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Abstract

Manual annotations are a prerequisite for
many applications of machine learning.
However, weaknesses in the annotation
process itself are easy to overlook. In par-
ticular, scholars often choose what infor-
mation to give to annotators without ex-
amining these decisions empirically. For
subjective tasks such as sentiment analy-
sis, sarcasm, and stance detection, such
choices can impact results. Here, for the
task of political stance detection on Twit-
ter, we show that providing too little con-
text can result in noisy and uncertain an-
notations, whereas providing too strong a
context may cause it to outweigh other
signals. To characterize and reduce these
biases, we develop ConStance, a gen-
eral model for reasoning about annotations
across information conditions. Given con-
flicting labels produced by multiple an-
notators seeing the same instances with
different contexts, ConStance simultane-
ously estimates gold standard labels and
also learns a classifier for new instances.
We show that the classifier learned by
ConStance outperforms a variety of base-
lines at predicting political stance, while
the model’s interpretable parameters shed
light on the effects of each context.

1 Introduction

When annotators are asked for objective judg-
ments about a text (e.g., POS tags), the broader
context in which the text is situated is often ir-
relevant. However, many NLP tasks focus on in-
ference of factors beyond words and syntax. For
example, the present work addresses the task of
detecting political stance on Twitter. We ask an-

notators to determine whether a given Twitter user
supports Donald Trump or Hillary Clinton. How-
ever, inferring something about a user from a sin-
gle tweet that she writes may prove difficult. Prior
work on stance has relied on annotations collected
this way (Mohammad et al., 2016b), but individual
tweets do not always contain clear indicators.

One solution to this issue is to supply the anno-
tator with more information about the user. For ex-
ample, for the similar task of classifying a Twitter
user’s political affiliation, Cohen and Ruths (2013)
display the user’s last 10 tweets. Nguyen et al.
(2013), studying gender and age, ask annotators to
label users by leveraging all information available
in their profile. Thus, researchers have provided
a range of contexts (or more broadly, information
conditions) to annotators in an attempt to balance
annotators’ exposure to the data needed for accu-
racy with reasonable costs in terms of time, money
and cognitive load.

However, while scholars routinely make such
decisions about what information to show anno-
tators, they rarely examine how such decisions ac-
tually impact annotations. The first contribution
of this paper (Section 3) is to show that, at least
for political stance detection on Twitter, displaying
different kinds of context to annotators yields sig-
nificantly different annotations for the same user.
As a result of these discrepancies, the accuracy of
models trained on these annotations varies widely.

While it is possible one could select a “best”
context for a given task, our results suggest that
doing so a priori is difficult and that, moreover,
different contexts provide complementary infor-
mation. What we would prefer, instead, is a
model that learns how contexts affect annotators
and combines annotations from multiple contexts
to create gold standard labels.

Fortunately, prior work suggests mechanisms
for such a model. Typically in annotation tasks,
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each item is judged by several annotators, and the
resulting labels are aggregated, usually by major-
ity vote, to create a gold standard. As an alterna-
tive to majority vote, Raykar et al. (2010) develop
an elegant probabilistic approach for learning to
aggregate labels produced by annotators of vary-
ing quality. Their model jointly estimates gold
standard labels (in the form of probability scores),
infers annotator error rates, and learns a classifier
for use on out-of-sample data.

Our second contribution (Section 4) is an ex-
tension of Raykar et al.’s model to handle labels
not only created by annotators of varying quality,
but also produced under information conditions of
varying quality. We call this model ConStance1.
Like Raykar et al. (2010), who find that even low-
quality annotators are useful, we find that low-
quality contexts can be useful. Specifically, we
find that the classifier produced from our model
performs better than any classifier trained by ma-
jority vote from the same labels. Furthermore, the
model provides an unsupervised method for com-
paring the information conditions by examining
their respective error patterns.

Intuitively, ConStance performs a role analo-
gous to boosting for annotations: for an arbitrary
task, it permits collection of labels that capture dif-
ferent aspects of the instances at hand, then com-
bines them automatically to determine which are
more reliable and to produce a classifier that takes
all this into account.

