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Abstract

This paper presents a Generative Adver-
sarial Network (GAN) to model single-
turn short-text conversations, which trains
a sequence-to-sequence (Seq2Seq) net-
work for response generation simulta-
neously with a discriminative classifier
that measures the differences between
human-produced responses and machine-
generated ones. In addition, the proposed
method introduces an approximate embed-
ding layer to solve the non-differentiable
problem caused by the sampling-based
output decoding procedure in the Seq2Seq
generative model. The GAN setup pro-
vides an effective way to avoid non-
informative responses (a.k.a “safe re-
sponses”), which are frequently observed
in traditional neural response generators.
The experimental results show that the
proposed approach significantly outper-
forms existing neural response generation
models in diversity metrics, with slight
increases in relevance scores as well, when
evaluated on both a Mandarin corpus and
an English corpus.

1 Introduction

After achieving remarkable successes in Machine
Translation (Sutskever et al., 2014; Cho et al.,
2014), neural networks with the encoder-decoder
architectures (a.k.a sequence-to-sequence models,
Seq2Seq) have been proven to be a functioning
method to model short-text conversations (Vinyals
and Le, 2015; Shang et al., 2015), where the
corresponding task is often called Neural Re-
sponse Generation. The advantage of applying

∗The work was done when the first author was an intern
at Tricorn (Beijing) Technology Co., Ltd.

Seq2Seq models to conversation generation is
that the training procedure can be performed
end-to-end in an unsupervised manner, based on
human-generated conversational utterances (typ-
ically query-response pairs mined from social
networks). One of the potential applications of
such neural response generators is to improve
the capability of existing conversational interfaces
(informally also known as chatbots) by enabling
them to go beyond predefined tasks and chat with
human users in an open domain.

However, previous research has indicated that
naı̈ve implementations of Seq2Seq based conver-
sation models tend to suffer from the so-called
“safe response” problem (Li et al., 2016a), i.e.
such models tend to generate non-informative
responses that can be associated to most queries,
e.g. “I don’t know”, “I think so”, etc. This is due
to the fundamental nature of statistical models,
which fit sufficiently observed examples better
than insufficiently observed ones. Concretely, the
space of open-domain conversations is so large
that in any sub-sample of it (i.e. a training set),
the distribution of most pieces of information
are relatively much sparser when compared to
safe response patterns. Furthermore, since a
safe response can be of relevance to a large
amount of diverse queries, a statistical learner
will tend to minimize its empirical risk in the
response generation process by capturing those
safe responses if naı̈ve relevance-oriented loss
metrics are employed.

Frequent occurrences of safe responses can
dramatically reduce the attractiveness of a chat
agent, which therefore should be avoided to the
best extent possible when designing the learning
algorithms. The pathway to achieve this purpose
is to seek a more expressive model with better
capacity that can take relevance and diversity
(or informativeness) into account simultaneously
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when modelling the underlying distribution of
human conversations.

Generative Adversarial Nets (GANs) (Good-
fellow et al., 2014; Chen et al., 2016) offers
an effective architecture of jointly training a
generative model and a discriminative classifier
to generate sharp and realistic images. This
architecture could also potentially be applied to
conversational response generation to relieve the
safe response problem, where the generative part
can be an Seq2Seq-based model that generates
response utterances for given queries, and the
discriminative part can evaluate the quality of
the generated utterances from diverse dimen-
sions according to human-produced responses.
However, unlike the image generation problems,
training such a GAN for text generation here is
not straightforward. The decoding phase of the
Seq2Seq model usually involves sampling discrete
words from the predicted distributions, which will
be fed into the training of the discriminator. The
sampling procedure is non-differentiable, and will
therefore break the back-propagation.

