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Abstract

We present a simple, fast and unsuper-
vised approach for exploiting morpho-
logical regularities present in high di-
mensional vector spaces. We propose a
novel method for generating embeddings
of words from their morphological vari-
ants using morphological transformation
operators. We evaluate this approach on
MSR word analogy test set (Mikolov et al.,
2013d) with an accuracy of 85% which is
12% higher than the previous best known
system.

1 Introduction

Vector representation of words are presently be-
ing used to solve a variety of problems like doc-
ument classification (Sebastiani, 2002), question
answering (Tellex et al., 2003) and chunking
(Turian et al., 2010).

Word representations capture both syntactic and
semantic properties (Mikolov et al., 2013d) of nat-
ural language. Soricut and Och (2015) exploited
these regularities to generate prefix/suffix based
morphological transformation rules in an unsuper-
vised manner. These morphological transforma-
tions were represented as vectors in the same em-
bedding space as the vocabulary. They used a
graph based approach and represented transforma-
tions as “type:from:to” triples and a direction vec-
tor: for example “suffix:ion:e:↑creation” implies a
suffix change just like in the case “creation” to
“create”.

Using Soricut’s transformation rules, the major
problem is identifying the correct direction vector
to use for a given case, i.e. if we have to generate
an embedding for “runs”, which rule to apply on
“run”. Experimental results showed that “walk -
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walks” gives better results than rules like “invent
- invents” or “object - objects” in generating word
embedding for “runs”. In this paper, we try to ex-
plore if we can harness this morphological regu-
larity in a much better way, than applying a single
direction using vector arithmetic.

Hence, we tried to come up with a global trans-
formation operator, which aligns itself with the
source word, to give best possible word embed-
ding for target word. We will have a single trans-
formation operator for each rule, irrespective of
the form of root word (like verb or a noun). Our
transformation operator is in the form of a ma-
trix, which when applied on a word embedding
(cross product of vector representation of word
with transformation matrix) gives us a word em-
bedding for target word.

The intuition is not to solve for “invent is to in-
vents as run is to ?” or ”object is to objects as run
is to ?”, but instead we are solving for “walk is to
walks, object is to objects, invent is to invents, ....
as run is to ?”. A transformation operator aims to
be a unified transition function for different forms
of the same transition. Learning a representation
of this operator would allow us to capture the se-
mantic changes associated with the transition. As
word embeddings for rare and out-of-vocabulary
words are poorly trained or not trained at all, learn-
ing this operator will be beneficial to reducing the
sparsity in corpus.

The idea of projection learning has been applied
to a multitude of tasks such as in the learning of
cross lingual mappings for translation of English
to Spanish (Mikolov et al., 2013b) and for unsu-
pervised mapping between vector spaces (Akhtar
et al., 2017a). Our approach has its basis on the
same lines but with a different formulation and end
goal to learn morphological rules rather than se-
mantic associations and translational constraints.

In summary, we present a new method to har-



ness morphological regularities present in high di-
mensional word embeddings and learn its repre-
sentation in the form of a matrix. Using this
method, we present state of the art results on MSR
word analogy dataset.

This paper is structured as follows. We first dis-
cuss the corpus used for training the transforma-
tion operators in section 2. In section 3, we discuss
how these transformation operators are trained.
Later in sections 4, we analyze and discuss the re-
sults of our experiments. We finish this paper with
future scope of our work in section 5.

2 Datasets

We are using word embeddings trained on Google
News corpus (Mikolov et al., 2013c) for our ex-
periments. For the model trained in this paper, we
have used the Skip-gram (Mikolov et al., 2013a)
algorithm. The dimensionality has been fixed at
300 with a minimum count of 5 along with nega-
tive sampling. As training set and for estimating
the frequencies of words, we use the Wikipedia
data (Shaoul, 2010). The corpus contains about 1
billion tokens.

The MSR dataset (Mikolov et al., 2013d) con-
tains 8000 analogy questions. This data set has
been used by us for testing our model. The re-
lations portrayed by these questions are morpho-
syntactic, and can be categorized according to
parts of speech - adjectives, nouns and verbs.
Adjective relations include comparative and su-
perlative (good is to best as smart is to smartest).
Noun relations include singular and plural, pos-
sessive and non-possessive (dog is to dog’s as cat
is to cat’s). Verb relations are tense modifications
(work is to worked as accept is to accepted).

For all the experiments, we have calculated the
fraction of answers correctly answered by the sys-
tem on MSR word analogy dataset.