2 Annotating Political Stance

2.1 Political Stance Detection

Stance detection is defined as the task of determin-
ing whether an individual is in favor of, against,
or neutral towards a target concept based on the
content they have generated (Mohammad et al.,
2016b). It is related to but distinct from sentiment
analysis: a given document can have negative sen-
timent but a positive stance towards a particular
target, or vice versa. Further, for stance detec-
tion, the target need not be explicitly mentioned.
These points are best illustrated via example: the
tweet “I hope that the Democrats get destroyed in
this election!” has a negative sentiment (towards
Democrats), and (therefore, most likely) implies a

1 Replication materials for this work, including code
for ConStance, are available at https://github.com/
kennyjoseph/constance. The paper’s Supplementary
Material can also be accessed there.

positive stance towards Donald Trump.
As a case study for how context impacts an-

notations, we focus on political stance detection
on Twitter—specifically, determining stance to-
wards Hillary Clinton and Donald Trump during
the 2016 U.S. election season. This task illus-
trates the challenges of annotation, since individ-
ual tweets are often ambiguous with respect to
stance, contexts on Twitter are inherently frac-
tured, and differing contexts can make annotators
lean in different directions.

Note that a user’s stance, as we use the term in
this paper, is a latent (and stable) property of the
user. However, short of interviewing the user, we
can never be completely certain of her stance. As
such, the examples here and evaluations later rely
on the authors’ best estimates of stance, using all
available information.

A user’s tweets, in turn, may or may not reveal
her stance. This means that, by our definitions,
an annotator might accurately perceive no stance
in a tweet, yet have their annotation be considered
incorrect with respect to the user’s true stance. We
would consider this case an annotator error caused
by lack of context.

As examples of the task, consider annotating the
following three tweets: (i) “crooked Hillary - #lock-

HerUp,” (ii) “Lester thinks he can control the crowd when

he can’t even keep Trump on topic lmao,” and (iii) “Set-

tling in for #debatenight Hoping to hear an adult conversa-

tion.” In the case of (i), a passing familiarity with
American politics gives us high confidence that
the author is pro-Trump. The tweets in (ii) and
(iii) are more ambiguous, but the authors’ stances
become clearer with access to varying forms of
context. For (ii), a Pepe the frog image (a sym-
bol used by the American alt-right movement) in
the user profile reveals that the user is probably
a Trump supporter. Similarly, for (iii), a profile
description that reads “Stereotypical Iowan who enjoys

Hillary Clinton, progressive politics. Chair of CYDIWomen.

Previously @HillaryForIA and @NARAL.” suggests sup-
port for Clinton and distaste for Trump.

In order to explore the effects on annotation
quality of providing these kinds of context to an-
notators, we crowd-source annotations for a set
of tweets and vary the additional information pro-
vided to annotators. For ease of comparison with
related work and within our own study, we asso-
ciate each user with a single anchor tweet. Thus,
both annotators and classifiers are asked to deter-
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mine the stance of a user using data from one par-
ticular time window.

2.2 Data
We collected tweets during the general election
season (7/29/2016–11/7/2016) from over 40,000
Twitter users we had previously matched to voter
registration records. Matching Twitter users to
voter registrations (using methods similar to Bar-
berá, 2016; Hobbs et al., 2017) helps ensure that
the accounts we study are controlled by humans,
and it supplies additional demographic variables:
gender, race and party registered with.

We identified as a political tweet any tweet
that mentioned the official handle for Donald
Trump (@realDonaldTrump) or Hillary Clinton
(@HillaryClinton), or that contained one or more
of the following terms or hashtags: Hillary, Clin-
ton, Trump, Donald, #maga, #imwithher, #de-
batenight, #election2016, #electionnight. We re-
moved all reply tweets, quote tweets and tweets
that directly retweeted the candidates. Finally, we
kept only those users who posted at least three po-
litical tweets.

From these users, we sampled 562 political
tweets for crowd-sourced stance annotation, se-
lecting at most one tweet per user. These tweets
were all sampled from users who were registered
Democrats or Republicans. Half the tweets were
paired with Hillary Clinton as the target, the other
half with Donald Trump. We also sampled and set
aside an additional 250 + 318 tweet/target pairs
to use as development and validation data, respec-
tively (see Section 2.5).