To the best of our knowledge, Reinforcement
Learning (RL) is first introduced to address the
above problem (Li et al., 2017; Yu et al., 2017),
where the score predicted by a discriminator was
used as the reinforcement to train the generator,
yielding a hybrid model of GAN and RL. But to
train the RL phrase, Li et al. (2017) introduced
two approximations for reward computing at each
action (word) selection step, including a Markov
Chain Monte Carlo (MCMC) sampling method
and a partial utterance scoring approach. It has
been stated in their work that the former approach
is time-consuming and the latter one will result in
lower performance due to the overfitting problem
caused by adding a large amount of partial utter-
ances into the training set. Nevertheless, we also
want to argue that, besides the time complexity
issue of MCMC, RL itself is not an optimal choice
either. As shown in our experimental results in
Section 5.1, a more elegant design of an end-to-
end differentiable GAN can significantly increase
the model’s performance in this text generation
task.

In this paper, we propose a novel variant
of GAN for conversational response generation,
which introduces an approximate embedding layer
to replace the sampling-based decoding phase,
such that the entire model is continuous and dif-

ferentiable. Empirical experiments are conducted
based on two datasets, of which the results show
that the proposed method significantly outper-
forms three representative existing approaches in
both relevance and diversity oriented automatic
metrics. In addition, human evaluations are
carried out as well, demonstrating the potential of
the proposed model.

2 Related Work

Inspired by recent advances in Neural Machine
Translation (NMT), Ritter et al. (2011) and
Vinyals and Le (2015) have shown that single-
turn short-text conversations can be modelled as
a generative process trained using query-response
pairs accumulated on social networks. Earlier
works focused on paired word sequences only,
while Zhou et al. (2016) and Iulian et al. (2017)
have demonstrated that the comprehensibility of
the generated responses can benefit from multi-
view training with respect to words, coarse tokens
and utterances. Moreover, Sordoni et al. (2015)
proposed a context-aware response generation
model that goes beyond single-turn conversations.

In addition, attention mechanisms were intro-
duced to Seq2Seq-based models to capture topic
and dialog focus information by Shang et al.
(2015) and Chen et al. (2017), which had been
proven to be helpful for improving query-response
relevance (Wu et al., 2016). Additional features
such as persona information (Li et al., 2016b) and
latent semantics (Zhou et al., 2017; Serban et al.,
2017) have also been proven beneficial within this
context.

When compared to previous work, this paper is
focused on single-turn conversation modeling, and
employs a GAN to yield informative responses.

3 Building a Conversational Response
Generator via GAN

3.1 Notations
Let D = {(qi, ri)}Ni=1 be a set of N single-
turn human-human conversations, where qi =
(wqi,1, . . . , wqi,t, . . . , wqi,m) is a query, ri =
(wri,1, . . . , wri,t, . . . , wri,n) stands for the re-
sponse to qi, and wqi,t and wri,t denote the t-
th words in qi and ri, respectively. This paper
aims to learn a generative model G(r|q) based
on a discriminator D that can predict informative
responses with good diversity for arbitrary input
queries.
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Figure 1: The Framework of GAN for the Response Generator.

3.2 Model Overview

We name the proposed model Generative Adver-
sarial Network with an Approximate Embedding
Layer (GAN-AEL), of which Figure 1 illustrates
the overall framework. Generally speaking, the
whole framework consists of a response generator
G, a discriminator D and an embedding approx-
imation layer that connects the G and the D.
We explain each of the components in detail as
follows. The generator adopts the Gated Recurrent
Unit (GRU) (Cho et al., 2014) based encoder-
decoder architecture, where the encoder projects
the input query (a discrete word sequence) into
a real-valued vector, on which the output will be
generated conditionally in the decoding process,
activated by a starting signal (denoted as “Go” in
Figure 1). An approximate embedding layer is
designed to guarantee that the response generation
procedure is continuous and differentiable, serv-
ing as an interface for the discriminator to propa-
gate its loss to the generator. The Convolutional
Neural Network (CNN) based discriminator is
attached on top of the approximation layer, which
aims to distinguish the fake responses output by
the approximation layer and the corresponding
human-generated references, conditioned on the
input query. The judgement of the CNN can
be propagated to the Seq2Seq generator through
the proposed approximate embedding layer, and
forces the generator to be fine-tuned to produce
more attractive results.

The proposed GAN framework possesses sev-

eral advantages over existing conversational re-
sponse generation models. Firstly, both the
generator and the discriminator are conditioned
on the input query, which guarantees the rele-
vance of the generated responses. Secondly, the
discriminator enforces the generator to produce a
response according to the true distribution in better
granularity, such that the state of promoting safe
responses is leaped out. Thirdly, the approxima-
tion layer yields a smooth connection between the
generator and the discriminator, avoiding the non-
differentiable discrete sampling process.

