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Abstract

The encoder-decoder framework for neural
machine translation (NMT) has been shown
effective in large data scenarios, but is much
less effective for low-resource languages. We
present a transfer learning method that signifi-
cantly improves BLEU scores across a range
of low-resource languages. Our key idea is
to first train a high-resource language pair
(the parent model), then transfer some of the
learned parameters to the low-resource pair
(the child model) to initialize and constrain
training. Using our transfer learning method
we improve baseline NMT models by an av-
erage of 5.6 BLEU on four low-resource lan-
guage pairs. Ensembling and unknown word
replacement add another 2 BLEU which brings
the NMT performance on low-resource ma-
chine translation close to a strong syntax based
machine translation (SBMT) system, exceed-
ing its performance on one language pair. Ad-
ditionally, using the transfer learning model
for re-scoring, we can improve the SBMT sys-
tem by an average of 1.3 BLEU, improving
the state-of-the-art on low-resource machine
translation.

1 Introduction

Neural machine translation (NMT) (Sutskever et al.,
2014) is a promising paradigm for extracting trans-
lation knowledge from parallel text. NMT sys-
tems have achieved competitive accuracy rates un-
der large-data training conditions for language pairs

This work was carried out while all authors were at USC’s
Information Sciences Institute.

*This author is currently at Google Brain.

Language Train Test SBMT NMT
Size Size BLEU BLEU

Hausa 1.0m 11.3K 23.7 16.8
Turkish 1.4m 11.6K 20.4 11.4
Uzbek 1.8m 11.5K 17.9 10.7
Urdu 0.2m 11.4K 17.9 5.2

Table 1: NMT models with attention are outperformed by stan-

dard string-to-tree statistical MT (SBMT) when translating low-

resource languages into English. Train/test bitext corpus sizes

are English token counts. Single-reference, case-insensitive

BLEU scores are given for held-out test corpora.

such as English–French. However, neural methods
are data-hungry and learn poorly from low-count
events. This behavior makes vanilla NMT a poor
choice for low-resource languages, where parallel
data is scarce. Table 1 shows that for 4 low-resource
languages, a standard string-to-tree statistical MT
system (SBMT) (Galley et al., 2004; Galley et al.,
2006) strongly outperforms NMT, even when NMT
uses the state-of-the-art local attention plus feed-
input techniques from Luong et al. (2015a).

In this paper, we describe a method for substan-
tially improving NMT results on these languages.
Our key idea is to first train a high-resource lan-
guage pair, then use the resulting trained network
(the parent model) to initialize and constrain training
for our low-resource language pair (the child model).
We find that we can optimize our results by fixing
certain parameters of the parent model and letting
the rest be fine-tuned by the child model. We re-
port NMT improvements from transfer learning of
5.6 BLEU on average, and we provide an analysis
of why the method works. The final NMT system
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approaches strong SBMT baselines in all four lan-
guage pairs, and exceeds SBMT performance in one
of them. Furthermore, we show that NMT is an ex-
ceptional re-scorer of ‘traditional’ MT output; even
NMT that on its own is worse than SBMT is con-
sistently able to improve upon SBMT system output
when incorporated as a re-scoring model.

We provide a brief description of our NMT model
in Section 2. Section 3 gives some background on
transfer learning and explains how we use it to im-
prove machine translation performance. Our main
experiments translating Hausa, Turkish, Uzbek, and
Urdu into English with the help of a French–English
parent model are presented in Section 4. Section 5
explores alternatives to our model to enhance under-
standing. We find that the choice of parent language
pair affects performance, and provide an empirical
upper bound on transfer performance using an arti-
ficial language. We experiment with English-only
language models, copy models, and word-sorting
models to show that what we transfer goes beyond
monolingual information and that using a transla-
tion model trained on bilingual corpora as a parent
is essential. We show the effects of freezing, fine-
tuning, and smarter initialization of different com-
ponents of the attention-based NMT system during
transfer. We compare the learning curves of transfer
and no-transfer models, showing that transfer solves
an overfitting problem, not a search problem. We
summarize our contributions in Section 6.