2.3 Annotation Task
We used Amazon Mechanical Turk (AMT) for an-
notation. Annotators were presented a triplet of
{tweet, target, context} and were asked to make
their decisions on a 5-point Likert scale, ranging
from “Definitely Opposes [target]” to “Definitely
Supports [target]”. Both prior work (Mohammad
et al., 2016b) and our pilot studies suggested con-
fusion between options for a tweet’s irrelevance
towards a target and the tweet’s neutrality towards
the target, so we used the center of the scale for
both options. For this paper, we use a narrower
three-point scale formed by merging the “Defi-
nitely” and “Probably” options.

Further, while tweets were annotated with re-
spect to different targets, we combine all anno-
tations into a single task by assuming that “anti-

Context Displays the anchor tweet plus . . .
No Context No additional information
Partial Profile Profile image, name, and handle

Full Profile
Author’s profile image, name, han-
dle, and description

Previous
Tweets

Author’s two most recent tweets in
general prior to the anchor

(Previous) Po-
litical Tweets

Author’s two most recent political
tweets prior to the anchor

Political Party
Political affiliation (if any) from the
author’s voter registration

Table 1: Descriptions of the six contexts (informa-
tion conditions) presented to the annotators.

Trump” means “pro-Clinton”, and vice-versa.
This assumption seems reasonable given that the
voting population was strongly polarized during
the general (post-primary) election season, and it
doubles the amount of data we can use to train the
models. Thus, throughout this work the labels
we use are taken from the set {“Support Trump /
Oppose Clinton” = −1, “Neutral / I don’t know”
= 0, “Oppose Trump / Support Clinton” = 1}.

2.4 Contexts Studied

Each of the 562 “anchor” tweets was annotated
under six different contexts (also referred to as in-
formation conditions) described in Table 1. (The
Supplementary Material provides visual examples
of each.) We collected at least three annotations
for each tweet/condition pair. Every AMT worker
was shown 40 different tweets, one by one, ran-
domly distributed across contexts. Two additional
artificial tweets were used to control for task com-
petency.

We selected the conditions in Table 1 based on
two factors. First, we included conditions that var-
ied in how much we expected them to impact an-
notations. For example, we expected the partial
profile information to have a relatively small ef-
fect, and political party a larger one. Second, we
restricted our options to sets of information that
we believed would minimally impact task comple-
tion times. We confirmed this empirically by re-
gressing the (logged) time to completion for each
annotator on the number of tweets she saw for
each context, finding no significant effects from
any context.

2.5 Gold Standard Labels

Ideally, we would evaluate annotation quality and
downstream performance by comparing to ground
truth. Unfortunately, ground truth is difficult to
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characterize for tasks as subjective as stance de-
tection or sentiment analysis (Passonneau and Car-
penter, 2014; DiMaggio, 2015). In light of this,
we constructed our own labels, using all available
information about users, and we use them as an
approximation of ground truth.

We constructed these labels in order to evaluate
downstream classification performance, and they
cover a set of users not shown to the AMT work-
ers. Given our resource constraints and the numer-
ous (at least 18), often conflicting labels already
available for tweets shown to AMT workers, we
did not create definitive labels for that set.

To create these “gold standard” (GS) labels,
we considered all information found on the user’s
Twitter timeline, including everything AMT an-
notators could see, plus friend/following relation-
ships, all of their previous tweets, demographics
from the voter file, etc. Anecdotally, we found cer-
tain cases time-consuming to investigate, which
argues for continuing to limit how much informa-
tion we ask annotators to consider. All gold stan-
dard labels were agreed upon by at least two au-
thors, who first labeled the data independently and
then came together to discuss disagreements.

Our GS set consists of 318 users (with their as-
sociated anchor tweets). Each user is assigned
a label from the tertiary Trump/Neutral/Clinton
scale. Another 250 manually labeled accounts
were used for model development but are not part
of reported results. The GS is approximately
equally divided among registered Democrats, reg-
istered Republicans, and people not registered
with either party; the last category includes self-
declared Independents and voters not affiliated
with any party. We include this third set in order
to ensure the models generalize beyond registered
Democrats and Republicans.

