
November 1–5, 2016 Austin, Texas, USA

emnlp2016

CONFERENCE PROCEEDINGS

Conference on Empirical Methods in
Natural Language Processing

www.emnlp2016.net

EMNLP 2016 gratefully acknowledges the following sponsors for their support:

Platinum

Gold

IBM Research

Silver

AI @ ISI

Bronze

Student Volunteer Sponsor

iii

Order copies of this and other ACL proceedings from:

Curran Associates
57 Morehouse Lane
Red Hook, New York 12571
USA
Tel: +1-845-758-0400
Fax: +1-845-758-2633
curran@proceedings.com

c©2016 The Association for Computational Linguistics

ISBN 978-1-945626-25-8

v

Table of Contents

Preface by the General Chair . ix

Preface by the Program Committee Co-Chairs . xi

Organizing Committee .xv

Program Committee . xvii

Invited Speaker: Christopher Potts . xxiv

Invited Speaker: Andreas Stolcke . xxv

Invited Speaker: Stefanie Tellex . xxvi

Conference Program . xxvii

List of Papers . lix

Author Index . 2393

vii

Preface by the General Chair

October 17, 2016

Welcome to the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP
2016) in Austin, Texas, USA!

EMNLP is annually organized by SIGDAT, the Association for Computational Linguistics’ special
interest group on linguistic data and corpus-based approaches to NLP. At EMNLP 2016, one of the
top tier conferences in Natural Language Processing (NLP), we have witnessed how our field thrives.
This is not only reflected in the number of paper submissions but also in the number of sponsors. The
number of long paper submissions has increased 14.5% over that of 2015. This year, we also have seen a
record high number of sponsors in EMNLP history. We’re honored and grateful to have Amazon, Baidu,
Google and Grammarly as the Platinum Sponsors, Bloomberg, Citadel, eBay, Facebook, IBM Research,
Maluuba and Microsoft as the Gold Sponsors, AI@ISI as the Silver Sponsor, Nuance, VoiceBox and
Yandex as the Bronze Sponsors. We also have Oracle as the Student Volunteer Sponsor.

A large number of people worked hard to bring this annual meeting to fruition, to whom I’m
very grateful. Program Chairs, Kevin Duh and Xavier Carreras, the Area Chairs, reviewers, best
paper committee members put in an immense amount of work to develop the technical program.
Tutorial Chairs, Bishan Yang and Rebecca Hwa, Workshop Chairs, Annie Louis and Greg Kondrak
conducted a competitive selection process in collaboration with NAACL and ACL to select 6 tutorials
and 8 workshops. Sponsorship Chairs, Michel Galley, Hang Li (ACL International Sponsorship
Committee Representative for EMNLP) did an excellent job to attract the record number of sponsors.
Publication Chairs, Siddharth Patwardhan, Daniele Pighin (advisor), Handbook Chair, Swapna
Somasundaran worked with a very tight schedule to assemble the proceedings, C4Me Mobile app, and
handbooks. Publicity Chair, Saif M. Mohammad disseminated the call for papers, call for participation
and other announcements in a timely manner. Webmaster, Jackie C.K. Cheung kept the website
updated all the time, providing a professional outlook of the conference. Student Scholarship Chair
and Student Volunteer Coordinator, Vincent Ng, played two critical roles, managing the NSF and
SIGDAT scholarship, and the review of applications, coordinating the student volunteers to support the
conference. SIGDAT Secretary, Chris Callison-Burch acted as the liaison between SIGDAT and the
conference organizers. He is always available to provide great suggestions.

As usual, the conference cannot be done without Local Arrangements Chair, Priscilla Rasmussen, who
single-handedly took care of all conference logistics. I would like to mention that I benefited greatly
from last year’s General Chair, Lluís Màrquez, for the monthly progress reports and other valuable
experience. We are also grateful to the invited speakers, Christopher Potts, Andreas Stolcke and
Stefanie Tellex who will share with us their exciting research.

ix

I really appreciate the trust from SIGDAT officers, including previous secretary, Noah Smith, to
coordinate the conference as the General Chair.

Finally, I’d like to thank all the authors and attendees. Your participation made a difference to the
conference. I hope that you have an enjoyable and productive time at Austin. My best wishes for a
successful conference!

Jian Su
EMNLP 2016 General Chair

x

Preface by the Program Committee Co-Chairs

October 17, 2016

Welcome to the 2016 Conference on Empirical Methods in Natural Language Processing! This year
we received 1,087 valid submissions, of which 687 were long papers and 400 were short papers. We
accepted 177 long papers (25.8% acceptance rate) and 87 short papers (21.8% acceptance rate), for a
total of 264 papers and an overall acceptance rate of 24.3%.

The technical program at EMNLP 2016 consists of a total of 273 papers, including 9 journal papers
accepted by the Transactions of ACL. We have structured the conference into three parallel oral
sessions in the day and two poster sessions in the evening. Borrowing from recent NAACL conference
innovations, we also run poster spotlight sessions (also called HMM: Half-Minute Madness1), where
poster presenters of long papers have 30 seconds and one slide to advertise their work. Poster sessions
are becoming larger due to the rapid growth in our field, and we believe it is important to ensure that all
papers receive the exposure they deserve.

We are excited and grateful to have three distinguished speakers for our invited keynote talks.
Christopher Potts (Stanford University) will present recent advances in rational speech acts and
pragmatics. Andreas Stolcke (Microsoft Research) will talk about the challenges and opportunities
in human-human-machine dialog. Stefanie Tellex (Brown University) will discuss novel methods and
frameworks for enabling human-robot collaboration. We think that these are exciting research areas
that can potentially impact—and be impacted by—the EMNLP community in the near future. We look
forward to their keynotes and the conversations afterwards.

The program committee includes 823 primary reviewers and 99 secondary reviewers. The committee
was structured into 12 thematic areas, handled by 41 area chairs. We are grateful to all program
committee members for their effort and dedication during our tight reviewing schedule; without them
we cannot create a strong high-quality program. We are also thankful for all authors who submitted
papers, which overall cover a diverse range of topics.

Best paper awards were organized around three categories: best paper, best short paper, and best
resource paper. The latter category was introduced at EMNLP 2015. Since resources have become
central for scientific progress in our field, we would like this category of award to become a standard.
The selection process was bottom-up: reviewers and area chairs suggested candidates, which were
short-listed by us program chairs. Then, for each category we created a committee of experts to discuss
the papers in depth, and we chaired the committees.

For best paper, the committee members were Stephen Clark, Hal Daumé III, Chris Dyer, and Julia
1Neologism coined by Joel Tetreault, our HMM chair.

xi

Long Short Total
Initial submissions 747 438 1,185
Withdrawn or rejected without review 60 38 98
Submissions reviewed 687 400 1,087
Submissions accepted 177 87 264
Acceptance rate 25.76% 21.75% 24.29%
TACL papers 9 0 9
Papers at EMNLP 2016 186 87 273
Oral talks 87 22 109
Poster presentations 99 65 164

Table 1: Submission statistics of EMNLP 2016

Hockenmaier. The committee selected two best long papers:

• Best Paper: Improving Information Extraction by Acquiring External Evidence with
Reinforcement Learning, by Karthik Narasimhan, Adam Yala and Regina Barzilay.

• Best Paper: Global Neural CCG Parsing with Optimality Guarantees, by Kenton Lee, Mike
Lewis and Luke Zettlemoyer.

In addition, two papers were given an honorable mention for best paper:

• Honorable Mention for Best Paper: Span-Based Constituency Parsing with a Structure-Label
System and Provably Optimal Dynamic Oracles, by James Cross and Liang Huang.

• Honorable Mention for Best Paper: Sequence-to-Sequence Learning as Beam-Search
Optimization, by Sam Wiseman and Alexander M. Rush.

For best short paper, the committee had Stefan Riezler, Anoop Sarkar, and Noah Smith, and the award
went to:

• Best Short Paper: Learning a Lexicon and Translation Model from Phoneme Lattices, by Oliver
Adams, Graham Neubig, Trevor Cohn, Steven Bird, Quoc Truong Do and Satoshi Nakamura.

For best resource paper, the committee consisted of Eneko Agirre, Mirella Lapata, and Sebastian
Riedel, and the award went to:

• Best Resource Paper: SQuAD: 100,000+ Questions for Machine Comprehension of Text, by
Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev and Percy Liang.

We are grateful to the many people who helped us at various stages of the program preparation. In
particular, we would like to thank:

xii

• Jian Su and Chris Callison-Burch, who gave us advice and support throughout the whole process,
not only in their capacity as program chairs of EMNLP 2015, but also as general chair of EMNLP
2016 (Jian) and SIGDAT secretary-treasurer (Chris).

• The 41 area chairs, whose expertise and dedication we relied on heavily. They selected reviewers,
coordinated the review process, led discussions, and made recommendations. We owe you
a favor: Yoav Artzi, Tim Baldwin, Guillaume Bouchard, Nate Chambers, Kyunghyun Cho,
Michael Collins, John DeNero, Georgiana Dinu, Sanja Fidler, Alex Fraser, Kuzman Ganchev,
Ed Grefenstette, Julia Hockenmaier, Dirk Hovy, Liang Huang, Ruihong Huang, Min-Yen Kan,
Daisuke Kawahara, Yang Liu, Bing Liu, André F.T. Martins, Saif Mohammad, Ray Mooney,
Smaranda Muresan, Preslav Nakov, Vivi Nastase, Ariadna Quattoni, Laura Rimell, Eric Ringger,
Alan Ritter, Brian Roark, David Smith, Manfred Stede, Suzanne Stevenson, Michael Strube, Joel
Tetreault, Lucy Vanderwende, Dekai Wu, Wei Xu, Scott Wen-Tau Yih, and Geoff Zweig.

• Priscilla Rasmussen, our local organizer who performed amazing feats to make everything work.

• Siddharth Patwardhan and Daniele Pighin, the publication chairs.

• Swapna Somasundaran, handbook chair.

• Joel Tetreault, Brendan O’Connor, and Courtney Napoles for organizing and chairing the HMM
sessions.

• The session chairs: Regina Barzilay, Alexandra Birch, Phil Blunsom, Yejin Choi, Ido
Dagan, Marie-Catherine de Marneffe, Katrin Erk, Pascale Fung, Alona Fyshe, Rebecca Hwa,
Heng Ji, Diane Litman, Yang Liu, Lluís Màrquez, André F.T. Martins, Kathy McKeown,
Raymond Mooney, Preslav Nakov, Hinrich Schütze, Thamar Solorio, Hiroya Takamura, Kristina
Toutanova, Bonnie Webber, and Wei Xu.

• Jackie C.K. Cheung, who maintained the EMNLP 2016 website with up-to-date information.

• Yejin Choi, who kept us connected with the ACL Exec.

• Kristina Toutanova and Lillian Lee, who helped us regarding TACL papers.

• Janyce Wiebe, Michael Strube, and Anoop Sarkar, who provided detailed advice about chairing
a program committee of a large conference at the initial planning stages of the process.

• Ani Nenkova, Owen Rambow, Katrin Erk and Noah Smith (program co-chairs of NAACL and
ACL this year), with which we coordinated several aspects of the major conferences this year.

• The Softconf support team, Rich Gerber and Paolo Gai, who assisted us in using the Start
Conference Manager.

On behalf of all attendees at the conference, we would also like to acknowledge the generosity of our
sponsors: Amazon, Baidu, Google, Grammarly, Bloomberg, Citadel, eBay, Facebook, IBM Research,
Maluuba, Microsoft, AI@ISI, Nuance, VoiceBox, Yandex, and Oracle.

xiii

Chairing the program committee of EMNLP has been a great honor and a rich scientific experience.
We are grateful to SIGDAT for giving us this opportunity. And we hope that you will find the program
as exciting and enjoyable as we do!

Xavier Carreras and Kevin Duh
EMNLP 2016 Program Committee Co-Chairs

xiv

Organizing Committee

General Chair

Jian Su, Institute for Infocomm Research (I2R)

Program Co-chairs

Kevin Duh, Johns Hopkins University
Xavier Carreras, Xerox Research Centre Europe

Workshop Co-chairs

Annie Louis, University of Essex
Greg Kondrak, University of Alberta

Tutorial Co-chairs

Bishan Yang, Carnegie Mellon University
Rebecca Hwa, University of Pittsburgh

Publication Co-chairs

Siddharth Patwardhan, Apple
Daniele Pighin (advisor), Google

Publicity Chairs

Saif Mohammad, National Research Council Canada

Handbook Chair

Swapna Somasundaran, Educational Testing Services

Website Chair

Jackie C.K. Cheung, McGill University

Sponsorship Team

Michel Galley, Microsoft Research
Hang Li (ISC Representative for EMNLP), Huawei Technologies

Student Scholarship Chair and Student Volunteer Co-ordinator

Vincent Ng, University of Texas at Dallas

xv

SIGDAT Liason

Chris Callison-Burch, University of Pennsylvania

Local Arrangements Chair

Priscilla Rasmussen, ACL Business Manager

xvi

Program Committee

Program Co-chairs

Xavier Carreras, Xerox Research Centre Europe
Kevin Duh, Johns Hopkins University

Area chairs

Information Extraction, Information Retrieval, and Question Answering
Nathanael Chambers, US Naval Academy
Ruihong Huang, Texas A&M University
Min-Yen Kan, National University of Singapore
Alan Ritter, The Ohio State University
Scott Wen-tau Yih, Microsoft Research

Language and Vision
Sanja Fidler, University of Toronto
Julia Hockenmaier, University of Illinois Urbana-Champaign

Linguistic Theories and Psycholinguistics
Suzanne Stevenson, University of Toronto

Machine Learning
Guillaume Bouchard, University College London
Kyunghyun Cho, New York University
Kuzman Ganchev, Google
Ariadna Quattoni, Xerox Research Centre Europe
Eric Ringger, Facebook and Brigham Young University

Machine Translation and Multilinguality
John DeNero, UC Berkeley
Alexander Fraser, Ludwig-Maximilians-Universität München
Yang Liu, Tsinghua University
Dekai Wu, HKUST

Segmentation, Tagging, and Parsing
Michael Collins, Columbia University and Google
Liang Huang, Oregon State University
Daisuke Kawahara, Kyoto University
André F.T. Martins, Unbabel and Instituto de Telecomunicações

xvii

Semantics
Yoav Artzi, Cornell University
Georgiana Dinu, IBM Watson
Edward Grefenstette, Google DeepMind
Raymond Mooney, University of Texas at Austin
Laura Rimell, University of Cambridge

Sentiment Analysis and Opinion Mining
Dirk Hovy, University of Copenhagen
Bing Liu, University of Illinois at Chicago
Saif Mohammad, National Research Council Canada

Social Media and Computational Social Science
Timothy Baldwin, The University of Melbourne
Smaranda Muresan, Columbia University

Spoken Language Processing
Brian Roark, Google Inc.
Geoffrey Zweig, Microsoft Research

Summarization, Generation, Discourse, Dialogue
Manfred Stede, University of Potsdam
Michael Strube, Heidelberg Institute for Theoretical Studies
Lucy Vanderwende, Microsoft Research
Wei Xu, The Ohio State University

Text Mining and NLP Applications
Preslav Nakov, Qatar Computing Research Institute
Vivi Nastase, University of Heidelberg
David Smith, Northeastern University
Joel Tetreault, Grammarly

Primary Reviewers

Balamurali A R; Omri Abend; Amjad Abu-Jbara; Željko Agić; Eneko Agirre; Julien Ah-Pine;
Lars Ahrenberg; Salah Ait-Mokhtar; Yaser Al-Onaizan; Mohammed Alam; Chris Alberti; Niko-
laos Aletras; Jan Alexandersson; Enrique Alfonseca; Tamer Alkhouli; Miltiadis Allamanis; Alexan-
dre Allauzen; Yasemin Altun; Carlos Alzate; Bharat Ram Ambati; Hadi Amiri; Waleed Ammar;
Daniel Andor; Jacob Andreas; Nicholas Andrews; Yuki Arase; Ron Artstein; Ramón Astudillo;
Giuseppe Attardi; Isabelle Augenstein; Eleftherios Avramidis; Amittai Axelrod;

xviii

Dzmitry Bahdanau; JinYeong Bak; Alexandra Balahur; Kalika Bali; Borja Balle; Miguel Balles-
teros; David Bamman; Mohit Bansal; Libby Barak; Chitta Baral; Regina Barzilay; Riza Theresa
Batista-Navarro; Daniel Bauer; Timo Baumann; Daniel Beck; Beata Beigman Klebanov; Lisa
Beinborn; Núria Bel; David Belanger; Kedar Bellare; I. Beltagy; Anja Belz; Fabrício Ben-
evenuto; Jonathan Berant; Taylor Berg-Kirkpatrick; Nicola Bertoldi; Laurent Besacier; Steven
Bethard; Rahul Bhagat; Suma Bhat; Chris Biemann; Or Biran; Alexandra Birch; Yonatan Bisk;
John Blitzer; Michael Bloodgood; Gemma Boleda; Kalina Bontcheva; Johan Bos; Matko Bosn-
jak; Jan A. Botha; Houda Bouamor; Samuel Bowman; Fabienne Braune; Chris Brew; Chris
Brockett; Julian Brooke; Caroline Brun; William Bryce; Paul Buitelaar; Florin Bulgarov; Razvan
Bunescu; David Burkett; Jill Burstein; Bill Byrne;

Elena Cabrio; Aoife Cahill; Chris Callison-Burch; Berkant Barla Cambazoglu; Erik Cambria;
Liangliang Cao; Ziqiang Cao; Fabienne Cap; Cornelia Caragea; Claire Cardie; Marine Carpuat;
John Carroll; Tommaso Caselli; Vittorio Castelli; Giuseppe Castellucci; Mauro Cettolo; Joyce
Chai; Yee Seng Chan; Muthu Kumar Chandrasekaran; Angel Chang; Jonathan Chang; Jason
Chang; Kai-Wei Chang; Ming-Wei Chang; Wanxiang Che; Ciprian Chelba; Boxing Chen; Danqi
Chen; Bin Chen; Zhiyuan Chen; Hsin-Hsi Chen; John Chen; Tao Chen; Wenliang Chen; Yun-
Nung Chen; Colin Cherry; Sean Chester; Jackie Chi Kit Cheung; David Chiang; Martin Chodo-
row; Do Kook Choe; Eunsol Choi; Jinho D. Choi; Yejin Choi; Monojit Choudhury; Christos
Christo-doulopoulos; Grzegorz Chrupała; Mark Cieliebak; Philipp Cimiano; Stephen Clark; Ann
Clifton; Shay B. Cohen; Trevor Cohn; Nigel Collier; Miriam Connor; Paul Cook; Ryan Cotterell;
Benoit Crabbé; Danilo Croce;

Jennifer D’Souza; Walter Daelemans; Ido Dagan; Lena Dankin; Dipanjan Das; Pradipto Das;
Rajarshi Das; Hal Daumé III; Munmun De Choudhury; Adrià de Gispert; Marie-Catherine de
Marneffe; Gerard de Melo; Judith Degen; Felice Dell’Orletta; Dina Demner-Fushman; Steve
DeNeefe; Pascal Denis; Michael Denkowski; Ludovic Denoyer; Anoop Deoras; Tejaswini De-
oskar; Leon Derczynski; Aliya Deri; Ann Devitt; Jacob Devlin; Giuseppe Di Fabbrizio; Mona
Diab; Laura Dietz; Jesse Dodge; Qing Dou; Doug Downey; Eduard Dragut; Mark Dras; Markus
Dreyer; Gregory Druck; Nan Duan; Nadir Durrani; Greg Durrett; Chris Dyer; Marc Dymetman;

Richard Eckart de Castilho; Yo Ehara; Vladimir Eidelman; Jacob Eisenstein; Jason Eisner; Ali
Elkahky; Desmond Elliott; Micha Elsner; Messina Enza; Keelan Evanini; Stefan Evert;

Benamara Farah; Noura Farra; Manaal Faruqui; Benoit Favre; Geli Fei; Anna Feldman; Paul
Felt; Yansong Feng; Raquel Fernandez; Daniel Fernández-González; Michele Filannino; Simone
Filice; Katja Filippova; Nicholas FitzGerald; Jeffrey Flanigan; Radu Florian; José A. R. Fonol-
losa; Mikel Forcada; Victoria Fossum; George Foster; Anette Frank; Stefan L. Frank; Daniel
Fried; Annemarie Friedrich; Mario Fritz; Hagen Fuerstenau; Atsushi Fujii; Alona Fyshe;

Nuria Gala; Matthias Gallé; Michel Galley; Michael Gamon; Juri Ganitkevitch; Jianfeng Gao;
Wei Gao; Claire Gardent; Matt Gardner; Dan Garrette; Milica Gasic; Tao Ge; Spandana Gella;
Kallirroi Georgila; Ulrich Germann; George Giannakopoulos; Daniel Gildea; Jennifer Gillenwa-
ter; Daniel Gillick; Kevin Gimpel; Filip Ginter; Dimitra Gkatzia; Goran Glavaš; Amir Globerson;
Koldo Gojenola; Yoav Goldberg; Dan Goldwasser; Carlos Gómez-Rodríguez; Graciela Gonza-
lez; Edgar Gonzàlez Pellicer; Matthew R. Gormley; Amit Goyal; Joao Graca; Yvette Graham;
Edouard Grave; Christopher Gravier; Spence Green; Stephan Greene; Ralph Grishman; Cyril

xix

Grouin; Jiafeng Guo; Hongyu Guo; Weiwei Guo; Sonal Gupta; Iryna Gurevych; Andreas Guta;

Ivan Habernal; Ben Hachey; Barry Haddow; Udo Hahn; Hannaneh Hajishirzi; Dilek Hakkani-
Tur; John Hale; David Hall; Keith Hall; Shuguang Han; Xianpei Han; Greg Hanneman; Sanda
Harabagiu; Christian Hardmeier; Saša Hasan; Kazuma Hashimoto; Hua He; Xiangnan He; He
He; Yifan He; Luheng He; Xiaodong He; Yulan He; Kenneth Heafield; Michael Heilman;
James Henderson; John Henderson; Matthew Henderson; Aurélie Herbelot; Derrick Higgins;
Graeme Hirst; Hieu Hoang; Kristy Hollingshead; Liangjie Hong; Matthew Honnibal; Ales Ho-
rak; Takaaki Hori; Veronique Hoste; Yufang Hou; Chun-Nan Hsu; Minlie Huang; Yi-Ting Huang;
Fei Huang; Heyan Huang; Shujian Huang; Xuanjing Huang; Zhongqiang Huang; Matthias Huck;
Rebecca Hwa;

Gonzalo Iglesias; Iustina Ilisei; Diana Inkpen; Radu Tudor Ionescu; Abe Ittycheriah; Mohit Iyyer;

Guillaume Jacquet; Kokil Jaidka; Peter Jansen; Laura Jehl; Yangfeng Ji; Ping Jian; Wenbin Jiang;
Zhiwei Jiang; Jing Jiang; Anders Johannsen; Marcin Junczys-Dowmunt; David Jurgens;

Hetunandan Kamichetty; Hiroshi Kanayama; Justine Kao; Damianos Karakos; Saurabh Kataria;
Frank Keller; Mitesh M. Khapra; Chloé Kiddon; Douwe Kiela; Jin-Dong Kim; Suin Kim; Tracy
Holloway King; Svetlana Kiritchenko; Jamie Ryan Kiros; Sigrid Klerke; Roman Klinger; Al-
istair Knott; Ekaterina Kochmar; Tomáš Kočiský; Philipp Koehn; Mamoru Komachi; Grzegorz
Kondrak; Lingpeng Kong; Ioannis Konstas; Georgios Kontonatsios; Anna Korhonen; Yannis Ko-
rkontzelos; Leila Kosseim; Zornitsa Kozareva; Martin Krallinger; Jayant Krishnamurthy; Anas-
tasia Krithara; Canasai Kruengkrai; Germán Kruszewski; Lun-Wei Ku; Roland Kuhn; Shankar
Kumar; Jonathan K. Kummerfeld; Tsung-Ting Kuo; Sadao Kurohashi; Nate Kushman; Tom
Kwiatkowski;

Igor Labutov; Patrik Lambert; Vasileios Lampos; Man Lan; Phillippe Langlais; Mirella Lapata;
Shalom Lappin; Angeliki Lazaridou; Nevena Lazic; Joseph Le Roux; John Lee; Sungjin Lee;
Kenton Lee; Lung-Hao Lee; Tao Lei; Alessandro Lenci; Gregor Leusch; Omer Levy; Roger
Levy; Mike Lewis; Jiwei Li; Chen Li; Fangtao Li; Huayi Li; Junyi Jessy Li; Haibo Li; Jing
Li; Qi Li; Sujian Li; Mu Li; Yanen Li; Zhenghua Li; Maria Liakata; Victoria Lin; Xiao Ling;
Wang Ling; Tal Linzen; Marina Litvak; Fei Liu; Qian Liu; Qun Liu; Kang Liu; Shujie Liu; Yang
Liu; Yiqun Liu; Nikola Ljubešić; Edward Loper; Adam Lopez; Zhengdong Lu; Bin Lu; Wei Lu;
Marco Lui; Michal Lukasik; Xiaoqiang Luo; Zhunchen Luo; Minh-Thang Luong; Teresa Lynn;

Ji Ma; Yanjun Ma; Klaus Macherey; Wolfgang Macherey; Nitin Madnani; Walid Magdy; Pierre
Magistry; Shervin Malmasi; Gideon Mann; Christopher D. Manning; Mehdi Manshadi; Saab
Mansour; Amin Mantrach; Daniel Marcu; Anna Margolis; Lluís Màrquez; Bruno Martins; Yu-
val Marton; Sebastian Martschat; Yuji Matsumoto; Austin Matthews; Arne Mauser; Jonathan
May; Diana Maynard; Andrew McCallum; David McClosky; Kathy McKeown; Louise McNally;
Beata Megyesi; Yashar Mehdad; Yelena Mejova; Pablo Mendes; Arul Menezes; Paola Merlo;
Florian Metze; Haitao Mi; Yishu Miao; Claudiu Mihăilă; Rada Mihalcea; David Mimno; Bonan
Min; Shachar Mirkin; Seyed Abolghasem Mirroshandel; Paramita Mirza; Dipendra Misra; Mar-
garet Mitchell; Makoto Miwa; Samaneh Moghaddam; Mitra Mohtarami; Karo Moilanen; Manuel
Montes; Taesun Moon; Véronique Moriceau; Alessandro Moschitti; Nasrin Mostafazadeh; Dra-
gos Munteanu; Yugo Murawaki;

xx

Vinita Nahar; Seiichi Nakagawa; Courtney Napoles; Jason Naradowsky; Shashi Narayan; Tahira
Naseem; Borja Navarro; Roberto Navigli; Adeline Nazarenko; Mark-Jan Nederhof; Arvind Nee-
lakantan; Sapna Negi; Aida Nematzadeh; Graham Neubig; Guenter Neumann; Hwee Tou Ng;
Jun-Ping Ng; Vincent Ng; Viet-An Nguyen; Jian-Yun Nie; Jan Niehues; Zheng-Yu Niu; Pierre
Nugues;

Diarmuid Ó Séaghdha; Brendan O’Connor; Stephan Oepen; Kemal Oflazer; Alice Oh; Naoaki
Okazaki; Tsuyoshi Okita; Miles Osborne; Mari Ostendorf;

Ulrike Padó; Sebastian Padó; Muntsa Padró; Alexis Palmer; Martha Palmer; Alessio Palmero
Aprosio; Sinno Jialin Pan; Denis Paperno; Aasish Pappu; Ankur Parikh; Devi Parikh; Patrick
Paroubek; Michael J. Paul; Adam Pauls; Ellie Pavlick; Lisa Pearl; Andreas Peldszus; Hao
Peng; Gerald Penn; Julien Perez; Verónica Pérez-Rosas; Bryan Perozzi; Jan-Thorsten Peter; Slav
Petrov; Nghia The Pham; Peter Phandi; Olivier Pietquin; Manfred Pinkal; Yuval Pinter; Emily
Pitler; Barbara Plank; Massimo Poesio; Maja Popović; Fred Popowich; Matt Post; Vinodku-
mar Prabhakaran; John Prager; Alessandro Presta; Prokopis Prokopidis; Emily Prud’hommeaux;
Matthew Purver;

Ashequl Qadir; Longhua Qian; Xian Qian; Lu Qin; Long Qiu; Lizhen Qu; Chris Quirk;

Ella Rabinovich; Will Radford; Afshin Rahimi; Altaf Rahman; Nazneen Fatema Rajani; Rafal
Rak; Bhuvana Ramabhadran; Vivek Kumar Rangarajan Sridhar; Ari Rappoport; Mohammad
Sadegh Rasooli; Siva Reddy; Roi Reichart; Ehud Reiter; Xiang Ren; Matthew Richardson;
Sebastian Riedel; Mark Riedl; Jason Riesa; Stefan Riezler; Ellen Riloff; Fabio Rinaldi; Kirk
Roberts; Tim Rocktäschel; Marcus Rohrbach; Stephen Roller; Andrew Rosenberg; Mihai Ro-
taru; Michael Roth; Johann Roturier; Salim Roukos; Mickael Rouvier; Alla Rozovskaya; Frank
Rudzicz; Alexander M. Rush;

Markus Saers; Horacio Saggion; Patrick Saint-dizier; Hassan Sajjad; Keisuke Sakaguchi; Mo-
hammad Salameh; Rajhans Samdani; Mark Sammons; Felipe Sánchez-Martínez; Germán Sanchis-
Trilles; Murat Saraclar; Ruhi Sarikaya; Manabu Sassano; Asad Sayeed; Carolina Scarton; David
Schlangen; Jonathan Schler; Natalie Schluter; Helmut Schmid; William Schuler; Lane Schwartz;
Hansen Andrew Schwartz; Roy Schwartz; Holger Schwenk; Djamé Seddah; Satoshi Sekine; Jean
Senellart; Rico Sennrich; Burr Settles; Aliaksei Severyn; Kashif Shah; Serge Sharoff; Shuming
Shi; Xiaodong Shi; Chaitanya Shivade; Avirup Sil; Fabrizio Silvestri; Yanchuan Sim; Khalil
Sima’an; Michel Simard; Patrick Simianer; Kiril Simov; Sameer Singh; Gabriel Skantze; Steve
Skiena; Noam Slonim; Kevin Small; Jan Šnajder; Richard Socher; Anders Søgaard; Thamar
Solorio; Swapna Somasundaran; Linfeng Song; Akshay Soni; Alessandro Sordoni; Radu Sori-
cut; Caroline Sporleder; Rohini Srihari; Vivek Srikumar; Christian Stab; Edward Stabler; Sanja
Štajner; Miloš Stanojević; Mark Steedman; Benno Stein; Josef Steinberger; Pontus Stenetorp;
Amanda Stent; Evgeny Stepanov; Brandon Stewart; Veselin Stoyanov; Karl Stratos; Jannik Ströt-
gen; Jinsong Su; Qi Su; Fabian Suchanek; Kazunari Sugiyama; Aixin Sun; Huan Sun; Le Sun;
Fei Sun; Mihai Surdeanu; Swabha Swayamdipta; Gabriel Synnaeve;

Oscar Täckström; Hiroya Takamura; David Talbot; Partha Talukdar; Kumiko Tanaka-Ishii; Hristo
Tanev; Duyu Tang; Jiliang Tang; Jian Tang; Xavier Tannier; Makarand Tapaswi; Kapil Thadani;
Jörg Tiedemann; Christoph Tillmann; Ivan Titov; Takenobu Tokunaga; Nadi Tomeh; Sara Tonelli;

xxi

Kentaro Torisawa; Isabel Trancoso; Oren Tsur; Yoshimasa Tsuruoka; Yulia Tsvetkov; Gokhan
Tur;

Raghavendra Udupa; Lyle Ungar; L. Alfonso Urena Lopez; Raquel Urtasun; Nicolas Usunier;
Jakob Uszkoreit; Naushad UzZaman;

Sowmya Vajjala; Marten van Schijndel; Vasudeva Varma; Ashish Vaswani; Paola Velardi; Sriram
Venkatapathy; Giulia Venturi; Ashish Venugopal; Marc Verhagen; Yannick Versley; David Vilar;
Aline Villavicencio; Andreas Vlachos; Rob Voigt; Svitlana Volkova;

Marilyn Walker; Matthew Walter; Stephen Wan; Chuan Wang; Josiah Wang; Lu Wang; Sida I.
Wang; Houfeng Wang; William Yang Wang; Zhongqing Wang; Zhiguo Wang; Zeerak Waseem;
Taro Watanabe; Aleksander Wawer; Bonnie Webber; Julie Weeds; Zhongyu Wei; Gerhard Weikum;
Ralph Weischedel; Michael White; Michael Wiegand; John Wieting; Jason D. Williams; Colin
Wilson; Shuly Wintner; Sam Wiseman; Silke Witt-Ehsani; Kam-Fai Wong; Stephen Wu; Hua
Wu; Yuanbin Wu; Joern Wuebker;

Rui Xia; Yunqing Xia; Chunyang Xiao; Boyi Xie; Deyi Xiong; Liheng Xu; Peng Xu; Ruifeng
Xu; Nianwen Xue;

Bishan Yang; Diyi Yang; Roman Yangarber; Helen Yannakoudakis; Mark Yatskar; Wenpeng Yin;
Dani Yogatama; Kai Yu; Liang-Chih Yu; Lei Yu; Zhou Yu; François Yvon;

Marcos Zampieri; Fabio Massimo Zanzotto; Alessandra Zarcone; Amir Zeldes; Richard Zens;
Torsten Zesch; Luke Zettlemoyer; Congle Zhang; Yue Zhang; Hao Zhang; Hui Zhang; Jiajun
Zhang; Qi Zhang; Lei Zhang; Xingxing Zhang; Yuan Zhang; Min Zhang; Min Zhang; Wei
Zhang; Hai Zhao; Wayne Xin Zhao; Jun Zhao; Bowen Zhou; Guodong Zhou; Yu Zhou; Xinjie
Zhou; Xiaodan Zhu; Jingbo Zhu; Muhua Zhu; Larry Zitnick; Chengqing Zong; Pierre Zweigen-
baum;

Secondary Reviewers

Nitish Aggarwal; Khalid Al-Khatib; Mihael Arcan; Aitziber Atutxa; Wilker Aziz;

Vit Baisa; JinYeong Bak; Jeremy Barnes;

Hongshen Chen; Wei-Te Chen; Nicolas Collignon;

Thomas Demeester; Shichao Dong;

Liat Ein-Dor; Akiko Eriguchi;

Federico Fancellu; Wes Feely; Lorenzo Ferrone; Marjorie Freedman;

Jinghan Gu; James Gung;

xxii

Jialong Han; Bradley Hauer; Gerold Hintz;

Mengxiao Jiang; Salud María Jiménez-Zafra; Melvin Johnson;

Johannes Kiesel; Nikita Kitaev; Hayato Kobayashi; Vojtech Kovar; Mikhail Kozhevnikov; Ákos
Kádár;

Ran Levy; Bo Li; Chen Li; Yitong Li; Lizi Liao; Ming Liao; Jiangming Liu; Sijia Liu; Jackie
Chi-kiu Lo; Nikhil Londhe; Adrian Pastor López-Monroy;

Zongyang Ma; Suraj Maharjan; Hector Martínez Alonso; Eugenio Martínez Cámara; Lu Meng;
Todor Mihaylov; Benjamin Milde; Sadegh Mirshekarian; Arindam Mitra; Tomoya Mizumoto;

Garrett Nicolai; Azadeh Nikfarjam; Scott Nowson;

Tim O’Gorman; Lydia Odilinye; Jong-Hoon Oh; Takeshi Onishi;

Grabrela Ramírez-de-la-Rosa; Steffen Remus; Claude Roux;

Abeed Sarker; Andrew Schneider; Minjoon Seo; Hui Shen; Prasha Shrestha; Vered Shwartz;
Suzanna Sia; Edwin Simpson; Gaurav Singh; Edmundo Pavel Soriano Morales; P.K. Srijith;
Gabriel Stanovsky;

Tasnia Tahsin; Ke Tao; Milan Tofiloski; Khoa Tran; Kateryna Tymoshenko;

Jason Utt;

Esaú Villatoro-Tello; Yogarshi Vyas;

Henning Wachsmuth; Boli Wang; Feixiang Wang; Huimin Wang; Shuai Wang; Wenya Wang;
Yanshan Wang; Shawn Tsung-Hsien Wen; Zhongyu Wei; Andy Wetta; Guillaume Wisniewski;
Shumin Wu;

Haitong Yang; Seid Muhie Yimam;

Yunxiao Zhou;

xxiii

Invited Speaker: Christopher Potts
Learning in Extended and Approximate Rational Speech Acts

Models

Abstract: The Rational Speech Acts (RSA) model treats language use as a recursive process in
which probabilistic speaker and listener agents reason about each other’s intentions to enrich, and
negotiate, the semantics of their language along broadly Gricean lines. RSA builds on early work
by the philosopher David Lewis and others on signaling systems as well as more recent develop-
ments in Bayesian cognitive modeling. Over the last five years, RSA has been shown to provide
a unified account of numerous core phenomena in pragmatics, including metaphor, hyperbole,
sarcasm, politeness, and a wide range of conversational implicatures. Its precise, quantitative na-
ture has also facilitated an outpouring of new experimental work on these phenomena. However,
applications of RSA to large-scale problems in NLP and AI have so far been limited, because
the exact version of the model is intractable along several dimensions. In this talk, I’ll report
on recent progress in approximating RSA in ways that retains its core properties while enabling
application to large datasets and complex environments in which language and action are brought
together.

Bio: Christopher Potts is Professor of Linguistics and, by courtesy, of Computer Science, at Stan-
ford, and Director of the Center for the Study of Language and Information (CSLI) at Stanford.
He earned his BA in Linguistics from NYU in 1999 and his PhD from UC Santa Cruz in 2003. He
was on the faculty in Linguistics at UMass Amherst from 2003 until 2009, when he headed west
once again, to join Stanford Linguistics. He was a co-editor at Linguistic Inquiry 2004–2006,
an associate editor at Linguistics and Philosophy 2009–2012, and has been an Action Editor
at TACL since 2014. In his research, he uses computational methods to explore how emotion
is expressed in language and how linguistic production and interpretation are influenced by the
context of utterance. He is the author of the 2005 book The Logic of Conventional Implicatures
as well as numerous scholarly papers in computational and theoretical linguistics.

xxiv

Invited Speaker: Andreas Stolcke
You Talking to Me? Speech-based and Multimodal Approaches for

Human versus Computer Addressee Detection

Abstract: As dialog systems become ubiquitous, we must learn how to detect when a system
is spoken to, and avoid mistaking human-human speech as computer-directed input. In this talk
I will discuss approaches to addressee detection in this human-human-machine dialog scenario,
based on what is being said (lexical information), how it is being said (acoustic-prosodic proper-
ties), and non-speech multimodal and contextual information. I will present experimental results
showing that a combination of these cues can be used effectively for human/computer address
classification in several dialog scenarios.

Bio: Andreas Stolcke received a Ph.D. in computer science from the University of California at
Berkeley. He was subsequently a Senior Research Engineer with the Speech Technology and Re-
search Laboratory at SRI International, Menlo Park, CA, and is currently a Principal Researcher
with the Speech and Dialog Research Group in the Microsoft Advanced Technology-Information
Services group, working out of Mountain View, CA. His research interests include language
modeling, speech recognition, speaker recognition, and speech understanding. He has published
over 200 papers in these areas, as well as SRILM, a widely used open-source toolkit for sta-
tistical language modeling. He is a Fellow of the IEEE and of ISCA, the International Speech
Communications Association.

xxv

Invited Speaker: Stefanie Tellex
Learning Models of Language, Action and Perception for

Human-Robot Collaboration

Abstract: Robots can act as a force multiplier for people, whether a robot assisting an astronaut
with a repair on the International Space station, a UAV taking flight over our cities, or an au-
tonomous vehicle driving through our streets. To achieve complex tasks, it is essential for robots
to move beyond merely interacting with people and toward collaboration, so that one person can
easily and flexibly work with many autonomous robots. The aim of my research program is to
create autonomous robots that collaborate with people to meet their needs by learning decision-
theoretic models for communication, action, and perception. Communication for collaboration
requires models of language that map between sentences and aspects of the external world. My
work enables a robot to learn compositional models for word meanings that allow a robot to ex-
plicitly reason and communicate about its own uncertainty, increasing the speed and accuracy of
human-robot communication. Action for collaboration requires models that match how people
think and talk, because people communicate about all aspects of a robot’s behavior, from low-
level motion preferences (e.g., "Please fly up a few feet") to high-level requests (e.g., "Please
inspect the building"). I am creating new methods for learning how to plan in very large, uncer-
tain state-action spaces by using hierarchical abstraction. Perception for collaboration requires
the robot to detect, localize, and manipulate the objects in its environment that are most impor-
tant to its human collaborator. I am creating new methods for autonomously acquiring perceptual
models in situ so the robot can perceive the objects most relevant to the human’s goals. My
unified decision-theoretic framework supports data-driven training and robust, feedback-driven
human-robot collaboration.

Bio: Stefanie Tellex is an Assistant Professor of Computer Science and Assistant Professor of
Engineering at Brown University. Her group, the Humans To Robots Lab, creates robots that
seamlessly collaborate with people to meet their needs using language, gesture, and probabilistic
inference, aiming to empower every person with a collaborative robot. She completed her Ph.D.
at the MIT Media Lab in 2010, where she developed models for the meanings of spatial prepo-
sitions and motion verbs. Her postdoctoral work at MIT CSAIL focused on creating robots that
understand natural language. She has published at SIGIR, HRI, RSS, AAAI, IROS, ICAPs and
ICMI, winning Best Student Paper at SIGIR and ICMI, Best Paper at RSS, and an award from
the CCC Blue Sky Ideas Initiative. Her awards include being named one of IEEE Spectrum’s
AI’s 10 to Watch in 2013, the Richard B. Salomon Faculty Research Award at Brown University,
a DARPA Young Faculty Award in 2015, and a 2016 Sloan Research Fellowship. Her work has
been featured in the press on National Public Radio, MIT Technology Review, Wired UK and
the Smithsonian. She was named one of Wired UK’s Women Who Changed Science In 2015 and
listed as one of MIT Technology Review’s Ten Breakthrough Technologies in 2016.

xxvi

Conference Program

Tuesday, November 1, 2016

18:30–20:00 Welcome Reception

Wednesday, November 2, 2016

07:30–17:30 Registration Day 1

08:00–08:40 Morning Coffee

08:40–09:00 Session P1: Plenary Session: Opening Remarks

08:40–09:00 Opening Remarks
General Chair, PC Co-Chairs

09:00–10:00 Session P2: Plenary Session: Invited Talk by Christopher Potts

09:00–10:00 Learning in Extended and Approximate Rational Speech Acts Models
Christopher Potts

10:00–10:30 Coffee Break

xxvii

Wednesday, November 2, 2016 (continued)

10:30–12:10 Session 1A: Parsing and Syntax (Long Papers)

10:30–10:55 Span-Based Constituency Parsing with a Structure-Label System and Provably Op-
timal Dynamic Oracles
James Cross and Liang Huang

10:55–11:20 Rule Extraction for Tree-to-Tree Transducers by Cost Minimization
Pascual Martínez-Gómez and Yusuke Miyao

11:20–11:45 A Neural Network for Coordination Boundary Prediction
Jessica Ficler and Yoav Goldberg

11:45–12:10 Using Left-corner Parsing to Encode Universal Structural Constraints in Grammar
Induction
Hiroshi Noji, Yusuke Miyao and Mark Johnson

10:30–12:10 Session 1B: Information Extraction (Long Papers)

10:30–10:55 Distinguishing Past, On-going, and Future Events: The EventStatus Corpus
Ruihong Huang, Ignacio Cases, Dan Jurafsky, Cleo Condoravdi and Ellen Riloff

10:55–11:20 Nested Propositions in Open Information Extraction
Nikita Bhutani, H V Jagadish and Dragomir Radev

11:20–11:45 A Position Encoding Convolutional Neural Network Based on Dependency Tree for
Relation Classification
Yunlun Yang, Yunhai Tong, Shulei Ma and Zhi-Hong Deng

11:45–12:10 Learning to Recognize Discontiguous Entities
Aldrian Obaja Muis and Wei Lu

xxviii

Wednesday, November 2, 2016 (continued)

10:30–12:10 Session 1C: Psycholinguistics / Machine Learning (Long Papers)

10:30–10:55 Modeling Human Reading with Neural Attention
Michael Hahn and Frank Keller

10:55–11:20 Comparing Computational Cognitive Models of Generalization in a Language Ac-
quisition Task
Libby Barak, Adele E. Goldberg and Suzanne Stevenson

11:20–11:45 Rationalizing Neural Predictions
Tao Lei, Regina Barzilay and Tommi Jaakkola

11:45–12:10 Deep Multi-Task Learning with Shared Memory for Text Classification
Pengfei Liu, Xipeng Qiu and Xuanjing Huang

12:10–13:40 Lunch

13:40–15:20 Session 2A: Reading Comprehension and Question Answering (Long Papers)

13:40–14:05 Natural Language Comprehension with the EpiReader
Adam Trischler, Zheng Ye, Xingdi Yuan, Philip Bachman, Alessandro Sordoni and
Kaheer Suleman

14:05–14:30 Creating Causal Embeddings for Question Answering with Minimal Supervision
Rebecca Sharp, Mihai Surdeanu, Peter Jansen, Peter Clark and Michael Hammond

14:30–14:55 Improving Semantic Parsing via Answer Type Inference
Semih Yavuz, Izzeddin Gur, Yu Su, Mudhakar Srivatsa and Xifeng Yan

14:55–15:20 Semantic Parsing to Probabilistic Programs for Situated Question Answering
Jayant Krishnamurthy, Oyvind Tafjord and Aniruddha Kembhavi

xxix

Wednesday, November 2, 2016 (continued)

13:40–15:20 Session 2B: Embeddings of Linguistic Structure (Long Papers)

13:40–14:05 Event participant modelling with neural networks
Ottokar Tilk, Vera Demberg, Asad Sayeed, Dietrich Klakow and Stefan Thater

14:05–14:30 Context-Dependent Sense Embedding
Lin Qiu, Kewei Tu and Yong Yu

14:30–14:55 Jointly Embedding Knowledge Graphs and Logical Rules
Shu Guo, Quan Wang, Lihong Wang, Bin Wang and Li Guo

14:55–15:20 Learning Connective-based Word Representations for Implicit Discourse Relation
Identification
Chloé Braud and Pascal Denis

13:40–15:20 Session 2C: Sentiment and Opinion Analysis (Long Papers)

13:40–14:05 Aspect Level Sentiment Classification with Deep Memory Network
Duyu Tang, Bing Qin and Ting Liu

14:05–14:30 Lifelong-RL: Lifelong Relaxation Labeling for Separating Entities and Aspects in
Opinion Targets
Lei Shu, Bing Liu, Hu Xu and Annice Kim

14:30–14:55 Learning Sentence Embeddings with Auxiliary Tasks for Cross-Domain Sentiment
Classification
Jianfei Yu and Jing Jiang

14:55–15:20 Attention-based LSTM Network for Cross-Lingual Sentiment Classification
Xinjie Zhou, Xiaojun Wan and Jianguo Xiao

15:20–15:50 Coffee Break

xxx

Wednesday, November 2, 2016 (continued)

15:50–17:30 Session 3A: Neural Machine Translation (Long + TACL Papers)

15:50–16:15 [TACL] Deep Recurrent Models with Fast-Forward Connections for Neural Ma-
chine Translation
Jie Zhou, Ying Cao, Xuguang Wang, Peng Li and Wei Xu

16:15–16:40 Neural versus Phrase-Based Machine Translation Quality: a Case Study
Luisa Bentivogli, Arianna Bisazza, Mauro Cettolo and Marcello Federico

16:40–17:05 Zero-Resource Translation with Multi-Lingual Neural Machine Translation
Orhan Firat, Baskaran Sankaran, Yaser Al-Onaizan, Fatos T. Yarman Vural and
Kyunghyun Cho

17:05–17:30 Memory-enhanced Decoder for Neural Machine Translation
Mingxuan Wang, Zhengdong Lu, Hang Li and Qun Liu

15:50–17:30 Session 3B: Semi-supervised and Minimally Supervised Learning (Long +
TACL Papers)

15:50–16:15 Semi-Supervised Learning of Sequence Models with Method of Moments
Zita Marinho, André F. T. Martins, Shay B. Cohen and Noah A. Smith

16:15–16:40 [TACL] Minimally supervised models for number normalization
Kyle Gorman and Richard Sproat

16:40–17:05 Learning from Explicit and Implicit Supervision Jointly For Algebra Word Problems
Shyam Upadhyay, Ming-Wei Chang, Kai-Wei Chang and Wen-tau Yih

17:05–17:30 TweeTime : A Minimally Supervised Method for Recognizing and Normalizing Time
Expressions in Twitter
Jeniya Tabassum, Alan Ritter and Wei Xu

xxxi

Wednesday, November 2, 2016 (continued)

15:50–17:30 Session 3C: Summarization and Generation (Long Papers)

15:50–16:15 Language as a Latent Variable: Discrete Generative Models for Sentence Compres-
sion
Yishu Miao and Phil Blunsom

16:15–16:40 Globally Coherent Text Generation with Neural Checklist Models
Chloé Kiddon, Luke Zettlemoyer and Yejin Choi

16:40–17:05 A Dataset and Evaluation Metrics for Abstractive Compression of Sentences and
Short Paragraphs
Kristina Toutanova, Chris Brockett, Ke M. Tran and Saleema Amershi

17:05–17:30 PaCCSS-IT: A Parallel Corpus of Complex-Simple Sentences for Automatic Text
Simplification
Dominique Brunato, Andrea Cimino, Felice Dell’Orletta and Giulia Venturi

17:30–17:45 Break

17:45–18:15 Session P3: Plenary Session: Half Minute Madness A

18:15–20:15 Session P4: Poster Session A

[L01][DISCOURSE & DIALOGUE] Discourse Parsing with Attention-based Hierarchical
Neural Networks
Qi Li, Tianshi Li and Baobao Chang

[L02][DISCOURSE & DIALOGUE] Multi-view Response Selection for Human-Computer
Conversation
Xiangyang Zhou, Daxiang Dong, Hua Wu, Shiqi Zhao, Dianhai Yu, Hao Tian, Xuan
Liu and Rui Yan

[L03][DISCOURSE & DIALOGUE] Variational Neural Discourse Relation Recognizer
Biao Zhang, Deyi Xiong, jinsong su, Qun Liu, Rongrong Ji, Hong Duan and Min
Zhang

[L04][DISCOURSE & DIALOGUE] Event Detection and Co-reference with Minimal Su-
pervision
Haoruo Peng, Yangqiu Song and Dan Roth

xxxii

Wednesday, November 2, 2016 (continued)

[L05][INFORMATION EXTRACTION] Learning Term Embeddings for Taxonomic Rela-
tion Identification Using Dynamic Weighting Neural Network
Tuan Luu Anh, Yi Tay, Siu Cheung Hui and See Kiong Ng

[L06][INFORMATION EXTRACTION] Relation Schema Induction using Tensor Factor-
ization with Side Information
Madhav Nimishakavi, Uday Singh Saini and Partha Talukdar

[L07][INFORMATION EXTRACTION] Supervised Distributional Hypernym Discovery via
Domain Adaptation
Luis Espinosa Anke, Jose Camacho-Collados, Claudio Delli Bovi and Horacio Sag-
gion

[L08][LANGUAGE MODELING] Latent Tree Language Model
Tomáš Brychcín

[L09][LANGUAGE & VISION] Comparing Data Sources and Architectures for Deep
Visual Representation Learning in Semantics
Douwe Kiela, Anita Lilla Verő and Stephen Clark

[L10][LANGUAGE & VISION] Multimodal Compact Bilinear Pooling for Visual Ques-
tion Answering and Visual Grounding
Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell and
Marcus Rohrbach

[L11][MACHINE LEARNING] The Structured Weighted Violations Perceptron Algorithm
Rotem Dror and Roi Reichart

[L12][MACHINE LEARNING] How Transferable are Neural Networks in NLP Applica-
tions?
Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu, Lu Zhang and Zhi Jin

[L13][MACHINE LEARNING] Morphological Priors for Probabilistic Neural Word Em-
beddings
Parminder Bhatia, Robert Guthrie and Jacob Eisenstein

[L14][MACHINE TRANSLATION] Automatic Cross-Lingual Similarization of Depen-
dency Grammars for Tree-based Machine Translation
Wenbin Jiang, Wen Zhang, Jinan Xu and Rangjia Cai

[L15][MACHINE TRANSLATION] IRT-based Aggregation Model of Crowdsourced Pair-
wise Comparison for Evaluating Machine Translations
Naoki Otani, Toshiaki Nakazawa, Daisuke Kawahara and Sadao Kurohashi

xxxiii

Wednesday, November 2, 2016 (continued)

[L16][MACHINE TRANSLATION] Variational Neural Machine Translation
Biao Zhang, Deyi Xiong, jinsong su, Hong Duan and Min Zhang

[L17][MACHINE TRANSLATION] Towards a Convex HMM Surrogate for Word Align-
ment
Andrei Simion, Michael Collins and Cliff Stein

[L18][QUESTION ANSWERING] Solving Verbal Questions in IQ Test by Knowledge-
Powered Word Embedding
Huazheng Wang, Fei Tian, Bin Gao, Chengjieren Zhu, Jiang Bian and Tie-Yan Liu

[L19][QUESTION ANSWERING] Long Short-Term Memory-Networks for Machine
Reading
Jianpeng Cheng, Li Dong and Mirella Lapata

[L20][QUESTION ANSWERING] On Generating Characteristic-rich Question Sets for
QA Evaluation
Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa, Izzeddin Gur, Zenghui Yan and
Xifeng Yan

[L21][QUESTION ANSWERING] Learning to Translate for Multilingual Question An-
swering
Ferhan Ture and Elizabeth Boschee

[L22][QUESTION ANSWERING] A Semiparametric Model for Bayesian Reader Identi-
fication
Ahmed Abdelwahab, Reinhold Kliegl and Niels Landwehr

[L23][SENTIMENT ANALYSIS] Inducing Domain-Specific Sentiment Lexicons from Un-
labeled Corpora
William L. Hamilton, Kevin Clark, Jure Leskovec and Dan Jurafsky

[L24][SENTIMENT ANALYSIS] Attention-based LSTM for Aspect-level Sentiment Clas-
sification
Yequan Wang, Minlie Huang, xiaoyan zhu and Li Zhao

[L25][SENTIMENT ANALYSIS] Recursive Neural Conditional Random Fields for
Aspect-based Sentiment Analysis
Wenya Wang, Sinno Jialin Pan, Daniel Dahlmeier and Xiaokui Xiao

[L26][SENTIMENT ANALYSIS] Extracting Aspect Specific Opinion Expressions
Abhishek Laddha and Arjun Mukherjee

[L27][SENTIMENT ANALYSIS] Emotion Distribution Learning from Texts
Deyu ZHOU, Xuan Zhang, Yin Zhou, Quan Zhao and Xin Geng

xxxiv

Wednesday, November 2, 2016 (continued)

[L28][SEMANTICS] Building an Evaluation Scale using Item Response Theory
John Lalor, Hao Wu and hong yu

[L29][SEMANTICS] WordRank: Learning Word Embeddings via Robust Ranking
Shihao Ji, Hyokun Yun, Pinar Yanardag, Shin Matsushima and S. V. N. Vish-
wanathan

[L30][SEMANTICS] Exploring Semantic Representation in Brain Activity Using Word
Embeddings
Yu-Ping Ruan, Zhen-Hua Ling and Yu Hu

[L31][SEMANTICS] AMR Parsing with an Incremental Joint Model
Junsheng Zhou, Feiyu Xu, Hans Uszkoreit, Weiguang QU, Ran Li and Yanhui Gu

[L32][SOCIAL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] Identifying Dogmatism in
Social Media: Signals and Models
Ethan Fast and Eric Horvitz

[L33][SOCIAL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] Enhanced Personalized
Search using Social Data
Dong Zhou, Séamus Lawless, Xuan Wu, Wenyu Zhao and Jianxun Liu

[L34][SYNTAX & MORPHOLOGY] Effective Greedy Inference for Graph-based Non-
Projective Dependency Parsing
Ilan Tchernowitz, Liron Yedidsion and Roi Reichart

[L35][SYNTAX & MORPHOLOGY] Generating Abbreviations for Chinese Named Enti-
ties Using Recurrent Neural Network with Dynamic Dictionary
Qi Zhang, Jin Qian, Ya Guo, Yaqian Zhou and Xuanjing Huang

[L36][SYNTAX & MORPHOLOGY] Neural Network for Heterogeneous Annotations
Hongshen Chen, Yue Zhang and Qun Liu

[L37][SYNTAX & MORPHOLOGY] LAMB: A Good Shepherd of Morphologically Rich
Languages
Sebastian Ebert, Thomas Müller and Hinrich Schütze

[L38][SYNTAX & MORPHOLOGY] Fast Coupled Sequence Labeling on Heterogeneous
Annotations via Context-aware Pruning
Zhenghua Li, Jiayuan Chao, Min Zhang and Jiwen Yang

[L39][SYNTAX & MORPHOLOGY] Unsupervised Neural Dependency Parsing
Yong Jiang, Wenjuan Han and Kewei Tu

xxxv

Wednesday, November 2, 2016 (continued)

[L40][SUMMARIZATION] Generating Coherent Summaries of Scientific Articles Using
Coherence Patterns
Daraksha Parveen, Mohsen Mesgar and Michael Strube

[L41][SUMMARIZATION] News Stream Summarization using Burst Information Net-
works
Tao Ge, Lei Cui, Baobao Chang, Sujian Li, Ming Zhou and Zhifang Sui

[L42][TEXT MINING & APPLICATIONS] Rationale-Augmented Convolutional Neural
Networks for Text Classification
Ye Zhang, Iain Marshall and Byron C. Wallace

[L43][TEXT MINING & APPLICATIONS] Transferring User Interests Across Websites
with Unstructured Text for Cold-Start Recommendation
Yu-Yang Huang and Shou-De Lin

[L44][TEXT MINING & APPLICATIONS] Speculation and Negation Scope Detection via
Convolutional Neural Networks
Zhong Qian, Peifeng Li, Qiaoming Zhu, Guodong Zhou, Zhunchen Luo and Wei
Luo

[L45][TEXT MINING & APPLICATIONS] Analyzing Linguistic Knowledge in Sequential
Model of Sentence
Peng Qian, Xipeng Qiu and Xuanjing Huang

[L46][TEXT MINING & APPLICATIONS] Keyphrase Extraction Using Deep Recurrent
Neural Networks on Twitter
Qi Zhang, Yang Wang, Yeyun Gong and Xuanjing Huang

[L47][TEXT MINING & APPLICATIONS] Solving and Generating Chinese Character Rid-
dles
Chuanqi Tan, Furu Wei, Li Dong, Weifeng Lv and Ming Zhou

[L48][TEXT MINING & APPLICATIONS] Structured prediction models for RNN based
sequence labeling in clinical text
Abhyuday Jagannatha and hong yu

[L49][TEXT MINING & APPLICATIONS] Learning to Represent Review with Tensor De-
composition for Spam Detection
Xuepeng Wang, Kang Liu, Shizhu He and Jun Zhao

[L50][TEXT MINING & APPLICATIONS] Stance Detection with Bidirectional Condi-
tional Encoding
Isabelle Augenstein, Tim Rocktäschel, Andreas Vlachos and Kalina Bontcheva

xxxvi

Wednesday, November 2, 2016 (continued)

[S01][INFORMATION EXTRACTION] Modeling Skip-Grams for Event Detection with
Convolutional Neural Networks
Thien Huu Nguyen and Ralph Grishman

[S02][INFORMATION EXTRACTION] Porting an Open Information Extraction System
from English to German
Tobias Falke, Gabriel Stanovsky, Iryna Gurevych and Ido Dagan

[S03][INFORMATION EXTRACTION] Named Entity Recognition for Novel Types by
Transfer Learning
Lizhen Qu, Gabriela Ferraro, Liyuan Zhou, Weiwei Hou and Timothy Baldwin

[S04][INFORMATION EXTRACTION] Extracting Subevents via an Effective Two-phase
Approach
Allison Badgett and Ruihong Huang

[S05][LANGUAGE & VISION] Gaussian Visual-Linguistic Embedding for Zero-Shot
Recognition
Tanmoy Mukherjee and Timothy Hospedales

[S06][LANGUAGE & VISION] Question Relevance in VQA: Identifying Non-Visual And
False-Premise Questions
Arijit Ray, Gordon Christie, Mohit Bansal, Dhruv Batra and Devi Parikh

[S07][LANGUAGE & VISION] Sort Story: Sorting Jumbled Images and Captions into
Stories
Harsh Agrawal, Arjun Chandrasekaran, Dhruv Batra, Devi Parikh and Mohit Bansal

[S08][LANGUAGE & VISION] Human Attention in Visual Question Answering: Do
Humans and Deep Networks look at the same regions?
Abhishek Das, Harsh Agrawal, Larry Zitnick, Devi Parikh and Dhruv Batra

[S09][MACHINE LEARNING] Recurrent Residual Learning for Sequence Classification
Yiren Wang and Fei Tian

[S10][MACHINE LEARNING] Richer Interpolative Smoothing Based on Modified
Kneser-Ney Language Modeling
Ehsan Shareghi, Trevor Cohn and Gholamreza Haffari

[S11][MACHINE LEARNING] A General Regularization Framework for Domain Adap-
tation
Wei Lu, Hai Leong Chieu and Jonathan Löfgren

xxxvii

Wednesday, November 2, 2016 (continued)

[S12][MACHINE TRANSLATION] Coverage Embedding Models for Neural Machine
Translation
Haitao Mi, Baskaran Sankaran, Zhiguo Wang and Abe Ittycheriah

[S13][SYNTAX & MORPHOLOGY] Neural Morphological Analysis: Encoding-
Decoding Canonical Segments
Katharina Kann, Ryan Cotterell and Hinrich Schütze

[S14][SYNTAX & MORPHOLOGY] Exploiting Mutual Benefits between Syntax and Se-
mantic Roles using Neural Network
Peng Shi, Zhiyang Teng and Yue Zhang

[S15][SEMANTICS] The Effects of Data Size and Frequency Range on Distributional
Semantic Models
Magnus Sahlgren and Alessandro Lenci

[S16][SEMANTICS] Multi-Granularity Chinese Word Embedding
Rongchao Yin, Quan Wang, Peng Li, Rui Li and Bin Wang

[S17][SEMANTICS] Numerically Grounded Language Models for Semantic Error
Correction
Georgios Spithourakis, Isabelle Augenstein and Sebastian Riedel

[S18][SEMANTICS] Towards Semi-Automatic Generation of Proposition Banks for
Low-Resource Languages
Alan Akbik, vishwajeet kumar and Yunyao Li

[S19][SENTIMENT ANALYSIS] A Hierarchical Model of Reviews for Aspect-based Sen-
timent Analysis
Sebastian Ruder, Parsa Ghaffari and John G. Breslin

[S20][SENTIMENT ANALYSIS] Are Word Embedding-based Features Useful for Sar-
casm Detection?
Aditya Joshi, Vaibhav Tripathi, Kevin Patel, Pushpak Bhattacharyya and Mark Car-
man

[S21][SENTIMENT ANALYSIS] Weakly Supervised Tweet Stance Classification by Re-
lational Bootstrapping
Javid Ebrahimi, Dejing Dou and Daniel Lowd

[S22][SOCIAL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] The Gun Violence Database:
A new task and data set for NLP
Ellie Pavlick, Heng Ji, Xiaoman Pan and Chris Callison-Burch

xxxviii

Wednesday, November 2, 2016 (continued)

[S23][SOCIAL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] Fluency detection on com-
munication networks
Tom Lippincott and Benjamin Van Durme

[S25][SOCIAL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] Characterizing the Lan-
guage of Online Communities and its Relation to Community Reception
Trang Tran and Mari Ostendorf

[S26][SPOKEN LANGUAGE PROCESSING] Joint Transition-based Dependency Parsing
and Disfluency Detection for Automatic Speech Recognition Texts
Masashi Yoshikawa, Hiroyuki Shindo and Yuji Matsumoto

[S27][SPOKEN LANGUAGE PROCESSING] Real-Time Speech Emotion and Sentiment
Recognition for Interactive Dialogue Systems
Dario Bertero, Farhad Bin Siddique, Chien-Sheng Wu, Yan Wan, Ricky Ho Yin
Chan and Pascale Fung

[S28][SUMMARIZATION] A Neural Network Architecture for Multilingual Punctuation
Generation
Miguel Ballesteros and Leo Wanner

[S29][SUMMARIZATION] Neural Headline Generation on Abstract Meaning Repre-
sentation
Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsutomu Hirao and Masaaki Nagata

[S30][TEXT MINING & APPLICATIONS] Robust Gram Embeddings
Taygun Kekec and David M. J. Tax

[S31][TEXT MINING & APPLICATIONS] SimpleScience: Lexical Simplification of Scien-
tific Terminology
Yea Seul Kim, Jessica Hullman, Matthew Burgess and Eytan Adar

[S32][TEXT MINING & APPLICATIONS] Automatic Features for Essay Scoring – An
Empirical Study
Fei Dong and Yue Zhang

xxxix

Thursday, November 3, 2016

07:30–17:30 Registration Day 2

08:00–09:00 Morning Coffee

09:00–10:00 Session P5: Plenary Session: Invited Talk by Stefanie Tellex

09:00–10:00 Learning Models of Language, Action and Perception for Human-Robot Collabo-
ration
Stefanie Tellex

10:00–10:30 Coffee Break

10:30–12:10 Session 4A: Semantics and Semantic Parsing (Long Papers)

10:30–10:55 Semantic Parsing with Semi-Supervised Sequential Autoencoders
Tomáš Kočiský, Gábor Melis, Edward Grefenstette, Chris Dyer, Wang Ling, Phil
Blunsom and Karl Moritz Hermann

10:55–11:20 Equation Parsing : Mapping Sentences to Grounded Equations
Subhro Roy, Shyam Upadhyay and Dan Roth

11:20–11:45 Automatic Extraction of Implicit Interpretations from Modal Constructions
Jordan Sanders and Eduardo Blanco

11:45–12:10 Understanding Negation in Positive Terms Using Syntactic Dependencies
Zahra Sarabi and Eduardo Blanco

xl

Thursday, November 3, 2016 (continued)

10:30–12:10 Session 4B: NLP for Social Science and Health (Long + TACL Papers)

10:30–10:55 Demographic Dialectal Variation in Social Media: A Case Study of African-
American English
Su Lin Blodgett, Lisa Green and Brendan O’Connor

10:55–11:20 Understanding Language Preference for Expression of Opinion and Sentiment:
What do Hindi-English Speakers do on Twitter?
Koustav Rudra, Shruti Rijhwani, Rafiya Begum, Kalika Bali, Monojit Choudhury
and Niloy Ganguly

11:20–11:45 Detecting and Characterizing Events
Allison Chaney, Hanna Wallach, Matthew Connelly and David Blei

11:45–12:10 [TACL] Large-scale Analysis of Counseling Conversations: An Application of Nat-
ural Language Processing to Mental Health
Tim Althoff, Kevin Clark and Jure Leskovec

10:30–12:10 Session 4C: Language Models (Long + TACL Papers)

10:30–10:55 [TACL] Fast, Small and Exact: Infinite-order Language Modelling with Com-
pressed Suffix Trees
Ehsan Shareghi, Matthias Petri, Gholamreza Haffari and Trevor Cohn

10:55–11:20 Convolutional Neural Network Language Models
Ngoc-Quan Pham, Germán Kruszewski and Gemma Boleda

11:20–11:45 [TACL] Sparse Non-negative Matrix Language Modeling
Joris Pelemans, Noam Shazeer and Ciprian Chelba

11:45–12:10 Generalizing and Hybridizing Count-based and Neural Language Models
Graham Neubig and Chris Dyer

12:10–13:40 Lunch

xli

Thursday, November 3, 2016 (continued)

13:00–13:40 Session P6: SIGDAT Business Meeting

13:40–15:20 Session 5A: Text Generation (Long Papers)

13:40–14:05 Reasoning about Pragmatics with Neural Listeners and Speakers
Jacob Andreas and Dan Klein

14:05–14:30 Generating Topical Poetry
Marjan Ghazvininejad, Xing Shi, Yejin Choi and Kevin Knight

14:30–14:55 Deep Reinforcement Learning for Dialogue Generation
Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley and Jianfeng Gao

14:55–15:20 Neural Text Generation from Structured Data with Application to the Biography
Domain
Rémi Lebret, David Grangier and Michael Auli

13:40–15:20 Session 5B: Discourse and Document Structure (Long Papers)

13:40–14:05 What makes a convincing argument? Empirical analysis and detecting attributes of
convincingness in Web argumentation
Ivan Habernal and Iryna Gurevych

14:05–14:30 Recognizing Implicit Discourse Relations via Repeated Reading: Neural Networks
with Multi-Level Attention
Yang Liu and Sujian Li

14:30–14:55 Antecedent Selection for Sluicing: Structure and Content
Pranav Anand and Daniel Hardt

14:55–15:20 Intra-Sentential Subject Zero Anaphora Resolution using Multi-Column Convolu-
tional Neural Network
Ryu Iida, Kentaro Torisawa, Jong-Hoon Oh, Canasai Kruengkrai and Julien Kloet-
zer

xlii

Thursday, November 3, 2016 (continued)

13:40–15:20 Session 5C: Machine Translation and Multilingual Applications (Long Papers)

13:40–14:05 An Unsupervised Probability Model for Speech-to-Translation Alignment of Low-
Resource Languages
Antonios Anastasopoulos, David Chiang and Long Duong

14:05–14:30 HUME: Human UCCA-Based Evaluation of Machine Translation
Alexandra Birch, Omri Abend, Ondřej Bojar and Barry Haddow

14:30–14:55 Improving Multilingual Named Entity Recognition with Wikipedia Entity Type Map-
ping
Jian Ni and Radu Florian

14:55–15:20 Learning Crosslingual Word Embeddings without Bilingual Corpora
Long Duong, Hiroshi Kanayama, Tengfei Ma, Steven Bird and Trevor Cohn

15:20–15:50 Coffee Break

15:50–17:30 Session 6A: Neural Sequence-to-Sequence Models (Long Papers)

15:50–16:15 Sequence-to-Sequence Learning as Beam-Search Optimization
Sam Wiseman and Alexander M. Rush

16:15–16:40 Online Segment to Segment Neural Transduction
Lei Yu, Jan Buys and Phil Blunsom

16:40–17:05 Sequence-Level Knowledge Distillation
Yoon Kim and Alexander M. Rush

17:05–17:30 Controlling Output Length in Neural Encoder-Decoders
Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya Takamura and Manabu Oku-
mura

xliii

Thursday, November 3, 2016 (continued)

15:50–17:30 Session 6B: Text Mining and NLP Applications (Long + TACL Papers)

15:50–16:15 Poet Admits // Mute Cypher: Beam Search to find Mutually Enciphering Poetic Texts
Cole Peterson and Alona Fyshe

16:15–16:40 All Fingers are not Equal: Intensity of References in Scientific Articles
Tanmoy Chakraborty and Ramasuri Narayanam

16:40–17:05 Improving Users’ Demographic Prediction via the Videos They Talk about
Yuan Wang, Yang Xiao, Chao Ma and Zhen Xiao

17:05–17:30 [TACL] Understanding Satirical Articles Using Common-Sense
Dan Goldwasser and Xiao Zhang

15:50–17:30 Session 6C: Knowledge Base and Inference (Long Papers)

15:50–16:15 AFET: Automatic Fine-Grained Entity Typing by Hierarchical Partial-Label Em-
bedding
Xiang Ren, Wenqi He, Meng Qu, Lifu Huang, Heng Ji and Jiawei Han

16:15–16:40 Mining Inference Formulas by Goal-Directed Random Walks
Zhuoyu Wei, Jun Zhao and Kang Liu

16:40–17:05 Lifted Rule Injection for Relation Embeddings
Thomas Demeester, Tim Rocktäschel and Sebastian Riedel

17:05–17:30 Key-Value Memory Networks for Directly Reading Documents
Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes
and Jason Weston

17:30–17:45 Break

xliv

Thursday, November 3, 2016 (continued)

17:45–18:15 Session P7: Plenary Session: Half-minute Madness B

18:15–20:15 Session P8: Poster Session B

[L01][DISCOURSE & DIALOGUE] Analyzing Framing through the Casts of Characters
in the News
Dallas Card, Justin Gross, Amber Boydstun and Noah A. Smith

[L02][DISCOURSE & DIALOGUE] The Teams Corpus and Entrainment in Multi-Party
Spoken Dialogues
Diane Litman, Susannah Paletz, Zahra Rahimi, Stefani Allegretti and Caitlin Rice

[L03][DISCOURSE & DIALOGUE] Personalized Emphasis Framing for Persuasive Mes-
sage Generation
Tao Ding and Shimei Pan

[L04][INFORMATION EXTRACTION] Cross Sentence Inference for Process Knowledge
Samuel Louvan, Chetan Naik, Sadhana Kumaravel, Heeyoung Kwon, Niranjan Bal-
asubramanian and Peter Clark

[L05][INFORMATION EXTRACTION] Toward Socially-Infused Information Extraction:
Embedding Authors, Mentions, and Entities
Yi Yang, Ming-Wei Chang and Jacob Eisenstein

[L06][INFORMATION EXTRACTION] Phonologically Aware Neural Model for Named
Entity Recognition in Low Resource Transfer Settings
Akash Bharadwaj, David Mortensen, Chris Dyer and Jaime Carbonell

[L07][LANGUAGE MODELING] Long-Short Range Context Neural Networks for Lan-
guage Modeling
Youssef Oualil, Mittul Singh, Clayton Greenberg and Dietrich Klakow

[L08][LANGUAGE & VISION] Jointly Learning Grounded Task Structures from Lan-
guage Instruction and Visual Demonstration
Changsong Liu, Shaohua Yang, Sari Saba-Sadiya, Nishant Shukla, Yunzhong He,
Song-chun Zhu and Joyce Chai

[L09][LANGUAGE & VISION] Resolving Language and Vision Ambiguities Together:
Joint Segmentation & Prepositional Attachment Resolution in Captioned Scenes
Gordon Christie, Ankit Laddha, Aishwarya Agrawal, Stanislaw Antol, Yash Goyal,
Kevin Kochersberger and Dhruv Batra

xlv

Thursday, November 3, 2016 (continued)

[L10][MACHINE LEARNING] Charagram: Embedding Words and Sentences via Char-
acter n-grams
John Wieting, Mohit Bansal, Kevin Gimpel and Karen Livescu

[L11][MACHINE LEARNING] Length bias in Encoder Decoder Models and a Case for
Global Conditioning
Pavel Sountsov and Sunita Sarawagi

[L12] [TACL][Machine Learning] Comparing Apples to Apple: The Effects of Stem-
mers on Topic Models
Alexandra Schofield and David Mimno

[L13][MACHINE TRANSLATION] Does String-Based Neural MT Learn Source Syntax?
Xing Shi, Inkit Padhi and Kevin Knight

[L14][MACHINE TRANSLATION] Exploiting Source-side Monolingual Data in Neural
Machine Translation
Jiajun Zhang and Chengqing Zong

[L15][MACHINE TRANSLATION] Phrase-based Machine Translation is State-of-the-Art
for Automatic Grammatical Error Correction
Marcin Junczys-Dowmunt and Roman Grundkiewicz

[L16][MACHINE TRANSLATION] Incorporating Discrete Translation Lexicons into
Neural Machine Translation
Philip Arthur, Graham Neubig and Satoshi Nakamura

[L17][MACHINE TRANSLATION] Transfer Learning for Low-Resource Neural Machine
Translation
Barret Zoph, Deniz Yuret, Jonathan May and Kevin Knight

[L18][QUESTION ANSWERING] MixKMeans: Clustering Question-Answer Archives
Deepak P

[L19][QUESTION ANSWERING] It Takes Three to Tango: Triangulation Approach to
Answer Ranking in Community Question Answering
Preslav Nakov, Lluís Màrquez and Francisco Guzmán

[L20][QUESTION ANSWERING] Character-Level Question Answering with Attention
Xiaodong He and David Golub

[L21][QUESTION ANSWERING] Learning to Generate Textual Data
Guillaume Bouchard, Pontus Stenetorp and Sebastian Riedel

xlvi

Thursday, November 3, 2016 (continued)

[L22][QUESTION ANSWERING] A Theme-Rewriting Approach for Generating Algebra
Word Problems
Rik Koncel-Kedziorski, Ioannis Konstas, Luke Zettlemoyer and Hannaneh Ha-
jishirzi

[L23][SENTIMENT ANALYSIS] Context-Sensitive Lexicon Features for Neural Senti-
ment Analysis
Zhiyang Teng, Duy Tin Vo and Yue Zhang

[L24][SENTIMENT ANALYSIS] Event-Driven Emotion Cause Extraction with Corpus
Construction
Lin Gui, Dongyin Wu, Ruifeng Xu, Qin Lu and Yu Zhou

[L25][SENTIMENT ANALYSIS] Neural Sentiment Classification with User and Product
Attention
Huimin Chen, Maosong Sun, Cunchao Tu, Yankai Lin and Zhiyuan Liu

[L26][SENTIMENT ANALYSIS] Cached Long Short-Term Memory Neural Networks for
Document-Level Sentiment Classification
Jiacheng Xu, Danlu Chen, Xipeng Qiu and Xuanjing Huang

[L27][SENTIMENT ANALYSIS] Deep Neural Networks with Massive Learned Knowl-
edge
Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov and Eric Xing

[L28][SEMANTICS] De-Conflated Semantic Representations
Mohammad Taher Pilehvar and Nigel Collier

[L29][SEMANTICS] Improving Sparse Word Representations with Distributional In-
ference for Semantic Composition
Thomas Kober, Julie Weeds, Jeremy Reffin and David Weir

[L30][SEMANTICS] Modelling Interaction of Sentence Pair with Coupled-LSTMs
Pengfei Liu, Xipeng Qiu, Yaqian Zhou, Jifan Chen and Xuanjing Huang

[L31][SEMANTICS] Universal Decompositional Semantics on Universal Dependen-
cies
Aaron Steven White, Drew Reisinger, Keisuke Sakaguchi, Tim Vieira, Sheng
Zhang, Rachel Rudinger, Kyle Rawlins and Benjamin Van Durme

[L32][SOCIAL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] Friends with Motives: Using
Text to Infer Influence on SCOTUS
Yanchuan Sim, Bryan Routledge and Noah A. Smith

xlvii

Thursday, November 3, 2016 (continued)

[L33][SYNTAX & MORPHOLOGY] Verb Phrase Ellipsis Resolution Using Discrimina-
tive and Margin-Infused Algorithms
Kian Kenyon-Dean, Jackie Chi Kit Cheung and Doina Precup

[L34][SYNTAX & MORPHOLOGY] Distilling an Ensemble of Greedy Dependency
Parsers into One MST Parser
Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer and Noah A.
Smith

[L35][SYNTAX & MORPHOLOGY] LSTM Shift-Reduce CCG Parsing
Wenduan Xu

[L36][SYNTAX & MORPHOLOGY] An Evaluation of Parser Robustness for Ungrammat-
ical Sentences
Homa B. Hashemi and Rebecca Hwa

[L37][SYNTAX & MORPHOLOGY] Neural Shift-Reduce CCG Semantic Parsing
Dipendra Kumar Misra and Yoav Artzi

[L38][SYNTAX & MORPHOLOGY] Syntactic Parsing of Web Queries
Xiangyan Sun, Haixun Wang, Yanghua Xiao and Zhongyuan Wang

[L39][SUMMARIZATION] Unsupervised Text Recap Extraction for TV Series
Hongliang Yu, Shikun Zhang and Louis-Philippe Morency

[L40][TEXT MINING & APPLICATIONS] On- and Off-Topic Classification and Semantic
Annotation of User-Generated Software Requirements
Markus Dollmann and Michaela Geierhos

[L41][TEXT MINING & APPLICATIONS] Deceptive Review Spam Detection via Exploit-
ing Task Relatedness and Unlabeled Data
Zhen Hai, Peilin Zhao, Peng Cheng, Peng Yang, Xiao-Li Li and Guangxia Li

[L42][TEXT MINING & APPLICATIONS] Regularizing Text Categorization with Clusters
of Words
Konstantinos Skianis, Francois Rousseau and Michalis Vazirgiannis

[L43][TEXT MINING & APPLICATIONS] Deep Reinforcement Learning with a Combina-
torial Action Space for Predicting Popular Reddit Threads
Ji He, Mari Ostendorf, Xiaodong He, Jianshu Chen, Jianfeng Gao, Lihong Li and
Li Deng

xlviii

Thursday, November 3, 2016 (continued)

[L44][TEXT MINING & APPLICATIONS] Non-Literal Text Reuse in Historical Texts: An
Approach to Identify Reuse Transformations and its Application to Bible Reuse
Maria Moritz, Andreas Wiederhold, Barbara Pavlek, Yuri Bizzoni and Marco Büch-
ler

[L45][TEXT MINING & APPLICATIONS] A Graph Degeneracy-based Approach to Key-
word Extraction
Antoine Tixier, Fragkiskos Malliaros and Michalis Vazirgiannis

[L46][TEXT MINING & APPLICATIONS] Predicting the Relative Difficulty of Single Sen-
tences With and Without Surrounding Context
Elliot Schumacher, Maxine Eskenazi, Gwen Frishkoff and Kevyn Collins-
Thompson

[L47][TEXT MINING & APPLICATIONS] A Neural Approach to Automated Essay Scoring
Kaveh Taghipour and Hwee Tou Ng

[L48][TEXT MINING & APPLICATIONS] Non-uniform Language Detection in Technical
Writing
Weibo Wang, Abidalrahman Moh’d, Aminul Islam, Axel Soto and Evangelos Milios

[L49][TEXT MINING & APPLICATIONS] Adapting Grammatical Error Correction Based
on the Native Language of Writers with Neural Network Joint Models
Shamil Chollampatt, Duc Tam Hoang and Hwee Tou Ng

[S01][MACHINE TRANSLATION] Orthographic Syllable as basic unit for SMT between
Related Languages
Anoop Kunchukuttan and Pushpak Bhattacharyya

[S02][TEXT MINING & APPLICATIONS] Neural Generation of Regular Expressions from
Natural Language with Minimal Domain Knowledge
Nicholas Locascio, Karthik Narasimhan, Eduardo De Leon, Nate Kushman and
Regina Barzilay

[S03][INFORMATION EXTRACTION] Supervised Keyphrase Extraction as Positive Un-
labeled Learning
Lucas Sterckx, Cornelia Caragea, Thomas Demeester and Chris Develder

[S04][INFORMATION EXTRACTION] Learning to Answer Questions from Wikipedia In-
foboxes
Alvaro Morales, Varot Premtoon, Cordelia Avery, Sue Felshin and Boris Katz

[S05][INFORMATION EXTRACTION] Timeline extraction using distant supervision and
joint inference
Savelie Cornegruta and Andreas Vlachos

xlix

Thursday, November 3, 2016 (continued)

[S06][INFORMATION EXTRACTION] Combining Supervised and Unsupervised Enem-
bles for Knowledge Base Population
Nazneen Fatema Rajani and Raymond Mooney

[S07][LANGUAGE & VISION] Character Sequence Models for Colorful Words
Kazuya Kawakami, Chris Dyer, Bryan Routledge and Noah A. Smith

[S08][LANGUAGE & VISION] Analyzing the Behavior of Visual Question Answering
Models
Aishwarya Agrawal, Dhruv Batra and Devi Parikh

[S09][LANGUAGE & VISION] Improving LSTM-based Video Description with Linguis-
tic Knowledge Mined from Text
Subhashini Venugopalan, Lisa Anne Hendricks, Raymond Mooney and Kate
Saenko

[S10][SEMANTICS] Representing Verbs with Rich Contexts: an Evaluation on Verb
Similarity
Emmanuele Chersoni, Enrico Santus, Alessandro Lenci, Philippe Blache and Chu-
Ren Huang

[S11][MACHINE LEARNING] Speed-Accuracy Tradeoffs in Tagging with Variable-
Order CRFs and Structured Sparsity
Tim Vieira, Ryan Cotterell and Jason Eisner

[S12][MACHINE LEARNING] Learning Robust Representations of Text
Yitong Li, Trevor Cohn and Timothy Baldwin

[S13][MACHINE LEARNING] Modified Dirichlet Distribution: Allowing Negative Pa-
rameters to Induce Stronger Sparsity
Kewei Tu

[S14][MACHINE LEARNING] Gated Word-Character Recurrent Language Model
Yasumasa Miyamoto and Kyunghyun Cho

[S15][SYNTAX & MORPHOLOGY] Unsupervised Word Alignment by Agreement Under
ITG Constraint
Hidetaka Kamigaito, Akihiro Tamura, Hiroya Takamura, Manabu Okumura and Ei-
ichiro Sumita

[S16][SYNTAX & MORPHOLOGY] Training with Exploration Improves a Greedy Stack
LSTM Parser
Miguel Ballesteros, Yoav Goldberg, Chris Dyer and Noah A. Smith

l

Thursday, November 3, 2016 (continued)

[S17][SEMANTICS] Capturing Argument Relationship for Chinese Semantic Role La-
beling
Lei Sha, Sujian Li, Baobao Chang, Zhifang Sui and Tingsong Jiang

[S18][SEMANTICS] BrainBench: A Brain-Image Test Suite for Distributional Seman-
tic Models
Haoyan Xu, Brian Murphy and Alona Fyshe

[S19][SEMANTICS] Evaluating Induced CCG Parsers on Grounded Semantic Parsing
Yonatan Bisk, Siva Reddy, John Blitzer, Julia Hockenmaier and Mark Steedman

[S20][SEMANTICS] Vector-space models for PPDB paraphrase ranking in context
Marianna Apidianaki

[S21][SENTIMENT ANALYSIS] Interpreting Neural Networks to Improve Politeness
Comprehension
Malika Aubakirova and Mohit Bansal

[S22][SENTIMENT ANALYSIS] Does ‘well-being’ translate on Twitter?
Laura Smith, Salvatore Giorgi, Rishi Solanki, Johannes Eichstaedt, H. Andrew
Schwartz, Muhammad Abdul-Mageed, Anneke Buffone and Lyle Ungar

[S23][SOCIAL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] Beyond Canonical Texts: A
Computational Analysis of Fanfiction
Smitha Milli and David Bamman

[S24][SOCIAL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] Using Syntactic and Seman-
tic Context to Explore Psychodemographic Differences in Self-reference
Masoud Rouhizadeh, Lyle Ungar, Anneke Buffone and H. Andrew Schwartz

[S25][SOCIAL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] Learning to Identify
Metaphors from a Corpus of Proverbs
Gözde Özbal, Carlo Strapparava, Serra Sinem Tekiroglu and Daniele Pighin

[S26][SOCIAL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] An Embedding Model for
Predicting Roll-Call Votes
Peter Kraft, Hirsh Jain and Alexander M. Rush

[S27][SPOKEN LANGUAGE PROCESSING] Natural Language Model Re-usability for
Scaling to Different Domains
Young-Bum Kim, Alexandre Rochette and Ruhi Sarikaya

[S28][SPOKEN LANGUAGE PROCESSING] Leveraging Sentence-level Information with
Encoder LSTM for Semantic Slot Filling
Gakuto Kurata, Bing Xiang, Bowen Zhou and Mo Yu

li

Thursday, November 3, 2016 (continued)

[S29][SUMMARIZATION] AMR-to-text generation as a Traveling Salesman Problem
Linfeng Song, Yue Zhang, Xiaochang Peng, Zhiguo Wang and Daniel Gildea

[S30][TEXT MINING & APPLICATIONS] Learning to Capitalize with Character-Level
Recurrent Neural Networks: An Empirical Study
Raymond Hendy Susanto, Hai Leong Chieu and Wei Lu

[S31][TEXT MINING & APPLICATIONS] The Effects of the Content of FOMC Communi-
cations on US Treasury Rates
Christopher Rohlfs, Sunandan Chakraborty and Lakshminarayanan Subramanian

[S32][TEXT MINING & APPLICATIONS] Learning to refine text based recommendations
Youyang Gu, Tao Lei, Regina Barzilay and Tommi Jaakkola

[S33][TEXT MINING & APPLICATIONS] There’s No Comparison: Reference-less Evalu-
ation Metrics in Grammatical Error Correction
Courtney Napoles, Keisuke Sakaguchi and Joel Tetreault

[S34][SOCIAL MEDIA & COMPUTATIONAL SOCIAL SCIENCE] Cultural Shift or Linguistic
Drift? Comparing Two Computational Measures of Semantic Change
William L. Hamilton, Jure Leskovec and Dan Jurafsky

Friday, November 4, 2016

07:30–17:30 Registration Day 3

08:00–09:00 Morning Coffee

09:00–10:00 Session P9: Plenary Session: Invited Talk by Andreas Stolcke

09:00–10:00 You Talking to Me? Speech-based and Multimodal Approaches for Human versus
Computer Addressee Detection
Andreas Stolcke

10:00–10:30 Coffee Break

lii

Friday, November 4, 2016 (continued)

10:30–12:10 Session 7A: Dialogue Systems (Long Papers)

10:30–10:55 How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised
Evaluation Metrics for Dialogue Response Generation
Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Noseworthy, Laurent Charlin and
Joelle Pineau

10:55–11:20 Addressee and Response Selection for Multi-Party Conversation
Hiroki Ouchi and Yuta Tsuboi

11:20–11:45 Nonparametric Bayesian Models for Spoken Language Understanding
Kei Wakabayashi, Johane Takeuchi, Kotaro Funakoshi and Mikio Nakano

11:45–12:10 Conditional Generation and Snapshot Learning in Neural Dialogue Systems
Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Lina M. Rojas Barahona, Pei-Hao
Su, Stefan Ultes, David Vandyke and Steve Young

10:30–12:10 Session 7B: Semantic Similarity (Long Papers)

10:30–10:55 Relations such as Hypernymy: Identifying and Exploiting Hearst Patterns in Distri-
butional Vectors for Lexical Entailment
Stephen Roller and Katrin Erk

10:55–11:20 SimVerb-3500: A Large-Scale Evaluation Set of Verb Similarity
Daniela Gerz, Ivan Vulić, Felix Hill, Roi Reichart and Anna Korhonen

11:20–11:45 POLY: Mining Relational Paraphrases from Multilingual Sentences
Adam Grycner and Gerhard Weikum

11:45–12:10 Exploiting Sentence Similarities for Better Alignments
Tao Li and Vivek Srikumar

liii

Friday, November 4, 2016 (continued)

10:30–12:10 Session 7C: Dependency Parsing (Long + TACL Papers)

10:30–10:55 Bi-directional Attention with Agreement for Dependency Parsing
Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gao and Li Deng

10:55–11:20 [TACL] The Galactic Dependencies Treebanks: Getting More Data by Synthesizing
New Languages
Dingquan Wang and Jason Eisner

11:20–11:45 [TACL] Easy-First Dependency Parsing with Hierarchical Tree LSTMs
Eliyahu Kiperwasser and Yoav Goldberg

11:45–12:10 Anchoring and Agreement in Syntactic Annotations
Yevgeni Berzak, Yan Huang, Andrei Barbu, Anna Korhonen and Boris Katz

12:10–13:40 Lunch

13:40–15:25 Session 8A: Short Paper Oral Session I

13:40–13:55 Tense Manages to Predict Implicative Behavior in Verbs
Ellie Pavlick and Chris Callison-Burch

13:55–14:10 Who did What: A Large-Scale Person-Centered Cloze Dataset
Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin Gimpel and David McAllester

14:10–14:25 Building compositional semantics and higher-order inference system for a wide-
coverage Japanese CCG parser
Koji Mineshima, Ribeka Tanaka, Pascual Martínez-Gómez, Yusuke Miyao and
Daisuke Bekki

14:25–14:40 Learning to Generate Compositional Color Descriptions
Will Monroe, Noah D. Goodman and Christopher Potts

14:40–14:55 A Decomposable Attention Model for Natural Language Inference
Ankur Parikh, Oscar Täckström, Dipanjan Das and Jakob Uszkoreit

14:55–15:10 Deep Reinforcement Learning for Mention-Ranking Coreference Models
Kevin Clark and Christopher D. Manning

liv

Friday, November 4, 2016 (continued)

15:10–15:25 A Stacking Gated Neural Architecture for Implicit Discourse Relation Classification
Lianhui Qin, Zhisong Zhang and Hai Zhao

13:40–15:25 Session 8B: Short Paper Oral Session II

13:40–13:55 Insertion Position Selection Model for Flexible Non-Terminals in Dependency Tree-
to-Tree Machine Translation
Toshiaki Nakazawa, John Richardson and Sadao Kurohashi

13:55–14:10 Why Neural Translations are the Right Length
Xing Shi, Kevin Knight and Deniz Yuret

14:10–14:25 Supervised Attentions for Neural Machine Translation
Haitao Mi, Zhiguo Wang and Abe Ittycheriah

14:25–14:40 Learning principled bilingual mappings of word embeddings while preserving
monolingual invariance
Mikel Artetxe, Gorka Labaka and Eneko Agirre

14:40–14:55 Measuring the behavioral impact of machine translation quality improvements with
A/B testing
Ben Russell and Duncan Gillespie

14:55–15:10 Creating a Large Benchmark for Open Information Extraction
Gabriel Stanovsky and Ido Dagan

15:10–15:25 Bilingually-constrained Synthetic Data for Implicit Discourse Relation Recognition
Changxing Wu, xiaodong shi, Yidong Chen, Yanzhou Huang and jinsong su

lv

Friday, November 4, 2016 (continued)

13:40–15:25 Session 8C: Short Paper Oral Session III

13:40–13:55 Transition-Based Dependency Parsing with Heuristic Backtracking
Jacob Buckman, Miguel Ballesteros and Chris Dyer

13:55–14:10 Word Ordering Without Syntax
Allen Schmaltz, Alexander M. Rush and Stuart Shieber

14:10–14:25 Morphological Segmentation Inside-Out
Ryan Cotterell, Arun Kumar and Hinrich Schütze

14:25–14:40 Parsing as Language Modeling
Do Kook Choe and Eugene Charniak

14:40–14:55 Human-in-the-Loop Parsing
Luheng He, Julian Michael, Mike Lewis and Luke Zettlemoyer

14:55–15:10 Unsupervised Timeline Generation for Wikipedia History Articles
Sandro Bauer and Simone Teufel

15:10–15:25 Encoding Temporal Information for Time-Aware Link Prediction
Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Sujian Li, Baobao Chang and Zhifang
Sui

15:25–15:50 Coffee Break

lvi

Friday, November 4, 2016 (continued)

15:50–17:25 Session P10: Plenary Session: Best Paper

15:50–15:55 Introduction to Best Papers
Program Chairs

15:55–16:20 Improving Information Extraction by Acquiring External Evidence with Reinforce-
ment Learning
Karthik Narasimhan, Adam Yala and Regina Barzilay

16:20–16:45 Global Neural CCG Parsing with Optimality Guarantees
Kenton Lee, Mike Lewis and Luke Zettlemoyer

16:45–17:00 Learning a Lexicon and Translation Model from Phoneme Lattices
Oliver Adams, Graham Neubig, Trevor Cohn, Steven Bird, Quoc Truong Do and
Satoshi Nakamura

17:00–17:25 SQuAD: 100,000+ Questions for Machine Comprehension of Text
Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev and Percy Liang

17:25–17:45 Session P11: Plenary Session: Closing Remarks

17:25–17:45 Closing Remarks
General Chair

lvii

List of Papers

Span-Based Constituency Parsing with a Structure-Label System and Provably Optimal Dynamic Ora-
cles

James Cross and Liang Huang . 1

Rule Extraction for Tree-to-Tree Transducers by Cost Minimization
Pascual Martínez-Gómez and Yusuke Miyao . 12

A Neural Network for Coordination Boundary Prediction
Jessica Ficler and Yoav Goldberg . 23

Using Left-corner Parsing to Encode Universal Structural Constraints in Grammar Induction
Hiroshi Noji, Yusuke Miyao and Mark Johnson . 33

Distinguishing Past, On-going, and Future Events: The EventStatus Corpus
Ruihong Huang, Ignacio Cases, Dan Jurafsky, Cleo Condoravdi and Ellen Riloff 44

Nested Propositions in Open Information Extraction
Nikita Bhutani, H V Jagadish and Dragomir Radev . 55

A Position Encoding Convolutional Neural Network Based on Dependency Tree for Relation Classifi-
cation

Yunlun Yang, Yunhai Tong, Shulei Ma and Zhi-Hong Deng . 65

Learning to Recognize Discontiguous Entities
Aldrian Obaja Muis and Wei Lu. .75

Modeling Human Reading with Neural Attention
Michael Hahn and Frank Keller . 85

Comparing Computational Cognitive Models of Generalization in a Language Acquisition Task
Libby Barak, Adele E. Goldberg and Suzanne Stevenson . 96

Rationalizing Neural Predictions
Tao Lei, Regina Barzilay and Tommi Jaakkola. .107

Deep Multi-Task Learning with Shared Memory for Text Classification
Pengfei Liu, Xipeng Qiu and Xuanjing Huang . 118

Natural Language Comprehension with the EpiReader
Adam Trischler, Zheng Ye, Xingdi Yuan, Philip Bachman, Alessandro Sordoni and Kaheer Sule-

man . 128

Creating Causal Embeddings for Question Answering with Minimal Supervision
Rebecca Sharp, Mihai Surdeanu, Peter Jansen, Peter Clark and Michael Hammond.138

lix

Improving Semantic Parsing via Answer Type Inference
Semih Yavuz, Izzeddin Gur, Yu Su, Mudhakar Srivatsa and Xifeng Yan . 149

Semantic Parsing to Probabilistic Programs for Situated Question Answering
Jayant Krishnamurthy, Oyvind Tafjord and Aniruddha Kembhavi . 160

Event participant modelling with neural networks
Ottokar Tilk, Vera Demberg, Asad Sayeed, Dietrich Klakow and Stefan Thater 171

Context-Dependent Sense Embedding
Lin Qiu, Kewei Tu and Yong Yu . 183

Jointly Embedding Knowledge Graphs and Logical Rules
Shu Guo, Quan Wang, Lihong Wang, Bin Wang and Li Guo . 192

Learning Connective-based Word Representations for Implicit Discourse Relation Identification
Chloé Braud and Pascal Denis . 203

Aspect Level Sentiment Classification with Deep Memory Network
Duyu Tang, Bing Qin and Ting Liu . 214

Lifelong-RL: Lifelong Relaxation Labeling for Separating Entities and Aspects in Opinion Targets
Lei Shu, Bing Liu, Hu Xu and Annice Kim . 225

Learning Sentence Embeddings with Auxiliary Tasks for Cross-Domain Sentiment Classification
Jianfei Yu and Jing Jiang . 236

Attention-based LSTM Network for Cross-Lingual Sentiment Classification
Xinjie Zhou, Xiaojun Wan and Jianguo Xiao . 247

Neural versus Phrase-Based Machine Translation Quality: a Case Study
Luisa Bentivogli, Arianna Bisazza, Mauro Cettolo and Marcello Federico 257

Zero-Resource Translation with Multi-Lingual Neural Machine Translation
Orhan Firat, Baskaran Sankaran, Yaser Al-Onaizan, Fatos T. Yarman Vural and Kyunghyun Cho

268

Memory-enhanced Decoder for Neural Machine Translation
Mingxuan Wang, Zhengdong Lu, Hang Li and Qun Liu . 278

Semi-Supervised Learning of Sequence Models with Method of Moments
Zita Marinho, André F. T. Martins, Shay B. Cohen and Noah A. Smith . 287

Learning from Explicit and Implicit Supervision Jointly For Algebra Word Problems
Shyam Upadhyay, Ming-Wei Chang, Kai-Wei Chang and Wen-tau Yih. .297

TweeTime : A Minimally Supervised Method for Recognizing and Normalizing Time Expressions in
Twitter

Jeniya Tabassum, Alan Ritter and Wei Xu . 307

lx

Language as a Latent Variable: Discrete Generative Models for Sentence Compression
Yishu Miao and Phil Blunsom . 319

Globally Coherent Text Generation with Neural Checklist Models
Chloé Kiddon, Luke Zettlemoyer and Yejin Choi . 329

A Dataset and Evaluation Metrics for Abstractive Compression of Sentences and Short Paragraphs
Kristina Toutanova, Chris Brockett, Ke M. Tran and Saleema Amershi . 340

PaCCSS-IT: A Parallel Corpus of Complex-Simple Sentences for Automatic Text Simplification
Dominique Brunato, Andrea Cimino, Felice Dell’Orletta and Giulia Venturi 351

Discourse Parsing with Attention-based Hierarchical Neural Networks
Qi Li, Tianshi Li and Baobao Chang. .362

Multi-view Response Selection for Human-Computer Conversation
Xiangyang Zhou, Daxiang Dong, Hua Wu, Shiqi Zhao, Dianhai Yu, Hao Tian, Xuan Liu and Rui

Yan . 372

Variational Neural Discourse Relation Recognizer
Biao Zhang, Deyi Xiong, jinsong su, Qun Liu, Rongrong Ji, Hong Duan and Min Zhang 382

Event Detection and Co-reference with Minimal Supervision
Haoruo Peng, Yangqiu Song and Dan Roth . 392

Learning Term Embeddings for Taxonomic Relation Identification Using Dynamic Weighting Neural
Network

Tuan Luu Anh, Yi Tay, Siu Cheung Hui and See Kiong Ng . 403

Relation Schema Induction using Tensor Factorization with Side Information
Madhav Nimishakavi, Uday Singh Saini and Partha Talukdar . 414

Supervised Distributional Hypernym Discovery via Domain Adaptation
Luis Espinosa Anke, Jose Camacho-Collados, Claudio Delli Bovi and Horacio Saggion 424

Latent Tree Language Model
Tomáš Brychcín . 436

Comparing Data Sources and Architectures for Deep Visual Representation Learning in Semantics
Douwe Kiela, Anita Lilla Verő and Stephen Clark . 447

Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding
Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell and Marcus Rohrbach

457

The Structured Weighted Violations Perceptron Algorithm
Rotem Dror and Roi Reichart . 469

How Transferable are Neural Networks in NLP Applications?
Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu, Lu Zhang and Zhi Jin . 479

lxi

Morphological Priors for Probabilistic Neural Word Embeddings
Parminder Bhatia, Robert Guthrie and Jacob Eisenstein . 490

Automatic Cross-Lingual Similarization of Dependency Grammars for Tree-based Machine Translation
Wenbin Jiang, Wen Zhang, Jinan Xu and Rangjia Cai . 501

IRT-based Aggregation Model of Crowdsourced Pairwise Comparison for Evaluating Machine Trans-
lations

Naoki Otani, Toshiaki Nakazawa, Daisuke Kawahara and Sadao Kurohashi 511

Variational Neural Machine Translation
Biao Zhang, Deyi Xiong, jinsong su, Hong Duan and Min Zhang .521

Towards a Convex HMM Surrogate for Word Alignment
Andrei Simion, Michael Collins and Cliff Stein . 531

Solving Verbal Questions in IQ Test by Knowledge-Powered Word Embedding
Huazheng Wang, Fei Tian, Bin Gao, Chengjieren Zhu, Jiang Bian and Tie-Yan Liu.541

Long Short-Term Memory-Networks for Machine Reading
Jianpeng Cheng, Li Dong and Mirella Lapata . 551

On Generating Characteristic-rich Question Sets for QA Evaluation
Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa, Izzeddin Gur, Zenghui Yan and Xifeng Yan

562

Learning to Translate for Multilingual Question Answering
Ferhan Ture and Elizabeth Boschee . 573

A Semiparametric Model for Bayesian Reader Identification
Ahmed Abdelwahab, Reinhold Kliegl and Niels Landwehr . 585

Inducing Domain-Specific Sentiment Lexicons from Unlabeled Corpora
William L. Hamilton, Kevin Clark, Jure Leskovec and Dan Jurafsky . 595

Attention-based LSTM for Aspect-level Sentiment Classification
Yequan Wang, Minlie Huang, xiaoyan zhu and Li Zhao . 606

Recursive Neural Conditional Random Fields for Aspect-based Sentiment Analysis
Wenya Wang, Sinno Jialin Pan, Daniel Dahlmeier and Xiaokui Xiao . 616

Extracting Aspect Specific Opinion Expressions
Abhishek Laddha and Arjun Mukherjee . 627

Emotion Distribution Learning from Texts
Deyu ZHOU, Xuan Zhang, Yin Zhou, Quan Zhao and Xin Geng . 638

Building an Evaluation Scale using Item Response Theory
John Lalor, Hao Wu and hong yu. .648

lxii

WordRank: Learning Word Embeddings via Robust Ranking
Shihao Ji, Hyokun Yun, Pinar Yanardag, Shin Matsushima and S. V. N. Vishwanathan 658

Exploring Semantic Representation in Brain Activity Using Word Embeddings
Yu-Ping Ruan, Zhen-Hua Ling and Yu Hu . 669

AMR Parsing with an Incremental Joint Model
Junsheng Zhou, Feiyu Xu, Hans Uszkoreit, Weiguang QU, Ran Li and Yanhui Gu 680

Identifying Dogmatism in Social Media: Signals and Models
Ethan Fast and Eric Horvitz . 690

Enhanced Personalized Search using Social Data
Dong Zhou, Séamus Lawless, Xuan Wu, Wenyu Zhao and Jianxun Liu . 700

Effective Greedy Inference for Graph-based Non-Projective Dependency Parsing
Ilan Tchernowitz, Liron Yedidsion and Roi Reichart . 711

Generating Abbreviations for Chinese Named Entities Using Recurrent Neural Network with Dynamic
Dictionary

Qi Zhang, Jin Qian, Ya Guo, Yaqian Zhou and Xuanjing Huang . 721

Neural Network for Heterogeneous Annotations
Hongshen Chen, Yue Zhang and Qun Liu . 731

LAMB: A Good Shepherd of Morphologically Rich Languages
Sebastian Ebert, Thomas Müller and Hinrich Schütze . 742

Fast Coupled Sequence Labeling on Heterogeneous Annotations via Context-aware Pruning
Zhenghua Li, Jiayuan Chao, Min Zhang and Jiwen Yang . 753

Unsupervised Neural Dependency Parsing
Yong Jiang, Wenjuan Han and Kewei Tu . 763

Generating Coherent Summaries of Scientific Articles Using Coherence Patterns
Daraksha Parveen, Mohsen Mesgar and Michael Strube . 772

News Stream Summarization using Burst Information Networks
Tao Ge, Lei Cui, Baobao Chang, Sujian Li, Ming Zhou and Zhifang Sui 784

Rationale-Augmented Convolutional Neural Networks for Text Classification
Ye Zhang, Iain Marshall and Byron C. Wallace . 795

Transferring User Interests Across Websites with Unstructured Text for Cold-Start Recommendation
Yu-Yang Huang and Shou-De Lin . 805

Speculation and Negation Scope Detection via Convolutional Neural Networks
Zhong Qian, Peifeng Li, Qiaoming Zhu, Guodong Zhou, Zhunchen Luo and Wei Luo 815

lxiii

Analyzing Linguistic Knowledge in Sequential Model of Sentence
Peng Qian, Xipeng Qiu and Xuanjing Huang . 826

Keyphrase Extraction Using Deep Recurrent Neural Networks on Twitter
Qi Zhang, Yang Wang, Yeyun Gong and Xuanjing Huang . 836

Solving and Generating Chinese Character Riddles
Chuanqi Tan, Furu Wei, Li Dong, Weifeng Lv and Ming Zhou . 846

Structured prediction models for RNN based sequence labeling in clinical text
Abhyuday Jagannatha and hong yu . 856

Learning to Represent Review with Tensor Decomposition for Spam Detection
Xuepeng Wang, Kang Liu, Shizhu He and Jun Zhao . 866

Stance Detection with Bidirectional Conditional Encoding
Isabelle Augenstein, Tim Rocktäschel, Andreas Vlachos and Kalina Bontcheva 876

Modeling Skip-Grams for Event Detection with Convolutional Neural Networks
Thien Huu Nguyen and Ralph Grishman . 886

Porting an Open Information Extraction System from English to German
Tobias Falke, Gabriel Stanovsky, Iryna Gurevych and Ido Dagan . 892

Named Entity Recognition for Novel Types by Transfer Learning
Lizhen Qu, Gabriela Ferraro, Liyuan Zhou, Weiwei Hou and Timothy Baldwin 899

Extracting Subevents via an Effective Two-phase Approach
Allison Badgett and Ruihong Huang . 906

Gaussian Visual-Linguistic Embedding for Zero-Shot Recognition
Tanmoy Mukherjee and Timothy Hospedales . 912

Question Relevance in VQA: Identifying Non-Visual And False-Premise Questions
Arijit Ray, Gordon Christie, Mohit Bansal, Dhruv Batra and Devi Parikh 919

Sort Story: Sorting Jumbled Images and Captions into Stories
Harsh Agrawal, Arjun Chandrasekaran, Dhruv Batra, Devi Parikh and Mohit Bansal 925

Human Attention in Visual Question Answering: Do Humans and Deep Networks look at the same
regions?

Abhishek Das, Harsh Agrawal, Larry Zitnick, Devi Parikh and Dhruv Batra 932

Recurrent Residual Learning for Sequence Classification
Yiren Wang and Fei Tian . 938

Richer Interpolative Smoothing Based on Modified Kneser-Ney Language Modeling
Ehsan Shareghi, Trevor Cohn and Gholamreza Haffari . 944

lxiv

A General Regularization Framework for Domain Adaptation
Wei Lu, Hai Leong Chieu and Jonathan Löfgren . 950

Coverage Embedding Models for Neural Machine Translation
Haitao Mi, Baskaran Sankaran, Zhiguo Wang and Abe Ittycheriah . 955

Neural Morphological Analysis: Encoding-Decoding Canonical Segments
Katharina Kann, Ryan Cotterell and Hinrich Schütze . 961

Exploiting Mutual Benefits between Syntax and Semantic Roles using Neural Network
Peng Shi, Zhiyang Teng and Yue Zhang . 968

The Effects of Data Size and Frequency Range on Distributional Semantic Models
Magnus Sahlgren and Alessandro Lenci . 975

Multi-Granularity Chinese Word Embedding
Rongchao Yin, Quan Wang, Peng Li, Rui Li and Bin Wang . 981

Numerically Grounded Language Models for Semantic Error Correction
Georgios Spithourakis, Isabelle Augenstein and Sebastian Riedel . 987

Towards Semi-Automatic Generation of Proposition Banks for Low-Resource Languages
Alan Akbik, vishwajeet kumar and Yunyao Li . 993

A Hierarchical Model of Reviews for Aspect-based Sentiment Analysis
Sebastian Ruder, Parsa Ghaffari and John G. Breslin . 999

Are Word Embedding-based Features Useful for Sarcasm Detection?
Aditya Joshi, Vaibhav Tripathi, Kevin Patel, Pushpak Bhattacharyya and Mark Carman 1006

Weakly Supervised Tweet Stance Classification by Relational Bootstrapping
Javid Ebrahimi, Dejing Dou and Daniel Lowd . 1012

The Gun Violence Database: A new task and data set for NLP
Ellie Pavlick, Heng Ji, Xiaoman Pan and Chris Callison-Burch . 1018

Fluency detection on communication networks
Tom Lippincott and Benjamin Van Durme . 1025

Characterizing the Language of Online Communities and its Relation to Community Reception
Trang Tran and Mari Ostendorf . 1030

Joint Transition-based Dependency Parsing and Disfluency Detection for Automatic Speech Recogni-
tion Texts

Masashi Yoshikawa, Hiroyuki Shindo and Yuji Matsumoto . 1036

Real-Time Speech Emotion and Sentiment Recognition for Interactive Dialogue Systems
Dario Bertero, Farhad Bin Siddique, Chien-Sheng Wu, Yan Wan, Ricky Ho Yin Chan and Pascale

Fung . 1042

lxv

A Neural Network Architecture for Multilingual Punctuation Generation
Miguel Ballesteros and Leo Wanner . 1048

Neural Headline Generation on Abstract Meaning Representation
Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsutomu Hirao and Masaaki Nagata 1054

Robust Gram Embeddings
Taygun Kekec and David M. J. Tax . 1060

SimpleScience: Lexical Simplification of Scientific Terminology
Yea Seul Kim, Jessica Hullman, Matthew Burgess and Eytan Adar . 1066

Automatic Features for Essay Scoring – An Empirical Study
Fei Dong and Yue Zhang . 1072

Semantic Parsing with Semi-Supervised Sequential Autoencoders
Tomáš Kočiský, Gábor Melis, Edward Grefenstette, Chris Dyer, Wang Ling, Phil Blunsom and

Karl Moritz Hermann . 1078

Equation Parsing : Mapping Sentences to Grounded Equations
Subhro Roy, Shyam Upadhyay and Dan Roth . 1088

Automatic Extraction of Implicit Interpretations from Modal Constructions
Jordan Sanders and Eduardo Blanco . 1098

Understanding Negation in Positive Terms Using Syntactic Dependencies
Zahra Sarabi and Eduardo Blanco . 1108

Demographic Dialectal Variation in Social Media: A Case Study of African-American English
Su Lin Blodgett, Lisa Green and Brendan O’Connor . 1119

Understanding Language Preference for Expression of Opinion and Sentiment: What do Hindi-English
Speakers do on Twitter?

Koustav Rudra, Shruti Rijhwani, Rafiya Begum, Kalika Bali, Monojit Choudhury and Niloy Gan-
guly . 1131

Detecting and Characterizing Events
Allison Chaney, Hanna Wallach, Matthew Connelly and David Blei . 1142

Convolutional Neural Network Language Models
Ngoc-Quan Pham, Germán Kruszewski and Gemma Boleda . 1153

Generalizing and Hybridizing Count-based and Neural Language Models
Graham Neubig and Chris Dyer .1163

Reasoning about Pragmatics with Neural Listeners and Speakers
Jacob Andreas and Dan Klein . 1173

Generating Topical Poetry
Marjan Ghazvininejad, Xing Shi, Yejin Choi and Kevin Knight . 1183

lxvi

Deep Reinforcement Learning for Dialogue Generation
Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley and Jianfeng Gao 1192

Neural Text Generation from Structured Data with Application to the Biography Domain
Rémi Lebret, David Grangier and Michael Auli . 1203

What makes a convincing argument? Empirical analysis and detecting attributes of convincingness in
Web argumentation

Ivan Habernal and Iryna Gurevych . 1214

Recognizing Implicit Discourse Relations via Repeated Reading: Neural Networks with Multi-Level
Attention

Yang Liu and Sujian Li . 1224

Antecedent Selection for Sluicing: Structure and Content
Pranav Anand and Daniel Hardt . 1234

Intra-Sentential Subject Zero Anaphora Resolution using Multi-Column Convolutional Neural Network
Ryu Iida, Kentaro Torisawa, Jong-Hoon Oh, Canasai Kruengkrai and Julien Kloetzer 1244

An Unsupervised Probability Model for Speech-to-Translation Alignment of Low-Resource Languages
Antonios Anastasopoulos, David Chiang and Long Duong. .1255

HUME: Human UCCA-Based Evaluation of Machine Translation
Alexandra Birch, Omri Abend, Ondřej Bojar and Barry Haddow . 1264

Improving Multilingual Named Entity Recognition with Wikipedia Entity Type Mapping
Jian Ni and Radu Florian . 1275

Learning Crosslingual Word Embeddings without Bilingual Corpora
Long Duong, Hiroshi Kanayama, Tengfei Ma, Steven Bird and Trevor Cohn 1285

Sequence-to-Sequence Learning as Beam-Search Optimization
Sam Wiseman and Alexander M. Rush . 1296

Online Segment to Segment Neural Transduction
Lei Yu, Jan Buys and Phil Blunsom . 1307

Sequence-Level Knowledge Distillation
Yoon Kim and Alexander M. Rush . 1317

Controlling Output Length in Neural Encoder-Decoders
Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya Takamura and Manabu Okumura . . . 1328

Poet Admits // Mute Cypher: Beam Search to find Mutually Enciphering Poetic Texts
Cole Peterson and Alona Fyshe . 1339

All Fingers are not Equal: Intensity of References in Scientific Articles
Tanmoy Chakraborty and Ramasuri Narayanam . 1348

lxvii

Improving Users’ Demographic Prediction via the Videos They Talk about
Yuan Wang, Yang Xiao, Chao Ma and Zhen Xiao . 1359

AFET: Automatic Fine-Grained Entity Typing by Hierarchical Partial-Label Embedding
Xiang Ren, Wenqi He, Meng Qu, Lifu Huang, Heng Ji and Jiawei Han 1369

Mining Inference Formulas by Goal-Directed Random Walks
Zhuoyu Wei, Jun Zhao and Kang Liu . 1379

Lifted Rule Injection for Relation Embeddings
Thomas Demeester, Tim Rocktäschel and Sebastian Riedel . 1389

Key-Value Memory Networks for Directly Reading Documents
Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes and Jason

Weston . 1400

Analyzing Framing through the Casts of Characters in the News
Dallas Card, Justin Gross, Amber Boydstun and Noah A. Smith . 1410

The Teams Corpus and Entrainment in Multi-Party Spoken Dialogues
Diane Litman, Susannah Paletz, Zahra Rahimi, Stefani Allegretti and Caitlin Rice 1421

Personalized Emphasis Framing for Persuasive Message Generation
Tao Ding and Shimei Pan . 1432

Cross Sentence Inference for Process Knowledge
Samuel Louvan, Chetan Naik, Sadhana Kumaravel, Heeyoung Kwon, Niranjan Balasubramanian

and Peter Clark . 1442

Toward Socially-Infused Information Extraction: Embedding Authors, Mentions, and Entities
Yi Yang, Ming-Wei Chang and Jacob Eisenstein . 1452

Phonologically Aware Neural Model for Named Entity Recognition in Low Resource Transfer Settings
Akash Bharadwaj, David Mortensen, Chris Dyer and Jaime Carbonell . 1462

Long-Short Range Context Neural Networks for Language Modeling
Youssef Oualil, Mittul Singh, Clayton Greenberg and Dietrich Klakow 1473

Jointly Learning Grounded Task Structures from Language Instruction and Visual Demonstration
Changsong Liu, Shaohua Yang, Sari Saba-Sadiya, Nishant Shukla, Yunzhong He, Song-chun Zhu

and Joyce Chai . 1482

Resolving Language and Vision Ambiguities Together: Joint Segmentation & Prepositional Attachment
Resolution in Captioned Scenes

Gordon Christie, Ankit Laddha, Aishwarya Agrawal, Stanislaw Antol, Yash Goyal, Kevin Kochers-
berger and Dhruv Batra . 1493

Charagram: Embedding Words and Sentences via Character n-grams
John Wieting, Mohit Bansal, Kevin Gimpel and Karen Livescu . 1504

lxviii

Length bias in Encoder Decoder Models and a Case for Global Conditioning
Pavel Sountsov and Sunita Sarawagi . 1516

Does String-Based Neural MT Learn Source Syntax?
Xing Shi, Inkit Padhi and Kevin Knight .1526

Exploiting Source-side Monolingual Data in Neural Machine Translation
Jiajun Zhang and Chengqing Zong . 1535

Phrase-based Machine Translation is State-of-the-Art for Automatic Grammatical Error Correction
Marcin Junczys-Dowmunt and Roman Grundkiewicz . 1546

Incorporating Discrete Translation Lexicons into Neural Machine Translation
Philip Arthur, Graham Neubig and Satoshi Nakamura . 1557

Transfer Learning for Low-Resource Neural Machine Translation
Barret Zoph, Deniz Yuret, Jonathan May and Kevin Knight . 1568

MixKMeans: Clustering Question-Answer Archives
Deepak P . 1576

It Takes Three to Tango: Triangulation Approach to Answer Ranking in Community Question Answering
Preslav Nakov, Lluís Màrquez and Francisco Guzmán. .1586

Character-Level Question Answering with Attention
Xiaodong He and David Golub . 1598

Learning to Generate Textual Data
Guillaume Bouchard, Pontus Stenetorp and Sebastian Riedel . 1608

A Theme-Rewriting Approach for Generating Algebra Word Problems
Rik Koncel-Kedziorski, Ioannis Konstas, Luke Zettlemoyer and Hannaneh Hajishirzi 1617

Context-Sensitive Lexicon Features for Neural Sentiment Analysis
Zhiyang Teng, Duy Tin Vo and Yue Zhang . 1629

Event-Driven Emotion Cause Extraction with Corpus Construction
Lin Gui, Dongyin Wu, Ruifeng Xu, Qin Lu and Yu Zhou . 1639

Neural Sentiment Classification with User and Product Attention
Huimin Chen, Maosong Sun, Cunchao Tu, Yankai Lin and Zhiyuan Liu 1650

Cached Long Short-Term Memory Neural Networks for Document-Level Sentiment Classification
Jiacheng Xu, Danlu Chen, Xipeng Qiu and Xuanjing Huang . 1660

Deep Neural Networks with Massive Learned Knowledge
Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov and Eric Xing . 1670

De-Conflated Semantic Representations
Mohammad Taher Pilehvar and Nigel Collier . 1680

lxix

Improving Sparse Word Representations with Distributional Inference for Semantic Composition
Thomas Kober, Julie Weeds, Jeremy Reffin and David Weir . 1691

Modelling Interaction of Sentence Pair with Coupled-LSTMs
Pengfei Liu, Xipeng Qiu, Yaqian Zhou, Jifan Chen and Xuanjing Huang 1703

Universal Decompositional Semantics on Universal Dependencies
Aaron Steven White, Drew Reisinger, Keisuke Sakaguchi, Tim Vieira, Sheng Zhang, Rachel

Rudinger, Kyle Rawlins and Benjamin Van Durme . 1713

Friends with Motives: Using Text to Infer Influence on SCOTUS
Yanchuan Sim, Bryan Routledge and Noah A. Smith . 1724

Verb Phrase Ellipsis Resolution Using Discriminative and Margin-Infused Algorithms
Kian Kenyon-Dean, Jackie Chi Kit Cheung and Doina Precup . 1734

Distilling an Ensemble of Greedy Dependency Parsers into One MST Parser
Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer and Noah A. Smith . . . 1744

LSTM Shift-Reduce CCG Parsing
Wenduan Xu . 1754

An Evaluation of Parser Robustness for Ungrammatical Sentences
Homa B. Hashemi and Rebecca Hwa . 1765

Neural Shift-Reduce CCG Semantic Parsing
Dipendra Kumar Misra and Yoav Artzi . 1775

Syntactic Parsing of Web Queries
Xiangyan Sun, Haixun Wang, Yanghua Xiao and Zhongyuan Wang . 1787

Unsupervised Text Recap Extraction for TV Series
Hongliang Yu, Shikun Zhang and Louis-Philippe Morency . 1797

On- and Off-Topic Classification and Semantic Annotation of User-Generated Software Requirements
Markus Dollmann and Michaela Geierhos . 1807

Deceptive Review Spam Detection via Exploiting Task Relatedness and Unlabeled Data
Zhen Hai, Peilin Zhao, Peng Cheng, Peng Yang, Xiao-Li Li and Guangxia Li 1817

Regularizing Text Categorization with Clusters of Words
Konstantinos Skianis, Francois Rousseau and Michalis Vazirgiannis . 1827

Deep Reinforcement Learning with a Combinatorial Action Space for Predicting Popular Reddit Threads
Ji He, Mari Ostendorf, Xiaodong He, Jianshu Chen, Jianfeng Gao, Lihong Li and Li Deng. .1838

Non-Literal Text Reuse in Historical Texts: An Approach to Identify Reuse Transformations and its
Application to Bible Reuse

Maria Moritz, Andreas Wiederhold, Barbara Pavlek, Yuri Bizzoni and Marco Büchler 1849

lxx

A Graph Degeneracy-based Approach to Keyword Extraction
Antoine Tixier, Fragkiskos Malliaros and Michalis Vazirgiannis . 1860

Predicting the Relative Difficulty of Single Sentences With and Without Surrounding Context
Elliot Schumacher, Maxine Eskenazi, Gwen Frishkoff and Kevyn Collins-Thompson 1871

A Neural Approach to Automated Essay Scoring
Kaveh Taghipour and Hwee Tou Ng . 1882

Non-uniform Language Detection in Technical Writing
Weibo Wang, Abidalrahman Moh’d, Aminul Islam, Axel Soto and Evangelos Milios 1892

Adapting Grammatical Error Correction Based on the Native Language of Writers with Neural Network
Joint Models

Shamil Chollampatt, Duc Tam Hoang and Hwee Tou Ng . 1901

Orthographic Syllable as basic unit for SMT between Related Languages
Anoop Kunchukuttan and Pushpak Bhattacharyya . 1912

Neural Generation of Regular Expressions from Natural Language with Minimal Domain Knowledge
Nicholas Locascio, Karthik Narasimhan, Eduardo De Leon, Nate Kushman and Regina Barzilay

1918

Supervised Keyphrase Extraction as Positive Unlabeled Learning
Lucas Sterckx, Cornelia Caragea, Thomas Demeester and Chris Develder 1924

Learning to Answer Questions from Wikipedia Infoboxes
Alvaro Morales, Varot Premtoon, Cordelia Avery, Sue Felshin and Boris Katz 1930

Timeline extraction using distant supervision and joint inference
Savelie Cornegruta and Andreas Vlachos . 1936

Combining Supervised and Unsupervised Enembles for Knowledge Base Population
Nazneen Fatema Rajani and Raymond Mooney. .1943

Character Sequence Models for Colorful Words
Kazuya Kawakami, Chris Dyer, Bryan Routledge and Noah A. Smith . 1949

Analyzing the Behavior of Visual Question Answering Models
Aishwarya Agrawal, Dhruv Batra and Devi Parikh . 1955

Improving LSTM-based Video Description with Linguistic Knowledge Mined from Text
Subhashini Venugopalan, Lisa Anne Hendricks, Raymond Mooney and Kate Saenko.1961

Representing Verbs with Rich Contexts: an Evaluation on Verb Similarity
Emmanuele Chersoni, Enrico Santus, Alessandro Lenci, Philippe Blache and Chu-Ren Huang

1967

Speed-Accuracy Tradeoffs in Tagging with Variable-Order CRFs and Structured Sparsity
Tim Vieira, Ryan Cotterell and Jason Eisner . 1973

lxxi

Learning Robust Representations of Text
Yitong Li, Trevor Cohn and Timothy Baldwin . 1979

Modified Dirichlet Distribution: Allowing Negative Parameters to Induce Stronger Sparsity
Kewei Tu . 1986

Gated Word-Character Recurrent Language Model
Yasumasa Miyamoto and Kyunghyun Cho . 1992

Unsupervised Word Alignment by Agreement Under ITG Constraint
Hidetaka Kamigaito, Akihiro Tamura, Hiroya Takamura, Manabu Okumura and Eiichiro Sumita

1998

Training with Exploration Improves a Greedy Stack LSTM Parser
Miguel Ballesteros, Yoav Goldberg, Chris Dyer and Noah A. Smith . 2005

Capturing Argument Relationship for Chinese Semantic Role Labeling
Lei Sha, Sujian Li, Baobao Chang, Zhifang Sui and Tingsong Jiang . 2011

BrainBench: A Brain-Image Test Suite for Distributional Semantic Models
Haoyan Xu, Brian Murphy and Alona Fyshe . 2017

Evaluating Induced CCG Parsers on Grounded Semantic Parsing
Yonatan Bisk, Siva Reddy, John Blitzer, Julia Hockenmaier and Mark Steedman 2022

Vector-space models for PPDB paraphrase ranking in context
Marianna Apidianaki . 2028

Interpreting Neural Networks to Improve Politeness Comprehension
Malika Aubakirova and Mohit Bansal . 2035

Does ‘well-being’ translate on Twitter?
Laura Smith, Salvatore Giorgi, Rishi Solanki, Johannes Eichstaedt, H. Andrew Schwartz, Muham-

mad Abdul-Mageed, Anneke Buffone and Lyle Ungar . 2042

Beyond Canonical Texts: A Computational Analysis of Fanfiction
Smitha Milli and David Bamman . 2048

Using Syntactic and Semantic Context to Explore Psychodemographic Differences in Self-reference
Masoud Rouhizadeh, Lyle Ungar, Anneke Buffone and H. Andrew Schwartz 2054

Learning to Identify Metaphors from a Corpus of Proverbs
Gözde Özbal, Carlo Strapparava, Serra Sinem Tekiroglu and Daniele Pighin 2060

An Embedding Model for Predicting Roll-Call Votes
Peter Kraft, Hirsh Jain and Alexander M. Rush . 2066

Natural Language Model Re-usability for Scaling to Different Domains
Young-Bum Kim, Alexandre Rochette and Ruhi Sarikaya . 2071

lxxii

Leveraging Sentence-level Information with Encoder LSTM for Semantic Slot Filling
Gakuto Kurata, Bing Xiang, Bowen Zhou and Mo Yu . 2077

AMR-to-text generation as a Traveling Salesman Problem
Linfeng Song, Yue Zhang, Xiaochang Peng, Zhiguo Wang and Daniel Gildea 2084

Learning to Capitalize with Character-Level Recurrent Neural Networks: An Empirical Study
Raymond Hendy Susanto, Hai Leong Chieu and Wei Lu . 2090

The Effects of the Content of FOMC Communications on US Treasury Rates
Christopher Rohlfs, Sunandan Chakraborty and Lakshminarayanan Subramanian 2096

Learning to refine text based recommendations
Youyang Gu, Tao Lei, Regina Barzilay and Tommi Jaakkola . 2103

There’s No Comparison: Reference-less Evaluation Metrics in Grammatical Error Correction
Courtney Napoles, Keisuke Sakaguchi and Joel Tetreault . 2109

Cultural Shift or Linguistic Drift? Comparing Two Computational Measures of Semantic Change
William L. Hamilton, Jure Leskovec and Dan Jurafsky . 2116

How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics
for Dialogue Response Generation

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Noseworthy, Laurent Charlin and Joelle Pineau
2122

Addressee and Response Selection for Multi-Party Conversation
Hiroki Ouchi and Yuta Tsuboi . 2133

Nonparametric Bayesian Models for Spoken Language Understanding
Kei Wakabayashi, Johane Takeuchi, Kotaro Funakoshi and Mikio Nakano 2144

Conditional Generation and Snapshot Learning in Neural Dialogue Systems
Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Lina M. Rojas Barahona, Pei-Hao Su, Stefan

Ultes, David Vandyke and Steve Young . 2153

Relations such as Hypernymy: Identifying and Exploiting Hearst Patterns in Distributional Vectors for
Lexical Entailment

Stephen Roller and Katrin Erk . 2163

SimVerb-3500: A Large-Scale Evaluation Set of Verb Similarity
Daniela Gerz, Ivan Vulić, Felix Hill, Roi Reichart and Anna Korhonen 2173

POLY: Mining Relational Paraphrases from Multilingual Sentences
Adam Grycner and Gerhard Weikum . 2183

Exploiting Sentence Similarities for Better Alignments
Tao Li and Vivek Srikumar . 2193

lxxiii

Bi-directional Attention with Agreement for Dependency Parsing
Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gao and Li Deng . 2204

Anchoring and Agreement in Syntactic Annotations
Yevgeni Berzak, Yan Huang, Andrei Barbu, Anna Korhonen and Boris Katz 2215

Tense Manages to Predict Implicative Behavior in Verbs
Ellie Pavlick and Chris Callison-Burch . 2225

Who did What: A Large-Scale Person-Centered Cloze Dataset
Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin Gimpel and David McAllester2230

Building compositional semantics and higher-order inference system for a wide-coverage Japanese
CCG parser

Koji Mineshima, Ribeka Tanaka, Pascual Martínez-Gómez, Yusuke Miyao and Daisuke Bekki
2236

Learning to Generate Compositional Color Descriptions
Will Monroe, Noah D. Goodman and Christopher Potts . 2243

A Decomposable Attention Model for Natural Language Inference
Ankur Parikh, Oscar Täckström, Dipanjan Das and Jakob Uszkoreit . 2249

Deep Reinforcement Learning for Mention-Ranking Coreference Models
Kevin Clark and Christopher D. Manning . 2256

A Stacking Gated Neural Architecture for Implicit Discourse Relation Classification
Lianhui Qin, Zhisong Zhang and Hai Zhao . 2263

Insertion Position Selection Model for Flexible Non-Terminals in Dependency Tree-to-Tree Machine
Translation

Toshiaki Nakazawa, John Richardson and Sadao Kurohashi . 2271

Why Neural Translations are the Right Length
Xing Shi, Kevin Knight and Deniz Yuret . 2278

Supervised Attentions for Neural Machine Translation
Haitao Mi, Zhiguo Wang and Abe Ittycheriah . 2283

Learning principled bilingual mappings of word embeddings while preserving monolingual invariance
Mikel Artetxe, Gorka Labaka and Eneko Agirre . 2289

Measuring the behavioral impact of machine translation quality improvements with A/B testing
Ben Russell and Duncan Gillespie . 2295

Creating a Large Benchmark for Open Information Extraction
Gabriel Stanovsky and Ido Dagan . 2300

Bilingually-constrained Synthetic Data for Implicit Discourse Relation Recognition
Changxing Wu, xiaodong shi, Yidong Chen, Yanzhou Huang and jinsong su 2306

lxxiv

Transition-Based Dependency Parsing with Heuristic Backtracking
Jacob Buckman, Miguel Ballesteros and Chris Dyer . 2313

Word Ordering Without Syntax
Allen Schmaltz, Alexander M. Rush and Stuart Shieber . 2319

Morphological Segmentation Inside-Out
Ryan Cotterell, Arun Kumar and Hinrich Schütze . 2325

Parsing as Language Modeling
Do Kook Choe and Eugene Charniak . 2331

Human-in-the-Loop Parsing
Luheng He, Julian Michael, Mike Lewis and Luke Zettlemoyer . 2337

Unsupervised Timeline Generation for Wikipedia History Articles
Sandro Bauer and Simone Teufel . 2343

Encoding Temporal Information for Time-Aware Link Prediction
Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Sujian Li, Baobao Chang and Zhifang Sui . . . 2350

Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning
Karthik Narasimhan, Adam Yala and Regina Barzilay . 2355

Global Neural CCG Parsing with Optimality Guarantees
Kenton Lee, Mike Lewis and Luke Zettlemoyer . 2366

Learning a Lexicon and Translation Model from Phoneme Lattices
Oliver Adams, Graham Neubig, Trevor Cohn, Steven Bird, Quoc Truong Do and Satoshi Naka-

mura . 2377

SQuAD: 100,000+ Questions for Machine Comprehension of Text
Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev and Percy Liang . 2383

lxxv

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1–11,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Span-Based Constituency Parsing with a Structure-Label System and
Provably Optimal Dynamic Oracles

James Cross and Liang Huang
School of EECS, Oregon State University, Corvallis, OR, USA
{james.henry.cross.iii, liang.huang.sh}@gmail.com

Abstract

Parsing accuracy using efficient greedy transi-
tion systems has improved dramatically in re-
cent years thanks to neural networks. Despite
striking results in dependency parsing, how-
ever, neural models have not surpassed state-
of-the-art approaches in constituency parsing.
To remedy this, we introduce a new shift-
reduce system whose stack contains merely
sentence spans, represented by a bare min-
imum of LSTM features. We also design
the first provably optimal dynamic oracle for
constituency parsing, which runs in amortized
O(1) time, compared to O(n3) oracles for
standard dependency parsing. Training with
this oracle, we achieve the best F1 scores on
both English and French of any parser that
does not use reranking or external data.

1 Introduction

Parsing is an important problem in natural language
processing which has been studied extensively for
decades. Between the two basic paradigms of pars-
ing, constituency parsing, the subject of this paper,
has in general proved to be the more difficult than
dependency parsing, both in terms of accuracy and
the run time of parsing algorithms.

There has recently been a huge surge of interest
in using neural networks to make parsing decisions,
and such models continue to dominate the state of
the art in dependency parsing (Andor et al., 2016).
In constituency parsing, however, neural approaches
are still behind the state-of-the-art (Carreras et al.,
2008; Shindo et al., 2012; Thang et al., 2015); see
more details in Section 5.

To remedy this, we design a new parsing frame-
work that is more suitable for constituency parsing,
and that can be accurately modeled by neural net-
works. Observing that constituency parsing is pri-
marily focused on sentence spans (rather than indi-
vidual words, as is dependency parsing), we propose

a novel adaptation of the shift-reduce system which
reflects this focus. In this system, the stack consists
of sentence spans rather than partial trees. It is also
factored into two types of parser actions, structural
and label actions, which alternate during a parse.
The structural actions are a simplified analogue of
shift-reduce actions, omitting the directionality of
reduce actions, while the label actions directly as-
sign nonterminal symbols to sentence spans.

Our neural model processes the sentence once for
each parse with a recurrent network. We represent
parser configurations with a very small number of
span features (4 for structural actions and 3 for label
actions). Extending Wang and Chang (2016), each
span is represented as the difference of recurrent out-
put from multiple layers in each direction. No pre-
trained embeddings are required.

We also extend the idea of dynamic oracles from
dependency to constituency parsing. The latter is
significantly more difficult than the former due to F1

being a combination of precision and recall (Huang,
2008), and yet we propose a simple and extremely
efficient oracle (amortizedO(1) time). This oracle is
proved optimal for F1 as well as both of its compo-
nents, precision and recall. Trained with this oracle,
our parser achieves what we believe to be the best
results for any parser without reranking which was
trained only on the Penn Treebank and the French
Treebank, despite the fact that it is not only linear-
time, but also strictly greedy.

We make the following main contributions:

• A novel factored transition parsing system
where the stack elements are sentence spans
rather than partial trees (Section 2).

• A neural model where sentence spans are rep-
resented as differences of output from a multi-
layer bi-directional LSTM (Section 3).

• The first provably optimal dynamic oracle for

1

constituency parsing which is also extremely
efficient (amortized O(1) time) (Section 4).

• The best F1 scores of any single-model, closed
training set, parser for English and French.

We are also publicly releasing the source code for
one implementation of our parser.1

2 Parsing System

We present a new transition-based system for con-
stituency parsing whose fundamental unit of com-
putation is the sentence span. It uses a stack in a
similar manner to other transition systems, except
that the stack contains sentence spans with no re-
quirement that each one correspond to a partial tree
structure during a parse.

The parser alternates between two types of ac-
tions, structural and label, where the structural ac-
tions follow a path to make the stack spans corre-
spond to sentence phrases in a bottom-up manner,
while the label actions optionally create tree brack-
ets for the top span on the stack. There are only two
structural actions: shift is the same as other transi-
tion systems, while combine merges the top two sen-
tence spans. The latter is analogous to a reduce ac-
tion, but it does not immediately create a tree struc-
ture and is non-directional. Label actions do create
a partial tree on top of the stack by assigning one or
more non-terminals to the topmost span.

Except for the use of spans, this factored approach
is similar to the odd-even parser from Mi and Huang
(2015). The fact that stack elements do not have to
be tree-structured, however, means that we can cre-
ate productions with arbitrary arity, and no binariza-
tion is required either for training or parsing. This
also allows us to remove the directionality inherent
in the shift-reduce system, which is at best an im-
perfect fit for constituency parsing. We do follow
the practice in that system of labeling unary chains
of non-terminals with a single action, which means
our parser uses a fixed number of steps, (4n− 2) for
a sentence of n words.

Figure 1 shows the formal deductive system for
this parser. The stack σ is modeled as a list of strictly
increasing integers whose first element is always

1code: https://github.com/jhcross/span-parser

input: w0 . . . wn−1

axiom: 〈0, [0], ∅〉
goal: 〈2(2n− 1), [0, n], t〉

sh
〈z, σ |j, t〉

〈z + 1, σ |j |j+1, t〉 j < n, even z

comb
〈z, σ | i |k |j, t〉
〈z + 1, σ | i |j, t〉 even z

label-X
〈z, σ | i |j, t〉

〈z + 1, σ | i |j, t ∪ { iXj}〉
odd z

nolabel
〈z, σ | i |j, t〉
〈z + 1, σ | i |j, t〉 z<(4n−1), odd z

Figure 1: Deductive system for the Structure/Label transition

parser. The stack σ is represented as a list of integers where the

span defined by each consecutive pair of elements is a sentence

segment on the stack. Each X is a nonterminal symbol or an

ordered unary chain. The set t contains labeled spans of the

form iXj , which at the end of a parse, fully define a parse tree.

zero. These numbers are word boundaries which de-
fine the spans on the stack. In a slight abuse of no-
tation, however, we sometimes think of it as a list of
pairs (i, j), which are the actual sentence spans, i.e.,
every consecutive pair of indices on the stack, ini-
tially empty. We represent stack spans by trapezoids
(iSome text and the symbol or scaled

1

j) in the figures to emphasize that they may or
not have tree stucture.

The parser alternates between structural actions
and label actions according to the parity of the parser
step z. In even steps, it takes a structural action, ei-
ther combining the top two stack spans, which re-
quires at least two spans on the stack, or introducing
a new span of unit length, as long as the entire sen-
tence is not already represented on the stack

In odd steps, the parser takes a label action. One
possibility is labeling the top span on the stack, (i, j)
with either a nonterminal label or an ordered unary
chain (since the parser has only one opportunity to
label any given span). Taking no action, designated
nolabel, is also a possibility. This is essentially a
null operation except that it returns the parser to an
even step, and this action reflects the decision that
(i, j) is not a (complete) labeled phrase in the tree.
In the final step, (4n − 2), nolabel is not allowed

2

S

VP

S

VP

NP

NN

4 fish 5

VBG

3 eating

VBP

2 like

MD

1 do

NP

PRP

0 I

steps structural action label action stack after bracket
1–2 sh(I/PRP) label-NP 0Some text and the symbol or scaled

1

1 0NP1
3–4 sh(do/MD) nolabel 0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

2

5–6 sh(like/VBP) nolabel 0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

2Some text and the symbol or scaled

1

3

7–8 comb nolabel 0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

3

9–10 sh(eating/VBG) nolabel 0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

3Some text and the symbol or scaled

1

4

11–12 sh(fish/NN) label-NP 0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

3Some text and the symbol or scaled

1

4Some text and the symbol or scaled

1

5 4NP5
13–14 comb label-S-VP 0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

3Some text and the symbol or scaled

1

5 3S5, 3VP5
15–16 comb label-VP 0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

5 1VP5
17–18 comb label-S 0Some text and the symbol or scaled

1

5 0S5

(a) gold parse tree (b) static oracle actions

Figure 2: The running example. It contains one ternary branch and one unary chain (S-VP), and NP-PRP-I and NP-NN-fish are

not unary chains in our system. Each stack is just a list of numbers but is visualized with spans here.

since the parser must produce a tree.
Figure 2 shows a complete example of applying

this parsing system to a very short sentence (“I do
like eating fish”) that we will use throughout this
section and the next. The action in step 2 is label-
NP because “I” is a one-word noun phrase (parts
of speech are taken as input to our parser, though
it could easily be adapted to include POS tagging
in label actions). If a single word is not a complete
phrase (e.g., “do”), then the action after a shift is
nolabel.

The ternary branch in this tree (VP→MD VBP S)
is produced by our parser in a straightforward man-
ner: after the phrase “do like” is combined in step
7, no label is assigned in step 8, successfully delay-
ing the creation of a bracket until the verb phrase is
fully formed on the stack. Note also that the unary
production in the tree is created with a single action,
label-S-VP, in step 14.

The static oracle to train this parser simply con-
sists of taking actions to generate the gold tree
with a “short-stack” heuristic, meaning combine first
whenever combine and shift are both possible.

3 LSTM Span Features

Long short-term memory networks (LSTM) are a
type of recurrent neural network model proposed by
Hochreiter and Schmidhuber (1997) which are very
effective for modeling sequences. They are able
to capture and generalize from interactions among
their sequential inputs even when separated by a
long distance, and thus are a natural fit for analyz-

ing natural language. LSTM models have proved to
be a powerful tool for many learning tasks in natural
language, such as language modeling (Sundermeyer
et al., 2012) and translation (Sutskever et al., 2014).

LSTMs have also been incorporated into parsing
in a variety of ways, such as directly encoding an en-
tire sentence (Vinyals et al., 2015), separately mod-
eling the stack, buffer, and action history (Dyer et
al., 2015), to encode words based on their character
forms (Ballesteros et al., 2015), and as an element
in a recursive structure to combine dependency sub-
trees with their left and right children (Kiperwasser
and Goldberg, 2016a).

For our parsing system, however, we need a way
to model arbitrary sentence spans in the context of
the rest of the sentence. We do this by representing
each sentence span as the elementwise difference of
the vector outputs of the LSTM outputs at different
time steps, which correspond to word boundaries.
If the sequential output of the recurrent network for
the sentence is f0, ..., fn in the forward direction and
bn, ..., b0 in the backward direction then the span
(i, j) would be represented as the concatenation of
the vector differences (fj − fi) and (bi − bj).

The spans are represented using output from both
backward and forward LSTM components, as can
be seen in Figure 3. This is essentially the LSTM-
Minus feature representation described by Wang and
Chang (2016) extended to the bi-directional case. In
initial experiments, we found that there was essen-
tially no difference in performance between using
the difference features and concatenating all end-

3

〈s〉 I do like eating fish 〈/s〉0

f0

b0

1

f1

b1

2

f2

b2

3

f3

b3

4

f4

b4

5

f5

b5

Figure 3: Word spans are modeled by differences in LSTM

output. Here the span 3 eating fish 5 is represented by the vector

differences (f5 − f3) and (b3 − b5). The forward difference

corresponds to LSTM-Minus (Wang and Chang, 2016).

point vectors, but our approach is almost twice as
fast.

This model allows a sentence to be processed
once, and then the same recurrent outputs can be
used to compute span features throughout the parse.
Intuitively, this allows the span differences to learn
to represent the sentence spans in the context of the
rest of the sentence, not in isolation (especially true
for LSTM given the extra hidden recurrent connec-
tion, typically described as a “memory cell”). In
practice, we use a two-layer bi-directional LSTM,
where the input to the second layer combines the
forward and backward outputs from the first layer
at that time step. For each direction, the components
from the first and second layers are concatenated to
form the vectors which go into the span features. See
Cross and Huang (2016) for more details on this ap-
proach.

For the particular case of our transition con-
stituency parser, we use only four span features to
determine a structural action, and three to determine
a label action, in each case partitioning the sentence
exactly. The reason for this is straightforward: when
considering a structural action, the top two spans on
the stack must be considered to determine whether
they should be combined, while for a label action,
only the top span on the stack is important, since that
is the candidate for labeling. In both cases the re-
maining sentence prefix and suffix are also included.
These features are shown in Table 1.

The input to the recurrent network at each time
step consists of vector embeddings for each word

Action Stack LSTM Span Features
Structural σ | i |k |j 02iSome text and the symbol or scaled

1

kSome text and the symbol or scaled

1

j2n

Label σ | i |j 02iSome text and the symbol or scaled

1

j2n

Table 1: Features used for the parser. No label or tree-structure

features are required.

and its part-of-speech tag. Parts of speech are pre-
dicted beforehand and taken as input to the parser,
as in much recent work in parsing. In our experi-
ments, the embeddings are randomly initialized and
learned from scratch together with all other network
weights, and we would expect further performance
improvement from incorporating embeddings pre-
trained from a large external corpus.

The network structure after the the span features
consists of a separate multilayer perceptron for each
type of action (structural and label). For each ac-
tion we use a single hidden layer with rectified linear
(ReLU) activation. The model is trained on a per-
action basis using a single correct action for each
parser state, with a negative log softmax loss func-
tion, as in Chen and Manning (2014).

4 Dynamic Oracle

The baseline method of training our parser is what
is known as a static oracle: we simply generate the
sequence of actions to correctly parse each training
sentence, using a short-stack heuristic (i.e., combine
first whenever there is a choice of shift and com-
bine). This method suffers from a well-documeted
problem, however, namely that it only “prepares”
the model for the situation where no mistakes have
been made during parsing, an inevitably incorrect
assumption in practice. To alleviate this problem,
Goldberg and Nivre (2013) define a dynamic oracle
to return the best possible action(s) at any arbitrary
configuration.

In this section, we introduce an easy-to-compute
optimal dynamic oracle for our constituency parser.
We will first define some concepts upon which the
dynamic oracle is built and then show how optimal
actions can be very efficiently computed using this
framework. In broad strokes, in any arbitrary parser
configuration c there is a set of brackets t∗(c) from
the gold tree which it is still possible to reach. By
following dynamic oracle actions, all of those brack-
ets and only those brackets will be predicted.

4

Even though proving the optimality of our dy-
namic oracle (Sec. 4.3) is involved, computing the
oracle actions is extremely simple (Secs. 4.2) and
efficient (Sec. 4.4).

4.1 Preliminaries and Notations

Before describing the computation of our dynamic
oracle, we first need to rigorously establish the de-
sired optimality of dynamic oracle. The structure of
this framework follows Goldberg et al. (2014).

Definition 1. We denote c `τ c′ iff. c′ is the result
of action τ on configuration c, also denoted func-
tionally as c′ = τ(c). We denote ` to be the union
of `τ for all actions τ , and `∗ to be the reflexive and
transitive closure of `.

Definition 2 (descendant/reachable trees). We de-
note D(c) to be the set of final descendant trees
derivable from c, i.e., D(c) = {t | c `∗ 〈z, σ, t〉}.
This set is also called “reachable trees” from c.

Definition 3 (F1). We define the standard F1 metric
of a tree t with respect to gold tree tG as F1(t) =
2rp
r+p , where r = |t∩tG|

|tG| , p =
|t∩tG|
|t| .

The following two definitions are similar to those
for dependency parsing by Goldberg et al. (2014).

Definition 4. We extend the F1 function to config-
urations to define the maximum possible F1 from a
given configuration: F1(c) = maxt1∈D(c) F1(t1).

Definition 5 (oracle). We can now define the desired
dynamic oracle of a configuration c to be the set of
actions that retrain the optimal F1:

oracle(c) = {τ | F1(τ(c)) = F1(c)}.

This abstract oracle is implemented by dyna(·) in
Sec. 4.2, which we prove to be correct in Sec. 4.3.

Definition 6 (span encompassing). We say span
(i, j) is encompassed by span (p, q), notated (i, j) �
(p, q), iff. p ≤ i < j ≤ q.

Definition 7 (strict encompassing). We say span
(i, j) is strictly encompassed by span (p, q), notated
(i, j) ≺ (p, q), iff. (i, j) � (p, q) and (i, j) 6= (p, q).
We then extend this relation from spans to brackets,
and notate iXj ≺ pYq iff. (i, j) ≺ (p, q).

0S5

1VP5

3S/VP5

4NP5

0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

2Some text and the symbol or scaled

1

4 5

I do like eating fish

Figure 4: Reachable brackets (w.r.t. gold tree in Fig. 1) for

c = 〈10, [0, 1, 2, 4], {0NP1}〉 which mistakenly combines

“like eating”. Trapezoids indicate stack spans (the top one in

red), and solid triangles denote reachable brackets, with left(c)

in blue and right(c) in cyan. The next reachable bracket,

next(c) = 1VP5, is in bold. Brackets 3VP5 and 3S5 (in dot-

ted triangle) cross the top span (thus unreachable), and 0NP1 is

already recognized (thus not in reach(c) either).

We next define a central concept, reachable
brackets, which is made up of two parts, the left ones
left(c) which encompass (i, j) without crossing any
stack spans, and the right ones right(c) which are
completely on the queue. See Fig. 4 for examples.

Definition 8 (reachable brackets). For any configu-
ration c = 〈z, σ | i |j, t〉, we define the set of reach-
able gold brackets (with respect to gold tree tG) as

reach(c) = left(c) ∪ right(c)

where the left- and right-reachable brackets are

left(c)={pXq ∈ tG | (i, j) ≺ (p, q), p ∈ σ | i}
right(c)={pXq ∈ tG | p ≥ j}

for even z, with the ≺ replaced by � for odd z.
Special case (initial): reach(〈0, [0], ∅〉) = tG.

The notation p ∈ σ | i simply means (p, q) does
not “cross” any bracket on the stack. Remember our
stack is just a list of span boundaries, so if p coin-
cides with one of them, (p, q)’s left boundary is not
crossing and its right boundary q is not crossing ei-
ther since q ≥ j due to (i, j) ≺ (p, q).

Also note that reach(c) is strictly disjoint from t,
i.e., reach(c) ∩ t = ∅ and reach(c) ⊆ tG − t. See
Figure 6 for an illustration.

5

Definition 9 (next bracket). For any configuration
c = 〈z, σ | i |j, t〉, the next reachable gold bracket
(with respect to gold tree tG) is the smallest reach-
able bracket (strictly) encompassing (i, j):

next(c) = min≺ left(c).

4.2 Structural and Label Oracles
For an even-step configuration c = 〈z, σ | i | j, t〉,
we denote the next reachable gold bracket next(c)
to be pXq, and define the dynamic oracle to be:

dyna(c) =

{sh} if p = i and q > j

{comb} if p < i and q = j

{sh, comb} if p < i and q > j

(1)

As a special case dyna(〈0, [0], ∅〉) = {sh}.
Figure 5 shows examples of this policy. The key

insight is, if you follow this policy, you will not miss
the next reachable bracket, but if you do not follow
it, you certainly will. We formalize this fact below
(with proof omitted due to space constraints) which
will be used to prove the central results later.

Lemma 1. For any configuration c, for any τ ∈
dyna(c), we have reach(τ(c)) = reach(c); for any
τ ′ /∈ dyna(c), we have reach(τ(c)) (reach(c).

The label oracles are much easier than struc-
tural ones. For an odd-step configuration c =
〈z, σ | i | j, t〉, we simply check if (i, j) is a valid
span in the gold tree tG and if so, label it accord-
ingly, otherwise no label. More formally,

dyna(c) =

{
{label-X} if some iXj ∈ tG
{nolabel} otherwise

(2)

4.3 Correctness
To show the optimality of our dynamic oracle, we
begin by defining a special tree t∗(c) and show that
it is optimal among all trees reachable from config-
uration c. We then show that following our dynamic
oracle (Eqs. 1–2) from c will lead to t∗(c).

Definition 10 (t∗(c)). For any configuration c =
〈z, σ, t〉, we define the optimal tree t∗(c) to include
all reachable gold brackets and nothing else. More
formally, t∗(c) = t ∪ reach(c).

configuration
oracle

static dynamic
0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

2Some text and the symbol or scaled

1

3 comb {comb, sh}

I do like 1∧52Some text and the symbol or scaled

1

3

0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

3

undef.

{sh}

I do like
t={..., 1VP3}

1∧5Some text and the symbol or scaled

1

3

0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

2Some text and the symbol or scaled

1

4 {comb, sh}

I do like eating 1∧52Some text and the symbol or scaled

1

4

0Some text and the symbol or scaled

1

1Some text and the symbol or scaled

1

2Some text and the symbol or scaled

1

4Some text and the symbol or scaled

1

5 {comb}

I do like eating fish 1∧54Some text and the symbol or scaled

1

Figure 5: Dynamic oracle with respect to the gold parse in

Fig. 2. The last three examples are off the gold path with strike

out indicating structural or label mistakes. Trapezoids denote

stack spans (top one in red) and the blue triangle denotes the

next reachable bracket next(c) which is 1VP5 in all cases.

We can show by induction that t∗(c) is attainable:

Lemma 2. For any configuration c, the optimal tree
is a descendant of c, i.e., t∗(c) ∈ D(c).

The following Theorem shows that t∗(c) is indeed
the best possible tree:

Theorem 1 (optimality of t∗). For any configura-
tion c, F1(t

∗(c)) = F1(c).

Proof. (SKETCH) Since t∗(c) adds all possible addi-
tional gold brackets (the brackets in reach(c)), it is
not possible to get higher recall. Since it adds no in-
correct brackets, it is not possible to get higher pre-

t tG reach(c)

t∗(c) = t ∪ reach(c)

Figure 6: The optimal tree t∗(c) adds all reachable brackets

and nothing else. Note that reach(c) and t are disjoint.

6

cision. Since F1 is the harmonic mean of precision
and recall, it also leads to the best possible F1.

Corollary 1. For any c = 〈z, σ, t〉, for any t′ ∈
D(c) and t′ 6= t∗(c), we have F1(t

′) < F1(c).

We now need a final lemma about the policy
dyna(·) (Eqs. 1–2) before proving the main result.

Lemma 3. From any c = 〈z, σ, t〉, for any action
τ ∈ dyna(c), we have t∗(τ(c)) = t∗(c). For any
action τ ′ /∈ dyna(c), we have t∗(τ ′(c)) 6= t∗(c).

Proof. (SKETCH) By case analysis on even/odd z.

We are now able to state and prove the main the-
oretical result of this paper (using Lemma 3, Theo-
rem 1 and Corollary 1):

Theorem 2. The function dyna(·) in Eqs. (1–2) sat-
isfies the requirement of a dynamic oracle (Def. 5):

dyna(c) = oracle(c) for any configuration c.

4.4 Implementation and Complexity
For any configuration, our dynamic oracle can be
computed in amortized constant time since there
are only O(n) gold brackets and thus bounding
|reach(c)| and the choice of next(c). After each
action, next(c) either remains unchanged, or in
the case of being crossed by a structural action or
mislabeled by a label action, needs to be updated.
This update is simply tracing the parent link to
the next smallest gold bracket repeatedly until the
new bracket encompasses span (i, j). Since there
are at most O(n) choices of next(c) and there are
O(n) steps, the per-step cost is amortized constant
time. Thus our dynamic oracle is much faster than
the super-linear time oracle for arc-standard depen-
dency parsing in Goldberg et al. (2014).

5 Related Work

Neural networks have been used for constituency
parsing in a number of previous instances. For
example, Socher et al. (2013) learn a recursive
network that combines vectors representing partial
trees, Vinyals et al. (2015) adapt a sequence-to-
sequence model to produce parse trees, Watanabe
and Sumita (2015) use a recursive model applying
a shift-reduce system to constituency parsing with

Network architecture
Word embeddings 50
Tag embeddings 20
Morphological embeddings† 10
LSTM layers 2
LSTM units 200 / direction
ReLU hidden units 200 / action type
Training settings
Embedding intialization random
Training epochs 10
Minibatch size 10 sentences
Dropout (on LSTM output) p = 0.5
ADADELTA parameters ρ = 0.99, ε = 1× 10−7

Table 2: Hyperparameters. †French only.

beam search, and Dyer et al. (2016) adapt the Stack-
LSTM dependency parsing approach to this task.
Durrett and Klein (2015) combine both neural and
sparse features for a CKY parsing system. Our own
previous work (Cross and Huang, 2016) use a recur-
rent sentence representation in a head-driven tran-
sition system which allows for greedy parsing but
does not achieve state-of-the-art results.

The concept of “oracles” for constituency parsing
(as the tree that is most similar to tG among all pos-
sible trees) was first defined and solved by Huang
(2008) in bottom-up parsing. In transition-based
parsing, the dynamic oracle for shift-reduce depen-
dency parsing costs worst-case O(n3) time (Gold-
berg et al., 2014). On the other hand, after the sub-
mission of our paper we became aware of a paral-
lel work (Coavoux and Crabbé, 2016) that also pro-
posed a dynamic oracle for their own incremental
constituency parser. However, it is not optimal due
to dummy non-terminals from binarization.

6 Experiments

We present experiments on both the Penn English
Treebank (Marcus et al., 1993) and the French Tree-
bank (Abeillé et al., 2003). In both cases, all state-
action training pairs for a given sentence are used
at the same time, greatly increasing training speed
since all examples for the same sentence share the
same forward and backward pass through the recur-
rent part of the network. Updates are performed
in minibatches of 10 sentences, and we shuffle the
training sentences before each epoch. The results
we report are trained for 10 epochs.

7

The only regularization which we employ during
training is dropout (Hinton et al., 2012), which is
applied with probability 0.5 to the recurrent outputs.
It is applied separately to the input to the second
LSTM layer for each sentence, and to the input to
the ReLU hidden layer (span features) for each state-
action pair. We use the ADADELTA method (Zeiler,
2012) to schedule learning rates for all weights. All
of these design choices are summarized in Table 2.

In order to account for unknown words during
training, we also adopt the strategy described by
Kiperwasser and Goldberg (2016b), where words
in the training set are replaced with the unknown-
word symbol UNK with probability punk = z

z+f(w)

where f(w) is the number of times the word ap-
pears in the training corpus. We choose the pa-
rameter z so that the training and validation cor-
pora have approximately the same proportion of un-
known words. For the Penn Treebank, for exam-
ple, we used z = 0.8375 so that both the validation
set and the (rest of the) training set contain approx-
imately 2.76% unknown words. This approach was
helpful but not critical, improving F1 (on dev) by
about 0.1 over training without any unknown words.

6.1 Training with Dynamic Oracle
The most straightforward use of dynamic oracles to
train a neural network model, where we collect all
action examples for a given sentence before updat-
ing, is “training with exploration” as proposed by
Goldberg and Nivre (2013). This involves parsing
each sentence according to the current model and us-
ing the oracle to determine correct actions for train-
ing. We saw very little improvement on the Penn
treebank validation set using this method, however.
Based on the parsing accuracy on the training sen-
tences, this appears to be due to the model overfitting
the training data early during training, thus negating
the benefit of training on erroneous paths.

Accordingly, we also used a method recently pro-
posed by Ballesteros et al. (2016), which specifi-
cally addresses this problem. This method intro-
duces stochasticity into the training data parses by
randomly taking actions according to the softmax
distribution over action scores. This introduces re-
alistic mistakes into the training parses, which we
found was also very effective in our case, leading
to higher F1 scores, though it noticeably sacrifices

recall in favor of precision.
This technique can also take a parameter α to flat-

ten or sharpen the raw softmax distribution. The re-
sults on the Penn treebank development set for var-
ious values of α are presented in Table 3. We were
surprised that flattening the distribution seemed to
be the least effective, as training accuracy (taking
into account sampled actions) lagged somewhat be-
hind validation accuracy. Ultimately, the best results
were for α = 1, which we used for final testing.

Model LR LP F1

Static Oracle 91.34 91.43 91.38
Dynamic Oracle 91.14 91.61 91.38
+ Explore (α=0.5) 90.59 92.18 91.38
+ Explore (α=1.0) 91.07 92.22 91.64
+ Explore (α=1.5) 91.07 92.12 91.59

Table 3: Comparison of performance on PTB development set

using different oracle training approaches.

6.2 Penn Treebank

Following the literature, we used the Wall Street
Journal portion of the Penn Treebank, with stan-
dard splits for training (secs 2–21), development
(sec 22), and test sets (sec 23). Because our pars-
ing system seamlessly handles non-binary produc-
tions, minimal data preprocessing was required. For
the part-of-speech tags which are a required input to
our parser, we used the Stanford tagger with 10-way
jackknifing.

Table 4 compares test our results on PTB to a
range of other leading constituency parsers. De-
spite being a greedy parser, when trained using dy-
namic oracles with exploration, it achieves the best
F1 score of any closed-set single-model parser.

6.3 French Treebank

We also report results on the French treebank, with
one small change to network structure. Specifically,
we also included morphological features for each
word as input to the recurrent network, using a small
embedding for each such feature, to demonstrate
that our parsing model is able to exploit such ad-
ditional features.

We used the predicted morphological features,
part-of-speech tags, and lemmas (used in place of
word surface forms) supplied with the SPMRL 2014

8

Closed Training & Single Model LR LP F1

Sagae and Lavie (2006) 88.1 87.8 87.9
Petrov and Klein (2007) 90.1 90.3 90.2
Carreras et al. (2008) 90.7 91.4 91.1
Shindo et al. (2012) 91.1
†Socher et al. (2013) 90.4
Zhu et al. (2013) 90.2 90.7 90.4
Mi and Huang (2015) 90.7 90.9 90.8
†Watanabe and Sumita (2015) 90.7
Thang et al. (2015) (A*) 90.9 91.2 91.1
†*Dyer et al. (2016) (discrim.) 89.8
†*Cross and Huang (2016) 90.0
†*static oracle 90.7 91.4 91.0
†*dynamic/exploration 90.5 92.1 91.3
External/Reranking/Combo
†Henderson (2004) (rerank) 89.8 90.4 90.1
McClosky et al. (2006) 92.2 92.6 92.4
Zhu et al. (2013) (semi) 91.1 91.5 91.3
Huang (2008) (forest) 91.7
†Vinyals et al. (2015) (WSJ)‡ 90.5
†Vinyals et al. (2015) (semi) 92.8
†Durrett and Klein (2015)‡ 91.1
†Dyer et al. (2016) (gen. rerank.) 92.4

Table 4: Comparison of performance of different parsers on

PTB test set. †Neural. *Greedy. ‡External embeddings.

Parser LR LP F1

Björkelund et al. (2014)∗,‡ 82.53
Durrett and Klein (2015)‡ 81.25
Coavoux and Crabbé (2016) 80.56
static oracle 83.50 82.87 83.18
dynamic/exploration 81.90 84.77 83.31

Table 5: Results on French Treebank. ∗reranking, ‡external.

data set (Seddah et al., 2014). It is thus possible that
results could be improved further using an integrated
or more accurate predictor for those features. Our
parsing and evaluation also includes predicting POS
tags for multi-word expressions as is the standard
practice for the French treebank, though our results
are similar whether or not this aspect is included.

We compare our parser with other recent work in
Table 5. We achieve state-of-the-art results even in
comparison to Björkelund et al. (2014), which uti-
lized both external data and reranking in achieving
the best results in the SPMRL 2014 shared task.

6.4 Notes on Experiments
For these experiments, we performed very little hy-
perparameter tuning, due to time and resource con-
traints. We have every reason to believe that per-
formance could be improved still further with such
techniques as random restarts, larger hidden lay-
ers, external embeddings, and hyperparameter grid
search, as demonstrated by Weiss et al. (2015).

We also note that while our parser is very accu-
rate even with greedy decoding, the model is eas-
ily adaptable for beam search, particularly since the
parsing system already uses a fixed number of ac-
tions. Beam search could also be made considerably
more efficient by caching post-hidden-layer feature
components for sentence spans, essentially using the
precomputation trick described by Chen and Man-
ning (2014), but on a per-sentence basis.

7 Conclusion and Future Work

We have developed a new transition-based con-
stituency parser which is built around sentence
spans. It uses a factored system alternating between
structural and label actions. We also describe a fast
dynamic oracle for this parser which can determine
the optimal set of actions with respect to a gold
training tree in an arbitrary state. Using an LSTM
model and only a few sentence spans as features, we
achieve state-of-the-art accuracy on the Penn Tree-
bank for all parsers without reranking, despite using
strictly greedy inference.

In the future, we hope to achieve still better re-
sults using beam search, which is relatively straight-
forward given that the parsing system already uses
a fixed number of actions. Dynamic programming
(Huang and Sagae, 2010) could be especially pow-
erful in this context given the very simple feature
representation used by our parser, as noted also by
Kiperwasser and Goldberg (2016b).

Acknowledgments

We thank the three anonymous reviewers for com-
ments, Kai Zhao, Lemao Liu, Yoav Goldberg, and
Slav Petrov for suggestions, Juneki Hong for proof-
reading, and Maximin Coavoux for sharing their
manuscript. This project was supported in part
by NSF IIS-1656051, DARPA FA8750-13-2-0041
(DEFT), and a Google Faculty Research Award.

9

References
Anne Abeillé, Lionel Clément, and François Toussenel.

2003. Building a treebank for french. In Treebanks,
pages 165–187. Springer.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally normal-
ized transition-based neural networks. Proceedings of
ACL.

Miguel Ballesteros, Chris Dyer, and Noah A Smith.
2015. Improved transition-based parsing by modeling
characters instead of words with lstms. arXiv preprint
arXiv:1508.00657.

Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and
Noah A Smith. 2016. Training with exploration
improves a greedy stack-lstm parser. arXiv preprint
arXiv:1603.03793.

Anders Björkelund, Ozlem Cetinoglu, Agnieszka Falen-
ska, Richárd Farkas, Thomas Mueller, Wolfgang
Seeker, and Zsolt Szántó. 2014. Introducing the ims-
wrocław-szeged-cis entry at the spmrl 2014 shared
task: Reranking and morpho-syntax meet unlabeled
data. In Proceedings of the First Joint Workshop
on Statistical Parsing of Morphologically Rich Lan-
guages and Syntactic Analysis of Non-Canonical Lan-
guages, pages 97–102.

Xavier Carreras, Michael Collins, and Terry Koo. 2008.
Tag, dynamic programming, and the perceptron for
efficient, feature-rich parsing. In Proceedings of the
Twelfth Conference on Computational Natural Lan-
guage Learning, pages 9–16. Association for Compu-
tational Linguistics.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In Empirical Methods in Natural Language
Processing (EMNLP).

Maximin Coavoux and Benoı̂t Crabbé. 2016. Neural
greedy constituent parsing with dynamic oracles. Pro-
ceedings of ACL.

James Cross and Liang Huang. 2016. Incremental pars-
ing with minimal features using bi-directional lstm.
Proceedings of ACL.

Greg Durrett and Dan Klein. 2015. Neural crf parsing.
Proceedings of ACL.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2015. Transition-based
dependency parsing with stack long short-term mem-
ory. Empirical Methods in Natural Language Process-
ing (EMNLP).

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and
Noah A Smith. 2016. Recurrent neural network gram-
mars. Proceedings of HLT-NAACL.

Yoav Goldberg and Joakim Nivre. 2013. Training
deterministic parsers with non-deterministic oracles.

Transactions of the association for Computational
Linguistics, 1:403–414.

Yoav Goldberg, Francesco Sartorio, and Giorgio Satta.
2014. A tabular method for dynamic oracles in
transition-based parsing. Trans. of ACL.

James Henderson. 2004. Discriminative training of a
neural network statistical parser. In Proceedings of
ACL.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2012. Im-
proving neural networks by preventing co-adaptation
of feature detectors. CoRR, abs/1207.0580.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Liang Huang and Kenji Sagae. 2010. Dynamic program-
ming for linear-time incremental parsing. In Proceed-
ings of ACL 2010.

Liang Huang. 2008. Forest reranking: Discriminative
parsing with non-local features. In Proceedings of the
ACL: HLT, Columbus, OH, June.

Eliyahu Kiperwasser and Yoav Goldberg. 2016a. Easy-
first dependency parsing with hierarchical tree lstms.
arXiv preprint arXiv:1603.00375.

Eliyahu Kiperwasser and Yoav Goldberg. 2016b. Sim-
ple and accurate dependency parsing using bidi-
rectional LSTM feature representations. CoRR,
abs/1603.04351.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of english: The penn treebank. Computational lin-
guistics, 19(2):313–330.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Reranking and self-training for parser adapta-
tion. In Proceedings of the 21st International Con-
ference on Computational Linguistics and the 44th
annual meeting of the Association for Computational
Linguistics, pages 337–344. Association for Computa-
tional Linguistics.

Haitao Mi and Liang Huang. 2015. Shift-reduce con-
stituency parsing with dynamic programming and pos
tag lattice. In Proceedings of the 2015 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In Proceedings of HLT-
NAACL.

Kenji Sagae and Alon Lavie. 2006. A best-first prob-
abilistic shift-reduce parser. In Proceedings of the
COLING/ACL on Main conference poster sessions,
pages 691–698. Association for Computational Lin-
guistics.

10

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty. 2014.
Introducing the spmrl 2014 shared task on parsing
morphologically-rich languages. In Proceedings of the
First Joint Workshop on Statistical Parsing of Mor-
phologically Rich Languages and Syntactic Analysis
of Non-Canonical Languages, pages 103–109.

Hiroyuki Shindo, Yusuke Miyao, Akinori Fujino, and
Masaaki Nagata. 2012. Bayesian symbol-refined tree
substitution grammars for syntactic parsing. In Pro-
ceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Long Papers-Volume
1, pages 440–448. Association for Computational Lin-
guistics.

Richard Socher, John Bauer, Christopher D Manning, and
Andrew Y Ng. 2013. Parsing with compositional vec-
tor grammars. In ACL (1), pages 455–465.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. Lstm neural networks for language modeling.
In INTERSPEECH, pages 194–197.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing systems,
pages 3104–3112.

Le Quang Thang, Hiroshi Noji, and Yusuke Miyao.
2015. Optimal shift-reduce constituent parsing with
structured perceptron.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar
as a foreign language. In Advances in Neural Informa-
tion Processing Systems, pages 2755–2763.

Wenhui Wang and Baobao Chang. 2016. Graph-based
dependency parsing with bidirectional lstm. In Pro-
ceedings of ACL.

Taro Watanabe and Eiichiro Sumita. 2015. Transition-
based neural constituent parsing. Proceedings of ACL-
IJCNLP.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In Proceedings of ACL.

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR, abs/1212.5701.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang, and
Jingbo Zhu. 2013. Fast and accurate shift-reduce con-
stituent parsing. In ACL (1), pages 434–443.

11

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 12–22,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Rule Extraction for Tree-to-Tree Transducers
by Cost Minimization

Pascual Martı́nez-Gómez1

pascual.mg@aist.go.jp
Yusuke Miyao1,2,3

yusuke@nii.ac.jp

1Artificial Intelligence Research Center, AIST
2National Institute of Informatics and JST, PRESTO

3The Graduate University for Advanced Studies (SOKENDAI)
Tokyo, Japan

Abstract

Tree transducers that model expressive
linguistic phenomena often require word-
alignments and a heuristic rule extractor to
induce their grammars. However, when the
corpus of tree/string pairs is small compared
to the size of the vocabulary or the com-
plexity of the grammar, word-alignments
are unreliable. We propose a general rule
extraction algorithm that uses cost functions
over tree fragments, and formulate the extrac-
tion as a cost minimization problem. As a
by-product, we are able to introduce back-off
states at which some cost functions generate
right-hand-sides of previously unseen left-
hand-sides, thus creating transducer rules
“on-the-fly”. We test the generalization power
of our induced tree transducers on a QA task
over a large Knowledge Base, obtaining a
reasonable syntactic accuracy and effectively
overcoming the typical lack of rule coverage.

1 Introduction

Tree transducers are general and solid theoreti-
cal models that have been applied to a variety of
NLP tasks, such as machine translation (Knight and
Graehl, 2005), text summarization (Cohn and Lap-
ata, 2009), question answering (Jones et al., 2012),
paraphrasing and textual entailment (Wu, 2005).
One strategy to obtain transducer rules is by exhaus-
tive enumeration; however, this method is ineffec-
tive when there is a high structural language vari-
ability and we wish to have an expressive model.
Another strategy is to heuristically extract rules from
a corpus of tree/string pairs and word-alignments, as

GHKM algorithm does (Galley et al., 2004); how-
ever, word-alignments are difficult to estimate when
the corpus is small. This would be the case, for ex-
ample, of machine translation for low-resourced lan-
guages where there is often small numbers of paral-
lel sentences, or in Question Answering (QA) tasks
where the number of Knowledge Base (KB) identi-
fiers (concepts) is much larger than QA datasets.

Our main contribution is an algorithm that formu-
lates the rule extraction as a cost minimization prob-
lem, where the search for the best rules is guided
by an ensemble of cost functions over pairs of tree
fragments. In GHKM, a tree fragment and a se-
quence of words are extracted together if they are
minimal and their word alignments do not fall out-
side of their respective boundaries. However, given
that alignment violations are not allowed, the qual-
ity of the extracted rules degrades as the rate of
misaligned words increases. In our framework, we
can mimic GHKM by assigning an infinite cost to
pairs of tree fragments that violate such conditions
on word alignments and by adding a cost regular-
izer on the size of the tree fragments. Smoother cost
functions, however, would permit controlled mis-
alignments, contributing to generalization. Given
the generality of these cost functions, we believe that
the applicability of tree transducers will be extended.

A by-product of introducing these cost functions
is that some of them may act as rule back-offs,
where transducer rules are built “on-the-fly” when
the transducer is at a predefined back-off state but
there is no rule whose left-hand-side (lhs) matches
the input subtree. These back-off states can be seen
as functions that are capable of generating right-

12

hand-sides (rhs) for unseen input subtrees.
Our rule extraction algorithm and back-off

scheme are general, in the sense that they can be
applied to any tree transformation task. However,
in this paper, we extrinsically evaluate the quality
of the extracted rules in a QA task, where the ob-
jective is to transform syntactic trees of questions
into constituent trees that represent Sparql queries
on Freebase, a large Knowledge Base. Implement-
ing all components of a QA system at a sufficient
level is out of the scope of this paper; for that reason,
in order to evaluate our contribution in isolation, we
use the FREE917 corpus released by Cai and Yates
(2013), for which an entity and predicate lexicon is
available1. We show that a tree-to-tree transducer in-
duced using our rule extraction and back-off scheme
is accurate and generalizes well, which was not pre-
viously achieved with tree transducers in semantic
parsing tasks such as QA over large KBs.

2 Related Work

Tree transducers were first proposed by Rounds
(1970) and Thatcher (1970), and have been greatly
developed recently (Knight and Graehl, 2005).
Jones et al. (2012) used tree transducers to seman-
tically parse narrow-domain questions into Prolog
queries for GeoQuery (Wong and Mooney, 2006),
a small database of 700 geographical facts. Rules
were exhaustively enumerated, which was possible
given the small size of the database and low variabil-
ity of questions. Another strategy is that of Li et al.
(2013), where they used a variant of GHKM to in-
duce tree transducers that parse into λ-SCFG. Word-
to-node alignments could be reliably estimated with
the IBM models (Brown et al., 1993) given, again,
the small vocabulary and database size of GeoQuery.
In such small-scale tasks, our rule extraction and
back-off scheme offers no obvious advantage. How-
ever, when doing QA over larger and more realistic
KBs (and other tasks with similar characteristics),
exhaustive enumeration of rules or reliable estima-
tions of alignments are not possible, which prevents
the application of tree transducers. Thus, it is on the
latter type of tasks where we focus our contribution.

A similar problem has been considered in the tree

1The entity lexicon was released by the authors of FREE917,
and the predicate lexicon is ours.

mapping literature in the form of the tree-to-tree edit
distance. In that formulation, three edit operations
are defined, namely, deleting and inserting single
nodes, and replacing the label of a node. These edit
operations have a cost associated to them, and the
task consists of finding the minimum edit cost and its
corresponding edit script2 that transforms a source
into a target tree. The problem was first solved by
Tai (1979), and later Zhang and Shasha (1989) pro-
posed a simpler and faster dynamic programming al-
gorithm that operates in polynomial time, and that
has inspired multiple variations (Bille, 2005).

However, we need edit operations that involve
tree fragments (e.g., noun phrases or parts of verb
phrases), rather than single nodes, when searching
for the best mappings. We address this problem by
searching for non-isomorphic tree mappings, in line
with Eisner (2003), except that our rule extraction
algorithm is guided by an ensemble of cost functions
over pairs of tree fragments. This algorithm is capa-
ble of extracting rules more robustly than GHKM
by permitting misalignments in a controlled man-
ner. Finding a tree mapping solves simultaneously
the alignment and the rule extraction problem.

There is a wide array of tree transducers with dif-
ferent expressive capabilities (Knight and Graehl,
2005). We consider extended3 root-to-frontier4 lin-
ear5 transducers (Maletti et al., 2009), possibly with
deleting6 operations. In this paper, we syntactically
parse the natural language question and transform it
into a meaning representation, similarly to Ge and
Mooney (2005). But instead of using Prolog formu-
lae or λ-SCFG, we use constituent representations of
λ−DCS expressions (Liang, 2013), which is a for-
mal language convenient to represent Sparql queries
where variables are eliminated by making existential
quantifications implicit (see example in Figure 1).

Another challenge is to construct transducers with
sufficient rule coverage, which would require bil-
lions of lexical rules that map question phrases to
database entities or relations. Even if those rules
were available, estimating their rule probabilities
would be difficult given the small data sets of ques-

2Sequence of edit operations.
3lhs may have depth larger than 1.
4Top-down transformations.
5lhs variables appear at most once in the rhs.
6Some variables on the lhs may not appear in the rhs.

13

tions paired with their logical representations. We
solve the problem by constructing lexical rules “on-
the-fly” at the decoding stage, similarly to the candi-
date generation stage of entity linking systems (Ling
et al., 2015). Rule weights are also predicted on-the-
fly given rule features and model parameters similar
to Cohn and Lapata (2009).

3 Background

Tree transducers apply to general tree transforma-
tion problems, but for illustrative purposes, we use
the tree pair s and t in Figure 1 (from FREE917) as
a running example. s is the syntactic constituent tree
of the question “how many teams participate in the
uefa”, whereas t is a constituent tree of an executable
meaning representation in the λ−DCS formalism:

count(Team.League.Uefa)

Its corresponding lambda expression is

count(λx.∃a.Team(x, a) ∧ League(a, Uefa))

which can be converted into a Sparql KB query:

SELECT COUNT(?x) WHERE {
?a Team ?x .

?a League Uefa . }

Following the terminology of Graehl and Knight
(2004), we define a tree-to-tree transducer as a 5-
tuple (Q,Σ,∆, qstart,R) where Q is the set of
states, Σ and ∆ are the sets of symbols of the in-
put and output languages, qstart is the initial state,
and R is the set of rules. For convenience, define
TΣ as the set of trees with symbols in Σ, TΣ(A) the
set of trees with symbols in Σ ∪ A where symbols
in A only appear in the leaves, X as the set of vari-
ables {x1, . . . , xn}, and A.B for the cross-product
of two sets A and B. A rule r ∈ R has the form
q.ti

s→ to, where q ∈ Q is a state, ti ∈ TΣ(X) is the
left-hand-side (lhs) tree pattern (or elementary tree),
to ∈ T∆(Q.X) the right-hand-side (rhs), and s ∈ R
the rule score.

Tree-to-tree transducers apply a sequence of rules
to transform a source s into a target t tree. A root-to-
frontier transducer starts at the root of the source tree
and searches R for a rule whose i) tree pattern ti on
the lhs matches the root of the source tree, and ii) the

Figure 1: (s) Constituent tree of a question; (t) executable

meaning representation; r1 - r5 are typical transducer rules ex-

tracted by our algorithm, where q is a generic state, pred and

bridge are predicate and bridged entity back-off states.

state q of the rule is the initial state of the transducer.
An incipient target tree is created by copying the rhs
of the rule. Then, the transducer recursively and in-
dependently visits the subtrees of the source tree at
the lhs variable positions of the rule from their new
states, and copies the results into the same variable
on the target tree.

In Figure 1, the sequential application of rules r1
to r5 is a derivation that transforms the question s
into the query t. For example, rule r1 consumes a
tree fragment of s (e.g. “how”, “many”, “WRB”,
etc.) and produces a tree fragment with terminals
(“COUNT”, x1, x2) and non-terminals (“ID”) with

14

a specific structure. Rules r2 and r3 only consume
but do not produce symbols (other than variables).
The rhs of rules are target tree fragments that con-
nect to each other at the frontier nodes (those with
variables). Rules r4 and r5 are terminal rules, where
r4 produces the predicate Team and rule r5 pro-
duces the entity Uefa and a disambiguating predi-
cate League that has no lexical support on the source
side, similarly to the role that bridging predicates
play in Berant et al. (2013).

Given a corpus of source and target tree pairs, the
learning stage aims to obtain rules such as r1−r5 in
Figure 1 and their associated probabilities or scores.
We discuss our novel approach to rule extraction in
Section 5. For the assignment of rule scores, we
adopt the latent variable averaged structured percep-
tron, a discriminative procedure similar to Tsochan-
taridis et al. (2005) and Cohn and Lapata (2009).
Here, we instantiate feature values f for every rule,
and reward the weights w of rules that participate in
a derivation (latent variable) that transforms a train-
ing source tree into a meaning representation that
retrieves the correct answer.

At decoding stage, rule scores can be predicted as
s = w · f . However, we cannot expect to have ex-
tracted all necessary rules at the training stage given
the small training data and large-scale KB. For that
reason, we propose in Section 4 a novel rule back-off
scheme to alleviate coverage problems.

4 Back-off rules

As an illustrative example, consider the question
“how many teams participate in the nba”, and the
rules r1 to r5 in Figure 1. When the transducer at-
tempts to transform the noun phrase (NP (DT the)
(NN nba)), no rule’s lhs matches it. However, since
the transducer is at state bridge (as specified by the
rhs of r3), it should be able to produce a list of
bridged entities, among which the target subtree (ID
League NBA) will be hopefully included. Thus, the
following rule should be created for the occasion:

This mechanism produces rules “on-the-fly”, allow-
ing us to compensate low rule coverage by consum-
ing and producing tree fragments that were not nec-

essarily observed in the training data.
Back-off rules are produced when the transducer

is at a back-off state qb ∈ Qb ⊂ Q, similarly as the
back-off mechanisms in finite-state language models
where we produce estimates (probabilities) of input
structures (sequences) under less conditioning. In
our scheme, a back-off state (or function) qb pro-
duces estimates that are target structures t2 ∈ T∆

with score s ∈ R, given some information of the
source tree fragment t1 ∈ TΣ. That is, a func-
tion qb : TΣ → {(T∆,R), . . .}. In our QA appli-
cation, we only use the leaves of the input subtree
t1 and use lexicons or entity/predicate linkers to re-
trieve KB entities, KB relations or a compound of
a disambiguating relation and an entity from back-
off states ent, pred and bridge, respectively. Other
back-off functions would transliterate the leaves of
the input tree in machine translation, or produce syn-
onyms/hypernyms in a paraphrasing application.

We associate a score s to these newly created
rules, which we learn to predict using the discrim-
inative training procedure suggested by Tsochan-
taridis et al. (2005), as described in Section 3.

Back-off rules are then constructed on-demand as
qb.t1

s→ t2, and the discrete set of rules R is aug-
mented with them. It remains now to recognize
those back-off states when inducing tree transducer
grammars, which is covered in Section 5.1.

5 Rule Extraction

Given a pair of trees, our rule extraction algorithm
finds a tree mapping that implicitly describes the
rules that transform a source into a target tree. In the
search of the best mapping, we need to explore the
space of edit operations, which are substitutions of
source by target tree fragments. We define cost func-
tions for these edit operations, and formulate the tree
mapping as a cost minimization problem. Whereas
our tree mapping algorithm and back-off scheme are
generic and can be used in any tree transformation
task, cost functions depend on the application.

5.1 Cost functions

In general, cost functions are defined over edit op-
erations, which are pairs of source and target tree
fragments, cost : TΣ(X) × T∆(Q.X) → R≥0, and
they are equivalent to feature functions. Some cost

15

functions are defined over all pairs of tree fragments.
For this QA application, these are:

csize(t1, t2) = |nodes(t1)|2 + |nodes(t2)|2

which acts as a tree size regularizer, returning a cost
quadratic to the size of the tree fragments, thus en-
couraging small rules. The cost function ccount as-
signs zero cost if (i) “how” and “many” appear in t1,
and (ii) “COUNT” appears in t2. If only either (i) or
(ii), the cost is a positive constant. Similarly, other
operators (max, min, argmax, etc.) could be recog-
nized, but this dataset did not require them.

Other cost functions only apply to some pairs of
tree fragments. These are the back-off functions de-
scribed in Section 4, but instead of returning scores
for every target tree fragment, they return a cost, e.g.
cent : TΣ × T∆ → R≥0. An ensemble will produce
up to three different costs for every pair of tree frag-
ments, depending on what back-off functions were
triggered. In the case of the entity cost function:

γent(t1, t2) = λ1 · csize(t1, t2)

+ λ2 · ccount(t1, t2)

+ λ3 · cent(t1, t2)

(1)

where λi ∈ R≥0 are scaling factors. In the search
of the lowest-cost mapping, the labels of the cost
functions that are derived from the back-off func-
tions (e.g. γent, γpred) are memorized for the pairs
(t1, t2) for which they were defined and for which
they outputted a cost. These labels are then used as
back-off rule state names when constructing rules.

5.2 Tree Mapping: Optimization Problem
Intuitively, the cost of mapping a source node ns to
a target node nt is equal to the cost of transforming
a tree fragment TΣ(X) rooted at node ns into a tree
fragment T∆(Q.X) rooted at node nt, plus the sum
of costs of mapping the frontier nodes rooted at the
variables. In order to formalize our tree mapping,
we need a more precise definition of a tree frag-
ment where the locations of variables X are spec-
ified by paths. The notation to specify subtrees is
taken from (Graehl and Knight, 2004), and we in-
troduce the ⊥ operator for convenience.

A path p is a tuple, equivalent to a Gorn address,
that uniquely identifies the node of a tree by speci-
fying the sequence of child indices to the node from

the root. In the tree s of Figure 1, the path to the
VP node is (1, 0), whereas in t, the path to League
is (1, 1, 0). The path p = () refers to the root of
a tree. We denote by s ↓ p the subtree of tree s
that is rooted at path p and that has no variables. In
Figure 1, the left-hand-side (lhs) of r5 is the sub-
tree s ↓ (1, 0, 1, 1). In order to introduce variables,
we generalize the notion of subtree into a tree pat-
tern s ↓ p ⊥ {p1, . . . , pn}, where n variables re-
place subtrees s ↓ pi at subpaths pi ∈ {p1, . . . , pn}.
For example, the lhs of r1 can be represented with
the tree pattern s ↓ () ⊥ {(0, 1), (1)}, and r2 with
s ↓ (1) ⊥ {(1, 0, 1)}. Note that the order of sub-
paths {p1, . . . , pn} matters. A tree pattern with no
subpaths s ↓ p ⊥ {} is simply a subtree s ↓ p, such
as the lhs of rules r4 and r5; a tree pattern with only
one subpath equal to its path s ↓ p ⊥ {p} is a single
variable, such as the rhs of rules r2 and r3. Note that
in s ↓ p ⊥ {p1, . . . , pn}, all paths pi to variables are
prefixed by p, and that no variables are descendants
of any other variable in the same tree pattern. In
other words, p = {p1, . . . , pn} are disjoint subpaths
given p, where p denotes a list of paths.

