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Abstract

We introduce a novel sub-character ar-
chitecture that exploits a unique com-
positional structure of the Korean lan-
guage. Our method decomposes each
character into a small set of primitive
phonetic units called jamo letters from
which character- and word-level represen-
tations are induced. The jamo letters di-
vulge syntactic and semantic information
that is difficult to access with conventional
character-level units. They greatly alle-
viate the data sparsity problem, reducing
the observation space to 1.6% of the orig-
inal while increasing accuracy in our ex-
periments. We apply our architecture to
dependency parsing and achieve dramatic
improvement over strong lexical baselines.

1 Introduction

Korean is generally recognized as a language iso-
late: that is, it has no apparent genealogical rela-
tionship with other languages (Song, 2006; Camp-
bell and Mixco, 2007). A unique feature of the
language is that each character is composed of a
small, fixed set of basic phonetic units called jamo
letters. Despite the important role jamo plays in
encoding syntactic and semantic information of
words, it has been neglected in existing modern
Korean processing algorithms. In this paper, we
bridge this gap by introducing a novel composi-
tional neural architecture that explicitly leverages
the sub-character information.

Specifically, we perform Unicode decomposi-
tion on each Korean character to recover its un-
derlying jamo letters and construct character- and
word-level representations from these letters. See

산을갔다

갔다
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갔
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산을

을
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산
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Figure 1: Korean sentence “산을갔다” (I went to
the mountain) decomposed to words, characters,
and jamos.

Figure 1 for an illustration of the decomposi-
tion. The decomposition is deterministic; this is
a crucial departure from previous work that uses
language-specific sub-character information such
as radical (a graphical component of a Chinese
character). The radical structure of a Chinese
character does not follow any systematic process,
requiring an incomplete dictionary mapping be-
tween characters and radicals to take advantage of
this information (Sun et al., 2014; Yin et al., 2016).
In contrast, our Unicode decomposition does not
need any supervision and can extract correct jamo
letters for all possible Korean characters.

Our jamo architecture is fully general and can
be plugged in any Korean processing network. For
a concrete demonstration of its utility, in this work
we focus on dependency parsing. McDonald et al.
(2013) note that “Korean emerges as a very clear
outlier” in their cross-lingual parsing experiments
on the universal treebank, implying a need to tai-
lor a model for this language isolate. Because of
the compositional morphology, Korean suffers ex-
treme data sparsity at the word level: 2,703 out of
4,698 word types (> 57%) in the held-out portion
of our treebank are OOV. This makes the language
challenging for simple lexical parsers even when
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augmented with a large set of pre-trained word
representations.

While such data sparsity can also be alleviated
by incorporating more conventional character-
level information, we show that incorporating
jamo is an effective and economical new approach
to combating the sparsity problem for Korean. In
experiments, we decisively improve the LAS of
the lexical BiLSTM parser of Kiperwasser and
Goldberg (2016) from 82.77 to 91.46 while reduc-
ing the size of input space by 98.4% when we re-
place words with jamos. As a point of reference,
a strong feature-rich parser using gold POS tags
obtains 88.61.

To summarize, we make the following contribu-
tions.

• To our knowledge, this is the first work
that leverages jamo in end-to-end neural Ko-
rean processing. To this end, we develop a
novel sub-character architecture based on de-
terministic Unicode decomposition.

• We perform extensive experiments on depen-
dency parsing to verify the utility of the ap-
proach. We show clear performance boost
with a drastically smaller set of parameters.
Our final model outperforms strong baselines
by a large margin.

• We release an implementation of our jamo ar-
chitecture which can be plugged in any Ko-
rean processing network.1

2 Related Work

We make a few additional remarks on related
work to better situate our work. Our work fol-
lows the successful line of work on incorporating
sub-lexical information to neural models. Vari-
ous character-based architectures have been pro-
posed. For instance, Ma and Hovy (2016) and Kim
et al. (2016) use CNNs over characters whereas
Lample et al. (2016) and Ballesteros et al. (2015)
use bidirectional LSTMs (BiLSTMs). Both ap-
proaches have been shown to be profitable; we em-
ploy a BiLSTM-based approach.

Many previous works have also considered
morphemes to augment lexical models (Luong
et al., 2013; Botha and Blunsom, 2014; Cotterell
et al., 2016). Sub-character models are substan-
tially rarer; an extreme case is considered by

1https://github.com/karlstratos/
koreannet

Gillick et al. (2016) who process text as a sequence
of bytes. We believe that such byte-level models
are too general and that there are opportunities to
exploit natural sub-character structure for certain
languages such as Korean and Chinese.