3 Annotation Quality For Individual
Contexts

In this section, we examine how annotator agree-
ment varies depending on the context in which the
labels were obtained, and how classifiers trained
on majority-vote labels from each individual con-
text, as well as on labels from all contexts com-
bined, perform on the GS. First, we introduce the
classifier and features used for the latter task, then
discuss results for agreement and classifier perfor-
mance.

3.1 Classifier, Labels, Features, & Evaluation

For each of the six contexts separately, we con-
struct labels with which to train a classifier. Train-
ing labels are constructed using majority vote; we
also tried weighting the training instances to match
the distribution of labels, but it did not perform as
well. We also construct a seventh set of labels us-
ing all annotations from all conditions. We then
train a classifier on each set of labels. We use
Random Forest models, as they outperformed reg-
ularized logistic regression and SVMs with linear
kernels on the development set. Note that the only
difference among the models in this section is the
labels they are trained on.

The feature set used, shown in Table 2, is meant
as a straightforward representation of the informa-
tion seen by annotators; parts of it follow Ebrahimi
et al. (2016). We construct three types of features
for each tweet: text, sentiment and user features.
For text features, we collapse the anchor tweet
plus all additional textual context seen by any an-
notator into a single string, then compute vari-
ous n-grams from it. For sentiment, we compute
various scores from the anchor tweet alone. For
user features, we include the user’s race and gen-
der, which annotators might have learned from the
user’s profile picture. Note that because we want
models to generalize beyond registered Democrats
or Republicans, we do not include a feature for po-
litical party.

Classifier performance on the GS is measured,
following prior work (Mohammad et al., 2016a;
Ebrahimi et al., 2016), on the average of the F1
scores on the two classes of interest (“Clinton”
and “Trump”). Additionally, we report the aver-
age log-loss (the negative log-likelihood, accord-
ing to the classifier, of the true label). Log-loss
and F1 can be seen as complementary measures:
whereas F1 evaluates the quality of the ranking
of test instances, log-loss evaluates the quality of
their individual probability estimates. To compute
the probability estimate from a Random Forest, we
compute mean class probabilities across all trees.

To assess the statistical significance of differ-
ences between two models, we first obtain prob-
ability estimates for all GS items. For log-loss, we
use a Mann-Whitney test on the scores from the
two models being compared. For F1, we create
1000 bootstrap iterations of the sample, compute
the average F1 of each, and run a non-parametric
difference-in-means test, using 95% confidence
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Category Data Source Feature Representation
Text Anchor tweet,

previous (political) tweets,
profile description

Character n-grams (n ∈ [3, 5]), word n-grams (n ∈ [1, 3]).
Preprocessing: only use tokens appearing ≥ 10 times, apply tf-idf weighting.

Sentiment Anchor tweet
VADER score (Hutto and Gilbert, 2014)
Dictionary approach (Joseph et al., 2017): valence, dominance & arousal scores

User Voter registration record Race, gender

Table 2: Features used in classification.

Model Agreement Log-Loss Avg F1
No Context 0.84 0.72 0.61

Partial Profile 0.83 0.71 0.68
Full Profile 0.82 0.69 0.62

Previous Tweets 0.84 0.65 0.71
Political Tweets 0.88 0.61 0.70
Political Party 0.88 0.63 0.68
All Combined 0.77 0.62 0.71

Table 3: Inter-annotator agreement, then perfor-
mance of classifier trained on majority vote labels.
(Best possible is 1 for agreement and F1, 0 for log-
loss.)

intervals.

3.2 Effects of the Contexts

Before evaluating classification results, we con-
sider annotator agreement within each context,
calculated like Mohammad et al. (2016b) as the
average, across tweets, of the percentage of anno-
tations that match the majority vote. As shown
in Table 3, annotators shown No Context achieve
an agreement score of 0.84, similar to the 0.8185
reported by Mohammad et al. (2016b). Relative
to this baseline, some contexts increase agreement
more than others. As one might expect, Previ-
ous Political Tweets and Political Party show the
strongest signals. Their effects are statistically
(p < .01, Mann-Whitney test) and practically sig-
nificant, increasing the number of labels having
full agreement by 15% and 10%, respectively.

