of the cases we studied.

2 Related Work

Neural Relation Extraction: In recent years,
neural network models have shown superior per-
formance over approaches using hand-crafted fea-
tures in various tasks. Convolutional neural net-
works (CNN) are among the first deep mod-
els that have been applied to relation extrac-
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tion (Santos et al., 2015; Nguyen and Grishman,
2015). Variants of convolutional networks include
piecewise-CNN (PCNN) (Zeng et al., 2014), split
CNN (Adel et al., 2016), CNN with sentence-
wise pooling (Jiang et al., 2016) and attention
CNN (Wang et al., 2016). Recurrent neural net-
works (RNN) are another popular choice, and have
been used in recent work in the form of recurrent
CNNs (Cai et al., 2016) and attention RNNs (Zhou
et al., 2016). An instance-level selective attention
mechanism was introduced for MIML by Lin et al.
(2016), and has significantly improved the predic-
tion accuracy for several of these base deep mod-
els.

Adversarial Training: Adversarial training
(AT) (Goodfellow et al., 2014) was originally in-
troduced in the context of image classification
tasks where the input data is continuous. Miyato
et al. (2015, 2016) adapts AT to text classification
by adding perturbations on word embeddings and
also extends AT to a semi-supervised setting by
minimizing the entropy of the predicted label dis-
tributions on unlabeled data.

AT introduces an end-to-end and deterministic
way of data perturbation by utilizing the gradi-
ent information. There are also other works for
regularizing classifiers by adding random noise to
the data, such as dropout (Srivastava et al., 2014)
and its variant for NLP tasks, word dropout (Iyyer
et al., 2015). Xie et al. (2017) discusses vari-
ous data noising techniques for language models.
Søgaard (2013) and Li et al. (2017) focus on lin-
guistic adversaries.

3 Methodology

We first introduce MIML and then describe the
base neural network models we consider:1 piece-
wise CNN (Zeng et al., 2015) (PCNN) and bidi-
rectional GRU (Cho et al., 2014) (RNN). We also
utilize the selective attention mechanism in Lin
et al. (2016) for both PCNN and RNN models.
Adversarial training is presented at the end of this
section.

3.1 Preliminaries

In MIML, we consider the set of text sentences
X = {x1, x2, . . . , xn} for each entity pair. Sup-
posing we have R predefined relations (including
NA) to extract, we want to predict the probabil-

1We primarily focus on effectiveness of AT. Other tech-
niques in Sec. 2 are complementary to our focus.
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Figure 1: The computation graph of encoding a
sentence xi with adversarial training. ei denotes
the adversarial perturbation w.r.t. xi. Dropout is
placed on the output of the variables in the double-
lined rectangles.

ity of each of the R relations given the mentions.
Formally, for each relation r, we want to predict
P (r | x1, . . . , xn).

Note that since an entity pair may have no re-
lations, we introduce a special relation NA to the
label set. Hence, we simply assume there will be
at least one relation existing for every entity pair.
During evaluation, we ignore the probability pre-
dicted for the NA relation.

3.2 Neural Architectures

Input Representation: For each sentence xi, we
use pretrained word embeddings to project each
word token into dw-dimensional space. Note that
we also need to include the entity position infor-
mation in xi. Here we introduce an extra feature
vector p(w)

i for each word w to encode the enti-
ties’ positions. One choice is the position embed-
ding (Zeng et al., 2014): for each wordw, we com-
pute the relative distances to the two entities and
embed the distances in two dp-dimensional vec-
tors, which are then concatenated as p(w)

i . Position
embedding introduces extra variables in the model
and slows down the training time. We also inves-
tigate a simpler choice, indicator encoding: when
a word w is exactly an entity, we generate a dp-
dimensional ~1 vector and a ~0 vector otherwise. In
our experiments, position embedding is crucial for
PCNN due to the spatial invariance of CNN. For
RNN, position embedding helps little (likely be-
cause an RNN has the capacity of exploiting tem-
poral dependencies) so we adopt indicator encod-
ing instead.

Sentence Encoder: For a sentence xi, we want
to apply a non-linear transformation to the vector
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representation of xi to derive a feature vector si =
f(xi; θ) given a set of parameters θ. We consider
both PCNN and RNN as f(xi; θ).

For PCNN, inheriting the settings from (Zeng
et al., 2014), we adopt a convolution kernel with
window size 3 and ds output channels and then
apply piecewise pooling and ReLU (Nair and Hin-
ton, 2010) as an activation function to eventually
obtain a 3 · ds-dimensional feature vector si.