We can now formalize the tree mapping
algorithm as an optimization problem. Let
γ (s ↓ ps ⊥ p, t ↓ pt ⊥ p′) be the cost to transform
a source into a target tree pattern, as defined in
Equation 1. To transform s ↓ ps into t ↓ pt, we
need to find the best combination of source sub-
trees rooted at {p1, . . . , pn} that can be transformed
at minimum cost to the best combination of target
subtrees at {p′1, . . . , p′n}. The transformation cost of
a certain tree pattern s ↓ ps ⊥ {p1, . . . , pn} into
t ↓ pt ⊥ {p′1, . . . , p′n} is equal to the cost of trans-
forming the source tree pattern into the target tree
pattern, plus the minimum cost to transform s ↓ pi
into t ↓ p′i, for i ≥ 1. That is:

C (s ↓ ps, t ↓ pt) =

min
p,p′
{γ
(
s ↓ ps ⊥ p, t ↓ pt ⊥ p′

)
+

|p|∑

i=1

C
(
s ↓ pi, t ↓ p′i

)
} (2)

subject to |p| = |p′|, that is, source and tar-
get tree patterns having the same number of vari-
ables. Then, the cost of transforming the source
into the target tree would be given by the expression

16

C (s ↓ (), t ↓ ()). Since we are only interested in the
pairs of source and target tree patterns that lead to
the minimum cost, we keep track of subpaths p and
p′ of tree pattern pairs that minimize the cost.

5.3 Algorithm

5.3.1 Overview
This problem can be solved for small depths of

tree patterns and a small number of variables by stor-
ing intermediate results in the computation of Eq. 2.
However, an exact implementation needs to enumer-
ate all pairs of source and target disjoint subpaths (p
and p′), which has a computational complexity that
grows combinatorially with |p| (variable permuta-
tions), and exponentially with the number of descen-
dant nodes of ps and pt (powerset of variables).

Instead, we use a beam search algorithm (see Al-
gorithm 1)7 that constructs source and target disjoint
paths (p and p′) hierarchically (function GENER-
ATEDISJOINT) in a bottom-up order, for any given
path pair (ps, pt). First, n-best solutions (pairs of
disjoint paths) are computed for children; then those
partial solutions are combined into their parent us-
ing the cross-product. Solutions (with their associ-
ated cost) for every pair of paths (ps, pt) are stored in
a weighted hypergraph, from which we can extract
n-best derivations (sequences of rules). In the pseu-
docode, we use a helper function, paths(s ↓ ps),
which denotes the list of subtree paths in bottom-up
order: from the leaves up to ps (including the latter).

5.3.2 Detailed Description
For a certain path pair (ps, pt), there are three

cases. The first case (line 34-35) considers a pair of
empty disjoint subpaths (p,p′) = ({}, {}), where
the cost c of transforming s ↓ ps ⊥ {} into t ↓ pt ⊥
{} is evaluated and the empty disjoint subpaths are
added to the priority queue P , indexed with ps. Such
indexing is useful to retrieve the n-best pairs of dis-
joint subpaths accumulated at every tree node.

The second case (line 28 to 31) evaluates the
cost of transforming single-variable tree patterns:
s ↓ ps ⊥ {pc} into t ↓ pt ⊥ {p′c}. In this
case, variables substitute entire subtrees rooted at
paths pc and p′c on the source and target tree pat-
terns, respectively. Note that pc ranges over all node

7https://github.com/pasmargo/t2t-qa

Algorithm 1 Extraction of optimal sequence of rules
to transform a source s into a target tree t.
Input: Trees s and t, and ensemble of cost functions γ.
Output: Sequence of optimal rules for s⇒∗ t.

1: let H = (V,E) be a hypergraph of solutions with
V ← {} vertices and E ← {} hyperedges.

2: for (ps, pt) ∈ paths(s)× paths(t) do
3: add vertex v = (ps, pt) to V
4: PP ← GENERATEDISJOINT(s ↓ ps, t ↓ pt, γ)
5: for (p,p′) ∈ PP do
6: . Get cost of tree pattern pair.
7: c← γ (s ↓ ps ⊥ p, t ↓ pt ⊥ p′)
8: add edge (ps, pt)

c→ (p,p′) to E
9: end for

10: end for
11: return HYPERGRAPHSEARCH(H)

12: function GENERATEDISJOINT(s ↓ ps, t ↓ pt, γ)
13: P ← {} a priority queue of partial disjoint paths.
14: for every pc ∈ paths(s ↓ ps) do
15: . Costs when variables combined from children.
16: for every pic immediate child of pc (if any) do
17: . Retrieve n-best subpaths p and p′ from pic.
18: C ← arg minn

(p,p′){c | (pic,p,p′, c) ∈ P}
19: . Combine subpaths with those accumulated
20: . from previous siblings and stored at path pc.
21: A← arg minn

(p,p′){c | (pc,p,p′, c) ∈ P}
22: for (p,p′) ∈ (C ∪ (C.A)) do
23: c← γ (s ↓ ps ⊥ p, t ↓ pt ⊥ p′)
24: add (pc,p,p

′, c) to priority queue P
25: end for
26: end for
27: . Cost of tree patterns with one variable.
28: for every p′c ∈ paths(t ↓ pt) do
29: c← γ (s ↓ ps ⊥ {pc}, t ↓ pt ⊥ {p′c})
30: add (pc, {pc}, {p′c}, c) to priority queue P
31: end for
32: end for
33: . Cost of tree patterns with no variables.
34: c← γ (s ↓ ps ⊥ {}, t ↓ pt ⊥ {})
35: add (ps, {}, {}, c) to priority queue P
36: return arg minn

(p,p′){c | (ps,p,p′, c) ∈ P}
37: end function

addresses that are descendant of ps (including ps),
and similarly for p′c. The pairs of disjoint subpaths
(p,p′) = ({pc}, {p′c}) are added into the priority
queue, indexed by pc.

The third case (line 16 to 26) performs the com-
bination of subpaths hierarchically from children to
parents, and incrementally across children. For ev-
ery path pc ∈ paths(s ↓ ps), it visits its imme-

17

diate children pic one by one, and retrieves into C
the n-best disjoint subpaths (line 18) that have al-
ready been obtained during previous iterations for
pic. Then, we retrieve into A the n-best disjoint sub-
paths indexed at pc, which is a list of the best sub-
paths that were combined from previous immediate
children (the list is empty if this is the first immedi-
ate child that we visit). The cross-product of disjoint
subpaths in C and A, that is C.A, is then evaluated
and the best combinations are stored in the priority
queue indexed at pc.

As an example of a cross-product between two
lists C and A of pairs of disjoint paths, let C =
{(p1,p1

′), (p2,p2
′)} and A = {(p3,p3

′)}. Then
the cross-product C.A would be:

C.A = {(p1 · p3,p
′
1 · p′3), (p2 · p3,p

′
2 · p′3)}

where p1 · p3 = {(0, 1), (0, 2), (0, 3), (0, 4)} if
p1 = {(0, 1), (0, 2)} and p3 = {(0, 3), (0, 4)}. At
this stage, subpaths pi or p′i that are not disjoint are
discarded, together with disjoint paths that produce
tree patterns with depth larger than a certain user-
defined threshold, or whose number of subpaths is
larger than the number of variables allowed.

In line 24, the disjoint subpaths of C (in addition
to their cross-product C.A) are also evaluated and
added to the priority queue indexed by pc, to propa-
gate upwards in the hierarchy of solutions the deci-
sion of not combining disjoint subpaths.

Finally, GENERATEDISJOINT returns the n-best
pairs of disjoint subpaths of minimum cost (p, p′)
that accumulated in the priority queue P for path ps.

5.3.3 Other Considerations
The n-best source and target pairs of disjoint sub-

paths are stored at every pair of source and target
paths (ps, pt) (lines 2-10), forming a hypergraph, as
in Figure 2. Then, with a hypergraph search (Huang
and Chiang, 2007) we can retrieve at least n-best
sequences of rules (derivations) that transform the
source into the target tree (line 11).

To maintain diversity of partial disjoint subpaths,
we divide P into a matrix of buckets with as many
rows and columns as the number of non-variable ter-
minals of the source and target tree patterns, trading
memory for more effective search (Koehn, 2015).
This operation is implicit in lines 24, 30 and 35.

Figure 2: Hypergraph with 2-best pairs of disjoint subpaths for

(ps, pt). Vertices are pairs of source and target paths. Hyper-

edges are pairs of tree patterns. The hyperedge with cost .3 de-

notes the pair s ↓ ps ⊥ {p1, p2, p3} and t ↓ pt ⊥ {p′1, p′2, p′3}.
The one with cost .5, s ↓ ps ⊥ {p1, p3} and t ↓ pt ⊥ {p′2, p′3}.

6 Experiments

6.1 Experiment Settings
Data The training data is a corpus of questions an-
notated with their logical forms that can be exe-
cuted on Freebase to obtain a precise answer. For
an unseen set of questions, the task is to obtain au-
tomatically their logical forms and retrieve the cor-
rect answer. Our objective is to evaluate the gen-
eralization capabilities of a transducer induced us-
ing our rule extraction on an unseen open-domain
test set. We parsed questions from FREE917 into
source constituent trees using the Stanford caseless
model (Klein and Manning, 2003). Target con-
stituent (meaning) representations were obtained by
a simple heuristic conversion from the λ−DCS ex-
pressions released by Berant et al. (2013). We evalu-
ate on the same training and testing split as in Berant
et al. (2013). Tree pairs (2.9%) for which the gold
executable meaning representation did not retrieve
valid results were filtered out.

Baselines We compared to two baselines. The
first one is SEMPRE (Berant et al., 2013), a state-
of-the-art semantic parser that uses a target language
grammar to over-generate trees, and a log-linear
model to estimate the parameters that guide the de-
coder towards trees that generate correct answers.
For FREE917, SEMPRE uses a manually-created
entity lexicon released by (Cai and Yates, 2013), but
an automatically generated predicate lexicon. In-

18

stead, our system and the second baseline use manu-
ally created entity and predicate lexicons, where the
latter was created by selecting all words from every
question that relate to the target predicate. For ex-
ample, for the question “what olympics has egypt
participated in”, we created an entry that maps the
discontinuous phrase “olympics participated in” to
the predicate OlympicsParticipatedIn.

The second baseline is a tree-to-tree transducer
whose rules are extracted using a straightforward
adaptation of the GHKM algorithm (Galley et al.,
2004) for pairs of trees. Word-to-concept align-
ments are extracted using three different strategies:
i) ghkm-g uses the IBM models (Brown et al., 1993)
as implemented in GIZA++ (Och and Ney, 2003),
ii) ghkm-m maps KB concepts (target leaves) to as
many source words as present in the entity/predicate
lexicons, and iii) ghkm-c maps KB concepts as in ii)
but only retaining the longest contiguous sequence
of source words (or right-most sequence if there is
a tie). Bridging predicates are assumed when a KB
concept does not align (according to the lexicon) to
any source word. Finally, rule state names are set
according to the mechanism described in Section 5.

Our ent, pred and bridge cost/back-off functions
assign a low cost (or high score) to source and target
tree patterns with no variables whose leaves appear
in either the entity or the predicate lexicons. Scal-
ing factors λi (see Eq. 1) were subjectively tuned on
20 training examples. When used as back-off func-
tions, they generate as many rhs as entities or pred-
icates can be retrieved from the lexicons by at least
one of the words in the source tree pattern. Bridging
predicates are dispreferred by adding an extra con-
stant cost. At back-off, this score function generates
a variable predicate, acting as a wildcard in Sparql.

Our system t2t For the rule extraction, we use a
beam size of 10, and we output 100 derivations for
every tree pair. We do not impose any limit in the
depth of lhs or rhs, or in the number of variables.
To increase the coverage of our rules, we produce
deleting tree transducers by replacing fully lexical-
ized branches that are directly attached to the root of
a lhs with a deleting variable.

For the parameter estimation, we used 3 iterations
of the latent variable averaged structured perceptron,
where the number of iterations was selected on 20%
of held-out training data. To assess the equality be-

tween the gold and the decoded tree, we compare
their denotations. The features for the discrimina-
tive training were the lhs and rhs roots, the number
of variables, deleting variables and leaves, the pres-
ence of entities or predicates in the rhs, the rule state
and children states, and several measures of charac-
ter overlaps between the leaves of the source and in-
formation associated to leaves in target tree patterns.

For decoding, we used standard techniques
(Graehl and Knight, 2004) to constrain and prune
weighted regular tree grammars given a tree trans-
ducer and a source tree, and used the cube-growing
algorithm to generate 10, 000 derivations, converted
them to Sparql queries, and retained those that were
valid (either syntactically correct or that retrieved
any result). We compute the accuracy of the system
as the percentage of questions for which the 1-best
output tree retrieves the correct answer, and the cov-
erage as the percentage for which the correct answer
is within the 10, 000 best derivations. The average
rule extraction time per tree pair when using beam
size 1 was 0.46 seconds (median 0.35, maximum
2.94 seconds). When using beam size 10, the aver-
age was 4.7 seconds (median 2.02, maximum 104.4
seconds), which gives us a glimpse of how the beam
size influences the computational complexity for the
typical tree size of FREE917 questions.

6.2 Results

Results are in Table 1. Note that although we
compare our results to those obtained with SEM-
PRE (Berant et al., 2013), the systems cannot really
be compared since Berant et al. (2013) did not have
access to a manually created lexicon of predicates.
When comparing the average number of entity and
predicate rules that the back-off functions generate,
we see that the number of predicate rules is much
larger, implying a higher ambiguity. Despite this,
our base system still produces promising results in
terms of accuracy and coverage.

We also carried out several ablation experiments
to investigate what are the characteristics of the sys-
tem that contribute the most to the accuracy: In no
nbest, we only extract one sequence of rules that
transform a source into a target tree. In no del, we
do not introduce deleting variables. In beam 1, we
use beam size 1 in rule extraction. In no size, no
tree size regularizer cost function is used. And in

19

Systems Acc. Cov. # Preds. # Ents. # Rules
SEMPRE .62 − − − −
ghkm-c .49 .80 155 14 384
ghkm-m .48 .77 147 14 399
ghkm-g .08 .57 102 5 135

t2t .64 .78 187 19 437
t2t-e .69 .85 191 20 430
no del .64 .78 187 19 437
no size .59 .78 195 19 483
no nbest .58 .70 93 5 128
beam 1 .53 .65 84 5 112
no back .00 .01 0 0 175
train-600 .62 .78 187 19 429
train-500 .61 .77 184 19 413
train-400 .62 .75 178 19 390
train-300 .59 .75 177 18 363
train-200 .52 .74 169 17 317
train-100 .52 .67 138 14 317

Table 1: Accuracy and coverage results; average number of

predicate rules, entity rules and all rules per input tree.

no back, no rule back-offs are used. As we see,
removing the back-off rule capabilities is critical in
this setting and makes the QA task unfeasible. We
also studied the impact of the size of the training
data in the generalization of our system, by train-
ing the system in {100, 200, . . . , 600} examples. We
found that the accuracy saturates at only 400 train-
ing instances, which might be advantageous in tasks
where training resources are scarce. Finally, in or-
der to estimate the upper bound in the coverage and
accuracy of our approach on FREE917, we also run
our pipeline t2t-e with a refined version of Cai and
Yates (2013)’s entity lexicon, where 65 missing en-
tities are added (7.8% of the total). We can observe
a significant increase in the accuracy and coverage
of the system, suggesting that the bottleneck may lie
in the entity/predicate linking procedures.

7 Future Work

One step further in the generalization of the rule ex-
traction is to remove the necessity of explicitly pro-
viding cost functions such as word-to-word hard-
alignments or costs between tree fragments. This
would allow us to remove the bias introduced by en-
gineered cost functions and to obtain rules that are
globally optimal. In this setup, the parameters of the
cost functions are to be learned with the objective
to maximize the likelihood on the training data or

a downstream application performance. However,
since rules (or tree mappings) would become hid-
den variables, this generalized rule extraction may
require faster methods to enumerate plausible rules.
Another extension would be to make the rule extrac-
tion more robust against parsing errors, using pairs
of forests instead of pairs of trees, similarly as in Liu
et al. (2009).

Regarding the QA application, there are two nat-
ural extensions that we want to address, namely to
develop general and automatic entity and predicate
linking mechanisms for large knowledge bases, and
to test our approach in datasets that require higher
levels of compositionality such as the QALD chal-
lenges (Unger et al., 2015) or those datasets pro-
duced by Wang et al. (2015).

8 Conclusion

We proposed to induce tree to tree transducers us-
ing a rule extraction algorithm that uses cost func-
tions over pairs of tree fragments (instead of word-
alignments), which increases the applicability of
these models. Some cost functions may act as
rule back-offs, generating new rhs given unseen lhs,
thus producing transducer rules “on-the-fly”. The
scores of these rules are obtained on demand using
a discriminative training procedure that estimates
weights for rule features. This strategy was useful to
compensate the lack of rule coverage when inducing
tree transducers from small tree corpora.

As a proof-of-concept, we tested the tree trans-
ducer induced with our algorithm on a QA task over
a large KB, a domain in which tree transducers have
not been effective before. In this task, lexicon map-
pings were naturally introduced as cost functions
and rule back-offs, without loss of generality. De-
spite using a manually created lexicon of predicates,
we showed a high accuracy and coverage of non-
final rules, which are promising results.

Acknowledgments

This paper is based on results obtained from a
project commissioned by the New Energy and
Industrial Technology Development Organization
(NEDO), and is also supported by JSPS KAKENHI
Grant Number 16K16111. We thank Yoshimasa
Tsuruoka, Yo Ehara and the anonymous reviewers
for their helpful comments.

20

References
Jonathan Berant, Andrew Chou, Roy Frostig, and Percy

Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544, Seattle, Wash-
ington, USA, October. Association for Computational
Linguistics.

Philip Bille. 2005. A survey on tree edit distance
and related problems. Theoretical Computer Science,
337(1–3):217 – 239.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathematics
of statistical machine translation: Parameter estima-
tion. Computational linguistics, 19(2):263–311.

Qingqing Cai and Alexander Yates. 2013. Large-scale
semantic parsing via schema matching and lexicon ex-
tension. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 423–433, Sofia, Bulgaria,
August. Association for Computational Linguistics.

Trevor Anthony Cohn and Mirella Lapata. 2009. Sen-
tence compression as tree transduction. Journal of Ar-
tificial Intelligence Research, 34:637–674.

Jason Eisner. 2003. Learning non-isomorphic tree map-
pings for machine translation. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics - Volume 2, ACL ’03, pages 205–
208, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule. In HLT-
NAACL’2004: Main Proceedings, pages 273–280.

Ruifang Ge and Raymond J. Mooney. 2005. A statisti-
cal semantic parser that integrates syntax and seman-
tics. In Proceedings of the Ninth Conference on Com-
putational Natural Language Learning, CONLL ’05,
pages 9–16, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Jonathan Graehl and Kevin Knight. 2004. Training
tree transducers. In Daniel Marcu Susan Dumais
and Salim Roukos, editors, HLT-NAACL 2004: Main
Proceedings, pages 105–112, Boston, Massachusetts,
USA, May 2 - May 7. Association for Computational
Linguistics.

Liang Huang and David Chiang. 2007. Forest rescoring:
Faster decoding with integrated language models. In
Proceedings of the 45th Annual Meeting of the Asso-
ciation of Computational Linguistics, pages 144–151,
Prague, Czech Republic, June. Association for Com-
putational Linguistics.

Bevan Keeley Jones, Mark Johnson, and Sharon Goldwa-
ter. 2012. Semantic parsing with bayesian tree trans-
ducers. In Proceedings of the 50th Annual Meeting of

the Association for Computational Linguistics: Long
Papers - Volume 1, ACL ’12, pages 488–496, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. In Proceedings of the 41st
Annual Meeting of the Association for Computational
Linguistics, pages 423–430, Sapporo, Japan, July. As-
sociation for Computational Linguistics.

Kevin Knight and Jonathan Graehl. 2005. An overview
of probabilistic tree transducers for natural language
processing. In Alexander Gelbukh, editor, Compu-
tational Linguistics and Intelligent Text Processing,
volume 3406 of Lecture Notes in Computer Science,
pages 1–24. Springer Berlin Heidelberg.

Philipp Koehn. 2015. Moses Manual.
Peng Li, Yang Liu, and Maosong Sun. 2013. An ex-

tended GHKM algorithm for inducing Lambda-SCFG.
pages 605–611.

Percy Liang. 2013. Lambda dependency-based compo-
sitional semantics. CoRR, abs/1309.4408.

Xiao Ling, Sameer Singh, and Daniel Weld. 2015. De-
sign challenges for entity linking. Transactions of
the Association for Computational Linguistics, 3:315–
328.

Yang Liu, Yajuan Lü, and Qun Liu. 2009. Improving
tree-to-tree translation with packed forests. In Pro-
ceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the
AFNLP, pages 558–566, Suntec, Singapore, August.
Association for Computational Linguistics.

Andreas Maletti, Jonathan Graehl, Mark Hopkins, and
Kevin Knight. 2009. The power of extended top-
down tree transducers. SIAM Journal on Computing,
39(2):410–430.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

William C. Rounds. 1970. Mappings and grammars on
trees. Mathematical systems theory, 4(3):257–287.

Kuo-Chung Tai. 1979. The tree-to-tree correction prob-
lem. J. ACM, 26(3):422–433, July.

James W. Thatcher. 1970. Generalized sequential ma-
chine maps. Journal of Computer and System Sci-
ences, 4(4):339 – 367.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hof-
mann, and Yasemin Altun. 2005. Large margin meth-
ods for structured and interdependent output variables.
In Journal of Machine Learning Research, volume 6,
pages 1453–1484.

21

Christina Unger, Corina Forascu, Vanessa Lopez, Axel-
Cyrille Ngonga Ngomo, Elena Cabrio, Philipp Cimi-
ano, and Sebastian Walter. 2015. Question Answer-
ing over Linked Data (QALD-5). In Linda Cappellato,
Nicola Ferro, Gareth Jones, and Eric San Juan, editors,
Working Notes of CLEF 2015 - Conference and Labs
of the Evaluation forum, volume 1391. Working Notes
of CLEF 2015 - Conference and Labs of the Evalua-
tion forum.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pages 1332–1342, Bei-
jing, China, July. Association for Computational Lin-
guistics.

Yuk Wah Wong and Raymond J. Mooney. 2006. Learn-
ing for semantic parsing with statistical machine trans-
lation. In Proceedings of the Main Conference on Hu-
man Language Technology Conference of the North
American Chapter of the Association of Computa-
tional Linguistics, HLT-NAACL ’06, pages 439–446,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Dekai Wu. 2005. Recognizing paraphrases and textual
entailment using inversion transduction grammars. In
Proceedings of the ACL Workshop on Empirical Mod-
eling of Semantic Equivalence and Entailment, EM-
SEE ’05, pages 25–30, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Kaizhong Zhang and Dennis Shasha. 1989. Simple
fast algorithms for the editing distance between trees
and related problems. SIAM Journal on Computing,
18(6):1245–1262.

22

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 23–32,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

A Neural Network for Coordination Boundary Prediction

Jessica Ficler
Computer Science Department

Bar-Ilan University
Israel

jessica.ficler@gmail.com

Yoav Goldberg
Computer Science Department

Bar-Ilan University
Israel

yoav.goldberg@gmail.com

Abstract

We propose a neural-network based model for
coordination boundary prediction. The net-
work is designed to incorporate two signals:
the similarity between conjuncts and the ob-
servation that replacing the whole coordina-
tion phrase with a conjunct tends to produce
a coherent sentences. The modeling makes
use of several LSTM networks. The model
is trained solely on conjunction annotations in
a Treebank, without using external resources.
We show improvements on predicting coor-
dination boundaries on the PTB compared to
two state-of-the-art parsers; as well as im-
provement over previous coordination bound-
ary prediction systems on the Genia corpus.

1 Introduction

Coordination is a common syntactic phenomena, ap-
pearing in 38.8% of the sentences in the Penn Tree-
bank (PTB) (Marcus et al., 1993), and in 60.71%
of the sentences in the Genia Treebank (Ohta et al.,
2002). However, predicting the correct conjuncts
span remain one of the biggest challenges for state-
of-the-art syntactic parsers. Both the Berkeley and
Zpar phrase-structure parsers (Petrov et al., 2006;
Zhang and Clark, 2011) achieve F1 scores of around
69% when evaluated on their ability to recover coor-
dination boundaries on the PTB test set. For exam-
ple, in:

“He has the government’s blessing to [build churches]
and [spread Unificationism] in that country.”

the conjuncts are incorrectly predicted by both
parsers:

Berkeley: “He has the government’s blessing to [build
churches] and [spread Unificationism in that country].”
Zpar: “He [has the government’s blessing to build
churches] and [spread Unificationism in that country].”

In this work we focus on coordination boundary
prediction, and suggest a specialized model for this
task. We treat it as a ranking task, and learn a scor-
ing function over conjuncts candidates such that the
correct candidate pair is scored above all other can-
didates. The scoring model is a neural network with
two LSTM-based components, each modeling a dif-
ferent linguistic principle: (1) conjuncts tend to be
similar (“symmetry”); and (2) replacing the coor-
dination phrase with each of the conjuncts usually
result in a coherent sentence (“replacement”). The
symmetry component takes into account the con-
juncts’ syntactic structures, allowing to capture sim-
ilarities that occur in different levels of the syntac-
tic structure. The replacement component considers
the coherence of the sequence that is produced when
connecting the participant parts. Both of these sig-
nals are syntactic in nature, and are learned solely
based on information in the Penn Treebank. Our
model substantially outperforms both the Berkeley
and Zpar parsers on the coordination prediction task,
while using the exact same training corpus. Seman-
tic signals (which are likely to be based on resources
external to the treebank) are also relevant for coor-
dination disambiguation (Kawahara and Kurohashi,
2008; Hogan, 2007) and provide complementary in-
formation. We plan to incorporate such signals in
future work.

23

2 Background

Coordination is a very common syntactic construc-
tion in which several sentential elements (called con-
juncts) are linked. For example, in:

“The Jon Bon Jovi Soul Foundation [was founded in
2006] and1 [exists to combat issues that force (fam-
ilies) and2 (individuals) into economic despair].”

The coordinator and1 links the conjuncts surrounded
with square brackets and the coordinator and2 links
the conjuncts surrounded with round brackets.

Coordination between NPs and between VPs are
the most common, but other grammatical functions
can also be coordinated: “[relatively active]ADJP

but [unfocused]ADJP” ; “[in]IN and [out]IN the
market”. While coordination mostly occurs be-
tween elements with the same syntactic category,
cross-category conjunctions are also possible: (“Al-
ice will visit Earth [tomorrow]NP or [in the next
decade]PP”). Less common coordinations involve
non-constituent elements “[equal to] or [higher
than]”, argument clusters (“Alice visited [4 plan-
ets] [in 2014] and [3 more] [since then]”), and gap-
ping (“[Bob lives on Earth] and [Alice on Saturn]”)
(Dowty, 1988).

2.1 Symmetry between conjuncts

Coordinated conjuncts tend to be semantically re-
lated and have a similar syntactic structure. For ex-
ample, in (a) and (b) the conjuncts include similar
words (China/Asia, marks/yen) and have identical
syntactic structures.

PP

PP

IN

for

NP

NNP

China

CC

and

PP

IN

for

NP

NNP

Asia

(a)

NP

NP

CD

1.8690

NNS

marks

CC

and

NP

CD

139.75

NNS

yen

(b)

Symmetry holds also in larger conjuncts, such as in:

(c)

NP

NP

NN

income

PP

IN

of

NP

NP

QP

429.9 billion

NNS

rubles

PRN

(US$ 693.4)

CC

and

NP

VBZ

expenditures

PP

IN

of

NP

NP

QP

489.9 billion

NNS

rubles

PRN

(US$ 790.2)

Similarity between conjuncts was used as a guiding
principle in previous work on coordination disam-
biguation (Hogan, 2007; Shimbo and Hara, 2007;
Hara et al., 2009).

2.2 Replaceability

Replacing a conjunct with the whole coordination
phrase usually produce a coherent sentence (Hud-
dleston et al., 2002). For example, in “Ethan has
developed [new products] and [a new strategy]”,
replacement results in: “Ethan has developed new
products”; and “Ethan has developed a new strat-
egy”, both valid sentences. Conjuncts replace-
ment holds also for conjuncts of different syntac-
tic types, e.g.: “inactivation of tumor-suppressor
genes, [alone] or [in combination], appears crucial
to the development of such scourges as cancer.”.

While both symmetry and replacebility are strong
characteristics of coordination, neither principle
holds universally. Coordination between syntacti-
cally dissimilar conjuncts is possible (“tomorrow
and for the entirety of the next decade”), and the
replacement principle fails in cases of ellipsis, gap-
ping and others (“The bank employs [8,000 people
in Spain] and [2,000 abroad]”).

2.3 Coordination in the PTB

Coordination annotation in the Penn Treebank (Mar-
cus et al., 1993) is inconsistent (Hogan, 2007) and
lacks internal structure for NPs with nominal mod-
ifiers (Bies et al., 1995). In addition, conjuncts in
the PTB are not explicitly marked. These deficien-
cies led previous works on coordination disambigua-
tion (Shimbo and Hara, 2007; Hara et al., 2009;
Hanamoto et al., 2012) to use the Genia treebank
of biomedical text (Ohta et al., 2002) which explic-
itly marks coordination phrases. However, using the
Genia corpus is not ideal since it is in a specialized

24

domain and much smaller than the PTB. In this work
we rely on a version of the PTB released by Ficler
and Goldberg (2016) in which the above deficiencies
are manually resolved. In particular, coordinating
elements, coordination phrases and conjunct bound-
aries are explicitly marked with specialized function
labels.

2.4 Neural Networks and Notation
We use w1:n to indicate a list of vectors
w1, w2, . . . wn and wn:1 to indicate the reversed list.
We use ◦ for vector concatenation. When a discrete
symbol w is used as a neural network’s input, the
corresponding embedding vector is assumed.

A multi-layer perceptron (MLP) is a non linear
classifier. In this work we take MLP to mean a
classifier with a single hidden layer: MLP (x) =
V · g(Wx + b) where x is the network’s input, g
is an activation function such as ReLU or Sigmoid,
and W , V and b are trainable parameters. Recurrent
Neural Networks (RNNs) (Elman, 1990) allow the
representation of arbitrary sized sequences. In this
work we use LSTMs (Hochreiter and Schmidhuber,
1997), a variant of RNN that was proven effective in
many NLP tasks. LSTM(w1:n) is the outcome vec-
tor resulting from feeding the sequence w1:n into the
LSTM in order. A bi-directional LSTM (biLSTM)
takes into account both the past w1:i and the future
wi:n when representing the element in position i:

biLSTM(w1:n, i) = LSTMF (w1:i) ◦ LSTMB(wn:i)

where LSTMF reads the sequence in its regular or-
der and LSTMB reads it in reverse.

3 Task Definition and Architecture

Given a coordination word in a sentence, the coor-
dination prediction task aims to returns the two con-
juncts that are connected by it, or NONE if the word
does not function as a coordinating conjunction of a
relevant type.1 Figure 1 provides an example.

Our system works in three phases: first, we deter-
mine if the coordinating word is indeed part of a con-
junction of a desired type. We then extract a ranked
list of candidate conjuncts, where a candidate is a

1We consider and, or, but, nor as coordination words. In
case of more than two coordinated elements (conjuncts), we fo-
cus on the two conjuncts which are closest to the coordinator.

Sentence:
And1 the city decided to treat its guests more
like royalty or2 rock stars than factory owners.
Expected output:
and1: NONE
or2: (11-11) royalty ; (12-13) rock stars
Sentence:
The president is expected to visit Minnesota, New
York and1 North Dakota by the end of the year.
Expected output:
and1: (9-10) New York ; (12-13) North Dakota

Figure 1: The coordination prediction task.

pair of spans of the form ((i, j), (l,m)). The can-
didates are then scored and the highest scoring pair
is returned. Section 4 describes the scoring model,
which is the main contribution of this work. The
coordination classification and candidate extraction
components are described in Section 5.

4 Candidate Conjunctions Scoring

Our scoring model takes into account two signals,
symmetry between conjuncts and the possibility of
replacing the whole coordination phrase with its par-
ticipating conjuncts.

4.1 The Symmetry Component
As noted in Section 2.1, many conjuncts spans have
similar syntactic structure. However, while the sim-
ilarity is clear to human readers, it is often not easy
to formally define, such as in:

“about/IN half/NN its/PRP$ revenue/NN
and/CC

more/JJR than/IN half/NN its/PRP$ profit/NN”

If we could score the amount of similarity be-
tween two spans, we could use that to identify cor-
rect coordination structures. However, we do not
know the similarity function. We approach this by
training the similarity function in a data-dependent
manner. Specifically, we train an encoder that en-
codes spans into vectors such that vectors of similar
spans will have a small Euclidean distance between
them. This architecture is similar to Siamese Net-
works, which are used for learning similarity func-
tions in vision tasks (Chopra et al., 2005).

25

VP

VB

cut

NP

PRP$

their

NNS

risks

VP

VB

take

NP

NNS

profits

R

VP

VB

cut

cut
V

B
V

P R

L

VP

R

NP

PRP$

their

their
PR

P$
N

P R V
P L

VP

L

NP

NNS

risks

risks
N

N
S

N
P L V
P

R

VP

VB

take

take
V

B
V

P R

L

VP

NP

NNS

profits
profits
N

N
S

N
P

V
P L

Euclidean Distance

Figure 2: Illustration of the symmetry scoring component that takes into account the conjuncts syntactic structures. Each conjunct
tree is decomposed into paths that are fed into the path-LSTMs (squares). The resulting vectors are fed into the symmetry LSTM
function (circles). The outcome vectors (blue circles) are then fed into the euclidean distance function.

Given two spans of lengths k and m with cor-
responding vector sequences u1:k and v1:m we en-
code each sequences using an LSTM, and take the
euclidean distance between the resulting representa-
tions:

Sym(u1:k, v1:m) = ||LSTM(u1:k)− LSTM(v1:m)||

The network is trained such that the distance is min-
imized for compatible spans and large for incompat-
ible ones in order to learn that vectors that represent
correct conjuncts are closer than vectors that do not
represent conjuncts.

What are the elements in the sequences to be com-
pared? One choice is to take the vectors ui to cor-
respond to embeddings of the ith POS in the span.
This approach works reasonably well, but does not
consider the conjuncts’ syntactic structure, which
may be useful as symmetry often occurs on a higher
level than POS tags. For example, in:

NP

NP

NN

tomorrow

PP

IN

at

CD

16:00

CC

or

NP

NP

NP

the day

PP

after tomorrow

PP

IN

at

CD

12:00

the similarity is more substantial in the third level of
the tree than in the POS level.

A way to allow the model access to higher levels
of syntactic symmetry is to represent each word as
the projection of the grammatical functions from the
word to the root.2 For example, the projections for
the first conjunct in Figure 2 are:

2Similar in spirit to the spines used in Carreras et al. (2008)
and Shen et al. (2003).

VP

VB

cut

VP

NP

PRP$

their

VP

NP

NNS

risks

This decomposition captures the syntactic context
of each word, but does not uniquely determine the
structure of the tree. To remedy this, we add to
the paths special symbols, R and L, which marks
the lowest common ancestors with the right and left
words respectively. These are added to the path
above the corresponding nodes. For example con-
sider the following paths which corresponds to the
above syntactic structure:

R

VP

VB

cut

L

VP

R

NP

PRP$

their

VP

L

NP

NNS

risks

The lowest common ancestor of “their” and “risks”
is NP. Thus, R is added after NP in the path of
“their” and L is added after NP in the path of
“risks”. Similarly, L and R are added after the VP
in the “their” and “cut” paths.

The path for each word is encoded using an
LSTM receiving vector embeddings of the elements
in the path from the word to the root. We then use the
resulting encodings instead of the POS-tag embed-
dings as input to the LSTMs in the similarity func-
tion. Figure 2 depicts the complete process for the
spans “cut their risks” and “take profits”.

Using syntactic projections requires the syntactic
structures of the conjuncts. This is obtained by run-
ning the Berkeley parser over the sentence and tak-
ing the subtree with the highest probability from the

26

Sentence:

Rudolph Agnew, [55 years old] and [former chairman of CGF PLC] ,was named a nonexecutive director.
wi−1 wi wj wk wl wm wm+1

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Pre Conj1 Conj2 Post

Expansions:

Rudolph Agnew, 55 years old ,was named a nonexecutive director.
Rudolph Agnew, former chairman of CGF PLC ,was named a nonexecutive director.

Figure 3: The correct conjuncts spans of the coordinator and in the sentence and the outcome expansions.

corresponding cell in the CKY chart.3 In both ap-
proaches, the POS embeddings are initialized with
vectors that are pre-trained by running word2vec
(Mikolov et al., 2013) on the POS sequences in PTB
training set.

4.2 The Replacement Component

The replacement component is based on the obser-
vation that, in many cases, the coordination phrase
can be replaced with either one of its conjuncts while
still preserving a grammatical and semantically co-
herent sentence (Section 2.2)

When attempting such a replacement on incorrect
conjuncts, the resulting sentence is likely to be either
syntactically or semantically incorrect. For exam-
ple, in the following erroneous analysis: “Rudolph
Agnew, [55 years old] and [former chairman] of
Consolidated Gold Fields PLC” replacing the con-
junction with the first conjunct results in the se-
mantically incoherent sequence “Rudolph Agnew,
55 years old of Consolidated Golden Fields, PLC”.4

Our goal is to distinguish replacements resulting
from correct conjuncts from those resulting from er-
roneous ones. To this end, we focus on the connec-
tion points. A connection point in a resulting sen-
tence is the point where the sentence splits into two
sequences that were not connected in the original
sentence. For example, consider the sentence in Fig-
ure 3. It has four parts, marked as Pre, Conj1, Conj2
and Post. Replacing the coordination phrase Conj1
and Conj2 with Conj2 results in a connection point

3The parser’s CKY chart did not include a tree for 10% of
the candidate spans, which have inside probability 0 and outside
probability > 0. For those, we obtained the syntactic structure
by running the parser on the span words only.

4While uncommon, incorrect conjuncts may also result in
valid sentences, e.g. “He paid $ 7 for cold [drinks] and [pizza]
that just came out of the oven.”

between Pre and Conj2. Likewise, replacing the co-
ordination phrase with Conj1 results in connection
point between Conj1 and Post.

In order to model the validity of the connection
points, we represent each connection point as the
concatenation of a forward and reverse LSTMs cen-
tered around that point. Specifically, for the spans in
Figure 3 the two connection points are represented
as:
LSTMF (Rudolph,...,old)◦LSTMB(director,...,was,,)

and
LSTMF (Rudolph,Agnew,,)◦LSTMB(director,...,former)

Formally, assuming wordsw1:n in a sentence with
coordination at position k and conjuncts wi:j and
wl:m,5 the connection points are between w1:j and
wm+1:n; and between w1:i−1 and wl:n. The two
connection points representations are then concate-
nated, resulting in a replacement vector:

REPL(w1:n, i, j, l,m) =

CONPOINT(w1:n, i− 1, l) ◦ CONPOINT(w1:n, j,m+ 1)

where:

CONPOINT(w1:n, i, j) =

LSTMF (w1:i) ◦ LSTMB(wn:j)

We use two variants of the replacement vectors,
corresponding to two levels of representation. The
first variant is based on the sentence’s words, while
the second is based on its POS-tags.

4.3 Parser based Features
In addition to the symmetry and replacement sig-
nals, we also incorporate some scores that are de-
rived from the Berkeley parser. As detailed in Sec-
tion 5, a list of conjuncts candidates are extracted

5Usually j = k − 1 and l = k + 1, but in some cases
punctuation symbols may interfere.

27

from the CKY chart of the parser. The candidates
are then sorted in descending order according to the
multiplication of inside and outside scores of the
candidate’s spans:6 I(i,j) ×O(i,j) × I(l,m) ×O(l,m).
Each candidate {(i, j), (l,m)} is assigned two nu-
merical features based on this ranking: its position in
the ranking, and the ratio between its score and the
score of the adjacent higher-ranked candidate. We
add an additional binary feature indicating whether
the candidate spans are in the 1-best tree predicted
by the parser. These three features are denoted as
Feats(i, j, l,m).

4.4 Final Scoring and Training

Finally, the score of a candidate {(i, j), (l,m)} in a
sentence with words w1:n and POS tags p1:n is com-
puted as:

SCORE(w1:n, p1:n, {(i, j), (l,m)}) =
MLP (

Sym(vPath
i:j , vPath

l:m)

◦Repl(w1:n, i, j, l,m)

◦Repl(p1:n, i, j, l,m)

◦ Feats(i, j, l,m))

where vPath
i:j and vPath

l:m are the vectors resulting from
the path LSTMs, and Sym, Repl and Feats are the
networks defined in Sections 4.1 – 4.3 above. The
network is trained jointly, attempting to minimize a
pairwise ranking loss function, where the loss for
each training case is given by:

loss = max(0, 1− (ŷ − yg))
where ŷ is the highest scoring candidate and yg is
the correct candidate. The model is trained on all
the coordination cases in Section 2–21 in the PTB.

5 Candidates Extraction and Supporting
Classifiers

Candidates Extraction We extract candidate
spans based on the inside-outside probabilities as-
signed by the Berkeley parser. Specifically, to obtain

6Inside-Outside probabilities (Goodman, 1998) represent
the probability of a span with a given non-terminal symbol.
The inside probability I(N,i,j) is the probability of generating
words wi, wi+1, ..., wj given that the root is the non-terminal
N . The outside probability O(N,i,j) is the probability of gen-
erating words w1, w2, ..., wi−1, the non-terminal N and the
words wj+1, wj+2, ..., wn with the root S.

candidates for conjunct span we collect spans that
are marked with COORD, are adjacent to the coor-
dinating word, and have non-zero inside or outside
probabilities. We then take as candidates all possi-
ble pairs of collected spans. On the PTB dev set,
this method produces 6.25 candidates for each co-
ordinating word on average and includes the correct
candidates for 94% of the coordinations.

Coordination Classification We decide whether a
coordination word wk in a sentence w1:n functions
as a coordinator by feeding the biLSTM vector cen-
tered around wk into a logistic classifier:

σ(v · biLSTM(w1:n, k) + b).

The training examples are all the coordination words
(marked with CC) in the PTB training set. The
model achieves 99.46 F1 on development set and
99.19 F1 on test set.

NP coordinations amount to about half of the
coordination cases in the PTB, and previous work
is often evaluated specifically on NP coordination.
When evaluating on NP coordination, we depart
from the unrealistic scenario used in most previous
work where the type of coordination is assumed to
be known a-priori, and train a specialized model for
predicting the coordination type. For a coordination
candidate {(i, j), (l,m)} with a coordinator wk, we
predict if it is NP coordination or not by feeding
a logistic classifier with a biLSTM vector centered
around the coordinator and constrained to the candi-
date spans:

σ(v · biLSTM(wi:m, k) + b).

The training examples are coordinations in the PTB
training set, where where a coordinator is consid-
ered of type NP if its head is labeled with NP or
NX. Evaluating on gold coordinations results in F1
scores of 95.06 (dev) and 93.89 (test).

6 Experiments

We evaluate our models on their ability to identify
conjunction boundaries in the extended Penn Tree-
bank (Ficler and Goldberg, 2016) and Genia Tree-
bank (Ohta et al., 2002)7.

When evaluating on the PTB, we compare to the
conjunction boundary predictions of the generative

7http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA

28

Dev Test
P R F P R F

Berkeley 70.14 70.72 70.42 68.52 69.33 68.92
Zpar 72.21 72.72 72.46 68.24 69.42 68.82
Ours 72.34 72.25 72.29 72.81 72.61 72.7

Table 1: Coordination prediction on PTB (All coordinations).

Dev Test
P R F P R F

Berkeley 67.53 70.93 69.18 69.51 72.61 71.02
Zpar 69.14 72.31 70.68 69.81 72.92 71.33
Ours 75.17 74.82 74.99 76.91 75.31 76.1

Table 2: Coordination prediction on PTB (NP coordinations).

Berkeley parser (Petrov et al., 2006) and the discrim-
inative Zpar parser (Zhang and Clark, 2011). When
evaluating on the Genia treebank, we compare to the
results of the discriminative coordination-prediction
model of Hara et al. (2009).8

6.1 Evaluation on PTB

Baseline Our baseline is the performance of the
Berkeley and Zpar parsers on the task presented in
Section 3, namely: for a given coordinating word,
determine the two spans that are being conjoined
by it, and return NONE if the coordinator is not
conjoining spans or conjoins spans that are not of
the expected type. We convert predicted trees to
conjunction predictions by taking the two phrases
that are immediately adjacent to the coordinator
on both sides (ignoring phrases that contain solely
punctuation). For example, in the following Zpar-
predicted parse tree the conjunct prediction is (“Feb.
8, 1990”,“May 10, 1990”).

NP

NP

Feb. 8, 1990

CC

and

NP

May 10, 1990

,

,

ADJP

respectively

Cases in which the coordination word is the left-
most or right-most non-punctuation element in its
phrase (e.g. (PRN (P -)(CC and)(S it’s
been painful)(P -))) are considered as no-
coordination (“None”).

8Another relevant model in the literature is (Hanamoto et al.,
2012), however the results are not directly comparable as they
use a slightly different definition of conjuncts, and evaluate on
a subset of the Genia treebank, containing only trees that were
properly converted to an HPSG formalism.

We consider two setups. In the first we are inter-
ested in all occurrences of coordination, and in the
second we focus on NP coordination. The second
scenario requires typed coordinations. We take the
type of a parser-predicted coordination to be the type
of the phrase immediately dominating the coordina-
tion word.
Evaluation Metrics We measure precision and re-
call compared to the gold-annotated coordination
spans in the extended PTB, where an example
is considered correct if both conjunct boundaries
match exactly. When focusing on NPs coordina-
tions, the type of the phrase above the CC level must
match as well, and phrases of type NP/NX are con-
sidered as NP coordination.
Results Tables (1) and (2) summarize the results.
The Berkeley and Zpar parsers perform similarly
on the coordination prediction task. Our proposed
model outperforms both parsers, with a test-set F1

score of 72.7 (3.78 F1 points gain over the better
parser) when considering all coordinations, and test-
set F1 score of 76.1 (4.77 F1 points gain) when con-
sidering NP coordination.

6.2 Evaluation on Genia

To compare our model to previous work, we evalu-
ate also on the Genia treebank (Beta), a collection
of constituency trees for 4529 sentences from Med-
line abstracts. The Genia treebank coordination an-
notation explicitly marks coordination phrases with
a special function label (COOD), making the cor-
pus an appealing resource for previous work on co-
ordination boundary prediction (Shimbo and Hara,
2007; Hara et al., 2009; Hanamoto et al., 2012).
Following Hara et al. (2009), we evaluate the mod-
els’ ability to predict the span of the entire coordi-
nation phrase, disregarding the individual conjuncts.
For example, in “My plan is to visit Seychelles, ko
Samui and Sardinia by the end of the year” the goal
is to recover “Seychelles, ko Samui and Sardinia”.
This is a recall measure. We follow the exact proto-
col of Hara et al. (2009) and train and evaluate the
model on 3598 coordination phrases in Genia Tree-
bank Beta and report the micro-averaged results of
a five-fold cross validation run.9 As shown by Hara

9We thank Kazuo Hara for providing us with the exact de-
tails of their splits.

29

Sym
Correct: Retail sales volume was [down 0.5% from the previous three months] and [up 1.2% from a year earlier].
Incorrect: Everyone was concerned about the [general narrowness of the rally] and [failure of the OTC market] to get into plus territory.

Repw
Correct: The newsletter said [she is 44 years old] and [she studied at the University of Puerto Rico School of Medicine].
Incorrect: But Robert Showalter said no special [bulletins] or [emergency meetings of the investors’ clubs] are planned .

Repp
Correct: [On the Big Board floor] and [on trading desks], traders yelped their approval.
Incorrect: It suddenly burst upward 7.5 as Goldman, Sachs & Co. [stepped in] and [bought almost] every share offer, traders said.

Figure 4: Correct in incorrect predictions by the individual components.

COOD # Our Model Hara et al.
Overall 3598 64.14 61.5

NP 2317 65.08 64.2
VP 465 71.82 54.2

ADJP 321 74.76 80.4
S 188 17.02 22.9

PP 167 56.28 59.9
UCP 60 51.66 36.7

SBAR 56 91.07 51.8
ADVP 21 80.95 85.7
Others 3 33.33 66.7

Table 3: Recall on the Beta version of Genia corpus. Numbers
for Hara et al. are taken from their paper.

et al. (2009), syntactic parsers do not perform well
on the Genia treebank. Thus, in our symmetry com-
ponent we opted to not rely on predicted tree struc-
tures, and instead use the simpler option of repre-
senting each conjunct by its sequence of POS tags.
To handle coordination phrases with more than two
conjuncts, we extract candidates which includes up
to 7 spans and integrate the first and the last span
in the model features. Like Hara et al., we use gold
POS.
Results Table 3 summarizes the results. Our pro-
posed model achieves Recall score of 64.14 (2.64
Recall points gain over Hara et al.) and significantly
improves the score of several coordination types.

6.3 Technical Details

The neural networks (candidate scoring model and
supporting classifiers) are implemented using the
pyCNN package.10.

In the supporting models we use words embed-
ding of size 50 and the Sigmoid activation function.
The LSTMs have a dimension of 50 as well. The
models are trained using SGD for 10 iterations over
the train-set, where samples are randomly shuffled
before each iteration. We choose the model with the
highest F1 score on the development set.

All the LSTMs in the candidate scoring model
have a dimension of 50. The input vectors for the

10https://github.com/clab/cnn/tree/master/pycnn

All types NPs
P R F P R F

Sym 67.13 67.06 67.09 69.69 72.08 70.86
Repp 69.26 69.18 69.21 69.73 71.16 70.43
Repw 56.97 56.9 56.93 59.78 64.3 61.95
Feats 70.92 70.83 70.87 72.23 73.22 72.72
Joint 72.34 72.25 72.29 75.17 74.82 74.99

Table 4: Performance of the individual components on PTB
section 22 (dev). Sym: Symmetry. Repp: POS replace-
ment. Repw: Word replacement. Feats: features extracted from
Berkeley parser. Joint: the complete model.

symmetry LSTM is of size 50 as well. The MLP
in the candidate scoring model uses the Relu acti-
vation function, and the model is trained using the
Adam optimizer. The words and POS embeddings
are shared between the symmetry and replacment
components. The syntactic label embeddings are for
the path-encoding LSTM, We perform grid search
with 5 different seeds and the following: [1] MLP
hidden layer size (100, 200, 400); [2] input embed-
dings size for words, POS and syntactic labels (100,
300). We train for 20 iterations over the train set,
randomly shuffling the examples before each itera-
tion. We choose the model that achieves the highest
F1 score on the dev set.

7 Analysis

Our model combines four signals: symmetry, word-
level replacement, POS-level replacement and fea-
tures from Berkeley parser. Table 4 shows the PTB
dev-set performance of each sub-model in isolation.
On their own, each of the components’ signals is
relatively weak, seldom outperforming the parsers.
However, they provide complementary information,
as evident by the strong performance of the joint
model. Figure 4 lists correct and incorrect predic-
tions by each of the components, indicating that the
individual models are indeed capturing the patterns
they were designed to capture – though these pat-
terns do not always lead to correct predictions.

30

8 Related Work

The similarity property between conjuncts was ex-
plored in several previous works on coordination
disambiguation. Hogan (2007) incorporated this
principle in a generative parsing model by changing
the generative process of coordinated NPs to condi-
tion on properties of the first conjunct when gener-
ating the second one. Shimbo and Hara (2007) pro-
posed a discriminative sequence alignment model to
detect similar conjuncts. They focused on disam-
biguation of non-nested coordination based on the
learned edit distance between two conjuncts. Their
work was extended by Hara et al. (2009) to han-
dle nested coordinations as well. The discrimina-
tive edit distance model in these works is similar in
spirit to our symmetry component, but is restricted
to sequences of POS-tags, and makes use of a se-
quence alignment algorithm. We compare our re-
sults to Hara et al.’s in Section 6.2. Hanamoto et al.
(2012) extended the previous method with dual de-
composition and HPSG parsing. In contrast to these
symmetry-directed efforts, Kawahara et al. (2008)
focuses on the dependency relations that surround
the conjuncts. This kind of semantic information
provides an additional signal which is complemen-
tary to the syntactic signals explored in our work.
Our neural-network based model easily supports in-
corporation of additional signals, and we plan to ex-
plore such semantic signals in future work.

9 Conclusions

We presented an neural-network based model for re-
solving conjuncts boundaries. Our model is based
on the observation that (a) conjuncts tend to be sim-
ilar and (b) that replacing the coordination phrase
with a conjunct results in a coherent sentence. Our
models rely on syntactic information and do not
incorporate resources external to the training tree-
banks, yet improve over state-of-the-art parsers on
the coordination boundary prediction task.

Acknowledgments

This work was supported by The Israeli Science
Foundation (grant number 1555/15) as well as
the German Research Foundation via the German-
Israeli Project Cooperation (DIP, grant DA 1600/1-
1).

References

Ann Bies, Mark Ferguson, Karen Katz, Robert Mac-
Intyre, Victoria Tredinnick, Grace Kim, Mary Ann
Marcinkiewicz, and Britta Schasberger. 1995. Brack-
eting guidelines for treebank ii style penn treebank
project. University of Pennsylvania, 97:100.

Xavier Carreras, Michael Collins, and Terry Koo. 2008.
Tag, dynamic programming, and the perceptron for
efficient, feature-rich parsing. In Proceedings of the
Twelfth Conference on Computational Natural Lan-
guage Learning, pages 9–16. Association for Compu-
tational Linguistics.

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with ap-
plication to face verification. In Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Com-
puter Society Conference on, volume 1, pages 539–
546. IEEE.

David Dowty. 1988. Type raising, functional compo-
sition, and non-constituent conjunction. In Catego-
rial grammars and natural language structures, pages
153–197. Springer.

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive science, 14(2):179–211.

Jessica Ficler and Yoav Goldberg. 2016. Coordination
annotation extension in the penn tree bank. Associa-
tion for Computational Linguistics.

Joshua Goodman. 1998. Parsing inside-out. arXiv
preprint cmp-lg/9805007.

Atsushi Hanamoto, Takuya Matsuzaki, and Jun’ichi Tsu-
jii. 2012. Coordination structure analysis using dual
decomposition. In Proceedings of the 13th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 430–438. Association for
Computational Linguistics.

Kazuo Hara, Masashi Shimbo, Hideharu Okuma, and
Yuji Matsumoto. 2009. Coordinate structure analysis
with global structural constraints and alignment-based
local features. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP: Volume 2-Volume 2, pages
967–975. Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Deirdre Hogan. 2007. Coordinate noun phrase disam-
biguation in a generative parsing model. Association
for Computational Linguistics.

Rodney Huddleston, Geoffrey K Pullum, et al. 2002.
The cambridge grammar of english. Language. Cam-
bridge: Cambridge University Press, page 1275.

31

Daisuke Kawahara and Sadao Kurohashi. 2008. Coor-
dination disambiguation without any similarities. In
Proceedings of the 22nd International Conference on
Computational Linguistics-Volume 1, pages 425–432.
Association for Computational Linguistics.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of english: The penn treebank. Computational lin-
guistics, 19(2):313–330.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Tomoko Ohta, Yuka Tateisi, and Jin-Dong Kim. 2002.
The genia corpus: An annotated research abstract cor-
pus in molecular biology domain. In Proceedings of
the second international conference on Human Lan-
guage Technology Research, pages 82–86. Morgan
Kaufmann Publishers Inc.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of the 21st
International Conference on Computational Linguis-
tics and the 44th annual meeting of the Association for
Computational Linguistics, pages 433–440. Associa-
tion for Computational Linguistics.

Libin Shen, Anoop Sarkar, and Aravind K Joshi. 2003.
Using ltag based features in parse reranking. In Pro-
ceedings of the 2003 conference on Empirical methods
in natural language processing, pages 89–96. Associ-
ation for Computational Linguistics.

Masashi Shimbo and Kazuo Hara. 2007. A discrimi-
native learning model for coordinate conjunctions. In
EMNLP-CoNLL, pages 610–619.

Yue Zhang and Stephen Clark. 2011. Syntactic process-
ing using the generalized perceptron and beam search.
Computational linguistics, 37(1):105–151.

32

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 33–43,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Using Left-corner Parsing to Encode Universal Structural Constraints
in Grammar Induction

Hiroshi Noji
Graduate School of Information Science
Nara Institute of Science and Technology

noji@is.naist.jp

Yusuke Miyao
National Institute of Informatics

yusuke@nii.ac.jp

Mark Johnson
Department of Computing

Macquarie University
mark.johnson@mq.edu.au

Abstract

Center-embedding is difficult to process and is
known as a rare syntactic construction across
languages. In this paper we describe a method
to incorporate this assumption into the gram-
mar induction tasks by restricting the search
space of a model to trees with limited center-
embedding. The key idea is the tabulation
of left-corner parsing, which captures the de-
gree of center-embedding of a parse via its
stack depth. We apply the technique to learn-
ing of famous generative model, the depen-
dency model with valence (Klein and Man-
ning, 2004). Cross-linguistic experiments on
Universal Dependencies show that often our
method boosts the performance from the base-
line, and competes with the current state-of-
the-art model in a number of languages.

1 Introduction

Human languages in the world are divergent, but
they also exhibit many striking similarities (Green-
berg, 1963; Hawkins, 2014). At the level of syn-
tax, one attractive hypothesis for such regularities is
that any grammars of languages have evolved un-
der the pressures, or biases, to avoid structures that
are difficult to process. For example it is known that
many languages have a preference for shorter depen-
dencies (Gildea and Temperley, 2010; Futrell et al.,
2015), which originates from the difficulty in pro-
cessing longer dependencies (Gibson, 2000).

Such syntactic regularities can also be useful in
applications, in particular in unsupervised (Klein
and Manning, 2004; Mareček and Žabokrtský,

2012; Bisk and Hockenmaier, 2013) or weakly-
supervised (Garrette et al., 2015) grammar induc-
tion tasks, where the models try to recover the syn-
tactic structure of language without access to the
syntactically annotated data, e.g., from raw or part-
of-speech tagged text only. In these settings, find-
ing better syntactic regularities universal across lan-
guages is essential, as they work as a small cue to
the correct linguistic structures. A preference ex-
ploited in many previous works is favoring shorter
dependencies, which has been encoded in various
ways, e.g., initialization of EM (Klein and Man-
ning, 2004), or model parameters (Smith and Eis-
ner, 2006), and this has been the key to success of
learning (Gimpel and Smith, 2012).

In this paper, we explore the utility for another
universal syntactic bias that has not yet been ex-
ploited in grammar induction: a bias against center-
embedding. Center-embedding is a syntactic con-
struction on which a clause is embedded into another
one. An example is “The reporter [who the senator
[who Mary met] attacked] ignored the president.”,
where “who Mary met” is embedded in a larger
relative clause. These constructions are known to
cause memory overflow (Miller and Chomsky, 1963;
Gibson, 2000), and also are rarely observed cross-
linguistically (Karlsson, 2007; Noji and Miyao,
2014). Our learning method exploits this universal
property of language. Intuitively during learning our
models explore the restricted search space, which
excludes linguistically implausible trees, i.e., those
with deeper levels of center-embedding.

We describe how these constraints can be imposed
in EM with the inside-outside algorithm. The central

33

SHIFT σd−1 a7−→ σd−1|Ad A→ a ∈ P
SCAN σd−1|B/Ad a7−→ σd−1|Bd A→ a ∈ P
PRED σd−1|Ad ε7−→ σd−1|B/Cd B → A C ∈ P
COMP σd−1|D/Bd|Ad+1 ε7−→ σd−1|D/Cd B → A C ∈ P

Figure 1: A set of transitions in left-corner parsing.
The rules on the right side are the side conditions, in
which P is the set of rules of a given CFG.

idea is to tabulate left-corner parsing, on which its
stack depth captures the degree of center-embedding
of a partial parse. Each chart item keeps the cur-
rent stack depth and we discard all items where the
depth exceeds some threshold. The technique is gen-
eral and can be applicable to any model on PCFG;
in this paper, specifically, we describe how to ap-
ply the idea on the dependency model with valence
(DMV) (Klein and Manning, 2004), a famous gen-
erative model for dependency grammar induction.

We focus our evaluation on grammar induction
from part-of-speech tagged text, comparing the ef-
fect of several biases including the one against
longer dependencies. Our main empirical finding is
that though two biases, avoiding center-embedding
and favoring shorter dependencies, are conceptually
similar (both favor simpler grammars), often they
capture different aspects of syntax, leading to dif-
ferent grammars. In particular our bias cooperates
well with additional small syntactic cue such as the
one that the sentence root tends to be a verb or
a noun, with which our models compete with the
strong baseline relying on a larger number of hand
crafted rules on POS tags (Naseem et al., 2010).

Our contributions are: the idea to utilize left-
corner parsing for a tool to constrain the models of
syntax (Section 3), the formulation of this idea for
DMV (Section 4), and cross-linguistic experiments
across 25 languages to evaluate the universality of
the proposed approach (Sections 5 and 6).

2 Left-corner parsing

We first describe (arc-eager) left-corner (LC) pars-
ing as a push-down automaton (PDA), and then re-
formulate it as a grammar transform. In previous
work this algorithm has been called right-corner
parsing (e.g., Schuler et al. (2010)); we avoid this
term and instead treat it as a variant of LC parsing
following more recent studies, e.g., van Schijndel

D

B
i j

A

j + 1 k

COMP
===⇒

D

B
i j

CA

j + 1 k

Figure 2: COMP combines two subtrees on the top
of the stack. i, j, k are indices of spans.

and Schuler (2013). The central motivation for this
technique is to detect center-embedding in a parse
efficiently. We describe this mechanism after pro-
viding the algorithm itself. We then give historical
notes on LC parsing at the end of this section.

PDA Let us assume a CFG is given, and it is in
CNF. We formulate LC parsing as a set of transi-
tions between configurations, each of which is a pair
of the stack and the input position (next input sym-
bol). In Figure 1 a transition σ1

a7−→ σ2 means that
the stack is changed from σ1 to σ2 by reading the
next input symbol a. We use a vertical bar to sig-
nify the append operation, e.g., σ = σ′|σ1 denotes
σ1 is the topmost symbol of σ. Each stack symbol is
either a nonterminal, or a pair of nonterminals, e.g.,
A/B, which represents a subtree rooted at A and is
awaiting symbol B. We also decorate each symbol
with depth; for example, σd−1|Ad means the current
stack depth is d, and the depth of the topmost sym-
bol in σ is d− 1. The bottom symbol on the stack is
always the empty symbol ε0 with depth 0. Parsing
begins with ε0. Given the start symbol of CFG S, it
finishes when S1 is found on the stack.

The key transition here is COMP (Figure 2).1 Ba-
sically the algorithm builds a tree by expanding the
hypothesis from left to right. In COMP, a subtree
rooted at A is combined with the second top subtree
(D/B) on the stack. This can be done by first pre-
dicting that A’s parent symbol is B and its sibling is
C; then it unifies two different Bs to combine them.
PRED is simpler, and it just predicts the parent and
sibling symbols of A. The input symbols are read
by SHIFT and SCAN: SHIFT addes a new element
on the stack while SCAN fills in the predicted sib-
ling symbol. For an example, Figure 3 shows how

1van Schijndel and Schuler (2013) employ different transi-
tion names, e.g., L- and L+; we avoid them as they are less
informative.

34

Step Transition Stack Next input symbol
0 ε e
1 SHIFT E1 f
2 PRED D/B1 f
3 SHIFT D/B1 F 2 g
4 PRED D/B1 A/G2 g
5 SCAN D/B1 A2 c
6 COMP D/C1 c
7 SCAN D1

Figure 3: Sequence of transitions in LC PDA to
parse the tree in Figure 4(a).

D

B

C

c

A

G

g

F

f

E

e

(a)

D1

cD/C1

A2

gA/G2

F 2

f

D/B1

E1

e

(b)

Figure 4: An example of LC transform: (a) the orig-
inal parse; and (b) the transformed parse.

this PDA works for parsing a tree in Figure 4(a).

Grammar transform The algorithm above can be
reformulated as a grammar transform, which be-
comes the starting point for our application to gram-
mar induction. This can be done by extracting the
operated top symbols on the stack in each transition:

SHIFT: Ad → a (A→ a ∈ P);
SCAN: Bd → B/Ad a (A→ a ∈ P);
PRED: B/Cd → Ad (B → A C ∈ P);
COMP: D/Cd → D/Bd Ad+1 (B → A C ∈ P).

where a rule on the right side is a condition given the
set of rules P in the CFG.

Figure 4 shows an example of this transform. The
essential point is that each CFG rule in the trans-
formed parse (b) corresponds to a transition in the
original algorithm (Figure 1). For example a rule
D/C1 → D/B1 A2 in the parse indicates that the
stack configuration D/B1|A2 occurs during parsing
(just corresponding to the step 5 in Figure 3) and
COMP is then applied. This can also be seen as an
instantiation of Figure 2.

Stack depth and center-embedding We use the
term center-embedding to distinguish just the tree
structures, i.e., ignoring symbols. That is, the tree

in Figure 4(a) is the minimal, one degree of center-
embedded tree, where the constituent rooted at A
is embedded into a larger constituent rooted at D.
Multiple, or degree ≥ 2 of center-embedding oc-
curs if this constituent is also embedded into another
larger constituent.

Note that it is only COMP that consumes the top
two symbols on the stack. This means that a larger
stack depth occurs only when COMP is needed. Fur-
thermore, from Figure 2 COMP always induces a
subtree involving new center-embedding, and this is
the underlying mechanism that the stack depth of the
algorithm captures the degree of center-embedding.

One thing to note is that to precisely associate the
stack depth and the degree of center-embedding the
depth calculation in COMP should be revised as:

COMP: D/Cd → D/Bd Ad
′

(B → A C ∈ P)

d′ =
{

d (SPANLEN(A) = 1)
d+ 1 (otherwise),

(1)

where SPANLEN(A) calculates the span length of
the constituent rooted atA, which is 2 in Figure 4(b).
This modification is necessary since COMP for a sin-
gle token occurs for building purely right-branching
structures.2 Formally, then, given a tree with de-
gree λ of center-embedding the largest stack depth
d∗ during parsing this tree is: d∗ = λ+ 1.

Schuler et al. (2010) found that on English tree-
banks larger stack depth such as 3 or 4 rarely oc-
curs while Noji and Miyao (2014) validated the lan-
guage universality of this observation through cross-
linguistic experiments. These suggest we may uti-
lize LC parsing as a tool for exploiting universal syn-
tactic biases as we discuss in Section 3.

Historical notes Rosenkrantz and Lewis (1970)
first presented the idea of LC parsing as a gram-
mar transform. This is arc-standard, and has no
relevance to center-embedding; Resnik (1992) and
Johnson (1998) formulated an arc-eager variant by
extending this algorithm. The presented algorithm
here is the same as Schuler et al. (2010), and is
slightly different from Johnson (1998). The dif-
ference is in the start and end conditions: while

2Schuler et al. (2010) skip this subtlety by only concerning
stack depth after PRED or COMP. We do not take this approach
since ours allows a flexible extension described in Section 3.

35

our parser begins with an empty symbol, Johnson’s
parser begins with the predicted start symbol, and
finishes with an empty symbol.

3 Learning with structural constraints

Now we discuss how to utilize LC parsing for gram-
mar induction in general. An important observation
in the above transform is that if we perform chart
parsing, e.g., CKY, we can detect center-embedded
trees efficiently in a chart. For example, by set-
ting a threshold of stack depth δ, we can eliminate
any parses involving center-embedding up to degree
δ−1. Note that in a probabilistic setting, each weight
of a transformed rule comes from the corresponding
underlying CFG rule (i.e., the condition).

For learning, our goal is to estimate θ of a gen-
erative model p(z, x|θ) for parse z and its yields
(words) x. We take an EM-based simplest approach,
and multiply the original model by a constraint fac-
tor f(z, x) ∈ [0, 1] to obtain a new model:

p′(z, x|θ) ∝ p(z, x|θ)f(z, x), (2)

and then optimize θ based on p′(z, x|θ). This is
essentially the same approach as Smith and Eisner
(2006). As shown in Smith (2006), when training
with EM we can increase the likelihood of p′(z, x|θ)
by just using the expected counts from an E-step on
the unnormalized distribution p(z, x|θ)f(z, x).

We investigate the following constraints in our ex-
periments:

f(z, x) =

{
0 (d∗z > δ)
1 (otherwise),

(3)

where d∗z is the largest stack depth for z in LC pars-
ing and δ is the threshold. This is a hard constraint,
and can easily be achieved by removing all chart
items (of LC transformed grammar) on which the
depth of the symbol exceeds δ. For example, when
δ = 1 the model only explores trees without center-
embedding, i.e., right- or left-linear trees.

Length-based constraints By δ = 2, the model is
allowed to explore trees with one degree of center-
embedding. Besides these simple ones, we also in-
vestigate relaxing δ = 1 that results in an intermedi-
ate between δ = 1 and 2. Specifically, we relax the

depth calculation in COMP (Eq. 1) as follows:

d′ =
{

d (SPANLEN(A) ≤ ξ)
d+ 1 (otherwise),

(4)

where ξ ≥ 1 controls the minimal length of a span
regarded as embedded into another one. For exam-
ple, when ξ = 2, the parse in Figure 4(a) is not re-
garded as center-embedded because the span length
of the constituent reduced by COMP (i.e., A) is 2.

This modification is motivated with our observa-
tion that in many cases center-embedded construc-
tions arise due to embedding of small chunks, rather
than clauses. An example is “... prepared [the cat
’s] dinner”, where “the cat ’s” is center-embedded
in our definition. For this sentence, by relaxing the
condition with, e.g., ξ = 3, we can suppress the in-
crease of stack depth. We treat ξ as a hyperparameter
in our experiments, and in practice, we find that this
relaxed constraint leads to higher performance.

4 Dependency grammar induction

In this section we discuss how we can formulate
the dependency model with valence (DMV) (Klein
and Manning, 2004), a famous generative model
for dependency grammar induction, on LC parsing.
Though as we will see, applying LC parsing for a de-
pendency model is a little involved compared to sim-
ple PCFG models, dependency models have been
the central for the grammar induction tasks, and we
consider it is most appropriate for assessing effec-
tiveness of our approach.

DMV is a head-outward generative model of a
dependency tree, controlled by two types of multi-
nomial distributions. For stop ∈ {STOP,¬STOP},
θS(stop|h, dir, adj) is a Bernoulli random variable to
decide whether or not to attach further dependents
in dir ∈ {←,→} direction. The adjacency adj ∈
{TRUE, FALSE} is the key factor to distinguish the
distributions of the first and the other dependents,
which is TRUE if h has no dependent yet in dir di-
rection. Another type of parameter is θA(a|h, dir), a
probability that h takes a as a dependent in dir di-
rection.

For this particular model, we take the following
approach to formulate it in LC parsing: 1) convert-
ing a dependency tree into a binary CFG parse; 2)
applying LC transform on it; and 3) encoding DMV

36

X[ran]

X[fast]

fast

X[ran]

X[ran]

ran

X[dogs]

dogs

(a)
X[ran]1

fastX[ran/fast]1

X[ran]1

ranX[ran/ran]1

X[dogs]1

dogs

(b)

X[ran]

X[ran]

X[fast]

fast

X[ran]

ran

X[dogs]

dogs

(c)
X[ran]1

fastX[ran/fast]1

X[ran]1

ran

X[ran/ran]1

X[dogs]1

dogs

(d)

Figure 5: Two CFG parses for “dogs ran fast” and
the results of LC transform ((a) → (b); (c) → (d)).
X[a/b] is an abbreviation for X[a]/X[b].

parameters into each CFG rule of the transformed
grammar.3 Below we discuss a problem for (1) and
(2), and then consider parameterization.4

Spurious ambiguity The central issue for apply-
ing LC parsing is the spurious ambiguity in depen-
dency grammars. That is, there are more than one
(binary) CFG parses corresponding to a given de-
pendency tree. This is problematic mainly for two
reasons: 1) we cannot specify the degree of center-
embedding in a dependency tree uniquely; and
2) this one-to-many mapping prevents the inside-
outside algorithm to work correctly (Eisner, 2000).

As a concrete example, Figures 5(a) and 5(c)
show two CFG parses corresponding to the depen-
dency tree dogsxranyfast. We approach this prob-
lem by first providing a grammar transform, which
generates all valid LC transformed parses (e.g., Fig-
ures 5(b) and 5(d)) and then restricting the grammar

3Another approach might be just applying the technique in
Section 3 to some PCFG that encodes DMV, e.g., Headden III
et al. (2009). The problem with this approach, in particular
with split-head grammars (Johnson, 2007), is that the calculated
stack depth no longer reflects the degree of center-embedding in
the original parse correctly. As we discuss later, instead, we can
speed up inference by applying head-splitting after obtaining
the LC transformed grammar.

4Technical details including the chart algorithm for split-
head grammars can be found in the Ph.D. thesis of the first au-
thor (Noji, 2016).

X[wh]

i h j

X[wh/wp]

i h j p

X[wp/wp]

i j p

Figure 6: The senses of the symbols as a chart item.
X[wh/wp] predicts the next dependent outside of the
span while X[wp/wp] predicts the head.

a b c d e ROOT

b

d

d

ed

c

b

ba

Figure 7: Implicit binarization of the restricted
grammar. For each token, if its parent is in the right
side (e.g., b), it attaches all left children first. The be-
havior is opposed when the parent is in its left (e.g.,
d). A dummy root token is placed at the end.

for generating particular parses only.

Naive method Let us begin with the grammar be-
low, which suffers from the spurious ambiguity:

SHIFT: X[wh]
d → wh

SCAN: X[wh]
d → X[wh/wp]

d wp

L-PRED: X[wp/wp]
d → X[wh]

d (wx
h wp);

R-PRED: X[wh/wp]
d → X[wh]

d (wy
h wp);

L-COMP: X[wh/wp]
d → X[wh/wp]

dX[wa]
d′

(wx
a wp);

R-COMP: X[wh/wa]
d → X[wh/wp]

dX[wp]
d′

(wy
p wa).

Here X[a/b] denotes X[a]/X[b] while wh denotes
the h-th word in the sentence w. We can interpret
these rules as the operations on chart items (Figure
6). Note that only PRED and COMP create new de-
pendency arcs and we divide them depending on the
direction of the created arcs (L and R). d′ is calcu-
lated by Eq. 4. Note also that for L-COMP and R-
COMP h might equal p; X[ran/fast]1 → X[ran/ran]1

X[ran]2 in Figure 5(d) is such a case for R-COMP.

Removing spurious ambiguity We can show that
by restricting conditions for some rules, the spurious
ambiguity can be eliminated (the proof is omitted).

1. Prohibit R-COMP when h = p;

2. Assume the span of X[wp]
d′ is (i, j) (i ≤ p ≤

j). Then allow R-COMP only when i = p.

Intuitively, these conditions constraint the order that
each word collects its left and right children. For

37

example, by the condition 1, this grammar is pro-
hibited to generate the parse of Figure 5(d).

Binarization Note that two CFG parses in Fig-
ures 5(a) and 5(c) differ in how we binarize a given
dependency tree. This observation indicates that
our restricted grammar implicitly binarizes a depen-
dency tree, and the incurred stack depth (or the de-
gree of center-embedding) is determined based on
the structure of the binarized tree. Specifically, we
can show that the presented grammar performs op-
timal binarization; i.e., it minimizes the incurred
stack depth. Figure 7 shows an example, which is
not regarded as center-embedded in our procedure.
In summary, our method detects center-embedding
for a dependency tree, but the degree is determined
based on the structure of the binarized CFG parse.

Parameterization We can encode DMV parame-
ters into each rule. A new arc is introduced by one
of {L/R}-{PRED/COMP}, and the stop probabilities
can be assigned appropriately in each rule by cal-
culating the valence from indices in the rule. For
example, after L-PRED, wh does not take any right
dependents so θS(stop|wh,→, h = j), where j is the
right span index of X[wh], is multiplied.

Improvement Though we omit the details, we can
improve the time complexity of the above grammar
from O(n6) to O(n4) applying the technique simi-
lar to Eisner and Satta (1999) without changing the
binarization mechanism mentioned above. We im-
plemented this improved grammar.

5 Experimental setup

A sound evaluation metric in grammar induction is
known as an open problem (Schwartz et al., 2011;
Bisk and Hockenmaier, 2013), which essentially
arises from the ambiguity in the notion of head. For
example, Universal dependencies (UD) is the recent
standard in annotation and prefers content words to
be heads, but as shown below this is very different
from the conventional style, e.g., the one in CoNLL
shared tasks (Johansson and Nugues, 2007):

Ivan is the best dancer

nsbj
cop

det
amod

sbj
nmod

nmod

prd

UD

CONLL

The problem is that both trees are correct under
some linguistic theories but the standard metric, un-
labeled attachment score (UAS), only takes into ac-
count the annotation of the current gold data.

Our goal in this experiment is to assess the ef-
fect of our structural constraints. To this end, we try
to eliminate such arbitrariness in our evaluation as
much as possible in the following way:

• We experiment on UD, in which every treebank
follows the consistent UD style annotation.

• We restrict the model to explore only trees that
follow the UD style annotation during learn-
ing5, by prohibiting every function word6 in a
sentence to have any dependents.

• We calculate UAS in a standard way.

We use UD of version 1.2. Some treebanks are very
small, so we select the top 25 largest languages.
The input to the model is coarse universal POS tags.
Punctuations are stripped off. All models are trained
on sentences of length ≤ 15 and tested on ≤ 40.

Initialization Much previous work of dependency
grammar induction relies on the technique called
harmonic initialization, which also biases the model
towards shorter dependencies (Klein and Manning,
2004). Since our focus is to see the effect of struc-
tural constraints, we do not try this and initialize
models uniformly. However, we add a baseline
model with this initialization in our comparison to
see the relative strength of our approach.

Models For the baseline, we employ a variant of
DMV with features (Berg-Kirkpatrick et al., 2010),
which is simple yet known to boost the performance
well. The feature templates are almost the same;
the only change is that we add backoff features for
STOP probabilities that ignore both direction and ad-
jacency, which we found slightly improves the per-
formance in a preliminary experiment. We set the
regularization parameter to 10 though in practice we
found the model is less sensitive to this value. We
run 100 iterations of EM for each setting. The dif-

5We remove the restriction at test time though we found it
does not affect the performance.

6A word with one of the following POS tags: ADP, AUX,
CONJ, DET, PART, and SCONJ.

38

ference of each model is then the type of constraints
imposed during the E-step7, or initialization:

• Baseline (FUNC): Function word constraints;

• HARM: FUNC with harmonic initialization;

• DEP: FUNC + stack depth constraints (Eq. 3);

• LEN: FUNC + soft dependency length bias,
which we describe below.

For DEP, we use δ = 1.ξ to denote the relaxed max-
imum depth allowing span length up to ξ (Eq. 4).

LEN is the previously explored structural bias
(Smith and Eisner, 2006), which penalizes longer
dependencies by modifying each attachment score:

θ′A(a|h, dir) = θA(a|h, dir) · e−γ·(|h−a|−1), (5)

where γ (≥ 0) determines the strength of the bias
and |h− a| is (string) distance between h and a.

Note that DEP and LEN are closely related; gen-
erally center-embedded constructions are accompa-
nied by longer dependencies so LEN also penalizes
center-embedding implicitly. However, the opposite
is not true and there exist many constructions with
longer dependencies without center-embedding. By
comparing these two settings, we discuss the worth
of focusing on constraining center-embedding rela-
tive to the simpler bias on dependency length.

Finally we also add the system of Naseem et al.
(2010) in our comparison. This system encodes
many manually crafted rules between POS tags with
the posterior regularization technique. For example,
the model is encouraged to find NOUN → ADJ re-
lationship. Our systems cannot access to these core
grammatical rules so it is our strongest baseline.8

Constraining root word We also see the effects
of the constraints when a small amount of grammat-
ical rule is provided. In particular, we restrict the
candidate root words of the sentence to a noun or a
verb; similar rules have been encoded in past work
such as Gimpel and Smith (2012) and the CCG in-
duction system of Bisk and Hockenmaier (2013).

7We again remove the restrictions at decoding as we ob-
served that the effects are very small.

8We encode the customized rules that follow UD scheme.
The following 13 rules are used: ROOT → VERB, ROOT →
NOUN, VERB→ NOUN, VERB→ ADV, VERB→ VERB, VERB

→ AUX, NOUN→ ADJ, NOUN→ DET, NOUN→ NUM, NOUN

→ NOUN, NOUN→ CONJ, NOUN→ ADP, ADJ→ ADV.

0
0

1
0.1

1.2
0.2

1.3
0.3

1.4
0.4

2
0.5

Parameters (upper=δ; bottom=γ)

20

30

40

50

60

U
A

S
(%

)

Depth bound δ
Length bias γ

Figure 8: UAS for various settings on (UD) WSJ.

Hyperparameters Selecting hyperparameters in
multilingual grammar induction is difficult; some
works tune values for each language based on the
development set (Smith and Eisner, 2006; Bisk et
al., 2015), but this violates the assumption of unsu-
pervised learning. We instead follow many works
(Mareček and Žabokrtský, 2012; Naseem et al.,
2010) and select the values with the English data.
For this, we use the WSJ data, which we obtain in
UD style from the Stanford CoreNLP (ver. 3.6.0).9

6 Experiments

WSJ Figure 8 shows the result on WSJ. Both DEP

and LEN have one parameter: the maximum depth
δ, and γ (Eq. 5), and the figure shows the sensitivity
on them. Note that x-axis = 0 represents FUNC.

For LEN, we can see the optimal parameter γ is
0.1, and degrades the performance when increasing
the value; i.e., the small bias is the best. For DEP, we
find the best setting is 1.3, i.e., allowing embedded
constituents of length 3 or less (ξ = 3 in Eq. 4). We
can see that allowing depth 2 degrades the perfor-
mance, indicating that depth 2 allows too many trees
and does not reduce the search space effectively.10

Multilingual results Table 1 shows the main mul-
tilingual results. When we see “No root constraint”
block, we notice that our DEP boosts the perfor-
mance in many languages (e.g., Bulgarian, French,

9Note that the English data in UD is Web Treebank (Silveira
et al., 2014), not the standard WSJ Penn treebank.

10We see the same effects when training with longer sen-
tences (e.g., length ≤ 20). This is probably because a looser
constraint does nothing for shorter sentences. In other words,
the model can restrict the search space only for longer sen-
tences, which are relatively small in the data.

39

No root constraint + root constraint
FUNC DEP LEN HARM FUNC DEP LEN HARM N10

A-Greek 35.9 31.6 34.7 37.8 37.9 45.0 34.4 37.7 40.1
Arabic 48.6 38.7 49.8 42.8 45.9 44.3 49.6 31.4 37.8
Basque 41.7 46.1 45.0 24.9 42.5 44.8 44.8 25.3 50.1
Bulgarian 45.6 69.0 64.8 66.4 69.1 71.1 61.9 68.0 58.6
Croatian 40.8 32.2 50.7 47.8 40.7 42.2 47.6 47.7 41.0
Czech 56.0 62.0 52.7 53.7 47.2 62.2 56.0 52.2 52.0
Danish 42.5 42.7 42.3 47.2 42.6 42.8 42.3 46.6 42.8
Dutch 25.7 26.6 28.0 26.2 25.7 27.5 28.7 26.4 40.6
English 37.2 39.8 52.1 37.5 37.5 40.0 38.4 38.2 51.4
Estonian 68.5 67.4 68.0 68.6 68.0 67.8 65.1 68.5 67.3
Finnish 26.2 24.5 27.9 25.7 25.7 27.3 27.9 20.5 44.6
French 36.7 48.0 36.8 36.5 36.5 54.6 36.3 36.7 53.3
German 44.6 48.0 46.3 43.6 43.9 50.4 47.9 43.9 53.5
Hebrew 58.4 54.4 58.5 59.1 55.4 59.7 59.4 59.0 56.9
Hindi 54.7 52.6 16.0 55.8 55.8 52.6 48.8 55.7 55.8
Indonesian 36.0 52.9 45.6 40.1 30.4 53.1 40.5 40.0 51.1
Italian 63.8 67.8 68.4 65.0 63.1 65.7 68.8 62.9 56.3
Japanese 46.8 44.5 73.8 47.9 47.6 46.7 72.3 47.9 51.3
Latin-ITT 42.3 43.8 42.1 41.0 42.4 43.7 38.4 41.6 38.4
Norwegian 44.7 45.3 45.1 51.9 44.8 45.4 45.2 45.7 55.4
Persian 44.9 39.0 37.3 36.6 44.1 46.6 37.2 43.6 55.2
Portuguese 48.4 61.1 61.6 55.9 49.2 61.1 61.4 44.6 47.1
Slovenian 65.6 61.0 50.1 62.7 65.1 60.7 49.4 63.6 53.1
Spanish 52.2 54.6 62.5 49.1 44.4 53.8 60.0 48.4 55.3
Swedish 42.7 48.1 51.4 48.1 43.1 42.8 42.7 47.6 46.7
Avg 46.0 48.1 48.5 46.9 45.9 50.1 48.2 45.8 50.2

Table 1: Attachment scores on UD with or without
root POS constraints. A-Greek = Ancient Greek.
N10 = Naseem et al. (2010) with modified rules.

Indonesian, and Portuguese), though LEN performs
equally well and in average, LEN performs slightly
better. Harmonic initialization does not work well.

We then move on to the settings with the con-
straint on root tags. Interestingly, in these settings
DEP performs the best. The model competes with
Naseem et al.’s system in average, and outperforms
it in many languages, e.g., Bulgarian, Czech, etc.
LEN, on the other hand, decreases the average score.

Analysis Why does DEP perform well in particu-
lar with the restriction on root candidates? To shed
light on this, we inspected the output parses of En-
glish with no root constraints, and found that the
types of errors are very different across constraints.

Figure 9 shows a typical example of the differ-
ence. One difference between trees is in the con-
structions of phrase “On ... pictures”. LEN pre-
dicts that “On the next two” comprises a constituent,
which modifies “pictures” while DEP predicts that
“the ... pictures” comprises a constituent, which is
correct, although the head of the determiner is in-
correctly predicted. On the other hand, LEN works
well to find more primitive dependency arcs between
POS tags, such as arcs from verbs to nouns, which
are often incorrectly recognized by DEP.

These observations may partially answer the

On the next two pictures he took ...
ADP DET ADJ NUM NOUN PRON VERB ...

DEP

LEN

Figure 9: A comparison of output parses by DEP

and LEN (with no root constraints). Dashed arcs are
misclassified ones.

Prec. Recall F1
FUNC (English) 11.6 18.4 14.1
DEP (English) 22.4 37.1 27.9
LEN (English) 21.6 31.0 25.5
FUNC (Avg.) 22.5 30.0 25.6
DEP (Avg.) 27.8 34.5 30.5
LEN (Avg.) 24.0 33.7 27.9
FUNC + ROOT (Avg.) 22.0 29.4 25.0
DEP + ROOT (Avg.) 28.1 35.2 31.0
LEN + ROOT (Avg.) 21.8 31.2 25.6

Table 2: Unlabeled bracket scores in various set-
tings. Avg. is the average score across languages.

question above. The main source of improvements
by DEP is detections of constituents, but this con-
straint itself does not help to resolve some core
dependency relationships, e.g., arcs from verbs to
nouns. The constraint on root POS tags is thus or-
thogonal to this approach, and it may help to find
such core dependencies. On the other hand, the de-
pendency length bias is the most effective to find
basic dependency relationships between POS tags
while the resulting tree may involve implausible
constituents. Thus the effect of the length bias seems
somewhat overlapped with the root POS constraints,
which may be the reason why they do not well col-
laborate with each other.

Bracket scores We verify the above intuition
quantitatively. To this end, we convert both the pre-
dicted and gold dependency trees into the unlabeled
bracket structures, and then compare them on the
standard PARSEVAL metrics. This bracket tree is
not binarized; for example, we extract (X a b (X
c d)) from the tree axbycyd. Table 2 shows the
results, and we can see that DEP always performs
the best, showing that DEP leads to the models that
find better constituent structures. Of particular note

40

UAS F1
DEP 48.1 30.5
LEN 48.5 27.9
DEP+LEN 49.2 27.0

Table 3: Average scores of DEP, LEN, and the com-
bination.

is in Enlgish the bracket and dependency scores are
only loosely correlated. In Table 1, UASs for FUNC,
DEP, and LEN are 37.2, 39.8, and 52.1, respectively,
though F1 of DEP is substantially higher. This sug-
gests that DEP often finds more linguistically plausi-
ble structures even when the improvement in UAS is
modest. We conjecture that this performance change
between constraints essentially arise due to the na-
ture of DEP, which eliminates center-embedding,
i.e., implausible constituent structures, rather than
dependency arcs.

Combining DEP and LEN These results suggest
DEP and LEN capture different aspects of syntax. To
furuther understand this difference, we now evaluate
the models with both constraints. Table 3 shows the
average scores across languages (without root con-
straints). Interestingly, the combination (DEP+LEN)
performs the best in UAS while the worst in bracket
F1. This indicates the ability of DEP to find good
constituent boundaries is diminished by combining
LEN. We feel the results are expected observing that
center-embedded constructions are a special case of
longer dependency constructions. In other words,
LEN is a stronger constraint than DEP in that the
structures penalized by DEP are only a subset of
structures penalized by LEN. Thus when LEN and
DEP are combined LEN overwhelms, and the ad-
vantage of DEP is weakened. This also suggests not
penalizing all longer dependencies is important for
learning accurate grammars. The improvement of
UAS suggests there are also collaborative effects in
some aspect.

7 Conclusion

We have shown that a syntactic constraint that elim-
inates center-embedding is helpful in dependency
grammar induction. In particular, we found that
our method facilitates to find linguistically correct
constituent structures, and given an additional cue
on dependency, the models compete with the sys-

tem relying on a significant amount of prior lin-
guistic knowledge. Future work includes applying
our DEP constraint into other PCFG-based gram-
mar induction tasks beyond dependency grammars.
In particular, it would be fruitful to apply our idea
into constituent structure induction for which, to
our knowledge, there has been no successful PCFG-
based learning algorithm. As discussed in de Mar-
cken (1999) one reason for the failures of previous
work is the lack of necessary syntactic biases, and
our approach could be useful to alleviate this issue.
Finally, though we have focused on unsupervised
learning for simplicity, we believe our syntactic bias
also leads to better learning in more practical scenar-
ios, e.g., weakly supervised learning (Garrette et al.,
2015).

Acknowledgements

We would like to thank John Pate for the help in
preliminary work, as well as Taylor Berg-Kirkpatric
for sharing his code. We are also grateful to Edson
Miyamoto and Makoto Kanazawa for the valuable
feedbacks. The first author was supported by JSPS
KAKENHI Gran-in-Aid for JSPS Fellows (Grant
Numbers 15J07986), and MOU Grant in National
Institute of Informatics.

References
Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté,

John DeNero, and Dan Klein. 2010. Painless unsu-
pervised learning with features. In Human Language
Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 582–590, Los Angeles,
California, June. Association for Computational Lin-
guistics.

Yonatan Bisk and Julia Hockenmaier. 2013. An hdp
model for inducing combinatory categorial grammars.
Transactions of the Association for Computational
Linguistics, 1:75–88.

Yonatan Bisk, Christos Christodoulopoulos, and Julia
Hockenmaier. 2015. Labeled grammar induction with
minimal supervision. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short Pa-
pers), pages 870–876, Beijing,China, July.

C. de Marcken. 1999. On the unsupervised induction
of phrase-structure grammars. In Susan Armstrong,

41

Kenneth Church, Pierre Isabelle, Sandra Manzi, Eve-
lyne Tzoukermann, and David Yarowsky, editors, Nat-
ural Language Processing Using Very Large Corpora,
volume 11 of Text, Speech and Language Technology,
pages 191–208. Springer Netherlands.

Jason Eisner and Giorgio Satta. 1999. Efficient pars-
ing for bilexical context-free grammars and head au-
tomaton grammars. In Proceedings of the 37th An-
nual Meeting of the Association for Computational
Linguistics on Computational Linguistics, ACL ’99,
pages 457–464, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Jason Eisner. 2000. Bilexical Grammars and Their
Cubic-Time Parsing Algorithms. In Harry Bunt and
Anton Nijholt, editors, Advances in Probabilistic and
Other Parsing Technologies, pages 29–62. Kluwer
Academic Publishers, October.

Richard Futrell, Kyle Mahowald, and Edward Gibson.
2015. Large-scale evidence of dependency length
minimization in 37 languages. Proceedings of the Na-
tional Academy of Sciences, 112(33):10336–10341.

Dan Garrette, Chris Dyer, Jason Baldridge, and Noah
Smith. 2015. Weakly-supervised grammar-informed
bayesian ccg parser learning.

E. Gibson. 2000. The dependency locality theory: A
distance-based theory of linguistic complexity. In Im-
age, language, brain: Papers from the first mind artic-
ulation project symposium, pages 95–126.

Daniel Gildea and David Temperley. 2010. Do gram-
mars minimize dependency length? Cognitive Sci-
ence, 34(2):286–310.

Kevin Gimpel and Noah A. Smith. 2012. Concavity
and initialization for unsupervised dependency pars-
ing. In Proceedings of the 2012 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 577–581, Montréal, Canada, June. Asso-
ciation for Computational Linguistics.

Joseph H. Greenberg. 1963. Some universals of gram-
mar with particular reference to the order of meaning-
ful elements. In Joseph H. Greenberg, editor, Univer-
sals of Human Language, pages 73–113. MIT Press,
Cambridge, Mass.

John A Hawkins. 2014. Cross-linguistic variatoin and
efficiency. Oxford University Press, jan.

William P. Headden III, Mark Johnson, and David Mc-
Closky. 2009. Improving unsupervised dependency
parsing with richer contexts and smoothing. In Pro-
ceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
101–109, Boulder, Colorado, June. Association for
Computational Linguistics.

Richard Johansson and Pierre Nugues. 2007. Extended
constituent-to-dependency conversion for English. In
Proceedings of NODALIDA 2007, Tartu, Estonia, May.

Mark Johnson. 1998. Finite-state approximation of
constraint-based grammars using left-corner grammar
transforms. In Christian Boitet and Pete Whitelock,
editors, COLING-ACL, pages 619–623. Morgan Kauf-
mann Publishers / ACL.

Mark Johnson. 2007. Transforming projective bilexical
dependency grammars into efficiently-parsable cfgs
with unfold-fold. In Proceedings of the 45th Annual
Meeting of the Association of Computational Linguis-
tics, pages 168–175, Prague, Czech Republic, June.
Association for Computational Linguistics.

Fred Karlsson. 2007. Constraints on multiple center-
embedding of clauses. Journal of Linguistics,
43(2):365–392.

Dan Klein and Christopher Manning. 2004. Corpus-
based induction of syntactic structure: Models of de-
pendency and constituency. In Proceedings of the
42nd Meeting of the Association for Computational
Linguistics (ACL’04), Main Volume, pages 478–485,
Barcelona, Spain, July.

David Mareček and Zdeněk Žabokrtský. 2012. Ex-
ploiting reducibility in unsupervised dependency pars-
ing. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 297–307, Jeju Island, Korea, July. Association
for Computational Linguistics.

George A. Miller and Noam Chomsky. 1963. Finitary
models of language users. In D. Luce, editor, Hand-
book of Mathematical Psychology, pages 2–419. John
Wiley & Sons.

Tahira Naseem, Harr Chen, Regina Barzilay, and Mark
Johnson. 2010. Using universal linguistic knowl-
edge to guide grammar induction. In Proceedings of
the 2010 Conference on Empirical Methods in Natural
Language Processing, pages 1234–1244, Cambridge,
MA, October. Association for Computational Linguis-
tics.

Hiroshi Noji and Yusuke Miyao. 2014. Left-corner
transitions on dependency parsing. In Proceedings of
COLING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages
2140–2150, Dublin, Ireland, August. Dublin City Uni-
versity and Association for Computational Linguistics.

Hiroshi Noji. 2016. Left-corner Methods for Syntac-
tic Modeling with Universal Structural Constraints.
Ph.D. thesis, Graduate University for Advanced Stud-
ies, Tokyo, Japan, March.

Philip Resnik. 1992. Left-corner parsing and psycholog-
ical plausibility. In COLING, pages 191–197.

42

D.J. Rosenkrantz and P.M. Lewis. 1970. Deterministic
left corner parsing. In Switching and Automata The-
ory, 1970., IEEE Conference Record of 11th Annual
Symposium on, pages 139–152, Oct.

William Schuler, Samir AbdelRahman, Tim Miller, and
Lane Schwartz. 2010. Broad-coverage parsing using
human-like memory constraints. Computational Lin-
guistics, 36(1):1–30.

Roy Schwartz, Omri Abend, Roi Reichart, and Ari Rap-
poport. 2011. Neutralizing linguistically problem-
atic annotations in unsupervised dependency parsing
evaluation. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies, pages 663–672, Port-
land, Oregon, USA, June. Association for Computa-
tional Linguistics.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor, John
Bauer, and Christopher D. Manning. 2014. A gold
standard dependency corpus for English. In Proceed-
ings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC-2014).

Noah A. Smith and Jason Eisner. 2006. Annealing
structural bias in multilingual weighted grammar in-
duction. In Proceedings of the International Confer-
ence on Computational Linguistics and the Associ-
ation for Computational Linguistics (COLING-ACL),
pages 569–576, Sydney, July.

Noah A. Smith. 2006. Novel Estimation Methods for
Unsupervised Discovery of Latent Structure in Natu-
ral Language Text. Ph.D. thesis, Johns Hopkins Uni-
versity, Baltimore, MD, October.

Marten van Schijndel and William Schuler. 2013. An
analysis of frequency- and memory-based processing
costs. In Proceedings of the 2013 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 95–105, Atlanta, Georgia, June. Associa-
tion for Computational Linguistics.

43

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 44–54,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Distinguishing Past, On-going, and Future Events: The EventStatus Corpus

Ruihong Huang
Texas A&M University
huangrh@cse.tamu.edu

Ignacio Cases
Stanford University
cases@stanford.edu

Dan Jurafsky
Stanford University

jurafsky@stanford.edu

Cleo Condoravdi
Stanford University
cleoc@stanford.edu

Ellen Riloff
University of Utah
riloff@cs.utah.edu

Abstract

Determining whether a major societal event
has already happened, is still on-going, or may
occur in the future is crucial for event pre-
diction, timeline generation, and news sum-
marization. We introduce a new task and a
new corpus, EventStatus, which has 4500 En-
glish and Spanish articles about civil unrest
events labeled as PAST, ON-GOING, or FU-
TURE. We show that the temporal status of
these events is difficult to classify because lo-
cal tense and aspect cues are often lacking,
time expressions are insufficient, and the lin-
guistic contexts have rich semantic composi-
tionality. We explore two approaches for event
status classification: (1) a feature-based SVM
classifier augmented with a novel induced lex-
icon of future-oriented verbs, such as “threat-
ened” and “planned”, and (2) a convolutional
neural net. Both types of classifiers improve
event status recognition over a state-of-the-art
TempEval model, and our analysis offers lin-
guistic insights into the semantic composition-
ality challenges for this new task.

1 Introduction

When a major societal event is mentioned in the
news (e.g., civil unrest, terrorism, natural disaster), it
is important to understand whether the event has al-
ready happened (PAST), is currently happening (ON-
GOING), or may happen in the future (FUTURE). We
introduce a new task and corpus for studying the
temporal/aspectual properties of major events. The
EventStatus corpus consists of 4500 English and
Spanish news articles about civil unrest events, such

as protests, demonstrations, marches, and strikes, in
which each event is annotated as PAST, ON-GOING,
or FUTURE (sublabeled as PLANNED, ALERT or
POSSIBLE). This task bridges event extraction re-
search and temporal research in the tradition of
TIMEBANK (Pustejovsky et al., 2003) and TempE-
val (Verhagen et al., 2007; Verhagen et al., 2010;
UzZaman et al., 2013). Previous corpora have be-
gun this association: TIMEBANK, for example, in-
cludes temporal relations linking events with Doc-
ument Creation Times (DCT). But the EventStatus
task and corpus offers several new research direc-
tions.

First, major societal events are often discussed be-
fore they happen, or while they are still happening,
because they have the potential to impact a large
number of people. News outlets frequently report
on impending natural disasters (e.g., hurricanes), an-
ticipated disease outbreaks (e.g., Zika virus), threats
of terrorism, and plans or warnings of potential civil
unrest (e.g., strikes and protests). Traditional event
extraction research has focused primarily on recog-
nizing events that have already happened. Further-
more, the linguistic contexts of on-going and future
events involve complex compositionality, and fea-
tures like explicit time expressions are less useful.
Our results demonstrate that a state-of-the-art Tem-
pEval system has difficulty identifying on-going and
future events, mislabeling examples like these:
(1) The metro workers’ strike in Bucharest has entered

the fifth day. (On-Going)
(2) BBC unions demand more talks amid threat of new

strikes. (Future)
(3) Pro-reform groups have called for nationwide

protests on polling day. (Future)

44

Second, we intentionally created the EventSta-
tus corpus to concentrate on one particular event
frame (class of events): civil unrest. In contrast,
previous temporally annotated corpora focus on a
wide variety of events. Focusing on one frame (se-
mantic depth instead of breadth) makes this corpus
analogous to domain-specific event extraction data
sets, and therefore appropriate for evaluating rich
tasks like event extraction and temporal question an-
swering, which require more knowledge about event
frames and schemata than might be represented in
large broad corpora like TIMEBANK (UzZaman et
al., 2012; Llorens et al., 2015).

Third, the EventStatus corpus focuses on specific
instances of high-level events, in contrast to the low-
level and often non-specific or generic events that
dominate other temporal datasets.1 Mentions of spe-
cific events are much more likely to be realized in
non-finite form (as nouns or infinitives, such as “the
strike” or “to protest”) than randomly selected event
keywords. In breadth-based corpora like the Event-
CorefBank (ECB) corpus (Bejan and Harabagiu,
2008), 34% of the events have non-finite realization;
in TIMEBANK, 45% of the events have non-finite
realization. By contrast, in a frame-based corpus
like ACE2005 (ACE, 2005), 59% of the events have
non-finite forms. In the EventStatus corpus, 80% of
the events have non-finite forms. Whether this is due
to differences in labeling or to intrinsic properties of
these events, the result is that they are much harder
to label because tense and aspect are less available
than for events realized as finite verbs.

Fourth, the EventStatus data set is multilingual:
we collected data from both English and Spanish
texts, allowing us to compare events representing
the same event frame across two languages that are
known to differ in their typological properties for de-
scribing events (Talmy, 1985).

Using the new EventStatus corpus, we investigate
two approaches for recognizing the temporal status
of events. We create a SVM classifier that incor-
porates features drawn from prior TempEval work
(Bethard, 2013; Chambers et al., 2014; Llorens et
al., 2010) as well as a new automatically induced

1For example in TIMEBANK almost half the annotated
events (3720 of 7935) are hypothetical or generic, i.e., PERCEP-
TION, REPORTING, ASPECTUAL, I ACTION, STATE or I STATE

rather than the specific OCCURRENCE.

lexicon of 411 English and 348 Spanish “future-
oriented” matrix verbs—verbs like “threaten” and
“fear” whose complement clause or nominal direct
object argument is likely to describe a future event.
We show that the SVM outperforms a state-of-the-
art TempEval system and that the induced lexicon
further improves performance for both English and
Spanish. We also introduce a Convolutional Neu-
ral Network (CNN) to detect the temporal status of
events. Our analysis shows that it successfully mod-
els semantic compositionality for some challenging
temporal contexts. The CNN model again improves
performance in both English and Spanish, providing
strong initial results for this new task and corpus.

2 The EventStatus Corpus

For major societal events, it can be very impor-
tant to know whether the event has ended or if it
is still in progress (e.g., are people still rioting in
the streets?). And sometimes events are anticipated
before they actually happen, such as labor strikes,
marches and parades, social demonstrations, politi-
cal events (e.g., debates and elections), and acts of
war. The EventStatus corpus represents the tempo-
ral status of an event as one of five categories:

Past: An event that has started and has ended. There
should be no reason to believe that it may still be in
progress.
On-going: An event that has started and is still in
progress or likely to resume2 in the immediate fu-
ture. There should be no reason to believe that it has
ended.
Future Planned: An event that has not yet started,
but a person or group has planned for or explicitly
committed to an instance of the event in the future.
There should be near certainty it will happen.
Future Alert: An event that has not yet started, but
a person or group has been threatening, warning, or
advocating for a future instance of the event.
Future Possible: An event that has not yet started,
but the context suggests that its occurrence is a live
possibility (e.g., it is anticipated, feared, hinted at,
or is mentioned conditionally).

The three subtypes of future events are important
2For example, demonstrators have gone home for the day

but are expected to return in the morning.

45

Past
[EN] Today’s demonstration ended without violence.

An estimated 2,000 people protested against the government in Peru.
[SP] Terminó la manifestación de los kurdos en la UNESCO de Parı́s.

On-going
[EN] Negotiations continue with no end in sight for the 2 week old strike.

Yesterday’s rallies have caused police to fear more today.
[SP] Pacifistas latinoamericanos no cesan sus protestas contra guerra en Irak.

Future Planned
[EN] 77 percent of German steelworkers voted to strike to raise their wages.

Peace groups have already started organizing mass protests in Sydney.
[SP] Miedo en la City en vı́spera de masivas protestas que la toman por blanco.

Future Alert
[EN] Farmers have threatened to hold demonstrations on Monday.

Nurses are warning they intend to walkout if conditions don’t improve.
[SP] Indigenas hondureños amenazan con declararse en huelga de hambre.

Future Possible
[EN] Residents fear riots if the policeman who killed the boy is acquitted.

The military is preparing for possible protests at the G8 summit.
[SP] Policı́a Militar analiza la posibilidad de decretar una huelga nacional.

Table 1: Examples of event status categories for civil unrest events, showing two examples in English [EN] and one in Spanish

[SP].

in marking not just temporal status but also what we
might call predictive status. Events very likely to oc-
cur are distinguished from events whose occurrence
depends on other contingencies (Future Planned vs.
Alert/Possible). Warnings or mentions of a potential
event by a likely actor are further distinguished from
events whose occurrence is more open-ended (Fu-
ture Alert vs. Possible). The status of future events
is not due just to lexical semantics or local context
but also other qualifiers in the sentence (e.g. “may”),
the larger discourse context, and world knowledge.
The annotation guidelines are formulated with that
in mind. The categories for future events are not
incompatible with one another but are meant to be
informationally ordered (e.g. “future alert” implies
“future possible”). Annotators are instructed to go
for the strongest implication supported by the over-
all context. Table 1 presents examples of each cate-
gory in news reports about civil unrest events, with
the event keywords in italics.

2.1 EventStatus Annotations

The EventStatus dataset consists of English and
Spanish news articles. We manually identified 6

English words3 and 13 Spanish words4 and phrases
associated with civil unrest events, and added their
morphological variants. We then randomly selected
2954 and 14915 news stories from the English Gi-
gaword 5th Ed. (Parker et al., 2011) and Spanish
Gigaword 3rd Ed. (Mendon et al., 2011) corpora,
respectively, that contain at least one civil unrest
phrase. Events of a specific type are very sparsely
distributed in a large corpus like the Gigaword, so
we used keyword matching just as a first pass to
identify candidate event mentions.

3The English keywords are “protest”, “strike”, “march”,
“rally”, “riot” and “occupy”. These correspond to the most fre-
quent words in the relevant frame in the Media Frames corpus
(Card et al., 2015). Because “march” most commonly refers to
the month, we removed the word itself and only kept its other
morphological variations.

4Spanish keywords: “marchar”, “protestar”, “amoti-
nar(se)”, “manifestar(se)”, “huelga”, “manifestación”, “distur-
bio”, “motı́n”, “ocupar * la calle”, “tomar * la calle”, “salir *
las calles”, “lanzarse a las calles”, “cacerolas vacı́as”, “cacero-
lazo”, “cacerolada”. Asterisks could be replaced by up to 4
words. The last three terms are common expressions for protest
marches in many countries of Latin America and Spain.

546 (out of 3000) and 9 (out of 1500) stories were removed
due to keyword errors.

46

Future Not
Past Ongoing (Plan,Alert,Possible) Multiple Event

EN 1735 583 292 (197,48,47) 28 186
SP 1545 739 360 (279,61,30) 21 72
Table 2: Counts of Temporal Status Labels in EventStatus.

Because many keyword instances don’t refer to
a specific event, primarily due to lexical ambiguity
and generic descriptions (e.g., “Protests are often
facilitated by ...”), we used a two-stage annotation
process. First, we extracted sentences containing at
least one key phrase, and had three human anno-
tators judge whether the sentence describes a spe-
cific civil unrest event. Next, for each sentence that
mentions a specific event, the annotators assigned an
event status to every civil unrest key phrase in that
sentence. In both annotation phases, we asked the
annotators to consider the context of the entire arti-
cle.

In the first annotation phase, the average pairwise
inter-annotator agreement (Cohen’s κ) among the
annotators was κ = 0.84 on the English data and 0.70
on the Spanish data. We then assigned the majority
label among the three annotators to each sentence.
In the English data, of the 5085 sentences with at
least one key phrase, 2492 (49%) were judged to
be about a specific civil unrest event. In the Span-
ish data, 3249 sentences contained at least one key
phrase and 2466 (76%) described a specific event.

In the second phase, the annotators assigned one
of the five temporal status categories listed in Sec-
tion 2 to each event keyword in a relevant sentence.
In addition, we provided a Not Event label.6 Occa-
sionally, a single instance of a keyword can refer to
multiple events (e.g., “Both last week’s and today’s
protests...”), so we permitted multiple labels to be
assigned to an event phrase. However this happened
for only 28 cases in English and 21 cases in Spanish.

The average pairwise inter-annotator agreement
among the three human annotators for the tempo-
ral status labels was κ=.78 for English and κ=.80
for Spanish. We used the majority label among the
three annotators as the gold status. In total, 2907
English and 2807 Spanish event phrases exist in the
relevant sentences and were annotated. However

6A sentence can contain multiple keyword instances. So
even in a relevant sentence, some instances may not refer to
a specific event.

there were 83 English cases (≈2.9%) and 70 Span-
ish cases (≈2.5%) where the labels among the three
annotators were all different, so we discarded these
cases. Table 2 shows the final distribution of labels
in the EventStatus corpus. The EventStatus corpus7

is available through the LDC.

2.2 Linguistic Properties of Event Mentions

Next, we investigated the linguistic properties of the
event status categories, lumping together the 3 fu-
ture subcategories. Table 3 shows the distribution
of syntactic forms of the event mentions in two com-
monly used event datasets, ACE2005 (ACE, 2005)
and EventCorefBank (Bejan and Harabagiu, 2008),
and our new EventStatus corpus. In the introduction,
we mentioned the high frequency of non-finite event
expressions; Table 3 provides the evidence: non-
finite forms (nouns and infinitives) constitute 59% in
ACE2005, 34% in EventCorefBank, and a very high
80% of the events in the EventStatus dataset. The
distribution is even more skewed for future events,
which are 95% (English) and 96% (Spanish) real-
ized by non-finite surface forms.

Finite Inf.
Verbs Nouns Verbs Other

ACE Dataset
2201 (41) 2566 (48) 352 (7) 243 (5)

ECB Dataset
1151 (66) 488 (28) 77 (4) 25 (1)

EventStatus, English Section
PA 331 (19) 1295 (75) 103 (6) 6 (0)
OG 58 (10) 476 (82) 29 (5) 20 (3)
FU 15 (5) 245 (84) 32 (11) 0 (0)

EventStatus, Spanish Section
PA 315 (20) 1145 (74) 84 (5) 1 (0)
OG 41 (6) 685 (93) 12 (2) 1 (0)
FU 14 (4) 309 (86) 36 (10) 1 (0)

Table 3: Number and % (in parentheses) of event mentions by

syntactic form. PA = Past; OG = On-going; FU = Future

2.3 Future Oriented Verbs

We observed that many future event mentions are
preceded by a set of lexical (non-aux) verbs that we
call future oriented verbs, such as “threatened” in (4)
and “fear” in (5). These verbs project the events in
the lower clause into the future.

7http://faculty.cse.tamu.edu/huangrh/
EventStatus_corpus.html

47

(4) They threatened to protest if Kmart does not ac-
knowledge their request for a meeting.

(5) People fear renewed rioting during the coming
days.

Categories of future oriented verbs include mental
activity (“anticipate”, “expect”), affective (“fear”,
“worry”), planning (“plan”, “prepare”, “schedule”),
threatening (“threaten”, “advocate”, “warn”), and
inchoative verbs (“start”, “initiate”, and “launch”).
We found that these categories correlate with the
predictive status of the events they embed. We drew
on these insights to induce a lexicon of future ori-
ented verbs.

We harvested matrix verbs whose complement
unambiguously describes a future event using two
heuristics. One heuristic looks for examples with
a tense conflict between the matrix verb and its
complement: a matrix verb in the past tense (like
“planned” below) whose complement event is an in-
finitive verb or deverbal noun modified by a future
time expression (like “tomorrow” or “next week”),
hence in the future (e.g., “strike” below): 8

(6) The union planned to strike next week.
Future events are often marked by conditional
clauses, so the second heuristic considers an event
to be future if it was post-modified by a conditional
clause (beginning with “if” or “unless”):
(7) The union threatened to strike if their appeal

was rejected.
Finally, to increase precision, we only harvested

a verb as future-oriented if it functioned as a matrix
both in sentences with an embedded future time ex-
pression and in sentences with a conditional clause.

Future Oriented Verb Categories: We ran the
algorithm on the English and Spanish Gigaword cor-
pora (Parker et al., 2011; Mendon et al., 2011), ob-
taining 411 English verbs and 348 Spanish verbs.
To better understand the structure of the learned lex-
icon, we mapped each English verb to Framenet
(Baker et al., 1998); 86% (355) of the English verbs
occurred in Framenet, in 306 unique frames. We

8For English, we extract events linked by the “xcomp” de-
pendency using the Stanford dependency parser (Marneffe et
al., 2006), with a future time expression attached to the second
event with the “tmod” relation. For Spanish, we consider two
events related if they are at most 5 words apart, and the second
event is modified by a time expression, at most 5 words apart.

clustered these into 102 frames9 and grouped the
Spanish verbs following English Framenet, identi-
fying 67 categories. (Some learned verbs, such as
“poise” , “slate” , “compel” and “hesitate”, had a
clear future orientation but didn’t exist in Framenet.)
Table 4 shows examples of learned verbs for En-
glish and their categories.

Commitment: threaten, vow, promise, pledge,
commit, declare, claim, volunteer, anticipate
Coming to be: enter, emerge, plunge, kick,
mount reach, edge, soar, promote, increase,
climb, double
Purpose: plan, intend, project, aim, object, target
Permitting: allow, permit, approve, subpoena
Experiencer subj: fear, scare, hate
Waiting: expect, wait
Scheduling: arrange, schedule
Deciding: decide, opt, elect, pick, select, settle
Request: ask, urge, order, encourage, demand,
appeal, request, summon, implore, advise, invite
Evoking: raise, press, back, recall, pressure,
force, rush, pull, drag, respond

Table 4: Examples from Future Oriented Verb Lexicon

In the next sections we propose two classifiers,
an SVM classifier using standard TempEval features
plus our new future-oriented lexicon, and a Convo-
lutional Neural Net, as a pilot exploration of what
features and architecture work well for the EventSta-
tus task. For these studies we combine the Future
Planned, Future Alert and Future Possible categories
into a single Future event status because we first
wanted to establish how well classifiers can detect
the primary temporal distinctions between Past vs.
Ongoing vs. Future. The future subcategories are,
of course, relatively smaller and we expect that the
most effective approach will be to design a classifier
that sits on top of the primary classifier to further
subcategorize the Future instances. We leave the
task of subcategorizing future events for later work.

9By merging frames that share frame elements (e.g., “Pur-
pose” and “Project” share the frame element “plan”)

48

3 SVM Event Status Model

Our first classifier is a linear SVM classifier.10 We
trained three binary classifiers (one per class) us-
ing one-vs.-rest, and label an event mention with
the class that assigned the highest score to the men-
tion. We used features inspired by prior TempEval
work and by the previous analysis, including words,
tense and aspect features, time expressions, and the
new future-oriented verb lexicon. We also experi-
mented with other features used by TempEval sys-
tems (including bigrams, POS tags, and two-hop de-
pendency features), but they did not improve perfor-
mance.11

Bag-Of-Words Features: For bag-of-words uni-
gram features we used a window size of 7 (7 left and
7 right) for the English data and 6 for the Spanish
data; this size was optimized on the tuning sets.

Tense, Aspect and Time Expressions: Because
these features are known to be the most impor-
tant for relating events to document creation time
(Bethard, 2013; Llorens et al., 2010), we used
TIPSem (Llorens et al., 2010) to generate the tense
and aspect of events and find time expressions in
both languages. TIPSem infers the tense and as-
pect of nominal and infinitival event mentions using
heuristics without relying on syntactic dependen-
cies. For the English data set, we also generated syn-
tactic dependencies using Stanford CoreNLP (Marn-
effe et al., 2006) and applied several rules to cre-
ate additional tense and aspect features based on the
governing words of event mentions12. Time indi-
cation features are created by comparing document
creation time to time expressions linked to an event
mention detected by TIPSem. If TIPSem detects no
linked time expressions for an event mention, we
take the nearest time expression in the same sen-
tence.

Governing Words: Governing words have been
useful in prior work. Our version of the feature

10Trained using LIBSVM (Chang and Lin, 2011) with linear
kernels (polynomial kernels yielded worse performance).

11Previous TempEval work reported that those additional fea-
tures were useful when computing temporal relations between
two events but not when relating an event to the Document Cre-
ation Time, for which tense, aspect, and time expression fea-
tures were the most useful (Llorens et al., 2010; Bethard, 2013).

12We did not imitate this procedure for Spanish because the
quality of our generated Spanish dependencies is poor.

pairs the governing word of an event mention with
the dependency relation in between. We used Stan-
ford CoreNLP (Marneffe et al., 2006) to generate
dependencies for the English data. For the Spanish
data, we used Stanford CoreNLP to generate Part-
of-Speech tags13 and then applied the MaltParser
(Nivre et al., 2004) to generate dependencies.

4 Convolutional Neural Network Model

Convolutional neural networks (CNNs) have been
shown to be effective in modeling natural language
semantics (Collobert et al., 2011). We were espe-
cially keen to find out whether the convolution op-
erations of CNNs can model the semantic composi-
tionality needed to detect temporal-aspectual status.
For our experiments, we trained a simple CNN with
one convolution layer followed by one max pooling
layer (Kim, 2014; Collobert et al., 2011),

The convolution layer has 300 hidden units. In
each unit, the same affine transformation is applied
to every consecutive 5 words (a filter instance) in
the input sequence of words. A different affine
transformation is applied to each hidden unit. After
each affine transformation, a Rectified Linear Units
(ReLU) (Nair and Hinton, 2010) non-linearity is ap-
plied. For each hidden unit, the max pooling layer
selects the maximum value from the pool of real val-
ues generated from each filter instance.

After the max pooling layer, a softmax classifier
predicts probabilites for each of the three classes,
Past, Ongoing and Future. To alleviate overfitting
of the CNN model, we applied dropout (Hinton et
al., 2012) on the convolution layer and the following
pooling layer with a keeping rate of 0.5.

Our experiments used the 300-dimension En-
glish word2vec embeddings14 trained on 100 billion
words of Google News. We trained our own 300-
dimension Spanish embeddings, running word2vec
(Mikolov et al., 2013) over both Spanish Giga-
word (Mendon et al., 2011)— tokenized using Stan-
ford CoreNLP SpanishTokenizer (Manning et al.,
2014)— and the pre-tokenized Spanish Wikipedia
dump (Al-Rfou et al., 2013). The vectors were then
tuned during backpropagation for our specific task.

13Stanford CoreNLP has no support for generating syntactic
dependencies for Spanish.

14
docs.google.com/uc?id=0B7XkCwpI5KDYNlNUTTlSS21pQmM.

49

Row Method PA OG FU Macro Micro
1 TIPSem 26/80/39 8/32/13 4/23/7 13/45/20 20/68/31
2 TIPSem with transitivity 75/76/75 14/22/17 4/21/7 31/40/35 55/67/61
3 SVM with all features 91/81/86 33/47/39 45/58/51 56/62/59 75/75/75
4 SVM with BOW features only 88/80/84 37/46/41 40/53/45 55/60/57 72/72/72
5 +Tense/Aspect/Time 89/81/85 40/50/44 42/52/46 57/61/59 73/73/73
6 +Governing Word 90/81/85 43/56/48 42/55/47 58/64/61 75/75/75
7 +Future Oriented Lexicon 90/82/86 44/56/49 48/62/54 61/66/63 76/76/76
8 Convolutional Neural Net 91/83/87 46/57/51 49/67/57 62/69/65 77/77/77

Table 6: Experimental Results on English Data. Each cell shows Recall/Precision/F-score.

Row Method PA OG FU Macro Micro
1 TIPSem 19/84/31 14/38/20 4/53/8 12/58/20 16/65/25
2 TIPSem with transitivity 69/70/70 40/35/37 12/62/20 40/56/47 54/59/56
3 SVM with all features 84/77/80 48/51/49 42/57/48 58/62/60 69/69/69
4 SVM with BOW features only 82/75/78 53/56/54 34/52/41 56/61/59 68/68/68
5 +Tense/Aspect/Time 82/77/79 55/57/56 45/61/52 61/65/63 70/70/70
6 +Governing Word 83/75/79 51/56/53 42/58/49 59/63/61 69/69/69
7 +Future Oriented Lexicon 82/77/79 55/57/56 47/63/54 61/65/63 70/70/70
8 Convolutional Neural Net 84/80/82 60/58/59 44/59/50 62/66/64 72/72/72

Table 7: Experimental Results on Spanish Data. Each cell shows Recall/Precision/F-score.

PA OG FU
English 1385 (68%) 427 (21%) 233 (11%)
Spanish 1251 (59%) 589 (28%) 280 (13%)

Table 5: Label Distributions in the Test Set

5 Evaluations

For all subsequent evaluations, we use gold event
mentions. We randomly sampled around 20% of the
annotated documents as the parameter tuning set and
used the rest as the test set. Rather than training once
on a distinct training set, all our experiment results
are based on 10-fold cross validation on the test set,
(1191 Spanish documents, 2364 English documents;
see Table 5 for the distribution of event mentions).

5.1 Comparing with a TempEval System

We begin with a baseline: applying a TempEval sys-
tem to classify each event. Most of our features are
already drawn from TempEval, but our goal was to
see if an off-the-shelf system could be directly ap-
plied to our task. We chose TIPSem (Llorens et al.,
2010), a CRF system trained on TimeBank that uses
linguistic features, has achieved top performance in
TempEval competitions for both English and Span-
ish (Verhagen et al., 2010), and can compute the
relation of each event with the Document Creation

Time. We applied TIPSem to our test set, mapping
the DCT relations to our three event status classes15.

Row 1 of Tables 6 and 7 shows TIPSem re-
sults. The columns show results for each category
separately, as well as macro-average and micro-
average results across the three categories. Each cell
shows the Recall/Precision/F-score numbers. Since
TIPSem linked relatively few event mentions to the
DCT, we next leveraged the transitivity of tempo-
ral relations (UzZaman et al., 2012; Llorens et al.,
2015), linking an event to a DCT if the temporal re-
lation between another event in the same sentence
and the DCT is transferable. For instance, if event
A is AFTER its DCT, and event B is AFTER event A,
then event B is also AFTER the DCT.16 Row 2 shows
the results of TIPSem with temporal transitivity.

Even augmented by transitivity, TIPSem fails to
detect many Ongoing (OG) and Future (FU) events;
most mislabeled OG and FU events were nominal.
Confusion matrices (Table 8) show that most of the

15We used the obvious mappings from TIPSem relations:
“BEFORE” to “PA”, “AFTER” to “FU” , and “INCLUDES”
(for English) and “OVERLAP” (for Spanish) to “OG”.

16Some transitivity rules are ambiguous: if event A is AF-
TER DCT, event B INCLUDES event A, event B can be AFTER

or INCLUDES DCT. We ran experiments and chose rules that
improved performance the most for TipSem.

50

missed OG events were labeled as Past (PA) while
FU events were commonly mislabeled as both PA
and OG. Below are some examples of OG and FU
events mislabeled as PA:

(8) Jego said Sunday on arriving in Guadeloupe that he
would stay as long as it took to bring an end to the
strike organised by the Collective against Extreme
Exploitation (LKP). (OG)

(9) A massive protest planned for Kathmandu on Tues-
day has been re-baptised a victory parade. (FU)

Predicted (EN) Predicted (SP)
PA OG FU PA OG FU

Gold PA 718 96 15 653 231 6
Gold OG 156 35 11 196 160 10
Gold FU 72 30 7 78 72 26

Table 8: Confusion Matrices for TIPSem (with transitivity).

SVM Results Next, we compare TIPSem’s results
with our SVM classifier. An issue is that TIPSem
identifies only 72% and 78% of the gold event men-
tions, for English and Spanish respectively17. To
have a fair comparison, we applied the SVM to only
the event mentions that TipSem recognized. Row
3 shows these results for the SVM classifier using
its full feature set. The SVM outperforms TipSem
on all three categories, for both languages, with the
largest improvements on Future events.

Next, we ran ablation experiments with the SVM
to evaluate the impact of different subsets of its fea-
tures. For these experiments, we applied the SVM to
all gold event mentions, thus Rows 1-3 of Tables 6
and 7 report on fewer event mentions than rows 4-8.
Row 4 shows results using only bag-of-words fea-
tures18. Row 5 shows results when additionally in-
cluding the tense, aspect, and time features provided
by TIPSem (Llorens et al., 2010). Unsurprisingly,
in both languages19 these features improve over just
bag-of-word features.

Row 6 further adds governing word features.
These improve English performance, especially for
On-Going events. For Spanish, governing word fea-

17We were not able to decouple TipSem’s event recognition
component and force it to process all event mentions.

18Replacing each word feature with a word2vec embedding
resulted in slightly worse performance.

19We always obtain even recall and precision for the micro
average metric because we only apply classifiers to event men-
tions that refer to a civil unrest event.

tures slightly decrease performance, likely due to the
poor quality of the Spanish dependencies.

Row 7 adds the future oriented lexicon features20.
For both English and Spanish, the future oriented
lexicon increased overall performance, and (as ex-
pected) especially for Future events.

CNN Results Row 8 shows the results using CNN
models. For English and Spanish, the same window
(7 words for English, 6 words for Spanish) was used
to compute bag-of-word features for SVMs as for
training the CNN models. For English, the CNN
model further increased recall and precision across
all three classes. The CNN improved Spanish per-
formance on both Past and On-going events, but the
SVM outperformed the CNN for Future events when
the future oriented lexicon features were included.

6 Analysis

To better understand whether the CNN model’s
strong performance was related to handling com-
positionality, we examined some English examples
that were correctly recognized by the CNN model
but mislabeled by the SVM classifier with bag-of-
words features. The examples below (event men-
tions are in italics) suggest that the CNN may be
capturing the compositional impact of local cues like
“possibility” or “since”:

(10) Raising the possibility of a strike on New Year’s Eve,
the president of New York City’s largest union is
calling for a 30 percent raise over three years. (FU)

(11) The lockout was announced in the wake of a go-slow
and partial strike by the union since July 12 after
management turned down its demand. (OG)

We also conducted an error analysis by randomly
sampling and then analyzing 50 of the 473 errors
by the CNN model. Many cases (26/50) are am-
biguous from the sentence alone, requiring discourse
information. The first example below is caused by
the well-known “double access” ambiguity of the
complement of a communication verb (Smith, 1978;
Abusch, 1997; Giorgi, 2010).

(12) Chavez also said he discussed the strike with UN
Secretary General Kofi Annan and told him the strike
organizers were “terrorists.” (OG)

20For Spanish, we removed the governing word features be-
cause of the poor quality of the Spanish dependencies.

51

(13) Students and teachers protest over education budget
(PA)

In 9/50 cases, the contexts that imply temporal status
are complex and fall out of our±7 word range, e.g.,:

(14) Protesters on Saturday also occupied two gymnas-
tics halls near Gorleben which are to be used as ac-
commodation for police. They were later forcibly
dispersed by policemen. (PA)

The remaining 15/50 cases contain enough local
cues to be solvable by humans, but both the CNN
and SVM models nonetheless failed:

(15) Eastern leaders have grown weary of the protest
movement led mostly by Aymara. (OG)

7 Related Work

Our work overlaps with two communities of tasks
and corpora: the task of classifying temporal or-
der between event mentions and Document Creation
Time (DCT) in TempEval (Verhagen et al., 2007;
Verhagen et al., 2010; UzZaman et al., 2013), and
the task of extracting events, associated with cor-
pora such as ACE2005 (ACE, 2005) and the Event-
CorefBank (ECB) (Bejan and Harabagiu, 2008). By
studying the events in a particular frame (civil un-
rest), but focusing on their temporal status, our work
has the potential to draw these communities to-
gether. Most event extraction work (Freitag, 1998;
Appelt et al., 1993; Ciravegna, 2001; Chieu and Ng,
2002; Riloff and Jones, 1999; Roth and Yih, 2001;
Zelenko et al., 2003; Bunescu and Mooney, 2007)
has focused on extracting event slots or frames for
past events and assigning dates. The TempEval task
of linking events to DCT has not focused on events
that tend to have non-finite realizations, nor has it
focused on subtypes of future events. Our work, in-
cluding the corpus and the future-oriented verb lex-
icon, has the potential to benefit related tasks like
generating event timelines from news articles (Allan
et al., 2000; Yan et al., 2011) or social media sources
(Li and Cardie, 2014; Ritter et al., 2012), or explor-
ing the psychological implications of future oriented
language (Nie et al., 2015; Schwartz et al., 2015).

8 Conclusions

We have proposed a new task of recognizing the
past, on-going, or future temporal status of ma-
jor events, introducing a new resource for study-

ing events in two languages. Besides its importance
for studying time and aspectuality, the EventStatus
dataset offers a rich resource for any future investi-
gation of information extraction from major societal
events.

The strong performance of the convolutional net
system suggests the power of latent representations
to model temporal compositionality, and points to
extensions of our work using deeper and more pow-
erful networks.

Finally, our investigation of the role of context
and semantic composition in conveying temporal in-
formation also has implications for our understand-
ing of temporality and aspectuality and their linguis-
tic expression. Many of the errors made by our CNN
system are complex ambiguities, like the double ac-
cess readings, that cannot be solved without infor-
mation from the wider discourse context. Our work
can thus also be seen as a call for the further use
of rich discourse information in the computational
study of temporal processing.

9 Acknowledgments

We want to thank the Stanford NLP group and espe-
cially Danqi Chen for valuable inputs, and Michael
Zeleznik for helping us refine the categories and for
masterfully orchestrating the annotation efforts. We
also thank Luke Zettlemoyer and all our reviewers
for providing useful comments. This work was par-
tially supported by the National Science Foundation
via NSF Award IIS-1514268, by the Defense Ad-
vanced Research Projects Agency (DARPA) Deep
Exploration and Filtering of Text (DEFT) Program
under Air Force Research Laboratory (AFRL) con-
tract no. FA8750-13-2-0040, and by the Intelligence
Advanced Research Projects Activity (IARPA) via
Department of Interior National Business Center
(DoI/NBC) contract number D12PC00337. The
U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. Dis-
claimer: the views and conclusions contained herein
are those of the authors and should not be inter-
preted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of
DARPA, NSF, IARPA, DoI/NBC, or the U.S. Gov-
ernment.

52

References

Dorit Abusch. 1997. Sequence of tense and temporal de
re. Linguistics & Philosophy, 20:1–50.

ACE. 2005. NIST ACE evaluation website. In
http://www.nist.gov/speech/tests/ace/2005.

Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. 2013.
Polyglot: Distributed word representations for multi-
lingual nlp. In Proceedings of the Seventeenth Confer-
ence on Computational Natural Language Learning,
pages 183–192, Sofia, Bulgaria, August. Association
for Computational Linguistics.

J. Allan, V. Lavrenko, D. Malin, and R. Swan. 2000. De-
tections, Bounds, and Timelines: Umass and TDT-3.
In Proceedings of Topic Detection and Tracking Work-
shop.

D. Appelt, J. Hobbs, J. Bear, D. Israel, and M. Tyson.
1993. FASTUS: a Finite-state Processor for Informa-
tion Extraction from Real-world Text. In Proceedings
of the Thirteenth International Joint Conference on Ar-
tificial Intelligence (IJCAI).

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet Project. In In Proceed-
ings of COLING/ACL, pages 86–90.

C. Bejan and S. Harabagiu. 2008. A Linguistic Resource
for Discovering Event Structures and Resolving Event
Coreference. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC).

S. Bethard. 2013. ClearTK-TimeML: A minimalist ap-
proach to TempEval 2013. In Proceedings of Second
Joint Conference on Lexical and Computational Se-
mantics (*SEM).

R. Bunescu and R. Mooney. 2007. Learning to Extract
Relations from the Web using Minimal Supervision.
In Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics.

Dallas Card, Amber E. Boydstun, Justin H. Gross, Philip
Resnik, and Noah A. Smith. 2015. The media frames
corpus: Annotations of frames across issues. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers).

Nathanael Chambers, Bill McDowell, Taylor Cassidy,
and Steve Bethard. 2014. Dense event ordering with a
multi-pass architecture. In Transactions of the Associ-
ation for Computational Linguistics (TACL).

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM:
A library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology, 2:27:1–
27:27. Software available at http://www.csie.
ntu.edu.tw/˜cjlin/libsvm.

H.L. Chieu and H.T. Ng. 2002. A Maximum En-
tropy Approach to Information Extraction from Semi-
Structured and Free Text. In Proceedings of the 18th
National Conference on Artificial Intelligence.

F. Ciravegna. 2001. Adaptive Information Extraction
from Text by Rule Induction and Generalisation. In
Proceedings of the 17th International Joint Confer-
ence on Artificial Intelligence.

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuglu, and P. Kuksa. 2011. Natural Lan-
guage Processing (Almost) from Scratch. In Journal
of Machine Learning Research.

Dayne Freitag. 1998. Toward General-Purpose Learning
for Information Extraction. In Proceedings of the 36th
Annual Meeting of the Association for Computational
Linguistics.

Alessandra Giorgi. 2010. About the speaker: towards a
syntax of indexicality. Oxford University Press, Ox-
ford.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,
and R. R. Salakhutdinov. 2012. Improving Neural
Networks by Preventing Co-adaptation of Feature De-
tectors. In arXiv preprint arXiv:1207.0580.

Y. Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of 2014 the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP-2014).

J. Li and C. Cardie. 2014. Timeline Generation: Track-
ing Individuals on Twitter. In Proceedings of the 23rd
International Conference on World Wide Web.

H. Llorens, E. Saquete, and B. Navarro. 2010. TIPSem
(English and Spanish): Evaluating CRFs and Seman-
tic Roles in TempEval-2. In Proceedings of the 5th
International Workshop on Semantic Evaluation.

H. Llorens, N. Chambers, N. UzZaman, Mostafazadeh
N., J. Allen, and J. Pustejovsky. 2015. Semeval-2015
Task 5: QA TempEval - Evaluating Temporal Infor-
mation Understanding with Question Answering. In
Proceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015).

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The stanford corenlp natural language process-
ing toolkit. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 55–60.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating Typed
Dependency Parses from Phrase Structure Parses. In
Proceedings of the Fifth Conference on Language Re-
sources and Evaluation (LREC-2006).

Angelo Mendon ca, Daniel Jaquette, David Graff, and
Denise DiPersio. 2011. Spanish Gigaword Third Edi-
tion. In Linguistic Data Consortium.

53

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and
J. Dean. 2013. Distributed Representations of Words
and Phrases and their Compositionality. In Proceed-
ings of NIPS.

V. Nair and G. E. Hinton. 2010. Rectified Linear Units
Improve Restricted Boltzmann Machines. In Pro-
ceedings of 27th International Conference on Machine
Learning.

A. Nie, J. Shepard, J. Choi, B. Copley, and P. Wolff.
2015. Computational Exploration of the Linguistic
Structures of Future-Oriented Expression: Classifica-
tion and Categorization. In Proceedings of the NAACL
Student Research Workshop (NAACL-SRW’15).

J. Nivre, J. Hall, and J. Nilsson. 2004. Memory-
Based Dependency Parsing. In Proceedings of the
Eighth Conference on Computational Natural Lan-
guage Learning (CoNLL).

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English Gigaword. In Lin-
guistic Data Consortium.

J. Pustejovsky, P. Hanks, R. Saur, A. See, R. Gaizauskas,
A. Setzer, D. Radev, B. Sundheim, D. Day, L. Ferro,
and M. Lazo. 2003. The TIMEBANK Corpus. In
Proceedings of Corpus Linguistics.

E. Riloff and R. Jones. 1999. Learning Dictionaries for
Information Extraction by Multi-Level Bootstrapping.
In Proceedings of the Sixteenth National Conference
on Artificial Intelligence.

A. Ritter, Mausam, O. Etzioni, and S. Clark. 2012. Open
Domain Event Extraction from Twitter. In The 18th
ACM SIGKDD Knowledge Discovery and Data Min-
ing Conference.

D. Roth and W. Yih. 2001. Relational Learning via
Propositional Algorithms: An Information Extraction
Case Study. In Proceedings of the Seventeenth In-
ternational Joint Conference on Artificial Intelligence,
pages 1257–1263, Seattle, WA, August.

A. Schwartz, G. Park, M. Sap, E. Weingarten, J. Eich-
staedt, M. Kern, J. Berger, M. Seligman, and L. Un-
gar. 2015. Extracting Human Temporal Orientation in
Facebook Language. In Proceedings of the The 2015
Conference of the North American Chapter of the As-
sociation for Computational Linguistics - Human Lan-
guage Technologies.

Carlota Smith. 1978. The syntax and interpretation of
temporal expressions in English. Linguistics & Phi-
losophy, 2:43–99.

Leonard Talmy. 1985. Lexicalization patterns: Semantic
structure in lexical forms. In Timothy Shopen, editor,
Language Typology and Syntactic Description, Volume
3. Cambridge University Press.

N. UzZaman, H. Llorens, and J. Allen. 2012. Evaluating
Temporal Information Understanding with Temporal

Question Answering. In Proceedings of IEEE Inter-
national Conference on Semantic Computing.

N. UzZaman, H. Llorens, J. Allen, L. Derczynski,
M. Verhagen, and J. Pustejovsky. 2013. SemEval-
2013 task 1: TempEval-3 evaluating time expressions,
events, and temporal relations. In Proceedings of the
7th International Workshop on Semantic Evaluation
(SemEval 2013).

M. Verhagen, R. Gaizauskas, F. Schilder, M. Hepple,
G. Katz, and J. Pustejovsky. 2007. SemEval-2007
task 15: TempEval temporal relation identification. In
Proceedings of the 4th International Workshop on Se-
mantic Evaluations.

M. Verhagen, R. Sauri, T. Caselli, and J. Pustejovsky.
2010. SemEval-2010 task 13: TempEval-2. In Pro-
ceedings of the 5th International Workshop on Seman-
tic Evaluation.

R. Yan, L. Kong, C. Huang, X. Wan, X. Li, and Y. Zhang.
2011. Timeline Generation through Evolutionary
Trans-temporal Summarization. In Proceedings of the
2011 Conference on Empirical Methods in Natural
Language Processing.

Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. 2003. Kernel Methods for Relation
Extraction. Journal of Machine Learning Research, 3.

54

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 55–64,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Nested Propositions in Open Information Extraction

Nikita Bhutani
Department of EECS

University of Michigan
Ann Arbor

nbhutani@umich.edu

H. V. Jagadish
Department of EECS

University of Michigan
Ann Arbor

jag@umich.edu

Dragomir Radev
Department of EECS

University of Michigan
Ann Arbor

radev@umich.edu

Abstract
The challenges of Machine Reading and
Knowledge Extraction at a web scale re-
quire a system capable of extracting diverse
information from large, heterogeneous cor-
pora. The Open Information Extraction (OIE)
paradigm aims at extracting assertions from
large corpora without requiring a vocabulary
or relation-specific training data. Most sys-
tems built on this paradigm extract binary re-
lations from arbitrary sentences, ignoring the
context under which the assertions are cor-
rect and complete. They lack the expres-
siveness needed to properly represent and ex-
tract complex assertions commonly found in
the text. To address the lack of representa-
tion power, we propose NESTIE, which uses
a nested representation to extract higher-order
relations, and complex, interdependent asser-
tions. Nesting the extracted propositions al-
lows NESTIE to more accurately reflect the
meaning of the original sentence. Our ex-
perimental study on real-world datasets sug-
gests that NESTIE obtains comparable preci-
sion with better minimality and informative-
ness than existing approaches. NESTIE pro-
duces 1.7-1.8 times more minimal extractions
and achieves 1.1-1.2 times higher informative-
ness than CLAUSIE.

1 Introduction

Syntactic analyses produced by syntactic parsers are
a long way from representing the full meaning of the
sentences parsed. In particular, they cannot support
questions like “Who did what to whom?”, “Where
did what happen?”. Owing to the large, hetero-
geneous corpora available at web scale, traditional

approaches to information extraction (Brin, 1998;
Agichtein and Gravano, 2000) fail to scale to the
millions of relations found on the web. As a re-
sponse, the paradigm of Open Information Extrac-
tion (OIE) (Banko et al., 2007) has seen a rise in
interest as it eliminates the need for domain knowl-
edge or relation-specific annotated data. OIE sys-
tems use a collection of patterns over the surface
form or dependency tree of a sentence to extract
propositions of the form (arg1,rel,arg2).

However, state-of-the-art OIE systems, REVERB

(Fader et al., 2011) and OLLIE (Schmitz et al., 2012)
focus on extracting binary assertions and suffer from
three key drawbacks. First, lack of expressivity of
representation leads to significant information loss
for higher-order relations and complex assertions.
This results in incomplete, uniformative and inco-
herent prepositions. Consider Example 1 in Fig-
ure 1. Important contextual information is either
ignored or is subsumed in over-specified argument
and relation phrases. It is not possible to fix such
nuances by post-processing the propositions. This
affects downstream applications like Question An-
swering (Fader et al., 2014) which rely on correct-
ness and completeness of the propositions.

Second, natural language frequently includes re-
lations presented in a non-canonical form that can-
not be captured by a small set of extraction pat-
terns that only extract relation mediated by verbs
or a subset of verbal patterns. Consider Ex-
ample 2 in Figure 1 that asserts, “Rozsa Hill
is the third hill near the river”, “Rozsa Hill is
Rose Hill” and “Rozsa Hill lies north of Cas-
tle Hill”. A verb-mediated pattern would extract

55

1. After giving 5,000 people a second chance at life,
doctors are celebrating the 25th anniversary of
Britain's first heart transplant.

R: P1: (doctors, are celebrating the 25th anniversary of,
Britain 's first heart transplant)

O: P1: (doctors, are celebrating, the 25th anniversary of
Britain's first heart transplant)

N:
P1: (doctors, are celebrating, the 25th anniversary of
Britain's first heart transplant)
P2: (doctors, giving, second chance at life)
P3: (P1, after, P2)

2. Rozsa (Rose) Hill , the third hill near the river, lies
north of Castle Hill.
R: P1: (the third hill, lies north of, Castle Hill)
O: P1: (the third hill, lies north of, Castle Hill)

N:
P1: (Rozsa, lies, north of Castle Hill)
P2: (Rozsa Hill, is, third hill near the river)
P3: (Rozsa Hill, is, Rose)

3. “A senior official in Iraq said the body, which was
found by U.S. military police, appeared to have been
thrown from a vehicle.”

R: P1: (Iraq, said, the body)
P2: (the body, was found by, U.S. military police)

O: P1: (A senior official in Iraq, said, the body which was
found by U.S. military police)

N:

P1: (body, appeared to have been thrown, ∅)
P2: (P1, from, vehicle)
P3: (A senior official in Iraq, said, P2)
P4: (U.S. military police, found, body)

Figure 1: Example propositions from OIE systems: REVERB

(R), OLLIE (O) and NESTIE(N).

a triple, (the third hill, lies north
of, Castle Hill) that is less informative than
a triple, (Rozsa, lies, north of Castle
Hill) which is not mediated by a verb in the
original sentence. Furthermore, these propositions
are not complete. Specifically, queries of the form
‘What is the other name of Rozsa Hill?”, “Where is
Rozsa Hill located?”, “Which is the third hill near
the river?” will either return no answer or return an
uninformative answer with these propositions. Since
information is encoded at various granularity levels,
there is a need for a representation rich enough to ex-
press such complex relations and sentence construc-
tions.

Third, OIE systems tend to extract propositions
with long argument phrases that are not minimal
and are difficult to disambiguate or aggregate for
downstream applications. For instance, the argu-

ment phrase, body which was found by U.S. military
police, is less likely to be useful than the argument
phrase, body in Example 3 in Figure 1.

In this paper we present NESTIE, which over-
comes these limitations by 1) expanding the propo-
sition representation to nested expressions so addi-
tional contextual information can be captured, 2)
expanding the syntactic scope of relation phrases
to allow relations mediated by other syntactic en-
tities like nouns, adjectives and nominal modifiers.
NESTIE bootstraps a small set of extraction pat-
terns that cover simple sentences and learns broad-
coverage relation-independent patterns. We believe
that it is possible to adapt OIE systems that extract
verb-based relations to process assertions denoting
events with many arguments, and learn other non-
clausal relations found in the text. With weakly-
supervised learning techniques, patterns encoding
these relations can be learned from a limited amount
of data containing sentence equivalence pairs.

This article is organized as follows. We pro-
vide background on OIE in Sec. 2 followed by an
overview of our proposed solution in Sec. 3. We
then discuss how the extraction patterns for nested
representations are learned in Sec. 4. In Sec. 5,
we compare NESTIE against alternative methods on
two datasets: Wikipedia and News. In Sec. 6, we
discuss related work on pattern-based information
extraction.

2 Background

The key goal of OIE is to obtain a shallow seman-
tic representation of the text in the form of tuples
consisting of argument phrases and a phrase that
expresses the relation between the arguments. The
phrases are identified automatically using domain-
independent syntactic and lexical constraints. Some
OIE systems are:

TextRunner (Yates et al., 2007) WOE (Wu and
Weld, 2010): They use a sequence-labeling graph-
ical model on extractions labeled automatically us-
ing heuristics or distant supervision. Consequently,
long-range dependencies, holistic and lexical as-
pects of relations tend to get ignored.

ReVerb (Fader et al., 2011): Trained with shallow
syntactic features, REVERB uses a logistic regres-
sion classifier to extract relations that begin with a

56

verb and occur between argument phrases.
Ollie (Schmitz et al., 2012): Bootstrapping from

REVERB extractions, OLLIE learns syntactic and
lexical dependency parse-tree patterns for extrac-
tion. Some patterns reduce higher order relations
to ReVerb-style relation phrases. Also, representa-
tion is extended optionally to capture contextual in-
formation about conditional truth and attribution for
extractions.

ClausIE (Del Corro and Gemulla, 2013): Us-
ing linguistic knowledge and a small set of domain-
independent lexica, CLAUSIE identifies and classi-
fies clauses into clause types, and then generates ex-
tractions based on the clause type. It relies on a pre-
defined set of rules on how to extract assertions in-
stead of learning extraction patterns. Also, it doesn’t
capture the relations between the clauses.

There has been some work in open-domain in-
formation extraction to extract higher-order rela-
tions. KRAKEN (Akbik and Löser, 2012) uses a
predefined set of rules based on dependency parse
to identify fact phrases and argument heads within
fact phrases. But unlike alternative approaches,
it doesn’t canonicalize the fact phrases. There is
another body of work in natural language under-
standing that shares tasks with OIE. AMR parsing
(Banarescu et al.,), semantic role labeling (SRL)
(Toutanova et al., 2008; Punyakanok et al., 2008)
and frame-semantic parsing (Das et al., 2014). In
these tasks, verbs or nouns are analyzed to identify
their arguments. The verb or noun is then mapped to
a semantic frame and roles of each argument in the
frame are identified. These techniques have gained
interest with the advent of hand-constructed seman-
tic resources like PropBank and FrameNet (Kings-
bury and Palmer, 2002; Baker et al., 1998). Gener-
ally, the verb/noun and the semantically labeled ar-
guments correspond to OIE propositions and, there-
fore, the two tasks are considered similar. Systems
like SRL-IE (Christensen et al., 2010) explore if
these techniques can be used for OIE. However,
while OIE aims to identify the relation/predicate be-
tween a pair of arguments, frame-based techniques
aim to identify arguments and their roles with re-
spect to a predicate. Hence, the frames won’t corre-
spond to propositions when both the arguments can-
not be identified for a binary relation or when the
correct argument is buried in long argument phrases.

Dataset

Seed Templates

Pattern Representation

Fact Extraction

Bootstrapping

Syntactic paraphrases

Syntactic Patterns
Propositions

Pattern Learning

Fact Extraction

Seed Extraction

Statement Proposition Extraction Proposition Linking

Pattern Learning

Pattern Representation

Figure 2: System Architecture of NESTIE.

3 Task Definition and NestIE Overview

Task: We focus on the task of OIE, where the sys-
tem takes a natural language statement and extracts
the supported assertions. This is achieved by us-
ing an extractor that uses nested representations to
extract propositions and a linker that connects ex-
tracted propositions to capture context.

Proposition-based Extractor: We propose a
framework to extend open-domain binary-relation
extractors to extract n-ary and complex rela-
tions. As not all assertions can be expressed as
(arg1,rel,arg2), we learn syntactic patterns
for relations that are expressed as nested templates
like, (arg1,rel,(arg2,rel2,arg3)),
((arg1,rel,arg2),rel2,arg3).

Proposition Linking: In practice, it is infeasible
to enumerate simple syntactic pattern templates that
capture the entire meaning of a sentence. Also, in-
creasing the complexity of templates would lead to
sparsity issues while bootstrapping. We assume that
there is a finite set of inter-proposition relations that
can be captured using a small set of rules which take
into account the structural properties of the propo-
sitions and syntactic dependencies between the rela-
tion phrases of the propositions.

System Evaluation: To compare NESTIE to
other alternative methods, we conduct an experi-
mental study on two real-world datasets: Wikipedia
and News. Propositions from each system are eval-
uated for correctness, minimality, and informative-
ness.

57

Template Example

Pattern: A body has been found by police.

Representation: T: (arg1, [rel, by], arg2) (body, [found, by], police)

Pattern: Fallujah is an Iraqi city.

Representation: T: (arg1, be, arg2) (Fallujah, is, city)

Pattern: Ghazi al-Yawar is new president of Iraq.

Representation: T: (arg1, be, [arg2, rel2, arg3]) (Yawar, is, [president, of, Iraq])

Pattern: 10,000 people in Africa died of Ebola.

Representation: T1:([arg1, rel2, arg3], rel, arg2]
T2: (T1, rel3, arg4)

T1: ([people, in, Africa], died, ∅)
T2: (T1, of, Ebola)

arg1 arg2 rel
nsubj cop

arg1 arg2 rel
nsubj cop

arg3
rel2 = nmod(?!:agent).*

arg1 rel arg2
nsubjpass nmod:agent

arg1 rel | VB* arg2
nsubj

arg4
rel3 = nmod(?!:agent).*

arg3
rel2 = nmod.* dobj

Figure 3: Seed templates and corresponding representation.

4 Proposition Extraction

Figure 2 illustrates the system architecture of
NESTIE. First, a set of high-precision seed tem-
plates is used to extract propositions. A template
maps a dependency parse-tree pattern to a triple
representation such as (arg1,rel,arg2) for bi-
nary relations, or a nested triple representation such
as ((arg1,rel,arg2),rel2,arg3) for n-
ary relations. Furthermore, an argument is allowed
to be a sequence of words, “arg2 rel2 arg3”
to capture its nominal modifiers. Then, using a RTE
dataset that contains syntactic paraphrases, NESTIE
learns equivalent parse-tree patterns for each tem-
plate in the seed set. These patterns are used to ex-
tract propositions which are then linked.

4.1 Constructing Seed Set

We use a set of 13 hand-written templates. Each
template maps an extraction pattern for a simple
sentence to corresponding representation. A sub-
set of these templates is shown in Figure 3. To
create a seed set of propositions, we use the RTE
dataset which is comprised of statements and their
entailed hypotheses. We observed that most of the
hypotheses were syntactic variants of the facts in
their corresponding statements. These hypotheses
were also short with a single, independent clause.
These shared sentence constructions could be cap-

tured with a small set of templates. We iteratively
create templates until at least one proposition could
be extracted for each hypothesis. The propositions
from the hypotheses form the set for bootstrapping.

For each seed proposition extracted from a hy-
pothesis, the statement entailing the hypothesis con-
tains all the content words of the proposition and
expresses the same information as the proposition.
However, there is a closed class of words, such as
prepositions, a subset of adverbs, determiners, verbs
etc. that does not modify the underlying meaning of
the hypothesis or the statement and can be consid-
ered auxiliary. These were ignored while construct-
ing the seed set.

Example 1 Consider a statement-hypothesis pair,
Statement: Paul Bremer, the top U.S. civilian admin-
istrator in Iraq, and Iraq’s new president, Ghazi al-
Yawar, visited the northern Iraqi city of Kirkuk.
Hypothesis: Ghazi al-Yawar is the president of Iraq.
The hypothesis is entailed in the statement.
The seed templates extract propositions from
the hypothesis: (al-Yawar,is,president,
(al-Yawar,is,president of Iraq), and
(al-Yawar,is president of,Iraq).

Bootstrapping is a popular technique to gener-
ate positive training data for information extraction
(Collins and Singer, 1999; Hoffmann et al., 2011).
We extend the bootstrapping techniques employed

58

in OLLIE and RENOUN, for n-ary and complex re-
lations. First, instead of learning dependency parse-
tree patterns connecting the heads of the argument
phrases and the relation phrase connecting them, we
learn the dependency parse-tree patterns connect-
ing the heads of all argument and relation phrases
in the template. This allows greater coverage of
context for the propositions and prevents the argu-
ments/relations from being over-specified and/or un-
informative. Second, some of the relations in the
representation are derived from the type of depen-
dency, e.g. type of nominal modifier. As these
relations are implicit, and might not be present in
the paraphrase, they are ignored for learning. In-
tuitively, with such constraints, paraphrases “Mary
gave John a car” and “Mary gave a car to John”
can map to the same representation.

4.2 Extraction Pattern Learning

The biggest challenge in information extraction is
the multitude of ways in which information can be
expressed. Since it is not possible to enumerate
all the different syntactic variations of an assertion,
there is a need to learn general patterns that encode
the various ways of expressing the assertion. In par-
ticular, we learn the various syntactic patterns that
can encode the same information as the seed patterns
and hence can be mapped to same representation.

NESTIE tries to learn the different ways in which
the content words of a seed proposition from a hy-
pothesis can be expressed in the statement that en-
tails this hypothesis. We use the Stanford depen-
dency parser (De Marneffe et al., 2006) to parse
the statement and identify the path connecting the
content words in the parse tree. If such a path ex-
ists, we retain the syntactic constraints on the nodes
and edges in the path and ignore the surface forms
of the nodes in the path. This helps generalize the
learned patterns to unseen relations and arguments.
NESTIE could learn 183 templates from the 13 seed
templates. Figure 4 shows a subset of these patterns.

Example 2 Consider dependency parse-subtree of
the statement and hypothesis from Example 1,
Statement: Iraq

poss−→ president
appos−→ al − Y awar

Hypothesis: al−Y awar nsubj←− president
of−→ Iraq

A seed extraction pattern maps the parse-
tree of the hypothesis to the representation,

(arg1, be, arg2), returning proposition,
(al-Yawar,is,president of Iraq).
With bootstrapping, the syntactic pattern from the
statement is mapped to the same representation.

4.3 Pattern Matching

Once the extraction patterns are learned, we use
these patterns to extract propositions from new un-
seen sentences. We first parse a new sentence and
match the patterns against the parse tree. As the pat-
terns only capture the heads of the arguments and
relations, we expand the extracted propositions to
increase the coverage of context of the arguments
as in the original sentence.

Example 3 In the statement from Example 1, the
extraction patterns capture the dependency path con-
necting the head words: Iraq, administrator
and Paul Bremer. However, to capture the con-
textual information, further qualification of the argu-
ment node, administrator, is required.

Following this observation, we expand the
arguments on nmod, amod, compound,
nummod, det, neg edges. We expand the
relations on advmod, neg, aux, auxpass,
cop, nmod edges. Only the dependency edges not
captured in the pattern are considered for expansion.
Also, the order of words from the original sentence
is retained in the argument phrases.

4.4 Proposition Linking

NESTIE uses a nested representation to capture the
context of extracted propositions. The context could
include condition, attribution, belief, order, reason
and more. Since it is not possible to generate or learn
patterns that can express these complex assertions
as a whole, NESTIE links the various propositions
from the previous step to generate nested proposi-
tions that are complete and closer in meaning to the
original statement.

The proposition linking module is based on the
assumption that the inter-proposition relation can be
inferred from the dependency parse of the sentence
from which propositions were extracted. Some of
the rules employed to link the propositions are:

• The relation of proposition P1 has a relation-
ship to the relation of proposition P2.

59

Template Seed Pattern Learned Pattern

Pattern:

Representation: T: (arg1, [rel, by], arg2)

Pattern:

Representation: T: (arg1, be, arg2)

Pattern:

Representation: T: (arg1, be, [arg2, rel2, arg3])

Pattern:

Representation: T1:([arg1, rel2, arg3], rel, arg2], T2: (T1, rel3, arg4)

arg1 arg2 rel
nsubj cop

arg2 rel | VB* arg1
nsubj dobj

arg2 | NN* arg1 | NN*
appos

arg1 slot1 arg2
nsubj dobj

rel | VB*
xcomp

arg1 rel arg2
nsubjpass nmod:agent

arg1 arg2 rel
nsubj cop

arg3
rel2 = nmod(?!:agent).*

arg1 rel | VB* arg2
nsubj

arg4
rel3 = nmod(?!:agent).*

arg3
rel2 = nmod.* dobj

arg1slot1 arg2 | JJ
ccomp

arg3
nsubj nsubj

Figure 4: Syntactic Patterns learned using bootstrapping.

Consider the statement, “The accident happened af-
ter the chief guest had left the event.” and propo-
sitions, P1: (accident, happen, φ) and P2:
(chief guest, had left, event). Us-
ing dependency edge, nmod:after, the linking re-
turns (P1,after,P2).

• Proposition P1 is argument in proposition P2.

Consider the statement, “A senior offi-
cial said the body appeared to have been
thrown from a vehicle.” and propositions,
P1: (body,appeared to have been
thrown from,vehicle) and P2: (senior
official,said,φ). The linking updates P2 to
(senior official,said,P1).

• An inner nested proposition is replaced with a
more descriptive alternative proposition.

We use dependency parse patterns to link proposi-
tions. We find correspondences between: a ccomp
edge and a clausal complement, an advcl edge and
a conditional, a nmod edge and a relation modi-
fier. For clausal complements, a null argument in the
source proposition is updated with the target propo-
sition. For conditionals and nominal modifiers, a
new proposition is created with the source and target
propositions as arguments. The relation of the new
proposition is derived from the target of the mark
edge from the relation head of target proposition.

4.5 Comparison with Ollie

NESTIE uses an approach similar to OLLIE and
WOE to learn dependency parse based syntactic pat-
terns. However, there are significant differences.
First, OLLIE and WOE rely on extractions from
REVERB and Wikipedia info-boxes respectively for
bootstrapping. Most of these relations are binary.
On the contrary, our algorithm is based on high-
confidence seed templates that are more expressive
and hence learn patterns expressing different ways in
which the proposition as a whole can be expressed.
Though the arguments in OLLIE can be expanded to
include the n-ary arguments, NESTIE encodes them
in the seed templates and learns different ways of
expressing these arguments. Also, similar to OL-
LIE, NESTIE can extract propositions that are not
just mediated by verbs.

5 Experiments

We conducted an experimental study to compare
NESTIE to other state-of-the-art extractors. We
found that it achieves higher informativeness and
produces more correct and minimal propositions
than other extractors.

5.1 Experimental Setup

We used two datasets released by (Del Corro and
Gemulla, 2013) in our experiments: 200 random
sentences from Wikipedia, and 200 random sen-
tences from New York Times (NYT). We compared

60

Dataset Reverb Ollie ClausIE NestIE

NYT dataset
Avg. Informativeness 1.437/5 2.09/5 2.32/5 2.762/5
Correct 187/275 (0.680) 359/529 (0.678) 527/882 (0.597) 469/914 (0.513)
Minimal (among correct) 161/187 (0.861) 238/359 (0.663) 199/527 (0.377) 355/469 (0.757)

Wikipedia dataset
Avg. Informativeness 1.63/5 2.267/5 2.432/5 2.602/5
Correct 194/258 (0.752) 336/582 (0.577) 453/769 (0.589) 415/827 (0.501)
Minimal (among correct) 171/194 (0.881) 256/336 (0.761) 214/453 (0.472) 362/415 (0.872)

Figure 5: Informativeness and number of correct and minimal extractions as fraction of total extractions.

NESTIE against three OIE systems: REVERB, OL-
LIE and CLAUSIE. Since the source code for each of
the extractors was available, we independently ran
the extractors on the two datasets. Next, to make the
extractions comparable, we configured the extrac-
tors to generate triple propositions. REVERB and
CLAUSIE extractions were available as triples by
default. OLLIE extends its triple proposition repre-
sentation. So, we generated an additional extraction
for each of the possible extensions of a proposition.
NESTIE uses a nested representation. So, we simply
extracted the innermost proposition in a nested rep-
resentation as a triple and allowed the subject and
the object in the outer proposition to contain a ref-
erence to the inner triple. By preserving references
the context of a proposition is retained while allow-
ing for queries at various granularity levels.

We manually labeled the extractions obtained
from all extractors to 1) maintain consistency, 2)
additionally, assess if extracted triples were infor-
mative and minimal. Some extractors use heuris-
tics to identify arguments and/or relation phrase
boundaries, which leads to over-specific arguments
that render the extractions unusable for other down-
stream applications. To assess the usability of ex-
tractions, we evaluated them for minimality (Bast
and Haussmann, 2013). Furthermore, the goal of
our system is to extract as many propositions as pos-
sible and lose as little information as possible. We
measure this as informativeness of the set of the ex-
tractions for a sentence. Since computing informa-
tiveness as a percentage of text contained in at least
one extraction could be biased towards long extrac-
tions, we used an explicit rating scale to measure
informativeness.

Two CS graduate student labeled each extraction
for correctness (0 or 1) and minimality (0 or 1). For

each sentence, they label the set of extractions for in-
formativeness (0-5). An extraction is marked correct
if it is asserted in the text and correctly captures the
contextual information. An extraction is considered
minimal if the arguments are not over-specified i.e.
they don’t subsume another extraction or have con-
junctions or are excessively long. Lastly, they rank
the set of extractions on a scale of 0-5 (0 for bad,
5 for good) based on the coverage of information in
the original sentence. The agreement between label-
ers was measured in terms of Cohens Kappa.

5.2 Comparative Results

The results of our experimental study are summa-
rized in Figure 5 which shows the number of cor-
rect and minimal extractions, as well as the total
number of extractions for each extractor and dataset.
For each dataset, we also report the macro-average
of informativeness reported by the labelers. We
found moderate inter-annotator agreement: 0.59 on
correctness and 0.53 on minimality for both the
datasets. Each extractor also includes a confidence
score for the propositions. But since each extractor
has its unique method to find confidence, we com-
pare the precision over all the extractions instead of
a subset of high-confidence extractions.

NESTIE produced many more extractions, and
more informative extractions than other systems.
There appears to be a trade-off between informa-
tiveness and correctness (which are akin to recall
and precision, respectively). CLAUSEIE is the sys-
tem with results closer to NESTIE than other sys-
tems. However, the nested representation and propo-
sition linking used by NESTIE produce substantially
more (1.7-1.8 times more) minimal extractions than
CLAUSEIE, which generates propositions from the
constituents of the clause. Learning non-verb medi-

61

ated extraction patterns and proposition linking also
increase the syntactic scope of relation expressions
and context. This is also reflected in the average
informativeness score of the extractions. NESTIE
achieves 1.1-1.9 times higher informativeness score
than the other systems.

We believe that nested representation directly im-
proves minimality, independent of other aspects of
extractor design. To explore this idea, we conducted
experiments on OLLIE, which does not expand the
context of the arguments heuristically unlike other
extractors. Of the extractions labeled correct but not
minimal by the annotators on the Wikipedia dataset,
we identified extractions that satisfy one of: 1) has
an argument for which there is an equivalent extrac-
tion (nested extractions), 2) shares the same subject
with another extraction whose relation phrase con-
tains the relation and object of this extraction (n-
ary extractions), 3) has an object with conjunction.
Any such extractions can be made minimal and in-
formative with a nested representation. 73.75% of
the non-minimal correct extractions met at least one
of these conditions, so by a post-processing step,
we could raise the minimality score of OLLIE by
17.65%, from 76.1% to 93.75%.

5.3 Error Analysis of NestIE

We did a preliminary analysis of the errors made
by NESTIE. We found that in most of the cases
(about 33%-35%), extraction errors were due to in-
correct dependency parsing. This is not surprising as
NESTIE relies heavily on the parser for learning ex-
traction patterns and linking propositions. An incor-
rect parse affects NESTIE more than other systems
which are not focused on extracting finer grained in-
formation and can trade-off minimality for correct-
ness. An incorrect parse not only affects the pattern
matching but also proposition linking which either
fails to link two propositions or produces an incor-
rect proposition.

Example 4 Consider the statement, “A day after
strong winds stirred up the Hauraki Gulf and broke
the mast of Team New Zealand, a lack of wind
caused Race 5 of the America’s Cup to be aban-
doned today.”. The statement entails following as-
sertions:
A1: “strong winds stirred up the Hauraki Gulf”

A2: “strong winds broke the mast of Team New
Zealand”

A3: “a lack of wind caused Race 5 of the America’s
Cup to be abandoned”

A1 and A2 are parsed correctly. A3 is parsed
incorrectly with Race 5 as object of the verb
caused. Some extractors either don’t capture A3
or return an over-specified extraction, (a lack of
wind, caused, Race 5 of the America ’s Cup to be
abandoned today). Such an extraction is correct but
not minimal.

To maintain minimality, NESTIE aims to extract
propositions, P1: (Race 5 of the America ’s Cup, be
abandoned, φ) and P2: (a lack of wind, caused, P1).
However, it fails because of parser errors. It extracts
incorrect proposition, P3: (a lack of wind, caused,
Race 5) corresponding to A3 and links it to propo-
sitions for A1 and A2. Linking an incorrect propo-
sition generates more incorrect propositions which
hurt the system performance.

However, we hope this problem can be allevi-
ated to some extent as parsers become more robust.
Another approach could be to use clause segmenta-
tion to first identify clause boundaries and then use
NESTIE on reduced clauses. As the problem be-
comes more severe for longer sentences, we wish to
explore clause processing for complex sentences in
future.

Another source of errors was under-specified
propositions. Since our nested representation al-
lows null arguments for intransitive verb phrases
and for linking propositions, failure to find an ar-
gument/proposition results in an under-specified ex-
traction. We found that 27% of the errors were be-
cause of null arguments. However, by ignoring ex-
tractions with null arguments we found that preci-
sion increases by only 4%-6% (on Wikipedia). This
explains that many of the extractions with empty ar-
guments were correct, and need special handling.
Other sources of errors were: aggressive general-
ization of an extraction pattern to unseen relations
(24%), unidentified dependency types while parsing
long, complex sentences (21%), and errors in ex-
panding the scope of arguments and linking extrac-
tions (20%).

62

6 Related Work

As OIE has gained popularity to extract propositions
from large corpora of unstructured text, the problem
of the extractions being uninformative and incom-
plete has surfaced. A recent paper (Bast and Hauss-
mann, 2014) pointed out that a significant fraction
of the extracted propositions is not informative. A
simple inference algorithm was proposed that uses
generic rules for each semantic class of predicate to
derive new triples from extracted triples. Though it
improved the informativeness of extracted triples, it
did not alleviate the problem of lost context in com-
plex sentences. We, therefore, create our own ex-
tractions.

Some recent works (Bast and Haussmann, 2013;
Angeli et al., 2015) have tried to address the prob-
lem of long and uninformative extractions in open-
domain information extraction by finding short en-
tailment or clusters of semantically related con-
stituents from a longer utterance. These clusters are
reduced to triples using schema mapping to known
relation types or using a set of hand-crafted rules.
NESTIE shares similar objectives but uses boot-
strapping to learn extraction patterns.

Bootstrapping and pattern learning has a long his-
tory in traditional information extraction. Systems
like DIPRE (Brin, 1998), SNOWBALL (Agichtein
and Gravano, 2000), NELL (Mitchell, 2010), and
OLLIE bootstrap based on seed instances of a rela-
tion and then learn patterns for extraction. We fol-
low a similar bootstrapping algorithm to learn ex-
traction patterns for n-ary and nested propositions.

Using a nested representation to express com-
plex and n-ary assertions has been studied in closed-
domain or ontology-aided information extraction.
Yago (Suchanek et al., 2008) and (Nakashole and
Mitchell, 2015) extend binary relations to capture
temporal, geospatial and prepositional context infor-
mation. We study such a representation for open-
domain information extraction.

7 Conclusions

We presented NESTIE, a novel open information ex-
tractor that uses nested representation for expressing
complex propositions and inter-propositional rela-
tions. It extends the bootstrapping techniques of pre-
vious approaches to learn syntactic extraction pat-

terns for the nested representation. This allows it to
obtain higher informativeness and minimality scores
for extractions at comparable precision. It produces
1.7-1.8 times more minimal extractions and achieves
1.1-1.2 times higher informativeness than CLAU-
SEIE. Thus far, we have tested our bootstrap learn-
ing and proposition linking approaches only on a
small dataset. We believe that its performance will
improve with larger datasets. NESTIE can be seen
as a step towards a system that has a greater aware-
ness of the context of each extraction and provides
informative extractions to downstream applications.

Acknowledgments

This research was supported in part by NSF grants
IIS 1250880 and IIS 1017296.

References

Eugene Agichtein and Luis Gravano. 2000. Snowball:
Extracting relations from large plain-text collections.
In Proceedings of the fifth ACM conference on Digital
libraries, pages 85–94.

Alan Akbik and Alexander Löser. 2012. Kraken: N-ary
facts in open information extraction. In Proceedings
of the AKBC-WEKEX, pages 52–56.

Gabor Angeli, Melvin Johnson Premkumar, and Christo-
pher D Manning. 2015. Leveraging linguistic struc-
ture for open domain information extraction. In Pro-
ceedings of ACL, pages 26–31.

Collin F Baker, Charles J Fillmore, and John B Lowe.
1998. The berkeley framenet project. In Proceedings
of the 17th international conference on Computational
linguistics-Volume 1, pages 86–90.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. Abstract meaning representation (amr) 1.0
specification.

Michele Banko, Michael J Cafarella, Stephen Soderland,
Matthew Broadhead, and Oren Etzioni. 2007. Open
information extraction for the web. In IJCAI, vol-
ume 7, pages 2670–2676.

Hannah Bast and Elmar Haussmann. 2013. Open infor-
mation extraction via contextual sentence decomposi-
tion. In IEEE-ICSC 2013, pages 154–159.

Hannah Bast and Elmar Haussmann. 2014. More in-
formative open information extraction via simple in-
ference. In Advances in information retrieval, pages
585–590. Springer.

63

Sergey Brin. 1998. Extracting patterns and relations
from the world wide web. In The World Wide Web
and Databases, pages 172–183. Springer.

Janara Christensen, Stephen Soderland, Oren Etzioni,
et al. 2010. Semantic role labeling for open infor-
mation extraction. In Proceedings of the NAACL-HLT
2010, pages 52–60.

Michael Collins and Yoram Singer. 1999. Unsupervised
models for named entity classification. In Proceedings
of the joint SIGDAT conference on empirical methods
in natural language processing and very large cor-
pora, pages 100–110. Citeseer.

Dipanjan Das, Desai Chen, André FT Martins, Nathan
Schneider, and Noah A Smith. 2014. Frame-semantic
parsing. Computational linguistics, 40(1):9–56.

Marie-Catherine De Marneffe, Bill MacCartney, Christo-
pher D Manning, et al. 2006. Generating typed de-
pendency parses from phrase structure parses. In Pro-
ceedings of LREC, volume 6, pages 449–454.

Luciano Del Corro and Rainer Gemulla. 2013. Clausie:
clause-based open information extraction. In Proceed-
ings of the IW3C2, pages 355–366.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of EMNLP, pages 1535–
1545.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2014. Open question answering over curated and ex-
tracted knowledge bases. In Proceedings of ACM-
SIGKDD, pages 1156–1165. ACM.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S Weld. 2011. Knowledge-
based weak supervision for information extraction of
overlapping relations. In Proceedings of ACL-HLT,
pages 541–550.

Paul Kingsbury and Martha Palmer. 2002. From tree-
bank to propbank. In LREC.

Tom Mitchell. 2010. Never-ending learning. Technical
report, DTIC Document, Carnegie Mellon University.

Ndapandula Nakashole and Tom M Mitchell. 2015. A
knowledge-intensive model for prepositional phrase
attachment. In Proceedings of ACL, pages 365–375.

V. Punyakanok, D. Roth, and W. Yih. 2008. The impor-
tance of syntactic parsing and inference in semantic
role labeling. Computational Linguistics, 34(2).

Michael Schmitz, Robert Bart, Stephen Soderland, Oren
Etzioni, et al. 2012. Open language learning for infor-
mation extraction. In Proceedings of EMNLP-CoNLL
2012, pages 523–534.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2008. Yago: A large ontology from
wikipedia and wordnet. Web Semantics: Science, Ser-
vices and Agents on the World Wide Web, 6(3):203–
217.

Kristina Toutanova, Aria Haghighi, and Christopher D
Manning. 2008. A global joint model for semantic
role labeling. Computational Linguistics, 34(2):161–
191.

Fei Wu and Daniel S Weld. 2010. Open information ex-
traction using wikipedia. In Proceedings of the ACL,
pages 118–127.

Alexander Yates, Michael Cafarella, Michele Banko,
Oren Etzioni, Matthew Broadhead, and Stephen
Soderland. 2007. Textrunner: open information ex-
traction on the web. In Proceedings of NAACL-HLT:
Demonstrations, pages 25–26.

64

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 65–74,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

A Position Encoding Convolutional Neural Network Based on Dependency
Tree for Relation Classification

Yunlun Yang Yunhai Tong∗ Shulei Ma Zhi-Hong Deng∗
{incomparable-lun, yhtong, mashulei, zhdeng}@pku.edu.cn

Key Laboratory of Machine Perception (Ministry of Education),
School of Electronics Engineering and Computer Science, Peking University,

Beijing 100871, China

Abstract

With the renaissance of neural network in re-
cent years, relation classification has again
become a research hotspot in natural lan-
guage processing, and leveraging parse trees
is a common and effective method of tack-
ling this problem. In this work, we offer a
new perspective on utilizing syntactic infor-
mation of dependency parse tree and present
a position encoding convolutional neural net-
work (PECNN) based on dependency parse
tree for relation classification. First, tree-
based position features are proposed to en-
code the relative positions of words in depen-
dency trees and help enhance the word repre-
sentations. Then, based on a redefinition of
“context”, we design two kinds of tree-based
convolution kernels for capturing the semantic
and structural information provided by depen-
dency trees. Finally, the features extracted by
convolution module are fed to a classifier for
labelling the semantic relations. Experiments
on the benchmark dataset show that PECNN
outperforms state-of-the-art approaches. We
also compare the effect of different position
features and visualize the influence of tree-
based position feature by tracing back the con-
volution process.

1 Introduction

Relation classification focuses on classifying the se-
mantic relations between pairs of marked entities in
given sentences (Hendrickx et al., 2010). It is a fun-
damental task which can serve as a pre-existing sys-
tem and provide prior knowledge for information ex-

∗Corresponding authors

traction, natural language understanding, informa-
tion retrieval, etc. However, automatic recognition
of semantic relation is challenging. Traditional fea-
ture based approaches rely heavily on the quantity
and quality of hand-crafted features and lexical re-
sources, and it is time-consuming to select an op-
timal subset of relevant features in order to maxi-
mize performance. Though kernel based methods
get rid of the feature selection process, they need
elaborately designed kernels and are also computa-
tionally expensive.

Recently, with the renaissance of neural network,
deep learning techniques have been adopted to pro-
vide end-to-end solutions for many classic NLP
tasks, such as sentence modeling (Socher, 2014;
Kim, 2014) and machine translation (Cho et al.,
2014). Recursive Neural Network (RNN) (Socher
et al., 2012) and Convolutional Neural Network
(CNN) (Zeng et al., 2014) have proven powerful
in relation classification. In contrast to traditional
approaches, neural network based methods own the
ability of automatic feature learning and alleviate the
problem of severe dependence on human-designed
features and kernels.

However, previous researches (Socher et al.,
2012) imply that some features exploited by tradi-
tional methods are still informative and can help en-
hance the performance of neural network in relation
classification. One simple but effective approach is
to concatenate lexical level features to features ex-
tracted by neural network and directly pass the com-
bined vector to classifier. In this way, Socher et al.
(2012), Liu et al. (2015) achieve better performances
when considering some external features produced

65

by existing NLP tools. Another more sophisticated
method adjusts the structure of neural network ac-
cording to the parse trees of input sentences. The
results of (Li et al., 2015) empirically suggest syn-
tactic structures from recursive models might offer
useful power in relation classification. Besides rela-
tion classification, parse tree also gives neural net-
work a big boost in other NLP tasks (Mou et al.,
2015; Tai et al., 2015).

caused

[Convulsions] are by

occur [fever]

that after a

DTaP

[Convulsions] that occur after DTaP are caused by a [fever].

Figure 1: A dependency tree example. Words in square brack-

ets are marked entities. The red dashed-line arrows indicate the

path between two entities.

Dependency parse tree is valuable in relation clas-
sification task. According to our observation, depen-
dency tree usually shortens the distances between
pairs of marked entities and helps trim off redundant
words, when comparing with plain text. For exam-
ple, in the sentence shown in Figure 1, two marked
entities span the whole sentence, which brings much
noise to the recognition of their relation. By con-
trast, in the dependency tree corresponding to the
sentence, the path between two marked entities com-
prises only four words and extracts a key phrase
“caused by” that clearly implies the relation of enti-
ties. This property of dependency tree is ubiquitous
and consistent with the Shortest Path Hypothesis
which is accepted by previous studies (Bunescu and
Mooney, 2005; Xu et al., 2015a; Xu et al., 2015b).

To better utilize the powerful neural network and
make the best of the abundant linguistic knowledge
provided by parse tree, we propose a position encod-
ing convolutional neural network (PECNN) based
on dependency parse tree for relation classification.
In our model, to sufficiently benefit from the impor-
tant property of dependency tree, we introduce the
position feature and modify it in the context of parse

tree. Tree-based position features encode the rela-
tive positions between each word and marked en-
tities in a dependency tree, and help the network
pay more attention to the key phrases in sentences.
Moreover, with a redefinition of “context”, we de-
sign two kinds of tree-based convolution kernels for
capturing the structural information and salient fea-
tures of sentences.

To sum up, our contributions are:

1) We propose a novel convolutional neural network
with tree-based convolution kernels for relation
classification.

2) We confirm the feasibility of transferring the po-
sition feature from plain text to dependency tree,
and compare the performances of different posi-
tion features by experiments.

3) Experimental results on the benchmark dataset
show that our proposed method outperforms the
state-of-the-art approaches. To make the mech-
anism of our model clear, we also visualize the
influence of tree-based position feature on rela-
tion classification task.

2 Related Work

Recent studies usually present the task of relation
classification in a supervised perspective, and tra-
ditional supervised approaches can be divided into
feature based methods and kernel methods.

Feature based methods focus on extracting and
selecting relevant feature for relation classifica-
tion. Kambhatla (2004) leverages lexical, syntactic
and semantic features, and feeds them to a maxi-
mum entropy model. Hendrickx et al. (2010) show
that the winner of SemEval-2010 Task 8 used the
most types of features and resources, among all par-
ticipants. Nevertheless, it is difficult to find an opti-
mal feature set, since traversing all combinations of
features is time-consuming for feature based meth-
ods.

To remedy the problem of feature selection men-
tioned above, kernel methods represent the input
data by computing the structural commonness be-
tween sentences, based on carefully designed ker-
nels. Mooney and Bunescu (2005) split sentences
into subsequences and compute the similarities us-
ing the proposed subsequence kernel. Bunescu and

66

caused

[Convulsions] are by

[fever]

softmax

word representation: word embedding +
tree-based position feature

convolution with
tree-based kernels

max-pooling
fully connected layer +

softmax classifier

Figure 2: The framework of PECNN. The red and blue circles represent the word embeddings and tree-based position features of

words. The yellow and green circles stand for the feature maps extracted by two kinds of convolution kernels respectively.

Mooney (2005) propose a dependency tree kernel
and extract information from the Shortest Depen-
dency Path (SDP) between marked entities. Since
kernel methods require similarity computation be-
tween input samples, they are relatively computa-
tionally expensive when facing large-scale datasets.

Nowadays, deep neural network based ap-
proaches have become the main solutions to relation
classification. Among them, some handle this task
by modifying sentence modeling methods. Socher et
al. (2012) build RNN on constituency trees of sen-
tences, and apply the model to relation recognition
task. Zeng et al. (2014) propose the use of position
feature for improving the performance of CNN in
relation classification. dos Santos et al. (2015) di-
minish the impact of noisy class by using a pairwise
ranking loss function based CNN. Meanwhile, in-
spired by the ideas of traditional methods, some re-
cent researches concentrate on mining information
from the SDP. Xu et al. (2015b) use a multichan-
nel LSTM network to model the SDP in given sen-
tences. Liu et al. (2015) reserve the subtrees attached
to the SDP and propose an augmented SDP based
CNN. Neural network based methods offer the ad-
vantage of automatic feature learning and also scale
well with large amounts of data.

3 Proposed Model

Given a sentence s with two marked entities e1 and
e2, we aim to identify the semantic relation between
e1 and e2 in relation classification. As the set of
target relations is predefined, this task can be formu-

lated as a multi-class classification problem. In this
section, we detailedly describe our proposed model
designed for this problem.

3.1 Framework

The schematic illustration of the framework is
shown in Figure 2.

First, the dependency tree of a sentence is gen-
erated by the Stanford Parser (Klein and Manning,
2003). For each word in the tree, its word embed-
ding and tree-based position features are concate-
nated as its representation. The position feature of a
word is determined by the relative position between
the word and marked entities in the dependency tree.

Next, with tree-based kernels, convolution opera-
tions are conducted on each node of the dependency
tree. Compared with plain text, dependency tree
could provide a word with more meaningful con-
text, thus making tree-based kernel more effective.
After convolution, we apply max-pooling over the
extracted feature maps to capture the most important
features.

At last, the output of max-pooling layer, i.e. the
feature vector of input sentence, is fed to a softmax
classifier for labelling the semantic relation of enti-
ties in each sentence.

3.2 Word Represetation

The representation of a word is composed of two
parts: word embedding and tree-based position fea-
ture.

67

3.2.1 Word Embedding
Distributed representation of words in a vector

space help learning algorithms to achieve better per-
formance in NLP tasks (Mikolov et al., 2013). Such
representation is usually called word embedding in
recent works. High-quality word embedding is able
to capture precise syntactic and semantic informa-
tion by training unsupervisedly on large-scale cor-
pora.

In our model, we initialize the word embeddings
by pretraining them on a large corpus and further
fine-tune them in training phase.

3.2.2 Tree-based Position Feature
Position Feature (PF) is first proposed by (Col-

lobert et al., 2011) for semantic role labeling. (Zeng
et al., 2014) exploit position feature as a substitute
for traditional structure features in relation classifi-
cation. The main idea of position feature is to map
each discrete distance to a real-valued vector. It is
similar to word embedding, except that words are
replaced by discrete distances. For instance, let us
examine again the sentence shown in Figure 1,

[Convulsions]e1 that occur after DTaP are caused by
a [fever]e2.

the relative distances of caused to Convulsions and
fever are respectively 6 and −3. Each relative dis-
tance is further mapped to a dpf (a hyperparameter)
dimensional vector, which is randomly initialized.
Supposing pf6 and pf−3 are the corresponding vec-
tors of distance 6 and −3, the position feature of
caused is given by concatenating these two vectors
[pf6,pf−3].

Position feature on plain text proves to be infor-
mative (dos Santos et al., 2015), while it may suf-
fer from several problems. According to our case
study, adverbs or unrelated entities that appear be-
tween two entities in a sentence could significantly
affect the performance of position feature, as these
words only change the relative distance to entities
without providing any more useful information for
relation classification. Similarly, position feature of-
ten fails to handle sentences in which marked enti-
ties are too far from each other.

On the other hand, dependency tree focuses on the
action and agents in a sentence (Socher et al., 2014),
which is valuable for relation classification. As we

have mentioned above, dependency tree is able to
shorten the distances between pairs of marked enti-
ties and help trim off redundant words. Therefore,
it is straightforward and reasonable to transfer the
position feature from plain text to dependency tree.

We propose two kinds of Tree-based Position Fea-
ture which we refer as TPF1 and TPF2.

TPF1 encodes the relative distances of current
word to marked entities in dependency trees. The
“relative distance” here refers to the length of the
shortest dependency path between current word and
target entity. The sign of the distance is used to dis-
tinguish whether current word is a descendant of tar-
get entity. After calculating the relative distances of
words in the tree, we can get their TPF1 by mapping
relative distances to corresponding vectors, which is
the same as the PF in plain text.

To more precisely describe the position of a word,
TPF2 incorporates more information given by de-
pendency tree. TPF2 represents the relative posi-
tions between current word and marked entities by
encoding their shortest paths. For a word and an en-
tity, the shortest path between them can be separated
by their lowest common ancestor, and the lengths
of the two sub-paths are sufficient for encoding the
shortest path and the relative position between the
word and the entity. As a result, we formally rep-
resent the relative position using a 2-tuple, in which
two elements are the lengths of the two separated
sub-paths respectively. Thereafter, each unique rel-
ative position is mapped to a real-valued vector.

caused

[Convulsions] are by

occur [fever]

that after a

DTaP

0

-1

-2 -2

-3

1

2
2

3

4(0,2) (0,2)

(0,3)

(0,1)

(0,0) (1,1)

(1,0)

(1,1)

(1,2)

(1,3)

Figure 3: Example of Tree-based Position Features. The red

numbers are relative distances in TPF1. The blue 2-tuples are

relative positions in TPF2.

For example, in Figure 3, the path between Con-
vulsions and by is Convulsions→ caused←by. In

68

TPF1, the relative distance of by to Convulsions is 2,
the length of this path. In TPF2, the lowest common
ancestor caused splits the path into two subpaths of
length 1, so the relative position between Convul-
sions and by is (1, 1) (encoded in 2-tuple). More ex-
amples of the tree-based position features are shown
in Figure 3.

TPF1 and TPF2 both offer good strategies for en-
coding word position in dependency tree. TPF2 is
more fine-grained than TPF1 and TPF1 is a simpli-
fied version of TPF2.

In our model, for each word in dependency trees,
its word embedding and tree-based position feature
are concatenated to form its representation, which is
subsequently fed to the convolutional layer.

3.3 Convolution Methods

In the classic CNN architecture of (Collobert et al.,
2011) and its variants (Kim, 2014), a convolution
window covers a word and its context, i.e. its neigh-
boring words. Thus convolution only captures local
features around each word. Words that are not in a
same window will not interact, even if they are syn-
tactically related.

Compared with plain text, dependency tree could
provide a word with more meaningful context. In
a dependency tree, words are connected if they are
in some dependency relationship. To capitalize on
these syntactic information, we regard the parent and
children of a word (i.e. nodes neighboring this word)
as its new context. Changing the definition of “con-
text” leads to modification of convolution kernel. To
implement this idea, we design two kinds of tree-
based kernels (Kernel-1 and Kernel-2), and apply
them to sentences in dependency tree form.

Formally, for a word x in the dependency tree,
let p be its parent and c1, · · · , cn be its n children.
Their vector representation are respectively denoted
by x, p, c1, · · · , cn ∈ Rd. The convolution process
of Kernel-1 is formulated as

z1xi =g(W
1
x · x+W 1

p · p+W 1
c · ci)

for i = 1, · · · , n
(1)

where z1xi ∈ Rn1 and n1 is the number of Kernel-1,
and W 1

x ,W
1
p ,W

1
c ∈ Rn1×d are weight parameters

corresponding to the word, its parent and children

respectively. g is the non-linear activation function.
For leaf nodes which have no child, i.e. n = 0, we
assign each of them a child of which the vector rep-
resentation is 0. For the root node, p is set to be
0.