However, annotators shown different contexts
did not necessarily converge to the same labels.
Notice the low agreement for the All Combined
condition: the majority labels held stronger ma-
jorities within any individual context than across
all of them. In fact, if we look at the six major-
ity vote labels for each tweet, only in 43% of the
tweets are these labels in full agreement. At the
end of Section 5, we return to the question of why
agreement was so low across conditions, with the
help of parameters estimated by ConStance.

In the classification task, the results in Ta-
ble 3 further suggest that Previous Political Tweets

serves as the strongest single context. There is a
good case to be made for choosing this individ-
ual context, which is statistically significantly bet-
ter than many others. For example, providing an-
notators with Previous Political Tweets provides a
statistically significant increase in both average F1
scores and log-loss (with p < .01) over both the
No Context and Full Profile conditions. Perhaps
most noteworthy is that the All Combined classi-
fier, created from the naive combination of all an-
notations, is no better than the classifiers from the
individual conditions.

To summarize, results suggest that providing
annotators with appropriate additional context can
improve annotation quality, as measured via an-
notator agreement and downstream classification
performance. However, it was not obvious in ad-
vance which context would be most helpful, and
performing such an analysis as this requires the
time-intensive construction of better “gold stan-
dard” labels against which to check the labels al-
ready being outsourced to annotators. In addition,
the heterogeneity of the labels produced in differ-
ent contexts suggests that the contexts provide di-
verse signals we might be able to leverage; how-
ever, simply combining all the annotations does
not result in improvements.

4 ConStance: General Unified Model

The prior section thus suggests that it may be bet-
ter to limit a priori decisions and instead to lever-
age multiple kinds of context during annotation.
Like Raykar et al. (2010) assumes for annotators,
we might expect (and indeed find) that even those
contexts that turn out to be worse on some metrics
still might be useful for other purposes. Here, we
present a model for such an approach.

ConStance learns a classifier for items. For
our purposes here, an item is a user together with
their anchor tweet and the additional information
from which features were derived (see Table 2);
more broadly, it is whatever we choose to put into
the feature vector. One could choose a differ-
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Figure 1: Graphical model for ConStance.

Var. Meaning
Xi Feature vector of item i
Yi Latent true label of item i
Sc

i Latent context-specific label of item i after noise
from context c

Rca
i Label given by annotator a to item i in context c

V Set of values for labels and annotations:
{−1, 0, 1}

N # of items, indexed by i
C Set of contexts, indexed by c
A Set of annotators, indexed by a
M Learned classifier
γc V × V parameter matrix for context c
αa V × V parameter matrix for annotator a
D All observed data: all values of Xi and Rca

i

Z All latent variables: all values of Yi and Si

θ All model parameters:M, γ, α
Ti All latent variables for item i: (Yi, Si)
τi(ys) Current estimate of all latent values for item i:

p(Yi = y, Si = s | D, θ)

Table 4: Model variables.

ent setup; for example, an item could be a user
and ten anchor tweets. However, the current ar-
rangement allows for straightforward comparison
to prior stance work on Twitter (Mohammad et al.,
2016a).

Note that in general, the features need not be
restricted to those annotators could have seen.
Rather, they could include anything useful to a
classifier. Note also that the feature set provided to
ConStance is the same used by the baseline mod-
els; only the models themselves differ.

4.1 Overview

The model we develop is shown in Figure 1. There
are N items to be labeled. Each item can be
viewed in up toC different contexts. Finally, there
are A total annotators labeling the items; each an-
notator sees multiple items. Each item can have a
different number of annotations, produced by any
assignment of annotators and information condi-
tions to items. In our dataset, every item is labeled

in 6 conditions (every |Ci| = 6), and within every
context, every item is labeled by at least 3 annota-
tors (every |Ac

i | ≥ 3).
The model’s generative story works as follows.

Item i has feature vector Xi and a “true” label
Yi ∈ V . The relationship between Xi and Yi can
be described by some model M, which we will
ultimately learn. When the item is viewed with
context c, the item’s true label Yi is transformed
by noise into a “context-specific” label Sc

i ∈ V .
In other words, the true label may appear differ-
ently when seen through the lens of each context.
The variable Sc

i represents what an ideal annotator
would say about item i given only as much infor-
mation as is preserved by context c.

The “noise” introduced by context c is de-
scribed by parameter γc. The parameter γc is a
V × V matrix of transition probabilities from true
labels to context-specific labels. These probabil-
ities depend only on Yi and γc, not on the item’s
features Xi.