3.3 Pre-training the Generator by MLE
In our proposed encoder-decoder framework, both
the encoder and the generator (i.e. the decoder)
G is composed of GRU (Cho et al., 2014)
units, which is designed to generate responses
r = {wr,1, wr,2, · · · , wr,K} conditioned on an
input query q = {wq,1, wq,2, · · · , wq,J}. For a
given query-response pair (q, r), the target is to
maximum the conditional probability p(r|q) in the
generative process. Concretely, in this model, q
is firstly encoded into a vector representation qv
by the GRU-based encoder as shown in Figure
1, which is actually the last hidden state of the
encoder. Then the generator estimates the prob-
ability of each word occurring in r conditioned on
qv. Hence p(r|q) can be formulated as follows:

p(r|q) =
K∏
t=1

p(wr,t|qv, wr,1, · · · , wr,t−1) (1)

Taking the logarithm of the probabilities for
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effective computation, the generator is trained by
optimising the Maximum Likelihood Estimation
(MLE) objective defined as:

1
|D|

∑
(q,r)∈D

K∑
t=1

log p(wr,t|qv, wr,1, · · · , wr,t−1)

(2)
Note here, we need to pre-train the generator
using Equation 2 as the loss function to guarantee
the generator to produce grammatical utterances.
Otherwise, the discriminator will tend to learn
a rule with ease to distinguish human-produced
utterances from those ungrammatical responses
generated in the early stages of the training phase,
which would cause the failure of the training in
satisfying Nash Equilibrium (Goodfellow et al.,
2014).

3.4 The Approximate Embedding Layer

In order to smoothly connect the output layer of
the generator to the input layer of the discriminator
to yield an end-to-end differentiable GAN, one
needs to solve the following critical problem.
The output of the generator is a sequence of
discrete words, which is usually sampled from the
distributions predicted by the decoder’s RNN units
in the Softmax layer, and is non-differentiable.

Since afterward those words will be projected
into embedding vectors to feed the CNN-based
discriminator, we introduce an embedding approx-
imation layer to merge the generation process
of the decoder and the word embedding phrase
of the discriminator. This can be done by
multiplying the word probabilities in the distribu-
tions obtained from the decoder’s Softmax layer
to the corresponding word vectors, to directly
yield an approximately vectorized representation
of the generated word sequences for further
convolutional computations in the discriminative
process. This approximation is based on the
assumption that ideally the word distributions
should be trained to reasonably approach the one-
hot representations of the discrete words.

The structure of the approximation layer is
illustrated on the right-hand side of Figure 1.
Concretely, the approximation layer takes the
output hi of the generator and a random noise
zi as the input, and reuses the word projection
layer (pre-trained in the standard generator) to
estimate the probability distribution of wi. Note
that, the noise zi added to hi forms a latent feature

for the word embedding approximation process to
enforce the diversity of the generated responses.
The overall word embedding approximation is
computed as:

êwi =
V∑
j=1

ej · Softmax(Wp(hi + zi) + bp)j (3)

where Wp and bp are the weight and bias parame-
ters of the word projection layer, respectively, and
hi is the hidden representation of word wi, from
the decoding procedure of the generator G, which
is computed as:

hi = g(hi−1, êwi−1) (4)

where g(·) is the standard GRU inference step in
G (Cho et al., 2014).

3.5 Pre-training the CNN-based
Discriminator

CNN has been proven to be an appropriate
classifier for many NLP tasks, such as sentence
classification (Kim, 2014) and matching (Hu et al.,
2014). Therefore, in this paper we adopt a CNN-
based discriminator as shown in Figure 1.