For RNN, we adopt bidirectional GRU with ds
hidden units and concatenate the hidden states of
the last timesteps from both the forward and the
backward RNN as a 2·ds-dimensional feature vec-
tor si.

Selective Attention: Following Lin et al.
(2016), for each relation r, we aim to softly se-
lect an attended sentence sr by taking a weighted
average of s1, s2, . . . , sn, namely sr =

∑
i α

r
i si.

Here αr denotes the attention weights w.r.t. re-
lation r. For computing the weights, we define
a query vector qr for each relation r and com-
pute αr = softmax(ur) where uri = tanh(si)>qr.
The query vector qr can be considered as the em-
bedding vector for the relation r, which is jointly
learned with other model parameters.

Loss Function: For an entity pair, we com-
pute the probability of relation r by P (r | X; θ) =
softmax(Asr+b), whereA is the projection matrix
and b is the bias. For the multi-label setting, sup-
pose K relations r1, . . . , rK exist for X . Simply
taking the summation over the log probabilities of
all those labels yields the final loss function

L(X; θ) = −
K∑
i=1

logP (ri | X; θ). (1)

Dropout: For regularizing the parameters, we
apply dropout (Srivastava et al., 2014) to both the
word embedding and the sentence feature vector
si. Note that we do not perform dropout on the
position embedding pi.

3.3 Adversarial Training
Adversarial training (AT) is a way of regulariz-
ing the classifier to improve robustness to small
worst-case perturbations by computing the gradi-
ent direction of a loss function w.r.t. the data. AT
generates continuous perturbations, so we add the
adversarial noise at the level of the word embed-
dings, similar to Miyato et al. (2016). Formally,
consider the input data X and suppose the word
embedding of all the words in X is V . AT adds a

Dataset #Rel #Ent-Pair #Mention Sent-Len
NYT-Train 58 290429 577434 145
UW-Train 5 132419 546731 120

Table 1: Dataset statistics (#Rel includes NA).

small adversarial perturbation eadv to V and opti-
mizes the following objective instead of Eq.(1).

Ladv(X; θ) = L(X + eadv; θ), where (2)

eadv = arg max
‖e‖≤ε

L(X + e; θ̂) (3)

Here θ̂ denotes a fixed copy of the current value
of θ. Since Eq.(3) is computationally intractable
for neural nets, Goodfellow et al. (2014) proposes
to approximate Eq.(3) by linearizing L(X; θ̂) near
X:

eadv = εg/‖g‖, where g = ∇V L(X; θ̂). (4)

Here V denotes the word embedding of all the
words in X . Accordingly, in Eq. 4, ‖g‖ denotes
the norm of gradients over all the words from all
the sentences in X . In addition, we do not perturb
the feature vector p for entity positions. A visual-
ization of the process is demonstrated in Fig. 1.

4 Experiments

To measure the effectiveness of adversarial train-
ing on relation extraction, we evaluate both the
CNN (PCNN) and RNN (bi-GRU) models on
two different datasets, the NYT dataset (NYT)
developed by Riedel et al. (2010) and the UW
dataset (UW) by Liu et al. (2016). All code
is implemented in Tensorflow (Abadi et al.,
2016) and available at https://github.
com/jxwuyi/AtNRE. We adopt Adam opti-
mizer (Kingma and Ba, 2014) with learning rate
0.001, batch size 50 and dropout rate 0.5. For
adversarial training, the only parameter is ε. In
each of the following experiments, we fixed all the
hyper-parameters of the base model, performed a
binary search solely on ε and showed the most ef-
fective value of ε.

4.1 Datasets
The statistics of the two datasets are summarized
in Table 1. We exclude sentences longer than Sent-
Len during training and randomly split data for
entity pairs with more than 500 mentions. Note
that the number of target relations in these two
datasets are significantly different, which helps
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Recall 0.1 0.2 0.3 0.4 AUC
PCNN 0.667 0.572 0.476 0.392 0.329

PCNN-Adv 0.717 0.589 0.511 0.407 0.356
RNN 0.668 0.586 0.524 0.442 0.351

RNN-Adv 0.728 0.646 0.553 0.481 0.382

Table 2: Precisions of various models for differ-
ent recalls on the NYT dataset, with best values in
bold.