Importantly, annotators themselves are also im-
perfect. When annotator a sees item i, she may
also distort the label she sees, Sc

i , into the observed
annotation Rca

i ∈ V . The annotator-specific noise
process is described by parameter αa, another
V × V transition matrix.

For a better understanding of the role of γc

(and by anology, αa), consider the depictions in
Figure 2. The matrix on the top left refers to
the No Context condition. Its top row describes
what an annotator with perfect judgment would
think about a user whose true label is Trump [sup-
porter], with no context. The top left cell, with a
value around 0.65, is the probability the annotator
would think Trump; the lighter middle cell, with
a value around 0.35, is the probability she would
think Neutral/Don’t know; and the probability she
would think Clinton is almost 0.

4.2 Learning

Like Raykar et al. (2010), we perform infer-
ence using Expectation Maximization (EM). A
full derivation is provided in the Supplementary
Material; here, we sketch the main steps.

The model’s incomplete data likelihood func-
tion, Eq. (1), describes the joint probability, across
all items, of Yi, all values of Sc

i , and all values of
Rca

i assuming Xi is known and fixed. Uppercase
denotes random variables; lowercase, specific val-
ues. In line (2), we substitute in the equivalent
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model parameters.

p(D|θ,X) =
N∏

i=1

V∑
y

p(Yi = y|xi,M)
Ci∏
c

V∑
s

p(Sc
i = s|y, γ)

Ac
i∏

a

p(rca
i |s, α) (1)

=
N∏

i=1

V∑
y

My(xi)
Ci∏
c

V∑
s

γc
ys

Ac
i∏

a

αa
sr

(2)

The EM derivation is difficult because both Yi

and Si are unobserved. Our solution is to treat the
latent variables as a block, describing their joint
configuration with a single term Ti = (Yi, Si). In
our data, since |Ci| = 6, Ti can take on 7|V | pos-
sible values, a number small enough to enumerate
over when we need to marginalize out Ti.

We define membership indicator variables
Ti(ys) ∈ {0, 1} such that Ti(ys) = 1 if Ti has
the specific values (y, s). During learning, we
use analogous variables τi(ys) ∈ [0, 1] to represent
the posterior probabilities of each configuration:
τi(ys) = p(Ti(ys) = 1 | D, θ). The expected value
of the complete data log-likelihood is:

EZ [`(D, Z|θ,X)] =
N∑

i=1

V∑
y

 V∑
s1
i

. . .

V∑
s
Ci
i


τi(ys)(log p(Ti(ys) | xi,M, γ) +

Ci∑
c

Ac
i∑

a

logαa
sr)

(3)

For the E step, we update the membership esti-
mates τi(ys) using the current parameters θ. With
Bayes’ rule, each item’s new value of τi(ys) is
shown to be the full joint likelihood of item i (see
Eq. (2)) when setting Yi = y and Si = s, divided
by the sum, over all possible settings of Yi and Si,
of that same joint likelihood.

For the M step, we update the model parame-
ters using the current membership estimates. To
update the classifier M, following the guidance
of Raykar et al. (2010), we retrain the classifier
using the current estimates of Yi as weights for
items. The estimates of Yi can be obtained from
τiys by marginalizing out Si, thus EZ [Yi = y] =∑V

s1
i
. . .

∑V

s
Ci
i

τiys. We then use sampling to con-

struct a discrete set of labels for model training
based on these weights.

Model Log-Loss Avg F1
Best baselines 0.61 0.71
ConStance 0.57 0.77
Ablations
1. Only Political Tweets 0.59 0.73
2. Context Labels Masked 0.57 0.75
3. Annotator Labels Masked 0.65 0.75

Table 5: Classification performance of ConStance
and model ablations. Boldface highlights best
scores. Significance tests use the the p < .05
level for log-loss. Compared to the best baselines,
all scores that appear better are statistically signif-
icant. Italics indicate the scores that are signifi-
cantly worse than ConStance.

