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Abstract

To be able to interact better with humans,
it is crucial for machines to understand
sound – a primary modality of human per-
ception. Previous works have used sound
to learn embeddings for improved generic
semantic similarity assessment. In this
work, we treat sound as a first-class cit-
izen, studying downstream 6textual tasks
which require aural grounding. To this
end, we propose sound-word2vec – a new
embedding scheme that learns specialized
word embeddings grounded in sounds. For
example, we learn that two seemingly (se-
mantically) unrelated concepts, like leaves
and paper are similar due to the similar
rustling sounds they make. Our embed-
dings prove useful in textual tasks requir-
ing aural reasoning like text-based sound
retrieval and discovering Foley sound ef-
fects (used in movies). Moreover, our em-
bedding space captures interesting depen-
dencies between words and onomatopoeia
and outperforms prior work on aurally-
relevant word relatedness datasets such as
AMEN and ASLex.

1 Introduction
Sound and vision are the dominant perceptual sig-
nals, while language helps us communicate com-
plex experiences via rich abstractions. For exam-
ple, a novel can stimulate us to mentally construct
the image of the scene despite having never phys-
ically perceived it. Indeed, language has evolved
to contain numerous constructs that help depict vi-
sual concepts. For example, we can easily form
the picture of a white, furry cat with blue eyes via.
a description of the cat in terms of its visual at-
tributes (Lampert et al., 2009; Parikh and Grau-
man, 2011).

Need for Onomatopoeia. However, how would
one describe the auditory instantiation of cats?
While a first thought might be to use audio de-
scriptors like loud, shrill, husky etc. as mid-level
constructs or “attributes”, arguably, it is difficult to
precisely convey and comprehend sound through
such language. Indeed, Wake and Asahi (1998)
find that humans first communicate sounds using
“onomatopoeia” – words that are suggestive of
the phonetics of sounds while having no explicit
meaning e.g. meow, tic-toc. When asked for
further explanation of sounds, humans provide
descriptions of potential sound sources or impres-
sions created by the sound (pleasant, annoying,
etc.)

Need for Grounding in Sound. While ono-
matopoeic words exist for commonly found
concepts, a vast majority of concepts are not as
perceptually striking or sufficiently frequent for
us to come up with dedicated words describing
their sounds. Even worse, some sounds, say,
musical instruments, might be difficult to mimic
using speech. Thus, for a large number of
concepts there seems to be a gap between sound
and its counterpart in language (Sundaram and
Narayanan, 2006). This becomes problematic in
specific situations where we want to talk about the
heavy tail of concepts and their sounds, or while
describing a particular sound we want to create
as an effect (say in movies). To alleviate this, a
common literary strategy is to provide metaphors
to more relatable exemplars. For example, when
we say, “He thundered angrily”, we compare the
person’s angry speech to the sound of thunder to
convey the seriousness of the situation. However,
without this grounding in sound, thunder and
anger both appear to be seemingly unrelated
concepts in terms of semantics.
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Contributions. In this work, we learn em-
beddings to bridge the gap between sound and its
counterpart in language. We follow a retrofitting
strategy, capturing similarity in sounds associated
with words, while using distributional semantics
(from word2vec) to provide smoothness to the
embeddings. Note that we are not interested in
capturing phonetic similarity, but the grounding
in sound of the concept associated with the
word (say “rustling” of leaves and paper.) We
demonstrate the effectiveness of our embeddings
on three downstream tasks that require reasoning
about related aural cues:
1. Text-based sound retrieval – Given a textual
query describing the sound and a database con-
taining sounds and associated textual tags, we
retrieve sound samples by matching text (Sec. 5.1)
2. Foley Sound Discovery – Given a short phrase
that outlines the technique of producing Foley
sounds1, we discover other relevant words (ob-
jects or actions) which can produce similar sound
effects (Sec. 5.2)
3. Aurally-relevant word relatedness assessment
on AMEN and ASLex (Kiela and Clark, 2015)
(Sec. 5.3)

We also qualitatively compare with word2vec to
highlight the unique notions of word relatedness
captured by imposing auditory grounding.

