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Abstract

Recent work on machine translation has used
crowdsourcing to reduce costs of manual eval-
uations. However, crowdsourced judgments
are often biased and inaccurate. In this pa-
per, we present a statistical model that ag-
gregates many manual pairwise comparisons
to robustly measure a machine translation
system’s performance. Our method applies
graded response model from item response
theory (IRT), which was originally developed
for academic tests. We conducted experi-
ments on a public dataset from the Workshop
on Statistical Machine Translation 2013, and
found that our approach resulted in highly in-
terpretable estimates and was less affected by
noisy judges than previously proposed meth-
ods.

1 Introduction

Manual evaluation is a primary means of interpret-
ing the performance of machine translation (MT)
systems and evaluating the accuracy of automatic
evaluation metrics. It is also essential for natural lan-
guage processing tasks such as summarization and
dialogue systems, where (1) the number of correct
outputs is unlimited, and (2) naı̈ve text matching
cannot judge the correctness, that is, an evaluator
must consider syntactic and semantic information.

Recent work has used crowdsourcing to reduce
costs of manual evaluations. However, the judg-
ments of crowd workers are often noisy and unre-
liable because they are not experts.

To maintain quality, evaluation tasks imple-
mented using crowdsourcing should be simple.

Thus, many previous studies focused on pairwise
comparisons instead of absolute evaluations. The
same task is given to multiple workers, and their re-
sponses are aggregated to obtain a reliable answer.

We must, therefore, develop methods that ro-
bustly estimate the MT performance based on many
pairwise comparisons.

Some aggregation methods have been proposed
for MT competitions hosted by the Workshop on
Statistical Machine Translation (WMT) (Bojar et al.,
2013; Hopkins and May, 2013; Sakaguchi et al.,
2014), where a ranking of the submitted systems is
produced by aggregating many manual judgments of
pairwise comparisons of system outputs.

However, existing methods do not consider the
following important issues.

Interpretability of the estimates: For the purpose
of evaluation, their results must be interpretable so
that we could use the results to improve MT systems
and the next MT evaluation campaigns. Existing
methods, however, only yield system-level scores.

Judge sensitivity: Some judges can examine the
quality of translations with consistent standards, but
others cannot (Graham et al., 2015). Sensitivities to
the translation quality and judges’ own standards are
important factors.

Evaluation of a newly submitted system: Pre-
vious approaches considered all pairwise combina-
tions of systems and must compare a newly sub-
mitted system with all the submitted systems. This
made it difficult to allow participants to submit their
systems after starting the evaluation step.

To address these issues, we use a model from
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item response theory (IRT). This theory was origi-
nally developed for psychometrics, and has applica-
tions to academic tests. IRT models are highly in-
terpretable and are supported by theoretical and em-
pirical studies. For example, we can estimate the
informativeness of a question in a test based on the
responses of examinees.

We focused on aggregating many pairwise com-
parisons with a baseline translation so that we could
use the analogy of standard academic tests. Figure 1
shows our problem setting. Each system of inter-
est yields translations, and the translations are com-
pared with a baseline translation by multiple human
judges. Each judge produces a preference judgment.

The pairwise comparisons correspond to ques-
tions in academic tests, a judge’s sensitivity to the
translation quality is mapped to discrimination of
questions, and the relative difficulty of winning the
pairwise comparison is mapped to the difficulty of
questions. MT systems correspond to students that
take academic tests, and IRT models can be naturally
applied to estimate the latent performance (ability)
of MT systems (students).

Additionally, our approach, fixing baseline trans-
lations, can easily evaluate a newly submitted sys-
tem. We only need to compare the new system with
the baseline instead of testing all pairwise combina-
tions of the submitted systems.

Our contributions are summarized as follows.1

1. We propose an IRT-based aggregation model of
pairwise comparisons with highly interpretable
parameters.

2. We simulated noisy judges on the WMT13
dataset and demonstrated that our model is less
affected by the noisy judges than previously
proposed methods.

2 Related Work

The WMT shared tasks have collected many manual
judgments of segment-level pairwise comparisons
and used them to produce system-level rankings for
MT tasks. Various methods has been proposed to ag-
gregate the judgments to produce reliable rankings.

1We also show that our method accurately replicated the
WMT13 official system scores using a few comparisons. How-
ever, this is not the main focus of this paper.