There exists a line of work on exploiting graph-
ical components of Chinese characters called rad-
icals (Sun et al., 2014; Yin et al., 2016). For in-
stance, 足 (foot) is the radical of跑 (run). While
related, our work on Korean is distinguished in
critical ways and should not be thought of as
just an extension to another language. First, as
mentioned earlier, the compositional structure is
fundamentally different between Chinese and Ko-
rean. The mapping between radicals and charac-
ters in Chinese is nondeterministic and can only be
loosely approximated by an incomplete dictionary.
In contrast, the mapping between jamos and Ko-
rean characters is deterministic (Section 3.1), al-
lowing for systematic decomposition of all possi-
ble Korean characters. Second, the previous work
on Chinese radicals was concerned with learn-
ing word embeddings. We develop an end-to-end
compositional model for a downstream task: pars-
ing.

3 Method

3.1 Jamo Structure of the Korean Language
LetW denote the set of word types and C the set
of character types. In many languages, c ∈ C is
the most basic unit that is meaningful. In Korean,
each character is further composed of a small fixed
set of phonetic units called jamo letters J where
|J | = 51. The jamo letters are categorized as head
consonants Jh, vowels Jv, or tail consonants Jt.
The composition is completely systematic. Given
any character c ∈ C, there exist ch ∈ Jh, cv ∈ Jv,
and ct ∈ Jt such that their composition yields c.
Conversely, any ch ∈ Jh, cv ∈ Jv, and ct ∈ Jt

can be composed to yield a valid character c ∈ C.
As an example, consider the word갔다 (went).

It is composed of two characters,갔,다 ∈ C. Each
character is furthermore composed of three jamo
letters as follows:

• 갔 ∈ C is composed of ㄱ ∈ Jh, ㅏ ∈ Jv,
andㅆ ∈ Jt.

• 다 ∈ C is composed of ㄷ ∈ Jh, ㅏ ∈ Jv,
and an empty letter ∅ ∈ Jt.

The tail consonant can be empty; we assume a
special symbol ∅ ∈ Jt to denote an empty letter.
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Figure 1 illustrates the decomposition of a Korean
sentence down to jamo letters.

Note that the number of possible characters
is combinatorial in the number of jamo letters,
loosely upper bounded by 513 = 132, 651. This
upper bound is loose because certain combina-
tions are invalid. For instance, ㅁ ∈ Jh ∩ Jt but
ㅁ 6∈ Jv whereasㅏ ∈ Jv butㅏ 6∈ Jh ∪ Jt.

The combinatorial nature of Korean characters
motivates the compositional architecture below.
For completeness, we describe the entire forward
pass of the transition-based BiLSTM parser of
Kiperwasser and Goldberg (2016) that we use in
our experiments.

3.2 Jamo Architecture

The parameters associated with the jamo layer are

• Embedding el ∈ Rd for each letter l ∈ J

• UJ , V J ,WJ ∈ Rd×d and bJ ∈ Rd

Given a Korean character c ∈ C, we perform Uni-
code decomposition (Section 3.3) to recover the
underlying jamo letters ch, cv, ct ∈ J . We com-
pose the letters to induce a representation of c as

hc = tanh
(
UJ ech + V J ecv +WJ ect + bJ

)
This representation is then concatenated with a
character-level lookup embedding, and the result
is fed into an LSTM to produce a word representa-
tion. We use an LSTM (Hochreiter and Schmidhu-
ber, 1997) simply as a mapping φ : Rd1 × Rd2 →
Rd2 that takes an input vector x and a state vector
h to output a new state vector h′ = φ(x, h). The
parameters associated with this layer are

• Embedding ec ∈ Rd′ for each c ∈ C

• Forward LSTM φf : Rd+d′ × Rd → Rd

• Backward LSTM φb : Rd+d′ × Rd → Rd

• UC ∈ Rd×2d and bC ∈ Rd

Given a word w ∈ W and its character sequence
c1 . . . cm ∈ C, we compute

f c
i = φf

([
hci

eci

]
, f c

i−1

)
∀i = 1 . . .m

bci = φb

([
hci

eci

]
, bci+1

)
∀i = m. . . 1

and induce a representation of w as

hw = tanh
(
UC

[
f c

m

bc1

]
+ bC

)
Lastly, this representation is concatenated with a
word-level lookup embedding (which can be ini-
tialized with pre-trained word embeddings), and
the result is fed into a BiLSTM network. The pa-
rameters associated with this layer are

• Embedding ew ∈ RdW for each w ∈ W

• Two-layer BiLSTM Φ that maps h1 . . . hn ∈
Rd+dW to z1 . . . zn ∈ Rd∗

• Feedforward for predicting transitions

Given a sentence w1 . . . wn ∈ W , the final d∗-
dimensional word representations are given by

(z1 . . . zn) = Φ
([
hw1

ew1

]
. . .