2 Related Work

Audio and Word Embeddings. Multiple works
in the recent past (Bruni et al., 2014; Lazaridou
et al., 2015; Lopopolo and van Miltenburg,
2015; Kiela and Clark, 2015; Kottur et al., 2016)
have explored using perceptual modalities like
vision and sound to learn language embeddings.
While Lopopolo and van Miltenburg (2015)
show preliminary results on using sound to learn
distributional representations, Kiela and Clark
(2015) build on ideas from Bruni et al. (2014) to
learn word embeddings that respect both linguistic
and auditory relationships by optimizing a joint
objective. Further, they propose various fusion
strategies to combine knowledge from both the

1Foley sounds are sound effects (typically ambient
sounds) that are added to movies in the post-production stage
to make actions or situations appear more realistic. These
sounds are generally created using easily available proxy ob-
jects that mimic the sound of the true situation being depicted.
For example, sound of breaking celery sticks is used to create
the effect of breaking bones.

modalities. Instead, we “specialize” embeddings
to exclusively respect relationships defined by
sounds, while initializing with word2vec embed-
dings for smoothness. Similar to previous findings
(Melamud et al., 2016), we observe that our spe-
cialized embeddings outperform language-only
as well as other multi-modal embeddings in the
downstream tasks of interest.
In an orthogonal and interesting direction, other
recent works (Chung et al., 2016; He et al., 2016;
Settle and Livescu, 2016) learn word representa-
tions based on similarity in their pronunciation
and not the sounds associated with them. In other
words, phonetically similar words that have near
identical pronunciations are brought closer in the
embedding space (e.g., flower and flour).
Sundaram and Narayanan (2006) study the appli-
cability of onomatopoeia to obtain semantically
meaningful representations of audio. Using
a novel word-similarity metric and principal
component analysis, they find representations for
sounds and cluster them in this derived space to
reason about similarities. In contrast, we are inter-
ested in learning word representations that respect
aural-similarity. More importantly, our approach
learns word representations for in a data-driven
manner without having to first map the sound or
its tags to corresponding onomatopoeic words.

Multimodal Learning with Surrogate Su-
pervision. Kottur et al. (2016) and Owens
et al. (2016) use a surrogate modality to induce
supervision to learn representations for a desired
modality. While the former learns word embed-
dings grounded in cartoon images, the latter learns
visual features grounded in sound. In contrast, we
use sound as the surrogate modality to supervise
representation learning for words.

3 Datasets

Freesound. We use the freesound database (Font
et al., 2013), also used in prior work (Kiela
and Clark, 2015; Lopopolo and van Miltenburg,
2015) to learn the proposed sound-word2vec
embeddings. Freesound is a freely available,
collaborative dataset consisting of user uploaded
sounds permitting reuse. All uploaded sounds
have human descriptions in the form of tags and
captions in natural language. The tags contain
a broad set of relevant topics for a sound (e.g.,
ambience, electronic, birds, city, reverb) and
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captions describing the content of the sound, in
addition to details pertaining to audio quality.
For the text-based sound retrieval task, we use a
subset of 234,120 sounds from this database and
divide it into training (80%), validation (10%)
and testing splits (10%). Further, for foley sound
discovery, we aggregate descriptions of foley
sound production provided by sound engineers
(epicsound, accessed 23-Jan-2017; Singer, ac-
cessed 23-Jan-2017) to create a list of 30 foley
sound pairs, which forms our ground truth for the
task. For example, the description to produce a
foley “driving on gravel” sound is to record the
“crunching sound of plastic or polyethene bags”.

AMEN and ASLex. AMEN and ASLex (Kiela
and Clark, 2015) are subsets of the standard
MEN (Bruni et al., 2014) and SimLex (Hill
et al., 2015) word similarity datasets consisting
of word-pairs that “can be associated with a
distinctive associated sound”. We evaluate on
this dataset for completeness to benchmark our
approach against previous work. However, we
are primarily interested in the slightly different
problem of relating words with similar auditory
instantions that may or may not be semantically
related as opposed to relating semantically similar
words that can be associated with some common
auditory signal.