Figure 1: Illustration of manual pairwise comparison.
Each system yields translations. Judges compare them
with a baseline translation and report their preferences.
Our goal is to aggregate the judgments to determine the
performance of each system.

Frequency based approaches were used to pro-
duce the WMT13 official rankings (Bojar et al.,
2013), considering statistical significance of the re-
sults (Koehn, 2012).

Hopkins and May (2013) noted that we should
consider the relative matchup difficulty, and pro-
posed a statistical aggregation model. Their model
assumes that the quality of each system can be rep-
resented by a Gaussian distribution.

Sakaguchi et al. (2014) applied TrueSkill (Her-
brich et al., 2006) to reduce the number of compar-
isons to reach the final estimate based on an active
learning strategy. The same model was recently used
for grammatical error correction (Grundkiewicz et
al., 2015; Napoles et al., 2015).

These methods acquire the final system-level
scores, whereas our model also estimates segment
specific and judge specific parameters.

The Bradley–Terry (BT) model was the result of
a seminal study on aggregating pairwise compar-
isons (Bradley and Terry, 1952; Chen et al., 2013;
Dras, 2015). Recently, Chen et al. (2013) explic-
itly incorporated the quality of judges into the BT
model, and applied it to quality control in crowd-
sourcing.

The previously mentioned methods focused on
pairwise comparisons of all combination of the MT
systems, and thus, the number of comparisons in-
creases rapidly as the number of systems increases.
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Our approach, however, only uses comparisons with
a fixed baseline. This approach enables to apply IRT
models for academic tests and makes it easy to eval-
uate a newly submitted system.

The work most relevant to our model is the IRT-
based crowdsourcing model proposed by Baba and
Kashima (2013). Their goal was to estimate the true
quality of artifacts such as design works based on
ratings assigned by reviewers. They also applied a
graded response model to incorporate the authors’
latent abilities and the reviewers’ biases.

Yet their setting differs from ours in that they fo-
cused on the quality of the artifacts, whereas we are
interested in the authors. Additionally, their model
maps task difficulty and review bias to a difficulty
parameter in IRT. However, we naturally extended
the model so that standard analysis approaches can
be applied to maintain interpretability.

Some studies have focused on absolute evalua-
tions (Goto et al., 2014; Graham et al., 2015). Gra-
ham et al. (2015) gathered continuous scale evalu-
ations in terms of adequacy and fluency for many
segments, and filtered out noisy judgments based
on their consistency. The proposed pipeline results
in very accurate evaluations, but 40-50% of all the
judgments were filtered out due to inconsistencies.
This explains the difficulties of developing absolute
evaluation methods in crowdsourcing.

3 Problem Setting

We first describe the problem setting, as shown in
Figure 1.

Assume that there are a group of systems I in-
dexed by i, a set of segments J indexed by j, and a
set of judges K indexed by k.

Before a manual evaluation, we fix an arbitrary
baseline system and use it to translate the segments
J . Then, each system i ∈ I produces a transla-
tion on segment j ∈ J . One of the judges k ∈ K
compares it with the baseline translation. The judge
produces a preference judgment.

Let ui,j,k be the observed judgment that judge k
assigns to a translation by system i on segment j,
that is,

ui,j,k =





1 (preference for baseline)
2 (no preference)
3 (preference for system i)
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Figure 2: ICC of graded response model for (b1, b2) =
(−0.5, 0.5) and a = 1.7

and let c ∈ {1, 2, 3} be the judgment label.
Each system i has its own latent performance θi ∈

R. Our goal is to estimate θ by using the observed
judgments U = {ui,j,k}i∈I,j∈J ,k∈K.

4 Generative Judgment Model

We describe a statistical model for pairwise compar-
isons based on an IRT model.

4.1 Modified Graded Response Model

Based on the graded response model (GRM) pro-
posed by Samejima (1968), we define a generative
model of judgments. GRM deals with responses on
ordered categories including ratings such as A+, A,
B+ and B, and partial credits in tests. In our prob-
lem setting, judgments can be seen as partial credits.
When a system beats a baseline translation, the sys-
tem receives c = 3 credit. In the case of a tie, the
system receives c = 2 credit. The system receives
c = 1 credit when it lose to the baseline.

Let P∗jkc(θi) be the probability that judge k as-
signs judgment π > c to a comparison on segment j
between system i and a baseline.