2 NMT Background

In the neural encoder-decoder framework for MT
(Neco and Forcada, 1997; Castaño and Casacu-
berta, 1997; Sutskever et al., 2014; Bahdanau et
al., 2014; Luong et al., 2015a), we use a recurrent
neural network (encoder) to convert a source sen-
tence into a dense, fixed-length vector. We then use
another recurrent network (decoder) to convert that
vector to a target sentence. In this paper, we use
a two-layer encoder-decoder system (Figure 1) with
long short-term memory (LSTM) units (Hochreiter
and Schmidhuber, 1997). The models were trained
to optimize maximum likelihood (via a softmax
layer) with back-propagation through time (Werbos,
1990). Additionally, we use an attention mecha-
nism that allows the target decoder to look back at

Figure 1: The encoder-decoder framework for neural machine

translation (NMT) (Sutskever et al., 2014). Here, a source sen-

tence C B A (presented in reverse order as A B C) is trans-

lated into a target sentence W X Y Z. At each step, an evolving

real-valued vector summarizes the state of the encoder (blue,

checkerboard) and decoder (red, lattice). Not shown here are

the attention connections present in our model used by the de-

coder to access encoder states.

the source encoder, specifically the local attention
model from Luong et al. (2015a). In our model we
also use the feed-input input connection from Luong
et al. (2015a) where at each timestep on the decoder
we feed in the top layer’s hidden state into the lowest
layer of the next timestep.

3 Transfer Learning

Transfer learning uses knowledge from a learned
task to improve the performance on a related task,
typically reducing the amount of required training
data (Torrey and Shavlik, 2009; Pan and Yang,
2010). In natural language processing, transfer
learning methods have been successfully applied to
speech recognition, document classification and sen-
timent analysis (Wang and Zheng, 2015). Deep
learning models discover multiple levels of repre-
sentation, some of which may be useful across tasks,
which makes them particularly suited to transfer
learning (Bengio, 2012). For example, Cireşan et
al. (2012) use a convolutional neural network to rec-
ognize handwritten characters and show positive ef-
fects of transfer between models for Latin and Chi-
nese characters. Ours is the first study to apply trans-
fer learning to neural machine translation.

There has also been work on using data from
multiple language pairs in NMT to improve perfor-
mance. Recently, Dong et al. (2015) showed that
sharing a source encoder for one language helps
performance when using different target decoders
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Decoder Hausa Turkish Uzbek Urdu
NMT 16.8 11.4 10.7 5.2
Xfer 21.3 17.0 14.4 13.8
Final 24.0 18.7 16.8 14.5
SBMT 23.7 20.4 17.9 17.9

Table 2: Our method significantly improves NMT results for

the translation of low-resource languages into English. Results

show test-set BLEU scores. The ‘NMT’ row shows results with-

out transfer, and the ‘Xfer’ row shows results with transfer. The

‘Final’ row shows BLEU after we ensemble 8 models and use

unknown word replacement.

for different languages. In that paper the authors
showed that using this framework improves perfor-
mance for low-resource languages by incorporating
a mix of low-resource and high-resource languages.
Firat et al. (2016) used a similar approach, employ-
ing a separate encoder for each source language,
a separate decoder for each target language, and
a shared attention mechanism across all languages.
They then trained these components jointly across
multiple different language pairs to show improve-
ments in a lower-resource setting.

There are a few key differences between our work
and theirs. One is that we are working with truly
small amounts of training data. Dong et al. (2015)
used a training corpus of about 8m English words for
the low-resource experiments, and Firat et al. (2016)
used from 2m to 4m words, while we have at most
1.8m words, and as few as 0.2m. Additionally, the
aforementioned previous work used the same do-
main for both low-resource and high-resource lan-
guages, while in our case the datasets come from
vastly different domains, which makes the task
much harder and more realistic. Our approach
only requires using one additional high-resource
language, while the other papers used many. Our
approach also allows for easy training of new low-
resource languages, while Dong et al. (2015) and Fi-
rat et al. (2016) do not specify how a new language
should be added to their pipeline once the models are
trained. Finally, Dong et al. (2015) observe an aver-
age BLEU gain on their low-resource experiments of
+1.16, and Firat et al. (2016) obtain BLEU gains of
+1.8, while we see a +5.6 BLEU gain.

The transfer learning approach we use is simple
and effective. We first train an NMT model on a

Re-scorer
SBMT Decoder

Hausa Turkish Uzbek Urdu
None 23.7 20.4 17.9 17.9
NMT 24.5 21.4 19.5 18.2
Xfer 24.8 21.8 19.5 19.1
LM 23.6 21.1 17.9 18.2

Table 3: Our transfer method applied to re-scoring output n-

best lists from the SBMT system. The first row shows the

SBMT performance with no re-scoring and the other 3 rows

show the performance after re-scoring with the selected model.

Note: the ‘LM’ row shows the results when an RNN LM trained

on the large English corpus was used to re-score.

large corpus of parallel data (e.g., French–English).
We call this the parent model. Next, we initialize an
NMT model with the already-trained parent model.
This new model is then trained on a very small par-
allel corpus (e.g., Uzbek–English). We call this the
child model. Rather than starting from a random po-
sition, the child model is initialized with the weights
from the parent model.