4 Approach
We use the Freesound database to construct a
dataset of tuples {s, T}, where s is a sound and
T is the set of associated user-provided tags. We
then aim to learn an embedding space for the
tags that respects auditory grounding using sound
information as cross-modal context – similar
to word2vec (Mikolov et al., 2013) that uses
neighboring words as context / supervision. We
now explain our approach in detail.

Audio Features and Clustering. We repre-
sent each sound s by a feature vector consisting
of the mean and variance of the following audio
descriptors that are readily available as part of
Freesound database:
• Mel-Frequency Cepstral Co-efficients: This

feature represents the short-term power spec-
trum of an audio and closely approximates the
response of the human auditory system – com-
puted as given in (Ganchev et al., 2005).
• Spectral Contrast: It is the magnitude difference

Figure 1: The model used to learn the proposed sound-
word2vec embeddings. The projection matrix WP contain-
ing that is used as the sound-word2vec embedding is learned
by training the model to accurately predict the cluster assign-
ment of the sound.

in the peaks and valleys of the spectrum – com-
puted according to (Akkermans et al., 2009).
• Dissonance: It measures the perceptual rough-

ness of the sound (Plomp and Levelt, 1965).
• Zero-crossing Rate: It is the percentage of sign

changes between consecutive signal values and
is indicative of noise content.
• Spectral Spread: This feature is the concatena-

tion of the k-order moments of the spectrum,
where k ∈ {0, 1, 2, 3, 4}.
• Pitch Salience: This feature helps discriminate

between musical and non-musical tones. While,
pure tones and unpitched sounds have values
near 0, musical sounds containing harmonics
have higher values (Ricard, 2004).

We then use K-Means algorithm to cluster the
sounds in this feature space to assign each sound
to a cluster C(s) ∈ {1, . . .K}. We set K to 30
by evaluating the performance of the embeddings
on text-based audio-retrieval on the held out
validation set. Note that the clustering is only
performed once, prior to representation learning
described below.

Representation Learning. We represent each tag
t ∈ T using a |V| dimensional one-hot encoding
denoted by vt, where V is the set of all unique
tags in the training set (the size of our dictionary).
This one-hot vector vt is projected into a D-
dimensional vector space via WP ∈ R|V|×D, the
projection matrix. This projection matrix com-
putes the representation for each word in V . The
idea of our approach is to use WP to accurately
predict cluster assignments (for sounds associated
with words), which enforces grounding in sound.
For each data-point, we obtain the summary of
the tags T , by averaging the projections of all tags
in the set as 1

|T |
∑

t∈T W
′
Pvt. We then transform

the so obtained summary representation via a
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linear layer (with parameters WO) and pass the
output through the softmax function to obtain a
distribution, p(c|T ) over the K sound clusters.
We perform maximum-likelihood training for the
correct cluster assignment C(s)2, optimizing for
parameters WP and WO:

max
WP ,WO

logP (c = C(s)|T ) (1)

We use SGD with momentum to optimize this
objective which essentially is the cross-entropy
between cluster assignments and p(c|T ). We
set D to 300 to be consistent with the publicly
available word2vec embeddings.

Initialization. We initialize WP with word2vec
embeddings (Mikolov et al., 2013) trained on the
Google news corpus dataset with ∼3M words.
We fine-tune on a subset of 9578 tags which are
present in both Freesound as well as Google news
corpus datasets, which is 55.68% of the original
tags in the Freesound dataset. This helps us
remove noisy tags unrelated to the content of the
sound.

In addition to enlarging the vocabulary, the pre-
training helps induce smoothness in the sound-
word2vec embeddings – allowing us to transfer
semantics learnt from sounds to words that were
not present as tags in the Freesound database. In-
deed, we find that word2vec pre-training helps im-
prove performance (Sec. 5.3). Our use of language
embeddings as an initialization to fine-tune (spe-
cialize) from, as opposed to formulating a joint
objective with language and audio context (Kiela
and Clark, 2015) is driven by the fact that we are
interested in embeddings for words grounded in
sounds, and not better generic word similarity.