3 Approach

Our approach has two steps -

1. Extraction of candidate rules and word pairs

2. Training of a transformation matrix per rule

Note that all the thresholds mentioned in following
sub-sections were determined by empirical fine
tuning.

3.1 Transformation Extraction
For unsupervised extraction of candidate rules and
corresponding word pairs for that rule, we fol-
low the approach used by Akhtar et al. (2017b).
For example, in case of the rule <null,s>,
we find word pairs such as <boy,boys>,
<object,objects> and <invent,invents>. We re-
strict the scope of our work to dealing with only
prefix and suffix based morphology. To extract
candidate suffixes / prefixes, we maintain two
TRIE data structures (one where inverted words
are inserted for suffixes and another where words
are inserted in original order for prefixes). By
thresholding on the basis of branching factor of
a node (bf = 10), we obtain candidate suffixes /
prefixes and stems associated with them.

Defining two types of transitions -

1. Null transitions - involve a prefix/suffix
going to null for e.g. the transition
<suffix:null:ed> would involve pairs <talk,
talked> , <walk, walked> etc.

2. Cross transitions - involve both addition and
deletion of characters for e.g. the tran-
sition <suffix:ed:ing> would involve pairs
<talked, talking>, <walked, walking> etc.

For extracting null transitions, we take the inter-
section of stems associated with candidate suf-
fixes/prefixes with the vocabulary of our training
corpus.

For extracting cross transitions, we take the
intersection between stems of different suf-
fixes/prefixes. For e.g. the stem “talk” would be
associated with both suffixes “ed” and “ing”.

We prune the candidate rules and associated
pairs thus extracted based on both cosine sim-
ilarity and frequency. For e.g. <hat,hated>
is a co-incidental example of the transition
<null,ed>. We lower bound the cosine similar-
ity at thetasim = 0.2 for word vectors of the pair.
Since our transformation matrix is derived from
all the word pairs following a particular transition
rule, we carefully use only those word pairs which
are of high frequency (as they have better trained
embeddings). We lower bound the frequency of
both words of pair at thetafreq = 1000.

We could have relied on an external morph ana-
lyzer such as Morfessor (Creutz and Lagus, 2007)
to extract candidate rules and word pairs, but we
wished to keep the approach completely unsuper-
vised.



Figure 1: Training WorkFlow

3.2 Learning Transformation Matrices
Previous works that handle morphology using vec-
tor space representations involved complex neural
network architectures such as recursive neural net-
works (Luong et al., 2013) and log-bilinear mod-
els (Botha and Blunsom, 2014). Both the referred
works treat morph-analysis as a pre-processing
step using Morfessor (Creutz and Lagus, 2007). In
contrast, we propose a simple yet effective linear
approach to learn the representations of transfor-
mations without depending on external segmenta-
tion tools.

Suppose we get “N” highly frequent word pairs
following the same regularity(transition rule). For
our experiments, the lower bound of “N” is set at
50. Dimensions of word embedding of a word in
our model is “D”. Using first word of our “N”
chosen word pairs, we create a matrix “A” of di-
mensions N*D, where each row is vector repre-
sentation of a word. Similarly, we create another
matrix B, of similar dimensions as A, using second
word of our chosen word pairs.

We now propose that a matrix “X” (our trans-
formation matrix) exists such that,

A ∗X = B

or,X = A−1 ∗B
(1)

(all instances of A that we encountered were non-
singular). Our matrix “X” will be of dimensions
“D*D” and when applied to a word embedding
(matrix of dimensions 1*D, it gives a matrix of
dimensions 1*D as output), it results in the word
embedding of the transformed form of the word.

Due to inverse property of a matrix, it accu-
rately remembers the word pairs used for comput-
ing. The matrix also appears to align itself with the

word embedding of other words (not used for its
training) to transform them according to the rule
that the matrix follows. Some interesting results
are shown in table 1.

Word1 Word2 Word3 Operator Word4 Cosine
decides decided studies <s , d> studied 0.89
reach reaches go <null , es> goes 1.0
ask asks reduce <null , s> reduces 0.91

Table 1: Some example results of transformation
operators.

While testing, we extract the lexical transition
using the first two words of the analogy question.
For example, for pairs like <reach, reached>, <
walk, walked>, we are able to extract that they
follow <null, ed> rule. But, for <go, went>, we
are not able to find any transformation operator
after lexical analysis, and for such cases, we fall
back on CosSum/CosMul (Levy et al., 2014) ap-
proaches as our backup. Mikolov et al. showed
that relations between words are reflected to a
large extent in the offsets between their vector em-
beddings (queen - king = woman - man), and thus
the vector of the hidden word b∗ will be similar to
the vector b− a+ a∗, suggesting that the analogy
question can be solved by optimizing:

arg max
b∗∈V

(sim(b∗, b− a+ a∗)) (2)

where V is the vocabulary and sim is a simi-
larity measure. Specifically, they used the cosine
similarity measure, defined as:

cos(u, v) =
u . v

||u|| . ||v||
(3)



resulting in:

arg max
b∗∈V

(cos(b∗, b− a+ a∗)) (4)

Equation 4 has been referred to as CosAdd
model.