P∗jkc(θi) =
1

1 + exp(−ak(θi − bjc)) ,

where P∗jk0(θi) = 1,P∗jk3(θi) = 0. Parameters a and
b are called discrimination and difficulty parameters,
respectively. a represents the discriminablity or sen-
sitivity of the judge, and b represents a segment-
specific difficulty parameter. The discrimination pa-
rameter (a) is positive, and the difficulty parameter
(b) satisfies b1 < b2, where b1 corresponds to the dif-
ficulty of not losing to the baseline (c > 1), and b2
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corresponds to the difficulty of beating the baseline
(c > 2).

The generative probability of judgment ui,j,k is
defined as the difference in the probabilities defined
above, that is,

Pjkc(θi) = P(ui,j,k = c|θi, bj , ak)
= P∗jkc−1(θi)− P∗jkc(θi).

This function is called item characteristic curve
(ICC). Figure 2 illustrates the ICC in the GRM. The
horizontal axis represents the latent performance of
systems, and the vertical axis represents the genera-
tive probability of the judgments. This figure shows,
for example, that the probability of the system with
θ = 0 beating the baseline is 0.3, whereas the system
with θ = 1.0 is much more likely to win. The dis-
crimination parameter controls slope of the curves.
If a is small, the probability drops a little when θ
decreased.

The model described above is different from the
original GRM, which assumed that the values of a
are independent from question to question, and that
each a belongs to exactly one question. However,
in our problem setting, the judges evaluate multiple
segments, and discrimination parameter a is inde-
pendent from segment j. This modification means
that the GRM can capture the judge’s sensitivity.

4.2 Priors

We assign prior distributions to the parameters to
obtain estimates stably. We assume Gaussian dis-
tributions on θ and b, that is, θ ∼ N (0, τ2) and
bc ∼ N (µbc, σ

2
bc) (c = 1, 2). The discrimination

parameter is positive, so we assume a log Gaussian
distribution on a, i.e., log(a) ∼ N (µa, σ

2
a). Note

that τ, µ, and σ are hyper parameters.

5 Parameter Estimation

We find the values of the parameters to maximize
the log likelihood based on obtained judgments U :

L(θ, ξ) = logP(U, θ, ξ).

We denote the parameters a = {ak}k∈K and b =
{bj1, bj2}j∈J to be ξ in this section.

5.1 Marginal Likelihood Maximization of
Judge Sensitivity and Matchup Difficulty

Estimates are known to be inaccurate when all the
parameters are optimized at once, so we first esti-
mate the parameters ξ to maximize the marginal log
likelihood w.r.t. the system performance θ.

mL(ξ) = logP(U, ξ)

=
∑

i∈I
log
∫ ∞

−∞
P(θ)P(Ui|θ, ξ)dθ + logP(ξ),

where Ui is the set of judgments given to system i
The equation above can be approximated using

Gauss-Hermite quadrature, i.e.,

mL(ξ) ≈
∑

i∈I
log

T∑

t=1

1√
π
wtP(Ui|τxt, ξ) + logP(ξ)

wt =
2T−1T !

√
π

T 2 (H(xt))
2

H(xt) =

(
2xt −

d

dxt

)T−1
· 1,

where a practically good approximation is obtained
by taking T ≈ 20.2

We solve the optimization problem using the gra-
dient descent methods to maximize the approxi-
mated marginal likelihood. The inequality con-
straints on the parameters are handled by adding log
barrier functions to the objective function.

5.2 Maximum A Posteriori (MAP) Estimation
of System Performance

Given the estimates of ξ, we estimate the system per-
formance θ = {θi}i∈I by using MAP estimation.

We maximize the objective function,

L(θ) = logP(U, θ; ξ)

=
∑

i∈I
logP(θi) +

∑

i∈I
logP(Ui|θi; ξ).

The estimates of θ are obtained using the gradient
descent method.

5.3 Discussion

So far we have assumed that the estimate is based
on batch learning. However, it is known that active

2In this study, we set T = 21 to include x = 0.
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learning can reduce the costs (i.e., the total number
of comparisons) (Sakaguchi et al., 2014).

To extend our model to the active learning frame-
work, one approach is to optimize the objective
function online and actively select the next system
to be compared based on criteria such as the uncer-
tainty of the system’s performance. We can apply
stochastic gradient descent to the online optimiza-
tion, which updates the estimates of the parame-
ters using the gradients calculated based on a single
comparison. This modification was left for future
work.