For the convenience of further discussions, we
introduce r̂ to denote the underlying (distribu-
tional) fake response produced by the decoder.
In other words, r̂ stands for a sequence of word
distributions projected from the hidden layers of
the decoder RNN, based on which one would sam-
ple the output response utterance in a traditional
Seq2Seq generator. The detailed architecture of
the discriminator is described as follows. Firstly,
the input of the discriminator consist of the word
embedding vector sequence Vq for a given query
q and the word embedding vector sequence Vr
for its human-produced response r, as well as the
approximate word embedding vector sequence Vr̂
produced by the approximate embedding layer for
the corresponding fake response r̂. All the word
embedding vector sequences here are zero-padded
or truncated to a same fixed length. After this,
two CNNs with shared parameters are employed
to encode Vr and Vr̂ into higher-level abstractions,
respectively. In addition, a separate CNN is used
to abstract Vq in a similar way. We denote such
abstraction layers (i.e. the max-pooling layers
before the fully-connected layers) in the above
CNNs as Ar, Ar̂ and Aq, corresponding to r, r̂
and q, respectively. Finally, we concatenate Aq
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to Ar and Ar̂ separately, and feed the resulting
vectors to their respective fully-connected layers,
as illustrated in Figure 1. Here, we make the two
fully-connected layers share common parameters
and predict probabilities D(r|q) and D(r̂|q),
respectively, for r and r̂ being true responses of
the given q.

In practice, when the Seq2Seq generative net-
work G is pre-trained, we also pre-train the above
discriminator D by maximising the following
objective function:

Dloss = logD(r|q) + log(1−D(r̂|q)) (5)

with the parameters of G frozen, before the adver-
sarial training procedure described in Section 3.6.

3.6 Adversarial Training of the Generator

After the pre-training of the generator G and the
discriminator D as described above, the entire
network is trained adversarially. Concretely, we
iteratively train G and D, where at each iteration,
the parameters of the non-training network will
be frozen. The following tricks are utilised in
the adversarial training phase to achieve better
convergence. Firstly, when training G, we replace
the objective function given in Equation 5 with
the l2-loss between Ar and Ar̂, to maintain a
reasonable scale of the gradient. Secondly, we
freeze the parameters of the encoder network
and the projection layer of the decoder network,
but only tune the parameters of decoder’s hidden
layers. This is based on the assumption that,
in principle, after the pre-training, the encoder
network is sufficiently effective to represent the
entire input utterance, while the projection layer
of the decoder is also adequate to decode words
from its hidden states. Therefore, the adversarial
training here is to adjust the “wording strategy”
of the generative model, i.e. the way it organises
the semantic contents during the decoding (or
in other words, the way it realises the hidden
states). Preliminary experiments show that this
trick significantly improves the grammaticalness
of the generated responses.

The gradient of the generator can be computed
as:

∇gD,G(θG) =
∂Gloss
∂Vr̂

∂Vr̂
∂θG

=
∂Gloss
∂Vr̂

∂Vr̂
∂G

∂G

∂θG

(6)

where θG denotes the active parameters of the
generator G, Gloss = ‖Ar − Ar̂‖ and gD,G(·)
stands for the inference step of the entire GAN.
It can be seen that the feedback signals from D
can be propagated to G effectively through the
approximate embedding layer, which connects G
and D smoothly, and avoids the discrete sampling
procedure.

4 Experiment Setup

4.1 Datasets

We test our model on two datasets: Baidu
Tieba and OpenSubtitles (Lison and Tiedemann,
2016). The Baidu Tieba dataset is composed
of single-turn conversations collected from the
threads of Baidu Tieba1, of which the utterance
length ranging from 3 to 30 words. The Open-
Subtitles dataset contains movie scripts organised
by characters, where we follow Li et al. (2016a)
to retain subtitles containing 5-50 words in the
following experiments. From each of the two
datasets, we sample 5,000,000 unique single-
turn conversations as the training data, 200,000
additional unique pairs for validation, and another
10,000 as the test set.

4.2 Baselines

To illustrate the performance of the proposed
model, we introduce three existing approaches as
baselines.

• Seq2Seq: the standard sequence-to-sequence
model (Sutskever et al., 2014).

• MMI-anti: a Seq2Seq model with a Max-
imum Mutual Information (MMI) criterion
(implemented as an anti-language model) (Li
et al., 2016a) in the decoding process, which
reduces the probability of generating “safe
responses”.