5 Results
Ablations. In addition to the language-only base-
line word2vec (Mikolov et al., 2013), we com-
pare against tag-word2vec – that predicts a tag us-
ing other tags of the sound as context, inspired
by (Font et al., 2014). We also report results with
a randomly initialized projection matrix (sound-
word2vec(r) to evaluate the effectiveness of pre-
training with word2vec.
Prior work. We compare against previous works
Lopopolo and van Miltenburg (2015) and Kiela
and Clark (2015). While the former uses a stan-
dard bag of words and SVD pipeline to arrive at

2We also tried to regress directly to sound features instead
of clustering, but found that it had poor performance.

distributional representations for words, the latter
trains under a joint objective that respects both lin-
guistic and auditory similarity. We use the openly
available implementation for Lopopolo and van
Miltenburg (2015) and re-implement Kiela and
Clark (2015) and train them on our dataset for
a fair comparison of the methods. In addition,
we show a comparison to word-vectors released
by (Kiela and Clark, 2015) in the supplementary
material. All approaches use an embedding size
of 300 for consistency.

5.1 Text-based Sound Retrieval

Given a textual description of a sound as query,
we compare it with tags associated with sounds
in the database to retrieve the sound with the
closest matching tags. Note that this is a purely
textual task, albeit one that needs awareness of
sound. In a sense, this task exactly captures what
we want our model to be able to do – bridge
the semantic gap between language and sound.
We use the training split (Sec. 3) to learn the
sound-word2vec vectors, validation to pick the
number of clusters (K), and report results on
the test split. For retrieval, we represent sounds
by averaging the learnt embeddings for the
associated tags. We embed the caption provided
for the sound (in the Freesound database) in a
similar manner, and use it as the query. We
then rank sounds based on the cosine similarity
between the tag and query representations for
retrieval. We evaluate using standard retrieval
metrics – Recall@{1,10,50,100}. Note that
the entire testing set (≈10k sounds) is present in
the retrieval pool. So, recall@100 corresponds
to obtaining the correct result in the top 1% of
the search results, which is a relatively stringent
evaluation criterion.

Results. Table. 1 shows that our sound-word2vec
embeddings outperform the baselines. We see that
specializing the embeddings for sound using our
two-stage training outperforms prior work(Kiela
and Clark (2015) and Lopopolo and van Mil-
tenburg (2015)), which did not do specialization.
Among our approaches, tag-word2vec performs
second best – this is intuitive since the tag dis-
tributions implicitly capture auditory relatedness
(a sound may have tags cat and meow), while
word2vec and sound-word2vec(r) have the lowest
performance.
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Embedding Recall
@1 @10 @50 @100

word2vec 6.47±0.00 14.25±0.05 21.72±0.12 26.03±0.22

tag-word2vec 6.95±0.02 15.10±0.03 22.43±0.09 27.21±0.24

sound-word2vec(r) 6.49±0.00 14.98±0.03 21.96±0.11 26.43±0.20

(Lopopolo and van Miltenburg, 2015) 6.48±0.02 15.09±0.05 21.82±0.13 26.89±0.23

(Kiela and Clark, 2015) 6.52±0.01 15.21±0.03 21.92±0.08 27.74±0.21

sound-word2vec 7.11±0.02 15.88±0.04 23.14±0.09 28.67±0.17

Table 1: Text-based sound retrieval (higher is better). We find
that our sound-word2vec model outperforms all baselines.

Embedding Spearman Correlation ρs

AMEN ASLex

(Lopopolo and van Miltenburg, 2015) 0.410±0.09 0.237±0.04

(Kiela and Clark, 2015) 0.648±0.08 0.366±0.11

sound-word2vec 0.674±0.05 0.391±0.06

Table 2: Comparison to state of the art AMEN and ASLex
datasets (Kiela and Clark, 2015) (higher is better). Our ap-
proach performs better than Kiela and Clark (2015).