6 Experiments

We conducted experiments on the WMT13 man-
ual evaluation dataset for 10 language pairs.3 For
details of the evaluation data, see the overview of
WMT13 (Bojar et al., 2013).

6.1 Setup

Models: Our method (GRM) was initialized using
a = 1.7, b = (−0.5, 0.5), and a θ value derived
by summing up the judgments for each system and
scaling θ to fit the prior distribution. For the hyper
parameters, we set τ =

√
2, µa = log(1.7), σa =

1.0, µb = (−0.5, 0.5), σb = 2.0.
To compare with our method, we trained Ex-

pectedWins (EW) (Bojar et al., 2013), the model
by Hopkins and May (2013), (HM) and the two-
stage crowdsourcing model proposed by Baba and
Kashima (2013) (TSt). We also trained TrueSkill
(TS) (Sakaguchi et al., 2014), which was used to
produce the gold score on this experiment.

We followed Sakaguchi et al. (2014), who also
used the WMT13 datasets in their experiments, and
initialized the HM and TS parameters. For TSt, we
followed Baba and Kashima (2013).

Pairwise comparisons: The WMT dataset con-
tains five-way partial rankings, so we converted the
five-way partial rankings into pairwise comparisons.
For example, given a five-way partial ranking A >
B > C > D > E, we obtain ten pairwise compar-
isons A > B, A > C, A > D, · · · , and D > E. We
randomly sampled 800, 1,600, 3,200 and 6,400 pair-
wise comparisons from the whole dataset.

3http://statmt.org/wmt13/results.html

The training data differs between the models. For
GRM and TSt, we first sampled five-way rankings
that contained a baseline translation for each base-
line system and obtained pairwise comparisons. For
EW and HM, we first converted five-way rankings
into pairwise comparisons and selected them at ran-
dom.4 TS first receives all the pairwise compar-
isons and selects the training data based on the active
learning strategy, whereas we sampled the compar-
isons before running the other methods.

Gold scores: We followed the official evaluation
procedure of the WMT14-15 (Bojar et al., 2014; Bo-
jar et al., 2015) and made gold scores with TS. We
produced 1,000 bootstrap-resampled datasets over
all of the available comparisons. We then ran TS
and collected the system scores. The gold score is
the mean of the scores.

Evaluation metrics: We evaluated the models us-
ing the Pearson correlation coefficient and the nor-
malized discounted cumulative gain (nDCG), com-
paring the estimated scores and gold scores. We
used nDCG because we are often interested in ranks
and scores, especially in MT competitions such as
the WMT translation task.5 These metrics were also
used for experiments in Baba and Kashima (2013).

6.2 Results

Figure 3 shows the correlation and nDCG between
the estimated system performance and the gold
scores for the WMT13 Spanish–English task. For
the GRM and TSt, the baselines used in the eval-
uation are shown in parentheses in the labels. The
other language pairs showed similar tendencies. The
complete results for all language pairs can be found
in the supplementary data files.

Note that the main contribution of our method is
not to perform better than other methods in terms of
correlation and nDCG to the gold scores, but to re-
sult in highly interpretable and robust estimates dis-
cussed later.

TS resulted in the highest correlation and nDCG.
It is reasonable because the gold scores themselves
were produced by TS, and because it estimates the

4We also applied the sampling procedure of GRM and TSt
to EW and HM, but it made their estimation inaccurate.

5We did not use Spearman’s rank correlation coefficient be-
cause it does not consider a margin between ranks.
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Figure 3: Correlation and nDCG comparing the estimated system performance and gold scores with the number
of comparisons for the WMT13 Spanish–English task. The baseline system is shown in parenthesis for TSt and
GRM.

parameters using active learning, unlike the other
models.

The GRM with the best baseline system (DCU)
achieved almost the same scores as the TS, in terms
of correlation and nDCG. Although the TSt with the
best baseline resulted in accurate estimates in terms
of correlation, it did not in terms of nDCG. With
the worst baselines, the GRM and TSt both failed
to replicate the gold scores, but the GRM was sur-
prisingly accurate in terms of nDCG (even in the
worst case). This implies that the GRM can effec-
tively predict the top ranked systems.