• Adver-REGS: another adversarial strategy
proposed by Li et al. (2017)2, which links the
generator and the discriminator together with
a reinforcement learning framework, and
takes the discriminator’s output probability as
the reward to train the generator.

1https://tieba.baidu.com/index.html
2The codes can be accessed at https://github.

com/jiweil/Neural-Dialogue-Generation/
tree/master/Adversarial
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4.3 Evaluation Metrics
For automatic evaluations, the following com-
monly accepted metrics are employed. Note here,
the goal of our model is to obtain responses not
only semantically relevant to the corresponding
queries, but also of good diversity and novelty.
Therefore, in this work, embedding-based metrics
(Liu et al., 2016) are adopted to evaluate semantic
the relevance between queries and their corre-
sponding generated responses, while dist-1, dist-2
(Li et al., 2016a) are used as diversity measures. In
addition, we also introduce a Novelty measure as
detailed below.

Relevance Metrics: The following three word
embedding based metrics3 are used to compute
the semantic relevance of two utterances. The
Greedy metric is to greedily match words in two
given utterances based on the cosine similarities
of their embeddings, and to average the obtained
scores (Rus and Lintean, 2012). Alternatively,
an utterance representation can be obtained by
averaging the embeddings of all the words in that
utterance, of which the cosine similarity gives
the Average metric (Mitchell and Lapata, 2008).
In addition, one can also achieve an utterance
representation by taking the largest extreme values
among the embedding vectors of all the words it
contains, before computing the cosine similarities
between utterance vectors, which yields the Ex-
treme metric (Forgues et al., 2014).

Diversity Metrics: To measure the informa-
tiveness and diversity of the generated responses,
we follow the dist-1 and dist-2 metrics proposed
by Li et al. (2016a) and Chen et al. (2017), and
introduce a Novelty metric. The dist-1 (dist-
2) is defined as the number of unique unigrams
(bigrams for dist-2). A common drawback of
dist-1 and dist-2 is that in the computation, less
informative words (such as “I”, “is”, etc.) are
considered equally with those more informative
ones. Therefore, in this paper, we define an extra
Novelty metric, which is the number of infrequent
words observed in the generated responses. Here
we take all the words except the top 2000 most
frequent ones in the vocabulary as infrequent
words. Note here, the dist-1 and Novelty values
are normalised by utterance length, and dist-2 is
normalised by the total number of bigrams in the

3The implementation of all these metrics
follows the code at https://github.com/
julianser/hed-dlg-truncated/tree/master/
Evaluation.

generated response.
Human Evaluation: To evaluate the perfor-

mance of our model from human perspectives,
this paper conducts a human subject experiement
by comparing the responses generated by Adver-
REGS (which is one of the most competitive
existing approaches) with those by the proposed
model. Three experienced annotators are invited
to evaluate 200 groups of examples. In the
evaluation, for every given query, the annotators
will see 10 generated responses from each model.
Since the proposed method aims at improving the
diversity of the responses generated by Seq2Seq
models, while maintaining their relevance to the
input queries, we ask the annotators to evaluate
the diversity performance of the two systems only
if there is no obvious difference between the
performance of their relevance. This experimental
setting is due to the following two reasons. Firstly,
it is difficult to judge a systems diversity based on
one single response (Li et al., 2016a; Zhou et al.,
2017). Secondly, the practical deployment of a
chat-oriented conversational system will usually
decode an N-best list of candidate responses,
from which it random samples the final reply.
Considering that all the annotators use Mandarin
as their first language, the above evaluation is only
done on the Tieba dataset.

4.4 Hyperparameters & Training Strategies

Hyperparameter Settings: The hyperparameters
of the networks used in all the experiments below
are described as follows. The vocabulary sizes for
Tieba and OpenSubtitles are truncated to 100,000
and 150,000, respectively. The dimensions of
word embedding vectors are set to 100 for Tieba
and 300 for OpenSubtitles. The size of the hidden
layers in the generator is set to 200 in the all
experiments on both datasets. We experiments
subsets of {1,2,3,4} for the filter sizes of the
CNNs, and fixed the filter number to 128. As
shown in subsection 5.3, CNNs with filter sizes
{1,2} are the best choice here. Max-pooling is
used in all the CNN settings here. The noise Z is
sampled from a normal distribution with 0 mean
and 0.1 variance.