Figure 2: PR curves for PCNN (left) and RNN
(right) on the NYT dataset with (blue) and without
(green) adversarial training.

demonstrate the applicability of adversarial train-
ing on various evaluation settings.

Since the test set of the UW dataset only con-
tains 200 sentences, we adopt a subset of the test
set from the NYT dataset: all the entity pairs with
the corresponding 4 relations in UW and another
1500 randomly selected NA pairs.

4.2 Practical Performances

The NYT dataset:
We utilize the word embeddings released by Lin
et al. (2016), which has dw = 50 dimensions. For
model parameters, we set de = 5 (dimension of
the entity position feature vector) and ds = 230
(dimension of sentence feature vector) for PCNN
and de = 3 and ds = 150 for RNN. For adver-
sarial training, we choose ε = 0.01 for PCNN
and ε = 0.02 for RNN. We empirically observed
that when adding dropout to the word embeddings,
PCNN performs significantly worse. Hence we
only apply dropout to si for PCNN. However, even
with a dropout rate of 0.5, RNN still performs
well. We conjecture that it is due to PCNN being
more sensitive to input signals and the dimension-
ality of the word embedding (dw = 50) being very
small.

The precision-recall curves for different mod-
els on the test set are shown in Fig. 2. Since
the precision drops significantly with large recalls
on the NYT dataset, we emphasize a part of the
curve with recall number smaller than 0.5 in the

Recall 0.1 0.2 0.3 0.4 AUC
PCNN 0.765 0.717 0.713 0.677 0.576

PCNN-Adv 0.844 0.750 0.738 0.707 0.619
RNN 0.823 0.822 0.791 0.752 0.631

RNN-Adv 0.929 0.878 0.850 0.779 0.671

Table 3: Precisions of various models for different
recalls on the UW dataset, with best values in bold.

Figure 3: PR curves for PCNN (left) and RNN
(right) on the UW dataset with (blue) and without
(green) adversarial training.

figure. Adversarial training significantly improves
the precision for both PCNN and RNN models.
We also show the precision numbers for some par-
ticular recalls as well as the AUC (for the whole
PR curve) in Table 2, where RNN generally leads
to better precision.

The UW dataset:
We train a word embedding of dw = 200 di-
mensions using Glove (Pennington et al., 2014)
on the New York Times Corpus in this experi-
ment. For model parameters, we set the entity fea-
ture dimension de = 5 and sentence feature di-
mension ds = 250 for PCNN and de = 3 and
ds = 200 for RNN. For adversarial training, we
choose ε = 0.05 for PCNN and ε = 0.5 for
RNN. Since here word embedding dimension dw
is larger than that used for the NYT dataset, which
implies that we now have word embeddings with
larger norms, accordingly the optimal value of ε
increases. The precision-recall curves on the test
data are shown in Fig. 3, where adversarial train-
ing again significantly improves the precision for
both models. The precision numbers for some par-
ticular recall values as well as the AUC numbers
are demonstrated in Table 3. Similarly RNN yields
superior performances on the UW dataset.

4.3 Discussion

CNN vs RNN: In the experiments, RNN gener-
ally produces more precise predictions than CNN
due to its rich model capacity and also has high
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robustness to input embeddings. The CNN, in
contrast, has far fewer parameters which leads to
much faster training and testing, which suggests a
practical trade-off.

Notably, although the improvement under AUC
by adversarial training are roughly the same for
both RNN and CNN, the optimal ε value for RNN
is always much larger than CNN. This implies that
empirically RNN is more robust under adversarial
attacks than CNN, which also helps RNN maintain
higher precision as recall increases.
Choice of ε: When ε = 0, the AT loss (Eq.(2)) de-
generates to the original loss (Eq.(1)); when ε be-
comes too large, the noise can change the seman-
tics of a sentence2 and make the model extremely
hard to correctly classify the adversarial examples.

Notably, the optimal value of ε is much smaller
than the norm of the word embedding, which im-
plies adversarial training works most effectively
when only producing tiny perturbations on word
features while keeping the semantics of sentences
unchanged3.
Connection to other approaches: Li et al.
(2017); Xie et al. (2017) proposes linguistic adver-
saries techniques to enhance the robustness of the
model by randomly changing the word tokens in
a sentence. This explicitly modifies the semantics
of a sentence. By contrast, adversarial training fo-
cuses on smaller and continuous perturbations in
the embedding space while preserving the seman-
tics of sentences. Hence, adversarial training is
complementary to linguistic adversaries.
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