A justification for this approach is that in scenar-
ios where we have limited training data, we need a
strong prior distribution over models. The parent
model trained on a large amount of bilingual data
can be considered an anchor point, the peak of our
prior distribution in model space. When we train the
child model initialized with the parent model, we fix
parameters likely to be useful across tasks so that
they will not be changed during child model train-
ing. In the French–English to Uzbek–English ex-
ample, as a result of the initialization, the English
word embeddings from the parent model are copied,
but the Uzbek words are initially mapped to random
French embeddings. The parameters of the English
embeddings are then frozen, while the Uzbek em-
beddings’ parameters are allowed to be modified,
i.e. fine-tuned, during training of the child model.
Freezing certain transferred parameters and fine tun-
ing others can be considered a hard approximation to
a tight prior or strong regularization applied to some
of the parameter space. We also experiment with
ordinary L2 regularization, but find it does not sig-
nificantly improve over the parameter freezing de-
scribed above.

Our method results in large BLEU increases for
a variety of low resource languages. In one of the
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Language Pair Role Train Dev Test
Size Size Size

Spanish–English child 2.5m 58k 59k
French–English parent 53m 58k 59k
German–English parent 53m 58k 59k

Table 4: Data used for a low-resource Spanish–English task.

Sizes are English-side token counts.

four language pairs our NMT system using trans-
fer beats a strong SBMT baseline. Not only do
these transfer models do well on their own, they also
give large gains when used for re-scoring n-best lists
(n = 1000) from the SBMT system. Section 4 de-
tails these results.

4 Experiments
To evaluate how well our transfer method works we
apply it to a variety of low-resource languages, both
stand-alone and for re-scoring a strong SBMT base-
line. We report large BLEU increases across the
board with our transfer method.

For all of our experiments with low-resource lan-
guages we use French as the parent source language
and for child source languages we use Hausa, Turk-
ish, Uzbek, and Urdu. The target language is al-
ways English. Table 1 shows parallel training data
set sizes for the child languages, where the language
with the most data has only 1.8m English tokens.
For comparison, our parent French–English model
uses a training set with 300 million English tokens
and achieves 26 BLEU on the development set. Ta-
ble 1 also shows the SBMT system scores along with
the NMT baselines that do not use transfer. There is
a large gap between the SBMT and NMT systems
when our transfer method is not used.

The SBMT system used in this paper is a string-
to-tree statistical machine translation system (Gal-
ley et al., 2006; Galley et al., 2004). In this system
there are two count-based 5-gram language mod-
els. One is trained on the English side of the
WMT 2015 English–French dataset and the other is
trained on the English side of the low-resource bi-
text. Additionally, the SBMT models use thousands
of sparsely-occurring, lexicalized syntactic features
(Chiang et al., 2009).

For our NMT system, we use development sets for
Hausa, Turkish, Uzbek, and Urdu to tune the learn-

Parent BLEU ↑ PPL ↓
none 16.4 15.9
French–English 31.0 5.8
German–English 29.8 6.2

Table 5: For a low-resource Spanish–English task, we exper-

iment with several choices of parent model: none, French–

English, and German–English. We hypothesize that French–

English is best because French and Spanish are similar.

ing rate, parameter initialization range, dropout rate,
and hidden state size for all the experiments. For
training we use a minibatch size of 128, hidden state
size of 1000, a target vocabulary size of 15K, and
a source vocabulary size of 30K. The child models
are trained with a dropout probability of 0.5, as in
Zaremba et al. (2014). The common parent model
is trained with a dropout probability of 0.2. The
learning rate used for both child and parent mod-
els is 0.5 with a decay rate of 0.9 when the de-
velopment perplexity does not improve. The child
models are all trained for 100 epochs. We re-scale
the gradient when the gradient norm of all param-
eters is greater than 5. The initial parameter range
is [-0.08, +0.08]. We also initialize our forget-gate
biases to 1 as specified by Józefowicz et al. (2015)
and Gers et al. (2000). For decoding we use a beam
search of width 12.

4.1 Transfer Results

The results for our transfer learning method applied
to the four languages above are in Table 2. The par-
ent models were trained on the WMT 2015 (Bojar
et al., 2015) French–English corpus for 5 epochs.
Our baseline NMT systems (‘NMT’ row) all receive
a large BLEU improvement when using the transfer
method (the ‘Xfer’ row) with an average BLEU im-
provement of 5.6. Additionally, when we use un-
known word replacement from Luong et al. (2015b)
and ensemble together 8 models (the ‘Final’ row)
we further improve upon our BLEU scores, bringing
the average BLEU improvement to 7.5. Overall our
method allows the NMT system to reach competi-
tive scores and outperform the SBMT system in one
of the four language pairs.
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Figure 2: Our NMT model architecture, showing six blocks of parameters, in addition to source/target words and predictions.