Similarly, the output of Kernel-2 is given by

z2xi =g(W
2
x · x+W 2

lc · ci +W 2
rc · ci+1)

for i = 1, · · · , n− 1
(2)

where z2xi ∈ Rn2 and n2 is the number of Kernel-
2, and W 2

x ,W
2
lc,W

2
rc ∈ Rn2×d are weight parame-

ters associated with the word and its two neighbor-
ing children. If n ≤ 1, we simply add one or two 0
children, just like the zero padding strategy.

Kernel-1 aims at extracting features from words
of multiple levels in dependency tree, while Kernel-
2 focuses on mining the semantic information be-
tween words which share the same parent. Kernel-
1 and Kernel-2 both consider 3 words at a time
because the experimental results of previous re-
searches (Zeng et al., 2014; dos Santos et al., 2015)
suggest that trigram features are relatively more use-
ful in relation classification. And it is also straight-
forward to extend these kernels to a larger size and
apply them to other tasks.

After convolution with tree-based kernels, we ap-
ply a global max-pooling operation over extracted
features by taking the maximum value in each di-
mension, which is formulated as

h1 = elemax
x,i

z1xi (3)

h2 = elemax
x,i

z2xi (4)

where h1 ∈ Rn1 , h2 ∈ Rn2 , and elemax is the op-
eration which gives the element-wise maximum of
all input vectors. As a consequence, the output of
convolution process is [h1,h2], the combination of
features extracted by two kinds of kernels.

3.4 Output and Training Objective

After convolution, the extracted feature is further
passed to a fully connected softmax layer whose out-
put is the probability distribution over all types of
relations.

69

Since we treat the relation classification task as a
multi-class classification problem, the training ob-
jective is the cross-entropy error. For regularization,
we apply dropout (Srivastava et al., 2014) to the fea-
ture vector extracted by convolution and penalize the
fully connected layer with l2 regularizer as well.

Some other dependency tree based methods like
(Liu et al., 2015), (Xu et al., 2015a) and (Xu et al.,
2015b), all focus on using different kinds of neu-
ral networks to model the shortest dependency path
(SDP) between entities. By contrast, PECNN ex-
tracts features from the whole dependency tree, so
that the information out of SDP will be taken into
consideration as well. The empirical results of (dos
Santos et al., 2015) suggest that when position fea-
tures exist, modeling the full sentence yields a bet-
ter performance than only using the subsentence be-
tween entities. With the help of tree-based position
feature, our model is capable of evaluating the im-
portance of different parts of dependency trees and
tends to pay relatively more attention to SDP.

Some methods enhancing their performances by
proposing dataset-specific strategies. dos Santos et
al. (2015) treat the class Other as a special class and
omit its embedding. Xu et al. (2015a) take the re-
lation dimensionality into account and introduce a
negative sampling strategy to double the number of
training samples, which can be regarded as data aug-
mentation. These strategies do not conflict with our
model, but we decide not to integrate them into our
methods as we aim to offer a general and effective
feature extraction model for relation classification.

4 Experiments

4.1 Dataset and Evaluation Metric

To evaluate our method, we conduct experiments on
the SemEval2010 Task 8 dataset which is a widely
used benchmark for relation classification. The
dataset contains 8, 000 training sentences and 2, 717
test sentences. In each sentence, two entities are
marked as target entities.

The predefined target relations include 9 directed
relations and an undirected Other class. The 9
directed relations are Cause-Effect, Component-
Whole, Content-Container, Entity- Destination,
Entity-Origin, Instrument-Agency, Member-
Collection, Message-Topic and Product-Producer.

“Directed” here means, for example, Cause-
Effect(e1, e2) and Cause-Effect(e2, e1) are two
different relations. In another word, the direction-
ality of relation also matters. And sentences that
do not belong to any directed relation are labelled
as Other. Therefore, relation classification on this
dataset is a 19-class classification problem.

Following previous studies, we use the official
evaluation metric, macro-averaged F1-score with di-
rectionality taken into account and the Other class
ignored.

4.2 Training Details

Since there is no official validation set, 10% of the
training sentences are taken out for hyperparameter
tuning and early stopping.

When converting sentences to dependency trees,
we note that some prepositions such as “by”, “in”
and “of”, might be important clues to relation clas-
sification. To reserve these valuable information, we
use the Stanford Parser without the collapsed op-
tion.

In the dataset, there are some entities consisting of
multiple words, which make the calculation of rela-
tive position ambiguous. To solve this problem, we
take the last word as the representation of an entity,
as the last word is usually the predominant word.

For word embeddings, we initialize them using
the 300-dimensional word2vec vectors1. The vec-
tors are trained on 100 billion words from Google
News. Words not present in the word2vec vectors
are initialized by sampling each dimension from a
uniform distribution (Kim, 2014). Tree-based posi-
tion features are 50-dimensional and initialized ran-
domly. Therefore the representation of each word
has dimensionality of 400.

We use ReLU as the activation function. The
number of convolution kernels is 500 for each kind,
1, 000 in total. The dropout rate is 0.5, and the co-
efficient of l2 penalty of fully connected layer is set
to 10−6. These parameters are selected through grid
search on validation set. The network is trained with
the Adadelta update rule (Zeiler, 2012). The net-
work is implemented with Theano (Theano Devel-
opment Team, 2016).

1https://code.google.com/p/word2vec/

70

Classifier Features F1

Without External Lexical Features
MVRNN word embedding, constituency tree 79.1

CNN word embedding, position feature 78.9

CR-CNN
word embedding 82.8∗

word embedding, position feature 84.1∗

depLCNN
word embedding, dependency tree 81.9
word embedding, dependency tree 84.0◦

SDP-LSTM word embedding, dependency tree 83.0
PECNN word embedding, dependency tree, tree-based position feature 84.0

With External Lexical Features

SVM
POS, prefixes, morphological, WordNet, dependency parse

82.2Levin classes, PropBankFrameNet, NomLex-Plus, Google n-gram
paraphrases, TextRunner

MVRNN word embedding, constituency tree, POS, NER, WordNet 82.4
CNN word embedding, position feature, WordNet 82.7

DepNN
word embedding, dependency tree, WordNet 83.0
word embedding, dependency tree, NER 83.6

depLCNN
word embedding, dependency tree, WordNet 83.7
word embedding, dependency tree, WordNet 85.6◦

SDP-LSTM
word embedding, dependency tree, POS embedding

83.7
WordNet embedding, grammar relation embedding

PECNN
word embedding, dependency tree, tree-based position feature, POS 84.6
NER, WordNet

Table 1: Comparison of different relation classification models. The symbol ∗ indicates the results with special treatment of the

class Other. The symbol ◦ indicates the results with data augmentation strategy.

4.3 Results

The performances of our proposed model and other
state-of-the-art methods are shown in Table 1.

First, we compare PECNN with the following
baselines when no external lexical feature is used.

Socher et al. (2012) assign a vector and a matrix
to each word for the purpose of semantic composi-
tion, and build recursive neural network along con-
stituency tree (MVRNN). It is noteworthy that this
work is the first one who confirms the feasibility of
applying neural network to relation classification.

Following the ideas of (Collobert et al., 2011),
Zeng et al. (2014) first solve relation classifica-
tion using convolutional neural network (CNN). The
position feature introduced by them proves effec-
tive. dos Santos et al. (2015) build a similar CNN
called CR-CNN but replace the objective function
with a pairwise ranking loss. By treating the noisy
class Other as a special class, this method achieves

an F1 of 84.1. The F1 score is 82.7 if no special
treatment is applied.

The rest two baselines focus on modeling the
Shortest Dependency Paths (SDP) between marked
entities. Xu et al. (2015a)) (depLCNN) integrate the
relation directionality into CNN and achieve an F1
of 84.0 with a data augmentation strategy called
negative sampling. Without such data augmenta-
tion, their F1 score is 81.9. Xu et al. (2015b) (SDP-
LSTM) represent heterogeneous features as embed-
dings and propose a multichannel LSTM based re-
current neural network for picking up information
along the SDP. Their F1 score is 83.0 when only
word embedding is used as the word representation.

Without considering any external lexical feature
and dataset-specific strategy, our model achieve an
F1 of 84.0, suggesting that tree-based position fea-
tures and kernels are effective. Comparing with the
CNN based on plain text, our model benefits from
dependency tree based network and obtain a notable

71

[Convulsions] that occur after DTaP are caused by a [fever]
Word

0.00

0.05

0.10

0.15

0.20

0.25

P
ro

p
o
rt

io
n

No Postion Feature

Tree-based Position Feature

Figure 4: Visualization of the effect of tree-based position feature. The proportions of words change with the use of tree-based

position feature.

improvement.
When external lexical features are available, we

take two more baselines into account. The first one
(SVM) is a typical example of traditional feature-
based methods which rely largely on hand-crafted
features. Benefitting from various features and re-
sources, this method won the SemEval 2010 Task 8
by a large margin (Hendrickx et al., 2010). Liu et al.
(2015) (DepNN) reserve the subtrees attached to the
SDP and propose an augmented SDP based CNN.

Most of these baselines concatenate external lex-
ical features to features extracted by neural network
and directly pass the combined vector to classifier.
SDP-LSTM represents lexical features as embed-
dings and enhances its word representation. For fair
comparison, we add three features (POS tags, NER
tags and WordNet hypernyms of marked entities) to
the vector extracted by our model and retrain the net-
work. Thus, our model achieves an F1 of 84.6 and
outperforms all existing baselines in a fair condition
where no data augmentation strategy is adopted. The
enhancement we gain from external features is less,
comparing with other baselines. This implies that
our model is able to mine useful features from lim-
ited resources, even no extra information is avail-
able.

4.4 Effect of Different Position Features

Position Feature F1

plain text PF 83.21
TPF1 83.99
TPF2 83.90

Table 2: Comparison of different position features.

Table 2 summarizes the performances of proposed
model when different position features are exploited.
To concentrate on studying the effect of position fea-
tures, we do not involve lexical features in this sec-
tion. As the table shows, the position feature on
plain text is still effective in our model and we ac-
credit its satisfactory result to the dependency in-
formation and tree-based kernels. The F1 scores of
tree-based position features are higher since they are
“specially designed” for our model.

Contrary to our expectation, the more fine-grained
TPF2 does not yield a better performance than
TPF1, and two kinds of TPF give fairly close results.
One possible reason is that the influence of a more
elaborated definition of relative position is minimal.
As most sentences in this dataset are of short length
and their dependency trees are not so complicated,
replacing TPF1 with TPF2 usually brings little new
structural information and thus results in a similar
F1 score.

However, though the performances of different
position features are close, tree-based position fea-
ture is an essential part of our model. The F1 score
is severely reduced to 75.22 when we remove the
tree-based position feature in PECNN.

4.5 Effect of Tree-based Position Feature

For shallow CNN in NLP, visualization offers clear
and convincing explanations for the mechanism of
neural networks (dos Santos and Gatti, 2014; Mou
et al., 2015). Moreover, it is easy to implement.

Note that in the max-pooling step, for each ker-
nel, we select the feature which has the largest value.
This feature corresponds to 3 words in the convolu-

72

tion step, and we regard them as the most relevant
words extracted by this kernel, with respect to the
sentence . Since there are 1, 000 kernels in total, we
count 3, 000 words (0 will be ignored) and calculate
the proportion of each different word. Intuitively,
the more important a word is in this task, the larger
its proportion will be.

In Figure 4, we compare the proportions of words
in the example sentence when tree-based position
feature (TPF) is used and not. As we can see, the
proportions of two entities, Convulsions and fever,
and the phrase caused by all increase visibly with
the presence of TPF, suggesting that TPF is effec-
tive in helping the neural network pay more atten-
tion to the crucial words and phrases in a sentence.
The word occur is also picked up by our model since
it is an important candidate clue to relation classifi-
cation. Meanwhile, the influence of irrelevant entity
DTaP is remarkably diminished as expected.

5 Conclusion

This work presents a dependency parse tree based
convolutional neural network for relation classifica-
tion. We propose tree-based position features to en-
code the relative positions of words in a dependency
tree. Meanwhile, tree-based convolution kernels are
designed to gather semantic and syntactic informa-
tion in dependency trees. Experimental results prove
the effectiveness of our model. Comparing with
plain text based CNN, our proposed kernels and po-
sition features boost the performance of network by
utilizing dependency trees in a new perspective.

6 Acknowledgements

This work is partially supported by the National
High Technology Research and Development Pro-
gram of China (Grant No. 2015AA015403) and
the National Natural Science Foundation of China
(Grant No. 61170091). We would also like to
thank the anonymous reviewers for their helpful
comments.

References
Razvan C Bunescu and Raymond J Mooney. 2005. A

shortest path dependency kernel for relation extrac-
tion. In Proceedings of the conference on Human Lan-
guage Technology and Empirical Methods in Natural

Language Processing, pages 724–731. Association for
Computational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using RNN encoder-decoder for statistical ma-
chine translation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1724–1734.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Cıcero Nogueira dos Santos and Maıra Gatti. 2014. Deep
convolutional neural networks for sentiment analysis
of short texts. In Proceedings of the 25th International
Conference on Computational Linguistics (COLING),
Dublin, Ireland.

Cı́cero Nogueira dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Classifying relations by ranking with
convolutional neural networks. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing of the
Asian Federation of Natural Language Processing,
ACL 2015, July 26-31, 2015, Beijing, China, Volume
1: Long Papers, pages 626–634.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav
Nakov, Diarmuid Ó Séaghdha, Sebastian Padó, Marco
Pennacchiotti, Lorenza Romano, and Stan Szpakow-
icz. 2010. Semeval-2010 task 8: Multi-way classi-
fication of semantic relations between pairs of nom-
inals. In Proceedings of the 5th International Work-
shop on Semantic Evaluation, pages 33–38. Associa-
tion for Computational Linguistics.

Nanda Kambhatla. 2004. Combining lexical, syntactic,
and semantic features with maximum entropy mod-
els for extracting relations. In Proceedings of the
ACL 2004 on Interactive poster and demonstration
sessions, page 22. Association for Computational Lin-
guistics.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1746–1751.

Dan Klein and Christopher D Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-

73

tional Linguistics-Volume 1, pages 423–430. Associ-
ation for Computational Linguistics.

Jiwei Li, Thang Luong, Dan Jurafsky, and Eduard H.
Hovy. 2015. When are tree structures necessary for
deep learning of representations? In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portu-
gal, September 17-21, 2015, pages 2304–2314.

Yang Liu, Furu Wei, Sujian Li, Heng Ji, Ming Zhou,
and Houfeng Wang. 2015. A dependency-based neu-
ral network for relation classification. In Proceed-
ings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing of
the Asian Federation of Natural Language Processing,
ACL 2015, July 26-31, 2015, Beijing, China, Volume
2: Short Papers, pages 285–290.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K.Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 26, pages 3111–3119.
Curran Associates, Inc.

Raymond J Mooney and Razvan C Bunescu. 2005. Sub-
sequence kernels for relation extraction. In Advances
in neural information processing systems, pages 171–
178.

Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, and
Zhi Jin. 2015. Discriminative neural sentence mod-
eling by tree-based convolution. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2015, Lisbon, Por-
tugal, September 17-21, 2015, pages 2315–2325.

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositional-
ity through recursive matrix-vector spaces. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 1201–
1211. Association for Computational Linguistics.

Richard Socher, Andrej Karpathy, Quoc V Le, Christo-
pher D Manning, and Andrew Y Ng. 2014. Grounded
compositional semantics for finding and describing
images with sentences. Transactions of the Associa-
tion for Computational Linguistics, 2:207–218.

Richard Socher. 2014. Recursive Deep Learning for
Natural Language Processing and Computer Vision.
Ph.D. thesis, Stanford University.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing of the Asian Federation of Natural Lan-
guage Processing, ACL 2015, July 26-31, 2015, Bei-
jing, China, Volume 1: Long Papers, pages 1556–
1566.

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints, abs/1605.02688, May.

Kun Xu, Yansong Feng, Songfang Huang, and Dongyan
Zhao. 2015a. Semantic relation classification via
convolutional neural networks with simple negative
sampling. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2015, Lisbon, Portugal, September 17-
21, 2015, pages 536–540.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015b. Classifying relations via long
short term memory networks along shortest depen-
dency paths. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2015, Lisbon, Portugal, September 17-
21, 2015, pages 1785–1794.

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR, abs/1212.5701.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and
Jun Zhao. 2014. Relation classification via convolu-
tional deep neural network. In Proceedings of COL-
ING, pages 2335–2344.

74

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 75–84,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning to Recognize Discontiguous Entities

Aldrian Obaja Muis Wei Lu
Singapore University of Technology and Design
{aldrian muis,luwei}@sutd.edu.sg

Abstract

This paper focuses on the study of recognizing
discontiguous entities. Motivated by a previ-
ous work, we propose to use a novel hyper-
graph representation to jointly encode discon-
tiguous entities of unbounded length, which
can overlap with one another. To compare
with existing approaches, we first formally in-
troduce the notion of model ambiguity, which
defines the difficulty level of interpreting the
outputs of a model, and then formally analyze
the theoretical advantages of our model over
previous existing approaches based on linear-
chain CRFs. Our empirical results also show
that our model is able to achieve significantly
better results when evaluated on standard data
with many discontiguous entities.

1 Introduction

Building effective automatic named entity recogni-
tion (NER) systems that is capable of extracting
useful semantic shallow information from texts has
been one of the most important tasks in the field of
natural language processing. An effective NER sys-
tem can typically play an important role in certain
downstream NLP tasks such as relation extraction,
event extraction, and knowledge base construction
(Hasegawa et al., 2004; Al-Rfou and Skiena, 2012).

Most traditional NER systems are capable of ex-
tracting entities1 as short spans of texts. Two ba-
sic assumptions are typically made when extract-

1Or sometimes mentions are considered, which can be
named, nominal or pronominal references to entities (Florian
et al., 2004). In this paper we use “mentions” and “entities”
interchangeably.

EGD showed [hiatal hernia]1 and vertical [laceration]2

in distal [esophagus]2 with [blood in [stomach]4]3 and
overlying [lac]4.

Figure 1: Discontiguous entities in a medical domain. Words

annotated with the same index are part of the same entity. Note

that entity 3 and entity 4 overlap with one another.

ing entities: 1) entities do not overlap with one an-
other, and 2) each entity consists of a contiguous se-
quence of words. These assumptions allow the task
to be modeled as a sequence labeling task, for which
many existing models are readily available, such as
linear-chain CRFs (McCallum and Li, 2003).

While the above two assumptions are valid for
most cases, they are not always true. For example,
in the entity University of New Hampshire of type
ORG there exists another entity New Hampshire of
type LOC. This violates the first assumption above,
yet it is crucial to extract both entities for subsequent
tasks such as relation extraction and knowledge base
construction. Researchers therefore have proposed
to tackle the above issues in NER using more so-
phisticated models (Finkel and Manning, 2009; Lu
and Roth, 2015). Such efforts still largely rely on
the second assumption.

Unfortunately, the second assumption is also not
always true in practice. There are also cases where
the entities are composed of multiple discontiguous
sequences of words, such as in disorder mention
recognition in clinical texts (Pradhan et al., 2014b),
where the entities (disorder mentions in this case)
may be discontiguous. Consider the example shown
in Figure 1. In this example there are four enti-

75

ties, the first one, hiatal hernia, is a conventional
contiguous entity. The second one, laceration ...
esophagus, is a discontiguous entity, consisting of
two parts. The third and fourth ones, blood in stom-
ach and stomach ... lac (for stomach laceration),
are overlapping with each other, with the fourth be-
ing discontiguous at the same time.

For such discontiguous entities which can poten-
tially overlap with other entities in complex man-
ners, existing approaches such as those based on
simple sequence tagging models have difficulties
handling them accurately. This stems from the fact
that there is a very large number of possible entity
combinations in a sentence when the entities can be
discontiguous and overlapping.

Motivated by this, in this paper we propose a
novel model that can better represent both contigu-
ous and discontiguous entities which can overlap
with one another. Our major contributions can be
summarized as follows:

• We propose a novel model that is able to repre-
sent both contiguous and discontiguous entities.

• Theoretically, we introduce the notion of model
ambiguity for quantifying the ambiguity of dif-
ferent NER models that can handle discontigu-
ous entities. We present a study and make com-
parisons about different models’ ambiguity un-
der this theoretical framework.

• Empirically, we demonstrate that our model
can significantly outperform conventional ap-
proaches designed for handling discontiguous
entities on data which contains many discontigu-
ous entities.

2 Related Work

Learning to recognize named entities is a popular
task in the field of natural language processing. A
survey by Nadeau (2007) lists several approaches
in NER, including Hidden Markov Models (HMM)
(Bikel et al., 1997), Decision Trees (Sekine, 1998),
Maximum Entropy Models (Borthwick and Sterling,
1998), Support Vector Machines (SVM) (Asahara
and Matsumoto, 2003), and also semi-supervised
and unsupervised approaches. Ratinov (2009) uti-
lizes averaged perceptron to solve this problem and
also focused on four key design decisions, achiev-
ing state-of-the-art in MUC-7 dataset. These ap-

proaches work on standard texts, such as news ar-
ticles, and the entities to be recognized are defined
to be contiguous and non-overlapping.

Noticing that many named entities contain other
named entities inside them, Finkel and Manning
(2009) proposed a model that is capable of extract-
ing nested named entities by representing the sen-
tence as a constituency parse tree, with named enti-
ties as phrases. As a parsing-based model, the ap-
proach has a time complexity that is cubic in the
number of words in the sentence.

Recently, Lu and Roth (2015) proposed a model
that can represent overlapping entities. In addition to
supporting nested entities, theoretically this model
can also represent overlapping entities where nei-
ther is nested in another. The model represents each
sentence as a hypergraph with nodes indicating en-
tity types and boundaries. Compared to the previ-
ous model, this model has a lower time complexity,
which is linear in the number of words in the sen-
tence.

All the above models focus on NER in conven-
tional texts, where the assumption of contiguous en-
tities is valid. In the past few years, there is a grow-
ing body of works on recognizing disorder mentions
in clinical text. These disorder mentions may be
discontiguous and also overlapping. To tackle such
an issue, a research group from University of Texas
Health Science Center at Houston (Tang et al., 2013;
Zhang et al., 2014; Xu et al., 2015) first utilized a
conventional linear-chain CRF to recognize disorder
mention parts by extending the standard BIO (Begin,
Inside, Outside) format, and next did some postpro-
cessing to combine different components. Though
effective, as we will see later, such a model comes
with some drawbacks. Nevertheless, their work mo-
tivated us to perform further analysis on this issue
and propose a novel model specifically designed for
discontiguous entity extraction.

3 Models

3.1 Linear-chain CRF Model

Before we present our approach, we would like to
spend some time to discuss a simple approach based
on linear-chain CRFs (Lafferty et al., 2001). This
approach is primarily based on the system by Tang
et al. (2013), and this will be the baseline system

76

EGD showed hiatal[B] hernia[I] and vertical laceration[BD]

in distal esophagus[BD] with blood[B] in[I] stomach[BH] and
overlying lac[BD].

Infarctions[BH] either water[BD] shed[ID] or embolic[BD]

Figure 2: Entity encoding in the linear-chain model. Top: for

the example in Fig 1. Bottom: for the second example in Fig 4.

The O labels are not shown.

that we will make comparison with in later sections.
The problem is regarded as a sequence prediction

task, where each word is assigned a label similar to
BIO format often used for NER. We used the en-
coding used by Tang et al. (2013), which uses 7
tags to handle entities that can be discontiguous and
overlapping. Specifically, we used B, I, O, BD, ID,
BH, and IH to denote Beginning of entity, Inside en-
tity, Outside of entity, Beginning of Discontiguous
entity, Inside of Discontiguous entity, Beginning of
Head, and Inside of Head. To encode a sentence
in this format, first we identify the contiguous word
sequences which are parts of multiple entities. We
call these head components and we label each word
inside each component with BH (for the first word
in each component) or IH. Then we find contiguous
word sequences which are parts of a discontiguous
entity, which we call the body components. Words
inside those components which have not been la-
beled are labeled with BD (for the first word in each
component) or ID. Finally, words that are parts of a
contiguous entity are called contiguous component,
and, if they have not been labeled, are labeled as B
(for the first word in each component) or I.

This encoding is lossy, since the information
on which parts constitute the same entity is lost.
The top example in Figure 2 is the encoding of
the example shown in Figure 1. During decod-
ing, based on the labels only it is not entirely
clear whether “laceration” should be combined with
“esophagus” or with “stomach” to form a single
mention. For the bottom example, we cannot deduce
that “Infarctions” alone is a mention, since there
is no difference in the encoding of a sentence with
only two mentions {“Infarctions . . . water shed”,
“Infarctions . . . embolic”} or having three mentions
with “Infarctions” as another mention, since in both
cases, the word “Infarctions” is labeled with BH.

Also, it should be noted that some of the label se-
quences are not valid. For example, a sentence in
which there is only one word labeled as BD is in-
valid, since a discontiguous entity requires at least
two words to be labeled as BD or BH. This is, how-
ever, a possible output from the linear CRF model,
due to the Markov assumption inherent in linear
CRF models. Later we see that our models do not
have this problem.

3.2 Our Model
Linear-chain CRF models are limited in their repre-
sentational power when handling complex entities,
especially when they can be discontiguous and can
overlap with one another. While recent models have
been proposed to effectively handle overlapping en-
tities, how to effectively handle discontiguous en-
tities remains a research question to be answered.
Motivated by previous efforts on handling overlap-
ping entities (Lu and Roth, 2015), in this work we
propose a model based on hypergraphs that can bet-
ter represent entities that can be discontiguous and
at the same time be overlapping with each other.

Unlike the previous work (Lu and Roth, 2015), we
establish a novel theoretical framework to formally
quantify the ambiguity of our hypergraph-based
models and justify their effectiveness by making
comparisons with the linear-chain CRF approach.

Now let us introduce our novel hypergraph rep-
resentation. A hypergraph can be used to represent
entities of different types and their combinations in
a given sentence. Specifically, a hypergraph is con-
structed as follows. For the word at position k, we
have the following nodes:

• Ak: this node represents all entities that begin
with the current or a future word (to the right of
the current word).

• Ek: this node represents all entities that begin
with the current word.

• Tk
t : this node represents entities of certain spe-

cific type t that begin with the current word.
There is one Tk

t for each different type.

• Bk
t,i: this node indicates that the current word is

part of the i-th component of an entity of type t.

• Ok
t,i: this node indicates that the current word

appears in between (i-1)-th and i-th components
of an entity of type t.

77

There is also a special leaf node, X-node, which
indicates the end (i.e., right boundary) of an entity.

The nodes are connected by directed hyperedges,
which for the purpose of explaining our models are
defined as those edges that connect one node, called
the parent node, to one or more child nodes. For ease
of notation, in the rest of this paper we use edge to
refer to directed hyperedge.

The edges Each Ak is a parent to Ek and Ak+1,
encoding the fact that the set of all entities at position
k is the union of the set of entities starting exactly at
current position (Ek) with the set of entities starting
at or after position k + 1 (Ak+1).

Each Ek is a parent to Tk
1 , . . . , Tk

T , where T is
the total number of possible types that we consider.
Each Tk

t has two edges where it serves as a parent,
within one it is parent to Bk

t,0 and within another it is
to X. These edges encode the fact that at position k,
either there is an entity of type t that begins with the
current word (to Bk

t,0), or there is no entity of type t
that begins with the current word (to X).

In the full hypergraph, each Bk
t,i is a parent to

Bk+1
t,i (encoding the fact that the next word also be-

longs to the same component of the same entity),
to Ok+1

t,i+1 (encoding the fact that this word is part
of a discontiguous entity, and the next word is the
first word separating current component and the next
component), and to X (representing that the entity
ends at this word). Also there are edges with all pos-
sible combinations of Bk+1

t,i , Ok+1
t,i+1, and X as the

child nodes, representing overlapping entities. For
example, the edge Bk

t,i → (Bk+1
t,i ,X) denotes that

there is an entity which continues to the next word
(the edge to Bk+1

t,i), while there is another entity end-
ing at k-th word (the edge to X). In total there are 7
edges in which Bk

t,i is a parent, which are:

• Bk
t,i→ (X)

• Bk
t,i→ (Ok+1

t,i+1)

• Bk
t,i→ (Ok+1

t,i+1 ,X)

• Bk
t,i→ (Bk+1

t,i)

• Bk
t,i→ (Bk+1

t,i ,X)

• Bk
t,i→ (Bk+1

t,i ,Ok+1
t,i+1)

• Bk
t,i→ (Bk+1

t,i ,Ok+1
t,i+1 ,X)

Analogously, Ok
t,i has three edges that connect to

A A A A A A

E E E E E E

T T T T T T

B0

O1 O1 O1 O1

B1 B1 B1

X X X X X

X

X X

[[[Infarctions]1]2]3 either [water shed]2 or [embolic]3

Figure 3: The hypergraph for SHARED model for the second

example in Figure 4. The type information in T, B, and O-

nodes is not shown. The X-node is drawn multiple times for

better visualization.

Ok+1
t,i , Bk+1

t,i+1, and both. Note that Ok
t,i is not a par-

ent to X by definition.
During testing, the model will predict a subgraph

which will result in the predicted entities after de-
coding. We call this subgraph representing certain
entity combination entity-encoded hypergraph.

For example, Figure 3 shows the entity-encoded
hypergraph of our model encoding the three men-
tions in the second example in Figure 4. The edge
from the T-node for the first word to the B-node for
the first word shows that there is at least one entity
starting with this word. The three places where an
X-node is connected to a B-node show the end of
the three entities. Note that this hypergraph clearly
shows the presence of the three mentions without
ambiguity, unlike a linear-chain encoding of this ex-
ample where it cannot be inferred that “Infarctions”
alone is a mention, as discussed previously. In this
paper, we set the maximum number of components
to be 3 since the dataset does not contain any men-
tion with more than 3 components.

Also note that this model supports discontiguous
and overlapping mentions of different types since
each type has its own set of O-nodes and B-nodes,
unlike the linear-chain model, which supports only
overlapping mentions of the same type.

We also experimented with a variant of this
model, where we split the T-nodes, B-nodes, and
O-nodes further according to the number of com-
ponents. We split Bk

t,i into Bk
t,i,j , i = 1 . . . j, j =

78

1 . . . 3 which represents that the word is part of the
i-th component of a mention with total j compo-
nents. Similarly we split Ok

t,i into Ok
t,i,j and Tk

t into
Tk

t,j . We call the original version SHARED model,
and this variant SPLIT model. The motivation for
this variant is that the majority of overlaps in the
data are between discontiguous and contiguous enti-
ties, and so splitting the two cases – one component
(contiguous) and more (discontiguous) – will reduce
ambiguity for those cases.

These models are still ambiguous to some degree,
for example when an O-node has two child nodes
and two parents, we cannot decide which of the par-
ent node is paired with which child node. However,
in this paper we argue that:

• This model is less ambiguous compared to the
linear-chain model, as we will show later theo-
retically and empirically.

• Every output of our model is a valid prediction,
unlike the linear-chain model since this model
will always produce a valid path from T-nodes
to the X-nodes representing some entities.

We will also show through experiments that our
models can encode the entities more accurately.

3.3 Interpreting Output Structures

Both the linear-chain CRF model and our models are
still ambiguous to some degree, so we need to handle
the ambiguity in interpreting the output structures
into entities. For all models, we define two gen-
eral heuristics: ENOUGH and ALL. The ENOUGH

heuristic handles ambiguity by trying to produce a
minimal set of entities which encodes to the one pro-
duced by the model, while ALL heuristic handles
ambiguity by producing the union of all possible en-
tity combinations that encode to the one produced
by the model. For more details on how these heuris-
tics are implemented for each model, please refer to
the supplementary material.

3.4 Training

For both models, the training follows a log-linear
formulation, by maximizing the loglikelihood of the
training data D:

L(D) =
∑

(x,y)∈D

 ∑

e∈E(x,y)

[
wT f(e)

]
− logZw(x)

−λ||w||2

Here (x,y) is a training instance consisting of
the sentence x and the entity-encoded hypergraph
y ∈ Y where Y is the set of all possible mention-
encoded hypergraphs. The vector w consists of fea-
ture weights, which are the model parameters to be
learned. The set E(x,y) consists of all edges present
in the entity-encoded hypergraph y for input x. The
function f(e) returns the features defined over the
edge e, Zw(x) is the normalization term which gives
the sum of scores over all possible entity-encoded
hypergraphs in Y that is relevant to the input x, and
finally λ is the `2-regularization parameter.

4 Model Ambiguity

The main aim of this paper is to assess how well
each model can represent the discontiguous entities,
even in the presence of overlapping entities.

In this section, we will theoretically compare the
models’ ambiguity, which is defined as the aver-
age number of mention combinations that map to
the same encoding in a model. Now, to compare
two models, instead of calculating the ambiguity di-
rectly, we can calculate the relative ambiguity be-
tween the two models directly by comparing the
number of canonical encodings in the two models.

A canonical encoding is a fixed, selected repre-
sentation of a particular set of mentions in a sen-
tence, among (possibly) several alternative represen-
tations. Several alternatives may be present due to
the ambiguity of the encoding-decoding process and
also since the output of the model is not restricted
to a specific rule. For example, for the text “John
Smith”, a model trained in BIO format might output
“B-PER I-PER” or “I-PER I-PER”, and both will
still mean that “John Smith” is a person, although
the “correct” encoding would of course be “B-PER
I-PER”, which is selected as the canonical encoding.
Intuitively, a canonical encoding is a formal way to
say that we only consider the “correct” encodings.

A model with larger number of canonical encod-
ings will, on average, have less ambiguity compared
to the one with smaller number of canonical encod-
ings. Subsequently, a model with less ambiguity will
be more precise in predicting entities.

Let MLI(n),MSH(n),MSP(n) denote the num-
ber of canonical encodings of the linear-chain,
SHARED, and SPLIT model, respectively, for a sen-

79

tence with n words. Then we formally define the
relative ambiguity of model M1 over model M2,
Ar(M1,M2), as follows:

Ar(M1,M2) = lim
n→∞

log
∑n

i=1MM2(i)

log
∑n

i=1MM1(i)
(1)

Ar(M1,M2) > 1 means model M1 is more am-
biguous than M2. Now, we claim the following:

Theorem 4.1. Ar(LI, SH) > 1

We provide a proof sketch below. Due to space
limitation, we cannot provide the full dynamic pro-
gramming calculation. We refer the reader to the
supplementary material for the details.

Proof Sketch The number of canonical encodings
in the linear-chain model is less than 7n since there
are 7 possible tags for each of the n words and not
all of the 7n tag sequences are canonical encodings.
So we have MLI(n) < 7n and thus we can derive
log
∑n

i=1MLI(i) < 3n log 2.
For our models, by employing some dynamic pro-

gramming adapted from the inside algorithm (Baker,
1979), we can calculate the growth order of the num-
ber of canonical encodings for SHARED model to ar-
rive at a conclusion that ∀n > n0,

∑n
i=1MSH(i) >

C · 210n for some constants n0, C. Then we have:

Ar(LI, SH)≥ lim
n→∞

logC+10n log 2

3n log 2
=
10

3
>1 (2)

Theorem 4.1 says that the linear-chain model is
more ambiguous compared to our SHARED model.
Similarly, we can also establish Ar(SH, SP) > 1.
Later we also see this empirically from experiments.

5 Experiments

5.1 Data
To allow us to conduct experiments to empirically
assess different models’ capability in handling en-
tities that can be discontiguous and can potentially
overlap with one another, we need a text corpus an-
notated with entities which can be discontiguous and
overlapping with other entities. We found the largest
of such corpus to be the dataset from the task to
recognize disorder mentions in clinical text, initially
organized by ShARe/CLEF eHealth Evaluation Lab
(SHEL) in 2013 (Suominen et al., 2013) and contin-
ued in SemEval-2014 (Pradhan et al., 2014a).

The definition of the task is to recognize men-
tions of concepts that belong to the Unified Medi-
cal Language System (UMLS) semantic group dis-
orders from a set of clinical texts. Each text has been
annotated with a list of disorder mentions by two
professional coders trained for this task, followed by
an open adjudication step (Suominen et al., 2013).

Unfortunately, even in this dataset, only 8.95% of
the mentions are discontiguous. Working directly
on such data would prevent us from understanding
the true effectiveness of different models when han-
dling entities which can be discontiguous and over-
lapping. In order to truly understand how different
models behave on data with discontiguous entities,
we consider a subset of the data where we consider
those sentences which contain at least one discon-
tiguous entity. We call the resulting subset the “Dis-
contiguous” subset of the “Original” dataset. Later
we will also still use the training data of the “Origi-
nal” dataset in the experiments.

Note that this “Discontiguous” subset still con-
tains contiguous entities since a sentence usually
contains more than one entity. The subset is a bal-
anced dataset with 53.61% of the entities being dis-
contiguous and the rest contiguous. We then split
this dataset into training, development, and test set,
according to the split given in SemEval 2014 setting
(henceforth LARGE dataset). To see the impact of
dataset size, we also experiment on a subset of the
LARGE dataset, following the SHEL 2013 setting,
with the development set in the LARGE dataset used
as test set (henceforth SMALL dataset). The training
and development set of the SMALL dataset comes
from a random 80% (Tr80) and 20% (Tr20) split of
the training set in LARGE dataset.

The statistics of the datasets, including the num-
ber of overlaps between the entities in the “All” col-
umn, are shown in Table 1.

We note that this dataset only contains one type of
entity. In later experiments, in order to evaluate the
models on multiple types, we create another dataset
where we split the entities based on the entity-level
semantic category. This information is available for
some entities through the Concept Unique Identifier
(CUI) annotation in the data. In total we have three
types: two types (type A and B) based on the seman-
tic category, and one type (type N) for those entities

80

Split #Sentences
Number of mentions #Overlaps

1 part 2 parts 3 parts Total All Diff
Train 534 544 607 44 1,195 205 58
- Tr80 416 448 476 33 957 164 48
- Tr20 118 96 131 11 238 41 10
Dev 303 357 421 18 796 240 28
Test 430 584 610 16 1,210 327 61

Table 1: The statistics of the data. Tr80 and Tr20 refers to the

80% and 20% partitions of the full training data.

having no semantic category information2. See the
supplementary material for more details. The num-
ber of overlaps between different types is shown in
the “Diff” column in Table 1. Except for a handful
overlaps in development set, all overlaps involve at
least one discontiguous entity. Our main result will
still be based on the dataset with one type of entity.

The patient had blood in his mouth and on his tongue,
pupils were pinpoint and reactive.
- blood in his mouth
- blood . . . on his tongue
- pupils . . . pinpoint

Infarctions either water shed or embolic
- Infarctions
- Infarctions . . . water shed
- Infarctions . . . embolic

You see blood or dark/black material when you vomit or
have a bowel movement.
- blood . . . vomit
- blood . . . bowel movement
- dark . . . material . . . vomit
- dark . . . bowel movement
- black material . . . vomit
- black material . . . bowel movement

Figure 4: Examples of discontiguous and overlapping men-

tions, taken from the dataset.

Figure 4 shows some examples of the mentions.
The first example shows two discontiguous men-
tions that do not overlap. The second example shows
a typical discontiguous and overlapping case. The
last example shows a very hard case of overlapping

2It is tempting to just ignore these entities since the N type
does not convey any specific information about the entities in
it. However, due to the dataset size, excluding this type will
lead to very small number of interactions between types. So we
decided to keep this type

and discontiguous mentions, as each of the compo-
nents in {blood, dark, black material} is paired with
each of the word in {vomit, bowel movement}, re-
sulting in six mentions in total, with one having three
components (dark . . . material . . . vomit).

5.2 Features

Motivated by the features used by Zhang et
al. (2014), for both the linear-chain CRF model and
our models we use the following features: neigh-
bouring words with relative position information
(we consider previous and next k words, where
k=1, 2, 3), neighbouring words with relative posi-
tion information paired with the current word, word
n-grams containing the current word (n=2,3), POS
tag for the current word, POS tag n-grams con-
taining the current word (n=2,3), orthographic fea-
tures (prefix, suffix, capitalization, lemma), note
type (discharge summary, echo report, radiology,
and ECG report), section name (e.g. Medications,
Past Medical History)3, Brown cluster, and word-
level semantic category information4. We used Stan-
ford POS tagger (Toutanova et al., 2003) for POS
tagging, and NLP4J package5 for lemmatization.
For Brown cluster features, following Tang et al.
(2013), we used 1,000 clusters from the combina-
tion of training, development, and test set, and used
all the subpaths of the cluster IDs as features.

5.3 Experimental Setup

We evaluated the three models on the SMALL dataset
and the LARGE dataset.

Note that in both the SMALL and LARGE dataset,
about half of all mentions are discontiguous, both in
training and test set. We also want to see whether
training on a set where the majority of the mentions
are contiguous will affect the performance on rec-
ognizing discontiguous mentions. So we also per-
formed another experiment where we trained each
model on the original training set where the major-
ity of the entities are contiguous. We refer to this
original dataset as “Train-Orig” (it contains 10,405
sentences, including those with no entities) and the

3Section names were determined by some heuristics, refer
to the supplementary material for more information

4This is standard information that can be extracted from
UMLS. See (Zhang et al., 2014) for more details.

5http://www.github.com/emorynlp/nlp4j/

81

SMALL LARGE

Train-Disc Train-Orig Train-Disc Train-Orig
P R F1 P R F1 P R F1 P R F1

LI-ENH 59.7 39.8 47.8 71.0 45.8 55.7 54.7 41.2 47.0 64.1 46.5 53.9
LI-ALL 16.6 43.5 24.1 55.5 49.2 52.2 15.2 44.9 22.7 52.8 49.4 51.1
SH-ENH 85.9 39.7 54.3 82.2 48.0 60.6 76.9 40.1 52.7 73.9 49.1 59.0
SH-ALL 85.9 39.7 54.3 82.2 48.0 60.6 76.0 40.5 52.8 73.4 49.5 59.1
SP-ENH 86.7 37.8 52.7 82.5 48.0 60.7 79.4 38.6 52.0 75.3 48.8 59.2
SP-ALL 86.7 37.8 52.7 82.5 48.0 60.7 79.4 38.6 52.0 75.3 48.8 59.2

Table 2: Results on the two datasets and two different training data after optimizing regularization hyperparameter λ in development

set. The -ENH and -ALL suffixes refer to the ENOUGH and ALL heuristics. The best result in each column is put in boldface.

earlier one as “Train-Disc”.
First we trained each model on the training set,

varying the regularization hyperparameter λ,6 then
the λ with best result in the development set using
the respective ENOUGH heuristic for each model is
chosen for final result in the test set.

For each experiment setting, we show precision
(P), recall (R) and F1 measure. Precision is the
percentage of the mentions predicted by the model
which are correct, recall is the percentage of men-
tions in the dataset correctly discovered by the
model, and F1 measure is the harmonic mean of pre-
cision and recall.

5.4 Results and Discussions

The full results are recorded in Table 2.
We see that in general our models have higher pre-

cision compared to the linear-chain baseline. This
is expected, since our models have less ambiguity,
which means that from a given output structure it is
easier in our model to get the correct interpretation.
We will explore this more in Section 5.5.

The ALL heuristic, as expected, results in higher
recall, and this is more pronounced in the linear-
chain model, with up to 4% increase from the
ENOUGH heuristic, achieving the highest recall in
three out of four settings. The high recall of the ALL

heuristic in the linear-chain model can be explained
by the high level of ambiguity the model has. Since
it has more ambiguity compared to our models, one
label sequence predicted by the model produces a lot
of entities, and so it is more likely to overlap with the
gold entities. But this has the drawback of very low
precision as we can see in the result.

We see switching from one heuristic to the other

6Taken from the set {0.125, 0.25, 0.5, 1.0, 2.0}

does not affect the results of our models much.
Looking at the output of our models, they tend to
produce output structures with less ambiguity, which
causes little difference in the two heuristics.

One example where the baseline made a mis-
take is the sentence: “Ethanol Intoxication and
withdrawal”. The gold mentions are “Ethanol
Intoxication” and “Ethanol withdrawal”. But
the linear-chain model labeled it as “[Ethanol][B]
[Intoxication][I] and [withdrawal][BD]”, which is in-
consistent since there is only one discontiguous
component. Our models do not have this issue be-
cause in our models every subgraph that may be pre-
dicted translates to valid mention combinations, as
discussed in Section 3.2.

In the “Train-Orig” column, we see that all mod-
els can recognize discontiguous entities better when
given more data, even though the majority of the en-
tities in “Train-Orig” are contiguous.

5.5 Experiments on Ambiguity
To see the ambiguity of each model empirically,
we run the decoding process for each model given
the gold output structure, which is the true label
sequence for the linear-chain model and the true
mention-encoded hypergraph for our models.

We used the entities from the training and devel-
opment sets for this experiment, and we compare the
“Original” datasets with the “Discontiguous” subset
to see that the ambiguity is more pronounced when
there are more discontiguous entities. Then we show
the precision and recall errors (defined as 1−P and
1−R, respectively) in Table 3.

Since the ALL heuristics generates all possible
mentions from the given encoding, theoretically it
should give perfect recall. However, due to errors
in the training data, there are mentions which can-

82

Discontiguous Original
Prec Err Rec Err Prec Err Rec Err

LI-ALL 63.66% 0.30% 23.81% 0.17%
SH-ALL 1.73% 0.30% 0.35% 0.17%
SP-ALL 1.05% 0.30% 0.22% 0.17%
LI-ENH 2.74% 3.82% 0.52% 0.90%
SH-ENH 1.21% 1.46% 0.25% 0.38%
SP-ENH 0.75% 0.90% 0.17% 0.28%

Table 3: Precision and recall errors (%) of each model in the

“Discontiguous” and “Original” datasets when given the gold

output structure (label sequence in linear-chain model, hyper-

graph in our models). Lower numbers are better.

Type #Ent
Linear-chain SHARED SPLIT

P R F P R F P R F
A 289 69.8 59.9 64.4 79.4 56.1 65.7 81.0 56.1 66.3
B 418 50.0 34.0 40.5 56.8 29.0 38.4 58.2 28.0 37.8
N 503 62.1 37.8 47.0 84.8 43.3 57.4 84.9 42.4 56.5
Total 1210 60.3 41.7 49.3 74.3 41.4 53.2 75.5 40.7 52.9

Table 4: Results on the LARGE dataset when entities are split

into three types: A, B, and N. #Ent is the number of entities

not be properly encoded in the models7. Removing
these errors results in perfect recall (0% recall er-
ror). This means that all models are complete: they
can encode any mention combinations.

We see however, a very huge difference on the
precision error between the linear-chain model and
our models, even more when most of the entities
are discontiguous. For the discontiguous subset with
the ALL heuristic, the linear-chain model produced
5,463 entities, while the SHARED and SPLIT model
produced 2,020 and 2,006 entities, respectively. The
total number of gold entities is 1,991. This means
one encoding in the linear-chain model produces
much more distinct mention combinations compared
to our model, which again shows that the linear-
chain model has more ambiguity. Similarly, we can
deduce that the SHARED model has slightly more
ambiguity compared to the SPLIT model. This con-
firms our theoretical result presented previously.

It is also worth noting that in the ENOUGH heuris-
tic our models have smaller errors compared to the
linear-chain model, showing that when both mod-
els can predict the true output structure (the correct

7There are 19 errors in the original dataset, and 6 in the dis-
contiguous subset, which include duplicate mentions and men-
tions with incorrect boundaries

label sequence for the baseline model and mention-
encoded hypergraph for our models), it is easier in
our models to get the desired mention combinations.

5.6 Experiments on Multiple Entity Types

We used the LARGE dataset with the multiple-type
entities for this experiment. We ran our two models
and the linear-chain CRF model with the ENOUGH

heuristic on this multi-type dataset, in the same set-
ting as Train-Orig in previous experiments, and the
result is shown in Table 4. We used the best lambda
from the main experiment for this experiment.

There is a performance drop compared to the
LARGE-Train-Orig results in Table 2, which is ex-
pected since the presence of multiple types make the
task harder. But in general we still see that our mod-
els are still better than the baseline, especially the
SPLIT model, which shows that in the presence of
multiple types, our models can still work better than
the baseline model.

6 Conclusions and Future Work

In this paper we proposed new models that can bet-
ter represent discontiguous entities that can be over-
lapping at the same time. We validated our claims
through theoretical analysis and empirical analysis
on the models’ ambiguity, as well as their perfor-
mances on the task of recognizing disorder men-
tions on datasets with a substantial number of dis-
contiguous entities. When the true output structure
is given, which is still ambiguous in all models, our
models show that it is easier to produce the desired
mention combinations compared to the linear-chain
CRF model with reasonable heuristics. We note that
an extension similar to semi-Markov or weak semi-
Markov (Muis and Lu, 2016) is possible for our
models. We leave this for future investigations.

The supplementary material and our implementa-
tions for the models are available at:
http://statnlp.org/research/ie

Acknowledgments

We would like to thank the anonymous reviewers for
their helpful feedback, and also the ShARe/CLEF
eHealth Evaluation Lab for providing us the dataset.
This work is supported by MOE Tier 1 grant
SUTDT12015008.

83

References

Rami Al-Rfou and Steven Skiena. 2012. SpeedRead: A
Fast Named Entity Recognition Pipeline. Proceedings
of COLING 2012, pages 51–66.

Masayuki Asahara and Yuji Matsumoto. 2003. Japanese
Named Entity Extraction with Redundant Morpholog-
ical Analysis. In Proceedings of HLT-NAACL ’03, vol-
ume 1, pages 8–15.

James K Baker. 1979. Trainable Grammars for Speech
Recognition. Journal of the Acoustical Society of
America, 65(S1):S132.

Daniel M. Bikel, Scott Miller, Richard M. Schwartz,
and Ralph Weischedel. 1997. Nymble: a high-
performance learning name-finder. Proceedings of the
fifth conference on Applied Natural Language Pro-
cessing (ANLP ’97), pages 194–201.

Andrew Borthwick and John Sterling. 1998. NYU: De-
scription of the MENE named entity system as used
in MUC-7. In Proceedings of the 7th Message Under-
standing Conference (MUC-7).

Jenny Rose Finkel and Christopher D. Manning. 2009.
Nested named entity recognition. In Proceedings of
the 2009 Conference on Empirical Methods in Natural
Language Processing (EMNLP ’09), volume 1, pages
141–150.

Radu Florian, Hany Hassan, Abraham Ittycheriah,
Hongyan Jing, Nanda Kambhatla, Xiaoqiang Luo,
H Nicolov, and Salim Roukos. 2004. A statistical
model for multilingual entity detection and tracking.
In Proceedings of HLT-NAACL ’04, pages 1–8.

Takaaki Hasegawa, Satoshi Sekine, and Ralph Grishman.
2004. Discovering Relations Among Named Entities
from Large Corpora. Proceedings of the 42nd An-
nual Meeting on Association for Computational Lin-
guistics, pages 415–422.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data. In Proceedings of International Conference on
Machine Learning (ICML ’01), pages 282–289.

Wei Lu and Dan Roth. 2015. Joint Mention Extraction
and Classification with Mention Hypergraphs. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP ’15),
pages 857–867.

Andrew McCallum and Wei Li. 2003. Early results
for named entity recognition with conditional random
fields, feature induction and web-enhanced lexicons.
In Proceedings of HLT-NAACL ’03, volume 4, pages
188–191.

Aldrian Obaja Muis and Wei Lu. 2016. Weak Semi-
Markov CRFs for Noun Phrase Chunking in Informal

Text. In Proceedings of HLT-NAACL ’16, pages 714–
719.

David Nadeau and Satoshi Sekine. 2007. A survey of
named entity recognition and classification. Lingvisti-
cae Investigationes, 30(1):3–26.

Sameer Pradhan, Noémie Elhadad, Wendy W. Chapman,
Suresh Manandhar, and Guergana Savova. 2014a.
SemEval-2014 Task 7: Analysis of Clinical Text. In
Proceedings of the 8th International Workshop on Se-
mantic Evaluation (SemEval 2014), pages 54–62.

Sameer Pradhan, Noémie Elhadad, Brett R. South, David
Martinez, Lee Christensen, Amy Vogel, Hanna Suomi-
nen, Wendy W. Chapman, and Guergana Savova.
2014b. Evaluating the state of the art in disorder
recognition and normalization of the clinical narrative.
Journal of the American Medical Informatics Associa-
tion : JAMIA, 22(1):143–54.

Lev Ratinov and Dan Roth. 2009. Design Challenges
and Misconceptions in Named Entity Recognition. In
Proceedings of the Thirteenth Conference on Com-
putational Natural Language Learning (CoNLL ’09),
pages 147–155.

Satoshi Sekine. 1998. NYU: Description of the Japanese
NE system used for MET-2. In Proceedings of the 7th
Message Understanding Conference (MUC-7).

Hanna Suominen, Sanna Salanterä, Sumithra Velupillai,
Wendy W. Chapman, Guergana Savova, Noemie El-
hadad, Sameer Pradhan, Brett R. South, Danielle L.
Mowery, Gareth J. F. Jones, Johannes Leveling, Liadh
Kelly, Lorraine Goeuriot, David Martinez, and Guido
Zuccon, 2013. Overview of the ShARe/CLEF eHealth
Evaluation Lab 2013, pages 212–231. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Buzhou Tang, Hongxin Cao, Yonghui Wu, Min Jiang,
and Hua Xu. 2013. Recognizing clinical entities
in hospital discharge summaries using Structural Sup-
port Vector Machines with word representation fea-
tures. BMC medical informatics and decision making,
13 Suppl 1(Suppl 1):S1.

Kristina Toutanova, Dan Klein, and Christopher D Man-
ning. 2003. Feature-rich part-of-speech tagging with
a cyclic dependency network. In Proceedings of HLT-
NAACL ’03, volume 1, pages 252–259.

Jun Xu, Yaoyun Zhang, Jingqi Wang, Yonghui Wu, and
Min Jiang. 2015. UTH-CCB : The Participation of the
SemEval 2015 Challenge Task 14. In Proceedings of
the 9th International Workshop on Semantic Evalua-
tion (SemEval 2015), pages 311–314.

Yaoyun Zhang, Jingqi Wang, Buzhou Tang, Yonghui
Wu, Min Jiang, Yukun Chen, and Hua Xu. 2014.
UTH CCB: A report for SemEval 2014 – Task 7 Anal-
ysis of Clinical Text. In Proceedings of the 8th Inter-
national Workshop on Semantic Evaluation (SemEval
2014), pages 802–806.

84

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 85–95,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Modeling Human Reading with Neural Attention

Michael Hahn Frank Keller
Institute for Language, Cognition and Computation

School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB, UK

s1582047@inf.ed.ac.uk keller@inf.ed.ac.uk

Abstract
When humans read text, they fixate some
words and skip others. However, there have
been few attempts to explain skipping behav-
ior with computational models, as most ex-
isting work has focused on predicting read-
ing times (e.g., using surprisal). In this pa-
per, we propose a novel approach that models
both skipping and reading, using an unsuper-
vised architecture that combines a neural at-
tention with autoencoding, trained on raw text
using reinforcement learning. Our model ex-
plains human reading behavior as a tradeoff
between precision of language understanding
(encoding the input accurately) and economy
of attention (fixating as few words as possi-
ble). We evaluate the model on the Dundee
eye-tracking corpus, showing that it accurately
predicts skipping behavior and reading times,
is competitive with surprisal, and captures
known qualitative features of human reading.

1 Introduction

Humans read text by making a sequence of fixations
and saccades. During a fixation, the eyes land on a
word and remain fairly static for 200–250 ms. Sac-
cades are the rapid jumps that occur between fixa-
tions, typically lasting 20–40 ms and spanning 7–
9 characters (Rayner, 1998). Readers, however, do
not simply fixate one word after another; some sac-
cades go in reverse direction, and some words are
fixated more than once or skipped altogether.

A range of computational models have been de-
veloped to account for human eye-movements in
reading (Rayner and Reichle, 2010), including mod-
els of saccade generation in cognitive psychology,

such as EZ-Reader (Reichle et al., 1998, 2003,
2009), SWIFT (Engbert et al., 2002, 2005), or
the Bayesian Model of Bicknell and Levy (2010).
More recent approaches use machine learning mod-
els trained on eye-tracking data to predict human
reading patterns (Nilsson and Nivre, 2009, 2010;
Hara et al., 2012; Matthies and Søgaard, 2013).
Both types of models involve theoretical assump-
tions about human eye-movements, or at least re-
quire the selection of relevant eye-movement fea-
tures. Model parameters have to be estimated in a
supervised way from eye-tracking corpora.

Unsupervised approaches, that do not involve
training the model on eye-tracking data, have also
been proposed. A key example is surprisal, which
measures the predictability of a word in context, de-
fined as the negative logarithm of the conditional
probability of the current word given the preced-
ing words (Hale, 2001; Levy, 2008). Surprisal is
computed by a language model, which can take the
form of a probabilistic grammar, an n-gram model,
or a recurrent neural network. While surprisal has
been shown to correlate with word-by-word reading
times (McDonald and Shillcock, 2003a,b; Demberg
and Keller, 2008; Frank and Bod, 2011; Smith and
Levy, 2013), it cannot explain other aspects of hu-
man reading, such as reverse saccades, re-fixations,
or skipping. Skipping is a particularly intriguing
phenomenon: about 40% of all words are skipped
(in the Dundee corpus, see below), without apparent
detriment to text understanding.

In this paper, we propose a novel model architec-
ture that is able to explain which words are skipped
and which ones are fixated, while also predicting

85

reading times for fixated words. Our approach is
completely unsupervised and requires only unla-
beled text for training.

Compared to language as a whole, reading is a
recent innovation in evolutionary terms, and peo-
ple learning to read do not have access to compe-
tent readers’ eye-movement patterns as training data.
This suggests that human eye-movement patterns
emerge from general principles of language pro-
cessing that are independent of reading. Our start-
ing point is the Tradeoff Hypothesis: Human read-
ing optimizes a tradeoff between precision of lan-
guage understanding (encoding the input accurately)
and economy of attention (fixating as few words as
possible). Based on the Tradeoff Hypothesis, we ex-
pect that humans only fixate words to the extent nec-
essary for language understanding, while skipping
words whose contribution to the overall meaning can
be inferred from context.

In order to test these assumptions, this paper in-
vestigates the following questions:

1. Can the Tradeoff Hypothesis be implemented
in an unsupervised model that predicts skipping
and reading times in quantitative terms? In par-
ticular, can we compute surprisal based only on
the words that are actually fixated?

2. Can the Tradeoff Hypothesis explain known
qualitative features of human fixation patterns?
These include dependence on word frequency,
word length, predictability in context, a con-
trast between content and function words, and
the statistical dependence of the current fixa-
tion on previous fixations.

To investigate these questions, we develop a generic
architecture that combines neural language model-
ing with recent ideas on integrating recurrent neural
networks with mechanisms of attention, which have
shown promise both in NLP and in computer vision.
We train our model end-to-end on a large text cor-
pus to optimize a tradeoff between minimizing input
reconstruction error and minimizing the number of
words fixated. We evaluate the model’s reading be-
havior against a corpus of human eye-tracking data.
Apart from the unlabeled training corpus and the
generic architecture, no further assumptions about
language structure are made – in particular, no lex-

icon or grammar or otherwise labeled data is re-
quired.

Our unsupervised model is able to predict human
skips and fixations with an accuracy of 63.7%. This
compares to a baseline of 52.6% and a supervised
accuracy of 69.9%. For fixated words, the model
significantly predicts human reading times in a lin-
ear mixed effects analysis. The performance of our
model is comparable to surprisal, even though it only
fixates 60.4% of all input words. Furthermore, we
show that known qualitative features of human fix-
ation sequences emerge in our model without addi-
tional assumptions.

2 Related Work

A range of attention-based neural network architec-
tures have recently been proposed in the literature,
showing promise in both NLP and computer vision
(e.g., Mnih et al., 2014; Bahdanau et al., 2015). Such
architectures incorporate a mechanism that allows
the network to dynamically focus on a restricted part
of the input. Attention is also a central concept in
cognitive science, where it denotes the focus of cog-
nitive processing. In both language processing and
visual processing, attention is known to be limited to
a restricted area of the visual field, and shifts rapidly
through eye-movements (Henderson, 2003).

Attention-based neural architectures either em-
ploy soft attention or hard attention. Soft attention
distributes real-valued attention values over the in-
put, making end-to-end training with gradient de-
scent possible. Hard attention mechanisms make
discrete choices about which parts of the input to
focus on, and can be trained with reinforcement
learning (Mnih et al., 2014). In NLP, soft atten-
tion can mitigate the difficulty of compressing long
sequences into fixed-dimensional vectors, with ap-
plications in machine translation (Bahdanau et al.,
2015) and question answering (Hermann et al.,
2015). In computer vision, both types of attention
can be used for selecting regions in an image (Ba
et al., 2015; Xu et al., 2015).

3 The NEAT Reading Model

The point of departure for our model is the Trade-
off Hypothesis (see Section 1): Reading optimizes a
tradeoff between precision of language understand-

86

ing and economy of attention. We make this idea ex-
plicit by proposing NEAT (NEural Attention Trade-
off), a model that reads text and attempts to re-
construct it afterwards. While reading, the network
chooses which words to process and which words
to skip. The Tradeoff Hypothesis is formalized us-
ing a training objective that combines accuracy of
reconstruction with economy of attention, encourag-
ing the network to only look at words to the extent
that is necessary for reconstructing the sentence.

3.1 Architecture

We use a neural sequence-to-sequence architecture
(Sutskever et al., 2014) with a hard attention mech-
anism. We illustrate the model in Figure 1, oper-
ating on a three-word sequence www. The most basic
components are the reader, labeled R, and the de-
coder. Both of them are recurrent neural networks
with Long Short-Term Memory (LSTM, Hochreiter
and Schmidhuber, 1997) units. The recurrent reader
network is expanded into time steps R0, . . . ,R3 in
the figure. It goes over the input sequence, reading
one word wi at a time, and converts the word se-
quence into a sequence of vectors h0, . . . ,h3. Each
vector hi acts as a fixed-dimensionality encoding
of the word sequence w1, . . . ,wi that has been read
so far. The last vector h3 (more generally hN for
sequence length N), which encodes the entire in-
put sequence, is then fed into the input layer of
the decoder network, which attempts to reconstruct
the input sequence www. It is also realized as a recur-
rent neural network, collapsed into a single box in
the figure. It models a probability distribution over
word sequences, outputting a probability distribu-
tion PDecoder(wi|www1,...,i−1,hN) over the vocabulary in
the i-th step, as is common in neural language mod-
eling (Mikolov et al., 2010). As the decoder has
access to the vector representation created by the
reader network, it ideally is able to assign the high-
est probability to the word sequence www that was ac-
tually read. Up to this point, the model is a stan-
dard sequence-to-sequence architecture reconstruct-
ing the input sequence, that is, performing autoen-
coding.

As a basic model of human processing, NEAT
contains two further components. First, experimen-
tal evidence shows that during reading, humans con-
stantly make predictions about the upcoming input

(e.g., Van Gompel and Pickering, 2007). As a model
of this behavior, the reader network at each time step
outputs a probability distribution PR over the lex-
icon. This distribution describes which words are
likely to come next (i.e., the reader network per-
forms language modeling). Unlike the modeling per-
formed by the decoder, PR, via its recurrent connec-
tions, has access to the previous context only.

Second, we model skipping by stipulating that
only some of the input words wi are fed into the
reader network R, while R receives a special vec-
tor representation, containing no information about
the input word, in other cases. These are the words
that are skipped. In NEAT, at each time step dur-
ing reading, the attention module A decides whether
the next word is shown to the reader network or not.
When humans skip a word, they are able to identify
it using parafoveal preview (Rayner, 2009). Thus,
we can assume that the choice of which words to
skip takes into account not only the prior context
but also a preview of the word itself. We therefore
allow the attention module to take the input word
into account when making its decision. In addition,
the attention module has access to the previous state
hi−1 of the reader network, which summarizes what
has been read so far. To allow for interaction be-
tween skipping and prediction, we also give the at-
tention module access to the probability of the in-
put word according to the prediction PR made at the
last time step. If we write the decision made by A
as ωi ∈ {0,1}, where ωi = 1 means that word wi is
shown to the reader and 0 means that it is not, we
can write the probability of showing word wi as:

P(ωi = 1|ωωω1...i−1,www)

= PA(wi,hi−1,PR(wi|www1...i−1,ωωω1...i−1))
(1)

We implement A as a feed-forward network, fol-
lowed by taking a binary sample ωi.

We obtain the surprisal of an input word by taking
the negative logarithm of the conditional probability
of this word given the context words that precede it:

Surp(wi|www1...i−1) =− logPR(wi|www1...i−1,ωωω1...i−1)
(2)

As a consequence of skipping, not all input words
are accessible to the reader network. Therefore, the

87

probability and surprisal estimates it computes cru-
cially only take into account the words that have ac-
tually been fixated. We will refer to this quantity as
the restricted surprisal, as opposed to full surprisal,
which is computed based on all prior context words.

The key quantities for predicting human reading
are the fixation probabilities in equation (1), which
model fixations and skips, and restricted surprisal in
equation (2), which models the reading times of the
words that are fixated.

3.2 Model Objective
Given network parameters θ and a sequence www
of words, the network stochastically chooses a
sequence ωωω according to (1) and incurs a loss
L(ωωω|www,θ) for language modeling and reconstruc-
tion:

L(ωωω|www,θ) =−∑
i

logPR(wi|www1,...,i−1,ωωω1,...,i−1;θ)

−∑
i

logPDecoder(wi|www1,...,i−1;hN ;θ)

(3)

where PR(wi, . . .) denotes the output of the reader af-
ter reading wi−1, and PDecoder(wi| . . . ;hN) is the out-
put of the decoder at time i− 1, with hN being the
vector representation created by the reader network
for the entire input sequence.

To implement the Tradeoff Hypothesis, we train
NEAT to solve language modeling and reconstruc-
tion with minimal attention, i.e., the network mini-
mizes the expected loss:

Q(θ) := Ewww,ωωω [L(ωωω|www,θ)+α · ‖ωωω‖`1] (4)

where word sequences www are drawn from a corpus,
and ωωω is distributed according to P(ωωω|www,θ) as de-
fined in (1). In (4), ‖ωωω‖`1 is the number of words
shown to the reader, and α > 0 is a hyperparameter.
The term α · ‖ωωω‖`1 encourages NEAT to attend to as
few words as possible.

Note that we make no assumption about linguis-
tic structure – the only ingredients of NEAT are the
neural architecture, the objective (4), and the corpus
from which the sequences www are drawn.

3.3 Training
We follow previous approaches to hard attention in
using a combination of gradient descent and rein-
forcement learning, and separate the training of the

recurrent networks from the training of A. To train
the reader R and the decoder, we temporarily re-
move the attention network A, set ωωω ∼ Binom(n, p)
(n sequence length, p a hyperparameter), and mini-
mize E[L(www|θ,ωωω)] using stochastic gradient descent,
sampling a sequence ωωω for each input sequence. In
effect, NEAT is trained to perform reconstruction
and language modeling when there is noise in the
input. After R and the decoder have been trained,
we fix their parameters and train A using the RE-
INFORCE rule (Williams, 1992), which performs
stochastic gradient descent using the estimate

1
|B| ∑

www∈B;ωωω
(L(ωωω|www,θ)+α · ‖ωωω‖`1)∂θA (logP(ωωω|www,θ))

(5)
for the gradient ∂θAQ. Here, B is a minibatch, ωωω is
sampled from P(ωωω|www,θ), and θA ⊂ θ is the set of
parameters of A. For reducing the variance of this
estimator, we subtract in the i-th step an estimate of
the expected loss:

U(www,ωωω1...i−1) := Eωωωi...N [L(ωωω1...i−1ωωωi...N |www,θ)
+ α · ‖ωωω‖`1]

(6)

We compute the expected loss using an LSTM
that we train simultaneously with A to predict L+
α‖ωωω‖`1 based on www and ωωω1...i−1. To make learning
more stable, we add an entropy term encouraging the
distribution to be smooth, following Xu et al. (2015).
The parameter updates to A are thus:

∑
www,ωωω

∑
i
(L(ωωω|www,θ)+α‖ωωω‖`1−U(www,ωωω1...i−1))

· ∂θA (log P(ωi|ωωω1...i−1,www,θ))

−γ ∂θA

(
∑
www,ωωω

∑
i

H[P(ωi|ωωω1,...,i−1,www,θ)]

) (7)

where γ is a hyperparameter, and H the entropy.

4 Methods

Our aim is to evaluate how well NEAT predicts hu-
man fixation behavior and reading times. Further-
more, we want show that known qualitative prop-
erties emerge from the Tradeoff Hypothesis, even
though no prior knowledge about useful features is
hard-wired in NEAT.

88

w1 w2 w3A A A

R0 R1 R2 R3 Decoder

h0 h1 h2

PR1 PR2 PR3

Figure 1: The architecture of the proposed model, reading a three-word input sequence w1,w2,w3. R is the reader network and PR

the probability distribution it computes in each time step. A is the attention network. At each time step, the input, its probability

according to PR, and the previous state hi−1 of R are fed into A, which then decides whether the word is read or skipped.

4.1 Training Setup

For both the reader and the decoder networks, we
choose a one-layer LSTM network with 1,000 mem-
ory cells. The attention network is a one-layer feed-
forward network. For the loss estimator U , we use
a bidirectional LSTM with 20 memory cells. Input
data is split into sequences of 50 tokens, which are
used as the input sequences for NEAT, disregarding
sentence boundaries. Word embeddings have 100 di-
mensions, are shared between the reader and the
attention network, and are only trained during the
training of the reader. The vocabulary consists of
the 10,000 most frequent words from the training
corpus. We trained NEAT on the training set of the
Daily Mail section of the corpus described by Her-
mann et al. (2015), which consists of 195,462 arti-
cles from the Daily Mail newspaper, containing ap-
proximately 200 million tokens. The recurrent net-
works and the attention network were each trained
for one epoch. For initialization, weights are drawn
from the uniform distribution. We set α = 5.0, γ =
5.0, and used a constant learning rate of 0.01 for A.

4.2 Corpus

For evaluation, we use the English section of the
Dundee corpus (Kennedy and Pynte, 2005), which
consists of 20 texts from The Independent, anno-
tated with eye-movement data from ten English na-
tive speakers. Each native speakers read all 20 texts
and answered a comprehension question after each
text. We split the Dundee corpus into a development
and a test set, with texts 1–3 constituting the devel-
opment set. The development set consists of 78,300
tokens, and the test set of 281,911 tokens. For evalu-
ation, we removed the datapoints removed by Dem-
berg and Keller (2008), mainly consisting of words
at the beginning or end of lines, outliers, and cases

of track loss. Furthermore, we removed datapoints
where the word was outside of the vocabulary of the
model, and those datapoints mapped to positions 1–
3 or 48–50 of a sequence when splitting the data.
After preprocessing, 62.9% of the development to-
kens and 64.7% of the test tokens remained. To ob-
tain the number of fixations on a token and reading
times, we used the eye-tracking measures computed
by Demberg and Keller (2008). The overall fixation
rate was 62.1% on the development set, and 61.3%
on the test set.

The development set was used to run preliminary
versions of the human evaluation studies, and to de-
termine the human skipping rate (see Section 5). All
the results reported in this paper were computed on
the test set, which remained unseen until the model
was final.

5 Results and Discussion

Throughout this section, we consider the following
baselines for the attention network: random atten-
tion is defined by ωωω ∼ Binom(n, p), with p = 0.62,
the human fixation rate in the development set. For
full attention, we take ωωω = 1, i.e., all words are
fixated. We also derive fixation predictions from
full surprisal, word frequency, and word length by
choosing a threshold such that the resulting fixation
rate matches the human fixation rate on the develop-
ment set.

5.1 Quantitative Properties

By averaging over all possible fixation sequences,
NEAT defines for each word in a sequence a prob-
ability that it will be fixated. This probability is
not efficiently computable, so we approximate it by
sampling a sequence ωωω and taking the probabilities
P(ωi = 1|ω1...i−1,www) for i = 1, . . . ,50. These sim-

89

ulated fixation probabilities can be interpreted as
defining a distribution of attention over the input
sequence. Figure 2 shows heatmaps of the simu-
lated and human fixation probabilities, respectively,
for the beginning of a text from the Dundee cor-
pus. While some differences between simulated and
human fixation probabilities can be noticed, there
are similarities in the general qualitative features of
the two heatmaps. In particular, function words and
short words are less likely to be fixated than content
words and longer words in both the simulated and
the human data.

Reconstruction and Language Modeling We
first evaluate NEAT intrinsically by measuring how
successful the network is at predicting the next
word and reconstructing the input while minimiz-
ing the number of fixations. We compare perplex-
ity on reconstruction and language modeling for
ωωω ∼ P(ωωω|www,θ). In addition to the baselines, we run
NEAT on the fixations generated by the human read-
ers of the Dundee corpus, i.e., we use the human fix-
ation sequence as ωωω instead of the fixation sequence
generated by A to compute perplexity. This will tell
us to what extent the human behavior minimizes the
NEAT objective (4).

The results are given in Table 1. In all settings, the
fixation rates are similar (60.4% to 62.1%) which
makes the perplexity figures directly comparable.
While NEAT has a higher perplexity on both tasks
compared to full attention, it considerably outper-
forms random attention. It also outperforms the
word length, word frequency, and full surprisal base-
lines. The perplexity on human fixation sequences is
similar to that achieved using word frequency. Based
on these results, we conclude that REINFORCE suc-
cessfully optimizes the objective (4).

Likelihood of Fixation Data Human reading be-
havior is stochastic in the sense that different runs of
eye-tracking experiments such as the ones recorded
in the Dundee corpus yield different eye-movement
sequences. NEAT is also stochastic, in the sense that,
given a word sequence w, it defines a probability dis-
tribution over fixation sequences ωωω. Ideally, this dis-
tribution should be close to the actual distribution of
fixation sequences produced by humans reading the
sequence, as measured by perplexity.

We find that the perplexity of the fixation se-

Acc F1fix F1skip

NEAT 63.7 70.4 53.0
Supervised Models

Nilsson and Nivre (2009) 69.5 75.2 62.6
Matthies and Søgaard (2013) 69.9 72.3 66.1

Human Performance and Baselines
Random Baseline 52.6 62.1 37.9
Full Surprisal 64.1 70.7 53.6
Word Frequency 67.9 74.0 58.3
Word Length 68.4 77.1 49.0
Human 69.5 76.6 53.6

Table 2: Evaluation of fixation sequence predictions against hu-

man data. For the human baseline, we predicted the n-th reader’s

fixations by taking the fixations of the n + 1-th reader (with

missing values replaced by reader average), averaging the re-

sulting scores over the ten readers.

quences produced by the ten readers in the Dundee
corpus under NEAT is 1.84. A perplexity of 2.0
corresponds to the random baseline Binom(n,0.5),
and a perplexity of 1.96 to random attention
Binom(n,0.62). As a lower bound on what can
achieved with models disregarding the context, us-
ing the human fixation rates for each word as proba-
bilities, we obtain a perplexity of 1.68.

Accuracy of Fixation Sequences Previous work
on supervised models for modeling fixations (Nils-
son and Nivre, 2009; Matthies and Søgaard, 2013)
has been evaluated by measuring the overlap of the
fixation sequences produced by the models with
those in the Dundee corpus. For NEAT, this method
of evaluation is problematic as differences between
model predictions and human data may be due to
differences in the rate of skipping, and due to the in-
herently stochastic nature of fixations. We therefore
derive model predictions by rescaling the simulated
fixation probabilities so that their average equals the
fixation rate in the development set, and then greed-
ily take the maximum-likelihood sequence. That is,
we predict a fixation if the rescaled probability is
greater than 0.5, and a skip otherwise. As in previ-
ous work, we report the accuracy of fixations and
skips, and also separate F1 scores for fixations and
skips. As lower and upper bounds, we use the ran-
dom baseline ωωω ∼ Binom(n,0.62) and the agree-
ment of the ten human readers, respectively. The re-

90

The decision of the Human Fertility and Embryology Authority (HFEA) to allow a couple to select genetically their next baby was bound

to raise concerns that advances in biotechnology are racing ahead of our ability to control the consequences. The couple at the centre of

this case have a son who suffers from a potentially fatal disorder and whose best hope is a marrow transplant from a sibling, so the

stakes of this decision are particularly high. The HFEA’s critics believe that it sanctions ’designer babies’ and does not show respect for the

sanctity of individual life. Certainly, the authority’s backing for Shahana and Raj Hashmi’s plea for genetic screening raises fundamental questions

The decision of the Human Fertility and Embryology Authority (HFEA) to allow a couple to select genetically their next baby was bound

to raise concerns that advances in biotechnology are racing ahead of our ability to control the consequences. The couple at the centre of

this case have a son who suffers from a potentially fatal disorder and whose best hope is a marrow transplant from a sibling, so the

stakes of this decision are particularly high. The HFEA’s critics believe that it sanctions ’designer babies’ and does not show respect for the

sanctity of individual life. Certainly, the authority’s backing for Shahana and Raj Hashmi’s plea for genetic screening raises fundamental questions

Figure 2: Top: Heatmap showing human fixation probabilities, as estimated from the ten readers in the Dundee corpus. In cases of

track loss, we replaced the missing value with the corresponding reader’s overall fixation rate. Bottom: Heatmap showing fixation

probabilities simulated by NEAT. Color gradient ranges from blue (low probability) to red (high probability); words without color

are at the beginning or end of a sequence, or out of vocabulary.

NEAT Rand. Att. Word Len. Word Freq. Full Surp. Human Full Att.
Language Modeling 180 333 230 219 211 218/170 107
Reconstruction 4.5 56 40 39 34 39/31 1.6
Fixation Rate 60.4% 62.1% 62.1% 62.1% 62.1% 61.3%/72.0% 100%

Table 1: Performance on language modeling and reconstruction as measured by perplexity. Random attention is an upper bound

on perplexity, while full attention is a lower bound. For the human baseline, we give two figures, which differ in the treatment of

missing data. The first figure is obtained when replacing missing values with a random variable ω ∼ Binom(n,0.61); the second

results from replacing missing values with 1.

sults are shown in Table 2. NEAT clearly outper-
forms the random baseline and shows results close
to full surprisal (where we apply the same rescal-
ing and thresholding as for NEAT). This is remark-
able given that NEAT has access to only 60.4% of
the words in the corpus in order to predict skipping,
while full surprisal has access to all the words.

Word frequency and word length perform well, al-
most reaching the performance of supervised mod-
els. This shows that the bulk of skipping behavior
is already explained by word frequency and word
length effects. Note, however, that NEAT is com-
pletely unsupervised, and does not know that it has
to pay attention to word frequency; this is something
the model is able to infer.

Restricted Surprisal and Reading Times To
evaluate the predictions NEAT makes for reading
times, we use linear mixed-effects models contain-
ing restricted surprisal derived from NEAT for the
Dundee test set. The mixed models also include a
set of standard baseline predictors, viz., word length,
log word frequency, log frequency of the previous

word, launch distance, landing position, and the po-
sition of the word in the sentence. We treat partici-
pants and items as random factors. As the dependent
variable, we take first pass duration, which is the
sum of the durations of all fixations from first enter-
ing the word to first leaving it. We compare against
full surprisal as an upper bound and against ran-
dom surprisal as a lower bound. Random surprisal
is surprisal computed by a model with random at-
tention; this allows us to assess how much surprisal
degrades when only 60.4% of all words are fixated,
but no information is available as to which words
should be fixated. The results in Table 3 show that
restricted surprisal as computed by NEAT, full sur-
prisal, and random surprisal are all significant pre-
dictors of reading time.

In order to compare the three surprisal estimates,
we therefore need a measure of effect size. For this,
we compare the model fit of the three mixed ef-
fects models using deviance, which is defined as
the difference between the log likelihood of the
model under consideration minus the log likelihood
of the baseline model, multiplied by −2. Higher de-

91

β SE t
(Intercept) 247.43 7.14 34.68*
Word Length 12.92 0.21 60.62*
Previous Word Freq. −5.28 0.28 −18.34*
Prev. Word Fixated −24.67 0.81 −30.55*
Launch Distance -0.01 0.01 −0.37
Obj. Landing Pos. −8.07 0.20 −41.25*
Word Pos. in Sent. −0.10 0.03 −2.98*
Log Word Freq. −1.59 0.21 −7.73*
Resid. Random Surprisal 2.69 0.10 29.27*
Resid. Restr. Surprisal 2.75 0.12 23.66*
Resid. Full Surprisal 2.99 0.12 25.23*

Table 3: Linear mixed effects models for first pass duration.

The first part of the table shows the coefficients, standard er-

rors, and t values for the predictors in the baseline model. The

second part of the table gives the corresponding values for ran-

dom surprisal, restricted surprisal computed by NEAT, and full

surprisal, residualized against the baseline predictors, in three

models obtained by adding these predictors.

viance indicates greater improvement in model fit
over the baseline model. We find that the mixed
model that includes restricted surprisal achieves a
deviance of 867, compared to the model contain-
ing only the baseline features. With full surprisal,
we obtain a deviance of 980. On the other hand, the
model including random surprisal achieves a lower
deviance of 832.

This shows that restricted surprisal as computed
by NEAT not only significantly predicts reading
times, it also provides an improvement in model fit
compared to the baseline predictors. Such an im-
provement is also observed with random surprisal,
but restricted surprisal achieves a greater improve-
ment in model fit. Full surprisal achieves an even
greater improvement, but this is not unexpected, as
full surprisal has access to all words, unlike NEAT or
random surprisal, which only have access to 60.4%
of the words.

5.2 Qualitative Properties

We now examine the second key question we de-
fined in Section 1, investigating the qualitative fea-
tures of the simulated fixation sequences. We will
focus on comparing the predictions of NEAT with
that of word frequency, which performs comparably
at the task of predicting fixation sequences (see Sec-

Human NEAT Word Freq.
ADJ 78.9 (2) 72.8 (1) 98.4 (3)
ADP 46.1 (8) 53.8 (8) 21.6 (9)
ADV 70.4 (3) 67.2 (4) 96.4 (4)
CONJ 36.7 (11) 50.7 (9) 14.6 (10)
DET 45.2 (9) 44.8 (11) 22.9 (8)
NOUN 80.3 (1) 69.8 (2) 98.7 (2)
NUM 63.3 (6) 71.5 (3) 99.5 (1)
PRON 49.2 (7) 57.0 (7) 42.6 (7)
PRT 37.4 (10) 46.7 (10) 13.9 (11)
VERB 66.7 (5) 64.7 (5) 74.4 (5)
X 68.6 (4) 67.8 (3) 69.0 (6)
Spearman’s ρ 0.85 0.84
Pearson’s r 0.92 0.94
MSE 57 450

Table 4: Actual and simulated fixation probabilities (in %) by

PoS tag, with the ranks given in brackets, and correlations and

mean squared error relative to human data.

tion 5.1). We show NEAT nevertheless makes rele-
vant predictions that go beyond frequency.

Fixations of Successive Words While predictors
derived from word frequency treat the decision
whether to fixate or skip words as independent, hu-
mans are more likely to fixate a word when the pre-
vious word was skipped (Rayner, 1998). This effect
is also seen in NEAT. More precisely, both in the
human data and in the simulated fixation data, the
conditional fixation probability P(ωi = 1|ωi−1 = 1)
is lower than the marginal probability P(ωi = 1).
The ratio of these probabilities is 0.85 in the human
data, and 0.81 in NEAT. The threshold predictor de-
rived from word frequency also shows this effect (as
the frequencies of successive words are not indepen-
dent), but it is weaker (ratio 0.91).

To further test the context dependence of NEAT’s
fixation behavior, we ran a mixed model predict-
ing the fixation probabilities simulated by NEAT,
with items as random factor and the log frequency
of word i as predictor. Adding ωi−1 as a predic-
tor results in a significant improvement in model
fit (deviance = 4,798, t = 71.3). This shows that
NEAT captures the context dependence of fixation
sequences to an extend that goes beyond word fre-
quency alone.

92

Parts of Speech Part of speech categories are
known to be a predictor of fixation probabilities,
with content words being more likely to be fixated
than function words (Carpenter and Just, 1983). In
Table 4, we give the simulated fixation probabilities
and the human fixation probabilities estimated from
the Dundee corpus for the tags of the Universal PoS
tagset (Petrov et al., 2012), using the PoS annotation
of Barrett et al. (2015). We again compare with the
probabilities of a threshold predictor derived from
word frequency.1 NEAT captures the differences be-
tween PoS categories well, as evidenced by the high
correlation coefficients. The content word categories
ADJ, ADV, NOUN, VERB and X consistently show
higher probabilities than the function word cate-
gories. While the correlation coefficients for word
frequency are very similar, the numerical values of
the simulated probabilities are closer to the human
ones than those derived from word frequency, which
tend towards more extreme values. This difference
can be seen clearly if we compare the mean squared
error, rather than the correlation, with the human fix-
ation probabilities (last row of Table 4).

Correlations with Known Predictors In the lit-
erature, it has been observed that skipping correlates
with predictability (surprisal), word frequency, and
word length (Rayner, 1998, p. 387). These correla-
tions are also observed in the human skipping data
derived from Dundee, as shown in Table 5. (Hu-
man fixation probabilities were obtained by averag-
ing over the ten readers in Dundee.)

Comparing the known predictors of skipping with
NEAT’s simulated fixation probabilities, similar cor-
relations as in the human data are observed. We ob-
serve that the correlations with surprisal are stronger
in NEAT, considering both restricted surprisal and
full surprisal as measures of predictability.

6 Conclusions

We investigated the hypothesis that human read-
ing strategies optimize a tradeoff between precision
of language understanding and economy of atten-
tion. We made this idea explicit in NEAT, a neural
reading architecture with hard attention that can be

1We omit the tag “.” for punctuation, as punctuation charac-
ters are not treated as separate tokens in Dundee.

Human NEAT
Restricted Surprisal 0.465 0.762
Full Surprisal 0.512 0.720
Log Word Freq. −0.608 −0.760
Word Length 0.663 0.521

Table 5: Correlations between human and NEAT fixation prob-

abilities and known predictors

trained end-to-end to optimize this tradeoff. Exper-
iments on the Dundee corpus show that NEAT pro-
vides accurate predictions for human skipping be-
havior. It also predicts reading times, even though it
only has access to 60.4% of the words in the cor-
pus in order to estimate surprisal. Finally, we found
that known qualitative properties of skipping emerge
in our model, even though they were not explicitly
included in the architecture, such as context depen-
dence of fixations, differential skipping rates across
parts of speech, and correlations with other known
predictors of human reading behavior.

References

Ba, Jimmy, Ruslan R. Salakhutdinov, Roger B.
Grosse, and Brendan J. Frey. 2015. Learning
wake-sleep recurrent attention models. In Ad-
vances in Neural Information Processing Sys-
tems. pages 2575–2583.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. In Proceed-
ings of the International Conference on Learning
Representations.

Barrett, Maria, Željko Agić, and Anders Søgaard.
2015. The Dundee treebank. In Proceedings
of the 14th International Workshop on Treebanks
and Linguistic Theories. pages 242–248.

Bicknell, Klinton and Roger Levy. 2010. A ratio-
nal model of eye movement control in reading.
In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics. pages
1168–1178.

Carpenter, P. A. and M. A. Just. 1983. What your
eyes do while your mind is reading. In K. Rayner,
editor, Eye Movements in Reading, Academic
Press, New York, pages 275–307.

93

Demberg, Vera and Frank Keller. 2008. Data
from eye-tracking corpora as evidence for theo-
ries of syntactic processing complexity. Cognition
109(2):193–210.

Engbert, Ralf, André Longtin, and Reinhold Kliegl.
2002. A dynamical model of saccade generation
in reading based on spatially distributed lexical
processing. Vision Research 42(5):621–636.

Engbert, Ralf, Antje Nuthmann, Eike M. Richter,
and Reinhold Kliegl. 2005. SWIFT: A dynami-
cal model of saccade generation during reading.
Psychological Review 112(4):777–813.

Frank, S.L. and R. Bod. 2011. Insensitivity of the
human sentence-processing system to hierarchi-
cal structure. Psychological Science 22:829–834.

Hale, John. 2001. A probabilistic Earley parser as a
psycholinguistic model. In Proceedings of Con-
ference of the North American Chapter of the
Association for Computational Linguistics. vol-
ume 2, pages 159–166.

Hara, Tadayoshi, Daichi Mochihashi Yoshinobu
Kano, and Akiko Aizawa. 2012. Predicting word
fixations in text with a CRF model for capturing
general reading strategies among readers. In Pro-
ceedings of the 1st Workshop on Eye-tracking and
Natural Language Processing. pages 55–70.

Henderson, John. 2003. Human gaze control in real-
world scene perception. Trends in Cognitive Sci-
ences 7:498–504.

Hermann, Karl Moritz, Tomáš Kočiskỳ, Ed-
ward Grefenstette, Lasse Espeholt, Will Kay,
Mustafa Suleyman, and Phil Blunsom. 2015.
Teaching machines to read and comprehend.
ArXiv:1506.03340.

Hochreiter, Sepp and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Kennedy, Alan and Joël Pynte. 2005. Parafoveal-on-
foveal effects in normal reading. Vision Research
45(2):153–168.

Levy, Roger. 2008. Expectation-based syntactic
comprehension. Cognition 106(3):1126–1177.

Matthies, Franz and Anders Søgaard. 2013. With
blinkers on: Robust prediction of eye movements
across readers. In Proceedings of the Conference

on Empirical Methods in Natural Language Pro-
cessing. pages 803–807.

McDonald, Scott A. and Richard C. Shillcock.
2003a. Eye movements reveal the on-line compu-
tation of lexical probabilities during reading. Psy-
chological Science 14(6):648–652.

McDonald, Scott A. and Richard C. Shillcock.
2003b. Low-level predictive inference in reading:
the influence of transitional probabilities on eye
movements. Vision Research 43(16):1735–1751.

Mikolov, Tomáš, Martin Karafiát, Lukáš Burget, Jan
Černocký, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In
Proceedings of Interspeech. pages 1045–1048.

Mnih, Volodymyr, Nicolas Heess, Alex Graves, and
others. 2014. Recurrent models of visual atten-
tion. In Advances in Neural Information Process-
ing Systems. pages 2204–2212.

Nilsson, Mattias and Joakim Nivre. 2009. Learn-
ing where to look: Modeling eye movements in
reading. In Proceedings of the 13th Conference
on Computational Natural Language Learning.
pages 93–101.

Nilsson, Mattias and Joakim Nivre. 2010. Towards
a data-driven model of eye movement control in
reading. In Proceedings of the Workshop on Cog-
nitive Modeling and Computational Linguistics.
pages 63–71.

Petrov, Slav, Dipanjan Das, and Ryan T. McDon-
ald. 2012. A universal part-of-speech tagset. In
Proceedings of the 8th International Conference
on Language Resources and Evaluation. pages
2089–2096.

Rayner, K. 1998. Eye movements in reading and in-
formation processing: 20 years of research. Psy-
chological Bulletin 124(3):372–422.

Rayner, Keith. 2009. Eye movements in reading:
Models and data. Journal of Eye Movement Re-
search 2(5):1–10.

Rayner, Keith and Erik D. Reichle. 2010. Models of
the reading process. Wiley Interdisciplinary Re-
views: Cognitive Science 1(6):787–799.

Reichle, E. D., A. Pollatsek, D. L. Fisher, and
K. Rayner. 1998. Toward a model of eye move-

94

ment control in reading. Psychological Review
105(1):125–157.

Reichle, E. D., T. Warren, and K. McConnell. 2009.
Using EZ Reader to model the effects of higher
level language processing on eye movements dur-
ing reading. Psychonomic Bulletin & Review
16(1):1–21.

Reichle, Erik D., Keith Rayner, and Alexander Pol-
latsek. 2003. The EZ Reader model of eye-
movement control in reading: Comparisons to
other models. Behavioral and Brain Sciences
26(04):445–476.

Smith, Nathaniel J. and Roger Levy. 2013. The ef-
fect of word predictability on reading time is log-
arithmic. Cognition 128(3):302–319.

Sutskever, Ilya, Oriol Vinyals, and Quoc VV Le.
2014. Sequence to sequence learning with neu-
ral networks. In Advances in Neural Information
Processing Systems. pages 3104–3112.

Van Gompel, Roger PG and Martin J. Pickering.
2007. Syntactic parsing. In The Oxford Handbook
of Psycholinguistics, Oxford University Press,
pages 289–307.

Williams, Ronald J. 1992. Simple statistical
gradient-following algorithms for connectionist
reinforcement learning. Machine Learning 8(3-
4):229–256.

Xu, Kelvin, Jimmy Ba, Ryan Kiros, Aaron
Courville, Ruslan Salakhutdinov, Richard Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual at-
tention. ArXiv:1502.03044.

95

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 96–106,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Comparing Computational Cognitive Models of Generalization in a
Language Acquisition Task

Libby Barak, Adele E. Goldberg,
Psychology Department

Princeton University
Princeton, NJ, USA

{lbarak,adele}@princeton.edu

Suzanne Stevenson
Department of Computer Science

University of Toronto
Toronto, Canada

suzanne@cs.toronto.edu

Abstract

Natural language acquisition relies on appro-
priate generalization: the ability to produce
novel sentences, while learning to restrict pro-
ductions to acceptable forms in the language.
Psycholinguists have proposed various prop-
erties that might play a role in guiding appro-
priate generalizations, looking at learning of
verb alternations as a testbed. Several com-
putational cognitive models have explored as-
pects of this phenomenon, but their results are
hard to compare given the high variability in
the linguistic properties represented in their
input. In this paper, we directly compare two
recent approaches, a Bayesian model and a
connectionist model, in their ability to repli-
cate human judgments of appropriate gener-
alizations. We find that the Bayesian model
more accurately mimics the judgments due to
its richer learning mechanism that can exploit
distributional properties of the input in a man-
ner consistent with human behaviour.

1 Introduction

Native speakers of a language are mostly able to
generalize appropriately beyond the observed data
while avoiding overgeneralizations. A testbed area
for studying generalization behavior in language ac-
quisition is verb alternations – i.e., learning the pat-
terns of acceptability of alternative constructions for
expressing similar meanings. For example, English
speakers readily use a new verb like text in both the
double-object (DO) construction (“text me the de-
tails”) and the prepositional-dative (PD) (“text the
details to me”) – an instance of the dative alterna-
tion. However, speakers avoid overgeneralizing the

DO construction to verbs such as explain that resist
its use (“?explain me the details”), even though they
occur with analogous arguments in the PD alterna-
tive (“explain the details to me”). Psycholinguis-
tic studies have focused on the possible properties
of natural language that enable such generalization
while constraining it to acceptable forms.

Initially, children are linguistically conservative:
they generally use verbs in constructions that are
very close to exemplars in the input (Lieven et al.,
1997; Akhtar, 1999; Tomasello, 2003; Boyd and
Goldberg, 2009). Children reach adult-like com-
petence by gradually forming more general as-
sociations of constructions to meaning that allow
them to extend verb usages to unwitnessed forms.
Much work has emphasized the role of verb classes
that capture the regularities across semantically-
similar verbs, enabling appropriate generalization
(e.g., Pinker, 1989; Fisher, 1999; Levin, 1993; Am-
bridge et al., 2008). Usage-based approaches have
argued that such class-based behaviour can arise in
learning through the clustering of observed usages
that share semantic and syntactic properties (e.g.,
Bybee, 2010; Tomasello, 2003; Goldberg, 2006).

A number of studies also reveal that the statistical
properties of the language play a central role in lim-
iting generalization (e.g., Bresnan and Ford, 2010;
Ambridge et al., 2012, 2014). Individual verbs of-
ten show statistical biases that favor their appear-
ance in one construction over another (Ford et al.,
1982; MacDonald et al., 1994; Garnsey et al., 1997;
Trueswell et al., 1993; Losiewicz, 1992; Gahl and
Garnsey, 2004). For example, while both give and
push can occur in either DO or PD constructions,

96

give strongly favors the DO construction (“give me
the box”), while push strongly favors the PD (“push
the box to me”) (Wasow, 2002). Generally, the
more frequent a verb is overall, the less likely speak-
ers are to extend it to an unobserved construction
(Braine and Brooks, 1995). In addition, when a verb
repeatedly occurs in one construction when an al-
ternative construction could have been appropriate,
speakers appear to learn that the verb is inappropri-
ate in the alternative, regardless of its overall fre-
quency (Goldberg, 2011).

Given these observations, it has been argued that
both the semantic and statistical properties of a
verb underlie its degree of acceptability in alternat-
ing constructions (e.g., Braine and Brooks, 1995;
Theakston, 2004; Ambridge et al., 2014). Recently,
Ambridge and Blything (2015) propose a computa-
tional model designed to study the role of verb se-
mantics and frequency in the acquisition of the da-
tive alternation. However, they only evaluate their
model preferences for one of the two constructions,
which does not provide a full picture of the alterna-
tion behaviour; moreover, they incorporate certain
assumptions about the input that may not match the
properties of naturalistic data.

In this paper, we compare the model of Ambridge
and Blything (2015) to the Bayesian model of Barak
et al. (2014) that offers a general framework of verb
construction learning. We replicate the approach
taken in Ambridge and Blything (2015) in order to
provide appropriate comparisons, but we also extend
the experimental settings and analysis to enable a
more fulsome evaluation, on data with more natu-
ralistic statistical properties. Our results show that
the Bayesian model provides a better fit to the psy-
cholinguistic data, which we suggest is due to its
richer learning mechanism: its two-level clustering
approach can exploit distributional properties of the
input in a manner consistent with human generaliza-
tion behaviour.

2 Related Work

Acquisition of the dative alternation – use of the DO
and PD constructions with analogous semantic argu-
ments – has been studied in several computational
cognitive models because it illustrates how people
learn to appropriately generalize linguistic construc-

tions in the face of complex, interacting factors.
As noted by Ambridge et al. (2014), such models
should capture influences of the verb such as its se-
mantic properties, its overall frequency, and its fre-
quency in various constructions.

A focus of computational models has been to
show under what conditions a learner generalizes
to the DO construction having observed a verb in
the PD, and vice versa. For example, the hierar-
chical Bayesian models of Perfors et al. (2010) and
Parisien and Stevenson (2010) show the ability to
generalize from one construction to the other. How-
ever, both models are limited in their semantic repre-
sentations. Perfors et al. (2010) use semantic prop-
erties that directly (albeit noisily) encode the knowl-
edge of the alternating and non-alternating (DO-
only or PD-only) classes. The model of Parisien and
Stevenson (2010) addresses this limitation by learn-
ing alternation classes from the data (including the
dative), but it uses only syntactic slot features that
can be gleaned automatically from a corpus. In ad-
dition, both models use batch processing, failing to
address how learning to generalize across an alter-
nation might be achieved incrementally.

Alishahi and Stevenson (2008) presents an in-
cremental Bayesian model shown to capture vari-
ous aspects of verb argument structure acquisition
(Alishahi and Pyykkon̈en, 2011; Barak et al., 2012,
2013b; Matusevych et al., 2016), but the model
is unable to mimic alternation learning behaviour.
Barak et al. (2014) extends this construction-
learning model to incrementally learn both construc-
tions and classes of alternating verbs, and show the
role of the classes in learning the dative. However,
like Parisien and Stevenson (2010), the input to the
model in this study is limited to syntactic properties,
not allowing for a full analysis of the relevant factors
that influence acquisition of alternations.

Ambridge and Blything (2015) propose the first
computational model of this phenomenon to include
a rich representation of the verb/construction seman-
tics, drawn from human judgments. In evaluation,
however, they only report the ability of the model
to predict the DO usage (i.e., only one pair of the
alternation), which does not give the full picture of
the alternation behaviour. Moreover, their assump-
tions about the nature of the input – including the
use of raw vs. log frequencies and the treatment of

97

Figure 1: A visual representation of the feed-forward
network used by the AB model. (The figure is adapted
from output of the OXlearn package of Ruh and West-
ermann (2009).) The input nodes correspond to the se-
mantic properties of the verbs, the verb lexemes, and a
“transfer” node (explained in the text). The output nodes
correspond to the target constructions.

non-dative construction usages – differ from earlier
models, making it difficult to compare the results.

In this paper, we compare the models of Am-
bridge and Blything (2015) and Barak et al. (2014),
using the same input settings for each, so that, for
the first time, two computational models of this gen-
eralization phenomenon can be directly compared.
Moreover, in contrast to Ambridge and Blything
(2015) and in line with the other studies mentioned
above, we evaluate the ability of the models to gen-
erate both the DO and the PD alternates, on a per
verb basis, in order to more accurately assess the fit
to human judgments.

3 The Computational Models

In this section, we give an overview of the con-
nectionist model of Ambridge and Blything (2015),
hereafter the AB model, and the Bayesian model of
Barak et al. (2014), hereafter the BFS model, fol-
lowed by a comparison of their relevant properties.

3.1 Overview of the Connectionist Model
The AB connectionist model of Ambridge and Bly-
thing (2015) aims to predict the preference of a verb
for each of three target constructions, on the basis
of verb semantics and the observed distribution of
verbs in those constructions in the input. Figure 1
provides an illustration of the 3-layer feed-forward
network, trained using backpropagation. Each input
to the model consists of lexical and semantic fea-
tures of a verb and its usage. The target output is

a 1-hot pattern across output nodes, each of which
represents the use of the verb in the associated con-
struction. The possible constructions are DO, PD, or
other, representing all other constructions the verb
appears in. Training presents the slate of input fea-
tures with the appropriate output node activated rep-
resenting the construction the verb appears in. In a
full sweep of training, the model observes all verbs
in proportion to their frequency in the input; for each
verb, the proportion of training trials with 1 in each
of the output nodes corresponds to the frequency of
the verb in each of those constructions. During test-
ing, only the input nodes are activated (correspond-
ing to a verb and its semantics), and the activation
of output nodes reveals the learned proportional ac-
tivation rate corresponding to the degree of verb bias
toward either the DO or the PD (or other).

The structure of the AB model encodes some as-
sumptions regarding the information and learning
mechanisms available to the learner. The model in-
corporates awareness of individual verbs by having a
node per verb in the input to distinguish the usage of
each verb and its accompanying features. Each verb
is also represented by a vector of semantic features
that capture properties relevant to its meaning when
used in one of the two dative constructions (based
on elicited human judgments from Ambridge et al.,
2014). The “transfer” input node encodes the abil-
ity to distinguish the semantic properties of the da-
tive constructions from other constructions: i.e., this
node is set to 1 for a DO or PD usage, and to 0 oth-
erwise. Representing the construction of the input
usage (DO, PD, or other) on the output nodes re-
flects the formalization of the learning as an associa-
tion of semantic and lexical features with a syntactic
pattern, and the knowledge of the model is demon-
strated by activating the construction output nodes
in response to a lexical/semantic input.

3.2 Overview of the Bayesian Model

The BFS of model Barak et al. (2014) is a Bayesian
clustering model that simultaneously and incremen-
tally learns both constructions and verb classes in a
two-level design; see Figure 2 for an illustration of
each level. In learning, the model processes an input
sequence of verb usages, represented as collections
of semantic and syntactic features, one usage at a
time. The first step of processing each input aims to

98

Figure 2: A visual representation of the the Bayesian
model, with sample input features for verb usages, con-
struction level, and verb class level.

find the best cluster at level one as:

BestCluster(Fi) = argmax
k∈Clusters

P (k|Fi) (1)

where Fi is the set of features for input i, and k
ranges over all existing clusters and a new one. The
number of possible clusters is not set in advanced,
and thus at any step the best choice may be to start a
new cluster (of size 1) with this input.

Using Bayes rule:

P (k|Fi) =
P (k)P (Fi|k)

P (Fi)
∝ P (k)P (Fi|k) (2)

The prior probability of a cluster P (k) is propor-
tional to the number of verb usages clustered to k
so far, thus assigning a higher prior to larger clus-
ters. The likelihood P (Fi|k) is estimated based on
the match of feature values in the current verb usage
to those aggregated in the cluster, where the quality
of the match depends on the frequency and vector
similarity of the two sets of features.

The clusters at this level correspond to construc-
tions of the language – i.e., probabilistic associa-
tions of form and meaning. For example, a clus-
ter emerges from semantically-similar verbs like tell
and ask, in a particular syntax, such as the DO. Cre-
ating a new cluster – forming a new construction –
depends on both the likelihood and the prior. Early
on, the P (Fi|k) term has more influence and differ-
ences in feature values between a new usage and ex-
isting clusters will often trigger a new cluster. Later,
the model will favour adding a new input to an ex-
isting cluster – even if it makes it more heteroge-
neous – because the P (k) term prefers larger clus-
ters as the number of observed inputs increases. This

mechanism mimics human language learning behav-
ior of moving from more verb-specific constructions
to more general constructions (Tomasello, 2003).

Each verb can occur in several clusters in the first
level based on its association with various seman-
tic and syntactic features. For instance, the alternat-
ing verb give can occur in one cluster associating
a transfer meaning with PD syntax and in a second
cluster associating a transfer meaning with DO syn-
tax. To capture the common behaviour of such al-
ternating verbs – where verbs with similar meanings
occur across the same set of clusters – the model rep-
resents the similarity in distributional properties of
the verbs in a second level of representation, which
captures such verb class behaviours.

Formally, after each clustering decision in the first
level, the model calculates the current frequency dis-
tribution of the input verb over all level-one clus-
ters. This distribution vector is used as input for the
second level: the model measures the similarity of
this vector to the weighted average distribution rep-
resented by each second-level cluster, adding the in-
put verb’s distribution to the most similar one:

BestClass(dvt) = argmax
c∈Classes

(1−DJS(dc‖dvt))
(3)

where dvt is the current distribution of the verb v
over the clusters (i.e., at time t), c ranges over all the
classes in the second level, dc is the weighted aver-
age of c given the distributions of its member verb
tokens, and DJS is the Jensen–Shannon divergence.
As in the first level, the model may create a new clus-
ter in the second level if none of the existing clusters
is similar enough to dvt .

The resulting second-level clusters capture verb
class behavior by grouping verbs that share a pat-
tern of usages across constructions, e.g., alternating
verbs that occur with the DO and PD syntax. These
clusters encode a snapshot of the distribution of each
verb each time it occurs in the input, reflecting the
need of the language learner to incrementally update
their knowledge of the distributional behavior of the
verb across constructions.

3.3 Comparison of the Models
Both models capture the semantic and statistical
properties of language proposed as possible fac-
tors in the ability to learn an alternation appropri-

99

ately – i.e., to generalize to new uses but not over-
generalize to inappropriate verbs. Semantic influ-
ences are reflected in the use of meaning features,
and each model incorporates the key idea behind
statistical preemption (Goldberg, 1995), namely
that semantically-appropriate constructions compete
with one another. The statistical effects of over-
all verb frequency and of frequency of the verb-in-
construction are captured by inputting each verb in
proportion to its frequency with each construction.

The models have a crucial difference in how they
reflect the influence of the various features in learn-
ing alternations. As a feed-forward network, the
AB model learns the weight of the semantic features
given the entire set of input, and uses these weight-
ings to shape the prediction of a verb’s preference
for each of the syntactic constructions (represented
by the target output nodes). The BFS model does not
explicitly weight features, but the influence of a fea-
ture is determined by its local context within a clus-
ter. For example, if the value of a feature has high
frequency in a cluster – e.g., the cluster records us-
ages with only the DO syntax – the predictions based
on this cluster would strongly prefer matching us-
ages based on this feature value; a less-frequent fea-
ture would have less influence on this cluster’s pre-
dictions, but could have more influence in a cluster
where it is more represented. This property, along
with the representation of an open-ended set of con-
structions (level one clusters) and verb classes (level
two clusters), enables the model to capture rich in-
teractions among the lexical, semantic, and syntactic
features. We evaluate the role of these differences in
the fit of each model to the task.

4 Experimental Setup

4.1 Input and Training

We base the learning and evaluation on the 281 dis-
tinct verbs used in Ambridge and Blything (2015),
which had been determined to occur in the dou-
ble object (DO) and/or the preposition-dative (PD)
(Pinker, 1989; Levin, 1993). Following Ambridge
and Blything (2015), we consider a third (artificial)
construction labeled as other that corresponds to all
non-DO and non-PD usages of a verb. The mod-
els are trained on usages of the verbs in proportion
to their frequencies in the British National Corpus

Raw freq Log freq
#Verbs DO PD other DO PD other

PD 101 0 93 9964 0 3 5
DO 7 49 0 877 2 0 4

Alt 75 325 1144 13332 3 3 7

Uns 98 0 0 716 0 0 4

Table 1: Frequency data for the dative verbs in the
BNC for non-alternating PD-only and DO-only verbs,
ALTernating verbs, and UNSeen dative-taking verbs that
do not occur with the dative constructions in the BNC.

(BNC) (Leech, 1992). Table 1 summarizes the per-
construction frequency data for the verbs.1 Note that
98 of the verbs can occur in the DO and/or PD but
have no such occurrences in the BNC; these verbs
unseen in the dative are important for judging the
appropriate generalization behavior of the models.

The input to the models include: the lexeme of
the verb, the semantic features of the verb, a “trans-
fer” feature marking the common meaning of the da-
tive constructions, and (in training only) a syntactic
feature. The syntactic feature indicates whether a
verb is used with the DO, PD, or other construc-
tion; in the AB model, this is given as the target
output node in training. The verb semantic features
are those used in Ambridge and Blything (2015).
These vectors are based on the ratings of each verb
on 18 meaning properties relevant to use of the verb
in the dative (e.g., “The verb specifies the means of
transfer” Ambridge et al., 2014), subject to Princi-
pal Component Analysis by Ambridge and Blything
(2015), yielding a vector of 7 dimensions. The trans-
fer feature is 1 for a verb usage in one of the two da-
tive constructions, and 0 for the other construction,
to indicate the shared transfer meaning conveyed by
the DO and the PD. The input to each model is gen-
erated automatically to correspond to the BNC fre-
quencies of each verb in each of the constructions.

It should be noted that, while we adopt the se-
mantic features of Ambridge and Blything (2015),
they reflect the meaning within the two dative con-
structions and may be less applicable to the other
construction. In addition, we found that there are
alternating and non-alternating verbs that have very
similar semantic vectors, indicating that these fea-

1The full list of verbs and their frequencies can be found in
Ambridge and Blything (2015).

100

tures may not sufficiently distinguish the alternation
behaviours.

The models are trained with sufficient input to
converge on stable behavior. We follow Ambridge
and Blything (2015) in training and testing the AB
model using the OXlearn MATLAB package (Ruh
and Westermann, 2009); the input is generated us-
ing a random seed, in random input order without
replacements, and the model is trained with a learn-
ing rate of 0.01 for 1K sweeps for log frequencies;
100K sweeps for raw frequencies. We train the BFS
model using the input generation method described
by Barak et al. (2014), with the features as above.
The model is trained on 5K input verb usages (in
proportion to their frequencies in the constructions).

4.2 Evaluation of the Models
As in Ambridge and Blything (2015), to test the
model preferences for the DO or PD, the models are
presented with an input consisting of a verb lexeme,
its semantic features, and the transfer feature set to 1
(i.e., this is a “transfer” semantics suitable for a da-
tive construction). For the AB model, we measure
preferences for each construction as the activation
rate of each of the corresponding output nodes, as in
Ambridge and Blything (2015). In the BFS model,
the preference for each construction is measured as
its likelihood over the learned clusters given the verb
and its semantic features. Formally, the prediction in
the Bayesian model is:

P (s|Ftest) =
∑

k∈Clusters

P (s|k)P (k|Ftest) (4)

where s is the predicted syntactic construction (DO
or PD) and Ftest is the set of test features represent-
ing a verb v and its corresponding semantic features.
P (s|k) is the probability of the syntactic pattern fea-
ture having the value s in cluster k, calculated as the
proportional occurrences of s in k. P (k|Ftest) is the
probability of cluster k given test features Ftest, cal-
culated as in Eqn. (2). Following Barak et al. (2014),
we calculate P (k|Ftest) in two ways, using just the
constructions (level one) or both the classes (level
two) and the constructions, to see whether verb class
knowledge improves performance. Using solely the
construction level, the probability of k reflects the
frequency with which usages of verb v occur in clus-
ter k. Using the verb class level in addition, the dis-

tribution of the verb over classes in the second level
is combined with the distribution of those classes
over the constructions in level one, to get the like-
lihood of k.

These model preferences of the verbs for a da-
tive construction are compared, using Pearson cor-
relation, to the DO/PD acceptability judgment data
collected from adult participants by Ambridge et al.
(2014). Note that Ambridge and Blything (2015)
only evaluate their model’s preferences for verbs to
take the DO construction. To fully understand the
preference and generalization patterns, we also an-
alyze the results for the PD preference. Even more
importantly, we calculate the difference between the
preferences for the DO and the PD constructions per
verb, and compare these to analogous scores for the
human data, as suggested by Ambridge et al. (2014).
The DO−PD difference scores, which we will refer
to as the verb bias score, are crucial because, as in
the human data, it is these scores that accurately cap-
ture a learner’s relative preference for a construction
given a particular verb.

5 Experiments and Analysis of Results

We examine the ability of each model to match
the dative construction preferences of human judg-
ments, as described just above, under two different
experimental scenarios. In Section 5.1, we follow
the experimental settings of Ambridge and Blything
(2015). We replicate their results on the AB model
showing correlation with human DO preferences,
but find that only the BFS model achieves a signifi-
cant correlation with the crucial verb bias score that
appropriately assesses per-verb preference. We ad-
just the experimental settings in Section 5.2 to use
more naturalistic input data – by training in propor-
tion to raw frequencies and excluding the artificial
other construction – achieving an improvement in
the verb bias score for both models.

5.1 Exp 1: Log Freq Input; 3 Constructions

Results. We first evaluated the models under the
experimental conditions of Ambridge and Blything
(2015), providing input corresponding to the verbs
in 3 constructions (DO, PD, and other), in propor-
tion to their log frequencies; see Table 2. We repli-
cate the positive correlation of the AB model over

101

AB (Connectionist)
BFS (Bayesian)

Level 1 Level 2
DO 0.54 0.24 0.29
PD 0.39 0.30 0.50
DO-PD [-0.02] 0.48 0.53

Table 2: Pearson correlation values between human and
model preferences for each construction and the verb-
bias score (DO−PD); training on log frequencies and 3
constructions. All correlations significant with p-value
< 0.001, except the one value in square brackets. Best
result for each row is marked in boldface.

the ratings for the DO construction found in Am-
bridge and Blything (2015). In addition, our analy-
sis shows that the AB model produces a significant
positive correlation with the PD acceptability rating.
However, the AB model has no correlation with the
verb bias score. Although the model ranks the sep-
arate verb preferences for DO and PD similarly to
humans, the model does not produce the same rel-
ative preference for individual verbs. For exam-
ple, the human data rank give with high acceptabil-
ity in both the DO and the PD, with a higher value
for the DO construction. Although the AB model
has a high preference for both constructions for give
(compared with other verbs), the model erroneously
prefers give in the PD construction.

The BFS model also produces preferences for
verbs in each construction that have a significant
positive correlation with human judgments. While
the AB model shows better correlation with the DO
judgments, the BFS model correlates more strongly
with the PD judgments. Importantly, in contrast to
the AB model, the verb bias score of the BFS model
also significantly correlates with the judgment data.
That is, the BFS model provides a better prediction
of the preference per verb, which is key to producing
a verb in the appropriate syntax.

Analysis. We can explain these results by look-
ing more closely at the properties of the input and
the differences in the learning mechanisms of each
model. Following Ambridge and Blything (2015),
the input presents an artificial other construction in
proportion to the frequency of the verbs with all non-
dative constructions. The very high frequency of this
single artificial construction (see other in Table 1)
results in higher predictions of it for any of the verbs,
even though the “transfer” feature in test inputs has

a value intended to signal one of the dative construc-
tions. As a result, the preferences for the dative con-
structions in both models have a very small range of
values, showing relatively small differences.

The BFS model is also affected by the relatively
compressed semantic space of the input, which is
exacerbated by the use of log frequencies to guide
the input. As noted earlier, we found that the se-
mantic features of alternating verbs can be highly
similar to non-alternating verbs – e.g., give (alternat-
ing) and pull (PO-only) have similar semantic vec-
tors. With such input, the model cannot form suf-
ficiently distinct first-level clusters based on the se-
mantics, particularly when the data is presented with
such a flat distribution (note the small differences in
log frequencies in Table 1). Visual inspection re-
veals that these clusters in the model largely form
around syntactic constructions, with mixed seman-
tic properties. Despite this, the first-level clusters
capture a strong enough association between indi-
vidual verbs and their constructions to yield a good
correlation of the verb bias score with human judg-
ments, and drawing on the second-level (verb-class)
clusters improves the results.

Conclusions. The use of an artificial high-
frequency non-dative construction (other), and the
use of log frequencies, seem to mask the influ-
ence of the semantic and syntactic properties on
learning the verb-bias for each verb. Previous psy-
cholinguistic data and computational models have
found that a skewed naturalistic distribution of the
input is helpful in learning constructions, due to
the high-frequency verbs establishing appropriate
construction-meaning associations (Casenhiser and
Goldberg, 2005; Borovsky and Elman, 2006; Barak
et al., 2013b; Matusevych et al., 2014). To allow
a more direct analysis of the role of statistical and
semantic properties in learning and generalizing the
dative, we adjust the input to the models in the next
section.

5.2 Exp 2: Raw Freq Input; 2 Constructions

Results. Here we perform the same type of experi-
ments, but using input in proportion to the raw fre-
quencies of the verbs (instead of log frequencies)
over occurrences only in the two dative construc-
tions (with no other construction). Since 98 of the
281 verbs do not occur with either dative construc-

102

AB (Connectionist)
BFS (Bayesian)

Level 1 Level 2
DO [0.06] 0.23 0.25
PD 0.33 0.38 0.32
DO-PD 0.39 0.53 0.59

Table 3: Pearson correlation values between human and
model preferences for each construction and the verb-bias
score; training on raw frequencies and 2 constructions.
All correlations significant with p-value < 0.001, except
the one value in square brackets. Best result for each row
is marked in boldface.

tion in the BNC, this also allows us to more strin-
gently test the generalization ability of the models,
by considering their behavior when ˜1/3 of the verbs
are unseen in training.

Table 3 presents the correlation results for the
two models’ preferences for each construction and
the verb bias score; we also show the correlation
plots for the verb bias score in Figure 3. The AB
model does not correlate with the judgments for the
DO. However, the model produces significant posi-
tive correlations with the PD judgments and with the
verb bias score. The BFS model, on the other hand,
achieves significant positive correlations on all mea-
sures, by both levels. As in the earlier experiments,
the best correlation with the verb bias score is pro-
duced by the second level of the BFS model, as Fig-
ure 3 demonstrates.

Analysis. As shown by Barak et al. (2013b),
the Bayesian model is better at learning the distri-
bution pattern of each verb class given a skewed
distribution, as in the raw frequencies here. The
model learns an association of each construction to
the frequently-observed meaning of high-frequency
verbs. For example, the semantics of the DO is most
strongly influenced by the semantics of its most fre-
quently occurring instance: give. The accuracy of
preference judgments benefits from the entrench-
ment of the relevant meaning with the construction.
This supports appropriate generalization – e.g., be-
cause reward is semantically similar to give, it has
a good fit to the human preference judgments even
though it is unseen with the dative (see Figure 3).
But the same factor can serve to limit generaliza-
tion – e.g., because the unseen verb mail is semantic
dissimilar to a frequent PD-only verb like pull, its
preference for the PD syntax is limited, giving it a

(a) AB model

(b) BFS model - construction level

(c) BFS model - verb class level

Figure 3: Correlation of the dative verbs with the verb
bias score of each model in Exp. 2: (a) the AB model (r =
0.39), (b) the first level of the BFS model (r = 0.53), and
(c) the second level of the BFS model (r = 0.59).

good match to human judgments by preventing its
overgeneralization (see Figure 3).

The AB model can also take advantage of high
frequency verbs biasing the preference toward the
frequently observed association. However, the se-
mantic similarity across verbs within alternating or
non-alternating classes is less effective in this model.
The representation of the lexemes as 281 nodes
in the input (compared to less than a dozen other
nodes) make the learning more verb specific, reduc-
ing the ability of the model to generalize to the unat-
tested verbs.

Conclusions. The success of the BFS model,
and especially the results using both constructions
and classes, point to the role of probabilistic con-
structions and verb classes in generalizing exist-

103

ing knowledge while avoiding overgeneralizations.
Moreover, the use of a skewed distribution reveals
the role of the high verb-in-construction frequency
in guiding the association of construction and mean-
ing (see Ambridge et al., 2014, for discussion). Yet
both models would benefit from a richer seman-
tic representation that better captures the distinctive
properties of verbs across various constructions.

6 Discussion

This paper presents a comparative analysis of two
computational cognitive models on the sample task
of learning the dative alternation. This study en-
ables an evaluation of the psycholinguistic plausi-
bility of each model for the given task when facing
identical input and experimental settings. Adopting
the semantic representation of Ambridge and Bly-
thing (2015), our input incorporates both seman-
tic and syntactic properties over a large number of
verbs. By providing the first direct comparison be-
tween two existing models of this phenomenon, we
are the first to demonstrate the complex interac-
tion of various linguistic properties in the input, and
how rich learning mechanisms are required in or-
der to achieve generalizations compatible with hu-
man judgments in this area. Moreover, comparison
of learning mechanisms and of input properties can
inform CL/NLP more generally by shedding light on
potential factors in achieving humanlike behaviours.

We find that the Bayesian model of BFS signifi-
cantly correlates with human judgments on the 3 key
evaluation measures. Importantly, this model out-
performs the connectionist model of AB in the cor-
relation with the verb-bias score (the per-verb differ-
ence between DO and PD preference), which points
to its advantage in choosing the more appropriate
construction per verb. We argue that the fit of the
model relies on a rich learning mechanism that ex-
ploits distributional properties of naturalistic input.

The AB model has a streamlined design to sup-
port learning a particular semantic-syntactic associ-
ation underlying the dative alternation. While the
BFS model is richer computationally, its properties
were motivated in earlier work explaining many hu-
man behaviours. When we consider more natural in-
put, the simple input[semantics]–output[syntax] as-
sociation mechanism of the AB model is unable to

capture the necessary interactions among the verb
semantic properties, the syntactic usages, and their
patterns across different types of verbs. By con-
trast, the two-level design of the BFS model captures
these interactions. The first level learns the verb-
semantics-syntax associations as clusters of similar
configurations of those features. The second level
captures the commonalities of behaviour of sets of
verbs by forming classes of verbs that have simi-
lar distributional patterns over the first-level clus-
ters. We also observe that the replication of adult-
like language competence relies on several naturalis-
tic properties of the input: skewed distribution, and a
rich semantic representation combined with syntac-
tic information. The skewed input enables the for-
mation of clusters representing more entrenched as-
sociations, which are biased towards high-frequency
verbs associated with certain semantic and syntactic
features.

Given the role of these linguistic properties, the
results here call for additional analysis and develop-
ment of the input to computational cognitive models.
The predictions may be improved given more real-
istic syntactic and semantic information about the
verb usages. On the syntax side, the input should
reflect the distribution of verbs across more syntac-
tic constructions, as statistical patterns over such us-
ages can indirectly indicate aspects of a verb’s se-
mantics (cf. Barak et al., 2013a). In the future,
we aim to analyze the role of fuller syntactic dis-
tributions in restricting overgeneralization patterns.
Moreover, the semantic annotations used here repli-
cate the settings originally tested for the AB model,
which correspond to the verb as used in the rele-
vant constructions. This contrasts with typical au-
tomated extractions of verb-meaning representation
(e.g., word2vec, Mikolov et al., 2013), which cap-
ture a more general verb meaning across all its us-
ages. In preliminary experiments, we have found an
advantage in using word2vec representations in ad-
dition to the semantic properties reported here. We
aim to further analyze manual and automated meth-
ods for semantic feature extraction in future work.

Acknowledgments

We are grateful to Ben Ambridge for helpful discus-
sion of his model and for sharing his data with us.

104

References

Nameera Akhtar. 1999. Acquiring basic word order:
Evidence for data-driven learning of syntactic
structure. Journal of child language, 26(02):339–
356.

Afra Alishahi and Pirita Pyykkon̈en. 2011. The on-
set of syntactic bootstrapping in word learning:
Evidence from a computational study. In Pro-
ceedings of the 33st Annual Conference of the
Cognitive Science Society.

Afra Alishahi and Suzanne Stevenson. 2008. A com-
putational model of early argument structure ac-
quisition. Cognitive Science, 32(5):789–834.

Ben Ambridge and Ryan P Blything. 2015. A
connectionist model of the retreat from verb ar-
gument structure overgeneralization. Journal of
child language, pages 1–32.

Ben Ambridge, Julian M Pine, Caroline F Rowland,
and Franklin Chang. 2012. The roles of verb se-
mantics, entrenchment, and morphophonology in
the retreat from dative argument-structure over-
generalization errors. Language, 88(1):45–81.

Ben Ambridge, Julian M Pine, Caroline F Row-
land, Daniel Freudenthal, and Franklin Chang.
2014. Avoiding dative overgeneralisation errors:
Semantics, statistics or both? Language, Cogni-
tion and Neuroscience, 29(2):218–243.

Ben Ambridge, Julian M Pine, Caroline F Row-
land, and Chris R Young. 2008. The effect of
verb semantic class and verb frequency (entrench-
ment) on childrens and adults graded judgements
of argument-structure overgeneralization errors.
Cognition, 106(1):87–129.

Libby Barak, Afsaneh Fazly, and Suzanne Steven-
son. 2012. Modeling the acquisition of mental
state verbs. In Proceedings of the 3rd Workshop
on Cognitive Modeling and Computational Lin-
guistics (CMCL 2012).

Libby Barak, Afsaneh Fazly, and Suzanne Steven-
son. 2013a. Acquisition of desires before beliefs:
A computational investigation. In Proceedings of
CoNLL-2013.

Libby Barak, Afsaneh Fazly, and Suzanne Steven-
son. 2013b. Modeling the emergence of an exem-
plar verb in construction learning. In Proceedings

of the 35rd Annual Meeting of the Cognitive Sci-
ence Society.

Libby Barak, Afsaneh Fazly, and Suzanne Steven-
son. 2014. Learning verb classes in an incremen-
tal model. In Proceedings of the 5th Workshop
on Cognitive Modeling and Computational Lin-
guistics (CMCL 2014). Association for Computa-
tional Linguistics.

Arielle Borovsky and Jeff Elman. 2006. Language
input and semantic categories: A relation between
cognition and early word learning. Journal of
child language, 33(04):759–790.

Jeremy K Boyd and Adele E Goldberg. 2009. Input
effects within a constructionist framework. The
Modern Language Journal, 93(3):418–429.

Martin DS Braine and Patricia J Brooks. 1995. Verb
argument structure and the problem of avoid-
ing an overgeneral grammar. Beyond names for
things: Young children’s acquisition of verbs,
pages 353–376.

Joan Bresnan and Marilyn Ford. 2010. Predicting
syntax: Processing dative constructions in ameri-
can and australian varieties of english. Language,
86(1):168–213.

Joan Bybee. 2010. Language, usage and cognition.
Cambridge University Press.

David Casenhiser and Adele E. Goldberg. 2005. Fast
mapping between a phrasal form and meaning.
Developmental Science, 8(6):500–508.

Cynthia Fisher. 1999. From form to meaning: A
role for structural alignment in the acquisition of
language. Advances in child development and be-
havior, 27:1–53.

Marilyn Ford, Joan W Bresnan, and Ronald Kaplan.
1982. A competence-based theory of syntactic
closure. American Journal of Computational Lin-
guistics, 8(1):49.

Susanne Gahl and Susan M Garnsey. 2004. Knowl-
edge of grammar, knowledge of usage: Syntactic
probabilities affect pronunciation variation. Lan-
guage, pages 748–775.

Susan M Garnsey, Neal J Pearlmutter, Elizabeth My-
ers, and Melanie A Lotocky. 1997. The contri-
butions of verb bias and plausibility to the com-

105

prehension of temporarily ambiguous sentences.
Journal of Memory and Language, 37(1):58–93.

Adele E. Goldberg. 1995. Constructions, A Con-
struction Grammar Approach to Argument Struc-
ture. {Chicago University Press}.

Adele E Goldberg. 2006. Constructions at work:
The nature of generalization in language. Oxford
University Press on Demand.

Adele E Goldberg. 2011. Corpus evidence of the
viability of statistical preemption. Cognitive Lin-
guistics, 22(1):131–153.

Geoffrey Leech. 1992. 100 million words of english:
the british national corpus (BNC). Language Re-
search, 28(1):1–13.

Beth Levin. 1993. English verb classes and alterna-
tions: A preliminary investigation, volume 348.
University of Chicago press Chicago, IL.

Elena VM Lieven, Julian M Pine, and Gillian Bald-
win. 1997. Lexically-based learning and early
grammatical development. Journal of child lan-
guage, 24(01):187–219.

Beth L Losiewicz. 1992. The effect of frequency on
linguistic morphology. University of Texas.

Maryellen C MacDonald, Neal J Pearlmutter, and
Mark S Seidenberg. 1994. The lexical nature of
syntactic ambiguity resolution. Psychological re-
view, 101(4):676.

Yevgen Matusevych, Afra Alishahi, and Ad Backus.
2014. Isolating second language learning factors
in a computational study of bilingual construc-
tion acquisition. In Proceedings of the 36th An-
nual Conference of the Cognitive Science Society,
pages 988–994.

Yevgen Matusevych, Afra Alishahi, and Ad Backus.
2016. The impact of first and second language
exposure on learning second language construc-
tions. Bilingualism: Language and Cognition,
pages 1–22.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed repre-
sentations of words and phrases and their com-
positionality. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Wein-
berger, editors, Advances in Neural Information

Processing Systems 26, pages 3111–3119. Curran
Associates, Inc.

Christopher Parisien and Suzanne Stevenson. 2010.
Learning verb alternations in a usage-based
bayesian model. In Proceedings of the 32nd an-
nual meeting of the Cognitive Science Society.

Amy Perfors, Joshua B. Tenenbaum, and Elizabeth
Wonnacott. 2010. Variability, negative evidence,
and the acquisition of verb argument construc-
tions. Journal of Child Language, 37(03):607–
642.

Steven Pinker. 1989. Learnability and cognition:
The acquisition of argument structure. The MIT
Press.

Nicolas Ruh and Gert Westermann. 2009. Oxlearn:
A new matlab-based simulation tool for con-
nectionist models. Behavior research methods,
41(4):1138–1143.

Anna L Theakston. 2004. The role of entrenchment
in childrens and adults performance on grammat-
icality judgment tasks. Cognitive Development,
19(1):15–34.

Michael Tomasello. 2003. Constructing a language:
A usage-based theory of language acquisition.
Harvard University Press.

John C Trueswell, Michael K Tanenhaus, and
Christopher Kello. 1993. Verb-specific con-
straints in sentence processing: separating effects
of lexical preference from garden-paths. Journal
of Experimental Psychology: Learning, Memory,
and Cognition, 19(3):528.

Thomas Wasow. 2002. Postverbal behavior. Stan-
ford Univ Center for the Study.

106

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 107–117,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Rationalizing Neural Predictions

Tao Lei, Regina Barzilay and Tommi Jaakkola
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
{taolei, regina, tommi}@csail.mit.edu

Abstract

Prediction without justification has limited ap-
plicability. As a remedy, we learn to extract
pieces of input text as justifications – ratio-
nales – that are tailored to be short and co-
herent, yet sufficient for making the same pre-
diction. Our approach combines two modu-
lar components, generator and encoder, which
are trained to operate well together. The gen-
erator specifies a distribution over text frag-
ments as candidate rationales and these are
passed through the encoder for prediction. Ra-
tionales are never given during training. In-
stead, the model is regularized by desiderata
for rationales. We evaluate the approach on
multi-aspect sentiment analysis against manu-
ally annotated test cases. Our approach out-
performs attention-based baseline by a signif-
icant margin. We also successfully illustrate
the method on the question retrieval task.1

1 Introduction

Many recent advances in NLP problems have come
from formulating and training expressive and elabo-
rate neural models. This includes models for senti-
ment classification, parsing, and machine translation
among many others. The gains in accuracy have,
however, come at the cost of interpretability since
complex neural models offer little transparency con-
cerning their inner workings. In many applications,
such as medicine, predictions are used to drive criti-
cal decisions, including treatment options. It is nec-
essary in such cases to be able to verify and under-

1Our code and data are available at https://github.
com/taolei87/rcnn.

the	beer	was	n’t	what	i	expected,	and	i‘m	not	sure	it’s	“true	
to	 style“,	 but	 i	 thought	 it	 was	 delicious.	 a	 very	 pleasant	
ruby	red-amber	color	with	a	rela9vely	brilliant	finish,	but	a	
limited	amount	of	carbona9on,	from	the	look	of	it.	aroma	is	
what	 i	 think	 an	 amber	 ale	 should	 be	 -	 a	 nice	 blend	 of	
caramel	and	happiness	bound	together.

Review

Ratings
Look: 5 stars Smell: 4 stars

Figure 1: An example of a review with ranking in two cate-

gories. The rationale for Look prediction is shown in bold.

stand the underlying basis for the decisions. Ide-
ally, complex neural models would not only yield
improved performance but would also offer inter-
pretable justifications – rationales – for their predic-
tions.

In this paper, we propose a novel approach to in-
corporating rationale generation as an integral part
of the overall learning problem. We limit ourselves
to extractive (as opposed to abstractive) rationales.
From this perspective, our rationales are simply sub-
sets of the words from the input text that satisfy two
key properties. First, the selected words represent
short and coherent pieces of text (e.g., phrases) and,
second, the selected words must alone suffice for
prediction as a substitute of the original text. More
concretely, consider the task of multi-aspect senti-
ment analysis. Figure 1 illustrates a product review
along with user rating in terms of two categories or
aspects. If the model in this case predicts five star
rating for color, it should also identify the phrase ”a
very pleasant ruby red-amber color” as the rationale
underlying this decision.

In most practical applications, rationale genera-

107

tion must be learned entirely in an unsupervised
manner. We therefore assume that our model with
rationales is trained on the same data as the origi-
nal neural models, without access to additional ra-
tionale annotations. In other words, target rationales
are never provided during training; the intermedi-
ate step of rationale generation is guided only by the
two desiderata discussed above. Our model is com-
posed of two modular components that we call the
generator and the encoder. Our generator specifies a
distribution over possible rationales (extracted text)
and the encoder maps any such text to task specific
target values. They are trained jointly to minimize
a cost function that favors short, concise rationales
while enforcing that the rationales alone suffice for
accurate prediction.

The notion of what counts as a rationale may be
ambiguous in some contexts and the task of select-
ing rationales may therefore be challenging to eval-
uate. We focus on two domains where ambiguity
is minimal (or can be minimized). The first sce-
nario concerns with multi-aspect sentiment analysis
exemplified by the beer review corpus (McAuley et
al., 2012). A smaller test set in this corpus iden-
tifies, for each aspect, the sentence(s) that relate to
this aspect. We can therefore directly evaluate our
predictions on the sentence level with the caveat that
our model makes selections on a finer level, in terms
of words, not complete sentences. The second sce-
nario concerns with the problem of retrieving similar
questions. The extracted rationales should capture
the main purpose of the questions. We can therefore
evaluate the quality of rationales as a compressed
proxy for the full text in terms of retrieval perfor-
mance. Our model achieves high performance on
both tasks. For instance, on the sentiment predic-
tion task, our model achieves extraction accuracy of
96%, as compared to 38% and 81% obtained by the
bigram SVM and a neural attention baseline.

2 Related Work

Developing sparse interpretable models is of con-
siderable interest to the broader research commu-
nity(Letham et al., 2015; Kim et al., 2015). The need
for interpretability is even more pronounced with
recent neural models. Efforts in this area include
analyzing and visualizing state activation (Hermans

and Schrauwen, 2013; Karpathy et al., 2015; Li et
al., 2016), learning sparse interpretable word vec-
tors (Faruqui et al., 2015b), and linking word vectors
to semantic lexicons or word properties (Faruqui et
al., 2015a; Herbelot and Vecchi, 2015).

Beyond learning to understand or further con-
strain the network to be directly interpretable, one
can estimate interpretable proxies that approximate
the network. Examples include extracting “if-then”
rules (Thrun, 1995) and decision trees (Craven
and Shavlik, 1996) from trained networks. More
recently, Ribeiro et al. (2016) propose a model-
agnostic framework where the proxy model is
learned only for the target sample (and its neighbor-
hood) thus ensuring locally valid approximations.
Our work differs from these both in terms of what is
meant by an explanation and how they are derived.
In our case, an explanation consists of a concise yet
sufficient portion of the text where the mechanism
of selection is learned jointly with the predictor.

Attention based models offer another means to ex-
plicate the inner workings of neural models (Bah-
danau et al., 2015; Cheng et al., 2016; Martins
and Astudillo, 2016; Chen et al., 2015; Xu and
Saenko, 2015; Yang et al., 2015). Such models have
been successfully applied to many NLP problems,
improving both prediction accuracy as well as vi-
sualization and interpretability (Rush et al., 2015;
Rocktäschel et al., 2016; Hermann et al., 2015).
Xu et al. (2015) introduced a stochastic attention
mechanism together with a more standard soft at-
tention on image captioning task. Our rationale ex-
traction can be understood as a type of stochastic
attention although architectures and objectives dif-
fer. Moreover, we compartmentalize rationale gen-
eration from downstream encoding so as to expose
knobs to directly control types of rationales that are
acceptable, and to facilitate broader modular use in
other applications.

Finally, we contrast our work with rationale-based
classification (Zaidan et al., 2007; Marshall et al.,
2015; Zhang et al., 2016) which seek to improve pre-
diction by relying on richer annotations in the form
of human-provided rationales. In our work, ratio-
nales are never given during training. The goal is to
learn to generate them.

108

3 Extractive Rationale Generation

We formalize here the task of extractive rationale
generation and illustrate it in the context of neural
models. To this end, consider a typical NLP task
where we are provided with a sequence of words
as input, namely x = {x1, · · · , xl}, where each
xt ∈ Rd denotes the vector representation of the i-
th word. The learning problem is to map the input
sequence x to a target vector in Rm. For example,
in multi-aspect sentiment analysis each coordinate
of the target vector represents the response or rat-
ing pertaining to the associated aspect. In text re-
trieval, on the other hand, the target vectors are used
to induce similarity assessments between input se-
quences. Broadly speaking, we can solve the associ-
ated learning problem by estimating a complex pa-
rameterized mapping enc(x) from input sequences
to target vectors. We call this mapping an encoder.
The training signal for these vectors is obtained ei-
ther directly (e.g., multi-sentiment analysis) or via
similarities (e.g., text retrieval). The challenge is
that a complex neural encoder enc(x) reveals lit-
tle about its internal workings and thus offers little
in the way of justification for why a particular pre-
diction was made.

In extractive rationale generation, our goal is to
select a subset of the input sequence as a rationale.
In order for the subset to qualify as a rationale it
should satisfy two criteria: 1) the selected words
should be interpretable and 2) they ought to suffice
to reach nearly the same prediction (target vector)
as the original input. In other words, a rationale
must be short and sufficient. We will assume that
a short selection is interpretable and focus on opti-
mizing sufficiency under cardinality constraints.

We encapsulate the selection of words as a ratio-
nale generator which is another parameterized map-
ping gen(x) from input sequences to shorter se-
quences of words. Thus gen(x) must include only a
few words and enc(gen(x)) should result in nearly
the same target vector as the original input passed
through the encoder or enc(x). We can think of the
generator as a tagging model where each word in the
input receives a binary tag pertaining to whether it is
selected to be included in the rationale. In our case,
the generator is probabilistic and specifies a distri-
bution over possible selections.

The rationale generation task is entirely unsuper-
vised in the sense that we assume no explicit anno-
tations about which words should be included in the
rationale. Put another way, the rationale is intro-
duced as a latent variable, a constraint that guides
how to interpret the input sequence. The encoder
and generator are trained jointly, in an end-to-end
fashion so as to function well together.

4 Encoder and Generator

We use multi-aspect sentiment prediction as a guid-
ing example to instantiate the two key components –
the encoder and the generator. The framework itself
generalizes to other tasks.

Encoder enc(·): Given a training instance (x,y)
where x = {xt}lt=1 is the input text sequence of
length l and y ∈ [0, 1]m is the target m-dimensional
sentiment vector, the neural encoder predicts ỹ =
enc(x). If trained on its own, the encoder would
aim to minimize the discrepancy between the pre-
dicted sentiment vector ỹ and the gold target vector
y. We will use the squared error (i.e. L2 distance)
as the sentiment loss function,

L(x,y) = ‖ỹ − y‖22 = ‖enc(x)− y‖22
The encoder could be realized in many ways such
as a recurrent neural network. For example, let
ht = fe(xt,ht−1) denote a parameterized recurrent
unit mapping input word xt and previous state ht−1
to next state ht. The target vector is then generated
on the basis of the final state reached by the recur-
rent unit after processing all the words in the input
sequence. Specifically,

ht = fe(xt,ht−1), t = 1, . . . , l

ỹ = σe(W
ehl + be)

Generator gen(·): The rationale generator ex-
tracts a subset of text from the original input x to
function as an interpretable summary. Thus the ra-
tionale for a given sequence x can be equivalently
defined in terms of binary variables {z1, · · · , zl}
where each zt ∈ 0, 1 indicates whether word xt is
selected or not. From here on, we will use z to
specify the binary selections and thus (z,x) is the
actual rationale generated (selections, input). We
will use generator gen(x) as synonymous with a

109

probability distribution over binary selections, i.e.,
z ∼ gen(x) ≡ p(z|x) where the length of z varies
with the input x.

In a simple generator, the probability that the tth

word is selected can be assumed to be conditionally
independent from other selections given the input x.
That is, the joint probability p(z|x) factors accord-
ing to

p(z|x) =
l∏

t=1

p(zt|x) (independent selection)

The component distributions p(zt|x) can be mod-
eled using a shared bi-directional recurrent neural
network. Specifically, let

−→
f () and

←−
f () be the for-

ward and backward recurrent unit, respectively, then

−→
ht =

−→
f (xt,

−−→
ht−1)

←−
ht =

←−
f (xt,

←−−
ht+1)

p(zt|x) = σz(W
z[
−→
ht;
←−
ht] + bz)

Independent but context dependent selection of
words is often sufficient. However, the model is un-
able to select phrases or refrain from selecting the
same word again if already chosen. To this end, we
also introduce a dependent selection of words,

p(z|x) =

l∏

t=1

p(zt|x, z1 · · · zt−1)

which can be also expressed as a recurrent neural
network. To this end, we introduce another hidden
state st whose role is to couple the selections. For
example,

p(zt|x, z1,t−1) = σz(W
z[
−→
ht;
←−
ht; st−1] + bz)

st = fz([
−→
ht;
←−
ht; zt], st−1)

Joint objective: A rationale in our definition cor-
responds to the selected words, i.e., {xk|zk = 1}.
We will use (z,x) as the shorthand for this rationale
and, thus, enc(z,x) refers to the target vector ob-
tained by applying the encoder to the rationale as the
input. Our goal here is to formalize how the ratio-
nale can be made short and meaningful yet function
well in conjunction with the encoder. Our generator
and encoder are learned jointly to interact well but
they are treated as independent units for modularity.

The generator is guided in two ways during learn-
ing. First, the rationale that it produces must suffice
as a replacement for the input text. In other words,
the target vector (sentiment) arising from the ratio-
nale should be close to the gold sentiment. The cor-
responding loss function is given by

L(z,x,y) = ‖enc(z,x)− y‖22
Note that the loss function depends directly (para-
metrically) on the encoder but only indirectly on the
generator via the sampled selection.

Second, we must guide the generator to realize
short and coherent rationales. It should select only a
few words and those selections should form phrases
(consecutive words) rather than represent isolated,
disconnected words. We therefore introduce an ad-
ditional regularizer over the selections

Ω(z) = λ1‖z‖+ λ2
∑

t

|zt − zt−1|

where the first term penalizes the number of selec-
tions while the second one discourages transitions
(encourages continuity of selections). Note that this
regularizer also depends on the generator only indi-
rectly via the selected rationale. This is because it
is easier to assess the rationale once produced rather
than directly guide how it is obtained.

Our final cost function is the combination of the
two, cost(z,x,y) = L(z,x,y) + Ω(z). Since the
selections are not provided during training, we min-
imize the expected cost:

min
θe,θg

∑

(x,y)∈D
Ez∼gen(x) [cost(z,x,y)]

where θe and θg denote the set of parameters of the
encoder and generator, respectively, and D is the
collection of training instances. Our joint objective
encourages the generator to compress the input text
into coherent summaries that work well with the as-
sociated encoder it is trained with.

Minimizing the expected cost is challenging since
it involves summing over all the possible choices
of rationales z. This summation could potentially
be made feasible with additional restrictive assump-
tions about the generator and encoder. However, we
assume only that it is possible to efficiently sample
from the generator.

110

Doubly stochastic gradient We now derive a
sampled approximation to the gradient of the ex-
pected cost objective. This sampled approxima-
tion is obtained separately for each input text x so
as to work well with an overall stochastic gradient
method. Consider therefore a training pair (x,y).
For the parameters of the generator θg,

∂Ez∼gen(x) [cost(z,x,y)]

∂θg

=
∑

z

cost(z,x,y) · ∂p(z|x)

∂θg

=
∑

z

cost(z,x,y) · ∂p(z|x)

∂θg
· p(z|x)

p(z|x)

Using the fact (log f(θ))′ = f ′(θ)/f(θ), we get

∑

z

cost(z,x,y) · ∂p(z|x)

∂θg
· p(z|x)

p(z|x)

=
∑

z

cost(z,x,y) · ∂ log p(z|x)

∂θg
· p(z|x)

= Ez∼gen(x)
[

cost(z,x,y)
∂ log p(z|x)

∂θg

]

The last term is the expected gradient where the ex-
pectation is taken with respect to the generator dis-
tribution over rationales z. Therefore, we can simply
sample a few rationales z from the generator gen(x)
and use the resulting average gradient in an overall
stochastic gradient method. A sampled approxima-
tion to the gradient with respect to the encoder pa-
rameters θe can be derived similarly,

∂Ez∼gen(x) [cost(z,x,y)]

∂θe

=
∑

z

∂cost(z,x,y)

∂θe
· p(z|x)

= Ez∼gen(x)
[
∂cost(z,x,y)

∂θe

]

Choice of recurrent unit We employ recurrent
convolution (RCNN), a refinement of local-ngram
based convolution. RCNN attempts to learn n-gram
features that are not necessarily consecutive, and
average features in a dynamic (recurrent) fashion.
Specifically, for bigrams (filter width n = 2) RCNN
computes ht = f(xt,ht−1) as follows

Number of reviews 1580k
Avg length of review 144.9
Avg correlation between aspects 63.5%
Max correlation between two aspects 79.1%
Number of annotated reviews 994

Table 1: Statistics of the beer review dataset.

λt = σ(Wλxt + Uλht−1 + bλ)

c
(1)
t = λt � c

(1)
t−1 + (1− λt)� (W1xt)

c
(2)
t = λt � c

(2)
t−1 + (1− λt)� (c

(1)
t−1 + W2xt)

ht = tanh(c
(2)
t + b)

RCNN has been shown to work remarkably in clas-
sification and retrieval applications (Lei et al., 2015;
Lei et al., 2016) compared to other alternatives such
CNNs and LSTMs. We use it for all the recurrent
units introduced in our model.

5 Experiments

We evaluate the proposed joint model on two NLP
applications: (1) multi-aspect sentiment analysis on
product reviews and (2) similar text retrieval on
AskUbuntu question answering forum.

5.1 Multi-aspect Sentiment Analysis

Dataset We use the BeerAdvocate2 review dataset
used in prior work (McAuley et al., 2012).3 This
dataset contains 1.5 million reviews written by the
website users. The reviews are naturally multi-
aspect – each of them contains multiple sentences
describing the overall impression or one particu-
lar aspect of a beer, including appearance, smell
(aroma), palate and the taste. In addition to the writ-
ten text, the reviewer provides the ratings (on a scale
of 0 to 5 stars) for each aspect as well as an overall
rating. The ratings can be fractional (e.g. 3.5 stars),
so we normalize the scores to [0, 1] and use them as
the (only) supervision for regression.

McAuley et al. (2012) also provided sentence-
level annotations on around 1,000 reviews. Each
sentence is annotated with one (or multiple) aspect
label, indicating what aspect this sentence covers.

2www.beeradvocate.com
3http://snap.stanford.edu/data/

web-BeerAdvocate.html

111

Method Appearance Smell Palate
% precision % selected % precision % selected % precision % selected

SVM 38.3 13 21.6 7 24.9 7
Attention model 80.6 13 88.4 7 65.3 7
Generator (independent) 94.8 13 93.8 7 79.3 7
Generator (recurrent) 96.3 14 95.1 7 80.2 7

Table 2: Precision of selected rationales for the first three aspects. The precision is evaluated based on whether the selected words

are in the sentences describing the target aspect, based on the sentence-level annotations. Best training epochs are selected based

on the objective value on the development set (no sentence annotation is used).

D d l |θ| MSE
SVM 260k - - 2.5M 0.0154
SVM 1580k - - 7.3M 0.0100
LSTM 260k 200 2 644k 0.0094
RCNN 260k 200 2 323k 0.0087

Table 3: Comparing neural encoders with bigram SVM model.

MSE is the mean squared error on the test set. D is the amount

of data used for training and development. d stands for the hid-

den dimension, l denotes the depth of network and |θ| denotes

the number of parameters (number of features for SVM).

We use this set as our test set to evaluate the preci-
sion of words in the extracted rationales.

Table 1 shows several statistics of the beer review
dataset. The sentiment correlation between any pair
of aspects (and the overall score) is quite high, get-
ting 63.5% on average and a maximum of 79.1%
(between the taste and overall score). If directly
training the model on this set, the model can be con-
fused due to such strong correlation. We therefore
perform a preprocessing step, picking “less corre-
lated” examples from the dataset.4 This gives us a
de-correlated subset for each aspect, each contain-
ing about 80k to 90k reviews. We use 10k as the
development set. We focus on three aspects since
the fourth aspect taste still gets > 50% correlation
with the overall sentiment.

Sentiment Prediction Before training the joint
model, it is worth assessing the neural encoder sepa-
rately to check how accurately the neural network
predicts the sentiment. To this end, we compare
neural encoders with bigram SVM model, training
medium and large SVM models using 260k and all

4Specifically, for each aspect we train a simple linear regres-
sion model to predict the rating of this aspect given the ratings
of the other four aspects. We then keep picking reviews with
largest prediction error until the sentiment correlation in the se-
lected subset increases dramatically.

0.008

0.010

0.012

0.014

0.016

0% 25% 50% 75% 100%

0.015
SVM

0.009
Encoder

Figure 2: Mean squared error of all aspects on the test set (y-

axis) when various percentages of text are extracted as ratio-

nales (x-axis). 220k training data is used.

1580k reviews respectively. As shown in Table 3,
the recurrent neural network models outperform the
SVM model for sentiment prediction and also re-
quire less training data to achieve the performance.
The LSTM and RCNN units obtain similar test er-
ror, getting 0.0094 and 0.0087 mean squared error
respectively. The RCNN unit performs slightly bet-
ter and uses less parameters. Based on the results,
we choose the RCNN encoder network with 2 stack-
ing layers and 200 hidden states.

To train the joint model, we also use RCNN unit
with 200 states as the forward and backward recur-
rent unit for the generator gen(). The dependent
generator has one additional recurrent layer. For this
layer we use 30 states so the dependent version still
has a number of parameters comparable to the inde-
pendent version. The two versions of the generator
have 358k and 323k parameters respectively.

Figure 2 shows the performance of our joint de-
pendent model when trained to predict the sentiment
of all aspects. We vary the regularization λ1 and λ2
to show various runs that extract different amount of
text as rationales. Our joint model gets performance
close to the best encoder run (with full text) when
few words are extracted.

112

a	beer	that	is	not	sold	in	my	neck	of	the	woods	,	but	managed	to	get	while	on	a	roadtrip	.	poured	into	an	imperial	pint	glass	with	a	
generous	head	that	sustained	life	throughout	.	nothing	out	of	the	ordinary	here	,	but	a	good	brew	s9ll	.	body	was	kind	of	heavy	,	but	
not	thick	.	the	hop	smell	was	excellent	and	en9cing	.	very	drinkable

very	dark	beer	.	pours	a	nice	finger	and	a	half	of	creamy	foam	and	stays	throughout	the	beer	.	smells	of	coffee	and	roasted	malt	.	has	a	
major	 coffee-like	 taste	with	hints	of	 chocolate	 .	 if	 you	 like	black	 coffee	 ,	 you	will	 love	 this	 porter	 .	 creamy	 smooth	mouthfeel	 and	
definitely	gets	smoother	on	the	palate	once	it	warms	.	it	's	an	ok	porter	but	i	feel	there	are	much	beAer	one	's	out	there	.

poured	into	a	sniBer	.	produces	a	small	coffee	head	that	reduces	quickly	.	black	as	night	.	preAy	typical	imp	.	roasted	malts	hit	
on	 the	 nose	 .	 a	 liAle	 sweet	 chocolate	 follows	 .	 big	 toasty	 character	 on	 the	 taste	 .	 in	 between	 i	 'm	 geDng	 plenty	 of	 dark	
chocolate	and	some	biAer	espresso	.	it	finishes	with	hop	biAerness	.	nice	smooth	mouthfeel	with	perfect	carbona9on	for	the	
style	.	overall	a	nice	stout	i	would	love	to	have	again	,	maybe	with	some	age	on	it	.

i	really	did	not	like	this	.	it	just	seemed	extremely	watery	.	i	dont	'	think	this	had	any	carbona9on	whatsoever	.	maybe	it	was	flat	,	who	
knows	?	but	even	if	i	got	a	bad	brew	i	do	n't	see	how	this	would	possibly	be	something	i	'd	get	9me	and	9me	again	.	i	could	taste	the	
hops	towards	the	middle	,	but	the	beer	got	preAy	nasty	towards	the	boAom	.	i	would	never	drink	this	again	,	unless	it	was	free	.	i	'm	
kind	of	upset	i	bought	this	.

a	:	poured	a	nice	dark	brown	with	a	tan	colored	head	about	half	an	inch	thick	,	nice	red/garnet	accents	when	held	to	the	light	.	liAle	
clumps	of	lacing	all	around	the	glass	,	not	too	shabby	.	not	terribly	impressive	though	s	:	smells	like	a	more	guinness-y	guinness	really	,	
there	are	some	roasted	malts	there	,	signature	guinness	smells	,	less	burnt	though	,	a	liAle	bit	of	chocolate	…	…	m	:	rela9vely	thick	,	it	
is	n't	an	export	stout	or	imperial	stout	,	but	s9ll	is	preAy	heBy	in	the	mouth	,	very	smooth	,	not	much	carbona9on	.	not	too	shabby	d	:	
not	quite	as	drinkable	as	the	draught	,	but	s9ll	not	too	bad	.	i	could	easily	see	drinking	a	few	of	these	.

Figure 3: Examples of extracted rationales indicating the sentiments of various aspects. The extracted texts for appearance, smell

and palate are shown in red, blue and green color respectively. The last example is shortened for space.

SVM Attention Gen (independent) Gen (recurrent)

1 73.9 1 89.1 6 97.4 12 96.5

3 55.9 3 88.1 13 94.9 14 96.3

5 48.5 5 86.4 16 92.9 16 91.2

7 44.7 7 84.1

9 42.2 9 82.3

11 41.2 11 79.8

13 38.3 13 77.1

15 36.7 15 74.4

17 35.1 17 71.6

30

48

65

83

100

5 7 9 11 13 15 17

SVM
Attention
Gen (independent)
Gen (recurrent)

�1

Figure 4: Precision (y-axis) when various percentages of text

are extracted as rationales (x-axis) for the appearance aspect.

Rationale Selection To evaluate the supporting
rationales for each aspect, we train the joint encoder-
generator model on each de-correlated subset. We
set the cardinality regularization λ1 between values
{2e − 4, 3e − 4, 4e − 4} so the extracted rationale
texts are neither too long nor too short. For simplic-
ity, we set λ2 = 2λ1 to encourage local coherency
of the extraction.

For comparison we use the bigram SVM model
and implement an attention-based neural network
model. The SVM model successively extracts un-
igram or bigram (from the test reviews) with the
highest feature. The attention-based model learns a
normalized attention vector of the input tokens (us-
ing similarly the forward and backward RNNs), then
the model averages over the encoder states accord-
ingly to the attention, and feed the averaged vector
to the output layer. Similar to the SVM model, the
attention-based model can selects words based on
their attention weights.

0 50 100

0.03

0.04

0.05

0.06

Gen (recurrent)
Gen (independent)

0.2

0.4

0.6

0.8

1.0

Figure 5: Learning curves of the optimized cost function on the

development set and the precision of rationales on the test set.

The smell (aroma) aspect is the target aspect.

Table 2 presents the precision of the extracted ra-
tionales calculated based on sentence-level aspect
annotations. The λ1 regularization hyper-parameter
is tuned so the two versions of our model extract
similar number of words as rationales. The SVM
and attention-based model are constrained similarly
for comparison. Figure 4 further shows the preci-
sion when different amounts of text are extracted.
Again, for our model this corresponds to changing
the λ1 regularization. As shown in the table and the
figure, our encoder-generator networks extract text
pieces describing the target aspect with high preci-
sion, ranging from 80% to 96% across the three as-
pects appearance, smell and palate. The SVM base-
line performs poorly, achieving around 30% accu-
racy. The attention-based model achieves reasonable
but worse performance than the rationale generator,
suggesting the potential of directly modeling ratio-
nales as explicit extraction.

113

Figure 5 shows the learning curves of our model
for the smell aspect. In the early training epochs,
both the independent and (recurrent) dependent se-
lection models fail to produce good rationales, get-
ting low precision as a result. After a few epochs
of exploration however, the models start to achieve
high accuracy. We observe that the dependent ver-
sion learns more quickly in general, but both ver-
sions obtain close results in the end.

Finally we conduct a qualitative case study on
the extracted rationales. Figure 3 presents several
reviews, with highlighted rationales predicted by
the model. Our rationale generator identifies key
phrases or adjectives that indicate the sentiment of
a particular aspect.

5.2 Similar Text Retrieval on QA Forum

Dataset For our second application, we use
the real-world AskUbuntu5 dataset used in recent
work (dos Santos et al., 2015; Lei et al., 2016). This
set contains a set of 167k unique questions (each
consisting a question title and a body) and 16k user-
identified similar question pairs. Following previ-
ous work, this data is used to train the neural en-
coder that learns the vector representation of the
input question, optimizing the cosine distance (i.e.
cosine similarity) between similar questions against
random non-similar ones. We use the “one-versus-
all” hinge loss (i.e. positive versus other negatives)
for the encoder, similar to (Lei et al., 2016). Dur-
ing development and testing, the model is used to
score 20 candidate questions given each query ques-
tion, and a total of 400×20 query-candidate question
pairs are annotated for evaluation6.

Task/Evaluation Setup The question descriptions
are often long and fraught with irrelevant details. In
this set-up, a fraction of the original question text
should be sufficient to represent its content, and be
used for retrieving similar questions. Therefore, we
will evaluate rationales based on the accuracy of the
question retrieval task, assuming that better ratio-
nales achieve higher performance. To put this per-
formance in context, we also report the accuracy
when full body of a question is used, as well as ti-
tles alone. The latter constitutes an upper bound on

5askubuntu.com
6https://github.com/taolei87/askubuntu

MAP (dev) MAP (test) %words
Full title 56.5 60.0 10.1
Full body 54.2 53.0 89.9

Independent
55.7 53.6 9.7
56.3 52.6 19.7

Dependent
56.1 54.6 11.6
56.5 55.6 32.8

Table 4: Comparison between rationale models (middle and

bottom rows) and the baselines using full title or body (top row).

Gen (independent) Gen (recurrent)

0.052 47.08 0.063 50.54

0.058 52.36 0.067 49.48

0.059 46.02 0.07 51.96

0.062 49.76 0.078 51.54

0.064 47.94 0.086 52.55

0.068 48.93 0.095 53.59

0.07 49.5 0.108 53.15

0.081 52.18 0.112 51.48

0.081 51.84 0.116 54.62

0.094 51.24 0.121 52.12

0.094 52.21 0.137 53

0.097 53.61 0.163 53.2

0.098 54.11 0.179 54.13

0.122 49.03 0.193 52.11

0.133 54.19 0.262 52.32

0.135 50.21 0.277 50.87

0.136 48.22 0.328 53.21

0.145 50.96 0.328 55.61

0.155 52.91 0.347 51

0.173 52.74 0.378 54.93

0.197 52.6

45.0

47.8

50.5

53.3

56.0

5% 9% 13% 16% 20%

Gen (independent)
Gen (recurrent)

�1

Figure 6: Retrieval MAP on the test set when various percent-

ages of the texts are chosen as rationales. Data points corre-

spond to models trained with different hyper-parameters.

the model performance as in this dataset titles pro-
vide short, informative summaries of the question
content. We evaluate the rationales using the mean
average precision (MAP) of retrieval.

Results Table 4 presents the results of our ratio-
nale model. We explore a range of hyper-parameter
values7. We include two runs for each version. The
first one achieves the highest MAP on the develop-
ment set, The second run is selected to compare the
models when they use roughly 10% of question text
(7 words on average). We also show the results of
different runs in Figure 6. The rationales achieve the
MAP up to 56.5%, getting close to using the titles.
The models also outperform the baseline of using
the noisy question bodies, indicating the the models’
capacity of extracting short but important fragments.

Figure 7 shows the rationales for several questions
in the AskUbuntu domain, using the recurrent ver-
sion with around 10% extraction. Interestingly, the
model does not always select words from the ques-
tion title. The reasons are that the question body
can contain the same or even complementary infor-
mation useful for retrieval. Indeed, some rationale
fragments shown in the figure are error messages,

7λ1 ∈ {.008, .01, .012, .015}, λ2 = {0, λ1, 2λ1}, dropout
∈ {0.1, 0.2}

114

i	accidentally	removed	the	ubuntu	soBware	centre	,	when	i	was	actually	trying	to	remove	my	ubuntu	one	applica9ons	.	although	i	do	
n't	remember	directly	uninstalling	the	centre	,	i	think	dele9ng		one	of	those	packages	might	have	triggered	it	.	i	can	not	look	at	history	
of	applica9on	changes	,	as	the	soBware	centre	is	missing	.	please	advise	on	how	to	install	,	or	rather	reinstall	,	ubuntu	soBware	centre	
on	my	computer	.	how	do	i	install	ubuntu	soBware	centre	applica9on	?

i	know	this	will	be	an	odd	ques9on	,	but	 i	was	wondering	 if	anyone	knew	how	to	 install	 the	ubuntu	 installer	package	 in	an	ubuntu	
installa9on	.	to	clarify	,	when	you	boot	up	to	an	ubuntu	livecd	,	it	's	got	the	installer	program	available	so	that	you	can	install	ubuntu	to	
a	drive	.	naturally	,	this	program	is	not	present	in	the	installed	ubuntu	.	is	there	,	though	,	a	way	to	download	and	install	it	like	other	
packages	?	invariably	,	someone	will	ask	what	i	'm	trying	to	do	,	and	the	answer	…	install	installer	package	on	an	installed	system	?

what	is	the	easiest	way	to	install	all	the	media	codec	available	for	ubuntu	?	i	am	having	issues	with	mul9ple	applica9ons	promp9ng	
me	to	install	codecs	before	they	can	play	my	files	.	how	do	i		install	media	codecs	?

what	should	i	do	when	i	see	<unk>	report	this	<unk>	?	an	unresolvable	problem	occurred	while	ini9alizing	the	package	informa9on	.	
please	report	this	bug	against	the	'update-manager	'	package	and	include	the	following	error	message	:	e	:	encountered	a	sec9on	with	
no	package	:	header	e	:	problem	with	mergelist	<unk>	e	:	the	package	lists	or	status	file	could	not	be	parsed	or	opened	.

please	any	one	give	the	solu9on	for	this	whenever	i	try	to	convert	the	rpm	file	to	deb	file	i	always	get	this	problem	error	:	<unk>	:	not	
an	rpm	package	(or	package	manifest)	error	execu9ng	``	 	 lang=c	rpm	-qp	--	queryformat	%	{	name	}	<unk>	'	 ''	 :	at	<unk>	line	489	
thanks	conver9ng	rpm	file	to	debian	fle

how	do	i	mount	a	hibernated	par99on	with	windows	8	in	ubuntu	?	i	ca	n't	mount	my	other	par99on	with	windows	8	,	i	have	ubuntu	
12.10	 amd64	 :	 error	 moun9ng	 /dev/sda1	 at	 <unk>	 :	 command-line	 `mount	 -t	 ``	 n[s	 ''	 -o	 ``	 uhelper=udisks2	 ,	 nodev	 ,	 nosuid	 ,	
uid=1000	 ,	 gid=1000	 ,	 dmask=0077	 ,	 fmask=0177	 ''	 ``	 /dev/sda1	 ''	 ``	 <unk>	 ''	 '	 exited	 with	 non-zero	 exit	 status	 14	 :	 windows	 is													
hibernated	,	refused	to	mount	.	failed	to	mount	'/dev/sda1	'	:	opera9on	not	permiAed	the	n[s	par99on	is	hibernated	.	please	resume	
and	shutdown	windows	properly	,	or	mount	the	volume	read-only	with	the	'ro	'	mount	op9on

Figure 7: Examples of extracted rationales of questions in the AskUbuntu domain.

which are typically not in the titles but very useful
to identify similar questions.

6 Discussion

We proposed a novel modular neural framework
to automatically generate concise yet sufficient text
fragments to justify predictions made by neural net-
works. We demonstrated that our encoder-generator
framework, trained in an end-to-end manner, gives
rise to quality rationales in the absence of any ex-
plicit rationale annotations. The approach could be
modified or extended in various ways to other appli-
cations or types of data.

Choices of enc(·) and gen(·). The encoder and
generator can be realized in numerous ways with-
out changing the broader algorithm. For instance,
we could use a convolutional network (Kim, 2014;
Kalchbrenner et al., 2014), deep averaging net-
work (Iyyer et al., 2015; Joulin et al., 2016) or a
boosting classifier as the encoder. When rationales
can be expected to conform to repeated stereotypi-
cal patterns in the text, a simpler encoder consistent
with this bias can work better. We emphasize that,
in this paper, rationales are flexible explanations that
may vary substantially from instance to another. On
the generator side, many additional constraints could
be imposed to further guide acceptable rationales.

Dealing with Search Space. Our training method
employs a REINFORCE-style algorithm (Williams,
1992) where the gradient with respect to the param-
eters is estimated by sampling possible rationales.

Additional constraints on the generator output can
be helpful in alleviating problems of exploring po-
tentially a large space of possible rationales in terms
of their interaction with the encoder. We could also
apply variance reduction techniques to increase sta-
bility of stochastic training (cf. (Weaver and Tao,
2001; Mnih et al., 2014; Ba et al., 2015; Xu et al.,
2015)).

7 Acknowledgments

We thank Prof. Julian McAuley for sharing the re-
view dataset and annotations. We also thank MIT
NLP group and the reviewers for their helpful com-
ments. The work is supported by the Arabic Lan-
guage Technologies (ALT) group at Qatar Com-
puting Research Institute (QCRI) within the IYAS
project. Any opinions, findings, conclusions, or rec-
ommendations expressed in this paper are those of
the authors, and do not necessarily reflect the views
of the funding organizations.

References
Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu.

2015. Multiple object recognition with visual atten-
tion. In Proceedings of the International Conference
on Learning Representations (ICLR).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations.

Kan Chen, Jiang Wang, Liang-Chieh Chen, Haoyuan
Gao, Wei Xu, and Ram Nevatia. 2015. Abc-

115

cnn: An attention based convolutional neural net-
work for visual question answering. arXiv preprint
arXiv:1511.05960.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long short-term memory-networks for machine read-
ing. arXiv preprint arXiv:1601.06733.

Mark W Craven and Jude W Shavlik. 1996. Extract-
ing tree-structured representations of trained networks.
In Advances in neural information processing systems
(NIPS).

Cicero dos Santos, Luciano Barbosa, Dasha Bogdanova,
and Bianca Zadrozny. 2015. Learning hybrid rep-
resentations to retrieve semantically equivalent ques-
tions. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers), pages
694–699, Beijing, China, July. Association for Com-
putational Linguistics.

Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris
Dyer, Eduard Hovy, and Noah A. Smith. 2015a.
Retrofitting word vectors to semantic lexicons. In Pro-
ceedings of NAACL.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah A. Smith. 2015b. Sparse overcom-
plete word vector representations. In Proceedings of
ACL.

Aurélie Herbelot and Eva Maria Vecchi. 2015. Build-
ing a shared world: mapping distributional to model-
theoretic semantic spaces. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational Lin-
guistics.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems, pages 1684–1692.

Michiel Hermans and Benjamin Schrauwen. 2013.
Training and analysing deep recurrent neural net-
works. In Advances in Neural Information Processing
Systems, pages 190–198.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers).

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52th Annual
Meeting of the Association for Computational Linguis-
tics.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

B Kim, JA Shah, and F Doshi-Velez. 2015. Mind the
gap: A generative approach to interpretable feature se-
lection and extraction. In Advances in Neural Infor-
mation Processing Systems.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of the Empiricial
Methods in Natural Language Processing (EMNLP
2014).

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2015.
Molding cnns for text: non-linear, non-consecutive
convolutions. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP).

Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi
Jaakkola, Katerina Tymoshenko, Alessandro Mos-
chitti, and Lluı́s Màrquez. 2016. Semi-supervised
question retrieval with gated convolutions. In Pro-
ceedings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL).

Benjamin Letham, Cynthia Rudin, Tyler H. McCormick,
and David Madigan. 2015. Interpretable classifiers
using rules and bayesian analysis: Building a better
stroke prediction model. Annals of Applied Statistics,
9(3):1350–1371.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models in
nlp. In Proceedings of NAACL.

Iain J Marshall, Joël Kuiper, and Byron C Wallace. 2015.
Robotreviewer: evaluation of a system for automati-
cally assessing bias in clinical trials. Journal of the
American Medical Informatics Association.

André F. T. Martins and Ramón Fernandez Astudillo.
2016. From softmax to sparsemax: A sparse model
of attention and multi-label classification. CoRR,
abs/1602.02068.

Julian McAuley, Jure Leskovec, and Dan Jurafsky. 2012.
Learning attitudes and attributes from multi-aspect re-
views. In Data Mining (ICDM), 2012 IEEE 12th In-
ternational Conference on, pages 1020–1025. IEEE.

Volodymyr Mnih, Nicolas Heess, Alex Graves, et al.
2014. Recurrent models of visual attention. In
Advances in Neural Information Processing Systems
(NIPS).

116

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
2016. ” why should i trust you?”: Explaining the pre-
dictions of any classifier. In ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining (KDD).

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Her-
mann, Tomáš Kočiskỳ, and Phil Blunsom. 2016. Rea-
soning about entailment with neural attention. In In-
ternational Conference on Learning Representations.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing.

Sebastian Thrun. 1995. Extracting rules from artifi-
cial neural networks with distributed representations.
In Advances in neural information processing systems
(NIPS).

Lex Weaver and Nigel Tao. 2001. The optimal reward
baseline for gradient-based reinforcement learning. In
Proceedings of the Seventeenth conference on Uncer-
tainty in artificial intelligence.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning.

Huijuan Xu and Kate Saenko. 2015. Ask, attend
and answer: Exploring question-guided spatial atten-
tion for visual question answering. arXiv preprint
arXiv:1511.05234.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell: Neu-
ral image caption generation with visual attention. In
Proceedings of the 32nd International Conference on
Machine Learning (ICML).

Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng,
and Alex Smola. 2015. Stacked attention net-
works for image question answering. arXiv preprint
arXiv:1511.02274.

Omar Zaidan, Jason Eisner, and Christine D. Piatko.
2007. Using ”annotator rationales” to improve ma-
chine learning for text categorization. In Proceedings
of Human Language Technology Conference of the
North American Chapter of the Association of Com-
putational Linguistics, pages 260–267.

Ye Zhang, Iain James Marshall, and Byron C. Wallace.
2016. Rationale-augmented convolutional neural net-
works for text classification. CoRR, abs/1605.04469.

117

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 118–127,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Deep Multi-Task Learning with Shared Memory

Pengfei Liu Xipeng Qiu∗ Xuanjing Huang
Shanghai Key Laboratory of Intelligent Information Processing, Fudan University

School of Computer Science, Fudan University
825 Zhangheng Road, Shanghai, China
{pfliu14,xpqiu,xjhuang}@fudan.edu.cn

Abstract

Neural network based models have achieved
impressive results on various specific tasks.
However, in previous works, most models are
learned separately based on single-task su-
pervised objectives, which often suffer from
insufficient training data. In this paper, we
propose two deep architectures which can be
trained jointly on multiple related tasks. More
specifically, we augment neural model with an
external memory, which is shared by several
tasks. Experiments on two groups of text clas-
sification tasks show that our proposed archi-
tectures can improve the performance of a task
with the help of other related tasks.

1 Introduction

Neural network based models have been shown to
achieved impressive results on various NLP tasks ri-
valing or in some cases surpassing traditional mod-
els, such as text classification (Kalchbrenner et al.,
2014; Socher et al., 2013; Liu et al., 2015a), seman-
tic matching (Hu et al., 2014; Liu et al., 2016a),
parser (Chen and Manning, 2014) and machine
translation (Bahdanau et al., 2014).

Usually, due to the large number of parameters
these neural models need a large-scale corpus. It is
hard to train a deep neural model that generalizes
well with size-limited data, while building the large
scale resources for some NLP tasks is also a chal-
lenge. To overcome this problem, these models often
involve an unsupervised pre-training phase. The fi-
nal model is fine-tuned on specific task with respect

∗ Corresponding author.

to a supervised training criterion. However, most
pre-training methods are based on unsupervised ob-
jectives (Collobert et al., 2011; Turian et al., 2010;
Mikolov et al., 2013), which is effective to improve
the final performance, but it does not directly opti-
mize the desired task.

Multi-task learning is an approach to learn multi-
ple related tasks simultaneously to significantly im-
prove performance relative to learning each task in-
dependently. Inspired by the success of multi-task
learning (Caruana, 1997), several neural network
based models (Collobert and Weston, 2008; Liu et
al., 2015b) are proposed for NLP tasks, which uti-
lized multi-task learning to jointly learn several tasks
with the aim of mutual benefit. The characteristic
of these multi-task architectures is they share some
lower layers to determine common features. After
the shared layers, the remaining layers are split into
multiple specific tasks.

In this paper, we propose two deep architectures
of sharing information among several tasks in multi-
task learning framework. All the related tasks are in-
tegrated into a single system which is trained jointly.
More specifically, inspired by Neural Turing Ma-
chine (NTM) (Graves et al., 2014) and memory
network (Sukhbaatar et al., 2015), we equip task-
specific long short-term memory (LSTM) neural
network (Hochreiter and Schmidhuber, 1997) with
an external shared memory. The external memory
has capability to store long term information and
knowledge shared by several related tasks. Different
with NTM, we use a deep fusion strategy to integrate
the information from the external memory into task-
specific LSTM, in which a fusion gate controls the

118

information flowing flexibly and enables the model
to selectively utilize the shared information.

We demonstrate the effectiveness of our architec-
tures on two groups of text classification tasks. Ex-
perimental results show that jointly learning of mul-
tiple related tasks can improve the performance of
each task relative to learning them independently.

Our contributions are of three-folds:

• We proposed a generic multi-task framework,
in which different tasks can share information
by an external memory and communicate by
a reading/writing mechanism. Two proposed
models are complementary to prior multi-task
neural networks.

• Different with Neural Turing Machine and
memory network, we introduce a deep fu-
sion mechanism between internal and external
memories, which helps the LSTM units keep
them interacting closely without being con-
flated.

• As a by-product, the fusion gate enables us
to better understand how the external shared
memory helps specific task.

2 Neural Memory Models for Specific Task

In this section, we briefly describe LSTM model,
and then propose an external memory enhanced
LSTM with deep fusion.

2.1 Long Short-term Memory

Long short-term memory network (LSTM) (Hochre-
iter and Schmidhuber, 1997) is a type of recurrent
neural network (RNN) (Elman, 1990), and specifi-
cally addresses the issue of learning long-term de-
pendencies. LSTM maintains an internal memory
cell that updates and exposes its content only when
deemed necessary.

Architecturally speaking, the memory state and
output state are explicitly separated by activation
gates (Wang and Cho, 2015). However, the limita-
tion of LSTM is that it lacks a mechanism to index
its memory while writing and reading (Danihelka et
al., 2016).

While there are numerous LSTM variants, here
we use the LSTM architecture used by (Jozefowicz

et al., 2015), which is similar to the architecture of
(Graves, 2013) but without peep-hole connections.

We define the LSTM units at each time step t to
be a collection of vectors in Rd: an input gate it, a
forget gate ft, an output gate ot, a memory cell ct
and a hidden state ht. d is the number of the LSTM
units. The elements of the gating vectors it, ft and
ot are in [0, 1].

The LSTM is precisely specified as follows.

c̃t
ot
it
ft

 =

tanh
σ
σ
σ

(
Wp

[
xt

ht−1

]
+ bp

)
, (1)

ct = c̃t � it + ct−1 � ft, (2)

ht = ot � tanh (ct) , (3)

where xt ∈ Rm is the input at the current time step;
W ∈ R4h×(d+m) and bp ∈ R4h are parameters of
affine transformation; σ denotes the logistic sigmoid
function and � denotes elementwise multiplication.

The update of each LSTM unit can be written pre-
cisely as follows:

(ht, ct) = LSTM(ht−1, ct−1,xt, θp). (4)

Here, the function LSTM(·, ·, ·, ·) is a shorthand
for Eq. (1-3), and θp represents all the parameters
of LSTM.

2.2 Memory Enhanced LSTM
LSTM has an internal memory to keep useful in-
formation for specific task, some of which may be
beneficial to other tasks. However, it is non-trivial to
share information stored in internal memory.

Recently, there are some works to augment LSTM
with an external memory, such as neural Turing
machine (Graves et al., 2014) and memory net-
work (Sukhbaatar et al., 2015), called memory en-
hanced LSTM (ME-LSTM). These models enhance
the low-capacity internal memory to have a capabil-
ity of modelling long pieces of text (Andrychowicz
and Kurach, 2016).

Inspired by these models, we introduce an ex-
ternal memory to share information among several
tasks. To better control shared information and un-
derstand how it is utilized from external memory, we
propose a deep fusion strategy for ME-LSTM.

119

tanh

tanh

tx

1th

1tc

tr

tf ti to

tg

th

tc

Memory

1tk

1te

1ta

tanh

tanh

Figure 1: Graphical illustration of the proposed ME-
LSTM unit with deep fusion of internal and external
memories.

As shown in Figure 1, ME-LSTM consists the
original LSTM and an external memory which is
maintained by reading and writing operations. The
LSTM not only interacts with the input and output
information but accesses the external memory using
selective read and write operations.

The external memory and corresponding opera-
tions will be discussed in detail below.

External Memory The form of external memory
is defined as a matrix M ∈ RK×M , where K is
the number of memory segments, and M is the
size of each segment. Besides, K and M are gener-
ally instance-independent and pre-defined as hyper-
parameters.

At each step t, LSTM emits output ht and three
key vectors kt, et and at simultaneously. kt, et and
at can be computed as

kt

et
at

 =

tanh
σ

tanh

 (Wmht + bm) (5)

where Wm and bm are parameters of affine trans-
formation.

Reading The read operation is to read information
rt ∈ RM from memory Mt−1.

rt = αtMt−1, (6)

where rt denotes the reading vector and αt ∈ RK

represents a distribution over the set of segments of
memory Mt−1, which controls the amount of infor-
mation to be read from and written to the memory.

Each scalar αt,k in attention distribution αt can be
obtained as:

αt,k = softmax(g(Mt−1,k,kt−1)) (7)

where Mt−1,k represents the k-th row memory vec-
tor, and kt−1 is a key vector emitted by LSTM.

Here g(x,y) (x ∈ RM ,y ∈ RM) is a align
function for which we consider two different alter-
natives:

g(x,y) =

{
vT tanh(Wa[x;y])

cosine(x, y)
(8)

where v ∈ RM is a parameter vector.
In our current implementation, the similarity mea-

sure is cosine similarity.

Writing The memory can be written by two oper-
ations: erase and add.

Mt = Mt−1(1− αte
T
t) + αta

T
t , (9)

where et,at ∈ RM represent erase and add vectors
respectively.

To facilitate the following statements, we re-write
the writing equation as:

Mt = fwrite(Mt−1, αt,ht). (10)

Deep Fusion between External and Internal
Memories After we obtain the information from
external memory, we need a strategy to comprehen-
sively utilize information from both external and in-
ternal memory.

To better control signals flowing from external
memory, inspired by (Wang and Cho, 2015), we pro-
pose a deep fusion strategy to keep internal and ex-
ternal memories interacting closely without being
conflated.

In detail, the state ht of LSTM at step t depends
on both the read vector rt from external memory,
and internal memory ct, which is computed by

ht = ot � tanh(ct + gt � (Wfrt)), (11)

where Wf is parameter matrix, and gt is a fusion
gate to select information from external memory,
which is computed by

gt = σ(Wrrt + Wcct), (12)

120

x1 x2 x3 xT

h(m)
1 h(m)

2 h(m)
3 · · · h(m)

T
softmax1 y(m)

M(s)
0 M(s)

1 M(s)
2 · · · M(s)

T −1

h(n)
1 h(n)

2 h(n)
3 · · · h(n)

T
softmax2 y(n)

x1 x2 x3 xT

(a) Global Memory Architecture

x1 x2 x3 xT

h(m)
1 h(m)

2 h(m)
3 · · · h(m)

T
softmax1 y(m)

M(m)
1 M(m)

2 M(m)
3

M(s)
0 M(s)

1 M(s)
2 M(s)

T −1

M(n)
1 M(n)

2 M(n)
3

h(n)
1 h(n)

2 h(n)
3 · · · h(n)

T
softmax2 y(n)

x1 x2 x3 xT

(b) Local-Global Hybrid Memory Architecture

Figure 2: Two architectures for modelling text with
multi-task learning.

where Wr and Wc are parameter matrices.
Finally, the update of external memory enhanced

LSTM unit can be written precisely as

(ht,Mt, ct) = ME-LSTM(ht−1,

Mt−1, ct−1,xt, θp, θq), (13)

where θp represents all the parameters of LSTM in-
ternal structure and θq represents all the parameters
to maintain the external memory.

Overall, the external memory enables ME-LSTM
to have larger capability to store more information,
thereby increasing the ability of ME-LSTM. The
read and write operations allow ME-LSTM to cap-
ture complex sentence patterns.

3 Deep Architectures with Shared
Memory for Multi-task Learning

Most existing neural network methods are based
on supervised training objectives on a single task
(Collobert et al., 2011; Socher et al., 2013; Kalch-
brenner et al., 2014). These methods often suffer
from the limited amounts of training data. To deal
with this problem, these models often involve an
unsupervised pre-training phase. This unsupervised
pre-training is effective to improve the final perfor-
mance, but it does not directly optimize the desired

task.
Motivated by the success of multi-task learning

(Caruana, 1997), we propose two deep architectures
with shared external memory to leverage supervised
data from many related tasks. Deep neural model is
well suited for multi-task learning since the features
learned from a task may be useful for other tasks.
Figure 2 gives an illustration of our proposed archi-
tectures.

ARC-I: Global Shared Memory In ARC-I, the
input is modelled by a task-specific LSTM and ex-
ternal shared memory. More formally, given an input
text x, the task-specific output h(m)

t of taskm at step
t is defined as

(h
(m)
t ,M

(s)
t , c

(m)
t) = ME-LSTM(h

(m)
t−1,

M
(s)
t−1, c

(m)
t−1,xt, θ

(m)
p , θ(s)q), (14)

where xt represents word embeddings of word
xt; the superscript s represents the parameters are
shared across different tasks; the superscript m rep-
resents that the parameters or variables are task-
specific for task m.

Here all tasks share single global memory M(s),
meaning that all tasks can read information from
it and have the duty to write their shared or task-
specific information into the memory.

M
(s)
t = fwrite(M

(s)
t−1, α

(s)
t ,h

(m)
t) (15)

After calculating the task-specific representation of
text h(m)

T for task m, we can predict the probability
distribution over classes.

ARC-II: Local-Global Hybrid Memory In
ARC-I, all tasks share a global memory, but can
also record task-specific information besides shared
information. To address this, we allocate each task
a local task-specific external memory, which can
further write shared information to a global memory
for all tasks.

More generally, for task m, we assign each task-
specific LSTM with a local memory M(m), followed
by a global memory M(s), which is shared across
different tasks.

The read and write operations of the local and
global memory are defined as

r
(m)
t = α

(m)
t M

(m)
t , (16)

121

Dataset Type Train Size Dev. Size Test Size Class Avg. Length Vocabulary Size

Movie
SST-1 Sen. 8544 1101 2210 5 19 18K
SST-2 Sen. 6920 872 1821 2 18 15K
SUBJ Sen. 9000 - 1000 2 21 21K
IMDB Doc. 25,000 - 25,000 2 294 392K

Product

Books Doc. 1400 200 400 2 181 27K
DVDs Doc. 1400 200 400 2 197 29K

Electronics Doc. 1400 200 400 2 117 14K
Kitchen Doc. 1400 200 400 2 98 12K

Table 1: Statistics of two multi-task datasets. Each dataset consists of four related tasks.

M
(m)
t = fwrite(M

(m)
t−1, α

(m)
t ,h

(m)
t), (17)

r
(s)
t = α

(s)
t−1M

(s)
t−1, (18)

M
(s)
t = fwrite(M

(s)
t−1, α

(s)
t , r

(m)
t), (19)

where the superscript s represents the parameters
are shared across different tasks; the superscript m
represents that the parameters or variables are task-
specific for task m.

In ARC-II, the local memories enhance the capac-
ity of memorizing, while global memory enables the
information flowing from different tasks to interact
sufficiently.

4 Training

The task-specific representation h(m), emitted by
the deep muti-task architectures, is ultimately fed
into the corresponding task-specific output layers.

ŷ(m) = softmax(W(m)h(m) + b(m)), (20)

where ŷ(m) is prediction probabilities for task m.
Given M related tasks, our global cost function is

the linear combination of cost function for all tasks.

φ =

M∑

m=1

λmL(ŷ(m), y(m)) (21)

where λm is the weights for each task m respec-
tively.

Computational Cost Compared with vanilla
LSTM, our proposed two models do not cause much
extra computational cost while converge faster. In
our experiment, the most complicated ARC-II, costs
2 times as long as vanilla LSTM.

Movie
Reviews

Product
Reviews

Embedding dimension 100 100
Hidden layer size 100 100
External memory size (50,20) (50,20)
Initial learning rate 0.01 0.1
Regularization 0 1E−5

Table 2: Hyper-parameters of our models.

5 Experiment

In this section, we investigate the empirical perfor-
mances of our proposed architectures on two multi-
task datasets. Each dataset contains several related
tasks.

5.1 Datasets

The used multi-task datasets are briefly described as
follows. The detailed statistics are listed in Table 1.

Movie Reviews The movie reviews dataset con-
sists of four sub-datasets about movie reviews.

• SST-1 The movie reviews with five classes in
the Stanford Sentiment Treebank1 (Socher et
al., 2013).
• SST-2 The movie reviews with binary classes.

It is also from the Stanford Sentiment Tree-
bank.
• SUBJ The movie reviews with labels of sub-

jective or objective (Pang and Lee, 2004).
• IMDB The IMDB dataset2 consists of 100,000

movie reviews with binary classes (Maas et al.,
2011). One key aspect of this dataset is that
each movie review has several sentences.

1http://nlp.stanford.edu/sentiment.
2http://ai.stanford.edu/˜amaas/data/

sentiment/

122

Model SST-1 SST-2 SUBJ IMDB Avg∆

Single Task LSTM 45.9 85.8 91.6 88.5 -
ME-LSTM 46.4 85.5 91.0 88.7 -

Multi-task

ARC-I 48.6 87.0 93.8 89.8 +(1.8/1.9)
ARC-II 49.5 87.8 95.0 91.2 +(2.9/3.0)

MT-CNN 46.7 86.1 92.2 88.4 -
MT-DNN 44.5 84.0 90.1 85.6 -

NBOW 42.4 80.5 91.3 83.6 -
RAE (Socher et al., 2011) 43.2 82.4 - - -

MV-RNN (Socher et al., 2012) 44.4 82.9 - - -
RNTN (Socher et al., 2013) 45.7 85.4 - - -

DCNN (Kalchbrenner et al., 2014) 48.5 86.8 - 89.3 -
CNN-multichannel (Kim, 2014) 47.4 88.1 93.2 - -

Tree-LSTM (Tai et al., 2015) 50.6 86.9 - - -

Table 3: Accuracies of our models on movie reviews tasks against state-of-the-art neural models. The last
column gives the improvements relative to LSTM and ME-LSTM respectively. NBOW: Sums up the word
vectors and applies a non-linearity followed by a softmax classification layer. RAE: Recursive Autoencoders
with pre-trained word vectors from Wikipedia (Socher et al., 2011). MV-RNN: Matrix-Vector Recursive
Neural Network with parse trees (Socher et al., 2012). RNTN: Recursive Neural Tensor Network with
tensor-based feature function and parse trees (Socher et al., 2013). DCNN: Dynamic Convolutional Neural
Network with dynamic k-max pooling (Kalchbrenner et al., 2014; Denil et al., 2014). CNN-multichannel:
Convolutional Neural Network (Kim, 2014). Tree-LSTM: A generalization of LSTMs to tree-structured
network topologies (Tai et al., 2015).