To update γ and α, we maximize them with re-
spect to Eq. (3). For γ, the entry γc

ys (i.e., row y,
column s of matrix γc) denotes p(Sc

i = s | Yi =
y). Each matrix entry can be updated individually
by taking the partial derivative of Eq. (3) and us-
ing, as a Lagrange multiplier term, the constraint
that the row must sum to 1. The updated value for
γc

ys turns out to be a fraction in which the numera-
tor is the weighted (by τ ) number of items having
Yi = y and Sc

i = s, and the denominator is the
weighted number of items having Yi = y (and any
value for Sc

i ). For α, a similar derivation yields
the following update to αa

sr: the weighted number
of labels by annotator a, in any context, having
Sc

i = s and Rca
i = r, divided by the weighted

number of labels by annotator a, in any context,
having Sc

i = s.

5 Model Results and Discussion

The top portion of Table 5 displays ConStance’s
performance compared to the best results from
Section 3. Using the same experimental setup as
Section 3—the model type and features, M and
X respectively, are the same as in the baselines—
ConStance improves over the best baseline mod-
els for each metric. This improvement is statisti-
cally significant for both metrics (at the p < .05
level for log-loss). Further, the model converges
rapidly, within 5-7 iterations of the EM algorithm
and 3-5 minutes on a single machine.2

In addition to comparing to the baselines pro-
vided in Section 3, we investigate which informa-
tion the model is leveraging to be successful. We
do so by exploring three ablations of the model.
Variation #1 (“Only Political Tweets” in Table 5)

2As above, a development set is used for coarse hyperpa-
rameter tuning; see the Supplementary Material for details.
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uses the full model, but only gives it the annota-
tions from the Political Tweets condition. This
tests whether simply modeling differences in an-
notators’ error rates, as Raykar et al. (2010) do,
with a single (“best”) context is helpful. We find
that it is: the performance of this variation is sig-
nificantly better on both metrics than the Political
Tweets baseline from Table 3.

In the second and third variations, we check
whether the effectiveness of ConStance stems
from modeling differences between annotators
rather than differences in contexts, or vice versa.
Variation #2 (“Context Labels Masked”), like #1,
models only annotator effects; however, it instead
uses the entire set of annotations, treating them as
if from a single context (i.e., “masking” context in-
formation from the model). Variation #3 (“Anno-
tator Labels Masked”) is the complement of Vari-
ation #2: it models differences in contexts, and it
uses the entire set of annotations, treating them as
if from a single annotator.

The results of the model ablation experiments
are three-fold. First, we see that each piece of the
model on its own is effective in moving beyond
baseline approaches that use only one context or
naively combine labels across contexts and anno-
tators (the “All Combined” baseline). All model
variations achieve significantly higher Avg. F1
than the baselines, and Variations #1 and #2 im-
prove on log-loss. Second, we see that model-
ing annotators alone is clearly better than not: not
only does Variation #1 outperform the Political
Tweets baseline (significantly), but also Variation
#2 outperforms the All Combined baseline (signif-
icantly) and ConStance outperforms Variation #3
(with significance in one measure). Finally, the
best results come from using the full model. Even
if the differences between ConStance and the vari-
ations are not all statistically significant, model-
ing both annotators and contexts appears to be the
most complete and effective approach.

In addition to model performance, we can also
examine what ConStance has learned about the
quality of labels from each context. Recall that the
model produces a parameter matrix for each con-
text, γc, which describes how a context distorts the
“true” labels the model assumes. Each γc is a tran-
sition matrix, so a context that perfectly preserves
true labels would show up as the identity matrix;
off-diagonal entries show error patterns.

Figure 2 visualizes parameter estimates for γ.

Previous Tweets Political Tweets Political Party

No Context Partial Profile Full Profile

Trump Neutral Clinton Trump Neutral Clinton Trump Neutral Clinton
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Figure 2: Parameter matrices γc learned by Con-
Stance for each context. Darker shading indicates
higher values.

We see that in the No Context, Partial Profile and
Full Profile conditions, annotators often selected
the “Neutral” option (x-axis) when the model in-
ferred the true label was “Clinton” or “Trump” (y-
axis). This finding is in line with intuitions; an-
notators who saw these conditions simply lacked
enough information to determine any label.