During transfer learning, we expect the source-language related blocks to change more than the target-language related blocks.

Language Pair Parent Train Size BLEU ↑ PPL ↓
Uzbek–English

None 1.8m 10.7 22.4
French–English 1.8m 15.0 (+4.3) 13.9

French′–English
None 1.8m 13.3 28.2
French–English 1.8m 20.0 (+6.7) 10.9

Table 6: A better match between parent and child languages should improve transfer results. We devised a child language called

French′, identical to French except for word spellings. We observe that French transfer learning helps French′ (13.3→20.0) more

than it helps Uzbek (10.7→15.0).

4.2 Re-scoring Results

We also use the NMT model with transfer learn-
ing as a feature when re-scoring output n-best lists
(n = 1000) from the SBMT system. Table 3 shows
the results of re-scoring. We compare re-scoring
with transfer NMT to re-scoring with baseline (i.e.
non-transfer) NMT and to re-scoring with a neural
language model. The neural language model is an
LSTM RNN with 2 layers and 1000 hidden states. It
has a target vocabulary of 100K and is trained using
noise-contrastive estimation (Mnih and Teh, 2012;
Vaswani et al., 2013; Baltescu and Blunsom, 2015;
Williams et al., 2015). Additionally, it is trained us-
ing dropout with a dropout probability of 0.2 as sug-
gested by Zaremba et al. (2014). Re-scoring with the
transfer NMT model yields an improvement of 1.1–
1.6 BLEU points above the strong SBMT system; we
find that transfer NMT is a better re-scoring feature
than baseline NMT or neural language models.

In the next section, we describe a number of ad-
ditional experiments designed to help us understand
the contribution of the various components of our
transfer model.

5 Analysis

We analyze the effects of using different parent mod-
els, regularizing different parts of the child model,
and trying different regularization techniques.

5.1 Different Parent Languages
In the above experiments we use French–English as
the parent language pair. Here, we experiment with
different parent languages. In this set of experiments
we use Spanish–English as the child language pair.
A description of the data used in this section is pre-
sented in Table 4.

Our experimental results are shown in Table 5,
where we use French and German as parent lan-
guages. If we just train a model with no transfer on
a small Spanish–English training set we get a BLEU

score of 16.4. When using our transfer method we
get Spanish–English BLEU scores of 31.0 and 29.8
via French and German parent languages, respec-
tively. As expected, French is a better parent than
German for Spanish, which could be the result of
the parent language being more similar to the child
language. We suspect using closely-related parent
language pairs would improve overall quality.
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Figure 3: Uzbek–English learning curves for the NMT atten-

tion model with and without transfer learning. The training per-

plexity converges to a similar value in both cases. However, the

development perplexity for the transfer model is significantly

better.

5.2 Effects of having Similar Parent Language
Next, we look at a best-case scenario in which the
parent language is as similar as possible to the child
language.

Here we devise a synthetic child language (called
French′) which is exactly like French, except its vo-
cabulary is shuffled randomly. (e.g., “internationale”
is now “pomme,” etc). This language, which looks
unintelligible to human eyes, nevertheless has the
same distributional and relational properties as ac-
tual French, i.e. the word that, prior to vocabu-
lary reassignment, was ‘roi’ (king) is likely to share
distributional characteristics, and hence embedding
similarity, to the word that, prior to reassignment,
was ‘reine’ (queen). French should be the ideal par-
ent model for French′.

The results of this experiment are shown in Ta-
ble 6. We get a 4.3 BLEU improvement with an
unrelated parent (i.e. French–parent and Uzbek–
child), but we get a 6.7 BLEU improvement with
a ‘closely related’ parent (i.e. French–parent and
French′–child). We conclude that the choice of par-
ent model can have a strong impact on transfer mod-
els, and choosing better parents for our low-resource
languages (if data for such parents can be obtained)
could improve the final results.

5.3 Ablation Analysis
In all the above experiments, only the target input
and output embeddings are fixed during training. In
this section we analyze what happens when different
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Figure 4: Uzbek–English learning curves for the transfer

model with and without dictionary-based assignment of Uzbek

word types to French word embeddings (from the parent

model). Dictionary-based assignment enables faster improve-

ment in early epochs. The model variants converge, showing

that the unaided model is able to untangle the initial random

Uzbek/French word-type mapping without help.

parts of the model are fixed, in order to determine the
scenario that yields optimal performance. Figure 2
shows a diagram of the components of a sequence-
to-sequence model. Table 7 shows the effects of al-
lowing various components of the child NMT model
to be trained. We find that the optimal setting for
transferring from French–English to Uzbek–English
in terms of BLEU performance is to allow all of the
components of the child model to be trained except
for the input and output target embeddings.