Product Reviews This dataset3, constructed by
Blitzer et al. (2007), contains Amazon product re-
views from four different domains: Books, DVDs,
Electronics and Kitchen appliances. The goal in
each domain is to classify a product review as ei-
ther positive or negative. The datasets in each do-
main are partitioned randomly into training data, de-
velopment data and testing data with the proportion
of 70%, 20% and 10% respectively.

5.2 Competitor Methods for Multi-task
Learning

The multi-task frameworks proposed by previous
works are various while not all can be applied to the
tasks we focused. Nevertheless, we chose two most
related neural models for multi-task learning and im-
plement them as strong competitor methods .

• MT-CNN: This model is proposed by Collobert
and Weston (2008) with convolutional layer, in
which lookup-tables are shared partially while
other layers are task-specific.

3https://www.cs.jhu.edu/˜mdredze/
datasets/sentiment/

• MT-DNN: The model is proposed by Liu et
al. (2015b) with bag-of-words input and multi-
layer perceptrons, in which a hidden layer is
shared.

5.3 Hyperparameters and Training

The networks are trained with backpropagation and
the gradient-based optimization is performed using
the Adagrad update rule (Duchi et al., 2011).

The word embeddings for all of the models are
initialized with the 100d GloVe vectors (840B token
version, (Pennington et al., 2014)) and fine-tuned
during training to improve the performance. The
other parameters are initialized by randomly sam-
pling from uniform distribution in [−0.1, 0.1]. The
mini-batch size is set to 16.

For each task, we take the hyperparameters which
achieve the best performance on the development
set via an small grid search over combinations of
the initial learning rate [0.1, 0.01], l2 regularization
[0.0, 5E−5, 1E−5]. For datasets without develop-
ment set, we use 10-fold cross-validation (CV) in-
stead. The final hyper-parameters are set as Table 2.

123

5.4 Multi-task Learning of Movie Reviews

We first compare our proposed models with the
baseline system for single task classification. Table
3 shows the classification accuracies on the movie
reviews dataset. The row of “Single Task” shows the
results of LSTM and ME-LSTM for each individ-
ual task. With the help of multi-task learning, the
performances of these four tasks are improved by
1.8% (ARC-I) and 2.9% (ARC-II) on average rela-
tive to LSTM. We can find that the architecture of
local-global hybrid external memory has better per-
formances. The reason is that the global memory in
ARC-I could store some task-specific information
besides shared information, which maybe noisy to
other tasks. Moreover, both of our proposed mod-
els outperform MT-CNN and MT-DNN, which indi-
cates the effectiveness of our proposed shared mech-
anism. To give an intuitive evaluation of these re-
sults, we also list the following state-of-the-art neu-
ral models. With the help of utilizing the shared in-
formation of several related tasks, our results out-
perform most of state-of-the-art models. Although
Tree-LSTM outperforms our method on SST-1, it
needs an external parser to get the sentence topologi-
cal structure. It is worth noticing that our models are
generic and compatible with the other LSTM based
models. For example, we can easily extend our mod-
els to incorporate the Tree-LSTM model.

5.5 Multi-task Learning of Product Reviews

Table 4 shows the classification accuracies on the
tasks of product reviews. The row of “Single Task”
shows the results of the baseline for each individ-
ual task. With the help of global shared memory
(ARC-I), the performances of these four tasks are
improved by an average of 2.9%(2.6%) compared
with LSTM(ME-LSTM). ARC-II achieves best per-
formances on three sub-tasks, and its average im-
provement is 3.7%(3.5%). Compared with MT-CNN
and MT-DNN, our models achieve a better perfor-
mance. We think the reason is that our models can
not only share lexical information but share compli-
cated patterns of sentences by reading/writing op-
erations of external memory. Furthermore, these re-
sults on product reviews are consistent with that on
movie reviews, which shows our architectures are
robust.

5.6 Case Study

To get an intuitive understanding of what is happen-
ing when we use shared memory to predict the class
of text, we design an experiment to compare and an-
alyze the difference between our models and vanilla
LSTM, thereby demonstrating the effectiveness of
our proposed architectures.

We sample two sentences from the SST-2 valida-
tion dataset, and the changes of the predicted sen-
timent score at different time steps are shown in
Figure 3, which are obtained by vanilla LSTM and
ARC-I respectively. Additionally, both models are
bidirectional for better visualization. To get more
insights into how the shared external memory in-
fluences the specific task, we plot and observe the
evolving activation of fusion gates through time,
which controls signals flowing from a shared exter-
nal memory to task-specific output, to understand
the behaviour of neurons.

For the sentence “It is a cookie-cutter movie, a
cut-and-paste job.”, which has a negative sentiment,
while the standard LSTM gives a wrong predic-
tion due to not understanding the informative words
“cookie-cutter” and “cut-and-paste”.

In contrast, our model makes a correct prediction
and the reason can be inferred from the activation of
fusion gates. As shown in Figure 3-(c), we can see
clearly the neurons are activated much when they
take input as “cookie-cutter” and “cut-and-paste”,
which indicates much information in shared mem-
ory has be passed into LSTM, therefore enabling the
model to give a correct prediction.

Another case “If you were not nearly moved to
tears by a couple of scenes , you ’ve got ice water in
your veins”, a subjunctive clause introduced by “if ”,
has a positive sentiment.

As shown in Figure 3-(b,d), vanilla LSTM failed
to capture the implicit meaning behind the sentence,
while our model is sensitive to the pattern “If ... were
not ...” and has an accurate understanding of the
sentence, which indicates the shared memory mech-
anism can not only enrich the meaning of certain
words, but teach some information of sentence struc-
ture to specific task.

124

Model Books DVDs Electronics Kitchen Avg∆

Single Task
LSTM 78.0 79.5 81.2 81.8 -

ME-LSTM 77.5 80.2 81.5 82.1 -

Multi-task

ARC-I 81.2 82.0 84.5 84.3 +(2.9/2.6)
ARC-II 82.8 83.0 85.5 84.0 +(3.7/3.5)

MT-CNN 80.2 81.0 83.4 83.0 -
MT-DNN 79.7 80.5 82.5 82.8 -

Table 4: Accuracies of our models on product reviews dataset. The last column gives the improvement
relative to LSTM and ME-LSTM respectively.

It is a cookie-cutter movie cut-and-paste job .
0

0.2

0.4

0.6

0.8

LSTM
Ours

(a)

If you were not nearly moved tears by couple scenes you ’ve got ice water your veins

0.2
0.4
0.6
0.8

1

LSTM
Ours

(b)

It is a cookie−cutter movie cut−and−paste job .

20

40

60

80

100

(c)

If you were not nearly moved tears by couplescenes you ve got ice water your veins

20

40

60

80

(d)

Figure 3: (a)(b) The change of the predicted sentiment score at different time steps. Y-axis represents the
sentiment score, while X-axis represents the input words in chronological order. The red horizontal line gives
a border between the positive and negative sentiments. (c)(d) Visualization of the fusion gate’s activation.

6 Related Work

Neural networks based multi-task learning has been
proven effective in many NLP problems (Collobert
and Weston, 2008; Glorot et al., 2011; Liu et al.,
2015b; Liu et al., 2016b). In most of these models,
the lower layers are shared across all tasks, while top
layers are task-specific.

Collobert and Weston (2008) used a shared rep-
resentation for input words and solved different tra-
ditional NLP tasks within one framework. However,
only one lookup table is shared, and the other lookup
tables and layers are task-specific.

Liu et al. (2015b) developed a multi-task DNN for
learning representations across multiple tasks. Their
multi-task DNN approach combines tasks of query
classification and ranking for web search. But the
input of the model is bag-of-word representation,
which loses the information of word order.

More recently, several multi-task encoder-

decoder networks were also proposed for neural
machine translation (Dong et al., 2015; Luong et
al., 2015; Firat et al., 2016), which can make use of
cross-lingual information.

Unlike these works, in this paper we design two
neural architectures with shared memory for multi-
task learning, which can store useful information
across the tasks. Our architectures are relatively
loosely coupled, and therefore more flexible to ex-
pand. With the help of shared memory, we can ob-
tain better task-specific sentence representation by
utilizing the knowledge obtained by other related
tasks.

7 Conclusion and Future Work

In this paper, we introduce two deep architectures
for multi-task learning. The difference with the pre-
vious models is the mechanisms of sharing infor-
mation among several tasks. We design an external

125

memory to store the knowledge shared by several re-
lated tasks. Experimental results show that our mod-
els can improve the performances of several related
tasks by exploring common features.

In addition, we also propose a deep fusion strat-
egy to integrate the information from the external
memory into task-specific LSTM with a fusion gate.

In future work, we would like to investigate the
other sharing mechanisms of neural network based
multi-task learning.

Acknowledgments

We would like to thank the anonymous reviewers for
their valuable comments. This work was partially
funded by National Natural Science Foundation of
China (No. 61532011 and 61672162), the National
High Technology Research and Development Pro-
gram of China (No. 2015AA015408).

References

Marcin Andrychowicz and Karol Kurach. 2016. Learn-
ing efficient algorithms with hierarchical attentive
memory. arXiv preprint arXiv:1602.03218.

D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural ma-
chine translation by jointly learning to align and trans-
late. ArXiv e-prints, September.

John Blitzer, Mark Dredze, Fernando Pereira, et al. 2007.
Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
ACL, volume 7, pages 440–447.

Rich Caruana. 1997. Multitask learning. Machine learn-
ing, 28(1):41–75.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 740–750.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of ICML.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Ivo Danihelka, Greg Wayne, Benigno Uria, Nal Kalch-
brenner, and Alex Graves. 2016. Associative long
short-term memory. CoRR, abs/1602.03032.

Misha Denil, Alban Demiraj, Nal Kalchbrenner, Phil
Blunsom, and Nando de Freitas. 2014. Modelling,
visualising and summarising documents with a sin-
gle convolutional neural network. arXiv preprint
arXiv:1406.3830.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for multi-
ple language translation. In Proceedings of the ACL.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive science, 14(2):179–211.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. 2016.
Multi-way, multilingual neural machine translation
with a shared attention mechanism. arXiv preprint
arXiv:1601.01073.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Proceed-
ings of the 28th International Conference on Machine
Learning (ICML-11), pages 513–520.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401.

Alex Graves. 2013. Generating sequences with recurrent
neural networks. arXiv preprint arXiv:1308.0850.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen.
2014. Convolutional neural network architectures for
matching natural language sentences. In Advances in
Neural Information Processing Systems.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever.
2015. An empirical exploration of recurrent network
architectures. In Proceedings of The 32nd Interna-
tional Conference on Machine Learning.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of ACL.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. arXiv preprint arXiv:1408.5882.

PengFei Liu, Xipeng Qiu, Xinchi Chen, Shiyu Wu, and
Xuanjing Huang. 2015a. Multi-timescale long short-
term memory neural network for modelling sentences
and documents. In Proceedings of the Conference on
EMNLP.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng,
Kevin Duh, and Ye-Yi Wang. 2015b. Representa-
tion learning using multi-task deep neural networks for
semantic classification and information retrieval. In
NAACL.

126

Pengfei Liu, Xipeng Qiu, Jifan Chen, and Xuanjing
Huang. 2016a. Deep fusion LSTMs for text seman-
tic matching. In Proceedings of Annual Meeting of the
Association for Computational Linguistics.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016b.
Recurrent neural network for text classification with
multi-task learning. In Proceedings of International
Joint Conference on Artificial Intelligence.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2015. Multi-task
sequence to sequence learning. arXiv preprint
arXiv:1511.06114.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In Pro-
ceedings of the ACL, pages 142–150.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summariza-
tion based on minimum cuts. In Proceedings of ACL.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. Proceedings of the Empiricial Meth-
ods in Natural Language Processing (EMNLP 2014),
12:1532–1543.

Richard Socher, Jeffrey Pennington, Eric H Huang, An-
drew Y Ng, and Christopher D Manning. 2011. Semi-
supervised recursive autoencoders for predicting sen-
timent distributions. In Proceedings of EMNLP.

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Proceed-
ings of EMNLP, pages 1201–1211.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of EMNLP.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances in
Neural Information Processing Systems, pages 2431–
2439.

Kai Sheng Tai, Richard Socher, and Christopher D Man-
ning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method for
semi-supervised learning. In Proceedings of ACL.

Tian Wang and Kyunghyun Cho. 2015. Larger-
context language modelling. arXiv preprint
arXiv:1511.03729.

127

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 128–137,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Natural Language Comprehension with the EpiReader

Adam Trischler
adam.trischler

Zheng Ye
jeff.ye

Xingdi Yuan
eric.yuan

Philip Bachman
phil.bachman

Alessandro Sordoni
alessandro.sordoni

Kaheer Suleman
k.suleman

@maluuba.com
Maluuba Research

Montréal, Québec, Canada

Abstract

We present EpiReader, a novel model for ma-
chine comprehension of text. Machine com-
prehension of unstructured, real-world text is a
major research goal for natural language pro-
cessing. Current tests of machine comprehen-
sion pose questions whose answers can be in-
ferred from some supporting text, and evaluate
a model’s response to the questions. EpiReader
is an end-to-end neural model comprising two
components: the first component proposes a
small set of candidate answers after compar-
ing a question to its supporting text, and the
second component formulates hypotheses us-
ing the proposed candidates and the question,
then reranks the hypotheses based on their esti-
mated concordance with the supporting text.
We present experiments demonstrating that
EpiReader sets a new state-of-the-art on the
CNN and Children’s Book Test benchmarks,
outperforming previous neural models by a sig-
nificant margin.

1 Introduction

When humans reason about the world, we tend to for-
mulate a variety of hypotheses and counterfactuals,
then test them in turn by physical or thought exper-
iments. The philosopher Epicurus first formalized
this idea in his Principle of Multiple Explanations: if
several theories are consistent with the observed data,
retain them all until more data is observed. In this pa-
per, we argue that the same principle can be applied
to machine comprehension of natural language. We
propose a deep neural comprehension model, trained
end-to-end, that we call EpiReader.

Comprehension of natural language by machines,
at a near-human level, is a prerequisite for an ex-
tremely broad class of useful applications of artificial
intelligence. Indeed, most human knowledge is col-
lected in the natural language of text. Machine com-
prehension (MC) has therefore garnered significant
attention from the machine learning research commu-
nity. Machine comprehension is typically evaluated
by posing a set of questions based on a supporting
text passage, then scoring a system’s answers to those
questions. Such tests are objectively gradable and
may assess a range of abilities, from basic understand-
ing to causal reasoning to inference (Richardson et
al., 2013).

In the past year, two large-scale MC datasets have
been released: the CNN/Daily Mail corpus, consist-
ing of news articles from those outlets (Hermann
et al., 2015), and the Children’s Book Test (CBT),
consisting of short excerpts from books available
through Project Gutenberg (Hill et al., 2016). The
size of these datasets (on the order of 105 distinct
questions) makes them amenable to data-intensive
deep learning techniques. Both corpora use Cloze-
style questions (Taylor, 1953), which are formulated
by replacing a word or phrase in a given sentence
with a placeholder token. The task is then to find the
answer that “fills in the blank”.

In tandem with these corpora, a host of neu-
ral machine comprehension models has been devel-
oped (Weston et al., 2015b; Hermann et al., 2015;
Hill et al., 2016; Kadlec et al., 2016; Chen et al.,
2016). We compare EpiReader to these earlier mod-
els through training and evaluation on the CNN and

128

CBT datasets.1

EpiReader factors into two components. The first
component extracts a small set of potential answers
based on a shallow comparison of the question with
its supporting text; we call this the Extractor. The sec-
ond component reranks the proposed answers based
on deeper semantic comparisons with the text; we
call this the Reasoner. We can summarize this pro-
cess as Extract → Hypothesize → Test2. The se-
mantic comparisons implemented by the Reasoner
are based on the concept of recognizing textual en-
tailment (RTE) (Dagan et al., 2006), also known as
natural language inference. This process is computa-
tionally demanding. Thus, the Extractor serves the
important function of filtering a large set of poten-
tial answers down to a small, tractable set of likely
candidates for more thorough testing. The two-stage
process is an analogue of structured prediction cas-
cades (Weiss and Taskar, 2010), wherein a sequence
of increasingly complex models progressively filters
the output space in order to trade off between model
complexity and limited computational resources. We
demonstrate that this cascade-like framework is appli-
cable to machine comprehension and can be trained
end-to-end with stochastic gradient descent.

The Extractor follows the form of a pointer net-
work (Vinyals et al., 2015), and uses a differentiable
attention mechanism to indicate words in the text
that potentially answer the question. This approach
was used (on its own) for question answering with
the Attention Sum Reader (Kadlec et al., 2016). The
Extractor outputs a small set of answer candidates
along with their estimated probabilities of correct-
ness. The Reasoner forms hypotheses by inserting
the candidate answers into the question, then esti-
mates the concordance of each hypothesis with each
sentence in the supporting text. We use these esti-
mates as a measure of the evidence for a hypothesis,
and aggregate evidence over all sentences. In the
end, we combine the Reasoner’s evidence with the
Extractor’s probability estimates to produce a final
ranking of the answer candidates.

1The CNN and Daily Mail datasets were released together
and have the same form. The Daily Mail dataset is signifi-
cantly larger; therefore, models consistently score higher when
trained/tested on it.

2The Extractor performs extraction, while the Reasoner both
hypothesizes and tests.

This paper is organized as follows. In Section 2
we formally define the problem to be solved and give
some background on the datasets used in our tests.
In Section 3 we describe EpiReader, focusing on its
two components and how they combine. Section 4
discusses related work, and Section 5 details our
experimental results and analysis. We conclude in
Section 6.

2 Problem definition, notation, datasets

EpiReader’s task is to answer a Cloze-style question
by reading and comprehending a supporting passage
of text. The training and evaluation data consist of
tuples (Q, T , a∗, A), where Q is the question (a se-
quence of words {q1, ...q|Q|}), T is the text (a se-
quence of words {t1, ..., t|T |}), A is a set of possible
answers {a1, ..., a|A|}, and a∗ ∈ A is the correct an-
swer. All words come from a vocabulary V , and
A ⊂ T . In each question, there is a placeholder
token indicating the missing word to be filled in.

2.1 Datasets

CNN This corpus is built using articles scraped
from the CNN website. The articles themselves form
the text passages, and questions are generated syn-
thetically from short summary statements that ac-
company each article. These summary points are
(presumably) written by human authors. Each ques-
tion is created by replacing a named entity in a sum-
mary point with a placeholder token. All named
entities in the articles and questions are replaced with
anonymized tokens that are shuffled for each (Q, T)
pair. This forces the model to rely only on the text,
rather than learning world knowledge about the en-
tities during training. The CNN corpus (henceforth
CNN) was presented by Hermann et al. (2015).

Children’s Book Test This corpus is constructed
similarly to CNN, but from children’s books avail-
able through Project Gutenberg. Rather than articles,
the text passages come from book excerpts of 20
sentences. Since no summaries are provided, a ques-
tion is generated by replacing a single word in the
next (i.e. 21st) sentence. The corpus distinguishes
questions based on the type of word that is replaced:
named entity, common noun, verb, or preposition.
Like Kadlec et al. (2016), we focus only on the first
two classes since Hill et al. (2016) showed that stan-

129

dard LSTM language models already achieve human-
level performance on the latter two. Unlike in the
CNN corpora, named entities are not anonymized
and shuffled in the Children’s Book Test (CBT). CBT
was presented by Hill et al. (2016).

The different methods of construction for ques-
tions in each corpus mean that CNN and CBT assess
different aspects of comprehension. The summary
points of CNN are a condensed paraphrasing of infor-
mation in the text; thus, determining the correct an-
swer relies mostly on recognizing textual entailment.
On the other hand, CBT is about story prediction. It
is a comprehension task insofar as comprehension is
likely necessary for story prediction, but comprehen-
sion alone may not be sufficient. Indeed, there are
some CBT questions that are unanswerable given the
preceding context.

3 EpiReader

3.1 Overview and intuition
EpiReader explicitly leverages the observation that
the answer to a question is often a word or phrase
from the related text passage. This condition holds
for the CNN and CBT datasets. EpiReader’s first
module, the Extractor, can thus select a small set of
candidate answers by pointing to their locations in
the supporting passage. This mechanism is detailed
in Section 3.2, and was used previously by the At-
tention Sum Reader (Kadlec et al., 2016). Pointing
to candidate answers removes the need to apply a
softmax over the entire vocabulary as in Weston et al.
(2015b), which is computationally more costly and
uses less-direct information about the context of a
predicted answer in the supporting text.

EpiReader’s second module, the Reasoner, begins
by formulating hypotheses using the extracted answer
candidates. It generates each hypothesis by replacing
the placeholder token in the question with an answer
candidate. Cloze-style questions are ideally-suited
to this process, because inserting the correct answer
at the placeholder location produces a well-formed,
grammatical statement. Thus, the correct hypothesis
will “make sense” to a language model.

The Reasoner then tests each hypothesis individu-
ally. It compares a hypothesis to the text, split into
sentences, to measure textual entailment, and then ag-
gregates entailment over all sentences. This compu-

tation uses a pair of convolutional encoder networks
followed by a recurrent neural network. The convo-
lutional encoders generate abstract representations of
the hypothesis and each text sentence; the recurrent
network estimates and aggregates entailment. This
is described formally in Section 3.3. The end-to-
end EpiReader model, combining the Extractor and
Reasoner modules, is depicted in Figure 1.

Throughout our model, words will be represented
with trainable embeddings (Bengio et al., 2000). We
represent these embeddings using a matrix W ∈
RD×|V |, where D is the embedding dimension and
|V | is the vocabulary size.

3.2 The Extractor
The Extractor is a Pointer Network (Vinyals et al.,
2015). It uses a pair of bidirectional recurrent neural
networks, f(θT ,T) and g(θQ,Q), to encode the text
passage and the question. θT represents the param-
eters of the text encoder, and T ∈ RD×N is a ma-
trix representation of the text (comprising N words),
whose columns are individual word embeddings ti.
Likewise, θQ represents the parameters of the ques-
tion encoder, and Q ∈ RD×NQ is a matrix represen-
tation of the question (comprisingNQ words), whose
columns are individual word embeddings qj .

We use a recurrent neural network with gated recur-
rent units (GRU) (Bahdanau et al., 2015) to scan over
the columns (i.e. word embeddings) of the input ma-
trix. We selected the GRU because it is computation-
ally simpler than Long Short-Term Memory (Hochre-
iter and Schmidhuber, 1997), while still avoiding
the problem of vanishing/exploding gradients often
encountered when training recurrent networks.

The GRU’s hidden state gives a representation of
the ith word conditioned on preceding words. To
include context from proceeding words, we run a
second GRU over T in the reverse direction. We
refer to the combination as a biGRU. At each step the
biGRU outputs two d-dimensional encoding vectors,
one for the forward direction and one for the back-
ward direction. We concatenate these to yield a vector
f(ti) ∈ R2d. The question biGRU is similar, but we
form a single-vector representation of the question
by concatenating the final forward state with the final
backward state, which we denote g(Q) ∈ R2d.

As in Kadlec et al. (2016), we model the probabil-
ity that the ith word in text T answers question Q

130

}{
{ }

biGRU

Embeddings

X was Sam’s best friend

Comparison

Top candidates/probabilities

Passage

Question
Ernie

James

Elmo

…

…

biGRU

Embeddings

Word encodings

Question encoding

Sam and James played all day.

…
…

It was a beautiful morning.

They lived happily ever after.

p1

p2

pk

Convolutional
Network

James was Sam’s best friend

Hypotheses

GRU

Top candidates

}{ Ernie

James

Elmo

Sam and James played all day.

It was a beautiful morning.

They lived happily ever after.

…
…

Embeddings
Passage

Embeddings

Hypothesis encoding

Sentence encodings

…
…

j

1

ns

Convolutional
Network

ek

Entailment

πk

Score

Extractor

Reasoner

Word-match scores

1

j

ns

…

Figure 1: The complete EpiReader framework. The Extractor is above, the Reasoner below. Propagating the Extractor’s probability

estimates forward and combining them with the Reasoner’s entailment estimates renders the model end-to-end differentiable.

using
si ∝ exp(f(ti) · g(Q)), (1)

which takes the inner product of the text and question
representations followed by a softmax. In many cases
unique words repeat in a text. Therefore, we compute
the total probability that word w is the correct answer
using a sum:

P (w | T ,Q) =
∑

i: ti=w

si. (2)

This probability is evaluated for each unique word in
T . Finally, the Extractor outputs the set {p1, ..., pK}
of the K highest word probabilities from 2, along

with the corresponding set of K most probable an-
swer words {â1, ..., âK}.

3.3 The Reasoner

The indicial selection involved in gathering
{â1, ..., âK}, which is equivalent to a K-best
argmax, is not a continuous function of its inputs.
To construct an end-to-end differentiable model, we
bypass this by propagating the probability estimates
of the Extractor directly through the Reasoner.

The Reasoner begins by inserting the answer can-
didates, which are single words or phrases, into the
question sequence Q at the placeholder location.
This forms K hypotheses {H1, ...,HK}. At this

131

point, we consider each hypothesis to have proba-
bility p(Hk) ≈ pk, as estimated by the Extractor.
The Reasoner updates and refines this estimate.

The hypotheses represent new information in some
sense—they are statements we have constructed, al-
beit from words already present in the question and
text passage. The Reasoner estimates entailment be-
tween the statements Hk and the passage T . We
denote these estimates using ek = F (Hk, T), with
F to be defined. We start by reorganizing T into
a sequence of Ns sentences: T = {t1, . . . , tN} →
{S1, . . . ,SNs}, where Si is a sequence of words.

For each hypothesis and each sentence of the
text, Reasoner input consists of two matrices: Si ∈
RD×|Si|, whose columns are the embedding vectors
for each word of sentence Si, and Hk ∈ RD×|Hk|,
whose columns are the embedding vectors for each
word in the hypothesisHk. The embedding vectors
themselves come from matrix W, as before.

These matrices feed into a convolutional architec-
ture based on that of Severyn and Moschitti (2016).
The architecture first augments Si with matrix M ∈
R2×|Si|. The first row of M contains the inner prod-
uct of each word embedding in the sentence with the
candidate answer embedding, and the second row
contains the maximum inner product of each sen-
tence word embedding with any word embedding in
the question. These word-matching features were
inspired by similar approaches in Wang and Jiang
(2016) and Trischler et al. (2016), where they were
shown to improve entailment estimates.

The augmented Si is then convolved with a bank
of filters FS ∈ R(D+2)×m, while Hk is convolved
with filters FH ∈ RD×m, where m is the convolu-
tional filter width. We add a bias term and apply a
nonlinearity (we use a ReLU) following the convo-
lution. Maxpooling over the sequences then yields
two vectors: the representation of the text sentence,
rSi ∈ RNF , and the representation of the hypothesis,
rHk
∈ RNF , where NF is the number of filters.

We then compute a scalar similarity score between
these vector representations using the bilinear form

ς = rTSiRrHk
, (3)

where R ∈ RNF×NF is a matrix of trainable parame-
ters. We then concatenate the similarity score with
the sentence and hypothesis representations to get a

vector, xik = [ς; rSi ; rHk
]T . There are more pow-

erful models of textual entailment that could have
been used in place of this convolutional architecture.
We adopted the approach of Severyn and Moschitti
(2016) for computational efficiency.

The resulting sequence of Ns vectors feeds into
yet another GRU for synthesis, of hidden dimension
dS . Intuitively, it is often the case that evidence
for a particular hypothesis is distributed over several
sentences. For instance, if we hypothesize that the
football is in the park, perhaps it is because one sen-
tence tells us that Sam picked up the football and a
later one tells us that Sam ran to the park.3 The Rea-
soner synthesizes distributed information by running
a GRU network over xik, where i indexes sentences
and represents the step dimension.4 The final hidden
state of the GRU is fed through a fully-connected
layer, yielding a single scalar yk. This value repre-
sents the collected evidence forHk based on the text.
In practice, the Reasoner processes all K hypotheses
in parallel and the estimated entailment of each is
normalized by a softmax, ek ∝ exp(yk).

As pointed out in Kadlec et al. (2016), it is a
strength of the pointer framework that it does not
blend the representations that are being attended.
Contrast this with typical attention mechanisms
where such a blended representation is used down-
stream to make similarity comparisons with, e.g.,
output vectors.

Differentiable attention mechanisms (as in Bah-
danau et al. (2015), for example) typically blend in-
ternal representations together through a weighted
sum, then use this ‘blend’ downstream for similarity
comparisons. The pointer framework does not resort
to this blending; Kadlec et al. (2016) explain that this
is an advantage, since in comprehension tasks the
goal is to select the correct answer among semanti-
cally similar candidates and more exact matching is
necessary. The reranking function performed by the
Reasoner entails this advantage, by examining the
separate hypotheses individually without blending.

3This example is characteristic of the bAbI dataset (Weston
et al., 2015a).

4Note a benefit of forming the hypothesis: it renders bidirec-
tional aggregation unnecessary, since knowing both the question
and the putative answer "closes the loop" the same way that a
bidirectional encoding would.

132

3.4 Combining components
Finally, we combine the evidence from the Reasoner
with the probability from the Extractor. We com-
pute the output probability of each hypothesis, πk,
according to the product

πk ∝ ekpk, (4)

whereby the evidence of the Reasoner can be inter-
preted as a correction to the Extractor probabilities,
applied as an additive shift in log-space. We experi-
mented with other combinations of the Extractor and
Reasoner, but we found the multiplicative approach
to yield the best performance.

After combining results from the Extractor and
Reasoner to get the probabilities πk described in
Eq. 4, we optimize the parameters of the full
EpiReader to minimize a cost comprising two terms,
LE and LR. The first term is a standard negative log-
likelihood objective, which encourages the Extractor
to rate the correct answer above other answers. This
is the same loss term used in Kadlec et al. (2016). It
is given by:

LE = E
(Q,T ,a∗,A)

[− logP (a∗ | T ,Q)] , (5)

where P (a∗ | T ,Q) is as defined in Eq. 2, and a∗

denotes the true answer. The second term is a margin-
based loss on the end-to-end probabilities πk. We
define π∗ as the probability πk corresponding to the
true answer word a∗. This term is given by:

LR = E
(Q,T ,a∗,A)

 ∑

âi∈{â1,...,âK}\a∗
[γ − π∗ + πâi]+

 ,

(6)
where γ is a margin hyperparameter, {â1, ..., âK}
is the set of K answers proposed by the Extractor,
and [x]+ indicates truncating x to be non-negative.
Intuitively, this loss says that we want the end-to-end
probability π∗ for the correct answer to be at least γ
larger than the probability πâi for any other answer
proposed by the Extractor. During training, the cor-
rect answer is occasionally missed by the Extractor,
especially in early epochs. We counter this issue by
forcing the correct answer into the top K set while
training. When evaluating the model on validation
and test examples we rely fully on the top K answers
proposed by the Extractor.

To get the final loss term LER, minus `2 regular-
ization terms on the model parameters, we take a
weighted combination of LE and LR:

LER = LE + λLR, (7)

where λ is a hyperparameter for weighting the rela-
tive contribution of the Extractor and Reasoner losses.
In practice, we found that λ should be fairly large
(e.g., 10 < λ < 100). Empirically, we observed
that the output probabilities from the Extractor of-
ten peak and saturate the first softmax; hence, the
Extractor term can come to dominate the Reasoner
term without the weight λ (we discuss the Extractor’s
propensity to overfit in Section 5).

4 Related Work

The Impatient and Attentive Reader models were
proposed by Hermann et al. (2015). The Attentive
Reader applies bidirectional recurrent encoders to the
question and supporting text. It then uses the atten-
tion mechanism described in Bahdanau et al. (2015)
to compute a fixed-length representation of the text
based on a weighted sum of the text encoder’s output,
guided by comparing the question representation to
each location in the text. Finally, a joint representa-
tion of the question and supporting text is formed by
passing their separate representations through a feed-
forward MLP and an answer is selected by comparing
the MLP output to a representation of each possible
answer. The Impatient Reader operates similarly, but
computes attention over the text after processing each
consecutive word of the question. The two models
achieved similar performance on the CNN and Daily
Mail datasets.

Memory Networks were first proposed by Weston
et al. (2015b) and later applied to machine compre-
hension by Hill et al. (2016). This model builds
fixed-length representations of the question and of
windows of text surrounding each candidate answer,
then uses a weighted-sum attention mechanism to
combine the window representations. As in the previ-
ous Readers, the combined window representation is
then compared with each possible answer to form a
prediction about the best answer. What distinguishes
Memory Networks is how they construct the ques-
tion and text window representations. Rather than
a recurrent network, they use a specially-designed,
trainable transformation of the word embeddings.

133

Most of the details for the very recent AS Reader
are provided in the description of our Extractor mod-
ule in Section 3.2, so we do not summarize it further
here. This model (Kadlec et al., 2016) set the previ-
ous state-of-the-art on the CBT dataset.

During the write-up of this paper, another very re-
cent model came to our attention. Chen et al. (2016)
propose using a bilinear term instead of a tanh layer
to compute the attention between question and pas-
sage words, and also uses the attended word encod-
ings for direct, pointer-style prediction as in Kadlec
et al. (2016). This model set the previous state-of-the-
art on the CNN dataset. However, this model used
embedding vectors pretrained on a large external cor-
pus (Pennington et al., 2014).

EpiReader borrows ideas from other models as
well. The Reasoner’s convolutional architecture is
based on Severyn and Moschitti (2016) and Blunsom
et al. (2014). Our use of word-level matching was in-
spired by the Parallel-Hierarchical model of Trischler
et al. (2016) and the natural language inference model
of Wang and Jiang (2016). Finally, the idea of formu-
lating and testing hypotheses for question-answering
was used to great effect in IBM’s DeepQA system
for Jeopardy! (Ferrucci et al., 2010) (although that
was a more traditional information retrieval pipeline
rather than an end-to-end neural model), and also
resembles the framework of structured prediction
cascades (Weiss and Taskar, 2010).

5 Evaluation

5.1 Implementation and training details

To train our model we used stochastic gradient de-
scent with the ADAM optimizer (Kingma and Ba,
2015), with an initial learning rate of 0.001. The
word embeddings were initialized randomly, draw-
ing from the uniform distribution over [−0.05, 0.05).
We used batches of 32 examples, and early stopping
with a patience of 2 epochs. Our model was imple-
mented in Theano (Bergstra et al., 2010) using the
Keras framework (Chollet, 2015).

The results presented below for EpiReader were
obtained by searching over a small grid of hyperpa-
rameter settings. We selected the model that, on each
dataset, maximized accuracy on the validation set,
then evaluated it on the test set. We record the best
settings for each dataset in Table 1. As has been

Table 1: Hyperparameter settings for best EpiReaders. D is

the embedding dimension, d is the hidden dimension in the

Extractor GRUs, K is the number of candidates to consider, m

is the filter width, NF is the number of filters, and dS is the

hidden dimension in the Reasoner GRU.

Hyperparameters

Dataset D d K m NF dS

CBT-NE 300 128 5 3 16 32
CBT-CN 300 128 5 3 32 32
CNN 384 256 10 3 32 32

done previously, we train separate models on CBT’s
named entity (CBT-NE) and common noun (CBT-
CN) splits. All our models used `2-regularization
at 0.001, λ = 50, and γ = 0.04. We did not use
dropout but plan to investigate its effect in the future.
Hill et al. (2016) and Kadlec et al. (2016) also present
results for ensembles of their models. Time did not
permit us to generate an ensemble of EpiReaders on
the CNN dataset so we omit those measures; how-
ever, EpiReader ensembles (of seven models) demon-
strated improved performance on the CBT dataset.

5.2 Results

In Table 5.2, we compare the performance of
EpiReader against that of several baselines, on the
validation and test sets of the CBT and CNN corpora.
We measure EpiReader performance at the output
of both the Extractor and the Reasoner. EpiReader
achieves state-of-the-art performance across the
board for both datasets. On CNN, we score 2.2%
higher on test than the best previous model of Chen
et al. (2016). Interestingly, an analysis of the CNN
dataset by Chen et al. (2016) suggests that approxi-
mately 25% of the test examples contain coreference
errors or questions which are “ambiguous/hard” even
for a human analyst. If this estimate is accurate, then
EpiReader, achieving an absolute test accuracy of
74.0%, is operating close to expected human perfor-
mance. On the other hand, ambiguity is unlikely to
be distributed evenly over entities, so a good model
should be able to perform at better-than-chance levels
even on questions where the correct answer is uncer-
tain. If, on the 25% of “noisy” questions, the model
can shift its hit rate from, e.g., 1/10 to 1/3, then there
is still a fair amount of performance to gain.

134

CBT-NE CBT-CN

Model valid test valid test

Humans (context + query) 1 - 81.6 - 81.6

LSTMs (context + query) 1 51.2 41.8 62.6 56.0

MemNNs 1 70.4 66.6 64.2 63.0

AS Reader 2 73.8 68.6 68.8 63.4

EpiReader Extractor 73.2 69.4 69.9 66.7
EpiReader 75.3 69.7 71.5 67.4

AS Reader (ensemble) 2 74.5 70.6 71.1 68.9
EpiReader (ensemble) 76.6 71.8 73.6 70.6

CNN

Model valid test

Deep LSTM Reader 3 55.0 57.0
Attentive Reader 3 61.6 63.0
Impatient Reader 3 61.8 63.8

MemNNs 1 63.4 66.8

AS Reader 2 68.6 69.5

Stanford AR 4 72.4 72.4

EpiReader Extractor 71.8 72.0
EpiReader 73.4 74.0

Table 2: Model comparison on the CBT and CNN datasets. Results marked with 1 are from Hill et al. (2016), with 2 are from

Kadlec et al. (2016), with 3 are from Hermann et al. (2015), and with 4 are from Chen et al. (2016).

Ablated component Validation accuracy (%)

- 71.5
Word-match scores 70.3
Bilinear similarity 70.0

Reasoner 68.7

Convolutional encoders 71.0

Table 3: Ablation study on CBT-CN validation set.

On CBT-CN our single model scores 4.0% higher
than the previous best of the AS Reader. The improve-
ment on CBT-NE is more modest at 1.1%. Looking
more closely at our CBT-NE results, we found that
the validation and test accuracies had relatively high
variance even in late epochs of training. We discov-
ered that many of the validation and test questions
were asked about the same named entity, which may
explain this issue.

5.3 Analysis

We measure the contribution of several components
of the Reasoner by ablating them. Results on the
validation set of CBT-CN are presented in Table 3.
The word-match scores (cosine similarities stored in
the first two rows of matrix M, see Section 3.3) make
a contribution of 1.2% to the validation performance,
indicating that they are useful. Similarly, the bilinear
similarity score ς , which is passed to the final GRU
network, contributes 1.5%.

Removing the Reasoner altogether reduces our
model to the AS Reader, whose results we have

reproduced to within negligible difference. Aside
from achieving state-of-the-art results at its final out-
put, the EpiReader framework gives a boost to its
Extractor component through the joint training pro-
cess. This can be seen by referring back to Table 5.2,
wherein we also provide accuracy scores evaluated
at the output of the Extractor. These are all higher
than the analogous scores reported for the AS Reader.
Based on our own work with that model, we found
it to overfit the training set rapidly and significantly,
achieving training accuracy scores upwards of 98%
after only 2 epochs. We suspect that the Reasoner
module had a regularizing effect on the Extractor, but
leave the confirmation for future work.

Although not exactly an ablation, we also tried
bypassing the Reasoner’s convolutional encoders al-
together, along with the word-match scores and the
bilinear similarity. This was done as follows: from
the Extractor, we pass to the Reasoner’s final GRU (i)
the bidirectional hidden representation of the ques-
tion; (ii) the bidirectional hidden representations of
the end of each story sentence (recall that the Rea-
soner operates on sentence representations). Thus,
we reuse (parts of) the original biGRU encodings.
This cuts down on the number of model parameters
and on the length of the graph through which gra-
dients must flow, potentially providing a stronger
learning signal to the initial encoders. We found that
this change yielded a relatively small reduction in per-
formance on CBT-CN, perhaps for the reasons just
discussed—only 0.5%, as given in the final line of

135

Mr. Blacksnake grinned and started after him, not very fast
because he knew that he wouldn't have to run very fast to catch
old Mr. Toad, and he thought the exercise would do him good.
…

“Still, the green meadows wouldn't be quite the same without old
Mr. Toad.
I should miss him if anything happened to him.
I suppose it would be partly my fault, too, for if I hadn't pulled
over that piece of bark, he probably would have stayed there the
rest of the day and been safe.”

QUESTION:
“Maybe he won't meet Mr. XXXXX,” said a little voice inside of
Jimmy.

EXTRACTOR: Toad
REASONER: Blacksnake

1.

18.

21.

19.
20.

Figure 2: An abridged example from CBT-NE demonstrating

corrective reranking by the Reasoner.

Table 3. This suggests that competitive performance
may be achieved with other, simpler architectures for
the Reasoner’s entailment system and this will be the
subject of future research.

An analysis by Kadlec et al. (2016) indicates that
the trained AS Reader includes the correct answer
among its five most probable candidates on approxi-
mately 95% of test examples for both datasets. We
verified that our Extractor achieved a similar rate,
and of course this is vital for performance of the full
system, since the Reasoner cannot recover when the
correct answer is not among its inputs.

Our results show that the Reasoner often corrects
erroneous answers from the Extractor. Figure 2 gives
an example of this correction. In the text passage,
from CBT-NE, Mr. Blacksnake is pursuing Mr. Toad,
presumably to eat him. The dialogue in the question
sentence refers to both: Mr. Toad is its subject, re-
ferred to by the pronoun “he”, and Mr. Blacksnake is
its object. In the preceding sentences, it is clear (to
a human) that Jimmy is worried about Mr. Toad and
his potential encounter with Mr. Blacksnake. The
Extractor, however, points most strongly to “Toad”,
possibly because he has been referred to most re-
cently. The Reasoner corrects this error and selects
“Blacksnake” as the answer. This relies on a deeper
understanding of the text. The named entity can, in
this case, be inferred through an alternation of the
entities most recently referred to. This kind alterna-
tion is typical of dialogues, when two actors interact
in turns. The Reasoner can capture this behavior
because it examines sentences in sequence.

6 Conclusion

We presented the novel EpiReader framework for
machine comprehension and evaluated it on two
large, complex datasets: CNN and CBT. Our model
achieves state-of-the-art results on these corpora, out-
performing all previous approaches. In future work,
we plan to test our framework with alternative models
for natural language inference (e.g., Wang and Jiang
(2016)), and explore the effect of pretraining such a
model specifically on an inference task.

As a general framework that consists in a two-
stage cascade, EpiReader can be implemented using a
variety of mechanisms in the Extractor and Reasoner
stages. We have demonstrated that this cascade-like
framework is applicable to machine comprehension
and can be trained end-to-end. As more powerful
machine comprehension models inevitably emerge,
it may be straightforward to boost their performance
using EpiReader’s structure.

References

[Bahdanau et al.2015] Dzmitry Bahdanau, Kyunghyun
Cho, and Yoshua Bengio. 2015. Neural machine trans-
lation by jointly learning to align and translate. ICLR.

[Bengio et al.2000] Yoshua Bengio, Réjean Ducharme,
and Pascal Vincent. 2000. A neural probabilistic lan-
guage model. In Advances in Neural Information Pro-
cessing Systems, pages 932–938.

[Bergstra et al.2010] J. Bergstra, O. Breuleux, F. Bastien,
P. Lamblin, R. Pascanu, G. Desjardins, J. Turian,
D. Warde-Farley, and Y. Bengio. 2010. Theano: a
CPU and GPU math expression compiler. In In Proc.
of SciPy.

[Blunsom et al.2014] Phil Blunsom, Edward Grefenstette,
and Nal Kalchbrenner. 2014. A convolutional neural
network for modelling sentences.

[Chen et al.2016] Danqi Chen, Jason Bolton, and Christo-
pher D. Manning. 2016. A thorough examination of
the cnn / daily mail reading comprehension task. In
Association for Computational Linguistics (ACL).

[Chollet2015] François Chollet. 2015. keras. https:
//github.com/fchollet/keras.

[Dagan et al.2006] Ido Dagan, Oren Glickman, and
Bernardo Magnini. 2006. The pascal recognising tex-
tual entailment challenge. In Machine learning chal-
lenges. evaluating predictive uncertainty, visual ob-
ject classification, and recognising textual entailment,
pages 177–190. Springer.

136

[Ferrucci et al.2010] David Ferrucci, Eric Brown, Jennifer
Chu-Carroll, James Fan, David Gondek, Aditya A
Kalyanpur, Adam Lally, J William Murdock, Eric Ny-
berg, John Prager, et al. 2010. Building watson: An
overview of the deepqa project. AI magazine, 31(3):59–
79.

[Hermann et al.2015] Karl Moritz Hermann, Tomas Ko-
cisky, Edward Grefenstette, Lasse Espeholt, Will Kay,
Mustafa Suleyman, and Phil Blunsom. 2015. Teaching
machines to read and comprehend. In Advances in Neu-
ral Information Processing Systems, pages 1684–1692.

[Hill et al.2016] Felix Hill, Antoine Bordes, Sumit Chopra,
and Jason Weston. 2016. The goldilocks principle:
Reading children’s books with explicit memory repre-
sentations. ICLR.

[Hochreiter and Schmidhuber1997] Sepp Hochreiter and
Jürgen Schmidhuber. 1997. Long short-term memory.
Neural computation, 9(8):1735–1780.

[Kadlec et al.2016] Rudolf Kadlec, Martin Schmid, On-
drej Bajgar, and Jan Kleindienst. 2016. Text under-
standing with the attention sum reader network. arXiv
preprint arXiv:1603.01547.

[Kingma and Ba2015] Diederik Kingma and Jimmy Ba.
2015. Adam: A method for stochastic optimization.
ICLR.

[Pennington et al.2014] Jeffrey Pennington, Richard
Socher, and Christopher D Manning. 2014. GloVe:
Global vectors for word representation. Proc. EMNLP,
12.

[Richardson et al.2013] Matthew Richardson, Christo-
pher JC Burges, and Erin Renshaw. 2013. Mctest:
A challenge dataset for the open-domain machine com-
prehension of text. In EMNLP, volume 1, page 2.

[Severyn and Moschitti2016] Aliaksei Severyn and
Alessandro Moschitti. 2016. Modeling relational in-
formation in question-answer pairs with convolutional
neural networks. arXiv preprint arXiv:1604.01178.

[Taylor1953] Wilson L Taylor. 1953. Cloze procedure:
a new tool for measuring readability. Journalism and
Mass Communication Quarterly, 30.

[Trischler et al.2016] Adam Trischler, Zheng Ye, Xingdi
Yuan, Jing He, Philip Bachman, and Kaheer Suleman.
2016. A parallel-hierarchical model for machine com-
prehension on sparse data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics.

[Vinyals et al.2015] Oriol Vinyals, Meire Fortunato, and
Navdeep Jaitly. 2015. Pointer networks. In Advances
in Neural Information Processing Systems, pages 2674–
2682.

[Wang and Jiang2016] Shuohang Wang and Jing Jiang.
2016. Learning natural language inference with lstm.
NAACL.

[Weiss and Taskar2010] David J Weiss and Benjamin
Taskar. 2010. Structured prediction cascades. In AIS-
TATS, pages 916–923.

[Weston et al.2015a] Jason Weston, Antoine Bordes,
Sumit Chopra, and Tomas Mikolov. 2015a. Towards
ai-complete question answering: A set of prerequisite
toy tasks. arXiv preprint arXiv:1502.05698.

[Weston et al.2015b] Jason Weston, Sumit Chopra, and
Antoine Bordes. 2015b. Memory networks. ICLR.

137

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 138–148,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Creating Causal Embeddings for Question Answering
with Minimal Supervision

Rebecca Sharp, Mihai Surdeanu, Peter Jansen, Peter Clark, and Michael Hammond
University of Arizona, Allen Institute for Artificial Intelligence

{bsharp, msurdeanu, pajansen, hammond}@email.arizona.edu, PeterC@allenai.org

Abstract

A common model for question answering
(QA) is that a good answer is one that is
closely related to the question, where re-
latedness is often determined using general-
purpose lexical models such as word embed-
dings. We argue that a better approach is to
look for answers that are related to the ques-
tion in a relevant way, according to the infor-
mation need of the question, which may be
determined through task-specific embeddings.
With causality as a use case, we implement
this insight in three steps. First, we generate
causal embeddings cost-effectively by boot-
strapping cause-effect pairs extracted from
free text using a small set of seed patterns.
Second, we train dedicated embeddings over
this data, by using task-specific contexts, i.e.,
the context of a cause is its effect. Finally, we
extend a state-of-the-art reranking approach
for QA to incorporate these causal embed-
dings. We evaluate the causal embedding
models both directly with a casual implication
task, and indirectly, in a downstream causal
QA task using data from Yahoo! Answers. We
show that explicitly modeling causality im-
proves performance in both tasks. In the QA
task our best model achieves 37.3% P@1, sig-
nificantly outperforming a strong baseline by
7.7% (relative).

1 Introduction

Question answering (QA), i.e., finding short answers
to natural language questions, is one of the most im-
portant but challenging tasks on the road towards
natural language understanding (Etzioni, 2011). A

common approach for QA is to prefer answers that
are closely related to the question, where relatedness
is often determined using lexical semantic models
such as word embeddings (Yih et al., 2013; Jansen
et al., 2014; Fried et al., 2015). While appealing for
its robustness to natural language variation, this one-
size-fits-all approach does not take into account the
wide range of distinct question types that can appear
in any given question set, and that are best addressed
individually (Chu-Carroll et al., 2004; Ferrucci et
al., 2010; Clark et al., 2013).

Given the variety of question types, we suggest
that a better approach is to look for answers that are
related to the question through the appropriate re-
lation, e.g., a causal question should have a cause-
effect relation with its answer. If we adopt this
view, and continue to work with embeddings as a
mechanism for assessing relationship, this raises a
key question: how do we train and use task-specific
embeddings cost-effectively? Using causality as a
use case, we answer this question with a framework
for producing causal word embeddings with mini-
mal supervision, and a demonstration that such task-
specific embeddings significantly benefit causal QA.

In particular, the contributions of this work are:

(1) A methodology for generating causal embed-
dings cost-effectively by bootstrapping cause-effect
pairs extracted from free text using a small set of
seed patterns, e.g., X causes Y. We then train dedi-
cated embedding (as well as two other distributional
similarity) models over this data. Levy and Gold-
berg (2014) have modified the algorithm of Mikolov
et al. (2013) to use an arbitrary, rather than linear,
context. Here we make this context task-specific,

138

i.e., the context of a cause is its effect. Further, to
mitigate sparsity and noise, our models are bidirec-
tional, and noise aware (by incorporating the likeli-
hood of noise in the training process).

(2) The insight that QA benefits from task-specific
embeddings. We implement a QA system that uses
the above causal embeddings to answer questions
and demonstrate that they significantly improve per-
formance over a strong baseline. Further, we show
that causal embeddings encode complementary in-
formation to vanilla embeddings, even when trained
from the same knowledge resources.

(3) An analysis of direct vs. indirect evaluations
for task-specific word embeddings. We evaluate our
causal models both directly, in terms of measuring
their capacity to rank causally-related word pairs
over word pairs of other relations, as well as indi-
rectly in the downstream causal QA task. In both
tasks, our analysis indicates that including causal
models significantly improves performance. How-
ever, from the direct evaluation, it is difficult to
estimate which models will perform best in real-
world tasks. Our analysis re-enforces recent obser-
vations about the limitations of word similarity eval-
uations (Faruqui et al., 2016): we show that they
have limited coverage and may align poorly with
real-world tasks.

2 Related Work

Addressing the need for specialized solving meth-
ods in QA, Oh et. al (2013) incorporate a dedicated
causal component into their system, and note that it
improves the overall performance. However, their
model is limited by the need for lexical overlap be-
tween a causal construction found in their knowl-
edge base and the question itself. Here, we develop a
causal QA component that exploits specialized word
embeddings to gain robustness to lexical variation.

There has been a vast body of work which
demonstrates that word embeddings derived
from distributional similarity are useful in many
tasks, including question answering – see inter
alia (Fried et al., 2015; Yih et al., 2013). However,
Levy and Goldberg (2015) note that there are lim-
itations on the type of semantic knowledge which
is encoded in these general-purpose similarity

embeddings. Therefore, here we build customized
task-specific embeddings for causal QA.

Customized embeddings have been created for
a variety of tasks, including semantic role la-
beling (FitzGerald et al., 2015; Woodsend and
Lapata, 2015), and binary relation extraction
(Riedel et al., 2013). Similar to Riedel et al., we
train embeddings customized for specific relations,
but we bootstrap training data using minimal super-
vision (i.e., a small set of patterns) rather than rely-
ing on distant supervision and large existing knowl-
edge bases. Additionally, while Riedel et al. repre-
sent all relations in a general embedding space, here
we train a dedicated embedding space for just the
causal relations.

In QA, embeddings have been customized to have
question words that are close to either their answer
words (Bordes et al., 2014), or to structured knowl-
edge base entries (Yang et al., 2014). While these
methods are useful for QA, they do not distinguish
between different types of questions, and as such
their embeddings are not specific to a given question
type.

Additionally, embeddings have been customized
to distinguish functional similarity from relatedness
(Levy and Goldberg, 2014; Kiela et al., 2015). In
particular, Levy and Goldberg train their embed-
dings by replacing the standard linear context of the
target word with context derived from the syntac-
tic dependency graph of the sentence. In this work,
we make use of this extension to arbitrary context in
order to train our embeddings with contexts derived
from binary causal relations. We extract cause-effect
text pairs such that the cause text becomes the target
text and the effect text serves as the context.

Recently, Faruqui et al.(2016) discussed issues
surrounding the evaluation of similarity word em-
beddings, including the lack of correlation be-
tween their performance on word-similarity tasks
and “downstream” or real-world tasks like QA, text
classification, etc. As they advocate, in addition to a
direct evaluation of our causal embeddings, we also
evaluate them independently in a downstream QA
task. We provide the same comparison for two alter-
native approaches (an alignment model and a con-
volutional neural network model), confirming that
the direct evaluation performance can be misleading
without the task-specific, downstream evaluation.

139

With respect to extracting causal relations from
text, Girju et al. (2002) use modified Hearst pat-
terns (Hearst, 1992) to extract a large number of
potential cause-effect tuples, where both causes and
effects must be nouns. However, Cole et al. (2005)
show that these nominal-based causal relations ac-
count for a relatively small percentage of all causal
relations, and for this reason, (Yang and Mao, 2014)
allow for more elaborate argument structures in their
causal extraction by identifying verbs, and then fol-
lowing the syntactic subtree of the verbal arguments
to construct their candidate causes and effects. Ad-
ditionally, Do et al. (2011) observe that nouns as
well as verbs can signal causality. We follow these
intuitions in developing our causal patterns by using
both nouns and verbs to signal potential participants
in causal relations, and then allowing for the entire
dominated structures to serve as the cause and/or ef-
fect arguments.

3 Approach

Our focus is on reranking answers to causal ques-
tions using using task-specific distributional similar-
ity methods. Our approach operates in three steps:

(1) We start by bootstrapping a large number of
cause-effect pairs from free text using a small num-
ber of syntactic and surface patterns (Section 4).

(2) We then use these bootstrapped pairs to build
several task-specific embedding (and other distribu-
tional similarity) models (Section 5). We evaluate
these models directly on a causal-relation identifica-
tion task (Section 6).

(3) Finally, we incorporate these models into a
reranking framework for causal QA and demonstrate
that the resulting approach performs better than the
reranker without these task-specific models, even if
trained on the same data (Section 7).

4 Extracting Cause-Effect Tuples

Because the success of embedding models depends
on large training datasets (Sharp et al., 2015), and
such datasets do not exist for open-domain causality,
we opted to bootstrap a large number of cause-effect
pairs from a small set of patterns. We wrote these
patterns using Odin (Valenzuela-Escárcega et al.,

2016), a rule-based information extraction frame-
work which has the distinct advantage of being able
to operate over multiple representations of content
(i.e., surface and syntax). For this work, we make
use of rules that operate over both surface sequences
as well as dependency syntax in the grammars intro-
duced in steps (2) and (3) below.

Odin operates as a cascade, allowing us to imple-
ment a two-stage approach. First, we identify poten-
tial participants in causal relations, i.e., the poten-
tial causes and effects, which we term causal men-
tions (CM). A second grammar then identifies ac-
tual causal relations that take these CMs as argu-
ments.

We consider both noun phrases (NP) as well as
entire clauses to be potential CMs, since causal pat-
terns form around participants that are syntactically
more complex than flat NPs. For example, in the
sentence The collapse of the housing bubble caused
stock prices to fall, both the cause (the collapse of
the housing bubble) and effect (stock prices to fall)
are more complicated nested structures. Reducing
these arguments to non-recursive NPs (e.g., The col-
lapse and stock prices) is clearly insufficient to cap-
ture the relevant context.

Formally, we extract our causal relations using the
following algorithm:

(1) Pre-processing: Much of the text we use to ex-
tract causal relation tuples comes from the Anno-
tated Gigaword (Napoles et al., 2012). This text
is already fully annotated and no further process-
ing is necessary. We additionally use text from the
Simple English Wikipedia1, which we processed us-
ing the Stanford CoreNLP toolkit (Manning et al.,
2014) and the dependency parser of Chen and Man-
ning (2014).

(2) CM identification: We extract causal mentions
(which are able to serve as arguments in our causal
patterns) using a set of rules designed to be robust to
the variety that exists in natural language. Namely,
to find CMs that are noun phrases, we first find
words that are tagged as nouns, then follow outgoing
dependency links for modifiers and attached prepo-

1https://simple.wikipedia.org/wiki/Main_Page.
The Simple English version was preferred over the full version
due to its simpler sentence structures, which make extracting
cause-effect tuples more straightforward.

140

Corpus Extracted Tuples
Annotated Gigaword 798,808
Simple English Wikipedia 16,425
Total 815,233

Table 1: Number of causal tuples extracted from each corpus.

sitional phrases2, to a maximum depth of two links.
To find CMs that are clauses, we first find words that
are tagged as verbs (excluding verbs which them-
selves were considered to signal causation3), then
again follow outgoing dependency links for modi-
fiers and arguments. We used a total of four rules to
label CMs.

(3) Causal tuple extraction: After CMs are iden-
tified, a grammar scans the text for causal relations
that have CMs as arguments. Different patterns have
varying probabilities of signaling causation (Khoo et
al., 1998). To minimize the noise in the extracted
pairs, we restrict ourselves to a set of 13 rules de-
signed to find unambiguously causal patterns, such
as CAUSE led to EFFECT, where CAUSE and EF-
FECT are CMs. The rules operate by looking for a
trigger phrase, e.g., led, and then following the de-
pendency paths to and/or from the trigger phrase to
see if all required CM arguments exist.

Applying this causal grammar over Gigaword and
Simple English Wikipedia produced 815,233 causal
tuples, as summarized in Table 1. As bootstrapping
methods are typically noisy, we manually evaluated
the quality of approximately 250 of these pairs se-
lected at random. Of the tuples evaluated, approxi-
mately 44% contained some amount of noise. For
example, from the sentence Except for Springer’s
show, which still relies heavily on confrontational
topics that lead to fistfights virtually every day...,
while ideally we would only extract (confrontational
topics → fistfights), instead we extract the tuple
(show which still relies heavily on confrontational
topics → fistfights virtually every day), which con-
tains a large amount of noise: show, relies, heavily,
etc. This finding prompted our noise-aware model
described at the end of Section 5.

2The outgoing dependency links from the nouns which we
followed were: nn, amod, advmod, ccmod, dobj,
prep of, prep with, prep for, prep into,
prep on, prep to, and prep in.

3The verbs we excluded were: cause, result, lead, create.

5 Models

We use the extracted causal tuples to train three dis-
tinct distributional similarity models that explicitly
capture causality.

Causal Embedding Model (cEmbed): The first
distributional similarity model we use is based
on the skip-gram word-embedding algorithm of
Mikolov et al. (2013), which has been shown to im-
prove a variety of language processing tasks includ-
ing QA (Yih et al., 2013; Fried et al., 2015). In par-
ticular, we use the variant implemented by Levy and
Goldberg (2014) which modifies the original algo-
rithm to use an arbitrary, rather than linear, context.
Our novel contribution is to make this context task-
specific: intuitively, the context of a cause is its ef-
fect. Further, these contexts are generated from tu-
ples that are themselves bootstrapped, which mini-
mizes the amount of supervision necessary.

The Levy and Goldberg model trains using single-
word pairs, while our CMs could be composed of
multiple words. For this reason, we decompose
each cause–effect tuple, (CMc, CMe), such that
each word wc ∈ CMc is paired with each word
we ∈ CMe.

After filtering the extracted cause-effect tuples for
stop words and retaining only nouns, verbs, and ad-
jectives, we generated over 3.6M (wc, we) word-
pairs4 from the approximately 800K causal tuples.

The model learns two embedding vectors for each
word, one for when the word serves as a target word
and another for when the word serves as a context
word. Here, since the relation of interest is inher-
ently directional, both sets of embeddings are mean-
ingful, and so we make use of both – the target vec-
tors encode the effects of given causes, whereas the
context vectors capture the causes of the correspond-
ing effects.

Causal Alignment Model (cAlign): Monolingual
alignment (or translation) models have been shown
to be successful in QA (Berger et al., 2000; Echi-
habi and Marcu, 2003; Soricut and Brill, 2006; Rie-
zler et al., 2007; Surdeanu et al., 2011; Yao et al.,
2013), and recent work has shown that they can be
successfully trained with less data than embedding
models (Sharp et al., 2015).

4For all models proposed in this section we used lemmas
rather than words.

141

Figure 1: Architecture of the causal convolutional network.

To verify these observations in our context, we
train an alignment model that “translates” causes
(i.e., the “source language”) into effects (i.e., the
“destination language”), using our cause–effect tu-
ples. This is done using IBM Model 1 (Brown et al.,
1993) and GIZA++ (Och and Ney, 2003).

Causal Convolutional Neural Network Model
(cCNN): Each of the previous models have at their
root a bag-of-words representation, which is a sim-
plification of the causality task. To address this po-
tential limitation, we additionally trained a convo-
lutional neural network (CNN) which operates over
variable-length texts, and maintains distinct embed-
dings for causes and effects. The architecture of
this approach is shown in Figure 1, and consists
of two sub-networks (one for cause text and one
for effect text), each of which begins by converting
the corresponding text into 50-dimensional embed-
dings. These are then fed to a convolutional layer,5

which is followed by a max-pooling layer of equal
length. Then, these top sub-network layers, which
can be thought of as a type of phrasal embedding,
are merged by taking their cosine similarity. Finally,
this cosine similarity is normalized by feeding it into
a dense layer with a single node which has a soft-
plus activation. In designing our CNN, we attempted
to minimize architectural and hyperparameter tun-
ing by taking inspiration from Iyyer et al. (2015),
preferring simpler architectures. We train the net-
work using a binary cross entropy objective function
and the Adam optimizer (Kingma and Ba, 2014), us-
ing the Keras library (Chollet, 2015) operating over
Theano (Theano Development Team, 2016), a pop-
ular deep-learning framework.6

5The convolutional layer contained 100 filters, had a filter
length of 2 (i.e., capturing bigram information), and an inner
ReLU activation.

6We also experimented with an equivalent architecture
where the sub-networks are implemented using long short-

Noise-aware Causal Embedding Model (cEm-
bedNoise): We designed a variant of our cEmbed
approach to address the potential impact of the noise
introduced by our bootstrapping method. While
training, we weigh the causal tuples by the likeli-
hood that they are truly causal, which we approxi-
mate with pointwise mutual information (PMI). For
this, we first score the tuples by their causal PMI
and then scale these scores by the overall frequency
of the tuple (Riloff, 1996), to account for the PMI
bias toward low-frequency items. That is, the score
S of a tuple, t, is computed as:

S(t) = log
p(t|causal)

p(t)
∗ log(freq(t)) (1)

We then discretize these scores into five quantiles,
ascribing a linearly decreasing weight during train-
ing to datums in lower scoring quantiles.

6 Direct Evaluation: Ranking Word Pairs

We begin the assessment of our models with a direct
evaluation to determine whether or not the proposed
approaches capture causality better than general-
purpose word embeddings and whether their robust-
ness improves upon a simple database look-up. For
this evaluation, we follow the protocol of Levy and
Goldberg (2014). In particular, we create a collec-
tion of word pairs, half of which are causally re-
lated, with the other half consisting of other rela-
tions. These pairs are then ranked by our models and
several baselines, with the goal of ranking the causal
pairs above the others. The embedding models rank
the pairs using the cosine similarity between the tar-
get vector for the causal word and the context vector
of the effect word. The alignment model ranks pairs
using the probability P (Effect|Cause) given by IBM
Model 1, and the CNN ranks pairs by the value of the
output returned by the network.

6.1 Data
In order to avoid bias towards our extraction meth-
ods, we evaluate our models on an external set of

term memory (LSTM) networks (Hochreiter and Schmidhuber,
1997), and found that they consistently under-perform this CNN
architecture. Our conjecture is that CNNs perform better be-
cause LSTMs are more sensitive to overall word order than
CNNs, which capture only local contexts, and we have rela-
tively little training data, which prevents the LSTMs from gen-
eralizing well.

142

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P
re

ci
si

o
n

Recall

Random
Look-up
vEmbed
cEmbed

cEmbedBi
cEmbedBiNoise

cCNN
cAlign

Figure 2: Precision-recall curve showing the ability of each model to rank causal pairs above non-causal pairs. For clarity, we do

not plot cEmbedNoise, which performs worse than cEmbedBiNoise. The Look-up model has no data points beyond the 35% recall

point.

word pairs drawn from the SemEval 2010 Task 8
(Hendrickx et al., 2009), originally a multi-way clas-
sification of semantic relations between nominals.
We used a total of 1730 nominal pairs, 865 of which
were from the Cause-Effect relation (e.g., (dancing
→ happiness)) and an equal number which were
randomly selected from the other eight relations
(e.g., (juice → grapefruit), from the Entity-Origin
relation). This set was then randomly divided into
equally-sized development and test partitions.

6.2 Baselines

We compared our distributional similarity models
against three baselines:

Vanilla Embeddings Model (vEmbed): a standard
word2vec model trained with the skip-gram algo-
rithm and a sliding window of 5, using the original
texts from which our causal pairs were extracted.7

As with the cEmbed model, SemEval pairs were
ranked using the cosine similarity between the vec-
tor representations of their arguments.

Look-up Baseline: a given SemEval pair was
ranked by the number of times it appeared in our
extracted cause-effect tuples.

Random: pairs were randomly shuffled.

6.3 Results

Figure 2 shows the precision-recall (PR) curve for
each of the models and baselines. As expected,
the causal models are better able to rank causal

7All embedding models analyzed here, including this base-
line and our causal variants, produced embedding vectors of 200
dimensions.

pairs than the vanilla embedding baseline (vEmbed),
which, in turn, outperforms the random baseline.
Our look-up baseline, which ranks pairs by their fre-
quency in our causal database, shows a high preci-
sion for this task, but has coverage for only 35% of
the causal SemEval pairs.

Some models perform better on the low-recall
portion of the curve (e.g., the look-up baseline and
cCNN), while the embedding and alignment mod-
els have a higher and more consistent performance
across the PR curve. We hypothesize that models
that better balance precision and recall will perform
better in a real-world QA task, which may need to
access a given causal relation through a variety of
lexical patterns or variations. We empirically vali-
date this observation in Section 7.

The PR curve for the causal embeddings shows
an atypical dip at low-recall. To examine this, we
analyzed its top-ranked 15% of SemEval pairs, and
found that incorrectly ranked pairs were not found
in the database of causal tuples. Instead, these incor-
rect rankings were largely driven by low frequency
words whose embeddings could not be robustly es-
timated due to lack of direct evidence. Because this
sparsity is partially driven by directionality, we im-
plemented a bidirectional embedding model (cEm-
bedBi) that (a) trains a second embedding model
by reversing the input (effects as targets, causes as
contexts), and (b) ranks pairs by the average of the
scores returned by these two unidirectional causal
embedding models. Specifically, the final bidirec-
tional score of the pair, (e1, e2), where e1 is the can-

143

didate cause and e2 is the candidate effect, is:

sbi(e1, e2) =
1
2(sc→e(e1, e2) + se→c(e2, e1)) (2)

where sc→e is the score given by the original causal
embeddings, i.e., from cause to effect, and se→c is
the score given by the reversed-input causal embed-
dings, i.e., from effect to cause.

As Figure 2 shows, the bidirectional embedding
variants consistently outperform their unidirectional
counterparts. All in all, the best overall model is
cEmbedBiNoise, which is both bidirectional and in-
corporates the noise handling approach from Sec-
tion 5. This model substantially improves perfor-
mance in the low-recall portion of the curve, while
also showing strong performance across the curve.

7 Indirect Evaluation: QA Task
The main objective of our work is to investigate the
impact of a customized causal embedding model for
QA. Following our direct evaluation, which solely
evaluated the degree to which our models directly
encode causality, here we evaluate each of our pro-
posed causal models in terms of their contribution to
a downstream real-world QA task.

Our QA system uses a standard reranking ap-
proach (Jansen et al., 2014). In this architecture, the
candidate answers are initially extracted and ranked
using a shallow candidate retrieval (CR) component
that uses solely information retrieval techniques,
then they are re-ranked using a “learning to rank”
approach. In particular, we used SVM rank8, a Sup-
port Vector Machines classifier adapted for ranking,
and re-ranked the candidate answers with a set of
features derived from both the initial CR score and
the models we have introduced. For our model com-
binations (see Table 2), the feature set includes the
CR score and the features from each of the models
in the combination.

7.1 Data

We evaluate on a set of causal questions extracted
from the Yahoo! Answers corpus9 with simple sur-
face patterns such as What causes ... and What

8 http://www.cs.cornell.edu/people/tj/
svm_light/svm_rank.html

9Freely available through Yahoo!’s Webscope program
(research-data-requests@yahoo-inc.com)

is the result of ...10. We extracted a total of 3031
questions, each with at least four candidate answers,
and we evaluated performance using five-fold cross-
validation, with three folds for training, one for de-
velopment, and one for testing.

7.2 Models and Features

We evaluate the contribution of the bidirectional and
noise-aware causal embedding models (cEmbedBi,
and cEmbedBiNoise) as well as the causal alignment
model (cAlign) and the causal CNN (cCNN). These
models are compared against three baselines: the
vanilla embeddings (vEmbed), the lookup baseline
(LU), and additionally a vanilla alignment model
(vAlign) which is trained over 65k question-answer
pairs from Yahoo! Answers.

The features11 we use for the various models are:

Embedding model features: For both our vanilla
and causal embedding models, we use the same set
of features as Fried et al. (2015): the maximum,
minimum, and average pairwise cosine similarity
between question and answer words, as well as the
overall similarity between the composite question
and answer vectors. When using the causal embed-
dings, since the relation is directed, we first deter-
mine whether the question text is the cause or the ef-
fect12, which in turn determines which embeddings
to use for the question text and which to use for the
candidate answer texts. For example, in a question
such as ”What causes X?”, since X is the effect, all
cosine similarities would be found using the effect
vectors for the question words and the cause vectors
for the answer candidate words.

Alignment model features: We use the same
global alignment probability, p(Q|A) of Surdeanu
et al. (2011). In our causal alignment model, we
adapt this to causality as p(Effect|Cause), and again
we first determine the direction of the causal re-
lation implied in the question. We include the
additional undirected alignment features based on

10We lightly filtered these with stop words to remove non-
causal questions, such as those based on math problems and the
results of sporting events. Our dataset will be freely available,
conditioned on users having obtained the Webscope license.

11Due to the variety of features used, each feature described
here is independently normalized to lie between 0.0 and 1.0.

12We do this through the use of simple regular expressions,
e.g., ”ˆ [Ww]hat ([a-z]+){0,3}cause.+”

144

Model P@1
Baselines

1 Random 16.43
2 CR 24.31
3 CR + vEmbed 34.61
4 CR + vAlign 19.24
5 CR + Look-up (LU) 29.56

Single Causal Models
6 CR + cEmbedBi 31.32
7 CR + cEmbedBiNoise 30.15
8 CR + cAlign 23.49
9 CR + cCNN 24.66

Model Combinations
10 CR + vEmbed + cEmbedBi 37.08∗

11 CR + vEmbed + cEmbedBiNoise 35.50∗

12 CR + vEmbed + cEmbedBi + LU 36.75∗

13 CR + vEmbed + cAlign 34.31
14 CR + vEmbed + cCNN 33.45

Model Stacking
15 CR + vEmbed + cEmbedBi + cEmbedBiNoise 37.28∗

Table 2: Performance in the QA evaluation, measured by

precision-at-one (P@1). The “Bi” suffix indicates a bidirec-

tional model; the “Noise” suffix indicates a model that is noise

aware. ∗ indicates that the difference between the correspond-

ing model and the CR + vEmbed baseline is statistically sig-

nificant (p < 0.05), determined through a one-tailed bootstrap

resampling test with 10,000 iterations.

Jensen-Shannon distance, proposed more recently
by Fried et al. (2015), in our vanilla alignment
model. However, due to the directionality inherent
in causality, they do not apply to our causal model
so there we omit them.

Look-up feature: For the look-up baseline we
count the number of times words from the question
and answer appear together in our database of ex-
tracted causal pairs, once again after determining the
directionality of the questions. If the total number of
matches is over a threshold13, we consider the causal
relation to be established and give the candidate an-
swer a score of 1; or a score of 0, otherwise.

7.3 Results

The overall results are summarized in Table 2. Lines
1–5 in the table show that each of our baselines per-
formed better than CR by itself, except for vAlign,
suggesting that the vanilla alignment model does not
generate accurate predictions for causal questions.

13Empirically determined to be 100 matches. Note that us-
ing this threshold performed better than simply using the total
number of matches.

The strongest baseline was CR + vEmbed (line 3),
the vanilla embeddings trained over Gigaword, at
34.6% P@1. For this reason, we consider this to
be the baseline to “beat”, and perform statistical sig-
nificance of all proposed models with respect to it.

Individually, the cEmbedBi model is the best per-
forming of the causal models. While the perfor-
mance of cAlign in the direct evaluation was com-
parable to that of cEmbedBi, here it performs far
worse (line 6 vs 8), suggesting that the robustness of
embeddings is helpful in QA. Notably, despite the
strong performance of the cCNN in the low-recall
portion of the PR curve in the direct evaluation, here
the model performs poorly (line 9).

No individual causal model outperforms the
strong vanilla embedding baseline (line 3), likely
owing to the reduction in generality inherent to
building task-specific QA models. However, com-
paring lines 6–9 vs. 10–14 shows that the vanilla and
causal models are capturing different and comple-
mentary kinds of knowledge (i.e., causality vs. as-
sociation through distributional similarity), and are
able to be combined to increase overall task perfor-
mance (lines 10–12). These results highlight that
QA is a complex task, where solving methods need
to address the many distinct information needs in
question sets, including both causal and direct as-
sociation relations. This contrasts with the direct
evaluation, which focuses strictly on causality, and
where the vanilla embedding baseline performs near
chance. This observation highlights one weakness
of word similarity tasks: their narrow focus may not
directly translate to estimating their utility in real-
world NLP applications.

Adding in the lookup baseline (LU) to the best-
performing causal model does not improve perfor-
mance (compare lines 10 and 12), suggesting that
the bidirectional causal embeddings subsume the
contribution of the LU model. cEmbedBi (line 10)
also performs better than cEmbedBiNoise (line 11).
We conjecture that the “noise” filtered out by cEm-
bedBiNoise contains distributional similarity infor-
mation, which is useful for the QA task. cEmbedBi
vastly outperforms cCNN (line 14), suggesting that
strong overall performance across the precision-
recall curve better translates to the QA task. We hy-
pothesize that the low cCNN performance is caused
by insufficient training data, preventing the CNN ar-

145

Error/observation % Q
Both chosen and gold are equally good answers 45%
Causal max similarity of chosen is higher 35%
Vanilla overall similarity of chosen is higher 35%
Chosen answer is better than the gold answer 25%
The question is very short / lacks content words 15%
Other 10%

Table 3: Results of an error analysis performed on a random

sample of 20 incorrectly answered questions showing the source

of the error and the percentage of questions that were affected.

Note that questions can belong to multiple categories.

chitecture from generalizing well.
Our best performing overall model combines both

variants of the causal embedding model (cEmbedBi
and cEmbedBiNoise), reaching a P@1 of 37.3%,
which shows a 7.7% relative improvement over the
strong CR + vEmbed baseline.

7.4 Error Analysis

We performed an error analysis to gain more insight
into our model as well as the source of the remain-
ing errors. For simplicity, we used the combina-
tion model CR + vEmbed + cEmbedBi. Examining
the model’s learned feature weights, we found that
the vanilla overall similarity feature had the high-
est weight, followed by the causal overall similarity
and causal maximum similarity features. This in-
dicates that even in causal question answering, the
overall topical similarity between question and an-
swer is still useful and complementary to the causal
similarity features.

To determine sources of error, we randomly se-
lected 20 questions that were incorrectly answered
and analyzed them according to the categories
shown in Table 3. We found that for 70% of the
questions, the answer chosen by our system was as
good as or better than the gold answer, often the case
with community question answering datasets.

Additionally, while the maximum causal similar-
ity feature is useful, it can be misleading due to em-
bedding noise, low-frequency words, and even the
bag-of-words nature of the model (35% of the incor-
rect questions). For example, in the question What
are the effects of growing up with an older sibling
who is better than you at everything?, the model
chose the answer ...You are you and they are them
- you will be better and different at other things...
largely because of the high causal similarity between
(grow→ better). While this could arguably be help-

ful in another context, here it is irrelevant, suggest-
ing that in the future improvement could come from
models that better incorporate textual dependencies.

8 Conclusion
We presented a framework for creating customized
embeddings tailored to the information need of
causal questions. We trained three popular mod-
els (embedding, alignment, and CNN) using causal
tuples extracted with minimal supervision by boot-
strapping cause-effect pairs from free text, and eval-
uated their performance both directly (i.e., the de-
gree to which they capture causality), and indirectly
(i.e., their real-world utility on a high-level question
answering task).

We showed that models that incorporate a knowl-
edge of causality perform best for both tasks. Our
analysis suggests that the models that perform best
in the real-world QA task are those that have consis-
tent performance across the precision-recall curve in
the direct evaluation. In QA, where the vocabulary is
much larger, precision must be balanced with high-
recall, and this is best achieved by our causal embed-
ding model. Additionally, we showed that vanilla
and causal embedding models address different in-
formation needs of questions, and can be combined
to improve performance.

Extending this work beyond causality, we hypoth-
esize that additional embedding spaces customized
to the different information needs of questions
would allow for robust performance over a larger
variety of questions, and that these customized em-
bedding models should be evaluated both directly
and indirectly to accurately characterize their per-
formance.

Resources

All code and resources needed to reproduce this
work are available at http://clulab.cs.
arizona.edu/data/emnlp2016-causal/.

Acknowledgments

We thank the Allen Institute for Artificial Intelli-
gence for funding this work. Additionally, this work
was partially funded by the Defense Advanced Re-
search Projects Agency (DARPA) Big Mechanism
program under ARO contract W911NF-14-1-0395.

146

References
[Berger et al.2000] A. Berger, R. Caruana, D. Cohn,

D. Freytag, and V. Mittal. 2000. Bridging the lex-
ical chasm: Statistical approaches to answer finding.
In Proc. of the 23rd Annual International ACM SIGIR
Conference on Research & Development on Informa-
tion Retrieval.

[Bordes et al.2014] A. Bordes, S. Chopra, and J. Weston.
2014. Question answering with subgraph embeddings.
arXiv preprint arXiv:1406.3676.

[Brown et al.1993] P. F. Brown, S. A. Della Pietra,
V. J. Della Pietra, and R. L. Mercer. 1993. The mathe-
matics of statistical machine translation: Parameter es-
timation. Computational Linguistics, 19(2):263–311.

[Chen and Manning2014] D. Chen and C. D. Manning.
2014. A fast and accurate dependency parser us-
ing neural networks. In Proc. of the Conferenc on
Empirical Methods for Natural Language Processing
(EMNLP).

[Chollet2015] F. Chollet. 2015. Keras. https://
github.com/fchollet/keras.

[Chu-Carroll et al.2004] J. Chu-Carroll, K. Czuba, J. M.
Prager, A. Ittycheriah, and S. Blair-Goldensohn. 2004.
IBM’s PIQUANT II in TREC 2004. In Text Retrieval
Conference (TREC).

[Clark et al.2013] P. Clark, P. Harrison, and N. Balasub-
ramanian. 2013. A study of the knowledge base re-
quirements for passing an elementary science test. In
Proc. of the 2013 workshop on Automated Knowledge
Base Construction (AKBC), pages 37–42.

[Cole et al.2005] S. V. Cole, M. D. Royal, M. G. Valtorta,
M. N. Huhns, and J. B. Bowles. 2005. A lightweight
tool for automatically extracting causal relationships
from text. In SoutheastCon, 2006. Proc. of the IEEE,
pages 125–129.

[Do et al.2011] Q. X. Do, Y. S. Chan, and D. Roth. 2011.
Minimally supervised event causality identification.
In Proc. of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 294–
303.

[Echihabi and Marcu2003] A. Echihabi and D. Marcu.
2003. A noisy-channel approach to question answer-
ing. In Proc. of the 41st Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
16–23.

[Etzioni2011] O. Etzioni. 2011. Search needs a shake-up.
Nature, 476(7358):25–26.

[Faruqui et al.2016] M. Faruqui, Y. Tsvetkov, R. Rastogi,
and C. Dyer. 2016. Problems with evaluation of
word embeddings using word similarity tasks. arXiv
preprint arXiv:1605.02276.

[Ferrucci et al.2010] D. Ferrucci, E. Brown, J. Chu-
Carroll, J. Fan, D. Gondek, A. A. Kalyanpur, A. Lally,

J. W. Murdock, E. Nyberg, J. Prager, et al. 2010.
Building Watson: An overview of the DeepQA
project. AI magazine, 31(3):59–79.

[FitzGerald et al.2015] N. FitzGerald, O. Täckström,
K. Ganchev, and D. Das. 2015. Semantic role labeling
with neural network factors. In Proc. of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 960–970.

[Fried et al.2015] D. Fried, P. Jansen, G. Hahn-Powell,
M. Surdeanu, and P. Clark. 2015. Higher-order lex-
ical semantic models for non-factoid answer rerank-
ing. Transactions of the Association for Computa-
tional Linguistics, 3:197–210.

[Girju and Moldovan2002] R. Girju and D. I. Moldovan.
2002. Text mining for causal relations. In FLAIRS
Conference, pages 360–364.

[Hearst1992] M. A. Hearst. 1992. Automatic acquisition
of hyponyms from large text corpora. In Proc. of the
14th conference on Computational linguistics (COL-
ING), pages 539–545.

[Hendrickx et al.2009] I. Hendrickx, S. N. Kim,
Z. Kozareva, P. Nakov, D. Ó Séaghdha, S. Padó,
M. Pennacchiotti, L. Romano, and S. Szpakowicz.
2009. Semeval-2010 task 8: Multi-way classification
of semantic relations between pairs of nominals. In
Proc. of the Workshop on Semantic Evaluations:
Recent Achievements and Future Directions, pages
94–99.

[Hochreiter and Schmidhuber1997] S. Hochreiter and
J. Schmidhuber. 1997. Long short-term memory.
Neural computation, 9(8):1735–1780.

[Iyyer et al.2015] Mohit Iyyer, Varun Manjunatha, Jordan
Boyd-Graber, and Hal Daumé III. 2015. Deep un-
ordered composition rivals syntactic methods for text
classification. In Proceedings of the Association for
Computational Linguistics.

[Jansen et al.2014] P. Jansen, M. Surdeanu, and P. Clark.
2014. Discourse complements lexical semantics for
non-factoid answer reranking. In Proc. of the 52nd
Annual Meeting of the Association for Computational
Linguistics (ACL).

[Khoo et al.1998] C. S.G. Khoo, J. Kornfilt, R. N. Oddy,
and S. H. Myaeng. 1998. Automatic extraction of
cause-effect information from newspaper text without
knowledge-based inferencing. Literary and Linguistic
Computing, 13(4):177–186.

[Kiela et al.2015] D. Kiela, F. Hill, and S. Clark. 2015.
Specializing word embeddings for similarity or relat-
edness. In Proc. of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

[Kingma and Ba2014] D. Kingma and J. Ba. 2014.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

147

[Levy and Goldberg2014] O. Levy and Y. Goldberg.
2014. Dependency-based word embeddings. In Proc.
of the 52nd Annual Meeting of the Association for
Computational Linguistics (ACL), pages 302–308.

[Levy et al.2015] O. Levy, S. Remus, C. Biemann, I. Da-
gan, and I. Ramat-Gan. 2015. Do supervised dis-
tributional methods really learn lexical inference rela-
tions. In Proc. of the Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics (NAACL).

[Manning et al.2014] C. D. Manning, M. Surdeanu,
J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proc. of the 52nd Annual Meeting of
the Association for Computational Linguistics (ACL).

[Mikolov et al.2013] T. Mikolov, I. Sutskever, K. Chen,
G. S. Corrado, and J. Dean. 2013. Distributed repre-
sentations of words and phrases and their composition-
ality. In Advances in neural information processing
systems, pages 3111–3119.

[Napoles et al.2012] C. Napoles, M. Gormley, and
B. Van Durme. 2012. Annotated gigaword. In Proc.
of the Joint Workshop on Automatic Knowledge Base
Construction and Web-scale Knowledge Extraction,
pages 95–100.

[Och and Ney2003] F. J. Och and H. Ney. 2003. A
systematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19–51.

[Oh et al.2013] J.-H. Oh, K. Torisawa, C. Hashimoto,
M. Sano, S. De Saeger, and K. Ohtake. 2013. Why-
question answering using intra-and inter-sentential
causal relations. In The 51st Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
1733–1743.

[Riedel et al.2013] S. Riedel, L. Yao, A. McCallum, and
B. M. Marlin. 2013. Relation extraction with matrix
factorization and universal schemas. In Proc. of An-
nual Meeting of the North American Chapter of the
Association for Computational Linguistics (NAACL).

[Riezler et al.2007] S. Riezler, A. Vasserman, I. Tsochan-
taridis, V. Mittal, and Y. Liu. 2007. Statistical ma-
chine translation for query expansion in answer re-
trieval. In Proc. of the 45th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
464–471.

[Riloff1996] E. Riloff. 1996. Automatically generating
extraction patterns from untagged text. In Proc. of the
National Conference on Artificial Intelligence (AAAI),
pages 1044–1049.

[Sharp et al.2015] R. Sharp, P. Jansen, M. Surdeanu, and
P. Clark. 2015. Spinning straw into gold. In Proc.
of the Conference of the North American Chapter of
the Association for Computational Linguistics - Hu-
man Language Technologies.

[Soricut and Brill2006] R. Soricut and E. Brill. 2006.
Automatic question answering using the web: Beyond
the factoid. Journal of Information Retrieval - Special
Issue on Web Information Retrieval, 9(2):191–206.

[Surdeanu et al.2011] M. Surdeanu, M. Ciaramita, and
H. Zaragoza. 2011. Learning to rank answers to
non-factoid questions from web collections. Compu-
tational Linguistics, 37(2):351–383.

[Theano Development Team2016] Theano Development
Team. 2016. Theano: A Python framework for fast
computation of mathematical expressions. arXiv e-
prints, abs/1605.02688, May.

[Valenzuela-Escárcega et al.2016] M. A. Valenzuela-
Escárcega, G. Hahn-Powell, and M. Surdeanu. 2016.
Odin’s runes: A rule language for information extrac-
tion. In Proc. of the 10th International Conference on
Language Resources and Evaluation (LREC).

[Woodsend and Lapata2015] K. Woodsend and M. Lap-
ata. 2015. Distributed representations for unsuper-
vised semantic role labeling. In Proc. of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

[Yang and Mao2014] X. Yang and K. Mao. 2014. Multi
level causal relation identification using extended fea-
tures. Expert Systems with Applications, 41(16):7171–
7181.

[Yang et al.2014] M.-C. Yang, N. Duan, M. Zhou, and
H.-C. Rim. 2014. Joint relational embeddings for
knowledge-based question answering. In Proc. of the
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 645–650.

[Yao et al.2013] X. Yao, B. Van Durme, C. Callison-
Burch, and P. Clark. 2013. Semi-markov phrase-
based monolingual alignment. In Proc. of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP).

[Yih et al.2013] W. Yih, M. Chang, C. Meek, and A. Pas-
tusiak. 2013. Question answering using enhanced
lexical semantic models. In Proc. of the 51st Annual
Meeting of the Association for Computational Linguis-
tics (ACL).

148

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 149–159,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Improving Semantic Parsing via Answer Type Inference

Semih Yavuz1, Izzeddin Gur1, Yu Su1, Mudhakar Srivatsa2 and Xifeng Yan1

1University of California, Santa Barbara, Department of Computer Science
2IBM Research

{syavuz,izzeddingur,ysu,xyan}@cs.ucsb.edu
msrivats@us.ibm.com

Abstract

In this work, we show the possibility of infer-
ring the answer type before solving a factoid
question and leveraging the type information
to improve semantic parsing. By replacing the
topic entity in a question with its type, we are
able to generate an abstract form of the ques-
tion, whose answer corresponds to the answer
type of the original question. A bidirectional
LSTM model is built to train over the abstract
form of questions and infer their answer types.
It is also observed that if we convert a ques-
tion into a statement form, our LSTM model
achieves better accuracy. Using the predicted
type information to rerank the logical forms
returned by AgendaIL, one of the leading se-
mantic parsers, we are able to improve the
F1-score from 49.7% to 52.6% on the WE-
BQUESTIONS data.

1 Introduction

Large scale knowledge bases (KB) like Freebase
(Bollacker et al., 2008), DBpedia (Auer et al., 2007),
and YAGO (Suchanek et al., 2007) that store the
world’s factual information in a structured fash-
ion have become substantial resources for people to
solve questions. KB-based factoid question answer-
ing (KB-QA) that attempts to find exact answers to
natural language questions has gained much atten-
tion recently. KB-QA is a challenging task due to
the representation variety between natural language
and structural knowledge in KBs.

As one of the promising KB-QA techniques, se-
mantic parsing maps a natural language question
into its semantic representation (e.g., logical forms).

Ranking F1 # Improved Qs

AgendaIL 49.7 -
w/ Oracle Types@10 57.3 +234
w/ Oracle Types@20 58.7 +282
w/ Oracle Types@50 60.1 +331
w/ Oracle Types@All 60.5 +345

Table 1: What if the correct answer type is enforced? On We-

bQuestions, we remove those with incorrect answer types in the

top-k logical forms returned by AgendaIL (Berant and Liang,

2015), a leading semantic parsing system, and report the new

average F1 score as well as the number of questions with an

improved F1 score.

It uses a logical language with predicates closely re-
lated to KB schema, and constructs a dictionary that
maps relations to KB predicates. The problem then
reduces to generating candidate logical forms, rank-
ing them, and selecting one to derive the final an-
swer.

In this work, we propose an answer type pre-
diction model that can improve the ranking of
the candidate logical forms generated by seman-
tic parsing. The type of an entity, e.g., person,
organization, location, carries very useful
information for various down-stream natural lan-
guage processing tasks such as co-reference resolu-
tion (Recasens et al., 2013), knowledge base popu-
lation (Carlson et al., 2010), relation extraction (Yao
et al., 2012), and question answering (Lin et al.,
2012). Although the potential clues for answer type
from the question has been employed in the recent
work AgendaIL (Berant and Liang, 2015) at the lex-
ical level, Table 1 suggests that there is yet a large
room for further improvement by explicitly enforc-

149

ing answer type. Inspired by this observation, we
aim to directly predict the KB type of the answer
from the question. In contrast to a small set of pre-
defined types as used in previous answer type pre-
diction methods (e.g., (Li and Roth, 2002)), KBs
could have thousands of fine-grained types. Take
“When did Shaq come into the NBA?” as a running
example. We aim to predict the KB type of its an-
swer as SportsLeagueDraft.1

The value of typing answers in a fine granularity
can be appreciated from two perspectives: (1) Since
each entity in a KB like Freebase has a few types,
answer type could help prune answer candidates, (2)
since each predicate in the KB has a unique type
schema, answer type can help rank logical forms.

The key challenge of using answer types to re-
rank logic forms and hence their corresponding an-
swers, is that it shall be done before the answer is
found. Otherwise, there is no need to further infer
its type. Inspired by the observation that the an-
swer type of a question is invariant as long as the
type of the topic entity (Shaq) remains the same
(DraftedAthlete), we define abstract ques-
tion as the question where the topic entity mention
is replaced by its corresponding KB type. For the
aforementioned example, the best candidate abstract
question is “When did DraftedAthlete come
into the NBA?” and the answer to this question is
SportsLeagueDraft. Hence, we can reduce the
answer type prediction task to abstract question an-
swering.

The first step in our method is question ab-
straction, in which we generate candidate abstract
questions based on the context of question and its
candidate topic entities. We build a bidirectional
LSTM network over the question that recursively
computes vector representations for the past and
future contexts of an entity mention. Based on
these context representations, we predict the right
type of the entity mention. Next, in order to bet-
ter utilize the syntactic features of the question,
we convert the question form into a normal state-
ment form by using dependency tree of the ques-
tion. For the running example, after perform-
ing the conversion, the abstract question becomes
“DraftedAthlete come when into the NBA?”

1KB type of answer (“1992 NBA Draft”) in the context.

We then construct a bidirectional LSTM neural net-
work over this final representation of the question
and predict the type of the answer. Using the in-
ferred answer type, we are able to improve the result
of AgendaIL (Berant and Liang, 2015) on WebQues-
tions (Berant et al., 2013) from 49.7% to 52.6%.

2 Background

The knowledge base we work with consists of
triples in subject-predicate-object form. It can be
represented as K = {(e1, p, e2) : e1, e2 ∈
E , p ∈ P}, where E denotes the set of entities (e.g.,
ShaquilleOneal), and P denotes the set of bi-
nary predicates (e.g., Drafted). A knowledge base
in this format can be visualized as a graph where en-
tities are nodes, and predicates are directed edges
between entities. Freebase is used in this work as
the knowledge base. It has more than 41M entities,
596M facts, and 24K types.

Types are an integral part of the Freebase
schema. Each entity e in Freebase has a set
of categories (types) it belongs to, and this
information can be obtained by checking the
out-going predicates (Type.Object.Type)
from e. For example, ShaquilleOneal
has 20 Freebase types including Person,
BasketballPlayer, DraftedAthlete,
Celebrity, and FilmActor. For a specific
question involving ShaquilleOneal, among
these types, only a few will be relevant.

Each predicate in Freebase is from a subject en-
tity to an object entity, and has a type signature. It
has a unique expected types for its subject and ob-
ject, independent of the individual subject and ob-
ject entities themselves. For example, the predicate
People.Person.Profession expects its sub-
ject to be of Person type and its object to be of
Profession type.

3 Question Abstraction

The type of the topic entity rather than the entity it-
self is essential for inferring the answer type, which
is invariant as the topic entity changes within the
same class. For example, independent of which
NBA player (with DraftedAthlete type) is the
topic entity of this question “When did Shaq come
into the NBA”, the type of the answer is always go-

150

Figure 1: Bi-directional LSTM model for question abstraction.

Green circles represent the forward sequence’s hidden vectors,

while the red circles denote the backward sequence’s. shaq

(the topic entity mention) is the single output node of the net-

work.

ing to be SportsLeagueDraft in Freebase. Pre-
dicting this distinct type among the large number of
candidate types in Freebase is a challenging task.
We propose a two-step solution for this problem.
In the first step, we compute a confidence score for
each possible KB type for a given topic entity us-
ing a bidirectional LSTM network. The second step
prunes candidate types using the entity type infor-
mation in Freebase.

3.1 Formulation

Given a natural language question and its topic en-
tity mention, question abstraction is to predict types
of the mention in the question context. Formally, let
q = (x1, x2, . . . , xL) denote the question, m be the
topic entity mention in q, and T = {t1, t2, . . . , tK}
the set of all types in KB. Given q and m, we com-
pute a probability distribution o ∈ RK×1 over T ,
where ok denotes the likelihood of tk being the cor-
rect type of m in q.

3.2 Scoring Topic Entity Types with LSTM

Model. We formulate question abstraction as a clas-
sification problem. A bidirectional LSTM network

is built over q whose output is computed from the
nodes that correspond to the words of m. Fig. 1 il-
lustrates the model for the question “When did Shaq
come into the NBA?”

Let u(x) ∈ RD×1 denote the vector space em-
bedding of word x. Forward and backward outputs−→
h l,
←−
h l ∈ RDh×1 of bidirectional LSTM are recur-

sively computed by

−→
h l,
−→c l = LSTM(u(xl),

−→
h l−1,

−→c l−1) (1)
←−
h l,
←−c l = LSTM(u(xl),

←−
h l+1,

←−c l+1) (2)

as described in Graves (2012), where −→cl ,←−cl ∈
RDh×1 stand for LSTM cell states.

To encode the context of m to the final output, we
apply an AVERAGE pooling layer when computing
the output. For each output node r ∈ [i, j] (i and j
correspond to the starting and ending indices ofm in
q), we compute final forward and backward outputs
by

−→vr = AV G(
−→
h1, . . . ,

−→
hr) (3)

←−vr = AV G(
←−
hr, . . . ,

←−
hn), (4)

where AV G stands for average pooling.
We take the average of outputs at each output

node

−→v = AV G(−→vi , . . . ,−→vj) (5)
←−v = AV G(←−vi , . . . ,←−vj) (6)

as the forward and backward outputs of the whole
network. The final representation v of the network
is obtained by concatenating −→v and←−v .

For question q, the probability distribution o over
types is computed by

s(q) =Whyv (7)

o(q) = softmax(s(q)), (8)

where Why ∈ RK×(2Dh) since v is the concatena-
tion of two vectors of dimension Dh, where Dh is
the hidden vector dimension.

Objective Function and Learning. Given an
input question q with a topic entity mention m,
LSTM network computes the probability distribu-
tion o(q) ∈ RK×1 as in (8). Let y(q) ∈ RK×1 de-
note the true target distribution over T for q, where

151

yk(q) = 1/n if tk is a correct type, yk(q) = 0 oth-
erwise, and n is the number of correct types. We
use the cross-entropy loss function between y(q) and
o(q), and define the objective function over all train-
ing data as

J(θ) = −
∑

q

K∑

k=1

yk(q) log ok(q) +
λ

2
‖θ‖2 ,

where λ denotes the regularization parameter, and
θ represents the set of all model parameters to be
learned. We use stochastic gradient descent with
RMSProp (Tieleman and Hinton, 2012) for mini-
mizing the objective function.

3.3 Pruning
Let Te represent the set of KB types for entity e. We
define the set of candidate types for entity mention
m as

Cm =
⋃

e

Te,

where e is a possible match of m in KB. We only
need to score the types in Cm. Once the hidden rep-
resentation v is computed by LSTM, we use subma-
trix Why[Cm] that consists of rows of Why corre-
sponding to the types in Cm as the scoring matrix in
(7). This returns the final scores for candidate types
in Cm.

4 Conversion to Statement Form

The objective of the conversion is to canonicalize
question form into declarative statement (subject-
relation-object) form. We use a simple pattern-based
method that relies on dependency tree2 (Manning et
al., 2014). It decides whether the sub-trees of the
root need reordering based on their dependency re-
lations3.

Before obtaining the dependency tree, we retrieve
named entity (NER) tags of the question tokens. We
replace a group of question tokens corresponding a
named entity with a special token, ENTITY, to sim-
plify the parse tree. In Figure 2, the question is first
transformed to “what boarding school did ENTITY
go to?” Each question is represented by the root’s

2We use Stanford CoreNLP dependency parser
3http://universaldependencies.org

Figure 2: Conversion: red relations form the input pattern

Pattern Conversion
(cop, nsubj) (nsubj, root, cop)
who was anakin skywalker? anakin skywalker was who
(dobj, aux, nsubj) (nsubj, root, dobj)
what language does australians speak? australians speak what language
(dobj, aux, nsubj, nmod) (nsubj, root, dobj, nmod)
what did edward jenner do for a living? edward jenner do what for a living
(nsubj, dobj) (nsubj, root, dobj)
who played bilbo baggins? who played bilbo baggins
(advmod, aux, nsubj) (nsubj, root, advmod)
where did benjamin franklin died? benjamin franklin died where

Table 2: Top-5 most common patterns with mappings.

dependency relations to its sub-trees in the original
order, e.g., (dep, aux, nsubj, nmod). We clus-
ter all these sequences and detect the patterns that
appear at least 5 times in the training data. These
patterns are then manually mapped to their corre-
sponding conversion (pattern vs. mapping in Figure
2).

Once the recomposition order of the sub-trees is
determined by the conversion mapping, we finalize
the reordering of the question tokens by keeping the
order of words within the sub-trees same as the orig-
inal order in the question. The example in Figure
2 becomes “ENTITY go to what boarding school”
with its corresponding sub-tree conversion mapping
(nsubj, root, nmod, dep). If no mapping is cre-
ated for a pattern, we keep the order of the words
exactly as they occur in the original question form.

The motivation behind conversion is to overcome
the potential semantic confusion stemming from
varities in syntactic structures. To exemplify, con-
sider two hypothetical questions “who plays X in

152

Figure 3: Bi-directional LSTM model over the final representa-

tion of the question. Green and red circles are corresponding to

forward and backward hidden vectors, respectively. The output

node is when.

Y?” and “who does Z play in Y?”, where X is
a FilmCharacter, Y is a Film, and Z is a
FilmActor, with answer types FilmActor and
FilmCharacter, respectively. With conversion,
we aim to transform second question into “Z play
who in Y”, while leaving the first one as it is. Not-
ing that the order of words affects the output of our
answer type inference network, our intuition is to let
the model distinguish better between such questions
using their syntactic structure in this way.

5 Answer Type Prediction

Given a reordered question with topic entity mention
m, and a topic entity type te ∈ T , our task is to
predict a probability distribution o ∈ RK×1 over the
answer types.

A topic entity type te ∈ T is described as a set
of words, {xi}. Let u(xi) ∈ RD×1 represent the
vector space embedding of xi, the representation of
te is computed by the average encoding,

u(te) =
1

|{xi}|
∑

xi

u(xi). (9)

As the first step, we replace the words of entity
mention m with topic entity type te, and obtain a
new input word sequence r. te is treated as one
word and encoded by Eq. 9. We construct a bidi-
rectional LSTM network over this input sequence

r, whose output node corresponds to the question
word. The output of the network is a probability dis-
tribution over types denoting the likelihood of being
the answer type. Figure 3 shows how the network
is constructed for the running example. The same
average pooling described in Section 3.2 is applied
to obtain the final forward and backward output vec-
tors −→v and←−v from the output node (this time, sin-
gle output node) of network. The final output vec-
tor v for prediction is obtained by concatenating −→v ,
and ←−v . The distribution o is computed by a stan-
dard softmax layer. The learning is performed by
the same cross-entropy loss and objective function
described in Section 3.2.

6 Reranking by Answer Type

In this section, we describe how to rerank logical
forms based on our answer type prediction model.

Reranking Model. Let l1, l2, . . . , lN be the log-
ical forms generated for question q by a semantic
parser, e.g., AgendaIL. Each logical form has a score
from the semantic parser. Meanwhile, our answer
type prediction model generates a score for the an-
swer type of each logical form. Therefore, we can
represent each logical form li using a pair of scores:
the score from semantic parser and the score from
our type prediction model. Suppose we know which
logical forms are “correct”, using the two scores
as input, we train a logistic regression model with
cross-entropy loss to learn a binary classifier for pre-
dicting the correct logical forms. We rerank the top-
k logical forms using their probability computed by
the trained logistic regression model, and select the
one with the highest probability. Finally, we run the
selected logical form against KB to retrieve the an-
swer. We select the optimal value of k from [1, N]
using the training data. For AgendaIL on WebQues-
tions, we find that k = 80 gives the best result.

Training Data Selection. We now discuss which
logical forms are “correct”, i.e., how to select the
positive examples to train the logistic regression
model. Because a question can have more than one
answer, we use the F1 score, the harmonic mean of
precision and recall, to evaluate logical forms. We
select all the logical forms with F1 > 0 as the set
of positive examples. However, taking all the log-
ical forms with F1 = 0 as negative examples will

153

not work well. Even though the F1 score of a log-
ical form is 0, its answer type could still be correct.
Therefore, we use the following trick: If there is a
positive example with answer type t, we do not treat
any other logical form with answer type t as neg-
ative example. The logical forms having F1 = 0,
with the aforementioned exception, are then selected
as the final set of negative examples. Our empirical
study shows this trick works well.

7 Experiments

In this section, we describe the datasets, model train-
ing, and experimental results.

7.1 Dataset and Evaluation Metrics

Datasets. To evaluate our method, we use the We-
bQuestions dataset (Berant et al., 2013), which con-
tains 5,810 questions crawled via Google Suggest
API. The answers to these questions are annotated
from Freebase using Amazon Mechanical Turk. The
data is split into training and test sets of size 3,778
and 2,032 questions, respectively. This dataset has
been popularly used in question answering and se-
mantic parsing.

The SimpleQuestions (Bordes et al., 2015) con-
tains 108,442 questions written in natural language
by English-speaking human annotators. This dataset
is a collection of question/Freebase-fact pairs rather
than question/answer pairs. The data4 is split and
provided as training(75,910), test(21,687), and val-
idation(10,845) sets. Each question is mapped to
the subject, relation, and object of the corresponding
Freebase fact. This dataset is only used for training
the question abstraction model.

Training Data Preparation. Since WebQues-
tions only provides question-answer pairs along with
annotated topic entities, we need to figure out the
type information, which can be used as training data.
We obtain simulated types as follows: We retrieve 1-
hop and 2-hop predicates r from/to annotated topic
entity e in Freebase. For each relation r, we query
(e, r, ?) and (?, r, e) against Freebase and retrieve
the candidate answers ra. The F1 value of each
candidate answer ra is computed with respect to the
annotated answer. The subject and object types of
the relation r with the highest F1 value is selected

4http://fb.ai/babi.

as the simulated type for the topic entity and the an-
swer. When there are multiple such relations, we
obtain multiple simulated types for topic entity and
answer, one from each relation. We treat each of
them as correct with equal probability.

Candidate Logical Forms for Evaluation. To
obtain candidate logical forms, we train AgendaIL
(Berant and Liang, 2015) on WebQuestions with
beam size 200 using the publicly available code5 by
the authors.

Evaluation Metric. We report average F1 score
of the reranked logical forms using the predicted an-
swer types as the main evaluation metric. It is a com-
mon performance measure in question answering as
questions might have multiple answers.

7.2 Experimental Setup

We use 50 dimensional word embeddings, which are
initialized by the 50 dimensional pre-trained word
vectors6 from GloVe (Pennington et al., 2014), and
updated in the training process. Hyperparameters
are tuned on the development set. The size of the
LSTM hidden layer is set at 50. We use RMSProp
(Tieleman and Hinton, 2012) with a learning rate of
0.005 and mini-batch size of 32 for the optimization.
We use a dropout layer with probability 0.5 for reg-
ularization. We implemented the LSTM networks
using Theano (Theano Development Team, 2016).

Identifying Topic Entity. We use Stanford NER
tagger (Manning et al., 2014) to identify topic en-
tity span for both training and test data. For en-
tity linking, annotated mention span is mapped to a
ranked list of candidate Freebase entities using Free-
base Search API for the test data. For the training
data, we use the gold Freebase topic entity linkings
of each question provided by WebQuestions, com-
ing from its question generation process.

Question Abstraction. We first pre-train the
LSTM model described in Section 3.2 on the Sim-
pleQuestions dataset. Then, we update the pre-
trained model on the training portion of WebQues-
tions data where the simulated topic entity types are
used as true labels. We use the detected topic en-
tity mentions to obtain candidate matching entities
in the KB using Freebase Search API. We use top-

5https://github.com/percyliang/sempre
6http://nlp.stanford.edu/projects/glove/

154

Model F1
(Berant et al., 2013) 35.7
(Yao and Van Durme, 2014) 33.0
(Berant and Liang, 2014) 39.9
(Bao et al., 2014) 37.5
(Bordes et al., 2014) 39.2
(Yang et al., 2014) 41.3
(Dong et al., 2015b) 40.8
(Yao, 2015) 44.3
(Berant and Liang, 2015) 49.7
(Yih et al., 2015) 52.5
(Reddy et al., 2016) 50.3
(Xu et al., 2016) 53.3
(Yih et al., 2015) (w/ Freebase API) 48.4
(Yih et al., 2015) (w/o ClueWeb) 50.9
(Xu et al., 2016) (w/o Wikipedia) 47.1
Our Approach (w/o SimpleQuestions) 51.6
Our Approach 52.6

Table 3: Comparison of our reranking-by-type system with sev-

eral existing works on WebQuestions.

3 entities returned for the pruning step of Question
Abstraction on the test examples.

Answer Type Prediction. We train Answer Type
Prediction model using the simulated topic entity
and answer types for each question. We perform the
answer type prediction on test data using the pre-
dicted topic entity type.

7.3 Results

Our main result is presented in Table 3. Our system
adds 2.9% absolute improvement over AgendaIL,
and achieves 52.6% in F1 measure. Yih et al. (2015)
achieve 52.5% by leveraging ClueWeb and S-MART
(Yang and Chang, 2015), an advanced entity linking
system. Xu et al. (2016) achieve 53.3% by lever-
aging Wikipedia and S-MART. If tested without
Clueweb/Wikipedia/S-MART, their F1 scores are
48.4% and 47.1%, respectively. When our method is
tested without using SimpleQuestions data for pre-
training question abstraction module, it attains F1
score of 51.6%.

In Table 4, we present some question ex-
amples where our method can select a bet-
ter logical form. Take the question “who
did [australia] fight in the first world war?”
as an example. Our topic entity type pre-
diction module returns MilitaryCombatant,

Method F1 Gain Loss
Base 50.3 69 47
Base + Conv 50.5 96 56
Base + Abs 52.2 184 87
Base + Abs + Conv 52.6 203 93
AgendaIL 49.7 - -

Table 6: Ablation analysis of modules of our method.

Gain/Loss columns denote the number of questions where the

F1 score of our selected logical form is greater/less than that of

the top ranked logical forms from AgendaIL.

StatisticalRegion, and Kingdom as the top-
3 results for the type of “australia” in this ques-
tion, which indicates that it exploits the context
of this short question successfully. The abstract
question is “[military combatant] fight who in the
first world war?” for which our system returns
MilitaryCombatant, MilitaryConflict,
and MilitaryCommander as answer types with
probabilities 0.73, 0.25, and 0.005, respectively,
MilitaryCombatant is indeed the right answer
type. This example shows the effect of abstraction in
channeling the context in the most relevant direction
to find the right answer type. In Table 5, we provide
a comparison of the selected logical forms based on
AgendaIL rankings and our rankings.

7.4 Ablation Analysis

In this section, we evaluate the effect of individual
components of our model. Note that the answer type
prediction model described in Section 5 can work
independently from question abstraction and form
conversion. We develop the following variants i)
Base, ii) Base + Conversion, iii) Base + Abstrac-
tion, iv) Base + Abstraction + Conversion, where
Base corresponds to a model that infers answer types
without employing abstraction or form conversion.
We train/test each variant separately. Table 6 shows
each component contributes and question abstrac-
tion does help boost the performance.

Suppose we perform answer type prediction with-
out question abstraction, and feed “[australia] fight
who in the first world war?” into the answer
type prediction model (Base + Conversion). The
predicted answer type is Location. Unfortu-
nately, there is neither a 1-hop or 2-hop correct re-
lation from/to Australia with the expected type
Location nor a correct (with positive F1) candi-

155

Question Topic Entity Type Prediction Answer Type Prediction AgendaIL Answer Type F1 Gain
who inspired obama? InfluenceNode InfluenceNode UsVicePresident 1.0
what are some books that mark twain wrote? Author WrittenWork InfluenceNode 0.3
who won the league cup in 2002? SportsAwardType SportsAwardWinner SportsLeagueSeason 1.0
what type of government does france use? Country FormOfGovernment Government 1.0
where are the new orleans hornets moving to? SportsTeam SportsFacility Location 1.0
who did australia fight in the first world war? MilitaryCombatant MilitaryCombatant MilitaryCommander 0.4
what guitar does corey taylor play? Musician MusicalInstrument Organization 0.33
what region is turkey considered? Location AdministrativeDivision Beer 0.93
what country does rafael nadal play for? Athlete Country OlympicDiscipline 1.0

Table 4: Example questions where our type prediction helps select a better logical form. The F1 gain shows the difference between

the F1 score of the logical form we select and the top ranked logical form from AgendaIL.

Questions and Selected Logical Forms
1. what are some books that mark twain wrote?
AgendaIL: (MarkTwain - Influence.InfluenceNode.InfluencedBy - ?)
Ours: (MarkTwain - Book.Author.WorksWritten - ?)
2. what guitar does corey taylor play?
AgendaIL: (? - Organization.Organization.Founders - CoreyTaylor)
Ours: (CoreyTaylor - Music.GroupMember.InstrumentsPlayed - ?)
3. what type of government does france use?
AgendaIL: (France - Government.GovernmentalJurisdiction.Government - ?)
Ours: (France - Location.Country.FormOfGovernment - ?)

Table 5: Comparison of selected logical forms for some examples. Logical forms are simplified and canonicalized into (subject -

predicate - object) format for better readability, where ? corresponds to answer nodes.

date logical form with the answer type Location.
This shows that through question abstraction, a bet-
ter logical form is selected for this question.

To exemplify another benefit of question ab-
straction, consider the question “where does
[marta] play soccer?” The top 3 entity link-
ings via Freebase Search API for “marta” are
MetropolitanAtlantaRapidTransit-
Authority, Marta, and SantaMarta, where
the correct entity is the second one. Our question
abstraction system returns FootballPlayer as
the top topic entity type prediction that is indeed
corresponding to the correct entity. Utilizing the
context via question abstraction we are able to
recover useful information when the entity linking
is uncertain.

Table 6 also shows that the conversion to state-
ment form also helps, especially together with Ab-
straction. In the above example, the model without
Conversion (Base + Abs) predicts the answer type
for ”where does [football player] play soccer” as
SportsFacility, whereas the full model, con-
sidering Conversion as well, finds the answer
type for ”[football player] play soccer where” as
SportsTeam which is the better type in this case.

7.5 Error Analysis

We present a further analysis of our approach by
classifying the type inference errors made on ran-
domly sampled 100 questions. 9% of the er-
rors are due to inference at incorrect granular-
ity (e.g., City instead of Location). 12% of
the errors are the result of incorrect answer labels
(hence incorrect answer types) or question ambigu-
ity (e.g., “where is dwight howard now?”). 11% of
them are incorrect, but acceptable inferences, e.g.,
BookWrittenWork instead of BookEdition
for question “what dawkins book to read first?”
39% of the errors are due to the sparsity problem:
They are made on questions whose answer type ap-
pears less than 5 times in the training data (e.g.,
DayOfYear). The remaining 29% of them are due
to incorrect question abstraction. In most of the
question abstraction errors, the predicted topic en-
tity type is semantically close to the correct type. In
other cases such as “what did joey jordison play in
slipknot?” where we predict FilmActor as the
topic entity type while Musician is the correct
one. In these cases, the answer type inference is not
able to correct the abstraction error. These 29% of
errors also contain the entity linking errors.

156

8 Related Work

Freebase QA has been studied from two differ-
ent perspectives: grounded QA systems that work
directly on KBs and general purpose ungrounded
QA systems. Kwiatkowski et al. (2013) generates
KB agnostic intermediary CCG parses of questions
which are grounded afterwards given a KB. Bor-
des et al. (2014) uses a vector space embedding ap-
proach to measure the semantic similarity between
question and answers. Yao and Van Durme (2014),
Bast and Haussmann (2015) and Yih et al. (2015)
exploit a graph centric approach where a grounded
subgraph query is generated from question and then
executed against a KB. In this work, we propose a
neural answer type inference method that can be in-
corporated in existing grounded semantic parsers as
a complementary feature to improve ranking of the
candidate logical forms.

Berant and Liang (2015) uses lambda DCS logi-
cal language with predicates from Freebase. In their
approach, types are included as a part of unary lexi-
con for building the logical forms from natural lan-
guage questions. However, no explicit type infer-
ence is exploited. We show that such information
could indeed be useful for selecting logical forms.

There have been a series of studies investigating
the expected answer type of a question in different
contexts such as Li and Roth (2002), Lally et al.
(2012), and Balog and Neumayer (2012). Most of
these approaches classify the questions into a small
set of types. Even when the set of classes is more
fine-grained, e.g., 50 classes in Li and Roth (2002),
they cannot be used for our purpose as it would re-
quire nontrivial mapping between these categories
and a much larger number of KB types. Further-
more, these methods often rely on a rich set of hand
crafted features and external resources.

Sun et al. (2015) uses Freebase types to learn the
relevance of candidate answers to a given question
via an association model. Their model directly ranks
the answer candidates by utilizing types, whereas
ours ranks the logical forms via predicting answer
type. In this sense, we are able to take advantage
of both logical form and type inference. Su et al.
(2015) exploits answer typing to facilitate knowl-
edge graph search, but their input is graph query in-
stead of natural language question. They predict an-

swer types using additional relevance feedback for
graph queries, while our algorithm directly infers
answer types from input questions. On the question
abstraction side, our work is related to a recent study
(Dong et al., 2015a) which classifies entity mentions
into 22 types derived from DBpedia. They use a
multilayer perceptron over a fixed size window and
a recurrent neural network for the representations of
context and entity mention, respectively. Instead, we
use a bidirectional LSTM network to exploit the full
context more flexibly.

9 Conclusion

In this paper, we present a question answer type in-
ference framework and leverage it to improve se-
mantic parsing. We define the notion of abstract
question as the class of questions that can be an-
swered by type instead of entity. Question an-
swer type inference is then reduced to “question ab-
straction” and “abstract question answering”, both
of which are formulated as classification problems.
Question abstraction is performed by exploiting the
topic entity and its context in question via an LSTM
network . A separate neural network is trained to
exploit the abstraction to make the final question an-
swer type inference. Our method improves the rank-
ing of logical forms returned by AgendaIL on the
WEBQUESTIONS dataset. In the future, we would
like to investigate how the abstraction and explicit
type inference can be incorporated in the early stage
of semantic parsing for generating better candidate
logical forms.

Acknowledgements

We would like to thank the anonymous reviewers for
their valuable comments, and Huan Sun for fruit-
ful discussions. This research was sponsored in part
by the Army Research Laboratory under cooperative
agreements W911NF09-2-0053, NSF IIS 1528175,
and NSF CCF 1548848. The views and conclu-
sions contained herein are those of the authors and
should not be interpreted as representing the official
policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The
U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwith-
standing any copyright notice herein.

157

References

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
DBpedia: A nucleus for a web of open data. In Inter-
national Semantic Web Conference (ISWC).

Krisztian Balog and Robert Neumayer. 2012. Hier-
archical target type identification for entity-oriented
queries. In ACM International Conference on Infor-
mation and Knowledge Management (CIKM).

Junwei Bao, Nan Duan, Ming Zhou, and Tiejun Zhao.
2014. Knowledge-based question answering as ma-
chine translation. In Annual Meeting of the Associa-
tion for Computational Linguistics (ACL).

Hannah Bast and Elmar Haussmann. 2015. More accu-
rate question answering on freebase. In ACM Inter-
national Conference on Information and Knowledge
Management (CIKM).

Jonathan Berant and Percy Liang. 2014. Semantic pars-
ing via paraphrasing. Annual Meeting of the Associa-
tion for Computational Linguistics (ACL).

Jonathan Berant and Percy Liang. 2015. Imitation learn-
ing of agenda-based semantic parsers. Transactions of
the Association for Computational Linguistics (TACL).

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Empirical Methods on Nat-
ural Language Processing (EMNLP).

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A collabo-
ratively created graph database for structuring human
knowledge. In ACM SIGMOD International Confer-
ence on Management of Data.

Antoine Bordes, Sumit Chopra, and Jason Weston.
2014. Question answering with subgraph embeddings.
ArXiv.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Ja-
son Weston. 2015. Large-scale simple question an-
swering with memory networks. ArXiv.

Andrew Carlson, Justin Betteridge, Richard C. Wang, Es-
tevam R. Hruschka, Jr., and Tom M. Mitchell. 2010.
Coupled semi-supervised learning for information ex-
traction. In ACM International Conference on Web
Search and Data mining (WSDM).

Li Dong, Furu Wei, Hong Sun, Ming Zhou, and Ke Xu.
2015a. A hybrid neural model for type classification
of entity mentions. In International Joint Conference
on Artificial Intelligence (IJCAI).

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015b.
Question answering over freebase with multi-column
convolutional neural networks. In Annual Meeting of
the Association for Computational Linguistics (ACL).

Alex Graves, 2012. Supervised Sequence Labelling with
Recurrent Neural Networks, pages 5–13. Springer
Berlin Heidelberg.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with on-
the-fly ontology matching. In Empirical Methods on
Natural Language Processing (EMNLP).

Adam Lally, John M Prager, Michael C McCord,
BK Boguraev, Siddharth Patwardhan, James Fan, Paul
Fodor, and Jennifer Chu-Carroll. 2012. Question
analysis: How watson reads a clue. IBM Journal of
Research and Development.

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In International Conference on Computational
Linguistics (COLING).

Thomas Lin, Mausam, and Oren Etzioni. 2012. No noun
phrase left behind: Detecting and typing unlinkable
entities. In Empirical Methods on Natural Language
Processing (EMNLP).

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J Bethard, and David McClosky.
2014. The stanford corenlp natural language process-
ing toolkit. In Annual Meeting of the Association for
Computational Linguistics: System Demonstrations.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods on Natural Lan-
guage Processing (EMNLP).

Marta Recasens, Marie catherine De Marneffe, and
Christopher Potts. 2013. The life and death of dis-
course entities: Identifying singleton mentions. Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies (NAACL-HLT).

Siva Reddy, Oscar Täckström, Michael Collins, Tom
Kwiatkowski, Dipanjan Das, Mark Steedman, and
Mirella Lapata. 2016. Transforming Dependency
Structures to Logical Forms for Semantic Parsing.
Transactions of the Association for Computational
Linguistics (TACL).

Yu Su, Shengqi Yang, Huan Sun, Mudhakar Srivatsa, Sue
Kase, Michelle Vanni, and Xifeng Yan. 2015. Exploit-
ing relevance feedback in knowledge graph search. In
ACM International Conference on Knowledge Discov-
ery and Data Mining (SIGKDD).

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: A core of semantic knowledge.
In World Wide Web (WWW).

Huan Sun, Hao Ma, Wen-tau Yih, Chen-Tse Tsai,
Jingjing Liu, and Ming-Wei Chang. 2015. Open do-
main question answering via semantic enrichment. In
World Wide Web (WWW).

158

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. ArXiv.

Tijmen Tieleman and Geoffrey E. Hinton. 2012. Lec-
ture 6.5 - RMSProp, COURSERA: Neural networks
for machine learning. Technical Report.

Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang,
and Dongyan Zhao. 2016. Question answering on
freebase via relation extraction and textual evidence.
In Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

Yi Yang and Ming-Wei Chang. 2015. S-mart: Novel
tree-based structure learning algorithms applied to en-
tity linking. In Annual Meeting of the Association for
Computational Linguistics (ACL).

Min-Chul Yang, Nan Duan, Ming Zhou, and Hae-
Chang Rim. 2014. Joint relational embeddings for
knowledged-based question answering. In Empirical
Methods on Natural Language Processing (EMNLP).

Xuchen Yao and Benjamin Van Durme. 2014. Informa-
tion extraction over structured data: Question answer-
ing with freebase. In Annual Meeting of the Associa-
tion for Computational Linguistics (ACL).

Limin Yao, Sebastian Riedel, and Andrew McCallum.
2012. Unsupervised relation discovery with sense dis-
ambiguation. In Annual Meeting of the Association for
Computational Linguistics (ACL).

Xuchen Yao. 2015. Lean question answering over free-
base from scratch. In The North American Chap-
ter of the Association for Computational Linguistics
(NAACL).

Wen-tau Yih, MingWei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Annual Meeting of the Association for
Computational Linguistics (ACL).

159

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 160–170,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Semantic Parsing to Probabilistic Programs for
Situated Question Answering

Jayant Krishnamurthy and Oyvind Tafjord and Aniruddha Kembhavi
Allen Institute for Artificial Intelligence

jayantk,oyvindt,anik@allenai.org

Abstract

Situated question answering is the problem
of answering questions about an environment
such as an image or diagram. This problem
requires jointly interpreting a question and an
environment using background knowledge to
select the correct answer. We present Parsing
to Probabilistic Programs (P 3), a novel situ-
ated question answering model that can use
background knowledge and global features of
the question/environment interpretation while
retaining efficient approximate inference. Our
key insight is to treat semantic parses as prob-
abilistic programs that execute nondetermin-
istically and whose possible executions repre-
sent environmental uncertainty. We evaluate
our approach on a new, publicly-released data
set of 5000 science diagram questions, outper-
forming several competitive classical and neu-
ral baselines.

1 Introduction

Situated question answering is a challenging prob-
lem that requires reasoning about uncertain inter-
pretations of both a question and an environment
together with background knowledge to determine
the answer. To illustrate these challenges, consider
the 8th grade science diagram questions in Figure 1,
which are motivated by the Aristo project (Clark and
Etzioni, 2016). These questions require both com-
puter vision to interpret the diagram and composi-
tional question understanding. These components,
being imperfect, introduce uncertainty that must be
jointly reasoned about to avoid implausible interpre-
tations. These uncertain interpretations must further

1. According to the given food chain, what is the num-
ber of organisms that eat deer? (A) 3 (B) 2 (C) 4 (D) 1

2. Which organism is both predator and prey? (A) Bark
Beetles (B) Insect-eating birds (C) Deer (D) Hawks

3. Based on the given food web, what would happen if
there were no insect-eating birds? (A) The grasshop-
per population would increase. (B) The grasshop-
per population would decrease. (C) There would be no
change in grasshopper number.

Figure 1: Example food web questions. A food web depicts
a collection of organisms in an ecosystem with an arrow from
organism x to y indicating that y eats x. Questions may require
counting (1), knowing animal roles (2) and reasoning about
population changes (3).

be combined with background knowledge, such as
the definition of a “predator,” to determine the cor-
rect answer.

The challenges of situated question answering
have not been completely addressed by prior work.
Early “possible worlds” models (Matuszek et al.,
2012; Krishnamurthy and Kollar, 2013; Mali-
nowski and Fritz, 2014) were capable of composi-
tional question understanding and using background
knowledge, but did not jointly reason about environ-

160

ment/question uncertainty. These models also used
unscalable inference algorithms for reasoning about
the environment, despite the lack of joint reasoning.
More recent neural models (Antol et al., 2015; Mali-
nowski et al., 2015; Yang et al., 2015) are incapable
of using background knowledge and it remains un-
clear to what extent these models can represent com-
positionality in language.

We present Parsing to Probabilistic Programs
(P 3), a novel approach to situated question answer-
ing that addresses these challenges. It is motivated
by two observations: (1) situated question answer-
ing can be formulated as semantic parsing with an
execution model that is a learned function of the
environment, and (2) probabilistic programming is
a natural and powerful method for specifying the
space of permissible execution models and learning
over it. In P 3, we define a domain theory for the task
as a probabilistic program, then train a joint loglin-
ear model to semantically parse questions to logi-
cal forms in this theory and execute them in an en-
vironment. Importantly, the model includes global
features over parsing and execution that enable it
to avoid unlikely joint configurations. P 3 lever-
ages semantic parsing to represent compositionality
in language and probabilistic programming to spec-
ify background knowledge and perform linear-time
approximate inference over the environment.

We present an experimental evaluation of P 3 on a
new data set of 5000 food web diagram questions
(Figure 1). We compare our approach to several
baselines, including possible worlds and neural net-
work approaches, finding that P 3 outperforms both.
An ablation study demonstrates that global features
help the model achieve high accuracy. We also
demonstrate that P 3 improves accuracy on a previ-
ously published data set. Finally, we have released
our data and code to facilitate further research.

2 Prior Work

Situated question answering is often formulated in
terms of parsing both the question and environment
into a common meaning representation where they
can be combined to select the answer. This gen-
eral approach has been implemented using different
meaning representations:

Possible world models use a logical meaning

representation defined by a knowledge base schema.
These models train a semantic parser to map ques-
tions to queries and an environment model to map
environments to knowledge bases in this schema.
Executing the queries against the knowledge bases
produces answers. These models assume that the
parser and environment model are independent and
furthermore that the knowledge base consists of
independent predicate instances (Matuszek et al.,
2012; Krishnamurthy and Kollar, 2013; Malinowski
and Fritz, 2014). Despite these strong independence
assumptions, these models have intractable infer-
ence. An exception is Seo et al., (2015) who in-
corporate hard constraints on the joint question/envi-
ronment interpretation; however, this approach does
not generalize to soft constraints or arbitrary logical
forms. In some work only the environment model
is learned (Kollar et al., 2010; Tellex et al., 2011;
Howard et al., 2014b; Howard et al., 2014a; Berant
et al., 2014; Krishnamurthy and Mitchell, 2015).

Neural networks use a vector meaning repre-
sentation that encodes both the question and envi-
ronment as vectors. These networks have mostly
been applied to visual question answering (Antol et
al., 2015), where many architectures have been pro-
posed (Malinowski et al., 2015; Yang et al., 2015;
Fukui et al., 2016). It is unclear to what extent these
networks can represent compositionality in language
using their vector encodings. Dynamic Neural Mod-
ule Networks (Andreas et al., 2016a; Andreas et al.,
2016b) are the exception to the above generaliza-
tion. This approach constructs a neural network to
represent the meaning of the question via semantic
parsing, then executes this network against the im-
age to produce an answer. Our approach is similar
except that we construct and execute a probabilistic
program. Advantages of our approach are that it nat-
urally represents the discrete structure of food webs
and can use background knowledge.

Preliminaries for our work are semantic pars-
ing and probabilistic programming. Semantic pars-
ing translates natural language questions into exe-
cutable logical forms and has been used in applica-
tions such as question answering against a knowl-
edge base (Zelle and Mooney, 1993; Zettlemoyer
and Collins, 2005; Liang et al., 2011; Kwiatkowski
et al., 2013; Berant et al., 2013; Reddy et al., 2014;
Yih et al., 2015; Xu et al., 2016), direction following

161

(Chen and Mooney, 2011; Artzi and Zettlemoyer,
2013), and information extraction (Krishnamurthy
and Mitchell, 2012; Choi et al., 2015). Semantic
parsing alone is insufficient for situated question an-
swering because it does not interpret the environ-
ment; many of the above approaches use semantic
parsing as a component in a larger model.

Probabilistic programming languages extend pro-
gramming languages with primitives for nondeter-
ministic choice (McCarthy, 1963; Goodman and
Stuhlmüller, 2014). We express logical forms
in a probabilistic variant of Scheme similar to
Church (Goodman et al., 2008); however, this paper
uses Python-like pseudocode for clarity. The lan-
guage has a single choice primitive called choose

that nondeterministically returns one of its argu-
ments. For example choose(1,2,3) can execute
three ways, returning either 1, 2, or 3. Multiple
calls to choose can be combined. For example,
choose(1,2)+choose(1,2) adds two nondeter-
ministically chosen values, and therefore has four
executions that return 2, 3, 3 and 4. Each execution
also has a probability; in our case, these probabili-
ties are assigned by a trained model given the envi-
ronment and not explicitly specified in the program.

3 Parsing to Probabilistic Programs (P 3)

The P 3 model is motivated by two observations.
The first is that situated question answering can be
formulated as semantic parsing with an execution
model that is a learned function of the environment.
Consider the first question in Figure 1. The meaning
of this question could be represented by a logical
form such as COUNT(λx.EATS(x, DEER)), which
we could train a semantic parser to predict given a
suitable domain theory of functions such as COUNT

and EATS. However, the information required to
execute this logical form and answer the question
must be extracted from the diagram. Specifically,
EATS(x, y) depends on whether an arrow is present
between x and y, which we must train a vision
model to determine. Thus, EATS should be a learned
function of the environment.

This first observation suggests a need for a for-
malism for representing uncertainty and performing
learning over the domain theory’s functions. Our
second observation is that probabilistic program-

ming is a natural fit for this task. In this paradigm,
the domain theory is a probabilistic program that de-
fines the information to be extracted from the envi-
ronment by using choose. To a first approximation,
the diagram question theory includes:

def eats(x, y)
choose(true, false)

Logical forms are then probabilistic programs,
each of whose possible executions represents a dif-
ferent interpretation of the environment. For exam-
ple, executing EATS(LION, DEER) hits the choose

in the above definition, resulting in two executions
where the lion either eats or does not eat the deer.
In the COUNT example above, each execution rep-
resents a different set of animals that eat the deer.
To learn the correct environment interpretation, we
train an execution model to assign a probability to
each execution given features of the environment.
Using probabilistic programming enables us to com-
bine learned functions, such as EATS, with back-
ground knowledge functions, such as COUNT, and
also facilitates inference.

According to these observations, applying P 3 has
two steps. The first step is to define an appropriate
domain theory. This theory is the main design de-
cision in instantiating P 3 and provides a powerful
way to encode domain knowledge. The second step
is to train a loglinear model consisting of a semantic
parser and an execution model. This model learns
to semantically parse questions into logical forms in
the theory and execute them in the environment to
answer questions correctly. We defer discussion of
the diagram question domain theory to Section 4 and
focus on the loglinear model in this section.

3.1 Model Overview

The input to the P 3 model is a question and an en-
vironment and its output is a denotation, which is
a formal answer to the question. P 3 is a loglinear
model with two factors: a semantic parser and an ex-
ecution model. The semantic parser scores syntac-
tic parses and logical forms for the question. These
logical forms are probabilistic programs with mul-
tiple possible executions (specified by the domain
theory), each of which may return a different denota-
tion. The execution model assigns a score to each of
these executions given the environment. Formally,

162

if
S/N/S :
λx.λy.λf.

CAUSE(x, f(y))

mice
N :

MICE

die
S\N :

λx.DECREASE(x)

S : DECREASE(MICE)

S/N : λy.λf.CAUSE(DECREASE(MICE), f(y))

snakes
N :

SNAKES

will ?

skip

S : λf.CAUSE(DECREASE(MICE), f(SNAKES))

Figure 2: Example CCG parse of a question as predicted by the
semantic parser fp. The logical form ` for the question is shown
on the bottom line.

the model predicts a denotation γ for a question q in
an environment v using three latent variables:

P (γ|v, q; θ) =
∑

e,`,t

P (e, `, t|v, q; θ)1(ret(e) = γ)

P (e, `, t|v, q; θ) =
1

Zq,v
fex(e, `, v; θex)fp(`, t, q; θp)

The model is composed of two factors. fp repre-
sents the semantic parser that scores logical forms
` and syntactic parse trees t given question q and
parameters θp. fex represents the execution model.
Given parameters θex, this factor assigns a score to a
logical form ` and its execution e in environment v.
The denotation γ, i.e., the formal answer to the ques-
tion, is simply the value returned by e. Zq,v repre-
sents the model’s partition function. The following
sections describe these factors in more detail.

3.2 Semantic Parser
The factor fp represents a Combinatory Categorial
Grammar (CCG) semantic parser (Zettlemoyer and
Collins, 2005) that scores logical forms for a ques-
tion. Given a lexicon1 mapping words to syntactic
categories and logical forms, CCG defines a set of
possible syntactic parses t and logical forms ` for
a question q. Figure 3.2 shows an example CCG
parse. fp is a loglinear model over parses (`, t):

fp(`, t, q; θp) = exp{θTp φ(`, t, q)}
The function φmaps parses to feature vectors. We

use a rich set of features similar to those for syn-
tactic CCG parsing (Clark and Curran, 2007); a full
description is provided in an online appendix.

3.3 Execution Model
The factor fex is a loglinear model over the execu-
tions of a logical form given an environment. Log-
ical forms in P 3 are probabilistic programs with a

1In our experiments, we automatically learn the lexicon in a
preprocessing step. See Section 5.2 for details.

set of possible executions, where each execution e
is a sequence, e = [e0, e1, e2, ..., en]. e0 is the pro-
gram’s starting state, ei represents the state immedi-
ately after the ith call to choose, and en is the state
at termination. The score of an execution is:

fex(e, `, v; θex) =

n∏

i=1

exp{θTexφ(ei−1, ei, `, v)}

In the above equation, θex represents the model’s
parameters and φ represents a feature function that
produces a feature vector for the difference between
sequential program states ei−1 and ei given environ-
ment v and logical form `. φ can include arbitrary
features of the execution, logical form and environ-
ment, which is important, for example, to detect cy-
cles in a food web (Section 4.3).

3.4 Inference

P 3 is designed to rely on approximate inference:
our goal is to use rich features to accurately make
local decisions, as in linear-time parsers (Nivre et
al., 2006). We perform approximate inference us-
ing a two-stage beam search. Given a question q,
the first stage performs a beam search over CCG
parses to produce a list of logical forms scored by
fp. This step is performed by using a CKY-style
chart parsing algorithm then marginalizing out the
syntactic parses. The second stage performs a beam
search over executions of each logical form. The
space of possible executions of a logical form is
a tree (Figure 4.2) where each internal node rep-
resents a partial execution up to a choose call.
The search maintains a beam of partial executions
at the same depth, and each iteration advances
the beam to the next depth, discarding the lowest-
scoring executions according to fex to maintain a
fixed size beam. This procedure runs in time linear
to the number of choose calls. We implement the
search by rewriting the probabilistic program into
continuation-passing style, which allows choose to
be implemented as a function that adds multiple con-
tinuations to the search queue; we refer the reader to
Goodman and Stuhlmüller (2014) for details. Our
experiments use a beam size of 100 in the seman-
tic parser, executing each of the 10 highest-scoring
logical forms with a beam of 100 executions.

163

3.5 Training

P 3 is trained by maximizing loglikelihood with
stochastic gradient ascent. The training data
{(qi, vi, ci)}ni=1 is a collection of questions qi and
environments vi paired with supervision oracles ci.
ci(e) = 1 for a correct execution e and ci(e) = 0
otherwise. The oracle ci can implement various
kinds of supervision, including: (1) labeled denota-
tions, by verifying the value returned by e and (2) la-
beled environments, by verifying each choice made
by e. The oracle for diagram question answering
combines both forms of supervision (Section 4.5).

The objective function O is the loglikelihood of
predicting a correct execution:

O(θ) =

n∑

i=1

log
∑

e,l,t

ci(e)P (e, `, t|qi, vi; θ)

We optimize this objective function using
stochastic gradient ascent, using the approximate in-
ference algorithm from Section 3.4 to estimate the
necessary marginals. When computing the marginal
distribution over correct executions, we filter each
step of the beam search using the supervision oracle
ci to improve the approximation.

4 Diagram Question Answering with P 3

As a case study, we apply P 3 to the task of answer-
ing food web diagram questions from an 8th grade
science domain. A few steps are required to apply
P 3. First, we create a domain theory of food webs
that represents extracted information from the dia-
gram and background knowledge for the domain.
Second, we define the features of the execution
model that are used to learn how programs in the
domain theory execute given a diagram. Third, we
define a component to select a multiple-choice an-
swer given a denotation. Finally, we define the su-
pervision oracle used for training.

4.1 Food Web Diagram Questions

We consider the task of answering food web diagram
questions. The input consists of a diagram depicting
a food web, a natural language question and a list
of natural language answer options (Figure 1). The
goal is to select the correct answer option. This task
has many regularities that require global features:

for example, food webs are usually acyclic and cer-
tain animals usually have certain roles (e.g., mice are
herbivores). We have collected and released a data
set for this task (Section 5.1).

We preprocess the diagrams in the data set us-
ing a computer vision system that identifies can-
didate diagram elements (Kembhavi et al., 2016).
This system extracts a collection of text labels (via
OCR), arrows, arrowheads and objects, each with
corresponding scores. It also extracts a collection of
scored linkages between these elements. These ex-
tractions are noisy and contain many discrepancies
such as overlapping text labels and spurious link-
ages. We use these extractions to define a set of can-
didate organisms (using the text labels), and also to
define features of the execution model.

4.2 Domain Theory
The domain theory is a probabilistic program encod-
ing the information to extract from the environment
as well as background knowledge about food webs.
It represents the structure of a food web using two
functions. These functions are predicates that invoke
choose to return either true or false. The execution
model learns to predict which of these values is cor-
rect for each set of arguments given the diagram. It
furthermore has a collection of deterministic func-
tions that encode domain knowledge, including def-
initions of animal roles such as HERBIVORE and a
model of population change causation.

Figure 4.2 shows pseudocode for a portion of
the domain theory. Food webs are represented
using two functions over the extracted text la-
bels: ORGANISM(x) indicates whether the label
x is an organism (as opposed to, e.g., the dia-
gram title); and EATS(x, y). The definitions of
these functions invoke choose while remembering
previously chosen values to avoid double counting
probabilities when executing logical forms such as
ORGANISM(DEER) ∧ ORGANISM(DEER). The re-
membered values are stored in a global variable that
is also used to implement the supervision oracle.
Deterministic functions such as CAUSE are defined
in terms of these learned functions.

The uses of choose in the domain theory create
a tree of possible executions for every logical form.
Figure 4.2 illustrates this tree for the logical form
λf.CAUSE(DECREASE(MICE), f(SNAKES)), which

164

initialize predicate instance variables
from text labels in environment
world = {"mice": undef,

("mice", "snakes"): undef, ...}
def organism(name)

if (world[name] == undef)
world[name] = choose(true, false)

return world[name]

def eats(x, y)
same as organism but with pairs.

entities referenced in the logical form
must be organisms. choose() represents
failure; it returns no values.
def getOrganism(x)

if (organism(x)) return x else choose()

change events are direction/
text label tuples
def decrease(x)

return ("decrease", x)

def cause(e1, e2)
e12 = eats(e1[1], e2[1])
e21 = eats(e2[1], e1[1])
deterministic model with cases. e.g.
if eats(y, x) then (cause (decrease x)
(decrease y)) -> true
return doCause(e1[0], e2[0], e12, e21)

Figure 3: Domain theory pseudocode for diagram question an-
swering.

corresponds to the question “what happens to the
snakes when the mice decrease?” This logical form
is shorthand for the following program:

filter(lambda f.cause(
decrease(getOrganism("mice")),
f(getOrganism("snakes"))),

set(decrease, increase, unchanged))

Specifically, entities such as MICE are created by
calling getOrganism and logical forms with func-
tional types implicitly represent filters over the ap-
propriate argument type. Executing this program
first applies the filter predicate to decrease. Next,
it evaluates getOrganism("mice"), which calls
organism and encounters the first call to choose.
This call is shown as the first branch of the tree in
Figure 4.2. The successful branch proceeds to eval-
uate getOrganism("snakes"), shown as the sec-
ond branch. Finally, the successful branch evaluates
cause, which calls eats twice, resulting in the final
two branches. The value returned by each branch is
determined by the causation model which performs

organism(mice)

fail organism(snakes)

fail eats(mice,snakes)

eats(snakes,mice)

{unch.} {dec.}

eats(snakes,mice)

{inc.} {}

false true

false true

false

false true

true

false true

Figure 4: Tree of possible executions for the logical form
λf.CAUSE(DECREASE(MICE), f(SNAKES)). Each path from
root to leaf represents a single execution that returns the indi-
cated denotation or fails, and each internal node represents a
nondeterministic choice made with choose.

some deterministic logic on the truth values of the
two eats relations.

4.3 Execution Features
The execution model uses three sets of features: in-
stance features, predicate features, and denotation
features. Instance features treat each predicate in-
stance independently, while the remainder are global
features of multiple predicate instances and the log-
ical form. We provide a complete listing of features
in an online appendix.

Instance features fire whenever an execution
chooses a truth value for a predicate instance. These
features are similar to the per-predicate-instance fea-
tures used in prior work to produce a distribution
over possible worlds. For ORGANISM(x), our fea-
tures are the vision model’s extraction score for x
and indicator features for the number of tokens in
x. For EATS(x, y), our features are various combi-
nations of the vision model’s scores for arrows that
may connect the text labels x and y.

Predicate features fire based on the global as-
signment of truth values to all instances of a single
predicate. The features for ORGANISM count oc-
currences of overlapping text labels among true in-
stances. The features for EATS include cycle count
features for various cycle lengths and arrow reuse
features. The cycle count features help the model
learn that food webs are typically, but not always,
acyclic and the arrow reuse features aim to prevent
the model from predicting two different EATS in-
stances on the basis of a single arrow.

165

Denotation features fire on the return value of an
execution. There are two kinds of denotation fea-
tures: size features that count the number of entities
in denotations of various types and denotation ele-
ment features for specific logical forms. The sec-
ond kind of feature can be used to learn that the de-
notation of λx.HERBIVORE(x) is likely to contain
MOUSE, but unlikely to contain WOLF.

4.4 Answer Selection

P 3 predicts a distribution over denotations for each
question, which for our problem must be mapped
to a distribution over multiple choice answers. An-
swer selection performs this task using string match
heuristics and an LSTM (Hochreiter and Schmidhu-
ber, 1997). The string match heuristics score each
answer option given a denotation then select the
highest scoring answer, abstaining in the case of a
tie. The score computation depends on the denota-
tion’s type. If the denotation is a set of entities, the
score is an approximate count of the number of enti-
ties in the denotation mentioned in the answer using
a fuzzy string match. If the denotation is a set of
change events, the score is a fuzzy match of both the
change direction and the animal name. If the denota-
tion is a number, string matching is straightforward.
Applying these heuristics and marginalizing out de-
notations yields a distribution over answer options.

A limitation of the above approach is that it does
not directly incorporate linguistic prior knowledge
about likely answers. For example, “snake” is usu-
ally a good answer to “what eats mice?” regardless
of the diagram. Such knowledge is known to be es-
sential for visual question answering (Antol et al.,
2015; Andreas et al., 2016b) and important in our
task as well. We incorporate this knowledge in a
standard way, by training a neural network on ques-
tion/answer pairs (without the diagram) and combin-
ing its predictions with the string match heuristics
above. The network is a sequence LSTM that is ap-
plied to the question concatenated with each answer
option a to produce a 50-dimensional vector va for
each answer. The distribution over answers is the
softmax of the inner product of these vectors with
a learned parameter vector w. For simplicity, we
combine these two components using a 50/50 mix
of their answer distributions.

4.5 Supervision Oracle

The supervision oracle for diagram question answer-
ing combines supervision of both answers and envi-
ronment interpretations. We assume that each dia-
gram has been labeled with a food web. An exe-
cution is correct if and only if (1) all of the chosen
values in the global variable encoding the food web
are consistent with the labeled food web, and (2)
string match answer selection applied to its denota-
tion chooses the correct answer. The first constraint
guarantees that every logical form has at most one
correct execution for any given diagram.

5 Evaluation

Our evaluation compares P 3 to both possible worlds
and neural network approaches on our data set of
food web diagram questions. An ablation study
demonstrates that both sets of global features im-
prove accuracy. Finally, we demonstrate P 3’s gen-
erality by applying it to a previously-published data
set, obtaining state-of-the-art results.

Code, data and supplementary material for this
paper are available at: http://www.allenai.

org/paper-appendix/emnlp2016-p3

5.1 FOODWEBS Data Set

FOODWEBS consists of ∼500 food web diagrams
and ∼5000 questions designed to imitate actual
questions encountered on 8th grade science exams.
The train/validation/test sets contain ∼300/100/100
diagrams and their corresponding questions. The
data set has three kinds of annotations in addition to
the correct answer for each question. First, each di-
agram is annotated with the food web that it depicts
using ORGANISM and EATS. Second, each diagram
has predictions from a vision system for various dia-
gram elements such as arrows and text labels (Kem-
bhavi et al., 2016). These are noisy predictions, not
ground truth. Finally, each question is annotated by
the authors with a logical form (or null if its mean-
ing is not representable in the domain theory). These
logical forms are not used to train P 3 but are useful
to measure per-component error.

We collected FOODWEBS by using a crowdsourc-
ing process to expand a collection of real exam ques-
tions. First, we collected 89 questions from 4th and
8th grade exams and 500 food web diagrams us-

166

ing an image search engine. Second, we generated
questions for these diagrams using Mechanical Turk.
Workers were shown a diagram and a real question
for inspiration and asked to write a new question
and its answer options. We validated each gener-
ated question by asking 3 workers to answer it, dis-
carding questions where at least 2 did not choose the
correct answer. We also manually corrected any am-
biguous (e.g., two answer options are correct) and
poorly-formatted (e.g., two answer options have the
same letter) questions. The final data set has high
quality: a human domain expert correctly answered
95 out of 100 randomly-sampled questions.

5.2 Baseline Comparison

Our first experiment compares P 3 with several base-
lines for situated question answering. The first base-
line, WORLDS, is a possible worlds model based on
Malinowski and Fritz (2014). This baseline learns
a semantic parser P (`, t|q) and a distribution over
food webs P (w|v), then evaluates ` on w to pro-
duce a distribution over denotations. This model is
implemented by independently training P 3’s CCG
parser (on question/answer pairs and labeled food
webs) and a possible-worlds execution model (on la-
beled food webs). The CCG lexicon for both P 3 and
WORLDS was generated by applying PAL (Krishna-
murthy, 2016) to the same data. Both models select
answers as described in Section 4.4.

We also compared P 3 to several neural network
baselines. The first baseline, LSTM, is the text-
only answer selection model described in Section
4.4. The second baseline, VQA, is a neural net-
work for visual question answering. This model
represents each image as a vector by using the fi-
nal layer of a pre-trained VGG19 model (Simonyan
and Zisserman, 2014) and applying a single fully-
connected layer. It scores answer options by using
the answer selection LSTM to encode question/an-
swer pairs, then computing a dot product between
the text and image vectors. This model is somewhat
limited because VGG features are unlikely to encode
important diagram structure, such as the content of
text labels. Our third baseline, DQA, is a neural net-
work that rectifies this limitation (Kembhavi et al.,
2016). It encodes the diagram predictions from the
vision system as vectors and attends to them using
the LSTM-encoded question vector to select an an-

Accuracy
Model Accuracy (Unseen Organisms)

P 3 69.1 57.7
WORLDS 63.6 50.8
LSTM 60.3 34.7
VQA 56.5 36.8
DQA 59.3 33.0

Random 25.2 25.2

Table 1: Accuracy of P 3 and several baselines on the FOOD-
WEBS test set and a modified test set with unseen organisms.

Model Accuracy ∆

P 3 69.1
-LSTM 59.8 -9.3
-LSTM -denotation 55.8 -13.3
-LSTM -denotation -predicate 52.4 -16.7

Table 2: Test set accuracy of P 3 removing LSTM answer se-
lection (Section 4.4), denotation features and predicate features
(Section 4.3).

swer. This model is trained with question/answer
pairs and diagram parses, which is roughly compa-
rable to the supervision used to train P 3.

Table 5.2 compares the accuracy of P 3 to these
baselines. Accuracy is the fraction of questions an-
swered correctly. LSTM performs well on this data
set, suggesting that many questions can be answered
without using the image. This result is consistent
with results on visual question answering (Antol
et al., 2015). The other neural network models
have similar performance to LSTM, whereas both
WORLDS and P 3 outperform it. We also find that
P 3 outperforms WORLDS likely due to its global
features, which we investigate in the next section.

Given these results, we hypothesized that the neu-
ral models were largely memorizing common pat-
terns in the text and were not able to interpret the
diagram. We tested this hypothesis by running each
model on a test set with unseen organisms created by
reversing the organism names in every question and
diagram (Table 5.2, right column). As expected, the
accuracy of LSTM is considerably reduced on this
data set. VQA and DQA again perform similarly
to LSTM, which is consistent with our hypothesis.
In contrast, we find that the accuracies of WORLDS

and P 3 are only slightly reduced, which is consistent
with superior diagram interpretation abilities but in-
effective LSTM answer selection.

167

5.3 Ablation Study

We performed an ablation study to further under-
stand the impact of LSTM answer selection and
global features. Table 5.2 shows the accuracy of
P 3 trained without these components. We find that
LSTM answer selection improves accuracy by 9
points, as expected due to the importance of linguis-
tic prior knowledge. Global features improve accu-
racy by 7 points, which is roughly comparable to the
delta between P 3 and WORLDS in Table 5.2.

5.4 Component Error Analysis

Our third experiment analyses sources of error by
training and evaluating P 3 while providing the gold
logical form, food web, or both as input. Table
5.5 shows the accuracy of these three models. The
final entry shows the maximum accuracy possible
given our domain theory and answer selection. The
larger accuracy improvement with gold food webs
suggests that the execution model is responsible for
more error than semantic parsing, though both com-
ponents contribute.

5.5 SCENE Experiments

Our final experiment applies P 3 to the SCENE data
set of Krishnamurthy and Kollar (2013). In this data
set, the input is a natural language expression, such
as “blue mug to the left of the monitor,” and the
output is the set of objects in an image that the ex-
pression denotes. The images are annotated with a
bounding box for each candidate object. The data
set includes a domain theory that was automatically
generated by creating a category and/or relation per
word based on its part of speech. It also includes a
CCG lexicon and image features. We use these re-
sources, adding predicate and denotation features.

Table 5.5 compares P 3 to prior work on SCENE.
The evaluation metric is exact match accuracy be-
tween the predicted and labeled sets of objects. We
consider three supervision conditions: QA trains
with question/answer pairs, QA+E further includes
labeled environments, and QA+E+LF further in-
cludes labeled logical forms. We trained P 3 in the
first two conditions, while prior work trained in the
first and third conditions. KK2013 is a possible
worlds model with a max-margin training objective.
P 3 slightly outperforms in the QA condition and P 3

Model Accuracy ∆

P 3 69.1
+ gold logical form 75.1 +6.0
+ gold food web 82.3 +13.2
+ both 91.6 +22.5

Table 3: Accuracy of P 3 when trained and evaluated with la-
beled logical forms, food webs, or both.

Supervision
Model QA QA+E QA+E+LF

P 3 68 75 –
KK2013 67 – 70

Table 4: Accuracy on the SCENE data set. KK2013 results are
from Krishnamurthy and Kollar (2013).

trained with labeled environments outperforms prior
work trained with additional logical form labels.

6 Conclusion

Parsing to Probabilistic Programs (P 3) is a novel
model for situated question answering that jointly
reasons about question and environment interpreta-
tions using background knowledge to produce an-
swers. P 3 uses a domain theory – a probabilistic
program – to define the information to be extracted
from the environment and background knowledge.
A semantic parser maps questions to logical forms in
this theory, which are probabilistic programs whose
possible executions represent possible interpreta-
tions of the environment. An execution model scores
these executions given features of the environment.
Both the semantic parser and execution model are
jointly trained in a loglinear model, which thereby
learns to both parse questions and interpret environ-
ments. Importantly, the model includes global fea-
tures of the logical form and executions, which help
the model avoid implausible interpretations. We
demonstrate P 3 on a challenging new data set of
5000 science diagram questions, where it outper-
forms several competitive baselines.

Acknowledgments

We gratefully acknowledge Minjoon Seo, Mike Sal-
vato and Eric Kolve for their implementation help,
Isaac Cowhey and Carissa Schoenick for their help
with the data, and Oren Etzioni, Peter Clark, Matt
Gardner, Hannaneh Hajishirzi, Mike Lewis, and
Jonghyun Choi for their comments.

168

References

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016a. Deep compositional question an-
swering with neural module networks. In CVPR.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016b. Learning to compose neural net-
works for question answering. In NAACL.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick, and
Devi Parikh. 2015. VQA: Visual question answer-
ing. In International Conference on Computer Vision
(ICCV).

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping in-
structions to actions. Transactions of the Association
for Computational Linguistics.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing.

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen,
Abby Vander Linden, Brittany Harding, Brad Huang,
Peter Clark, and Christopher D. Manning. 2014.
Modeling biological processes for reading comprehen-
sion. In Proceedings of EMNLP.

David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the 25th
AAAI Conference on Artificial Intelligence.

Eunsol Choi, Tom Kwiatkowski, and Luke Zettlemoyer.
2015. Scalable semantic parsing with partial ontolo-
gies. In Proceedings of the 2015 Association for Com-
putational Linguistics.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG and
log-linear models. Computational Linguistics,
33(4):493–552.

Peter Clark and Oren Etzioni. 2016. My computer is an
honor student - but how intelligent is it? standardized
tests as a measure of ai. AI Magazine, 37:5–12.

Akira Fukui, Dong Huk Park, Daylen Yang, Anna
Rohrbach, Trevor Darrell, and Marcus Rohrbach.
2016. Multimodal compact bilinear pooling for
visual question answering and visual grounding.
arXiv:1606.01847.

Noah D Goodman and Andreas Stuhlmüller. 2014. The
Design and Implementation of Probabilistic Program-
ming Languages. http://dippl.org. Accessed: 2016-2-
25.

Noah D. Goodman, Vikash K. Mansinghka, Daniel M.
Roy, Keith Bonawitz, and Joshua B. Tenenbaum.

2008. Church: A language for generative models. In
Uncertainty in Artificial Intelligence.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Thomas M. Howard, Istvan Chung, Oron Propp,
Matthew R. Walter, and Nicholas Roy. 2014a. Effi-
cient natural language interfaces for assistive robots.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) Workshop on Rehabilita-
tion and Assistive Robotics, September.

Thomas M Howard, Stefanie Tellex, and Nicholas Roy.
2014b. A natural language planner interface for mo-
bile manipulators. In 2014 IEEE International Con-
ference on Robotics and Automation (ICRA).

Aniruddha Kembhavi, Mike Salvato, Eric Kolve,
Min Joon Seo, Hannaneh Hajishirzi, and Ali Farhadi.
2016. A diagram is worth a dozen images. In Euro-
pean Conference on Computer Vision (ECCV).

Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas
Roy. 2010. Toward understanding natural language
directions. In Proceedings of the 5th ACM/IEEE In-
ternational Conference on Human-Robot Interaction.

Jayant Krishnamurthy and Thomas Kollar. 2013. Jointly
learning to parse and perceive: Connecting natural lan-
guage to the physical world. Transactions of the Asso-
ciation of Computational Linguistics – Volume 1.

Jayant Krishnamurthy and Tom M. Mitchell. 2012.
Weakly supervised training of semantic parsers. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning.

Jayant Krishnamurthy and Tom M. Mitchell. 2015.
Learning a compositional semantics for freebase with
an open predicate vocabulary. Transactions of the As-
sociation for Computational Linguistics, 3:257–270.

Jayant Krishnamurthy. 2016. Probabilistic models for
learning a semantic parser lexicon. In NAACL.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with
on-the-fly ontology matching. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing.

Percy Liang, Michael I. Jordan, and Dan Klein. 2011.
Learning dependency-based compositional semantics.
In Proceedings of the Association for Computational
Linguistics.

Mateusz Malinowski and Mario Fritz. 2014. A multi-
world approach to question answering about real-
world scenes based on uncertain input. In Advances
in Neural Information Processing Systems.

Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz.
2015. Ask your neurons: A neural-based approach to

169

answering questions about images. In International
Conference on Computer Vision.

Cynthia Matuszek, Nicholas FitzGerald, Luke Zettle-
moyer, Liefeng Bo, and Dieter Fox. 2012. A joint
model of language and perception for grounded at-
tribute learning. In Proceedings of the 29th Interna-
tional Conference on Machine Learning.

John McCarthy. 1963. A basis for a mathematical the-
ory of computation. In Computer Programming and
Formal Systems.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. Malt-
parser: A data-driven parser-generator for dependency
parsing. In Proceedings of the 21st International Con-
ference on Computational Linguistics and 44th Annual
Meeting of the Association for Computational Linguis-
tics.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-answer
pairs. Transactions of the Association for Computa-
tional Linguistics.

Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren Et-
zioni, and Clint Malcolm. 2015. Solving geometry
problems: Combining text and diagram interpretation.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing.

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556.

Stefanie Tellex, Thomas Kollar, Steven Dickerson,
Matthew Walter, Ashis Banerjee, Seth Teller, and
Nicholas Roy. 2011. Understanding natural language
commands for robotic navigation and mobile manipu-
lation. In AAAI Conference on Artificial Intelligence.

Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang,
and Dongyan Zhao. 2016. Question Answering
on Freebase via Relation Extraction and Textual Ev-
idence. In Proceedings of the Association for Compu-
tational Linguistics (ACL 2016).

Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and
Alexander J. Smola. 2015. Stacked attention net-
works for image question answering. arXiv preprint
arXiv:1511.02274.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers).

John M. Zelle and Raymond J. Mooney. 1993. Learning
semantic grammars with constructive inductive logic
programming. In Proceedings of the 11th National
Conference on Artificial Intelligence.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: structured clas-
sification with probabilistic categorial grammars. In
UAI ’05, Proceedings of the 21st Conference in Un-
certainty in Artificial Intelligence.

170

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 171–182,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Event participant modelling with neural networks

Ottokar Tilk
Institute of Cybernetics

Tallinn University of Technology
12618 Tallinn, Estonia

ottokar.tilk@phon.ioc.ee

Vera Demberg and Asad Sayeed
and Dietrich Klakow and Stefan Thater

Saarland University
66123 Saarbrücken, Germany
{vera,asayeed,stth}
@coli.uni-sb.de;

dietrich.klakow@lsv.uni-sb.de

Abstract

A common problem in cognitive modelling
is lack of access to accurate broad-coverage
models of event-level surprisal. As shown in,
e.g., Bicknell et al. (2010), event-level knowl-
edge does affect human expectations for ver-
bal arguments. For example, the model should
be able to predict that mechanics are likely to
check tires, while journalists are more likely
to check typos. Similarly, we would like
to predict what locations are likely for play-
ing football or playing flute in order to esti-
mate the surprisal of actually-encountered lo-
cations. Furthermore, such a model can be
used to provide a probability distribution over
fillers for a thematic role which is not men-
tioned in the text at all.

To this end, we train two neural network mod-
els (an incremental one and a non-incremental
one) on large amounts of automatically role-
labelled text. Our models are probabilistic and
can handle several roles at once, which also
enables them to learn interactions between dif-
ferent role fillers. Evaluation shows a drastic
improvement over current state-of-the-art sys-
tems on modelling human thematic fit judge-
ments, and we demonstrate via a sentence sim-
ilarity task that the system learns highly useful
embeddings.

1 Introduction

Our goals in this paper are to learn a representa-
tion of events and their thematic roles based on large
quantities of automatically role-labelled text and to
be able to calculate probability distributions over the
possible role fillers of specific missing roles. In this

sense, the task is closely related to work on selec-
tional preference acquisition (Van de Cruys, 2014).
We focus here on the roles agent, patient, loca-
tion, time, manner and the predicate itself. The
model we develop is trained to represent the event-
relevant context and hence systematically captures
long-range dependencies. This has been previously
shown to be beneficial also for more general lan-
guage modelling tasks (e.g., Chelba and Jelinek,
1998; Tan et al., 2012).

This type of modelling is potentially relevant to a
wide range of tasks, for instance for performing the-
matic fit judgment tasks, detecting anomalous events
(Dasigi and Hovy, 2014), or predicting event struc-
ture that is not explicitly present in the text. The
latter could be useful for inferring missing informa-
tion in entailment tasks or improving identification
of thematic roles outside the sentence containing the
predicate. Potential applications also include predi-
cate prediction based on arguments and roles, which
has been noted to be relevant for simultaneous ma-
chine translation for a verb-final to a verb-medial
source language (Grissom II et al., 2014). Within
cognitive modelling, our model could help to more
accurately estimate semantic surprisal for broad-
coverage texts, when used in combination with an
incremental role labeller (e.g., Konstas and Keller,
2015), or to provide surprisal estimates for content
words as a control variable for psycholinguistic ex-
perimental materials.

In this work, we focus on the predictability of
verbs and nouns, and we suggest that the predictabil-
ity of these words depends to a large extent on
the relationship of these words to other nouns and

171

verbs, especially those connected via the same event.
We choose a neural network (NN) model because
we found that results from existing related models,
e.g. Baroni and Lenci’s Distributional Memory, de-
pend heavily on how exactly the distributional space
is defined, while having no principled way of opti-
mizing the space. A crucial advantage of a neural
network-based approach is thus that the model can
be trained to optimize the distributional representa-
tion for the task.

Our model is trained specifically to predict miss-
ing semantic role-fillers based on the predicate and
other available role-fillers of that predicate. The
model can also predict the predicate based on the se-
mantic roles and their fillers. In our model, there is
no difference in how the semantic roles or the pred-
icate are treated. Thus, when we refer here to roles,
we usually mean both semantic roles and the predi-
cate, unless otherwise explicitly stated.

Our model is compositional in that it has access to
several role-fillers (including the verb) at the same
time, and can thus represent interdependencies be-
tween participants of an event and predict from a
combined representation. Consider, for example, the
predicate serve, whose likely patients include e.g.,
drinks. If we had the agent robber, we would like
to be able to predict a patient like sentence, in the
sense of “the robber will serve his sentence. . . ” This
task is related to modelling thematic fit. In this pa-
per, we evaluate our model on a variety of thematic
fit rating datasets as well as on a sentence similarity
dataset that tests for successful compositionality in
our model’s representations.

This paper makes the following contributions:

• We compare two novel NN models for gener-
ating a probability distribution over selectional
preferences given one or more roles and fillers.
• We show that our technique outperforms state

of the art thematic fit models on many datasets.
• We show that the embeddings thus obtained are

effective in measuring sentence similarity.

1.1 Neural networks

Neural networks have proven themselves to be very
well suited for language modeling. By learning
distributed representations of words (Bengio et al.,
2003), they are able to generalize to new contexts

that were not observed word-by-word in the training
corpus. They can also use a relatively large number
of context words in order to make predictions about
the upcoming word. In fact, the recurrent neural net-
work (RNN) LM (Mikolov et al., 2010) does not ex-
plicitly fix the context size at all but is potentially
able to compress the relevant information about the
entire context in its recurrent layer. These are the
properties that we would like to see in our role-filler
prediction model as well.

Neural networks have also been used for selec-
tional preference acquisition, as in Van de Cruys
(2014). His selectional preference model differs
from our model in several aspects. First, unlike our
model it is limited to a fixed number of inputs. An-
other difference is that his model uses separate em-
beddings for all input words, while ours enables par-
tial parameter sharing. Finally and crucially for role-
filler prediction, selectional preference models score
the inputs, while our model gives a probability dis-
tribution over all words for the queried target role.

We discuss the components necessary for our
model in more detail in section 3.

2 Data source

Our source of training data is the ukWaC corpus,
which is part of the WaCky project, as well as the
British National Corpus. The corpus consists of web
pages crawled from the .uk web domain, contain-
ing approximately 138 million sentences.

These sentences were run through a semantic role
labeller and head words were extracted as described
in Sayeed et al. (2015). The semantic role labeller
used, SENNA (Collobert and Weston, 2007), gener-
ates PropBank-style role labels. While PropBank ar-
gument positions (ARG0, ARG1, etc.) are primarily
designed to be verb-specific, rather than directly rep-
resenting “classical” thematic roles (agent, patient,
etc.), in the majority of cases, ARG0 lines up with
agent roles and ARG1 lines up with patient roles.
PropBank-style roles have been used in other recent
efforts in thematic fit modelling (e.g., Baroni et al.,
2014; Vandekerckhove et al., 2009),

For processing purposes, the corpus was divided
into 3500 segments. Fourteen segments (approx 500
thousand sentences) each were used for develop-
ment and testing, and the rest were used for training.

172

In order to construct our incremental model and
compare it to n-gram language models, we needed a
precise mapping between the lemmatized argument
words and their positions in the original sentence.
This required aligning the SENNA tokenization and
the original ukWaC tokenization used for Malt-
Parser. Because of the heterogeneous nature of web
data, this alignment was not always achievable—we
skipped a small number of sentences in this case. In
the development and testing portions of the data set,
we filtered sentences containing predicates where
there were multiple role-assignees with the same
role for the same predicate.

3 Model design and implementation

Our model is a neural network with a single non-
linear hidden layer and a Softmax output layer. All
inputs are one-hot encoded—i.e., represented as a
binary vector with size equal to the number of pos-
sible input values, where all entries are zero except
the entry at the index corresponding to the current
input value.

3.1 Two-part view of the model

The parameters of a neural network classifier with a
single hidden layer and one-hot encoded inputs can
be viewed as serving two distinct purposes: moving
from inputs towards outputs, the first weight matrix
that we encounter is responsible for learning dis-
tributed representations (or embeddings) of the in-
puts; the second weight matrix represents the param-
eters of a maximum entropy classifier that uses the
learned embeddings as inputs.

Considering the task of role-filler prediction, we
would want these two sets of parameters to have the
following properties:

• The classifier layer should be different for each
target role, because the suitable filler given the
context can clearly be very different depending
on the role (e.g., verb vs. agent).
• The embedding layer should also be different

depending on the role of context word. Other-
wise, the network would not have any informa-
tion about the role of the context word. For ex-
ample, the suitable verb filler for context word
dog in an agent role is probably very different

from what it would be, were it in a patient role
(e.g. bark vs. feed).

We now briefly describe some incrementally im-
proved intermediate approaches that we also consid-
ered as they help to understand the steps that led to
our final solution for achieving the desired proper-
ties of the embedding and classifier layer.

A naive way to accomplish the aspired properties
would be to have a separate model for each input
role and target role pair. This approach has several
drawbacks. For a start, there is no obvious way to
model interactions of different input roles and fillers
in order to make predictions based on multiple in-
put role-word pairs simultaneously. Another prob-
lem is that the parameters are trained only on a frac-
tion of available training data—e.g., verb embed-
ding weights are trained independently for each tar-
get role classifier. Finally, given that we have chosen
to distinguish between n different roles, it would re-
quire us to train and tune hyper-parameters for n2

models.
One of these problems (data under-utilization) can

be alleviated by sharing role-specific embedding and
classifier weights across different models. For ex-
ample, the verb embedding matrix would be shared
across all models that predict different role fillers
based on input verbs. Other problems remain, and
training the large number of models becomes even
more difficult because of parameter synchronization,
but this is a step towards the next improvement.

Shared role-specific embedding and classifier
weights enable us to combine all input-target role
pair models into a single model. This can be done by
stacking role-specific embedding matrices to form a
3-way embedding tensor and building a classifier pa-
rameter tensor analogously. Having a single model
saves us from tuning multiple models and makes
modelling interactions between inputs possible.

Despite these advantages, having two tensors in
our model has a drawback of rapidly growing the
number of parameters as vocabulary size, number of
roles, and hidden layer size increase. This may lead
to over-fitting and increases training time.

A more subtle weakness is the fact that this
kind of model lacks parameter sharing across role-
specific embedding weight matrices. It is clear that
some characteristics of words (e.g., semantics) usu-

173

ally remain the same across different roles. Thus it
is practical to share some information across role-
specific weights so that the embeddings can benefit
from more data and learn better semantic represen-
tations while leaving room for role-specific traits.

For these reasons we replace the tensors with their
factored form in our models.

3.2 Factored parameter tensors

Factoring classifier and embedding tensors helps to
alleviate both the efficiency and parameter sharing
problems brought out in Section 3.1.

Given vocabulary size |V |, number of roles |R|
and hidden layer size H , each tensor T would re-
quire |V | × |R| × H parameters. The number of
parameters can be reduced by expressing the tensor
as a sum of F rank-one tensors (Hitchcock, 1927).
This technique enables us to replace the tensor T
with three factor matrices A, B and C. Each tensor
element T [i, j, k] can then be written as:

T [i, j, k] =
F∑

f=1

A[i, f]B[j, f]C[f, k] (1)

Assuming lateral slices of T represent role-specific
weight matrices (index j denotes roles), we write
each role specific weight matrix W as:

W = A diag(rB)C (2)

where r is a one-hot encoded role vector and diag
is a function that returns a square matrix with the ar-
gument vector on the main diagonal and zeros else-
where. For example, with a vocabulary of 50000
words, 7 roles and number of factors and hid-
den units equal to 512, the factorization reduces
the number of parameters from 179M to 26M and
greatly improves training speed. Factorization also
enables parameter sharing, since factor matrices A
and C are shared across all roles.

Factored tensors have been used in different neu-
ral network models before. Starting with restricted
Boltzmann machines, Memisevic and Hinton (2010)
used a factored 3-way interaction tensor in their im-
age transformation model. Sutskever et al. (2011)
created a character level RNN LM that was effi-
ciently able to use input character specific recurrent
weights by using a factored tensor. Alumäe (2013)

used a factored tensor in a multi-domain LM to be
able to use a domain-specific hidden layer weight
matrix that would take into account the differences
while exploiting similarities between domains. A
multi-modal LM by Kiros et al. (2014) uses a fac-
tored tensor to change the effective output layer
weights based on image features.

It has been noticed before, that training models
with factored tensors as parameters using gradient
descent is difficult (Sutskever et al., 2011; Kiros
et al., 2014). As explained by Sutskever et al.
(2011), this is caused by the fact that each tensor
element is represented as a product of three param-
eters, which may cause disproportionate updates if
these three factors have magnitudes that are too dif-
ferent. Another problem is that if the factor matrix
B happens to have too small or too large values, then
this might also cause instabilities in the lower layers
as the back-propagated gradients are scaled by role-
specific row of B in our model. This situation is
magnified in our models, since we have not one, but
two factored layers.

To solve this problem, Sutskever et al. (2011) sug-
gest using 2nd order methods instead of gradient de-
scent. Alumäe (2013) has alleviated the problem
of shrinking back-propagated gradients by adding
a bias (initialized with ones) to the domain-specific
factor vector. We found that using AdaGrad (Duchi
et al., 2011) to update the parameters is very effec-
tive. The method provides parameter-specific learn-
ing rates that depend on the historic magnitudes of
the gradients of these parameters. This seems to
neutralize the effect of vanishing or exploding gra-
dients by reducing the step size for parameters that
tend to have large gradients and allow a bigger learn-
ing rate for parameters with smaller gradients.

3.3 General structure of the model
Our general approach, common to both role-filler
models, is shown in Figure 1. First, role-specific
word embedding vector e is computed by implicitly
taking a fiber (word indexed row of a role indexed
slice) from the factored embedding tensor:

e = wAe diag(rBe)Ce (3)

h = PReLU(e+ bh) (4)

where w and r are one-hot encoded word and role
vectors respectively, bh is hidden layer bias, and Ae,

174

Figure 1: General structure of role-filler models.

Be and Ce represent the factor matrices that the em-
bedding tensor is factored into. Next, we apply a
parametric rectifier (PReLU; He et al., 2015) non-
linearity to the role-specific word embedding to ob-
tain the hidden activation vector h.

The hidden layer activation vector h is fed to the
Softmax output layer through a target role specific
classifier weight matrix (a target role-indexed slice
of the classifier parameter tensor):

c = hAc diag(tBc)Cc (5)

y = Softmax(c+ by) (6)

where t is a one-hot encoded target role vector,
by is output layer bias, and y is the output of the
model representing the probability distribution over
the output vocabulary.

3.4 Modeling input interactions
The general approach described in Section 3.3 also
allows us to model interactions between different in-
put role-word pairs. If we know the order in which
the inputs were introduced, then we can add a recur-
rent connection to the hidden layer to implement an
incremental role filler predictor. When word order is
unknown, then input role-word pair representations
can be added together to compose the representa-
tion of the entire predicate context1. We chose addi-

1In applications like natural language generation, for exam-
ple, where role-fillers need to be predicted, it is not necessarily
always the case that the order will be known in advance or that
the thematic fit model will be used to generate the full sentence
in correct word order.

tion over concatenation (often preferred in language
models) because the non-incremental model does
not need to preserve information about word order,
and addition also enables using a variable number of
inputs.

The incremental model adds information about
the previous hidden state ht−1 to the current input
word role-specific embedding et through recurrent
weights Wr. So, Equation 4 is replaced with:

ht = PReLU(et + ht−1Wr + ptWp + bh) (7)

where pt is a binary predicate boundary indicator
that informs the model about the start of a new pred-
icate and equals 1 when the target word belongs
to a new predicate and 0 otherwise. The predi-
cate boundary input pt is connected to the network
through parameter vector Wp. The hidden state h0
is initialized to zeros.

The non-incremental model adds role-specific
embedding vectors of all input words together to
form the representation of the entire predicate con-
text and replaces Equation 4 with:

h = PReLU(

N∑

i=1

ei + bh) (8)

where N is the number of input role-word pairs.

3.5 Training details

First, we give details that are common to both the
RNN and NN models. The models are trained with
mini-batches of 128 samples. The hidden layer con-
sists of 256 PReLU units; embedding and classifier
tensor factorization layer sizes are 256 and 512 re-
spectively. The input and output vocabularies are the
same, consisting of 50,000 most frequent lemma-
tized words in the training corpus. The role vocab-
ulary consists of 5 argument roles (ARG0, ARG1,
ARGM-LOC, ARGM-TMP and ARGM-MNR), the
verb is treated as the sixth role, and all the other roles
are mapped to a shared OTHER label. Parameters
are updated using AdaGrad (Duchi et al., 2011) with
a learning rate of 0.1. All models are implemented
using Theano (Bastien et al., 2012; Bergstra et al.,
2010) and trained on GPUs for 8 days.

RNN model gradients are computed using back-
propagation through time (Rumelhart et al., 1986)

175

Model Name Dev Test
3-gram LM 450.1 ± 2.6 438.9 ± 2.6
3-gram CWM 859.6 ± 4.6 834.9 ± 4.5
RNN CWM 485.8 ± 2.7 473.2 ± 2.6
RNN RF 244.6 ± 1.4 237.8 ± 1.4
NN RF 248.2 ± 1.4 241.9 ± 1.4

Table 1: Perplexities on dev/test dataset.

over 3 time steps. The NN model is trained on mini-
batches of 128 samples that are randomly drawn
with replacement from the training set.

3.6 Model comparison

Perplexity allows us to compare all our models in
similar terms, and evaluate the extent to which ac-
cess to thematic roles helps the model to predict
missing role fillers. For comparability, the perplexi-
ties of all models are computed only on content word
probabilities (i.e., predicates and their arguments).
We also report the 95% confidence interval for per-
plexity, which is computed according to Klakow
and Peters (2002). All models are trained on exactly
the same sentences of lemmatized words. Probabil-
ity mass is distributed across the vocabulary of the
50,000 most frequent content words in the training
corpus.

3.6.1 Models
First, we compare our model to a conventional 3-

gram language model 3-gram LM, conditioning on
the previous context containing the immediately pre-
ceding context of content and function words. All
n-grams are discounted with Kneser-Ney smooth-
ing, and n-gram probability estimates are interpo-
lated with lower order estimates. Sentence onset in
all models is padded with a special sentence onset
tag. The vocabulary of context words for this model
consists of all words from the training corpus.

As a second model, we train a 3-gram content
word model 3-gram CWM, which is an N -gram
LM that is trained only on content words.

Next, we have RNN CWM—an RNN
LM (Mikolov et al., 2010) trained on content
words only. The context size of this model is not
explicitly defined and the model can potentially
utilize more context words than 3-gram CWM (even
from outside the sentence boundary).

Our incremental role-filler RNN RF is similar to
RNN CWM, except for using role-specific embed-
ding and classifier weights (slices of factored ten-
sor). It thus has additional information about the
content word roles2.

Finally, the non-incremental role-filler NN RF
loses the information about word order and the abil-
ity to use information outside predicate boundaries
and trades it for the ability to see the future (i.e., the
context includes both the preceding and the follow-
ing content words and their roles).

3.6.2 Results
The results of content word perplexity evalua-

tion are summarized in Table 1. The thematic-
role informed models outperform all other mod-
els by a very large margin, cutting perplexity al-
most in half. The incremental model achieves a
slightly lower perplexity than the non-incremental
one (237.8 vs. 241.9), hinting that the content word
order and out-of-predicate role-word pairs can be
even more informative than a preview of upcoming
role-word pairs.

The difference between normal LM and the CWM
can be explained by the loss of information from
function words, combined with additional sparsity
in the model because content word sequences are
much sparser than sequences of content and func-
tion words.

This also explains why using a neural network-
based RNN CWM model improves the performance
so much (perplexity drops from 834.9 to 473.2),
as neural network based language models are well
known for their ability to generalize well to unseen
contexts by learning distributed representations of
words (Bengio et al., 2003).

4 Evaluation on thematic fit ratings

In order to see whether our model accurately repre-
sents events and their typical thematic role fillers, we
evaluate our model on a range of existing datasets
containing human thematic fit ratings. This evalua-
tion also allows us to compare our model to existing
models that have been used on this task.

2A reviewer kindly points out, as a matter of historical inter-
est, that the high-level architecture of the RNN RF model bears
some resemblance to the parallel distributed processing model
in McClelland et al. (1989) and St. John and McClelland (1990).

176

Data source # ratings Roles NN RF BL2010 GSD2015 BDK2014
Pado (agent, patient) 414 ARG0, ARG1, ARG2 0.52 (8) 0.53 (0) 0.53 (0) 0.41
McRae (agent, patient) 1444 ARG0, ARG1 0.38 (20) 0.32 (70) 0.36 (70) 0.28
Ferretti (location) 274 ARGM-LOC 0.44 (3) 0.23 (3) 0.29 (3) -
Ferretti (instrument) 248 ARGM-MNR 0.45 (6) 0.36 (17) 0.42 (17) -
Greenberg (patient) 720 ARG1 0.61 (8) 0.46 (18) 0.48 (18) -
Pado+McRae+Ferretti 2380 0.41 (37) 0.35 (90) 0.38 (90) -

Table 2: Thematic fit evaluation scores, consisting of Spearman’s ρ correlations between average human judgements and model

output, with numbers of missing values (due to missing vocabulary entries) in brackets. The baseline scores come from the TypeDM

(Baroni and Lenci, 2010) model, further developed and evaluated in Greenberg et al. (2015a,b) and the neural network predict model

described in Baroni et al. (2014). NN RF is the non-incremental model presented in this article. Our model maps ARG2 in Pado

to OTHER role. Significances were calculated using paired two-tailed significance tests for correlations (Steiger, 1980). NN RF

was significantly better than both of the other models on the Greenberg and Ferretti location datasets and significantly better than

BL2010 but not GSD2015 on McRae and Pado+McRae+Ferretti; differences were not statistically significant for Pado and Ferretti

instruments.

4.1 Related work

State-of-the-art computational models of thematic fit
quantify the similarity between a role filler of a verb
and the proto-typical filler for that role for the verb
based on distributional vector space models. For
example, the thematic fit of grass as a patient for
the verb eat would be determined by the cosine of
a distributional vector representation of grass and
a prototypical patient of eat. The proto-typical pa-
tient is in turn obtained from averaging representa-
tions of words that typically occur as a patient of
eat (e.g., Erk, 2007; Baroni and Lenci, 2010; Say-
eed and Demberg, 2014; Greenberg et al., 2015b).
For more than one role, information from both the
agent and the predicate can be used to jointly to pre-
dict a patient (e.g., Lenci, 2011).

4.2 Data

Previous studies obtained thematic fit ratings from
humans by asking experimental participants to rate
how common, plausible, typical, or appropriate
some test role-fillers are for given verbs on a
scale from 1 (least plausible) to 7 (most plausible)
(McRae et al., 1998; Ferretti et al., 2001; Binder
et al., 2001; Padó, 2007; Padó et al., 2009; Vandek-
erckhove et al., 2009; Greenberg et al., 2015a). The
datasets include agent, patient, location and instru-
ment roles. For example, in the Padó et al. (2009)
dataset, the noun sound has a very low rating of 1.1
as the subject of hear and a very high rating of 6.8
as the object of hear. Each of the verb-role-noun
triples was rated by several humans, and our evalua-

tions are done against the average human score. The
datasets differ from one another in size (as shown
in Table 2), choice of verb-noun pairs, and in how
exactly the question was asked of human raters.

4.3 Methods

A major difference between what the state-of-the-
art models do and what our model does is that our
model distributes a probability mass of one across
the vocabulary, while the thematic fit models have
no such overall constraint; they will assign a high
number to all words that are similar to the proto-
typical vector, without having to distribute probabil-
ity mass. Specifically, this implies that two synony-
mous fillers, one of which is a frequent word like
fire, and the other of which is an infrequent word,
e.g., blaze, will get similar ratings by the distribu-
tional similarity models, but quite different ratings
by the neural network model, as the more frequent
word will have higher probability. Greenberg et al.
(2015a) showed that human ratings are insensitive
to noun frequency. Hence, we report results that ad-
just for frequency effects by setting the output layer
bias of the neural network model to zero. Since the
output unit biases of the neural network model are
independent from the inputs, they correlate strongly
(rs = 0.74, p = 0.0) with training corpus word fre-
quencies after being trained. Therefore, setting the
learned output layer bias vector to a zero-vector is a
simple way to reduce the effect of word frequencies
on the model’s output probability distribution.

177

Role # ratings ρ (# NaN)
ARG0 924 0.38 (14)
ARG1 1615 0.51 (22)
ARG2 39 0.59 (0)
ARGM-MNR 248 0.45 (6)
ARGM-LOC 274 0.44 (3)
ALL 3100 0.45 (45)

Table 3: Per role thematic-fit evaluation scores in terms of

Spearmans ρ correlations between average human judgements

and model output.

4.4 Results
We can see that the neural network model outper-
forms the baselines on all the datasets except the
Pado dataset. An error analysis on the role filler
probabilities generated by the neural net points to
the effect of level of constraint of the verb on the es-
timates. For a relatively non-constraining verb, the
neural net model will have to distribute the probabil-
ity mass across many different suitable fillers, while
the semantic similarity models do not suffer from
this. This implies that filler fit is not directly compa-
rable across verbs in the NN model (only filler pre-
dictability is comparable).

Per role results are shown in Table 3. Surpris-
ingly, the model output has the highest correlation
with the averaged human judgements for the target
role ARG2, despite the fact that ARG2 is mapped to
OTHER along with several other roles. The model
struggles the most when it comes to predicting fillers
for ARG0. There is no noticeable correlation be-
tween the role-specific performance and the role oc-
currence frequency in the samples of our training
set. This implies that parameter sharing between
roles does indeed help when it comes to balancing
the performance between rare and ubiquitous roles
as discussed in section 3.1.

4.5 Compositionality
The above thematic role fit data sets only assess the
fit between two words. Our model can however
also model the interaction between different roles;
see Figure 2 for an example of model predictions.
We are only aware of one small dataset that can be
used to systematically test the effectiveness of the
compositionality for this task. The Bicknell et al.
(2010) dataset contains triples like journalist check

Model NN RF Lenci 2011
Accuracy 1 0.687 0.671
Accuracy 2 0.828 0.844

Table 4: Accuracies on the Bicknell evaluation task.

spelling vs. mechanic check spelling and journalist
check tires vs. mechanic check tires together with
human congruity judgments.

The goal in this task is for the model to repro-
duce the human judgments on the 64 sentence pairs.
Lenci (2011), which we compare against in Table
4, proposed a first compositional model based on
TypeDM to evaluate on this task.

We use two accuracy scores for the evaluation,
which we call “Accuracy 1” and “Accuracy 2”. “Ac-
curacy 1” counts a hit iff the model assigns the
composed subject-verb combination a higher score
when we test a human-rated better-fitting object in
contrast with when we test a worse-fitting one; in
other words, a hit is achieved when journalist check
spelling should be better than journalist check tires,
if we give the model journalist check as the predi-
cate to test against different objects. (The result from
Lenci for this task was transmitted by private com-
munication.)

“Accuracy 2” counts a hit iff, given an object, the
composed subject-verb combination gives a higher
score when the subject is better fitting. That is, a
hit is achieved when journalist check spelling has a
higher score than mechanic check spelling, setting
the query to the model as journalist check and me-
chanic check and finding a score for spelling in that
context. This accuracy metric is proposed and eval-
uated in Lenci (2011).

Evaluation shows that our model performs simi-
larly to that of Lenci, although only limited conclu-
sions can be drawn due to the small data set size.

5 Evaluation of event representations:
sentence similarity

To show that our model learns to represent input
words and their roles in a useful way that reflects the
meaning and interactions between inputs, we evalu-
ate our non-incremental model on a sentence simi-
larity task from Grefenstette and Sadrzadeh (2015).

We assign similarity scores to sentence pairs by
computing representations for each sentence by tak-

178

Figure 2: Examples of model predictions for the verb serve

with different agents and target roles patient and location.

ing the hidden layer state (Equation 8) of the non-
incremental model given the words in the sentence
and their corresponding roles. Sentence similarity
is then rated with the cosine similarity between the
representations of the two sentences.