5.2 Foley Sound Discovery

In this task, we evaluate how well embeddings
identify matching pairs of target sounds (flapping
bird wings) and descriptions of Foley sound
production techniques (rubbing a pair of gloves).
Intuitively, one expects sound-aware word embed-
dings to do better at this task than sound-agnostic
ones. We setup a ranking task by constructing a
set of original Foley sound pairs and decoy pairs
formed by pairing the target description with every
word from the vocabulary. We rank using cosine
similarity between the average word-vectors in
each member of the pair. A good embedding is
one in which the original Foley sound pair has the
lowest rank. We use the mean rank of the Foley
sound in the dataset for evaluation. We transfer
the embeddings from Sec. 5.1 to this task, without
additional training.

Results. We find that Sound-word2vec per-
forms the best with a mean rank of 34.6 compared
to other baselines tag-word2vec (38.9), sound-
word2vec(r) (114.3) and word2vec (189.45). As
observed previously, the second best performing
approach is tag-word2vec. Lopopolo and van
Miltenburg (2015) and Kiela and Clark (2015)
perform worse than tag-word2vec with a mean
rank of 48.4 and 42.1 respectively. Note that ran-
dom chance gets a rank of (|V|+ 1)/2 = 4789.5.

5.3 Evaluation on AMEN and ASLex
AMEN and ASLex (Kiela and Clark, 2015) are
subsets of the MEN and SimLex-999 datasets for
word relatedness grounded in sound. From Ta-
ble 2, we can see that our embeddings outper-
form (Kiela and Clark, 2015) on both AMEN and
ASLex. These datasets were curated by annotating

word word2vec sound-word2vec

apple apples, pear, fruit bite, snack, chips
berry, pears, strawberry chew, munch, carton

wood lumber, timber, softwoods, wooden, snap, knock,
hardwoods, cedar, birch smack, whack, snapping

bones skull, femur, skeletons, eggshell, carrot, arm
thighbone, pelvis, molar blood, polystyrene, crunch

glass hand-blown, glassware, tumbler, shattered, ceramic, smash
Plexiglass, wine-glass, bottle clink, beer, spoon

Onomatopoeic query words

boom booms, booming, bubble, bomb, bang, explosion
craze, downturn, upswing bombing, exploding, ecstatic

jingle song, commercial, catchy-tune, magic, tinkle, nails
ditty, slogan, anthem bells, key, doorbell

slam slams, piledriver, uranage shut, lock, opening
spinkick, hiptoss, hit closing, latch, door

quack charlatan, quackery, crackpot duck, snort, calling
homeopaths, concoctions, snake-oil chirp, tweet, oink

Table 3: We show nearest neighbors in both word2vec and
sound-word2vec spaces for eight words (‘regular’ words, top
half and onomatopoeic words, bottom half).

concepts related by sound; however we observe
that relatedness is often confounded. For exam-
ple, (river, water), (automobile, car) are marked
as aurally related however they do not stand out
as aurally-related examples as they are already se-
mantically related. In contrast, we are interested in
how onomatopoeic words relate to regular words
(Table 3), which we study by explicit grounding
in sound. Thus while we show competitive perfor-
mance on this dataset, it might not be best suited
for studying the benefits of our approach.

6 Discussion and Conclusion
We show nearest neighbors in both sound-
word2vec and word2vec space (Table 3) to quali-
tatively demonstrate the unique dependencies cap-
tured due to auditory grounding. While word2vec
maps a word (say, apple) to other semantically
similar words (other fruits), similar ‘sounding’
words (chips) or onomatopoeia (munch) are closer
in our embedding space. Moreover, onomatopoeic
words (say, boom and slam) are mapped to rele-
vant objects (explosion and door). Interestingly,
parts (e.g., lock, latch) and actions (closing) are
also closer to the onomatopoeic query – exhibit-
ing an understanding of the auditory scene.
Conclusion. In this work we introduce a novel
word embedding scheme that respects auditory
grounding. We show that our embeddings provide
strong performance on text-based sound retrieval,
Foley sound discovery along with intuitive nearest
neighbors for onomatopoeia that are tasks in text
requiting auditory reasoning. We hope our work
motivates further efforts on understanding and re-
lating onomatopoeia words to “regular” words.
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