Even though we use this setting for our main
experiments, the optimum setting is likely to be
language- and corpus-dependent. For Turkish, ex-
periments show that freezing attention parameters as
well gives slightly better results. For parent-child
models with closely related languages we expect
freezing, or strongly regularizing, more components
of the model to give better results.

5.4 Learning Curve

In Figure 3 we plot learning curves for both a trans-
fer and a non-transfer model on training and devel-
opment sets. We see that the final training set per-
plexities for both the transfer and non-transfer model
are very similar, but the development set perplexity
for the transfer model is much better.

The fact that the two models start from and con-
verge to very different points, yet have similar train-
ing set performances, indicates that our architecture
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Source Source Target
Attention

Target Input Target Output Dev Dev
Embeddings RNN RNN Embeddings Embeddings BLEU ↑ PPL ↓
� � � � � � 0.0 112.6
1 � � � � � 7.7 24.7
1 1 � � � � 11.8 17.0
1 1 1 � � � 14.2 14.5
1 1 1 1 � � 15.0 13.9
1 1 1 1 1 � 14.7 13.8
1 1 1 1 1 1 13.7 14.4

Table 7: Starting with the parent French–English model (BLEU =24.4, PPL=6.2), we randomly assign Uzbek word types to French

word embeddings, freeze various parameters of the neural network model (�), and allow Uzbek–English (child model) training

to modify other parts (1). The table shows how Uzbek–English BLEU and perplexity vary as we allow more parameters to be

re-trained.

and training algorithm are able to reach a good min-
imum of the training objective regardless of the ini-
tialization. However, the training objective seems
to have a large basin of models with similar perfor-
mance and not all of them generalize well to the de-
velopment set. The transfer model, starting with and
staying close to a point known to perform well on a
related task, is guided to a final point in the weight
space that generalizes to the development set much
better.

5.5 Dictionary Initialization

Using the transfer method, we always initialize
input language embeddings for the child model
with randomly-assigned embeddings from the par-
ent (which has a different input language). A smarter
method might be to initialize child embeddings with
similar parent embeddings, where similarity is mea-
sured by word-to-word t-table probabilities. To get
these probabilities we compose Uzbek–English and
English–French t-tables obtained from the Berke-
ley Aligner (Liang et al., 2006). We see from Fig-
ure 4 that this dictionary-based assignment results
in faster improvement in the early part of the train-
ing. However the final performance is similar to our
standard model, indicating that the training is able
to untangle the dictionary permutation introduced by
randomly-assigned embeddings.

5.6 Different Parent Models

In the above experiments, we use a parent model
trained on a large French–English corpus. One
might hypothesize that our gains come from exploit-

Transfer Model BLEU ↑ PPL ↓
None 10.7 22.4
French–English Parent 14.4 14.3
English–English Parent 5.3 55.8
EngPerm–English Parent 10.8 20.4
LM Xfer 12.9 16.3

Table 8: Transfer for Uzbek–English NMT with parent models

trained only on English data. The English–English parent learns

to copy English sentences, and the EngPerm–English learns to

un-permute scrambled English sentences. The LM is a 2-layer

LSTM RNN language model.

ing the English half of the corpus as an additional
language model resource. Therefore, we explore
transfer learning for the child model with parent
models that only use the English side of the French–
English corpus. We consider the following parent
models in our ablative transfer learning scenarios:

• A true translation model (French–English Par-
ent)

• A word-for-word English copying model
(English–English Parent)

• A model that unpermutes scrambled English
(EngPerm–English Parent)

• (The parameters of) an RNN language model
(LM Xfer)

The results, in Table 8, show that transfer learning
does not simply import an English language model,
but makes use of translation parameters learned
from the parent’s large bilingual text.
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6 Conclusion

Overall, our transfer method improves NMT scores
on low-resource languages by a large margin and al-
lows our transfer NMT system to come close to the
performance of a very strong SBMT system, even
exceeding its performance on Hausa–English. In
addition, we consistently and significantly improve
state-of-the-art SBMT systems on low-resource lan-
guages when the transfer NMT system is used for re-
scoring. Our experiments suggest that there is still
room for improvement in selecting parent languages
that are more similar to child languages, provided
data for such parents can be found.
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