Spearman’s rank correlation between the cosine
similarities produced by our model and human rat-
ings are shown in Table 5. Our model achieves
much higher correlation with human ratings than the
best result reported by Grefenstette and Sadrzadeh
(2015), showing our model’s ability to compose
meaningful representations of multiple input words
and their roles.

We also compare our model with another NN
word representation model baseline that does not
embed role information; by this comparison, we
can determine the size of the improvement brought
by our role-specific embeddings. The baseline sen-
tence representations are constructed by element-
wise addition of pre-trained word2vec (Mikolov
et al., 2013) word embeddings3. Scores are again
computed by using cosine similarity. The large gap
between our model’s and word2vec baseline’s per-
formance illustrates the importance of embedding
role information in word representations.

6 Conclusions

In this paper we proposed two neural network archi-
tectures for learning proto-typical event representa-

3https://code.google.com/p/word2vec/

ratings NN RF Kronecker W2V Humans
199 0.34 0.26 0.13 0.62

Table 5: Sentence similarity evaluation scores on GS2013

dataset (Grefenstette and Sadrzadeh, 2015), consisting of Spear-

man’s ρ correlations between human judgements and model

output. Kronecker is the best performing model from Grefen-

stette and Sadrzadeh (2015). NN RF is the non-incremental

model presented in this article, and W2V is the word2vec base-

line. Human performance (inter-annotator agreement) shows

the upper bound.

tions. These models were trained to generate prob-
ability distributions over role fillers for a given se-
mantic role. In our perplexity evaluation, we demon-
strated that giving the model access to thematic role
information substantially improved prediction per-
formance. We also compared the performance of
our model to the performance of current state-of-the-
art models in predicting human thematic fit ratings
and showed that our model outperforms the existing
models by a large margin. Finally, we also showed
that the event representations from the hidden layer
of our model are highly effective in a sentence sim-
ilarity task. In future work, we intend to test the
potential contribution of this model when applied to
larger tasks such as entailment and inference tasks
as well as semantic surprisal-based prediction tasks.

7 Acknowledgements

This research was funded by the German Research
Foundation (DFG) as part of SFB 1102: “Informa-
tion Density and Linguistic Encoding” as well as
the Cluster of Excellence “Multimodal Computing
and Interaction” (MMCI). Also, the authors wish
to thank the anonymous reviewers whose valuable
ideas contributed to this paper.

References

Alumäe, T. (2013). Multi-domain neural network
language model. In INTERSPEECH, pages 2182–
2186. Citeseer.

Baroni, M., Dinu, G., and Kruszewski, G. (2014).
Don’t count, predict! a systematic comparison of
context-counting vs. context-predicting semantic
vectors. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics, volume 1, pages 238–247.

179

Baroni, M. and Lenci, A. (2010). Distributional
memory: A general framework for corpus-based
semantics. Comput. Linguist., 36(4):673–721.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J.,
Goodfellow, I. J., Bergeron, A., Bouchard, N.,
and Bengio, Y. (2012). Theano: new features and
speed improvements. Deep Learning and Unsu-
pervised Feature Learning NIPS 2012 Workshop.

Bengio, Y., Ducharme, R., Vincent, P., and Jan-
vin, C. (2003). A neural probabilistic language
model. The Journal of Machine Learning Re-
search, 3:1137–1155.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P.,
Pascanu, R., Desjardins, G., Turian, J., Warde-
Farley, D., and Bengio, Y. (2010). Theano: a CPU
and GPU math expression compiler. In Proceed-
ings of the Python for Scientific Computing Con-
ference (SciPy). Oral Presentation.

Bicknell, K., Elman, J. L., Hare, M., McRae, K., and
Kutas, M. (2010). Effects of event knowledge in
processing verbal arguments. Journal of Memory
and Language, 63(4):489–505.

Binder, K. S., Duffy, S. A., and Rayner, K. (2001).
The effects of thematic fit and discourse context
on syntactic ambiguity resolution. Journal of
Memory and Language, 44(2):297–324.

Chelba, C. and Jelinek, F. (1998). Exploiting
syntactic structure for language modeling. In
Proceedings of the 36th Annual Meeting of the
Association for Computational Linguistics and
17th International Conference on Computational
Linguistics-Volume 1, pages 225–231. Associa-
tion for Computational Linguistics.

Collobert, R. and Weston, J. (2007). Fast semantic
extraction using a novel neural network architec-
ture. In Proceedings of the 45th Annual Meeting
of the Association of Computational Linguistics,
pages 560–567, Prague, Czech Republic. Associ-
ation for Computational Linguistics.

Dasigi, P. and Hovy, E. H. (2014). Model-
ing newswire events using neural networks for
anomaly detection. In COLING, pages 1414–
1422.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adap-
tive subgradient methods for online learning and

stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Erk, K. (2007). A simple, similarity-based model
for selectional preferences. In Proceedings of the
45th Annual Meeting of the Association of Com-
putational Linguistics, pages 216–223, Prague,
Czech Republic. Association for Computational
Linguistics.

Ferretti, T. R., McRae, K., and Hatherell, A. (2001).
Integrating verbs, situation schemas, and thematic
role concepts. Journal of Memory and Language,
44(4):516–547.

Greenberg, C., Demberg, V., and Sayeed, A.
(2015a). Verb polysemy and frequency effects
in thematic fit modeling. In Proceedings of the
6th Workshop on Cognitive Modeling and Com-
putational Linguistics, pages 48–57, Denver, Col-
orado. Association for Computational Linguis-
tics.

Greenberg, C., Sayeed, A., and Demberg, V.
(2015b). Improving unsupervised vector-space
thematic fit evaluation via role-filler prototype
clustering. In Proceedings of the 2015 Conference
of the North American Chapter of the Association
for Computational Linguistics Human Language
Technologies (NAACL HLT).

Grefenstette, E. and Sadrzadeh, M. (2015). Concrete
models and empirical evaluations for the categor-
ical compositional distributional model of mean-
ing. Computational Linguistics.

Grissom II, A. C., Boyd-Graber, J., He, H., Morgan,
J., and Daumé III, H. (2014). Don’t until the final
verb wait: Reinforcement learning for simultane-
ous machine translation. In Proceedings of the
2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 1342–
1352.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delv-
ing deep into rectifiers: Surpassing human-level
performance on imagenet classification. arXiv
preprint arXiv:1502.01852.

Hitchcock, F. L. (1927). The expression of a tensor
or a polyadic as a sum of products. Journal of
Mathematics and Physics, (6):164–189.

Kiros, R., Salakhutdinov, R., and Zemel, R. (2014).

180

Multimodal neural language models. In Proceed-
ings of the 31st International Conference on Ma-
chine Learning (ICML-14), pages 595–603.

Klakow, D. and Peters, J. (2002). Testing the cor-
relation of word error rate and perplexity. Speech
Communication, 38(1):19–28.

Konstas, I. and Keller, F. (2015). Semantic role
labeling improves incremental parsing. In Pro-
ceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the
7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 1191–1201, Beijing, China. Association for
Computational Linguistics.

Lenci, A. (2011). Composing and updating verb ar-
gument expectations: A distributional semantic
model. In Proceedings of the 2Nd Workshop on
Cognitive Modeling and Computational Linguis-
tics, CMCL ’11, pages 58–66, Stroudsburg, PA,
USA. Association for Computational Linguistics.

McClelland, J. L., St. John, M., and Taraban, R.
(1989). Sentence comprehension: A parallel dis-
tributed processing approach. Language and cog-
nitive processes, 4(3-4):SI287–SI335.

McRae, K., Spivey-Knowlton, M. J., and Tanen-
haus, M. K. (1998). Modeling the influence of
thematic fit (and other constraints) in on-line sen-
tence comprehension. Journal of Memory and
Language, 38(3):283–312.

Memisevic, R. and Hinton, G. E. (2010). Learning
to represent spatial transformations with factored
higher-order Boltzmann machines. Neural Com-
putation, 22(6):1473–1492.

Mikolov, T., Karafiát, M., Burget, L., Cernockỳ,
J., and Khudanpur, S. (2010). Recurrent neu-
ral network based language model. In INTER-
SPEECH 2010, 11th Annual Conference of the In-
ternational Speech Communication Association,
Makuhari, Chiba, Japan, September 26-30, 2010,
pages 1045–1048.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S.,
and Dean, J. (2013). Distributed representations
of words and phrases and their compositionality.
In Advances in neural information processing sys-
tems, pages 3111–3119.

Padó, U. (2007). The integration of syntax and se-
mantic plausibility in a wide-coverage model of
human sentence processing. PhD thesis, Saarland
University.

Padó, U., Crocker, M. W., and Keller, F. (2009).
A probabilistic model of semantic plausibil-
ity in sentence processing. Cognitive Science,
33(5):794–838.

Rumelhart, D. E., Hinton, G. E., and Williams,
R. J. (1986). Learning representations by back-
propagating errors. NATURE, 323:9.

Sayeed, A. and Demberg, V. (2014). Combining
unsupervised syntactic and semantic models of
thematic fit. In Proceedings of the first Italian
Conference on Computational Linguistics (CLiC-
it 2014).

Sayeed, A., Demberg, V., and Shkadzko, P. (2015).
An exploration of semantic features in an unsu-
pervised thematic fit evaluation framework. In IJ-
CoL vol. 1, n. 1 december 2015: Emerging Topics
at the First Italian Conference on Computational
Linguistics, pages 25–40. Accademia University
Press.

St. John, M. F. and McClelland, J. L. (1990).
Learning and applying contextual constraints in
sentence comprehension. Artificial Intelligence,
46(1-2):217–257.

Steiger, J. H. (1980). Tests for comparing elements
of a correlation matrix. Psychological Bulletin,
87(2):245.

Sutskever, I., Martens, J., and Hinton, G. E. (2011).
Generating text with recurrent neural networks. In
Proceedings of the 28th International Conference
on Machine Learning (ICML-11), pages 1017–
1024.

Tan, M., Zhou, W., Zheng, L., and Wang, S. (2012).
A scalable distributed syntactic, semantic, and
lexical language model. Computational Linguis-
tics, 38(3):631–671.

Van de Cruys, T. (2014). A neural network approach
to selectional preference acquisition. In Proceed-
ings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 26–35.

181

Vandekerckhove, B., Sandra, D., and Daelemans, W.
(2009). A robust and extensible exemplar-based
model of thematic fit. In EACL 2009, 12th Con-
ference of the European Chapter of the Associa-
tion for Computational Linguistics, Proceedings
of the Conference, Athens, Greece, March 30 -
April 3, 2009, pages 826–834.

182

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 183–191,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Context-Dependent Sense Embedding∗

Lin Qiu† and Kewei Tu‡ and Yong Yu†
† Shanghai Jiao Tong University, Shanghai, China, {lqiu,yyu}@apex.sjtu.edu.cn

‡ ShanghaiTech University, Shanghai, China, tukw@shanghaitech.edu.cn

Abstract

Word embedding has been widely studied and
proven helpful in solving many natural lan-
guage processing tasks. However, the ambi-
guity of natural language is always a prob-
lem on learning high quality word embed-
dings. A possible solution is sense embed-
ding which trains embedding for each sense
of words instead of each word. Some re-
cent work on sense embedding uses context
clustering methods to determine the senses of
words, which is heuristic in nature. Other
work creates a probabilistic model and per-
forms word sense disambiguation and sense
embedding iteratively. However, most of the
previous work has the problems of learning
sense embeddings based on imperfect word
embeddings as well as ignoring the depen-
dency between sense choices of neighboring
words. In this paper, we propose a novel
probabilistic model for sense embedding that
is not based on problematic word embedding
of polysemous words and takes into account
the dependency between sense choices. Based
on our model, we derive a dynamic program-
ming inference algorithm and an Expectation-
Maximization style unsupervised learning al-
gorithm. The empirical studies show that our
model outperforms the state-of-the-art model
on a word sense induction task by a 13% rela-
tive gain.

1 Introduction

Distributed representation of words (aka word em-
bedding) aims to learn continuous-valued vectors to

∗The second author was supported by the National Natural
Science Foundation of China (61503248).

represent words based on their context in a large cor-
pus. They can serve as input features for algorithms
of natural language processing (NLP) tasks. High
quality word embeddings have been proven helpful
in many NLP tasks (Collobert and Weston, 2008;
Turian et al., 2010; Collobert et al., 2011; Maas
et al., 2011; Chen and Manning, 2014). Recently,
with the development of deep learning, many novel
neural network architectures are proposed for train-
ing high quality word embeddings (Mikolov et al.,
2013a; Mikolov et al., 2013b).

However, since natural language is intrinsically
ambiguous, learning one vector for each word may
not cover all the senses of the word. In the case of a
multi-sense word, the learned vector will be around
the average of all the senses of the word in the em-
bedding space, and therefore may not be a good rep-
resentation of any of the senses. A possible solution
is sense embedding which trains a vector for each
sense of a word. There are two key steps in training
sense embeddings. First, we need to perform word
sense disambiguation (WSD) or word sense induc-
tion (WSI) to determine the senses of words in the
training corpus. Then, we need to train embedding
vectors for word senses according to their contexts.

Early work on sense embedding (Reisinger and
Mooney, 2010; Huang et al., 2012; Chen et al.,
2014; Neelakantan et al., 2014; Kageback et al.,
2015; Li and Jurafsky, 2015) proposes context clus-
tering methods which determine the sense of a word
by clustering aggregated embeddings of words in its
context. This kind of methods is heuristic in nature
and relies on external knowledge from lexicon like
WordNet (Miller, 1995).

183

Recently, sense embedding methods based on
complete probabilistic models and well-defined
learning objective functions (Tian et al., 2014; Bar-
tunov et al., 2016; Jauhar et al., 2015) become
more popular. These methods regard the choice of
senses of the words in a sentence as hidden vari-
ables. Learning is therefore done with expectation-
maximization style algorithms, which alternate be-
tween inferring word sense choices in the training
corpus and learning sense embeddings.

A common problem with these methods is that
they model the sense embedding of each center word
dependent on the word embeddings of its context
words. As we previously explained, word embed-
ding of a polysemous word is not a good repre-
sentation and may negatively influence the qual-
ity of inference and learning. Furthermore, these
methods choose the sense of each word in a sen-
tence independently, ignoring the dependency that
may exist between the sense choices of neighbor-
ing words. We argue that such dependency is im-
portant in word sense disambiguation and therefore
helpful in learning sense embeddings. For exam-
ple, consider the sentence “He cashed a check at
the bank”. Both “check” and “bank” are ambiguous
here. Although the two words hint at banking related
senses, the hint is not decisive (as an alternative in-
terpretation, they may represent a check mark at a
river bank). Fortunately, “cashed” is not ambiguous
and it can help disambiguate “check”. However, if
we consider a small context window in sense em-
bedding, then “cashed” cannot directly help disam-
biguate “bank”. We need to rely on the dependency
between the sense choices of “check” and “bank” to
disambiguate “bank”.

In this paper, we propose a novel probabilistic
model for sense embedding that takes into account
the dependency between sense choices of neighbor-
ing words. We do not learn any word embeddings in
our model and hence avoid the problem with em-
bedding polysemous words discussed above. Our
model has a similar structure to a high-order hidden
Markov model. It contains a sequence of observable
words and latent senses and models the dependency
between each word-sense pair and between neigh-
boring senses in the sequence. The energy of neigh-
boring senses can be modeled using existing word
embedding approaches such as CBOW and Skip-

gram (Mikolov et al., 2013a; Mikolov et al., 2013b).
Given the model and a sentence, we can perform ex-
act inference using dynamic programming and get
the optimal sense sequence of the sentence. Our
model can be learned from an unannotated corpus
by optimizing a max-margin objective using an al-
gorithm similar to hard-EM.

Our main contributions are the following:

1. We propose a complete probabilistic model for
sense embedding. Unlike previous work, we
model the dependency between sense choices
of neighboring words and do not learn sense
embeddings dependent on problematic word
embeddings of polysemous words.

2. Based on our proposed model, we derive an
exact inference algorithm and a max-margin
learning algorithm which do not rely on ex-
ternal knowledge from any knowledge base or
lexicon (except that we determine the numbers
of senses of polysemous words according to an
existing sense inventory).

3. The performance of our model on contex-
tual word similarity task is competitive with
previous work and we obtain a 13% relative
gain compared with previous state-of-the-art
methods on the word sense induction task of
SemEval-2013.

The rest of this paper is organized as follows. We
introduce related work in section 2. Section 3 de-
scribes our models and algorithms in detail. We
present our experiments and results in section 4. In
section 5, a conclusion is given.

2 Related Work

Distributed representation of words (aka word em-
bedding) was proposed in 1986 (Hinton, 1986;
Rumelhart et al., 1986). In 2003, Bengio et al.
(2003) proposed a neural network architecture to
train language models which produced word em-
beddings in the neural network. Mnih and Hin-
ton (2007) replaced the global normalization layer
of Bengio’s model with a tree-structure to accel-
erate the training process. Collobert and Weston
(2008) introduced a max-margin objective function

184

to replace the most computationally expensive max-
likelihood objective function. Recently proposed
Skip-gram model, CBOW model and GloVe model
(Mikolov et al., 2013a; Mikolov et al., 2013b; Pen-
nington et al., 2014) were more efficient than tradi-
tional models by introducing a log-linear layer and
making it possible to train word embeddings with
a large scale corpus. With the development of neu-
ral network and deep learning techniques, there have
been a lot of work based on neural network mod-
els to obtain word embedding (Turian et al., 2010;
Collobert et al., 2011; Maas et al., 2011; Chen and
Manning, 2014). All of them have proven that word
embedding is helpful in NLP tasks.

However, the models above assumed that one
word has only one vector as its representation which
is problematic for polysemous words. Reisinger
and Mooney (2010) proposed a method for con-
structing multiple sense-specific representation vec-
tors for one word by performing word sense dis-
ambiguation with context clustering. Huang et
al. (2012) further extended this context cluster-
ing method and incorporated global context to learn
multi-prototype representation vectors. Chen et al.
(2014) extended the context clustering method and
performed word sense disambiguation according to
sense glosses from WordNet (Miller, 1995). Nee-
lakantan et al. (2014) proposed an extension of the
Skip-gram model combined with context clustering
to estimate the number of senses for each word as
well as learn sense embedding vectors. Instead of
performing word sense disambiguation tasks, Kage-
back et al. (2015) proposed the instance-context em-
bedding method based on context clustering to per-
form word sense induction tasks. Li and Jurafsky
(2015) introduced a multi-sense embedding model
based on the Chinese Restaurant Process and applied
it to several natural language understanding tasks.

Since the context clustering based models are
heuristic in nature and rely on external knowledge,
recent work tends to create probabilistic models for
learning sense embeddings. Tian et al. (2014)
proposed a multi-prototype Skip-gram model and
designed an Expectation-Maximization (EM) algo-
rithm to do word sense disambiguation and learn
sense embedding vectors iteratively. Jauhar et al.
(2015) extended the EM training framework and
retrofitted embedding vectors to the ontology of

WordNet. Bartunov et al. (2016) proposed a non-
parametric Bayesian extension of Skip-gram to au-
tomatically learn the required numbers of represen-
tations for all words and perform word sense induc-
tion tasks.

3 Context-Dependent Sense Embedding
Model

We propose the context-dependent sense embedding
model for training high quality sense embeddings
which takes into account the dependency between
sense choices of neighboring words. Unlike pervi-
ous work, we do not learn any word embeddings in
our model and hence avoid the problem with embed-
ding polysemous words discussed previously. In this
section, we will introduce our model and describe
our inference and learning algorithms.

3.1 Model

We begin with the notation in our model. In a sen-
tence, let wi be the ith word of the sentence and si
be the sense of the ith word. S(w) denotes the set of
all the senses of word w. We assume that the sets of
senses of different words do not overlap. Therefore,
in this paper a word sense can be seen as a lexeme
of the word (Rothe and Schutze, 2015).

Our model can be represented as a Markov net-
work shown in Figure 1. It is similar to a high-
order hidden Markov model. The model contains
a sequence of observable words (w1, w2, . . .) and la-
tent senses (s1, s2, . . .). It models the dependency
between each word-sense pair and between neigh-
boring senses in the sequence. The energy function
is formulated as follows:

E(w, s) =
∑

i

(
E1(wi, si) + E2(si−k, . . . , si+k)

)

(1)

Here w = {wi|1 ≤ i ≤ l} is the set of words in
a sentence with length l and s = {si|1 ≤ i ≤ l} is
the set of senses. The function E1 models the de-
pendency between a word-sense pair. As we assume
that the sets of senses of different words do not over-
lap, we can formulate E1 as follows:

185

s1

w1

s2

w2

s3

w3

s4

w4

s5

w5

Senses

Words

………

………

Figure 1: Context-Dependent Sense Embedding Model with window size k = 1

E1(wi, si) =

{
0 si ∈ S(wi)

+∞ si /∈ S(wi)
(2)

Here we assume that all the matched word-sense
pairs have the same energy, but it would also be
interesting to model the degrees of matching with
different energy values in E1. In Equation 1, the
functionE2 models the compatibility of neighboring
senses in a context window with fixed size k. Ex-
isting embedding approaches like CBOW and Skip-
gram (Mikolov et al., 2013a; Mikolov et al., 2013b)
can be used here to define E2. The formulation us-
ing CBOW is as follows:

E2(si−k, . . . , si+k) =

− σ
(∑

i−k≤j≤i+k,j 6=i

V T (sj)V
′(si)

)
(3)

Here V (s) and V ′(s) are the input and output em-
bedding vectors of sense s. The function σ is an
activation function and we use the sigmoid function
here in our model. The formulation using Skip-gram
can be defined in a similar way:

E2(si−k, . . . , si+k) =

−
∑

i−k≤j≤i+k,j 6=i

σ

(
V T (sj)V

′(si)
)

(4)

3.2 Inference
In this section, we introduce our inference algo-
rithm. Given the model and a sentence w, we want

to infer the most likely values of the hidden variables
(i.e. the optimal sense sequence of the sentence) that
minimize the energy function in Equation 1:

s∗ = arg min
s
E(w, s) (5)

We use dynamic programming to do inference
which is similar to the Viterbi algorithm of the
hidden Markov model. Specifically, for every
valid assignment Ai−2k, . . . , Ai−1 of every sub-
sequence of senses si−2k, . . . , si−1, we define
m(Ai−2k, . . . , Ai−1) as the energy of the best sense
sequence up to position i − 1 that is consistent
with the assignment Ai−2k, . . . , Ai−1. We start with
m(A1, . . . , A2k) = 0 and then recursively compute
m in a left-to-right forward process based on the up-
date formula:

m(Ai−2k+1, . . . , Ai) = min
Ai−2k

(
m(Ai−2k, . . . , Ai−1)

+ E1(wi, Ai) + E2(Ai−2k, . . . , Ai)

)

(6)

Once we finish the forward process, we can retrieve
the best sense sequence with a backward process.
The time complexity of the algorithm is O(n4kl)
where n is the maximal number of senses of a word.
Because most words in a typical sentence have either
a single sense or far less than n senses, the actual
running time of the algorithm is very fast.

3.3 Learning
In this section, we introduce our unsupervised learn-
ing algorithm. In learning, we want to learn all the

186

input and output sense embedding vectors that opti-
mize the following max-margin objective function:

Θ∗ = arg min
Θ

∑

w∈C
min

s

‖w‖∑

i=1

∑

sneg∈Sneg(wi)

max

(
1 + E1(wi, si) + E2(si−k, . . . , si+k)−

E2(si−k, . . . , si−1, sneg, si+1, . . . , si+k), 0

)

(7)

Here Θ is the set of all the parameters includ-
ing V and V ′ for all the senses. C is the set of
training sentences. Our learning objective is similar
to the negative sampling and max-margin objective
proposed for word embedding (Collobert and We-
ston, 2008). Sneg(wi) denotes the set of negative
samples of senses of word wi which is defined with
the following strategy. For a polysemous word wi,
Sneg(wi) = S(wi)\{si}. For the other words with a
single sense, Sneg(wi) is a set of randomly selected
senses of a fixed size.

The objective in Equation 7 can be optimized by
coordinate descent which in our case is equivalent
to the hard Expectation-Maximization algorithm. In
the hard E step, we run the inference algorithm us-
ing the current model parameters to get the optimal
sense sequences of the training sentences. In the M
step, with the sense sequences s of all the sentences
fixed, we learn sense embedding vectors. Assume
we use the CBOW model for E2 (Equation 3), then
the M-step objective function is as follows:

Θ∗ = arg min
Θ

∑

w∈C

‖w‖∑

i=1

∑

sneg∈Sneg(wi)

max

(
1− σ(

∑

i−k≤j≤i+k,j 6=i

V (sj)
TV ′(si))

+ σ(
∑

i−k≤j≤i+k,j 6=i

V (sj)
TV ′(sneg)), 0

)

(8)

Here E1 is omitted because the sense sequences
produced from the E-step always have zero E1

value. Similarly, if we use the Skip-gram model for

E2 (Equation 4), then the M-step objective function
is:

Θ∗ = arg min
Θ

∑

w∈C

‖w‖∑

i=1

∑

i−k≤j≤i+k,j 6=i

∑

sneg∈Sneg(wi)

max

(
1− σ(V (sj)

TV ′(si))

+ σ(V (sj)
TV ′(sneg)), 0

)

(9)

We optimize the M-step objective function using
stochastic gradient descent.

We use a mini batch version of the hard EM al-
gorithm. For each sentence in the training corpus,
we run E-step to infer its sense sequence and then
immediately run M-step (for 1 iteration of stochas-
tic gradient descent) to update the model parameters
based on the senses in the sentence. Therefore, the
batch size of our algorithm depends on the length of
each sentence.

The advantage of using mini batch is twofold.
First, while our learning objective is highly non-
convex (Tian et al., 2014), the randomness in mini
batch hard EM may help us avoid trapping into local
optima. Second, the model parameters are updated
more frequently in mini batch hard EM, resulting in
faster convergence.

Note that before running hard-EM, we need to
determine, for each word w, the size of S(w). In
our experiments, we used the sense inventory pro-
vided by Coarse-Grained English All-Words Task of
SemEval-2007 Task 07 (Navigli et al., 2007) to de-
termine the number of senses for each word. The
sense inventory is a coarse version of WordNet sense
inventory. We do not use the WordNet sense in-
ventory because the senses in WordNet are too fine-
grained and are difficult to recognize even for human
annotators (Edmonds and Kilgarriff, 2002). Since
we do not link our learned senses with external sense
inventories, our approach can be seen as performing
WSI instead of WSD.

4 Experiments

This section presents our experiments and results.
First, we describe our experimental setup includ-
ing the training corpus and the model configuration.

187

Word Nearest Neigbors
bank 1 banking, lender, loan
bank 2 river, canal, basin
bank 3 slope, tilted, slant
apple 1 macintosh, imac, blackberry
apple 2 peach, cherry, pie
date 1 birthdate, birth, day
date 2 appointment, meet, dinner
fox 1 cbs, abc, nbc
fox 2 wolf, deer, rabbit

Table 1: The nearest neighbors of senses of polysemous words

Then, we perform a qualitative evaluation on our
model by presenting the nearest neighbors of senses
of some polysemous words. Finally, we introduce
two different tasks and show the experimental re-
sults on these tasks respectively.

4.1 Experimental Setup

4.1.1 Training Corpus
Our training corpus is the commonly used

Wikipedia corpus. We dumped the October 2015
snapshot of the Wikipedia corpus which contains 3.6
million articles. In our experiments, we removed the
infrequent words with less than 20 occurrences and
the training corpus contains 1.3 billion tokens.

4.1.2 Configuration
In our experiments, we set the context window

size to 5 (5 words before and after the center word).
The embedding vector size is set to 300. The size
of negative sample sets of single-sense words is set
to 5. We trained our model using AdaGrad stochas-
tic gradient decent (Duchi et al., 2010) with initial
learning rate set to 0.025. Our configuration is simi-
lar to that of previous work.

Similar to Word2vec, we initialized our model
by randomizing the sense embedding vectors. The
number of senses of all the words is determined with
the sense inventory provided by Coarse-Grained En-
glish All-Words Task of SemEval-2007 Task 07
(Navigli et al., 2007) as we explained in section 3.3.

4.2 Case Study

In this section, we give a qualitative evaluation of
our model by presenting the nearest neighbors of the

senses of some polysemous words. Table 1 shows
the results of our qualitative evaluation. We list sev-
eral polysemous words in the table, and for each
word, some typical senses of the word are picked.
The nearest neighbors of each sense are listed aside.
We used the cosine distance to calculate the distance
between sense embedding vectors and find the near-
est neighbors.

In Table 1, we can observe that our model pro-
duces good senses for polysemous words. For exam-
ple, the word “bank” can be seen to have three dif-
ferent sense embedding vectors. The first one means
the financial institution. The second one means the
sloping land beside water. The third one means the
action of tipping laterally.

4.3 Word Similarity in Context

This section gives a quantitative evaluation of our
model on word similarity tasks. Word similar-
ity tasks evaluate a model’s performance with the
Spearman’s rank correlation between the similarity
scores of pairs of words given by the model and the
manual labels. However, traditional word similarity
tasks like Wordsim-353 (Finkelstein et al., 2001) are
not suitable for evaluating sense embedding models
because these datasets do not include enough am-
biguous words and there is no context information
for the models to infer and disambiguate the senses
of the words. To overcome this issue, Huang et
al. (2012) released a new dataset named Stanford’s
Contextual Word Similarities (SCWS) dataset. The
dataset consists of 2003 pairs of words along with
human labelled similarity scores and the sentences
containing these words.

Given a pair of words and their contexts, we
can perform inference using our model to disam-
biguate the questioned words. A similarity score can
be calculated with the cosine distance between the
two embedding vectors of the inferred senses of the
questioned words. We also propose another method
for calculating similarity scores. In the inference
process, we compute the energy of each sense choice
of the questioned word and consider the negative en-
ergy as the confidence of the sense choice. Then we
calculate the cosine similarity between all pairs of
senses of the questioned words and compute the av-
erage of similarity weighted by the confidence of the
senses. The first method is named HardSim and the

188

Model
Similarity
Metrics

ρ× 100

Huang AvgSim 62.8
Huang AvgSimC 65.7
Chen AvgSim 66.2
Chen AvgSimC 68.9
Neelakantan AvgSim 67.2
Neelakantan AvgSimC 69.2
Li 69.7
Tian Model M 63.6
Tian Model W 65.4
Bartunov AvgSimC 61.2
Ours + CBOW HardSim 64.3
Ours + CBOW SoftSim 65.6
Ours + Skip-gram HardSim 64.9
Ours + Skip-gram SoftSim 66.1

Table 2: Spearman’s rank correlation results on the SCWS

dataset

second method is named SoftSim.
Table 2 shows the results of our context-

dependent sense embedding models on the SCWS
dataset. In this table, ρ refers to the Spearman’s rank
correlation and a higher value of ρ indicates better
performance. The baseline performances are from
Huang et al. (2012), Chen et al. (2014), Neelakan-
tan et al. (2014), Li and Jurafsky (2015), Tian et
al. (2014) and Bartunov et al. (2016). Here Ours
+ CBOW denotes our model with a CBOW based
energy function and Ours + Skip-gram denotes our
model with a Skip-gram based energy function. The
results above the thick line are the models based
on context clustering methods and the results below
the thick line are the probabilistic models including
ours. The similarity metrics of context clustering
based models are AvgSim and AvgSimC proposed
by Reisinger and Mooney (2010). Tian et al. (2014)
propose two metrics Model M and Model W which
are similar to our HardSim and SoftSim metrics.

From Table 2, we can observe that our model out-
performs the other probabilistic models and is not
as good as the best context clustering based model.
The context clustering based models are overall bet-
ter than the probabilistic models on this task. A
possible reason is that most context clustering based
methods make use of more external knowledge than

probabilistic models. However, note that Faruqui
et al. (2016) presented several problems associated
with the evaluation of word vectors on word simi-
larity datasets and pointed out that the use of word
similarity tasks for evaluation of word vectors is not
sustainable. Bartunov et al. (2016) also suggest that
SCWS should be of limited use for evaluating word
representation models. Therefore, the results on this
task shall be taken with caution. We consider that
more realistic natural language processing tasks like
word sense induction are better for evaluating sense
embedding models.

4.4 Word Sense Induction
In this section, we present an evaluation of our
model on the word sense induction (WSI) tasks. The
WSI task aims to discover the different meanings
for words used in sentences. Unlike a word sense
disambiguation (WSD) system, a WSI system does
not link the sense annotation results to an existing
sense inventory. Instead, it produces its own sense
inventory and links the sense annotation results to
this sense inventory. Our model can be seen as a
WSI system, so we can evaluate our model with WSI
tasks.

We used the dataset from task 13 of SemEval-
2013 as our evaluation set (Jurgens and Klapaftis,
2013). The dataset contains 4664 instances inflected
from one of the 50 lemmas. Both single-sense
instances and instances with a graded mixture of
senses are included in the dataset. In this paper, we
only consider the single sense instances. Jurgens and
Klapaftis (2013) propose two fuzzy measures named
Fuzzy B-Cubed (FBC) and Fuzzy Normalized Mu-
tual Information (FNMI) for comparing fuzzy sense
assignments from WSI systems. the FBC measure
summarizes the performance per instance while the
FNMI measure is based on sense clusters rather than
instances.

Table 3 shows the results of our context-
dependent sense embedding models on this dataset.
Here HM is the harmonic mean of FBC and FNMI.
The result of AI-KU is from Baskaya et al. (2013),
MSSG is from Neelakantan et al. (2014), ICE-
online and ICE-kmeans are from Kageback et al.
(2015). Our models are denoted in the same way
as in the previous section.

From Table 3, we can observe that our models

189

Model FBC(%) FNMI(%) HM
AI-KU 35.1 4.5 8.0
MSSG 45.9 3.7 6.8
ICE-online 48.7 5.5 9.9
ICE-kmeans 51.1 5.9 10.6
Ours + CBOW 53.8 6.3 11.3
Ours + Skip-gram 56.9 6.7 12.0

Table 3: Results of single-sense instances on task 13 of

SemEval-2013

outperform the previous state-of-the-art models and
achieve a 13% relative gain. It shows that our mod-
els can beat context clustering based models on re-
alistic natural language processing tasks.

5 Conclusion

In this paper we propose a novel probabilistic model
for learning sense embeddings. Unlike previous
work, we do not learn sense embeddings dependent
on word embeddings and hence avoid the problem
with inaccurate embeddings of polysemous words.
Furthermore, we model the dependency between
sense choices of neighboring words which can help
us disambiguate multiple ambiguous words in a sen-
tence. Based on our model, we derive a dynamic
programming inference algorithm and an EM-style
unsupervised learning algorithm which do not rely
on external knowledge from any knowledge base
or lexicon except that we determine the number of
senses of polysemous words according to an existing
sense inventory. We evaluate our model both quali-
tatively by case studying and quantitatively with the
word similarity task and the word sense induction
task. Our model is competitive with previous work
on the word similarity task. On the word sense in-
duction task, our model outperforms the state-of-
the-art model and achieves a 13% relative gain.

For the future work, we plan to try learning our
model with soft EM. Besides, we plan to use shared
senses instead of lexemes in our model to improve
the generality of our model. Also, we will study
unsupervised methods to link the learned senses to
existing inventories and to automatically determine
the numbers of senses. Finally, we plan to evaluate
our model with more NLP tasks.

References

Sergey Bartunov, Dmitry Kondrashkin, Anton Osokin,
and Dmitry Vetrov. 2016. Breaking sticks and am-
biguities with adaptive skip-gram.

Osman Baskaya, Enis Sert, Volkan Cirik, and Deniz
Yuret. 2013. Ai-ku: Using substitute vectors and
co-occurrence modeling for word sense induction and
disambiguation. In Second Joint Conference on Lexi-
cal and Computational Semantics (*SEM), Volume 2:
Seventh International Workshop on Semantic Evalua-
tion (SemEval 2013), pages 300–306.

Yoshua Bengio, Holger Schwenk, Jean Sbastien Sencal,
Frderic Morin, and Jean Luc Gauvain. 2003. A neu-
ral probabilistic language model. Journal of Machine
Learning Research, 3(6):1137–1155.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In EMNLP, pages 740–750.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014.
A unified model for word sense representation and dis-
ambiguation. In EMNLP, pages 1025–1035. Associa-
tion for Computational Linguistics.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of the 25th international conference on Machine learn-
ing, pages 160–167. ACM.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

John Duchi, Elad Hazan, and Yoram Singer. 2010.
Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning
Research, 12(7):257–269.

Philip Edmonds and Adam Kilgarriff. 2002. Introduc-
tion to the special issue on evaluating word sense dis-
ambiguation systems. Natural Language Engineering,
8(4):279–291.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi,
and Chris Dyer. 2016. Problems with evaluation of
word embeddings using word similarity tasks. arXiv
preprint arXiv:1605.02276.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2001. Placing search in context: the concept
revisited. In Proceedings of international conference
on World Wide Web, pages 406–414.

G. E. Hinton. 1986. Learning distributed representations
of concepts. In Proceedings of the eighth annual con-
ference of the cognitive science society.

190

Eric H Huang, Richard Socher, Christopher D Manning,
and Andrew Y Ng. 2012. Improving word representa-
tions via global context and multiple word prototypes.
In Proceedings of the 50th Annual Meeting of the Asso-
ciation for Computational Linguistics: Long Papers-
Volume 1, pages 873–882. Association for Computa-
tional Linguistics.

Sujay Kumar Jauhar, Chris Dyer, and Eduard Hovy.
2015. Ontologically grounded multi-sense represen-
tation learning for semantic vector space models. In
Proc. NAACL, pages 683–693.

David Jurgens and Ioannis Klapaftis. 2013. Semeval-
2013 task 13: Word sense induction for graded and
non-graded senses. In Second Joint Conference on
Lexical and Computational Semantics (*SEM), Vol-
ume 2: Seventh International Workshop on Semantic
Evaluation (SemEval 2013), pages 290–299.

Mikael Kageback, Fredrik Johansson, Richard Johans-
son, and Devdatt Dubhashi. 2015. Neural context
embeddings for automatic discovery of word senses.
In Proceedings of NAACL-HLT, pages 25–32.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense em-
beddings improve natural language understanding? In
EMNLP, pages 1722–1732. Association for Computa-
tional Linguistics.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies-Volume 1, pages 142–150. Association
for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. In Workshop at ICLR.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111–3119.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Andriy Mnih and Geoffrey Hinton. 2007. Three new
graphical models for statistical language modelling. In
Proceedings of the Twenty-Fourth International Con-
ference on Machine Learning, pages 641–648.

Roberto Navigli, Kenneth C. Litkowski, and Orin Har-
graves. 2007. Semeval-2007 task 07: coarse-grained
english all-words task. In International Workshop on
Semantic Evaluations, pages 30–35.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per

word in vector space. In EMNLP, pages 1059–1069.
Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Joseph Reisinger and Raymond J Mooney. 2010. Multi-
prototype vector-space models of word meaning. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 109–
117. Association for Computational Linguistics.

Sascha Rothe and Hinrich Schutze. 2015. Autoex-
tend: Extending word embeddings to embeddings for
synsets and lexemes. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics, pages 1793–1803. Association for Com-
putational Linguistics.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. 1986. Learning representation by back-
propagating errors. Nature, 323(6088):533–536.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilistic
model for learning multi-prototype word embeddings.
In COLING, pages 151–160.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method for
semi-supervised learning. In Proceedings of the 48th
annual meeting of the association for computational
linguistics, pages 384–394. Association for Computa-
tional Linguistics.

191

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 192–202,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Jointly Embedding Knowledge Graphs and Logical Rules

Shu Guo†‡, Quan Wang†‡∗, Lihong Wang§, Bin Wang†‡, Li Guo†‡
†Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

‡University of Chinese Academy of Sciences, Beijing 100049, China
{guoshu,wangquan,wangbin,guoli}@iie.ac.cn

§National Computer Network Emergency Response Technical Team
Coordination Center of China, Beijing 100029, China

wlh@isc.org.cn

Abstract

Embedding knowledge graphs into continuous
vector spaces has recently attracted increasing
interest. Most existing methods perform the
embedding task using only fact triples. Logi-
cal rules, although containing rich background
information, have not been well studied in this
task. This paper proposes a novel method of
jointly embedding knowledge graphs and log-
ical rules. The key idea is to represent and
model triples and rules in a unified framework.
Specifically, triples are represented as atomic
formulae and modeled by the translation as-
sumption, while rules represented as complex
formulae and modeled by t-norm fuzzy logic-
s. Embedding then amounts to minimizing a
global loss over both atomic and complex for-
mulae. In this manner, we learn embeddings
compatible not only with triples but also with
rules, which will certainly be more predictive
for knowledge acquisition and inference. We
evaluate our method with link prediction and
triple classification tasks. Experimental re-
sults show that joint embedding brings signif-
icant and consistent improvements over state-
of-the-art methods. Particularly, it enhances
the prediction of new facts which cannot even
be directly inferred by pure logical inference,
demonstrating the capability of our method to
learn more predictive embeddings.

1 Introduction

Knowledge graphs (KGs) provide rich structured in-
formation and have become extremely useful re-
sources for many NLP related applications like

∗Corresponding author: Quan Wang.

word sense disambiguation (Wasserman-Pritsker et
al., 2015) and information extraction (Hoffmann et
al., 2011). A typical KG represents knowledge as
multi-relational data, stored in triples of the for-
m (head entity, relation, tail entity), e.g., (Paris,
Capital-Of, France). Although powerful in
representing structured data, the symbolic nature of
such triples makes KGs, especially large-scale KGs,
hard to manipulate.

Recently, a promising approach, namely knowl-
edge graph embedding, has been proposed and suc-
cessfully applied to various KGs (Nickel et al., 2012;
Socher et al., 2013; Bordes et al., 2014). The key
idea is to embed components of a KG including en-
tities and relations into a continuous vector space,
so as to simplify the manipulation while preserving
the inherent structure of the KG. The embeddings
contain rich semantic information about entities and
relations, and can significantly enhance knowledge
acquisition and inference (Weston et al., 2013).

Most existing methods perform the embedding
task based solely on fact triples (Bordes et al., 2013;
Wang et al., 2014; Nickel et al., 2016). The only re-
quirement is that the learned embeddings should be
compatible with those facts. While logical rules con-
tain rich background information and are extreme-
ly useful for knowledge acquisition and inference
(Jiang et al., 2012; Pujara et al., 2013), they have not
been well studied in this task. Wang et al. (2015)
and Wei et al. (2015) tried to leverage both em-
bedding methods and logical rules for KG comple-
tion. In their work, however, rules are modeled sep-
arately from embedding methods, serving as post-
processing steps, and thus will not help to obtain

192

���������

	��
�

���������	�

����

����������	�

����

����������������������

�������������������

Figure 1: Simple illustration of KALE.

better embeddings. Rocktäschel et al. (2015) recent-
ly proposed a joint model which injects first-order
logic into embeddings. But it focuses on the rela-
tion extraction task, and creates vector embeddings
for entity pairs rather than individual entities. Since
entities do not have their own embeddings, relations
between unpaired entities cannot be effectively dis-
covered (Chang et al., 2014).

In this paper we introduce KALE, a new approach
that learns entity and relation Embeddings by joint-
ly modeling Knowledge And Logic. Knowledge
triples are taken as atoms and modeled by the trans-
lation assumption, i.e., relations act as translations
between head and tail entities (Bordes et al., 2013).
A triple (ei, rk, ej) is scored by ∥ei + rk − ej∥1,
where ei, rk, and ej are the vector embeddings for
entities and relations. The score is then mapped to
the unit interval [0, 1] to indicate the truth value of
that triple. Logical rules are taken as complex for-
mulae constructed by combining atoms with logical
connectives (e.g., ∧ and ⇒), and modeled by t-norm
fuzzy logics (Hájek, 1998). The truth value of a rule
is a composition of the truth values of the constituen-
t atoms, defined by specific logical connectives. In
this way, KALE represents triples and rules in a uni-
fied framework, as atomic and complex formulae re-
spectively. Figure 1 gives a simple illustration of the
framework. After unifying triples and rules, KALE
minimizes a global loss involving both of them to
obtain entity and relation embeddings. The learned
embeddings are therefore compatible not only with
triples but also with rules, which will definitely be
more predictive for knowledge acquisition and in-
ference.

The main contributions of this paper are summa-
rized as follows. (i) We devise a unified framework

that jointly models triples and rules to obtain more
predictive entity and relation embeddings. The new
framework KALE is general enough to handle any
type of rules that can be represented as first-order
logic formulae. (ii) We evaluate KALE with link
prediction and triple classification tasks on WordNet
(Miller, 1995) and Freebase (Bollacker et al., 2008).
Experimental results show significant and consistent
improvements over state-of-the-art methods. Partic-
ularly, joint embedding enhances the prediction of
new facts which cannot even be directly inferred by
pure logical inference, demonstrating the capability
of KALE to learn more predictive embeddings.

2 Related Work

Recent years have seen rapid growth in KG em-
bedding methods. Given a KG, such methods aim
to encode its entities and relations into a continu-
ous vector space, by using neural network architec-
tures (Socher et al., 2013; Bordes et al., 2013; Bor-
des et al., 2014), matrix/tensor factorization tech-
niques (Nickel et al., 2011; Riedel et al., 2013;
Chang et al., 2014), or Bayesian clustering strate-
gies (Kemp et al., 2006; Xu et al., 2006; Sutskever et
al., 2009). Among these methods, TransE (Bordes et
al., 2013), which models relations as translating op-
erations, achieves a good trade-off between predic-
tion accuracy and computational efficiency. Various
extensions like TransH (Wang et al., 2014) and Tran-
sR (Lin et al., 2015b) are later proposed to further
enhance the prediction accuracy of TransE. Most ex-
isting methods perform the embedding task based
solely on triples contained in a KG. Some recent
work tries to further incorporate other types of infor-
mation available, e.g., relation paths (Neelakantan et
al., 2015; Lin et al., 2015a; Luo et al., 2015), relation
type-constraints (Krompaßet al., 2015), entity type-
s (Guo et al., 2015), and entity descriptions (Zhong
et al., 2015), to learn better embeddings.

Logical rules have been widely studied in knowl-
edge acquisition and inference, usually on the basis
of Markov logic networks (Richardson and Domin-
gos, 2006; Bröcheler et al., 2010; Pujara et al., 2013;
Beltagy and Mooney, 2014). Recently, there has
been growing interest in combining logical rules and
embedding models. Wang et al. (2015) and Wei et
al. (2015) tried to utilize rules to refine predictions

193

made by embedding models, via integer linear pro-
gramming or Markov logic networks. In their work,
however, rules are modeled separately from embed-
ding models, and will not help obtain better embed-
dings. Rocktäschel et al. (2015) proposed a joint
model that injects first-order logic into embeddings.
But their work focuses on relation extraction, cre-
ating vector embeddings for entity pairs, and hence
fails to discover relations between unpaired entities.
This paper, in contrast, aims at learning more pre-
dictive embeddings by jointly modeling knowledge
and logic. Since each entity has its own embedding,
our approach can successfully make predictions be-
tween unpaired entities, providing greater flexibility
for knowledge acquisition and inference.

3 Jointly Embedding Knowledge and Logic

We first describe the formulation of joint embed-
ding. We are given a KG containing a set of triples
K = {(ei, rk, ej)}, with each triple composed of t-
wo entities ei, ej ∈ E and their relation rk ∈ R.
Here E is the entity vocabulary and R the relation
set. Besides the triples, we are given a set of logical
rules L, either specified manually or extracted auto-
matically. A logical rule is encoded, for example,
in the form of ∀x, y : (x, rs, y) ⇒ (x, rt, y), stat-
ing that any two entities linked by relation rs should
also be linked by relation rt. Entities and relations
are associated with vector embeddings, denoted by
e, r ∈ Rd, representing their latent semantics. The
proposed method, KALE, aims to learn these em-
beddings by jointly modeling knowledge triples K
and logical rules L.

3.1 Overview

To enable joint embedding, a key ingredient of
KALE is to unify triples and rules, in terms of first-
order logic (Rocktäschel et al., 2014; Rocktäschel et
al., 2015). A triple (ei, rk, ej) is taken as a ground
atom which applies a relation rk to a pair of entities
ei and ej . Given a logical rule, it is first instantiated
with concrete entities in the vocabulary E , resulting
in a set of ground rules. For example, a universal-
ly quantified rule ∀x, y : (x,Capital-Of, y) ⇒
(x,Located-In, y) might be instantiated with the
concrete entities of Paris and France, giving the
ground rule (Paris,Capital-Of,France) ⇒

(Paris,Located-In,France).1 A ground rule
can then be interpreted as a complex formula, con-
structed by combining ground atoms with logical
connectives (e.g. ∧ and ⇒).

Let F denote the set of training formulae, both
atomic (triples) and complex (ground rules). KALE
further employs a truth function I : F → [0, 1] to
assign a soft truth value to each formula, indicating
how likely a triple holds or to what degree a ground
rule is satisfied. The truth value of a triple is deter-
mined by the corresponding entity and relation em-
beddings. The truth value of a ground rule is deter-
mined by the truth values of the constituent triples,
via specific logical connectives. In this way, KALE
models triples and rules in a unified framework. See
Figure 1 for an overview. Finally, KALE minimizes
a global loss over the training formulae F to learn
entity and relation embeddings compatible with both
triples and rules. In what follows, we describe the
key components of KALE, including triple model-
ing, rule modeling, and joint learning.

3.2 Triple Modeling
To model triples we follow TransE (Bordes et al.,
2013), as it is simple and efficient while achieving
state-of-the-art predictive performance. Specifically,
given a triple (ei, rk, ej), we model the relation em-
bedding rk as a translation between the entity em-
beddings ei and ej , i.e., we want ei + rk ≈ ej when
the triple holds. The intuition here originates from
linguistic regularities such as France− Paris =
Germany − Berlin (Mikolov et al., 2013). In
relational data, such analogy holds because of the
certain relation Capital-Of, through which we
will get Paris + Capital-Of = France and
Berlin + Capital-Of = Germany. Then, we
score each triple on the basis of ∥ei + rk − ej∥1,
and define its soft truth value as

I (ei, rk, ej) = 1 − 1

3
√

d
∥ei + rk − ej∥1 , (1)

where d is the dimension of the embedding space.
It is easy to see that I (ei, rk, ej) ∈ [0, 1] with the
constraints ∥ei∥2 ≤ 1, ∥ej∥2 ≤ 1, and ∥rk∥2 ≤

1Our approach actually takes as input rules represented in
first-order logic, i.e., those with quantifiers such as ∀. But it
could be hard to deal with quantifiers, so we use ground rules,
i.e., propositional statements during learning.

194

1.2 I (ei, rk, ej) is expected to be large if the triple
holds, and small otherwise.

3.3 Rule Modeling
To model rules we use t-norm fuzzy logics (Hájek,
1998), which define the truth value of a complex for-
mula as a composition of the truth values of its con-
stituents, through specific t-norm based logical con-
nectives. We follow Rocktäschel et al. (2015) and
use the product t-norm. The compositions associat-
ed with logical conjunction (∧), disjunction (∨), and
negation (¬) are defined as follow:

I(f1 ∧ f2) = I(f1)·I(f2),

I(f1 ∨ f2) = I(f1) + I(f2) − I(f1)·I(f2),

I(¬f1) = 1 − I(f1),

where f1 and f2 are two constituent formulae, either
atomic or complex. Given these compositions, the
truth value of any complex formula can be calculat-
ed recursively, e.g.,

I(¬f1 ∧ f2) = I(f2) − I(f1)·I(f2),

I(f1 ⇒ f2) = I(f1)·I(f2) − I(f1) + 1.

This paper considers two types of rules. The first
type is ∀x, y : (x, rs, y)⇒(x, rt, y). Given a ground
rule f , (em, rs, en) ⇒ (em, rt, en), the truth value
is calculated as:

I(f)=I(em, rs, en)·I(em, rt, en)

−I(em, rs, en) + 1, (2)

where I(·,·,·) is the truth value of a constituent triple,
defined by Eq. (1). The second type is ∀x, y, z :
(x, rs1 , y) ∧ (y, rs2 , z) ⇒ (x, rt, z). Given a ground
rule f , (eℓ, rs1 , em)∧ (em, rs2 , en) ⇒ (eℓ, rt, en),
the truth value is:

I(f)=I(eℓ, rs1 , em)·I(em, rs2 , en)·I(eℓ, rt, en)

−I(eℓ, rs1 , em)·I(em, rs2 , en) + 1. (3)

The larger the truth values are, the better the ground
rules are satisfied. It is easy to see that besides these
two types of rules, the KALE framework is general
enough to handle any rules that can be represented
as first-order logic formulae. The investigation of
other types of rules will be left for future work.

2Note that 0 ≤ ∥ei + rk − ej∥1 ≤ ∥ei∥1 + ∥rk∥1 +

∥ej∥1 ≤ 3
√

d, where the last inequality holds because ∥x∥1 =∑
i |xi| ≤

√
d

∑
i x2

i =
√

d ∥x∥2 for any x ∈ Rd, according
to the Cauchy-Schwarz inequality.

3.4 Joint Learning

After unifying triples and rules as atomic and com-
plex formulae, we minimize a global loss over this
general representation to learn entity and relation
embeddings. We first construct a training set F con-
taining all positive formulae, including (i) observed
triples, and (ii) ground rules in which at least one
constituent triple is observed. Then we minimize
a margin-based ranking loss, enforcing positive for-
mulae to have larger truth values than negative ones:

min
{e},{r}

∑

f+∈F

∑

f−∈Nf+

[
γ − I(f+) + I(f−)

]
+

,

s.t. ∥e∥2 ≤ 1,∀e ∈ E ; ∥r∥2 ≤ 1, ∀r ∈ R. (4)

Here f+ ∈ F is a positive formula, f− ∈ Nf+ a
negative one constructed for f+, γ a margin sepa-
rating positive and negative formulae, and [x]+ ,
max{0, x}. If f+ , (ei, rk, ej) is a triple, we con-
struct f− by replacing either ei or ej with a random
entity e ∈ E , and calculate its truth value according
to Eq. (1). For example, we might generate a neg-
ative instance (Paris,Capital-Of,Germany)
for the triple (Paris,Capital-Of,France). If
f+ , (em, rs, en) ⇒ (em, rt, en) or (eℓ, rs1 , em) ∧
(em, rs2 , en) ⇒ (eℓ, rt, en) is a ground rule, we con-
struct f− by replacing rt in the consequent with a
random relation r ∈ R, and calculate its truth value
according to Eq. (2) or Eq. (3). For example, given a
ground rule (Paris,Capital-Of,France) ⇒
(Paris,Located-In,France), a possible neg-
ative instance (Paris,Capital-Of,France)⇒
(Paris,Has-Spouse,France) could be gener-
ated. We believe that most instances (both triples
and ground rules) generated in this way are truly
negative. Stochastic gradient descent in mini-batch
mode is used to carry out the minimization. To satis-
fy the ℓ2-constraints, e and r are projected to the unit
ℓ2-ball before each mini-batch. Embeddings learned
in this way are required to be compatible with not
only triples but also rules.

3.5 Discussions

Complexity. We compare KALE with several state-
of-the-art embedding methods in space complexity
and time complexity (per iteration) during learning.
Table 1 shows the results, where d is the dimension

195

Method Complexity (Space/Time)

SE (Bordes et al., 2011) ned+2nrd
2 O(ntd

2)
LFM (Jenatton et al., 2012) ned+nrd

2 O(ntd
2)

TransE (Bordes et al., 2013) ned+nrd O(ntd)
TransH (Wang et al., 2014) ned+2nrd O(ntd)
TransR (Lin et al., 2015b) ned+nr(d

2+d) O(ntd
2)

KALE (this paper) ned+nrd O(ntd+ngd)

Table 1: Complexity of different embedding methods.

of the embedding space, and ne/nr/nt/ng is the num-
ber of entities/relations/triples/ground rules. The re-
sults indicate that incorporating additional rules will
not significantly increase the space or time complex-
ity of KALE, keeping the model complexity almost
the same as that of TransE (optimal among the meth-
ods listed in the table). But please note that KALE
needs to ground universally quantified rules before
learning, which further requires O(nunt/nr) in time
complexity. Here, nu is the number of universally
quantified rules, and nt/nr is the averaged number
of observed triples per relation. During grounding,
we select those ground rules with at least one triple
observed. Grounding is required only once before
learning, and is not included during the iterations.

Extensions. Actually, our approach is quite general.
(i) Besides TransE, a variety of embedding method-
s, e.g., those listed in Table 1, can be used for triple
modeling (Section 3.2), as long as we further define
a mapping f : R → [0, 1] to map original scores to
soft truth values. (ii) Besides the two types of rules
introduced in Section 3.3, other types of rules can
also be handled as long as they can be represented
as first-order logic formulae. (iii) Besides the prod-
uct t-norm, other types of t-norm based fuzzy logics
can be used for rule modeling (Section 3.3), e.g., the
Łukasiewicz t-norm used in probabilistic soft log-
ic (Bröcheler et al., 2010) and the minimum t-norm
used in fuzzy description logic (Stoilos et al., 2007).
(iv) Besides the pairwise ranking loss, other type-
s of loss functions can be designed for joint learn-
ing (Section 3.4), e.g., the pointwise squared loss or
the logarithmic loss (Rocktäschel et al., 2014; Rock-
täschel et al., 2015).

4 Experiments

We empirically evaluate KALE with two tasks: (i)
link prediction and (ii) triple classification.

Dataset # Ent # Rel # Train/Valid/Test-I/Test-II # Rule

FB122 9,738 122 91,638 9,595 5,057 6,186 78,488
WN18 40,943 18 141,442 5,000 1,394 3,606 119,222

Table 3: Statistics of datasets.

4.1 Experimental Setup

Datasets. We use two datasets: WN18 and FB122.
WN18 is a subgraph of WordNet containing 18 rela-
tions. FB122 is composed of 122 Freebase relations
regarding the topics of “people”, “location”, and “s-
ports”, extracted from FB15K. Both WN18 and F-
B15K are released by Bordes et al. (2013)3. Triples
on each dataset are split into training/validation/test
sets, used for model training, parameter tuning, and
evaluation respectively. For WN18 we use the o-
riginal data split, and for FB122 we extract triples
associated with the 122 relations from the training,
validation, and test sets of FB15K.

We further create logical rules for each dataset,
in the form of ∀x, y : (x, rs, y) ⇒ (x, rt, y) or
∀x, y, z : (x, rs1 , y) ∧ (y, rs2 , z) ⇒ (x, rt, z). To
do so, we first run TransE to get entity and relation
embeddings, and calculate the truth value for each
of such rules according to Eq. (2) or Eq. (3). Then
we rank all such rules by their truth values and man-
ually filter those ranked at the top. We finally create
47 rules on FB122, and 14 on WN18 (see Table 2 for
examples). The rules are then instantiated with con-
crete entities (grounding). Ground rules in which at
least one constituent triple is observed in the train-
ing set are used in joint learning.

Note that some of the test triples can be inferred
by directly applying these rules on the training set
(pure logical inference). On each dataset, we fur-
ther split the test set into two parts, test-I and test-II.
The former contains triples that cannot be directly
inferred by pure logical inference, and the latter the
remaining test triples. Table 3 gives some statistics
of the datasets, including the number of entities, re-
lations, triples in training/validation/test-I/test-II set,
and ground rules.

Comparison settings. As baselines we take the em-
bedding techniques of TransE, TransH, and Tran-
sR. TransE models relation embeddings as transla-
tion operations between entity embeddings. TransH

3https://everest.hds.utc.fr/doku.php?id=en:smemlj12

196

∀x, y : /sports/athlete/team(x, y) ⇒ /sports/sports team/player(y, x)
∀x, y : /location/country/capital(x, y) ⇒ /location/location/contains(x, y)
∀x, y, z : /people/person/nationality(x, y) ∧ /location/country/official language(y, z) ⇒ /people/person/languages(x, z)
∀x, y, z : /country/administrative divisions(x, y) ∧ /administrative division/capital(y, z) ⇒ /country/second level divisions(x, z)

∀x, y : hypernym(x, y) ⇒ hyponym(y, x)
∀x, y : instance hypernym(x, y) ⇒ instance hyponym(y, x)
∀x, y : synset domain topic of(x, y) ⇒ member of domain topic(y, x)

Table 2: Examples of rules created.

and TransR are extensions of TransE. They further
allow entities to have distinct embeddings when in-
volved in different relations, by introducing relation-
specific hyperplanes and projection matrices respec-
tively. All the three methods have been demonstrat-
ed to perform well on WordNet and Freebase data.

We further test our approach in three different sce-
narios. (i) KALE-Trip uses triples alone to perform
the embedding task, i.e., only the training triples are
included in the optimization Eq. (4). It is a linear-
ly transformed version of TransE. The only differ-
ence is that relation embeddings are normalized in
KALE-Trip, but not in TransE. (ii) KALE-Pre first
repeats pure logical inference on the training set and
adds inferred triples as additional training data, until
no further triples can be inferred. Both original and
inferred triples are then included in the optimization.
For example, given a logical rule ∀x, y : (x, rs, y)⇒
(x, rt, y), a new triple (ei, rt, ej) can be inferred if
(ei, rs, ej) is observed in the training set, and both
triples will be used as training instances for embed-
ding. (iii) KALE-Joint is the joint learning scenari-
o, which considers both training triples and ground
rules in the optimization. In the aforementioned
example, training triple (ei, rs, ej) and ground rule
(ei, rs, ej) ⇒ (ei, rt, ej) will be used in the train-
ing process of KALE-Joint, without explicitly in-
corporating triple (ei, rt, ej). Among the method-
s, TransE/TransH/TransR and KALE-Trip use only
triples, while KALE-Pre/KALE-Joint further incor-
porates rules, before or during embedding.

Implementation details. We use the code provid-
ed by Bordes et al. (2013) for TransE4, and the code
provided by Lin et al. (2015b) for TransH and Tran-
sR5. KALE is implemented in Java. Note that Lin
et al. (2015b) initialized TransR with the results of

4https://github.com/glorotxa/SME
5https://github.com/mrlyk423/relation extraction

TransE. However, to ensure fair comparison, we ran-
domly initialize all the methods in our experiments.
For all the methods, we create 100 mini-batches on
each dataset, and tune the embedding dimension d
in {20, 50, 100}. For TransE, TransH, and Tran-
sR which score a triple by a distance in R+, we
tune the learning rate η in {0.001, 0.01, 0.1}, and
the margin γ in {1, 2, 3, 4}. For KALE which s-
cores a triple (as well as a ground rule) by a soft
truth value in the unit interval [0, 1], we set the learn-
ing rate η in {0.01, 0.02, 0.05, 0.1}, and the mar-
gin γ in {0.1, 0.12, 0.15, 0.2}. KALE allows triples
and rules to have different weights, with the former
fixed to 1, and the latter (denoted by λ) selected in
{0.001, 0.01, 0.1, 1}.

4.2 Link Prediction
This task is to complete a triple (ei, rk, ej) with ei or
ej missing, i.e., predict ei given (rk, ej) or predict ej

given (ei, rk).

Evaluation protocol. We follow the same evalua-
tion protocol used in TransE (Bordes et al., 2013).
For each test triple (ei, rk, ej), we replace the head
entity ei by every entity e′

i in the dictionary, and cal-
culate the truth value (or distance) for the corrupted
triple (e′

i, rk, ej). Ranking the truth values in de-
scending order (or the distances in ascending order),
we get the rank of the correct entity ei. Similarly, we
can get another rank by corrupting the tail entity ej .
Aggregated over all the test triples, we report three
metrics: (i) the mean reciprocal rank (MRR), (ii) the
median of the ranks (MED), and (iii) the proportion
of ranks no larger than n (HITS@N). We do not re-
port the averaged rank (i.e., the “Mean Rank” metric
used by Bordes et al. (2013)), since it is usually sen-
sitive to outliers (Nickel et al., 2016).

Note that a corrupted triple may exist in KGs,
which should also be taken as a valid triple. Consid-
er a test triple (Paris,Located-In,France)

197

Test-I Test-II Test-ALL

MRR MED
HITS@N (%)

MRR MED
HITS@N (%)

MRR MED
HITS@N (%)

3 5 10 3 5 10 3 5 10

FB
12

2

TransE 0.220 29.0 25.7 32.4 40.6 0.296 5.0 40.0 50.8 57.8 0.262 10.0 33.6 42.5 50.0
TransH 0.218 29.0 25.0 31.3 39.2 0.297 6.0 37.5 48.5 56.3 0.249 12.0 31.9 40.7 48.6
TransR 0.219 31.0 24.7 30.8 38.9 0.273 9.0 32.4 42.8 51.6 0.261 15.0 28.9 37.4 45.9
KALE-Trip 0.201 25.0 23.9 31.6 40.1 0.309 5.0 40.9 51.3 58.0 0.261 11.0 33.3 42.4 50.0
KALE-Pre 0.203 25.0 24.1 31.7 40.2 0.368 4.0 47.3 55.4 61.4 0.294 9.0 36.9 44.8 51.9
KALE-Joint 0.229 21.0 26.3 33.8 42.2 0.357 4.0 44.0 53.0 59.3 0.299 9.0 36.1 44.3 51.6

W
N

18

TransE 0.248 4.0 40.9 60.6 77.0 0.363 3.0 59.4 70.8 81.4 0.331 3.0 54.3 67.9 80.2
TransH 0.242 4.0 39.2 60.1 75.9 0.482 2.0 63.5 70.8 79.3 0.415 3.0 56.7 67.8 78.3
TransR 0.240 4.0 40.1 57.7 71.6 0.449 3.0 55.7 64.5 74.3 0.391 3.0 51.3 62.6 73.5
KALE-Trip 0.250 4.0 40.6 62.3 78.1 0.393 2.0 61.9 71.2 80.6 0.353 3.0 56.0 68.7 79.9
KALE-Pre 0.248 4.0 40.4 61.5 78.2 0.451 3.0 69.6 77.5 85.3 0.395 3.0 61.4 73.0 83.3
KALE-Joint 0.260 4.0 43.6 64.1 79.2 0.563 2.0 67.6 73.8 81.0 0.478 2.0 60.9 71.1 80.5

Table 4: Link prediction results on the test-I, test-II, and test-all sets of FB122 and WN18 (raw setting).

Test-I Test-II Test-ALL

MRR MED
HITS@N (%)

MRR MED
HITS@N (%)

MRR MED
HITS@N (%)

3 5 10 3 5 10 3 5 10

FB
12

2

TransE 0.296 13.0 36.0 41.5 48.1 0.630 2.0 77.5 82.8 88.4 0.480 2.0 58.9 64.2 70.2
TransH 0.280 15.0 33.6 39.1 46.4 0.606 2.0 70.1 75.4 82.0 0.460 3.0 53.7 59.1 66.0
TransR 0.283 16.0 33.4 39.2 46.0 0.499 2.0 57.0 63.2 70.1 0.401 5.0 46.4 52.4 59.3
KALE-Trip 0.299 10.0 36.6 42.9 50.2 0.650 2.0 79.0 83.4 88.7 0.492 2.0 59.9 65.2 71.4
KALE-Pre 0.291 11.0 35.8 41.9 49.8 0.713 1.0 82.9 86.1 89.9 0.523 2.0 61.7 66.2 71.8
KALE-Joint 0.325 9.0 38.4 44.7 52.2 0.684 1.0 79.7 84.1 89.6 0.523 2.0 61.2 66.4 72.8

W
N

18

TransE 0.306 3.0 57.4 72.3 80.1 0.511 2.0 87.5 95.6 98.7 0.453 2.0 79.1 89.1 93.6
TransH 0.318 3.0 61.7 72.4 78.2 0.653 2.0 87.1 91.4 94.6 0.560 2.0 80.0 86.1 90.0
TransR 0.299 3.0 56.1 66.7 74.5 0.597 2.0 75.0 81.7 88.0 0.514 2.0 69.7 77.5 84.3
KALE-Trip 0.322 3.0 61.0 73.9 80.8 0.555 2.0 90.6 96.3 98.8 0.490 2.0 82.3 90.1 93.8
KALE-Pre 0.322 3.0 60.6 74.5 81.1 0.612 2.0 96.4 98.6 99.6 0.532 2.0 86.4 91.9 94.4
KALE-Joint 0.338 3.0 65.5 76.3 82.1 0.787 1.0 93.3 95.4 97.2 0.662 2.0 85.5 90.1 93.0

Table 5: Link prediction results on the test-I, test-II, and test-all sets of FB122 and WN18 (filtered setting).

and a possible corruption (Lyon,Located-In,
France). Both triples are valid. In this case, rank-
ing Lyon before the correct answer Paris should
not be counted as an error. To avoid such phenome-
na, we follow Bordes et al. (2013) and remove those
corrupted triples which exist in either the training,
validation, or test set before getting the ranks. That
means, we remove Lyon from the candidate list be-
fore getting the rank of Paris in the aforemen-
tioned example. We call the original setting “raw”
and the new setting “filtered”.

Optimal configurations. For each of the method-
s to be compared, we tune its hyperparameters in
the ranges specified in Section 4.1, and select a best
model that leads to the highest filtered MRR score
on the validation set (with a total of 500 epochs over

the training data). The optimal configurations for
KALE are: d = 100, η = 0.05, γ = 0.12, and λ = 1
on FB122; d=50, η =0.05, γ =0.2, and λ=0.1 on
WN18. To better see and understand the effects of
rules, we use the same configuration for KALE-Trip,
KALE-Pre, and KALE-Joint on each dataset.

Results. Table 4 and Table 5 show the results in the
raw setting and filtered setting respectively. On each
dataset we report the metrics on three sets: test-I,
test-II, and the whole test set (denoted by test-all).
Test-I contains test triples that cannot be directly in-
ferred by performing pure logical inference on the
training set, and hence might be intrinsically more d-
ifficult for the rules. The remaining test triples (i.e.,
the directly inferable ones) are included in Test-II.
These triples have either been used directly as train-

198

Raw Filtered

Test-Incl Test-Excl Test-Incl Test-Excl

MEAN / MED / HITS@10 MEAN / MED / HITS@10 MEAN / MED / HITS@10 MEAN / MED / HITS@10

FB
12

2 KALE-Trip 0.150 49.0 34.2 0.235 17.0 44.1 0.267 14.0 46.2 0.321 8.0 52.9
KALE-Joint 0.175 36.0 36.6 0.265 15.0 45.9 0.290 11.0 49.3 0.349 7.0 54.2

W
N

18 KALE-Trip 0.062 239.0 15.1 0.285 4.0 90.0 0.072 186.0 17.3 0.369 2.0 92.9
KALE-Joint 0.093 186.0 19.6 0.291 4.0 90.5 0.113 136.0 24.0 0.381 2.0 93.2

Table 6: Comparison between KALE-Trip and KALE-Joint on Test-Incl and Test-Excl of FB122 and WN18.

ing instances in KALE-Pre, or encoded explicitly in
training ground rules in KALE-Joint, making this set
trivial for the rules to some extent. From the result-
s, we can see that in both settings: (i) KALE-Pre
and KALE-Joint outperform (or at least perform as
well as) the other methods which use triples alone
on almost all the test sets, demonstrating the superi-
ority of incorporating logical rules. (ii) On the test-I
sets which contain triples beyond the scope of pure
logical inference, KALE-Joint performs significant-
ly better than KALE-Pre. On these sets KALE-Joint
can still beat all the baselines by a significant margin
in most cases, while KALE-Pre can hardly outper-
form KALE-Trip. It demonstrates the capability of
the joint embedding scenario to learn more predic-
tive embeddings, through which we can make better
predictions even beyond the scope of pure logical
inference. (iii) On the test-II sets which contain di-
rectly inferable triples, KALE-Pre can easily beat all
the baselines (even KALE-Joint). That means, for
triples covered by pure logical inference, it is trivial
to improve the performance by directly incorporat-
ing them as training instances.

To better understand how the joint embedding s-
cenario can learn more predictive embeddings, on
each dataset we further split the test-I set into two
parts. Given a triple (ei, rk, ej) in the test-I set, we
assign it to the first part if relation rk is covered by
the rules, and the second part otherwise. We call the
two parts Test-Incl and Test-Excl respectively. Ta-
ble 6 compares the performance of KALE-Trip and
KALE-Joint on the two parts. The results show that
KALE-Joint outperforms KALE-Trip on both parts,
but the improvements on Test-Incl are much more
significant than those on Test-Excl. Take the fil-
tered setting on WN18 as an example. On Test-Incl,
KALE-Joint increases the metric MRR by 55.7%,
decreases the metric MED by 26.9%, and increas-

es the metric HITS@10 by 38.2%. On Test-Excl,
however, MRR rises by 3.1%, MED remains the
same, and HITS@10 rises by only 0.3%. This obser-
vation indicates that jointly embedding triples and
rules helps to learn more predictive embeddings, es-
pecially for those relations that are used to construct
the rules. This might be the main reason that KALE-
Joint can make better predictions even beyond the
scope of pure logical inference.

4.3 Triple Classification
This task is to verify whether an unobserved triple
(ei, rk, ej) is correct or not.

Evaluation protocol. We take the following evalu-
ation protocol similar to that used in TransH (Wang
et al., 2014). We first create labeled data for evalua-
tion. For each triple in the test or validation set (i.e.,
a positive triple), we construct 10 negative triples
for it by randomly corrupting the entities, 5 at the
head position and the other 5 at the tail position.6 To
make the negative triples as difficult as possible, we
corrupt a position using only entities that have ap-
peared in that position, and further ensure that the
corrupted triples do not exist in either the training,
validation, or test set. We simply use the truth values
(or distances) to classify triples. Triples with large
truth values (or small distances) tend to be predict-
ed as positive. To evaluate, we first rank the triples
associated with each specific relation (in descending
order according to their truth values, or in ascending
order according to the distances), and calculate the
average precision for that relation. We then report
on the test sets the mean average precision (MAP)

6Previous work typically constructs only a single negative
case for each positive one. We empirically found such a bal-
anced classification task too simple for our datasets. So we con-
sider a highly unbalanced setting, with a positive-to-negative ra-
tio of 1:10, for which the previously used metric accuracy is no
longer suitable.

199

FB122 WN18

MAP (Test-I/II/ALL) MAP (Test-I/II/ALL)
TransE 0.552 0.852 0.634 0.592 0.993 0.958
TransH 0.576 0.758 0.641 0.604 0.978 0.947
TransR 0.572 0.699 0.619 0.412 0.854 0.836
KALE-Trip 0.578 0.829 0.652 0.618 0.995 0.953
KALE-Pre 0.575 0.916 0.668 0.620 0.997 0.964
KALE-Joint 0.599 0.870 0.677 0.627 0.997 0.961

Table 7: Triple classification results on the test-I, test-II, and

test-all sets of FB122 and WN18.

aggregated over different relations.

Optimal configurations. The hyperparameters of
each method are again tuned in the ranges specified
in Section 4.1, and the best models are selected by
maximizing MAP on the validation set. The optimal
configurations for KALE are: d=100, η =0.1, γ =
0.2, and λ = 0.1 on FB122; d = 100, η = 0.1, γ =
0.2, and λ = 0.001 on WN18. Again, we use the
same configuration for KALE-Trip, KALE-Pre, and
KALE-Joint on each dataset.

Results. Table 7 shows the results on the test-I, test-
II, and test-all sets of our datasets. From the results,
we can see that: (i) KALE-Pre and KALE-Joint out-
perform the other methods which use triples alone
on almost all the test sets, demonstrating the superi-
ority of incorporating logical rules. (ii) KALE-Joint
performs better than KALE-Pre on the test-I sets,
i.e., triples that cannot be directly inferred by per-
forming pure logical inference on the training set.
This observation is similar to that observed in the
link prediction task, demonstrating that the joint em-
bedding scenario can learn more predictive embed-
dings and make predictions beyond the capability of
pure logical inference.

5 Conclusion and Future Work

In this paper, we propose a new method for joint-
ly embedding knowledge graphs and logical rules,
referred to as KALE. The key idea is to represent
and model triples and rules in a unified framework.
Specifically, triples are represented as atomic for-
mulae and modeled by the translation assumption,
while rules as complex formulae and by the t-norm
fuzzy logics. A global loss on both atomic and com-
plex formulae is then minimized to perform the em-
bedding task. Embeddings learned in this way are

compatible not only with triples but also with rules,
which are certainly more useful for knowledge ac-
quisition and inference. We evaluate KALE with
the link prediction and triple classification tasks on
WordNet and Freebase data. Experimental result-
s show that joint embedding brings significant and
consistent improvements over state-of-the-art meth-
ods. More importantly, it can obtain more predic-
tive embeddings and make better predictions even
beyond the scope of pure logical inference.

For future work, we would like to (i) Investigate
the efficacy of incorporating other types of logical
rules such as ∀x, y, z : (x,Capital-Of, y) ⇒
¬(x,Capital-Of, z). (ii) Investigate the possibil-
ity of modeling logical rules using only relation em-
beddings as suggested by Demeester et al. (2016),
e.g., modeling the above rule using only the embed-
ding associated with Capital-Of. This avoids
grounding, which might be time and space ineffi-
cient especially for complicated rules. (iii) Inves-
tigate the use of automatically extracted rules which
are no longer hard rules and tolerant of uncertainty.

Acknowledgments

We would like to thank the anonymous reviewers for
their insightful comments and suggestions. This re-
search is supported by the National Natural Science
Foundation of China (grant No. 61402465) and the
Strategic Priority Research Program of the Chinese
Academy of Sciences (grant No. XDA06030200).

References

Islam Beltagy and Raymond J. Mooney. 2014. Efficient
markov logic inference for natural language semantics.
In Proceedings of the 28th AAAI Conference on Arti-
ficial Intelligence - Workshop on Statistical Relational
Artificial Intelligence, pages 9–14.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim S-
turge, and Jamie Taylor. 2008. Freebase: a collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of
Data, pages 1247–1250.

Antoine Bordes, Jason Weston, Ronan Collobert, and
Yoshua Bengio. 2011. Learning structured embed-
dings of knowledge bases. In Proceedings of the
25th AAAI Conference on Artificial Intelligence, pages
301–306.

200

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán,
Jason Weston, and Oksana Yakhnenko. 2013. Trans-
lating embeddings for modeling multi-relational da-
ta. In Proceedings of the 27th Annual Conference on
Neural Information Processing Systems, pages 2787–
2795.

Antoine Bordes, Xavier Glorot, Jason Weston, and
Yoshua Bengio. 2014. A semantic matching energy
function for learning with multi-relational data. Ma-
chine Learning, 94(2):233–259.

Matthias Bröcheler, Lilyana Mihalkova, and Lise Getoor.
2010. Probabilistic similarity logic. In Proceedings of
the 26th Conference on Uncertainty in Artificial Intel-
ligence, pages 73–82.

Kai-wei Chang, Wen-tau Yih, Bishan Yang, and Christo-
pher Meek. 2014. Typed tensor decomposition of
knowledge bases for relation extraction. In Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing, pages 1568–1579.

Thomas Demeester, Tim Rocktäschel, and Sebastian
Riedel. 2016. Regularizing relation representations
by first-order implications. In Proceedings of the 2016
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies - Workshop on Automated Knowl-
edge Base Construction, pages 75–80.

Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and
Li Guo. 2015. Semantically smooth knowledge graph
embedding. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing, pages 84–94.

Petr Hájek. 1998. The metamathematics of fuzzy logic.
Kluwer.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S. Weld. 2011. Knowledge-
based weak supervision for information extraction of
overlapping relations. In Proceedings of the 49th
Annual Meeting of the Association for Computation-
al Linguistics: Human Language Technologies, pages
541–550.

Rodolphe Jenatton, Nicolas L. Roux, Antoine Bordes,
and Guillaume R. Obozinski. 2012. A latent factor
model for highly multi-relational data. In Proceedings
of the 26th Annual Conference on Neural Information
Processing Systems, pages 3167–3175.

Shangpu Jiang, Daniel Lowd, and Dejing Dou. 2012.
Learning to refine an automatically extracted knowl-
edge base using markov logic. In Proceedings of 12th
IEEE International Conference on Data Mining, pages
912–917.

Charles Kemp, Joshua B. Tenenbaum, Thomas L. Grif-
fiths, Takeshi Yamada, and Naonori Ueda. 2006.

Learning systems of concepts with an infinite relation-
al model. In Proceedings of the 21st AAAI Conference
on Artificial Intelligence, pages 381–388.

Denis Krompaß, Stephan Baier, and Volker Tresp. 2015.
Type-constrained representation learning in knowl-
edge graphs. In Proceedings of the 14th International
Semantic Web Conference, pages 640–655.

Yankai Lin, Zhiyuan Liu, Huanbo Luan, Maosong Sun,
Siwei Rao, and Song Liu. 2015a. Modeling relation
paths for representation learning of knowledge bases.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 705–
714.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015b. Learning entity and relation em-
beddings for knowledge graph completion. In Pro-
ceedings of the 29th AAAI Conference on Artificial In-
telligence, pages 2181–2187.

Yuanfei Luo, Quan Wang, Bin Wang, and Li Guo.
2015. Context-dependent knowledge graph embed-
ding. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 1656–1661.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space word
representations. In Proceedings of the 2013 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 746–751.

George A. Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Arvind Neelakantan, Benjamin Roth, and Andrew Mc-
Callum. 2015. Compositional vector space model-
s for knowledge base completion. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Join-
t Conference on Natural Language Processing, pages
156–166.

Maximilian Nickel, Volker Tresp, and Hans P. Kriegel.
2011. A three-way model for collective learning on
multi-relational data. In Proceedings of the 28th In-
ternational Conference on Machine Learning, pages
809–816.

Maximilian Nickel, Volker Tresp, and Hans P. Kriegel.
2012. Factorizing yago: Scalable machine learning for
linked data. In Proceedings of the 21st International
Conference on World Wide Web, pages 271–280.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso Pog-
gio. 2016. Holographic embeddings of knowledge
graphs. In Proceedings of the 30th AAAI Conference
on Artificial Intelligence, pages 1955–1961.

Jay Pujara, Hui Miao, Lise Getoor, and William Cohen.
2013. Knowledge graph identification. In Proceed-

201

ings of the 12th International Semantic Web Confer-
ence, pages 542–557.

Matthew Richardson and Pedro Domingos. 2006.
Markov logic networks. Machine Learning, 62(1-
2):107–136.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M. Marlin. 2013. Relation extraction with
matrix factorization and universal schemas. In Pro-
ceedings of the 2013 Conference on North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 74–84.

Tim Rocktäschel, Matko Bošnjak, Sameer Singh, and Se-
bastian Riedel. 2014. Low-dimensional embeddings
of logic. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics -
Workshop on Semantic Parsing, pages 45–49.

Tim Rocktäschel, Sameer Singh, and Sebastian Riedel.
2015. Injecting logical background knowledge into
embeddings for relation extraction. In Proceedings of
the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1119–1129.

Richard Socher, Danqi Chen, Christopher D. Manning,
and Andrew Y. Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In Pro-
ceedings of the 27th Annual Conference on Neural In-
formation Processing Systems, pages 926–934.

Giorgos Stoilos, Giorgos B. Stamou, Jeff Z. Pan, Vassilis
Tzouvaras, and Ian Horrocks. 2007. Reasoning with
very expressive fuzzy description logics. Journal of
Artificial Intelligence Research, 30:273–320.

Ilya Sutskever, Joshua B. Tenenbaum, and Ruslan R.
Salakhutdinov. 2009. Modelling relational data using
bayesian clustered tensor factorization. In Proceed-
ings of the 23rd Annual Conference on Neural Infor-
mation Processing Systems, pages 1821–1828.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by
translating on hyperplanes. In Proceedings of the
28th AAAI Conference on Artificial Intelligence, pages
1112–1119.

Quan Wang, Bin Wang, and Li Guo. 2015. Knowledge
base completion using embeddings and rules. In Pro-
ceedings of the 24th International Joint Conference on
Artificial Intelligence, pages 1859–1865.

Evgenia Wasserman-Pritsker, William W. Cohen, and
Einat Minkov. 2015. Learning to identify the best
contexts for knowledge-based wsd. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 1662–1667.

Zhuoyu Wei, Jun Zhao, Kang Liu, Zhenyu Qi, Zhengya
Sun, and Guanhua Tian. 2015. Large-scale knowl-
edge base completion: inferring via grounding net-

work sampling over selected instances. In Proceed-
ings of the 24th ACM International on Conference
on Information and Knowledge Management, pages
1331–1340.

Jason Weston, Antoine Bordes, Oksana Yakhnenko, and
Nicolas Usunier. 2013. Connecting language and
knowledge bases with embedding models for relation
extraction. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1366–1371.

Zhao Xu, Volker Tresp, Kai Yu, and Hanspeter Kriegel.
2006. Infinite hidden relational models. In Proceed-
ings of Proceedings of the 22nd Conference on Uncer-
tainty in Artificial Intelligence, pages 544–551.

Huaping Zhong, Jianwen Zhang, Zhen Wang, Hai Wan,
and Zheng Chen. 2015. Aligning knowledge and text
embeddings by entity descriptions. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 267–272.

202

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 203–213,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning Connective-based Word Representations
for Implicit Discourse Relation Identification

Chloé Braud
CoAStaL, Dep of Computer Science

University of Copenhagen
University Park 5, 2100 Copenhagen, Denmark

braud@di.ku.dk

Pascal Denis
Magnet Team, INRIA Lille – Nord Europe

59650 Villeneuve dAscq, France
pascal.denis@inria.fr

Abstract

We introduce a simple semi-supervised ap-
proach to improve implicit discourse relation
identification. This approach harnesses large
amounts of automatically extracted discourse
connectives along with their arguments to con-
struct new distributional word representations.
Specifically, we represent words in the space
of discourse connectives as a way to directly
encode their rhetorical function. Experiments
on the Penn Discourse Treebank demonstrate
the effectiveness of these task-tailored repre-
sentations in predicting implicit discourse re-
lations. Our results indeed show that, despite
their simplicity, these connective-based rep-
resentations outperform various off-the-shelf
word embeddings, and achieve state-of-the-art
performance on this problem.

1 Introduction

A natural distinction is often made between ex-
plicit and implicit discourse relations depending on
whether they are lexicalized by a connective or not,
respectively. To illustrate, the Contrast relation in
example (1a) is triggered by the connective but,
while it is not overtly marked in example (1b).1

Given the lack of strong explicit cues, the identi-
fication of implicit relations is a much more chal-
lenging and still open problem. The typically low
performance scores for this task also hinder the de-
velopment of text-level discourse parsers (Lin et al.,
2010; Xue et al., 2015): implicit discourse relations

1These examples are taken from documents wsj 0008 and
wsj 0037, respectively, of the PDTB.

account for around half of the data for different gen-
res and languages (Prasad et al., 2008; Sporleder and
Lascarides, 2008; Taboada, 2006; Subba and Di Eu-
genio, 2009; Soria and Ferrari, 1998; Versley and
Gastel, 2013).

(1) a. The house has voted to raise the ceiling to
$3.1 trillion, but the Senate isn’t expected
to act until next week at the earliest.

b. That’s not to say that the nutty plot of “A
Wild Sheep Chase” is rooted in reality. It’s
imaginative and often funny.

The difficulty of this task lies in its dependence on
a wide variety of linguistic factors, ranging from
syntax, lexical semantics and also world knowl-
edge (Asher and Lascarides, 2003). In order to deal
with this issue, a common approach is to exploit
hand-crafted resources to design features captur-
ing lexical, temporal, modal, or syntactic informa-
tion (Pitler et al., 2009; Park and Cardie, 2012). By
contrast, more recent work show that using simple
low-dimensional word-based representations, either
cluster-based or distributed (aka word embeddings),
yield comparable or better performance (Rutherford
and Xue, 2014; Braud and Denis, 2015), while dis-
pensing with feature engineering.

While standard low-dimensional word represen-
tations appear to encode relevant linguistic infor-
mation, they have not been built with the specific
rhetorical task in mind. A natural question is there-
fore whether one could improve implicit discourse
relation identification by using word representations
that are more directly related to the task. The

203

problem of learning good representation for dis-
course has been recently tackled by Ji and Eisen-
stein (2014) on the problem of text-level discourse
parsing. Their approach uses two recursive neural
networks to jointly learn the task and a transforma-
tion of the discourse segments to be attached. While
this type of joint learning yields encouraging results,
it is also computationally intensive, requiring long
training times, and could be limited by the relatively
small amount of manually annotated data available.

In this paper, we explore the possibility of learn-
ing a distributional word representation adapted to
the task by selecting relevant rhetorical contexts,
in this case discourse connectives, extracted from
large amounts of automatically detected connectives
along with their arguments. Informally, the as-
sumption is that the estimated word-connective co-
occurrence statistics will in effect give us an im-
portant insight to the rhetorical function of different
words. The learning phase in this case is extremely
simple, as it amounts to merely estimating co-
occurrence frequencies, potentially combined with a
reweighting scheme, between each word appearing
in a discourse segment and its co-occurring connec-
tive. To assess the usefulness of these connective-
based representations,2 we compare them with pre-
trained word representations, like Brown clusters
and other word embeddings, on the task of implicit
discourse relation identification. Our experiments
on the Penn Discourse Treebank (PDTB) (Prasad et
al., 2008) show that these new representations de-
liver improvements over systems using these generic
representations and yield state-of-the-art results, and
this without the use of other hand-crafted features,
thus also alleviating the need for external linguis-
tic resources (like lexical databases). Thus, our ap-
proach could be easily extended to resource-poor
languages as long as connectives can be reliably
identified on raw texts.

Section 2 summarizes related work. In Section 3,
we detail our connective-based distributional word
representation approach. Section 4 presents the au-
tomatic annotation of the explicit examples used to
build the word representation. In Section 5, we de-
scribe our comparative experiments on the PDTB.

2Available at https://bitbucket.org/chloebt/
discourse-data.

2 Related Work

Implicit discourse relation identification has at-
tracted growing attention since the release of the
PDTB, the first discourse corpus to make the distinc-
tion between explicit and implicit examples. Within
the large body of research on this problem, we iden-
tify two main strands directly relevant to our work.

2.1 Finding the Right Input Representation

The first work on this task (Marcu and Echihabi,
2002), which pre-dates the release of the PDTB, pro-
posed a simple word-based representation: they use
the Cartesian product of words appearing in the two
segments. Given the knowledge-rich nature of the
task, following studies attempted to exploit various
hand-crafted resources and pre-processing systems
to enrich their model with information on modality,
polarity, tense, lexical semantics, and syntax, possi-
bly combined with feature selection methods (Pitler
et al., 2009; Lin et al., 2009; Park and Cardie,
2012; Biran and McKeown, 2013; Li and Nenkova,
2014). Interestingly, Park and Cardie (2012) con-
cluded on the worthlessness of word-based features,
as long as hand-crafted linguistic features were used.
More recent studies however reversed this conclu-
sion (Rutherford and Xue, 2014; Braud and Denis,
2015), demonstrating that word-based features can
be effective provided they were not encoded using
the sparse one-hot representation, but instead with a
denser one (cluster based or distributed). This paper
takes one step further by testing whether learning a
simple task-specific, distributional word representa-
tion could lead to further improvements.

As noted, some previous work have also at-
tempted to learn discourse-specific representation
for the related problem of discourse parsing. Thus,
Ji and Eisenstein (2014) reports improvements on
the RST Discourse Treebank (Carlson et al., 2001),
by jointly learning a combination of the discourse
units, represented by bag-of-words in a one-hot en-
coding, along with the sequence of actions of their
shift-reduce parser. Our approach is attractively sim-
pler, since training reduces to collecting frequency
counts, and it can easily generate representations for
unseen words without having to retrain the whole
system.

204

2.2 Leveraging Explicit Discourse Data

Another line of work, also initiated in (Marcu and
Echihabi, 2002), propose to deal with the sparseness
of the word pair representation by using additional
data automatically annotated using discourse con-
nectives. An appeal of this strategy is that one can
easily identify explicit relations in raw data, as per-
formance are high on this task (Pitler et al., 2009)
and it is even possible to rely on simple heuris-
tics (Marcu and Echihabi, 2002; Sporleder and Las-
carides, 2005; Lan et al., 2013). It has been shown,
however, that using explicit examples as additional
data for training an implicit relation classifier de-
grades performance, due to important distribution
differences (Sporleder and Lascarides, 2008).

Recent attempts to overcome this issue involve
domain adaptation strategies (Braud and Denis,
2014; Ji et al., 2015), sample selection (Rutherford
and Xue, 2015; Wang et al., 2012), or multi-task al-
gorithms (Lan et al., 2013). However, it generally
involves longer training time since models are built
on a massive amount of data, the strategy requir-
ing a large corpus of explicit examples to overcome
the noise induced by the automatic annotation strat-
egy. In this paper, we circumvent this problem by
using explicit data only for learning our word repre-
sentations and not for estimating the parameters of
our implicit classification model. Some aspects of
the present work are similar to Biran and McKeown
(2013) in that they also exploit explicit data to com-
pute co-occurrence statistics between word pairs and
connectives. But the perspective is reversed, as they
represent connectives in the contexts of co-occurring
word pairs, with the aim of deriving similarity fea-
tures between each implicit example and each con-
nective. Furthermore, their approach did not outper-
form state-of-the-art systems.

3 The Connective Vector Space Model

Our discourse-based word representation model is a
simple variant of the standard vector space model
(Turney and Pantel, 2010): that is, it represents in-
dividual words in specific co-occurring contexts (in
this case, discourse connectives) that define the di-
mensions of the underlying vector space. Our spe-
cific choice of contexts was guided by two main con-
siderations. On the one hand, we aim at learning

word representations that live in a relatively low-
dimensional space, so as to make learning a classifi-
cation function over that space feasible. The number
of parameters of that function grows proportionally
with that of the input size. Although there is often
a lack of consensus among linguists as to the exact
definition of discourse connectives, they neverthe-
less form a closed class. For English, the PDTB rec-
ognizes 100 distinct connectives. On the other hand,
we want to learn a vectorial representation that cap-
tures relevant aspects of the problem, in this case
the rhetorical contribution of words. Adapting Har-
ris (1954)’s famous quote, we make the assumption
that words occurring in similar rhetorical contexts
tend to have similar rhetorical meanings. Discourse
connectives are by definition strong rhetorical cues.
As an illustration, Pitler et al. (2009) found that con-
nectives alone unambiguously predict a single rela-
tion in 94% of the PDTB level 1 data. By using con-
nectives as contexts, we are thus linking each word
to a relation (or a small set of relations), namely
those that can be triggered by this connective. Note
that for level 2 relations in the PDTB, the connec-
tives are much more ambiguous (86.77% reported
in (Lin et al., 2010)), and it could be also the case
if we expand the list of forms considered as connec-
tives for English, or if we try to deal with other lan-
guages and domains. We however believe that the
set of relations that can be triggered by a connective
is limited (not all relations can be expressed by the
same connective), and that one attractive feature of
our strategy is precisely to keep this ambiguity.

Before turning to the details of how we construct
our distributional connective-based model, note that
we decided to learn a unique representation for any
individual word, irrespective of its position (with)in
a particular segment. That is, we represent both ar-
guments of a connective as a single bag of words.
Other designs are of course possible: we could di-
rectly learn distinct word representation for left and
right segment words, or even the pair of words (Con-
rath et al., 2014), to take into account the fact that
some relations are oriented (e.g. Reason contains the
cause in the first argument and Result in the second
one). An obvious drawback of these more expres-
sive representations is that they would need much
more data to compute a robust estimate of the fre-
quency counts.

205

but while before

Word Freq. TF-IDF PPMI-IDF Freq. TF-IDF PPMI-IDF Freq. TF-IDF PPMI-IDF

reality 12 0.0 0.0 13 0.0 0.0 10 0.0 0.0
not 142 0.37 0.36 201 0.18 0.06 0 0.0 0.0
week 0 0.0 0.0 110 0.10 0.04 90 0.12 0.12

Table 1: Illustrative example of association measures between connectives and words.

3.1 Building the Distributional Representation
Our discourse-based representations of words are
obtained by computing a matrix of co-occurrence
between the words and the chosen contexts. The
frequency counts are then weighted in order to high-
light relevant associations. More formally, we note
V the set of the n words appearing in the arguments,
and C the set of them connective contexts. We build
the matrix F, of size n ×m, by computing the fre-
quency of each element of V with each element of
C. We note fi,j the frequency of the word wi ∈ V
appearing in one argument of the connective cj ∈ C.
We use two standard weighting functions on these
raw frequencies: the normalized Term Frequency
(TF), eq. (1), and the Positive Pointwise Mutual In-
formation (PPMI), eq. (2), which is a version of the
PMI where negative values are ignored (with pi,j
the joint probability that the word wi appears with
connective cj , and pi,∗ and p∗,j , relative frequency
of resp. wi and cj). These two measures are then
normalized by multiplying the value by the Inverse
Document Frequency (IDF) for a word wi, eq. (3),
as in (Biran and McKeown, 2013). In the final ma-
trices, the ith row corresponds to them-dimensional
vector for the ith word of V . The jth column is a
vector corresponding to the jth connective.

TFi,j =
fi,j∑n

k=1 fk,j
(1)

PPMIi,j = max(0, log
(

pi,j
pi,∗ p∗,j

)
) (2)

IDFi = log
(

m∑m
k=1 fi,k

)
(3)

Table 1 illustrates the weighting of the words using
the TF and the PPMI normalized with IDF. For in-
stance, the presence of the negation “not” is pos-
itively linked to Contrast through but and while
whereas it receives a null or a very small weight
with the temporal connective before. The final vec-

tor for this word, < 0.37, 0.18, 0.0 > with TF-IDF
or < 0.36, 0.06, 0.0 > with PPMI-IDF, is intended
to guide the implicit model toward a contrastive re-
lation, thus potentially helping in identifying the re-
lation in example (1b). In contrast, the word “week”
is more likely to be found in the arguments of tem-
poral relations that can be triggered by before but
also while, an ambiguity kept in our representation
whereas approaches based on using explicit exam-
ples as new training data generally choose to anno-
tate them using the most frequent sense associated
with the connective, often limiting themselves to the
less ambiguous ones (Marcu and Echihabi, 2002;
Sporleder and Lascarides, 2008; Lan et al., 2013;
Braud and Denis, 2014; Rutherford and Xue, 2015).
Finally, a word occuring with all connectives, not
discriminant, such as “reality” is associated with a
null weight for all dimensions: it thus has no impact
on the model.

Since we have 100 connectives for the PDTB, the
representation is already of quite low dimensional-
ity. However, it has been shown (Turney and Pan-
tel, 2010) that using a dimensionality reduction al-
gorithm could help capturing the latent dimensions
between the words and their contexts and reducing
the noise. We thus also test versions with a reduction
Components Analysis (PCA) (Jolliffe, 2002).

3.2 Using the Word-based Representation

So far, our distributional framework associates a
word with a d-dimensional vector (where d ≤ m).
We now need to represent a pair of arguments
(i.e., the spans of text linked by a relation), mod-
eled here as a pair of bags of words. Following
(Braud and Denis, 2015), we first sum all word vec-
tors contained in each segment, thus obtaining a d-
dimensional vector for each segment. We then com-
bine the two segment vectors to build a compos-
ite vector representing the pair of arguments, by ei-

206

ther concatenating the two segment vectors (lead-
ing to a 2d-dimensional vector) or by computing
the Kronecker product between them (leading to
a d2-dimensional vector). Finally, these segment-
pair representations will be normalized using the L2

norm to avoid segment size effects. These will then
be used as the input of a classification model, as
described in Section 5. Given these combination
schemes, it should be clear that despite the fact that
each individual word receives a unique vectorial rep-
resentation irrespective of its position, the param-
eters of the classification model associated with a
given word are likely to be different depending of
whether it appears in the left or right segment.

4 Automatic Annotation of Explicit
Examples

In order to collect reliable word-connective co-
occurrence frequencies, we need a large corpus
where the connectives and their arguments have
been identified. We therefore rely on automatic
annotation of raw data, instead of using the rela-
tively small amount of explicit examples manually
annotated in the PDTB (roughly 18, 000 examples).
Specifically, we used the Bllip corpus3 composed
of news articles from the LA Times, the Washington
Post, the New York Times and Reuters and containing
310 millions of words automatically POS-tagged.

Identifying the Connectives and their Arguments
We have two tasks to perform: identifying the con-
nectives and extracting their arguments.4 Rather
than relying on manually defined patterns to anno-
tate explicit examples (Marcu and Echihabi, 2002;
Sporleder and Lascarides, 2008; Rutherford and
Xue, 2015), we use two binary classification models
inspired by previous works on the PDTB (Pitler and
Nenkova, 2009; Lin et al., 2010): the first one iden-
tifies the connectives and the second one localizes
the arguments between inter- and intra-sentential,
an heuristic being then used to decide on the exact
boundaries of the arguments.

Discourse connectives are words (e.g., but, since)

3https://catalog.ldc.upenn.edu/
LDC2008T13

4Note that contrary to studies using automatically annotated
explicit examples as new training data, we do not need to anno-
tate the relation triggered by the connective.

or grammaticalized multi-word expressions (e.g., as
soon as, on the other hand) that may trigger a dis-
course relation. However, these forms can also ap-
pear without any discourse reading, such as because
in: He can’t sleep because of the deadline. We thus
need to disambiguate these forms between discourse
and non discourse readings, a task that has proven
to be quite easy on the PDTB (Pitler and Nenkova,
2009). This is the task performed by our first binary
classifier: a pattern-matching is used to identify all
potential connectives, and the model predicts if they
have discourse reading in context.

We then need to extract the arguments of the iden-
tified connectives, that is the two spans of text linked
by the connective. This latter task has proven to be
extremely hard on the PDTB (Lin et al., 2010; Xue
et al., 2015) because of some annotation principles
that make the possible types of argument very di-
verse. As first proposed in (Lin et al., 2010), we thus
split this task into two subtasks: identifying the rel-
ative positions of the arguments and delimiting their
exact boundaries.

For an explicit example in the PDTB, one argu-
ment, called Arg2, is linked to the connective, and
thus considered as easy to extract (Lin et al., 2010).
The other argument, called Arg1, may be located at
different places relative to Arg2 (Prasad et al., 2008):
we call intra-sentential the examples where Arg1 is
a clause within the same sentence as Arg2 (60.9%
of the explicit examples in the PDTB), and inter-
sentential the other examples, that is Arg1 is found
in the previous sentence, in a non-adjacent previ-
ous sentence (9%) or in a following sentence (less
than 0.1%). In this work, we build a localization
model by only considering these two coarse cases –
the example is either intra- or inter-sentential. Note
that this distinction is similar to what has been done
in (Lin et al., 2010): more precisely, these authors
distinguish between “same-sentence” and “previous
sentence” and ignore the cases where the Arg1 is in
a following sentence. We rather choose to include
them as being also inter-sentential. When the posi-
tion of Arg1 has been predicted, an heuristic is in
charge of finding the exact boundaries of the argu-
ments.

Here, the problem is that in addition to the vari-
ety of locations, the annotators were almost free to
choose any boundary for an argument in the PDTB:

207

an argument can cover only a part of a sentence, an
entire sentence or several sentences. Statistical ap-
proaches intended to solve this task lead for now
to low performance even when complex sequential
models are used, and they often rely on the syntactic
configurations (Lin et al., 2010; Xue et al., 2015).
We thus decided to define an heuristic to perform
this task, following the simplifying assumptions also
used in previous work since (Marcu and Echihabi,
2002). We assume that: (1) Arg1 is either in the
same sentence as Arg2 or in the previous one, (2)
an argument covers at most one sentence and (3)
a sentence contains at most two arguments. As it
can be deduced from (1), our final model ignores the
finer distinctions one can make for the position of
inter-sentential examples (i.e. we never extract Arg1
from a non-adjacent previous sentence or a follow-
ing one).

According to these assumptions, once a connec-
tive is identified, knowing its localization is almost
enough to identify the boundaries of its arguments.
More precisely, if a connective is predicted as inter-
sentential, then our heuristic picks the entire pre-
ceding sentence as Arg1, Arg2 being the sentence
containing the connective, according to assumptions
(1) and (2). If a connective is predicted as intra-
sentential, then the sentence containing the connec-
tive is split into two segments – according to (3) –,
more precisely, the sentence is split around the con-
nective using the punctuation and making it neces-
sary to have a verb in each argument.

Settings We thus built two models using the
PDTB: one to identify the discourse markers (con-
nective vs not connective), and one to identify the
position of the arguments with respect to the con-
nective (inter- vs intra-sentential). The PDTB con-
tains 18, 459 explicit examples for 100 connectives.
For both models, we use the same split of the data
as in (Lin et al., 2014). The test set contains 923
positive instances of connectives and 2, 075 nega-
tive instances, and 546 inter-sentential and 377 intra-
sentential examples. Both models are built using a
logistic regression model optimized on the develop-
ment set (see Section 5), and the same simple feature
set (Lin et al., 2014; Johannsen and Sgaard, 2013)
without syntactic information. With C the connec-
tive, F the following word and P the previous one,

our features are: C, P+C, C+F, C-POS5, P-POS, F-
POS, P-POS+C-POS and C-POS+F-POS.

Results Our model identifies discourse connective
with a micro-accuracy of 92.9% (macro-F1 91.5%).
These scores are slightly lower than the state-of-the-
art in micro-accuracy, but high enough to rely on
this annotation. When applying our model to the
Bllip data, we found 4 connectives that correspond
to no examples. We thus have examples for only 96
connectives. For distinguishing between inter- and
intra-sentential examples, we get a micro-accuracy
of 96.1% (macro-F1 96.0), with an F1 of 96.7 for the
intra- and 95.3 for the inter-sentential class, again
close enough to the state-of-the-art (Lin et al., 2014).

Coverage Using these models on Bllip, we are
able to extract around 3 million connectives, along
with their arguments. Our word representation has
a large vocabulary (see Table 2) compared to exist-
ing off-the-shelf word vectors, with only 2, 902 out
of vocabulary (OOV) tokens in set of implicit rela-
tions.6

words # OOV

HLBL 246, 122 5, 439
CnW 268, 810 5, 638
Brown 247, 339 5, 413
H-PCA 178, 080 7, 042
Bllip 422,199 2,902

Table 2: Lexicon coverage for Brown clusters (Brown et al.,

1992), Collobert and Weston (CnW) (Collobert and Weston,

2008) and hierarchical log-bilinear embeddings (HLBL) (Mnih

and Hinton, 2007) using the implementation in (Turian et al.,

2010), Hellinger PCA (H-PCA) (Lebret and Collobert, 2014)

and our connective-based representation (Bllip).

5 Experiments

Our experiments investigate the relevance of our
connective-based representations for implicit dis-
course relation identification, recast here as multi-
class classification problem. That is, we aim at eval-
uating the usefulness of having a word representa-
tion linked to the task, compared to using generic

5The connective POS is either the node covering the con-
nective, or the POS of its first word if no such node exists.

6Training and development sets, only.

208

Relation Train Dev Test

Temporal 665 93 68
Contingency 3, 281 628 276
Comparison 1, 894 401 146
Expansion 6, 792 1, 253 556

Total 12, 632 2, 375 1, 046

Table 3: Number of examples in train, dev, test.

word representations (either one-hot, cluster-based
or distributed), and whether they encode all the in-
formation relevant to the task, thus comparing sys-
tems with or without additional hand-crafted fea-
tures.

5.1 Data

The PDTB (Prasad et al., 2008) is the largest corpus
annotated for discourse relations, formed by news-
paper articles from the Wall Street Journal. It con-
tains 16, 053 pairs of spans of text annotated with
one or more implicit relations. The relation set is
organized in a three-level hierarchy. We focus on
the level 1 coarse-grained relations and keep only
the first relation annotated. We use the most spread
split of the data, used in (Rutherford and Xue, 2014;
Rutherford and Xue, 2015; Braud and Denis, 2015)
among others, that is sections 2-20 for training and
21-22 for testing. The other sections are used for de-
velopment. The number of examples per relation is
reported in Table 3. It can be seen that the dataset is
highly imbalanced, with the relation Expansion ac-
counting for more than 50% of the examples.

5.2 Settings

Feature Set Our main features are based on the
words occurring in the arguments. We test simple
baselines using raw tokens. The first one uses the
Cartesian product of the tokens, a feature template,
generally called ”Word pairs”, used in most of the
previous study for this task as in (Marcu and Echi-
habi, 2002; Pitler et al., 2009; Lin et al., 2011; Braud
and Denis, 2015; Ji et al., 2015). It is the sparsest
representation one can build from words, and it cor-
responds to using the combination scheme based on
the Kronecker product to combine the one-hot vec-
tors representing each word. We also report results
with a less sparse version where the vectors are com-

bined using concatenation.
We also compare our systems to previous ap-

proaches that make use of word based representa-
tions but not linked to the task. We implement the
systems proposed in (Braud and Denis, 2015) in
multiclass, that is using the Brown clusters (Brown
et al., 1992), the Collobert and Weston (Collobert
and Weston, 2008) and the hierarchical log-bilinear
embeddings (Mnih and Hinton, 2007) using the
implementation in (Turian et al., 2010)7, and the
HPCA (Lebret and Collobert, 2014)8. We use
the combination schemes described in Section 3 to
build vector representations for pairs of segments.
For these systems and ours, using the connective-
based representations, the dimensionality of the final
model depends on the number of dimensions d of the
representation used and on the combination scheme
– the concatenation leading to 2d dimensions and the
Kronecker product to d2.

All the word representations used – the off-the-
shelf representations as well as our connective-based
representation (see Section 4) – are solely or mainly
trained on newswire data, thus on the same domain
as our evaluation data. The CnW embeddings we
use in this paper, with the implementation in (Turian
et al., 2010), as well as the HLBL embeddings have
been obtained using the RCV1 corpus, that is one
year of Reuters English newswire. The H-PCA have
been built on the Wikipedia, the Reuters corpus and
the Wall street Journal. We thus do not expect any
out-of-domain issue when using these representa-
tions.

Finally, we experiment with additional features
proposed in previous studies and well described
in (Pitler et al., 2009; Park and Cardie, 2012): pro-
duction rules9, information on verbs (average verb
phrases length and Levin classes), polarity (Wilson
et al., 2005), General Inquirer tags (Stone and Kirsh,
1966), information about the presence of numbers
and modals, and first, last and first three words. We
concatenate these features to the ones built using
word representations.

7http://metaoptimize.com/projects/
wordreprs/

8http://lebret.ch/words/
9We use the gold standard parses provided in the Penn Tree-

bank (Marcus et al., 1993).

209

Model We train a multinomial multiclass logistic
regression model.10 In order to deal with the class
imbalance issue, we use a sample weighting scheme
where each instance has a weight inversely propor-
tional to the frequency of the class it belongs to.

Parameters We optimize the hyper-parameters of
the algorithm, that is the regularization norm (L1
or L2), and the strength of the regularization C ∈
{0.001, 0.005, 0.01, 0.1, 0.5, 1, 5, 10, 100}. When
using additional features or one-hot sparse encod-
ings over the pairs of raw tokens, we also optimize
a filter on the features by defining a frequency cut-
off t ∈ {1, 2, 5, 10, 15, 20}. We evaluate the un-
supervised representations with different number of
dimensions. We test versions of the Brown clus-
ters with 100, 320, 1, 000 and 3, 200 clusters, of
the Collobert and Weston embeddings with 25, 50,
100 and 200 dimensions, of the hierarchical log-
bilinear embeddings with 50 and 100 dimensions,
and of the Hellinger PCA with 50, 100 and 200 di-
mensions. Finally, the distributional representations
of words based on the connective are built using ei-
ther no PCA – thus corresponding to 96 dimensions–
, or a PCA11 keeping the first k dimensions with
k ∈ {2, 5, 10, 50}.12 We optimize both the hyper-
parameters of the algorithm and the number of di-
mensions of the unsupervised representation on the
development set based on the macro-F1 score, the
most relevant measure to track when dealing with
imbalanced data.

5.3 Results

Our results are summarized in Table 4. Using our
connective-based word representation allows im-
provements of above 2% in macro-F1 over the base-
line systems based on raw tokens (One-hot), the
competitive systems using pre-trained representa-
tions (Brown and Embed.) and the state-of-the-art
results in terms of macro-F1 (R&X 15). These im-
provements demonstrate the efficiency of the repre-
sentation for this task.

We found that using an unsupervised word repre-
sentation generally leads to improvements over the

10http://scikit-learn.org/dev/index.html.
11Implemented in scikit-learn, applied with default settings.
12Keeping resp. 11.3%, 36.6%, 56.2% or 95.3% of the vari-

ance of the data.

Representation Macro-F1 Acc.

One-hot ⊗ 39.0 48.6
One-hot ⊕ 40.2 50.2

Best Brown ⊗ 37.5 50.6
Best Brown ⊕ 40.6 51.2
Best Embed. ⊗ 41.0 51.7
Best Embed. ⊕ 41.6 50.1
Best dense + add feat. 40.8 51.2

Bllip TF-IDF ⊗ 41.4 51.0
Bllip TF-IDF ⊕ 40.1 50.0
Bllip PPMI-IDF ⊗ 38.9 48.2
Bllip PPMI-IDF ⊕ 42.2∗ 52.5
Best Bllip + add feat. 42.8∗ 51.7

R&X 15 40.5 57.1

Table 4: Results for multiclass experiments. R&X 15 are the

scores reported in (Rutherford and Xue, 2015) ; One-hot: one-

hot encoding of raw tokens ; Brown and Embed.: pre-trained

representations ; Bllip: connective based representation. ∗ p ≤
0.1 compared to One-hot ⊗ with t-test and Wilcoxon.

use of raw tokens (One-hot), a conclusion in line
with the results reported in (Braud and Denis, 2015)
for binary systems. However, contrary to their find-
ings, in multiclass, the best results are not obtained
using the Brown clusters, but rather the dense, real
valued representations (Embed. and Bllip). Further-
more, concerning the combination schemes, the con-
catenation (⊕) generally outperforms the Kronecker
product (⊗), in effect favoring lower dimensional
models.

More importantly, the distributional representa-
tions based on connectives (Bllip) allows perfor-
mance at least similar or even better than those ob-
tained with the other dense representations uncon-
nected to the task (Embed.). While simply based on
weighted co-occurrence counts, thus really easy and
fast to build, these representations generally outper-
form the ones learned using neural networks (see
CnW and HLBL in Figure 1). Besides, our sec-
ond best representation is also distributional, namely
HPCA (see Figure 1). These result are thus in line
with the conclusions in (Lebret and Collobert, 2014)
for other NLP tasks: distributional representations,
while simpler to obtain, may allow similar results
than distributed ones.

210

2 5 10 25 50 100 200

25

30

35

40

Number of dimensions

F 1
on

th
e

de
v

se
t

Bllip PPMI ⊕
CnW ⊕
HLBL ⊕
H-PCA ⊕

Figure 1: F1 scores on dev against the number of dimensions.

Our best results with Bllip are obtained without
the use of a dimensionality reduction method, thus
keeping the 96 dimensions corresponding to the con-
nectives identified in the raw data. Our new word
representation like the other low-dimensional ones
yield higher scores as one increases the number of
dimensions (see Figure 1). This could be a limita-
tion of our strategy, since the number of connectives
in the PDTB is fixed. However, one could easily
expand our model to include additional lexical ele-
ments that might have a rhetorical function such as
modals or specific expressions such as one reason is.

We also tested the addition of hand-crafted fea-
tures traditionally used for the task. We found that,
either using a pre-trained word representation or our
representation based on connectives, adding these
features leads to small or even no improvements and
suggest that these representations already encode the
information provided by these features. This con-
clusion has however to be nuanced: when looking at
the scores per relation reported in Table 5, the use
of the connective based word representation alone
allows the best performance for Temporal and Con-
tingency, but the addition of new features dramat-
ically increase the scores for Comparison showing
that some information are missing for this relation.
Moreover, this relation is the one taking the most
advantage of the addition of explicit data in (Ruther-
ford and Xue, 2015), demonstrating that these data
could probably provide even more information than
the ones we leverage through our representations.

Finally, our results are similar or even better than
those reported in (Rutherford and Xue, 2015) in
terms of macro-F1. Our systems correspond how-
ever to a lower micro-accuracy. Looking at the
scores per relation in Table 5, we found that we ob-
tain better results for all the relations except Expan-
sion, the most represented, which could explain the
loss in accuracy. It is noteworthy that we generally
obtain better results even without the additional fea-
tures used in this work. Moreover, our systems re-
quires lower training time (since we only train on
implicit examples) and alleviate the need for the
sample selection strategy used to deal with the dis-
tribution differences between the two types of data.

Bllip PPMI-IDF ⊕ Bllip + add feat R&X 15
Rel Prec F1 Prec F1 Prec F1

Temp 23.0 29.9 23.7 27.9 38.5 14.7
Cont 49.6 47.1 46.7 46.3 49.3 43.9
Comp 35.9 27.7 35.0 34.3 44.9 34.2
Exp 62.8 64.0 63.7 62.6 61.4 69.1

Table 5: Scores per relation for multiclass experiments, ”R&X

15” are the scores reported in (Rutherford and Xue, 2015).

6 Conclusion

We presented a new approach to leverage infor-
mation from explicit examples for implicit relation
identification. We showed that building distribu-
tional representations linked to the task through con-
nectives allows state-of-the-art performance and al-
leviates the need for additional features. Future
work includes extending the representations to new
contexts – such as the Alternative Lexicalization an-
notated in the PDTB, the modals or some adverbs
– using more sophisticated weighting schemes (Le-
bret and Collobert, 2014) and testing this strategy
for other languages and domains.

Acknowledgements

We thank the three anonymous reviewers for their
comments. Chloé Braud was funded by the ERC
Starting Grant LOWLANDS No. 313695. Pas-
cal Denis was supported by ERC Grant STAC
No. 269427, and by a grant from CPER Nord-Pas
de Calais/FEDER DATA Advanced data science and
technologies 2015-2020.

211

References
Nicholas Asher and Alex Lascarides. 2003. Logics of

Conversation. Cambridge University Press.
Or Biran and Kathleen McKeown. 2013. Aggregated

word pair features for implicit discourse relation dis-
ambiguation. In Proceedings of ACL.

Chloé Braud and Pascal Denis. 2014. Combining natural
and artificial examples to improve implicit discourse
relation identification. In Proceedings of COLING.

Chloé Braud and Pascal Denis. 2015. Comparing word
representations for implicit discourse relation classifi-
cation. In Proceedings of EMNLP.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vin-
cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-
based n-gram models of natural language. Computa-
tional Linguistics, 18:467–479.

Lynn Carlson, Daniel Marcu, and Mary Ellen Okurowski.
2001. Building a discourse-tagged corpus in the
framework of rhetorical structure theory. In Proceed-
ings of the Second SIGdial Workshop on Discourse
and Dialogue.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of ICML.

Juliette Conrath, Stergos Afantenos, Nicholas Asher, and
Philippe Muller. 2014. Unsupervised extraction of se-
mantic relations using discourse cues. In Proceedings
of Coling.

Zellig S. Harris. 1954. Distributional structure. Word,
10(23):146–162.

Yangfeng Ji and Jacob Eisenstein. 2014. Representation
learning for text-level discourse parsing. In Proceed-
ings of ACL.

Yangfeng Ji, Gongbo Zhang, and Jacob Eisenstein. 2015.
Closing the gap: Domain adaptation from explicit
to implicit discourse relations. In Proceedings of
EMNLP.

Anders Johannsen and Anders Sgaard. 2013. Disam-
biguating explicit discourse connectives without ora-
cles. In Proceedings of IJCNLP.

Ian Jolliffe. 2002. Principal component analysis. Wiley
Online Library.

Man Lan, Yu Xu, and Zhengyu Niu. 2013. Leveraging
synthetic discourse data via multi-task learning for im-
plicit discourse relation recognition. In Proceedings of
ACL.

Rémi Lebret and Ronan Collobert. 2014. Word emded-
dings through Hellinger PCA. In Proceedings of ACL.

Junyi Jessy Li and Ani Nenkova. 2014. Reducing spar-
sity improves the recognition of implicit discourse re-
lations. In Proceedings of SIGDIAL.

Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. 2009.
Recognizing implicit discourse relations in the Penn
Discourse Treebank. In Proceedings of EMNLP.

Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. 2010. A
PDTB-styled end-to-end discourse parser. Technical
report, National University of Singapore.

Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. 2011. Au-
tomatically evaluating text coherence using discourse
relations. In Proceedings of ACL-HLT.

Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. 2014.
A PDTB-styled end-to-end discourse parser. Natural
Language Engineering, 20:151–184.

Daniel Marcu and Abdessamad Echihabi. 2002. An
unsupervised approach to recognizing discourse rela-
tions. In Proceedings of ACL.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of english: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Andriy Mnih and Geoffrey Hinton. 2007. Three new
graphical models for statistical language modelling. In
Proceedings of ICML.

Joonsuk Park and Claire Cardie. 2012. Improving im-
plicit discourse relation recognition through feature set
optimization. In Proceedings of SIGDIAL Conference.

Emily Pitler and Ani Nenkova. 2009. Using syntax to
disambiguate explicit discourse connectives in text. In
Proceedings of the ACL-IJCNLP.

Emily Pitler, Annie Louis, and Ani Nenkova. 2009. Au-
tomatic sense prediction for implicit discourse rela-
tions in text. In Proceedings of ACL-IJCNLP.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2008. The Penn Discourse Treebank 2.0. In
Proceedings of LREC.

Attapol Rutherford and Nianwen Xue. 2014. Discover-
ing implicit discourse relations through Brown cluster
pair representation and coreference patterns. In Pro-
ceedings of EACL.

Attapol Rutherford and Nianwen Xue. 2015. Improving
the inference of implicit discourse relations via classi-
fying explicit discourse connectives. In Proceedings
of NAACL-HLT.

Claudia Soria and Giacomo Ferrari. 1998. Lexical mark-
ing of discourse relations - some experimental find-
ings. In Proceedings of the ACL Workshop on Dis-
course Relations and Discourse Markers.

Caroline Sporleder and Alex Lascarides. 2005. Exploit-
ing linguistic cues to classify rhetorical relations. In
Proceedings of RANLP-05.

Caroline Sporleder and Alex Lascarides. 2008. Using
automatically labelled examples to classify rhetorical
relations: An assessment. Natural Language Engi-
neering, 14:369–416.

212

Philip J. Stone and John Kirsh. 1966. The General In-
quirer: A Computer Approach to Content Analysis.
MIT Press.

Rajen Subba and Barbara Di Eugenio. 2009. An effec-
tive discourse parser that uses rich linguistic informa-
tion. In Proceedings of ACL-HLT.

Maite Taboada. 2006. Discourse markers as signals (or
not) of rhetorical relations. Journal of Pragmatics,
38:567–592.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and general
method for semi-supervised learning. In Proceedings
of ACL.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning : Vector space models of seman-
tics. Journal of Artificial Intelligence Research, pages
141–188.

Yannick Versley and Anna Gastel. 2013. Linguistic tests
for discourse relations in the TüBa-D/Z corpus of writ-
ten German. Dialogue & Discourse, 4(2):142–173.

Xun Wang, Sujian Li, Jiwei Li, and Wenjie Li. 2012. Im-
plicit discourse relation recognition by selecting typ-
ical training examples. In Proceedings of COLING
2012: Technical Papers.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of HLT-EMNLP.

Nianwen Xue, Hwee Tou Ng, Sameer Pradhan, Rashmi
Prasad, Christopher Bryant, and Attapol Rutherford.
2015. The CoNLL-2015 shared task on shallow dis-
course parsing. In Proceedings of CoNLL.

213

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 214–224,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Aspect Level Sentiment Classification with Deep Memory Network

Duyu Tang, Bing Qin∗, Ting Liu
Harbin Institute of Technology, Harbin, China

{dytang, qinb, tliu}@ir.hit.edu.cn

Abstract

We introduce a deep memory network for
aspect level sentiment classification. Un-
like feature-based SVM and sequential neural
models such as LSTM, this approach explic-
itly captures the importance of each context
word when inferring the sentiment polarity of
an aspect. Such importance degree and tex-
t representation are calculated with multiple
computational layers, each of which is a neu-
ral attention model over an external memory.
Experiments on laptop and restaurant datasets
demonstrate that our approach performs com-
parable to state-of-art feature based SVM sys-
tem, and substantially better than LSTM and
attention-based LSTM architectures. On both
datasets we show that multiple computational
layers could improve the performance. More-
over, our approach is also fast. The deep mem-
ory network with 9 layers is 15 times faster
than LSTM with a CPU implementation.

1 Introduction

Aspect level sentiment classification is a fundamen-
tal task in the field of sentiment analysis (Pang and
Lee, 2008; Liu, 2012; Pontiki et al., 2014). Given
a sentence and an aspect occurring in the sentence,
this task aims at inferring the sentiment polarity (e.g.
positive, negative, neutral) of the aspect. For ex-
ample, in sentence “great food but the service was
dreadful!”, the sentiment polarity of aspect “food”
is positive while the polarity of aspect “service” is

∗ Corresponding author.

negative. Researchers typically use machine learn-
ing algorithms and build sentiment classifier in a su-
pervised manner. Representative approaches in liter-
ature include feature based Support Vector Machine
(Kiritchenko et al., 2014; Wagner et al., 2014) and
neural network models (Dong et al., 2014; Lakkara-
ju et al., 2014; Vo and Zhang, 2015; Nguyen and
Shirai, 2015; Tang et al., 2015a). Neural models are
of growing interest for their capacity to learn text
representation from data without careful engineer-
ing of features, and to capture semantic relations be-
tween aspect and context words in a more scalable
way than feature based SVM.

Despite these advantages, conventional neural
models like long short-term memory (LSTM) (Tang
et al., 2015a) capture context information in an im-
plicit way, and are incapable of explicitly exhibiting
important context clues of an aspect. We believe that
only some subset of context words are needed to in-
fer the sentiment towards an aspect. For example,
in sentence “great food but the service was dread-
ful!”, “dreadful” is an important clue for the aspect
“service” but “great” is not needed. Standard LST-
M works in a sequential way and manipulates each
context word with the same operation, so that it can-
not explicitly reveal the importance of each context
word. A desirable solution should be capable of ex-
plicitly capturing the importance of context words
and using that information to build up features for
the sentence after given an aspect word. Further-
more, a human asked to do this task will selectively
focus on parts of the contexts, and acquire informa-
tion where it is needed to build up an internal repre-
sentation towards an aspect in his/her mind.

214

In pursuit of this goal, we develop deep memo-
ry network for aspect level sentiment classification,
which is inspired by the recent success of compu-
tational models with attention mechanism and ex-
plicit memory (Graves et al., 2014; Bahdanau et al.,
2015; Sukhbaatar et al., 2015). Our approach is
data-driven, computationally efficient and does not
rely on syntactic parser or sentiment lexicon. The
approach consists of multiple computational layers
with shared parameters. Each layer is a content- and
location- based attention model, which first learn-
s the importance/weight of each context word and
then utilizes this information to calculate continu-
ous text representation. The text representation in
the last layer is regarded as the feature for sentiment
classification. As every component is differentiable,
the entire model could be efficiently trained end-to-
end with gradient descent, where the loss function is
the cross-entropy error of sentiment classification.

We apply the proposed approach to laptop and
restaurant datasets from SemEval 2014 (Pontiki et
al., 2014). Experimental results show that our ap-
proach performs comparable to a top system using
feature-based SVM (Kiritchenko et al., 2014). On
both datasets, our approach outperforms both LST-
M and attention-based LSTM models (Tang et al.,
2015a) in terms of classification accuracy and run-
ning speed. Lastly, we show that using multiple
computational layers over external memory could
achieve improved performance.

2 Background: Memory Network

Our approach is inspired by the recent success of
memory network in question answering (Weston et
al., 2014; Sukhbaatar et al., 2015). We describe the
background on memory network in this part.

Memory network is a general machine learning
framework introduced by Weston et al. (2014). It-
s central idea is inference with a long-term memo-
ry component, which could be read, written to, and
jointly learned with the goal of using it for predic-
tion. Formally, a memory network consists of a
memory m and four components I , G, O and R,
where m is an array of objects such as an array of
vectors. Among these four components, I convert-
s input to internal feature representation, G updates
old memories with new input, O generates an out-

put representation given a new input and the current
memory state, R outputs a response based on the
output representation.

Let us take question answering as an example to
explain the work flow of memory network. Given
a list of sentences and a question, the task aims to
find evidences from these sentences and generate an
answer, e.g. a word. During inference, I component
reads one sentence si at a time and encodes it into a
vector representation. Then G component updates a
piece of memory mi based on current sentence rep-
resentation. After all sentences are processed, we
get a memory matrix m which stores the semantics
of these sentences, each row representing a sentence.
Given a question q, memory network encodes it into
vector representation eq, and thenO component uses
eq to select question related evidences from memo-
ry m and generates an output vector o. Finally, R
component takes o as the input and outputs the final
response. It is worth noting that O component could
consist of one or more computational layers (hop-
s). The intuition of utilizing multiple hops is that
more abstractive evidences could be found based on
previously extracted evidences. Sukhbaatar et al.
(2015) demonstrate that multiple hops could uncov-
er more abstractive evidences than single hop, and
could yield improved results on question answering
and language modeling.

3 Deep Memory Network for Aspect Level
Sentiment Classification

In this section, we describe the deep memory net-
work approach for aspect level sentiment classifica-
tion. We first give the task definition. Afterwards,
we describe an overview of the approach before p-
resenting the content- and location- based attention
models in each computational layer. Lastly, we de-
scribe the use of this approach for aspect level senti-
ment classification.

3.1 Task Definition and Notation
Given a sentence s = {w1, w2, ..., wi, ...wn} con-
sisting of n words and an aspect word wi

1 occur-
ring in sentence s, aspect level sentiment classifica-
tion aims at determining the sentiment polarity of

1In practice, an aspect might be a multi word expression
such as “battery life”. For simplicity we still consider aspect
as a single word in this definition.

215

sentence s towards the aspect wi. For example, the
sentiment polarity of sentence “great food but the
service was dreadful!” towards aspect “food” is pos-
itive, while the polarity towards aspect “service” is
negative. When dealing with a text corpus, we map
each word into a low dimensional, continuous and
real-valued vector, also known as word embedding
(Mikolov et al., 2013; Pennington et al., 2014). All
the word vectors are stacked in a word embedding
matrix L ∈ Rd×|V |, where d is the dimension of
word vector and |V | is vocabulary size. The word
embedding of wi is notated as ei ∈ Rd×1, which is a
column in the embedding matrix L.

3.2 An Overview of the Approach

We present an overview of the deep memory net-
work for aspect level sentiment classification.

Given a sentence s = {w1, w2, ..., wi, ...wn} and
the aspect word wi, we map each word into its em-
bedding vector. These word vectors are separated
into two parts, aspect representation and context rep-
resentation. If aspect is a single word like “food” or
“service”, aspect representation is the embedding of
aspect word. For the case where aspect is multi word
expression like “battery life”, aspect representation
is an average of its constituting word vectors (Sun et
al., 2015). To simplify the interpretation, we consid-
er aspect as a single word wi. Context word vectors
{e1, e2 ... ei−1, ei+1 ... en} are stacked and regarded
as the external memory m ∈ Rd×(n−1), where n is
the sentence length.

An illustration of our approach is given in Figure
1, which is inspired by the use of memory network
in question answering (Sukhbaatar et al., 2015). Our
approach consists of multiple computational layers
(hops), each of which contains an attention layer and
a linear layer. In the first computational layer (hop
1), we regard aspect vector as the input to adaptively
select important evidences from memory m through
attention layer. The output of attention layer and the
linear transformation of aspect vector2 are summed
and the result is considered as the input of next layer
(hop 2). In a similar way, we stack multiple hop-
s and run these steps multiple times, so that more
abstractive evidences could be selected from the ex-

2In preliminary experiments, we tried directly using aspect
vector without a linear transformation, and found that adding a
linear layer works slightly better.

LinearAttention

∑

wi

LinearAttention

∑

LinearAttention

∑

aspect word

hop 1

hop 2

hop 3

𝑤1 , 𝑤2 … 𝑤𝑖−1 , 𝑤𝑖 , 𝑤𝑖+1 … 𝑤𝑛−1 , 𝑤𝑛

context words context words

sentence:

word embedding

softmax

𝛼1𝛼2 𝛼𝑘𝛼3

𝑣𝑐1 𝑣𝑎𝑠𝑝𝑒𝑐𝑡

𝑔1

Linear

Tanh

Linear

𝑣𝑐2 𝑣𝑎𝑠𝑝𝑒𝑐𝑡

𝑔2

Linear

Tanh

Linear

𝑣𝑐𝑘 𝑣𝑎𝑠𝑝𝑒𝑐𝑡

𝑔𝑘

Linear

Tanh

Linear

……

softmax

……

Figure 1: An illustration of our deep memory network with

three computational layers (hops) for aspect level sentimen-

t classification.

ternal memory m. The output vector in last hop is
considered as the representation of sentence with re-
gard to the aspect, and is further used as the feature
for aspect level sentiment classification.

It is helpful to note that the parameters of attention
and linear layers are shared in different hops. There-
fore, the model with one layer and the model with
nine layers have the same number of parameters.

3.3 Content Attention

We describe our attention model in this part. The
basic idea of attention mechanism is that it assign-
s a weight/importance to each lower position when
computing an upper level representation (Bahdanau
et al., 2015). In this work, we use attention model
to compute the representation of a sentence with re-
gard to an aspect. The intuition is that context words
do not contribute equally to the semantic meaning of
a sentence. Furthermore, the importance of a word
should be different if we focus on different aspect.
Let us again take the example of “great food but the
service was dreadful!”. The context word “great”
is more important than “dreadful” for aspect “food”.
On the contrary, “dreadful” is more important than
“great” for aspect “service”.

Taking an external memory m ∈ Rd×k and an
aspect vector vaspect ∈ Rd×1 as input, the attention
model outputs a continuous vector vec ∈ Rd×1. The
output vector is computed as a weighted sum of each

216

piece of memory in m, namely

vec =

k∑

i=1

αimi (1)

where k is the memory size, αi ∈ [0, 1] is the weight
of mi and

∑
i αi = 1. We implement a neural

network based attention model. For each piece of
memory mi, we use a feed forward neural network
to compute its semantic relatedness with the aspect.
The scoring function is calculated as follows, where
Watt ∈ R1×2d and batt ∈ R1×1.

gi = tanh(Watt[mi; vaspect] + batt) (2)

After obtaining {g1, g2, ... gk}, we feed them to a
softmax function to calculate the final importance
scores {α1, α2, ... αk}.

αi =
exp(gi)∑k
j=1 exp(gj)

(3)

We believe that such an attention model has two
advantages. One advantage is that this model could
adaptively assign an importance score to each piece
of memory mi according to its semantic relatedness
with the aspect. Another advantage is that this at-
tention model is differentiable, so that it could be
easily trained together with other components in an
end-to-end fashion.

3.4 Location Attention

We have described our neural attention framework
and a content-based model in previous subsection.
However, the model mentioned above ignores the lo-
cation information between context word and aspec-
t. Such location information is helpful for an atten-
tion model because intuitively a context word closer
to the aspect should be more important than a farther
one. In this work, we define the location of a context
word as its absolute distance with the aspect in the
original sentence sequence3. On this basis, we study
four strategies to encode the location information in
the attention model. The details are described below.

3The location of a context word could also be measured by
its distance to the aspect along a syntactic path. We leave this
as a future work as we prefer to developing a purely data-driven
approach without using external parsing results.

• Model 1. Following Sukhbaatar et al. (2015),
we calculate the memory vector mi with

mi = ei � vi (4)

where � means element-wise multiplication and
vi ∈ Rd×1 is a location vector for word wi. Every
element in vi is calculated as follows,

vki = (1− li/n)− (k/d)(1− 2× li/n) (5)

where n is sentence length, k is the hop number and
li is the location of wi.
• Model 2. This is a simplified version of Model

1, using the same location vector vi for wi in differ-
ent hops. Location vector vi is calculated as follows.

vi = 1− li/n (6)

• Model 3. We regard location vector vi as a pa-
rameter and compute a piece of memory with vector
addition, namely

mi = ei + vi (7)

All the position vectors are stacked in a position
embedding matrix, which is jointly learned with gra-
dient descent.
• Model 4. Location vectors are also regarded as

parameters. Different from Model 3, location rep-
resentations are regarded as neural gates to control
how many percent of word semantics is written into
the memory. We feed location vector vi to a sigmoid
function σ, and calculatemi with element-wise mul-
tiplication:

mi = ei � σ(vi) (8)

3.5 The Need for Multiple Hops
It is widely accepted that computational models that
are composed of multiple processing layers have the
ability to learn representations of data with multiple
levels of abstraction (LeCun et al., 2015). In this
work, the attention layer in one layer is essentially
a weighted average compositional function, which
is not powerful enough to handle the sophisticated
computationality like negation, intensification and
contrary in language. Multiple computational lay-
ers allow the deep memory network to learn repre-
sentations of text with multiple levels of abstraction.
Each layer/hop retrieves important context words,

217

and transforms the representation at previous level
into a representation at a higher, slightly more ab-
stract level. With the composition of enough such
transformations, very complex functions of sentence
representation towards an aspect can be learned.

3.6 Aspect Level Sentiment Classification

We regard the output vector in last hop as the fea-
ture, and feed it to a softmax layer for aspect level
sentiment classification. The model is trained in a
supervised manner by minimizing the cross entropy
error of sentiment classification, whose loss func-
tion is given below, where T means all training in-
stances, C is the collection of sentiment categories,
(s, a) means a sentence-aspect pair.

loss = −
∑

(s,a)∈T

∑

c∈C
P g
c (s, a) · log(Pc(s, a)) (9)

Pc(s, a) is the probability of predicting (s, a) as cat-
egory c produced by our system. P g

c (s, a) is 1 or
0, indicating whether the correct answer is c. We
use back propagation to calculate the gradients of
all the parameters, and update them with stochastic
gradient descent. We clamp the word embeddings
with 300-dimensional Glove vectors (Pennington et
al., 2014), which is trained from web data and the
vocabulary size is 1.9M4. We randomize other pa-
rameters with uniform distribution U(−0.01, 0.01),
and set the learning rate as 0.01.

4 Experiment

We describe experimental settings and report empir-
ical results in this section.

4.1 Experimental Setting

We conduct experiments on two datasets from Se-
mEval 2014 (Pontiki et al., 2014), one from laptop
domain and another from restaurant domain. Statis-
tics of the datasets are given in Table 1. It is worth
noting that the original dataset contains the fourth
category - conflict, which means that a sentence ex-
presses both positive and negative opinion towards
an aspect. We remove conflict category as the num-
ber of instances is very tiny, incorporating which

4Available at: http://nlp.stanford.edu/projects/glove/.

will make the dataset extremely unbalanced. Evalu-
ation metric is classification accuracy.

Dataset Pos. Neg. Neu.
Laptop-Train 994 870 464
Laptop-Test 341 128 169
Restaurant-Train 2164 807 637
Restaurant-Test 728 196 196

Table 1: Statistics of the datasets.

4.2 Comparison to Other Methods

We compare with the following baseline methods on
both datasets.

(1) Majority is a basic baseline method, which
assigns the majority sentiment label in training set
to each instance in the test set.

(2) Feature-based SVM performs state-of-the-art
on aspect level sentiment classification. We compare
with a top system using ngram features, parse fea-
tures and lexicon features (Kiritchenko et al., 2014).

(3) We compare with three LSTM models (Tang
et al., 2015a)). In LSTM, a LSTM based recurrent
model is applied from the start to the end of a sen-
tence, and the last hidden vector is used as the sen-
tence representation. TDLSTM extends LSTM by
taking into account of the aspect, and uses two LST-
M networks, a forward one and a backward one, to-
wards the aspect. TDLSTM+ATT extends TDLST-
M by incorporating an attention mechanism (Bah-
danau et al., 2015) over the hidden vectors. We use
the same Glove word vectors for fair comparison.

(4) We also implement ContextAVG, a simplistic
version of our approach. Context word vectors are
averaged and the result is added to the aspect vector.
The output is fed to a softmax function.

Experimental results are given in Table 2. Our
approach using only content attention is abbreviat-
ed to MemNet (k), where k is the number of hops.
We can find that feature-based SVM is an extremely
strong performer and substantially outperforms oth-
er baseline methods, which demonstrates the impor-
tance of a powerful feature representation for aspect
level sentiment classification. Among three recur-
rent models, TDLSTM performs better than LSTM,
which indicates that taking into account of the as-
pect information is helpful. This is reasonable as the
sentiment polarity of a sentence towards different as-

218

Laptop Restaurant
Majority 53.45 65.00
Feature+SVM 72.10 80.89
LSTM 66.45 74.28
TDLSTM 68.13 75.63
TDLSTM+ATT 66.24 74.31
ContextAVG 61.22 71.33
MemNet (1) 67.66 76.10
MemNet (2) 71.14 78.61
MemNet (3) 71.74 79.06
MemNet (4) 72.21 79.87
MemNet (5) 71.89 80.14
MemNet (6) 72.21 80.05
MemNet (7) 72.37 80.32
MemNet (8) 72.05 80.14
MemNet (9) 72.21 80.95

Table 2: Classification accuracy of different methods on laptop

and restaurant datasets. Best scores in each group are in bold.

pects (e.g. “food” and “service”) might be different.
It is somewhat disappointing that incorporating at-
tention model over TDLSTM does not bring any im-
provement. We consider that each hidden vector of
TDLSTM encodes the semantics of word sequence
until the current position. Therefore, the model of
TDLSTM+ATT actually selects such mixed seman-
tics of word sequence, which is weird and not an in-
tuitive way to selectively focus on parts of contexts.
Different from TDLSTM+ATT, the proposed mem-
ory network approach removes the recurrent calcula-
tor over word sequence and directly apply attention
mechanism on context word representations.

We can also find that the performance of Contex-
tAVG is very poor, which means that assigning the
same weight/importance to all the context words is
not an effective way. Among all our models from
single hop to nine hops, we can observe that using
more computational layers could generally lead to
better performance, especially when the number of
hops is less than six. The best performances are
achieved when the model contains seven and nine
hops, respectively. On both datasets, the proposed
approach could obtain comparable accuracy com-
pared to the state-of-art feature-based SVM system.

4.3 Runtime Analysis

We study the runtime of recurrent neural models and
the proposed deep memory network approach with
different hops. We implement all these approaches
based on the same neural network infrastructure, use
the same 300-dimensional Glove word vectors, and
run them on the same CPU server.

Method Time cost
LSTM 417
TDLSTM 490
TDLSTM + ATT 520
MemNet (1) 3
MemNet (2) 7
MemNet (3) 9
MemNet (4) 15
MemNet (5) 20
MemNet (6) 24
MemNet (7) 26
MemNet (8) 27
MemNet (9) 29

Table 3: Runtime (seconds) of each training epoch on the

restaurant dataset.

The training time of each iteration on the restau-
rant dataset is given in Table 3. We can find that
LSTM based recurrent models are indeed compu-
tationally expensive, which is caused by the com-
plex operations in each LSTM unit along the word
sequence. Instead, the memory network approach
is simpler and evidently faster because it does not
need recurrent calculators of sequence length. Our
approach with nine hops is almost 15 times faster
than the basic LSTM model.

4.4 Effects of Location Attention

As described in Section 3.4, we explore four strate-
gies to integrate location information into the atten-
tion model. We incorporate each of them separate-
ly into the basic content-based attention model. It
is helpful to restate that the difference between four
location-based attention models lies in the usage of
location vectors for context words. In Model 1 and
Model 2, the values of location vectors are fixed and
calculated in a heuristic way. In Model 3 and Model
4, location vectors are also regarded as the parame-
ters and jointly learned along with other parameters
in the deep memory network.

219

(a) Aspect: service, Answer: -1, Prediction: -1

hop 1 hop 2 hop 3 hop 4 hop 5
great 0.20 0.15 0.14 0.13 0.23
food 0.11 0.07 0.08 0.12 0.06
but 0.20 0.10 0.10 0.12 0.13
the 0.03 0.07 0.08 0.12 0.06
was 0.08 0.07 0.08 0.12 0.06

dreadful 0.20 0.45 0.45 0.28 0.40
! 0.19 0.08 0.08 0.12 0.07

(b) Aspect: food, Answer: +1, Prediction: -1

hop 1 hop 2 hop 3 hop 4 hop 5
great 0.22 0.12 0.14 0.12 0.20
but 0.21 0.11 0.10 0.11 0.12
the 0.03 0.11 0.08 0.11 0.06

service 0.11 0.11 0.08 0.11 0.06
was 0.04 0.11 0.08 0.11 0.06

dreadful 0.22 0.32 0.45 0.32 0.43
! 0.16 0.11 0.08 0.11 0.07

Table 4: Examples of attention weights in different hops for aspect level sentiment classification. The model only uses content

attention. The hop columns show the weights of context words in each hop, indicated by values and gray color. This example shows

the results of sentence “great food but the service was dreadful!” with “food” and “service” as the aspects.

(a) Aspect: service, Answer: -1, Prediction: -1

hop 1 hop 2 hop 3 hop 4 hop 5
great 0.08 0.10 0.10 0.09 0.09
food 0.08 0.07 0.07 0.07 0.07
but 0.10 0.15 0.16 0.13 0.11
the 0.07 0.07 0.07 0.07 0.07
was 0.07 0.07 0.07 0.07 0.07

dreadful 0.52 0.48 0.48 0.50 0.52
! 0.07 0.07 0.07 0.07 0.07

(b) Aspect: food, Answer: +1, Prediction: +1

hop 1 hop 2 hop 3 hop 4 hop 5
great 0.31 0.26 0.32 0.28 0.32
but 0.14 0.18 0.15 0.18 0.15
the 0.08 0.05 0.08 0.05 0.07

service 0.09 0.09 0.09 0.08 0.09
was 0.09 0.08 0.09 0.08 0.08

dreadful 0.18 0.21 0.18 0.22 0.19
! 0.11 0.12 0.10 0.11 0.10

Table 5: Examples of attention weights in different hops for aspect level sentiment classification. The model also takes into account

of the location information (Model 2). This example is as same as the one we use in Table 4.

1 2 3 4 5 6 7 8 9
0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

Number of hops

A
cc

ur
ac

y

Content
+ Location 1
+ Location 2
+ Location 3
+ Location 4

Figure 2: Classification accuracy of different attention models

on the restaurant dataset.

Figure 2 shows the classification accuracy of each
attention model on the restaurant dataset. We can
find that using multiple computational layers could
consistently improve the classification accuracy in
all these models. All these models perform compa-
rably when the number of hops is larger than five.
Among these four location-based models, we pre-
fer Model 2 as it is intuitive and has less compu-
tation cost without loss of accuracy. We also find
that Model 4 is very sensitive to the choice of neural

gate. Its classification accuracy decreases by almost
5 percentage when the sigmoid operation over loca-
tion vector is removed.

4.5 Visualize Attention Models

We visualize the attention weight of each context
word to get a better understanding of the deep mem-
ory network approach. The results of context-based
model and location-based model (Model 2) are giv-
en in Table 4 and Table 5, respectively.

From Table 4(a), we can find that in the first hop
the context words “great”, “but” and “dreadful” con-
tribute equally to the aspect “service”. While after
the second hop, the weight of “dreadful” increases
and finally the model correctly predict the polarity
towards “service” as negative. This case shows the
effects of multiple hops. However, in Table 4(b),
the content-based model also gives a larger weight
to “dreadful” when the target we focus on is “food”.
As a result, the model incorrectly predicts the po-
larity towards “food” as negative. This phenomenon
might be caused by the neglect of location informa-
tion. From Table 5(b), we can find that the weight
of “great” is increased when the location of context
word is considered. Accordingly, Model 2 predict-

220

s the correct sentiment label towards “food”. We
believe that location-enhanced model captures both
content and location information. For instance, in
Table 5(a) the closest context words of the aspect
“service” are “the” and “was”, while “dreadful” has
the largest weight.

4.6 Error Analysis
We carry out an error analysis of our location en-
hanced model (Model 2) on the restaurant dataset,
and find that most of the errors could be sum-
marized as follows. The first factor is non-
compositional sentiment expression. This model
regards single context word as the basic computa-
tional unit and cannot handle this situation. An
example is “dessert was also to die for!”, where
the aspect is underlined. The sentiment expres-
sion is “die for”, whose meaning could not be
composed from its constituents “die” and “for”.
The second factor is complex aspect expression
consisting of many words, such as “ask for the
round corner table next to the large window.” This
model represents an aspect expression by averag-
ing its constituting word vectors, which could not
well handle this situation. The third factor is senti-
mental relation between context words such as nega-
tion, comparison and condition. An example is “but
dinner here is never disappointing, even if the prices
are a bit over the top”. We believe that this is caused
by the weakness of weighted average composition-
al function in each hop. There are also cases when
comparative opinions are expressed such as “i ’ve
had better japanese food at a mall food court”.

5 Related Work

This work is connected to three research areas in nat-
ural language processing. We briefly describe relat-
ed studies in each area.

5.1 Aspect Level Sentiment Classification
Aspect level sentiment classification is a fine-
grained classification task in sentiment analysis,
which aims at identifying the sentiment polarity of
a sentence expressed towards an aspect (Pontiki et
al., 2014). Most existing works use machine learn-
ing algorithms, and build sentiment classifier from
sentences with manually annotated polarity label-
s. One of the most successful approaches in liter-

ature is feature based SVM. Experts could design
effective feature templates and make use of external
resources like parser and sentiment lexicons (Kir-
itchenko et al., 2014; Wagner et al., 2014). In re-
cent years, neural network approaches (Dong et al.,
2014; Lakkaraju et al., 2014; Nguyen and Shirai,
2015; Tang et al., 2015a) are of growing attention for
their capacity to learn powerful text representation
from data. However, these neural models (e.g. L-
STM) are computationally expensive, and could not
explicitly reveal the importance of context evidences
with regard to an aspect. Instead, we develop simple
and fast approach that explicitly encodes the con-
text importance towards a given aspect. It is worth
noting that the task we focus on differs from fine-
grained opinion extraction, which assigns each word
a tag (e.g. B,I,O) to indicate whether it is an aspec-
t/sentiment word (Choi and Cardie, 2010; Irsoy and
Cardie, 2014; Liu et al., 2015). The aspect word in
this work is given as a part of the input.

5.2 Compositionality in Vector Space

In NLP community, compositionality means that
the meaning of a composed expression (e.g. a
phrase/sentence/document) comes from the mean-
ings of its constituents (Frege, 1892). Mitchell and
Lapata (2010) exploits a variety of addition and
multiplication functions to calculate phrase vector.
Yessenalina and Cardie (2011) use matrix multipli-
cation as compositional function to compute vec-
tors for longer phrases. To compute sentence rep-
resentation, researchers develop denoising autoen-
coder (Glorot et al., 2011), convolutional neural net-
work (Kalchbrenner et al., 2014; Kim, 2014; Yin
and Schütze, 2015), sequence based recurrent neu-
ral models (Sutskever et al., 2014; Kiros et al., 2015;
Li et al., 2015b) and tree-structured neural network-
s (Socher et al., 2013; Tai et al., 2015; Zhu et al.,
2015). Several recent studies calculate continuous
representation for documents with neural networks
(Le and Mikolov, 2014; Bhatia et al., 2015; Li et al.,
2015a; Tang et al., 2015b; Yang et al., 2016).

5.3 Attention and Memory Networks

Recently, there is a resurgence in computational
models with attention mechanism and explicit mem-
ory to learn representations of texts (Graves et al.,
2014; Weston et al., 2014; Sukhbaatar et al., 2015;

221

Bahdanau et al., 2015). In this line of research,
memory is encoded as a continuous representation
and operations on memory (e.g. reading and writ-
ing) are typically implemented with neural network-
s. Attention mechanism could be viewed as a com-
positional function, where lower level representa-
tions are regarded as the memory, and the func-
tion is to choose “where to look” by assigning
a weight/importance to each lower position when
computing an upper level representation. Such at-
tention based approaches have achieved promising
performances on a variety of NLP tasks (Luong et
al., 2015; Kumar et al., 2015; Rush et al., 2015).

6 Conclusion

We develop deep memory networks that capture im-
portances of context words for aspect level senti-
ment classification. Compared with recurrent neu-
ral models like LSTM, this approach is simpler
and faster. Empirical results on two datasets veri-
fy that the proposed approach performs comparable
to state-of-the-art feature based SVM system, and
substantively better than LSTM architectures. We
implement different attention strategies and show
that leveraging both content and location informa-
tion could learn better context weight and text rep-
resentation. We also demonstrate that using multi-
ple computational layers in memory network could
obtain improved performance. Our potential future
plans are incorporating sentence structure like pars-
ing results into the deep memory network.

Acknowledgments

We would especially want to thank Xiaodan Zhu for
running their system on our setup. We greatly thank
Yaming Sun for tremendously helpful discussions.
We also thank the anonymous reviewers for their
valuable comments. This work was supported by the
National High Technology Development 863 Pro-
gram of China (No. 2015AA015407), National Nat-
ural Science Foundation of China (No. 61632011
and No.61273321).

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly

learning to align and translate. International Confer-
ence on Learning Representations (ICLR).

Parminder Bhatia, Yangfeng Ji, and Jacob Eisenstein.
2015. Better document-level sentiment analysis from
rst discourse parsing. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2212–2218.

Yejin Choi and Claire Cardie. 2010. Hierarchical se-
quential learning for extracting opinions and their at-
tributes. In Proceedings of the ACL 2010 Conference
Short Papers, pages 269–274. Association for Compu-
tational Linguistics.

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming
Zhou, and Ke Xu. 2014. Adaptive recursive neural
network for target-dependent twitter sentiment clas-
sification. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics,
pages 49–54.

Gottlob Frege. 1892. On sense and reference. Ludlow
(1997), pages 563–584.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Proceed-
ings of the 28th International Conference on Machine
Learning (ICML-11), pages 513–520.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.
Neural turing machines. arXiv preprint arX-
iv:1410.5401.

Ozan Irsoy and Claire Cardie. 2014. Opinion mining
with deep recurrent neural networks. In Proceedings
of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, pages 720–728.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics, pages 655–665.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1746–1751.

Svetlana Kiritchenko, Xiaodan Zhu, Colin Cherry, and
Saif Mohammad. 2014. Nrc-canada-2014: Detecting
aspects and sentiment in customer reviews. In Pro-
ceedings of the 8th International Workshop on Seman-
tic Evaluation (SemEval 2014), pages 437–442.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in Neural Information Processing Systems,
pages 3276–3284.

Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury,
Robert English, Brian Pierce, Peter Ondruska, Ishaan

222

Gulrajani, and Richard Socher. 2015. Ask me any-
thing: Dynamic memory networks for natural lan-
guage processing. arXiv preprint arXiv:1506.07285.

Himabindu Lakkaraju, Richard Socher, and Chris Man-
ning. 2014. Aspect specific sentiment analysis using
hierarchical deep learning. In NIPS Workshop on Deep
Learning and Representation Learning.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Proceed-
ings of The 31nd International Conference on Machine
Learning, pages 1188–1196.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. Nature, 521(7553):436–444.

Jiwei Li, Thang Luong, and Dan Jurafsky. 2015a. A hi-
erarchical neural autoencoder for paragraphs and doc-
uments. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics, pages
1106–1115.

Jiwei Li, Thang Luong, Dan Jurafsky, and Eduard Hov-
y. 2015b. When are tree structures necessary for
deep learning of representations? In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 2304–2314.

Pengfei Liu, Shafiq Joty, and Helen Meng. 2015. Fine-
grained opinion mining with recurrent neural network-
s and word embeddings. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1433–1443.

Bing Liu. 2012. Sentiment analysis and opinion mining.
Synthesis Lectures on Human Language Technologies,
5(1):1–167.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1412–1421.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corra-
do, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems,
pages 3111–3119.

Jeff Mitchell and Mirella Lapata. 2010. Composition in
distributional models of semantics. Cognitive Science,
34(8):1388–1429.

Thien Hai Nguyen and Kiyoaki Shirai. 2015. Phrasernn:
Phrase recursive neural network for aspect-based sen-
timent analysis. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 2509–2514.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and trends in infor-
mation retrieval, 2(1-2):1–135.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing,
pages 1532–1543.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Har-
ris Papageorgiou, Ion Androutsopoulos, and Suresh
Manandhar. 2014. Semeval-2014 task 4: Aspec-
t based sentiment analysis. In Proceedings of the 8th
International Workshop on Semantic Evaluation (Se-
mEval 2014), pages 27–35.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 379–389.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher
Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1631–
1642.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and
Rob Fergus. 2015. End-to-end memory networks. In
Advances in Neural Information Processing Systems,
pages 2431–2439.

Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhenzhou
Ji, and Xiaolong Wang. 2015. Modeling mention,
context and entity with neural networks for entity dis-
ambiguation. Proceedings of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence (I-
JCAI 2015), pages 1333–1339.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing systems,
pages 3104–3112.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics, pages 1556–
1566.

Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting Li-
u. 2015a. Target-Dependent Sentiment Classification
with Long Short Term Memory. ArXiv preprint arX-
iv:1512.01100.

Duyu Tang, Bing Qin, and Ting Liu. 2015b. Document
modeling with gated recurrent neural network for sen-
timent classification. Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1422–1432.

Duy-Tin Vo and Yue Zhang. 2015. Target-dependent
twitter sentiment classification with rich automatic

223

features. In Proceedings of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence (I-
JCAI 2015), pages 1347–1353.

Joachim Wagner, Piyush Arora, Santiago Cortes, Utsab
Barman, Dasha Bogdanova, Jennifer Foster, and Lami-
a Tounsi. 2014. Dcu: Aspect-based polarity classifi-
cation for semeval task 4. In Proceedings of the 8th
International Workshop on Semantic Evaluation (Se-
mEval 2014), pages 223–229.

Jason Weston, Sumit Chopra, and Antoine Bordes. 2014.
Memory networks. arXiv preprint arXiv:1410.3916.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex
Smola, and Eduard Hovy. 2016. Hierarchical atten-
tion networks for document classification. In Proceed-
ings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguis-
tics.

Ainur Yessenalina and Claire Cardie. 2011. Compo-
sitional matrix-space models for sentiment analysis.
In Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, pages 172–
182.

Wenpeng Yin and Hinrich Schütze. 2015. Multichan-
nel variable-size convolution for sentence classifica-
tion. In Proceedings of the Nineteenth Conference
on Computational Natural Language Learning, pages
204–214.

Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. 2015.
Long short-term memory over tree structures. In Pro-
ceedings of The 32nd International Conference on Ma-
chine Learning, pages 1604–1612.

224

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 225–235,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Lifelong-RL: Lifelong Relaxation Labeling for Separating Entities and
Aspects in Opinion Targets

Lei Shu1, Bing Liu1, Hu Xu1, Annice Kim2

1Department of Computer Science, University of Illinois at Chicago, USA
2Center for Health Policy Science and Tobacco Research, RTI International, USA

1{lshu3, liub, hxu48}@uic.edu, 2akim@rti.org

Abstract

It is well-known that opinions have targets.
Extracting such targets is an important prob-
lem of opinion mining because without know-
ing the target of an opinion, the opinion is of
limited use. So far many algorithms have been
proposed to extract opinion targets. However,
an opinion target can be an entity or an as-
pect (part or attribute) of an entity. An opinion
about an entity is an opinion about the entity
as a whole, while an opinion about an aspect
is just an opinion about that specific attribute
or aspect of an entity. Thus, opinion targets
should be separated into entities and aspects
before use because they represent very dif-
ferent things about opinions. This paper pro-
poses a novel algorithm, called Lifelong-RL,
to solve the problem based on lifelong ma-
chine learning and relaxation labeling. Ex-
tensive experiments show that the proposed
algorithm Lifelong-RL outperforms baseline
methods markedly.

1 Introduction

A core problem of opinion mining or sentiment anal-
ysis is to identify each opinion/sentiment target and
to classify the opinion/sentiment polarity on the tar-
get (Liu, 2012). For example, in a review sen-
tence for a car, one wrote “Although the engine is
slightly weak, this car is great.” The person is posi-
tive (opinion polarity) about the car (opinion target)
as a whole, but slightly negative (opinion polarity)
about the car’s engine (opinion target).

Past research has proposed many techniques to
extract opinion targets (we will just call them targets

hereafter for simplicity) and also to classify senti-
ment polarities on the targets. However, a target can
be an entity or an aspect (part or attribute) of an en-
tity. “Engine” in the above sentence is just one as-
pect of the car, while “this car” refers to the whole
car. Note that in (Liu, 2012), an entity is called a
general aspect. For effective opinion mining, we
need to classify whether a target is an entity or an as-
pect because they refer to very different things. One
can be positive about the whole entity (car) but neg-
ative about some aspects of it (e.g., engine) and vice
versa. This paper aims to perform the target classi-
fication task, which, to our knowledge, has not been
attempted before. Although in supervised extraction
one can annotate entities and aspects with separate
labels in the training data to build a model to extract
them separately, in this paper our goal is to help un-
supervised target extraction methods to classify tar-
gets. Unsupervised target extraction methods are of-
ten preferred because they save the time-consuming
data labeling or annotation step for each domain.

Problem Statement: Given a set of opinion tar-
gets T = {t1, . . . , tn} extracted from an opinion
corpus d, we want to classify each target ti ∈ T into
one of the three classes, entity, aspect, or NIL, which
are called class labels. NIL means that the target is
neither an entity nor an aspect and is used because
target extraction algorithms can make mistakes.

This paper does not propose a new target extrac-
tion algorithm. We use an existing unsupervised
method, called Double Propagation (DP) (Qiu et al.,
2011), for extraction. We only focus on target clas-
sification after the targets have been extracted. Note
that an entity here can be a named entity, a prod-

225

uct category, or an abstract product (e.g., “this ma-
chine” and “this product”). An named entity can be
the name of a brand, a model, or a manufacturer. An
aspect is a part or attribute of an entity, e.g., “bat-
tery” and “price” of the entity “camera”.

Since our entities not just include the traditional
named entities (e.g., “Microsoft” and “Google”) but
also other expressions that refer to such entities, tra-
ditional named entity recognition algorithms are not
sufficient. Pronouns such as “it,” “they,” etc., are not
considered in this paper as co-reference resolution is
out of the scope of this work.

We solve this problem in an unsupervised manner
so that there is no need for labor-intensive manual
labeling of the training data. One key observation of
the problem is that although entities and aspects are
different, they are closely related because aspects are
parts or attributes of entities and they often have syn-
tactic relationships in a sentence, e.g., “This phone’s
screen is super.” Thus it is natural to solve the prob-
lem using a relational learning method. We employ
the graph labeling algorithm, Relaxation Labeling
(RL) (Hummel and Zucker, 1983), which performs
unsupervised belief propagation on a graph. In our
case, each target extracted from the given corpus d
forms a graph node and each relation identified in
d between two targets forms an edge. With some
initial probability assignments, RL can assign each
target node the most probable class label. Although
some other graph labeling methods can be applied
as well, the key issue here is that just using a propa-
gation method in isolation is far from sufficient due
to lack of information from the given corpus, which
we detail in Section 5. We then employ Lifelong Ma-
chine Learning (LML) (Thrun, 1998; Chen and Liu,
2014b) to make a major improvement.

LML works as follows: The learner has per-
formed a number learning tasks in the past and
has retained the knowledge gained so far. In the
new/current task, it makes use of the past knowledge
to help current learning and problem solving. Since
RL is unsupervised, we can assume that the system
has performed the same task on reviews of a large
number of products/domains (or corpora). It has
also saved all the graphs and classification results
from those past domains in a Knowledge Base (KB).
It then exploits this past knowledge to help clas-
sification in the current task/domain. We call this

combined approach of relaxation labeling and LML
Lifelong-RL. The approach is effective because there
is a significant amount of sharing of targets and tar-
get relations across domains.

LML is different from the classic learning
paradigm (supervised or unsupervised) because
classic learning has no memory. It basically runs a
learning algorithm on a given data in isolation with-
out considering any past learned knowledge (Silver
et al., 2013). LML aims to mimic human learning,
which always retains the learned knowledge from
the past and uses it to help future learning.

Our experimental results show that the pro-
posed Lifelong-RL system is highly promising. The
paradigm of LML helps improve the classification
results greatly.

2 Related Work

Although many target extraction methods exist (Hu
and Liu, 2004; Zhuang et al., 2006; Ku et al., 2006;
Wang and Wang, 2008; Wu et al., 2009; Lin and
He, 2009; Zhang et al., 2010; Mei et al., 2007; Li
et al., 2010; Brody and Elhadad, 2010; Wang et al.,
2010; Mukherjee and Liu, 2012; Fang and Huang,
2012; Zhou et al., 2013; Liu et al., 2013; Poria
et al., 2014), we are not aware of any attempt to
solve the proposed problem. As mentioned in the in-
troduction, although in supervised target extraction,
one can annotate entities and aspects with different
labels, supervised methods need manually labeled
training data, which is time-consuming and labor-
intensive to produce (Jakob and Gurevych, 2010;
Choi and Cardie, 2010; Mitchell et al., 2013). Note
that relaxation labeling was used for sentiment clas-
sification in (Popescu and Etzioni, 2007), but not for
target classification. More details of opinion mining
can be found in (Liu, 2012; Pang and Lee, 2008).

Our work is related to transfer learning (Pan and
Yang, 2010), which uses the source domain labeled
data to help target domain learning, which has lit-
tle or no labeled data. Our work is not just using
a source domain to help a target domain. It is a
continuous and cumulative learning process. Each
new task can make use of the knowledge learned
from all past tasks. Knowledge learned from the
new task can also help improve learning of any past
task. Transfer learning is not continuous, does not

226

accumulate knowledge over time and cannot im-
prove learning in the source domain. Our work is
also related to multi-task learning (Caruana, 1997),
which jointly optimizes a set of related learning
tasks. Clearly, multi-task learning is different as we
learn and save information which is more realistic
when a large number of tasks are involved.

Our work is most related to Lifelong Machine
Learning (LML). Traditional LML focuses on su-
pervised learning (Thrun, 1998; Ruvolo and Eaton,
2013; Chen et al., 2015). Recent work used LML
in topic modeling (Chen and Liu, 2014a), which is
unsupervised. Basically, they used topics generated
from past domains to help current domain model in-
ference. However, they are just for aspect extrac-
tion. So is the method in (Liu et al., 2016). They
do not solve our problem. Their LML methods are
also different from ours as we use a graph and results
obtained in the past domains to augment the current
task/domain graph to solve the problem.

3 Lifelong-RL: The General Framework

In this section, we present the proposed general
framework of lifelong relaxation labeling (Lifelong-
RL). We first give an overview of the relaxation la-
beling algorithm, which forms the base. We then
incorporate it with the LML capability. The next
two sections detail how this general framework is
applied to our proposed task of separating entities
and aspects in opinion targets.

3.1 Relaxation Labeling

Relaxation Labeling (RL) is an unsupervised graph-
based label propagation algorithm that works iter-
atively. The graph consists of nodes and edges.
Each edge represents a binary relationship between
two nodes. Each node ti in the graph is associated
with a multinomial distribution P (L(ti)) (L(ti) be-
ing the label of ti) on a label set Y . Each edge is
associated with two conditional probability distri-
butions P (L(ti)|L(tj)) and P (L(tj)|L(ti)), where
P (L(ti)|L(tj)) represents how the label L(tj) influ-
ences the label L(ti) and vice versa. The neighbors
Ne(ti) of a node ti are associated with a weight dis-
tribution w(tj |ti) with

∑
tj∈Ne(ti)

w(tj |ti) = 1.
Given the initial values of these quantities as in-

puts, RL iteratively updates the label distribution

of each node until convergence. Initially, we have
P 0(L(ti)). Let ∆P r+1(L(ti)) be the change of
P (L(ti)) at iteration r+ 1. Given P r(L(ti)) at iter-
ation r, ∆P r+1(L(ti)) is computed by:

∆P r+1(L(ti)) =
∑

tj∈Ne(ti)
(w(tj |ti)

·∑y∈Y (P (L(ti)|L(tj) = y)P r(L(tj) = y)))
(1)

Then, the updated label distribution for iteration
r + 1, P r+1(L(ti)), is computed as follows:

P r+1(L(ti)) =
P r(L(ti))(1+∆P r+1(L(ti)))∑

y∈Y P r(L(ti)=y)(1+∆P r+1(L(ti)=y))

(2)

Once RL ends, the final label of node ti is its highest
probable label: L(ti) = argmax

y∈Y
(P (L(ti) = y)).

Note that P (L(ti)|L(tj)) and w(tj |ti) are not up-
dated in each RL iteration but only P (L(ti)) is.
P (L(ti)|L(tj)), w(tj |ti) and P 0(L(ti)) are pro-
vided by the user or computed based on the appli-
cation context. RL uses these values as input and
iteratively updates P (L(ti)) based on Equations (1)
and (2) until convergence. Next we discuss how to
incorporate LML in RL.

3.2 Lifelong Relaxation Labeling
For LML, it is assumed that at any time step, the
system has worked on u past domain corpora D =
{d1, . . . , du}. For each past domain corpus d ∈
D, the same Lifelong-RL algorithm was applied
and its results were saved in the Knowledge Base
(KB). Then the algorithm can borrow some useful
prior/past knowledge in the KB to help RL in the
new/current domain du+1. Once the results of the
current domain are produced, they are also added to
the KB for future use.

We now detail the specific types of information
or knowledge that can be obtained from the past do-
mains to help RL in the future, which should thus be
stored in the KB.

1. Prior edges: In many applications, the graph
is not given. Instead, it has to be constructed
based on the data from the new task/domain
data du+1. However, due to the limited data in
du+1, some edges between nodes that should
be present are not extracted from the data. But
such edges between the nodes may exist in

227

some past domains. Then, those edges and their
associated probabilities can be borrowed.

2. Prior labels: Some nodes in the current new
domain may also exist in some past domains.
Their labels in the past domains are very likely
to be the same as those in the current domain.
Then, those prior labels can give us a better idea
about the initial label probability distributions
of the nodes in the current domain du+1.

To leverage those edges and labels from the past
domains, the system needs to ensure that they are
likely to be correct and applicable to the current task
domain. This is a challenge problem. In the next
two sections, we detail how to ensure these to a large
extent in our application context along with how to
compute those initial probabilities.

4 Initialization of Relaxation Labeling

We now discuss how the proposed Lifelong-RL gen-
eral framework is applied to solve our problem. In
our case, each node in the graph is an extracted tar-
get ti ∈ T , and each edge represents a binary re-
lationship between two targets. T is the given set
of all opinion targets extracted by an extraction al-
gorithm from a review dataset/corpus d. The label
set for each target is Y = {entity, aspect,NIL}. In
this section, we describe how to use text clues in the
corpus d to compute P (L(ti)|L(tj)), w(tj |ti) and
P 0(L(ti)). In the next section, we present how these
quantities are improved using prior knowledge from
the past domains in the LML fashion.

4.1 Text Clues for Initialization
We use two kinds of text clues, called type modifiers
M(t) and relation modifiers MR to compute the ini-
tial label distribution P (L(ti)) and conditional label
distribution P (L(ti)|L(tj)) respectively.

Type Modifier: This has two kinds MT =
{mE ,mA}, where mE and mA represent entity
modifier and aspect modifier respectively. For ex-
ample, the word “this” as in “this camera is great”
indicates that “camera” is probably an entity. Thus,
“this” is a type modifier indicating M(camera) =
mE . “These” is also a type modifier. Aspect mod-
ifier is implicitly assumed when the number of ap-
pearances of entity modifiers is less than or equal to
a threshold (see Section 4.2).

Relation Modifier: Given two targets, ti and tj ,
we use Mtj (ti) to denote the relation modifier that
the label of target ti is influenced by the label of tar-
get tj . Relation modifiers are further divided into 3
kinds: MR = {mc,mA|E ,mE|A}.

Conjunction modifier mc: Conjoined items are
usually of the same type. For example, in “price and
service”, “and service” indicates a conjunction mod-
ifier for “price” and vice versa.

Entity-aspect modifier mA|E : A possessive ex-
pression indicates an entity and an aspect relation.
For example, in “the camera’s battery”, “camera” in-
dicates an entity-aspect modifier for “battery”.

Aspect-entity modifier mE|A: Same as above ex-
cept that “battery” indicates an aspect-entity modi-
fier for “camera”.

Modifier Extraction: These modifiers are iden-
tified from the corpus d using three syntactic rules.
“This” and “these” are used to extract type modifier
M(t) = mE . CmE (t) is the occurrence count of
that modifier on target t, which is used in determin-
ing the initial label distribution in Section 4.2.

Relation modifiers are identified by dependency
relations conj(ti, tj) and poss(ti, tj) using the Stan-
ford Parser (Klein and Manning, 2003). Each oc-
currence of a relation rule contributes one count of
Mtj (ti) for ti and one count of Mti(tj) for tj . We
use Cmc,tj (ti), CmA|E ,tj (ti) and CmE|A,tj (ti) to de-
note the count of tj modifying ti with conjunction,
entity-aspect and aspect-entity modifiers respec-
tively. For example, “price and service” will con-
tribute one count to Cmc,price(service) and one count
to Cmc,service(price). Similarly, “camera’s battery”
will contribute one count to CmA|E ,camera(battery)
and one count to CmE|A,battery(camera).

4.2 Computing Initial Probabilities

The initial label probability distribution of target t is
computed based on CmE (t), i.e.,

P 0(L(t)) =

{
PmE (L(t)) if CmE (t) > α
PmA(L(t)) if CmE (t) ≤ α

(3)
Here, we have two pre-defined distributions: PmE

and PmA , which have a higher probability on entity
and aspect respectively. The parameter α is a thresh-
old indicating that if the entity modifier rarely oc-
curs, the target is more likely to be an aspect. These

228

values are set empirically (see Section 6).
Let term q(Mtj (ti) = m) be the normalized

weight on the count for each kind of relation modi-
fier m ∈MR:

q(Mtj (ti) = m) =
Cm,tj (ti)

Ctj (ti)
(4)

where Ctj (ti) =
∑

m∈MR
Cm,tj (ti).

The conditional label distribution P (L(ti)|L(tj))
of ti given the label of tj is the weighted sum over
the three kinds of relation modifiers:

P (L(ti)|L(tj)) =
q(Mtj (ti) = mc) · Pmc(L(ti)|L(tj))
+q(Mtj (ti) = mA|E) · PmA|E (L(ti)|L(tj))

+q(Mtj (ti) = mE|A) · PmE|A(L(ti)|L(tj))

(5)

where Pmc , PmA|E , and PmE|A are pre-defined con-
ditional distributions. They are filled with values to
model the label influence from neighbors and can be
found in Section 6.

Finally, target ti’s neighbor weight for target tj ,
i.e., w(tj |ti), is the ratio of the count of relation
modifiers Ctj (ti) over the total of all ti’s neighbors:

w(tj |ti) =
Ctj (ti)∑

tj′∈Ne(ti)
Ctj′ (ti)

(6)

If Ctj (ti) = 0, ti and tj has no edge between them.

5 Using Past Knowledge in Lifelong-RL

Due to the fact that the review corpus du+1 in the
current task domain may not be very large and that
we use high quality syntactic rules to extract rela-
tions to build the graph to ensure precision, the num-
ber of relations extracted can be small and insuffi-
cient to produce a graph that is information rich with
accurate initial probabilities. We thus apply LML to
help using knowledge learned in the past. The pro-
posed LML process in Lifelong-RL for our task is
shown in Figure 1.

Our prior knowledge includes type modi-
fiers, relation modifiers and labels of targets
obtained from past domains in D. Each
record in the KB is stored as a 9-tuple:
(d, ti, tj ,M

d(ti),M
d(tj), C

d
m,tj (ti), C

d
m,ti(tj), L

d(ti), L
d(tj))

where d ∈ D is a past domain; ti and tj are
two targets; Md(ti), Md(tj) are their type

Figure 1: The proposed LML process.

modifiers, Cdm,tj (ti) and Cdm,ti(tj) are counts
for relation modifiers; Ld(ti) and Ld(tj) are
labels decided by RL. For example, the sen-
tence “This camera’s battery is good” forms:
(d, camera, battery,mE ,mA, CmE|A,battery(camera) = 1,

CmA|E ,camera(battery) = 1, entity, aspect) . It means that
in the past domain d, “camera” and “battery” are
extracted targets. Since “camera” is followed by
“this”, its type modifier is mE . Since “battery” is
not identified by an entity modifier, it is mA. The
pattern “camera’s battery” contributes one count for
both relation modifiers CmE|A,battery(camera) and
CmA|E ,camera(battery). RL has labeled “camera”
as entity and “battery” as aspect in d.

The next two subsections present how to use the
knowledge in the KB to improve the initial assign-
ments for the label distributions, conditional label
distributions and neighborhood weight distributions
in order to achieve better final labeling/classification
results for the current/new domain du+1.

5.1 Exploiting Relation Modifiers in the KB
If two targets in the current domain corpus have no
edge, we can check whether relation modifiers of the
same two targets exist in some past domains. If so,
we may be able to borrow them. But to ensure suit-
ability, two consistency checks are performed.

Label Consistency Check: Since RL makes mis-
takes, we need to ensure that relation modifiers in a
record in the KB are consistent with target labels in
that past domain. For example, “camera’s battery” is
confirmed by “camera” being labeled as entity and
“battery” being labeled as aspect in a past domain
d ∈ D. Without this consistency, the record may not
be reliable and should be discarded from the KB.

We define an indicator variable Idm,tj (ti) to en-
sure that the record r’s relation modifier is consistent

229

with the labels of its two targets:

IdmA|E ,tj (ti) =

1

if CdmA|E ,tj (ti) > 0

and Ld(ti) = aspect
and Ld(tj) = entity

0 otherwise

(7)

For example, if “camera” is labeled as entity
and “battery” is labeled as aspect in the past do-
main d, we have IdmA|E ,camera(battery) = 1 and
IdmE|A,battery(camera) = 1.

Type Consistency Check: Here we ensure the
type modifiers for two targets in the current domain
du+1 are consistent with these type modifiers in the
past domain d ∈ D. This is because an item can be
an aspect in one domain but an entity in another. For
example, if the current domain is “Cellphone”, bor-
rowing the relation “camera’s battery” from domain
“Camera” can introduce an error because “camera”
is an aspect in domain “Cellphone”.

Syntactic pattern “this” is a good indicator for this
checking. In the “Cellphone” domain, “its camera”
or “the camera” are often mentioned but not “this
camera”. In the “Camera” domain, “this camera” is
often mentioned. The type modifier of “camera” in
“Cellphone” is mA, but in “Camera” it is mE .

Updating Probabilities in Current Domain
du+1: Edges for RL are in the forms of conditional
label distribution P (L(ti)|L(tj)) and neighborhood
weight distribution w(tj |ti). We now discuss how to
use the KB to estimate them more accurately.

Updating Conditional Label Distribution: Equa-
tion (5) tells that conditional label distribution
P (L(ti)|L(tj)) is the weighted sum of relation mod-
ifiers’ label distributions Pmc , PmA|E , and PmE|A .
These 3 label distributions are pre-defined and given
in Table 2. They are not changed. Thus, we up-
date conditional label distribution through updating
the three relation modifiers’ weights q(Mtj (ti)) with
the knowledge in the KB. Recall the three relation
modifiers are MR = {mc,mA|E ,mE|A}.

After consistency check, there can be multiple re-
lation modifiers between two targets in similar past
domains Ds ⊂ D. The number of domains sup-
porting a relation modifier m ∈ MR can tell which
kind of relation modifiers is common and likely to
be correct. For example, given many past domains
like “Laptop”, “Tablet”, “Cellphone”, etc., “camera

and battery” appears more than “camera’s battery”,
“camera” should be modified by “battery” more with
mE|A rather than mc (likely to be an aspect).

Let Cdu+1

m,tj
(ti) be the count that target ti modi-

fied by target tj on relation m in the current domain
du+1 (not in KB). The count C(CL) is for updating
the Conditional Label (CL) distributions consider-
ing the information in both the current domain du+1

and the KB. It is calculated as:

C
(CL)
m,tj

(ti) =

{
C
du+1

m,tj
(ti) if Cdu+1

m,tj
(ti) > 0∑

d∈Ds Idm,tj (ti) if
∑

m∈MR
C
du+1

m,tj
(ti)) = 0

This equation says that if there is any relation mod-
ifier existing between the two targets in the new
domain du+1, we do not borrow edges from the
KB; Otherwise, the number of similar past domains
supporting the relation modifier m is used. Recall
that Idm,tj (ti) is the result calculated by Equation (7)
after label consistency check.

We use count C(CL)
m,tj

(ti) to update qdu+1(Mtj (ti))
using Equation (4) in Section 4.2. Then the con-
ditional label distribution accommodating relation
modifiers in the KB, P (LL1)(L(ti)|L(tj)), is calcu-
lated by Equation, (5) using qdu+1(Mtj (ti)). LL1
denotes Lifelong Learning 1.

Updating Neighbor Weight Distribution: Equa-
tion (6) says that w(tj |ti) is the importance of target
ti’s neighbor tj to ti among all ti’s neighbors. When
updating conditional label distribution using the KB,
the number of domains can decide which kind of re-
lation modifiersm is more common between the two
targets ti and tj . But we cannot tell that neighbor tj
is more important than another neighbor tj′ to ti.

For example, given the past domains such as
“Laptop”, “Tablet”, “Cellphone”, etc., no matter
how many domains believe “camera” is an aspect
given “battery” is also an aspect, if the current do-
main is “All-in-one desktop computer”, we should
not consider the strong influences from “battery”
in the past domains. We should rely more on the
weights of “camera”’s neighbors provided by “All-
in-one desktop computer”. That means “mouse”,
“keyboard”, “screen” etc., should have strong influ-
ences on “camera” than “battery” because most All-
in-one desktops (e.g. iMac) do not have battery.

We introduce another indicator variable
IDm,tj (ti) =

⋃
d∈Ds Idm,tj (ti), to indicate whether

target tj modified ti on relation m in past similar
domains Ds. It only considers the existence of a

230

relation modifier m among domains Ds.
The count C(w)

tj
(ti) for updating the neighbor

weight (w) distribution considers both the KB
and the current domain du+1. It is as follows:

C
(w)
tj

(ti) =

{ ∑
m∈MR

C
du+1

m,tj
(ti) if

∑
m∈MR

C
du+1

m,tj
(ti) > 0∑

m∈MR
IDu
m,tj

(ti) if
∑

m∈MR
C
du+1

m,tj
(ti) = 0

This equation tells that if there are relation modifiers
existing between the two targets in the new domain
du+1, we count the total times that tj modifies ti
in the new domain; Otherwise, we count the total
kinds of relation modifiers in MR if a relation
modifier m ∈ MR existed in past domains. Let
w(LL1)(tj |ti) be the neighbor weight distribution
considering knowledge from the KB and du+1. It is
calculated by Equation (6) using C(w)

tj
(ti).

The initial label distribution P du+1,0 is calculated
by Equation (3) only using type modifiers found in
the new domain du+1. We use Lifelong-RL-1 to de-
note the method that employs P (LL1)(L(ti)|L(tj)),
w(LL1)(tj |ti) and P du+1,0 as inputs for RL.

5.2 Exploiting Target Labels in the KB

Since we have target labels from past domains, we
may have a better idea about the initial label prob-
abilities of targets in the current domain du+1. For
example, after labeling domains like “Cellphone”,
“Laptop”, “Tablet,” and “E-reader”, we may have a
good sense that “camera” is likely to be an aspect.
To use such knowledge, we need to check if the type
modifier of target t in the current domain matches
those in past domains and only keep those domains
that have such a matching type modifier.

Let Ds ⊂ D be the past domains consistent with
target t’s type modifier in the current domain du+1.
Let CD

s
(L(t)) be the number of domains in Ds

that target t is labeled as L(t). Let λ be the ratio
that controls how much we trust knowledge from
the KB. Then the initial label probability distribu-
tion P du+1,0 calculated by Equation (3) only using
type modifier found in du+1 is replaced by :

P (LL2),0(L(t)) = |D|×P du+1,0(L(t))+λCDs
(L(t))

|D|+λ|D|
(8)

Similarly, let Ds ⊂ D be the past domains con-
sistent with both targets ti’s and tj’s type modifiers
in du+1. Let CD

s
(L(ti), L(tj)) be the number of

domains inDs that ti and tj are labeled as L(ti) and

L(tj) respectively. The conditional label probabil-
ity distribution accommodating relation modifiers in
the KB, P (LL1)(L(ti)|L(tj)), is further updated to
P (LL2)(L(ti)|L(tj)) by exploiting the target labels
in KB (LL2 denotes Lifelong Learning 2):

P (LL2)(L(ti)|L(tj)) =
|D|×P (LL1)(L(ti)|L(tj))+λCDs

(L(ti),L(tj))
|D|+λ|D|

(9)

For example, given “this camera”, “battery” in
the current domain, we are more likely to consider
domains (e.g. “Film Camera”, “DSLR”, but not
“Cellphone”) that have entity modifiers on “camera”
and aspect modifiers on “battery”. Then we count
the number of those domains that label “camera” as
entity and “battery” as aspect: CD

s
(L(camera) =

entity, L(battery) = aspect). Similarly, we count
domains having other types of target labels on “cam-
era” and “battery”. These counts form an updated
conditional label distribution that estimates “cam-
era” as an entity and “battery” as an aspect.

Note that |D − Ds|, the number of past do-
mains not consistent with targets’ type modifiers,
is added to CD

s
(L(ti) = NIL) and CD

s
(L(ti) =

NIL, L(tj)) for Equations (8) and (9) respec-
tively to make the sum over L(ti) equal to
1. We use Lifelong-RL to denote this method
which uses P (LL2),0(L(t)), P (LL2)(L(ti)|L(tj)) and
w(LL1)(tj |ti) as input for RL.

6 Experiments

We now evaluate the proposed method and compare
with baselines. We use the DP method for target ex-
traction (Qiu et al., 2011). This method uses depen-
dency relations between opinion words and targets
to extract targets using seed opinion words. Since
our paper does not focus on extraction, interested
readers can refer to (Qiu et al., 2011) for details.

6.1 Experiment Settings
Evaluation Datasets: We use two sets of datasets.
The first set consists of eight (8) annotated review
datasets. We use each of them as the new domain
data in LML to compute precision, recall, F1 scores.
Five of them are from (Hu and Liu, 2004), and the
remaining three are from (Liu et al., 2016). They
have been used for target extraction, and thus have
annotated targets, but no annotation on whether a

231

Dataset Product Type # of Sentence # of entity # of aspect
D1 Computer 531 50 151
D2 Wireless Router 879 97 186
D3 Speaker 689 64 218
D4 DVD Player 740 50 159
D5 Digital Camera 597 70 239
D6 MP3 Player 1716 60 370
D7 Digital Camera 346 28 151
D8 Cell Phone 546 36 188

Table 1: Annotation details of the benchmark datasets.

Distribution L(t) = entity L(t) = aspect L(t) = NIL
PmE

0.45 0.25 0.3
PmA

0.3 0.4 0.3

Pmc L(tj) = entity L(tj) = aspect L(tj) = NIL
L(ti) = entity 0.8 0.0 0.33
L(ti) = aspect 0.0 0.8 0.33
L(ti) = NIL 0.2 0.2 0.33

PmE|A L(tj) = entity L(tj) = aspect L(tj) = NIL
L(ti) = entity 0.33 0.8 0.33
L(ti) = aspect 0.33 0.0 0.33
L(ti) = NIL 0.33 0.2 0.33

PmA|E L(tj) = entity L(tj) = aspect L(tj) = NIL
L(ti) = entity 0.0 0.33 0.33
L(ti) = aspect 0.8 0.33 0.33
L(ti) = NIL 0.2 0.33 0.33

Table 2: Label Distribution for PE and PA and Condi-
tional Label Distribution for Pmc , PmA|E and PmE|A

target is an entity or aspect. We made this annota-
tion, which is straightforward. We used two annota-
tors to annotate the datasets. The Cohen’s kappa is
0.84. Through discussion, the annotators got com-
plete agreement. Details of the datasets are listed in
Table 1. Each cell is the number of distinct terms.
These datasets are not very large but they are realis-
tic because many products do not have a large num-
ber of reviews.

The second set consists of unlabeled review
datasets from 100 diverse products or domains
(Chen and Liu 2014). Each domain has 1000 re-
views. They are treated as past domain data in LML
since they are not annotated and thus cannot be used
for computing evaluation measures.

Evaluating Measures: We mainly use precision
P , recall R, and F1-score F1 as evaluation mea-
sures. We take multiple occurrences of the same
target as one count, and only evaluate entities and
aspects. We will also give the accuracy results.

Compared Methods: We compare the following
methods, including our proposed method, Lifelong-
RL.

NER+TM: NER is Named Entity Recognition.

We can regard the extracted terms from a NER sys-
tem as entities and the rest of the targets as as-
pects. However, a NER system cannot identify enti-
ties such as “this car” from “this car is great.” Its re-
sult is rather poor. But our type modifier (TM) does
that, i.e., if an opinion target appears after “this” or
“these” in at least two sentences, TM labels the tar-
get as an entity; otherwise an aspect. However, TM
cannot extract named entities. Its result is also rather
poor. We thus combine the two methods to give
NER+TM as they complement each other very well.
To make NER more powerful, we use two NER sys-
tems: Stanford-NER 1(Manning et al., 2014) and
UIUC-NER2 (Ratinov and Roth, 2009). NER+TM
treats the extracted entities by the three systems as
entities and the rest of the targets as aspects.

NER+TM+DICT: We run NER+TM on the 100
datasets for LML to get a list of entities, which we
call the dictionary (DICT). For a new task, if any
target word is in the list, it is treated as an entity;
otherwise an aspect.