On the other extreme, in the Political Party con-
text, annotators selected “Trump” or “Clinton” too
often when the model settled on the “Neutral” op-
tion. That is, even when a user’s stance was not
clear to annotators in other conditions, annotators
who saw political party still inferred stance from
the text. Here, one could argue annotators were
shown “too much” or “too strong” a context—they
saw stance even where the content produced by the
user did not suggest one. Indeed, further manual
inspection of 90 tweets on which annotations dis-
agreed across contexts implies that annotators who
saw political affiliation were often wrong because
they focused too little on text content relative to
the provided political affiliations.

In presenting these findings, a key point to high-
light is that unlike the results of Section 3, Figure 2
was produced without access to any full informa-
tion labels, which depend on a significant level
of manual effort beyond annotations gathered on
AMT.

6 Related Work

Recent work has shown that cognitive biases such
as stereotypes (Carpenter et al., 2016) and anchor-
ing (Berzak et al., 2016) can negatively impact
text annotation and resulting models, even for ob-
jective tasks like POS tagging (Blodgett et al.,
2016). Still, researchers often decide what con-
text to show annotators without rigorously evalu-
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ating how their decisions will affect annotations,
on tasks from gender identification to political
leanings (Chen et al., 2015; Nguyen et al., 2014;
Burger et al., 2011; Cohen and Ruths, 2013). Our
work suggests an interesting avenue of develop-
ment towards reducing annotation bias by explic-
itly modeling it and reducing the need for a priori
decisions on which context is best for which par-
ticular task.

In doing so, we draw on a large body of work
around improving annotation quality for NLP
data. Our work aligns with efforts to improve
task design (e.g. Schneider et al., 2013; Morstatter
and Liu, 2016; Schneider, 2015), and to develop
better models of annotation. With respect to the
former and specific to Twitter, Frankenstein et al.
(2016) show that for the task of labeling the senti-
ment of reply tweets, annotations vary depending
on whether or not the original tweet (being replied
to) is also shown. With respect to the latter, sev-
eral recent models beyond Raykar et al. (2010)
have been proposed (Guan et al., 2017; Tian and
Zhu, 2012; Wauthier and Jordan, 2011; Passon-
neau and Carpenter, 2014). However, our work is
most similar to efforts outside the domain of NLP,
where Dai et al. (2013) have developed a method
of switching between task workflows based on an-
notation quality for particular items, and Nguyen
et al. (2016) have developed a Bayesian model
similar to ours to study annotation quality for other
kinds of slightly subjective tasks.

In a closely related vein, recent work has also
considered how text annotations may vary in im-
portant ways based on the characteristics of anno-
tators (rather than how the task is posed, as we
study here) (Sen et al., 2015). An interesting av-
enue of future work is to understand the intersec-
tion between the design of NLP annotation tasks
and the characteristics of the annotating popula-
tion.

7 Conclusion and Future Work

Annotated data serves as a foundational layer for
many NLP tasks. While some annotation tasks
only require information from short texts, in many
others, we can elicit higher-quality labels by pro-
viding annotators with additional contextual infor-
mation. However, asking annotators to consider
too much information would make their task slow
and burdensome.

In this paper we demonstrate how exposing an-

notators to short contextual information leads to
better labels and better classification results. How-
ever, different contexts lead to results of different
quality, and it is not obvious a priori which con-
text is best, nor—even given ground truth—how
to combine labels produced across contexts to ex-
ploit the information present in each. We then pro-
pose ConStance, a generalizable model that learns
the effects of both individual contexts and individ-
ual annotators on the labeling process. The model
infers (probability estimates for) ground truth la-
bels, plus learns a classifier that can be applied to
new instances. We show that this classifier signif-
icantly improves classification of political stance
compared to the standard practice of training mod-
els on majority vote labels.

The focus of this work is on improving both
the annotation process for nuanced, context-
dependent tasks and the use of the resulting labels.
While ConStance’s label estimation can be used
in conjunction with any classification method, this
paper does not address the optimization of the
classifier itself. Thus, while we consider an as-
sortment of contexts and use a rich feature rep-
resentation, using additional contexts or different
features may lead to better performance on stance
detection. Finally, the model is versatile enough
we could consider treating different tweets as dif-
ferent “contexts” for the same user, augmenting
the extensively annotated tweets with other types
of data, and, naturally, applying the same frame-
work to other annotation tasks.
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