6.3 Baseline Selection

It is likely that single pairwise comparisons do not
work well if the baseline is very strong or weak. As
shown in Figure 3, the baseline system influences
the final result. When we used SHEF-WPROA
as baseline, the estimated system performance was
not accurate. This is because SHEF-WPROA loses
69.4% of the pairwise comparisons and fails to dis-
criminate between the other systems. In contrast,
DCU loses 34.5% and win 34.8% of the compar-
isons and discriminate the other systems success-
fully. Thus, when we used DCU as baseline, the best
correlation and nDCG were achieved. Therefore, we
must determine the appropriate baseline system be-
fore the comparisons.

One possible solution is to consider the system-

Noise(%) 0 10 20 30 40 50

Correlation

GRM .929 .917 .900 .879 .849 .807
HM +.002 -.005 -.009 -.015 -.025 -.038
EW -.025 -.028 -.035 -.038 -.040 -.046

nDCG

GRM .883 .867 .847 .822 .793 .752
HM -.024 -.130 -.137 -.144 -.152 -.168
EW -.035 -.054 -.064 -.060 -.060 -.069

Table 1: Correlation and nDCG between the estimated
system performance and gold scores for the WMT13
Spanish–English task, based on noisy judges. The val-
ues were averaged over all the datasets. The GRM scores
were averaged over all baselines. The differences from
the GRM are reported for the HM and EW.

level scores yielded by automatic evaluation metrics
such as BLEU and METEOR. Figure 4 shows that
we obtained relatively good results when we used
a system whose system-level BLEU score and ME-
TEOR score6 were close to the mean of all the sys-
tems. 7

6.4 Analysis of Judge Sensitivity
To investigate the robustness of the GRM, we sim-
ulated “noisy” judges. We selected a subset of

6BLEU and METEOR scores were given by the WMT13
organizers.

7The system-level scores can be found in the WMT13 Met-
rics Task dataset.
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Figure 4: Relationship between system-level BLEU/METEOR scores (horizontal) and correlation/nDCG scores
(vertical). The mean BLEU/METEOR was set to zero, and the best score was set to zero for each language pair.

judges and randomly changed their decisions based
on a uniform distribution. The percentage of noisy
judges varied between 10% and 50% (in increments
of 10%).

We trained HM and EW on the simulated datasets.
We excluded TS because it assumes that we can ac-
tively request more comparisons from judges when
their decisions are ambiguous.

As shown in Table 1, the accuracy of the GRM
was less affected by the noisy judges than HM and
EW. This is because our model estimates judge-
specific sensitivities and automatically reduces the
influence of the noisy judges.

6.5 Analysis of the Interpretability of the
Estimated Matchup Difficulty

Our model is a natural extension of the GRM Same-
jima (1968), so we can apply standard analyses for
IRT models. Item information is one of the standard
analysis methods and corresponds to sensitivity to a
latent parameter of interest. Based on the item infor-
mation, we can find which segment was difficult to
be translated better than a baseline translation.

The item information is calculated using the esti-
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Figure 5: Item information for the WMT13 Spanish–
English task. The DCU was used as a baseline. We used
the averaged estimates of b on 100 sampled datasets with
6,400 comparisons to calculate the item information for
all segments.

mated parameters ξ (Samejima, 1968), that is,

Ij(θ) = −E
[
∂2L(θ; ξ)
∂θ2

]

=
3∑

c=1

[
−
∂2logPjkc(θ)

∂θ2

]
Pjkc

=
3∑

c=1

[P∗
′

jkc−1(θ)− P∗
′

jkc(θ)]
2

P∗jkc−1(θ)− P∗jkc(θ) ,

where P∗
′
= ∂P∗/∂θ.

Because the item information is only determined
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Segment 1858: Difficult to beat the baseline translation.
Source Hasta 2007 los dos telescopios Keck situados en el volcán hawaiano de Mauna Kea eran

considerados los más grandes del mundo.
Reference Until 2007, the two Keck telescopes at the Hawaiian volcano, Mauna Kea, were the

largest in the world.
DCU[baseline] Until 2007, the two Keck telescopes located on the Hawaiian volcano Mauna of KEA

were considered the largest in the world.

ONLINE-B (θ =) 0.24 Until 2007 the two Keck telescopes located on the Hawaiian volcano Mauna Kea were
considered the largest in the world.

UEDIN 0.12 Until 2007, the two Keck telescopes located on the Hawaiian volcano of Mauna Kea
were considered the largest in the world.