RL: This is the base method described in Section
3. It performs relaxation labeling (RL) without the
help of LML.

Lifelong-RL-1: This performs LML with RL but
the current task only uses the relations in the KB
from previous tasks (Section 5.1).

Lifelong-RL: This is our proposed final method.
It improves Lifelong-RL-1 by further incorporating
target labels in the KB from previous tasks (Section
5.2).

Parameter Settings: RL has 2 initial label distri-
butions PmE and PmA and 3 conditional label dis-
tributions Pmc , PmE|A and PmA|E . Like other belief
propagation algorithms, these probabilities need to
be set empirically, as shown in Table 2. The parame-
ter α is set to 1. Our LML method has one parameter
λ for Lifelong-RL. We set it to 0.1.

6.2 Results Analysis

Table 3 shows the test results of all systems in pre-
cision, recall and F1-score except NER+TM+DICT.
NER+TM+DICT is not included due to space lim-
itations and because it performed very poorly. The
reason is that a target can be an entity in one domain

1http://nlp.stanford.edu/software/CRF-NER.shtml
2https://cogcomp.cs.illinois.edu/page/software view/NETagger

232

Dataset
Entity Aspect

NER+TM RL Lifelong-RL-1 Lifelong-RL NER+TM RL Lifelong-RL-1 Lifelong-RL
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

D1 56.3 88 68.7 80 56 65.9 76.1 70 72.9 83.1 66 73.6 71.0 74.8 72.9 72.6 74.2 73.4 75.3 71.5 73.4 74.2 72.8 73.5
D2 64.8 75.3 69.7 71.6 42.3 53.2 81.1 62.9 70.9 85.5 78.4 81.8 61.9 90.3 73.5 61.4 85 71.3 67.2 92.5 77.9 70.4 90.9 79.3
D3 56.8 68.6 62.2 63.4 37.5 47.1 79.8 62.5 70.1 76.3 64.1 69.6 76.3 81.7 78.9 76.6 77.5 77.1 73.7 84.4 78.7 73.5 82.6 77.8
D4 76.7 42 54.3 69.3 42 52.3 77.9 70 73.7 78.6 70 74 68.8 71.7 70.2 68.3 70.4 69.3 70.4 65.4 67.8 70.6 66 68.2
D5 62.7 54.3 58.2 62.1 61.4 61.8 78.5 94.3 85.7 86.4 91.4 88.9 85.6 81.6 83.5 85.5 77.8 81.5 87 81.2 84 87.7 82 84.8
D6 69.9 38.3 49.5 67 56.7 61.4 74.7 75 74.8 77.4 73.3 75.3 75.4 83 79 76.2 81.1 78.6 78.8 85.9 82.2 78.9 86.2 82.4
D7 95 64.28 76.7 95.2 67.9 79.2 93.8 92.8 93.3 94.7 92.9 93.8 87.5 86.1 86.8 87.9 86.8 87.3 89.1 88.1 88.6 90.7 88.7 89.7
D8 65.9 41.7 51.1 65.5 72.2 68.7 72.3 83.3 77.4 79.4 86.1 82.6 76.1 81.9 78.9 77.8 80.9 79.3 81.4 89.4 85.2 81.9 89.9 85.7

Average 68.5 59.1 61.3 71.8 54.5 61.2 79.3 76.4 77.4 82.7 77.8 79.9 75.3 81.4 78 75.8 79.2 77.2 77.9 82.3 79.7 78.5 82.4 80.2

Table 3: Comparative results on Entity and Aspect in precision, recall and F1 score: NER+TM+DICT’s
results are very poor and not included (see Section 6.2) for the average results.

but an aspect in another. Its average F1-score for en-
tity is only 49.2, and for aspect is only 50.2.

Entity Results Comparison: We observe from
the table that although NER+TM combines NER
and TM, its result for entities is still rather poor. We
notice that phrases like “this price” causes low pre-
cision. Since it does not use many other relations
and NER does not recognize many named entities
that are written in lower case letters (e.g., “apple is
good”), its recall is also low.

RL has a higher precision as it considers rela-
tion modifiers. However, its recall is low because
it lacks information in its graph, which causes RL to
make many wrong decisions. Lifelong-RL-1 intro-
duces relation modifiers in KB from past domains
into the current task. Both precision and recall in-
crease markedly.

Lifelong-RL improves Lifelong-RL-1 further by
considering target labels of past domains. Their
counts improve the initial label probability distribu-
tions and conditional label probability distributions.
For example, “this price” may appear in some do-
mains but “price”’s target label is mostly aspect. We
consider their counts in initial label distributions and
thus rectify the initial distribution of “price”. This
makes “price” easier to be classified as aspect and
thus improves the precision for entity.

Aspect Results Comparison: For aspects, the
trend is the same but the improvements are not as
dramatic as for entity. This is because the distribu-
tion of entity and aspect in the data is highly skewed.
There are many more aspects than entities as we
can see from the Table 1. When an entity term is
wrongly classified as an aspect, it has much less im-
pact on the aspect result than on the entity result.

Accuracy Results Comparison: Table 4 gives
the classification accuracy results considering all

Dataset NER+TM RL Lifelong-RL-1 Lifelong-RL
D1 64.93 74.29 75.51 76.34
D2 62.94 63.53 69.8 73.82
D3 70.04 73.74 74.83 74.1
D4 70.81 68.57 73.33 73.63
D5 82.07 81.46 85.22 87.5
D6 74.83 75.06 78 78.63
D7 88.18 88.63 89.68 91.3
D8 74.54 75.43 79.57 81.4

Average 73.55 75.07 78.24 79.59

Table 4: Results in accuracy: NER+TM+DICT’s re-
sults are again very poor and thus not included.

three classes. We can see the similar trend.
NER+TM+DICT’s average accuracy is only 45.89
and is not included in the table.

7 Conclusion

This paper studied the problem of classifying opin-
ion targets into entities and aspects. To the best of
our knowledge, this problem has not been attempted
in the unsupervised opinion target extraction setting.
But this is an important problem because without
separating or classifying them one will not know
whether an opinion is about an entity as a whole
or about a specific aspect of an entity. This paper
proposed a novel method based on relaxation label-
ing and the paradigm of lifelong machine learning to
solve the problem. Experimental results showed the
effectiveness of the proposed method.

Acknowledgments

This work was partially supported by National Sci-
ence Foundation (NSF) grants IIS-1407927 and IIS-
1650900, and NCI grant R01CA192240. The con-
tent of the paper is solely the responsibility of the
authors and does not necessarily represent the offi-
cial views of the NSF or NCI.

233

References
Samuel Brody and Noemie Elhadad. 2010. An unsuper-

vised aspect-sentiment model for online reviews. In
NAACL ’10, pages 804–812.

Rich Caruana. 1997. Multitask learning. Machine learn-
ing, 28(1):41–75.

Zhiyuan Chen and Bing Liu. 2014a. Mining topics in
documents: Standing on the shoulders of big data. In
KDD ’14, pages 1116–1125.

Zhiyuan Chen and Bing Liu. 2014b. Topic modeling us-
ing topics from many domains, lifelong learning and
big data. In Proceedings of the 31st International Con-
ference on Machine Learning (ICML-14), pages 703–
711.

Zhiyuan Chen, Nianzu Ma, and Bing Liu. 2015. Life-
long learning for sentiment classification. Volume 2:
Short Papers, pages 750–756.

Yejin Choi and Claire Cardie. 2010. Hierarchical se-
quential learning for extracting opinions and their at-
tributes. In ACL ’10, pages 269–274.

Lei Fang and Minlie Huang. 2012. Fine granular aspect
analysis using latent structural models. In Proceed-
ings of the 50th Annual Meeting of the Association
for Computational Linguistics: Short Papers-Volume
2, pages 333–337.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.

Robert A Hummel and Steven W Zucker. 1983. On the
foundations of relaxation labeling processes. Pattern
Analysis and Machine Intelligence, IEEE Transactions
on, (3):267–287.

Niklas Jakob and Iryna Gurevych. 2010. Extracting
opinion targets in a single- and cross-domain setting
with conditional random fields. In EMNLP ’10, pages
1035–1045.

Dan Klein and Christopher D Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics-Volume 1, pages 423–430.

Lun-Wei Ku, Yu-Ting Liang, and Hsin-Hsi Chen. 2006.
Opinion extraction, summarization and tracking in
news and blog corpora. In AAAI spring symposium:
Computational approaches to analyzing weblogs, vol-
ume 100107.

Fangtao Li, Minlie Huang, and Xiaoyan Zhu. 2010. Sen-
timent analysis with global topics and local depen-
dency. In AAAI ’10, pages 1371–1376.

Chenghua Lin and Yulan He. 2009. Joint sentiment/topic
model for sentiment analysis. In Proceedings of the
18th ACM conference on Information and knowledge
management, pages 375–384.

Kang Liu, Liheng Xu, and Jun Zhao. 2013. Syntac-
tic patterns versus word alignment: Extracting opinion
targets from online reviews. In ACL (1), pages 1754–
1763.

Qian Liu, Bing Liu, Yuanlin Zhang, DooSoon Kim, and
Zhiqiang Gao. 2016. Improving opinion aspect ex-
traction using semantic similarity and aspect associa-
tions. In AAAI.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis lectures on human language technolo-
gies, 5(1):1–167.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Association for Computational Lin-
guistics (ACL) System Demonstrations, pages 55–60.

Qiaozhu Mei, Xu Ling, Matthew Wondra, Hang Su, and
ChengXiang Zhai. 2007. Topic sentiment mixture:
Modeling facets and opinions in weblogs. In WWW
’07, pages 171–180.

Margaret Mitchell, Jacqui Aguilar, Theresa Wilson, and
Benjamin Van Durme. 2013. Open domain targeted
sentiment. In ACL ’13, pages 1643–1654.

Arjun Mukherjee and Bing Liu. 2012. Aspect extrac-
tion through semi-supervised modeling. In ACL ’12,
volume 1, pages 339–348.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. Knowledge and Data Engineering,
IEEE Transactions on, 22(10):1345–1359.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and trends in infor-
mation retrieval, 2(1-2):1–135.

Ana-Maria Popescu and Orena Etzioni. 2007. Extracting
product features and opinions from reviews. In Natu-
ral language processing and text mining, pages 9–28.
Springer.

Soujanya Poria, Erik Cambria, Lun-Wei Ku, Chen Gui,
and Alexander Gelbukh. 2014. A rule-based approach
to aspect extraction from product reviews. SocialNLP
2014, page 28.

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen.
2011. Opinion word expansion and target extraction
through double propagation. Computational linguis-
tics, 37(1):9–27.

L. Ratinov and D. Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
CoNLL, 6.

Paul Ruvolo and Eric Eaton. 2013. Active task selection
for lifelong machine learning. In AAAI.

Daniel L Silver, Qiang Yang, and Lianghao Li. 2013.
Lifelong machine learning systems: Beyond learning
algorithms. In AAAI Spring Symposium: Lifelong Ma-
chine Learning, pages 49–55.

234

Sebastian Thrun. 1998. Lifelong learning algorithms. In
Learning to learn, pages 181–209. Springer.

Bo Wang and Houfeng Wang. 2008. Bootstrapping both
product features and opinion words from chinese cus-
tomer reviews with cross-inducing. In IJCNLP ’08,
pages 289–295.

Hongning Wang, Yue Lu, and Chengxiang Zhai. 2010.
Latent aspect rating analysis on review text data: A
rating regression approach. In KDD ’10, pages 783–
792.

Yuanbin Wu, Qi Zhang, Xuanjing Huang, and Lide Wu.
2009. Phrase dependency parsing for opinion mining.
In EMNLP ’09, pages 1533–1541.

Lei Zhang, Bing Liu, Suk Hwan Lim, and Eamonn
O’Brien-Strain. 2010. Extracting and ranking prod-
uct features in opinion documents. In COLING ’10:
Posters, pages 1462–1470.

Xinjie Zhou, Xiaojun Wan, and Jianguo Xiao. 2013.
Collective opinion target extraction in chinese mi-
croblogs. In EMNLP, volume 13, pages 1840–1850.

Li Zhuang, Feng Jing, and Xiao-Yan Zhu. 2006. Movie
review mining and summarization. In CIKM ’06,
pages 43–50.

235

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 236–246,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning Sentence Embeddings with Auxiliary Tasks
for Cross-Domain Sentiment Classification

Jianfei Yu
School of Information Systems

Singapore Management University
jfyu.2014@phdis.smu.edu.sg

Jing Jiang
School of Information Systems

Singapore Management University
jingjiang@smu.edu.sg

Abstract

In this paper, we study cross-domain senti-
ment classification with neural network archi-
tectures. We borrow the idea from Structural
Correspondence Learning and use two auxil-
iary tasks to help induce a sentence embedding
that supposedly works well across domains for
sentiment classification. We also propose to
jointly learn this sentence embedding together
with the sentiment classifier itself. Experi-
ment results demonstrate that our proposed
joint model outperforms several state-of-the-
art methods on five benchmark datasets.

1 Introduction

With the growing need of correctly identifying the
sentiments expressed in subjective texts such as
product reviews, sentiment classification has re-
ceived continuous attention in the NLP community
for over a decade (Pang et al., 2002; Pang and Lee,
2004; Hu and Liu, 2004; Choi and Cardie, 2008;
Nakagawa et al., 2010). One of the big challenges
of sentiment classification is how to adapt a senti-
ment classifier trained on one domain to a different
new domain. This is because sentiments are often
expressed with domain-specific words and expres-
sions. For example, in the Movie domain, words
such as moving and engaging are usually positive,
but they may not be relevant in the Restaurant do-
main. Since labeled data is expensive to obtain, it
would be very useful if we could adapt a model
trained on a source domain to a target domain.

Much work has been done in sentiment analysis
to address this domain adaptation problem (Blitzer

et al., 2007; Pan et al., 2010; Bollegala et al.,
2011; Ponomareva and Thelwall, 2012; Bollegala
et al., 2016). Among them, an appealing method
is the Structural Correspondence Learning (SCL)
method (Blitzer et al., 2007), which uses pivot fea-
ture prediction tasks to induce a projected feature
space that works well for both the source and the tar-
get domains. The intuition behind is that these pivot
prediction tasks are highly correlated with the orig-
inal task. For sentiment classification, Blitzer et al.
(2007) first chose pivot words which have high mu-
tual information with the sentiment labels, and then
set up the pivot prediction tasks to be the predictions
of each of these pivot words using the other words.

However, the original SCL method is based on
traditional discrete feature representations and lin-
ear classifiers. In recent years, with the advances
of deep learning in NLP, multi-layer neural net-
work models such as RNNs and CNNs have been
widely used in sentiment classification and achieved
good performance (Socher et al., 2013; Dong et
al., 2014a; Dong et al., 2014b; Kim, 2014; Tang
et al., 2015). In these models, dense, real-valued
feature vectors and non-linear classification func-
tions are used. By using real-valued word embed-
dings pre-trained from a large corpus, these mod-
els can take advantage of the embedding space that
presumably better captures the syntactic and se-
mantic similarities between words. And by using
non-linear functions through multi-layer neural net-
works, these models represent a more expressive hy-
pothesis space. Therefore, it would be interesting to
explore how these neural network models could be
extended for cross-domain sentiment classification.

236

There has been some recent studies on neural
network-based domain adaptation (Glorot et al.,
2011; Chen et al., 2012; Yang and Eisenstein, 2014).
They use Stacked Denoising Auto-encoders (SDA)
to induce a hidden representation that presumably
works well across domains. However, SDA is fully
unsupervised and does not consider the end task we
need to solve, i.e., the sentiment classification task.
In contrast, the idea behind SCL is to use carefully-
chosen auxiliary tasks that correlate with the end
task to induce a hidden representation. Another line
of work aims to learn a low dimensional represen-
tation for each feature in both domains based on
predicting its neighboring features (Yang and Eisen-
stein, 2015; Bollegala et al., 2015). Different from
these methods, we aim to directly learn sentence em-
beddings that work well across domains.

In this paper, we aim to extend the main idea be-
hind SCL to neural network-based solutions to sen-
timent classification to address the domain adapta-
tion problem. Specifically, we borrow the idea of
using pivot prediction tasks from SCL. But instead
of learning thousands of pivot predictors and per-
forming singular value decomposition on the learned
weights, which all relies on linear transformations,
we introduce only two auxiliary binary prediction
tasks and directly learn a non-linear transformation
that maps an input to a dense embedding vector.
Moreover, different from SCL and the auto-encoder-
based methods, in which the hidden feature repre-
sentation and the final classifier are learned sequen-
tially, we propose to jointly learn the hidden feature
representation together with the sentiment classifi-
cation model itself, and we show that joint learning
works better than sequential learning.

We conduct experiments on a number of different
source and target domains for sentence-level sen-
timent classification. We show that our proposed
method is able to achieve the best performance com-
pared with a number of baselines for most of these
domain pairs.

2 Related Work

Domain Adaptation: Domain adaptation is a gen-
eral problem in NLP and has been well studied
in recent years (Blitzer et al., 2006; Daumé III,
2007; Jiang and Zhai, 2007; Dredze and Crammer,

2008; Titov, 2011; Yu and Jiang, 2015). For sen-
timent classification, most existing domain adap-
tation methods are based on traditional discrete
feature representations and linear classifiers. One
line of work focuses on inducing a general low-
dimensional cross-domain representation based on
the co-occurrences of domain-specific and domain-
independent features (Blitzer et al., 2007; Pan et al.,
2010; Pan et al., 2011). Another line of work tries to
derive domain-specific sentiment words (Bollegala
et al., 2011; Li et al., 2012). Our proposed method
is similar to the first line of work in that we also aim
to learn a general, cross-domain representation (sen-
tence embeddings in our case).
Neural Networks for Sentiment Classification:
A recent trend of deep learning enhances various
kinds of neural network models for sentiment clas-
sification, including Convolutional Neural Networks
(CNNs), Recursive Neural Network (ReNNs) and
Recurrent Neural Network (RNNs), which have
been shown to achieve competitive results across
different benchmarks (Socher et al., 2013; Dong et
al., 2014a; Dong et al., 2014b; Kim, 2014; Tang et
al., 2015). Inspired by their success in standard in-
domain settings, it is intuitive for us to apply these
neural network models to domain adaptation set-
tings.
Denoising Auto-encoders for Domain Adapta-
tion: Denoising Auto-encoders have been exten-
sively studied in cross-domain sentiment classifica-
tion, since the representations learned through multi-
layer neural networks are robust against noise during
domain adaptation. The initial application of this
idea is to directly employ stacked denoising auto-
encoders (SDA) by reconstructing the original fea-
tures from data that are corrupted with noise (Glo-
rot et al., 2011), and Chen et al. (2012) proposed
to analytically marginalize out the corruption during
SDA training. Later Yang and Eisenstein (2014) fur-
ther showed that their proposed structured dropout
noise strategy can dramatically improve the effi-
ciency without sacrificing the accuracy. However,
these methods are still based on traditional discrete
representation and do not exploit the idea of using
auxiliary tasks that are related to the end task. In
contrast, the sentence embeddings learned from our
method are derived from real-valued feature vectors
and rely on related auxiliary tasks.

237

3 Method

In this section we present our sentence embedding-
based domain adaptation method for sentiment clas-
sification. We first introduce the necessary notation
and an overview of our method. we then delve into
the details of the method.

3.1 Notation and Method Overview

We assume that each input is a piece of text consist-
ing of a sequence of words. For the rest of this paper,
we assume each input is a sentence, although our
method is general enough for longer pieces of text.
Let x = (x1, x2, . . .) denote a sentence where each
xi ∈ {1, 2, . . . , V } is a word in the vocabulary and
V is the vocabulary size. Let the sentiment label ofx
be y ∈ {+,−}where + denotes a positive sentiment
and − a negative sentiment. We further assume that
we are given a set of labeled training sentences from
a source domain, denoted by Ds = {(xs

i , y
s
i)}Ns

i=1.
Also, we have a set of unlabeled sentences from a
target domain, denoted by Dt = {xt

i}N
t

i=1. Our goal
is to learn a good sentiment classifier from both Ds

and Dt such that the classifier works well on the tar-
get domain.

A baseline solution without considering any do-
main difference is to simply train a classifier using
Ds, and with the recent advances in neural network-
based methods to sentence classification, we con-
sider a baseline that uses a multi-layer neural net-
work such as a CNN or an RNN to perform the clas-
sification task. To simplify the discussion and focus
on the domain adaptation ideas we propose, we will
leave the details of the neural network model we use
in Section 3.5. For now, we assume that a multi-
layer neural network is used to transform each input
x into a sentence embedding vector z. Let us use
fΘ to denote the transformation function parameter-
ized by Θ, that is, z = fΘ(x). Next, we assume
that a linear classifier such as a softmax classifier is
learned to map z to a sentiment label y.

We introduce two auxiliary tasks which presum-
ably are highly correlated with the sentiment classi-
fication task itself. Labels for these auxiliary tasks
can be automatically derived from unlabeled data in
both the source and the target domains. With the
help of the two auxiliary tasks, we learn a non-linear
transformation function fΘ′ from unlabeled data and

use it to derive a sentence embedding vector z′ from
sentence x, which supposedly works better across
domains. Finally we use the source domain’s train-
ing data to learn a linear classifier on the represen-
tation z ⊕ z′, where ⊕ is the operator that concate-
nates two vectors. Figure 1 gives the outline of our
method.

3.2 Auxiliary Tasks

Our two auxiliary tasks are about whether an in-
put sentence contains a positive or negative domain-
independent sentiment word. The intuition is the
following. If we have a list of domain-independent
positive sentiment words, then an input sentence that
contains one of these words, regardless of the do-
main the sentence is from, is more likely to contain
an overall positive sentiment. For example, a sen-
tence containing the word good is likely to be over-
all positive. Moreover, the rest of the sentence ex-
cluding the word good may contain domain-specific
words or expressions that also convey a positive sen-
timent. For example, in the sentence “The laptop
is good and goes really fast,” we can see that the
word fast is a domain-specific sentiment word, and
its sentiment polarity correlates with that of the word
good, which is domain-independent. Therefore, we
can hide the domain-independent positive words in
a sentence and try to use the other words in the sen-
tence to predict whether the original sentence con-
tains a domain-independent positive word. There are
two things to note about this auxiliary task: (1) The
label of the task can be automatically derived pro-
vided that we have the domain-independent positive
word list. (2) The task is closely related to the orig-
inal task of sentence-level sentiment classification.
Similarly, we can introduce a task to predict the ex-
istence of a domain-independent negative sentiment
word in a sentence.

Formally, let us assume that we have two domain-
independent sentiment word lists, one for the posi-
tive sentiment and the other for the negative senti-
ment. Details of how these lists are obtained will
be given in Section 3.5. Borrowing the term from
SCL, we refer to these sentiment words as pivot
words. For each sentence x, we replace all the oc-
currences of these pivot words with a special token
UNK. Let g(·) be a function that denotes this pro-
cedure, that is, g(x) is the resulting sentence with

238

Sentiment Classification

Sentence

Embedding

Word

Embedding

31

The laptop is good and goes really fast The laptop is UNK and goes really fast

Shared

Lookup

Table

Auxiliary Tasks

Original Sentence New Sentence without Pivots

CNN/RNN CNN/RNN

Figure 1: The Outline of our Proposed Method.

UNK tokens. We then introduce two binary labels
for g(x). The first label u indicates whether the
original sentence x contains at least one domain-
independent positive sentiment word, and the sec-
ond label v indicates whether x contains at least one
domain-independent negative sentiment word. Fig-
ure 1 shows an example sentence x, its modified ver-
sion g(x) and the labels u and v for x. We further
use Da = {(xi, ui, vi)}Na

i=1 to denote a set of train-
ing sentences for the auxiliary tasks. Note that the
sentences in Da can be from the sentences in Ds

and Dt, but they can also be from other unlabeled
sentences.

3.3 Sentence Embeddings for Domain
Adaptation

With the two auxiliary tasks, we can learn a neural
network model in a standard way to produce sen-
tence embeddings that work well for the auxiliary
tasks. Specifically, we still use Θ′ to denote the pa-
rameters of the neural network that produces the sen-
tence embeddings (and fΘ′ the corresponding trans-
formation function), and we use β+ and β− to de-
note the parameters of two softmax classifiers for
the two auxiliary tasks, respectively. Using cross-
entropy loss, we can learn Θ′ by minimizing the fol-
lowing loss function:

J(Θ′,β+,β−)

= −
∑

(x,u,v)∈Da

(
log p(u|fΘ′(g(x));β+)

+ log p(v|fΘ′(g(x));β−)
)
,

where p(y|z;β) is the probability of label y given
vector z and parameter β under softmax regression.

With the learned Θ′, we can derive a sentence em-
bedding z′ from any sentence. Although we could
simply use this embedding z′ for sentiment classi-
fication through another softmax classifier, this may
not be ideal because z′ is transformed from g(x),
which has the domain-independent sentiment words
removed. Similar to SCL and some other previous
work, we concatenate the embedding vector z′ with
the standard embedding vector z for the final classi-
fication.

3.4 Joint Learning

Although we can learn Θ′ using Da as a first step,
here we also explore a joint learning setting. In this
setting, Θ′ is learned together with the neural net-
work model used for the end task, i.e., sentiment
classification. This way, the learning of Θ′ depends
not only on Da but also on Ds, i.e., the sentiment-
labeled training data from the source domain.

Specifically, we use Θ to denote the parameters
for a neural network that takes the original sentence
x and transforms it to a sentence embedding (and fΘ

the corresponding transformation function). We use
γ to denote the parameters of a softmax classifier
that operates on the concatenated sentence embed-
ding z ⊕ z′ for sentiment classification. With joint
learning, we try to minimize the following loss func-

239

tion:

J(Θ,Θ′,γ,β+,β−)

= −
∑

(x,y)∈Ds

(
log p(y|fΘ(x)⊕ fΘ′(g(x));γ)

)

−
∑

(x,u,v)∈Da

(
log p(u|fΘ′(g(x));β+)

+ log p(v|fΘ′(g(x));β−)
)
.

We can see that this loss function contains two parts.
The first part is the cross-entropy loss based on the
true sentiment labels of the sentences in Ds. The
second part is the loss based on the auxiliary tasks
and the data Da, which are derived from unlabeled
sentences.

Finally, to make a prediction on a sentence, we
use the learned Θ and Θ′ to derive a sentence embed-
ding fΘ(x) ⊕ fΘ′(g(x)), and then use the softmax
classifier parameterized by the learned γ to make the
final prediction.

3.5 Implementation Details

In this section we explain some of the model details.

Pivot Word Selection
Recall that the two auxiliary tasks depend on two

domain-independent sentiment word lists, i.e., pivot
word lists. Different from Blitzer et al. (2007), we
employ weighted log-likelihood ratio (WLLR) to se-
lect the most positive and negative words in both do-
mains as pivots. The reason is that in our prelimi-
nary experiments we observe that mutual informa-
tion (used by Blitzer et al. (2007)) is biased towards
low frequency words. Some high frequency words
including good and great are scored low. In com-
parison, WLLR does not have this issue. The same
observation was also reported previously by Li et al.
(2009).

More specifically, we first tokenize the sentences
in Ds and Dt and perform part-of-speech tagging
using the NLTK toolkit. Next, we extract only ad-
jectives, adverbs and verbs with a frequency of at
least 3 in the source domain and at least 3 in the tar-
get domain. We also remove negation words such as
not and stop words using a stop word list. We then
measure each remaining candidate word’s relevance
to the positive and the negative classes based on Ds

by computing the following scores:

r(w, y) = p̃(w|y) log
p̃(w|y)

p̃(w|ȳ)
,

where w is a word, y ∈ {+,−} is a sentiment label,
ȳ is the opposite label of y, and p̃(w|y) is the empir-
ical probability of observing w in sentences labeled
with y. We can then rank the candidate words in de-
creasing order of r(w,+) and r(w,−). Finally, we
select the top 25% from each ranked list as the final
lists of pivot words for the positive and the nega-
tive sentiments. Some manual inspection shows that
most of these words are indeed domain-independent
sentiment words.

Neural Network Model
Our framework is general and potentially we can

use any neural network model to transform an in-
put sentence to a sentence embedding vector. In this
paper, we adopt a CNN-based approach because it
has been shown to work well for sentiment classi-
fication. Specifically, each word (including the to-
ken UNK) is represented by a word embedding vec-
tor. Let W ∈ Rd×V denote the lookup table for
words, where each column is a d-dimensional em-
bedding vector for a word type. Two separate CNNs
are used to process x and g(x), and their mecha-
nisms are the same. For a word xi in each CNN, the
embedding vectors inside a window of size n cen-
tered at i are concatenated into a new vector, which
we refer to as ei ∈ Rnd. A convolution operation
is then performed by applying a filter F ∈ Rh×nd

on ei to produce a hidden vector hi = m(Fei + b),
where b ∈ Rh is a bias vector and m is an element-
wise non-linear transformation function. Note that
we pad the original sequence in front and at the back
to ensure that at each position i we have n vectors
to be combined into hi. After the convolution op-
eration is applied to the whole sequence, we obtain
H = [h1,h2, . . .], and we apply a max-over-time
pooling operator to take the maximum value of each
row of H to obtain an overall hidden vector, i.e., z
for x and z′ for g(x).

It is worth noting that the two neural networks
corresponding to fΘ and fΘ′ share the same word
embedding lookup table. This lookup table is ini-
tialized with word embeddings from word2vec1 and

1https://code.google.com/p/word2vec/

240

is updated during our learning process. Note that the
token UNK is initialized as a zero vector and never
updated.

3.6 Differences from SCL
Although our method is inspired by SCL, there are
a number of major differences: (1) Our method is
based on neural network models with continuous,
dense feature representations and non-linear trans-
formation functions. SCL is based on discrete,
sparse feature vectors and linear transformations.
(2) Although our pivot word selection is similar to
that of SCL, in the end we only use two auxiliary
tasks while SCL uses much more pivot prediction
tasks. (3) We can directly learn the transformation
function f ′Θ that produces the hidden representation,
while SCL relies on SVD to learn the projection
function. (4) We perform joint learning of the auxil-
iary tasks and the end task, i.e., sentiment classifica-
tion, while SCL performs the learning in a sequential
manner.

4 Experiments

4.1 Data Sets and Experiment Settings

Data Set # Sentences # Words

Movie1(MV1) 10662 18765
Movie2(MV2) 9613 16186
Camera(CR) 3770 5340
Laptop(LT) 1907 2837
Restaurant(RT) 1572 2930

Table 1: Statistics of our data sets.

To evaluate our proposed method, we conduct
experiments using five benchmark data sets. The
data sets are summarized in Table 1. Movie12 and
Movie23 are movie reviews labeled by Pang and Lee
(2005) and Socher et al. (2013), respectively. Cam-
era4 are reviews of digital products such as MP3
players and cameras (Hu and Liu, 2004). Laptop and
Restaurant5 are laptop and restaurant reviews taken

2https://www.cs.cornell.edu/people/pabo/
movie-review-data/

3http://nlp.stanford.edu/sentiment/
4http://www.cs.uic.edu/˜liub/FBS/

sentiment-analysis.html
5Note that the original data set is for aspect-level sentiment

analysis. We remove sentences with opposite polarities towards
different aspects, and use the consistent polarity as the sentence-
level sentiment of each remaining sentence.

from SemEval 2015 Task 12.
We consider 18 pairs of data sets where the two

data sets come from different domains.6 For neural
network-based methods, we randomly pick 200 sen-
tences from the target domain as the development set
for parameter tuning, and the rest of the data from
the target domain as the test data.

4.2 Baselines and Hyperparameters

We consider the following baselines:
Naive is a non-domain-adaptive baseline based on
bag-of-word representations.
SCL is our implementation of the Structural Corre-
spondence Learning method. We set the number of
induced features K to 100 and rescale factor α = 5,
and we use 1000 pivot words based on our prelimi-
nary experiments.
mDA is our implementation of marginalized De-
noising Auto-encoders (Chen et al., 2012), one
of the state-of-the-art domain adaptation methods,
which learns a shared hidden representation by re-
constructing pivot features from corrupted inputs.
Following Yang and Eisenstein (2014), we employ
the efficient and effective structured dropout noise
strategy without any parameter. The top 500 fea-
tures are chosen as pivots based on our preliminary
experiments.
NaiveNN is a non-domain-adaptive baseline based
on CNN, as described in Section 3.5.
Aux-NN is a simple combination of our auxiliary
tasks with NaiveNN, which treats the derived la-
bel of two auxiliary tasks as two features and then
appends them to the hidden representation learned
from CNN, followed by a softmax classifier.
SCL-NN is a naive combination of SCL with
NaiveNN, which appends the induced representation
from SCL to the hidden representation learned from
CNN, followed by a softmax classifier.
mDA-NN is similar to SCL-NN but uses the hidden
representation derived from mDA.
Sequential is our proposed method without joint
learning, which first learns Θ′ based on Da and then
learns Θ and γ based on Ds with fixed Θ′.
Joint is our proposed joint learning method, that is,
we jointly learn Θ and Θ′.

6Because Movie1 and Movie2 come from the same domain,
we do not take this pair.

241

Task Method

Source Target Naive Naive++ SCL++ mDA++ NaiveNN Aux-NN SCL-NN mDA-NN Sequential Joint

MV1 LT 0.656 0.739 0.742 0.742 0.773 0.779 0.776 0.780 0.774 0.804∗

MV1 RT 0.625 0.742 0.750 0.761 0.802 0.794 0.817 0.819 0.814 0.825∗

MV1 CR 0.609 0.684 0.688 0.688 0.721 0.717 0.734 0.730 0.717 0.747∗

MV2 LT 0.699 0.760 0.765 0.772 0.805 0.811 0.800 0.811 0.808 0.827∗

MV2 RT 0.696 0.761 0.768 0.778 0.813 0.819 0.824 0.825 0.833 0.840∗

MV2 CR 0.644 0.697 0.705 0.706 0.738 0.732 0.736 0.756 0.745 0.768∗

CR LT 0.780 0.791 0.802 0.806 0.848 0.848 0.846 0.850 0.856 0.858∗

CR RT 0.746 0.784 0.782 0.789 0.827 0.835 0.841 0.839 0.835 0.844∗

CR MV1 0.593 0.597 0.612 0.612 0.685 0.689 0.689 0.692 0.687 0.696∗

CR MV2 0.609 0.629 0.644 0.640 0.735 0.726 0.734 0.731 0.735 0.736
LT RT 0.736 0.781 0.800 0.810 0.819 0.820 0.823 0.852 0.841 0.840
LT MV1 0.574 0.601 0.612 0.630 0.711 0.703 0.702 0.709 0.705 0.707
LT MV2 0.588 0.632 0.645 0.663 0.742 0.745 0.739 0.747 0.746 0.747
LT CR 0.736 0.762 0.768 0.780 0.791 0.796 0.803 0.819 0.803 0.817
RT LT 0.732 0.777 0.777 0.799 0.817 0.822 0.831 0.826 0.828 0.834∗

RT MV1 0.580 0.604 0.618 0.643 0.721 0.726 0.724 0.734 0.722 0.724
RT MV2 0.605 0.630 0.633 0.664 0.761 0.762 0.756 0.772 0.757 0.765
RT CR 0.689 0.708 0.704 0.732 0.764 0.772 0.759 0.774 0.772 0.779∗

Average 0.661 0.704 0.712 0.723 0.770 0.772 0.774 0.781 0.777 0.787

Table 2: Comparison of classification accuracies of different methods. ∗ indicates that our joint method is significantly better than

NaiveNN, Aux-NN, SCL-NN and mDA-NN with p < 0.05 based on McNemar’s paired significance test.

For Naive, SCL and mDA, we use LibLinear7 to
train linear classifiers and use its default hyperpa-
rameters. In all the tasks, we use unigrams and bi-
grams with a frequency of at least 4 as features for
classification. For the word embeddings, we set the
dimension d to 300. For CNN, we set the window
size to 3. Also, the size of the hidden representa-
tions z and z′ is set to 100. Following Kim (2014),
the non-linear activation function in CNN is Relu,
the mini-batch size is 50, the dropout rate α equals
0.5, and the hyperparameter for the l2 norms is set
to be 3. For Naive, SCL and mDA, we do not use
the 200 sentences in the development set for tuning
parameters. Hence, for fair comparison, we also in-
clude settings where the 200 sentences are added to
the training set. We denote these settings by ++.

4.3 Results

In Table 2, we report the results of all the methods.
It is easy to see that the performance of Naive is
very limited, and the incorporation of 200 reviews
in the development set (Naive++) brings in 4.3% of
improvement on average. SCL++ and mDA++ can
further improve the average accuracy respectively

7http://www.csie.ntu.edu.tw/cjlin/
liblinear/

by 0.8% and 1.9%, which verifies the usefulness of
these two domain adaptation methods. However, we
can easily see that the performance of these domain
adaptation methods based on discrete, bag-of-word
representations is even much lower than the non-
domain-adaptive method on continuous representa-
tions (NaiveNN). This confirms that it is useful to
develop domain adaptation methods based on em-
bedding vectors and neural network models.

Moreover, we can find that the performance of
simply appending two features from auxiliary tasks
to NaiveNN (i.e., Aux-NN) is quite close to that
of NaiveNN on most data set pairs, which shows
that it is not ideal for domain adaptation. In addi-
tion, although the shared hidden representations de-
rived from SCL and mDA are based on traditional
bag-of-word representations, SCL-NN and mDA-
NN can still improve the performance of NaiveNN
on most data set pairs, which indicates that the de-
rived shared hidden representations by SCL and by
mDA can generalize better across domains and are
generally useful for domain adaptation.

Finally, it is easy to see that our method with
joint learning outperforms SCL-NN on almost all
the data set pairs. And in comparison with mDA-
NN, our method with joint learning can also outper-

242

Task Method

Source Target NaiveNN mDA-NN Joint

MV1 LT 0.802 0.799 0.816∗

MV1 RT 0.816 0.820 0.838∗

MV1 CR 0.744 0.757 0.767∗

MV2 LT 0.823 0.830 0.839∗

MV2 RT 0.837 0.829 0.850∗

MV2 CR 0.753 0.769 0.773∗

CR LT 0.853 0.863 0.870∗

CR RT 0.840 0.856 0.851
CR MV1 0.699 0.701 0.704∗

CR MV2 0.745 0.741 0.745
LT RT 0.839 0.849 0.849
LT MV1 0.714 0.710 0.720∗

LT MV2 0.759 0.767 0.766
LT CR 0.803 0.815 0.814
RT LT 0.825 0.839 0.841
RT MV1 0.724 0.737 0.732
RT MV2 0.762 0.771 0.768
RT CR 0.773 0.777 0.783∗

Average 0.784 0.790 0.796

Table 3: Comparison of our method Joint with NaiveNN and

mDA-NN in a setting where some labeled target data is used.

form it on most data set pairs, especially when the
size of the labeled data in the source domain is rela-
tively large. Furthermore, we can easily observe that
for our method, joint learning generally works bet-
ter than sequential learning. All these observations
show the advantage of our joint learning method.

In Table 3, we also show the comparison between
mDA-NN and our model under a setting some la-
beled target data is used. Specifically, we randomly
select 100 sentences from the development set and
mix them with the training set. We can observe that
our method Joint outperforms NaiveNN and mDA-
NN by 1.2% and 0.6%, respectively, which further
confirms the effectiveness of our model. But, in
comparison with the setting where no target data is
available, the average improvement of our method
over NaiveNN is relatively small.

Hence, to give a deeper analysis, we further show
the comparison of Joint and NaiveNN with respect
to the number of labeled target data in Figure 2. Note
that for space limitation, we only present the results
on MV2→ RT and MV2→ CR. Similar trends have
been observed on other data set pairs. As we can
see from Figure 2, the difference between the per-
formance of NaiveNN and that of Joint gradually
decreases with the increase of the number of labeled

0 20 40 60 80 100
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

the number of labeled target data

A
cc

ur
ac

y

MV2RT−Joint

MV2RT−NaiveNN

MV2CR−Joint

MV2CR−NaiveNN

Figure 2: The influence of the number of labeled target data.

target data. This indicates that our joint model is
much more effective when no or small number of
labeled target data is available.

4.4 Case Study

To obtain a better understanding of our method, we
conduct a case study where the source is CR and the
target is RT.

For each sentiment polarity, we try to extract the
most useful trigrams for the final predictions. Re-
call that our CNN models use a window size of 3,
which corresponds to trigrams. By tracing the final
prediction scores back through the neural network,
we are able to locate the trigrams which have con-
tributed the most through max-pooling. In Table 4,
we present the most useful trigrams of each polarity
extracted by NaiveNN and by the two components
of our sequential and joint method. Sequential-
original and Joint-original refer to the CNN cor-
responding to fΘ while Sequential-auxiliary and
Joint-auxiliary refer to the CNN corresponding to
fΘ′ , which is related to the auxiliary tasks.

In Table 4, we can easily observe that for
NaiveNN, the most important trigrams are domain-
independent, which contain some general senti-
ment words like good, great and disappointing.
For our sequential model, the most important tri-
grams captured by Sequential-original are simi-
lar to NaiveNN, but due to the removal of the
pivot words in each sentence, the most impor-
tant trigrams extracted by Sequential-auxiliary are
domain-specific, including target-specific sentiment
words like oily, friendly and target-specific aspect
words like flavor, atmosphere. But since aspect
words are irrelevant to our sentiment classification

243

Method Negative Sentiment Positive Sentiment

disappointing * *, disgusting * *, it is not, * * great, good * *,* * best, * i love,
NaiveNN slow * *, * too bad, * * terrible, place is not, was very good,* * excellent,

unpleasant experience *, would not go, * the only wonderful * *, * * amazing, * * nice
disgusting * *, disappointing * *, * * terrible * * great, good * *, * * best, * i love,

Sequential-original expensive * *, it is not, unpleasant experience *, * highly recommended, * * excellent,
slow * *, * too bad, probably would not, awful * * wonderful * *, is amazing *, is the perfect
disgusting * *, never go back, money * *, delicious * *, friendly * *, food * *,

Sequential-auxiliary rude * *, flavor * *, * this place, oily * *, food is UNK, * highly UNK, fresh * *,
prices * *, inedible ! *, this place survives atmosphere * *, * i highly, nyc * *
disgusting * *, soggy * *, disappointing * *, * * great, good * *, * * best, * i love,

Joint-original * too bad, * would never, it is not, rude * *, * * amazing, delicious * *,
* * terrible, place is not, disappointment * * back * *, * i highly, of my favorite
soggy * *, disgusting * *, rude * *, delicious * *, go back *, is always fresh,

Joint-auxiliary disappointment * *, not go back, was not fresh, friendly * *, to die for, also very UNK,
prices * *, inedible ! *, oily * *, overpriced * * of my favorite, food * *, * i highly, delicious ! *

Table 4: Comparison of the most useful trigrams chosen by our method and by NaiveNN on CR→ RT. Here * denotes a “padding”,

which we added at the beginning and the end of each sentence. The domain-specific sentiment words are in bold.

task, it might bring in some noise and affect the
performance of our sequential model. In contrast
to Sequential-auxiliary, Joint-auxiliary is jointly
learnt with the sentiment classification task, and it is
easy to see that most of its extracted trigrams are
target-specific sentiment words. Also, for Joint-
original, since we share the word embeddings of
two components and do not remove any pivot, it is
intuitive to see that the extracted trigrams contain
both domain-independent and domain-specific sen-
timent words. These observations agree with our
motivations behind the model.

Finally, we also sample several sentences from
the test dataset, i.e., RT, to get a deeper insight of
our joint model. Although NaiveNN and Sequen-
tial correctly predict sentiments of the following two
sentences:

1. “I’ve also been amazed at all the new addi-
tions in the past few years: A new Jazz Bar, the most
fantastic Dining Garden, the Best Thin Crust Pizzas,
and now a Lasagna Menu which is to die for!”

2. “The have a great cocktail with Citrus Vodka
and lemon and lime juice and mint leaves that is to
die for!”
Both of them give wrong predictions on another
three sentences containing to die for:

3. “Try their chef’s specials– they are to die for.”
4. “Their tuna tartar appetizer is to die for.”
5. “It’s to die for!”.
However, since to die for co-occurs with some

general sentiment words like fantastic, best and
great in previous two sentences, our joint model can
implicitly learn that to die for is highly correlated
with the positive sentiment via our auxiliary tasks,
and ultimately make correct predictions for the lat-
ter three sentences. This further indicates that our
joint model can identify more domain-specific sen-
timent words in comparison with NaiveNN and Se-
quential, and therefore improve the performance.

5 Conclusions

We presented a domain adaptation method for senti-
ment classification based on sentence embeddings.
Our method induces a sentence embedding that
works well across domains, based on two auxil-
iary tasks. We also jointly learn the cross-domain
sentence embedding and the sentiment classifier.
Experiment results show that our proposed joint
method can outperform several highly competi-
tive domain adaptation methods on 18 source-target
pairs using five benchmark data sets. Moreover, fur-
ther analysis confirmed that our method is able to
pick up domain-specific sentiment words.

Acknowledgment

This research is supported by the Singapore Na-
tional Research Foundation under its International
Research Centre@Singapore Funding Initiative and
administered by the IDM Programme Office, Media
Development Authority (MDA).

244

References

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Proceedings of the 2006 Con-
ference on Empirical Methods in Natural Language
Processing, pages 120–128. Association for Compu-
tational Linguistics.

John Blitzer, Mark Dredze, and Fernando Pereira. 2007.
Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
Proceedings of the 45th Annual Meeting of the Asso-
ciation of Computational Linguistics, pages 440–447,
Prague, Czech Republic, June. Association for Com-
putational Linguistics.

Danushka Bollegala, David Weir, and John Carroll.
2011. Using multiple sources to construct a sentiment
sensitive thesaurus for cross-domain sentiment clas-
sification. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pages 132–
141. Association for Computational Linguistics.

Danushka Bollegala, Takanori Maehara, and Ken-ichi
Kawarabayashi. 2015. Unsupervised cross-domain
word representation learning. In Proceedings of the
53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers), pages 730–740, Beijing, China, July.
Association for Computational Linguistics.

Danushka Bollegala, Tingting Mu, and John Goulermas.
2016. Cross-domain sentiment classification using
sentiment sensitive embeddings. IEEE Transactions
on Knowledge & Data Engineering, 6(2):398–410.

Minmin Chen, Zhixiang Eddie Xu, Kilian Q. Weinberger,
and Fei Sha. 2012. Marginalized denoising autoen-
coders for domain adaptation. In Proceedings of the
29th International Conference on Machine Learning.

Yejin Choi and Claire Cardie. 2008. Learning with com-
positional semantics as structural inference for subsen-
tential sentiment analysis. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 793–801. Association for Compu-
tational Linguistics.

Hal Daumé III. 2007. Frustratingly easy domain adapta-
tion. In Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics, pages 256–
263.

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming
Zhou, and Ke Xu. 2014a. Adaptive recursive neural
network for target-dependent twitter sentiment classi-
fication. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Vol-

ume 2: Short Papers), pages 49–54, Baltimore, Mary-
land, June. Association for Computational Linguistics.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2014b.
Adaptive multi-compositionality for recursive neural
models with applications to sentiment analysis. In
Twenty-Eighth AAAI Conference on Artificial Intelli-
gence.

Mark Dredze and Koby Crammer. 2008. Online meth-
ods for multi-domain learning and adaptation. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 689–697.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In In Pro-
ceedings of the Twenty-eight International Conference
on Machine Learning.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.
ACM.

Jing Jiang and ChengXiang Zhai. 2007. Instance weight-
ing for domain adaptation in nlp. In Proceedings of
the 45th Annual Meeting of the Association of Compu-
tational Linguistics, pages 264–271.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1746–1751. Association
for Computational Linguistics, October.

Shoushan Li, Rui Xia, Chengqing Zong, and Chu-Ren
Huang. 2009. A framework of feature selection meth-
ods for text categorization. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 2-Volume
2, pages 692–700. Association for Computational Lin-
guistics.

Fangtao Li, Sinno Jialin Pan, Ou Jin, Qiang Yang, and Xi-
aoyan Zhu. 2012. Cross-domain co-extraction of sen-
timent and topic lexicons. In Proceedings of the 50th
Annual Meeting of the Association for Computational
Linguistics: Long Papers-Volume 1, pages 410–419.
Association for Computational Linguistics.

Tetsuji Nakagawa, Kentaro Inui, and Sadao Kurohashi.
2010. Dependency tree-based sentiment classification
using crfs with hidden variables. In Human Language
Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 786–794. Association for
Computational Linguistics.

Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang
Yang, and Zheng Chen. 2010. Cross-domain senti-
ment classification via spectral feature alignment. In

245

Proceedings of the 19th international conference on
World wide web, pages 751–760. ACM.

Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and
Qiang Yang. 2011. Domain adaptation via transfer
component analysis. Neural Networks, IEEE Transac-
tions on, 22(2):199–210.

Bo Pang and Lillian Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. In Proceedings of the 42nd
annual meeting on Association for Computational Lin-
guistics, page 271. Association for Computational Lin-
guistics.

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceedings of
the 43rd Annual Meeting on Association for Compu-
tational Linguistics, pages 115–124. Association for
Computational Linguistics.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using ma-
chine learning techniques. In Proceedings of the ACL-
02 conference on Empirical methods in natural lan-
guage processing-Volume 10, pages 79–86. Associa-
tion for Computational Linguistics.

Natalia Ponomareva and Mike Thelwall. 2012. Do
neighbours help?: an exploration of graph-based al-
gorithms for cross-domain sentiment classification. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
655–665. Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher
Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1631–
1642, Seattle, Washington, USA, October. Association
for Computational Linguistics.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Docu-
ment modeling with gated recurrent neural network
for sentiment classification. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1422–1432, Lisbon, Por-
tugal, September. Association for Computational Lin-
guistics.

Ivan Titov. 2011. Domain adaptation by constraining
inter-domain variability of latent feature representa-
tion. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 62–71.

Yi Yang and Jacob Eisenstein. 2014. Fast easy unsuper-
vised domain adaptation with marginalized structured
dropout. In Proceedings of the 52nd Annual Meeting

of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 538–544.

Yi Yang and Jacob Eisenstein. 2015. Unsupervised
multi-domain adaptation with feature embeddings. In
Proceedings of the North American Chapter of the As-
sociation for Computational Linguistics, pages 672–
682.

Jianfei Yu and Jing Jiang. 2015. A hassle-free unsuper-
vised domain adaptation method using instance sim-
ilarity features. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 2: Short Papers),
pages 168–173, Beijing, China, July. Association for
Computational Linguistics.

246

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 247–256,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Attention-based LSTM Network for Cross-Lingual Sentiment Classification

Xinjie Zhou, Xiaojun Wan and Jianguo Xiao
Institute of Computer Science and Technology, Peking University

The MOE Key Laboratory of Computational Linguistics, Peking University
{zhouxinjie,wanxiaojun,xiaojianguo}@pku.edu.cn

Abstract

Most of the state-of-the-art sentiment classifi-
cation methods are based on supervised learn-
ing algorithms which require large amounts
of manually labeled data. However, the
labeled resources are usually imbalanced in
different languages. Cross-lingual sentiment
classification tackles the problem by adapting
the sentiment resources in a resource-rich
language to resource-poor languages. In this
study, we propose an attention-based bilingual
representation learning model which learns
the distributed semantics of the documents in
both the source and the target languages. In
each language, we use Long Short Term Mem-
ory (LSTM) network to model the documents,
which has been proved to be very effective
for word sequences. Meanwhile, we propose
a hierarchical attention mechanism for the
bilingual LSTM network. The sentence-level
attention model learns which sentences of a
document are more important for determining
the overall sentiment while the word-level
attention model learns which words in each
sentence are decisive. The proposed model
achieves good results on a benchmark dataset
using English as the source language and
Chinese as the target language.

1 Introduction

Most of the sentiment analysis research focuses on
sentiment classification which aims to determine
whether the users attitude is positive, neutral or
negative. There are two classes of mainstreaming
sentiment classification algorithms: unsupervised
methods which usually require a sentiment lexicon

(Taboada et al., 2011) and supervised methods
(Pang et al., 2002) which require manually labeled
data. However, both of these sentiment resources are
unbalanced in different languages. The sentiment
lexicon or labeled data are rich in several languages
such as English and are poor in others. Manually
building these resources for all the languages will
be expensive and time-consuming. Cross-lingual
sentiment classification tackles the problem by try-
ing to adapt the resources in one language to other
languages. It can also be regarded as a special kind
of cross-lingual text classification task.

Recently, there have been several bilingual rep-
resentation learning methods such as (Hermann
and Blunsom, 2014; Gouws et al., 2014) for
cross-lingual sentiment or text classification which
achieve promising results. They try to learn a
joint embedding space for different languages such
that the training data in the source language can
be directly applied to the test data in the target
language. However, most of the studies only
use simple functions, e.g. arithmetic average, to
synthesize representations for larger text sequences.
Some of them use more complicated compositional
models such as the bi-gram non-linearity model in
(Hermann and Blunsom, 2014) which also fail to
capture the long distance dependencies in texts.

In this study, we propose an attention-based
bilingual LSTM network for cross-lingual sentiment
classification. LSTMs have been proved to be
very effective to model word sequences and are
powerful to learn on data with long range temporal
dependencies. After translating the training data
into the target language using machine translation

247

tools, we use the bidirectional LSTM network to
model the documents in both of the source and
the target languages. The LSTMs show strong
ability to capture the compositional semantics for
the bilingual texts in our experiments.

For the traditional LSTM network, each word in
the input document is treated with equal importance,
which is reasonable for traditional text classification
tasks. In this paper, we propose a hierarchical
attention mechanism which enables our model to
focus on certain part of the input document. The
motivation mainly comes from the following three
observations: 1) the machine translation tool that we
use to translate the documents will always introduce
much noise for sentiment classification. We hope
that the attention mechanism can help to filter out
these noises. 2) In each individual language, the
sentiment of a document is usually decided by a
relative small part of it. In a long review document,
the user might discuss both the advantages and
disadvantages of a product. The sentiment will
be confusing if we consider each sentence of the
same contribution. For example, in the first review
of Table 1, the first sentence reveals a negative
sentiment towards the movie but the second one
reveals a positive sentiment. As human readers,
we can understand that the review is expressing
a positive overall sentiment but it is hard for the
sequence modeling algorithms including LSTM to
capture. 3) At the sentence level, it is important to
focus on the sentiment signals such as the sentiment
words. They are usually very decisive to determine
the polarity even for a very long sentence, e.g.
“easy” and “nice” in the second example of Table
1.

“I felt it could have been a lot better with a little
less comedy and a little more drama to get the
point across. However, its still a must see for
any Jim Carrey fan. ”

“It is easy to read, it is easy to look things up in
and provides a nice section on the treatments.”

Table 1: Examples of the sentiment attention

In sum, the main contributions of this study are
summarized as follows:

1) We propose a bilingual LSTM network for

cross-lingual sentiment classification. Compared to
the previous methods which only use weighted or
arithmetic average of word embeddings to represent
the document, LSTMs have obvious advantage to
model the compositional semantics and to capture
the long distance dependencies between words for
bilingual texts.

2) We propose a hierarchical bilingual attention
mechanism for our model. To the best of our
knowledge, this is the first attention-based model
designed for cross-lingual sentiment analysis.

3) The proposed framework achieves good results
on a benchmark dataset from a cross-language
sentiment classification evaluation. It outperforms
the best team in the evaluation as well as several
strong baseline methods.

2 Related Work

Sentiment analysis is the field of studying and
analyzing peoples opinions, sentiments, evaluations,
appraisals, attitudes, and emotions (Liu, 2012). The
most common task of sentiment analysis is polarity
classification which arises with the emergence of
customer reviews on the Internet. Pang et al. (2002)
used supervised learning methods and achieved
promising results with simple unigram and bi-gram
features. In subsequent research, more features
and learning algorithms were tried for sentiment
classification by a large number of researchers. Re-
cently, the emerging of deep learning has also shed
light on this area. Lots of representation learning
methods has been proposed to address the sentiment
classification task and many of them achieve the
state-of-the-art performance on several benchmark
datasets, such as the recursive neural tensor network
(Socher et al., 2013), paragraph vector (Le and
Mikolov, 2014), multi-channel convolutional neural
networks (Kim, 2012), dynamic convolutional
neural network (Blunsom et al., 2014) and tree
structure LSTM (Tai et al., 2015). Very recently,
Yang et al. (2016) proposed a similar hierarchical
attention network based on GRU in the monolingual
setting. Note that our work is independent with
theirs and their study was released online after we
submitted this study.

Cross-lingual sentiment classification is also a
popular research topic in the sentiment analysis

248

community which aims to solve the sentiment
classification task from a cross-language view. It is
of great importance since it can exploit the existing
labeled information in a source language to build a
sentiment classification system in any other target
language. Cross-lingual sentiment classification has
been extensively studied in the very recent years.
Mihalcea et al. (2007) translated English subjec-
tivity words and phrases into the target language
to build a lexicon-based classifier. Wan (2009)
translated both the training data (English to Chinese)
and the test data (Chinese to English) to train differ-
ent models in both the source and target languages.
Chen et al. (2015) proposed a knowledge validation
method and incorporated it into a boosting model
to transfer credible information between the two
languages during training.

There have also been several studies addressing
the task via multi-lingual text representation learn-
ing. Xiao and Guo (2013) learned different repre-
sentations for words in different languages. Part of
the word vector is shared among different languages
and the rest is language-dependent. Klementiev et
al. (2012) treated the task as a multi-task learning
problem where each task corresponds to a single
word, and the task relatedness is derived from co-
occurrence statistics in bilingual parallel corpora.
Chandar A P et al. (2014) and Zhou et al. (2015)
used the autoencoders to model the connections
between bilingual sentences. It aims to minimize
the reconstruction error between the bag-of-words
representations of two parallel sentences. Pham
et al. (2015) extended the paragraph model into
bilingual setting. Each pair of parallel sentences
shares the same paragraph vector.

Compared to the existing studies, we propose to
use the bilingual LSTM network to learn the docu-
ment representations of reviews in each individual
language. It has obvious advantage to model the
compositional semantics and to capture the long
distance dependencies between words. Besides, we
propose a hierarchical neural attention mechanism
to capture the sentiment attention in each document.
The attention model helps to filter out the noise
which is irrelevant to the overall sentiment.

3 Preliminaries

3.1 Problem Definition

Cross-language sentiment classification aims to use
the training data in the source language to build a
model which is adaptable for the test data in the
target language. In our setting, we have labeled
training data in English LEN = {xi, yi}Ni=1 , where
xi is the review text and yi is the sentiment label
vector. yi = (1, 0) represents the positive sentiment
and yi = (0, 1) represents the negative sentiment.
In the target language Chinese, we have the test
data TCN = {xi}Ti=1 and unlabeled data UCN =
{xi}Mi=1. The task is to use LEN and UCN to learn
a model and classify the sentiment polarity for the
review texts in TCN .

In our method, the labeled, unlabeled and test data
are all translated into the other language using an
online machine translation tool. In the subsequent
part of the paper, we refer to a document and its
corresponding translation in the other language as
a pair of parallel documents.

3.2 RNN and LSTM

Recurrent neural network (RNN) (Rumelhart et
al., 1988) is a special kind of feed-forward neural
network which is useful for modeling time-sensitive
sequences. At each time t, the model receives
input from the current example and also from the
hidden layer of the network’s previous state. The
output is calculated given the hidden state at that
time stamp. The recurrent connection makes the
output at each time associated with all the previous
inputs. The vanilla RNN model has been considered
to be difficult to train due to the well-known problem
of vanishing and exploding gradients. The LSTM
(Hochreiter and Schmidhuber, 1997) addresses the
problem by re-parameterizing the RNN model. The
core idea of LSTM is introducing the “gates” to
control the data flow in the recurrent neural unit.
The LSTM structure ensures that the gradient of the
long-term dependencies cannot vanish. The detailed
architecture that we use in shown in Figure 1.

4 Framework

In this study, we try to model the bilingual texts
through the attention based LSTM network. We first

249

Figure 1: The LSTM architecture. The image is adopted from

(Jozefowicz et al., 2015).

describe the general architecture of the model and
then describe the attention mechanism used in it.

Figure 2: The architecture of the proposed framework. The

inputs xcn and xen are parallel documents. Due to space

limit, we only illustrate the attention based LSTM network in

Chinese language. For the English document xen, the network

architecture is the same as the Chinese side but has different

model parameters.

4.1 Architecture

The general architecture of our approach is shown in
Figure 2. For a pair of parallel documents xcn and
xen, each of them is sent into the attention based

LSTM network. The English-side and Chinese-
side architectures are the same but have different
parameters. We only show the Chinese-side network
in the figure due to space limit. The whole model
is divided into four layers. In the input layer,
the documents are represented as a word sequence
where each position corresponds to a word vector
from pre-trained word embeddings. In the LSTM
layer, we get the high-level representation from a
bidirectional LSTM network. We use the hidden
units from both the forward and backward LSTMs.
In the document representation layer, we incorporate
the attention model into the network and derive
the final document representation. At the output
layer, we concatenate the representations of the
English and Chinese documents and use the softmax
function to predict the sentiment label.

Input Layer: The input layer of the network is
the word sequences in a document x which can be
either Chinese or English. The document x contains
several sentences {si}|x|i=1 and each sentence is
composed of several words si = {wi,j}|si|j=1 . We
represent each word in the document as a fixed-size
vector from pre-trained word embeddings.

LSTM Layer: In each individual language,
we use bi-directional LSTMs to model the input
sequences. In the bidirectional architecture, there
are two layers of hidden nodes from two separate
LSTMs. The two LSTMs capture the dependencies
in different directions. The first hidden layers have
recurrent connections from the past words while
second one’s direction of recurrent of connections
is flipped, passing activation backwards in the texts.
Therefore, in the LSTM layer, we can get the
forward hidden state ~hi,j from the forward LSTM
network and the backward hidden state ~hi,j from the
backward LSTM network. We represent the final
state at position (i, j), i.e. the j-th word in the i-th
sentence of the document, with the concatenation of
~hi,j and ~hi,j .

hi,j = ~hi,j ‖ ~hi,j

It captures the compositional semantics in both
directions of the word sequences.

Document Representation Layer:As described
above, different parts of the document usually have
different importance for the overall sentiment. Some

250

sentences or words can be decisive while the others
are irrelevant. In this study, we use a hierarchical
attention mechanism which assigns a real value
score for each word and a real value score for each
sentence. The detailed strategy of our attention
model will be described in the next subsection.

Suppose we have the sentence attention score Ai

for each sentence si ∈ x, and the word attention
score ai,j for each word wi,j ∈ si, both of the
scores are normalized which satisfy the following
equations,

∑

i

Ai = 1 and
∑

j

ai,j = 1

The sentence attention measures which sentence
is more important for the overall sentiment while
the word attention captures sentiment signals such
as sentiment words in each sentence. Therefore,
the document representation r for document x is
calculated as follows,

r =
∑

i

[Ai ·
∑

j

(ai,j · hi,j)]

Note that many LSTM based models represent the
word sequences only using the hidden layer at the
final node. In this study, the hidden states at all
the positions are considered with different attention
weights. We believe that, for document sentiment
classification, focusing on some certain parts of the
document will be effective to filter out the sentiment-
irrelevant noise.

Output Layer: At the output layer, we need to
predict the overall sentiment of the document. For
each English document xen and its corresponding
translation xcn, suppose the document representa-
tions of them are obtained in previous steps as ren
and rcn, we simply concatenate them as the feature
vector and use the softmax function to predict the
final sentiment.

ŷ = softmax(rcn ‖ ren)

4.2 Hierarchical Attention Mechanism

For document-level sentiment classification task, we
have shown that capturing both the sentence and
word level attention is important. The general idea
is inspired by previous works such as Bahdanau et

al. (2014) and Hermann et al. (2015) which have
successfully applied the attention model to machine
translation and question answering. Bahdanau et
al. (2014) incorporated the attention model into the
sequence to sequence learning framework. During
the decoding phase of the machine translation task,
the attention model helps to find which input word
should be “aligned” to the current output. In our
case, the output of the model is not a sequence
but only one sentiment vector. We hope to find
the important units in the input sequence which are
influential for the output.

We propose to learn a hierarchical attention model
jointly with the bilingual LSTM network. The
first level is the sentence attention model which
measures which sentences are more important for
the overall sentiment of a document. For each
sentence si = {wi,j}|si|j=1 in the document, we
represent the sentence via the final hidden state of
the forward LSTM and the backward LSTM, i.e.

si = ~hi,|si| ‖ ~hi,1

We use a two-layer feed-forward neural network
to predict the attention score of si

Âi = f(si; θs)

Ai =
exp(Âi)∑
j exp(Âj)

where f denotes the two-layer feed-forward neural
network and θs denotes the parameters in it.

At the word level, we represent each word wi,j

using its word embedding and the hidden state of
the bidirectional LSTM layer, i.e. hi,j . Similarly,
we use a two-layer feed forward neural network to
predict the attention score of wi,j ,

ei,j = wi,j ‖ ~hi,j ‖ ~hi,j

âi,j = f(ei,j ; θw)

ai,j =
exp(âi,j)∑
j exp(âi,j)

where θw denotes the parameters for predicting
word attention.

251

4.3 Training of the Proposed Model
The proposed model is trained in a semi-supervised
manner. In the supervised part, we use the cross
entropy loss to minimize the sentiment prediction er-
ror between the output results and the gold standard
labels,

L1 =
∑

(xen,xcn)

∑

i

−yi log(ŷi)

where xen and xcn are a pair of parallel documents
in the training data, y is the gold-standard sentiment
vector and ŷ is the predicted vector from our model.

The unsupervised part tries to minimize the
document representations between the parallel data.
Following previous research, we simply measure the
distance of two parallel documents via the Euclidean
Distance,

L2 =
∑

(xen,xcn)

‖ren − rcn‖2

where xen and xcn are a pair of parallel documents
from both the labeled and unlabeled data.

The final objective function is a weighted sum of
L1 and L2,

L = L1 + α · L2

where α is the hyper-parameter controlling the
weight. We use Adadelta (Zeiler, 2012) to update
the parameters during training. It can dynamically
adapt over time using only first order information
and has minimal computational overhead beyond
vanilla stochastic gradient descent.

In the test phase, the test document in TCN is
sent into our model along with the corresponding
machine translated text in TEN . The final senti-
ment is predicted via a softmax function over the
concatenated representation of the bilingual texts as
described above.

5 Experiment

5.1 Dataset
We use the dataset from the cross-language senti-
ment classification evaluation of NLP&CC 2013.1

1The dataset can be found at
http://tcci.ccf.org.cn/conference/2013/index.html. NLP&CC
is an annual conference specialized in the fields of Natural

The dataset contains reviews in three domains
including book, DVD and music. In each domain,
it has 2000 positive reviews and 2000 negative
reviews in English for training and 4000 Chinese
reviews for test. It also contains 44113, 17815 and
29678 unlabeled reviews for book, DVD and music
respectively.

5.2 Implementation Detail
We use Google Translate2 to translate the labeled
data to Chinese and translate the unlabeled data and
test data to English. All the texts are tokenized and
converted into lower case.

In the proposed framework, the dimensions of
the word vectors and the hidden layers of LSTMs
are set as 50. The initial word embeddings are
trained on both the unlabeled and labeled reviews
using word2vec in each individual language. The
word vectors are fine-tuned during the training
procedure. The hyper-parameter a is set to 0.2. The
dropout rate is set to 0.5 to prevent overfitting. Ten
percent of the training data are randomly selected
as validation set. The training procedure is stopped
when the prediction accuracy does not improve for
10 iterations. We implement the framework based
on theano (Bastien et al., 2012) and use a GTX
980TI graphic card for training.

5.3 Baselines and Results
To evaluate the performance of our model, we
compared it with the following baseline methods:

LR and SVM: We use logistic regression and
SVM to learn different classifiers based on the
translated Chinese training data. We simply use
unigram features.

MT-PV: Paragraph vector (Le and Mikolov,
2014) is considered as one of the state-of-the-art
monolingual document modeling methods. We
translate all the training data into Chinese and use
paragraph vector to learn a vector representation
for the training and test data. A logistic regression
classifier is used to predict the sentiment polarity.

Bi-PV: Pham et al. (2015) is one the state-of-
the-art bilingual document modeling methods. It
extends the paragraph vector into bilingual setting.

Language Processing (NLP) and Chinese Computing (CC)
organized by Chinese Computer Federation (CCF).

2http://translate.google.com/

252

Each pair of parallel sentences in the training data
shares the same vector representation.

BSWE: Zhou et al. (2015) proposed the bilin-
gual sentiment word embedding algorithm based
on denoising autoencoders. It learns the vector
representations for 2000 sentiment words. Each
document is then represented by the sentiment
words and the corresponding negation words in it.

H-Eval: Gui et al. (2013) got the highest
performance in the NLP&CC 2013 cross-lingual
sentiment classification evaluation. It uses a mixed
CLSC model by combining co-training and transfer
learning strategies.

A-Eval: This is the average performance of all the
teams in the NLP&CC 2013 cross-lingual sentiment
classification evaluation.

The attention-based models EN-Attention, CN-
Attention and BI-Attention: Bi-Attention is the
model described in the above sections which con-
catenate the document representations of the English
side and the Chinese side texts. EN-Attention only
translates the Chinese test data into English and uses
English-side attention model while CN-Attention
only uses the Chinese side attention model.

Method
Domains

Average
book DVD music

LR 0.765 0.796 0.741 0.767
SVM 0.779 0.814 0.707 0.767

MT-PV 0.753 0.799 0.748 0.766
Bi-PV 0.785 0.820 0.753 0.796
BSWE 0.811 0.816 0.794 0.807
A-Eval 0.662 0.660 0.675 0.666
H-Eval 0.785 0.777 0.751 0.771

EN-Attention 0.798 0.827 0.808 0.811
CN-Attention 0.820 0.840 0.809 0.823
BI-Attention 0.821 0.837 0.813 0.824

Table 2: Cross-lingual sentiment prediction accuracy of our

methods and the comparison approaches.

Table 2 shows the cross-lingual sentiment clas-
sification accuracy of all the approaches. The first
kind baseline algorithms are based on traditional
bag-of-word features. SVM performs better than
LR on book and DVD but gets much worse result
on music. The second kind baseline algorithms
are based on deep learning methods which learn
the vector representations for words or documents.

MT-PV achieves similar results with LR. Bi-PV
improves the accuracy by about 0.03 using both
the bilingual documents. While MT-PV and Bi-
PV directly learn document representations, BSWE
learns the embedding for the words in a bilingual
sentiment lexicon. It gets higher accuracy than both
Bi-PV and MT-PV which shows that the sentiment
words are very important for this task.

Our attention based models achieve the highest
prediction accuracy among all the approaches. The
results show that CN-Attention always outperforms
EN-Attention. The combination of the English-side
and Chinese-side model brings improvement to both
the book and music domains and yields the highest
average prediction accuracy. The attention-based
models outperform the algorithms using traditional
features as well as the existing deep learning based
methods. Compared to the highest performance in
the NLP&CC evaluation, we improve the average
accuracy by about 0.05.

5.4 Influence of the Attention Mechanism

In this study, we propose a hierarchical attention
mechanism to capture the sentiment-related infor-
mation of each document. In table 3, we show
the results of models with different attention mech-
anisms. All the models are based on the bilingual
bi-directional LSTM network as shown in Figure 2.
LSTM is the basic bilingual bi-directional LSTM
network. LSTM+SA considers only sentence-level
attention while LSTM+WA considers only word-
level attention. LSTM+HA combines both word-
level and sentence-level attentions. From the results,
we can observe that LSTM+HA outperforms the
other three methods, which proves the effectiveness
of the hierarchical attention mechanism. Besides,
the word-level attention shows better performance
than the sentence-level attention.

Method Average Accuracy
LSTM 0.811

LSTM+SA 0.814
LSTM+WA 0.821
LSTM+HA 0.824

Table 3: Comparison of different attention mechanisms

We also conduct a case study using the examples
in Table 1. We show the visualized word attention

253

using a heat map in Figure 3 by drawing the
attention of each word in it. The darker color
reveals higher attention scores while the lighter part
has little importance. We can observe that our
model successfully identifies the important units
of the sentence. The sentiment word “easy” gets
much higher attention score than the other words.
The word “nice” gets the third highest score in
the sentence right after the two “easy”. Note that
our attention mechanism considers both the word
embedding vector and the hidden state vectors.
Therefore, the same word “easy” gets different
scores in different positions.

Figure 3: Attention visualization for a review sentence

5.5 Influence of the Word Embeddings
For the deep learning based methods, the initial
word embeddings used as the inputs for the network
usually play an important role. We study four
different settings called rand, static, fine-tuned and
multi-channel, respectively. In rand setting, the
word embeddings are randomly initialized. The
static setting keeps initial embedding fixed while
the fine-tuned setting learns a refined embedding
during the training procedure. Multi-channel is the
combination of static and fine-tuned. Two same
word vectors are concatenated to represent each
word. During the training procedure, half of it is
fine-tuned while the rest is fixed. Note that fine-
tuned is the embedding setting that we use in our
model.

Embedding Domains
Average

Settings book DVD music
rand 0.789 0.786 0.746 0.774
static 0.804 0.810 0.784 0.799

fine-tuned 0.821 0.837 0.813 0.824
multi-channel 0.822 0.835 0.806 0.821

Table 4: Performance of our model with four different word

embedding settings

Table 4 shows the performance of our model in
these settings. Rand gets the lowest accuracy among

them. The fine-tuned word embeddings perform
better than static which fits the results in previous
study (Kim, 2012). Multi-channel gets similar
results with fine-tuned on DVD and music but is a bit
lower on book. We also find that using pre-trained
word embeddings helps the model to converge much
faster than random initialization.

5.6 Influence of Vector Sizes
In our experiment, we set the size of the hidden
layers in both the forward and backward LSTMs the
same as the size of the input word vectors. There-
fore, the dimension of the document representation
is twice of the word vector size. In Figure 4, we
show the performance of our model with different
input vector sizes. We use the vector size in the
following set {10, 25, 50, 100, 150, 200}. Note that
the dimensions of all the units in the model also
change with that.

We can observe from Figure 4 that the prediction
accuracy for the book domain keeps steady when
the vector size changes. For DVD and music, the
performance increases at the beginning and becomes
stable after the vector size grows larger than 50. It
shows that our model is robust to a wide range of
vector sizes.

Figure 4: Performance with different vector sizes

6 Conclusion

In this paper, we propose an attention based LSTM
network for cross-language sentiment classification.
We use the bilingual bi-directional LSTMs to model
the word sequences in the source and target lan-
guages. Based on the special characteristics of the
sentiment classification task, we propose a hierar-
chical attention model which is jointly trained with
the LSTM network. The sentence level attention

254

enables us to find the key sentences in a document
and the word level attention helps to capture the
sentiment signals. The proposed model achieves
promising results on a benchmark dataset using
Chinese as the source language and English as the
target language. It outperforms the best results in the
NLPC&CC cross-language sentiment classification
evaluation as well as several strong baselines. In
future work, we will evaluate the performance of our
model on more datasets and more language pairs.
The sentiment lexicon is also another kind of useful
resource for classification. We will explore how to
make full usages of these resources in the proposed
framework.

Acknowledgments

The work was supported by National Natural Sci-
ence Foundation of China (61331011), National Hi-
Tech Research and Development Program (863 Pro-
gram) of China (2015AA015403, 2014AA015102)
and IBM Global Faculty Award Program. We
thank the anonymous reviewers for their helpful
comments. Xiaojun Wan is the corresponding
author.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint arX-
iv:1409.0473.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, David Warde-Farley, and Yoshua
Bengio. 2012. Theano: new features and speed
improvements. arXiv preprint arXiv:1211.5590.

Phil Blunsom, Edward Grefenstette, and Nal Kalch-
brenner. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics.

Sarath Chandar A P, Stanislas Lauly, Hugo Larochelle,
Mitesh Khapra, Balaraman Ravindran, Vikas C
Raykar, and Amrita Saha. 2014. An autoencoder ap-
proach to learning bilingual word representations. In
Advances in Neural Information Processing Systems,
pages 1853–1861.

Qiang Chen, Wenjie Li, Yu Lei, Xule Liu, and Yanxiang
He. 2015. Learning to adapt credible knowledge in
cross-lingual sentiment analysis. In Proceedings of

52rd Annual Meeting of the Association for Compu-
tational Linguistic.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2014. Bilbowa: Fast bilingual distributed repre-
sentations without word alignments. arXiv preprint
arXiv:1410.2455.

Lin Gui, Ruifeng Xu, Jun Xu, Li Yuan, Yuanlin Yao,
Jiyun Zhou, Qiaoyun Qiu, Shuwei Wang, Kam-Fai
Wong, and Ricky Cheung. 2013. A mixed model for
cross lingual opinion analysis. In Natural Language
Processing and Chinese Computing, pages 93–104.

Karl Moritz Hermann and Phil Blunsom. 2014. Multilin-
gual models for compositional distributed semantics.
In Proceedings of 52rd Annual Meeting of the Associ-
ation for Computational Linguistic, pages 58–68.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems, pages 1684–1692.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Yoon Kim. 2012. Convolutional neural networks for
sentence classification. In Proceedings of EMNLP
2014, pages 1746–1751.

Alexandre Klementiev, Ivan Titov, and Binod Bhattarai.
2012. Inducing crosslingual distributed representa-
tions of words. In Proceedings of COLING 2012,
pages 1759–1774.

Quoc Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. In
Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pages 1188–1196.

B Liu. 2012. Sentiment analysis and opinion mining:
Synthesis lectures on human language technologies,
vol. 16. Morgan & Claypool Publishers, San Rafael.

Rada Mihalcea, Carmen Banea, and Janyce Wiebe.
2007. Learning multilingual subjective language via
cross-lingual projections. In Proceedings of the 45th
Annual Meeting of the Association of Computational
Linguistics.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using
machine learning techniques. In Proceedings of the
ACL-02 conference on Empirical methods in natural
language processing-Volume 10, pages 79–86. Asso-
ciation for Computational Linguistics.

Hieu Pham, Minh-Thang Luong, and Christopher D
Manning. 2015. Learning distributed representations
for multilingual text sequences. In Proceedings of
NAACL-HLT, pages 88–94.

255

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1988. Learning representations by back-
propagating errors. Cognitive modeling, 5(3):1.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural
tensor networks for knowledge base completion. In
Advances in Neural Information Processing Systems,
pages 926–934.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kimberly
Voll, and Manfred Stede. 2011. Lexicon-based meth-
ods for sentiment analysis. Computational linguistics,
37(2):267–307.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory network-
s. arXiv preprint arXiv:1503.00075.

Xiaojun Wan. 2009. Co-training for cross-lingual
sentiment classification. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 1-Volume
1, pages 235–243. Association for Computational
Linguistics.

Min Xiao and Yuhong Guo. 2013. Semi-supervised
representation learning for cross-lingual text classifi-
cation. In Proceedings of EMNLP 2013, pages 1465–
1475.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489. Association for Computational Lin-
guistics.

Matthew D Zeiler. 2012. Adadelta: an adaptive learning
rate method. arXiv preprint arXiv:1212.5701.

Huiwei Zhou, Long Chen, Fulin Shi, and Degen Huang.
2015. Learning bilingual sentiment word embeddings
for cross-language sentiment classification. In Pro-
ceedings of 52rd Annual Meeting of the Association
for Computational Linguistic, pages 430–440.

256

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 257–267,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Neural versus Phrase-Based Machine Translation Quality: a Case Study

Luisa Bentivogli
FBK, Trento

Italy

Arianna Bisazza
University of Amsterdam

The Netherlands

Mauro Cettolo
FBK, Trento

Italy

Marcello Federico
FBK, Trento

Italy

Abstract

Within the field of Statistical Machine Trans-
lation (SMT), the neural approach (NMT) has
recently emerged as the first technology able
to challenge the long-standing dominance of
phrase-based approaches (PBMT). In particu-
lar, at the IWSLT 2015 evaluation campaign,
NMT outperformed well established state-of-
the-art PBMT systems on English-German, a
language pair known to be particularly hard
because of morphology and syntactic differ-
ences. To understand in what respects NMT
provides better translation quality than PBMT,
we perform a detailed analysis of neural vs.
phrase-based SMT outputs, leveraging high
quality post-edits performed by professional
translators on the IWSLT data. For the first
time, our analysis provides useful insights on
what linguistic phenomena are best modeled
by neural models – such as the reordering of
verbs – while pointing out other aspects that
remain to be improved.

1 Introduction

The wave of neural models has eventually reached
the field of Statistical Machine Translation (SMT).
After a period in which Neural MT (NMT) was
too computationally costly and resource demanding
to compete with state-of-the-art Phrase-Based MT
(PBMT)1, the situation changed in 2015. For the
first time, in the latest edition of IWSLT2 (Cettolo et

1We use the generic term phrase-based MT to cover standard
phrase-based, hierarchical and syntax-based SMT approaches.

2International Workshop on Spoken Language Translation
(http://workshop2015.iwslt.org/)

al., 2015), the system described in (Luong and Man-
ning, 2015) overtook a variety of PBMT approaches
with a large margin (+5.3 BLEU points) on a diffi-
cult language pair like English-German – anticipat-
ing what, most likely, will be the new NMT era.

This impressive improvement follows the dis-
tance reduction previously observed in the WMT
2015 shared translation task (Bojar et al., 2015).
Just few months earlier, the NMT systems de-
scribed in (Jean et al., 2015b) ranked on par with
the best phrase-based models on a couple of lan-
guage pairs. Such rapid progress stems from the im-
provement of the recurrent neural network encoder-
decoder model, originally proposed in (Sutskever et
al., 2014; Cho et al., 2014b), with the use of the at-
tention mechanism (Bahdanau et al., 2015). This
evolution has several implications. On one side,
NMT represents a simplification with respect to pre-
vious paradigms. From a management point of view,
similar to PBMT, it allows for a more efficient use
of human and data resources with respect to rule-
based MT. From the architectural point of view, a
large recurrent network trained for end-to-end trans-
lation is considerably simpler than traditional MT
systems that integrate multiple components and pro-
cessing steps. On the other side, the NMT pro-
cess is less transparent than previous paradigms. In-
deed, it represents a further step in the evolution
from rule-based approaches that explicitly manipu-
late knowledge, to the statistical/data-driven frame-
work, still comprehensible in its inner workings, to
a sub-symbolic framework in which the translation
process is totally opaque to the analysis.

What do we know about the strengths of NMT

257

and the weaknesses of PBMT? What are the linguis-
tic phenomena that deep learning translation models
can handle with such greater effectiveness? To an-
swer these questions and go beyond poorly informa-
tive BLEU scores, we perform the very first compar-
ative analysis of the two paradigms in order to shed
light on the factors that differentiate them and deter-
mine their large quality differences.

We build on evaluation data available for the
IWSLT 2015 MT English-German task, and com-
pare the results of the first four top-ranked partic-
ipants. We choose to focus on one language pair
and one task because of the following advantages:
(i) three state-of-the art PBMT systems compared
against the NMT system on the same data and in
the very same period (that of the evaluation cam-
paign); (ii) a challenging language pair in terms of
morphology and word order differences; (iii) avail-
ability of MT outputs’ post-editing done by pro-
fessional translators, which is very costly and thus
rarely available. In general, post-edits have the ad-
vantage of allowing for informative and detailed
analyses since they directly point to translation er-
rors. In this specific framework, the high quality
data created by professional translators guarantees
reliable evaluations. For all these reasons we present
our study as a solid contribution to the better under-
standing of this new paradigm shift in MT.

After reviewing previous work (Section 2), we in-
troduce the analyzed data and the systems that pro-
duced them (Section 3). We then present three in-
creasingly fine levels of MT quality analysis. We
first investigate how MT systems’ quality varies with
specific characteristics of the input, i.e. sentence
length and type of content of each talk (Section 4).
Then, we focus on differences among MT systems
with respect to morphology, lexical, and word or-
der errors (Section 5). Finally, based on the finding
that word reordering is the strongest aspect of NMT
compared to the other systems, we carry out a fine-
grained analysis of word order errors (Section 6).

2 Previous Work

To date, NMT systems have only been evaluated by
BLEU in single-reference setups (Bahdanau et al.,
2015; Sutskever et al., 2014; Luong et al., 2015;
Jean et al., 2015a; Gülçehre et al., 2015). Ad-

ditionally, the Montreal NMT system submitted to
WMT 2015 (Jean et al., 2015b) was part of a man-
ual evaluation experiment where a large number of
non-professional annotators were asked to rank the
outputs of multiple MT systems (Bojar et al., 2015).
Results for the Montreal system were very positive
– ranked first in English-German, third in German-
English, English-Czech and Czech-English – which
confirmed and strengthened the BLEU results pub-
lished so far. Unfortunately neither BLEU nor man-
ual ranking judgements tell us which translation as-
pects are better modeled by different MT frame-
works. To this end, a detailed and systematic error
analysis of NMT vs. PBMT output is required.

Translation error analysis, as a way to identify
systems’ weaknesses and define priorities for their
improvement, has received a fair amount of atten-
tion in the MT community. In this work we opt for
the automatic detection and classification of transla-
tion errors based on manual post-edits of the MT
output. We believe this choice provides an opti-
mal trade-off between fully manual error analysis
(Farrús Cabeceran et al., 2010; Popović et al., 2013;
Daems et al., 2014; Federico et al., 2014; Neubig
et al., 2015), which is very costly and complex,
and fully automatic error analysis (Popović and Ney,
2011; Irvine et al., 2013), which is noisy and biased
towards one or few arbitrary reference translations.

Existing tools for translation error detection
are either based on Word Error Rate (WER)
and Position-independent word Error Rate (PER)
(Popović, 2011) or on output-reference alignment
(Zeman et al., 2011). Regarding error classifi-
cation, Hjerson (Popović, 2011) detects five main
types of word-level errors as defined in (Vilar et al.,
2006): morphological, reordering, missing words,
extra words, and lexical choice errors. We follow
a similar but simpler error classification (morpho-
logical, lexical, and word order errors), but detect
the errors differently using TER as this is the most
natural choice in our evaluation framework based on
post-edits (see also Section 3.4). Irvine et al. (2013)
propose another word-level error analysis technique
specifically focused on lexical choice and aimed at
understanding the effects of domain differences on
MT. Their error classification is strictly related to
model coverage and insensitive to word order dif-
ferences. The technique requires access to the sys-

258

tem’s phrase table and is thus not applicable to NMT,
which does not rely on a fixed inventory of transla-
tion units extracted from the parallel data.

Previous error analyses based on manually post-
edited translations were presented in (Bojar, 2011;
Koponen, 2012; Popović et al., 2013). We are the
first to conduct this kind of study on the output of a
neural MT system.

3 Experimental Setting

We perform a number of analyses on data and re-
sults of the IWSLT 2015 MT En-De task, which
consists in translating manual transcripts of English
TED talks into German. Evaluation data are pub-
licly available through the WIT3 repository (Cettolo
et al., 2012).3

3.1 Task Data

TED Talks4 are a collection of rather short speeches
(max 18 minutes each, roughly equivalent to 2,500
words) covering a wide variety of topics. All talks
have captions, which are translated into many lan-
guages by volunteers worldwide. Besides represent-
ing a popular benchmark for spoken language tech-
nology, TED Talks embed interesting research chal-
lenges. Translating TED Talks implies dealing with
spoken rather than written language, which is hence
expected to be structurally less complex, formal and
fluent (Ruiz and Federico, 2014). Moreover, as hu-
man translations of the talks are required to follow
the structure and rhythm of the English captions, a
lower amount of rephrasing and reordering is ex-
pected than in the translation of written documents.

As regards the English-German language pair, the
two languages are interesting since, while belonging
to the same language family, they have marked dif-
ferences in levels of inflection, morphological varia-
tion, and word order, especially long-range reorder-
ing of verbs.

3.2 Evaluation Data

Five systems participated in the MT En-De task and
were manually evaluated on a representative subset
of the official 2015 test set. The Human Evaluation
(HE) set includes the first half of each of the 12 test

3wit3.fbk.eu
4http://www.ted.com/

System Approach Data
PBSY Combination: Phrase+Syntax-based 175M/

(Huck and GHKM string-to-tree; hierarchical + 3.1B
Birch, 2015) sparse lexicalized reordering models

HPB Hierarchical Phrase-based 166M/
(Jehl et al., source pre-ordering (dependency tree 854M

2015) -based); re-scoring with neural LM
SPB Standard Phrase-based 117M/

(Ha et al., source pre-ordering (POS- and tree- 2.4B
2015) based); re-scoring with neural LMs
NMT Recurrent neural network (LSTM) 120M/

(Luong & Man- attention-based; source reversing; –
ning, 2015) rare words handling

Table 1: MT systems’ overview. Data column: size of paral-

lel/monolingual training data for each system in terms of En-

glish and German tokens.

talks, for a total of 600 sentences and around 10K
words. Five professional translators were asked to
post-edit the MT output by applying the minimal ed-
its required to transform it into a fluent sentence with
the same meaning as the source sentence. Data were
prepared so that all translators equally post-edited
the five MT outputs, i.e. 120 sentences for each eval-
uated system.

The resulting evaluation data consist of five new
reference translations for each of the sentences in
the HE set. Each one of these references represents
the targeted translation of the system output from
which it was derived, but the other four additional
translations can also be used to evaluate each MT
system. We will see in the next sections how we ex-
ploited the available post-edits in the more suitable
way depending on the kind of analysis carried out.

3.3 MT Systems

Our analysis focuses on the first four top-ranking
systems, which include NMT (Luong and Manning,
2015) and three different phrase-based approaches:
standard phrase-based (Ha et al., 2015), hierarchi-
cal (Jehl et al., 2015) and a combination of phrase-
based and syntax-based (Huck and Birch, 2015). Ta-
ble 1 presents an overview of each system, as well
as figures about the training data used.5

The phrase+syntax-based (PBSY) system com-
bines the outputs of a string-to-tree decoder, trained
with the GHKM algorithm, with those of two stan-

5Detailed information about training data was kindly made
available by participating teams.

259

dard phrase-based systems featuring, among others,
adapted phrase tables and language models enriched
with morphological information, hierarchical lexi-
calized reordering models and different variations of
the operational sequence model.

The hierarchical phrase-based MT (HPB) system
leverages thousands of lexicalised features, data-
driven source pre-ordering (dependency tree-based),
word-based and class-based language models, and
n-best re-scoring models based on syntactic and neu-
ral language models.

The standard phrase-based MT (SPB) system fea-
tures an adapted phrase-table combining in-domain
and out-domain data, discriminative word lexicon
models, multiple language models (word-, POS- and
class-based), data-driven source pre-ordering (POS-
and constituency syntax-based), n-best re-scoring
models based on neural lexicons and neural lan-
guage models.

Finally, the neural MT (NMT) system is an en-
semble of 8 long short-term memory (LSTM) net-
works of 4 layers featuring 1,000-dimension word
embeddings, attention mechanism, source revers-
ing, 50K source and target vocabularies, and out-of-
vocabulary word handling. Training with TED data
was performed on top of models trained with large
out-domain parallel data.

With respect to the use of training data, it is worth
noticing that NMT is the only system not employ-
ing monolingual data in addition to parallel data.
Moreover, NMT and SPB were trained with smaller
amounts of parallel data with respect to PBSY and
HPB (see Table 1).

3.4 Translation Edit Rate Measures
The Translation Edit Rate (TER) (Snover et al.,
2006) naturally fits our evaluation framework,
where it traces the edits done by post-editors. Also,
TER shift operations are reliable indicators of re-
ordering errors, in which we are particularly inter-
ested. We exploit the available post-edits in two dif-
ferent ways: (i) for Human-targeted TER (HTER)
we compute TER between the machine translation
and its manually post-edited version (targeted ref-
erence), (ii) for Multi-reference TER (mTER), we
compute TER against the closest translation among
all available post-edits (i.e. targeted and additional
references) for each sentence.

system BLEU HTER mTER
PBSY 25.3 28.0 21.8
HPB 24.6 29.9 23.4
SPB 25.8 29.0 22.7
NMT 31.1∗ 21.1∗ 16.2∗

Table 2: Overall results on the HE Set: BLEU, computed

against the original reference translation, and TER, computed

with respect to the targeted post-edit (HTER) and multiple post-

edits (mTER).

Throughout sections 4 and 5, we mark a score
achieved by NMT with the symbol * if this is bet-
ter than the score of its best competitor at statistical
significance level 0.01. Significance tests for HTER
and mTER are computed by bootstrap re-sampling,
while differences among proportions are assessed
via one-tailed z-score tests.

4 Overall Translation Quality

Table 2 presents overall system results according
to HTER and mTER, as well as BLEU computed
against the original TED Talks reference translation.
We can see that NMT clearly outperforms all other
approaches both in terms of BLEU and TER scores.
Focusing on mTER results, the gain obtained by
NMT over the second best system (PBSY) amounts
to 26%. It is also worth noticing that mTER is con-
siderably lower than HTER for each system. This re-
duction shows that exploiting all the available post-
edits as references for TER is a viable way to control
and overcome post-editors variability, thus ensuring
a more reliable and informative evaluation about the
real overall performance of MT systems. For this
reason, the two following analyses rely on mTER.
In particular, we investigate how specific character-
istics of input documents affect the system’s overall
translation quality, focusing on (i) sentence length
and (ii) the different talks composing the dataset.

4.1 Translation quality by sentence length
Long sentences are known to be difficult to trans-
late by the NMT approach. Following previous work
(Cho et al., 2014a; Pouget-Abadie et al., 2014; Bah-
danau et al., 2015; Luong et al., 2015), we investi-
gate how sentence length affects overall translation
quality. Figure 1 plots mTER scores against source
sentence length. NMT clearly outperforms every
PBMT system in any length bin, with statistically

260

Figure 1: mTER scores on bins of sentences of different length.

Points represent the average mTER of the MT outputs for the

sentences in each given bin.

significant differences. As a general tendency, the
performance of all approaches worsens as sentence
length increases. However, for sentences longer than
35 words we see that NMT quality degrades more
markedly than in PBMT systems. Considering the
percentage decrease with respect to the preceding
length bin (26-35), we see that the %∆ for NMT
(-15.4) is much larger than the average %∆ for the
three PBMT systems (-7.9). Hence, this still seems
an issue to be addressed for further improving NMT.

4.2 Translation quality by talk

As we saw in Section 3.1, the TED dataset is very
heterogeneous since it consists of talks covering dif-
ferent topics and given by speakers with different
styles. It is therefore interesting to evaluate trans-
lation quality also at the talk level.

Figure 2 plots the mTER scores for each of the
twelve talks included in the HE set, sorted in ascend-
ing order of NMT scores. In all talks, the NMT sys-
tem outperforms the PBMT systems in a statistically
significant way.

We analysed different factors which could impact
translation quality in order to understand if they cor-
relate with such performance differences. We stud-
ied three features which are typically considered as
indicators of complexity (see (François and Fairon,
2012) for an overview), namely (i) the length of the
talk, (ii) its average sentence length, and (iii) the

Figure 2: mTER scores per talk, sorted in ascending order of

NMT scores.

type-token ratio6 (TTR) which – measuring lexical
diversity – reflects the size of a speaker’s vocabulary
and the variety of subject matter in a text.

For the first two features we did not find any cor-
relation; on the contrary, we found a moderate Pear-
son correlation (R=0.7332) between TTR and the
mTER gains of NMT over its closest competitor in
each talk. This result suggests that NMT is able to
cope with lexical diversity better than any other con-
sidered approach.

5 Analysis of Translation Errors

We now turn to analyze which types of linguistic er-
rors characterize NMT vs. PBMT. In the literature,
various error taxonomies covering different levels of
granularity have been developed (Flanagan, 1994;
Vilar et al., 2006; Farrús Cabeceran et al., 2010;
Stymne and Ahrenberg, 2012; Lommel et al., 2014).
We focus on three error categories, namely (i) mor-
phology errors, (ii) lexical errors, and (iii) word or-
der errors. As for lexical errors, a number of existing
taxonomies further distinguish among translation er-
rors due to missing words, extra words, or incor-
rect lexical choice. However, given the proven dif-
ficulty of disambiguating between these three sub-
classes (Popović and Ney, 2011; Fishel et al., 2012),
we prefer to rely on a more coarse-grained linguistic
error classification where lexical errors include all of
them (Farrús Cabeceran et al., 2010).

6The type-token-ratio of a text is calculated dividing the
number of word types (vocabulary) by the total number of word
tokens (occurrences).

261

For error analysis we rely on HTER results under
the assumption that, since the targeted translation is
generated by post-editing the given MT output, this
method is particularly informative to spot MT er-
rors. We are aware that translator subjectivity is still
an issue (see Section 4), however in this more fine-
grained analysis we prefer to focus on what a hu-
man implicitly annotated as a translation error. This
particularly holds in our specific evaluation frame-
work, where the goal is not to measure the absolute
number of errors made by each system, but to com-
pare systems with each other. Moreover, the post-
edits collected for each MT output within IWSLT
allow for a fair and reliable comparison since sys-
tems were equally post-edited by all translators (see
Section 3.2), making all analyses uniformly affected
by such variability.

5.1 Morphology errors
A morphology error occurs when a generated word
form is wrong but its corresponding base form
(lemma) is correct. Thus, we assess the ability of
systems to deal with morphology by comparing the
HTER score computed on the surface forms (i.e.
morphologically inflected words) with the HTER
score obtained on the corresponding lemmas. The
additional matches counted on lemmas with respect
to word forms indicate morphology errors. Thus, the
closer the two HTER scores, the more accurate the
system in handling morphology.

To carry out this analysis, the lemmatized (and
POS tagged) version of both MT outputs and cor-
responding post-edits was produced with the Ger-
man parser ParZu (Sennrich et al., 2013). Then, the
HTER-based evaluation was slightly adapted in or-
der to be better suited to an accurate detection of
morphology errors. First, punctuation was removed
since – not being subject to morphological inflection
– it could smooth the results. Second, shift errors
were not considered. A word form or a lemma that
matches a corresponding word or lemma in the post-
edit, but is in the wrong position with respect to it,
is counted as a shift error in TER. Instead – when
focusing on morphology – exact matches are not er-
rors, regardless their position in the text.7

7Note that the TER score calculated by setting to 0 the
cost of shifts approximates the Position-independent Error
Rate (Tillmann et al., 1997).

system HTERnoShft
word lemma %∆

PBSY 27.1 22.5 -16.9
HPB 28.7 23.5 -18.4
SPB 28.3 23.2 -18.0
NMT 21.7∗ 18.7∗ -13.7

Table 3: HTER ignoring shift operations computed on words

and corresponding lemmas, and their % difference.

Table 3 presents HTER scores on word forms and
lemmas, as well as their percentage difference which
gives an indication of morphology errors. We can
see that NMT generates translations which are mor-
phologically more correct than the other systems. In
particular, the %∆ for NMT (-13.7) is lower than
that of the second best system (PBSY, -16.9) by
3.2% absolute points, leading to a percentage gain
of around 19%. We can thus say that NMT makes
at least 19% less morphology errors than any other
PBMT system.

5.2 Lexical errors

Another important feature of MT systems is their
ability to choose lexically appropriate words. In or-
der to compare systems under this aspect, we con-
sider HTER results at the lemma level as a way
to abstract from morphology errors and focus only
on actual lexical choice problems. The evaluation
on the lemmatised version of the data performed to
identify morphology errors fits this purpose, since
its driving assumptions (i.e. punctuation can be ex-
cluded and lemmas in the wrong order are not errors)
hold for lexical errors too.

The lemma column of Table 3 shows that NMT
outperforms the other systems. More precisely, the
NMT score (18.7) is better than the second best
(PBSY, 22.5) by 3.8% absolute points. This corre-
sponds to a relative gain of about 17%, meaning that
NMT makes at least 17% less lexical errors than any
PBMT system. Similarly to what observed for mor-
phology errors, this can be considered a remarkable
improvement over the state of the art.

5.3 Word order errors

To analyse reordering errors, we start by focusing on
shift operations identified by the HTER metrics. The
first three columns of Table 4 show, respectively:
(i) the number of words generated by each system

262

system #words #shifts %shifts KRS
PBSY 11,517 354 3.1 84.6
HPB 11,417 415 3.6 84.3
SPB 11,420 398 3.5 84.5
NMT 11,284 173 1.5∗ 88.3∗

Table 4: Word reordering evaluation in terms of shift opera-

tions in HTER calculation and of KRS. For each system, the

number of generated words, the number of shift errors and their

corresponding percentages are reported.

(ii) the number of shifts required to align each sys-
tem output to the corresponding post-edit; and (iii)
the corresponding percentage of shift errors. Notice
that the shift error percentages are incorporated in
the HTER scores reported in Table 2. We can see
in Table 4 that shift errors in NMT translations are
definitely less than in the other systems. The error
reduction of NMT with respect to the second best
system (PBSY) is about 50% (173 vs. 354).

It should be recalled that these numbers only re-
fer to shifts detected by HTER, that is (groups of)
words of the MT output and corresponding post-edit
that are identical but occurring in different positions.
Words that had to be moved and modified at the
same time (for instance replaced by a synonym or
a morphological variant) are not counted in HTER
shift figures, but are detected as substitution, inser-
tion or deletion operations. To ensure that our re-
ordering evaluation is not biased towards the align-
ment between the MT output and the post-edit per-
formed by HTER, we run an additional assessment
using KRS – Kendall Reordering Score (Birch et
al., 2010) – which measures the similarity between
the source-reference reorderings and the source-MT
output reorderings.8 Being based on bilingual word
alignment via the source sentence, KRS detects re-
ordering errors also when post-edit and MT words
are not identical. Also unlike TER, KRS is sensitive
to the distance between the position of a word in the
MT output and that in the reference.

Looking at the last column of Table 4, we can say
that our observations on HTER are confirmed by the
KRS results: the reorderings performed by NMT are
much more accurate than those performed by any
PBMT system.9 Moreover, according to the approx-

8To compute the word alignments required by KRS, we used
the FastAlign tool (Dyer et al., 2013).

9To put our results into perspective, note that Birch (2011)

imate randomization test, KRS differences are statis-
tically significant between NMT and all other sys-
tems, but not among the three PBMT systems.

Given the concordant results of our two quanti-
tative analyses, we conclude that one of the ma-
jor strengths of the NMT approach is its ability to
place German words in the right position even when
this requires considerable reordering. This outcome
calls for a deeper investigation, which is carried out
in the following section.

6 Fine-grained Word Order Error
Analysis

We have observed that word reordering is a very
strong aspect of NMT compared to PBMT, accord-
ing to both HTER and KRS. To better understand
this finding, we investigate whether reordering er-
rors concentrate on specific linguistic constructions
across our systems. Using the POS tagging and
dependency parsing of the post-edits produced by
ParZu, we classify the shift operations detected by
HTER and count how often a word with a given POS
label was misplaced by each of the systems (alone or
as part of a shifted block). For each word class, we
also compute the percentage order error reduction
of NMT with respect to the PBMT system that has
highest reordering accuracy overall, that is PBSY.
Results are presented in Table 5, ranked by NMT-
vs-PBSY gain. Punctuation is omitted as well as
word classes that were shifted less than 10 times by
all systems. Examples of salient word order error
types are presented in Table 6.

The upper part of Table 5 shows that verbs are
by far the most often misplaced word category in all
PBMT systems – an issue already known to affect
standard phrase-based SMT between German and
English (Bisazza and Federico, 2013). Reordering is
particularly difficult when translating into German,
since the position of verbs in this language varies
according to the clause type (e.g. main vs. subor-
dinate). Our results show that even syntax-informed
PBMT does not solve this issue. Using syntax at
decoding time, as done by one of the systems com-
bined within PBSY, appears to be a better strategy

reports a difference of 5 KRS points between the translations of
a PBMT system and those produced by four human translators
tested against each other, in a Chinese-English experiment.

263

Class NMT- NMT PBSY HPB SPBvs-PBSY
V -70% 35 116 133 155

PRO -57% 22 51 53 62
PTKZU -54% 6 13 4 11

ADV -50% 14 28 44 36
N -47% 37 70 99 56

KON -33% 6 9 8 12
PREP -18% 18 22 27 28

PTKNEG -17% 10 12 10 7
ART -4% 26 27 38 35

aux:V -87% 3 23 17 18
neb:V -83% 2 12 7 19
objc:V -79% 3 14 21 24

subj:PRO -70% 12 40 34 46
root:V -68% 6 19 28 27

adv:ADV -67% 8 24 33 28
obja:N -65% 6 17 28 12

cj:V -59% 7 17 21 22
part:PTKZU -54% 6 13 4 11
obja:PRO -38% 5 8 14 7
mroot:V -36% 7 11 26 20

pn:N -36% 16 25 33 19
subj:N -33% 6 9 10 7

pp:PREP -30% 14 20 19 23
adv:PTKNEG -17% 10 12 10 7

det:ART -4% 26 27 38 34
all -48% 222 429 493 488

Table 5: Main POS tags and dependency labels of words oc-

curring in shifted blocks detected by HTER. NMT-vs-PBSY

denotes the reduction of reordering errors in NMT vs. PBSY

system. Only word classes that were shifted 10 or more times

in at least one system output are shown.

than using it for source pre-ordering, as done by the
HPB and SPB systems. However this only results
in a moderate reduction of verb reordering errors (-
12% and -25% vs. HPB and SPB respectively). On
the contrary, NMT reduces verb order errors by an
impressive -70% with respect to PBSY (-74% and
-77% vs. HPB and SPB respectively) despite being
trained on raw parallel data without any syntactic
annotation, nor explicit modeling of word reorder-
ing. This result shows that the recurrent neural lan-
guage model at the core of the NMT architecture is
very successful at generating well-formed sentences
even in languages with less predictable word order,
like German (see examples in Table 6(a,b)). NMT,
though, gains notably less on nouns (-47%), which
is the second most often misplaced word category

in PBSY. More insight on this is provided by the
lower part of the table, where reordering errors are
divided by their dependency label as well as POS
tag. Here we see that order errors on nouns are
notably reduced by NMT when they act as syntac-
tic objects (-65% obja:N) but less when they act as
preposition complements (-36% pn:N) or subjects (-
33% subj:N).

The smallest NMT-vs-PBSY gains are observed
on prepositions (-18% PREP), negation particles
(-17% PTKNEG) and articles (-4% ART). Manual
inspection of a data sample reveals that misplaced
prepositions are often part of misplaced preposi-
tional phrases acting, for instance, as temporal or
instrumental adjuncts (e.g. ‘in my life’, ‘with this
video’). In these cases, the original MT output is
overall understandable and grammatical, but does
not conform to the order of German semantic argu-
ments that is consistently preferred by post-editors
(see example in Table 6(c)). Articles, due to their
commonness, are often misaligned by HTER and
marked as shift errors instead of being marked as
two unrelated substitutions. Finally, negation parti-
cles account for less than 1% of the target tokens but
play a key role in determining the sentence meaning.
Looking closely at some error examples, we found
that the correct placement of the German particle
nicht was determined by the focus of negation in the
source sentence, which is difficult to detect in En-
glish. For instance in Table 6(d) two interpretations
are possible (‘that did not work’ or ‘that worked, but
not for systematic reasons’), each resulting in a dif-
ferent, but equally grammatical, location of nicht. In
fact, negation-focus detection calls for a deep un-
derstanding of the sentence semantics, often requir-
ing extra-sentential context (Blanco and Moldovan,
2011). When faced with this kind of translation de-
cisions, NMT performs as poorly as its competitors.

In summary, our fine-grained analysis confirms
that NMT concentrates its word order improvements
on important linguistic constituents and, specifically
in English-German, is very close to solving the infa-
mous problem of long-range verb reordering which
so many PBMT approaches have only poorly man-
aged to handle. On the other hand, NMT still strug-
gles with more subtle translation decisions depend-
ing, for instance, on the semantic ordering of adjunct
prepositional phrases or on the focus of negation.

264

Auxiliary-main verb construction [aux:V]:
SRC in this experiment , individuals were shown hundreds of hours of YouTube videos

HPB in diesem Experiment , Individuen gezeigt wurden Hunderte von Stunden YouTube-Videos
%(a) PE in diesem Experiment wurden Individuen Hunderte von Stunden Youtube-Videos gezeigt

NMT in diesem Experiment wurden Individuen hunderte Stunden YouTube Videos gezeigt
!PE in diesem Experiment wurden Individuen hunderte Stunden YouTube Videos gezeigt

Verb in subordinate (adjunct) clause [neb:V]:
SRC ... when coaches and managers and owners look at this information streaming ...

PBSY ... wenn Trainer und Manager und Eigentümer betrachten diese Information Streaming ...
%(b) PE ... wenn Trainer und Manager und Eigentümer dieses Informations-Streaming betrachten ...

NMT ... wenn Trainer und Manager und Besitzer sich diese Informationen anschauen ...
!PE ... wenn Trainer und Manager und Besitzer sich diese Informationen anschauen ...

Prepositional phrase [pp:PREP det:ART pn:N] acting as temporal adjunct:
SRC so like many of us , I ’ve lived in a few closets in my life
SPB so wie viele von uns , ich habe in ein paar Schränke in meinem Leben gelebt

%(c) PE so habe ich wie viele von uns während meines Lebens in einigen Verstecken gelebt

NMT wie viele von uns habe ich in ein paar Schränke in meinem Leben gelebt
%PE wie viele von uns habe ich in meinem Leben in ein paar Schränken gelebt

Negation particle [adv:PTKNEG]:
SRC but I eventually came to the conclusion that that just did not work for systematic reasons

HPB aber ich kam schlielich zu dem Schluss , dass nur aus systematischen Gründen nicht funktionieren
!(d) PE aber ich kam schlielich zu dem Schluss , dass es einfach aus systematischen Gründen nicht funktioniert

NMT aber letztendlich kam ich zu dem Schluss , dass das einfach nicht aus systematischen Gründen funktionierte
%PE ich musste aber einsehen , dass das aus systematischen Gründen nicht funktioniert

Table 6: MT output and post-edit examples showing common types of reordering errors.

7 Conclusions

We analysed the output of four state-of-the-art MT
systems that participated in the English-to-German
task of the IWSLT 2015 evaluation campaign. Our
selected runs were produced by three phrase-based
MT systems and a neural MT system. The analysis
leveraged high quality post-edits of the MT outputs,
which allowed us to profile systems with respect to
reliable measures of post-editing effort and transla-
tion error types.

The outcomes of the analysis confirm that NMT
has significantly pushed ahead the state of the art,
especially in a language pair involving rich morphol-
ogy prediction and significant word reordering. To
summarize our findings: (i) NMT generates outputs
that considerably lower the overall post-edit effort
with respect to the best PBMT system (-26%); (ii)
NMT outperforms PBMT systems on all sentence
lengths, although its performance degrades faster
with the input length than its competitors; (iii) NMT
seems to have an edge especially on lexically rich
texts; (iv) NMT output contains less morphology er-

rors (-19%), less lexical errors (-17%), and substan-
tially less word order errors (-50%) than its closest
competitor for each error type; (v) concerning word
order, NMT shows an impressive improvement in
the placement of verbs (-70% errors).

While NMT proved superior to PBMT with re-
spect to all error types that were investigated, our
analysis also pointed out some aspects of NMT that
deserve further work, such as the handling of long
sentences and the reordering of particular linguistic
constituents requiring a deep semantic understand-
ing of text. Machine translation is definitely not a
solved problem, but the time is finally ripe to tackle
its most intricate aspects.

Acknowledgments

FBK authors were supported by the CRACKER,
QT21 and ModernMT projects, which received
funding from the European Union’s Horizon 2020
programme under grants No. 645357, 645452 and
645487. AB was funded in part by the NWO under
projects 639.022.213 and 612.001.218.

265

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. of ICLR, San
Diego, US-CA.

Alexandra Birch, Miles Osborne, and Phil Blunsom.
2010. Metrics for MT evaluation: evaluating reorder-
ing. Machine Translation, 24(1):15–26.

Alexandra Birch. 2011. Reordering Metrics for Statisti-
cal Machine Translation. Ph.D. thesis, School of In-
formatics, University of Edinburgh, UK.

Arianna Bisazza and Marcello Federico. 2013. Effi-
cient solutions for word reordering in German-English
phrase-based statistical machine translation. In Proc.
of WMT, Sofia, Bulgaria.

Eduardo Blanco and Dan Moldovan. 2011. Semantic
representation of negation using focus detection. In
Proc. of ACL-HLT, Portland, US-OR.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Barry Haddow, Matthias Huck, Chris Hokamp, Philipp
Koehn, Varvara Logacheva, Christof Monz, Matteo
Negri, Matt Post, Carolina Scarton, Lucia Specia, and
Marco Turchi. 2015. Findings of the 2015 workshop
on statistical machine translation. In Proc. of WMT,
Lisbon, Portugal.

Ondrej Bojar. 2011. Analyzing error types in English-
Czech machine translation. The Prague Bulletin of
Mathematical Linguistic, (95):63–76.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. WIT3: Web Inventory of Transcribed
and Translated Talks. In Proc. of EAMT, Trento, Italy.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, Roldano Cattoni, and Marcello Federico.
2015. The IWSLT 2015 evaluation campaign. In
Proc. of IWSLT, Da Nang, Vietnam.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: encoder–decoder
approaches. In Proc. of SSST-8, Doha, Qatar.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014b. Learning phrase repre-
sentations using RNN encoder–decoder for statistical
machine translation. In Proc. of EMNLP, Doha, Qatar.

Joke Daems, Lieve Macken, and Sonia Vandepitte. 2014.
On the origin of errors: a fine-grained analysis of MT
and PE errors and their relationship. In Proc. of LREC,
Reykjavik, Iceland.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameterization
of IBM model 2. In Proc. of NACL-HLT, Atlanta, US-
GA.

Mireia Farrús Cabeceran, Marta Ruiz Costa-Jussà,
José Bernardo Mariño Acebal, and José Adrián
Rodrı́guez Fonollosa. 2010. Linguistic-based evalu-
ation criteria to identify statistical machine translation
errors. In Proc. of EAMT, Saint-Raphaël, France.

Marcello Federico, Matteo Negri, Luisa Bentivogli, and
Marco Turchi. 2014. Assessing the impact of transla-
tion errors on machine translation quality with mixed-
effects models. In Proc. of EMNLP, Doha, Qatar.

Mark Fishel, Ondrej Bojar, and Maja Popović. 2012.
Terra: a collection of translation error-annotated cor-
pora. In Proc. of LREC, Istanbul, Turkey.

Mary Flanagan. 1994. Error classification for MT evalu-
ation. In Proc. of AMTA, Columbia, US-MD.

Thomas François and Cédrick Fairon. 2012. An “AI
readability” formula for French as a foreign language.
In Proc. of EMNLP-CoNLL, Jeju Island, Korea.

Çaglar Gülçehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loı̈c Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On us-
ing monolingual corpora in neural machine translation.
CoRR, abs/1503.03535.

Thanh-Le Ha, Jan Niehues, Eunah Cho, Mohammed Me-
diani, and Alex Waibel. 2015. The KIT translation
systems for IWSLT 2015. In Proc. of IWSLT, Da
Nang, Vietnam.

Matthias Huck and Alexandra Birch. 2015. The Edin-
burgh machine translation systems for IWSLT 2015.
In Proc. of IWSLT, Da Nang, Vietnam.

Ann Irvine, John Morgan, Marine Carpuat, Hal Daumé
III, and Dragos Munteanu. 2013. Measuring machine
translation errors in new domains. Transactions of
the Association for Computational Linguistics, 1:429–
440.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and
Yoshua Bengio. 2015a. On using very large target
vocabulary for neural machine translation. In Proc. of
ACL-IJCNLP, Beijing, China.

Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland
Memisevic, and Yoshua Bengio. 2015b. Montreal
neural machine translation systems for WMT15. In
Proc. of WMT, Lisbon, Portugal.

Laura Jehl, Patrick Simianer, Julian Hitschler, and Ste-
fan Riezler. 2015. The Heidelberg university English-
German translation system for IWSLT 2015. In Proc.
of IWSLT, Da Nang, Vietnam.

Maarit Koponen. 2012. Comparing human perceptions
of post-editing effort with post-editing operations. In
Proc. of WMT, Montréal, Canada.

Arle Lommel, Aljoscha Burchardt, Maja Popović, Kim
Harris, Eleftherios Avramidis, and Hans Uszkoreit.
2014. Using a new analytic measure for the annota-
tion and analysis of MT errors on real data. In Proc.
of EAMT, Dubrovnik, Croatia.

266

Minh-Thang Luong and Christopher D Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domains. In Proc. of IWSLT, Da Nang,
Vietnam.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In Proc. of EMNLP, Lisbon, Por-
tugal.

Graham Neubig, Makoto Morishita, and Satoshi Naka-
mura. 2015. Neural Reranking Improves Subjective
Quality of Machine Translation: NAIST at WAT2015.
In Proc. of WAT2015, Kyoto, Japan.

Maja Popović and Hermann Ney. 2011. Towards au-
tomatic error analysis of machine translation output.
Computational Linguistics, 37(4):657–688.

Maja Popović, Eleftherios Avramidis, Aljoscha Bur-
chardt, Sabine Hunsicker, Sven Schmeier, Cindy
Tscherwinka, David Vilar, and Hans Uszkoreit. 2013.
Learning from human judgments of machine transla-
tion output. In Proc. of MT Summit, Nice, France.

Maja Popović. 2011. Hjerson: an open source tool for
automatic error classification of machine translation
output. The Prague Bulletin of Mathematical Linguis-
tic, (96):59–68.

Jean Pouget-Abadie, Dzmitry Bahdanau, Bart van Mer-
rienboer, Kyunghyun Cho, and Yoshua Bengio. 2014.
Overcoming the curse of sentence length for neural
machine translation using automatic segmentation. In
Proc. of SSST-8, Doha, Qatar.

Nicholas Ruiz and Marcello Federico. 2014. Complexity
of spoken versus written language for machine trans-
lation. In Proc. of EAMT, Dubrovnik, Croatia.

Rico Sennrich, Martin Volk, and Gerold Schneider. 2013.
Exploiting synergies between open resources for Ger-
man dependency parsing, POS-tagging, and morpho-
logical analysis. In Proc. of RANLP, Hissar, Bulgaria.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Linnea
Micciulla, and John Makhoul. 2006. A study of trans-
lation edit rate with targeted human annotation. In
Proc. of AMTA, Boston, US-MA.

Sara Stymne and Lars Ahrenberg. 2012. On the practice
of error analysis for machine translation evaluation. In
Proc. of LREC, Istanbul, Turkey.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proc. of NIPS, Montréal, Canada.

Christoph Tillmann, Stephan Vogel, Hermann Ney,
Alexander Zubiaga, and Hassan Sawaf. 1997. Ac-
celerated DP based search for statistical translation. In
Proc. of Eurospeech, Rhodes, Greece.

David Vilar, Jia Xu, Luis Fernando d’Haro, and Hermann
Ney. 2006. Error analysis of statistical machine trans-
lation output. In Proc. of LREC, Genoa, Italy.

Daniel Zeman, Mark Fishel, Jan Berka, and Ondrej Bo-
jar. 2011. Addicter: what is wrong with my transla-
tions? The Prague Bulletin of Mathematical Linguis-
tic, (96):79–88.

267

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 268–277,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Zero-Resource Translation with
Multi-Lingual Neural Machine Translation

Orhan Firat?
Middle East Technical University

orhan.firat@ceng.metu.edu.tr

Baskaran Sankaran
IBM T.J. Watson Research Center

Yaser Al-onaizan
IBM T.J. Watson Research Center

Fatos T. Yarman Vural
Middle East Technical University

Kyunghyun Cho
New York University

Abstract

In this paper, we propose a novel finetuning
algorithm for the recently introduced multi-
way, multilingual neural machine translate
that enables zero-resource machine transla-
tion. When used together with novel many-
to-one translation strategies, we empirically
show that this finetuning algorithm allows the
multi-way, multilingual model to translate a
zero-resource language pair (1) as well as a
single-pair neural translation model trained
with up to 1M direct parallel sentences of the
same language pair and (2) better than pivot-
based translation strategy, while keeping only
one additional copy of attention-related pa-
rameters.

1 Introduction

A recently introduced neural machine transla-
tion (Forcada and Ñeco, 1997; Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Cho et al.,
2014) has proven to be a platform for new opportu-
nities in machine translation research. Rather than
word-level translation with language-specific pre-
processing, neural machine translation has found to
work well with statistically segmented subword se-
quences as well as sequences of characters (Chung
et al., 2016; Luong and Manning, 2016; Sennrich
et al., 2015b; Ling et al., 2015). Also, recent
works show that neural machine translation provides
a seamless way to incorporate multiple modalities

? Work carried out while the author was at IBM Research.

other than natural language text in translation (Lu-
ong et al., 2015a; Caglayan et al., 2016). Further-
more, neural machine translation has been found
to translate between multiple languages, achieving
better translation quality by exploiting positive lan-
guage transfer (Dong et al., 2015; Firat et al., 2016;
Zoph and Knight, 2016).

In this paper, we conduct in-depth investiga-
tion into the recently proposed multi-way, multilin-
gual neural machine translation (Firat et al., 2016).
Specifically, we are interested in its potential for
zero-resource machine translation, in which there
does not exist any direct parallel examples between
a target language pair. Zero-resource translation has
been addressed by pivot-based translation in tradi-
tional machine translation research (Wu and Wang,
2007; Utiyama and Isahara, 2007; Habash and Hu,
2009), but we explore a way to use the multi-way,
multilingual neural model to translate directly from
a source to target language.

In doing so, we begin by studying different trans-
lation strategies available in the multi-way, multi-
lingual model in Sec. 3–4. The strategies include
a usual one-to-one translation as well as variants
of many-to-one translation for multi-source transla-
tion (Zoph and Knight, 2016). We empirically show
that the many-to-one strategies significantly outper-
form the one-to-one strategy.

We move on to zero-resource translation by first
evaluating a vanilla multi-way, multilingual model
on a zero-resource language pair, which revealed
that the vanilla model cannot do zero-resource trans-
lation in Sec. 6.1. Based on the many-to-one strate-
gies we proposed earlier, we design a novel finetun-

268

ing strategy that does not require any direct paral-
lel corpus between a target, zero-resource language
pair in Sec. 5.2, which uses the idea of generating a
pseudo-parallel corpus (Sennrich et al., 2015a). This
strategy makes an additional copy of the attention
mechanism and finetunes only this small set of pa-
rameters.

Large-scale experiments with Spanish, French
and English show that the proposed finetuning strat-
egy allows the multi-way, multilingual neural trans-
lation model to perform zero-resource translation as
well as a single-pair neural translation model trained
with up to 1M true parallel sentences. This result
re-confirms the potential of the multi-way, multilin-
gual model for low/zero-resource language transla-
tion, which was earlier argued by Firat et al. (2016).

2 Multi-Way, Multilingual
Neural Machine Translation

Recently Firat et al. (2016) proposed an extension
of attention-based neural machine translation (Bah-
danau et al., 2015) that can handle multi-way, mul-
tilingual translation with a shared attention mech-
anism. This model was designed to handle multi-
ple source and target languages. In this section, we
briefly overview this multi-way, multilingual model.
For more detailed exposition, we refer the reader to
(Firat et al., 2016).

2.1 Model Description

The goal of multi-way, multilingual model is to
build a neural translation model that can translate a
source sentence given in one of N languages into
one of M target languages. Thus to handle those
N source and M target languages, the model con-
sists of N encoders and M decoders. Unlike these
language-specific encoders and decoders, only a sin-
gle attention mechanism is shared across all M ×N
language pairs.

Encoder An encoder for the n-th source language
reads a source sentence X = (x1, . . . , xTx) as a
sequence of linguistic symbols and returns a set of
context vectors Cn =

{
hn
1 , . . . ,h

n
Tx

}
. The encoder

is usually implemented as a bidirectional recurrent
network (Schuster and Paliwal, 1997), and each con-
text vector hn

t is a concatenation of the forward and
reverse recurrent networks’ hidden states at time t.

Without loss of generality, we assume that the di-
mensionalities of the context vector for all source
languages are all same.

Decoder and Attention Mechanism A decoder
for the m-th target language is a conditional recur-
rent language model (Mikolov et al., 2010). At each
time step t′, it updates its hidden state by

zmt′ = ϕm(zmt′−1, ỹ
m
t′−1, c

m
t′),

based on the previous hidden state zmt′−1, previous
target symbol ỹmt′−1 and the time-dependent context
vector cmt′ . ϕ

m is a gated recurrent unit (GRU, (Cho
et al., 2014)).

The time-dependent context vector is computed
by the shared attention mechanism as a weighted
sum of the context vectors from the encoder Cn:

cmt′ = U

Tx∑

t=1

αm,n
t,t′ h

n
t + b, (1)

where

αm,n
t,t′ ∝ exp

(
fscore(W

nhn
t ,W

mzmt′−1, ỹ
m
t′−1)

)
.

(2)

The scoring function fscore returns a scalar and is im-
plemented as a feedforward neural network with a
single hidden layer. For more variants of the atten-
tion mechanism for machine translation, see (Luong
et al., 2015b).

The initial hidden state of the decoder is initial-
ized as

zm0 = φminit(W
nhn

t). (3)

With the new hidden state zmt′ , the probability dis-
tribution over the next symbol is computed by

p(yt = w|ỹ<t, X
n) ∝ exp(gmw (zmt , c

m
t ,E

m
y [ỹt−1]),

(4)

where gmw is a decoder specific parametric func-
tion that returns the unnormalized probability for the
next target symbol being w.

2.2 Learning
Training this multi-way, multilingual model does
not require multi-way parallel corpora but only a

269

set of bilingual corpora. For each bilingual pair, the
conditional log-probability of a ground-truth transla-
tion given a source sentence is maximize by adjust-
ing the relevant parameters following the gradient of
the log-probability.

3 Translation Strategies

3.1 One-to-One Translation

In the original paper by Firat et al. (2016), only one
translation strategy was evaluated, that is, one-to-
one translation. This one-to-one strategy works on
a source sentence given in one language by taking
the encoder of that source language, the decoder of
a target language and the shared attention mecha-
nism. These three components are glued together as
if they form a single-pair neural translation model
and translates the source sentence into a target lan-
guage.

We however notice that this is not the only transla-
tion strategy available with the multi-way, multilin-
gual model. As we end up with multiple encoders,
multiple decoders and a shared attention mecha-
nism, this model naturally enables us to exploit a
source sentence given in multiple languages, lead-
ing to a many- to-one translation strategy which was
proposed recently by Zoph and Knight (2016) in the
context of neural machine translation.

Unlike (Zoph and Knight, 2016), the multi-way,
multilingual model is not trained with multi-way
parallel corpora. This however does not necessar-
ily imply that the model cannot be used in this way.
In the remainder of this section, we propose two
alternatives for doing multi-source translation with
the multi-way, multilingual model, which eventually
pave the way towards zero-resource translation.

3.2 Many-to-One Translation

In this section, we consider a case where a source
sentence is given in two languages, X1 and X2.
However, any of the approaches described below ap-
plies to more than two source languages trivially.

In this multi-way, multilingual model, multi-
source translation can be thought of as averaging
two separate translation paths. For instance, in the
case of Es+Fr to En, we want to combine Es→En
and Fr→En so as to get a better English translation.
We notice that there are two points in the multi-way,

multilingual model where this averaging may hap-
pen.

Early Average The first candidate is to averag-
ing two translation paths when computing the time-
dependent context vector (see Eq. (1).) At each time
t in the decoder, we compute a time-dependent con-
text vector for each source language, c1t and c2t re-
spectively for the two source languages. In this early
averaging strategy, we simply take the average of
these two context vectors:

ct =
c1t + c2t

2
. (5)

Similarly, we initialize the decoder’s hidden state to
be the average of the initializers of the two encoders:

z0 =
1

2

(
φinit(φ

1
init(h

1
Tx1

)) + φinit(φ
2
init(h

2
Tx1

))
)
,

(6)

where φinit is the decoder’s initializer (see Eq. (3).)

Late Average Alternatively, we can average those
two translation paths (e.g., Es→En and Fr→En) at
the output level. At each time t, each translation path
computes the distribution over the target vocabulary,
i.e., p(yt = w|y<t, X1) and p(yt = w|y<t, X2). We
then average them to get the multi-source output dis-
tribution:

p(yt = w|y<t, X1, X2) = (7)
1

2
(p(yt = w|y<t, X1) + p(yt = w|y<t)).

An advantage of this late averaging strategy over the
early averaging one is that this can work even when
those two translation paths were not from a single
multilingual model. They can be two separately
trained single-pair models. In fact, if X1 and X2 are
same and the two translation paths are simply two
different models trained on the same language pair–
direction, this is equivalent to constructing an en-
semble, which was found to greatly improve transla-
tion quality (Sutskever et al., 2014; Jean et al., 2015)

Early+Late Average The two strategies above
can be further combined by late-averaging the out-
put distributions from the early averaged model and
the late averaged one. We empirically evaluate this
early+late average strategy as well.

270

4 Experiments: Translation Strategies and
Multi-Source Translation

Before continuing on with zero-resource machine
translation, we first evaluate the translation strate-
gies described in the previous section on multi-
source translation, as these translation strategies
form a basic foundation on which we extend the
multi-way, multilingual model for zero-resource
machine translation.

4.1 Settings

When evaluating the multi-source translation strate-
gies, we use English, Spanish and French, and focus
on a scenario where only En-Es and En-Fr parallel
corpora are available.

4.1.1 Corpora
En-Es We combine the following corpora to form
34.71m parallel Es-En sentence pairs: UN (8.8m),
Europarl-v7 (1.8m), news-commentary-v7 (150k),
LDC2011T07-T12 (2.9m) and internal technical-
domain data (21.7m).

En-Fr We combine the following corpora to form
65.77m parallel En-Fr sentence pairs: UN (9.7m),
Europarl-v7 (1.9m), news-commentary-v7 (1.2m),
LDC2011T07-T10 (1.6m), ReutersUN (4.5m), in-
ternal technical-domain data (23.5m) and Gigaword
R2 (20.66m).

Evaluation Sets We use newstest-2012 and
newstest-2013 from WMT as development and test
sets, respectively.

Monolingual Corpora We do not use any addi-
tional monolingual corpus.

Preprocessing All the sentences are tokenized us-
ing the tokenizer script from Moses (Koehn et al.,
2007). We then replace special tokens, such as
numbers, dates and URL’s with predefined markers,
which will be replaced back with the original to-
kens after decoding. After using byte pair encoding
(BPE, (Sennrich et al., 2015b)) to get subword sym-
bols, we end up with 37k, 43k and 45k unique tokens
for English, Spanish and French, respectively. For
training, we only use sentence pairs in which both
sentences are only up to 50 symbols long.

See Table 1 for the detailed statistics.

Sents Train Dev† Test‡

En-Es 34.71m 3003 3000
En-Fr 65.77m 3003 3000

En-Es-Fr 11.32m 3003 3000
Table 1: Data statistics. †: newstest-2012. ‡: newstest-2013

4.2 Models and Training
We start from the code made publicly available as a
part of (Firat et al., 2016)1. We made two changes
to the original code. First, we replaced the decoder
with the conditional gated recurrent network with
the attention mechanism as outlines in (Firat and
Cho, 2016). Second, we feed a binary indicator vec-
tor of which encoder(s) the source sentence was pro-
cessed by to the output layer of each decoder (gmw in
Eq. (4)). Each dimension of the indicator vector cor-
responds to one source language, and in the case of
multi-source translation, there may be more than one
dimensions set to 1.

We train the following models: four single-pair
models (Es↔En and Fr↔En) and one multi-way,
multilingual model (Es,Fr,En↔Es,Fr,En). As pro-
posed by Firat et al. (2016), we share one attention
mechanism for the latter case.

Training We closely follow the setup from (Firat
et al., 2016). Each symbol is represented as a 620-
dimensional vector. Any recurrent layer, be it in the
encoder or decoder, consists of 1000 gated recurrent
units (GRU, (Cho et al., 2014)), and the attention
mechanism has a hidden layer of 1200 tanh units
(fscore in Eq. (2)). We use Adam (Kingma and Ba,
2015) to train a model, and the gradient at each up-
date is computed using a minibatch of at most 80
sentence pairs. The gradient is clipped to have the
norm of at most 1 (Pascanu et al., 2012). We early-
stop any training using the T-B score on a develop-
ment set2.

4.3 One-to-One Translation
We first confirm that the multi-way, multilingual
translation model indeed works as well as single-
pair models on the translation paths that were con-
sidered during training, which was the major claim

1https://github.com/nyu-dl/dl4mt-multi
2T-B score is defined as TER−BLEU

2
which we found to be

more stable than either TER or BLEU alone for the purpose of
early-stopping (Zhao and Chen, 2009).

271

Multi Single
Src Trgt Dev Test Dev Test

(a) Es En 30.73 28.32 29.74 27.48
(b) Fr En 26.93 27.93 26.00 27.21

(c) En Es 30.63 28.41 31.31 28.90
(d) En Fr 22.68 23.41 22.80 24.05

Table 2: One-to-one translation qualities using the multi-way,

multilingual model and four separate single-pair models.
Multi Single

Dev Test Dev Test

(a) Early 31.89 31.35 – –
(b) Late 32.04 31.57 32.00 31.46
(c) E+L 32.61 31.88 – –

Table 3: Many-to-one quality (Es+Fr→En) using three transla-

tion strategies. Compared to Table 2 (a–b) we observe a signif-

icant improvement (up to 3+ BLEU), although the model was

never trained in these many-to-one settings. The second column

shows the quality by the ensemble of two separate single-pair

models.

in (Firat et al., 2016). In Table 2, we present the re-
sults on four language pair-directions (Es↔En and
Fr↔En).

It is clear that the multi-way, multilingual model
indeed performs comparably on all the four cases
with less parameters (due to the shared attention
mechanism.) As observed earlier in (Firat et al.,
2016), we also see that the multilingual model per-
forms better when a target language is English.

4.4 Many-to-One Translation

We consider translating from a pair of source sen-
tences in Spanish (Es) and French (Fr) to English
(En). It is important to note that the multilingual
model was not trained with any multi-way parallel
corpus. Despite this, we observe that the early aver-
aging strategy improves the translation quality (mea-
sured in BLEU) by 3 points in the case of the test set
(compare Table 2 (a–b) and Table 3 (a).) We con-
jecture that this happens as training the multilingual
model has implicitly encouraged the model to find a
common context vector space across multiple source
languages.

The late averaging strategy however outperforms
the early averaging in both cases of multilingual
model and a pair of single-pair models (see Ta-
ble 3 (b)) albeit marginally. The best quality was
observed when the early and late averaging strate-

gies were combined at the output level, achieving up
to +3.5 BLEU (compare Table 2 (a) and Table 3 (c).)

We emphasize again that there was no multi-way
parallel corpus consisting of Spanish, French and
English during training3. The result presented
in this section shows that the multi-way, multilin-
gual model can exploit multiple sources effectively
without requiring any multi-way parallel corpus, and
we will rely on this property together with the pro-
posed many-to-one translation strategies in the later
sections where we propose and investigate zero-
resource translation.

5 Zero-Resource Translation Strategies

The network architecture of multi-way, multilingual
model suggests the potential for translating between
two languages without any direct parallel corpus
available. In the setting considered in this paper
(see Sec. 4.1,) these translation paths correspond to
Es↔Fr, as only parallel corpora used for training
were Es↔En and Fr↔En.

The most naive approach for translating along a
zero-resource path is to simply treat it as any other
path that was included as a part of training. This
corresponds to the one-to-one strategy from Sec. 3.1.
In our experiments, it however turned out that this
naive approach does not work at all, as can be seen
in Table 4 (a).

In this section, we investigate this potential of
zero-resource translation with the multi-way, mul-
tilingual model in depth. More specifically, we
propose a number of approaches that enable zero-
resource translation without requiring any additional
bilingual or multi-way corpora.

5.1 Pivot-based Translation

The first set of approaches exploits the fact that the
target zero-resource translation path can be decom-
posed into a sequence of high-resource translation
paths (Wu and Wang, 2007; Utiyama and Isahara,
2007; Habash and Hu, 2009). For instance, in our

3We do not assume the availability of annotation on multi-
way parallel sentence pairs. It is likely that there will be some
sentence (or a set of very close variants of a single sentence)
translated into multiple languages (eg. Europarl). One may de-
cide to introduce a mechanism for exploiting these (Zoph and
Knight, 2016), or as we present here, it may not be necessary at
all to do so.

272

case, Es→Fr can be decomposed into a sequence of
Es→En and En→Fr. In other words, we translate a
source sentence (Es) into a pivot language (En) and
then translate the English translation into a target
language (Fr), all within the same multi-way, mul-
tilingual model trained by using bilingual corpora.

One-to-One Translation The most basic ap-
proach here is to perform each translation path in
the decomposed sequence independently from each
other. This one-to-one approach introduces only a
minimal computational complexity (the multiplica-
tive factor of two.) We can further improve this one-
to-one pivot-based translation by maintaining a set
of k-best translations from the first stage (Es→En),
but this increase the overall computational complex-
ity by the factor of k, making it impractical in prac-
tice. We therefore focus only on the former approach
of keeping the best pivot translation in this paper.

Many-to-One Translation With the multi-way,
multilingual model considered in this paper, we can
extend the naive one-to-one pivot-based strategy by
replacing the second stage (En→Fr) to be many-to-
one translation from Sec. 4.4 using both the origi-
nal source language and the pivot language as a pair
of source languages. We first translate the source
sentence (Es) into English, and use both the original
source sentence and the English translation (Es+En)
to translate into the final target language (Fr).

Both approaches described and proposed above
do not require any additional action on an already-
trained multilingual model. They are simply differ-
ent translation strategies specifically aimed at zero-
resource translation.

5.2 Finetuning with Pseudo Parallel Corpus
The failure of the naive zero-resource translation
earlier (see Table 4 (a)) suggests that the context vec-
tors returned by the encoder are not compatible with
the decoder, when the combination was not included
during training. The good translation qualities of the
translation paths included in training however im-
ply that the representations learned by the encoders
and decoders are good. Based on these two obser-
vations, we conjecture that all that is needed for a
zero-resource translation path is a simple adjustment
that makes the context vectors from the encoder to
be compatible with the target decoder. Thus, we

propose to adjust this zero-resource translation path
however without any additional parallel corpus.

First, we generate a small set of pseudo bilin-
gual pairs of sentences for the zero-resource lan-
guage pair (Es→Fr) in interest. We randomly select
N sentences pairs from a parallel corpus between
the target language (Fr) and a pivot language (En)
and translate the pivot side (En) into the source lan-
guage (Es). Then, the pivot side is discarded, and we
construct a pseudo parallel corpus consisting of sen-
tence pairs of the source and target languages (Es-
Fr).

We make a copy of the existing attention mech-
anism, to which we refer as target-specific atten-
tion mechanism. We then finetune only this target-
specific attention mechanism while keeping all the
other parameters of the encoder and decoder intact,
using the generated pseudo parallel corpus. We do
not update any other parameters in the encoder and
decoder, because they are already well-trained (evi-
denced by high translation qualities in Table 2) and
we want to avoid disrupting the well-captured struc-
tures underlying each language.

Once the model has been finetuned with the
pseudo parallel corpus, we can use any of the trans-
lation strategies described earlier in Sec. 3 for the
finetuned zero-resource translation path. We ex-
pect a similar gain by using many-to-one translation,
which we empirically confirm in the next section.

6 Experiments:
Zero-Resource Translation

6.1 Without Finetuning

6.1.1 Settings

We use the same multi-way, multilingual model
trained earlier in Sec. 4.2 to evaluate the zero-
resource translation strategies. We emphasize here
that this model was trained only using Es-En and
Fr-En bilingual parallel corpora without any Es-Fr
parallel corpus.

We evaluate the proposed approaches to zero-
resource translation with the same multi-way, multi-
lingual model from Sec. 4.1. We specifically select
the path from Spanish to French (Es→Fr) as a target
zero-resource translation path.

273

Pivot Many-to-1 Dev Test

(a) < 1 < 1

(b)
√

20.64 20.4

(c)
√

Early 9.24 10.42
(d)

√
Late 18.22 19.14

(e)
√

E+L 13.29 14.56
Table 4: Zero-resource translation from Spanish (Es) to French

(Fr) without finetuning, using multi-way, multilingual model.

When pivot is
√

, English is used as a pivot language.

6.1.2 Result and Analysis
As mentioned earlier, we observed that the multi-

way, multilingual model cannot directly translate
between two languages when the translation path
between those two languages was not included in
training (Table 4 (a).) On the other hand, the
model was able to translate decently with the pivot-
based one-to-one translation strategy, as can be seen
in Table 4 (b). Unsurprisingly, all the many-to-
one strategies resulted in worse translation quality,
which is due to the inclusion of the useless transla-
tion path (direct path between the zero-resource pair,
Es-Fr). Another interesting trend we observe is the
Early+Late averaging (Table 4 (e)) seems to per-
form worse than Late averaging (Table 4 (d)) alone,
opposite of the results in Table 3 (b-c). We conjec-
ture that, by simply averaging two model outputs (as
in E+L), when one of them is drastically worse than
the other, has the effect of pulling down the perfor-
mance of final results. But early averaging can still
recover from this deficiency, upto some extent, since
the decoder output probability function gmw (Eq. (4).)
is a smooth function not only using the averaged
context vectors (Eq. (5).).

These results clearly indicate that the multi-way,
multilingual model trained with only bilingual par-
allel corpora is not capable of direct zero-resource
translation as it is.

6.2 Finetuning with a Pseudo Parallel Corpus

6.2.1 Settings
The proposed finetuning strategy raises a number

of questions. First, it is unclear how many pseudo
sentence pairs are needed to achieve a decent trans-
lation quality. Because the purpose of this finetuning
stage is simply to adjust the shared attention mecha-
nism so that it can properly bridge from the source-

side encoder to the target-side decoder, we expect it
to work with only a small amount of pseudo pairs.
We validate this by creating pseudo corpora of dif-
ferent sizes–1k, 10k, 100k and 1m.

Second, we want to know how detrimental it
is to use the generated pseudo sentence pairs
compared to using true sentence pairs between
the target language pair. In order to answer
this question, we compiled a true multi-way par-
allel corpus by combining the subsets of UN
(7.8m), Europarl-v7 (1.8m), OpenSubtitles-2013
(1m), news-commentary-v7 (174k), LDC2011T07
(335k) and news-crawl (310k), and use it to finetune
the model4. This allows us to evaluate the effect of
the pseudo and true parallel corpora on finetuning
for zero-resource translation.

Lastly, we train single-pair models translating di-
rectly from Spanish to French by using the true par-
allel corpora. These models work as a baseline
against which we compare the multi-way, multilin-
gual models.

Training Unlike the usual training procedure de-
scribed in Sec. 4.2, we compute the gradient for each
update using 60 sentence pairs only, when finetuning
the model with the multi-way parallel corpus (either
pseudo or true.)

6.2.2 Result and Analysis
Table 5 summarizes all the result. The most im-

portant observation is that the proposed finetuning
strategy with pseudo-parallel sentence pairs outper-
forms the pivot-based approach (using the early av-
eraging strategy from Sec. 4.4) even when we used
only 10k such pairs (compare (b) and (d).) As we in-
crease the size of the pseudo-parallel corpus, we ob-
serve a clear improvement. Furthermore, these mod-
els perform comparably to or better than the single-
pair model trained with 1M true parallel sentence
pairs, although they never saw a single true bilin-
gual sentence pair of Spanish and French (compare
(a) and (d).)

Another interesting finding is that it is only ben-
eficial to use true parallel pairs for finetuning the
multi-way, mulitilingual models when there are
enough of them (1m or more). When there are only
a small number of true parallel sentence pairs, we

4See the last row of Table 1.

274

Pseudo Parallel Corpus True Parallel Corpus
Pivot Many-to-1 1k 10k 100k 1m 1k 10k 100k 1m

(a) Single-Pair Models
Dev – – – – – – 11.25 21.32
Test – – – – – – 10.43 20.35

(b)
√

No Finetuning Dev: 20.64, Test: 20.4 –

(c)
Dev 0.28 10.16 15.61 17.59 0.1 8.45 16.2 20.59
Test 0.47 10.14 15.41 17.61 0.12 8.18 15.8 19.97

(d)
√

Early
Dev 19.42 21.08 21.7 21.81 8.89 16.89 20.77 22.08
Test 19.43 20.72 21.23 21.46 9.77 16.61 20.40 21.7

(e)
√ Early+ Dev 20.89 20.93 21.35 21.33 14.86 18.28 20.31 21.33

Late Test 20.5 20.71 21.06 21.19 15.42 17.95 20.16 20.9
Table 5: Zero-resource translation from Spanish (Es) to French (Fr) with finetuning. When pivot is

√
, English is used as a pivot

language. Row (b) is from Table 4 (b).

even found using pseudo pairs to be more benefi-
cial than true ones. This effective as more apparent,
when the direct one-to-one translation of the zero-
resource pair was considered (see (c) in Table 5.)
This applies that the misalignment between the en-
coder and decoder can be largely fixed by using
pseudo-parallel pairs only, and we conjecture that it
is easier to learn from pseudo-parallel pairs as they
better reflect the inductive bias of the trained model
and as the pseudo- parallel corpus is expected to be
more noisy, this may be an implicit regularization
effect. When there is a large amount of true parallel
sentence pairs available, however, our results indi-
cate that it is better to exploit them.

Unlike we observed with the multi-source trans-
lation in Sec. 3.2, we were not able to see any im-
provement by further averaging the early-averaged
and late-average decoding schemes (compare (d)
and (e).) This may be explained by the fact that the
context vectors computed when creating a pseudo
source (e.g., En from Es when Es→Fr) already con-
tains all the information about the pseudo source. It
is simply enough to take those context vectors into
account via the early averaging scheme.

These results clearly indicate and verify the po-
tential of the multi-way, multilingual neural trans-
lation model in performing zero-resource machine
translation. More specifically, it has been shown that
the translation quality can be improved even without
any direct parallel corpus available, and if there is a
small amount of direct parallel pairs available, the
quality may improve even further.

7 Conclusion:
Implications and Limitations

Implications There are two main results in this
paper. First, we showed that the multi-way, multilin-
gual neural translation model by Firat et al. (2016)
is able to exploit common, underlying structures
across many languages in order to better translate
when a source sentence is given in multiple lan-
guages. This confirms the usefulness of positive lan-
guage transfer, which has been believed to be an im-
portant factor in human language learning (Odlin,
1989; Ringbom, 2007), in machine translation. Fur-
thermore, our result significantly expands the ap-
plicability of multi-source translation (Zoph and
Knight, 2016), as it does not assume the availability
of multi-way parallel corpora for training and relies
only on bilingual parallel corpora.

Second, the experiments on zero-resource trans-
lation revealed that it is not necessary to have a di-
rect parallel corpus, or deep linguistic knowledge,
between two languages in order to build a machine
translation system. Importantly we observed that
the proposed approach of zero-resource translation
is better both in terms of translation quality and
data efficiency than a more traditional pivot-based
translation (Wu and Wang, 2007; Utiyama and Isa-
hara, 2007). Considering that this is the first attempt
at such zero-resource, or extremely low-resource,
translation using neural machine translation, we ex-
pect a large progress in near future.

275

Limitations Despite the promising empirical re-
sults presented in this paper, there are a number of
shortcomings that needs to addressed in follow-up
research. First, our experiments have been done only
with three European languages–Spanish, French and
English. More investigation with a diverse set of lan-
guages needs to be done in order to make a more
solid conclusion, such as was done in (Firat et al.,
2016; Chung et al., 2016). Furthermore, the effect of
varying sizes of available parallel corpora on the per-
formance of zero-resource translation must be stud-
ied more in the future.

Second, although the proposed many-to-one
translation is indeed generally applicable to any
number of source languages, we have only tested
a source sentence in two languages. We expect
even higher improvement with more languages, but
it must be tested thoroughly in the future.

Lastly, the proposed finetuning strategy requires
the model to have an additional set of parameters rel-
evant to the attention mechanism for a target, zero-
resource pair. This implies that the number of pa-
rameters may grow linearly with respect to the num-
ber of target language pairs. We expect future re-
search to address this issue by, for instance, mix-
ing in the parallel corpora of high-resource language
pairs during finetuning as well.

Acknowledgments

OF thanks Iulian Vlad Serban and Georgiana Dinu
for insightful discussions. KC thanks the support
by Facebook, Google (Google Faculty Award 2016)
and NVidia (GPU Center of Excellence 2015-2016).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR 2015.

Ozan Caglayan, Walid Aransa, Yaxing Wang, Marc
Masana, Mercedes Garcı́a-Martı́nez, Fethi Bougares,
Loı̈c Barrault, and Joost van de Weijer. 2016.
Does multimodality help human and machine for
translation and image captioning? arXiv preprint
arXiv:1605.09186.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statis-
tical machine translation. arXiv:1406.1078.

Junyoung Chung, Kyunghyun Cho, and Yoshua Bengio.
2016. A character-level decoder without explicit seg-
mentation for neural machine translation. In ACL.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for multi-
ple language translation. ACL.

Orhan Firat and Kyunghyun Cho. 2016. DL4MT-
Tutorial: Conditional gated recurrent unit with atten-
tion mechanism.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. 2016.
Multi-way, multilingual neural machine translation
with a shared attention mechanism. In NAACL.

Mikel L Forcada and Ramón P Ñeco. 1997. Recur-
sive hetero-associative memories for translation. In
Biological and Artificial Computation: From Neuro-
science to Technology, pages 453–462. Springer.

Nizar Habash and Jun Hu. 2009. Improving arabic-
chinese statistical machine translation using english as
pivot language. In Proceedings of the Fourth Work-
shop on Statistical Machine Translation, StatMT ’09,
pages 173–181. Association for Computational Lin-
guistics.

Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland
Memisevic, and Yoshua Bengio. 2015. Montreal
neural machine translation systems for wmt’15. In
Proceedings of the Tenth Workshop on Statistical Ma-
chine Translation, pages 134–140, Lisbon, Portugal,
September. Association for Computational Linguis-
tics.

Nal Kalchbrenner and Phil Blunsom. 2013. Recur-
rent continuous translation models. In EMNLP, pages
1700–1709.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. The International
Conference on Learning Representations (ICLR).

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, et al. 2007. Moses: Open source toolkit for
statistical machine translation. In Proceedings of the
45th annual meeting of the ACL on interactive poster
and demonstration sessions, pages 177–180. Associa-
tion for Computational Linguistics.

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan W
Black. 2015. Character-based neural machine transla-
tion. arXiv:1511.04586.

Minh-Thang Luong and Christopher D Manning.
2016. Achieving open vocabulary neural ma-
chine translation with hybrid word-character models.
arXiv:1604.00788.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2015a. Multi-task
sequence to sequence learning. arXiv preprint
arXiv:1511.06114.

276

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015b. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. INTERSPEECH,
2:3.

Terence Odlin. 1989. Language Transfer. Cambridge
University Press. Cambridge Books Online.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2012. On the difficulty of training recurrent neural
networks. arXiv preprint arXiv:1211.5063.

Håkan Ringbom. 2007. Cross-linguistic similarity in
foreign language learning, volume 21.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. Signal Processing,
IEEE Transactions on, 45(11):2673–2681.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015a. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015b. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
In NIPS, pages 3104–3112.

Masao Utiyama and Hitoshi Isahara. 2007. A compar-
ison of pivot methods for phrase-based statistical ma-
chine translation. In HLT-NAACL, pages 484–491.

Hua Wu and Haifeng Wang. 2007. Pivot language
approach for phrase-based statistical machine transla-
tion. Machine Translation, 21(3):165–181.

Bing Zhao and Shengyuan Chen. 2009. A simplex
armijo downhill algorithm for optimizing statistical
machine translation decoding parameters. In HLT-
NAACL, pages 21–24.

Barret Zoph and Kevin Knight. 2016. Multi-source neu-
ral translation. In NAACL.

277

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 278–286,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Memory-enhanced Decoder for Neural Machine Translation

Mingxuan Wang1 Zhengdong Lu2 Hang Li2 Qun Liu3,1

1Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology, Chinese Academy of Sciences

{wangmingxuan,liuqun}@ict.ac.cn
2Noah’s Ark Lab, Huawei Technologies

{Lu.Zhengdong,HangLi.HL}@huawei.com
3ADAPT Centre, School of Computing, Dublin City University

Abstract

We propose to enhance the RNN decoder
in a neural machine translator (NMT) with
external memory, as a natural but power-
ful extension to the state in the decoding
RNN. This memory-enhanced RNN de-
coder is called MEMDEC. At each time
during decoding, MEMDEC will read from
this memory and write to this memory
once, both with content-based addressing.
Unlike the unbounded memory in previ-
ous work(Bahdanau et al., 2014) to store
the representation of source sentence, the
memory in MEMDEC is a matrix with pre-
determined size designed to better cap-
ture the information important for the de-
coding process at each time step. Our
empirical study on Chinese-English trans-
lation shows that it can improve by 4.8
BLEU upon Groundhog and 5.3 BLEU
upon on Moses, yielding the best perfor-
mance achieved with the same training set.

1 Introduction

The introduction of external memory has greatly
expanded the representational capability of neu-
ral network-based model on modeling se-
quences(Graves et al., 2014), by providing flex-
ible ways of storing and accessing information.
More specifically, in neural machine translation,
one great improvement came from using an array
of vectors to represent the source in a sentence-
level memory and dynamically accessing relevant
segments of them (alignment) (Bahdanau et al.,

2014) through content-based addressing (Graves
et al., 2014). The success of RNNsearch demon-
strated the advantage of saving the entire sen-
tence of arbitrary length in an unbounded mem-
ory for operations of next stage (e.g., decoding).

In this paper, we show that an external memory
can be used to facilitate the decoding/generation
process thorough a memory-enhanced RNN de-
coder, called MEMDEC. The memory in
MEMDEC is a direct extension to the state in
the decoding, therefore functionally closer to the
memory cell in LSTM(Hochreiter and Schmid-
huber, 1997). It takes the form of a matrix with
pre-determined size, each column (“a memory
cell”) can be accessed by the decoding RNN with
content-based addressing for both reading and
writing during the decoding process. This mem-
ory is designed to provide a more flexible way
to select, represent and synthesize the informa-
tion of source sentence and previously generated
words of target relevant to the decoding. This
is in contrast to the set of hidden states of the
entire source sentence (which can viewed as an-
other form of memory) in (Bahdanau et al., 2014)
for attentive read, but can be combined with it to
greatly improve the performance of neural ma-
chine translator. We apply our model on English-
Chinese translation tasks, achieving performance
superior to any published results, SMT or NMT,
on the same training data (Xie et al., 2011; Meng
et al., 2015; Tu et al., 2016; Hu et al., 2015)

Our contributions are mainly two-folds

• we propose a memory-enhanced decoder for

278

neural machine translator which naturally
extends the RNN with vector state.

• our empirical study on Chinese-English
translation tasks show the efficacy of the
proposed model.

Roadmap In the remainder of this paper, we
will first give a brief introduction to attention-
based neural machine translation in Section 2,
presented from the view of encoder-decoder,
which treats the hidden states of source as an
unbounded memory and the attention model as
a content-based reading. In Section 3, we
will elaborate on the memory-enhanced decoder
MEMDEC. In Section 4, we will apply NMT with
MEMDEC to a Chinese-English task. Then in
Section 5 and 6, we will give related work and
conclude the paper.

2 Neural machine translation with
attention

Our work is built on attention-based
NMT(Bahdanau et al., 2014), which repre-
sents the source sentence as a sequence of
vectors after being processed by RNN or bi-
directional RNNs, and then conducts dynamic
alignment and generation of the target sentence
with another RNN simultaneously.

Attention-based NMT, with RNNsearch as its
most popular representative, generalizes the con-
ventional notion of encoder-decoder in using a
unbounded memory for the intermediate repre-
sentation of source sentence and content-based
addressing read in decoding, as illustrated in
Figure 1. More specifically, at time step t,
RNNsearch first get context vector ct after read-
ing from the source representation MS, which is
then used to update the state, and generate the
word yt (along with the current hidden state st,
and the previously generated word yi−1).

Formally, given an input sequence x =
[x1, x2, . . . , xTx] and the previously generated
sequence y<t = [y1, y2, . . . , yt−1], the probabil-
ity of next word yt is

p(yt|y<t;x) = f(ct, yt−1, st), (1)

Figure 1: RNNsearch in the encoder-decoder view.

where st is state of decoder RNN at time step t
calculated as

st = g(st−1, yt−1, ct). (2)

where g(·) can be an be any activation function,
here we adopt a more sophisticated dynamic op-
erator as in Gated Recurrent Unit (GRU, (Cho et
al., 2014)). In the remainder of the paper, we will
also use GRU to stand for the operator. The read-
ing ct is calculated as

ct =

j=Tx∑

j=1

αt,jhj , (3)

where hj is the jth cell in memory MS. More
formally, hj = [

←−
hj
>,
−→
hj
>]> is the annotations

of xj and contains information about the whole
input sequence with a strong focus on the parts
surrounding xj , which is computed by a bidirec-
tional RNN. The weight αt,j is computed by

αt,j =
exp(et,j)∑k=Tx

k=1 exp(et,k)
.

where ei,j = vT
a tanh(Wast−1 + Uahj) scores

how well st−1 and the memory cell hj match.
This is called automatic alignment (Bahdanau et
al., 2014) or attention model (Luong et al., 2015),
but it is essentially reading with content-based
addressing defined in (Graves et al., 2014). With
this addressing strategy the decoder can attend to
the source representation that is most relevant to
the stage of decoding.

279

Figure 2: Diagram of the proposed decoder MEMDEC with details.

2.1 Improved Attention Model

The alignment model αt,j scores how well the
output at position tmatches the inputs around po-
sition j based on st−1 and hj . It is intuitively
beneficial to exploit the information of yt−1 when
reading from MS, which is missing from the im-
plementation of attention-based NMT in (Bah-
danau et al., 2014). In this work, we build a
more effective alignment path by feeding both
previous hidden state st−1 and the context word
yt−1 to the attention model, inspired by the re-
cent implementation of attention-based NMT1.
Formally, the calculation of et,j becomes

et,j = vT
a tanh(Was̃t−1 +Uahj),

where

• s̃t−1 = H(st−1, eyt−1) is an intermediate
state tailored for reading from MS with the
information of yt−1 (its word embedding be-
ing eyt−1) added;

• H is a nonlinear function, which can be
as simple as tanh or as complex as GRU.
In our preliminary experiments, we found
GRU works slightly better than tanh func-
tion, but we chose the latter for simplicity.

1github.com/nyu-dl/dl4mt-tutorial/
tree/master/session2

3 Decoder with External Memory

In this section we will elaborate on the proposed
memory-enhanced decoder MEMDEC. In ad-
dition to the source memory MS, MEMDEC is
equipped with a buffer memory MB as an ex-
tension to the conventional state vector. Fig-
ure 3 contrasts MEMDEC with the decoder in
RNNsearch (Figure 1) on a high level.

Figure 3: High level digram of MEMDEC.

In the remainder of the paper, we will refer to
the conventional state as vector-state (denoted st)
and its memory extension as memory-state (de-
noted as MB

t). Both states are updated at each
time step in a interweaving fashion, while the out-
put symbol yt is predicted based solely on vector-
state st (along with ct and yt−1). The diagram of
this memory-enhanced decoder is given in Figure
2.

280

Vector-State Update At time t, the vector-state
st is first used to read MB

rt−1 = readB(st−1,MB
t−1) (4)

which then meets the previous prediction yt−1 to
form an “intermediate” state-vector

s̃t = tanh(Wrrt−1 +Wyeyt−1). (5)

where eyt−1 is the word-embedding associated
with the previous prediction yt−1. This pre-state
s̃t is used to read the source memory MS

ct = readS(s̃t,M
S). (6)

Both readings in Eq. (4) & (6) follow content-
based addressing(Graves et al., 2014) (details
later in Section 3.1). After that, rt−1 is combined
with output symbol yt−1 and ct to update the new
vector-state

st = GRU(rt−1,yt−1, ct) (7)

The update of vector-state is illustrated in Fig-
ure 4.

Figure 4: Vector-state update at time t.

Memory-State Update As illustrated in Fig-
ure 5, the update for memory-state is simple after
the update of vector-state: with the vector-state
st+1 the updated memory-state will be

MB
t = write(st,MB

t−1) (8)

The writing to the memory-state is also content-
based, with same forgetting mechanism sug-
gested in (Graves et al., 2014), which we will
elaborate with more details later in this section.

Figure 5: Memory-state update at time t.

Prediction As illustrated in Figure 6, the pre-
diction model is same as in (Bahdanau et al.,
2014), where the score for word y is given by

score(y) = DNN([st, ct, eyt−1])
>ωy (9)

where ωy is the parameters associated with the
word y. The probability of generating word y at
time t is then given by a softmax over the scores

p(y|st, ct, yt−1) =
exp(score(y))∑
y′ exp(score(y′))

.

Figure 6: Prediction at time t.

3.1 Reading Memory-State

Formally MB
t′ ∈ Rn×m is the memory-state at

time t′ after the memory-state update, where n is
the number of memory cells and m is the dimen-
sion of vector in each cell. Before the vector-state
update at time t, the output of reading rt is given
by

rt =

j=n∑

j=1

wR
t (j)M

B
t−1(j)

where wR
t ∈ Rn specifies the normalized weights

assigned to the cells in MB
t . Similar with the

reading from MS (a.k.a. attention model), we
use content-based addressing in determining wR

t .

281

More specifically, wR
t is also updated from the

one from previous time wR
t−1 as

wR
t = gR

t w
R
t−1 + (1− gR

t)w̃
R
t , (10)

where

• gR
t = σ(wR

gst) is the gate function, with pa-
rameters wR

g ∈ Rm;

• w̃t gives the contribution based on the cur-
rent vector-state st

w̃R
t = softmax(aR

t) (11)

aR
t (i) = v>(WR

aM
B
t−1(i) +UR

ast−1), (12)

with parameters WR
a,U

R
a ∈ Rm×m and v ∈

Rm.

3.2 Writing to Memory-State
There are two types of operation on writing to
memory-state: ERASE and ADD. Erasion is simi-
lar to the forget gate in LSTM or GRU, which de-
termines the content to be remove from memory
cells. More specifically, the vector µERS

t ∈ Rm

specifies the values to be removed on each dimen-
sion in memory cells, which is than assigned to
each cell through normalized weights wW

t . For-
mally, the memory-state after ERASE is given by

M̃B
t (i) = MB

t−1(i)(1−wW
t (i) · µERS

t) (13)

i = 1, · · · , n
where

• µERS
t = σ(WERSst) is parametrized with

WERS ∈ Rm×m;

• wW
t (i) specifies the weight associated with

the ith cell in the same parametric form as
in Eq. (10)-(12) with generally different pa-
rameters.

ADD operation is similar with the update gate in
LSTM or GRU, deciding how much current in-
formation should be written to the memory.

MB
t (i) = M̃B

t (i) +wW
t (i)µ

ADD
t

µADD
t = σ(WADDst)

where µADD
t ∈ Rm and WADD ∈ Rm×m.

In our experiments, we have a peculiar but in-
teresting observation: it is often beneficial to use
the same weights for both reading (i.e., wR

t in
Section 3.1) and writing (i.e., wW

t in Section 3.2
) for the same vector-state st. We conjecture that
this acts like a regularization mechanism to en-
courage the content of reading and writing to be
similar to each other.

3.3 Some Analysis
The writing operation in Eq. (13) at time t
can be viewed as an nonlinear way to combine
the previous memory-state MB

t−1 and the newly
updated vector-state st, where the nonlinearity
comes from both the content-based addressing
and the gating. This is in a way similar to the
update of states in regular RNN, while we con-
jecture that the addressing strategy in MEMDEC

makes it easier to selectively change some con-
tent updated (e.g., the relatively short-term con-
tent) while keeping other content less modified
(e.g., the relatively long-term content).

The reading operation in Eq. (10) can “extract”
the content from MB

t relevant to the alignment
(reading from MS) and prediction task at time t.
This is in contrast with the regular RNN decoder
including its gated variants, which takes the en-
tire state vector to for this purpose. As one ad-
vantage, although only part of the information in
MB

t is used at t, the entire memory-state, which
may store other information useful for later, will
be carry over to time t + 1 for memory-state up-
date (writing).

4 Experiments on Chinese-English
Translation

We test the memory-enhanced decoder to task of
Chinese-to-English translation, where MEMDEC

is put on the top of encoder same as in (Bahdanau
et al., 2014).

4.1 Datasets and Evaluation metrics
Our training data for the translation task con-
sists of 1.25M sentence pairs extracted from LDC
corpora2, with 27.9M Chinese words and 34.5M

2The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,

282

English words respectively. We choose NIST
2002 (MT02) dataset as our development set,
and the NIST 2003 (MT03), 2004 (MT04) 2005
(MT05) and 2006 (MT06) datasets as our test
sets. We use the case-insensitive 4-gram NIST
BLEU score as our evaluation metric as our eval-
uation metric (Papineni et al., 2002).

4.2 Experiment settings

Hyper parameters In training of the neural
networks, we limit the source and target vocab-
ularies to the most frequent 30K words in both
Chinese and English, covering approximately
97.7% and 99.3% of the two corpora respectively.
The dimensions of word embedding is 512 and
the size of the hidden layer is 1024. The dimem-
sion of each cell in MB is set to 1024 and the
number of cells n is set to 8.

Training details We initialize the recurrent
weight matrices as random orthogonal matrices.
All the bias vectors were initialize to zero. For
other parameters, we initialize them by sampling
each element from the Gaussian distribution of
mean 0 and variance 0.012. Parameter optimiza-
tion is performed using stochastic gradient de-
scent. Adadelta (Zeiler, 2012) is used to auto-
matically adapt the learning rate of each param-
eter (ε = 10−6 and ρ = 0.95). To avoid gra-
dients explosion, the gradients of the cost func-
tion which had `2 norm larger than a predefined
threshold 1.0 was normalized to the threshold
(Pascanu et al., 2013). Each SGD is of a mini-
batch of 80 sentences. We train our NMT model
with the sentences of length up to 50 words in
training data, while for moses system we use the
full training data.

Memory Initialization Each memory cell is
initialized with the source sentence hidden state
computed as

MB(i) = m+ νi (14)

m = σ(WINI

i=Tx∑

i=0

hi)/Tx (15)

LDC2004T08 and LDC2005T06.

where WINI ∈ Rm×2·m; σ is tanh function. m
makes a nonlinear transformation of the source
sentence information. νi is a random vector sam-
pled from N (0, 0.1).

Dropout we also use dropout for our NMT
baseline model and MEMDEC to avoid over-
fitting (Hinton et al., 2012). The key idea is to
randomly drop units (along with their connec-
tions) from the neural network during training.
This prevents units from co-adapting too much.
In the simplest case, each unit is omitted with
a fixed probability p, namely dropout rate. In
our experiments, dropout was applied only on the
output layer and the dropout rate is set to 0.5. We
also try other strategy such as dropout at word
embeddings or RNN hidden states but fail to get
further improvements.

Pre-training For MEMDEC, the objective
function is a highly non-convex function of
the parameters with more complicated land-
scape than that for decoder without exter-
nal memory, rendering direct optimization over
all the parameters rather difficult. Inspired
by the effort on easing the training of very
deep architectures (Hinton and Salakhutdi-
nov, 2006), we propose a simple pre-training
strategyFirst we train a regular attention-based
NMT model without external memory. Then
we use the trained NMT model to initialize
the parameters of encoder and parameters of
MEMDEC, except those related to memory-state
(i.e., {WR

a,U
R
a,v,w

R
g ,W

ERS,WADD}). After
that, we fine-tune all the parameters of NMT
with MEMDEC decoder, including the parame-
ters initialized with pre-training and those associ-
ated with accessing memory-state.

4.3 Comparison systems
We compare our method with three state-of-the-
art systems:

• Moses: an open source phrase-based trans-
lation system 3: with default configuration
and a 4-gram language model trained on the
target portion of training data.

3http://www.statmt.org/moses/

283

SYSTEM MT03 MT04 MT05 MT06 AVE.
Groundhog 31.92 34.09 31.56 31.12 32.17
RNNsearch? 33.11 37.11 33.04 32.99 34.06
RNNsearch? + coverage 34.49 38.34 34.91 34.25 35.49

MEMDEC 36.16 39.81 35.91 35.98 36.95
Moses 31.61 33.48 30.75 30.85 31.67

Table 1: Case-insensitive BLEU scores on Chinese-English translation. Moses is the state-of-the-art phrase-based statistical

machine translation system. For RNNsearch, we use the open source system Groundhog as our baseline. The strong

baseline, denoted RNNsearch?, also adopts feedback attention and dropout. The coverage model on top of RNNsearch? has

significantly improved upon its published version (Tu et al., 2016), which achieves the best published result on this training

set. For MEMDEC the number of cells is set to 8.

pre-training n MT03 MT04 MT05 MT06 Ave.
N 4 35.29 37.36 34.58 33.32 35.11
Y 4 35.39 39.16 35.33 35.02 36.22
Y 6 35.63 39.29 35.61 34.92 36.58
Y 8 36.16 39.81 35.91 35.98 36.95
Y 10 36.46 38.86 34.46 35.00 36.19
Y 12 35.92 39.09 35.31 35.12 36.37

Table 2: MEMDEC performances of different memory size.

• RNNSearch: an attention-based NMT
model with default settings. We use the open
source system GroundHog as our NMT
baseline4.

• Coverage model: a state-of-the-art variant
of attention-based NMT model (Tu et al.,
2016) which improves the attention mecha-
nism through modelling a soft coverage on
the source representation.

4.4 Results
The main results of different models are given
in Table 1. Clearly MEMDEC leads to remark-
able improvement over Moses (+5.28 BLEU) and
Groundhog (+4.78 BLEU). The feedback atten-
tion gains +1.06 BLEU score on top of Ground-
hog on average, while together with dropout adds
another +0.83 BLEU score, which constitute the
1.89 BLEU gain of RNNsearch? over Ground-
hog. Compared to RNNsearch? MEMDEC is
+2.89 BLEU score higher, showing the model-
ing power gained from the external memory. Fi-

4https://github.com/lisa-groundhog/
GroundHog

nally, we also compare MEMDEC with the state-
of-the-art attention-based NMT with COVERAGE

mechanism(Tu et al., 2016), which is about 2
BLEU over than the published result after adding
fast attention and dropout. In this comparison
MEMDEC wins with big margin (+1.46 BLEU
score).

4.5 Model selection

Pre-training plays an important role in optimiz-
ing the memory model. As can be seen in Tab.2,
pre-training improves upon our baseline +1.11
BLEU score on average, but even without pre-
training our model still gains +1.04 BLEU score
on average. Our model is rather robust to the
memory size: with merely four cells, our model
will be over 2 BLEU higher than RNNsearch?.
This further verifies our conjecture the the exter-
nal memory is mostly used to store part of the
source and history of target sentence.

4.6 Case study

We show in Table 5 sample translations from
Chinese to English, comparing mainly MEMDEC

284

src
恩达依兹耶说:“签署(2003年11月停火)协定的各方,最迟必须在元月五日
以前把战士的驻扎地点安顿完毕。”

ref
“All parties that signed the (November 2003 ceasefire) accord should finish
the cantoning of their fighters by January 5, 2004, at the latest,” Ndayizeye
said.

MEMDEC
UNK said, “ the parties involved in the ceasefire agreement on November
2003 will have to be completed by January 5, 2004. ”

base
“The signing of the agreement (UNK-fire) agreement in the November
2003 ceasefire must be completed by January 5, 2004.

src
代表团成员告诉今日美国报说,布希政府已批准美国代表团预定元月六
日至十日展开的北韩之行。

ref
Members of the delegation told US Today that the Bush administration had
approved the US delegation’ s visit to North Korea from January 6 to 10.

MEMDEC
The delegation told the US today that the Bush administration has approved
the US delegation’s visit to north Korea from 6 to 10 january .

base
The delegation told the US that the Bush administration has approved the US
to begin his visit to north Korea from 6 to 10 January.

Table 3: Sample translations-for each example, we show the source(src), the human translation (ref),the translation from

our memory model MEMDEC and the translation from RNNsearch(equipped with fast attention and dropout).We italicise

some correct translation segments and highlight a few wrong ones in bold.

and the RNNsearch model for its pre-training. It
is appealing to observe that MEMDEC can pro-
duce more fluent translation results and better
grasp the semantic information of the sentence.

5 Related Work

There is a long thread of work aiming to im-
prove the ability of RNN in remembering long se-
quences, with the long short-term memory RNN
(LSTM) (Hochreiter and Schmidhuber, 1997) be-
ing the most salient examples and GRU (Cho et
al., 2014) being the most recent one. Those works
focus on designing the dynamics of the RNN
through new dynamic operators and appropri-
ate gating, while still keeping vector form RNN
states. MEMDEC, on top of the gated RNN, ex-
plicitly adds matrix-form memory equipped with
content-based addressing to the system, hence
greatly improving the power of the decoder RNN
in representing the information important for the
translation task.

MEMDEC is obviously related to the recent ef-
fort on attaching an external memory to neural
networks, with two most salient examples be-
ing Neural Turing Machine (NTM) (Graves et
al., 2014) and Memory Network (Weston et al.,
2014). In fact MEMDEC can be viewed as a

special case of NTM, with specifically designed
reading (from two different types of memory)
and writing mechanism for the translation task.
Quite remarkably MEMDEC is among the rare
instances of NTM which significantly improves
upon state-of-the-arts on a real-world NLP task
with large training corpus.

Our work is also related to the recent work on
machine reading (Cheng et al., 2016), in which
the machine reader is equipped with a memory
tape, enabling the model to directly read all the
previous hidden state with an attention mecha-
nism. Different from their work, we use an ex-
ternal bounded memory and make an abstraction
of previous information. In (Meng et al., 2015),
Meng et. al. also proposed a deep architecture for
sequence-to-sequence learning with stacked lay-
ers of memory to store the intermediate represen-
tations, while our external memory was applied
within a sequence.

6 Conclusion

We propose to enhance the RNN decoder in
a neural machine translator (NMT) with exter-
nal memory. Our empirical study on Chinese-
English translation shows that it can significantly
improve the performance of NMT.

285

References
[Bahdanau et al.2014] Dzmitry Bahdanau,

Kyunghyun Cho, and Yoshua Bengio. 2014. Neu-
ral machine translation by jointly learning to align
and translate. arXiv preprint arXiv:1409.0473.

[Cheng et al.2016] Jianpeng Cheng, Li Dong, and
Mirella Lapata. 2016. Long short-term memory-
networks for machine reading. arXiv preprint
arXiv:1601.06733.

[Cho et al.2014] Kyunghyun Cho, Bart
Van Merriënboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase
representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint
arXiv:1406.1078.

[Graves et al.2014] Alex Graves, Greg Wayne, and Ivo
Danihelka. 2014. Neural turing machines. arXiv
preprint arXiv:1410.5401.

[Hinton and Salakhutdinov2006] Geoffrey E Hinton
and Ruslan R Salakhutdinov. 2006. Reducing the
dimensionality of data with neural networks. Sci-
ence, 313(5786):504–507.

[Hinton et al.2012] Geoffrey E Hinton, Nitish Srivas-
tava, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2012. Improving neural networks
by preventing co-adaptation of feature detectors.

[Hochreiter and Schmidhuber1997] Sepp Hochreiter
and Jürgen Schmidhuber. 1997. Long short-term
memory. Neural computation, 9(8):1735–1780.

[Hu et al.2015] Baotian Hu, Zhaopeng Tu, Zhengdong
Lu, and Hang Li. 2015. Context-dependent trans-
lation selection using convolutional neural net-
work.

[Luong et al.2015] Minh-Thang Luong, Hieu Pham,
and Christopher D Manning. 2015. Effective ap-
proaches to attention-based neural machine trans-
lation. arXiv preprint arXiv:1508.04025.

[Meng et al.2015] Fandong Meng, Zhengdong
Lu, Zhaopeng Tu, Hang Li, and Qun Liu.
2015. A deep memory-based architecture for
sequence-to-sequence learning. arXiv preprint
arXiv:1506.06442.

[Papineni et al.2002] Kishore Papineni, Salim
Roukos, Todd Ward, and Wei-Jing Zhu. 2002.
Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the 40th
annual meeting on association for computa-
tional linguistics, pages 311–318. Association for
Computational Linguistics.

[Pascanu et al.2013] Razvan Pascanu, Caglar Gul-
cehre, Kyunghyun Cho, and Yoshua Bengio. 2013.

How to construct deep recurrent neural networks.
arXiv preprint arXiv:1312.6026.

[Tu et al.2016] Zhaopeng Tu, Zhengdong Lu, Yang
Liu, Xiaohua Liu, and Hang Li. 2016. Model-
ing coverage for neural machine translation. ArXiv
eprints, January.

[Weston et al.2014] Jason Weston, Sumit Chopra, and
Antoine Bordes. 2014. Memory networks. arXiv
preprint arXiv:1410.3916.

[Xie et al.2011] Jun Xie, Haitao Mi, and Qun Liu.
2011. A novel dependency-to-string model for sta-
tistical machine translation.

[Zeiler2012] Matthew D Zeiler. 2012. Adadelta:
an adaptive learning rate method. arXiv preprint
arXiv:1212.5701.

286

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 287–296,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Semi-Supervised Learning of Sequence Models with the Method of Moments
Zita Marinho∗] André F. T. Martins†♥♦ Shay B. Cohen♣ Noah A. Smith♠
∗Instituto de Sistemas e Robótica, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
†Instituto de Telecomunicações, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
]School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

♥Unbabel Lda, Rua Visconde de Santarém, 67-B, 1000-286 Lisboa, Portugal
♦Priberam Labs, Alameda D. Afonso Henriques, 41, 2o, 1000-123 Lisboa, Portugal

♣School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
♠Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA

zmarinho@cmu.edu, andre.martins@unbabel.com,
scohen@inf.ed.ac.uk, nasmith@cs.washington.edu

Abstract

We propose a fast and scalable method for
semi-supervised learning of sequence models,
based on anchor words and moment matching.
Our method can handle hidden Markov mod-
els with feature-based log-linear emissions.
Unlike other semi-supervised methods, no de-
coding passes are necessary on the unlabeled
data and no graph needs to be constructed—
only one pass is necessary to collect moment
statistics. The model parameters are estimated
by solving a small quadratic program for each
feature. Experiments on part-of-speech (POS)
tagging for Twitter and for a low-resource lan-
guage (Malagasy) show that our method can
learn from very few annotated sentences.

1 Introduction

Statistical learning of NLP models is often lim-
ited by the scarcity of annotated data. Weakly su-
pervised methods have been proposed as an alter-
native to laborious manual annotation, combining
large amounts of unlabeled data with limited re-
sources, such as tag dictionaries or small annotated
datasets (Merialdo, 1994; Smith and Eisner, 2005;
Garrette et al., 2013). Unfortunately, most semi-
supervised learning algorithms for the structured
problems found in NLP are computationally expen-
sive, requiring multiple decoding passes through the
unlabeled data, or expensive similarity graphs. More
scalable learning algorithms are in demand.

In this paper, we propose a moment-matching
method for semi-supervised learning of sequence
models. Spectral learning and moment-matching
approaches have recently proved a viable alternative

to expectation-maximization (EM) for unsupervised
learning (Hsu et al., 2012; Balle and Mohri, 2012;
Bailly et al., 2013), supervised learning with latent
variables (Cohen and Collins, 2014; Quattoni et al.,
2014; Stratos et al., 2013) and topic modeling (Arora
et al., 2013; Nguyen et al., 2015). These methods
have learnability guarantees, do not suffer from lo-
cal optima, and are computationally less demanding.

Unlike spectral methods, ours does not require an
orthogonal decomposition of any matrix or tensor.
Instead, it considers a more restricted form of super-
vision: words that have unambiguous annotations,
so-called anchor words (Arora et al., 2013). Rather
than identifying anchor words from unlabeled data
(Stratos et al., 2016), we extract them from a small
labeled dataset or from a dictionary. Given the an-
chor words, the estimation of the model parameters
can be made efficient by collecting moment statistics
from unlabeled data, then solving a small quadratic
program for each word.

Our contributions are as follows:

• We adapt anchor methods to semi-supervised
learning of generative sequence models.

• We show how our method can also handle log-
linear feature-based emissions.

• We apply this model to POS tagging. Our ex-
periments on the Twitter dataset introduced by
Gimpel et al. (2011) and on the dataset in-
troduced by Garrette et al. (2013) for Mala-
gasy, a low-resource language, show that our
method does particularly well with very little la-
beled data, outperforming semi-supervised EM
and self-training.

287

2 Sequence Labeling

In this paper, we address the problem of sequence
labeling. Let x1:L = 〈x1, . . . , xL〉 be a sequence of
L input observations (for example, words in a sen-
tence). The goal is to predict a sequence of labels
h1:L = 〈h1, . . . , hL〉, where each hi is a label for the
observation xi (for example, the word’s POS tag).

We start by describing two generative sequence
models: hidden Markov models (HMMs, §2.1), and
their generalization with emission features (§2.2).
Later, we propose a weakly-supervised method for
estimating these models’ parameters (§3–§4) based
only on observed statistics of words and contexts.

2.1 Hidden Markov Models

We define random variables X := 〈X1, . . . , XL〉
andH := 〈H1, . . . ,HL〉, corresponding to observa-
tions and labels, respectively. Each Xi is a random
variable over a set X (the vocabulary), and each Hi

ranges over H (a finite set of “states” or “labels”).
We denote the vocabulary size by V = |X |, and the
number of labels by K = |H|. A first-order HMM
has the following generative scheme:

p(X = x1:L,H = h1:L) := (1)
L∏

`=1

p(X`=x` | H`=h`)
L∏
`=0

p(H`+1=h`+1 | H`=h`),

where we have defined h0 = START and hL+1 =
STOP. We adopt the following notation for the pa-
rameters:

• The emission matrix O ∈ RV×K , defined as
Ox,h := p(X` = x | H` = h), ∀h ∈ H, x ∈ X .

• The transition matrix T ∈ R(K+2)×(K+2), de-
fined as Th,h′ := p(H`+1 = h | H` = h′), for
every h, h′ ∈ H ∪ {START, STOP}. This matrix
satisfies T>1 = 1.1

Throughout the rest of the paper we will adopt
X ≡ X` and H ≡ H` to simplify notation, when-
ever the index ` is clear from the context. Under
this generative process, predicting the most proba-
ble label sequence h1:L given observations x1:L is

1That is, it satisfies
∑K

h=1 p(H`+1 = h | H` = h′) +

p(H`+1 = STOP | H` = h′) = 1; and also
∑K

h=1 p(H1 =
h | H0 = START) = 1.

accomplished with the Viterbi algorithm inO(LK2)
time.

If labeled data are available, the model param-
eters O and T can be estimated with the maxi-
mum likelihood principle, which boils down to a
simple counting of events and normalization. If
we only have unlabeled data, the traditional ap-
proach is the expectation-maximization (EM) algo-
rithm, which alternately decodes the unlabeled ex-
amples and updates the model parameters, requiring
multiple passes over the data. The same algorithm
can be used in semi-supervised learning when la-
beled and unlabeled data are combined, by initial-
izing the model parameters with the supervised esti-
mates and interpolating the estimates in the M-step.

2.2 Feature-Based Hidden Markov Models
Sequence models with log-linear emissions have
been considered by Smith and Eisner (2005), in a
discriminative setting, and by Berg-Kirkpatrick et
al. (2010), as generative models for POS induc-
tion. Feature-based HMMs (FHMMs) define a fea-
ture function for words, φ(X) ∈ RW , which can be
discrete or continuous. This allows, for example, to
indicate whether an observation, corresponding to a
word, starts with an uppercase letter, contains digits
or has specific affixes. More generally, it helps with
the treatment of out-of-vocabulary words. The emis-
sion probabilities are modeled as K conditional dis-
tributions parametrized by a log-linear model, where
the θh ∈ RW represent feature weights:

p(X = x | H = h) := exp(θ>hφ(x))/Z(θh). (2)

Above, Z(θh) :=
∑

x′∈X exp(θ>hφ(x′)) is a nor-
malization factor. We will show in §4 how our
moment-based semi-supervised method can also be
used to learn the feature weights θh.

3 Semi-Supervised Learning via Moments

We now describe our moment-based semi-
supervised learning method for HMMs. Through-
out, we assume the availability of a small labeled
dataset DL and a large unlabeled dataset DU .

The full roadmap of our method is shown as Al-
gorithm 1. Key to our method is the decomposition
of a context-word moment matrix Q ∈ RC×V ,
which counts co-occurrences of words and contexts,

288

Algorithm 1 Semi-Supervised Learning of HMMs with
Moments
Input: Labeled dataset DL, unlabeled dataset DU

Output: Estimates of emissions O and transitions T
1: Estimate context-word moments Q̂ from DU (Eq. 5)
2: for each label h ∈ H do
3: Extract set of anchor words A(h) from DL (§3.2)
4: end for
5: Estimate context-label moments R̂ from anchors and
DU (Eq. 12)

6: for each word w ∈ [V] do
7: Solve the QP in Eq. 14 to obtain γw from Q̂, R̂
8: end for
9: Estimate emissions O from Γ via Eq. 15

10: Estimate transitions T from DL

11: Return 〈O,T〉

Figure 1: HMM, context (green) conditionally indepen-
dent of present (red) w` given state h`.

and will be formally defined in §3.1. Such co-
occurrence matrices are often collected in NLP, for
various problems, ranging from dimensionality re-
duction of documents using latent semantic index-
ing (Deerwester et al., 1990; Landauer et al., 1998),
distributional semantics (Schütze, 1998; Levy et al.,
2015) and word embedding generation (Dhillon et
al., 2015; Osborne et al., 2016). We can build such a
moment matrix entirely from the unlabeled dataDU .
The same unlabeled data is used to build an estimate
of a context-label moment matrix R ∈ RC×K , as
explained in §3.3. This is done by first identifying
words that are unambiguously associated with each
label h, called anchor words, with the aid of a few
labeled data; this is outlined in §3.2. Finally, given
empirical estimates of Q and R, we estimate the
emission matrix O by solving a small optimization
problem independently per word (§3.4). The transi-
tion matrix T is obtained directly from the labeled
dataset DL by maximizing the likelihood.

3.1 Moments of Contexts and Words
To formalize the notion of “context,” we introduce
the shorthand Z` := 〈X1:(`−1),X(`+1):L〉. Impor-
tantly, the HMM in Eq. 1 entails the following con-
ditional independence assumption: X` is condition-
ally independent of the surrounding contextZ` given
the hidden state H`. This is illustrated in Figure 1,
using POS tagging as an example task.

We introduce a vector of context features
ψ(Z`) ∈ RC , which may look arbitrarily within
the context Z` (left or right), but not at X` itself.
These features could be “one-hot” representations
or other reduced-dimensionality embeddings (as de-
scribed later in §5). Consider the word w ∈ X an
instance of X ≡ X`. A pivotal matrix in our formu-
lation is the matrix Q ∈ RC×V , defined as:

Qc,w := E[ψc(Z) | X = w]. (3)

Expectations here are taken with respect to the prob-
abilistic model in Eq. 1 that generates the data. The
following quantities will also be necessary:

qc := E[ψc(Z)], pw := p(X = w). (4)

Since all the variables in Eqs. 3–4 are observed, we
can easily obtain empirical estimates by taking ex-
pectations over the unlabeled data:

Q̂c,w =

∑
x,z∈DU

ψc(z)1(x = w)∑
x,z∈DU

1(x = w)
, (5)

q̂c =
∑

x,z∈DU
ψc(z)

/
|DU |, (6)

p̂w =
∑

x,z∈DU
1(x = w)

/
|DU |. (7)

where we take 1(x = w) to be the indicator for word
w. Note that, under our modeling assumptions, Q
decomposes in terms of its hidden states:

E[ψc(Z) | X = w] = (8)
∑

h∈H
p(H = h | X = w)E[ψc(Z) | H = h]

The reason why this holds is that, as stated above,Z
and X are conditionally independent given H .

3.2 Anchor Words
Following Arora et al. (2013) and Cohen and Collins
(2014), we identify anchor words whose hidden

289

state is assumed to be deterministic, regardless of
context. In this work, we generalize this notion to
more than one anchor word per label, for improved
context estimates. This allows for more flexible
forms of anchors with weak supervision. For each
state h ∈ H, let its set of anchor words be

A(h)= {w ∈ X : p(H = h | X = w) = 1} (9)

=
{
w ∈ X : Ow,h>0 ∧Ow,h′=0, ∀h′ 6=h

}
.

That is, A(h) is the set of unambiguous words that
always take the label h. This can be estimated from
the labeled dataset DL by collecting the most fre-
quent unambiguous words for each label.

Algorithms for identifying A(h) from unlabeled
data alone were proposed by Arora et al. (2013) and
Zhou et al. (2014), with application to topic models.
Our work differs in which we do not aim to discover
anchor words from pure unlabeled data, but rather
exploit the fact that small amounts of labeled data
are commonly available in many NLP tasks—better
anchors can be extracted easily from such small la-
beled datasets. In §5 we give a more detailed de-
scription of the selection process.