While experimenting, Omer Levy (Levy et al.,
2014) found that for an analogy question “London
is to England as Baghdad is to - ?”, using CosAdd
model, they got Mosul - a large Iraqi city, instead
of Iraq which is a country, as an answer. They
were seeking for Iraq because of its similarity to
England (both are countries), similarity to Bagh-
dad (similar geography/culture) and dissimilarity
to London (different geography/culture). While
Iraq was much more similar to England than Mo-
sul was (because both Iraq and England are coun-
tries), the sums were dominated by the geographic
and cultural aspect of the analogy.

Hence to achieve better balancing among dif-
ferent aspects of similarity, they proposed a new
model, where they moved from additive to multi-
plicative approach:

arg max
b∗∈V

cos(b∗, b) . cos(b∗, a∗)

cos(b∗, a) + ε

(ε = 0.001 to prevent division by zero)

(5)

This was equivalent to taking the logarithm of
each term before summation, thus amplifying the
differences between small quantities and reducing
the differences between larger ones. This model
has been referred to as CosMul model.

Even though our transformation operator can
handle any sort of transformation, but if we are
not able to detect the rule from lexical analysis,
we are not able to determine which transformation
operator to use, and hence, we fall back on Cos-
Sum/CosMul. Like for the above mentioned ex-
amples, we will use transformation operator (if ex-
isting) for transformations like <reach, reached>,
since we can find the rule, but for<go, went>, we
can not, since we can not extract the correspond-
ing rule itself - even if the matrix can handle such
transitions.

If a transformation matrix exists for a transition
rule, we apply the corresponding transformation
matrix on the word embedding of the third word
and search the whole vocabulary for the word with
an embedding most similar to the transformed em-
bedding (ignoring the third word itself). If the
similarity of the resultant word’s embedding with

our transformed embedding is less than 0.68 (de-
termined empirically) or the transformation ma-
trix itself does not exist, we fall back on the Cos-
Sum/CosMul techniques.

Levy et. al. (2015) proposed the systems Cos-
Sum and CosMul in which they showed that tun-
ing the hyperparameters has a significant impact
on the performance.

Figure 1 gives an overview of how we train
the transformation matrix and 2 shows how target
word embeddings are generated using transforma-
tion operators and our backup models.

4 Result and Analysis

Model CosSum CosSum w/ M CosMul CosMul w/ M
SGNS-L 0.69 - 0.729 -
Glove-L 0.628 - 0.685 -

SG 0.269 0.554 0.282 0.566
GN 0.646 0.718 0.67 0.733

GN-SG Hybrid 0.674 0.835 0.698 0.85

Table 2: Scores on MSR word analogy test set.

Word1 Word2 Word3 Operator Word4 Cosine
decides decided studies <s , d> studied 0.89
reach reaches go <null , es> goes 1.0

member members school <null , s> schools 0.88
ask asks reduce <null , s> reduces 0.91

resident residents rate <null , s> rates 0.86
get gets show <null , s> shows 0.83

higher highest stricter <r , st> strictest 1.0
wild wilder harsh <null , er> harsher 0.91

Table 3: Example results of transformation oper-
ators for regular transformations.

Word1 Word2 Word3 Operator Word4 Cosine
joined joins became <ed , s> becomes 0.68
turned turns said <ed , s> says 0.74
learn learned build <null , ed> built 0.80

support supported see <null , ed> saw 0.72

Table 4: Example results of transformation oper-
ators for irregular transformations.

In table 2, GN denotes the scores of Google-
News word embeddings on the test set. SGNS-
L and Glove-L (Levy et al., 2015) denote the re-
sults of Skip-gram with negative sampling and
Glove word embeddings respectively, both trained
on large datasets. SG denotes the scores of our
word2vec trained model (on 1B tokens). “w/
M” implies that we have used matrix arithmetic
(along with CosSum/CosMul as backup) for word
analogy answering questions. Our model uses



Figure 2: Prediction WorkFlow

Word1 Word2 Word3 Operator Word4 Cosine
reach reached go <null , ed> went 0.80

recognize recognizes be <null , s> is 0.70

Table 5: Example results of transformation oper-
ators for complete change of word form.