[
hwn

ewn

])
The parser then uses the feedforward network to
greedily predict transitions based on words that are
active in the system. The model is trained end-to-
end by optimizing a max-margin objective. Since
this part is not a contribution of this paper, we refer
to Kiperwasser and Goldberg (2016) for details.

By setting the embedding dimension of jamos
d, characters d′, or words dW to zero, we can con-
figure the network to use any combination of these
units. We report these experiments in Section 4.

3.3 Unicode Decomposition

Our architecture requires dynamically extracting
jamo letters given any Korean character. This is
achieved by simple Unicode manipulation. For
any Korean character c ∈ C with Unicode value
U(c), let U(c) = U(c) − 44032 and T (c) =
U(c) mod 28. Then the Unicode values U(ch),
U(cv), and U(ct) corresponding to the head con-
sonant, vowel, and tail consonant are obtained by

U(ch) = 1 +

⌊
U(c)

588

⌋
+ 0x10ff

U(cv) = 1 +

⌊
(U(c)− T (c)) mod 588

28

⌋
+ 0x1160

U(ct) = 1 + T (c) + 0x11a7

where ct is set to ∅ if T (ct) = 0.
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Training Development Test
# projective trees 5,425 603 299

# non-projective trees 12 0 0

# # Ko Examples
word 31,060 – 프로그램보다갈비 booz
char 1,772 1,315 최귤흠냥셧캐쪽@正 a
jamo 500 48 ㄱㄳㄼㅏㅠㅢ@正 a

Table 1: Treebank statistics. Upper: Number of
trees in the split. Lower: Number of unit types
in the training portion. For simplicity, we include
non-Korean symbols (e.g., @, 正, a) as charac-
ters/jamos.

3.4 Why Use Jamo Letters?

The most obvious benefit of using jamo letters is
alleviating data sparsity by flattening the combi-
natorial space of Korean characters. We discuss
some additional explicit benefits. First, jamo let-
ters often indicate syntactic properties of words.
For example, a tail consonantㅆ strongly implies
that the word is a past tense verb as in 갔다
(went), 왔다 (came), and 했다 (did). Thus a
jamo-level model can identify unseen verbs more
effectively than word- or character-level models.
Second, jamo letters dictate the sound of a char-
acter. For example, 갔 is pronounced as got be-
cause the head consonantㄱ is associated with the
sound g, the vowelㅏ with o, and the tail conso-
nantㅆ with t. This is clearly critical for speech
recognition/synthesis and indeed has been investi-
gated in the speech community (Lee et al., 1994;
Sakti et al., 2010). While speech processing is not
our focus, the phonetic signals can capture useful
lexical correlation (e.g., for onomatopoeic words).

4 Experiments

Data We use the publicly available Korean tree-
bank in the universal treebank version 2.0 (Mc-
Donald et al., 2013).2 The dataset comes with
a train/development/test split; data statistics are
shown in Table 1. Since the test portion is sig-
nificantly smaller than the dev portion, we report
performance on both.

As expected, we observe severe data sparsity
with words: 24,814 out of 31,060 elements in the
vocabulary appear only once in the training data.
On the dev set, about 57% word types and 3%
character types are OOV. Upon Unicode decom-
position, we obtain the following 48 jamo types:

2https://github.com/ryanmcd/uni-dep-tb

ㄱㄳㄲㄵㄴㄷㄶㄹㄸㄻㄺㄼㅁ
ㅀㅃㅂ ㅅㅄㅇㅆ ㅉ ㅈ ㅋ ㅊ ㅍ ㅌ
ㅏㅎㅑㅐㅓㅒㅕㅔㅗㅖㅙㅘㅛㅚ
ㅝㅜㅟㅞㅡㅠㅣㅢ

none of which is OOV in the dev set.

Implementation and baselines We implement
our jamo architecture using the DyNet library
(Neubig et al., 2017) and plug it into the BiLSTM
parser of Kiperwasser and Goldberg (2016).3 For
Korean syllable manipulation, we use the freely
available toolkit by Joshua Dong.4 We train the
parser for 30 epochs and use the dev portion for
model selection. We compare our approach to the
following baselines:

• McDonald13: A cross-lingual parser origi-
nally reported in McDonald et al. (2013).