3.3 Moments of Contexts and Labels

We define the matrix R ∈ RC×K as follows:

Rc,h := E[ψc(Z) | H = h]. (10)

Since the expectation in Eq. 10 is conditioned on the
(unobserved) label h, we cannot directly estimate it
using moments of observed variables, as we do for
Q. However, if we have identified sets of anchor
words for each label h ∈ H, we have:

E[ψc(Z) | X ∈ A(h)] =

=
∑

h′
E[ψc(Z) | H = h′] p(H = h′ | X ∈ A(h))︸ ︷︷ ︸

=1(h′=h)

= Rc,h. (11)

Therefore, given the set of anchor words A(h), the
hth column of R can be estimated in a single pass
over the unlabeled data, as follows:

R̂c,h =

∑
x,z∈DU

ψc(z)1(x ∈ A(h))∑
x,z∈DU

1(x ∈ A(h))
(12)

3.4 Emission Distributions
We can now put all the ingredients above together
to estimate the emission probability matrix O. The
procedure we propose here is computationally very
efficient, since only one pass is required over the un-
labeled data, to collect the co-occurrence statistics Q̂
and R̂. The emissions will be estimated from these
moments by solving a small problem independently
for each word. Unlike EM and self-training, no de-
coding is necessary, only counting and normalizing;
and unlike label propagation methods, there is re-
quirement to build a graph with the unlabeled data.

The crux of our method is the decomposition in
Eq. 8, which is combined with the one-to-one cor-
respondence between labels h and anchor words
A(h). We can rewrite Eq. 8 as:

Qc,w =
∑

h

Rc,h p(H = h | X = w). (13)

In matrix notation, we have Q = RΓ, where Γ ∈
RK×V is defined as Γh,w := p(H = h | X = w).

If we had infinite unlabeled data, our moment es-
timates Q̂ and R̂ would be perfect and we could
solve the system of equations in Eq. 13 to obtain
Γ exactly. Since we have finite data, we resort to
a least squares solution. This corresponds to solv-
ing a simple quadratic program (QP) per word, in-
dependent from all the other words, as follows. De-
note by qw := E[ψ(Z) | X = w] ∈ RC and by
γw := p(H = · | X = w) ∈ RK the wth columns
of Q and Γ, respectively. We estimate the latter dis-
tribution following Arora et al. (2013):

γ̂w = arg min
γw

‖qw −Rγw‖22
s.t. 1>γw = 1, γw ≥ 0.

(14)

Note that this QP is very small—it has only K
variables—hence, we can solve it very quickly (1.7
ms on average, in Gurobi, with K = 12).

Given the probability tables for p(H = h | X =
w), we can estimate the emission probabilities O by
direct application of Bayes rule:

Ôw,h =
p(H = h | X = w)× p(X = w)

p(H = h)
(15)

=
γ̂w,c ×

Eq. 7︷︸︸︷
p̂w∑

w′ γ̂w′,c × p̂w′
. (16)

290

These parameters are guaranteed to lie in the prob-
ability simplex, avoiding the need of heuristics for
dealing with “negative” and “unnormalized” prob-
abilities required by prior work in spectral learn-
ing (Cohen et al., 2013).

3.5 Transition Distributions

It remains to estimate the transition matrix T. For
the problems tackled in this paper, the number of
labels K is small, compared to the vocabulary size
V . The transition matrix has only O(K2) degrees of
freedom, and we found it effective to estimate it us-
ing the labeled sequences in DL alone, without any
refinement. This was done by smoothed maximum
likelihood estimation on the labeled data, which
boils down to counting occurrences of consecutive
labels, applying add-one smoothing to avoid zero
probabilities for unobserved transitions, and normal-
izing.

For problems with numerous labels, a possible al-
ternative is the composite likelihood method (Cha-
ganty and Liang, 2014). Given Ô, the maximization
of the composite log-likelihood function leads to a
convex optimization problem that can be efficiently
optimized with an EM algorithm. A similar proce-
dure was carried out by Cohen and Collins (2014).2

4 Feature-Based Emissions

Next, we extend our method to estimate the param-
eters of the FHMM in §2.2. Other than contextual
features ψ(Z) ∈ RC , we also assume a feature
encoding function for words, φ(X) ∈ RW . Our
framework, illustrated in Algorithm 2, allows for
both discrete and continuous word and context fea-
tures. Lines 2–5 are the same as in Algorithm 1,
replacing word occurrences with expected values of
word features (we redefine Q and Γ to cope with
features instead of words). The main difference
with respect to Algorithm 1 is that we do not es-
timate emission probabilities; rather, we first esti-
mate the mean parameters (feature expectations
E[φ(X) | H = h]), by solving one QP for each

2In preliminary experiments, the compositional likelihood
method was not competitive with estimating the transition ma-
trices directly from the labeled data, on the datasets described
in §6; results are omitted due to lack of space. However, this
may be a viable alternative if there is no labeled data and the
anchors are extracted from gazetteers or a dictionary.

Algorithm 2 Semi-Supervised Learning of Feature-
Based HMMs with Moments
Input: Labeled dataset DL, unlabeled dataset DU

Output: Emission log-linear parameters Θ and transi-
tions T

1: Estimate context-word moments Q̂ from DU

(Eq. 20)
2: for each label h ∈ H do
3: Extract set of anchor words A(h) from DL (§3.2)
4: end for
5: Estimate context-label moments R̂ from the anchors

and DU (Eq. 12)
6: for each word feature j ∈ [W] do
7: Solve the QP in Eq. 22 to obtain γj from Q̂, R̂
8: end for
9: for each label h ∈ H do

10: Estimate the mean parameters µh from Γ (Eq. 24)
11: Estimate the canonical parameters θh from µh by

solving Eq. 25
12: end for
13: Estimate transitions T from DL

14: Return 〈Θ,T〉

emission feature; and then we solve a convex op-
timization problem, for each label h, to recover
the log-linear weights over emission features (called
canonical parameters).

4.1 Estimation of Mean Parameters
First of all, we replace word probabilities by expec-
tations over word features. We redefine the matrix
Γ ∈ RK×W as follows:

Γh,j :=
p(H = h)× E[φj(X) | H = h]

E[φj(X)]
. (17)

Note that, with one-hot word features, we have
E[φw(X) | H = h] = P (X = w | H = h),
E[φw(X)] = p(X = w), and therefore Γh,w =
p(H = h | X = w), so this can be regarded as a
generalization of the framework in §3.4.

Second, we redefine the context-word moment
matrix Q as the following matrix in RC×W :

Qc,j = E [ψc(Z)× φj(X)]/E[φj(X)]. (18)

Again, note that we recover the previous Q if we use
one-hot word features. We then have the following
generalization of Eq. 13:

E [ψc(Z)× φj(X)]/E[φj(X)] = (19)
∑

h E [ψc(Z) | H = h]
P (H=h)E[φj(X)|H=h]

E[φj(X)] ,

291

or, in matrix notation, Q = RΓ.
Again, matrices Q and R can be estimated from

data by collecting empirical feature expectations
over unlabeled sequences of observations. For R
use Eq. 12 with no change; for Q replace Eq. 5 by

Q̂c,j =
∑

x,z∈DU
ψc(z)φj(x)

/∑
x,z∈DU

φj(x). (20)

Let qj ∈ RC and γj ∈ RK be columns of Q̂ and Γ̂,
respectively. Note that we must have

1>γj =
∑

h

P (H=h)E[φj(X)|H=h]
E[φj(X)] = 1, (21)

since E[φj(X)] =
∑

h P (H =
h)E [φj(X) | H = h]. We rewrite the QP to
minimize the squared difference for each dimension
j independently:

γ̂j = arg min
γj

∥∥qj −Rγj
∥∥2

2
s.t. 1>γj = 1.

(22)
Note that, if φ(x) ≥ 0 for all x ∈ X , then we must
have γj ≥ 0, and therefore we may impose this in-
equality as an additional constraint.

Let γ̄ ∈ RK be the vector of state probabilities,
with entries γ̄h := p(H = h) for h ∈ H. This vec-
tor can also be recovered from the unlabeled dataset
and the set of anchors, by solving another QP that
aggregates information for all words:

γ̄ = arg min
γ̄
‖q̄ −Rγ̄‖22 s.t. 1>γ̄ = 1, γ̄ ≥ 0.

(23)
where q̄ := Ê[ψ(Z)] ∈ RC is the vector whose
entries are defined in Eq. 6.

Let µh := E[φ(X) | H = h] ∈ RW be the
mean parameters of the distribution for each state h.
These parameters are computed by solving W inde-
pendent QPs (Eq. 22), yielding the matrix Γ defined
in Eq. 17, and then applying the formula:

µh,j = Γj,h × E[φj(X)]/ γ̄h, (24)

with γ̄h = p(H = h) estimated as in Eq. 23.

4.2 Estimation of Canonical Parameters
To compute a mapping from mean parameters µh
to canonical parameters θh, we use the well-known
Fenchel-Legendre duality between the entropy and
the log-partition function (Wainwright and Jordan,

2008). Namely, we need to solve the following con-
vex optimization problem:

θ̂h = arg max
θh

θ>hµh − logZ(θh) + ε‖θh‖, (25)

where ε is a regularization constant.3 In practice,
this regularization is important, since it prevents θh
from growing unbounded whenever µh falls outside
the marginal polytope of possible mean parameters.
We solve Eq. 25 with the limited-memory BFGS al-
gorithm (Liu and Nocedal, 1989).

5 Method Improvements

In this section we detail three improvements to our
moment-based method that had a practical impact.

Supervised Regularization. We add a supervised
penalty term to Eq. 22 to keep the label posteriors γj
close to the label posteriors estimated in the labeled
set, γ ′j , for every feature j ∈ [W]. The regularized
least-squares problem becomes:

min
γj

(1− λ)‖qj −Rγj‖2 + λ‖γj−γ ′j‖2

s.t. 1>γj = 1. (26)

CCA Projections. A one-hot feature representa-
tion of words and contexts has the disadvantage that
it grows with the vocabulary size, making the mo-
ment matrix Q too sparse. The number of contex-
tual features and words can grow rapidly on large
text corpora. Similarly to Cohen and Collins (2014)
and Dhillon et al. (2015), we use canonical correla-
tion analysis (CCA) to reduce the dimension of these
vectors. We use CCA to form low-dimensional pro-
jection matrices for features of words PW ∈ RW×D
and features of contexts PC ∈ RC×D, with D �
min{W,C}. We use these projections on the origi-
nal feature vectors and replace the these vectors with
their projections.

Selecting Anchors. We collect counts of each
word-label pair, and select up to 500 anchors with
high conditional probability on the anchoring state
p̂(h | w). We tuned the probability threshold to

3As shown by Xiaojin Zhu (1999) and Yasemin Altun
(2006), this regularization is equivalent, in the dual, to a “soft”
constraint ‖Eθh [φ(X) | H = h]− µh‖2 ≤ ε, as opposed to a
strict equality.

292

select the anchors on the validation set, using steps
of 0.1 in the unit interval, and making sure that all
tags have at least one anchor. We also considered
a frequency threshold, constraining anchors to oc-
cur more than 500 times in the unlabeled corpus,
and four times in the labeled corpus. Note that
past work used a single anchor word per state (i.e.,
|A(h)| = 1). We found that much better results are
obtained when |A(h)| � 1, as choosing more an-
chors increases the number of samples used to esti-
mate the context-label moment matrix R̂, reducing
noise.

6 Experiments

We evaluated our method on two tasks: POS tagging
of Twitter text (in English), and POS tagging for a
low-resource language (Malagasy). For all the ex-
periments, we used the universal POS tagset (Petrov
et al., 2012), which consists of K = 12 tags.
We compared our method against supervised base-
lines (HMM and FHMM), which use the labeled
data only, and two semi-supervised baselines that
exploit the unlabeled data: self-training and EM.
For the Twitter experiments, we also evaluated a
stacked architecture in which we derived features
from our model’s predictions to improve a state-of-
the-art POS tagger (MEMM).4

6.1 Twitter POS Tagging

For the Twitter experiment, we used the Oct27
dataset of Gimpel et al. (2011), with the provided
partitions (1,000 tweets for training and 328 for val-
idation), and tested on the Daily547 dataset (547
tweets). Anchor words were selected from the train-
ing partition as described in §5. We used 2.7M
unlabeled tweets (O’Connor et al., 2010) to train
the semi-supervised methods, filtering the English
tweets as in Lui and Baldwin (2012), tokenizing
them as in Owoputi et al. (2013), and normalizing
at-mentions, URLs, and emoticons.

We used as word features φ(X) the word iself,
as well as binary features for capitalization, titles,
and digits (Berg-Kirkpatrick et al., 2010), the word
shape, and the Unicode class of each character. Sim-
ilarly to Owoputi et al. (2013), we also used suf-
fixes and prefixes (up to length 3), and Twitter-

4http://www.ark.cs.cmu.edu/TweetNLP/

0.7

0.75

0.8

0.85

0.9

0.95

0 100 200 300 400 500 600 700 800 900 1000

Ta
gg

in
g

ac
cu

ra
cy

 (0
/1

 lo
ss

)

Labeled sequences

anchor FHMM λ=0 FHMM
anchor FHMM λ=1 HMM

Figure 2: POS tagging accuracy in the Twitter data versus
the number of labeled training sequences.

specific features: whether the word starts with @,
#, or http://. As contextual features ψ(Z), we de-
rive analogous features for the preceding and fol-
lowing words, before reducing dimensionality with
CCA. We collect feature expectations for words and
contexts that occur more than 20 times in the un-
labeled corpus. We tuned hyperparameters on the
development set: the supervised interpolation co-
efficient in Eq. 26, λ ∈ {0, 0.1, . . . , 1.0}, and,
for all systems, the regularization coefficient ε ∈
{0.0001, 0.001, 0.01, 0.1, 1, 10}. (Underlines indi-
cate selected values.) The former controls how
much we rely on the supervised vs. unsupervised es-
timates. For λ = 1.0 we used supervised estimates
only for words that occur in the labeled corpus, all
the remaining words rely solely on unsupervised es-
timates.

Varying supervision. Figure 2 compares the
learning curves of our anchor-word method for the
FHMM with the supervised baselines. We show
the performance of the anchor methods without in-
terpolation (λ = 0), and with supervised interpo-
lation coefficient (λ = 1). When the amount of
supervision is small, our method with and without
interpolation outperforms all the supervised base-
lines. This improvement is gradually attenuated
when more labeled sequences are used, with the su-
pervised FHMM catching up when the full labeled
dataset is used. The best model λ = 1.0 relies on
supervised estimates for words that occur in the la-
beled corpus, and on anchor estimates for words that
occur only in the unlabeled corpus. The unregular-

293

HMM FHMM
Models / #sequences 150 1000 150 1000
Supervised baseline
HMM 71.7 81.1 81.8 89.1
Semi-supervised baselines
EM 77.2 83.1 81.8 89.1
self-training 78.2 86.1 83.4 89.4
Anchor Models
anchors, λ = 0.0 83.0 85.5 84.1 86.7
anchors, λ = 1.0 84.3 88.0 85.3 89.1

Table 1: Tagging accuracies on Twitter. Shown are
the supervised and semi-supervised baselines, and our
moment-based method, trained with 150 training labeled
sequences, and the full labeled corpus (1000 sequences).

ized model λ = 0.0 relies solely on unsupervised
estimates given the set of anchors.

Semi-supervised comparison. Next, we compare
our method to two other semi-supervised baselines,
using both HMMs and FHMMs: EM and self-
training. EM requires decoding and counting in
multiple passes over the full unlabeled corpus. We
initialized the parameters with the supervised esti-
mates, and selected the iteration with the best ac-
curacy on the development set.5 The self-training
baseline uses the supervised system to tag the unla-
beled data, and then retrains on all the data.

Results are shown in Table 1. We observe that,
for small amounts of labeled data (150 tweets), our
method outperforms all the supervised and semi-
supervised baselines, yielding accuracies 6.1 points
above the best semi-supervised baseline for a simple
HMM, and 1.9 points above for the FHMM. With
more labeled data (1,000 instances), our method out-
performs all the baselines for the HMM, but not with
the more sophisticated FHMM, in which our accura-
cies are 0.3 points below the self-training method.6

These results suggest that our method is more effec-
tive when the amount of labeled data is small.

5The FHMM with EM did not perform better than the su-
pervised baseline, so we consider the initial value as the best
accuracy under this model.

6According to a word-level paired Kolmogorov-Smirnov
test, for the FHMM with 1,000 tweets, the self-training method
outperforms the other methods with statistical significance at
p < 0.01; and for the FHMM with 150 tweets the anchor-based
and self-training methods outperform the other baselines with
the same p-value. Our best HMM outperforms the other base-
lines at a significance level of p < 0.01 for 150 and 1000 se-
quences.

150 1000
MEMM (same+clusters) 89.57 93.36
MEMM (same+clusters+posteriors) 91.14 93.18
MEMM (all+clusters) 91.55 94.17
MEMM (all+clusters+posteriors) 92.06 94.11

Table 2: Tagging accuracy for the MEMM POS tagger of
Owoputi et al. (2013) with additional features from our
model’s posteriors.

Stacking features. We also evaluated a stacked ar-
chitecture in which we use our model’s predictions
as an additional feature to improve the state-of-the-
art Twitter POS tagger of Owoputi et al. (2013). This
system is based on a semi-supervised discriminative
model with Brown cluster features (Brown et al.,
1992). We provide results using their full set of fea-
tures (all), and using the same set of features in our
anchor model (same). We compare tagging accuracy
on a model with these features plus Brown clusters
(+clusters) against a model that also incorporates
the posteriors from the anchor method as an addi-
tional feature in the MEMM (+clusters+posteriors).
The results in Table 2 show that using our model’s
posteriors are beneficial in the small labeled case,
but not if the entire labeled data is used.

Runtime comparison. The training time of an-
chor FHMM is 3.8h (hours), for self-training HMM
10.3h, for EM HMM 14.9h and for Twitter MEMM
(all+clusters) 42h. As such, the anchor method is
much more efficient than all the baselines because
it requires a single pass over the corpus to collect
the moment statistics, followed by the QPs, with-
out the need to decode the unlabeled data. EM and
the Brown clustering method (the latter used to ex-
tract features for the Twitter MEMM) require several
passes over the data; and the self-training method in-
volves decoding the full unlabeled corpus, which is
expensive when the corpus is large. Our analysis
adds to previous evidence that spectral methods are
more scalable than learning algorithms that require
inference (Parikh et al., 2012; Cohen et al., 2013).

6.2 Malagasy POS Tagging

For the Malagasy experiment, we used the small la-
beled dataset from Garrette et al. (2013), which con-
sists of 176 sentences and 4,230 tokens. We also
make use of their tag dictionaries with 2,773 types

294

Models Accuracies
supervised FHMM 90.5
EM FHMM 90.5
self-training FHMM 88.7
anchors FHMM (token), λ=1.0 89.4
anchors FHMM (type+token), λ=1.0 90.9

Table 3: Tagging accuracies for the Malagasy dataset.

and 23 tags, and their unlabeled data (43.6K se-
quences, 777K tokens). We converted all the orig-
inal POS tags to universal tags using the mapping
proposed in Garrette et al. (2013).

Table 3 compares our method with semi-
supervised EM and self-training, for the FHMM.We
tested two supervision settings: token only, and
type+token annotations, analogous to Garrette et al.
(2013). The anchor method outperformed the base-
lines when both type and token annotations were
used to build the set of anchor words.7

7 Conclusion

We proposed an efficient semi-supervised sequence
labeling method using a generative log-linear model.
We use contextual information from a set of an-
chor observations to disambiguate state, and build
a weakly supervised method from this set. Our
method outperforms other supervised and semi-
supervised methods, with small supervision in POS-
tagging for Malagasy, a scarcely annotated lan-
guage, and for Twitter. Our anchor method is most
competitive for learning with large amounts of un-
labeled data, under weak supervision, while training
an order of magnitude faster than any of the base-
lines.

Acknowledgments

Support for this research was provided by
Fundação para a Ciência e Tecnologia (FCT)
through the CMU Portugal Program under grant
SFRH/BD/52015/2012. This work has also been
partially supported by the European Union under
H2020 project SUMMA, grant 688139, and by

7Note that the accuracies are not directly comparable to Gar-
rette et al. (2013), who use a different tag set. However, our
supervised baseline trained on those tags is already superior to
the best semi-supervised system in Garrette et al. (2013), as we
get 86.9% against the 81.2% reported in Garrette et al. (2013)
using their tagset.

FCT, through contracts UID/EEA/50008/2013,
through the LearnBig project (PTDC/EEI-
SII/7092/2014), and the GoLocal project (grant
CMUPERI/TIC/0046/2014).

References

Sanjeev Arora, Rong Ge, Yoni Halpern, David Mimno,
David Sontag Ankur Moitra, Yichen Wu, and Michael
Zhu. 2013. A practical algorithm for topic model-
ing with provable guarantees. In Proc. of International
Conference of Machine Learning.

Raphaël Bailly, Xavier Carreras, Franco M. Luque, and
Ariadna Quattoni. 2013. Unsupervised spectral learn-
ing of WCFG as low-rank matrix completion. In Proc.
of Empirical Methods in Natural Language Process-
ing, pages 624–635.

Borja Balle and Mehryar Mohri. 2012. Spectral learning
of general weighted automata via constrained matrix
completion. In Advances in Neural Information Pro-
cessing Systems, pages 2168–2176.

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté,
John DeNero, and Dan Klein. 2010. Painless unsu-
pervised learning with features. In Human Language
Technologies: Conference of the North American As-
sociation of Computational Linguistics.

Peter F. Brown, Peter V. de Souza, Robert L. Mercer, Vin-
cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-
based n-gram models of natural language. Computa-
tional Linguistics, 18(4):467–479.

Arun T. Chaganty and Percy Liang. 2014. Estimating
latent-variable graphical models using moments and
likelihoods. In Proc. of International Conference on
Machine Learning.

Shay B. Cohen and Michael Collins. 2014. A provably
correct learning algorithm for latent-variable PCFGs.
In Proc. of Association for Computational Linguistics.

Shay B. Cohen, Karl Stratos, Michael Collins, Dean P.
Foster, and Lyle Ungar. 2013. Experiments with
spectral learning of latent-variable PCFGs. In Proc.
of North American Association of Computational Lin-
guistics.

Scott Deerwester, Susan T. Dumais, George W. Furnas,
Thomas K. Landauer, and Richard Harshman. 1990.
Indexing by latent semantic analysis. Journal of the
American Society for Information Science, 41(6):391–
407.

Paramveer S. Dhillon, Dean P. Foster, and Lyle H. Ungar.
2015. Eigenwords: Spectral word embeddings. Jour-
nal of Machine Learning Research, 16:3035–3078.

Dan Garrette, Jason Mielens, and Jason Baldridge. 2013.
Real-world semi-supervised learning of POS-taggers

295

for low-resource languages. In Proc. of Association
for Computational Linguistics.

Gimpel, Schneider, O’Connor, Das, Mills, Eisenstein,
Heilman, Yogatama, Flanigan, and Smith. 2011. Part-
of-speech tagging for twitter: Annotation, features,
and experiments. In Proc. of Association of Compu-
tational Linguistics.

Daniel Hsu, Sham M. Kakade, and Tong Zhang. 2012.
A spectral algorithm for learning hidden markov mod-
els. Journal of Computer and System Sciences,
78(5):1460–1480.

Thomas K. Landauer, Peter W. Foltz, and Darrell La-
ham. 1998. An introduction to latent semantic analy-
sis. Discourse Processes 25, pages 259–284.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associa-
tion for Computational Linguistics, 3:211–225.

Dong Liu and Jorge Nocedal. 1989. On the limited mem-
ory bfgs method for large scale optimization. Mathe-
matical Programming, 45:503–528.

Marco Lui and Timothy Baldwin. 2012. langid.py:
An off-the-shelf language identification tool. In Proc.
of Association of Computational Linguistics System
Demonstrations, pages 25–30.

Bernard Merialdo. 1994. Tagging english text with
a probabilistic model. Computational Linguistics,
20(2):155–171.

Thang Nguyen, Jordan Boyd-Graber, Jeff Lund, Kevin
Seppi, and Eric Ringger. 2015. Is your anchor go-
ing up or down? Fast and accurate supervised topic
models. In Proc. of North American Association for
Computational Linguistics.

Brendan O’Connor, Michel Krieger, and David Ahn.
2010. TweetMotif: Exploratory search and topic sum-
marization for Twitter. In Proc. of AAAI Conference
on Weblogs and Social Media.

Dominique Osborne, Shashi Narayan, and Shay B. Co-
hen. 2016. Encoding prior knowledge with eigenword
embeddings. Transactions of the Association of Com-
putational Linguistics.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin
Gimpel, Nathan Schneider, and Noah A Smith. 2013.
Improved part-of-speech tagging for online conversa-
tional text with word clusters. In Proc. of North Amer-
ican Association for Computational Linguistics.

Ankur P. Parikh, Lee Song, Mariya Ishteva, Gabi
Teodoru, and Eric P. Xing. 2012. A spectral algo-
rithm for latent junction trees. In Proc. of Uncertainty
in Artificial Intelligence.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proc. of Interna-
tional Conference on Language Resources and Evalu-
ation (LREC).

Ariadna Quattoni, Borja Balle, Xavier Carreras, and
Amir Globerson. 2014. Spectral regularization for
max-margin sequence tagging. In Proc. of Interna-
tional Conference of Machine Learning, pages 1710–
1718.

Hinrich Schütze. 1998. Automatic word sense discrimi-
nation. Computational Linguistics, 24(1):97–123.

Noah A. Smith and Jason Eisner. 2005. Contrastive esti-
mation: Training log-linear models on unlabeled data.
In Proc. of Association for Computational Linguistics,
pages 354–362.

Karl Stratos, Alexander M. Rush, Shay B. Cohen, and
Michael Collins. 2013. Spectral learning of refine-
ment hmms. In Proc. of Computational Natural Lan-
guage Learning.

Karl Stratos, Michael Collins, and Daniel J. Hsu. 2016.
Unsupervised part-of-speech tagging with anchor hid-
den markov models. Transactions of the Association
for Computational Linguistics, 4:245–257.

Martin J. Wainwright and Michael I. Jordan. 2008.
Graphical models, exponential families, and varia-
tional inference. Foundations and Trends in Machine
Learning, 1(2):1–305.

Roni Rosenfeld Xiaojin Zhu, Stanley F. Chen. 1999.
Linguistic features for whole sentence maximum en-
tropy language models. In European Conference on
Speech Communication and Technology.

Alexander J. Smola Yasemin Altun. 2006. Unifying
divergence minimization and statistical inference via
convex duality. In Proc. of Conference on Learning
Theory.

Tianyi Zhou, Jeff A. Bilmes, and Carlos Guestrin. 2014.
Divide-and-conquer learning by anchoring a conical
hull. In Advances in Neural Information Processing
Systems.

296

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 297–306,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning from Explicit and Implicit Supervision Jointly
For Algebra Word Problems

Shyam Upadhyay1 Ming-Wei Chang2 Kai-Wei Chang3 Wen-tau Yih2

1University of Illinois at Urbana-Champaign, Urbana, IL, USA
2Microsoft Research, Redmond, WA, USA

3University of Virginia, Charlottesville, VA, USA

Abstract

Automatically solving algebra word problems
has raised considerable interest recently. Ex-
isting state-of-the-art approaches mainly rely
on learning from human annotated equations.
In this paper, we demonstrate that it is pos-
sible to efficiently mine algebra problems and
their numerical solutions with little to no man-
ual effort. To leverage the mined dataset, we
propose a novel structured-output learning al-
gorithm that aims to learn from both explicit
(e.g., equations) and implicit (e.g., solutions)
supervision signals jointly. Enabled by this
new algorithm, our model gains 4.6% abso-
lute improvement in accuracy on the ALG-
514 benchmark compared to the one without
using implicit supervision. The final model
also outperforms the current state-of-the-art
approach by 3%.

1 Introduction

Algebra word problems express mathematical rela-
tionships via narratives set in a real-world scenario,
such as the one below:

Maria is now four times as old as Kate.
Four years ago, Maria was six times as

old as Kate. Find their ages now.

The desired output is an equation system which ex-
presses the mathematical relationship symbolically:
m = 4× n and m− 4 = 6× (n− 4) where m and
n represent the age of Maria and Kate, respectively.
The solution (i.e., m = 40, n = 10) can be found by
a mathematical engine given the equation systems.
Building efficient automatic algebra word problem

solvers have clear values for online education sce-
narios. The challenge itself also provides a good
test bed for evaluating an intelligent agent that un-
derstands natural languages, a direction advocated
by artificial intelligence researchers (Clark and Et-
zioni, 2016).

One key challenge of solving algebra word prob-
lems is the lack of fully annotated data (i.e., the an-
notated equation system associated with each prob-
lem). In contrast to annotating problems with binary
or categorical labels, manually solving algebra word
problems to provide correct equations is time con-
suming. As a result, existing benchmark datasets
are small, limiting the performance of supervised
learning approaches. However, thousands of alge-
bra word problems have been posted and discussed
in online forums, where the solutions can be easily
mined, despite the fact that some of them could be
incorrect. It is thus interesting to ask whether a bet-
ter algebra problem solver can be learned by lever-
aging these noisy and implicit supervision signals,
namely the solutions.

In this work, we address the technical difficulty of
leveraging implicit supervision in learning an alge-
bra word problem solver. We argue that the effec-
tive strategy is to learn from both explicit and im-
plicit supervision signals jointly. In particular, we
design a novel online learning algorithm based on
structured-output Perceptron. By taking both kinds
of training signals together as input, the algorithm
iteratively improves the model, while at the same
time it uses the intermediate model to find candidate
equation systems for problems with only numerical
solutions.

297

Our contributions are summarized as follows.
• We propose a novel learning algorithm (Sec-

tion 3 and 4) that jointly learns from both ex-
plicit and implicit supervision. Under different
settings, the proposed algorithm outperforms
the existing supervised and weakly supervised
algorithms (Section 6) for algebra word prob-
lems.
• We mine the problem-solution pairs for alge-

bra word problems from an online forum and
show that we can effectively obtain the implicit
supervision with little to no manual effort (Sec-
tion 5).1

• By leveraging both implicit and explicit su-
pervision signals, our final solver outperforms
the state-of-the-art system by 3% on ALG-
514, a popular benchmark data set proposed by
(Kushman et al., 2014).

2 Related Work

Automatically solving mathematical reasoning
problems expressed in natural language has been
a long-studied problem (Bobrow, 1964; Newell et
al., 1959; Mukherjee and Garain, 2008). Recently,
Kushman et al. (2014) created a template-base
search procedure to map word problems into
equations. Then, several following papers studied
different aspects of the task: Hosseini et al. (2014)
focused on improving the generalization ability of
the solvers by leveraging extra annotations; Roy
and Roth (2015) focused on how to solve arithmetic
problems without using any pre-defined template.
In (Shi et al., 2015), the authors focused on number
word problems and proposed a system that is
created using semi-automatically generated rules.
In Zhou et al. (2015), the authors simplified the
inference procedure and pushed the state-of-the-art
benchmark accuracy. The idea of learning from
implicit supervision is discussed in (Kushman et
al., 2014; Zhou et al., 2015; Koncel-Kedziorski
et al., 2015), where the authors train the algebra
solvers using only the solutions with little or no
annoated equation systems. We discuss this in detail
in Section 4.

1The new resource and the dataset we used for training is
available soon on https://aka.ms/dataimplicit and
https://aka.ms/datadraw

Solving automatic algebra word problems can be
viewed as a semantic parsing task. In the semantic
parsing community, the technique of learning from
implicit supervision signals has been applied (un-
der the name response-driven learning (Clarke et al.,
2010)) to knowledge base question answering tasks
such as Geoquery (Zelle and Mooney, 1996) and
WebQuestions (Berant et al., 2013) or mapping in-
structions to actions (Artzi and Zettlemoyer, 2013).
In these tasks, researchers have shown that it is pos-
sible to train a semantic parser only from question-
answer pairs, such as “What is the largest state bor-
dering Texas?” and “New Mexico” (Clarke et al.,
2010; Liang et al., 2013; Yih et al., 2015).

One key reason that such implicit supervision is
effective is because the correct semantic parses of
the questions can often be found using the answers
and the knowledge base alone, with the help of
heuristics developed for the specific domain. For
instance, when the question is relatively simple
and does not have complex compositional structure,
paths in the knowledge graph that connect the an-
swers and the entities in the narrative can be inter-
preted as legitimate semantic parses. However, as
we will show in our experiments, learning from im-
plicit supervision alone is not a viable strategy for
algebra word problems. Compared to the knowl-
edge base question answering problems, one key dif-
ference is that a large number (potentially infinitely
many) of different equation systems could end up
having the same solutions. Without a database or
special rules for combining variables and coeffi-
cients, the number of candidate equation systems
cannot be trimmed effectively, given only the solu-
tions.

From the algorithmic point of view, our proposed
learning framework is related to several lines of
work. Similar efforts have been made to develop la-
tent structured prediction models (Yu and Joachims,
2009; Chang et al., 2013; Zettlemoyer and Collins,
2007) to find latent semantic structures which best
explain the answer given the question. Our algo-
rithm is also influenced by the discriminative re-
ranking algorithms (Collins, 2000; Ge and Mooney,
2006; Charniak and Johnson, 2005) and models
for learning from intractable supervision (Steinhardt
and Liang, 2015).

Recently, Huang et al. (2016) collected a large

298

number of noisily annotated word problems from
online forums. While they collected a large-scale
dataset, unlike our work, they did not demonstrate
how to utilize the newly crawled dataset to improve
existing systems. It will be interesting to see if our
proposed algorithm can make further improvements
using their newly collected dataset.2

3 Problem Definition

Table 1 lists all the symbols representing the compo-
nents in the process. The input algebra word prob-
lem is denoted by x, and the output y = (T,A) is
called a derivation, which consists of an equation
system template T and an alignment A. A template
T is a family of equation systems parameterized by
a set of coefficients C(T) = {ci}ki=1, where each co-
efficient ci aligns to a textual number (e.g., four) in a
word problem. Let Q(x) be all the textual numbers
in the problem x, and C(T) be the coefficients to be
determined in the template T . An alignment is a set
of tuples A = {(q, c) | q ∈ Q(x), c ∈ C(T) ∪ {ε}},
where the tuple (q, ε) indicates that the number q is
not relevant to the final equation system. By spec-
ifying the value of each coefficient, it identifies an
equation system belonging to the family represented
by template T . Together, T and A generate a com-
plete equation system, and the solution z can be de-
rived by the mathematical engine E.

Following (Kushman et al., 2014; Zhou et al.,
2015), our strategy of mapping a word problem to
an equation system is to first choose a template that
consists of variables and coefficients, and then align
each coefficient to a textual number mentioned in
the problem. We formulate the mapping between
an algebra word problem and an equation system as
a structured learning problem. The output space is
the set of all possible derivations using templates
that are observed in the training data. Our model
maps x to y = (T,A) by a linear scoring function
wTΦ(x,y), where w is the model parameters and
Φ is the feature functions. At test time, our model
scores all the derivation candidates and picks the
best one according to the model score. We often
refer to y as a semantic parse, as it represents the
semantics of the algebra word problem.

2The dataset has not been made public at the time of publi-
cation.

...

x2

y1

y2

y3

y17650

y4

...

z1

z2

z3

z17650

z4

...

x1

y1

y2

y*

y17650

y4

...

z1

z2

z*

z17650

z4

? z2
*

Input

Sematic
Parses

Derived
Solutions

Input

Sematic
Parses

Derived
Solutions

Annotated
Response

Figure 1: Left: Explicit supervision signals. Note that
the solution z can be derived by the semantic parses y.
Right: Implicit supervision signals. In this case, we only
have the annotated response z∗2. It is difficult to use z∗2
to find the correct derivation, as multiple derivations may
lead to the same solution. Therefore, the learning algo-
rithm has to explore the output space to guide the model
in order to match the annotated response.

Properties of Implicit Supervision Signals We
discuss some key properties of the implicit supervi-
sion signal to explain several design choices of our
algorithm. Figure 1 illustrates the main differences
between implicit and explicit supervision signals.

Algorithms that learn from implicit supervision
signals face the following challenges. First, the
learning system usually does not model directly the
correlations between the input x and the solution
z. Instead, the mapping is handled by an external
procedure such as a mathematical engine. There-
fore, E(y) is effectively a one-directional function.
As a result, finding semantic parses (derivations)
from responses (solutions) E−1(z) can sometimes
be very slow or even intractable. Second, in many
cases, even if we could find a semantic parse from
responses, multiple combinations of templates and
alignments could end up with the same solution set
(e.g., the solutions of equations 2 + x = 4 and
2 × x = 4 are the same). Therefore, the implicit
supervision signals may be incomplete and noisy,
and using the solutions alone to guide the training
procedure might not be sufficient. Finally, since we
need to have a complete derivation before we can
observe the response of the mathematical engine E,
we cannot design efficient inference methods such
as dynamic programming algorithms based on par-
tial feedback. As a result, we have to perform explo-
ration during learning to search for fully constructed
semantic parses that can generate the correct solu-
tion.

299

Term Symbol Example

Word Problem x Maria is now four times as old as Kate. Four years ago, Maria was six
times as old as Kate. Find their ages now.

Derivation (Semantic Parse) y = (T,A) ({m− a× n = −1× a× b+ b,m− c× n = 0}, A)
Solution z n = 10, m = 40

Mathematical Engine E : y→ z After determining the coefficients, the equation system is {m = 4 × n,
m− 4 = 6× (n− 4)}. The solution is thus n = 10, m = 40.

Variables v m, n

Textual Number3 Q(x) {four, Four, six}
Equation System Template T {m− a× n = −1× a× b+ b,m− c× n = 0}
Coefficients C(T) a, b, c

Alignment A six→ a, Four→ b, four→ c

Table 1: Notation used in this paper to formally describe the problem of mapping algebra word problems to equations.

4 Learning from Mixed Supervision

We assume that we have two sets: De = {(xe,ye)}
and Dm = {(xm, zm)}. De contains the fully an-
notated equation system ye for each algebra word
problem xe, whereas in Dm, we have access to the
numerical solution zm to each problem, but not the
equation system (ym = ∅). We refer toDe as the ex-
plicit set and Dm as the implicit set. For the sake of
simplicity, we explain our approach by modifying
the training procedure of the structured Perceptron
algorithm (Collins, 2002).4

As discussed in Section 3, the key challenge of
learning from implicit supervision is that the map-
ping E(y) is one-directional. Therefore, the correct
equation system cannot be easily derived from the
numerical solution. Intuitively, for data with only
implicit supervision, we can explore the structure
space Y and find the best possible derivation ỹ ∈ Y
according to the current model. If E(ỹ) matches z,
then we can update the model based on ỹ. Following
this intuition, we propose MixedSP (Algorithm 1).

For each example, we use an approximate search
algorithm to collect top scoring candidate structures.
The algorithm first ranks the top-K templates ac-
cording to the model score, and forms a candidate
set by expanding all possible derivations that use
the K templates (Line 3). The final candidate set
is Ω = {y1,y2, . . . ,yK} ⊂ Y .

When the explicit supervision is available (i.e.,

4Our approach can be easily extended to other structured
learning algorithms such as Structured SVM (Taskar et al.,
2004; Tsochantaridis et al., 2004).

(xi,yi) ∈ De), our algorithm follows the standard
structured prediction update procedure. We find the
best scoring structure ŷ in Ω and then update the
model using the difference of the feature vectors be-
tween the gold output structure yi and the best scor-
ing structure ŷ (Line 6).

When only implicit supervision is available (i.e.,
(xi, zi) ∈ Dm), our algorithm uses the current
model to conduct a guided exploration, which it-
eratively finds structures that best explain the im-
plicit supervision, and use the explanatory structure
for making updates. As mentioned in Section 3,
we have to explore and examine each structure in
the candidate set Ω. This is due the fact that par-
tial structure cannot be used for finding the right re-
sponse, as getting response E(y) requires complete
derivations. In Line 9, we want to find the deriva-
tions y where its solution E(y) matches the implicit
supervision zi. More specifically,

ỹ = arg min
y∈Ω

∆(E(y), zi), (1)

where ∆ is a loss function to estimate the dis-
agreement between E(y) and zi. In our experi-
ments, we simply set ∆(E(y), zi) to be 0 if the
solution partially matches, and 1 otherwise.5 If
more than one derivation achieves the minimal value
of ∆(E(y), zi), we break ties by choosing the
derivation with higher score wTφ(xi,y). This tie-

5The mined solutions are often incomplete for some vari-
ables (e.g. solution y=6 but no value for x could be mined).
We allow partial matches so that the model can learn from the
incomplete implicit signals as well.

300

Algorithm 1 Structured Perceptron with Mixed Super-
vision. (MixedSP)

Input: De, Dm, L = |De|+ |Dm|, T , K, γ ∈ [0, 1)
1: for t = 1 . . . N do . training epochs
2: for i = 1 . . . L do
3: Ω ← find top-K structures {y} approxi-

mately
4: if yi 6= ∅ then . explicit supervision
5: ŷ← arg max

y∈Ω
wTφ(xi,y)

6: w← w + η (φ(x,yi)− φ(x, ŷ))
7: else if t ≥ γN then . implicit supervision
8: ŷ← arg max

y∈Ω
wTφ(xi,y)

9: Pick ỹ from Ω by Eq. (1). . exploration
10: w← w + η (φ(x, ỹ)− φ(x, ŷ))

11: Return the average of w

breaking strategy is important – in practice, several
derivations may lead to the gold numerical solution;
however, only few of them are correct. The tie-
breaking strategy relies on the current model and
the structured features φ(xi,y) to filter out incor-
rect derivations during training. Finally, the model
is updated using ỹ in Line 10.

Similar to curriculum learning (Bengio et al.,
2009), it is important to control when the algorithm
starts exploring the output space using weak super-
vision. Exploring too early may mislead the model,
as the structured feature weights w may not be able
to help filter out incorrect derivations, while explor-
ing too late may lead to under-utilization of the im-
plicit supervision. We use the parameter γ to control
when the model starts to learn from implicit supervi-
sion signals. The parameter γ denotes the fraction of
the training time that the model uses purely explicit
supervision.

Key Properties of Our Algorithm The idea of us-
ing solutions to train algebra word problem solvers
has been discussed in (Kushman et al., 2014)
and (Zhou et al., 2015). However, their implicit su-
pervision signals are created from clean, fully super-
vised data, and the experiments use little to no ex-
plicit supervision examples.6 While their algorithms
are interesting, the experimental setting is somewhat
unrealistic as the implicit signals are simulated.

6Prior work (Kushman et al., 2014) has used only 5 explicit
supervision examples when training with solutions.

On the other hand, the goal of our algorithm is
to significantly improve a strong solver with a large
quantity of unlabeled data. Moreover, our implicit
supervision signals are noisier given that we crawled
the data automatically, and the clean labeled equa-
tion systems are not available to us. As a result, we
have made several design choices to address issues
of learning from noisy implicit supervision signals
in practice.

First, the algorithm is designed to perform up-
dates conservatively. Indeed, in Line 10, the algo-
rithm will not perform an update if the model could
not find any parses matching the implicit signals in
Line 9. That is, if ∆(E(y), zi) = 1 for all y ∈ Ω,
ỹ = ŷ due to the tie-breaking mechanism. This
ensures that the algorithm drives the learning using
only those structures which lead to the correct solu-
tion, avoiding undesirable effects of noise.

Second, the algorithm does not use implicit su-
pervision signals in the early stage of model train-
ing. Learning only on clean and explicit supervision
helps derive a better intermediate model, which later
allows exploring the output space more efficiently
using the implicit supervision signals.

Existing semantic parsing algorithms typically
use either implicit or explicit supervision signals ex-
clusively (Zettlemoyer and Collins, 2007; Berant et
al., 2013; Artzi and Zettlemoyer, 2013). In contrast,
MixedSP makes use of both explicit and implicit su-
pervised examples mixed at the training time.

5 Mining Implicit Supervision Signals

In this section, we describe the process of collect-
ing SOL-2K, a data set containing question-solution
pairs of algebra word problems from a Web forum7,
where students and tutors interact to solve math
problems.

A word problem posted on the forum is often ac-
companied by a detailed explanation provided by tu-
tors, which includes a list of the relevant equations.
However, these posted equations are not suitable for
direct use as labeled data, as they are often imprecise
or incomplete. For instance, tutors often omit many
simplification steps when writing the equations. A
commonly observed example is that (5-3)x+2y
would be directly written as 2x+2y. Despite being

7http://www.algebra.com

301

mathematically equivalent, learning from the latter
equation is not desirable as the model may learn that
5 and 3 appearing the text are irrelevant. An ex-
treme case of this is when tutors directly post the so-
lution (such as x=2 and y=5), without writing any
equations. Another observation is that tutors often
write two-variable equation systems with only one
variable. For example, instead of writing x+y=10,
x-y=2, many tutors pre-compute x=10-y using
the first equation and substitute it in the second one,
which results in 10-y-y=2. It is also possible that
the tutor wrote the incorrect equation system, but
while explaining the steps, made corrections to get
the right answer. These practical issues make it dif-
ficult to use the crawled equations for explicit super-
vision directly.

On the other hand, it is relatively easy to ob-
tain question-solution pairs with simple heuristics.
We use a simple strategy to generate the solution
from the extracted equations. We greedily select
equations in a top-down manner, declaring suc-
cess as soon as we find an equation system that
can be solved by a mathematical engine (we used
SymPy (Sympy Development Team, 2016)). Equa-
tions that cause an exception in the solver (due to
improper extraction) are rejected. Note that the solu-
tion thus found may be incorrect (making the mined
supervision noisy), as the equation system used by
the solver may contain an incorrect equation. To en-
sure the quality of the mined supervision, we use
several simple rules to further filter the problems.
For example, we remove questions that have more
than 15 numbers. We found that usually such ques-
tions were not a single word problem, but instead
concatenations of several problems.

Note that our approach relies only on a few rules
and a mathematical engine to generate (noisy) im-
plicit supervision from crawled problems, with no
human involvement. Once the solutions are gener-
ated, we discarded the equation systems used to ob-
tain them. Using this procedure, we collected 2,039
question-solution pairs. For example, the solution to
the following mined problem was “6” (The correct
solutions are 6 and 12.):

Roz is twice as old as Grace. In 5 years
the sum of their ages will be 28. How old
are they now?

Settings Explicit sets Implicit sets
(De) (Dm)

Dataset ALG-514 DRAW-1K SOL-2K

temp. 24 224 Unknown
prob. 514 1,000 2,039
Vocab. 1.83k 2.2k 6.8k

Table 2: The statistics of the data sets.

6 Experiments

In this section, we demonstrate the effectiveness of
the proposed approach and empirically verify the de-
sign choices of the algorithm. We show that our joint
learning approach leverages mined implicit super-
vision effectively, improving system performance
without using additional manual annotations (Sec-
tion 6.1). We also compare our approach to existing
methods under different supervision settings (Sec-
tion 6.2).

Experimental Settings Table 2 shows the statis-
tics of the datasets. The ALG-514 dataset (Kush-
man et al., 2014) consists of 514 algebra word prob-
lems, ranging over a variety of narrative scenarios
(object counting, simple interest, etc.). Although it
is a popular benchmark for evaluating algebra word
solvers, ALG-514 has only 24 templates. To test the
generality of different approaches, we thus conduct
experiments on a newly released data set, DRAW-
1K8 (Upadhyay and Chang, 2016), which covers
more than 200 templates and contains 1,000 alge-
bra word problems. The data is split into training,
development, and test sets, with 600/200/200 exam-
ples, respectively.

The SOL-2K dataset contains the word problem-
solution pairs we mined from online forum (see Sec-
tion 5). Unlike ALG-514 and DRAW-1K, there are
no annotated equation systems in this dataset, and
only the solutions are available. Also, no prepro-
cessing or cleaning is performed, so the problem
descriptions might contain some irrelevant phrases
such as “please help me”. Since all the datasets are
generated from online forums, we carefully exam-
ined and removed problems from SOL-2K that are
identical to problems in ALG-514 and DRAW-1K,
to ensure fairness. We set the number of iterations

8https://aka.ms/datadraw

302

to 15 and the learning rate η to be 1.
For all experiments, we report solution accuracy

(whether the solution was correct). Following Kush-
man et al. (2014), we ignore the ordering of answers
when calculating the solution accuracy. We report
the 5-fold cross validation accuracy on ALG-514 in
order to have a fair comparison with previous work.
For DRAW-1K, we report the results on the test set.
In all the experiments, we only use the templates that
appear in the corresponding explicit supervision.

Following (Zhou et al., 2015), we do not model
the alignments between noun phrases and vari-
ables. We use a similar set of features introduced
in (Zhou et al., 2015), except that our solver does not
use rich NLP features from dependency parsing or
coreference-resolution systems. We follow (Kush-
man et al., 2014) and set the beam-size K to 10,
unless stated otherwise.

6.1 Joint Learning from Mixed Supervision

Supervision Protocols We compare the following
training protocols:

• Explicit (D = {(xe,ye)}): the standard set-
ting, where fully annotated examples are used
to train the model (we use the structured Per-
ceptron algorithm as our training algorithm
here).

• Implicit (D = {(xm, zm))}): the model is
trained on SOL-2K dataset only (i.e., only im-
plicit supervision). This setting is similar to the
one in (Liang et al., 2013; Clarke et al., 2010).

• Pseudo (D = {(xm, Z̃
−1(zm,xm))}): where

we use Z̃−1(z,x) to denote a pseudo deriva-
tion whose solutions match the mined solu-
tions. Similar to the approach in (Yih et al.,
2015) for question answering, here we attempts
to recover (possibly incorrect) explicit supervi-
sion from the implicit supervision by finding
parses whose solution matches the mined so-
lution. For each word problem, we generated
a pseudo derivation Z̃−1(z,x) by finding the
equation systems whose solutions that match
the mined solutions. We conduct a brute force
search to find Z̃−1(z,x) by enumerating all
possible derivations. Note that this process can

be very slow for datasets like DRAW-1K be-
cause the brute-force search needs to examine
more than 200 templates for each word prob-
lem. Ties are broken by random.

• E+P (D = {(xe,ye)}∪ {(xm, Z̃
−1(zm,xm))}):

a baseline approach that jointly learns by com-
bining the dataset generated by Pseudo with the
Explicit supervision.

• MixedSP (D = {(xe,ye)}∪{(xm, zm))}): the
setting used by our proposed algorithm. The al-
gorithm trained the word problem solver using
both explicit and implicit supervision jointly.
We set the parameter γ to 0.5 unless otherwise
stated. In other words, the first half of the train-
ing iterations use only explicit supervision.

Note that Explicit, E+P, and MixedSP use the
same amount of labeled equations, although E+P
and MixedSP use additional implicit supervised re-
sources.

Results Table 3 lists the main results. With
implicit supervision from mined question-solution
pairs, MixedSP outperforms Explicit by around
4.5% on both datasets. This verifies the claim that
the joint learning approach can benefit from the
noisy implicit supervision. Note that with the same
amount of supervision signals, E+P performs poorly
and even under-performs Explicit. The reason is that
the derived derivations in SOL-2K can be noisy. In-
deed, we found that about 70% of the problems in
the implicit set have more than one template that
can produce a derivation which matches the mined
solutions. Therefore, the pseudo derivation selected
by the system might be wrong, even if they generate
the correct answers. As a result, E+P can commit
to the possibly incorrect pseudo derivations before
training, and suffer from error propagation. In con-
trast, MixedSP does not commit to a derivation and
allows the model to choose the one best explaining
the implicit signals as training progresses.

As expected, using only the implicit set Dm per-
forms poorly. The reason is that in both Implicit
and Pseudo settings, the algorithm needs to select
one from many derivations that match the labeled
solutions, and use the selected derivation to update
the model. When there are no explicit supervision

303

Dataset
De Dm De and Dm

Expl. Pseudo Impl. E+P MixedSP
ALG-514 78.4 54.1 63.7 73.3 83.0
DRAW-1K 55.0 33.5 39.0 48.5 59.5

Table 3: The solution accuracies of different protocols on
ALG-514 and DRAW-1K.

signals, the model can use incorrect derivations to
update the model. As a result, models on both
Implicit and Pseudo settings perform significantly
worse than the Explicit baseline in both datasets,
even if the size of SOL-2K is larger than the fully
supervised data.

6.2 Comparisons to Previous Work

We now compare to previous approaches for solving
algebra word problems, both in fully supervised and
weakly supervised settings.

Comparisons of Overall Systems We first com-
pare our systems to the systems that use the same
level of explicit supervision (fully labeled exam-
ples). The comparison between our system and ex-
isting systems are in Fig 2a and 2b. Compared to
previous systems that were trained only on explicit
signals, our Explicit baseline is quite competitive.
On ALG-514, the accuracy of our baseline system
is 78.4%, which is 1.3% lower than the best reported
accuracy achieved by the system ZDC15 (Zhou et
al., 2015). We suspect that this is due to the richer
feature set used by ZDC15, which includes fea-
tures based on POS tags, coreference and depen-
dency parses, whereas our system only uses fea-
tures based on POS tags. Our system is also the
best system on DRAW-1K, and performs much better
than the system KAZB14 (Kushman et al., 2014).
Note that we could not run the system ZDC15 on
DRAW-1K because it can only handle limited types
of equation systems. Although the Explicit baseline
is strong, the MixedSP algorithm is still able to im-
prove the solver significantly through noisy implicit
supervision signals without using manual annotation
of equation systems.

Comparisons of Weakly Supervised Algorithms
In the above comparisons, MixedSP benefits from
the mined implicit supervision as well as using Al-
gorithm 1. Since there are several practical limita-

tions for us to run previously proposed weakly su-
pervised algorithms in our settings, in the following,
we perform a direct comparison between MixedSP
and existing algorithms in their corresponding set-
tings. Note that the implicit supervision in weak su-
pervision settings proposed in earlier work is noise-
free, as it was simulated by hiding equation systems
of a manually annotated dataset.

Zhou et al. (2015) proposed a weak supervision
setting where the system was provided with the set
of all templates, as well as the solutions of all prob-
lems during training. Under this setting, they re-
ported 72.3% accuracy on ALG-514. Note that such
high accuracy can be achieved mainly because that
the complete and correct templates were supplied.

In this setting, running the MixedSP algorithm is
equivalent to using the Implicit setting with clean
implicit supervision signals. Surprisingly, MixedSP
can obtain 74.3% accuracy, surpassing the weakly
supervised model in (Zhou et al., 2015) on ALG-
514. Compared to the results in Table 3, note that
when using noisy implicit signals, it cannot obtain
the same level of results, even though we had more
training problems (2,000 mined problems instead of
514 problems). This shows that working with real,
noisy weak supervision is much more challenging
than working on simulated, noise-free, weak super-
vision.

Kushman et al. (2014) proposed another weak su-
pervision setting (5EQ+ANS in the paper), in which
explicit supervision is provided for only 5 prob-
lems in the training data. For the rest of problems,
only their solutions are provided. The 5 problems
are chosen such that their templates constitute the 5
most common templates in the dataset. This weak
supervision setting is harder than that of (Zhou et
al., 2015), as the solver only has the templates for
5 problems, instead of the templates for all prob-
lems. Under this setting, our MixedSP algorithm
achieves 53.8%, which is better than 46.1% reported
in (Kushman et al., 2014).

6.3 Analysis
In Figure 2c, we investigate the impact of tuning γ
in MixedSP on the dataset ALG-514. Recall that
γ controls the fraction of the training time that
the model uses solely explicit supervision. At first
glance, it may appear that we should utilize the im-

304

KAZB14
ZDC15

Explicit

MixedSP
65

70

75

80

85

68.7

79.7
78.4

83.0
C

ro
ss

-V
al

id
at

io
n

A
cc

ur
ac

y

(a)

KAZB14
Explicit

MixedSP
35

40

45

50

55

60

37.5

55.0

59.5

Te
st

A
cc

ur
ac

y

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
76

78

80

82

84

A
cc

ur
ac

y

MixedSP with different γ Explicit

(c)
Figure 2: (a) Comparisons between our system to state-of-the-art systems on ALG-514. ZDC15 is the system pro-
posed in (Zhou et al., 2015), and KAZB14 is the system proposed in (Kushman et al., 2014). (b) Comparisons
between our system and other systems on DRAW-1K. Note that we are not able to run ZDC15 on DRAW-1K because
it cannot handle some equation systems in the dataset. (c) Analysis of the impact of γ in MixedSP.

plicit supervision throughout training (set γ = 0).
But setting γ to 0 hurts overall performance, sug-
gesting in this setting that the algorithm uses a weak
model to guide the exploration for using implicit
supervision. On the other hand, by delaying ex-
ploration (γ > 0.5) for too long, the model could
not fully utilize the implicit supervision. We ob-
serve similar trend on DRAW-1K as well. We found
γ = 0.5 works well across the experiments.

We also analyze the impact of the parameter K,
which controls the size of the candidate set Ω in
MixedSP. Specifically, for DRAW-1K, when setting
K to 5 and 10, the accuracy of MixedSP is at 59.5%.
On setting K to 15, the accuracy of MixedSP im-
proves to 61%. We suspect that enlarging K in-
creases the chance to have good structures in the
candidate set that can match the correct responses.

7 Conclusion

In this paper, we propose an algorithmic approach
for training a word problem solver based on both
explicit and implicit supervision signals. By extract-
ing the question answer pairs from a Web-forum,
we show that the algebra word problem solver can
be improved significantly using our proposed tech-
nique, surpassing the current state-of-the-art.

Recent advances in deep learning techniques
demonstrate that the error rate of machine learning
models can decrease dramatically when large quan-
tities of labeled data are presented (Krizhevsky et
al., 2012). However, labeling natural language data
has been shown to be expensive, and it has become

one of the major bottleneck for advancing natural
language understanding techniques (Clarke et al.,
2010). We hope the proposed approach can shed
light on how to leverage data on the web, and even-
tually improves other semantic parsing tasks such
as knowledge base question answering and mapping
natural instructions to actions.

References
Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-

pervised learning of semantic parsers for mapping in-
structions to actions. In Proc. of TACL.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and
Jason Weston. 2009. Curriculum learning. In Proc. of
ICML.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proc. of EMNLP.

Daniel G. Bobrow. 1964. A question-answering system
for high school algebra word problems. In Proceed-
ings of the October 27-29, 1964, Fall Joint Computer
Conference, Part I.

K.-W. Chang, R. Samdani, and D. Roth. 2013. A con-
strained latent variable model for coreference resolu-
tion. In Proc. of EMNLP.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and maxent discriminative rerank-
ing. In Proc. of ACL.

Peter Clark and Oren Etzioni. 2016. My computer is an
honor student-but how intelligent is it? Standardized
tests as a measure of AI. AI Magazine., 37(1).

J. Clarke, D. Goldwasser, M. Chang, and D. Roth. 2010.
Driving semantic parsing from the world’s response.
In Proc. of CoNLL.

305

M. Collins. 2000. Discriminative reranking for natural
language parsing. In Proc. of ICML.

M. Collins. 2002. Discriminative training methods for
hidden Markov models: Theory and experiments with
perceptron algorithms. In Proc. of EMNLP.

R. Ge and R. Mooney. 2006. Discriminative reranking
for semantic parsing. In Proc. of ACL.

Javad Mohammad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization. In
Proc. of EMNLP.

Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin,
and Wei-Ying Ma. 2016. How well do computers
solve math word problems? Large-scale dataset con-
struction and evaluation. In Proc. of ACL.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equations.
Proc. of TACL.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
2012. Imagenet classification with deep convolutional
neural networks. In Proc. of NIPS.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proc. of ACL.

Percy Liang, Michael I Jordan, and Dan Klein. 2013.
Learning dependency-based compositional semantics.
Computational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proc. of ACL.

Anirban Mukherjee and Utpal Garain. 2008. A re-
view of methods for automatic understanding of nat-
ural language mathematical problems. Artif. Intell.
Rev., 29(2):93–122.

Allen Newell, John C Shaw, and Herbert A Simon. 1959.
Report on a general problem-solving program. In IFIP
Congress, pages 256–264.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proc. of EMNLP.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving num-
ber word problems by semantic parsing and reasoning.
In Proc. of EMNLP.

J. Steinhardt and P. Liang. 2015. Learning with relaxed
supervision. In Proc. of NIPS.

Sympy Development Team, 2016. SymPy: Python li-
brary for symbolic mathematics.

B. Taskar, C. Guestrin, and D. Koller. 2004. Max-margin
markov networks. In Proc. of NIPS.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun.
2004. Support vector machine learning for interdepen-
dent and structured output spaces. In Proc. of ICML.

Shyam Upadhyay and Ming-Wei Chang. 2016.
Annotating derivations: A new evaluation strat-
egy and dataset for algebra word problems. In
https://aka.ms/derivationpaper.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proc. of ACL.

C. Yu and T. Joachims. 2009. Learning structural SVMs
with latent variables. In Proc. of ICML.

J. M. Zelle and R. J. Mooney. 1996. Learning to parse
database queries using inductive logic proramming. In
Proc. of AAAI.

Luke Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed CCG grammars for parsing to log-
ical form. In EMNLP-CoNLL.

Lipu Zhou, Shuaixiang Dai, and Liwei Chen. 2015.
Learn to solve algebra word problems using quadratic
programming. In Proc. of EMNLP.

306

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 307–318,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

TweeTime: A Minimally Supervised Method for Recognizing and
Normalizing Time Expressions in Twitter

Jeniya Tabassum, Alan Ritter and Wei Xu
Computer Science and Engineering

Ohio State University
{bintejafar.1,ritter.1492,xu.1265}@osu.edu

Abstract

We describe TweeTIME, a temporal tagger
for recognizing and normalizing time expres-
sions in Twitter. Most previous work in so-
cial media analysis has to rely on tempo-
ral resolvers that are designed for well-edited
text, and therefore suffer from reduced perfor-
mance due to domain mismatch. We present a
minimally supervised method that learns from
large quantities of unlabeled data and requires
no hand-engineered rules or hand-annotated
training corpora. TweeTIME achieves 0.68 F1
score on the end-to-end task of resolving date
expressions, outperforming a broad range of
state-of-the-art systems.1

1 Introduction

Temporal expressions are words or phrases that re-
fer to dates, times or durations. Resolving time ex-
pressions is an important task in information ex-
traction (IE) that enables downstream applications
such as calendars or timelines of events (Derczyn-
ski and Gaizauskas, 2013; Do et al., 2012; Rit-
ter et al., 2012; Ling and Weld, 2010), knowledge
base population (Ji et al., 2011), information re-
trieval (Alonso et al., 2007), automatically schedul-
ing meetings from email and more. Previous work in
this area has applied rule-based systems (Mani and
Wilson, 2000; Bethard, 2013b; Chambers, 2013)
or supervised machine learning on small collections
of hand-annotated news documents (Angeli et al.,
2012; Lee et al., 2014).

1Our code and data are publicly available at https://
github.com/jeniyat/TweeTime.

Figure 1: A tweet published on Friday 5/6/2016 that contains

the temporal expression Monday referring to the date of the

event (5/9/2016), which a generic temporal tagger failed to re-

solve correctly.

Figure 2: A tweet that contains a simple explicit time mention

and an event (Mercury, 5/9/2016) that can be identified by an

open-domain information extraction system.

Social media especially contains time-sensitive
information and requires accurate temporal anal-
ysis, for example, for detecting real-time cyber-
security events (Ritter et al., 2015; Chang et al.,
2016), disease outbreaks (Kanhabua et al., 2012)
and extracting personal information (Schwartz et al.,
2015). However, most work on social media simply
uses generic temporal resolvers and therefore suffers
from suboptimal performance. Recent work on tem-
poral resolution focuses primarily on news articles
and clinical texts (UzZaman et al., 2013; Bethard
and Savova, 2016).

Resolving time expressions in social media is a
non-trivial problem. Besides many spelling varia-
tions, time expressions are more likely to refer to
future dates than in newswire. For the example in

307

Figure 1, we need to recognize that Monday refers
to the upcoming Monday and not the previous one
to resolve to its correct normalized date (5/9/2016).
We also need to identify that the word Sun is not re-
ferring to a Sunday in this context.

In this paper, we present a new minimally super-
vised approach to temporal resolution that requires
no in-domain annotation or hand-crafted rules, in-
stead learning from large quantities of unlabeled text
in conjunction with a database of known events. Our
approach is capable of learning robust time expres-
sion models adapted to the informal style of text
found on social media.

For popular events, some related tweets (e.g. Fig-
ure 2) may contain explicit or other simple time
mentions that can be captured by a generic temporal
tagger. An open-domain information extraction sys-
tem (Ritter et al., 2012) can then identify events (e.g.
[Mercury, 5/9/2016]) by aggregating those tweets.
To automatically generate temporally annotated data
for training, we make the following novel distant su-
pervision assumption:2

Tweets posted near the time of a known
event that mention central entities are
likely to contain time expressions that re-
fer to the date of the event.

Based on this assumption, tweets that contain the
same named entity (e.g. Figure 1) are heuristically
labeled as training data. Each tweet is associated
with multiple overlapping labels that indicate the
day of the week, day of the month, whether the event
is in the past or future and other time properties of
the event date in relation to the tweet’s creation date.
In order to learn a tagger that can recognize temporal
expressions at the word-level, we present a multiple-
instance learning approach to model sentence and
word-level tags jointly and handle overlapping la-
bels. Using heuristically labeled data and the tem-
poral tags predicted by the multiple-instance learn-
ing model as input, we then train a log-linear model
that normalizes time expressions to calendar dates.

Building on top of the multiple-instance learn-
ing model, we further improve performance using

2We focus on resolving dates, arguably the most important
and frequent category of time expressions in social media data,
and leave other phenomenon such as times and durations to tra-
ditional methods or future work.

a missing data model that addresses the problem of
errors introduced during the heuristic labeling pro-
cess. Our best model achieves a 0.68 F1 score when
resolving date mentions in Twitter. This is a 17%
increase over SUTime (Chang and Manning, 2012),
outperforming other state-of-the-art time expression
resolvers HeidelTime (Strötgen and Gertz, 2013),
TempEX (Mani and Wilson, 2000) and UWTime
(Lee et al., 2014) as well. Our approach also pro-
duces a confidence score that allows us to trade re-
call for precision. To the best of our knowledge,
TweeTIME is the first time resolver designed specif-
ically for social media data.3 This is also the first
time that distant supervision is successfully applied
for end-to-end temporal recognition and normaliza-
tion. Previous distant supervision approaches (An-
geli et al., 2012; Angeli and Uszkoreit, 2013) only
address the normalization problem, assuming gold
time mentions are available at test time.

2 System Overview

Our TweeTIME system consists of two major com-
ponents as shown in Figure 3:

1. A Temporal Recognizer which identifies time
expressions (e.g. Monday) in English text and
outputs 5 different temporal types (described in
Table 1) indicating timeline direction, month of
year, date of month, day of week or no temporal
information (NA). It is realized as a multiple-
instance learning model, and in an enhanced
version, as a missing data model.

2. A Temporal Normalizer that takes a tweet
with its creation time and temporal expressions
tagged by the above step as input, and out-
puts their normalized forms (e.g. Monday →
5/9/2016). It is a log-linear model that uses
both lexical features and temporal tags.

To train these two models without corpora man-
ually annotated with time expressions, we leverage
a large database of known events as distant super-
vision. The event database is extracted automati-
cally from Twitter using the open-domain IE system

3The closest work is HeidelTime’s colloquial English ver-
sion (Strötgen and Gertz, 2012) developed from annotated SMS
data and slang dictionary. Our TweeTIME significantly outper-
forms on Twitter data.

308

[RECOGNIZER]

[NORMALIZER]

[EVENT EXTRACTOR]

NER

TempEx

ENTITY DATE
Mercury 5/9/2016

… …
… …

distant
labeling

model
training

[EVENT DATABASE]

(simple time expressions)

(more and harder time expressions)

LABELS: DOW=Monday, MOY=May

Figure 3: TweeTIME system diagram of model training.

Temporal Types Possible Values (tags)
Timeline (TL) past, present, future

Day of Week (DOW) Mon, Tue, . . . , Sun

Day of Month (DOM) 1, 2, 3, . . . , 31

Month of Year (MOY) Jan, Feb, . . . , Dec

None (NA) NA

Table 1: Our Temporal Recognizer can extract five different

temporal types and assign one of their values to each word of a

tweet.

proposed by Ritter et al. (2012). Each event con-
sists of one or more named entities, in addition to
the date on which the event takes place, for exam-
ple [Mercury, 5/9/2016]. Tweets are first processed
by a Twitter named entity recognizer (Ritter et al.,
2011), and a generic date resolver (Mani and Wil-
son, 2000). Events are then extracted based on the
strength of association between each named entity
and calendar date, as measured by a G2 test on their
co-occurrence counts. More details of the Event Ex-
tractor can be found in Section 5.1.

The following two sections describe the details of
our Temporal Recognizer and Temporal Normal-
izer separately.

3 Distant Supervision for Recognizing
Time Expressions

The goal of the recognizer is to predict the tempo-
ral tag of each word, given a sentence (or a tweet)
w = w1, . . . , wn. We propose a multiple-instance

learning model and a missing data model that are
capable of learning word-level taggers given only
sentence-level labels.

Our recognizer module in is built using a database
of known events as distant supervision. We assume
tweets published around the time of a known event
that mention a central entity are also likely to contain
time expressions referring to the event’s date. For
each event, such as [Mercury, 5/9/2016], we gather
all tweets that contain the central entity Mercury and
are posted within 7 days of 5/9/2016. We then la-
bel each tweet based on the event date in addition to
the tweet’s creation date. The sentence-level tempo-
ral tags for the tweet in Figure 1 are: TL=future,
DOW=Mon, DOM=9, MOY=May.

3.1 Multiple-Instance Learning Temporal
Tagging Model (MultiT)

Unlike supervised learning, where labeled instances
are provided to the learner, in multiple instance
learning scenarios (Dietterich et al., 1997), the
learner is only provided with bags of instances la-
beled as either positive (where at least one instance
is positive) or all negative. This is a close match to
our problem setting, in which sentences are labeled
with tags that should be assigned to one or more
words.

We represent sentences and their labels using
a graphical model that is divided into word-level
and sentence-level variables (as shown in Figure
4). Unlike the standard supervised tagging prob-

309

z1 z2

…

Watch Mercury Pass In Front Of Sun Monday

z3 z4 z5 z6 z7 z8

t1 t2 tk

Figure 4: Multiple-Instance Learning Temporal Tagging Model

– our approach to learn a word-level tagging model given only

sentence-level labels. In this example a sentence-level vari-

able ta = 1 indicates the temporal tag DOW=Mon must be

present and tb = 1 indicates that the target date is in the future

(TL=future). The multiple instance learning assumption im-

plies that at least one word must be tagged with each of these

present temporal tags. For example, ideally after training, the

model will learn to assign z8 to tag a and z1 to tag b.

lem, we never directly observe the words’ tags (z =
z1, . . . , zn) during learning. Instead, they are la-
tent and we only observe the date of an event men-
tioned in the text, from which we derive sentence-
level binary variables t = t1, . . . , tk corresponding
to temporal tags for the sentence. Following previ-
ous work on multiple-instance learning (Hoffmann
et al., 2011a; Xu et al., 2014), we model the connec-
tion between sentence-level labels and word-level
tags using a set of deterministic-OR factors φsent.

The overall conditional probability of our model
is defined as:

P (t, z|w;θr)

=
1

Z

k∏

i=1

φsent(ti, z)×
n∏

j=1

φword(zj , wj)

=
1

Z

k∏

i=1

φsent(ti, z)×
n∏

j=1

eθ
r ·f(zj ,wj)

(1)

where f(zj , wj) is a feature vector and

φsent(ti, z) =

1 if ti = true ∧ ∃j : zj = i

1 if ti = false ∧ ∀j : zj 6= i

0 otherwise
(2)

We include a standard set of tagging features that

includes word shape and identity in addition to pre-
fixes and suffixes. To learn parameters θr of the
Temporal Tagger, we maximize the likelihood of the
sentence-level heuristic labels conditioned on ob-
served words over all tweets in the training corpus.
Given a training instance w with label t, the gradient
of the conditional log-likelihood with respect to the
parameters is:

∇P (t|w) =
∑

z
P (z|w, t;θr) · f(z,w)

−
∑

t,z
P (t, z|w;θr) · f(z,w)

(3)

This gradient is the difference of two conditional ex-
pectations over the feature vector f: a “clamped” ex-
pectation that is conditioned on the observed words
and tags (w, t) and a “free” expectation that is only
conditioned on the words in the text, w, and ignores
the sentence-level labels. To make the inference
tractable, we use a Viterbi approximation that re-
places the expectations with maximization. Because
each sentence corresponds to more than one tempo-
ral tag, the maximization of the “clamped” maxi-
mization is somewhat challenging to compute. We
use the approximate inference algorithm of Hoff-
mann et al. (2011a), that views inference as a
weighted set cover problem, with worst case running
time (|T | · |W |), where |T | is the number of all pos-
sible temporal tag values and |W | is the number of
words in a sentence.

3.2 Missing Data Temporal Tagging Model
(MiDaT)

While the multiple-instance learning assumption
works well much of the time, it can easily be vio-
lated – there are many tweets that mention entities
involved in an event but that never explicitly men-
tion its date.

The missing data modeling approach to weakly
supervised learning proposed by Ritter et. al. (2013)
addresses this problem by relaxing the hard con-
straints of deterministic-OR factors, such as those
described above, as soft constraints. Our missing-
data model for weakly supervised tagging splits the
sentence-level variables, t into two parts : m which
represents whether a temporal tag is mentioned by at
least one word of the tweet, and t′ which represents

310

whether a temporal tag can be derived from the event
date. A set of pairwise potentials ψ(mj , t

′
j) are in-

troduced that encourage (but don’t strictly require)
agreement between mj and t′j , that is:

ψ(mj , t
′
j) =

{
αp, if t′j 6= mj

αr, if t′j = mj

(4)

Here, αp (Penalty), and αr (Reward) are param-
eters for the MiDaT model. αp is the penalty for
extracting a temporal tag that is not related to the
event-date and αr is the reward for extracting a tag
that matches the date.

During learning, if the local classifier is very con-
fident, it is possible for a word to be labeled with a
tag that is not derived from the event-date, and also
for a sentence-level tag to be ignored, although ei-
ther case will be penalized by the agreement poten-
tials, ψ(mj , t

′
j), in the global objective. We use a

local-search approach to inference that was empiri-
cally demonstrated to nearly always yield exact so-
lutions by Ritter et. al. (2013).

4 A Log-Linear Model for Normalizing
Time Expressions

The Temporal Normalizer is built using a log-linear
model which takes the tags t produced by the Tem-
poral Recognizer as input and outputs one or more
dates mentioned in a tweet. We formulate date nor-
malization as a binary classification problem: given
a tweet w published on date dpub, we consider 22
candidate target dates (w, dcandl) such that dcandl =
dpub + l, where l = −10, . . . ,−1, 0,+1, . . . ,+10,
limiting the possible date references that are consid-
ered within 10 days before or after the tweet creation
date, in addition to dcandl = null (the tweet does not
mention a date). 4 While our basic approach has the
limitation, that it is only able to predict dates within
±10 days of the target date, we found that in prac-
tice the majority of date references on social media
fall within this window. Our approach is also able to
score dates outside this range that are generated by
traditional approaches to resolving time expressions,
as described in Section 5.3.3.

4Although the temporal recognizer is trained with tweets
from ±7 days around the event date, we found that extending
the candidate date range to ±10 days for the temporal normal-
izer increased the performance of TweeTIME in the dev set.

The normalizer is similarly trained using the event
database as distant supervision. The probability that
a tweet mentions a candidate date is estimated using
a log-linear model:

P (dcand|w, dpub) ∝ eθn·g(w,dpub,t) (5)

where θn and g are the parameter and feature vector
respectively in the Temporal Normalizer. For every
tweet and candidate date pair (w, dcandl), we extract
the following set of features:

Temporal Tag Features that indicate whether
the candidate date agrees with the temporal tags
extracted by the Temporal Recognizer. Three cases
can happen here: The recognizer can extract a tag
that can not be derived from the candidate date;
The recognizer can miss a tag derived from the
candidate date; The recognizer can extract a tag that
is derived from the candidate date.

Lexical Features that include two types of binary
features from the tweet: 1) Word Tag features
consist of conjunctions of words in the tweet and
tags associated with the candidate date. We remove
URLs, stop words and punctuation; 2) Word POS
features that are the same as above, but include
conjunctions of POS tags, words and temporal tags
derived from the candidate date.

Time Difference Features are numerical features
that indicate the distance between the creation date
and the candidate date. They include difference of
day ranges form -10 to 10 and the difference of week
ranges from -2 to 2.

5 Experiments

In the following sub-sections we present experi-
mental results on learning to resolve time expres-
sions in Twitter using minimal supervision. We start
by describing our dataset, and proceed to present
our results, including a large-scale evaluation on
heuristically-labeled data and an evaluation compar-
ing against human judgements.

5.1 Data Collection
We collected around 120 million tweets posted in a
one year window starting from April 2011 to May
2012. These tweets were automatically annotated
with named entities, POS tags and TempEx dates
(Ritter et al., 2011).

311

From this automatically-annotated corpus we ex-
tract the top 10, 000 events and their correspond-
ing dates using the G2 test, which measures the
strength of association between an entity and date
using the log-likelihood ratio between a model in
which the entity is conditioned on the date and a
model of independence (Ritter et al., 2012). Events
extracted using this approach then simply consist
of the highest-scoring entity-date pairs, for example
[Mercury, 5/9/2016].

After automatically extracting the database of
events, we next gather all tweets that mention an
entity from the list that are also written within ±7
days of the event. These tweets and the dates of
the known events serve as labeled examples that are
likely to mention a known date.

We also include a set of pseudo-negative exam-
ples, that are unlikely to refer to any event, by gath-
ering a random sample of tweets that do not men-
tion any of the top 10, 000 events and where TempEx
does not extract any date.

5.2 Large-Scale Heuristic Evaluation

We first evaluate our tagging model, by testing how
well it can predict the heuristically generated labels.
As noted in previous work on distant supervision
(Mintz et al., 2009a), this type of evaluation usu-
ally under-estimates precision, however it provides
us with a useful intrinsic measure of performance.

In order to provide even coverage of months in the
training and test set, we divide the twitter corpus into
3 subsets based on the mod-5 week of each tweet’s
creation date. To train system we use tweets that
are created in 1st, 2nd or 3rd weeks. To tune pa-
rameters of the MiDaT model we used tweets from
5th weeks, and to evaluate the performance of the
trained model we used tweets from 4th weeks.

Precision Recall F-value
MultiT 0.61 0.21 0.32
MiDaT 0.67 0.31 0.42

Table 2: Performance comparison of MultiT and MiDaT at pre-

dicting heuristically generated tags on the dev set.

The performance of the MiDaT model varies with
the penalty and reward parameters. To find a (near)
optimal setting of the values we performed a grid
search on the dev set and found that a penalty of

−25 and reward of 500 works best. A comparison
of MultiT and MiDaT’s performance at predicting
heuristically generated labels is shown in Table 2.

The word level tags predicted by the temporal rec-
ognizer are used as the input to the temporal normal-
izer, which predicts the referenced date from each
tweet. The overall system’s performance at predict-
ing event dates on the automatically generated test
set, compared against SUTime, is shown in Table 3.

System Prec. Recall F-value

dev set
TweeTIME 0.93 0.69 0.79
SUTime 0.89 0.64 0.75

test set
TweeTIME 0.97 0.94 0.96
SUTime 0.85 0.75 0.80

Table 3: Performance comparison of TweeTIME and SUTime

at predicting heuristically labeled normalized dates.

5.3 Evaluation Against Human Judgements
In addition to automatically evaluating our tagger
on a large corpus of heuristically-labeled tweets,
we also evaluate the performance of our tagging
and date-resolution models on a random sample of
tweets taken from a much later time period, that
were manually annotated by the authors.

5.3.1 Word-Level Tags
To evaluate the performance of the MiDaT-tagger

we randomly selected 50 tweets and labeled each
word with its corresponding tag. Against this hand
annotated test set, MiDaT achieves Precision=0.54,
Recall=0.45 and F-value=0.49. A few examples of
word-level tags predicted by MiDaT are shown in
Table 4. We found that because the tags are learned
as latent variables inferred by our model, they some-
times don’t line up exactly with our intuitions but
still provide useful predictions, for example in Table
4, Christmas is labeled with the tag MOY=dec.

5.3.2 End-to-end Date Resolution
To evaluate the final performance of our system

and compare against existing state-of-the art time
resolvers, we randomly sampled 250 tweets from
2014-2016 and manually annotated them with nor-
malized dates; note that this is a separate date range
from our weakly-labeled training data which is taken
from 2011-2012. We use 50 tweets as a develop-
ment set and the remaining 200 as a final test set.

312

Tweets and their corresponding word tags (wordtag)
ImNA hellaNA excitedfuture forNA tomorrowfuture

KickNA offNA theNA Newfuture Yearfuture RightNA @NA #ClubLacuraNA #FRIDAYfri !NA

HOSTEDNA BYNA [[NA DCNA YoungNA FlyNA]]NA

@OxfordTownHallNA ThksNA forNA aNA topNA nightNA atNA ourNA Christmasdec partyNA onNA Fri!fri

ComplimentsNA toNA chef!NA (RoseNA melonNA cantaloupeNA :)NA

ImNA proudNA toNA sayNA thatNA INA breathedpast theNA sameNA airNA asNA HarryNA onNA Marchmar

21,21 2015.NA #KCANA #Vote1DUKNA

C’monpresent let’spresent jackNA Tonightpresent willNA bepresent aNA nightNA toNA remember.NA

Table 4: Example MiDaT tagging output on the test set.

Precision Recall F-value
TweeTIME 0.61 0.81 0.70
- Day Diff. 0.46 0.72 0.56
- Lexical&POS 0.48 0.80 0.60
- Week Diff. 0.49 0.85 0.62
- Lexical 0.50 0.88 0.64
- Temporal Tag 0.57 0.83 0.68

Table 5: Feature ablation of the Temporal Resolver by remov-

ing each individual feature group from the full set.

System Prec. Recall F-value

dev
set

TweeTIME 0.61 0.81 0.70
TweeTIME+SU 0.67 0.83 0.74
SUTime 0.51 0.86 0.64
TempEx 0.58 0.64 0.61
HeidelTime 0.57 0.63 0.60
UWTime 0.49 0.57 0.53

test
set

TweeTIME 0.58 0.70 0.63
TweeTIME+SU 0.62 0.76 0.68
SUTime 0.54 0.64 0.58
TempEx 0.56 0.58 0.57
HeidelTime 0.43 0.52 0.47
UWTime 0.39 0.50 0.44

Table 6: Performance comparison of TweeTIME against state-

of-the-art temporal taggers. TweeTIME+SU uses our proposed

approach to system combination, re-scoring output from SU-

Time using extracted features and learned parameters from

TweeTIME.

We experimented with different feature sets on the
development data. Feature ablation experiments are
presented in Table 5.

The final performance of our system, compared
against a range of state-of-the-art time resolvers is
presented in Table 6. We see that TweeTIME out-

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

TweeTIME

SUTime

HeidelTime

TempEX

UWTime

Figure 5: Precision and recall at resolving time expressions

compared against human judgements. TweeTIME achieves

higher precision at comparable recall than other state-of-the-art

systems.

performs SUTime, Tempex, HeidelTime (using its
COLLOQUIAL mode, which is designed for SMS
text) and UWTime. Brief descriptions of each sys-
tem can be found in Section 6.

5.3.3 System Combination with SUTime
As our basic TweeTIME system is designed to

predict dates within ±10 days of the creation date,
it fails when a tweet refers to a date outside this
range. To overcome this limitation we append the
date predicted by SUTime in the list of candidate
days. We then re-rank SUTime’s predictions using
our log-linear model, and include its output as a pre-
dicted date if the confidence of our normalizer is suf-
ficiently high.

5.3.4 Error Analysis
We manually examined the system outputs and

found 7 typical categories of errors (see examples
in Table 7):

313

Spelling Variations: 45%

Hashtag: 20%

Tokenization: 15%
Missing Rules: 5%

Ambiguity: 15%

SUTime

Spelling Variations: 30%

Hashtag: 45%

Tokenization: 5%

Missing Rules: 15%

Ambiguity: 5%

HeidelTime

Out of Range: 10%
Ambiguity: 20%

Over−Prediction: 70%

TweeTime

Figure 6: Error analyses for different temporal resolvers

Spelling Variation: Twitter users are very creative
in their use of spelling and abbreviations. For ex-
ample, a large number of variations of the word to-
morrow can be found in tweets, including 2morrow,
2mrw, tmrw, 2mrow and so on. Previous temporal
resolvers often fail in these cases, while TweeTIME
significantly reduces such errors.
Ambiguity: In many cases, temporal words like Fri-
day in the tweet Is it Friday yet? may not refer to
any specific event or date, but are often predicted in-
correctly. Also included in this category are cases
where the future and past are confused. For exam-
ple, predicting the past Friday, when it is actually the
coming Friday.
Missing Rule: Cases where specific temporal key-
words, such as April Fools, are not covered by the
rule-based systems.
Tokenization: Traditional systems tend to be very
sensitive to incorrect tokenization and have trouble
to handle expressions such as 9th-december, May
9,2015 or Jan1. For the following Tweet:

JUST IN Delhi high court asks state gov-
ernment to submit data on changes in pol-
lution level since #OddEven rule came
into effect on Jan1

TweeTIME is able to correctly extract 01/01/2016,
whereas HeidelTime, SUTime, TempEX and UW-
Time all failed to extract any dates.
Hashtag: Hashtags can carry temporal information,
for example, #September11. Only our system that is
adapted to social media can resolve these cases.
Out of Range: TweeTIME only predicts dates
within 10 days before or after the tweet. Time ex-
pressions referring to dates outside this range will
not be predicted correctly. System combination with
SUTime (Section 5.3.3) only partially addressed this
problem.

Over-Prediction: Unlike rule-based systems, Twee-
TIME has a tendency to over-predict when there is
no explicit time expression in the tweets, possibly
because of the presence of present tense verbs. Such
mistakes could also happen in some past tense verbs.

Because TweeTIME resolves time expressions us-
ing a very different approach compared to traditional
methods, its distribution of errors is quite distinct, as
illustrated in Figure 6.

6 Related Work

Temporal Resolvers primarily utilize either rule-
based or probabilistic approaches. Notable rule-
based systems such as TempEx (Mani and Wil-
son, 2000), SUTime (Chang and Manning, 2012)
and HeidelTime (Strötgen and Gertz, 2013) pro-
vide particularly competitive performance compared
to the state-of-the-art machine learning methods.
Probabilistic approaches use supervised classifiers
trained on in-domain annotated data (Kolomiyets
and Moens, 2010; Bethard, 2013a; Filannino et al.,
2013) or hybrid with hand-engineered rules (UzZa-
man and Allen, 2010; Lee et al., 2014). UWTime
(Lee et al., 2014) is one of the most recent and com-
petitive systems and uses Combinatory Categorial
Grammar (CCG).

Although the recent research challenge TempEval
(UzZaman et al., 2013; Bethard and Savova, 2016)
offers an evaluation in the clinical domain besides
newswire, most participants used the provided anno-
tated corpus to train supervised models in addition
to employing hand-coded rules. Previous work on
adapting temporal taggers primarily focus on scal-
ing up to more languages. HeidelTime was extended
to multilingual (Strötgen and Gertz, 2015), collo-
quial (SMS) and scientific texts (Strötgen and Gertz,
2012) using dictionaries and additional in-domain

314

Error Category Tweet Gold Date Predicted Date

Spelling I cant believe tmrw is fri..the week flys by 2015-03-06 None (SUTime, Heidel-
Time)

Ambiguity RT @Iyaimkatie: Is it Friday yet????? None 2015-12-04 (TweeTime,
SUTime, HeidelTime)

Missing Rule #49ers #sanfrancisco 49ers fans should be oh so
wary of April Fools pranks 2015-04-01 None (HeidelTime)

Tokenization 100000 - still waiting for that reply from 9th-
december lmao. you’re pretty funny and chill 2015-12-09 None (SUTime, Heidel-

Time)

Hashtag RT @arianatotally: Who listening to the #SAT-
URDAY #Night w/ @AlexAngelo?I’m loving it. 2015-04-11 None (SUTime, Heidel-

Time)

Out of Range
RT @460km: In memory of Constable Christine
Diotte @rcmpgrcpolice EOW: March 12, 2002
#HeroesInLife #HerosEnVie

2002-03-12 2015-03-12 (TweeTime)

Over-Prediction RT @tinatbh: January 2015: this will be my year
December 2015: maybe not. None 2015-12-08 (TweeTime)

Table 7: Representative Examples of System (SUTime, HeidelTime, TweeTIME) Errors

annotated data. One existing work used distant su-
pervision (Angeli et al., 2012; Angeli and Uszko-
reit, 2013), but for normalization only, assuming
gold time mentions as input. They used an EM-style
bootstrapping approach and a CKY parser.
Distant Supervision has recently become popu-
lar in natural language processing. Much of the
work has focused on the task of relation extraction
(Craven and Kumlien, 1999; Bunescu and Mooney,
2007; Mintz et al., 2009b; Riedel et al., 2010; Hoff-
mann et al., 2011b; Nguyen and Moschitti, 2011;
Surdeanu et al., 2012; Xu et al., 2013; Ritter et al.,
2013; Angeli et al., 2014). Recent work also shows
exciting results on extracting named entities (Ritter
et al., 2011; Plank et al., 2014), emotions (Purver
and Battersby, 2012), sentiment (Marchetti-Bowick
and Chambers, 2012), as well as finding evidence
in medical publications (Wallace et al., 2016). Our
work is closely related to the joint word-sentence
model that exploits multiple-instance learning for
paraphrase identification (Xu et al., 2014) in Twit-
ter.

7 Conclusions
In this paper, we showed how to learn time re-
solvers from large amounts of unlabeled text, us-
ing a database of known events as distant supervi-
sion. We presented a method for learning a word-
level temporal tagging models from tweets that are
heuristically labeled with only sentence-level labels.
This approach was further extended to account for

the case of missing tags, or temporal properties that
are not explicitly mentioned in the text of a tweet.
These temporal tags were then combined with a va-
riety of other features in a novel date-resolver that
predicts normalized dates referenced in a Tweet. By
learning from large quantities of in-domain data, we
were able to achieve 0.68 F1 score on the end-to-end
time normalization task for social media data, sig-
nificantly outperforming SUTime, TempEx, Heidel-
Time and UWTime on this challenging dataset for
time normalization.

Acknowledgments

We would like to thank the anonymous reviewers
for helpful feedback on a previous draft. This ma-
terial is based upon work supported by the National
Science Foundation under Grant No. IIS-1464128.
Alan Ritter is supported by the Office of the Director
of National Intelligence (ODNI) and the Intelligence
Advanced Research Projects Activity (IARPA) via
the Air Force Research Laboratory (AFRL) contract
number FA8750-16-C-0114. The U.S. Government
is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copy-
right annotation thereon. Disclaimer: The views and
conclusions contained herein are those of the authors
and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either
expressed or implied, of ODNI, IARPA, AFRL, or
the U.S. Government.

315

References

Omar Alonso, Michael Gertz, and Ricardo Baeza-Yates.
2007. On the value of temporal information in infor-
mation retrieval. In ACM SIGIR Forum, volume 41,
pages 35–41. ACM.

Gabor Angeli and Jakob Uszkoreit. 2013. Language-
independent discriminative parsing of temporal ex-
pressions. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Gabor Angeli, Christopher D Manning, and Daniel Ju-
rafsky. 2012. Parsing time: Learning to interpret time
expressions. In Proceedings of the 2012 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL).

Gabor Angeli, Julie Tibshirani, Jean Wu, and Christo-
pher D Manning. 2014. Combining distant and partial
supervision for relation extraction. In Proceedings of
the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Steven Bethard and Guergana Savova. 2016. SemEval-
2016 Task 12: Clinical TempEval. In Proceedings of
the 10th International Workshop on Semantic Evalua-
tion (SemEval).

Steven Bethard. 2013a. ClearTK-TimeML: A minimal-
ist approach to TempEval 2013. In Proceedings of the
Seventh International Workshop on Semantic Evalua-
tion (SemEval).

Steven Bethard. 2013b. A synchronous context free
grammar for time normalization. In Proceedings of
the 2013 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Razvan C. Bunescu and Raymond J. Mooney. 2007.
Learning to extract relations from the Web using min-
imal supervision. In Proceedings of the 45th Annual
Meeting of the Association for Computational Linguis-
tics (ACL).

Nathanael Chambers. 2013. NavyTime: Event and time
ordering from raw text. In Proceedings of the 7th
International Workshop on Semantic Evaluation (Se-
mEval).

Angel X Chang and Christopher D Manning. 2012. SU-
Time: A library for recognizing and normalizing time
expressions. In Proceedings of the 8th International
Conference on Language Resources and Evaluation
(LREC).

Ching-Yun Chang, Zhiyang Teng, and Yue Zhang. 2016.
Expectation-regulated neural model for event mention
extraction. Proccedings of the 2016 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Technologies (NAACL).

Mark Craven and Johan Kumlien. 1999. Constructing
biological knowledge bases by extracting information
from text sources. In Proceedings of the Seventh Inter-
national Conference on Intelligent Systems for Molec-
ular Biology (ISMB).

Leon Derczynski and Robert J Gaizauskas. 2013. Tem-
poral signals help label temporal relations. In Pro-
ceedings of the 51st Annual Meeting of the Association
for Computational Linguistics (ACL).

Thomas G Dietterich, Richard H Lathrop, and Tomás
Lozano-Pérez. 1997. Solving the multiple instance
problem with axis-parallel rectangles. Artificial intel-
ligence, 89(1).

Quang Xuan Do, Wei Lu, and Dan Roth. 2012. Joint
inference for event timeline construction. In Proceed-
ings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning (EMNLP).

Michele Filannino, Gavin Brown, and Goran Nenadic.
2013. ManTIME: Temporal expression identification
and normalization in the TempEval-3 challenge. In
Proceedings of the Seventh International Workshop on
Semantic Evaluation (SemEval).

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S. Weld. 2011a. Knowledge-
based weak supervision for information extraction of
overlapping relations. In The 49th Annual Meeting
of the Association for Computational Linguistics: Hu-
man Language Technologies (ACL).

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke S.
Zettlemoyer, and Daniel S. Weld. 2011b. Knowledge-
based weak supervision for information extraction of
overlapping relations. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics (ACL).

Heng Ji, Ralph Grishman, Hoa Trang Dang, Kira Grif-
fitt, and Joe Ellis. 2011. Overview of the tac 2011
knowledge base population track. In Proceedings of
the Fourth Text Analysis Conference (TAC).

Nattiya Kanhabua, Sara Romano, Avaré Stewart, and
Wolfgang Nejdl. 2012. Supporting temporal analyt-
ics for health-related events in microblogs. In Pro-
ceedings of the 21st ACM International Conference on
Information and Knowledge Management (CIKM).

Oleksandr Kolomiyets and Marie-Francine Moens. 2010.
KUL: Recognition and normalization of temporal ex-
pressions. In Proceedings of the 5th International
Workshop on Semantic Evaluation (SemEval).

Kenton Lee, Yoav Artzi, Jesse Dodge, and Luke Zettle-
moyer. 2014. Context-dependent semantic parsing
for time expressions. In Proceedings of 52nd Annual
Meeting of the Association for Computational Linguis-
tics (ACL).

316

Xiao Ling and Daniel S Weld. 2010. Temporal infor-
mation extraction. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence (AAAI).

Inderjeet Mani and George Wilson. 2000. Robust tempo-
ral processing of news. In Proceedings of the 38th An-
nual Meeting on Association for Computational Lin-
guistics (ACL).

Micol Marchetti-Bowick and Nathanael Chambers.
2012. Learning for microblogs with distant supervi-
sion: Political forecasting with Twitter. In Proceed-
ings of the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics
(EACL).

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009a. Distant supervision for relation extraction
without labeled data. In Proceedings of the Joint Con-
ference of the Association of Computational Linguis-
tics and the International Joint Conference on Natural
Language Processing (ACL-IJCNLP).

Mike Mintz, Steven Bills, Rion Snow, and Daniel Juraf-
sky. 2009b. Distant supervision for relation extrac-
tion without labeled data. In Proceedigns of the 47th
Annual Meeting of the Association for Computational
Linguistics and the 4th International Joint Conference
on Natural Language Processing (ACL).

Truc-Vien T. Nguyen and Alessandro Moschitti. 2011.
End-to-end relation extraction using distant supervi-
sion from external semantic repositories. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics (ACL).

Barbara Plank, Dirk Hovy, Ryan McDonald, and Anders
Søgaard. 2014. Adapting taggers to twitter with not-
so-distant supervision. pages 1783–1792.

Matthew Purver and Stuart Battersby. 2012. Experi-
menting with distant supervision for emotion classi-
fication. In Proceedings of the 13th Conference of
the European Chapter of the Association for Compu-
tational Linguistics (EACL).

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions without
labeled text. In Proceedigns of the European Confer-
ence on Machine Learning and Principles and Prac-
tice of Knowledge Discovery in Databases (ECML-
PKDD).

Alan Ritter, Mausam, Sam Clark, and Oren Etzioni.
2011. Named entity recognition in Tweets: An ex-
perimental study. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP).

Alan Ritter, Mausam, Oren Etzioni, and Sam Clark.
2012. Open domain event extraction from twitter. In
Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining
(KDD).

Alan Ritter, Luke Zettlemoyer, Mausam, and Oren Et-
zioni. 2013. Modeling missing data in distant su-
pervision for information extraction. Transactions of
the Association for Computational Linguistics (TACL),
1:367–378.

Alan Ritter, Evan Wright, William Casey, and Tom
Mitchell. 2015. Weakly supervised extraction of com-
puter security events from Twitter. In Proceedings of
the 24th International Conference on World Wide Web
(WWW).

H Andrew Schwartz, Greg Park, Maarten Sap, Evan
Weingarten, Johannes Eichstaedt, Margaret Kern,
Jonah Berger, Martin Seligman, and Lyle Ungar.
2015. Extracting human temporal orientation in Face-
book language. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies (NAACL).

Jannik Strötgen and Michael Gertz. 2012. Temporal
tagging on different domains: Challenges, strategies,
and gold standards. In Proceedings of the 8th Interna-
tional Conference on Language Resources and Evalu-
ation (LREC).

Jannik Strötgen and Michael Gertz. 2013. Multilingual
and cross-domain temporal tagging. Language Re-
sources and Evaluation, 47(2):269–298.

Jannik Strötgen and Michael Gertz. 2015. A baseline
temporal tagger for all languages. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati, and
Christopher D. Manning. 2012. Multi-instance multi-
label learning for relation extraction. In Proceedings
of the 50th Annual Meeting of the Association for
Computational Linguistics (ACL).

Naushad UzZaman and James F Allen. 2010. TRIPS
and TRIOS system for Tempeval-2: Extracting tem-
poral information from text. In Proceedings of the 5th
International Workshop on Semantic Evaluation (Se-
mEval).

Naushad UzZaman, Hector Llorens, James Allen, Leon
Derczynski, Marc Verhagen, and James Pustejovsky.
2013. SemEval-2013 Task 1: TEMPEVAL-3: Evalu-
ating time expressions, events, and temporal relations.
In Proceedings of the 7th International Workshop on
Semantic Evaluation (SemEval).

Byron C Wallace, Joël Kuiper, Aakash Sharma,
Mingxi Brian Zhu, and Iain J Marshall. 2016. Extract-
ing PICO sentences from clinical trial reports using
supervised distant supervision. Journal of Machine
Learning Research (JMLR).

Wei Xu, Raphael Hoffmann, Zhao Le, and Ralph Grish-
man. 2013. Filling knowledge base gaps for distant

317

supervision of relation extraction. In Proceedings of
the 51th Annual Meeting of the Association for Com-
putational Linguistics (ACL).

Wei Xu, Alan Ritter, Chris Callison-Burch, William B.
Dolan, and Yangfeng Ji. 2014. Extracting lexically
divergent paraphrases from Twitter. Transactions of
the Association for Computational Linguistics (TACL),
2(1).

318

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 319–328,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Language as a Latent Variable:
Discrete Generative Models for Sentence Compression

Yishu Miao1, Phil Blunsom1,2

1University of Oxford, 2Google Deepmind
{yishu.miao, phil.blunsom}@cs.ox.ac.uk

Abstract

In this work we explore deep generative mod-
els of text in which the latent representation
of a document is itself drawn from a discrete
language model distribution. We formulate a
variational auto-encoder for inference in this
model and apply it to the task of compressing
sentences. In this application the generative
model first draws a latent summary sentence
from a background language model, and then
subsequently draws the observed sentence con-
ditioned on this latent summary. In our em-
pirical evaluation we show that generative for-
mulations of both abstractive and extractive
compression yield state-of-the-art results when
trained on a large amount of supervised data.
Further, we explore semi-supervised compres-
sion scenarios where we show that it is possi-
ble to achieve performance competitive with
previously proposed supervised models while
training on a fraction of the supervised data.

1 Introduction

The recurrent sequence-to-sequence paradigm for
natural language generation (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014) has achieved re-
markable recent success and is now the approach
of choice for applications such as machine transla-
tion (Bahdanau et al., 2015), caption generation (Xu
et al., 2015) and speech recognition (Chorowski et
al., 2015). While these models have developed so-
phisticated conditioning mechanisms, e.g. attention,
fundamentally they are discriminative models trained
only to approximate the conditional output distribu-
tion of strings. In this paper we explore modelling the

joint distribution of string pairs using a deep genera-
tive model and employing a discrete variational auto-
encoder (VAE) for inference (Kingma and Welling,
2014; Rezende et al., 2014; Mnih and Gregor, 2014).
We evaluate our generative approach on the task of
sentence compression. This approach provides both
alternative supervised objective functions and the
opportunity to perform semi-supervised learning by
exploiting the VAEs ability to marginalise the latent
compressed text for unlabelled data.

Auto-encoders (Rumelhart et al., 1985) are a typi-
cal neural network architecture for learning compact
data representations, with the general aim of perform-
ing dimensionality reduction on embeddings (Hinton
and Salakhutdinov, 2006). In this paper, rather than
seeking to embed inputs as points in a vector space,
we describe them with explicit natural language sen-
tences. This approach is a natural fit for summarisa-
tion tasks such as sentence compression. According
to this, we propose a generative auto-encoding sen-
tence compression (ASC) model, where we intro-
duce a latent language model to provide the variable-
length compact summary. The objective is to perform
Bayesian inference for the posterior distribution of
summaries conditioned on the observed utterances.
Hence, in the framework of VAE, we construct an in-
ference network as the variational approximation of
the posterior, which generates compression samples
to optimise the variational lower bound.

The most common family of variational auto-
encoders relies on the reparameterisation trick, which
is not applicable for our discrete latent language
model. Instead, we employ the REINFORCE al-
gorithm (Mnih et al., 2014; Mnih and Gregor, 2014)

319

s
0

s
1

s
2

s
1

s
3

s
2

s
4

s
3

h
1

d
h
2

d
h
3

d
h
4

d

Decoder

s
1

s
2

s
3

s
4

h
1

e

c
1

c
2

c
3

c
1 c

2
c
0

h
1

c

h
2

e
h
3

e
h
4

e

h
2

c
h
3

c

Encoder Compressor

h
0

c

Compression (Pointer Networks)

3α2α1α

ĥ
2

c

ĥ
3

c
ĥ
1

c

Reconstruction (Soft Attention)

Figure 1: Auto-encoding Sentence Compression Model

to mitigate the problem of high variance during
sampling-based variational inference. Nevertheless,
when directly applying the RNN encoder-decoder to
model the variational distribution it is very difficult to
generate reasonable compression samples in the early
stages of training, since each hidden state of the se-
quence would have |V | possible words to be sampled
from. To combat this we employ pointer networks
(Vinyals et al., 2015) to construct the variational dis-
tribution. This biases the latent space to sequences
composed of words only appearing in the source
sentence (i.e. the size of softmax output for each
state becomes the length of current source sentence),
which amounts to applying an extractive compression
model for the variational approximation.

In order to further boost the performance on sen-
tence compression, we employ a supervised forced-
attention sentence compression model (FSC)
trained on labelled data to teach the ASC model to
generate compression sentences. The FSC model
shares the pointer network of the ASC model and
combines a softmax output layer over the whole vo-
cabulary. Therefore, while training on the sentence-
compression pairs, it is able to balance copying a
word from the source sentence with generating it
from the background distribution. More importantly,
by jointly training on the labelled and unlabelled
datasets, this shared pointer network enables the
model to work in a semi-supervised scenario. In

this case, the FSC teaches the ASC to generate rea-
sonable samples, while the pointer network trained
on a large unlabelled data set helps the FSC model to
perform better abstractive summarisation.

In Section 6, we evaluate the proposed model by
jointly training the generative (ASC) and discrimina-
tive (FSC) models on the standard Gigaword sentence
compression task with varying amounts of labelled
and unlabelled data. The results demonstrate that by
introducing a latent language variable we are able to
match the previous benchmakers with small amount
of the supervised data. When we employ our mixed
discriminative and generative objective with all of the
supervised data the model significantly outperforms
all previously published results.

2 Auto-Encoding Sentence Compression

In this section, we introduce the auto-encoding sen-
tence compression model (Figure 1)1 in the frame-
work of variational auto-encoders. The ASC model
consists of four recurrent neural networks – an en-
coder, a compressor, a decoder and a language model.

Let s be the source sentence, and c be the compres-
sion sentence. The compression model (encoder-
compressor) is the inference network qφ(c|s) that
takes source sentences s as inputs and generates
extractive compressions c. The reconstruction

1The language model, layer connections and decoder soft
attentions are omitted in Figure 1 for clarity.

320

model (compressor-decoder) is the generative net-
work pθ(s|c) that reconstructs source sentences s
based on the latent compressions c. Hence, the for-
ward pass starts from the encoder to the compressor
and ends at the decoder. As the prior distribution, a
language model p(c) is pre-trained to regularise the
latent compressions so that the samples drawn from
the compression model are likely to be reasonable
natural language sentences.

2.1 Compression

For the compression model (encoder-compressor),
qφ(c|s), we employ a pointer network consisting of a
bidirectional LSTM encoder that processes the source
sentences, and an LSTM compressor that generates
compressed sentences by attending to the encoded
source words.

Let si be the words in the source sentences, hei be
the corresponding state outputs of the encoder. hei are
the concatenated hidden states from each direction:

hei = f−→enc(~h
e
i−1, si)||f←−enc(~hei+1, si) (1)

Further, let cj be the words in the compressed sen-
tences, hcj be the state outputs of the compressor. We
construct the predictive distribution by attending to
the words in the source sentences:

hcj =fcom(h
c
j−1, cj−1) (2)

uj(i) =w
T
3 tanh(W1h

c
j+W2h

e
i) (3)

qφ(cj |c1:j−1, s)= softmax(uj) (4)

where c0 is the start symbol for each compressed
sentence and hc0 is initialised by the source sentence
vector of he|s|. In this case, all the words cj sampled
from qφ(cj |c1:j−1, s) are the subset of the words
appeared in the source sentence (i.e. cj ∈ s).

2.2 Reconstruction

For the reconstruction model (compressor-decoder)
pθ(s|c), we apply a soft attention sequence-to-
sequence model to generate the source sentence s
based on the compression samples c ∼ qφ(c|s).

Let sk be the words in the reconstructed sentences
and hdk be the corresponding state outputs of the
decoder:

hdk = fdec(h
d
k−1, sk−1) (5)

In this model, we directly use the recurrent cell of
the compressor to encode the compression samples2:

ĥ
c
j =fcom(ĥ

c
j−1, cj) (6)

where the state outputs ĥ
c
j corresponding to the word

inputs cj are different from the outputs hcj in the
compression model, since we block the information
from the source sentences. We also introduce a start
symbol s0 for the reconstructed sentence and hd0
is initialised by the last state output ĥ

c
|c|. The soft

attention model is defined as:

vk(j) =w
T
6 tanh(W 4h

d
k +W 5ĥ

c
j) (7)

γk(j) = softmax(vk(j)) (8)

dk =
∑|c|

j
γk(j)ĥ

c
j(vk(j)) (9)

We then construct the predictive probability distribu-
tion over reconstructed words using a softmax:

pθ(sk|s1:k−1, c) = softmax(W 7dk) (10)

2.3 Inference
In the ASC model there are two sets of parameters, φ
and θ, that need to be updated during inference. Due
to the non-differentiability of the model, the repa-
rameterisation trick of the VAE is not applicable in
this case. Thus, we use the REINFORCE algorithm
(Mnih et al., 2014; Mnih and Gregor, 2014) to reduce
the variance of the gradient estimator.

The variational lower bound of the ASC model is:

L =Eqφ(c|s)[log pθ(s|c)]−DKL[qφ(c|s)||p(c)]

6 log

∫
qφ(c|s)
qφ(c|s)

pθ(s|c)p(c)dc = log p(s) (11)

Therefore, by optimising the lower bound (Eq. 11),
the model balances the selection of keywords for the
summaries and the efficacy of the composed com-
pressions, corresponding to the reconstruction error
and KL divergence respectively.

In practise, the pre-trained language model prior
p(c) prefers short sentences for compressions. As
one of the drawbacks of VAEs, the KL divergence
term in the lower bound pushes every sample drawn

2The recurrent parameters of the compressor are not updated
by the gradients from the reconstruction model.

321

s
1

s
2

s
3

s
4

h
1

e

c
1

c
2

c
3

c
1 c

2
c
0

h
1

c

h
2

e
h
3

e
h
4

e

h
2

c
h
3

c

Encoder Compresser

h
0

c

α β1 2 3α α1 β β2 3

Compression (Combined Pointer Networks)

Selected from V

Figure 2: Forced Attention Sentence Compression Model

from the variational distribution towards the prior.
Thus acting to regularise the posterior, but also to
restrict the learning of the encoder. If the estimator
keeps sampling short compressions during inference,
the LSTM decoder would gradually rely on the con-
texts from the decoded words instead of the informa-
tion provided by the compressions, which does not
yield the best performance on sentence compression.

Here, we introduce a co-efficient λ to scale the
learning signal of the KL divergence:
L=Eqφ(c|s)[log pθ(s|c)]−λDKL[qφ(c|s)||p(c)] (12)

Although we are not optimising the exact variational
lower bound, the ultimate goal of learning an effec-
tive compression model is mostly up to the recon-
struction error. In Section 6, we empirically apply
λ = 0.1 for all the experiments on ASC model. In-
terestingly, λ controls the compression rate of the
sentences which can be a good point to be explored
in future work.

During the inference, we have different strategies
for updating the parameters of φ and θ. For the pa-
rameters θ in the reconstruction model, we directly
update them by the gradients:

∂L

∂θ
= Eqφ(c|s)[

∂ log pθ(s|c)
∂θ

]

≈ 1

M

∑

m

∂ log pθ(s|c(m))

∂θ
(13)

where we draw M samples c(m) ∼ qφ(c|s) indepen-
dently for computing the stochastic gradients.

For the parameters φ in the compression model,
we firstly define the learning signal,

l(s, c) = log pθ(s|c)− λ(log qφ(c|s)− log p(c)).

Then, we update the parameters φ by:

∂L

∂φ
= Eqφ(c|s)[l(s, c)

∂ log qφ(c|s)
∂φ

]

≈ 1

M

∑

m

[l(s, c(m))
∂ log qφ(c

(m)|s)
∂φ

] (14)

However, this gradient estimator has a big variance
because the learning signal l(s, c(m)) relies on the
samples from qφ(c|s). Therefore, following the RE-
INFORCE algorithm, we introduce two baselines
b and b(s), the centred learning signal and input-
dependent baseline respectively, to help reduce the
variance.

Here, we build an MLP to implement the input-
dependent baseline b(s). During training, we learn
the two baselines by minimising the expectation:

Eqφ(c|s)[(l(s, c)− b− b(s))2]. (15)

Hence, the gradients w.r.t. φ are derived as,

∂L

∂φ
≈ 1

M

∑

m

(l(s, c(m))−b−b(s))∂ log qφ(c
(m)|s)

∂φ

(16)
which is basically a likelihood-ratio estimator.

3 Forced-attention Sentence Compression

In neural variational inference, the effectiveness of
training largely depends on the quality of the in-
ference network gradient estimator. Although we
introduce a biased estimator by using pointer net-
works, it is still very difficult for the compression
model to generate reasonable natural language sen-
tences at the early stage of learning, which results in

322

high-variance for the gradient estimator. Here, we
introduce our supervised forced-attention sentence
compression (FSC) model to teach the compression
model to generate coherent compressed sentences.

Neither directly replicating the pointer network
of ASC model, nor using a typical sequence-to-
sequence model, the FSC model employs a force-
attention strategy (Figure 2) that encourages the com-
pressor to select words appearing in the source sen-
tence but keeps the original full output vocabulary
V . The force-attention strategy is basically a com-
bined pointer network that chooses whether to select
a word from the source sentence s or to predict a
word from V at each recurrent state. Hence, the
combined pointer network learns to copy the source
words while predicting the word sequences of com-
pressions. By sharing the pointer networks between
the ASC and FSC model, the biased estimator obtains
further positive biases by training on a small set of
labelled source-compression pairs.

Here, the FSC model makes use of the compres-
sion model (Eq. 1 to 4) in the ASC model,

αj =softmax(uj), (17)

where αj(i), i ∈ (1, . . . , |s|) denotes the probability
of selecting si as the prediction for cj .

On the basis of the pointer network, we further
introduce the probability of predicting cj that is se-
lected from the full vocabulary,

βj = softmax(Whcj), (18)

where βj(w), w ∈ (1, . . . , |V |) denotes the probabil-
ity of selecting the wth from V as the prediction for
cj . To combine these two probabilities in the RNN,
we define a selection factor t for each state output,
which computes the semantic similarities between
the current state and the attention vector,

ηj =
∑|s|

i
αj(i)h

e
i (19)

tj = σ(ηTjMhcj). (20)

Hence, the probability distribution over compressed
words is defined as,

p(cj |c1:j−1, s)=
{
tjαj(i) + (1− tj)βj(cj), cj=si
(1− tj)βj(cj), cj 6∈s

(21)

Essentially, the FSC model is the extended compres-
sion model of ASC by incorporating the pointer net-
work with a softmax output layer over the full vocab-
ulary. So we employ φ to denote the parameters of
the FSC model pφ(c|s), which covers the parameters
of the variational distribution qφ(c|s).

4 Semi-supervised Training

As the auto-encoding sentence compression (ASC)
model grants the ability to make use of an unla-
belled dataset, we explore a semi-supervised train-
ing framework for the ASC and FSC models. In
this scenario we have a labelled dataset that contains
source-compression parallel sentences, (s, c) ∈ L,
and an unlabelled dataset that contains only source
sentences s ∈ U. The FSC model is trained on L so
that we are able to learn the compression model by
maximising the log-probability,

F =
∑

(c,s)∈L
log pφ(c|s). (22)

While the ASC model is trained on U, where we
maximise the modified variational lower bound,

L=
∑

s∈U
(Eqφ(c|s)[log pθ(s|c)]−λDKL[qφ(c|s)||p(c)]).

(23)

The joint objective function of the semi-supervised
learning is,

J=
∑

s∈U
(Eqφ(c|s)[log pθ(s|c)]−λDKL[qφ(c|s)||p(c)])

+
∑

(c,s)∈L
log pφ(c|s). (24)

Hence, the pointer network is trained on both un-
labelled data, U, and labelled data, L, by a mixed
criterion of REINFORCE and cross-entropy.

5 Related Work

As one of the typical sequence-to-sequence tasks,
sentence-level summarisation has been explored by a
series of discriminative encoder-decoder neural mod-
els. Filippova et al. (2015) carries out extractive
summarisation via deletion with LSTMs, while Rush
et al. (2015) applies a convolutional encoder and an

323

attentional feed-forward decoder to generate abstrac-
tive summarises, which provides the benchmark for
the Gigaword dataset. Nallapati et al. (2016) fur-
ther improves the performance by exploring multi-
ple variants of RNN encoder-decoder models. The
recent works Gulcehre et al. (2016), Nallapati et al.
(2016) and Gu et al. (2016) also apply the similar idea
of combining pointer networks and softmax output.
However, different from all these discriminative mod-
els above, we explore generative models for sentence
compression. Instead of training the discriminative
model on a big labelled dataset, our original intuition
of introducing a combined pointer networks is to
bridge the unsupervised generative model (ASC) and
supervised model (FSC) so that we could utilise a
large additional dataset, either labelled or unlabelled,
to boost the compression performance. Dai and Le
(2015) also explored semi-supervised sequence learn-
ing, but in a pure deterministic model focused on
learning better vector representations.

Recently variational auto-encoders have been ap-
plied in a variety of fields as deep generative mod-
els. In computer vision Kingma and Welling (2014),
Rezende et al. (2014), and Gregor et al. (2015) have
demonstrated strong performance on the task of im-
age generation and Eslami et al. (2016) proposed
variable-sized variational auto-encoders to identify
multiple objects in images. While in natural language
processing, there are variants of VAEs on modelling
documents (Miao et al., 2016), sentences (Bowman
et al., 2015) and discovery of relations (Marcheg-
giani and Titov, 2016). Apart from the typical initi-
ations of VAEs, there are also a series of works that
employs generative models for supervised learning
tasks. For instance, Ba et al. (2015) learns visual
attention for multiple objects by optimising a varia-
tional lower bound, Kingma et al. (2014) implements
a semi-supervised framework for image classification
and Miao et al. (2016) applies a conditional varia-
tional approximation in the task of factoid question
answering. Dyer et al. (2016) proposes a generative
model that explicitly extracts syntactic relationships
among words and phrases which further supports the
argument that generative models can be a statistically
efficient method for learning neural networks from
small data.

6 Experiments

6.1 Dataset & Setup

We evaluate the proposed models on the standard Gi-
gaword3 sentence compression dataset. This dataset
was generated by pairing the headline of each article
with its first sentence to create a source-compression
pair. Rush et al. (2015) provided scripts4 to filter
out outliers, resulting in roughly 3.8M training pairs,
a 400K validation set, and a 400K test set. In the
following experiments all models are trained on the
training set with different data sizes5 and tested on a
2K subset, which is identical to the test set used by
Rush et al. (2015) and Nallapati et al. (2016). We
decode the sentences by k = 5 Beam search and test
with full-length Rouge score.

For the ASC and FSC models, we use 256 for the
dimension of both hidden units and lookup tables.
In the ASC model, we apply a 3-layer bidirectional
RNN with skip connections as the encoder, a 3-layer
RNN pointer network with skip connections as the
compressor, and a 1-layer vanilla RNN with soft at-
tention as the decoder. The language model prior is
trained on the article sentences of the full training
set using a 3-layer vanilla RNN with 0.5 dropout. To
lower the computational cost, we apply different vo-
cabulary sizes for encoder and compressor (119,506
and 68,897) which corresponds to the settings of
Rush et al. (2015). Specifically, the vocabulary of
the decoder is filtered by taking the most frequent
10,000 words from the vocabulary of the encoder,
where the rest of the words are tagged as ‘<unk>’.
In further consideration of efficiency, we use only
one sample for the gradient estimator. We optimise
the model by Adam (Kingma and Ba, 2015) with a
0.0002 learning rate and 64 sentences per batch. The
model converges in 5 epochs. Except for the pre-
trained language model, we do not use dropout or
embedding initialisation for ASC and FSC models.

6.2 Extractive Summarisation

The first set of experiments evaluate the models on
extractive summarisation. Here, we denote the joint

3https://catalog.ldc.upenn.edu/LDC2012T21
4https://github.com/facebook/NAMAS
5The hyperparameters where tuned on the validation set to

maximise the perplexity of the summaries rather than the recon-
structed source sentences.

324

Model
Training Data Recall Precision F-1

Labelled Unlabelled R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
FSC 500K - 30.817 10.861 28.263 22.357 7.998 20.520 23.415 8.156 21.468

ASC+FSC1 500K 500K 29.117 10.643 26.811 28.558 10.575 26.344 26.987 9.741 24.874
ASC+FSC2 500K 3.8M 28.236 10.359 26.218 30.112 11.131 27.896 27.453 9.902 25.452

FSC 1M - 30.889 11.645 28.257 27.169 10.266 24.916 26.984 10.028 24.711
ASC+FSC1 1M 1M 30.490 11.443 28.097 28.109 10.799 25.943 27.258 10.189 25.148
ASC+FSC2 1M 3.8M 29.034 10.780 26.801 31.037 11.521 28.658 28.336 10.313 26.145

FSC 3.8M - 30.112 12.436 27.889 34.135 13.813 31.704 30.225 12.258 28.035
ASC+FSC1 3.8M 3.8M 29.946 12.558 27.805 35.538 14.699 32.972 30.568 12.553 28.366

Table 1: Extractive Summarisation Performance. (1) The extractive summaries of these models are decoded
by the pointer network (i.e the shared component of the ASC and FSC models). (2) R-1, R-2 and R-L
represent the Rouge-1, Rouge-2 and Rouge-L score respectively.

models by ASC+FSC1 and ASC+FSC2 where ASC
is trained on unlabelled data and FSC is trained on
labelled data. The ASC+FSC1 model employs equiv-
alent sized labelled and unlabelled datasets, where
the article sentences of the unlabelled data are the
same article sentences in the labelled data, so there
is no additional unlabelled data applied in this case.
The ASC+FSC2 model employs the full unlabelled
dataset in addition to the existing labelled dataset,
which is the true semi-supervised setting.

Table 1 presents the test Rouge score on extractive
compression. We can see that the ASC+FSC1 model
achieves significant improvements on F-1 scores
when compared to the supervised FSC model only
trained on labelled data. Moreover, fixing the labelled
data size, the ASC+FSC2 model achieves better per-
formance by using additional unlabelled data than the
ASC+FSC1 model, which means the semi-supervised
learning works in this scenario. Interestingly, learn-
ing on the unlabelled data largely increases the preci-
sions (though the recalls do not benefit from it) which
leads to significant improvements on the F-1 Rouge
scores. And surprisingly, the extractive ASC+FSC1

model trained on full labelled data outperforms the
abstractive NABS (Rush et al., 2015) baseline model
(in Table 4).

6.3 Abstractive Summarisation

The second set of experiments evaluate performance
on abstractive summarisation (Table 2). Consistently,
we see that adding the generative objective to the
discriminative model (ASC+FSC1) results in a sig-
nificant boost on all the Rouge scores, while em-
ploying extra unlabelled data increase performance

further (ASC+FSC2). This validates the effectiveness
of transferring the knowledge learned on unlabelled
data to the supervised abstractive summarisation.

In Figure 3, we present the validation perplexity
to compare the abilities of the three models to learn
the compression languages. The ASC+FSC1(red)
employs the same dataset for unlabelled and labelled
training, while the ASC+FSC2(black) employs the
full unlabelled dataset. Here, the joint ASC+FSC1

model obtains better perplexities than the single dis-
criminative FSC model, but there is not much dif-
ference between ASC+FSC1 and ASC+FSC2 when
the size of the labelled dataset grows. From the per-
spective of language modelling, the generative ASC
model indeed helps the discriminative model learn to
generate good summary sentences. Table 3 displays
the validation perplexities of the benchmark models,
where the joint ASC+FSC1 model trained on the full
labelled and unlabelled datasets performs the best on
modelling compression languages.

Table 4 compares the test Rouge score on ab-
stractive summarisation. Encouragingly, the semi-
supervised model ASC+FSC2 outperforms the base-
line model NABS when trained on 500K supervised
pairs, which is only about an eighth of the super-
vised data. In Nallapati et al. (2016), the authors
exploit the full limits of discriminative RNN encoder-
decoder models by incorporating a sampled soft-
max, expanded vocabulary, additional lexical fea-
tures, and combined pointer networks6, which yields
the best performance listed in Table 4. However,
when all the data is employed with the mixed ob-

6The idea of the combined pointer networks is similar to the
FSC model, but the implementations are slightly different.

325

Model
Training Data Recall Precision F-1

Labelled Unlabelled R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
FSC 500K - 27.147 10.039 25.197 33.781 13.019 31.288 29.074 10.842 26.955

ASC+FSC1 500K 500K 27.067 10.717 25.239 33.893 13.678 31.585 29.027 11.461 27.072
ASC+FSC2 500K 3.8M 27.662 11.102 25.703 35.756 14.537 33.212 30.140 12.051 27.99

FSC 1M - 28.521 11.308 26.478 33.132 13.422 30.741 29.580 11.807 27.439
ASC+FSC1 1M 1M 28.333 11.814 26.367 35.860 15.243 33.306 30.569 12.743 28.431
ASC+FSC2 1M 3.8M 29.017 12.007 27.067 36.128 14.988 33.626 31.089 12.785 28.967

FSC 3.8M - 31.148 13.553 28.954 36.917 16.127 34.405 32.327 14.000 30.087
ASC+FSC1 3.8M 3.8M 32.385 15.155 30.246 39.224 18.382 36.662 34.156 15.935 31.915

Table 2: Abstractive Summarisation Performance. The abstractive summaries of these models are decoded by
the combined pointer network (i.e. the shared pointer network together with the softmax output layer over the
full vocabulary).

Model Labelled Data Perplexity

Bag-of-Word (BoW) 3.8M 43.6
Convolutional (TDNN) 3.8M 35.9
Attention-Based (NABS) 3.8M 27.1
(Rush et al., 2015)

Forced-Attention (FSC) 3.8M 18.6
Auto-encoding (ASC+FSC1) 3.8M 16.6

Table 3: Comparison on validation perplexity. BoW,
TDNN and NABS are the baseline neural compres-
sion models with different encoders in Rush et al.
(2015)

Model Labelled Data R-1 R-2 R-L
(Rush et al., 2015) 3.8M 29.78 11.89 26.97

(Nallapati et al., 2016) 3.8M 33.17 16.02 30.98
ASC + FSC2 500K 30.14 12.05 27.99
ASC + FSC2 1M 31.09 12.79 28.97
ASC + FSC1 3.8M 34.17 15.94 31.92

Table 4: Comparison on test Rouge scores

jective ASC+FSC1 model, the result is significantly
better than this previous state-of-the-art. As the semi-
supervised ASC+FSC2 model can be trained on un-
limited unlabelled data, there is still significant space
left for further performance improvements.

Table 5 presents the examples of the compression
sentences decoded by the joint model ASC+FSC1

and the FSC model trained on the full dataset.

7 Discussion

From the perspective of generative models, a sig-
nificant contribution of our work is a process for
reducing variance for discrete sampling-based vari-
ational inference. The first step is to introduce two
baselines in the control variates method due to the
fact that the reparameterisation trick is not applica-

0 500K 1M 2M 4M
Labelled Data size

20

40

60

80

100

P
e
rp

le
x
it

y

100

49

35.4
27.4

18.6

87.7

43

32
25.2 16.6

83.3

42.5

33.6
25.4

16.6

FSC

ASC+FSC1

ASC+FSC2

Figure 3: Perplexity on validation dataset.

ble for discrete latent variables. However it is the
second step of using a pointer network as the biased
estimator that makes the key contribution. This re-
sults in a much smaller state space, bounded by the
length of the source sentence (mostly between 20
and 50 tokens), compared to the full vocabulary. The
final step is to apply the FSC model to transfer the
knowledge learned from the supervised data to the
pointer network. This further reduces the sampling
variance by acting as a sort of bootstrap or constraint
on the unsupervised latent space which could encode
almost anything but which thus becomes biased to-
wards matching the supervised distribution. By using
these variance reduction methods, the ASC model is
able to carry out effective variational inference for the
latent language model so that it learns to summarise
the sentences from the large unlabelled training data.

In a different vein, according to the reinforce-
ment learning interpretation of sequence level train-
ing (Ranzato et al., 2016), the compression model
of the ASC model acts as an agent which iteratively
generates words (takes actions) to compose the com-

326

pression sentence and the reconstruction model acts
as the reward function evaluating the quality of the
compressed sentence which is provided as a reward
signal. Ranzato et al. (2016) presents a thorough
empirical evaluation on three different NLP tasks by
using additional sequence-level reward (BLEU and
Rouge-2) to train the models. In the context of this
paper, we apply a variational lower bound (mixed re-
construction error and KL divergence regularisation)
instead of the explicit Rouge score. Thus the ASC
model is granted the ability to explore unlimited unla-
belled data resources. In addition we introduce a su-
pervised FSC model to teach the compression model
to generate stable sequences instead of starting with
a random policy. In this case, the pointer network
that bridges the supervised and unsupervised model
is trained by a mixed criterion of REINFORCE and
cross-entropy in an incremental learning framework.
Eventually, according to the experimental results, the
joint ASC and FSC model is able to learn a robust
compression model by exploring both labelled and
unlabelled data, which outperforms the other sin-
gle discriminative compression models that are only
trained by cross-entropy reward signal.

8 Conclusion

In this paper we have introduced a generative model
for jointly modelling pairs of sequences and evalu-
ated its efficacy on the task of sentence compression.
The variational auto-encoding framework provided
an effective inference algorithm for this approach
and also allowed us to explore combinations of dis-
criminative (FSC) and generative (ASC) compression
models. The evaluation results show that supervised
training of the combination of these models improves
upon the state-of-the-art performance for the Giga-
word compression dataset. When we train the su-
pervised FSC model on a small amount of labelled
data and the unsupervised ASC model on a large
set of unlabelled data the combined model is able to
outperform previously reported benchmarks trained
on a great deal more supervised data. These results
demonstrate that we are able to model language as a
discrete latent variable in a variational auto-encoding
framework and that the resultant generative model is
able to effectively exploit both supervised and unsu-
pervised data in sequence-to-sequence tasks.

src the sri lankan government on wednesday announced the closure of
government schools with immediate effect as a military campaign
against tamil separatists escalated in the north of the country .

ref sri lanka closes schools as war escalates
asca sri lanka closes government schools
asce sri lankan government closure schools escalated
fsca sri lankan government closure with tamil rebels closure
src factory orders for manufactured goods rose #.# percent in septem-

ber , the commerce department said here thursday .
ref us september factory orders up #.# percent
asca us factory orders up #.# percent in september
asce factory orders rose #.# percent in september
fsca factory orders #.# percent in september
src hong kong signed a breakthrough air services agreement with the

united states on friday that will allow us airlines to carry freight to
asian destinations via the territory .

ref hong kong us sign breakthrough aviation pact

asca us hong kong sign air services agreement
asce hong kong signed air services agreement with united states
fsca hong kong signed air services pact with united states
src a swedish un soldier in bosnia was shot and killed by a stray bul-

let on tuesday in an incident authorities are calling an accident ,
military officials in stockholm said tuesday .

ref swedish un soldier in bosnia killed by stray bullet
asca swedish un soldier killed in bosnia
asce swedish un soldier shot and killed
fsca swedish soldier shot and killed in bosnia
src tea scores on the fourth day of the second test between australia

and pakistan here monday .
ref australia vs pakistan tea scorecard
asca australia v pakistan tea scores
asce australia tea scores
fsca tea scores on #th day of #nd test
src india won the toss and chose to bat on the opening day in the

opening test against west indies at the antigua recreation ground
on friday .

ref india win toss and elect to bat in first test
asca india win toss and bat against west indies
asce india won toss on opening day against west indies
fsca india chose to bat on opening day against west indies
src a powerful bomb exploded outside a navy base near the sri lankan

capital colombo tuesday , seriously wounding at least one person ,
military officials said .

ref bomb attack outside srilanka navy base
asca bomb explodes outside sri lanka navy base
asce bomb outside sri lankan navy base wounding one
fsca bomb exploded outside sri lankan navy base
src press freedom in algeria remains at risk despite the release on

wednesday of prominent newspaper editor mohamed <unk> after
a two-year prison sentence , human rights organizations said .

ref algerian press freedom at risk despite editor ’s release <unk>
picture

asca algeria press freedom remains at risk
asce algeria press freedom remains at risk
fsca press freedom in algeria at risk

Table 5: Examples of the compression sentences.
src and ref are the source and reference sentences
provided in the test set. asca and asce are the abstrac-
tive and extractive compression sentences decoded
by the joint model ASC+FSC1, and fsca denotes the
abstractive compression obtained by the FSC model.

327

References
[Ba et al.2015] Jimmy Ba, Volodymyr Mnih, and Koray

Kavukcuoglu. 2015. Multiple object recognition with
visual attention. In Proceedings of ICLR.

[Bahdanau et al.2015] Dzmitry Bahdanau, Kyunghyun
Cho, and Yoshua Bengio. 2015. Neural machine trans-
lation by jointly learning to align and translate. In
Proceedings of ICLR.

[Bowman et al.2015] Samuel R Bowman, Luke Vilnis,
Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and
Samy Bengio. 2015. Generating sentences from a
continuous space. arXiv preprint arXiv:1511.06349.

[Chorowski et al.2015] Jan K Chorowski, Dzmitry Bah-
danau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua
Bengio. 2015. Attention-based models for speech
recognition. In Proceedings of NIPS, pages 577–585.

[Dai and Le2015] Andrew M Dai and Quoc V Le. 2015.
Semi-supervised sequence learning. In Proceedings of
NIPS, pages 3061–3069.

[Dyer et al.2016] Chris Dyer, Adhiguna Kuncoro, Miguel
Ballesteros, and Noah A Smith. 2016. Recurrent neural
network grammars. In Proceedings of NAACL.

[Eslami et al.2016] SM Eslami, Nicolas Heess, Theophane
Weber, Yuval Tassa, Koray Kavukcuoglu, and Geof-
frey E Hinton. 2016. Attend, infer, repeat: Fast scene
understanding with generative models. arXiv preprint
arXiv:1603.08575.

[Filippova et al.2015] Katja Filippova, Enrique Alfonseca,
Carlos A Colmenares, Lukasz Kaiser, and Oriol Vinyals.
2015. Sentence compression by deletion with lstms. In
Proceedings of EMNLP, pages 360–368.

[Gregor et al.2015] Karol Gregor, Ivo Danihelka, Alex
Graves, and Daan Wierstra. 2015. Draw: A recurrent
neural network for image generation. In Proceedings
of ICML.

[Gu et al.2016] Jiatao Gu, Zhengdong Lu, Hang Li, and
Victor OK Li. 2016. Incorporating copying mecha-
nism in sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393.

[Gulcehre et al.2016] Caglar Gulcehre, Sungjin Ahn,
Ramesh Nallapati, Bowen Zhou, and Yoshua Bengio.
2016. Pointing the unknown words. arXiv preprint
arXiv:1603.08148.

[Hinton and Salakhutdinov2006] Geoffrey E Hinton and
Ruslan R Salakhutdinov. 2006. Reducing the di-
mensionality of data with neural networks. Science,
313(5786):504–507.

[Kalchbrenner and Blunsom2013] Nal Kalchbrenner and
Phil Blunsom. 2013. Recurrent continuous translation
models. In Proceedings of EMNLP.

[Kingma and Ba2015] Diederik P. Kingma and Jimmy Ba.
2015. Adam: A method for stochastic optimization. In
Proceedings of ICLR.

[Kingma and Welling2014] Diederik P Kingma and Max
Welling. 2014. Auto-encoding variational bayes. In
Proceedings of ICLR.

[Kingma et al.2014] Diederik P Kingma, Shakir Mo-
hamed, Danilo Jimenez Rezende, and Max Welling.
2014. Semi-supervised learning with deep generative
models. In Proceedings of NIPS.

[Marcheggiani and Titov2016] Diego Marcheggiani and
Ivan Titov. 2016. Discrete-state variational autoen-
coders for joint discovery and factorization of relations.
Transactions of the Association for Computational Lin-
guistics, 4.

[Miao et al.2016] Yishu Miao, Lei Yu, and Phil Blunsom.
2016. Neural variational inference for text processing.
In Proceedings of ICML.

[Mnih and Gregor2014] Andriy Mnih and Karol Gregor.
2014. Neural variational inference and learning in be-
lief networks. In Proceedings of ICML.

[Mnih et al.2014] Volodymyr Mnih, Nicolas Heess, and
Alex Graves. 2014. Recurrent models of visual atten-
tion. In Proceedings of NIPS.

[Nallapati et al.2016] Ramesh Nallapati, Bowen Zhou,
Ça glar Gulçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
rnns and beyond. arXiv preprint arXiv:1602.06023.

[Ranzato et al.2016] Marc’Aurelio Ranzato, Sumit
Chopra, Michael Auli, and Wojciech Zaremba. 2016.
Sequence level training with recurrent neural networks.

[Rezende et al.2014] Danilo J Rezende, Shakir Mohamed,
and Daan Wierstra. 2014. Stochastic backpropagation
and approximate inference in deep generative models.
In Proceedings of ICML.

[Rumelhart et al.1985] David E Rumelhart, Geoffrey E
Hinton, and Ronald J Williams. 1985. Learning in-
ternal representations by error propagation. Technical
report, DTIC Document.

[Rush et al.2015] Alexander M Rush, Sumit Chopra, and
Jason Weston. 2015. A neural attention model for
abstractive sentence summarization. In Proceedings of
EMNLP.

[Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V Le. 2014. Sequence to sequence learning with
neural networks. In Proceedings of NIPS.

[Vinyals et al.2015] Oriol Vinyals, Meire Fortunato, and
Navdeep Jaitly. 2015. Pointer networks. In Proceed-
ings of NIPS, pages 2674–2682.

[Xu et al.2015] Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron
Courville, Ruslan Salakhutdinov, Richard Zemel, and
Yoshua Bengio. 2015. Show, attend and tell: Neural
image caption generation with visual attention.

328

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 329–339,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Globally Coherent Text Generation with Neural Checklist Models

Chloé Kiddon Luke Zettlemoyer Yejin Choi
Computer Science & Engineering

University of Washington
{chloe, lsz, yejin}@cs.washington.edu

Abstract

Recurrent neural networks can generate lo-
cally coherent text but often have difficulties
representing what has already been generated
and what still needs to be said – especially
when constructing long texts. We present the
neural checklist model, a recurrent neural net-
work that models global coherence by stor-
ing and updating an agenda of text strings
which should be mentioned somewhere in the
output. The model generates output by dy-
namically adjusting the interpolation among a
language model and a pair of attention mod-
els that encourage references to agenda items.
Evaluations on cooking recipes and dialogue
system responses demonstrate high coherence
with greatly improved semantic coverage of
the agenda.

1 Introduction

Recurrent neural network (RNN) architectures have
proven to be well suited for many natural language
generation tasks (Mikolov et al., 2010; Mikolov et
al., 2011; Sordoni et al., 2015; Xu et al., 2015;
Wen et al., 2015; Mei et al., 2016). Previous neu-
ral generation models typically generate locally co-
herent language that is on topic; however, overall
they can miss information that should have been in-
troduced or introduce duplicated or superfluous con-
tent. These errors are particularly common in situ-
ations where there are multiple distinct sources of
input or the length of the output text is sufficiently
long. In this paper, we present a new recurrent neu-
ral model that maintains coherence while improv-

Place tomatoes in a bowl . Dice the onion

Pico de gallo chopped tomatoes
onion
jalapeños
salt
lime

and add to the tomatoes

✓

✓✓

…

Figure 1: Example checklist recipe generation. A checklist

(right dashed column) tracks which agenda items (top boxes;

“salt,” “lime,” etc.) have already been used (checked boxes).

The model is trained to interpolate an RNN (e.g., encode “pico

de gallo” and decode a recipe) with attention models over new

(left column) and used (middle column) items that identify

likely items for each time step (shaded boxes; “tomatoes,” etc.).

ing coverage by globally tracking what has been said
and what is still left to be said in complete texts.

For example, consider the challenge of generat-
ing a cooking recipe, where the title and ingredient
list are provided as inputs and the system must gen-
erate a complete text that describes how to produce
the desired dish. Existing RNN models may lose
track of which ingredients have already been men-
tioned, especially during the generation of a long
recipe with many ingredients. Recent work has fo-
cused on adapting neural network architectures to
improve coverage (Wen et al., 2015) with applica-
tion to generating customer service responses, such
as hotel information, where a single sentence is gen-
erated to describe a few key ideas. Our focus is in-
stead on developing a model that maintains coher-
ence while producing longer texts or covering longer

329

input specifications (e.g., a long ingredient list).
More specifically, our neural checklist model gen-

erates a natural language description for achieving
a goal, such as generating a recipe for a particu-
lar dish, while using a new checklist mechanism
to keep track of an agenda of items that should
be mentioned, such as a list of ingredients (see
Fig. 1). The checklist model learns to interpolate
among three components at each time step: (1)
an encoder-decoder language model that generates
goal-oriented text, (2) an attention model that tracks
remaining agenda items that need to be introduced,
and (3) an attention model that tracks the used, or
checked, agenda items. Together, these compo-
nents allow the model to learn representations that
best predict which words should be included in the
text and when references to agenda items should be
checked off the list (see check marks in Fig. 1).

We evaluate our approach on a new cooking
recipe generation task and the dialogue act genera-
tion from Wen et al. (2015). In both cases, the model
must correctly describe a list of agenda items: an in-
gredient list or a set of facts, respectively. Gener-
ating recipes additionally tests the ability to main-
tain coherence in long procedural texts. Experi-
ments in dialogue generation demonstrate that our
approach outperforms previous work with up to a 4
point BLEU improvement. Our model also scales to
cooking recipes, where both automated and manual
evaluations demonstrate that it maintains the strong
local coherence of baseline RNN techniques while
significantly improving the global coverage by ef-
fectively integrating the agenda items.

2 Task

Given a goal g and an agenda E = {e1, . . . , e|E|},
our task is to generate a goal-oriented text x by mak-
ing use of items on the agenda. For example, in the
cooking recipe domain, the goal is the recipe title
(“pico de gallo” in Fig. 1), and the agenda is the in-
gredient list (e.g., “lime,” “salt”). For dialogue sys-
tems, the goal is the dialogue type (e.g., inform or
query) and the agenda contains information to be
mentioned (e.g., a hotel name and address). For
example, if g =“inform” and E = {name(Hotel
Stratford), has internet(no)}, an output text might be
x =“Hotel Stratford does not have internet.”

3 Related Work

Attention models have been used for many NLP
tasks such as machine translation (Balasubramanian
et al., 2013; Bahdanau et al., 2014), abstractive sen-
tence summarization (Rush et al., 2015), machine
reading (Cheng et al., 2016), and image caption gen-
eration (Xu et al., 2015). Our model uses new types
of attention to record what has been said and to se-
lect new agenda items to be referenced.

Recently, other researchers have developed new
ways to use attention mechanisms for related gen-
eration challenges. Most closely related, Wen et al.
(2015) and Wen et al. (2016) present neural network
models for generating dialogue system responses
given a set of agenda items. They focus on gener-
ating short texts (1-2 sentences) in a relatively small
vocabulary setting and assume a fixed set of possi-
ble agenda items. Our model composes substantially
longer texts, such as recipes, with a more varied and
open ended set of possible agenda items. We also
compare performance for our model on their data.

Maintaining coherence and avoiding duplication
have been recurring challenges when generating text
using RNNs for other applications, including image
captioning (Jia et al., 2015; Xu et al., 2015) and ma-
chine translation (Tu et al., 2016b; Tu et al., 2016a).
A variety of solutions have been developed to ad-
dress infrequent or out-of-vocabulary words in par-
ticular (Gülçehre et al., 2016; Jia and Liang, 2016).
Instead of directly copying input words or determin-
istically selecting output, our model can learn how
to generate them (e.g., it might prefer to produce
the word “steaks” when the original recipe ingre-
dient was “ribeyes”). Finally, recent work in ma-
chine translation models has introduced new train-
ing objectives to encourage attention to all input
words (Luong et al., 2015), but these models do not
accumulate attention while decoding.

Generating recipes was an early task in planning
(Hammond, 1986) and generating referring expres-
sion research (Dale, 1988). These can be seen as
key steps in classic approaches to generating natu-
ral language text: a formal meaning representation
is provided as input and the model first does content
selection to determine the non-linguistic concepts to
be conveyed by the output text (i.e., what to say)
and then does realization to describe those concepts

330

Et

Generate
output

Et+1

 αt

σ

ht-1

g Et
xt

+
rt

st qt

zt
ht

ref-type(ht)

Pht Et

x

x

x

x
 αt

ft

ot

+

at-1

at

ft
new

Et+1
new

1-atE at

x

E

x

E

E
2

x

GRU language model

Attention mechanisms

Update checklist

hidden state
projected into
agenda space

hidden state
classifier

probability of
using new item

available
items

used
items

Update available and used agenda items

sum

σ sigmoid

linear projection

multiplication

softmax

linear interpolation

gate

select dimension ii

+

x

key

up
da

te
 c

he
ck

lis
t

la
ng

ua
ge

 m
od

el

ht

used

new

used

used

new

new available
items

agenda

agenda

Figure 2: A diagram of the neural checklist model. The bottom portion depicts how the model generates the output embedding ot.

The top portion shows how the checklist and available/used agenda item matrices are updated.

in natural language text (i.e., how to say it) (Thomp-
son, 1977; Reiter and Dale, 2000). More recently,
machine learning methods have focused on parts of
this approach (Barzilay and Lapata, 2005; Liang et
al., 2009) or the full two-stage approach (Angeli et
al., 2010; Konstas and Lapata, 2013). Most of these
models shorter texts, although Mori et al. (2014) did
consider longer cooking recipes. Our approach is a
joint model that instead operates with textual input
and tries to cover all of the content it is given.

4 Model

Fig. 2 shows a graphical representation of the neu-
ral checklist model. At a high level, our model uses
a recurrent neural network (RNN) language model
that encodes the goal as a bag-of-words and then
generates output text token by token. It additionally
stores a vector that acts as a soft checklist of what
agenda items have been used so far during genera-
tion. This checklist is updated every time an agenda
item reference is generated and is used to compute
the available agenda items at each time step. The
available items are used as an input to the language
model and to constrain which agenda items can still
be referenced during generation. Agenda embed-
dings are also used when generating item references.

4.1 Input variable definitions
We assume the goal g and agenda items E (see
Sec. 2) are each defined by a set of tokens. Goal

tokens come from a fixed vocabulary Vgoal, the item
tokens come from a fixed vocabulary Vagenda, and
the tokens of the text xt come from a fixed vocab-
ulary Vtext. In an abuse of notation, we represent
each goal g, agenda item ei, and text token xt as
a k-dimensional word embedding vector. We com-
pute these embeddings by creating indicator vec-
tors of the vocabulary token (or set of tokens for
goals and agenda items) and embed those vectors
using a trained k × |Vz| projection matrix, where
z ∈ {goal, agenda, text} depending whether we
are generating a goal, agenda item, or text token.

Given a goal embedding g ∈ Rk, a matrix of L
agenda items E ∈ RL×k, a checklist soft record of
what items have been used at−1 ∈ RL, a previous
hidden state ht−1 ∈ Rk, and the current input word
embedding xt ∈ Rk, our architecture computes the
next hidden state ht, an embedding used to generate
the output word ot, and the updated checklist at.

4.2 Generating output token probabilities
To generate the output token probability distribution
(see “Generate output” box in Fig. 2), wt ∈ R|Vtext|,
we project the output hidden state ot into the vocab-
ulary space and apply a softmax:

wt = softmax(Woot),

where Wo ∈ R|V |×k is a trained projection ma-
trix. The output hidden state is the linear interpola-
tion of (1) content cgrut from a Gated Recurrent Unit

331

(GRU) language model, (2) an encoding cnewt gen-
erated from the new agenda item reference model
(Sec. 4.3), and (3) and an encoding cusedt generated
from a previously used item model (Sec. 4.4):

ot = fgrut cgrut + fnewt cnewt + fusedt cusedt .

The interpolation weights, fgrut , fnewt , and fusedt ,
are probabilities representing how much the output
token should reflect the current state of the language
model or a chosen agenda item. fgrut is the proba-
bility of a non-agenda-item token, fnewt is the prob-
ability of an new item reference token, and fusedt

is the probability of a used item reference. In the
Fig. 1 example, fnewt is high in the first row when
new ingredient references “tomatoes” and “onion”
are generated; fusedt is high when the reference back
to “tomatoes” is made in the second row, and fgrut

is high the rest of the time.
To generate these weights, our model uses a three-

way probabilistic classifier, ref -type(ht), to deter-
mine whether the hidden state of the GRU ht will
generate non-agenda tokens, new agenda item refer-
ences, or used item references. ref -type(ht) gener-
ates a probability distribution ft ∈ R3 as

ft = ref -type(ht) = softmax(βSht),

where S ∈ R3×k is a trained projection matrix and
β is a temperature hyper-parameter. fgrut = f1t ,
fnewt = f2t , and fusedt = f3t . ref -type() does not
use the agenda, only the hidden state ht: ht must
encode when to use the agenda, and ref -type() is
trained to identify that in ht.

4.3 New agenda item reference model

The two key features of our model are that it (1) pre-
dicts which agenda item is being referred to, if any,
at each time step and (2) stores those predictions for
use during generation. These components allow for
improved output texts that are more likely to men-
tion agenda items while avoiding repetition and ref-
erences to irrelevant items not in the agenda.

These features are enabled by a checklist vector
at ∈ RL that represents the probability each agenda
item has been introduced into the text. The checklist
vector is initialized to all zeros at t = 1, representing

that all items have yet to be introduced. The check-
list vector is a soft record with each at,i ∈ [0, 1].1

We introduce the remaining items as a matrix
Enew

t ∈ RL×k, where each row is an agenda item
embedding weighted by how likely it is to still need
to be referenced. For example, in Fig. 1, after the
first “tomatoes” is generated, the row representing
“chopped tomatoes” in the agenda will be weighted
close to 0. We calculate Enew

t using the checklist
vector (see “Update [...] items” box in Fig. 2):

Enew
t = ((1L − at−1)⊗ 1k) ◦ E,

where 1L = {1}L, 1k = {1}k, and the outer prod-
uct ⊗ replicates 1L − at−1 for each dimension of
the embedding space. ◦ is the Hadamard product
(i.e., element-wise multiplication) of two matrices
with the same dimensions.

The model predicts when an agenda item will be
generated using ref -type() (see Sec. 4.2 for de-
tails). When it does, the encoding cnewt approxi-
mates which agenda item is most likely. cnewt is
computed using an attention model that generates a
learned soft alignment αnew

t ∈ RL between the hid-
den state ht and the rows of Enew

t (i.e., available
items). The alignment is a probability distribution
representing how close ht is to each item:

αnew
t ∝ exp(γEnew

t Pht),

where P ∈ Rk×k is a learned projection matrix
and γ is a temperature hyper-parameter. In Fig. 1,
the shaded squares in the top line (i.e., the first
“tomatoes” and the onion references) represent this
alignment. The attention encoding cnewt is then the
attention-weighted sum of the agenda items:

cnewt = ETαnew
t .

At each step, the model updates the checklist vector
based on the probability of generating a new agenda
item reference, fnewt , and the attention alignment
αnew

t . We calculate the update to checklist, anewt ,
as anewt = fnewt · αnew

t . Then, the new checklist at
is at = at−1 + anewt .

1By definition, at is non-negative. We truncate any values
greater than 1 using a hard tanh function.

332

4.4 Previously used item reference model
We also allow references to be generated for previ-
ously used agenda items through the previously used
item encoding cusedt . This is useful in longer texts
– when agenda items can be referred to more than
once – so that the agenda is always responsible for
generating its own referring expressions. The exam-
ple in Fig. 1 refers back to tomatoes when generating
to what to add the diced onion.

At each time step t, we use a second atten-
tion model to compare ht to a used items matrix
Eused

t ∈ RL×k. Like the remaining agenda item
matrix Enew

t , Eused
t is calculated using the checklist

vector generated at the previous time step:

Eused
t = (at−1 ⊗ 1k) ◦ E.

The attention over the used items, αused
t ∈ RL, and

the used attention encoding cusedt are calculated in
the same way as those over the available items (see
Sec. 4.3 for comparison):

αused
t ∝ exp(γEused

t Pht),

cusedt = ETαused
t .

4.5 GRU language model
Our decoder RNN adapts a Gated Recurrent Unit
(GRU) (Cho et al., 2014). Given an input xt ∈ Rk at
time step t and the previous hidden state ht−1 ∈ Rk,
a GRU computes the next hidden state ht as

ht = (1− zt)ht−1 + zth̃t.

The update gate, zt, interpolates between ht−1 and
new content, h̃t, defined respectively as

zt = σ(Wzxt + Uzht−1),

h̃t = tanh(Wxt + rt � Uht−1).

� is an element-wise multiplication, and the reset
gate, rt, is calculated as

rt = σ(Wrxt + Urht−1).

Wz , Uz , W , U , Wr, Ur ∈ Rk×k are trained projec-
tion matrices.

We adapted a GRU to allow extra inputs, namely
the goal g and the available agenda items Enew

t (see
“GRU language model” box in Fig. 2). These extra

inputs help guide the language model stay on topic.
Our adapted GRU has a change to the computation
of the new content h̃t as follows:

h̃t = tanh(Whxt + rt � Uhht−1
+ st � Y g + qt � (1TLZE

new
t)T ,

where st is a goal select gate and qt is a item select
gate, respectively defined as

st = σ(Wsxt + Usht−1),

qt = σ(Wqxt + Uqht−1).

1L sums the rows of the available item matrixEnew
t .

Y , Z, Ws, Us, Wq, Uq ∈ Rk×k are trained projec-
tion matrices. The goal select gate controls when
the goal should be taken into account during genera-
tion: for example, the recipe title may be used to de-
cide what the imperative verb for a new step should
be. The item select gate controls when the avail-
able agenda items should be taken into account (e.g.,
when generating a list of ingredients to combine).
The GRU hidden state is initialized with a projec-
tion of the goal: h0 = Ugg, where Ug ∈ Rk×k.

The content vector cgrut that is used to compute
the output hidden state ot is a linear projection of the
GRU hidden state, cgrut = Pht, where P is the same
learned projection matrix used in the computation of
the attention weights (see Sections 4.3 and 4.4).

4.6 Training
Given a training set of (goal, agenda, output text)
triples {(g(1), E(1),x(1)), . . . , (g(J), E(J),x(J))},
we train model parameters by minimizing negative
log-likelihood: NLL(θ) =

−
J∑

j=1

Nj∑

i=2

log p(x
(j)
i |x

(j)
1 , . . . ,x

(j)
i−1,g

(j), E(j); θ),

where x
(j)
1 is the start symbol. We use mini-batch

stochastic gradient descent, and back-propagate
through the goal, agenda, and text embeddings.

It is sometimes the case that weak heuristic su-
pervision on latent variables can be easily gathered
to improve training. For example, for recipe gen-
eration, we can approximate the linear interpolation
weights ft and the attention updates anewt and ausedt

using string match heuristics comparing tokens in

333

the text to tokens in the ingredient list.2 When this
extra signal is available, we add mean squared loss
terms toNLL(θ) to encourage the latent variables to
take those values; for example, if f∗t is the true value
and ft is the predicted value, a loss term −(f∗t − ft)

2

is added. When this signal is not available, as is the
case with our dialogue generation task, we instead
introduce a mean squared loss term that encourages
the final checklist a(j)Nj

to be a vector of 1s (i.e., every
agenda item is accounted for).

4.7 Generation

We generate text using beam search, which has been
shown to be fast and accurate for RNN decoding
(Graves, 2012; Sutskever et al., 2014). When the
beam search completes, we select the highest prob-
ability sequence that uses the most agenda items.
This is the count of how many times the three-way
classifier, ref -type(ht), chose to generate an new
item reference with high probability (i.e., > 50%).

5 Experimental setup

Our model was implemented and trained using the
Torch scientific computing framework for Lua.3

Experiments We evaluated neural checklist mod-
els on two natural language generation tasks. The
first task is cooking recipe generation. Given a
recipe title (i.e., the name of the dish) as the goal and
the list of ingredients as the agenda, the system must
generate the correct recipe text. Our second evalua-
tion is based on the task from Wen et al. (2015) for
generating dialogue responses for hotel and restau-
rant information systems. The task is to generate a
natural language response given a query type (e.g.,
informing or querying) and a list of facts to convey
(e.g., a hotel’s name and address).

Parameters We constrain the gradient norm
to 5.0 and initialize parameters uniformly on
[−0.35, 0.35]. We used a beam of size 10 for gen-
eration. Based on dev set performance, a learning
rate of 0.1 was chosen, and the temperature hyper-
parameters (β, γ) were (5, 2) for the recipe task and
(1, 10) for the dialogue task. The models for the
recipe task had a hidden state size of k = 256; the

2Similar to anew
t , aused

t = fusedt ·αused
t .

3http://torch.ch/

models for the dialogue task had k = 80 to compare
to previous models. We use a batch size 30 for the
recipe task and 10 for the dialogue task.

Recipe data and pre-processing We use the Now
You’re Cooking! recipe library: the data set contains
over 150,000 recipes in the Meal-MasterTM for-
mat.4 We heuristically removed sentences that were
not recipe steps (e.g., author notes, nutritional in-
formation, publication information). 82,590 recipes
were used for training, and 1,000 each for develop-
ment and testing. We filtered out recipes to avoid
exact duplicates between training and dev (test) sets.

We collapsed multi-word ingredient names into
single tokens using word2phrase5 ran on the train-
ing data ingredient lists. Titles and ingredients were
cleaned of non-word tokens. Ingredients addition-
ally were stripped of amounts (e.g., “1 tsp”). As
mentioned in Sec. 4.6, we approximate true values
for the interpolation weights and attention updates
for recipes based on string match between the recipe
text and the ingredient list. The first ingredient ref-
erence in a sentence cannot be the first token or after
a comma (e.g., the bold tokens cannot be ingredients
in “oil the pan” and “in a large bowl, mix [...]”).

Recipe data statistics Automatic recipe genera-
tion is difficult due to the length of recipes, the size
of the vocabulary, and the variety of possible dishes.
In our training data, the average recipe length is 102
tokens, and the longest recipe has 814 tokens. The
vocabulary of the recipe text from the training data
(i.e., the text of the recipe not including the title or
ingredient list) has 14,103 unique tokens. About
31% of tokens in the recipe vocabulary occur at least
100 times in the training data; 8.6% of the tokens oc-
cur at least 1000 times. The training data also repre-
sents a wide variety of recipe types, defined by the
recipe titles. Of 3793 title tokens, only 18.9% of the
title tokens in the title vocabulary occur at least 100
times in the training data, which demonstrates the
large variability in the titles.

Dialogue system data and processing We used
the hotel and restaurant dialogue system corpus and
the same train-development-test split from Wen et
al. (2015). We used the same pre-processing, sets

4Recipes and format at http://www.ffts.com/recipes.htm
5See https://code.google.com/p/word2vec/

334

of reference samples, and baseline output, and we
were given model output to compare against.6 For
training, slot values (e.g., “Red Door Cafe”) were re-
placed by generic tokens (e.g., “NAME TOKEN”).
After generation, generic tokens were swapped back
to specific slot values. Minor post-processing in-
cluded removing duplicate determiners from the re-
lexicalization and merging plural “-s” tokens onto
their respective words. After replacing specific slot
values with generic tokens, the training data vocab-
ulary size of the hotel corpus is 445 tokens, and that
of the restaurant corpus is 365 tokens. The task has
eight goals (e.g., inform, confirm).

Models Our main baseline EncDec is a model us-
ing the RNN Encoder-Decoder framework proposed
by Cho et al. (2014) and Sutskever et al. (2014). The
model encodes the goal and then each agenda item
in sequence and then decodes the text using GRUs.
The encoder has two sets of parameters: one for the
goal and the other for the agenda items. For the di-
alogue task, we also compare against the SC-LSTM
system from Wen et al. (2015) and the handcrafted
rule-based generator described in that paper.

For the recipe task, we also compare against three
other baselines. The first is a basic attention model,
Attention, that generates an attention encoding by
comparing the hidden state ht to the agenda. That
encoding is added to the hidden state, and a non-
linear transformation is applied to the result before
projecting into the output space. We also present a
nearest neighbor baseline (NN) that simply copies
over an existing recipe text based on the input simi-
larity computed using cosine similarity over the title
and the ingredient list. Finally, we present a hybrid
approach (NN-Swap) that revises a nearest neighbor
recipe using the neural checklist model. The neural
checklist model is forced to generate the returned
recipe nearly verbatim, except that it can generate
new strings to replace any extraneous ingredients.

Our neural checklist model is labeled Checklist.
We also present the Checklist+ model, which in-
teractively re-writes a recipe to better cover the in-
put agenda: if the generated text does not use every
agenda item, embeddings corresponding to missing
items are multiplied by increasing weights and a new
recipe is generated. This process repeats until the

6We thank the authors for sharing their system outputs.

Model BLEU-4 METEOR Avg. %
given
items

Avg.
extra
items

Attention 2.8 8.6 22.8% 3.0
EncDec 3.1 9.4 26.9% 2.0
NN 7.1 12.1 40.0% 4.2
NN-Swap 7.1 12.8 58.2% 2.1
Checklist 3.0 10.3 67.9% 0.6

- ot = ht 2.1 8.3 29.1% 2.4
- no used 3.0 10.4 62.2% 1.9
- no supervision 3.7 10.1 38.9% 1.8

Checklist+ 3.8 11.5 83.4% 0.8

Table 1: Quantitative results on the recipe task. The line with

ot = ht has the results for the non-interpolation ablation.

new recipe does not contain new items.
We also report the performance of our check-

list model without the additional weak supervision
of heuristic ingredient references (- no supervision)
(see Sec. 4.6).7 we also evaluate two ablations of
our checklist model on the recipe task. First, we re-
move the linear interpolation and instead use ht as
the output (see Sec. 4.2). Second, we remove the
previously used item reference model by changing
ref -type() to a 2-way classifier between new ingre-
dient references and all other tokens (see Sec. 4.4).

Metrics We include commonly used metrics like
BLEU-4,8 and METEOR (Denkowski and Lavie,
2014). Because neither of these metrics can measure
how well the generated recipe follows the input goal
and the agenda, we also define two additional met-
rics. The first measures the percentage of the agenda
items corrected used, while the second measures the
number of extraneous items incorrectly introduced.
Both these metrics are computed based on simple
string match and can miss certain referring expres-
sions (e.g., “meat” to refer to “pork”). Because of
the approximate nature of these automated metrics,
we also report a human evaluation.

6 Recipe generation results

Fig. 1 results for recipe generation. All BLEU and
METEOR scores are low, which is expected for long
texts. Our checklist model performs better than both
neural network baselines (Attention and EncDec) in
all metrics. Nearest neighbor baselines (NN and
NN-Swap) perform the best in terms of BLEU and

7For this model, parameters were initialized on [-0.2, 0.2] to
maximize development accuracy.

8See Moses system (http://www.statmt.org/moses/)

335

Model Syntax Ingredient use Follows goal
Attention 4.47 3.02 3.47
EncDec 4.58 3.29 3.61
NN 4.22 3.02 3.36
NN-Swap 4.11 3.51 3.78
Checklist 4.58 3.80 3.94
Checklist+ 4.39 3.95 4.10
Truth 4.39 4.03 4.34

Table 2: Human evaluation results on the generated and true

recipes. Scores range in [1, 5].

1.00

10.00

100.00

1000.00

10000.00

 0 500 1000 1500 2000

To
ke

n
co

un
ts

in
 d

ev
 re

ci
pe

s

Tokens (sorted by count)

True recipes
EncDec

Checklist+

Figure 3: Counts of the most used vocabulary tokens (sorted

by count) in the true dev set recipes and in generated recipes.

METEOR; this is due to a number of recipes that
have very similar text but make different dishes.

However, NN baselines are not successful in gen-
erating a goal-oriented text that follows the given
agenda: compared to Checklist+ (83.4%), they use
substantially less % of the given ingredients (40% -
58.2%) while also introducing extra ingredients not
provided. EncDec and Attention baselines similarly
generate recipes that are not relevant to the given in-
put, using only 22.8% - 26.9% of the agenda items.
Checklist models rarely introduce extraneous ingre-
dients not provided (0.6 - 0.8), while other baselines
make a few mistakes on average (2.0 - 4.2).

The ablation study demonstrates the empirical
contribution of different model components. (ot =
ht) shows the usefulness of the attention encodings
when generating the agenda references, while (-no
used) shows the need for separate attention mech-
anisms between new and used ingredient references
for more accurate use of the agenda items. Similarly,
(-no supervision) demonstrates that the weak super-
vision encourages the model to learn more accurate
management of the agenda items.

Human evaluation Because neither BLEU nor
METEOR is suitable for evaluating generated text
in terms of their adherence to the provided goal and
the agenda, we also report human evaluation using
Amazon Mechanical Turk. We evaluate the gener-
ated recipes on (1) grammaticality, (2) how well the

recipe adheres to the provided ingredient list, and (3)
how well the generated recipe accomplishes the de-
sired dish. We selected 100 random test recipes. For
each question we used a Likert scale (∈ [1, 5]) and
report averaged ratings among five turkers.

Table 2 shows the averaged scores over the re-
sponses. The checklist models outperform all base-
lines in generating recipes that follow the provided
agenda closely and accomplish the desired goal,
where NN in particular often generates the wrong
dish. Perhaps surprisingly, both the Attention and
EncDec baselines and the Checklist model beat the
true recipes in terms of having better grammar. This
can partly be attributed to noise in the parsing of the
true recipes, and partly because the neural models
tend to generate shorter, simpler texts.

Fig. 3 shows the counts of the most used vocab-
ulary tokens in the true dev set recipes compared
to the recipes generated by EncDec and Checklist+.
Using the vocabulary from the training data, the true
dev recipes use 5206 different tokens. The EncDec’s
vocabulary is only ∼16% of that size, while the
Checklist+ model is a third of the size.

An error analysis on the dev set shows that the
EncDec baseline over-generates catch-all phrases
like “all ingredients” or “the ingredients,” used in
21% of the generated recipes, whereas only 7.8% of
true recipes use that construction. This phrase type
simplifies the recipe, but using all ingredients in one
step reduces the chance of accomplishing the desired
dish correctly. The Checklist model only generates
those phrases 13% of the time.

Qualitative analysis Fig. 4 shows two dev set
recipes with generations from the EncDec and
Checklist+ models. The EncDec model is much
more likely to both use incorrect ingredients and to
introduce ingredients more than once (e.g., “baking
power” and “salt” in the bottom example are not in
the ingredient list, and “milk” in the top example
is duplicated). In the top example, the Checklist+
model refers to both Parmesean and Swiss cheese
as “cheese”; generating more precise referring ex-
pressions is an important area for future work. The
Checklist+ recipes generate the correct dishes to an
extent: for example, the top recipe makes a casse-
role but does not cook the ingredients together be-
fore baking and mixes in biscuits instead of putting

336

Title: Casino royale casserole
Ingredients: 10 oz chopped broccoli, 2 tbsp butter, 2 tbsp flour, 1/2 tsp salt, 1/4 tsp black pepper, 1/4 tsp ground nutmeg, 1 cup milk,
1 1/2 cup shredded swiss cheese, 2 tsp lemon juice, 2 cup cooked cubed turkey, 4 oz mushrooms, 1/4 cup grated Parmesan cheese, 1
can refrigerated biscuits

Truth EncDec Checklist+

Preheat oven to 375. Melt butter in saucepan.
Blend in flour, salt, pepper, and nutmeg; cook
1-2 minutes. Gradually add milk; cook, stir-
ring, until slightly thickened. Stir in frozen
vegetables. Remove from heat; stir in cheese
until melted. Add lemon juice, turkey, mush-
rooms, and broccoli. Pour mixture into a
lightly greased 8”x8” baking dish; sprinkle
with parmesean and top with biscuits. Bake 20
minutes, or until biscuits are golden brown.

Cook broccoli according to package directions;
drain. In medium saucepan, melt butter. Stir in
flour, salt and pepper. Gradually add milk, stir-
ring constantly. Cook over medium heat, stir-
ring constantly, until mixture comes to a boil.
Reduce heat to low. Cook, stirring constantly,
until mixture boils and thickens, about 5 min-
utes. Stir in milk. Gradually heat to boiling;
reduce heat. Cover; simmer 10 minutes or until
heated through. Serve immediately.

Mix the turkey with the flour, salt,
pepper, milk and lemon juice. Stir
in the cheese. Add broccoli, mush-
rooms, nutmeg, and cheese. Mix well.
Add the butter and mix well. Add the
biscuits and mix well. Spread in a
greased 13x9 inch baking pan. Bake
in a 350f oven for 35 to 40 minutes, or
until pick inserted in the center comes
out clean. Serve hot.

Title: Kathie Frieman’s cheese cake
Ingredients: 2 lb cream cheese, 1 3/4 cups sugar, 5 eggs, 15 oreo cookies, 1/2 tsp vanilla, 1/2 tsp almond extract

Truth EncDec Checklist+

Butter pan well. Whip cheese until soft and add
sugar, combine until fluffy. Add extracts and eggs.
Chop oreos into pieces and fold into mixture. Pour
into pan and place in a pan of 1 or more inches
of water. Bake at 350 1 1/2 hours (check after 1
1/4 hours) until center is set. Cool in pan of wa-
ter. When cool turn upside-down on plate. Sprinkle
with cookie crumbs.

Beat cream cheese and sugar together until
light and fluffy. Add eggs, one at a time, beat-
ing well after each addition. Blend in vanilla.
Sift flour, measure, and sift with baking power
and salt. Add to creamed mixture alternately
with milk. Fold in stiffly beaten egg whites.
Pour into 9x13 pan. Bake at 350 degrees for 25
to 30 minutes.

Cream sugar and cream cheese
until smooth. Add eggs, one at a
time, beating well after each ad-
dition. Add vanilla, almond ex-
tract, and cookies. Mix well. Pour
into greased and floured tube pan.
Bake at 350 degrees for 30 min-
utes.

Figure 4: Example dev set generated recipes. Tokenization, newlines, and capitalization changed for space and readability. Bolded

ingredient references are either ingredients not in the list and/or duplicated initial ingredient references.

Model Hotel Restaurant
BLEU METEOR BLEU METEOR

HDC 55.52 48.10 44.39 43.42
SC-LSTM 86.53 60.84 74.49 54.31
Checklist 90.61 62.10 77.82 54.42

Table 3: Quantitative evaluation of the top generations in the
hotel and restaurant domains

them on top. Future work could better model the full
set of steps needed to achieve the overall goal.

7 Dialogue system results

Figure 3 shows our results on the hotel and restau-
rant dialogue system generation tasks. HDC is the
rule-based baseline from Wen et al. (2015). For both
domains, the checklist model achieved the highest
BLEU-4 and METEOR scores, but both neural sys-
tems performed very well. The power of our model
is in generating long texts, but this experiment shows
that our model can generalize well to other tasks
with different kinds of agenda items and goals.

8 Future work and conclusions

We present the neural checklist model that gener-
ates globally coherent text by keeping track of what

has been said and still needs to be said from a pro-
vided agenda. Future work includes incorporating
referring expressions for sets or compositions of
agenda items (e.g., “vegetables”). The neural check-
list model is sensitive to hyperparameter initializa-
tion, which should be investigated in future work.
The neural checklist model can also be adapted to
handle multiple checklists, such as checklists over
composite entities created over the course of a recipe
(see Kiddon (2016) for an initial proposal).

Acknowledgements

This research was supported in part by the In-
tel Science and Technology Center for Pervasive
Computing (ISTC-PC), NSF (IIS-1252835 and IIS-
1524371), DARPA under the CwC program through
the ARO (W911NF-15-1-0543), and gifts by Google
and Facebook. We thank our anonymous review-
ers for their comments and suggestions, as well as
Yannis Konstas, Mike Lewis, Mark Yatskar, Antoine
Bosselut, Luheng He, Eunsol Choi, Victoria Lin,
Kenton Lee, and Nicholas FitzGerald for helping us
read and edit. We also thank Mirella Lapata and An-
nie Louis for their suggestions for baselines.

337

References
Gabor Angeli, Percy Liang, and Dan Klein. 2010. A

simple domain-independent probabilistic approach to
generation. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing,
pages 502–512.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. In ICLR 2015.

Niranjan Balasubramanian, Stephen Soderland, Mausam,
and Oren Etzioni. 2013. Generating coherent event
schemas at scale. In Proceedings of the 2013 Con-
ference on Empirical Methods on Natural Language
Processing, pages 1721–1731.

Regina Barzilay and Mirella Lapata. 2005. Collec-
tive content selection for concept-to-text generation.
In Proceedings of the 2005 Conference on Empirical
Methods in Natural Language Processing, pages 331–
338.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long short-term memory-networks for machine read-
ing. In Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre,
Fethi Bougares, Holger Schwenk, and Yoshua Ben-
gio. 2014. Learning phrase representations using
RNN encoder-decoder for statistical machine trans-
lation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1724–1734.

Robert Dale. 1988. Generating Referring Expressions
in a Domain of Objects and Processes. Ph.D. the-
sis, Centre for Cognitive Science, University of Ed-
inburgh.

Michael Denkowski and Alon Lavie. 2014. Meteor uni-
versal: Language specific translation evaluation for
any target language. In Proceedings of the EACL 2014
Workshop on Statistical Machine Translation, pages
376–380.

Alex Graves. 2012. Sequence transduction with recur-
rent neural networks. Representation Learning Work-
sop, ICML.

Çaglar Gülçehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing the
unknown words. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguis-
tics, pages 140–149.

Kristian J. Hammond. 1986. CHEF: A model of case-
based planning. In Proceedings of the Fifth National
Conference on Artificial Intelligence (AAAI-86), pages
267–271.

R. Jia and P. Liang. 2016. Data recombination for neural
semantic parsing. In Proceedings of the 54th Annual

Meeting of the Association for Computational Linguis-
tics, pages 12–22.

Xu Jia, Efstratios Gavves, Basura Fernando, and Tinne
Tuytelaars. 2015. Guiding long-short term memory
for image caption generation. In Proceedings of the
IEEE International Conference on Computer Vision,
pages 2407–2415.

Chloé Kiddon. 2016. Learning to Interpret and Generate
Instructional Recipes. Ph.D. thesis, Computer Science
& Engineering, University of Washington.

Ioannis Konstas and Mirella Lapata. 2013. A global
model for concept-to-text generation. Journal of Ar-
tificial Intelligence Research (JAIR), 48:305–346.

Percy Liang, Michael I. Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less supervi-
sion. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Process-
ing of the AFNLP: Volume 1 - Volume 1, pages 91–99.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421, September.

Hongyuan Mei, Mohit Bansal, and Matthew R. Walter.
2016. What to talk about and how? Selective genera-
tion using lstms with coarse-to-fine alignment. In The
15th Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 720–730.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cer-
nocký, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. In Proceedings of
INTERSPEECH 2010, the 11th Annual Conference of
the International Speech Communication Association,
pages 1045–1048.

Tomas Mikolov, Stefan Kombrink, Lukás Burget, Jan
Cernocký, and Sanjeev Khudanpur. 2011. Exten-
sions of recurrent neural network language model. In
Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, (ICASSP
2011), pages 5528–5531.

Shinsuke Mori, Hirokuni Maeta, Tetsuro Sasada,
Koichiro Yoshino, Atsushi Hashimoto, Takuya Fu-
natomi, and Yoko Yamakata. 2014. FlowGraph2Text:
Automatic sentence skeleton compilation for proce-
dural text generation. In Proceedings of the 8th In-
ternational Natural Language Generation Conference,
pages 118–122.

Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation Systems. Cambridge University
Press, New York, NY, USA.

338

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 379–389.

Alessandro Sordoni, Michel Galley, Michael Auli, Chris
Brockett, Yangfeng Ji, Meg Mitchell, Jian-Yun Nie,
Jianfeng Gao, and Bill Dolan. 2015. A neural network
approach to context-sensitive generation of conversa-
tional responses. In Conference of the North American
Chapter of the Association for Computational Linguis-
tics Human Language Technologies (NAACL-HLT),
pages 196–205.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
3104–3112. Curran Associates, Inc.

Henry S. Thompson. 1977. Strategy and tactics: a model
for language production. In Papers from the Thir-
teenth Regional Meeting of the Chicago Linguistics
Society, pages 89–95. Chicago Linguistics Society.

Zhaopeng Tu, Yang Liu, Zhengdong Lu, Xiaohua Liu,
and Hang Li. 2016a. Context gates for neural machine
translation. CoRR, abs/1608.06043.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016b. Modeling coverage for neu-
ral machine translation. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics, pages 76–85.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-hao
Su, David Vandyke, and Steve J. Young. 2015. Se-
mantically conditioned LSTM-based natural language
generation for spoken dialogue systems. In Proceed-
ings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 1711–1721.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic,
Lina Maria Rojas-Barahona, Pei-hao Su, David
Vandyke, and Steve J. Young. 2016. Multi-domain
neural network language generation for spoken dia-
logue systems. In Proceedings of the 15th Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, pages 120–129.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron C. Courville, Ruslan Salakhutdinov, Richard S.
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual at-
tention. Proceedings of the 32nd International Con-
ference on Machine Learning, pages 2048–2057.

339

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 340–350,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

A Dataset and Evaluation Metrics for Abstractive Compression of Sentences
and Short Paragraphs

Kristina Toutanova
Microsoft Research

Redmond, WA, USA

Chris Brockett
Microsoft Research

Redmond, WA, USA

Ke M. Tran∗
University of Amsterdam

Amsterdam, The Netherlands

Saleema Amershi
Microsoft Research

Redmond, WA, USA

Abstract

We introduce a manually-created, multi-
reference dataset for abstractive sentence and
short paragraph compression. First, we exam-
ine the impact of single- and multi-sentence
level editing operations on human compres-
sion quality as found in this corpus. We ob-
serve that substitution and rephrasing opera-
tions are more meaning preserving than other
operations, and that compressing in context
improves quality. Second, we systematically
explore the correlations between automatic
evaluation metrics and human judgments of
meaning preservation and grammaticality in
the compression task, and analyze the impact
of the linguistic units used and precision ver-
sus recall measures on the quality of the met-
rics. Multi-reference evaluation metrics are
shown to offer significant advantage over sin-
gle reference-based metrics.

1 Introduction

Automated sentence compression condenses a sen-
tence or paragraph to its most important content in
order to enhance writing quality, meet document
length constraints, and build more accurate docu-
ment summarization systems (Berg-Kirkpatrick et
al., 2011; Vanderwende et al., 2007). Though word
deletion is extensively used (e.g., (Clarke and La-
pata, 2008)), state-of-the-art compression models
(Cohn and Lapata, 2008; Rush et al., 2015) bene-
fit crucially from data that can represent complex
abstractive compression operations, including sub-
stitution of words and phrases and reordering.

∗This research was conducted during the author’s intern-
ship at Microsoft Research.

This paper has two parts. In the first half, we in-
troduce a manually-created multi-reference dataset
for abstractive compression of sentences and short
paragraphs, with the following features:

• It contains approximately 6,000 source texts
with multiple compressions (about 26,000 pairs
of source and compressed texts), representing
business letters, newswire, journals, and tech-
nical documents sampled from the Open Amer-
ican National Corpus (OANC1).

• Each source text is accompanied by up to five
crowd-sourced rewrites constrained to a preset
compression ratio and annotated with quality
judgments. Multiple rewrites permit study of
the impact of operations on human compres-
sion quality and facilitate automatic evaluation.

• This dataset is the first to provide compressions
at the multi-sentence (two-sentence paragraph)
level, which may present a stepping stone to
whole document summarization. Many of
these two-sentence paragraphs are compressed
both as paragraphs and separately sentence-by-
sentence, offering data that may yield insights
into the impact of multi-sentence operations on
human compression quality.

• A detailed edit history is provided that may
allow fine-grained alignment of original and
compressed texts and measurement of the cog-
nitive load of different rewrite operations.

Our analysis of this dataset reveals that abstrac-
tion has a significant positive impact on meaning
preservation, and that application of trans-sentential

1http://www.anc.org/data/oanc

340

context has a significant positive impact on both
meaning preservation and grammaticality.

In the second part, we provide a systematic em-
pirical study of eighty automatic evaluation met-
rics for text compression using this dataset, corre-
lating them with human judgments of meaning and
grammar. Our study shows strong correlation of the
best metrics with human judgments of meaning, but
weaker correlations with judgments of grammar. We
demonstrate significant gains from multiple refer-
ences. We also provide analyses of the impact of
the linguistics units used (surface n-grams of differ-
ent sizes versus parse-based triples), and the use of
precision versus recall-based measures.

2 Related Work

Prior studies of human compression: Clarke
(2008) studied the properties of manually-collected
deletion-based compressions in the news genre,
comparing them with automatically-mined data
from the Ziff-Davis corpus in terms of compression
rate, length of deleted spans, and deletion probabil-
ity by syntactic constituent type. Jing and McKeown
(1999) identified abstractive operations (other than
word deletion) employed by professional writers, in-
cluding paraphrasing and re-ordering of phrases, and
merging and reordering sentences, but did not quan-
tify their impact on compression quality.

Deletion-based compression corpora: Currently
available automatically-mined deletion corpora are
single-reference and have varying (uncontrolled)
compression rates. Knight and Marcu (2002) auto-
matically mined a small parallel corpus (1,035 train-
ing and 32 test sentences) by aligning abstracts to
sentences in articles. Filippova and Altun (2013)
extracted deletion-based compressions by aligning
news headlines to first sentences, yielding a corpus
of 250,000 parallel sentences. The same approach
was used by Filippova et al. (2015) to create a set of
2M sentence pairs. Only a subset of 10,000 parallel
sentences from the latter has been publicly released.
Clarke and Lapata (2006) and Clarke and Lapata
(2008) provide two manually-created two-reference
corpora for deletion-based compression:2 their sizes
are 1,370 and 1,433 sentences, respectively.

2http://jamesclarke.net/research/
resources

Abstractive compression corpora: Rush et al.
(2015) have mined 4 million compression pairs from
news articles and released their code to extract data
from the Annotated Gigaword (Napoles et al., 2012).
A news-domain parallel sentence corpus containing
1,496 parallel examples has been culled from multi-
reference Chinese-English translations by Ganitke-
vitch et al. (2011). The only publicly-available
manually-created abstractive compression corpus is
that described by Cohn and Lapata (2008), which
comprises 575 single-reference sentence pairs.

Automatic metrics: Early automatic metrics for
evaluation of compressions include success rate
(Jing, 2000), defined as accuracy of individual word
or constituent deletion decisions; Simple String Ac-
curacy (string edit distance), introduced by Banga-
lore et al. (2000) for natural language generation
tasks; and Word Accuracy (Chiori and Furui, 2004),
which generalizes Bangalore et al. (2000) to multi-
ple references. Riezler et al. (2003) introduced the
use of F-measure over grammatical relations. Word
unigram and word-bigram F-measure have also been
used (Unno et al., 2006; Filippova et al., 2015). Vari-
ants of ROUGE (Lin, 2004), used for summarization
evaluation, have also been applied to sentence com-
pressions (Rush et al., 2015).

Riezler et al. (2003) show that F-measure over
grammatical relations agrees with human ratings
on the relative ranking of three systems at the
corpus level. Clarke and Lapata (2006) evaluate
two deletion-based automatic compression systems
against a deletion-based gold-standard on sets of 20
sentences. Parse-based F-1 was shown to have high
sentence-level Pearson’s ρ correlation with human
judgments of overall quality, and to have higher ρ
than Simple String Accuracy.

Napoles et al. (2011) have pointed to the need of
multiple references and studies of evaluation met-
rics. For the related tasks of document and multi-
document summarization, Graham (2015) provides
a fine-grained comparison of automated evaluation
methods. However, to the best of our knowledge,
no studies of automatic evaluation metrics exist for
abstractive compression of shorter texts.

341

Length Text Operations
1-Sent Source Think of all the ways everyone in your household will benefit from your membership N/A

in Audubon.
Ref-1 Imagine how your household will benefit from your Audubon membership. paraphrase + deletion

+ transformation
Ref-2 Everyone in your household will benefit from membership in Audubon. deletion

2-Sent Source Will the administration live up to its environmental promises? Can we save the last of N/A
our ancient forests from the chainsaw?

Ref-1 Can the administration keep its promises? Can we save the last of our forests from loss? two-sentences + deletion
+ paraphrase

Ref-2 Will the administration live up to its environmental promises to save our ancient forests? merge + deletion

Table 1: Examples of 1- and 2-sentence crowd-sourced compressions, illustrating different rewrite types.

Newswire Letters Journal Non-fiction
#texts 695 1,591 1,871 2,012

Table 2: Overview of the dataset by genre.

3 Dataset: Annotation and Properties

We sampled single sentences and two-sentence para-
graphs from several genres in the written text section
of the Manually Annotated Sub-Corpus (MASC)
(Ide et al., 2008; Ide et al., 2010) of the Open Amer-
ican National Corpus (OANC), supplemented by ad-
ditional data from the written section of OANC.
Two-sentence paragraphs account for approximately
23% of multi-sentence paragraphs in the OANC.
The two-sentence paragraphs we sampled contain at
least 25 words. Table 2 breaks the sampled texts
down by genre. Non-news genres are better repre-
sented in our sample than the newswire typically
used in compression tasks. The Letters examples
are expected to be useful for learning to compress
emails. The Journal texts are likely to be challeng-
ing as their purpose is often more than to convey in-
formation. The Non-Fiction collection includes ma-
terial from technical academic publications, such as
PLoS Medicine, an open access journal.3

3.1 Annotation
Compressions were created using UHRS, an in-
house crowd-sourcing system similar to Amazon’s
Mechanical Turk, in two annotation rounds, one for
shortening and a second to rate compression quality.

Generating compressions: In the first round, we
asked five workers (editors) to abridge each source
text by at least 25%, while remaining grammatical
and fluent, and retaining the meaning of the orig-
inal. This requirement was enforced programmat-

3http://journals.plos.org/plosmedicine/

ically on the basis of character count. The 25%
rate is intended to reflect practical editing scenarios
(e.g., shrink 8 pages to 6). To facilitate meeting this
requirement, the minimum source text length pre-
sented to editors was 15 words. For a subset of para-
graphs, we collected compressions both as indepen-
dent rewrites of their component sentences, and of
the paragraph as a whole. Table 1 show compres-
sion examples and strategies.

Evaluating compression quality: In the second
round, we asked 3-5 judges (raters) to evaluate the
grammaticality of each compression on a scale from
1 (major errors, disfluent) through 3 (fluent), and
again analogously for meaning preservation on a
scale from 1 (orthogonal) through 3 (most impor-
tant meaning-preserving).4 We later used the same
process to evaluate compressions produced by auto-
matic systems. The full guidelines for the editors
and raters are available with the data release.

Quality controls: All editors and raters were
based in the US, and the raters were required to
pass a qualification test which asked them to rate the
meaning and grammaticality for a set of examples
with known answers. To further improve the qual-
ity of the data, we removed low-quality compres-
sions. We computed the quality of each compression
as the average of the grammar and meaning quality
as judged by the raters. We then computed the mean
quality for each editor, and removed compressions
authored by the bottom 10% of editors. We did the
same for the bottom 10% of the raters.5

4Pilot studies suggested that a scale of 1-3 offered better
inter-annotator agreement than the standard 5-point Likert-type
scale, at the cost of granularity.

5This was motivated by the observation that the quality of
work produced by judges is relatively constant (Gao et al.,
2015).

342

Description Texts Quality
Source Target Avg CPS Meaning Grammar

All 6,169 26,423 4.28 2.78 2.82
Per Source Length

1-Sent 3,764 15,523 4.12 2.78 2.81
2-Sent 2,405 10,900 4.53 2.78 2.83

Table 3: Overview of the dataset, presenting the overall number

of source and target texts, the average quality of the compressed

texts, and breakdown by length of source (number of sentences).

Table 3 shows the number of compressions in the
cleaned dataset, as well as the average number of
compressions per source text (CPS) and the average
meaning and grammar scores. Meaning quality and
grammaticality scores are relatively good, averag-
ing 2.78 and 2.82 respectively. The filtered crowd-
sourced compressions were most frequently judged
to retain the most important meaning (80% of the
time), or much of the meaning (17% of the time),
with the lowest rating of 1 appearing only 3% of the
time. This distribution is quite different from that of
automatic compression systems in Section 4.

We provide a standard split of the data into train-
ing, development and test sets.6 There are 4,936
source texts in the training, 448 in the development,
and 785 in the test set.

3.2 Inter-Annotator Agreement

Crowd Workers: Since a different set of judges
performs each task, large sets of inputs judged by
the same two raters are unavailable. To simulate
two raters, we follow Pavlick and Tetrault (2016):
for each sentence, we randomly choose one anno-
tator’s output as the category for annotator A, and
select the rounded average ranking for the remain-
ing annotators as the category for annotator B. We
then compute quadratic weighted κ (Cohen, 1968)
for this pair over the whole corpus. We repeat the
process 1000 times to compute the mean and vari-
ance of κ. The first row of the Table 4 reports the
absolute agreement and κ, where the absolute agree-
ment measures the fraction of times that A is equal
to B. The 95% confidence intervals for κ are narrow,
with width at most .01.

6The dataset can be downloaded from the project’s website
https://www.microsoft.com/en-us/research/
project/intelligent-editing/.

Description Meaning Grammar
Agreement κ Agreement κ

worker versus worker .721 .306 .784 .381
expert versus expert .888 .518 .890 .514
expert versus worker .946 .549 .930 .344

Table 4: Agreement on meaning preservation and grammati-

cally between crowd workers and experts.

Expert Raters: A small sample of 116 sentence
pairs was rated by two expert judges. We used
quadratic weighted κ directly, without sampling. To
assess agreement between experts and non-experts,
we computed weighted κ between the (rounded) av-
erage of the expert judgments and the (rounded) av-
erage of the crowd judgments, using 25,000 boot-
strap replications each. The results are shown in the
last two rows of Table 4. The confidence intervals
for κ are wide due to the small sample size, and
span values up to .17 away from the mean. Over-
all, agreement of experts with the average crowd-
sourced ratings is moderate (approaching substan-
tial) for meaning, and fair for grammar.