Training Strategies: To train the proposed
GAN, the parameters of the generator G are
initialised based on the pre-training mentioned in
subsection 3.3, while those of the discriminator D
are randomly initialised. The adversarial training
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Model
Relevance Diversity

Average Greedy Extreme Dist-1 Dist-2 Novelty
Seq2Seq 0.720 0.614 0.571 0.0037 0.0121 0.0102
MMI-anti 0.713 0.592 0.552 0.0127 0.0495 0.0250

Adver-REGS 0.722 0.660 0.574 0.0153 0.0658 0.0392
GAN-AEL 0.736 0.689 0.580 0.0214 0.0963 0.0635

Table 1: Relevance and diversity evaluation on the Tieba dataset.

Model
Relevance Diversity

Average Greedy Extreme Dist-1 Dist-2 Novelty
Seq2Seq 0.719 0.578 0.505 0.0054 0.0141 0.0045
MMI-anti 0.710 0.569 0.499 0.0175 0.0586 0.0097

Adver-REGS 0.726 0.590 0.507 0.0223 0.0725 0.0147
GAN-AEL 0.734 0.621 0.514 0.0296 0.0955 0.0216

Table 2: Relevance and diversity evaluation on the OpenSubtitles dataset.

starts from pre-training D with the parameters of
G fixed. After this, G and D will be trained
iteratively with different learning rates, which are
0.0001 for D and 0.00002 for G. In addition, we
updateD at a frequency of every 5 batches instead
of every single batch.

5 Experimental Results

5.1 Automatic Evaluation & Analysis

From Table 1 and 2, it can be observed that the
proposed GAN-AEL model outperforms the base-
lines on both datasets in all metrics, especially for
the diversity oriented scores. The improvements
can be explained from the following two angles.

a) Since a vanilla Seq2Seq model does not take
diversity, novelty or informativeness into account,
the discriminator tends to capture such infor-
mation to distinguish model-generated responses
and human responses. By backpropagating the
discriminator’s feedback to the generator, the
adversarially trained generator gains significantly
better performance in such aspects. On the other
hand, the relevance is also retained during the
adversarial training, as one can imagine that the
human produced references given to the discrim-
inator are usually semantically highly relevant to
the corresponding queries.

b) The proposed approximation layer is an
effective way to couple the response generator
and the discriminator. Through this differentiable
component, the loss of the discriminator is prop-
erly propagated to the generator and guide the

tuning of the latter’s parameters.
It can also be seen from the results that the per-

formance of all the models on the three semantic
relevance oriented metrics are comparable to each
other. This implies that all the models, including
the baseline methods and the proposed model,
have the capability to generate responses of rea-
sonable relevance to given queries, which satisfies
the primary goal of the response generation task.
It further suggests that the Seq2Seq architecture
works properly in modelling the semantics of
entire utterances. Nevertheless, although the de-
coder mechanism can select topic-relevant words
to construct responses based on the given query,
the limitation of naı̈ve Seq2Seq models tend to
yield less diverse or informative outputs.

Furthermore, when compared to Adver-REGS,
the proposed GAN-AEL gains 30%-60% relative
improvement in the dist-1, dist-2 and novelty
metrics on both datasets, which indicates that
coupling the generator and the discriminator with
a differentiable component is a more preferable
methodology for text generation tasks, and is a
meaningful analogy to standard GANs for image
generation. Interestingly, all the models achieve
significantly higher novelty scores on the Tieba
dataset than on the OpenSubtitle dataset. This is
due to the difference of the coverages of high-
frequency words in the two corpora. Concretely,
since we exclude top 2,000 most frequent words
when computing the novelty scores on both
datasets, which covers 70% and 82% of the words
in Tieba and OpenSubtitle respectively, it is more
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likely to observe novel words on the Tieba data.
In addition, it can be seen that GAN-AEL

improves the greedy score to a much greater
extent than the average and extreme scores, which
further suggests that the responses generated by
GAN-AEL are more informative. Concretely, the
calculations of the average and extreme scores
may be dominated by generic non-informative
words. By contrast, since the greedy metric is
computed based on a (simple and greedy) word-
wise semantic alignments between two utterances,
the influence of those generic words will be
reduced.