“CosSum” and “CosMul” as backup transforma-
tion method in case a transformation operator (ma-
trix) does not exist. We see that the results of
GN+Matrix are better than the previously used
models.

However, one thing we noticed was that the
model trained on Google-News did not contain
words with apostrophe sign(s) and 1000 out of
8000 words in MSR word analogy test set con-
tained apostrophe sign(s). Also, we noticed that in
SG, the matrix approach was able to answer word
analogy queries where words contained apostro-
phe sign(s), with an accuracy of 93.7% since it is
a very common transformation - which resulted in
well trained transformation matrix. So, we used
SG as a backup for words which were not found in
GN. The results of this hybrid model are denoted
by GN-SG Hybrid. We see that this model per-
forms considerably better than the existing state
of the art system.

As we can see in table 3, our approach works re-
ally well for analogy questions where target word
experiences regular transformation, i.e. the trans-
formation type is simple addition/subtraction of
suffix/prefix.

In table 4 and table 5 we observe that trans-
formations are irregular transformations i.e there

is slight change in word form while addi-
tion/subtraction of suffix/prefix or there is com-
plete change in word form in the target word of
our analogy question. This is an interesting ob-
servation, because even though our rule extrac-
tion (as explained above) is syntactic in nature,
our method still learns and can apply transforma-
tion rules on words which undergo such irregu-
lar/complete transformations.

In operator “<null,s>”, we see that our trans-
formation matrix works pretty well irrespective of
the form the word. For example, it works for
“school-schools” and “reduce-reduces” which are
noun and verb word pairs respectively. Our ap-
proach works by statistically creating global trans-
formation operators and is agnostic in applying
them (i.e. applied on a verb or a noun). Our trans-
formation rules learn from both noun transitions
and verb transitions and hence, even though we
agree that linguistically there is a difference be-
tween noun and verb transitions, our approach per-
formed better than previously existing systems

We also observed that in some cases, cosine
similarity score is 1. This is mostly because
“stricter-strictest” was used for training transfor-
mation matrix of “<r,st>” operator.

Although our cosine scores for irregu-
lar/complete transformations are not that high
with respect to scores for regular transformations,
our system still performs at par or better than
previous known systems. It is still able to pre-
dict words with high accuracy using its limited
training corpora.

These observations can also help us ana-



lyze how certain complex transformations (irreg-
ular/complete) still behave similar to their regular
counterpart computationally, as is apparent from
our transformation matrix - which has learnt it-
self from rules that were extracted via all possible
prefix and suffix substitutions from w1 to w2, and
thus irregular/complete transformations would not
be present in training our transformation matrix
(where w1 and w2 belong to our vocabulary V -
the size of our corpus).

The main application of our approach lies in
its ability to generate representations for un-
seen/unreliable words on the go. If we encounter
a word such as “preparedness” for which we do
not have a representation or our representation is
not reliable, we can identify any reliable form of
the word, say “prepared” and apply <null,ness>
operator on it, resulting in a representation for
“preparedness”. In a similar case, we can gener-
ate embeddings for words such as “unprepared-
ness” from “prepared” by sequentially applying
<null,ness> and a prefix operator trained in a sim-
ilar manner - <null,un>. Overall, this results
in a much larger vocabulary than of the model
initially being used. Sequential application for
such learned operators would also be beneficial for
morphologically rich languages.

We conclude that our matrix is able to harness
morphological regularities present in word pairs
used for training.

5 Future Work

One of the major drawbacks to our system is that
the rule extraction process is designed towards
prefix/suffix based morphology only. Improve-
ments will be required in that step to handle com-
plex morphological phenomena such as affixation.

To solve the word analogy task, we currently
employ a simple lexical analysis to determine
which transformation operator to apply. We thus
require a backup model for pairs that do not con-
form to any known operator. A more complicated
scheme involving comparisons between multiple
outputs (after applying different rules) could help
remove the dependency on a backup model.

Although our work is a general way to gener-
ate morphologically informed embeddings in an
unsupervised manner, we have designed the pre-
diction approach to deal with the word analogy
task. Recent trends (Tsvetkov et al., 2015) and
(Tsvetkov et al., 2016) have suggested that eval-

uation methodologies such as word analogy and
word similarity tasks may not be holistic. Thus,
embeddings generated by our approach should be
evaluated by plugging into end-level tasks such
as machine translation, POS tagging etc. This
would also help in analysing which tasks bene-
fit from having morphologically informed word
embeddings and which would suffice with simple
orthographic features such as presence of certain
suffixes.
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