LIMSI-NCODE-SOUL 0.10 Until 2007 the two Keck telescopes in the Hawaiian Mauna Kea volcano were consid-
ered the largest in the world.

CU-ZEMAN -0.10 Until 2007, the two Keck telescope located in the volcano Mauna Kea hawaiano of were
regarded as the world’s largest.

JHU -0.12 Until 2007, the two Telescope Keck located in the Kea volcano hawaiano of Mauna were
considered the world’s largest.

SHEF-WPROA -0.92 Until 2007 the two telescope Keck located volcano hawaiano of Mauna KEA were re-
garded larger of world.

Segment 1818: Easy to beat the baseline translation.
Source Dependiendo de las tonalidades, algunas imágenes de galaxias espirales se convierten en

verdaderas obras de arte.
Reference Depending on the colouring, photographs of spiral galaxies can become genuine works

of art.
DCU[baseline] Depending on the drink, some images of galaxias galaxies become true works of art.

ONLINE-B 0.24 Depending on the shades, some images of spiral galaxies become true works of art.
UEDIN 0.12 (Same as ONLINE-B)
LIMSI-NCODE-SOUL 0.10 Depending on the color, some images of galaxies spirals become real works of art.
CU-ZEMAN -0.10 Depending on the tonalidades, some images of spirals galaxies become true works of art.
JHU -0.12 Depending on the tonalidades, some images of galaxies spirals become true works of art.
SHEF-WPROA -0.92 Depending on the tonalidades, some images of galaxies spirals become real artwork.

Table 2: Translation examples for the WMT13 Spanish–English task. The reference is a correct translation given
by the WMT organizers and was shown to human judges. Estimates of θ (averaged over 100 sampled datasets with
6,400 comparisons) are also reported in the table.

by segments and is independent of the judges, we set
ak = 1 (k ∈ K).

Figure 5 gives two examples of the item infor-
mation. The horizontal axis corresponds to the sys-
tem performance θ, and the vertical axis represents
the informativeness of a segment. This figure in-
dicates that segment 1858 (red line) can effectively
discriminate systems with θ ≈ 0.13, whereas seg-
ment 1818 (blue dashed line) is sensitive to those
with θ ≈ −0.11. This means that systems with low
θ tend to lose to a baseline translation on segment
1858, and the segment does not tell meaningful in-
formation on performance of the systems. However,
they sometimes beat a baseline translation on seg-
ment 1818, and the segment can measure their per-
formance accurately.

Table 2 shows translations for segments 1858 and
1818. We found that the baseline translation on seg-
ment 1818 was relatively good, whereas the baseline
translation on segment 1858 contained wrong words
such as “drink” and “galaxias”. Consequently, sys-
tems with low θ tended to lose to the baseline on
segment 1858 due to their wrong translation (see the
translation of “hawaiano de Mauna Kea”). In con-
trast, some of the low-ranked systems beat the base-
line on segment 1818, and the segment contributed
to discriminate them.

The item information is used to design academic
tests that can effectively capture students’ abilities.
It could analogously be used to preselect segments
to be translated based on the item information in the
MT evaluation.

518



7 Conclusion

We have addressed the task of manual judgment ag-
gregation for MT evaluations. Our motivation was
three folded: (1) to incorporate a judge’s sensitivity
to robustly measure a system’s performance, (2) to
maintain highly interpretable estimates, and (3) to
handle with a newly submitted system.

To tackle these problems, we focused on pairwise
comparisons with a fixed baseline translation so that
we could apply the GRM model in IRT by using the
analogy of standard academic tests. Unlike testing
all pairwise combinations of systems, fixing base-
line translations makes it easy to evaluate a newly
submitted system. We demonstrated that our model
gave robust and highly interpretable estimates on the
WMT13 datasets.

In the future work, we will incorporate active
learning to the proposed method so that we could
reduce the total number of comparisons to obtain fi-
nal results. Although we evaluated the correlation
between the estimated system performance scores
and the WMT official scores, other evaluation pro-
cedures might also be considered. For example,
Hopkins and May (2013) considered model perplex-
ity and Sakaguchi et al. (2014) compared accuracy.
However, we cannot directly compare other meth-
ods to our method in terms of perplexity or accuracy
because our method focuses on comparisons with a
baseline translation, whereas they do not. It will be
required to investigate correlation between the esti-
mates and expert decisions.
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