5.2 Human Evaluation Results

Table 3 gives the human evaluation results, which
indicates that the proposed GAN-AEL is more
preferable than Adver-REGS from human per-
spectives. This again implies that the approximate
embedding layer is more effective in propagating
the discriminator’s feedback to the generator than
the reinforcement learning mechanism of (Li et al.,
2017). The result is statistically significant with
p < 0.01 according to sign test.

GAN-AEL vs Adver-REGS
Wins Losses Ties
0.61 0.13 0.26

Table 3: Evaluations of GAN-AEL and Adver-
REGS based on human subjects,

5.3 The Influence of the Discriminator to
Adversarial Training
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Figure 2: Relevance scores of GAN-AEL on
the Tieba corpus with respect to different CNN
window sizes.

The discriminator plays an important role in
the adversarial training process, which determines
whether the GAN model converges to a Nash
Equilibrium (Chen et al., 2016). We conduct
a set of experiments to explore the influence of
the discriminator’s capacities to the adversarial
training. Figure 2 shows the relevance scores with
respect to different convolution window sizes for
the CNN discriminator, where “Filter[x]” denotes
the CNN with its convolution window(s) set to x.

It can be found that the discriminator with
“Filter[1, 2]” achieves the best performance.
Two facts based on the principle of GAN could
be taken to explain this observation: On one
hand, a discriminator with too low capacity (such
as “Filter[1]”) is less capable in distinguishing
human responses from generated ones, which will
backpropagate inappropriate signals that misleads
the generator. On the other hand, if the capacity
of the discriminator is too high (such as “Filter[1,
2, 3]”), in the adversarial training, the training
of the discriminator will converge too fast before
the generator being sufficiently trained (Durugkar
et al., 2016). A similar phenomenon is also
observed on the OpenSubtitles dataset. Since the
relevance between queries and their corresponding
responses is essential in this task, discriminators
with “Filter[1,2]” are adopted in the experiments
reported in subsections 5.1 and 5.2.

5.4 Case Study

To demonstrate the intuitive performance of the
proposed model in comparison with the naı̈ve
Seq2Seq model, we provide some example cases
in Figure 3, where for each query the response is
the top hypothesis obtained via beam search. Es-
pecially, we show that when the vanilla approach
generates safe responses such as “I don’t know
what to do”, the adversarially trained method can
still yield more informative outputs. Further-
more, when both models produces informative
responses, the utterance generated by GAN-AEL
tends to be of more interestingness, which is a
reflection of novelty and diversity.

6 Conclusion

In this paper, we proposed a GAN framework to
model single-turn short-text conversations. An
approximation embedding layer is introduced to
force the entire network differentiable, which
significantly overcomes the drawbacks found in
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Example responses generated based on the OpenSubtitle data Example responses generated based on the Baidu Tieba data

Query: You swore an oath when you put that uniform on.

Seq2Seq: I don’t know what to do.

GAN-AEL: I think I had a good reason.

Query: Do you like cats or dogs?

Seq2Seq: I Like cats.

GAN-AEL: I like golden retriever.

Query: Entire town knows your son is a goon.

Seq2Seq: What do you mean?

GAN-AEL: His life is really a sad story.

Query: You look like Obama’s wife.

Seq2Seq: Haha…

GAN-AEL: I have a common face.

Query: Turn his face away from me.

Seq2Seq: I don’t know what to do.

GAN-AEL: Let me explain to you about the mistake.

Query: 

I wish to invite you to dinner rather than chat up only.

Seq2Seq: I want to have dinner too.

GAN-AEL: I am fat, and I am on a diet.

Figure 3: Example responses generated by Seq2Seq and GAN-AEL.

the previous RL-based attempts (Li et al., 2017).
The superiority of the proposed method has been
demonstrated by empirical experiments based on
both automatic evaluation metrics and human
judgements. Further explorations of GAN-based
techniques to model contextual information in
dialogue problems will be addressed in our future
research.
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