• Yara: A beam-search transition-based parser
of Rasooli and Tetreault (2015) based on the
rich non-local features in Zhang and Nivre
(2011). We use beam width 64. We use
5-fold jackknifing on the training portion to
provide POS tag features. We also report on
using gold POS tags.

• K&G16: The basic BiLSTM parser of Kiper-
wasser and Goldberg (2016) without the sub-
lexical architecture introduced in this work.

• Stack LSTM: A greedy transition-based
parser based on stack LSTM representa-
tions. Dyer15 denotes the word-level vari-
ant (Dyer et al., 2015). Ballesteros15 denotes
the character-level variant (Ballesteros et al.,
2015).

For pre-trained word embeddings, we apply the
spectral algorithm of Stratos et al. (2015) on a
2015 Korean Wikipedia dump to induce 285,933
embeddings of dimension 100.

Parsing accuracy Table 2 shows the main re-
sult. The baseline test LAS of the original cross-
lingual parser of McDonald13 is 55.85. Yara
achieves 85.17 with predicted POS tags and 88.61
with gold POS tags. The basic BiLSTM model
of K&G16 obtains 82.77 with pre-trained word
embeddings (78.95 without). The stack LSTM
parser is comparable to K&G16 at the word level

3https://github.com/elikip/bist-parser
4https://github.com/JDongian/

python-jamo
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System Features Feature Representation Emb POS Dev Test
UAS LAS UAS LAS

McDonald13 cross-lingual features large sparse matrix – PRED – – 71.22 55.85
Yara (beam 64) features in Z&N11 large sparse matrix – PRED 76.31 62.83 91.19 85.17

GOLD 79.08 68.85 92.93 88.61
K&G16 word 31060× 100 matrix – – 68.87 48.25 88.61 78.95

298115× 100 matrix YES 76.30 60.88 90.00 82.77
Dyer15 word, transition 31067× 100 matrix – – 69.40 48.46 88.41 78.22

298122× 100 matrix YES 75.99 59.38 90.73 83.89
Ballesteros15 char, transition 1779× 100 matrix – – 84.22 76.41 91.27 86.25

KoreanNet char 1772× 100 matrix – – 84.76 76.95 94.75 90.81
1772× 200 matrix 84.83 77.29 94.55 91.04

jamo 500× 100 matrix – – 84.27 76.07 94.59 90.77
500× 200 matrix 84.68 77.27 94.86 91.46

char, jamo 2272× 100 matrix – – 85.35 78.18 94.79 91.19
2272× 200 matrix 85.74 78.76 94.55 91.31

word, char, jamo 302339× 200 matrix YES – 86.39 79.68 95.17 92.31

Table 2: Main result. Upper: Accuracy with baseline models. Lower: Accuracy with different configu-
rations of our parser network (word-only is identical to K&G16).

(Dyer15), but it performs significantly better at the
character level (Ballesteros15) reaching 86.25 test
LAS.

We observe decisive improvement when we in-
corporate sub-lexical information into the parser
of K&G16. In fact, a strictly sub-lexical parser us-
ing only jamos or characters clearly outperforms
its lexical counterpart despite the fact that the
model is drastically smaller (e.g., 90.77 with 500×
100 jamo embeddings vs 82.77 with 298115×100
word embeddings). Notably, jamos alone achieve
91.46 which is not far behind the best result 92.31
obtained by using word, character, and jamo units
in conjunction. This demonstrates that our compo-
sitional architecture learns to build effective rep-
resentations of Korean characters and words for
parsing from a minuscule set of jamo letters.

5 Discussion of Future Work

We have presented a natural sub-character archi-
tecture to model the unique compositional orthog-
raphy of the Korean language. The architecture in-
duces word-/sentence-level representations from a
small set of phonetic units called jamo letters. This
is enabled by efficient and deterministic Unicode
decomposition of characters.

We have focused on dependency parsing to
demonstrate the utility of our approach as an eco-
nomical and effective way to combat data sparsity.
However, we believe that the true benefit of this ar-
chitecture will be more evident in speech process-
ing as jamo letters are definitions of sound in the
language. Another potentially interesting applica-
tion is informal text on the internet. Ill-formed
words such as ㅎㅎㅎ (shorthand for 하하하, an

onomatopoeic expression of laughter) and ㄴㄴ
(shorthand for노노, a transcription of no no) are
omnipresent in social media. The jamo architec-
ture can be useful in this scenario, for instance by
correlatingㅎㅎㅎ and하하하 which might oth-
erwise be treated as independent.
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