3.3 Analysis of Editing Operations

Frequency analysis: To analyze the editing oper-
ations used, we applied the state-of-the-art monolin-
gual aligner Jacana (Yao et al., 2013) to align input
to compressed texts. Out of the 26,423 compres-
sions collected, 25.2% contained only token dele-
tions. Those containing deletion and reordering
amounted to a mere 9.1%, while those that also con-
tain substitution or rephrasing (abstractive compres-
sions) is 65.6%. Although abstraction is present in
the large majority of compressions, these statistics
do not indicate that paraphrasing is more prevalent
than copying at the token level. The word align-
ments for target compression words indicate that
7.1% of target tokens were inserted, 75.4% were
copied and 17.3% were paraphrased. From the
alignments for source text words, we see that 31% of
source words were deleted. The fraction of inserted
and deleted words is probably overestimated by this
approach, as it is likely that sequences of source
words were abstracted as shorter sequences of target
words in many-to-one or many-to-many alignment
patterns that are difficult to detect automatically.

For the subset of examples where the input text

343

Meaning Grammar
Operation Present Absent Present Absent
Substitute 2.81** 2.70 2.79 2.85**
Reorder 2.80 2.82 2.80 2.82**
Merge 2.63 2.82** 2.84** 2.82
Sentence Delete 2.57 2.82* 2.84 2.75

Table 5: Meaning and grammaticality judgments by compres-

sion operation. *p = 0.002. **p < 0.0001.

Source Type Meaning Grammar
2-Sentence 2.86** 2.87**
1-Sentence 2.78 2.82

Table 6: Meaning and grammaticality judgments for compress-

ing two sentences jointly versus individually. **p < 0.0001.

contained more than one sentence, we computed the
frequency of sentence-merging and sentence dele-
tion when compressing. Of the compressions for
two-sentence paragraphs, 72.4% had two sentences
in the output, 0.4% had one sentence deleted, and
27.3% had the two source sentences merged.

Impact of operations: Because the dataset con-
tains multiple compressions of the same sources, we
are able to estimate the impact of different editing
operations. These were classified using the Jacana
word alignment tool. Table 5 presents the average
judgment scores for meaning preservation and gram-
maticality for four operations. The upper two rows
apply to all texts, the lower two to two-sentence
paragraphs only. The statistical significance of their
impact was tested using the Wilcoxon signed-rank
test on paired observations. It appears that raters
view compressions that involve substitutions as sig-
nificantly more meaning-preserving than those that
do not (p < 0.0001), but judge their grammatical-
ity to be lower than that of deletion-based compres-
sions. Note that the reduced grammaticality may
be due to typographical errors that have been in-
troduced during rephrasing, which could have been
avoided had a more powerful word processor been
used as an editing platform. Reordering has no sig-
nificant impact on meaning, but leads to substantial
degradation in grammatically. Conversely, abridg-
ments that merge or delete sentences are rated as sig-
nificantly less meaning preserving, but score higher
for grammaticality, possibly reflecting greater skill
on the part of those editors..

Impact of sentence context: Table 6 shows that
the context provided by 2-sentence sources yields
significantly improved scores for both meaning and
grammaticality. Here we used the matched pairs de-
sign to compare the average quality of two-sentence
paragraph compressions with the average quality of
the compressions of the same paragraphs produced
by separately compressing the two sentences.

4 Evaluating Evaluation Metrics

Progress in automated text compression is stan-
dardly measured by comparing model outputs at the
corpus level. To train models discriminatively and
to perform fine-grained system comparisons, how-
ever, it is also necessary to have evaluation of sys-
tem outputs at the individual input level. Below, we
examine automated metric correlation with human
judgments at both levels of granularity.

4.1 Automatic Metrics
The goal of this analysis is to develop an under-
standing of the performance of automatic evalua-
tion metrics for text compression, and the factors
contributing to their performance. To this end, we
group automatic metrics according to three crite-
ria. The first is the linguistic units used to compare
system and reference compressions. Prior work on
compression evaluation has indicated that a parse-
based metric is superior to one based on surface sub-
strings (Clarke and Lapata, 2006), but the contribu-
tion of the linguistic units has not been isolated, and
surface n-gram units have otherwise been success-
fully used for evaluation in related tasks (Graham,
2015). Accordingly, we empirically compare met-
rics based on surface uni-grams (LR-1), bi-grams
(LR-2), tri-grams (LR-3), and four-grams (LR-4), as
well skip bi-grams (with a maximum of four inter-
vening words as in ROUGE-S4) (SKIP-2), and de-
pendency tree triples obtained from collapsed de-
pendencies output from the Stanford parser (PARSE-
2).7 The second criterion is the scoring measure
used to evaluate the match between two sets of lin-
guistic units corresponding to a system output and a
reference compression. We compare Precision, Re-
call, F-measure, and Precision+Brevity penalty (as

7Clarke and Lapata (2006) used the RASP parser (Briscoe
and Carroll, 2002), but we expect that the Stanford parser is
similarly robust and would lead to similar correlations.

344

in BLEU). The third criterion is whether multiple
references or a single reference is used, and in the
case of multiple references, the method used to ag-
gregate information from multiple references. We
investigate two previously applied methods and in-
troduce a novel approach that often outperforms the
standard methods.

To illustrate, we introduce some notation and use
a simple example. Consider a sub-phrase of one of
the sentences in Table 1, think about your household,
as an input text to compress. Let us assume that we
have two reference compressions, R1: imagine your
household, and R2: your household. Each metric m
is a function from a pair of a system output o and a
list of references r1, r2, . . . , rk to the reals. To com-
pute most metrics, we first compute a linguistic unit
feature vector for each reference Φ(rj), as well as
for the set of references Φ(r1, r2, . . . , rk). Similarly,
we compute a linguistic unit vector for the output
Φ(o) and measure the overlap between the system
and reference vectors. The vectors of the example
references, if we use surface bigram units, would be,
for R1, {imagine your:1, your household:1},
and for R2, {your household:1}. The weights
of all n-grams in individual references and system
outputs are equal to 1.8 If we use dependency-
parse triples instead, the vector of R2 would be
{nmod:poss(household, your):1}.

The precision of a system output against a refer-
ence is defined as the match Φ(r)TΦ(o) divided by
the number of units in the vector of o; the latter can
be expressed as the L1 norm of Φ(o) because all
weights are positive: Precision(o, r) = Φ(r)T Φ(o)

|Φ(o)|1 .
The recall against a single reference can be similarly
defined as the match divided by the number of units
in the reference: Recall(o, r) = Φ(r)T Φ(o)

|Φ(r)|1 .
We distinguish three methods for aggregating in-

formation from multiple references: MULT-MAX

which uses the single reference out of a set that
results in the highest single-reference score, and
two further methods, MULT-ALL and MULT-PROB,
that construct an aggregate linguistic unit vector
Φ(r1, . . . , rk) before matching. MULT-ALL is the
standard method used in multi-reference BLEU,

8We handle repeating n-grams by assigning each subsequent
n-gram of the same type a distinct type, so that the i-th the of a
system output can match the i-th the of a reference.

where the vector for a set of references is defined
as the union of the features of the set. For our ex-
ample, the combined vector of R1 and R2 is equal to
the vector of R1, because R2 adds no new bigrams.
MULT-PROB, a new method that we propose here,
is motivated by the observation that although judg-
ments of importance of content are subjective, the
more annotators assert some information is impor-
tant, the more this information should contribute to
the matching score.9 In MULT-PROB we define the
weight of a linguistic unit in the combined reference
vector as the proportion of references that include
the unit. For our example, ΦMULT-PROB(R1, R2) is
{imagine your:.5, your household:1}.

4.2 Models for Text Compression
For the purpose of analysis, we trained and eval-
uated four compression systems. These include
both deletion-based and abstractive models: (1) ILP,
an integer linear programing approach for deletion-
based compression (Clarke and Lapata, 2008), (2)
T3, a tree transducer-based model for abstractive
compression (Cohn and Lapata, 2008), (3) Seq2seq,
a neural network model for deletion-based compres-
sion (Filippova et al., 2015), and (4) NAMAS, a
neural model for abstractive compression and sum-
marization (Rush et al., 2015). We are not con-
cerned with the relative performance of these mod-
els so much as we are concerned with evaluating the
automatic evaluation metrics themselves. We have
sought to make the models competitive, but have not
required that all systems use identical training data.

All of the models are evaluated on the test set
portion of our dataset. All models use the train-
ing portion of the data for training, and two models
(Seq2Seq and NAMAS10) additionally use external
training data. The external data is summarized in
Table 7. The Gigaword set was extracted from the
Annotated Gigaword (Napoles et al., 2012), using
the implementation provided by Rush et al. (2015).
The Headline data was extracted in similar fashion
using an in-house news collection.

9A similar insight was used in one of the component met-
rics of the SARI evaluation metric used for text simplification
evaluation (Xu et al., 2016).

10The original works introducing these models employed
much larger training corpora, believed to be key to improving
the accuracy of neutral network models with large parameter
spaces.

345

Data #src tokens #trg tokens #sents

Abstractive
Gigaword 114.1M 30.0M 3.6M
Headline 6.0M 1.4M 0.2M

Deletion-based
Gigaword 1,353K 329K 47K
Headline 59K 11K 2K

Table 7: External data statistics.

ILP: We use an open-source implementation11 of
the semi-supervised ILP model described in (Clarke
and Lapata, 2008). The model uses a trigram lan-
guage model trained on a 9 million token subset
of the OANC corpus. The ILP model requires
parsed sentences coupled with deletion-based com-
pressions for training, so we filtered and prepro-
cessed our dataset to satisfy these constraints. We
used all single sentence inputs with their corre-
sponding deletion-based compressions, and addi-
tionally used two-sentence paragraph input/output
pairs split into sentences by heuristically aligning
source to target sentences in the paragraphs.
T3: We use the authors’ implementation of the
tree transducer system described in Cohn and La-
pata (2008). T3 similarly requires sentence-level in-
put/output pairs, but can also learn from abstractive
compressions. We thus used a larger set of approx-
imately 28,000 examples (single sentences with ab-
stractive compressions taken directly from the data
or as a result of heuristic sentence-level alignment
of two-sentence paragraphs). We obtained parse
trees using the Stanford parser (Klein and Manning,
2003), and used Jacana (Yao et al., 2013) for word
alignment. The performance obtained by T3 in our
experiments is substantially weaker (relative to ILP)
than that reported in prior work (Cohn and Lapata,
2008). We therefore interpret this system output
solely as data for evaluating automatic metrics.
NAMAS: We run the publicly available implemen-
tation of NAMAS12 with the settings described by
Rush et al. (2015). We modified the beam search al-
gorithm to produce output with a compression ratio
similar to that of the human references, since this ra-
tio is a large factor in compression quality (Napoles
et al., 2011), and systems generally perform better
if allowed to produce longer output, up to the max-
imum length limit. We enforced output length be-

11https://github.com/cnap/
sentence-compression

12https://github.com/facebook/NAMAS

tween 50% and 75% of input length, which resulted
in improved performance.
Seq2seq: We implemented the sequence-to-
sequence model13 described in Filippova et al.
(2015). A deletion-based model, it uses the deletion-
based subset of our training dataset and the deletion-
based subset from the external data in Table 7. The
encoder and decoder have three stacked LSTM lay-
ers, the hidden dimension size is 512, and the vocab-
ulary size is 30,000. The compression rate was con-
trolled in the same range as for the NAMAS model.

All models produce output on all inputs in the test
set. For all models, we generated outputs for multi-
sentence inputs by concatenating outputs for each
individual sentence.14

4.3 Results
Overall, we consider 80 metric variants, consisting
of combinations of six types of linguistic units, com-
bined with three scoring methods (Precision, Recall,
and F-measure) and four settings of single reference
SINGLE-REF or three ways of scoring against multi-
ple references MULT-ALL,MULT-MAX,MULT-PROB.
Additionally, we include the standard single and
multi-reference versions of BLEU-2,BLEU-3,BLEU-
4, and ROUGE-L.

We compare automatic metrics to human judge-
ments at the level of individual outputs or groups
of outputs (the whole corpus). For a single output o,
the human quality judgment is defined as the average
assigned by up to five human raters. We denote the
meaning, grammar, and combined quality values by
M(o), G(o), and C(o) = .5M(o) + .5G(o), respec-
tively. We define the quality for a group of outputs as
the arithmetic mean of judgments over the outputs in
the group. We use the arithmetic mean of automat-
ing metrics at the individual output level to define
automatic corpus quality metrics as well.15 To com-
pare different metrics and establish statistical signif-
icance of the difference between two metrics, we use
Williams test of the significance of the difference

13https://github.com/ketranm/tardis
14In small scale preliminary manual evaluation, we found

that, although some models are theoretically able to make use
of context beyond the sentence boundary, they performed better
if they compressed each sentence in a sequence independently.

15This method has been standard for ROUGE, but has not for
BLEU. We find that averaging sentence-level metrics is also ad-
vantageous for BLEU .

346

System Meaning Grammar Combined
T3 1.14 1.40 1.26
NAMAS 1.56 1.30 1.43
Seq2Seq 1.64 1.51 1.57
ILP 2.28 2.22 2.25

Table 8: Average human ratings of system outputs for meaning

and grammar separately and in combination.

between dependent Pearson correlations with hu-
man judgments (Williams, 1959) as recommended
for summarization evaluation (Graham, 2015) and
other NLP tasks (e.g. (Yannakoudakis et al., 2011)).

4.3.1 Corpus-level metrics
Table 8 shows the average human ratings of the

four systems, separately in meaning and grammar,
as well as the combined measure (an arithmetic
mean of meaning and grammar judgments). Even
though the performance of some systems is simi-
lar, the differences between all pairs of systems in
meaning and grammar are significant p < 0.0001
according to a paired t-test. It is interesting to
note that ILP outperforms the more recently devel-
oped neural network systems Seq2Seq and NAMAS.
This might seem to contradict recent results show-
ing that the new models are superior to traditional
baselines, such as ILP. We note however that per-
formance on the test corpus in our study might not
substantially improve through the use of large au-
tomatically mined data-sets of headlines and corre-
sponding news article sentences, due to differences
in genre and domain. Using such data-sets for ef-
fective training of neural network models for non-
newswire domains remains an open problem.

For each of the 80 metrics, we compared the rank-
ing of the four systems with the ranking according
to average human quality. Fifty three of the metrics
achieved perfect Spearman ρ and Kendall τB cor-
relation with human judgments of combined mean-
ing and grammar quality. Due to the small sample
size (four systems), we are unable to find statisti-
cally significant differences among metrics at the
corpus level. We only note that precision-based met-
rics involving large linguistic units (four-grams) had
negative correlations with human judgments. We
can conclude, however, that evaluation at the corpus
level is robust for a wide variety of standard metrics
using linguistic units of size three or smaller.

4.3.2 Single input-level pairwise system
comparisons

We can garner greater insight into the difference
of metric performance when we compare metrics at
the single input level. To gauge the ability of met-
rics to comparatively evaluate the quality of two sys-
tems, we compute single input-level correlations of
automatic metrics with human judgments following
the protocol of Galley et al. (2015). Each system A
produces a sequence of outputs o1

A, . . . , on
A, corre-

sponding to inputs x1, . . . , xn. For each system out-
put, we use Q(a) to denote a generic human quality
metric, varying over meaning, grammar, and their
combination. For each pair of systems A and B, and
each metric m, we compute the difference in qual-
ity for corresponding system outputs for each input
xi: m(oi

A) −m(oi
B) and the difference in quality

according to human judgments: Q(oi
A) − Q(oi

B),
and compute the correlation between these two se-
quences. We can thus compute the single input-level
correlation between m and Q for each pair of sys-
tems A and B, resulting in a total of six correlation
values (for the six pairs of systems) for each metric.
For each pair of metrics m1 and m2, and for each
pair of systems A and B, we compute the statisti-
cal significance of the difference between the Pear-
son correlations of these metrics with human judge-
ments. We say that m1 is significantly better than
m2 on the A vs. B comparison if its Pearson cor-
relation with human quality Q is significantly bet-
ter (according to the Williams test of the difference
in dependent correlations) than that of m2 with a p-
value less than .05. We say that m1 dominates m2

overall if it is significantly better than m2 on at least
80% of the pair-wise system comparisons.

Table 9 shows the main correlation results at the
level of individual inputs. We report correlations
with meaning, grammar, and combined quality sep-
arately. For each human quality metric, we see the
top automatic metrics in the first group of rows. The
top metrics are ones that, for at least 80% of the sys-
tem comparisons, are not significantly dominated by
any other metric. In addition, we show the impact of
each of the three criteria: linguistic units, scoring
measure, and multiple references, in corresponding
groups of rows. For each linguistic unit type, we
show the best-performing metric that uses units of

347

SKIP-2+Recall+MULT-PROB .59
PARSE-2+Recall+MULT-PROB .57
SKIP-2+Recall+MULT-MAX .58

LR-1+Recall+MULT-PROB .54
LR-2+Recall+MULT-PROB .56∗

LR-3+Recall+MULT-ALL .55∗

LR-4+Recall+MULT-ALL .52-

SKIP-2+Recall+MULT-PROB .59∗

PARSE-2+Recall+MULT-PROB .57∗

SKIP-2+Recall+MULT-PROB .59∗

SKIP-2+Precision+MULT-ALL .36-

SKIP-2+F-1+MULT-ALL .58∗

SKIP-2+Recall+SINGLE-REF .49-

SKIP-2+Recall+MULT-MAX .58∗

SKIP-2+Recall+MULT-PROB .59∗

SKIP-2+Recall+MULT-ALL .58∗

BLEU-3+PrecBrev+MULT-ALL .50-

ROUGE-L+Recall+MULT-MAX .49-

Top metrics
PARSE-2+Recall+MULT-MAX .35
LR-3+F-1+MULT-ALL .35
PARSE-2+F-1+MULT-ALL .35
PARSE-2+Recall+MULT-PROB .35
LR-2+F-1+MULT-ALL .34
LR-3+Recall+MULT-ALL .34

Best per linguistic unit
LR-1+Recall+MULT-MAX .25-

LR-2+F-1+MULT-ALL .34∗

LR-3+F-1+MULT-ALL .35∗

LR-4+F-1+MULT-ALL .34∗

SKIP-2+F-1+MULT-PROB .33
PARSE-2+Recall+MULT-MAX .35∗

Best per scoring type
PARSE-2+Recall+MULT-MAX .35
LR-2+Precision+MULT-ALL .31
LR-3+F-1+MULT-ALL .35

Best per reference aggregation
PARSE-2+F-1+SINGLE-REF .29
PARSE-2+Recall+MULT-MAX .35
PARSE-2+Recall+MULT-PROB .35
LR-3+F-1+MULT-ALL .35
Other standard setting combinations
BLEU-4+PrecBrev+MULT-ALL .30
ROUGE-L+Recall+MULT-MAX .27

PARSE-2+Recall+MULT-PROB .52
PARSE-2+Recall+MULT-MAX .52
SKIP-2+Recall+MULT-MAX .51
LR-2+Recall+MULT-PROB .51
LR-2+F-1+MULT-ALL .50

LR-1+Recall+MULT-PROB .44-

LR-2+Recall+MULT-PROB .51∗

LR-3+F-1+MULT-ALL .50∗

LR-4+Recall+MULT-ALL .47
SKIP-2+Recall+MULT-MAX .51∗

PARSE-2+Recall+MULT-PROB .52∗

PARSE-2+Recall+MULT-PROB .52
SKIP-2+Precision+MULT-ALL .37-

LR-2+F-1+MULT-ALL .50

SKIP-2+Recall+SINGLE-REF .44-

PARSE-2+Recall+MULT-MAX .52
PARSE-2+Recall+MULT-PROB .52
LR-2+F-1+MULT-ALL .50

BLEU-3+PrecBrev+MULT-ALL .45-

ROUGE-L+Recall+MULT-MAX .43

Table 9: Left to right: Pearson correlation of automatic metrics with human ratings for meaning, grammar, and combined quality.

this type. Similarly, for the other criteria, we show
the best performing metric for each value of the cri-
terion. Metrics with a ∗ suffix in each group signif-
icantly dominate metrics with a − suffix. Metrics
with a − suffix in a group are dominated by at least
one other metric, possibly outside of the group. The
lowest group of rows in each main column presents
the performance of other metrics that cannot be clas-
sified directly based on the three criteria.

A high-level observation that can be made is that
the correlations with meaning are much higher than
the correlations with grammar. The best corre-
lations in meaning can be classified as “strong”,
whereas the best correlations in grammar are in
the “medium” range. Unigrams are heavily domi-
nated by higher order n-grams in all settings. Four-
grams are also weaker that other units in measuring
meaning preservation. Dependency triple (parse-
based) metrics are strong, in particular in measuring
grammaticality, but do not significantly dominate
skip bi-grams or contiguous bi-grams. The scor-
ing measure used has a strong impact. We see that
precision-based metrics are substantially dominated
by metrics that incorporate recall, except for gram-
mar evaluation. Importantly, we see that multiple

references contribute substantially to metric qual-
ity, as all methods that use multiple references out-
perform single-reference metrics. In both meaning
and combined evaluation, this difference was statis-
tically significant. Finally, we observe that standard
BLEU metrics and ROUGE-L were not competitive.

5 Conclusion

We have introduced a large manually collected
multi-reference abstractive dataset and quantified
the impact of editing operations and context on hu-
man compression quality, showing that substitution
and rephrasing operations are more meaning pre-
serving than other operations, and that compression
in context improves quality. Further, in the first sys-
tematic study of automatic evaluation metrics for
text compression, we have demonstrated the impor-
tance of utilizing multiple references and suitable
linguistic units, and incorporating recall.

Acknowledgments

We are grateful to Jaime Teevan, Shamsi Iqbal, Dan
Liebling, Bill Dolan, Michel Galley, and Wei Xu, to-
gether with the three anonymous reviewers for their
helpful advice and suggestions.

348

References

Srinivas Bangalore, Owen Rambow, and Steve Whittaker.
2000. Evaluation metrics for generation. In Proceed-
ings of INLG.

Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein.
2011. Jointly learning to extract and compress. In
Proceedings of ACL-HLT.

Ted Briscoe and John A Carroll. 2002. Robust accurate
statistical annotation of general text. In Proceedings
of LREC.

Hori Chiori and Sadaoki Furui. 2004. Speech summa-
rization: an approach through word extraction and a
method for evaluation. IEICE Transactions on Infor-
mation and Systems, 87(1):15–25.

James Clarke and Mirella Lapata. 2006. Models for
sentence compression: A comparison across domains,
training requirements and evaluation measures. In
Proceedings of ACL-COLING.

James Clarke and Mirella Lapata. 2008. Global infer-
ence for sentence compression: An integer linear pro-
gramming approach. Journal of Artificial Intelligence
Research, pages 399–429.

James Clarke. 2008. Global Inference for Sentence Com-
pression: An Integer Linear Programming Approach.
Ph.D. thesis, Univeristy of Edinburgh.

Jacob Cohen. 1968. Weighted kappa: Nominal scale
agreement provision for scaled disagreement or partial
credit. Psychological bulletin, 70(4):213.

Trevor Cohn and Mirella Lapata. 2008. Sentence com-
pression beyond word deletion. In Proceedings of
COLING.

Katja Filippova and Yasemin Altun. 2013. Overcoming
the lack of parallel data in sentence compression. In
Proceedings of EMNLP.

Katja Filippova, Enrique Alfonseca, Carlos A Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with LSTMs. In
Proceedings of EMNLP.

Michel Galley, Chris Brockett, Alessandro Sordoni,
Yangfeng Ji, Michael Auli, Chris Quirk, Margaret
Mitchell, Jianfeng Gao, and Bill Dolan. 2015.
deltableu: A discriminative metric for generation tasks
with intrinsically diverse targets. In Proceedings of
ACL-IJCNLP (Volume 2: Short Papers).

Juri Ganitkevitch, Chris Callison-Burch, Courtney
Napoles, and Benjamin Van Durme. 2011. Learning
sentential paraphrases from bilingual parallel corpora
for text-to-text generation. In Proceedings of EMNLP.

Mingkun Gao, Wei Xu, and Chris Callison-Burch. 2015.
Cost optimization in crowdsourcing translation: Low
cost translations made even cheaper. In Proceedings
of NAACL-HLT.

Yvette Graham. 2015. Re-evaluating automatic summa-
rization with BLEU and 192 shades of ROUGE. In
Proceedings of EMNLP.

Nancy Ide, Collin F. Baker, Christiane Fellbaum,
Charles J. Fillmore, and Rebecca J. Passonneau. 2008.
MASC: the manually annotated sub-corpus of ameri-
can english. In Proceedings of LREC.

Nancy Ide, Christiane Fellbaum, Collin Baker, and Re-
becca Passonneau. 2010. The manually annotated
sub-corpus: A community resource for and by the peo-
ple. In Proceedings of ACL (Volume 2: Short Papers).

Hongyan Jing and Kathleen R McKeown. 1999. The
decomposition of human-written summary sentences.
In Proceedings of SIGIR.

Hongyan Jing. 2000. Sentence reduction for automatic
text summarization. In Proceedings of ANLP.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. In Proceedings of ACL.

Kevin Knight and Daniel Marcu. 2002. Summariza-
tion beyond sentence extraction: A probabilistic ap-
proach to sentence compression. Artificial Intelli-
gence, 139(1):91–107.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summarization
branches out: Proceedings of the ACL-04 workshop,
volume 8.

Courtney Napoles, Benjamin Van Durme, and Chris
Callison-Burch. 2011. Evaluating sentence compres-
sion: Pitfalls and suggested remedies. In Proceedings
of the Workshop on Monolingual Text-To-Text Genera-
tion.

Courtney Napoles, Matthew Gormley, and Benjamin
Van Durme. 2012. Annotated gigaword. In Proceed-
ings of the Joint Workshop on Automatic Knowledge
Base Construction and Web-scale Knowledge Extrac-
tion.

Ellie Pavlick and Joel Tetrault. 2016. An empirical anal-
ysis of formality in online communication. Transac-
tions of the Association for Computational Linguistics,
pages 61–74.

Stefan Riezler, Tracy H King, Richard Crouch, and Annie
Zaenen. 2003. Statistical sentence condensation us-
ing ambiguity packing and stochastic disambiguation
methods for lexical-functional grammar. In Proceed-
ings of NAACL-HLT.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of EMNLP.

Yuya Unno, Takashi Ninomiya, Yusuke Miyao, and
Jun’ichi Tsujii. 2006. Trimming CFG parse trees
for sentence compression using machine learning ap-
proaches. In Proceedings of COLING-ACL.

349

Lucy Vanderwende, Hisami Suzuki, Chris Brockett, and
Ani Nenkova. 2007. Beyond sumbasic: Task-focused
summarization with sentence simplification and lex-
ical expansion. Information Processing & Manage-
ment, 43(6):1606–1618.

Evan James Williams. 1959. Regression analysis. Wiley,
New York.

Wei Xu, Courtney Napoles, Quanze Chen, and Chris
Callison-Burch. 2016. Optimizing statistical machine
translation for text simplification. Transactions of the
Association for Computational Linguistics, 4.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of ACL-HLT.

Xuchen Yao, Benjamin Van Durme, Chris Callison-
Burch, and Peter Clark. 2013. A lightweight and high
performance monolingual word aligner. In Proceed-
ings of ACL (Volume 2: Short Papers).

350

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 351–361,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

PaCCSS–IT: A Parallel Corpus of Complex–Simple Sentences for Automatic
Text Simplification

Dominique Brunato, Andrea Cimino, Felice Dell’Orletta, Giulia Venturi
Istituto di Linguistica Computazionale “Antonio Zampolli” (ILC–CNR)

ItaliaNLP Lab - www.italianlp.it
{name.surname}@ilc.cnr.it

Abstract

In this paper we present PaCCSS–IT, a Paral-
lel Corpus of Complex–Simple Sentences for
ITalian. To build the resource we develop a
new method for automatically acquiring a cor-
pus of complex–simple paired sentences able
to intercept structural transformations and par-
ticularly suitable for text simplification. The
method requires a wide amount of texts that
can be easily extracted from the web making it
suitable also for less–resourced languages. We
test it on the Italian language making avail-
able the biggest Italian corpus for automatic
text simplification.

1 Introduction

The availability of monolingual parallel corpora is
a prerequisite for research on automatic text sim-
plification (ATS), i.e. the task of reducing sentence
complexity by preserving the original meaning. This
has been recently shown for different languages, e.g.
English (Zhu et al., 2010; Woodsend and Lapata,
2011; Wubben et al., 2012; Siddharthan and An-
grosh, 2014), Spanish (Bott and Saggion, 2011; Bott
and Saggion, 2014), French (Brouwers et al., 2014),
Portuguese (Caseli et al., 2009), Danish (Klerke
and Søgaard, 2012), Italian (Brunato et al., 2015).
While English can rely on large datasets like the
well-known Parallel Wikipedia Simplification cor-
pus (Coster and Kauchak, 2011; Zhu et al., 2010)
and, more recently, the Newsela corpus (Xu et al.,
2015), for other languages similar resources are dif-
ficult to acquire and tend to be very small, thus pre-
venting the application of data–driven techniques to

automatically induce simplification operations. This
is true for the language we are considering, i.e.
Italian, where the only documented corpus for text
simplification contains approximately 1,000 aligned
original and manually simplified sentences (Brunato
et al., 2015).

In this paper we present PaCCSS–IT, a Parallel
Corpus of Complex–Simple Aligned Sentences for
ITalian. To build the resource we developed a new
approach for automatically acquiring a large corpus
of paired sentences containing structural transfor-
mations which can be used as a developmental re-
source for text simplification systems. The proposed
approach relies on monolingual sentence alignment
techniques which have been exploited in different
scenarios such as e.g. paraphrase detection (Ganitke-
vitch et al., 2013; Barzilay and Lee, 2003; Dolan et
al., 2004) and evaluation (Chen and Dolan, 2011),
question answering (Fader et al., 2013), textual en-
tailment (Bosma and Callison-Burch, 2007), ma-
chine translation (Marton et al., 2009), short answer
scoring (Koleva et al., 2014), domain adaptation of
dependency parsing (Choe and McClosky, 2015).
Specifically in ATS, these techniques are typically
applied to already existing parallel corpora; in this
case the task of aligning the original sentence to its
corresponding simple version can be tackled by ap-
plying similarity metrics that consider the TF/IDF
score of the words in the sentence (Barzilay and El-
hadad, 2003; Nelken and Shieber, 2006; Coster and
Kauchak, 2011) or methods taking into account also
the order in which information is presented (Bott
and Saggion, 2011).

Differently from these methods, our approach

351

contains two important novelties: the typology of
the starting data and consequently the methodol-
ogy developed to build the complex–simple aligned
corpus. To overcome the scarcity of large paral-
lel corpora of complex and simple texts in less–
resourced languages like Italian, we started from a
wide amount of texts that can be easily extracted
from the web for all languages. This makes our
method less expensive since it does not need a man-
ually created corpus of aligned documents.

The proposed alignment method has been
strongly shaped by the perspective from which we
investigate text simplification, i.e. syntactic rather
than lexical simplification. While lexical simplifi-
cation aims at the substitution of complex words by
simpler synonyms, syntactic simplification attempts
to reduce complexity at grammatical level (Bott and
Saggion, 2014). As shown by comparative analy-
ses of monolingual parallel corpora in many lan-
guages, syntactic simplification concerns transfor-
mations affecting e.g. verbal features, the order of
phrases or the deletion of redundant or unnecessary
words (Brunato et al., 2015; Bott and Saggion, 2014;
Coster and Kauchak, 2011; Caseli et al., 2009). Fol-
lowing this second perspective we define a method
for bootstrapping and pairing sentences that inter-
cepts simplification operations at morpho–syntactic
and syntactic level typically used by human experts
when simplify real texts.

Section 2 illustrates the approach to automatically
acquire the corpus of complex–simple aligned sen-
tences. In Section 3, the approach is tested and tuned
on a development corpus. In Section 4, our approach
is applied on a large corpus thus obtaining the final
corpus of paired sentences, named PaCCSS–IT. In
this last section, we also provide a global evaluation
of the whole process and a qualitative analysis of the
linguistic phenomena related to sentence complexity
that we intercepted.

2 The Approach

Our approach for automatically acquiring the collec-
tion of paired sentences combines three steps. In
a first step, we devised an unsupervised methodol-
ogy i) to collect pools of sentences from a large cor-
pus with overlapping lexicon but possible different
structures; ii) to rank the resulting candidate sen-

tences according to a similarity metric intended to
bootstrap lexical–equivalent pairs undergoing struc-
tural transformations. In the second step, the top–list
of the ranked pairs was manually revised and used
to develop a classifier based on lexical, morpho–
syntactic and syntactic features to detect the sen-
tences correctly paired. In the third step, the indi-
vidual sentences of each pair were ordered with re-
spect to linguistic complexity computed by using an
automatic readability assessment tool.

This approach has been tuned on PAISÀ1 (Ly-
ding et al., 2014) and tested on ItWaC (Baroni et
al., 2009). The two analysed corpora were auto-
matically POS tagged by the Part–Of–Speech tagger
described in Dell’Orletta (2009) and dependency–
parsed by the DeSR parser (Attardi et al., 2009).

PAISÀ is a freely distributed corpus of texts with
Creative Commons license automatically harvested
from the web. This corpus includes approximately
388,000 documents for a total of 250 millions of
tokens and it is a large existing corpus of authen-
tic contemporary texts in Italian which is free of
copyright restrictions. ItWaC is the largest exist-
ing corpus of authentic contemporary texts in Ital-
ian. It is a 2 billion word corpus constructed from
the Web limiting the crawl to the .it domain and us-
ing medium-frequency words from La Repubblica
journalistic corpus and Basic Italian Vocabulary lists
as seeds.

2.1 Unsupervised Step

The first step is aimed at clustering all sentences
contained in a large corpus. To be included in the
same cluster, the sentences have to share all lem-
mas tagged with the Part–Of–Speech (POS) “noun”,
“verb”, “numeral”, “personal pronoun” and “nega-
tive adverb”. Nouns and verbs were selected be-
cause they capture the informational content of a
sentence. The other functional categories have also
to be shared, otherwise the meaning of the sentence
would be altered. For example, the deletion of the
negative adverb non (not) in one of the two follow-
ing sentences would convey the opposite meaning:
Non farei mai una cosa del genere! (I would never
do something like that) Non potevo fare una cosa
del genere. (I could not do something like that). In

1http://www.corpusitaliano.it/

352

the overlapping process we did not take into account
the linear order of the considered lemma POS. This
was meant to capture lexically–equivalent sentences
undergoing potential structural transformations (e.g.
passivization, topicalization).

All sentences within the same cluster were paired
and the pairs were ranked for similarity by calcu-
lating the cosine distance between the sentence vec-
tors. Each vector is constituted by the frequencies
in the cluster of all lemma of the sentence. The co-
sine similarity served to discard different and equal
or quasi–equal sentences.

The whole unsupervised step was used to select
the set of candidate pairs reducing the number of
pairs on which the following supervised step had
been applied.

2.2 Supervised Step
The supervised step is meant to classify whether
candidate pairs were correctly or incorrectly aligned.
To this end, we built a classifier based on Support
Vector Machines with a quadratic kernel using LIB-
SVM (Chang and Lin, 2001) that was trained on a
corpus of paired sentences correctly aligned. The
classifier used different types of linguistic features,
i.e. lexical, morpho–syntactic and syntactic, meant
to mainly capture structural transformations occur-
ring in the paired sentences.

These features were extracted both calculating
their distribution in each sentence and consider-
ing their overlap between the two paired sentences.
They can be classified into the following types:
cosine similarity feature: it refers to the cosine
value calculated for each pair of sentences;
raw text feature: it refers to the sentence length cal-
culated in terms of i) tokens of each of the two paired
sentences and ii) the different number of tokens be-
tween the two sentences;
lexical features: they refer to i) the lemma uni-
grams contained in the two sentences excluding the
PoS already considered in the pairing process (i.e.
nouns, verbs, numerals, personal pronouns, negative
adverbs); ii) the distribution of word unigrams over-
lapping between the two paired sentences consider-
ing all PoS.
morpho–syntactic feature: it refers to the distribu-
tion of up to 4–grams of coarse grained Parts–Of–
Speech;

syntactic features: they refer to i) the distribution of
up to 4–grams of dependency types calculated with
respect to the hierarchical parse tree structure and
the surface linear ordering of words; ii) the distribu-
tion of up to 4–grams of coarse grained Parts–Of–
Speech of a dependent (d) involved in a dependency
relation and the dependency relation type (t) with re-
spect to the hierarchical parse tree structure.

2.3 Readability Assessment Step

In the third step, the individual sentences of each
classified pair were ordered with respect to linguistic
complexity computed by using an automatic read-
ability assessment tool. In text simplification re-
search it is widely accepted the use of readability as-
sessment metrics for evaluating the transformations
that reduce sentence complexity (Zhu et al., 2010;
Woodsend and Lapata, 2011; Vajjala and Meurers,
2016). Since our approach is devoted to building re-
sources for developing ATS systems, we relied on
readability assessment techniques to rank the indi-
vidual sentences of the pair. To this aim, we used
READ–IT (Dell’Orletta et al., 2011), the only exist-
ing NLP–based readability assessment tool devised
for Italian. It operates on syntactically parsed texts
and assigns to each sentence a score quantifying its
readability. The assigned readability score ranges
between 0 (easy–to–read) and 1 (difficult–to–read)
referring to the percentage probability for the docu-
ments or sentences to belong to the class of difficult–
to–read documents. The two poles were defined on
two typologies of texts belonging to the same tex-
tual genre (i.e. newswire texts) but intended for dif-
ferent users: adults with a rudimentary literacy level
or with mild intellectual disabilities for the easy–to–
read pole and readers of a national daily newspaper
considered of medium difficulty for∼70% of Italian
laymen for the difficult–to–read pole.

3 Tuning Process and Evaluation

In order to tune and evaluate each step of the pro-
posed approach, we tested it on PAISÀ. We first
pruned from the corpus the sentences with a num-
ber of tokens <5 and >40. The resulting sentences
were then grouped with respect to their shared POS
(i.e. nouns, verbs, numerals, personal pronouns and
negative adverbs) and paired using cosine similarity.

353

Cosine no correct pairs % correct pairs
0.92 54 12.03
0.91 151 29.49
0.90 91 26.76
0.89 157 23.36
0.88 331 48.04
0.87 336 68.15
0.86 674 57.36
0.85 107 57.22
0.84 176 61.75
0.83 1096 40.35
0.71 1092 38.97
0.70 62 27.80

Total: 4,327

Table 1: Absolute number and % distribution of correct ex-

tracted pairs for each manually reviewed cosine threshold in

PAISÁ.

We obtained 256,383 clusters containing at least two
sentences. In order to discard different and equal or
quasi–equal sentences we empirically set two cosine
pruning thresholds: we discarded pairs with cosine
below 0.4 since they were too lexically different and
above 0.93 since they were too identical.

To build the training set for the supervised step
we selected a subset of pairs resulting from the un-
supervised step at different cosine similarity scores.
This subset was manually reviewed by two native–
speaker linguists with a background in text sim-
plification. Specifically, they reviewed a subset of
10,543 pairs at different cosine similarity scores, i.e.
those comprised between 0.92 and 0.83. In order to
evaluate sentence similarity at lower values we also
selected cosine scores 0.71 and 0.70. In the end, we
obtained 4,327 correct pairs (i.e. about 41% of the
whole set of candidate sentence pairs) distributed as
in Table 1.

This manually revised set of pairs was then used
to test the classifier in two different experimental
scenarios. In the first one, named Known Cosine,
KC, we tested the classifier in a five–fold cross val-
idation process where pairs of sentences belonging
to all the cosine scores were contained in each train-
ing and test set. In the second experiment, named
Unknown Cosine, UC, the manually–revised corpus
was differently split. In this case, the test set was
composed by pairs of sentences with a cosine simi-
larity score not contained in the training set and con-

Figure 1: Accuracy of the KC and UC experiments compared

with the distribution of correctly paired sentences at different

cosine similarity scores.

sequently twelve classification runs were performed.
In order to assess the discriminating power of the

linguistic features used in the classification, we car-
ried out an Information Gain analysis. This analy-
sis showed the effectiveness of all the selected fea-
tures in both experiments (i.e. KC, UC). In particu-
lar, we observed that the best ranked features are the
morpho–syntactic and syntactic ones. This might
suggest that our classification approach is intercept-
ing pairs of sentences undergoing different typolo-
gies of structural transformations involving e.g. the
use of verbal features or the order of phrases. Sen-
tence length and lexical features play a lower dis-
criminative role with respect to the grammatical fea-
tures; this follows from the constraints we put on the
unsupervised sentence pairing process. As it can be
expected, the best ranked features are those provid-
ing information about the overlapping characteris-
tics of the paired sentences.

Figure 1 and 2 report the results for each cosine
threshold considered in the manual revision of the
two experiments respectively in terms of i) Accu-
racy in the classification of the correct and incorrect
alignments, and of ii) Precision, Recall of the classi-
fication of the correct alignments. As it can be noted
in Figure 1, in both experiments the classifier is able
to outperform the process of sentence pairing based
only on the cosine (i.e. line Cosine, that represents
the unsupervised step of the pairing process). As we
can expect, Precision, Recall and Accuracy of the
KC experiment are higher than the classification re-
sults obtained in the UC. The latter represents a more

354

Figure 2: Precision and Recall of the two experiments (KC and

UC) in the classification of the correct alignments.

challenging experimental scenario where the classi-
fier is tested on a cosine threshold unseen in training.
The overall results for the KC and the UC experi-
ments are respectively 73.95% and 58.71% in terms
of Precision, 70.3% and 68.1% in terms of Recall;
and respectively 77.64% and 67.2% in terms of Ac-
curacy. These results are significantly higher when
compared with the accuracy of 41% reported for the
unsupervised alignment (i.e. line Cosine). Interest-
ingly, in the KC experiment, Precision and Recall
lines are close and they remain stable with respect
to all cosines even if the distribution of correct pairs
varies in the different cosine values.

Figure 3 shows the accuracy of our classifier at
different confidence thresholds (i.e. the probability
assigned by the classifier for the correct alignments)
for both the KC and UC experiments. Note that for
each confidence intervals we have a different num-
ber of total pairs, and of gold-correct alignments and
gold-incorrect alignments. As expected, the perfor-
mance grows as the confidence grows. Interestingly,
in the KC scenario, the classifier reached up to 90%
of accuracy in discriminating the correct from the
incorrect alignments when the classifier has a confi-
dence score ≥0.90. These results look very promis-
ing if we consider that 30% of the pairs of the whole
test set classified as correct alignments is comprised
in the subset for which the classifier is more con-
fident. This is also the case of the UC experiment,
where, even if with lower accuracies, more than 56%
of the correct alignments occurs when the classifier
has a confidence score ≥0.90.

We carried out a last evaluation to estimate the
classifier performance in the UC scenario for low

Figure 3: Classifier performance in the KC and UC experi-

ments with probability intervals reported along the x axis.

cosine ranges not comprised in the manually revised
portion of the corpus (from 0.45 to 0.75, exclud-
ing cosines 0.70 and 0.71). We considered only the
pairs classified as correct with a confidence score of
≥85%. As expected, the system performance grows
as the cosine grows: only few correct pairs occur at
cosine <0.60, at cosine 0.60–0.65 the classifier as-
signs the correct class 237 times with an accuracy
of 62.97%, at 0.65–0.69 330 times with 71.82% and
at 0.72–0.75 256 times with an accuracy of 87.89%.
According to these evaluations, we extracted from
PAISÁ those pairs with a confidence score ≥ 85%
and cosine similarity between 0.6 and 0.93, resulting
in a collection of about 20,000 pairs.

In the last step, the sentences in each pair were
ranked according to the readability score automat-
ically assigned by READ–IT making a collection
of complex–simple aligned sentences. However, the
average difference of the readability score between
the complex and simple sentences is only 0.13, mak-
ing this collection not so useful for ATS. For this
reason, we selected only pairs with a difference of
readability score higher than a significant threshold
set at 0.2. We defined this threshold on the basis
of previous empirical experiments carried out using
READ-IT on different typologies of texts. Lower
variations of READ-IT score are scarcely perceived
by human subjects. Since the construction of this
resource has been specifically designed to develop
ATS systems for human target, this READ-IT varia-
tion is a fundamental parameter of PaCCSS-IT. We
thus obtained about 4,450 pairs.

355

4 PaCCSS–IT

The unsupervised step applied to ItWaC resulted in
∼28 million of clusters with overlapping lexicon for
a total of ∼35 million of single sentences. From
this initial set we pruned sentences with a number
of tokens <5 and >40 and clusters containing less
than two sentences. We obtained 419,252 clusters
for a total of ∼8,5 million of single sentences and
an average number of pairs in each cluster of 1,613.
Filtering the pairs according to the cosine similarity
range defined in the development step, we obtained
a subset of 73,142 clusters with an average of ∼112
pairs for each. The classifier with the same model
tested on PAISÁ recognised about 1 million of cor-
rect aligned pairs. Excluding pairs below the confi-
dence score ≥ 85% we obtained ∼284,000 pairs.
This collection was further pruned selecting only
those pairs with at least 0.2 points in terms of vari-
ation in readability score. PaCCSS–IT is the result-
ing resource. It is a freely available resource 2 com-
posed of ∼63,000 pairs of sentences (∼126k sen-
tences) ranked with respect to the readability score
of the two sentences. For each pair the cosine sim-
ilarity, the probability score of the classifier and the
readability level of the sentences are provided.

The following sections report the evaluation and
the qualitative analysis we carried out on PaCCSS–
IT. The evaluation was performed to assess the re-
liability of sentence alignment and of the sentence
ranking with respect to readability level. The qual-
itative analysis was focused on studying which lin-
guistic phenomena typically related to text simplifi-
cation are successfully intercepted by our approach
in order to show the applicability of the resource in
a ATS scenario.

4.1 Evaluation
The evaluation process was intended to calculate the
accuracy of i) the automatic classification process
in predicting correct sentence alignments and ii) the
automatic readability ranking of each pair.

The alignment evaluation was carried out by two
trained linguists who manually revised 40 pairs of
randomly selected sentences for each cosine score
(1,088 paired sentences). It resulted that 85% of
pairs were correctly classified (i.e. 921 pairs) and

2http://www.italianlp.it/software-data/

precision increases as cosine grows (from 73.2% at
cosine 0.65-0.69 to 90.8% at cosine 0.90-0.92).

The subset of 921 pairs correctly classified was
further investigated with respect to the readability
level automatically assigned. To this aim we elicited
human judgements through the crowdsourcing plat-
form CrowdFlower3. We collected judgements from
7 workers that were asked to rate for each pair which
of the two individual sentences was simpler. We
considered the majority label to be true label for
each pair. Comparing the score obtained by our sys-
tem with the human judgements we obtained an ac-
curacy of 74%. Restricting the evaluation only to
pairs with the same label assigned by at least five
out seven annotators (i.e. 79% of the whole pairs),
the system achieved an accuracy of 78%.

4.2 Qualitative Analysis

Two qualitative analyses were carried out on
PaCCSS–IT. The first analysis took into account the
subset of 921 revised pairs with the aim of manu-
ally investigating what kinds of sentence transfor-
mations previously observed in the literature on text
simplification were intercepted by our approach. In
the second one, the whole resource was automati-
cally investigated to study how the alignment pro-
cess impacts on the distribution of multi–level lin-
guistic features correlated to sentence complexity.

4.2.1 Analysis of Simplification Operations

Following the classification of simplification op-
erations proposed in the literature (Brunato et al.,
2015; Bott and Saggion, 2014; Coster and Kauchak,
2011; Caseli et al., 2009), we identified the major
types of operations occurring in the subset of revised
pairs 4, namely:

Deletion: the second sentence (S) does not con-
tain one or more than two words occurring in the
first one (C):

• C: Ma c’è un altro problema, ancora più grave.
[Lit: But there is another problem, even more
serious.]

3www.crowdflower.com
4In each of the following examples the first sentence (C) is

the complex sentence and the second (S) the simple one. We
underlined the text span affected by the operation.

356

• S: Poi c’è un altro problema. [Lit: Then there
is another problem.]

Verbal Features: the two sentences differ with
respect to verbal mood and tense:

• C: I suoi libri sono stati tradotti in molte lingue.
[Lit: His books have been translated in many
languages.]

• S: I suoi libri sono tradotti in diverse lingue.
[Lit: His books have been translated in differ-
ent languages.]

Lexical Substitution: the two sentences contain
synonyms of words tagged with POS which were not
considered in the clustering step based on POS over-
lapping, e.g. adjectives, adverbs:

• C: Il colore è un rosso rubino fittissimo, quasi
impenetrabile, limpido. [Lit: The color is
a rubyred very dense, almost impenetrable,
clear.]

• S: Il colore è un rosso rubino vivo quasi impen-
etrabile. [Lit: The color is a bright red ruby
almost impenetrable.]

Reordering: the two sentences contain a differ-
ent word order both at single word (e.g. subject in
pre- vs. post-verbal position) and phrase level (e.g
a subordinate clause proceeds vs. follows the main
clause):

• C: Ringraziandola per la sua cortese atten-
zione, resto in attesa di risposta. [Lit: Thank-
ing you for your kind attention, I look forward
to your answer.]

• S: Resto in attesa di una risposta e ringrazio
vivamente per l’attenzione. [Lit: I look forward
to your answer and I thank you greatly for your
attention.]

Insertion: the second sentence contains one or n-
words more than the first one:

• C: In attesa di un sollecito riscontro, distinti
saluti. [Lit: Waiting for an early reply, yours
faithfully.]

• S: In attesa di un riscontro porgiamo distinti
saluti. [Lit: Waiting for a reply, we offer our
regards.]

Sentence Type: the two sentences differ with re-
spect to their form (i.e. affirmative vs. interroga-
tive):

• C: Quale consiglio darebbe ai genitori? [Lit:
Which advice would you give to parents?]

• S: Diamo un consiglio ai genitori. [Lit: Let’s
give an advice to parents.]

For each operation there can be different degrees
of sentence transformation. For example, focusing
on Verbal Feature, the example reported above rep-
resents a “light” transformation while a “stronger”
transformation can occur when the verb changes
from the conditional to the indicative mood (or vice
versa), as in the following pair:

• C: Sarebbe un grave un errore. [Lit: It would
be a serious error.]

• S: Ma è un grave errore. [Lit: But it is a serious
error.]

Figure 4 reports the distribution of these sentence
operations in the manually revised portion of the
corpus. The distribution in All cosines shows that the
two most frequent operations are deletion (30.74%)
and changes affecting verbal features (26.30%). Ac-
cording to the literature, the deletion of redundant
information (e.g. adjectives, adverbs) is one of
the main phenomena typically related to reduction
of complexity. Also transformations of verbal fea-
tures are likely to intercept simplification operations
in a language like Italian with a rich inflectional
paradigm. The third most frequent operation is lexi-
cal substitution (15.52%). According to the POS fil-
ter used in the unsupervised step of sentence align-
ment, this operation affects morpho–syntactic cate-
gories such as e.g. adverbs, adjectives, conjunctions
or prepositions which are substituted with a sim-
pler synonym. Reordering and insertion of words
or phrases are respectively the fourth and the fifth
types of transformation. Reordering can be ex-
pected as a simplification strategy especially when
it yields a more canonical word order. The dis-
tribution of reordering here reported, i.e. 14.24%,

357

Figure 4: Distribution of sentence operations at different cosine

ranges.

is quite high if compared to the distribution of the
same operation found in hand-crafted simplified cor-
pora where it represents about 8% of sentence oper-
ations (Brunato et al., 2015). This result gives ev-
idence that our approach succeeds in automatically
intercepting this kind of syntactic transformation. In
the manually revised portion of PaCCSS–IT inser-
tion represents 12.72% of the whole operations. De-
spite inserting words or phrases could make more
complex a sentence, this operation is used in the
simplification process e.g. when it makes explicit
missing arguments in elliptical clauses more fre-
quently used in non–standard language varieties or
sublanguages such as legal language. This is the
case of the heterogeneous nature of the corpus from
which PaCCSS–IT derives, where documents char-
acterized by non–canonical languages (e.g. blogs,
e–mails) or domain–specific documents (e.g. ad-
ministrative acts) are mixed to texts representative
of more standard varieties, e.g. newspapers, novels.

Let us consider the relation between simplifica-
tion operations, cosine values and readability levels.
For what concerns the distribution of the operations
at different cosines (Figure 4), we observe that dele-
tion is the most frequent operation at all cosines,
in particular at lower cosines i.e. <.70. At high
cosines, i.e. >.90, operations affecting word order
and verbal features increase. The relation between
readability score and sentence operations is shown
in Figure 5. Specifically, we calculated how the dis-
tribution of operations changes with increasing dif-
ferences between the readability score assigned to
the complex and the simple sentence of each pair.
Although it is difficult to study the effect of each sin-

Figure 5: Distribution of sentence operations at different read-

ability scores.

gle operation on the readability score variation since
these operations are usually applied in combination,
we observe some clear tendencies. In particular,
operations concerning deletion and verbal features
are the most frequent ones both at lower and higher
readability scores differences. However, they have
an opposite distribution: transformations of verbal
features increase at higher readability differences
(>0.6) while deletions decrease. For what concerns
the other operations, the trend is quite homogeneous
along with the different readability scores. In par-
ticular, this is the case of reordering thus showing
the proposed approach is able to intercept syntactic
transformations which impact at different readabil-
ity variations.

4.2.2 Analysis of Linguistic Phenomena
The second qualitative analysis focused on the

whole resource which was searched for linguistic
phenomena correlating with the process of sentence
alignment. To this end, we compared the distribu-
tion of a set of different linguistic features, i.e. raw
text, lexical, morpho–syntactic and syntactic, auto-
matically extracted from the set of complex and sim-
ple sentences of PaCCSS–IT, which was previously
tagged and dependency–parsed. In Table 2 we report
a selection of the features with a statistically signifi-
cant variation5 between the complex and the simple
sentences. As expected, the average sentence length
(feature [1]) of the Simple sentence is lower than
the Complex one. The higher distribution of adjec-
tives [2], adverbs [3] and determiners [4] might be

5Wilcoxon’s signed rank test was used to evaluate statistical
significance.

358

related to the insertion of simple lexicon belonging
to the Basic Italian Vocabulary (De Mauro, 2000).
The distribution of verbal moods is also significantly
correlated to a higher readability level: simple sen-
tences have a higher percentage of indicatives [6] (a
simple mood indicating a state of being or reality)
and less participles [7] and gerundives [8] which are
non finite moods and thus can be more ambiguous
with respect to the reference. In addition, sentences
classified as complex have higher parse trees [13],
longer dependency links [14] and longer embedded
complement chains modifying a noun [15], all fea-
tures correlated with syntactic complexity (Gibson,
1998; Lin, 1986; Frazier, 1985). On the contrary,
sentences classified as simple are characterised by a
more canonical word order (Subject–Verb–Object in
Italian) i.e. a lower distribution of post-verbal sub-
jects [16] and of pre-verbal objects [17]. These sen-
tences also contain a higher distribution of subordi-
nate clauses following the main clause [18], an order
easier to process.

Since syntactic features intercepting the structure
of the sentence (e.g. parse tree depth and depen-
dency length) heavily depend on the overall sentence
length, we carried out an analysis only on pairs of
sentences where the complex and the simple sen-
tence have the same number of tokens (i.e. 15,958
pairs in PaCCSS–IT) and we compared how linguis-
tic features vary between the complex and the sim-
ple sentences of these pairs. We observed that sim-
ple sentences have a more canonical position of the
subject (i.e. a lower percentage distribution of post-
verbal subjects: C: 18.14%, S: 15.72%) and of the
object (i.e. a lower percentage distribution of pre-
verbal objects: C: 1.52%, S: 1.18%). Simple sen-
tences have also lower parsed trees (C: 2.42, S: 2.37)
and shorter embedded complement chains modify-
ing a noun (C: 0.27, S: 0.26). Since these variations
cannot be due to sentence shortening, they rather fol-
low from reordering phenomena e.g. changing from
active to passive voice.

The distribution of linguistic features here re-
ported has already been observed in hand–crafted
corpora of complex and simple sentences for Italian
(Brunato et al., 2015). This is a further evidence of
the reliability of our method for automatically creat-
ing corpora of complex–simple sentences.

Feature Complex Simple Variation
[1] 8.98 7.80 0.97
[2] 4.10 7.90 -3.80
[3] 9.10 10.0 -0.85
[4] 0.34 1.43 -1.10
[5] 10.70 20.30 -9.61
[6] 5.20 2.72 2.49
[7] 0.47 0.04 0.42
[8] 2.89 4.29 -1.40
[9] 79.18 80.91 -1.73
[10] 1.33 1.57 -0.24
[11] 2.03 2.14 -0.10
[12] 8.35 7.33 0.5
[13] 2.88 2.70 0.18
[14] 1.76 1.63 0.12
[15] 0.44 0.41 0.02
[16] 15.37 14.37 1.00
[17] 2.03 1.38 0.65
[18] 3.29 4.17 -0.90

Table 2: Distribution of a subset of linguistic features with sta-

tistically significant variation between the complex and simple

sentences. Features [1],[13],[14],[15] are absolute values, the

others are percentage distributions. All differences are signifi-

cant at p <0.001.

5 Conclusion

In this paper we have presented PaCCSS–IT, a cor-
pus of complex–simple aligned sentences for Italian
containing∼63,000 paired sentences. To our knowl-
edge, PaCCSS–IT is the biggest corpus of complex–
simple aligned sentences, with the exception of En-
glish. It resulted from a new method for automat-
ically acquiring corpora of parallel sentences able
to capture structural transformations and particularly
suitable for text simplification systems. A compara-
tive analysis of the multi–level linguistic features in
the complex and simple sentences showed that this
method intercepts linguistic phenomena character-
ising simplification operations previously observed
in manually–created complex–simple corpora. A
main novelty of the proposed approach is that it does
not rely on a large pre-existing corpus of aligned
complex–simple documents like e.g. the English and
Simple English Wikipedia. This makes it very ap-
propriate for less–resourced languages. In addition,
since the method does not need parallel corpora, the
dimension of the web is the only limitation to the
size of the corpus that could be created.

359

References

Giuseppe Attardi, Felice Dell’Orletta, Maria Simi, and
Joseph Turian. 2009. Accurate dependency parsing
with a stacked multilayer perceptron. Proceedings of
the 2nd Workshop of Evalita 2009 - Evaluation of NLP
and Speech Tools for Italian, Reggio Emilia, Italy.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and
Eros Zanchetta. 2009. The WaCky wide web: A
collection of very large linguistically processed web-
crawled corpora. Language Resources and Evalua-
tion, 43(3):209–226.

Regina Barzilay and Noemi Elhadad. 2003. Sentence
alignment for monolingual comparable corpora. Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing.

Regina Barzilay and Lillian Lee. 2003. Learning to
paraphrase: an unsupervised approach using multiple-
sequence alignment. Proceedings of the Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies.

Wauter Bosma and Chris Callison-Burch. 2007. Para-
phrase substitution for recognizing textual entailment.
Proceedings of the 7th International Conference on
Cross-Language Evaluation Forum (CLEF).

Stefan Bott and Horacio Saggion. 2011. An unsuper-
vised alignment algorithm for text simplification cor-
pus construction. Proceedings of the Workshop on
Monolingual Text-To-Text Generation, co-located with
ACL 2011, Porland, Oregon.

Stefan Bott and Horacio Saggion. 2014. Text simplifica-
tion resources for Spanish. Language Resources and
Evaluation, 48(1):93–120.

Laetitia Brouwers, Delphine Bernhard, Anne-Laure
Ligozat, and Thomas François. 2014. Syntactic sen-
tence simplification for French. Proceedings of the 3rd
Workshop on Predicting and Improving Text Readabil-
ity for Target Reader Populations (PITR).

Dominique Brunato, Felice Dell’Orletta, Giulia Venturi,
and Simonetta Montemagni. 2015. Design and anno-
tation of the first Italian corpus for text simplification.
Proceedings of the 9th Linguistic Annotation Work-
shop (LAW’15), Denver, Colorado, USA.

Helena M. Caseli, Tiago F. P. Pereira, Lucia Specia,
Thiago A. S. Pardo, Caroline Gasperin, and Sandra
Aluı́sio. 2009. Building a Brazilian Portuguese paral-
lel corpus of original and simplified texts. Proceedings
of the 10th Conference on Intelligent Text Processing
and Computational Linguistics.

Chih-Chung Chang and Chih-Jen Lin. 2001. LIBSVM:
a library for support vector machines. Software avail-
able at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

David L. Chen and William B. Dolan. 2011. Collecting
highly parallel data for paraphrase evaluation. Pro-
ceedings of the Annual Meetings of the Association for
Computational Linguistics (ACL).

Do Kook Choe and David McClosky. 2015. Parsing
paraphrases with joint inference. Proceedings of the
53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Con-
ference on Natural Language Processing.

William Coster and David Kauchak. 2011. Simple en-
glish wikipedia: a new text simplification task. Pro-
ceedings of the Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies.

Tullio De Mauro. 2000. Il dizionario della lingua ital-
iana.

Felice Dell’Orletta, Simonetta Montemagni, and Giulia
Venturi. 2011. READ–IT: assessing readability of
italian texts with a view to text simplification. Pro-
ceedings of the Second Workshop on Speech and Lan-
guage Processing for Assistive Technologies (SLPAT),
Edinburgh, UK.

Felice Dell’Orletta. 2009. Ensemble system for Part-
of-Speech tagging. Proceedings of Evalita’09, Eval-
uation of NLP and Speech Tools for Italian, Reggio
Emilia, December.

William Dolan, Chris Quirk, and Chris Brockett. 2004.
Unsupervised construction of large paraphrase cor-
pora: Exploiting massively parallel news sources.
Proceedings of the 20th International Conference on
Computational Linguistics, Geneva, Switzerland.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2013. Paraphrase-driven learning for open question
answering. Proceedings of the Annual Meetings of the
Association for Computational Linguistics (ACL).

Lyn Frazier. 1985. Syntactic complexity. Natural Lan-
guage Parsing.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. Proceedings of the Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

Edward Gibson. 1998. Linguistic complexity: Locality
of syntactic dependencies. Cognition, 68(1):1–76.

Sigrid Klerke and Anders Søgaard. 2012. DSim, a Dan-
ish parallel corpus for text simplification. Proceed-
ings of Language Resources and Evaluation Confer-
ence (LREC).

Nikolina Koleva, Andrea Horbach, Alexis Palmer, Simon
Ostermann, and Manfred Pinkal. 2014. Paraphrase
detection for short answer scoring. Proceedings of
the third workshop on NLP for computer-assisted lan-
guage learning.

360

Dekan Lin. 1986. On the structural complexity of natural
language sentences. Proceedings of COLING 1996.

Verena Lyding, Egon Stemle, Claudia Borghetti,
Marco Brunello, Sara Castagnoli, Felice Dell’Orletta,
Dittmann Henrik, Alessandro Lenci, and Vito Pirrelli.
2014. The PAISA corpus of Italian web texts. Pro-
ceedings of the 9th Web as Corpus Workshop (WAC-9)
EACL.

Yuval Marton, Chris Callison-Burch, and Philip Resnik.
2009. Improved statistical machine translation using
monolingually-derived paraphrases. Proceedings of
the 2009 Conference on Empirical Methods in Natu-
ral Language Processing.

Rani Nelken and Stuart M. Shieber. 2006. Towards ro-
bust context-sensitive sentence alignment for monolin-
gual corpora. Proceedings of the 11th Conference of
the European Chapter of the Association for Compu-
tational Linguistics (EACL-06), 3–7 April.

Advaith Siddharthan and Mandya Angrosh. 2014. Hy-
brid text simplification using synchronous dependency
grammars with hand-written and automatically har-
vested rules. Proceedings of the 14th Conference of
the European Chapter of the Association for Compu-
tational Linguistics (EACL 2014).

Sowmya Vajjala and Detmar Meurers. 2016.
Readability-based sentence ranking for evaluat-
ing text simplification. arXiv.

Kristian Woodsend and Mirella Lapata. 2011. Learning
to simplify sentences with quasi-synchronous gram-
mar and integer programming. Proceedings of the
2011 Conference on Empirical Methods in Natural
Language Processing.

Sander Wubben, Antal van den Bosch, and Emiel Krah-
mer. 2012. Sentence simplification by monolingual
machine translation. Proceedings of the 50th Annual
Meeting of the Association for Computational Linguis-
tics.

Wei Xu, Chris Callison-Burch, and Courtney Napoles.
2015. Problems in current text simplification research:
New data can help. Transactions of the Association for
Computational Linguistics, 3.

Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych.
2010. A monolingual tree-based translation model for
sentence simplification. Proceedings of the 23rd inter-
national conference on computational linguistics.

361

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 362–371,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Discourse Parsing with Attention-based Hierarchical Neural Networks

Qi Li Tianshi Li Baobao Chang
Key Laboratory of Computational Linguistics, Ministry of Education

School of Electronics Engineering and Computer Science, Peking University
No.5 Yiheyuan Road, Haidian District, Beijing, 100871, China

Collaborative Innovation Center for Language Ability, Xuzhou, 221009, China
qi.li@pku.edu.cn lts 417@hotmail.com chbb@pku.edu.cn

Abstract

RST-style document-level discourse parsing
remains a difficult task and efficient deep
learning models on this task have rarely been
presented. In this paper, we propose an
attention-based hierarchical neural network
model for discourse parsing. We also incor-
porate tensor-based transformation function to
model complicated feature interactions. Ex-
perimental results show that our approach ob-
tains comparable performance to the contem-
porary state-of-the-art systems with little man-
ual feature engineering.

1 Introduction

A document is formed by a series of coherent text
units. Document-level discourse parsing is a task to
identify the relations between the text units and to
determine the structure of the whole document the
text units form. Rhetorical Structure Theory (RST)
(Mann and Thompson, 1988) is one of the most in-
fluential discourse theories. According to RST, the
discourse structure of a document can be represented
by a Discourse Tree (DT). Each leaf of a DT denotes
a text unit referred to as an Elementary Discourse
Unit (EDU) and an inner node of a DT represents
a text span which is constituted by several adjacent
EDUs. DTs can be utilized by many NLP tasks in-
cluding automatic document summarization (Louis
et al., 2010; Marcu, 2000), question-answering (Ver-
berne et al., 2007) and sentiment analysis (Somasun-
daran, 2010) etc.

Much work has been devoted to the task of RST-
style discourse parsing and most state-of-the-art ap-

proaches heavily rely on manual feature engineer-
ing (Joty et al., 2013; Feng and Hirst, 2014; Ji
and Eisenstein, 2014). While neural network mod-
els have been increasingly focused on for their abil-
ity to automatically extract efficient features which
reduces the burden of feature engineering, there is
little neural network based work for RST-style dis-
course parsing except the work of Li et al. (2014a).
Li et al. (2014a) propose a recursive neural network
model to compute the representation for each text
span based on the representations of its subtrees.
However, vanilla recursive neural networks suffer
from gradient vanishing for long sequences and the
normal transformation function they use is weak at
modeling complicated interactions which has been
stated by Socher et al. (2013). As many docu-
ments contain more than a hundred EDUs which
form quite a long sequence, those weaknesses may
lead to inferior results on this task.

In this paper, we propose to use a hierarchical
bidirectional Long Short-Term Memory (bi-LSTM)
network to learn representations of text spans. Com-
paring with vanilla recursive/recurrent neural net-
works, LSTM-based networks can store information
for a long period of time and don’t suffer from gra-
dient vanishing problem. We apply a hierarchical
bi-LSTM network because the way words form an
EDU and EDUs form a text span is different and
thus they should be modeled separately and hierar-
chically. On top of that, we apply attention mecha-
nism to attend over all EDUs to pick up prominent
semantic information of a text span. Besides, we use
tensor-based transformation function to model com-
plicated feature interactions and thus it can produce

362

combinatorial features.
We summarize contributions of our work as fol-

lows:

• We propose to use a hierarchical bidirectional
LSTM network to learn the compositional se-
mantic representations of text spans, which nat-
urally matches and models the intrinsic hierar-
chical structure of text spans.

• We extend our hierarchical bi-LSTM network
with attention mechanism to allow the network
to focus on the parts of input containing promi-
nent semantic information for the composi-
tional representations of text spans and thus al-
leviate the problem caused by the limited mem-
ory of LSTM for long text spans.

• We adopt a tensor-based transformation func-
tion to allow explicit feature interactions and
apply tensor factorization to reduce the param-
eters and computations.

• We use two level caches to intensively acceler-
ate our probabilistic CKY-like parsing process.

The rest of this paper is organized as follows: Sec-
tion 2 gives the details of our parsing model. Section
3 describes our parsing algorithm. Section 4 gives
our training criterion. Section 5 reports the experi-
mental results of our approach. Section 6 introduces
the related work. Conclusions are given in section 7.

2 Parsing Model

Given two successive text spans, our parsing model
evaluates the probability to combine them into a
larger span, identifies which one is the nucleus and
determines what is the relation between them. As
with the work of Ji and Eisenstein (2014), we set
three classifiers which share the same features as in-
put to deal with those problems. The whole pars-
ing model is shown in Figure 1. Three classi-
fiers are on the top. The semantic representations
of the two given text spans which come from the
output of attention-based hierarchical bi-LSTM net-
work with tensor-based transformation function is
the main part of input to the classifiers. Additionally,
following the previous practice of Li et al. (2014a),
a small set of handcrafted features is introduced to
enhance the model.

Figure 1: Schematic structure of our parsing model.

2.1 Hierarchical Bi-LSTM Network for Text
Span Representations

Long Short-Term Memory (LSTM) networks have
been successfully applied to a wide range of NLP
tasks for the ability to handle long-term dependen-
cies and to mitigate the curse of gradient vanishing
(Hochreiter and Schmidhuber, 1997; Bahdanau et
al., 2014; Rocktäschel et al., 2015; Hermann et al.,
2015). A basic LSTM can be described as follows.
A sequence {x1, x2, ..., xn} is given as input. At
each time-step, the LSTM computation unit takes in
one token xt as input and it keeps some information
in a cell state Ct and gives an output ht. They are
calculated in this way:

it = σ(Wi[ht−1;xt] + bi) (1)

ft = σ(Wf [ht−1;xt] + bf) (2)

C̃t = tanh(WC [ht−1;xt] + bC) (3)

Ct = ft � Ct−1 + it � C̃t (4)

ot = σ(Wo[ht−1;xt] + bo) (5)

ht = ot � tanh(Ct) (6)

where Wi, bi,Wf , bf ,Wc, bC ,Wo, bo are LSTM pa-
rameters,� denotes element-wise product and σ de-
notes sigmoid function. The output at the last token,
i.e., hn is taken as the representation of the whole
sequence.

363

Figure 2: Bi-LSTM for computing the compositional semantic

representation of an EDU.

Since an EDU is a sequence of words, we de-
rive the representation of an EDU from the sequence
constituted by concatenation of word embeddings
and the POS tag embeddings of the words as Figure
2 shows. Previous work on discourse parsing tends
to extract some features from the beginning and end
of text units partly because discourse clues such as
discourse markers(e.g., because, though) are often
situated at the beginning or end of text units(Feng
and Hirst, 2014; Ji and Eisenstein, 2014; Li et al.,
2014a; Li et al., 2014b; Heilman and Sagae, 2015).
Considering the last few tokens of a sequence nor-
mally have more influence on the representation of
the whole sequence learnt with LSTM because they
get through less times of forget gate from the LSTM
computation unit, to effectively capture the informa-
tion from both beginning and end of an EDU, we
use bidirectional LSTM to learn the representation
of an EDU. In other words, one LSTM takes the
word sequence in forward order as input, the other
takes the word sequence in reversed order as input.
The representation of a sequence is the concatena-
tion of the two vector representations calculated by
the two LSTMs.

Since a text span is a sequence of EDUs, its
meaning can be computed from the meanings of
the EDUs. So we use another bi-LSTM to derive
the compositional semantic representation of a text
span from the EDUs it contains. The two bi-LSTM
networks form a hierarchical structure as Figure 1
shows.

2.2 Attention
The representation of a sequence computed by bi-
LSTMs is always a vector with fixed dimension de-
spite the length of the sequence. Thus when dealing
with a text span with hundreds of EDUs, bi-LSTM
may not be enough to capture the whole semantic in-
formation with its limited output vector dimension.
Attention mechanism can attend over the output at
every EDU with global context and pick up promi-
nent semantic information and drop the subordinate
information for the compositional representation of
the span, so we employ attention mechanism to al-
leviate the problem caused by the limited memory
of LSTM networks. The attention mechanism is in-
spired by the work of Rocktäschel et al. (2015). Our
attention-based bi-LSTM network is shown in Fig-
ure 3.

We combine the last outputs of the span level bi-
LSTM to be hs = [

−→
h en ,

←−
h e1]. We also combine

the outputs of the two LSTM at every EDU of the
span: ht = [

−→
h t,
←−
h t] and thus get a matrix H =

[h1;h2; ...;hn]
T . Taking H ∈ Rd×n and hs ∈ Rd as

inputs, we get a vector α ∈ Rn standing for weights
of EDUs to the text span and use it to get a weighted
representation of the span r ∈ Rd:

M = tanh(WyH +Wlhs ⊗ en) (7)

α = softmax(wTαM) (8)

r = Hα (9)

where⊗ denotes Cartesian product , M ∈ Rk×n, en
is a n dimensional vector of all 1s and we use the
Cartesian product Wlhs ⊗ en to repeat the result of
Wlhs n times in column to form a matrix and Wy ∈
Rk×d,Wl,∈ Rk×d, wα ∈ Rk are parameters.

We synthesize the information of r and hs to get
the final representation of the span:

wh = σ(Whrr +Whhhs) (10)

h = wh � hs + (1− wh)� r (11)

where Whr,Whh ∈ Rd×d are parameters, wh ∈ Rd
is a computed vector representing the element-wise
weight of hs and the element-wise weighted sum-
mation h ∈ Rd is the final representation of the text
span computed by the attention-based bidirectional
LSTM network.

364

Figure 3: Attention-based bi-LSTM for computing the compo-

sitional semantic representation of a text span.

2.3 Classifiers
We concatenate the representations of the two given
spans: h = [hs1, hs2] and feed h into a full connec-
tion hidden layer to obtain a higher level representa-
tion v which is the input to the three classifiers:

v = Relu(Wh[hs1, hs2] + bh) (12)

For each classifier, we firstly transform v ∈ Rl
into a hidden layer:

vsp = Relu(Whsv + bhs) (13)

vnu = Relu(Whnv + bhn) (14)

vrel = Relu(Whrv + bhr) (15)

where Whs,Whn,Whr ∈ Rh×l are transformation
matrices and bhs, bhn, bhr ∈ Rh are bias vectors.

Then we feed these vectors into the respective
output layer:

ysp = σ(wsvsp + bs) (16)

ynu = softmax(Wnvnu + bn) (17)

yrel = softmax(Wrvrel + br) (18)

where ws ∈ Rh, bs ∈ R,Wn ∈ R3×h,Wn ∈
R3×h, bn ∈ R3,Wr ∈ Rnr×h, bn ∈ Rnr are pa-
rameters and nr is the number of different discourse
relations.

The first classifier is a binary classifier which out-
puts the probability the two spans should be com-
bined. The second classifier is a multiclass classifier

which identifies the nucleus to be span 1, span 2 or
both. The third classifier is also a multiclass classi-
fier which determines the relation between the two
spans.

2.4 Tensor-based Transformation

Tensor-based transformation function has been suc-
cessfully utilized in many tasks to allow complicated
interaction between features (Sutskever et al., 2009;
Socher et al., 2013; Pei et al., 2014). Based on
the intuition that allowing complicated interaction
between the features of the two spans may help to
identify how they are related, we adopt tensor-based
transformation function to strengthen our model.

A tensor-based transformation function on x ∈
Rd1 is as follows:

y =Wx+ xTT [1:d2]x+ b (19)

yi =
∑

j

Wijxj +
∑

j,k

T
[i]
j,kxjxk + bi (20)

where y ∈ Rd2 is the output vector, yi ∈ R is the
ith element of y, W ∈ Rd2×d1 is the transformation
matrix, T [1:d2] ∈ Rd1×d1×d2 is a 3rd-order transfor-
mation tensor. A normal transformation function in
neural network models only has the first term Wx
with the bias term. It means for normal transfor-
mation function each unit of the output vector is
the weighted summation of the input vector and this
only allows additive interaction between the units of
the input vector. With the tensor multiplication term,
each unit of the output vector is augmented with the
weighted summation of the multiplication of the in-
put vector units and thus we incorporate multiplica-
tive interaction between the units of the input vector.

Inevitably, the incorporation of tensor leads to
side effects which include the increase in parameter
number and computational complexity. To remedy
this, we adopt tensor factorization in the same way
as Pei et al. (2014): we use two low rank matrices to
approximate each tensor slice T [i] ∈ Rd1×d1 :

T [i] ⇒ P [i]Q[i] (21)

where P [i] ∈ Rd1×r, Q[i] ∈ Rr×d1 and r � d1.
In this way, we drastically reduce parameter number
and computational complexity.

365

We apply the factorized tensor-based transforma-
tion function to the combined text span representa-
tion h = [hs1, hs2] to make the features of the two
spans explicitly interact with each other:

v = Relu(Wh[hs1, hs2] +

[hs1, hs2]
TP

[1:d]
h Q

[1:d]
h [hs1, hs2] + bh) (22)

Comparing with Eq. 12, the transformation function
is added with a tensor term.

2.5 Handcrafted Features
Most previously proposed state-of-the-art systems
heavily rely on handcrafted features (Hernault et al.,
2010; Feng and Hirst, 2014; Joty et al., 2013; Ji and
Eisenstein, 2014; Heilman and Sagae, 2015). Li et
al. (2014a) show that some basic features are still
necessary to get a satisfactory result for their recur-
sive deep model. Following their practice, we adopt
minimal basic features which are utilized by most
systems to further strengthen our model. We list
these features in Table 1. We apply the factorized
tensor-based transformation function to Word/POS
features to allow more complicated interaction be-
tween them.

3 Parsing Algorithm

In this section, we describe our parsing algorithm
which utilizes the parsing model to produce the
global optimal DT for a segmented document.

3.1 Probabilistic CKY-like Algorithm
We adopt a probabilistic CKY-like bottom-up algo-
rithm which is also adopted in (Joty et al., 2013;
Li et al., 2014a) to produce a DT for a document.
This parsing algorithm is a dynamic programming
algorithm and produces the global optimal DT with
our parsing model. Given a text span which is
constituted by [ei, ei+1, ..., ej] and the possible sub-
trees of [ei, ei+1, ..., ek] and [ek+1, ek+2, ..., ej] for
all k ∈ {i, i+1, ..., j−1}with their probabilities, we
choose k and combine the corresponding subtrees to
form a combined DT with the following recurrence
formula:

k = argmax
k
{Psp(i, k, j)Pi,kPk+1,j} (23)

where Pi,k and Pk+1,j are the probabilities of
the most probable subtrees of [ei, ei+1, ..., ek] and

[ek+1, ek+2, ..., ej] respectively, Psp(i, k, j) is the
probability which is predicted by our parsing model
to combine those two subtrees to form a DT.

The probability of the most probable DT of
[ei, ei+1, ..., ej] is:

Pi,j = max
k
{Psp(i, k, j)Pi,kPk+1,j} (24)

3.2 Parsing Acceleration
Computational complexity of the original proba-
bilistic CKY-like algorithm is O(n3) where n is the
number of EDUs of the document. But in this work,
given each pair of text spans, we compute the rep-
resentations of them with hierarchical bi-LSTM net-
work at the expense of an additional O(n) computa-
tions. So the computational complexity of our parser
becomesO(n4) and it is unacceptable for long docu-
ments. However, most computations are duplicated,
so we use two level caches to drastically accelerate
parsing.

Firstly, we cache the outputs of the EDU level
bi-LSTM which are the semantic representations of
EDUs. As for the forward span level LSTM, after
we get the semantic representation of a span, we
cache it too and use it to compute the representation
of an extended span. For example, after we get the
representation of span constituted by [e1, e2, e3], we
take it with semantic representation of e4 to com-
pute the representation of the span constituted by
[e1, e2, e3, e4] in one LSTM computation step. For
the backward span level LSTM, we do it the same
way just in reversed order. Thus we decrease the
computational complexity of computing the seman-
tic representations for all possible span pairs which
is the most time-consuming part of the original pars-
ing process from O(n4) to O(n2).

Secondly, it can be seen that before we apply
Relu to the tensor-based transformation function,
many calculations from the two spans which include
a large part of tensor multiplication are independent.
The multiplication between the elements of the rep-
resentations of the two spans caused by the tensors
and the element-wise non-linear activation function
Relu terminate the independence between them. So
we can further cache the independent calculation re-
sults before Relu operation for each span. Thus we
decrease the computational complexity of a large
part of tensor-based transformation from O(n3) to

366

Word/POS Features
One-hot representation of the first two words and of the last word of each span.
One-hot representation of POS tags of the first two words and of the last word of each span.
Shallow Features
Number of EDUs of each span.
Number of words of each span.
Predicted relations of the two subtrees’ roots.
Whether each span is included in one sentence.
Whether both spans are included in one sentence.

Table 1: Handcrafted features used in our parsing model.

O(n2) which is the second time-consuming part of
the original parsing process.

The remaining O(n3) computations include a lit-
tle part of tensor-based transformation computa-
tions,Relu operation and the computations from the
three classifiers. These computations take up only a
little part of the original parsing model computations
and thus we greatly accelerate our parsing process.

4 Max-Margin Training

We use Max-Margin criterion for our model train-
ing. We try to learn a function that maps: X → Y ,
where X is the set of documents and Y is the set of
possible DTs. We define the loss function for pre-
dicting a DT ŷi given the correct DT yi as:

4(yi, ŷi) =
∑

r∈ŷi
κ1{r 6∈ yi} (25)

where r is a span specified with nucleus and relation
in the predicted DT, κ is a hyperparameter referred
to as discount parameter and 1 is indicator function.
We expect the probability of the correct DT to be a
larger up to a margin to other possible DTs:

Prob(x, yi) ≥ Prob(xi, ŷi) +4(yi, ŷi) (26)

The objective function for m training examples is
as follows:

J(θ) =
1

m

m∑

i=1

li(θ), where (27)

li(θ) = max
ŷi

(Prob(xi, ŷi) +4(yi, ŷi))

−Prob(xi, yi) (28)

where θ denotes all the parameters including our
neural network parameters and all embeddings.

The probabilities of the correct DTs increase and
the probabilities of the most probable incorrect DTs
decrease during training. We adopt Adadelta (Zeiler,
2012) with mini-batch to minimize the objective
function and set the initial learning rate to be 0.012.

5 Experiments

We evaluate our model on RST Discourse Treebank1

(RST-DT) (Carlson et al., 2003). It is partitioned
into a set of 347 documents for training and a set
of 38 documents for test. Non-binary relations are
converted into a cascade of right-branching binary
relations. The standard metrics of RST-style dis-
course parsing evaluation include blank tree struc-
ture referred to as span (S), tree structure with nu-
clearity (N) indication and tree structure with rhetor-
ical relation (R) indication. Following other RST-
style discourse parsing systems, we evaluate the re-
lation metric in 18 coarse-grained relation classes.
Since our work focus does not include EDU segmen-
tation, we evaluate our system with gold-standard
EDU segmentation and we apply the same setting
on this to other discourse parsing systems for fair
comparison.

5.1 Experimental Setup
The dimension of word embeddings is set to be
50 and the dimension of POS embeddings is set to
be 10. We pre-trained the word embeddings with
GloVe (Pennington et al., 2014) on English Giga-
word2 and we fine-tune them during training. Con-
sidering some words are pretrained by GloVe but

1https://catalog.ldc.upenn.edu/LDC2002T07
2https://catalog.ldc.upenn.edu/LDC2011T07

367

don’t appear in the RST-DT training set, we want to
use their embeddings if they appear in test set. Fol-
lowing Kiros et al. (2015), we expand our vocabu-
lary with those words using a matrix W ∈ R50×50

that maps word embeddings from the pre-trained
word embedding space to the fine-tuned word em-
bedding space. The objective function for training
the matrix W is as follows:

min
W,b
||Vtuned − VpretrainedW − b||22 (29)

where Vtuned, Vpretrained ∈ R|V |×50 contain fine-
tuned and pre-trained embeddings of words appear-
ing in training set respectively, |V | is the size of
RST-DT training set vocabulary and b is the bias
term also to be trained.

We lemmatize all the words appeared and rep-
resent all numbers with a special token. We use
Stanford CoreNLP toolkit (Manning et al., 2014) to
preprocess the text including lemmatization, POS
tagging etc. We use Theano library (Bergstra et
al., 2010) to implement our parsing model. We
randomly initialize all parameters within (-0.012,
0.012) except word embeddings. We adopt dropout
strategy (Hinton et al., 2012) to avoid overfitting and
we set the dropout rate to be 0.3.

5.2 Results and Analysis
To show the effectiveness of the components in-
corporated into our model, we firstly test the per-
formance of the basic hierarchical bidirectional
LSTM network without attention mechanism (ATT),
tensor-based transformation (TE) and handcrafted
features (HF). Then we add them successively. The
results are shown in Table 2.

The performance is improved by adding each
component to our basic model and that shows the ef-
fectiveness of attention mechanism and tensor-based
transformation function. Even without handcrafted
features, the performance is still competitive. It
indicates that the semantic representations of text
spans produced by our attention-based hierarchical
bi-LSTM network are effective and the handcrafted
features are complementary to semantic representa-
tions produced by the network.

We also experiment without mapping the OOV
word embeddings and use the same embedding for
all OOV words. The result is shown in Table

System Setting S N R
Basic 82.7 69.7 55.6

Basic+ATT 83.6* 70.2* 56.0*
Basic+ATT+TE 84.2* 70.4 56.3*

Basic+ATT+TE+HF 85.8* 71.1* 58.9*
Table 2: Performance comparison for different settings of

our system on RST-DT. ’Basic’ denotes the basic hierarchical

bidirectional LSTM network; ’+ATT’ denotes adding attention

mechanism; ’+TE’ denotes adopting tensor-based transforma-

tion; ’+HF’ denotes adding handcrafted features. * indicates

statistical significance in t-test compared to the result in the line

above (p < 0.05).

System Setting S N R
Without OOV mapping 85.1 70.7 58.2

Full version 85.8* 71.1* 58.9*
Table 3: Performance comparison for whether to map OOV

embeddings.

3. Without mapping the OOV word embeddings
the performance decreases slightly, which demon-
strates that the relation between pre-trained embed-
ding space and the fine-tuned embedding space can
be learnt and it is beneficial to train a matrix to trans-
form OOV word embeddings from the pre-trained
embedding space to the fine-tuned embedding space.

We compare our system with other state-of-the-art
systems including (Joty et al., 2013; Ji and Eisen-
stein, 2014; Feng and Hirst, 2014; Li et al., 2014a;
Li et al., 2014b; Heilman and Sagae, 2015). Systems
proposed by Joty et al. (2013), Heilman (2015) and
Feng and Hirst (2014) are all based on variants of
CRFs. Ji and Eisenstein (2014) use a projection ma-
trix acting on one-hot representations of features to
learn representations of text spans and build Support
Vector Machine (SVM) classifier on them. Li et al.
(2014b) adopt dependency parsing methods to deal
with this task. These systems are all based on hand-
crafted features. Li et al. (2014a) adopt a recursive
deep model and use some basic handcrafted features
to improve their performances which has been stated
before.

Table 4 shows the performance for our system
and those systems. Our system achieves the best
result in span and relatively lower performance in
nucleus and relation identification comparing with
the corresponding best results but still better than

368

System S N R
Joty et al. (2013) 82.7 68.4 55.7

Ji and Eisenstein (2014) 82.1 71.1 61.6
Feng and Hirst (2014) 85.7 71.0 58.2

Li et al. (2014a) 84.0 70.8 58.6
Li et al. (2014b) 83.4 73.8 57.8

Heilman and Sagae (2015) 83.5 68.1 55.1
Ours 85.8 71.1 58.9

Human 88.7 77.7 65.8
Table 4: Performance comparison with other state-of-the-art

systems on RST-DT.

System S N R
Li et al. (2014a) (no feature) 82.4 69.2 56.8

Ours (no feature) 84.2 70.4 56.3
Table 5: Performance comparison with the deep learning model

proposed in Li et al. (2014a) without handcrafted features.

most systems. No system achieves the best result
on all three metrics. To further show the effective-
ness of the deep learning model itself without hand-
crafted features, we compare the performance be-
tween our model and the model proposed by Li et al.
(2014a) without handcrafted features and the results
are shown in Table 5. It shows our overall perfor-
mance outperforms the model proposed by Li et al.
(2014a) which illustrates our model is effective.

Table 6 shows an example of the weights (W) of
EDUs (see Eq. 8) derived from our attention model.
For span1 the main semantic meaning is expressed
in EDU32 under the condition described in EDU31.
Besides, it is EDU32 that explicitly manifests the
contrast relation between the two spans. As can
be seen, our attention model assigns less weight to

Span1 (EDU30∼EDU32) W
That means that 0.13
if the offense deals with one part of the
business,

0.38

you don’t attempt to seize the whole busi-
ness;

0.49

Span2 (EDU33) W
you attempt to seize assets related to the
crime,

1.0

Table 6: An example of the weights derived from our attention

model. The relation between span1 and span2 is Contrast.

EDU30 and focuses more on EDU32 which is rea-
sonable according to our analysis above.

6 Related Work

Two most prevalent discourse parsing treebanks
are RST Discourse Treebank (RST-DT) (Carlson et
al., 2003) and Penn Discourse TreeBank (PDTB)
(Prasad et al., 2008). We evaluate our system on
RST-DT which is annotated in the framework of
Rhetorical Structure Theory (Mann and Thompson,
1988). It consists of 385 Wall Street Journal arti-
cles and is partitioned into a set of 347 documents
for training and a set of 38 documents for test. 110
fine-grained and 18 coarse-grained relations are de-
fined on RST-DT. Parsing algorithms published on
RST-DT can mainly be categorized as shift-reduce
parsers and probabilistic CKY-like parsers. Shift-
reduce parsers are widely used for their efficiency
and effectiveness and probabilistic CKY-like parsers
lead to the global optimal result for the parsing
models. State-of-the-art systems belonging to shift-
reduce parsers include (Heilman and Sagae, 2015;
Ji and Eisenstein, 2014). Those belonging to prob-
abilistic CKY-like parsers include (Joty et al., 2013;
Li et al., 2014a). Besides, Feng and Hirst (2014)
adopt a greedy bottom-up approach as their pars-
ing algorithm. Lexical, syntactic, structural and se-
mantic features are extracted in these systems. SVM
and variants of Conditional Random Fields (CRFs)
are mostly used in these models. Li et al. (2014b)
distinctively propose to use dependency structure to
represent the relations between EDUs. Recursive
deep model proposed by Li et al. (2014a) has been
the only proposed deep learning model on RST-DT.

Incorporating attention mechanism into RNN
(e.g., LSTM, GRU) has been shown to learn bet-
ter representation by attending over the output vec-
tors and picking up important information from rel-
evant positions of a sequence and this approach has
been utilized in many tasks including neural ma-
chine translation (Kalchbrenner and Blunsom, 2013;
Bahdanau et al., 2014; Hermann et al., 2015), text
entailment recognition (Rocktäschel et al., 2015)
etc. Some work also uses tensor-based transforma-
tion function to make stronger interaction between
features and learn combinatorial features and they
get performance boost in their tasks (Sutskever et

369

al., 2009; Socher et al., 2013; Pei et al., 2014).

7 Conclusion

In this paper, we propose an attention-based hier-
archical neural network for discourse parsing. Our
attention-based hierarchical bi-LSTM network pro-
duces effective compositional semantic representa-
tions of text spans. We adopt tensor-based trans-
formation function to allow complicated interaction
between features. Our two level caches accelerate
parsing process significantly and thus make it prac-
tical. Our proposed system achieves comparable re-
sults to state-of-the-art systems. We will try extend-
ing attention mechanism to obtain the representation
of a text span by referring to another text span at
minimal additional cost.

Acknowledgments

We thank the reviewers for their instructive feed-
back. We also thank Jiwei Li for his helpful
discussions. This work is supported by National
Key Basic Research Program of China under Grant
No.2014CB340504 and National Natural Science
Foundation of China under Grant No.61273318.
The Corresponding author of this paper is Baobao
Chang.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pas-
cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio. 2010. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for Scientific
Computing Conference (SciPy), June. Oral Presenta-
tion.

Lynn Carlson, Daniel Marcu, and Mary Ellen Okurowski.
2003. Building a discourse-tagged corpus in the
framework of rhetorical structure theory. In Current
and new directions in discourse and dialogue, pages
85–112. Springer.

Vanessa Wei Feng and Graeme Hirst. 2014. A linear-
time bottom-up discourse parser with constraints and
post-editing. In ACL (1), pages 511–521.

Michael Heilman and Kenji Sagae. 2015. Fast
rhetorical structure theory discourse parsing. CoRR,
abs/1505.02425.

Karl Moritz Hermann, Tomá s Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. CoRR, abs/1506.03340.

Hugo Hernault, Helmut Prendinger, David A DuVerle,
and Mitsuru Ishizuka. 2010. Hilda: a discourse parser
using support vector machine classification. Dialogue
and Discourse, 1(3):1–33.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2012. Im-
proving neural networks by preventing co-adaptation
of feature detectors. CoRR, abs/1207.0580.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Yangfeng Ji and Jacob Eisenstein. 2014. Representation
learning for text-level discourse parsing. In ACL (1),
pages 13–24.

Shafiq R. Joty, Giuseppe Carenini, Raymond T. Ng, and
Yashar Mehdad. 2013. Combining intra- and multi-
sentential rhetorical parsing for document-level dis-
course analysis. In ACL.

Daniel Jurafsky and James H Martin. 2008. Speech and
language processing, chapter 14. In Prentice Hall.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In EMNLP.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Antonio Torralba, Raquel Urtasun,
and Sanja Fidler. 2015. Skip-thought vectors. CoRR,
abs/1506.06726.

Jiwei Li, Rumeng Li, and Eduard H Hovy. 2014a. Re-
cursive deep models for discourse parsing. In EMNLP,
pages 2061–2069.

Sujian Li, Liang Wang, Ziqiang Cao, and Wenjie Li.
2014b. Text-level discourse dependency parsing. In
ACL (1), pages 25–35.

Annie Louis, Aravind Joshi, and Ani Nenkova. 2010.
Discourse indicators for content selection in summa-
rization. In Proceedings of the 11th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, pages 147–156. Association for Computational
Linguistics.

William C Mann and Sandra A Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text-Interdisciplinary Jour-
nal for the Study of Discourse, 8(3):243–281.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In ACL.

Daniel Marcu. 2000. The theory and practice of dis-
course parsing and summarization. MIT press.

370

Wenzhe Pei, Tao Ge, and Baobao Chang. 2014. Max-
margin tensor neural network for chinese word seg-
mentation. In ACL (1), pages 293–303.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind K Joshi, and Bonnie L
Webber. 2008. The penn discourse treebank 2.0. In
LREC. Citeseer.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Her-
mann, Tomá s Kociský, and Phil Blunsom. 2015. Rea-
soning about entailment with neural attention. CoRR,
abs/1509.06664.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the conference on empirical meth-
ods in natural language processing (EMNLP), volume
1631, page 1642. Citeseer.

Swapna Somasundaran. 2010. Discourse-level relations
for Opinion Analysis. Ph.D. thesis, University of Pitts-
burgh.

Ilya Sutskever, Ruslan Salakhutdinov, and Joshua B.
Tenenbaum. 2009. Modelling relational data using
bayesian clustered tensor factorization. In NIPS.

Suzan Verberne, Lou Boves, Nelleke Oostdijk, and Peter-
Arno Coppen. 2007. Evaluating discourse-based an-
swer extraction for why-question answering. In Pro-
ceedings of the 30th annual international ACM SIGIR
conference on Research and development in informa-
tion retrieval, pages 735–736. ACM.

Matthew D. Zeiler. 2012. Adadelta: An adaptive learn-
ing rate method. CoRR, abs/1212.5701.

371

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 372–381,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Multi-view Response Selection for Human-Computer Conversation

Xiangyang Zhou1∗, Daxiang Dong1∗, Hua Wu1, Shiqi Zhao1,
Dianhai Yu1,2, Hao Tian1,2, Xuan Liu1 and Rui Yan1

1Baidu Inc., Beijing, China
2School of Information Science and Technology,
University of Science and Technology of China{

zhouxiangyang, dongdaxiang, wu hua, zhaoshiqi,
yudianhai, tianhao, liuxuan, yanrui

}
@baidu.com

Abstract

In this paper, we study the task of response
selection for multi-turn human-computer con-
versation. Previous approaches take word as
a unit and view context and response as se-
quences of words. This kind of approaches
do not explicitly take each utterance as a
unit, therefore it is difficult to catch utterance-
level discourse information and dependencies.
In this paper, we propose a multi-view re-
sponse selection model that integrates infor-
mation from two different views, i.e., word
sequence view and utterance sequence view.
We jointly model the two views via deep neu-
ral networks. Experimental results on a public
corpus for context-sensitive response selection
demonstrate the effectiveness of the proposed
multi-view model, which significantly outper-
forms other single-view baselines.

1 Introduction

Selecting a potential response from a set of can-
didates is an important and challenging task for
open-domain human-computer conversation, espe-
cially for the retrieval-based human-computer con-
versation. In general, a set of candidate responses
from the indexed conversation corpus are retrieved,
and then the best one is selected from the candidates
as the system’s response (Ji et al., 2014).

Previous Deep Neural Network (DNN) based ap-
proaches to response selection represent context and
response as two embeddings. The response is se-
lected based on the similarity of these two embed-
dings (Lowe et al., 2015; Kadlec et al., 2015). In

∗These two authors contributed equally

these work, context and response are taken as two
separate word sequences without considering the re-
lationship among utterances in the context and re-
sponse. The response selection in these models is
largely influenced by word-level information. We
called this kind of models as word sequence model
in this paper. Besides word-level dependencies,
utterance-level semantic and discourse information
are also very important to catch the conversation top-
ics to ensure coherence (Grosz and Sidner, 1986).
For example an utterance can be an affirmation,
negation or deduction to the previous utterances,
or starts a new topic for discussion. This kind of
utterance-level information is generally ignored in
word sequence model, which may be helpful for se-
lecting the next response. Therefore, it is necessary
to take each utterance as a unit and model the context
and response from the view of utterance sequence.

This paper proposes a multi-view response selec-
tion model, which integrates information from both
word sequence view and utterance sequence view.
Our assumption is that each view can represent rela-
tionships between context and response from a par-
ticular aspect, and features extracted from the word
sequence and the utterance sequence provide com-
plementary information for response selection. An
effective integration of these two views is expected
to improve the model performance. To the best of
our knowledge, this is the first work to improve the
response selection for multi-turn human-computer
conversation in a multi-view manner.

We evaluate the performance of the multi-view re-
sponse selection model on a public corpus contain-
ing about one million context-response-label triples.

372

This corpus was extracted from an online chatting
room for Ubuntu troubleshooting, which is called
the Ubuntu Corpus in this paper (Lowe et al., 2015).
Experimental results show that the proposed multi-
view response selection model significantly outper-
forms the current best single-view models for multi-
turn human-computer conversation.

The rest of this paper is organized as follows. In
Section 2, we briefly introduce related works. Then
we move on to a detailed description of our model
in Section 3. Experimental results are described in
Section 4. Analysis of our models is shown in Sec-
tion 5. We conclude the paper in Section 6.

2 Related Work

2.1 Conversation System

Establishing a machine that can interact with hu-
man beings via natural language is one of the most
challenging problems in Artificial Intelligent (AI).
Early studies of conversation models are generally
designed for specific domain, like booking restau-
rant, and require numerous domain knowledge as
well as human efforts in model design and feature
engineering (Walker et al., 2001). Hence it is too
costly to adapt those models to other domains. Re-
cently leveraging “big dialogs” for open domain
conversation draws increasing research attentions.
One critical issue for open domain conversation is
to produce a reasonable response. Responding to
this challenge, two promising solutions have been
proposed: 1) retrieval-based model which selects a
response from a large corpus (Ji et al., 2014; Yan et
al., 2016; Yan et al.,). 2) generation-based model
which directly generates the next utterance (Wen et
al., 2015a; Wen et al., 2015b).

2.2 Response Selection

Research on response selection for human-computer
conversation can be classified into two branches,
i.e., single-turn and multi-turn response selection.
Single-turn models only leverage the last utterance
in the context for selecting resposne and most of
them take the word sequence view. Lu and Li
(2013) proposed a DNN-based matching model for
response selection. Hu et al., (2014) improved the
performance using Convolutional Neural Networks
(CNN) (LeCun et al., 1989). In 2015, a further

study conducted by Wang et al. (2015a) achieved
better results using tree structures as the input of a
DNN model. Nevertheless, those models built for
single-turn response selection ignore the whole con-
text information, which makes it difficult to be im-
plemented in the multi-turn response selection tasks.

On the other hand, research on multi-turn re-
sponse selection usually takes the whole context into
consideration and views the context and response
as word sequences. Lowe et al., (2015) proposed a
Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) based response selection model
for multi-turn conversation, where words from con-
text and response are modeled with LSTM. The se-
lection of a response is based on the similarity of
embeddings between the context and response. Sim-
ilar to the work of Lowe et al., Kadlec et al., (2015)
replaced LSTM with Temporal Convolutional Neu-
ral Networks (TCNN) (Kim, 2014) and Bidirect-
LSTM. Their experimental results show that mod-
els with LSTM perform better than other neural net-
works. However, the utterance-level discourse infor-
mation and dependencies have been left out in these
studies since they view the context and response as
word sequences.

2.3 Response Generation

Another line of related research focuses on gener-
ating responses for human-computer conversation.
Ritter et al., (2011) trained a phrase-based statisti-
cal machine translation model on a corpus of ut-
terance pairs extracted from Twitter human-human
conversation and used it as a response generator for
single-turn conversation. Vinyals and Le (2015) re-
garded single-turn conversation as a sequence-to-
sequence problem and proposed an encoder-decoder
based response generation model, where the post re-
sponse is first encoded using LSTM and its embed-
ding used as the initialization state of another LSTM
to generate the response. Shang et al., (2015) im-
proved the encoder-decoder based model using at-
tention signals. Sordoni et al., (2015) proposed a
context-sensitive response generation model, where
the context is represented by bag-of-words and fed
into a recurrent language model to generate the next
response.

In this paper, we focused on the task of response
selection.

373

ℎ/

ℎ/

&")"

01 02 0341 015 01 02 06 07 0803
���!!��� � ����'�������&���� � ����������������� � ���	�!�&�!�����$�������!������������ ! �$���$��!���������&

$���� ��"�����#��$

���!!��� � ����'�������&� ����������� 	�!�&�!�����$�������!������������ ! �$���$��!���������&
"!!������ 91 "!!������ 92 "!!������ 96 �� ��� �)

("

⨀ ⨀

;

!" < = 1 &,) = $	(+" +)

.

A1 A2 A15 A1 A8

���!�%! &

ℎ341 ℎ3

��
��

"�
�!
��

��
�

�

���
&�

�

Figure 1: Word sequence model for response selection

3 Response Selection Model

In the task of response selection, a conventional
DNN-based architecture represents the context and
response as low dimensional embeddings with deep
learning models. The response is selected based on
the similarity of these two embeddings. We formu-
late it as

p(y = 1|c, r) = σ(−→c TW−→r + b) (1)

where c and r denote the context and response,
−→c and −→r are their embeddings constructed with
DNNs. σ(x) is a sigmoid function defined as
σ(x) = 1

1+e−x . p(y = 1|c, r) is the confidence of
selecting response r for context c. The matrix W
and the scalar b are metric parameters to be learned
to measure the similarity between the context and
response.

We extend this architecture in a multi-view man-
ner, which jointly models the context and response
in two views. In this section, we first briefly describe
the word sequence model. Then we introduce the
utterance sequence model and multi-view response
selection model in details.

3.1 Word Sequence Model

The word sequence model in this paper is similar
to the LSTM-based model proposed in Lowe et al.
(2015). As shown in Figure 1, three utterances of
context c, written as u1, u2 and u3, are connected
as a sequence of words. A special word sos
is inserted between every two adjacent utterances,
denoting the boundary between utterances. Given
the word sequences of context and response, words
are mapped into word embeddings through a shared
lookup table. A Gated Recurrent Unit neural net-
work (GRU) (Chung et al., 2014) is employed to
construct the context embedding and response em-
bedding. It operates recurrently on the two word
embedding sequences as Equation 2 to Equation 5,
where ht−1 is the hidden state of GRU when it reads
a word embedding et−1 of word wt−1, h0 is a zero
vector as the initiation state, zt is an update gate and
rt is a reset gate. The new hidden state ht for em-
bedding et is a combination of the previous hidden
state ht−1 and the input embedding et, controlled
by the update gate zt and reset gate rt. U , Uz , Ur,
W , Wz and Wr are model parameters of GRU to be
learned. ⊗ denotes element-wise multiplication.

374

s

s
o

s

s
o

temporal convolutional
layer with padding size 1

max pooling layer

word embedding layer

word-level gated recurrent unit layer

utterance-level gated recurrent unit layer

word sequence view

utterance sequence view

𝑝" = 𝜎(𝑐"
'𝑊"𝑟" + 𝑏")

𝑝- = 𝜎(𝑐-
'𝑊-𝑟- + 𝑏-)

𝑐" 𝑟"

𝑐- 𝑟-

utterance 𝑢/ utterance 𝑢0 utterance 𝑢1 response 𝑟

Utterance
embedding 𝑢-/ 𝑢-0 𝑢-1

Response
embedding 𝑟-

Figure 2: Multi-view response selection model

ht = (1− zt)⊗ ht−1 + zt ⊗ ĥt (2)

zt = σ(Wzet + Uzht−1) (3)

ĥt = tanh(Wet + U(rt ⊗ ht−1)) (4)

rt = σ(Wret + Urht−1) (5)

After reading the whole word embedding sequence,
word-level semantic and dependencies in the whole
sequence are encoded in the hidden state of GRU,
which represents the meaning of the whole sequence
(Karpathy et al., 2015). Therefore we use the
last hidden state of GRU as the context embedding
and response embedding in word sequence model,
named −→cw and −→rw respectively1. The confidence of
selecting response in word sequence model is then
calculated as in Equation 6:

pw(y = 1|c, r) = σ(−→cwTWw
−→rw + bw) (6)

where Ww and bw are metric parameters to be
trained in word sequence model. −→cw and −→rw are con-
structed by a same GRU in word sequence model.

1We use two subscripts, i.e.,w and u, to distinguish notation
in the two views.

3.2 Utterance Sequence Model
Utterance sequence model regards the context as a
hierarchical structure, where the response and each
utterance are first represented based on word embed-
dings, then the context embedding is constructed for
the confidence calculation of response selection. As
the lower part of Figure 2 illustrates, the construc-
tion of the utterance embedding and response em-
bedding is in a convolutional manner, which con-
tains the following layers:

Padding Layer: Given a word embedding
sequence belonging to a certain utter-
ance (response), namely [e1, ..., em], the
padding layer makes its outer border with
bn/2c zero vectors, the padded sequence is
[01, .., 0bn/2c, e1, ..., em, 01, .., 0bn/2c], where
n is the size of convolution window used in
temporal convolutional layer.

Temporal Convolutional Layer: Temporal convo-
lutional layer reads the padded word embed-
ding sequence through a sliding convolution
window with size n. For every step that the
sliding window moves, a region vector is pro-
duced by concatenating the word embeddings
within the sliding window, denoted as [ei⊕...⊕

375

ei+n−1] ∈ Rn|e|, where ⊕ denotes the concate-
nation of embeddings, |e| is the size of word
embedding. The temporal convolutional layer
consists of k kernels, each of which implies
a certain dimension and maps the region vec-
tor to a value in its dimension by convolution
operation. The convolution result of each ker-
nel, termed convi, is further activated with the
RELU non-linear activation function (Xu et al.,
2015), which is formulated as:

frelu(convi) = max(convi, 0) (7)

Pooling Layer: Because utterance and response are
naturally variable-sized, we put a max-over-
time pooling layer on the top of temporal con-
volutional layer (Kim, 2014), which extracts
the max value for each kernel, and gets a fix-
sized representation of length k for utterance
and response.

In particular, representations constructed by CNN
with max-pooling reflect the core meanings of ut-
terance and response. The embeddings of utter-
ance ui and response r in utterance sequence view

are referred to as
−→
uiu and −→ru. Utterance embed-

dings are connected in the sequence and fed into a
GRU, which captures utterance-level semantic and
discourse information in the whole context and en-
codes those information as context embedding, writ-
ten as −→cu . The confidence of selecting response r
for context c in utterance sequence model, named
pu(y = 1|c, r), is calculated using Equation 8:

pu(y = 1|c, r) = σ(−→cuTWu
−→ru + bu) (8)

It is worth noticing that the TCNN used here is
shared in constructing the utterance embedding and
response embedding. The word embeddings are
also shared for both the context and response. The
sos tag in word sequence view is not used in the

utterance sequence model.

3.3 Multi-view Model

Organic integration of different views has been
proven to be very effective in the field of recommen-
dation, representation learning and other research
areas (Elkahky et al., 2015; Wang et al., 2015b).

Most existing multi-view models integrate differ-
ent views via a linear/nonlinear combination. Re-
searchers have demonstrated that jointly minimizing
two factors, i.e., 1) the training error of each view
and 2) the disagreement between complementary
views can significantly improve the performance of
the combination of multi-views (Xu et al., 2013).

Our multi-view response selection model is de-
signed as shown in Figure 2. As we can see, the
context and response are jointly represented as se-
mantic embeddings in these two views. The under-
lying word embeddings are shared across the con-
text and response in these two views. The com-
plementary information of these two views is ex-
changed via the shared word embeddings. The ut-
terance embeddings are modeled through a TCNN
in the utterance sequence view. Two independent
Gated Recurrent Units are used to model the word
embeddings and utterance embeddings separately on
word sequence view and utterance sequence view,
the former of which captures dependencies in word
level and the latter captures utterance-level semantic
and discourse information. Confidences for select-
ing the response in these two views are calculated
separately. We optimize the multi-view model by
minimizing the following loss:

L = LD + LL +
λ

2
‖θ‖ (9)

LD =
∑

i

(pw(li)p̄u(li) + pu(li)p̄w(li)) (10)

LL =
∑

i

(1− pw(li)) +
∑

i

(1− pu(li)) (11)

where the object function of the multi-view model L
is comprised of the disagreement loss LD, the like-
lihood loss LL and the regular term λ

2‖θ‖. pw(li) =
pw(y = li|c, r) and pu(li) = pu(y = li|c, r) de-
note the likelihood of the i-th instance with label li
from training set in these two views. Only two la-
bels, {0, 1}, denote the correctness of the response
during training. p̄w(li) and p̄u(li) denote the proba-
bility pw(y 6= li) and pu(y 6= li) respectively. The
multi-view model is trained to jointly minimize the
disagreement loss and the likelihood loss. θ denotes
all the parameters of the multi-view model.

The unweighted summation of confidences from
these two views is used during prediction, defined as

376

Model/Metrics 1 in 10 R@1 1 in 10 R@2 1in 10 R@5 1 in 2 R@1
Random-guess 10% 20% 50% 50%

TF-IDF 41.0% 54.5% 70.8% 65.9%
Word-seq-LSTM (Lowe et al., 2015) 60.40% 74.50% 92.60% 87.80%

Word-seq-GRU 60.85% 75.71% 93.13% 88.55%
Utter-seq-GRU 62.19% 76.56% 93.42% 88.83%

Multi-view 66.15% 80.12% 95.09% 90.80%

Table 1: Performance comparison between our models and baseline models. In the table, Word-seq-LSTM is the experiment
result of the LSTM-based word sequence model reported by Lowe et at (2015). Word-seq GRU is the word sequence model that
we implement with GRU. Utter-seq-GRU is the proposed utterance-sequence model. The Multi-view is our multi-view response
selection model. In addition, we list the performance of Random-guess and TF-IDF

in Equation 12:

smtv(y = 1|c, r) =

pw(y = 1|c, r) + pu(y = 1|c, r) (12)

The response with larger smtv(y = 1|c, r) is more
likely to be selected. We will investigate other com-
bination models in our future work.

4 Experiment

4.1 Dataset
Our model is evaluated on the public Ubuntu Cor-
pus (Lowe et al., 2015), designed for response selec-
tion study of multi-turn human-computer conversa-
tion (Serban et al., 2015). The dataset contains 0.93
million human-human dialogues crawled from an
Internet chatting room for Ubuntu trouble shooting.
Around 1 million context-response-labeled triples,
namely < c, r, l >, are generated for training af-
ter preprocessing2, where the original context and
the corresponding response are taken as the positive
instances while the random utterances in the data
set taken as the negative instances, and the number
of positive instance and negative instance in train-
ing set is balanced. The validation set and testing
set are constructed in a similar way to the training
set, with one notable difference that for each context
and the corresponding positive response, 9 negative
responses are randomly selected for further evalua-
tion.

4.2 Experiment Setup
Following the work of Lowe et al., (2015), the eval-
uation metric is 1 in m Recall@k (denoted 1 in m

2Preprocessing includes tokenization, recognition of named
entity, urls and numbers.

R@k), where a response selection model is designed
to select k most likely responses among m candi-
dates, and it gets the score “1” if the correct response
is in the k selected ones. This metric can be seen
as an adaptation of the precision and recall metrics
previously applied to dialogue datasets (Schatzmann
et al., 2005). It is worth noticing that 1 in 2 R@1
equals to precision and recall in binary classifica-
tion.

4.3 Model Training and Hyper-parameters

We initialize word embeddings with a pre-trained
embedding matrix through GloVe (Pennington et al.,
2014) 3. We use Stochastic Gradient Descent (SGD)
for optimizing. Hidden size for a gated recurrent
unit is set to 200 in both word sequence model and
utterance sequence model. The number of convo-
lutional kernels is set to 200. Our initial learning
rate is 0.01 with mini-batch size of 32. Other hyper-
parameters are set exactly the same as the baseline.
We train our models with a single machine using
12 threads and each model will converge after 4-5
epochs of training data. The best model is selected
with a holdout validation dataset.

4.4 Comparison Approaches

We consider the word sequence model implemented
by Lowe et at., (2015) with LSTM as our base-
line, the best model in context-sensitive response
selection so far. Moreover, we also implement the
word sequence model and the utterance sequence
model with GRU for further analysis. Two simple
approaches are also implemented, i.e., the Random-

3Initialization of word embedding can be obtained on
https://github.com/npow/ubottu

377

(a) 1 in 2 R@1 (b) 1 in 10 R@1

(c) 1 in 10 R@2 (d) 1 in 10 R@5

Figure 3: Performance comparison between word sequence model (with/without sos tags) and utterance sequence model. We
choose the number of utterances in range of [2,6], since most samples in testset fall in this interval

guess and the TF-IDF, as the bottom line for perfor-
mance comparison. The performance of Random-
guess is calculated by mathematics with an assump-
tion that each response in candidates has the equal
probability to be selected. The TF-IDF is imple-
mented in the same way in Lowe et al., (2015). TF
for a word is calculated as the count of times it
appears in a certain context or response. IDF for
each word w is log(N

|d∈D:w∈d|), where D denotes
the whole training set, N is the size of D, d is a
conversation in D. The context and the response in
testset are represented as a bag-of-words according
to TF-IDF. The selection confidence is estimated as
the cosine score between context and response.

4.5 Experimental Result

We summarize the experiment result in Table 1. As
shown in Table 1, all DNN-based models achieve
significant improvements compared to Random-
guess and TF-IDF, which implies the effectiveness
of DNN models in the task of response selection.
The word sequence models implemented with GRU
and LSTM achieve similar performance. The ut-
terance sequence model significantly outperforms

word sequence models for 1 in 10 R@1. Multi-
view model significantly outperforms all the other
models, especially for 1 in 10 R@1, which is more
difficult and closer to the real world scenario than
other metrics. The experimental result demonstrates
the effectiveness of multi-view model and proves
that word sequence view and utterance sequence
view can bring complementary information for each
other.

5 Analysis

We examine the complementarity between word se-
quence model and utterance sequence model in two
folds, i.e., via statistic analysis and case study.

5.1 Statistical Analysis

We compare the performance of word sequence
model4 and utterance sequence model for different
number of utterances in the contexts. In addition,
we also examine what the contribution sos tag
makes in word sequence view. The performance

4The GRU-based word sequence model that we imple-
mented is used for comparison.

378

User
(utterance) Word Sequence View Utterance Sequence View

Wildintell
ect:
(Utteranc
e-1)

anyone know where
to find a list of all
language codes a
locales with each ?

itaylor57:
(Utteranc
e-2)

 __url__ __url__

Wildintell
ect:
(Utteranc
e-3)

thanks but that list
seems incomplete

thanks but that list
seems incomplete

itaylor57:
(Utteranc
e-4)

__url__ __url__

Selected
Respons
e

i already looked at that
one , also
incomplete , lacks the
locales within a
language group

does it work ?

User
(utterance) Word Sequence View Utterance Sequence View

astra-x:
(Utteranc
e-1)

alright so has anyone
solved an error with
__path__ ext4
leaking ?

alright so has anyone
solved an error with
__path__ ext4
leaking ?

sipior:
(Utteranc
e-2)

what sort of error ? what sort of error ?

astra-x:
(Utteranc
e-3)

my reported free disk
space says full , yet
last week it was 60g
free on __path__ ,
and i cannot find
anymore than 29g of
files. yet __path__
and __path__ are
reported correctly

my reported free disk
space says full , yet last
week it was 60g free on
__path__ , and i cannot
find anymore than 29g
of files. yet __path__
and __path__ are
reported correctly

sipior:
(Utteranc
e-4)

how are you getting
the disk space
information ?

how are you getting
the disk space
information ?

Selected
Respons
e

__path__ should be
10g and __path__
should be 19g

want me to pastebin all
my debugging ?

anyone know where to
find a list of all
language codes a
locales with each ?

Figure 4: Case studies for analysis of word sequence model and utterance sequence model. The context and the selected responses
are collected from testset. Response with a green checkmark means it is a correct one, otherwise it is incorrect. Words (Utterances)
in bold are the important elements recognized by our importance analysis approach. The yellow start denotes the selection of
multi-view model.

is shown in Figure 3. We can see that as the
number of turns increases, the utterance sequence
model outperforms word sequence model more sig-
nificantly, which implies that utterance sequence
model can provide complementary information to
word sequence model for a long context. Further-
more, word sequence model without sos tag has
an obvious fall in performance compared with word
sequence model with sos , which implies its cru-
cial role in distinguishing utterances for modeling
context.

5.2 Case Study

We analyze samples from testset to examine the
complementarity between these two views. The key
words for word sequence model and core utterances
for utterance sequence model are extracted for anal-
ysis. These important elements are recognized based
on the work of Li et al. (2015), where the gradi-
ents of their embeddings are used for importance

analysis. After studying the testset, we find that the
word sequence model selects responses according to
the matching of key words while the utterance se-
quence model selects responses based on the match-
ing of core utterances. We list two cases in Figure
4 as examples.

As it shows, the word sequence model prefers to
select the response that shares similar key words to
the context, such as the words “incomplete” and
“locales” in example 1 or “60g” and “19g” in ex-
ample 2. Although key word matching is a use-
ful feature in selecting response for cases such as
example 1, it fails in cases like example 2, where
incorrect response happens to share similar words
with the context. Utterance sequence model, on the
other side, leverages core utterances for selecting re-
sponse. As shown in example 2, utterance-1 and
utterance-2 are recognized as the core utterances, the
main topic of the two utterance is “solved” and “er-
ror”, which is close to the topic of the correct re-

379

sponse. However, for cases like example 1, where
the core meaning of correct response is jointly com-
bined with different words in different utterances,
the utterance sequence model does not perform well.

The multi-view model can successfully select the
correct responses in both two examples, which im-
plies its ability to jointly leverage information from
these two views.

6 Conclusion

In this paper, we propose a multi-view response se-
lection model for multi-turn human-computer con-
versation. We integrate the existing word sequence
view and a new view, i.e., utterance sequence view,
into a unified multi-view model. In the view of utter-
ance sequence, discourse information can be learnt
through utterance-level recurrent neural network,
different from word sequence view. The represen-
tations learnt from the two views provide comple-
mentary information for each other in the task of re-
sponse selection. Experiments show that our multi-
view model significantly outperforms the state-of-
the-art word sequence view models. We will extend
our framework to response generation approaches in
our future work. We believe it will help construct
a better representation of context in the encoding
phrase of DNN-based generation model and thus im-
prove the performance.

Acknowledgement

This paper is supported by National Basic Re-
search Program of China (973 program No.
2014CB340505). We gratefully thank the anony-
mous reviewers for their insightful comments.

References

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. CoRR, abs/1412.3555.

Ali Mamdouh Elkahky, Yang Song, and Xiaodong He.
2015. A multi-view deep learning approach for cross
domain user modeling in recommendation systems. In
Proceedings of the 24th International Conference on
World Wide Web, pages 278–288. International World
Wide Web Conferences Steering Committee.

Barbara J Grosz and Candace L Sidner. 1986. Attention,
intentions, and the structure of discourse. Computa-
tional linguistics, 12(3):175–204.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen.
2014. Convolutional neural network architectures for
matching natural language sentences. In Advances in
Neural Information Processing Systems, pages 2042–
2050.

Zongcheng Ji, Zhengdong Lu, and Hang Li. 2014. An
information retrieval approach to short text conversa-
tion. arXiv preprint arXiv:1408.6988.

Rudolf Kadlec, Martin Schmid, and Jan Kleindienst.
2015. Improved deep learning baselines for ubuntu
corpus dialogs. arXiv preprint arXiv:1510.03753.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. arXiv preprint arXiv:1408.5882.

Yann LeCun, Bernhard Boser, John S Denker, Donnie
Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. 1989. Backpropagation applied
to handwritten zip code recognition. Neural computa-
tion, 1(4):541–551.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2015. Visualizing and understanding neural models in
nlp. arXiv preprint arXiv:1506.01066.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015. The ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dia-
logue systems. arXiv preprint arXiv:1506.08909.

Zhengdong Lu and Hang Li. 2013. A deep architecture
for matching short texts. In Advances in Neural Infor-
mation Processing Systems, pages 1367–1375.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In In Proc. EMNLP, pages 1532–1543.

Alan Ritter, Colin Cherry, and William B Dolan. 2011.
Data-driven response generation in social media. In In
Proc. EMNLP, pages 583–593. Association for Com-
putational Linguistics.

Jost Schatzmann, Kallirroi Georgila, and Steve Young.
2005. Quantitative evaluation of user simulation tech-
niques for spoken dialogue systems. In 6th SIGdial
Workshop on DISCOURSE and DIALOGUE.

Iulian Vlad Serban, Ryan Lowe, Laurent Charlin, and
Joelle Pineau. 2015. A survey of available corpora for
building data-driven dialogue systems. arXiv preprint
arXiv:1512.05742.

380

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neu-
ral responding machine for short-text conversation.
arXiv preprint arXiv:1503.02364.

Alessandro Sordoni, Michel Galley, Michael Auli, Chris
Brockett, Yangfeng Ji, Margaret Mitchell, Jian-Yun
Nie, Jianfeng Gao, and Bill Dolan. 2015. A
neural network approach to context-sensitive gener-
ation of conversational responses. arXiv preprint
arXiv:1506.06714.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

Marilyn A Walker, Rebecca Passonneau, and Julie E
Boland. 2001. Quantitative and qualitative evalua-
tion of darpa communicator spoken dialogue systems.
In Proceedings of the 39th Annual Meeting on Associ-
ation for Computational Linguistics, pages 515–522.
Association for Computational Linguistics.

Mingxuan Wang, Zhengdong Lu, Hang Li, and Qun Liu.
2015a. Syntax-based deep matching of short texts.
arXiv preprint arXiv:1503.02427.

Weiran Wang, Raman Arora, Karen Livescu, and Jeff
Bilmes. 2015b. On deep multi-view representation
learning. In Proceedings of the 32nd International
Conference on Machine Learning (ICML-15), pages
1083–1092.

Tsung-Hsien Wen, Milica Gašić, Dongho Kim, Nikola
Mrkšić, Pei-Hao Su, David Vandyke, and Steve
Young. 2015a. Stochastic Language Generation in
Dialogue using Recurrent Neural Networks with Con-
volutional Sentence Reranking. In Proceedings of the
16th Annual Meeting of the Special Interest Group on
Discourse and Dialogue (SIGDIAL). Association for
Computational Linguistics, September.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-Hao
Su, David Vandyke, and Steve Young. 2015b. Seman-
tically conditioned lstm-based natural language gen-
eration for spoken dialogue systems. In Proceedings
of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association for
Computational Linguistics, September.

Jason D Williams and Steve Young. 2007. Partially ob-
servable markov decision processes for spoken dialog
systems. Computer Speech & Language, 21(2):393–
422.

Chang Xu, Dacheng Tao, and Chao Xu. 2013.
A survey on multi-view learning. arXiv preprint
arXiv:1304.5634.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. 2015.
Empirical evaluation of rectified activations in convo-
lutional network. arXiv preprint arXiv:1505.00853.

Zhao Yan, Nan Duan, Junwei Bao, Peng Chen, Ming
Zhou, Zhoujun Li, and Jianshe Zhou. Docchat: An
information retrieval approach for chatbot engines us-
ing unstructured documents.

Rui Yan, Yiping Song, and Hua Wu. 2016. Learning to
respond with deep neural networks for retrieval-based
human-computer conversation system. In Proceedings
of the 39th International ACM SIGIR conference on
Research and Development in Information Retrieval,
pages 55–64. ACM.

381

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 382–391,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Variational Neural Discourse Relation Recognizer

Biao Zhang1, Deyi Xiong2∗, Jinsong Su1, Qun Liu3,4, Rongrong Ji1, Hong Duan1, Min Zhang2

Xiamen University, Xiamen, China 3610051

Provincial Key Laboratory for Computer Information Processing Technology
Soochow University, Suzhou, China 2150062

ADAPT Centre, School of Computing, Dublin City University3

Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology, Chinese Academy of Sciences4

zb@stu.xmu.edu.cn, {jssu, rrji, hduan}@xmu.edu.cn
qun.liu@dcu.ie, {dyxiong, minzhang}@suda.edu.cn

Abstract

Implicit discourse relation recognition is a
crucial component for automatic discourse-
level analysis and nature language understand-
ing. Previous studies exploit discriminative
models that are built on either powerful man-
ual features or deep discourse representations.
In this paper, instead, we explore generative
models and propose a variational neural dis-
course relation recognizer. We refer to this
model as VarNDRR. VarNDRR establishes a
directed probabilistic model with a latent con-
tinuous variable that generates both a dis-
course and the relation between the two ar-
guments of the discourse. In order to per-
form efficient inference and learning, we in-
troduce neural discourse relation models to
approximate the prior and posterior distribu-
tions of the latent variable, and employ these
approximated distributions to optimize a repa-
rameterized variational lower bound. This al-
lows VarNDRR to be trained with standard
stochastic gradient methods. Experiments on
the benchmark data set show that VarNDRR
can achieve comparable results against state-
of-the-art baselines without using any manual
features.

1 Introduction

Discourse relation characterizes the internal struc-
ture and logical relation of a coherent text. Automat-
ically identifying these relations not only plays an
important role in discourse comprehension and gen-
eration, but also obtains wide applications in many

∗Corresponding author

other relevant natural language processing tasks,
such as text summarization (Yoshida et al., 2014),
conversation (Higashinaka et al., 2014), question an-
swering (Verberne et al., 2007) and information ex-
traction (Cimiano et al., 2005). Generally, discourse
relations can be divided into two categories: explicit
and implicit, which can be illustrated in the follow-
ing example:

The company was disappointed by the rul-
ing. because The obligation is totally un-
warranted. (adapted from wsj 0294)

With the discourse connective because, these two
sentences display an explicit discourse relation
CONTINGENCY which can be inferred easily. Once
this discourse connective is removed, however, the
discourse relation becomes implicit and difficult to
be recognized. This is because almost no surface in-
formation in these two sentences can signal this re-
lation. For successful recognition of this relation, in
the contrary, we need to understand the deep seman-
tic correlation between disappointed and obligation
in the two sentences above. Although explicit dis-
course relation recognition (DRR) has made great
progress (Miltsakaki et al., 2005; Pitler et al., 2008),
implicit DRR still remains a serious challenge due
to the difficulty in semantic analysis.

Conventional approaches to implicit DRR often
treat the relation recognition as a classification prob-
lem, where discourse arguments and relations are re-
garded as the inputs and outputs respectively. Gen-
erally, these methods first generate a representation
for a discourse, denoted as x1 (e.g., manual fea-

1Unless otherwise specified, all variables in the paper, e.g.,
x,y, z are multivariate. But for notational convenience, we

382

amssymb amsmath

z

x y

θφ

N

Figure 1: Graphical illustration for VarNDRR. Solid
lines denote the generative model pθ(x|z)pθ(y|z),
dashed lines denote the variational approximation
qφ(z|x,y) to the posterior p(z|x,y) and q′φ(z|x) to the
prior p(z) for inference. The variational parameters φ are
learned jointly with the generative model parameters θ.

tures in SVM-based recognition (Pitler et al., 2009;
Lin et al., 2009) or sentence embeddings in neu-
ral networks-based recognition (Ji and Eisenstein,
2015; Zhang et al., 2015)), and then directly model
the conditional probability of the corresponding dis-
course relation y given x, i.e. p(y|x). In spite of
their success, these discriminative approaches rely
heavily on the goodness of discourse representa-
tion x. Sophisticated and good representations of
a discourse, however, may make models suffer from
overfitting as we have no large-scale balanced data.

Instead, we assume that there is a latent continu-
ous variable z from an underlying semantic space.
It is this latent variable that generates both dis-
course arguments and the corresponding relation,
i.e. p(x,y|z). The latent variable enables us to
jointly model discourse arguments and their rela-
tions, rather than conditionally model y on x. How-
ever, the incorporation of the latent variable makes
the modeling difficult due to the intractable compu-
tation with respect to the posterior distribution.

Inspired by Kingma and Welling (2014) as well
as Rezende et al. (2014) who introduce a variational
neural inference model to the intractable posterior
via optimizing a reparameterized variational lower
bound, we propose a variational neural discourse re-
lation recognizer (VarNDRR) with a latent contin-
uous variable for implicit DRR in this paper. The
key idea behind VarNDRR is that although the pos-
terior distribution is intractable, we can approximate
it via a deep neural network. Figure 1 illustrates the

treat them as univariate variables in most cases. Additionally,
we use bold symbols to denote variables, and plain symbols to
denote values.

graph structure of VarNDRR. Specifically, there are
two essential components:

• neural discourse recognizer As a discourse x
and its corresponding relation y are indepen-
dent with each other given the latent variable z
(as shown by the solid lines), we can formulate
the generation of x and y from z in the equa-
tion pθ(x,y|z) = pθ(x|z)pθ(y|z). These two
conditional probabilities on the right hand side
are modeled via deep neural networks (see sec-
tion 3.1).
• neural latent approximator VarNDRR assumes

that the latent variable can be inferred from dis-
course arguments x and relations y (as shown
by the dash lines). In order to infer the la-
tent variable, we employ a deep neural net-
work to approximate the posterior qφ(z|x,y)
as well as the prior q′φ(z|x) (see section 3.2),
which makes the inference procedure efficient.
We further employ a reparameterization tech-
nique to sample z from qφ(z|x,y) that not only
bridges the gap between the recognizer and the
approximator but also allows us to use the stan-
dard stochastic gradient ascent techniques for
optimization (see section 3.3).

The main contributions of our work lie in two as-
pects. 1) We exploit a generative graphic model for
implicit DRR. To the best of our knowledge, this
has never been investigated before. 2) We develop
a neural recognizer and two neural approximators
specifically for implicit DRR, which enables both
the recognition and inference to be efficient.

We conduct a series of experiments for English
implicit DRR on the PDTB-style corpus to evaluate
the effectiveness of our proposed VarNDRR model.
Experiment results show that our variational model
achieves comparable results against several strong
baselines in term of F1 score. Extensive analysis
on the variational lower bound further reveals that
our model can indeed fit the data set with respect to
discourse arguments and relations.

2 Background: Variational Autoencoder

The variational autoencoder (VAE) (Kingma and
Welling, 2014; Rezende et al., 2014), which forms
the basis of our model, is a generative model that can
be regarded as a regularized version of the standard

383

autoencoder. With a latent random variable z, VAE
significantly changes the autoencoder architecture to
be able to capture the variations in the observed vari-
able x. The joint distribution of (x, z) is formulated
as follows:

pθ(x, z) = pθ(x|z)pθ(z) (1)

where pθ(z) is the prior over the latent variable, usu-
ally equipped with a simple Gaussian distribution.
pθ(x|z) is the conditional distribution that models
the probability of x given the latent variable z. Typi-
cally, VAE parameterizes pθ(x|z) with a highly non-
linear but flexible function approximator such as a
neural network.

The objective of VAE is to maximize a variational
lower bound as follows:

LV AE(θ, φ;x) = −KL(qφ(z|x)||pθ(z))
+Eqφ(z|x)[log pθ(x|z)] ≤ log pθ(x)

(2)

where KL(Q||P) is Kullback-Leibler divergence be-
tween two distributions Q and P . qφ(z|x) is an
approximation of the posterior p(z|x) and usually
follows a diagonal Gaussian N (µ, diag(σ2)) whose
mean µ and variance σ2 are parameterized by again,
neural networks, conditioned on x.

To optimize Eq. (2) stochastically with respect to
both θ and φ, VAE introduces a reparameterization
trick that parameterizes the latent variable z with the
Gaussian parameters µ and σ in qφ(z|x):

z̃ = µ+ σ � ε (3)

where ε is a standard Gaussian variable, and � de-
notes an element-wise product. Intuitively, VAE
learns the representation of the latent variable not
as single points, but as soft ellipsoidal regions in la-
tent space, forcing the representation to fill the space
rather than memorizing the training data as isolated
representations. With this trick, the VAE model can
be trained through standard backpropagation tech-
nique with stochastic gradient ascent.

3 The VarNDRR Model

This section introduces our proposed VarNDRR
model. Formally, in VarNDRR, there are two ob-
served variables, x for a discourse and y for the cor-
responding relation, and one latent variable z. As

z

y

x1 x2

pθ(x|z)

pθ(y|z)

h′
1

h′
2

Figure 2: Neural networks for conditional probabilities
pθ(x|z) and pθ(y|z). The gray color denotes real-valued
representations while the white and black color 0-1 rep-
resentations.

illustrated in Figure 1, the joint distribution of the
three variables is formulated as follows:

pθ(x,y, z) = pθ(x,y|z)p(z) (4)

We begin with this distribution to elaborate the ma-
jor components of VarNDRR.

3.1 Neural Discourse Recognizer

The conditional distribution p(x,y|z) in Eq. (4)
shows that both discourse arguments and the corre-
sponding relation are generated from the latent vari-
able. As shown in Figure 1, x is d-separated from
y by z. Therefore the discourse x and the corre-
sponding relation y is independent given the latent
variable z. The joint probability can be therefore
formulated as follows:

pθ(x,y, z) = pθ(x|z)pθ(y|z)p(z) (5)

We use a neural model q′φ(z|x) to approximate the
prior p(z) conditioned on the discourse x (see the
following section). With respect to the other two
conditional distributions, we parameterize them via
neural networks as shown in Figure 2.

Before we describe these neural networks, it is
necessary to briefly introduce how discourse rela-
tions are annotated in our training data. The PDTB
corpus, used as our training data, annotates implicit
discourse relations between two neighboring argu-
ments, namely Arg1 and Arg2. In VarNDRR, we
represent the two arguments with bag-of-word rep-
resentations, and denote them as x1 and x2.

To model pθ(x|z) (the bottom part in Figure 2),
we project the representation of the latent variable

384

z ∈ Rdz onto a hidden layer:

h′1 = f(Wh′1
z + bh′1)

h′2 = f(Wh′2
z + bh′1)

(6)

where h′1 ∈ Rdh′1 , h′2 ∈ Rdh′2 , W∗ is the transfor-
mation matrix, b∗ is the bias term, du denotes the
dimensionality of vector representations of u and
f(·) is an element-wise activation function, such as
tanh(·), which is used throughout our model.

Upon this hidden layer, we further stack a Sig-
moid layer to predict the probabilities of correspond-
ing discourse arguments:

x′1 = Sigmoid(Wx′1
h′1 + bx′1)

x′2 = Sigmoid(Wx′2
h′2 + bx′2)

(7)

here, x′1 ∈ Rdx1 and x′2 ∈ Rdx2 are the real-
valued representations of the reconstructed x1 and
x2 respectively.2 We assume that pθ(x|z) is a mul-
tivariate Bernoulli distribution because of the bag-
of-word representation. Therefore the logarithm of
p(x|z) is calculated as the sum of probabilities of
words in discourse arguments as follows:

log p(x|z)
=
∑

i

x1,i log x
′
1,i + (1− x1,i) log(1− x′1,i)

+
∑

j

x2,j log x
′
2,j + (1− x2,j) log(1− x′2,j)

(8)

where ui,j is the jth element in ui.
In order to estimate pθ(y|z) (the top part in Fig-

ure 2), we stack a softmax layer over the multilayer-
perceptron-transformed representation of the latent
variable z:

y′ = SoftMax(Wy′MLP(z) + by′) (9)

y′ ∈ Rdy , and dy denotes the number of discourse
relations. MLP projects the representation of latent
variable z into a dm-dimensional space through four
internal layers, each of which has dimension dm.
Suppose that the true relation is y ∈ Rdy , the log-
arithm of p(y|z) is defined as:

log p(y|z) =
dy∑

i=1

yi log y
′
i (10)

2Notice that the equality of dx1 = dx2 , dh′
1
= dh′2 is not

necessary though we assume so in our experiments.

µ

x1

h1

log σ2

h2

x2

y

hy

q′
φ(z|x)

qφ(z|x,y)

Figure 3: Neural networks for Gaussian parameters µ
and log σ in the approximated posterior qφ(z|x,y) and
prior q′φ(z|x).

In order to precisely estimate these conditional
probabilities, our model will force the representation
z of the latent variable to encode semantic informa-
tion for both the reconstructed discourse x′ (Eq. (8))
and predicted discourse relation y′ (Eq. (10)), which
is exactly what we want.

3.2 Neural Latent Approximator
For the joint distribution in Eq. (5), we can define
a variational lower bound that is similar to Eq. (2).
The difference lies in two aspects: the approximate
prior q′φ(z|x) and posterior qφ(z|x,y). We model
both distributions as a multivariate Gaussian distri-
bution with a diagonal covariance structure:

N (z;µ, σ2I)

The mean µ and s.d. σ of the approximate distribu-
tion are the outputs of the neural network as shown
in Figure 3, where the prior and posterior have dif-
ferent conditions and independent parameters.

Approximate Posterior qφ(z|x,y) is modeled to
condition on both observed variables: the discourse
arguments x and relations y. Similar to the calcula-
tion of pθ(x|z), we first transform the input x and y
into a hidden representation:

h1 = f(Wh1x1 + bh1)

h2 = f(Wh2x2 + bh2)

hy = f(Whyy + bhy)

(11)

where h1 ∈ Rdh1 , h2 ∈ Rdh2 and hy ∈ Rdhy .3

3Notice that dh1/dh2 are not necessarily equal to dh′
1
/dh′

2
.

385

We then obtain the Gaussian parameters of the
posterior µ and log σ2 through linear regression:

µ =Wµ1h1 +Wµ2h2 +Wµyhy + bµ

log σ2 =Wσ1h1 +Wσ2h2 +Wσyhy + bσ
(12)

where µ, σ ∈ Rdz . In this way, this posterior ap-
proximator can be efficiently computed.

Approximate Prior q′φ(z|x) is modeled to condi-
tion on discourse arguments x alone. This is based
on the observation that discriminative models are
able to obtain promising results using only x. There-
fore, assuming the discourse arguments encode the
prior information for discourse relation recognition
is meaningful.

The neural model for prior q′φ(z|x) is the same as
that (i.e. Eq (11) and (12)) for posterior qφ(z|x,y)
(see Figure 3), except for the absence of discourse
relation y. For clarity , we use µ′ and σ′ to denote
the mean and s.d. of the approximate prior.

With the parameters of Gaussian distribution, we
can access the representation z using different sam-
pling strategies. However, traditional sampling ap-
proaches often breaks off the connection between
recognizer and approximator, making the optimiza-
tion difficult. Instead, we employ the reparameteri-
zation trick (Kingma and Welling, 2014; Rezende et
al., 2014) as in Eq. (3). During training, we sam-
ple the latent variable using z̃ = µ + σ � ε; during
testing, however, we employ the expectation of z in
the approximate prior distribution, i.e. set z̃ = µ′ to
avoid uncertainty.

3.3 Parameter Learning
We employ the Monte Carlo method to estimate the
expectation over the approximate posterior, that is
Eqφ(z|x,y)[log pθ(x,y|z)]. Given a training instance
(x(t), y(t)), the joint training objective is defined:

L(θ, φ) ' −KL(qφ(z|x(t), y(t))||q′φ(z|x(t)))

+
1

L

L∑

l=1

log pθ(x
(t), y(t)|z̃(t,l)) (13)

where z̃(t,l) = µ(t) + σ(t) � ε(l) and ε(l) ∼ N (0, I)

L is the number of samples. The first term is the KL
divergence of two Gaussian distributions which can
be computed and differentiated without estimation.

Algorithm 1 Parameter Learning Algorithm of
VarNDRR.

Inputs: A, the maximum number of iterations;
M , the number of instances in one batch;
L, the number of samples;

θ, φ← Initialize parameters
repeat
D ← getRandomMiniBatch(M)
ε← getRandomNoiseFromStandardGaussian()
g←∇θ,φL(θ, φ;D, ε)
θ, φ← parameterUpdater(θ, φ; g)

until convergence of parameters (θ, φ) or reach the
maximum iteration A

Relation #Instance Number
Train Dev Test

COM 1942 197 152
CON 3342 295 279
EXP 7004 671 574
TEM 760 64 85

Table 1: Statistics of implicit discourse relations for the
training (Train), development (Dev) and test (Test) sets in
PDTB.

Maximizing this objective will minimize the differ-
ence between the approximate posterior and prior,
thus making the setting z̃ = µ′ during testing rea-
sonable. The second term is the approximate ex-
pectation of Eqφ(z|x,y)[log pθ(x,y|z)], which is also
differentiable.

As the objective function in Eq. (13) is differen-
tiable, we can optimize both the model parameters θ
and variational parameters φ jointly using standard
gradient ascent techniques. The training procedure
for VarNDRR is summarized in Algorithm 1.

4 Experiments

We conducted experiments on English implicit DRR
task to validate the effectiveness of VarNDRR.4

4.1 Dataset
We used the largest hand-annotated discourse cor-
pus PDTB 2.05 (Prasad et al., 2008) (PDTB here-
after). This corpus contains discourse annotations
over 2,312 Wall Street Journal articles, and is or-
ganized in different sections. Following previous
work (Pitler et al., 2009; Zhou et al., 2010; Lan et

4Source code is available at
https://github.com/DeepLearnXMU/VarNDRR.

5http://www.seas.upenn.edu/ pdtb/

386

Model Acc P R F1
R & X (2015) - - - 41.00
J & E (2015) 70.27 - - 35.93

SVM 63.10 22.79 64.47 33.68
SCNN 60.42 22.00 67.76 33.22

VarNDRR 63.30 24.00 71.05 35.88

(a) COM vs Other

Model Acc P R F1
(R & X (2015)) - - - 53.80
(J & E (2015)) 76.95 - - 52.78

SVM 62.62 39.14 72.40 50.82
SCNN 63.00 39.80 75.29 52.04

VarNDRR 53.82 35.39 88.53 50.56

(b) CON vs Other

Model Acc P R F1
(R & X (2015)) - - - 69.40
(J & E (2015)) 69.80 - - 80.02

SVM 60.71 65.89 58.89 62.19
SCNN 63.00 56.29 91.11 69.59

VarNDRR 57.36 56.46 97.39 71.48

(c) EXP vs Other

Model Acc P R F1
(R & X (2015)) - - - 33.30
(J & E (2015)) 87.11 - - 27.63

SVM 66.25 15.10 68.24 24.73
SCNN 76.95 20.22 62.35 30.54

VarNDRR 62.14 17.40 97.65 29.54

(d) TEM vs Other

Table 2: Classification results of different models on the implicit DRR task. Acc=Accuracy, P=Precision, R=Recall,
and F1=F1 score.

al., 2013; Zhang et al., 2015), we used sections 2-
20 as our training set, sections 21-22 as the test set.
Sections 0-1 were used as the development set for
hyperparameter optimization.

In PDTB, discourse relations are annotated in a
predicate-argument view. Each discourse connective
is treated as a predicate that takes two text spans as
its arguments. The discourse relation tags in PDTB
are arranged in a three-level hierarchy, where the
top level consists of four major semantic classes:
TEMPORAL (TEM), CONTINGENCY (CON), EX-
PANSION (EXP) and COMPARISON (COM). Be-
cause the top-level relations are general enough to
be annotated with a high inter-annotator agreement
and are common to most theories of discourse, in our
experiments we only use this level of annotations.

We formulated the task as four separate one-
against-all binary classification problems: each top
level class vs. the other three discourse relation
classes. We also balanced the training set by resam-
pling training instances in each class until the num-
ber of positive and negative instances are equal. In
contrast, all instances in the test and development set
are kept in nature. The statistics of various data sets
is listed in Table 1.

4.2 Setup
We tokenized all datasets using Stanford NLP
Toolkit6. For optimization, we employed the Adam

6http://nlp.stanford.edu/software/corenlp.shtml

algorithm (Kingma and Ba, 2014) to update param-
eters. With respect to the hyperparameters M,L,A
and the dimensionality of all vector representations,
we set them according to previous work (Kingma
and Welling, 2014; Rezende et al., 2014) and pre-
liminary experiments on the development set. Fi-
nally, we set M = 16, A = 1000, L = 1, dz =
20, dx1 = dx2 = 10001, dh1 = dh2 = dh′1 = dh′2 =

dm = dhy = 400, dy = 2 for all experiments.7. All
parameters of VarNDRR are initialized by a Gaus-
sian distribution (µ = 0, σ = 0.01). For Adam,
we set β1 = 0.9, β2 = 0.999 with a learning rate
0.001. Additionally, we tied the following parame-
ters in practice: Wh1 and Wh2 , Wx′1

and Wx′2
.

We compared VarNDRR against the following
two different baseline methods:

• SVM: a support vector machine (SVM) classi-
fier8 trained with several manual features.
• SCNN: a shallow convolutional neural network

proposed by Zhang et al. (2015).

We also provide results from two state-of-the-art
systems:

• Rutherford and Xue (2015) convert explicit
discourse relations into implicit instances.
• Ji and Eisenstein (2015) augment discourse

representations via entity connections.

7There is one dimension in dx1 and dx2 for unknown words.
8http://svmlight.joachims.org/

387

1 -1270.24 25.3012
2 -207.21 26.04374
3 -210.21 26.64165
4 -182.84 24.70785
5 -182.17 23.63014
6 -178.72 24
7 -177.09 27.61506
8 -174.33 24.70434
9 -170.43 25.9366
10 -166.63 22.83105
11 -163.22 22.94118
12 -159.37 25.1809
13 -155.23 27.72681
14 -150.78 28.74459
15 -146.27 29.29533
16 -141.61 30.70362
17 -136.9 29.55665
18 -132.44 28.82527
19 -128.22 29.78355
20 -124.19 26.22951
21 -120.32 12.41379
22 -117.68 28.42942
23 -113.3 29.53846
24 -110.01 30.33932
25 -106.99 29.63636
26 -104.15 29.67581
27 -101.29 27.86885
28 -98.89 27.32558
29 -96.5 28.09917
30 -94.19 29.26829
31 -92.15 22.90389
32 -90.16 29.36242
33 -88.39 29.14238
34 -86.65 27.86305
35 -84.92 12.12121
36 -83.46 29.7593
37 -81.93 28.66379
38 -80.44 30.66516
39 -79.16 29.19006
40 -77.8 34.93045
41 -76.65 29.93062
42 -75.48 38.41808
43 -74.41 42.2043
44 -73.35 0.980392
45 -72.38 26.60218
46 -71.4 19.58042
47 -70.51 28.50467
48 -69.65 26.22169
49 -68.79 20.12579
50 -68 24.19872
51 -67.18 28.16456
52 -66.44 26.67877
53 -65.76 28.53261
54 -65.04 0

-1400

-1200

-1000

-800

-600

-400

-200

0

0

5

10

15

20

25

30

35

40

45

1 101 201 301 401 501 601 701 801 901

Dev Train

(a) COM vs Other

1 -774.47 31.84422
2 -178.34 29.57938
3 -174.75 36.31436
4 -172.55 31.85629
5 -168.78 30.78704
6 -164.1 23.26241
7 -159.04 39.74267
8 -153.3 42.9342
9 -147.32 19.25926

10 -141.37 0
11 -135.17 34.44109
12 -129.05 19.48529
13 -123.05 0
14 -117.5 0
15 -112.36 9.69697
16 -107.69 30.15682
17 -103.41 18.91892
18 -99.5 21.02908
19 -95.89 18.05556
20 -92.55 32.95638
21 -89.57 25.26767
22 -86.76 38.05668
23 -84.18 7.506053
24 -81.77 49.31774
25 -79.56 29.11051
26 -77.86 28.06122
27 -75.62 14.74926
28 -73.78 32.99145
29 -72.12 24.42589
30 -70.57 40.37685
31 -69.09 27.44722
32 -67.72 26.64418
33 -66.42 25.56391
34 -65.28 37.69231
35 -64.09 0
36 -63.03 42.11687
37 -62.01 0
38 -61.03 34.80278
39 -60.12 35.76642
40 -59.21 39.21085
41 -58.42 39.11439
42 -57.67 32.78195
43 -56.94 34.12463
44 -56.24 42.22821
45 -55.53 42.36902
46 -54.95 28.40909
47 -54.29 41.14173
48 -53.69 42.89044
49 -53.1 40.85189
50 -52.63 40
51 -52.08 40.1122
52 -51.58 41.76049
53 -51.11 43.67301
54 -50.63 44.73976

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

0

10

20

30

40

50

60

1 101 201 301 401 501 601 701 801 901

Dev Train

(b) CON vs Other

1 -475.58 59.25384
2 -167.78 62.2192
3 -158.7 62.41888
4 -150.99 71.32476
5 -143.16 66.0775
6 -135.89 59.29878
7 -129.95 57.02067
8 -124.59 40.04004
9 -119.7 53.457

10 -115.08 55.83204
11 -110.79 57.92779
12 -106.82 56.6428
13 -103.11 53.08848
14 -99.68 51.27753
15 -96.55 45.91368
16 -93.65 47.80083
17 -91.01 46.41509
18 -88.61 54.89567
19 -86.4 53.93443
20 -84.37 49.91364
21 -82.5 48.92857
22 -80.76 44.04389
23 -79.2 49.95491
24 -77.81 56.56109
25 -76.43 50.39648
26 -75.2 49.74271
27 -74.09 57.31615
28 -72.99 53.35438
29 -71.98 50.30251
30 -71.06 56.90054
31 -70.23 58.11966
32 -69.39 50.76401
33 -68.6 52.6763
34 -67.87 53.72895
35 -67.21 53.23855
36 -66.56 53.52987
37 -65.93 56.77711
38 -65.33 55.22502
39 -64.78 52.33034
40 -64.27 54.64313
41 -63.75 54.04556
42 -63.25 54.64481
43 -62.77 51.9544
44 -62.35 55.74273
45 -61.93 57.18541
46 -61.55 55.28701
47 -61.12 54.69824
48 -60.8 55.39623
49 -60.41 55.02392
50 -60.08 54.04972
51 -59.77 54.69126
52 -59.43 52.52033
53 -59.13 55.87549
54 -58.82 56.77711

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

0

10

20

30

40

50

60

70

80

1 101 201 301 401 501 601 701 801 901

Dev Train

(c) EXP vs Other

1 -2621.6 10.06289
2 -197.63 10.51525
3 -193.15 11.11111
4 -198.57 10.77982
5 -315.79 11.53305
6 -244.37 6.984127
7 -264.03 11.23596
8 -301.25 10.97046
9 -188.89 4.181185

10 -186.88 0
11 -187.06 0
12 -184.16 1.892744
13 -182.4 1.369863
14 -180.22 9.924306
15 -178.27 10.08101
16 -176.39 5.235602
17 -174.71 0
18 -173.06 0
19 -171.49 0
20 -169.66 0
21 -167.42 0
22 -164.95 0
23 -162.28 0
24 -159.85 0
25 -157.64 0
26 -155.43 0
27 -153.12 0
28 -150.95 0
29 -148.96 0
30 -146.91 0
31 -145.03 0
32 -143.22 0
33 -141.17 0
34 -139.52 0
35 -137.63 0
36 -135.8 0
37 -134.07 10.5802
38 -132.44 2.158273
39 -130.8 10.9434
40 -129.51 3.883495
41 -127.7 12.16879
42 -126.55 21.57534
43 -124.58 10.90259
44 -123.23 10.65719
45 -121.78 10.84444
46 -120.3 2.234637
47 -118.94 11.38861
48 -117.44 11.51832
49 -116.18 4.472843
50 -114.76 11.71634
51 -113.71 11.55015
52 -112.34 11.6349
53 -111.18 11.63793
54 -109.95 3.951368

-3000

-2500

-2000

-1500

-1000

-500

0

0

5

10

15

20

25

1 101 201 301 401 501 601 701 801 901

Dev Train

(d) TEM vs Other

Figure 4: Illustration of the variational lower bound (blue color) on the training set and F-score (brown color) on the
development set. Horizontal axis: the epoch numbers; Vertical axis: the F1 score for relation classification (left) and
the estimated average variational lower bound per datapoint (right).

Features used in SVM are taken from the state-
of-the-art implicit discourse relation recognition
model, including Bag of Words, Cross-Argument
Word Pairs, Polarity, First-Last, First3, Production
Rules, Dependency Rules and Brown cluster pair
(Rutherford and Xue, 2014). In order to collect bag
of words, production rules, dependency rules, and
cross-argument word pairs, we used a frequency cut-
off of 5 to remove rare features, following Lin et
al. (2009).

4.3 Classification Results

Because the development and test sets are imbal-
anced in terms of the ratio of positive and negative
instances, we chose the widely-used F1 score as our
major evaluation metric. In addition, we also pro-
vide the precision, recall and accuracy for further
analysis. Table 2 summarizes the classification re-
sults.

From Table 2, we observe that the proposed VarN-
DRR outperforms SVM on COM/EXP/TEM and
SCNN on EXP/COM according to their F1 scores.
Although it fails on CON, VarNDRR achieves the
best result on EXP/COM among these three mod-
els. Overall, VarNDRR is competitive in compar-
ison with these two baselines. With respect to the
accuracy, our model does not yield substantial im-

provements over the two baselines. This may be be-
cause that we used the F1 score rather than the accu-
racy, as our selection criterion on the development
set. With respect to the precision and recall, our
model tends to produce relatively lower precisions
but higher recalls. This suggests that the improve-
ments of VarNDRR in terms of F1 scores mostly
benefits from the recall values.

Comparing with the state-of-the-art results of pre-
vious work (Ji and Eisenstein, 2015; Rutherford and
Xue, 2015), VarNDRR achieves comparable results
in term of the F1 scores. Specifically, VarNDRR out-
performs Rutherford and Xue (2015) on EXP, and Ji
and Eisenstein (2015) on TEM. However, the accu-
racy of our model fails to surpass these models. We
argue that this is because both baselines use many
manual features designed with prior human knowl-
edge, but our model is purely neural-based.

Additionally, we find that the performance of our
model is proportional to the number of training in-
stances. This suggests that collecting more training
instances (in spite of the noises) may be beneficial
to our model.

4.4 Variational Lower Bound Analysis

In addition to the classification performance, the ef-
ficiency in learning and inference is another concern

388

for variational methods. Figure 4 shows the training
procedure for four tasks in terms of the variational
lower bound on the training set. We also provide
F1 scores on the development set to investigate the
relations between the variational lower bound and
recognition performance.

We find that our model converges toward the vari-
ational lower bound considerably fast in all exper-
iments (within 100 epochs), which resonates with
the previous findings (Kingma and Welling, 2014;
Rezende et al., 2014). However, the change trend of
the F1 score does not follow that of the lower bound
which takes more time to converge. Particularly to
the four discourse relations, we further observe that
the change paths of the F1 score are completely dif-
ferent. This may suggest that the four discourse re-
lations have different properties and distributions.

In particular, the number of epochs when the best
F1 score reaches is also different for the four dis-
course relations. This indicates that dividing the im-
plicit DRR into four different tasks according to the
type of discourse relations is reasonable and better
than performing DRR on the mixtures of the four
relations.

5 Related Work

There are two lines of research related to our work:
implicit discourse relation recognition and varia-
tional neural model, which we describe in succes-
sion.

Implicit Discourse Relation Recognition Due to
the release of Penn Discourse Treebank (Prasad et
al., 2008) corpus, constantly increasing efforts are
made for implicit DRR. Upon this corpus, Pilter
et al. (2009) exploit several linguistically informed
features, such as polarity tags, modality and lexical
features. Lin et al. (2009) further incorporate con-
text words, word pairs as well as discourse parse
information into their classifier. Following this di-
rection, several more powerful features have been
exploited: entities (Louis et al., 2010), word em-
beddings (Braud and Denis, 2015), Brown cluster
pairs and co-reference patterns (Rutherford and Xue,
2014). With these features, Park and Cardie (2012)
perform feature set optimization for better feature
combination.

Different from feature engineering, predicting

discourse connectives can indirectly help the rela-
tion classification (Zhou et al., 2010; Patterson and
Kehler, 2013). In addition, selecting explicit dis-
course instances that are similar to the implicit ones
can enrich the training corpus for implicit DRR and
gains improvement (Wang et al., 2012; Lan et al.,
2013; Braud and Denis, 2014; Fisher and Sim-
mons, 2015; Rutherford and Xue, 2015). Very re-
cently, neural network models have been also used
for implicit DRR due to its capability for represen-
tation learning (Ji and Eisenstein, 2015; Zhang et al.,
2015).

Despite their successes, most of them focus on the
discriminative models, leaving the field of genera-
tive models for implicit DRR a relatively uninvesti-
gated area. In this respect, the most related work to
ours is the latent variable recurrent neural network
recently proposed by Ji et al. (2016). However, our
work differs from theirs significantly, which can be
summarized in the following three aspects: 1) they
employ the recurrent neural network to represent the
discourse arguments, while we use the simple feed-
forward neural network; 2) they treat the discourse
relations directly as latent variables, rather than the
underlying semantic representation of discourses; 3)
their model is optimized in terms of the data likeli-
hood, since the discourse relations are observed dur-
ing training. However, VarNDRR is optimized un-
der the variational theory.

Variational Neural Model In the presence of con-
tinuous latent variables with intractable posterior
distributions, efficient inference and learning in di-
rected probabilistic models is required. Kingma and
Welling (2014) as well as Rezende et al. (2014)
introduce variational neural networks that employ
an approximate inference model for intractable pos-
terior and reparameterized variational lower bound
for stochastic gradient optimization. Kingma et
al. (2014) revisit the approach to semi-supervised
learning with generative models and further develop
new models that allow effective generalization from
a small labeled dataset to a large unlabeled dataset.
Chung et al. (2015) incorporate latent variables into
the hidden state of a recurrent neural network, while
Gregor et al. (2015) combine a novel spatial atten-
tion mechanism that mimics the foveation of human
eyes, with a sequential variational auto-encoding
framework that allows the iterative construction of

389

complex images.
We follow the spirit of these variational models,

but focus on the adaptation and utilization of them
onto implicit DRR, which, to the best of our knowl-
edge, is the first attempt in this respect.

6 Conclusion and Future Work

In this paper, we have presented a variational neural
discourse relation recognizer for implicit DRR. Dif-
ferent from conventional discriminative models that
directly calculate the conditional probability of the
relation y given discourse arguments x, our model
assumes that it is a latent variable from an underly-
ing semantic space that generates both x and y. In
order to make the inference and learning efficient,
we introduce a neural discourse recognizer and two
neural latent approximators as our generative and in-
ference model respectively. Using the reparameteri-
zation technique, we are able to optimize the whole
model via standard stochastic gradient ascent algo-
rithm. Experiment results in terms of classification
and variational lower bound verify the effectiveness
of our model.

In the future, we would like to exploit the utiliza-
tion of discourse instances with explicit relations for
implicit DRR. For this we can start from two direc-
tions: 1) converting explicit instances into pseudo
implicit instances and retraining our model; 2) de-
veloping a semi-supervised model to leverage se-
mantic information inside discourse arguments. Fur-
thermore, we are also interested in adapting our
model to other similar tasks, such as nature language
inference.

Acknowledgments

The authors were supported by National Natural Sci-
ence Foundation of China (Grant Nos 61303082,
61672440, 61402388, 61622209 and 61403269),
Natural Science Foundation of Fujian Province
(Grant No. 2016J05161), Natural Science Founda-
tion of Jiangsu Province (Grant No. BK20140355),
Research fund of the Provincial Key Laboratory
for Computer Information Processing Technology in
Soochow University (Grant No. KJS1520), and Re-
search fund of the Key Laboratory for Intelligence
Information Processing in the Institute of Comput-
ing Technology of the Chinese Academy of Sciences

(Grant No. IIP2015-4). We also thank the anony-
mous reviewers for their insightful comments.

References

Chloé Braud and Pascal Denis. 2014. Combining nat-
ural and artificial examples to improve implicit dis-
course relation identification. In Proc. of COLING,
pages 1694–1705, August.

Chloé Braud and Pascal Denis. 2015. Comparing word
representations for implicit discourse relation classifi-
cation. In Proc. of EMNLP, pages 2201–2211.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth
Goel, Aaron C. Courville, and Yoshua Bengio. 2015.
A recurrent latent variable model for sequential data.
In Proc. of NIPS.

Philipp Cimiano, Uwe Reyle, and Jasmin Šarić. 2005.
Ontology-driven discourse analysis for information
extraction. Data & Knowledge Engineering, 55:59–
83.

Robert Fisher and Reid Simmons. 2015. Spectral semi-
supervised discourse relation classification. In Proc.
of ACL-IJCNLP, pages 89–93, July.

Karol Gregor, Ivo Danihelka, Alex Graves, and Daan
Wierstra. 2015. DRAW: A recurrent neural network
for image generation. CoRR, abs/1502.04623.

Ryuichiro Higashinaka, Kenji Imamura, Toyomi Me-
guro, Chiaki Miyazaki, Nozomi Kobayashi, Hiroaki
Sugiyama, Toru Hirano, Toshiro Makino, and Yoshi-
hiro Matsuo. 2014. Towards an open-domain conver-
sational system fully based on natural language pro-
cessing. In Proc. of COLING, pages 928–939.

Yangfeng Ji and Jacob Eisenstein. 2015. One vector is
not enough: Entity-augmented distributed semantics
for discourse relations. TACL, pages 329–344.

Yangfeng Ji, Gholamreza Haffari, and Jacob Eisenstein.
2016. A latent variable recurrent neural network
for discourse-driven language models. In Proc. of
NAACL, pages 332–342, June.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Diederik P Kingma and Max Welling. 2014. Auto-
Encoding Variational Bayes. In Proc. of ICLR.

Diederik P. Kingma, Shakir Mohamed, Danilo Jimenez
Rezende, and Max Welling. 2014. Semi-supervised
learning with deep generative models. In Proc. of
NIPS, pages 3581–3589.

Man Lan, Yu Xu, and Zhengyu Niu. 2013. Leveraging
Synthetic Discourse Data via Multi-task Learning for
Implicit Discourse Relation Recognition. In Proc. of
ACL, pages 476–485, Sofia, Bulgaria, August.

390

Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. 2009.
Recognizing implicit discourse relations in the Penn
Discourse Treebank. In Proc. of EMNLP, pages 343–
351.

Annie Louis, Aravind Joshi, Rashmi Prasad, and Ani
Nenkova. 2010. Using entity features to classify im-
plicit discourse relations. In Proc. of SIGDIAL, pages
59–62, Tokyo, Japan, September.

Eleni Miltsakaki, Nikhil Dinesh, Rashmi Prasad, Aravind
Joshi, and Bonnie Webber. 2005. Experiments on
sense annotations and sense disambiguation of dis-
course connectives. In Proc. of TLT2005.

Joonsuk Park and Claire Cardie. 2012. Improving Im-
plicit Discourse Relation Recognition Through Fea-
ture Set Optimization. In Proc. of SIGDIAL, pages
108–112, Seoul, South Korea, July.

Gary Patterson and Andrew Kehler. 2013. Predicting
the presence of discourse connectives. In Proc. of
EMNLP, pages 914–923.

Emily Pitler, Mridhula Raghupathy, Hena Mehta, Ani
Nenkova, Alan Lee, and Aravind K Joshi. 2008. Eas-
ily identifiable discourse relations. Technical Reports
(CIS), page 884.

Emily Pitler, Annie Louis, and Ani Nenkova. 2009. Au-
tomatic sense prediction for implicit discourse rela-
tions in text. In Proc. of ACL-AFNLP, pages 683–691,
August.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind K Joshi, and Bonnie L
Webber. 2008. The penn discourse treebank 2.0. In
LREC. Citeseer.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. 2014. Stochastic backpropagation and ap-
proximate inference in deep generative models. In
Proc. of ICML, pages 1278–1286.

Attapol Rutherford and Nianwen Xue. 2014. Discover-
ing implicit discourse relations through brown cluster
pair representation and coreference patterns. In Proc.
of EACL, pages 645–654, April.

Attapol Rutherford and Nianwen Xue. 2015. Improv-
ing the inference of implicit discourse relations via
classifying explicit discourse connectives. In Proc. of
NAACL-HLT, pages 799–808, May–June.

Suzan Verberne, Lou Boves, Nelleke Oostdijk, and Peter-
Arno Coppen. 2007. Evaluating discourse-based an-
swer extraction for why-question answering. In Proc.
of SIGIR, pages 735–736.

Xun Wang, Sujian Li, Jiwei Li, and Wenjie Li. 2012. Im-
plicit discourse relation recognition by selecting typ-
ical training examples. In Proc. of COLING, pages
2757–2772.

Yasuhisa Yoshida, Jun Suzuki, Tsutomu Hirao, and
Masaaki Nagata. 2014. Dependency-based discourse

parser for single-document summarization. In Proc. of
EMNLP, pages 1834–1839, October.

Biao Zhang, Jinsong Su, Deyi Xiong, Yaojie Lu, Hong
Duan, and Junfeng Yao. 2015. Shallow convolutional
neural network for implicit discourse relation recogni-
tion. In Proc. of EMNLP, September.

Zhi-Min Zhou, Yu Xu, Zheng-Yu Niu, Man Lan, Jian Su,
and Chew Lim Tan. 2010. Predicting discourse con-
nectives for implicit discourse relation recognition. In
Proc. of COLING, pages 1507–1514.

391

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 392–402,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Event Detection and Co-reference with Minimal Supervision

Haoruo Peng1 and Yangqiu Song2 and Dan Roth1

1University of Illinois, Urbana-Champaign
2Department of Computer Science and Engineering,
Hong Kong University of Science and Technology

1{hpeng7,danr}@illinois.edu, 2yqsong@cse.ust.hk

Abstract

An important aspect of natural language un-
derstanding involves recognizing and catego-
rizing events and the relations among them.
However, these tasks are quite subtle and an-
notating training data for machine learning
based approaches is an expensive task, re-
sulting in supervised systems that attempt to
learn complex models from small amounts of
data, which they over-fit. This paper addresses
this challenge by developing an event detec-
tion and co-reference system with minimal su-
pervision, in the form of a few event exam-
ples. We view these tasks as semantic similar-
ity problems between event mentions or event
mentions and an ontology of types, thus fa-
cilitating the use of large amounts of out of
domain text data. Notably, our semantic re-
latedness function exploits the structure of the
text by making use of a semantic-role-labeling
based representation of an event.

We show that our approach to event detection
is competitive with the top supervised meth-
ods. More significantly, we outperform state-
of-the-art supervised methods for event co-
reference on benchmark data sets, and support
significantly better transfer across domains.

1 Introduction

Natural language understanding involves, as a key
component, the need to understand events men-
tioned in texts. This entails recognizing elements
such as agents, patients, actions, location and time,
among others. Understanding events also necessi-
tates understanding relations among them and, as

a minimum, determining whether two snippets of
text represent the same event or not – the event co-
reference problem. Events have been studied for
years, but they still remain a key challenge. One
reason is that the frame-based structure of events ne-
cessitates addressing multiple coupled problems that
are not easy to study in isolation. Perhaps an even
more fundamental difficulty is that it is not clear
whether our current set of events’ definitions is ade-
quate (Hovy et al., 2013). Thus, given the complex-
ity and fundamental difficulties, the current evalua-
tion methodology in this area focuses on a limited
domain of events, e.g. 33 types in ACE 2005 (NIST,
2005) and 38 types in TAC KBP (Mitamura et al.,
2015). Consequently, this allows researchers to train
supervised systems that are tailored to these sets of
events and that overfit the small domain covered in
the annotated data, rather than address the realistic
problem of understanding events in text.

In this paper, we pursue an approach to under-
standing events that we believe to be more feasi-
ble and scalable. Fundamentally, event detection
is about identifying whether an event in context is
semantically related to a set of events of a specific
type; and, event co-reference is about whether two
event mentions are semantically similar enough to
indicate that the author intends to refer to the same
thing. Therefore, if we formulate event detection
and co-reference as semantic relatedness problems,
we can scale it to deal with a lot more types and, po-
tentially, generalize across domains. Moreover, by
doing so, we facilitate the use of a lot of data that is
not part of the existing annotated event collections
and not even from the same domain. The key chal-

392

Supervised Unsupervised MSEP
Guideline ! ! !

In-domain Data ! ! 7

Data Annotation ! 7 7

Table 1: Comparing requirements of MSEP and
other methods. Supervised methods need all three
resources while MSEP only needs an annotation
guideline (as event examples).

lenges we need to address are those of how to repre-
sent events, and how to model event similarity; both
are difficult partly since events have structure.

We present a general event detection and co-
reference framework, which essentially requires no
labeled data. In practice, in order to map an event
mention to an event ontology, as a way to commu-
nicate with a user, we just need a few event exam-
ples, in plain text, for each type a user wants to ex-
tract. This is a reasonable setting; after all, giving
examples is the easiest way of defining event types,
and is also how information needs are defined to
annotators - by providing examples in the annota-
tion guideline.1 Our approach makes less assump-
tions than standard unsupervised methods, which
typically require a collection of instances and ex-
ploit similarities among them to eventually learn a
model. Here, given event type definitions (in the
form of a few examples), we can classify a sin-
gle event into a provided ontology and determine
whether two events are co-referent. In this sense, our
approach is similar to what has been called dataless
classification (Chang et al., 2008; Song and Roth,
2014). Table 1 summarizes the difference between
our approach, MSEP (Minimally Supervised Event
Pipeline)2, and other methods.

Our approach builds on two key ideas. First,
to represent event structures, we use the general
purpose nominal and verbial semantic role label-
ing (SRL) representation. This allows us to de-
velop a structured representation of an event. Sec-
ond, we embed event components, while maintain-
ing the structure, into multiple semantic spaces, in-

1Event examples also serve for disambiguation purposes.
For example, using “U.S. forces bombed Baghdad.” to exem-
plify an attack type, disambiguates it from a heart attack.

2Available at http://cogcomp.cs.illinois.edu/page/download
view/eventPipeline .

Figure 1: An overview of the end-to-end MSEP sys-
tem. “Event Examples” are the only supervision
here, which produce “Example Vectors”. No train-
ing is needed for MSEP.

duced at a contextual, topical, and syntactic levels.
These semantic representations are induced from
large amounts of text in a way that is completely in-
dependent of the tasks at hand, and are used to repre-
sent both event mentions and event types into which
we classify our events. The combination of these se-
mantic spaces, along with the structured vector rep-
resentation of an event, allow us to directly deter-
mine whether a candidate event mention is a valid
event or not and, if it is, of which type. Moreover,
with the same representation, we can evaluate event
similarities and decide whether two event mentions
are co-referent. Consequently, the proposed MSEP,
can also adapt to new domains without any training.

An overview of the system is shown in Figure 1.
A few event examples are all the supervision MSEP
needs; even the few decision thresholds needed to be
set are determined on these examples, once and for
all, and are used for all test cases we evaluate on.
We use two benchmark datasets to compare MSEP
with baselines and supervised systems. We show
that MSEP performs favorably relative to state-of-
the-art supervised systems; the co-reference mod-
ule, in fact, outperforms supervised approaches on
B3 and CEAF metrics. The superiority of MSEP is
also demonstrated in across domain settings.

2 The MSEP System

2.1 Structured Vector Representation
There is a parallel between event structures and sen-
tence structures. Event triggers are mostly pred-
icates of sentences or clauses. Predicates can be
sense disambiguated, which roughly corresponds to

393

Figure 2: Basic event vector representation. Event vector is the concatenation of vectors corresponding to
action, agentsub, agentobj , location, time and sentence/clause.

Figure 3: Augmented event vector representation. Event vector is the concatenation of vectors corre-
sponding to basic event vector representation, agentsub + action, agentobj + action, location + action and
time + action. Here, “+” means that we first put text fragments together and then convert the combined text
fragment into an ESA vector.

event types. Event arguments are largely entity men-
tions or temporal/spatial arguments. They serve as
specific roles in events, similarly to SRL arguments
that are assigned role labels for predicates.

We use the Illinois SRL (Punyakanok et al., 2004)
tool to pre-process the text. We evaluate the SRL
coverage on both event triggers and event argu-
ments, shown in Table 2.3 For event triggers, we
only focus on recall since we expect the event men-
tion detection module to filter out most non-trigger
predicates. Results show a good coverage of SRL
predicates and arguments on event triggers and argu-
ments. Even though we only get approximate event
arguments, it is easier and more reliable to catego-
rize them into five abstract roles, than to determine
the exact role label with respect to event triggers.

We identify the five most important and ab-
stract event semantic components: action, agentsub,
agentobj , location and time. To map SRL argu-
ments to these event arguments, we run through the
following procedures: 1) set predicates as actions,
and preserve SRL negations for actions, 2) set SRL
subject as agentsub, 3) set SRL object and indirect
object as agentobj , 4) set SRL spatial argument as
event location. If there is no such SRL label, we
then scan for any NER location label within the sen-
tence/clause to which the action belongs. We set
the location according to NER information if it ex-

3We place events in two categories, verb or noun, according
to the part-of-speech tag of the trigger. We evaluate verb-SRL
on events with verb triggers, nom-SRL on events with noun trig-
gers, and the overall performance on all events. When evaluat-
ing, we allow partial overlaps.

ACE Precision Recall F1
Predicates Verb-SRL — 93.2 —

over Nom-SRL — 87.5 —
Triggers All — 91.9 —

SRL Args Verb-SRL 90.4 85.7 88.0
over Nom-SRL 92.5 73.5 81.9

Event Args All 90.9 82.3 86.4

TAC KBP Precision Recall F1
Predicates Verb-SRL — 90.6 —

over Nom-SRL — 85.5 —
Triggers All — 88.1 —

SRL Args Verb-SRL 89.8 83.6 86.6
over Nom-SRL 88.2 69.9 78.0

Event Args All 89.5 81.0 85.0

Table 2: Semantic role labeling coverage. We eval-
uate both “Predicates over Triggers” and “SRL Ar-
guments over Event Arguments”. “All” stands for
the combination of Verb-SRL and Nom-SRL. The
evaluation is done on all data.

ists. 5) We set the SRL temporal argument as event
time. If there is no such SRL label, we then use
the Illinois Temporal Expression Extractor (Zhao et
al., 2012) to find the temporal argument within an
event’s sentence/clause. 6) We allow one or more
missing event arguments among agentsub, agentobj ,
location or time, but require actions to always exist.

Given the above structured information, we con-
vert each event component to its corresponding
vector representation, discussed in detail in Sec-
tion 3. We then concatenate the vectors of all com-
ponents together in a specific order: action, agentsub,
agentobj , location, time and sentence/clause. We
treat the whole sentence/clause, to which the “ac-

394

tion” belongs, as context, and we append its corre-
sponding vector to the event representation. This ba-
sic event vector representation is illustrated in Fig. 2.
If there are missing event arguments, we set the cor-
responding vector to be “NIL” (we set each posi-
tion as “NaN”). We also augment the event vector
representation by concatenating more text fragments
to enhance the interactions between the action and
other arguments, as shown in Fig. 3. Essentially, we
flatten the event structure to preserve the alignment
of event arguments so that the structured information
can be reflected in our vector space.

2.2 Event Mention Detection

Motivated by the seed-based event trigger labeling
technique employed in Bronstein et al. (2015), we
turn to ACE annotation guidelines for event exam-
ples described under each event type label. For in-
stance, the ACE-2005 guidelines list the example
“Mary Smith joined Foo Corp. in June 1998.” for
label “START-POSITION”. Altogether, we collect
172 event examples from 33 event types (5 each on
average).4 We can then get vector representations
for these example events following the procedures
in Sec. 2.1. We define the event type representa-
tion as the numerical average of all vector represen-
tations corresponding to example events under that
type. We use the similarity between an event candi-
date with the event type representation to determine
whether the candidate belongs to an event type:

S(e1, e2) =
vec(e1) · vec(e2)
‖vec(e1)‖ · ‖vec(e2)‖

=

∑
a vec(a1) · vec(a2)√∑

a ‖vec(a1)‖2 ·
√∑

a ‖vec(a2)‖2
,

(1)

where e1 is the candidate, e2 the type (vec(e2) is
computed as average of event examples), a1, a2 are
components of e1, e2 respectively. We use the no-
tation vec(·) for corresponding vectors. Note that
there may be missing event arguments (NIL). In
such cases, we use the average of all non-NIL sim-
ilarity scores for that particular component as the
contributed score. Formally, we define Spair(a =

4See supplementary materials for the full list of examples.

NIL) and Ssingle(a = NIL) as follows:

Spair(a = NIL) = vec(NIL) · vec(a2)
= vec(a1) · vec(NIL)

=
∑

a1,a2 6=NIL

vec(a1) · vec(a2)
#|a1, a2 6= NIL| ,

Ssingle(a = NIL) =

√∑
a6=NIL ‖vec(a)‖2
#|a 6= NIL| .

Thus, when we encounter missing event arguments,
we use Spair(a = NIL) to replace the correspond-
ing term in the numerator in S(e1, e2) while using
Ssingle(a = NIL) in the denominator. These aver-
age contributed scores are corpus independent, and
can be pre-computed ahead of time. We use a cut-off
threshold to determine that an event does not belong
to any event types, and can thus be eliminated. This
threshold is set by tuning only on the set of event
examples, which is corpus independent.5

2.3 Event Co-reference
Similar to the mention-pair model in entity co-
reference (Ng and Cardie, 2002; Bengtson and Roth,
2008; Stoyanov et al., 2010), we use cosine sim-
ilarities computed from pairs of event mentions:
S(e1, e2) (as in Eq. (1)).

Before applying the co-reference model, we first
use external knowledge bases to identify conflict
events. We use the Illinois Wikification (Cheng
and Roth, 2013) tool to link event arguments to
Wikipedia pages. Using the Wikipedia IDs, we map
event arguments to Freebase entries. We view the
top-level Freebase type as the event argument type.
An event argument can contain multiple wikified en-
tities, leading to multiple Wikipedia pages and thus
a set of Freebase types. We also augment the argu-
ment type set with NER labels: PER (person) and
ORG (organization). We add either of the NER la-
bels if we detect such a named entity.

For each pair of events, we check event arguments
agentsub and agentobj respectively. If none of the
types for the aligned event arguments match, this
pair is determined to be in conflict. If the event ar-
gument is missing, we deem it compatible with any
type. In this procedure, we generate a set of event
pairs Setconflict that will not get co-reference links.

5See Sec. 4.4 for details.

395

Given the event mention similarity as well as the
conflicts, we perform event co-reference inference
via a left-linking greedy algorithm, i.e. co-reference
decisions are made on each event from left to right,
one at a time. Without loss of generality, for event
ek+1,∀k ≥ 1, we first choose a linkable event to its
left with the highest event-pair similarity:

ep = arg max
e∈{e1,e2,...,ek}

e6∈Setconflict

S(e, ek+1).

We make co-reference links when S(ep, ek+1) is
higher than a cut-off threshold, which is also tuned
only on event examples ahead of time. Otherwise,
event ek+1 is not similar enough to any of its an-
tecedents, and we make it the start of a new cluster.

3 Vector Representations

We experiment with different methods to con-
vert event components into vector representations.
Specifically, we use Explicit Semantic Analysis
(ESA), Brown Cluster (BC), Word2Vec (W2V) and
Dependency-Based Word Embedding (DEP) respec-
tively to convert text into vectors. We then concate-
nate all components of an event together to form a
structured vector representation.
Explicit Semantic Analysis ESA uses Wikipedia
as an external knowledge base to generate con-
cepts for a given fragment of text (Gabrilovich and
Markovitch, 2009). ESA first represents a given text
fragment as a TF-IDF vector, then uses an inverted
index for each word to search the Wikipedia corpus.
The text fragment representation is thus a weighted
combination of the concept vectors corresponding to
its words. We use the same setting as in Chang et al.
(2008) to filter out pages with fewer than 100 words
and those containing fewer than 5 hyperlinks. To
balance between the effectiveness of ESA represen-
tations and its cost, we use the 200 concepts with the
highest weights. Thus, we convert each text frag-
ment to a very sparse vector of millions of dimen-
sions (but we just store 200 non-zero values).
Brown Cluster BC was proposed by Brown et al.
(1992) as a way to support abstraction in NLP tasks,
measuring words’ distributional similarities. This
method generates a hierarchical tree of word clus-
ters by evaluating the word co-occurrence based on
a n-gram model. Then, paths traced from root to

leaves can be used as word representations. We use
the implementation by Song and Roth (2014), gen-
erated over the latest Wikipedia dump. We set the
maximum tree depth to 20, and use a combination
of path prefixes of length 4,6 and 10 as our BC rep-
resentation. Thus, we convert each word to a vector
of 24 + 26 + 210 = 1104 dimensions.
Word2Vec We use the skip-gram tool by Mikolov et
al. (2013) over the latest Wikipedia dump, resulting
in word vectors of dimensionality 200.
Dependency-Based Embedding DEP is the gener-
alization of the skip-gram model with negative sam-
pling to include arbitrary contexts. In particular, it
deals with dependency-based contexts, and produces
markedly different embeddings. DEP exhibits more
functional similarity than the original skip-gram em-
beddings (Levy and Goldberg, 2014). We directly
use the released 300-dimension word embeddings6.

Note that it is straightforward text-vector conver-
sion for ESA. But for BC, W2V and DEP, we first
remove stop words from the text and then average,
element-wise, all remaining word vectors to produce
the resulting vector representation of the text frag-
ment.

4 Experiments

4.1 Datasets

ACE The ACE-2005 English corpus (NIST, 2005)
contains fine-grained event annotations, including
event trigger, argument, entity, and time-stamp an-
notations. We select 40 documents from newswire
articles for event detection evaluation and the rest
for training (same as Chen et al. (2015)). We do 10-
fold cross-validation for event co-reference.
TAC-KBP The TAC-KBP-2015 corpus is annotated
with event nuggets that fall into 38 types and co-
reference relations between events. 7 We use the
train/test data split provided by the official TAC-

6https://levyomer.wordpress.com/2014/04/25/dependency-
based-word-embeddings

7The event ontology of TAC-KBP (based on ERE annota-
tion) is almost the same to that of ACE. To adapt our sys-
tem to the TAC-KBP corpus, we use all ACE event seeds of
“Contact.Phone-Write” for “Contact.Correspondence” and sep-
arate ACE event seeds of “Movement.Transport” into “Move-
ment.TransportPerson” and “Movement.TransportArtifact” by
manual checking. So, we use exactly the same set of event seeds
for TAC-KBP with only these two changes.

396

#Doc #Sent. #Men. #Cluster
ACE(All) 599 15,494 5,268 4,046
ACE(Test) 40 672 289 222
TAC-KBP(All) 360 15,824 12,976 7,415
TAC-KBP(Test) 202 8,851 6,438 3,779

Table 3: Statistics for the ACE and TAC-KBP cor-
pora. #Sent. is the number of sentences, #Men.
is the number of event mentions, and #Cluster is
the number of event clusters (including singletons).
Note that the proposed MSEP does not need any
training data.

2015 Event Nugget Evaluation Task.
Statistics for the ACE and TAC-KBP corpora is

shown in Table 3. Note that the training set and
cross-validation is only for competing supervised
methods. For MSEP, we only need to run on each
corpus once for testing.

4.2 Compared Systems

For event detection, we compare with DM-
CNN (Chen et al., 2015), the state-of-art super-
vised event detection system. We also implement
another supervised model, named supervised struc-
tured event detection SSED system following the
work of Sammons et al. (2015). The system utilizes
rich semantic features and applies a trigger identifi-
cation classifier on every SRL predicate to determine
the event type. For event co-reference, Joint (Chen
et al., 2009) is an early work based on super-
vised learning. We also report HDP-Coref results
as an unsupervised baseline (Bejan and Harabagiu,
2010), which utilizes nonparametric Bayesian mod-
els. Moreover, we create another unsupervised event
co-reference baseline (Type+SharedMen): we treat
events of the same type which share at least one
co-referent entity (inside event arguments) as co-
referred. On TAC-KBP corpus, we report results
from the top ranking system of the TAC-2015 Event
Nugget Evaluation Task as TAC-TOP.

We name our event mention detection module
in MSEP similarity-based event mention detec-
tion MSEP-EMD system. For event co-reference,
the proposed similarity based co-reference detec-
tion MSEP-Coref method has a number of varia-
tions depending on the modular text-vector conver-
sion method (ESA, BC, W2V, DEP), whether we

use augmented ESA vector representation (AUG)8,
and whether we use knowledge during co-reference
inference (KNOW). We also develop a super-
vised event co-reference system following the work
of Sammons et al. (2015), namely SupervisedBase.
We also add additional event vector representa-
tions9 as features to this supervised system and get
SupervisedExtend.

4.3 Evaluation Metrics

For event detection, we use standard precision, re-
call and F1 metrics. For event co-reference, we
compare all systems using standard F1 metrics:
MUC (Vilain et al., 1995), B3 (Bagga and Baldwin,
1998), Entity-based CEAF (CEAFe) (Luo, 2005)
and BLANC (Recasens and Hovy, 2011). We use
the average scores (AVG) of these four metrics as
the main comparison metric.10

4.4 Results for Event detection

The performance comparison for event detection is
presented in Table 4. On both ACE and TAC-
KBP, parameters of SSED are tuned on a develop-
ment set (20% of randomly sampled training doc-
uments). The cut-off threshold for MSEP-EMD
is tuned on the 172 event examples ahead of time
by optimizing the F1 score on the event seed ex-
amples. Note that different text-vector conversion
methods lead to different cut-off thresholds, but they
remain fixed for all the test corpus. Results show
that SSED achieves state-of-the-art performance.
Though MSEP-EMD’s performance is below the
best supervised system, it is very competitive. Note
that both SSED and MSEP-EMD use SRL predi-
cates as input and thus can further improve with a
better SRL module.

4.5 Results for Event Co-reference

The performance of different systems for event co-
reference based on gold event triggers is shown in
Table 5. The co-reference cut-off threshold is tuned
by optimizing the CoNLL average score on ten se-

8It is only designed for ESA because the ESA vector for
two concatenated text fragments is different from the sum of the
ESA vectors of individual text fragments, unlike other methods.

9We add the best event vector representation empirically.
10We use the latest scorer (v1.7) provided by TAC-2015

Event Nugget Evaluation for all metrics.

397

ACE (Test Data) Precision Recall F1

Span
DMCNN 80.4 67.7 73.5

SSED 76.6 71.5 74.0
MSEP-EMD 75.6 69.8 72.6

Span+Type
DMCNN 75.6 63.6 69.1

SSED 71.3 66.5 68.8
MSEP-EMD 70.4 65.0 67.6

TAC-KBP (Test Data) Precision Recall F1

Span
SSED 77.2 55.9 64.8

TAC-TOP — — 65.3
MSEP-EMD 76.5 54.5 63.5

Span+Type
SSED 69.9 48.8 57.5

TAC-TOP — — 58.4
MSEP-EMD 69.2 47.8 56.6

Table 4: Event detection (trigger identification)
results. “Span”/“Type” means span/type match re-
spectively.

lected ACE documents. The threshold is then fixed,
thus we do not change it when evaluating on the
TAC-KBP corpus. As we do cross-validation on
ACE, we exclude these ten documents from test at
all times.11 Results show that the proposed MSEP
event co-reference system significantly outperforms
baselines and achieves the same level of perfor-
mance of supervised methods (82.9 v.s. 83.3 on
ACE and 73.8 v.s. 74.4 on TAC-KBP). MSEP
achieves better results on B3 and CEAFe than su-
pervised methods. Note that supervised methods
usually generate millions of features (2.5M on ACE
and 1.8M on TAC-KBP for SupervisedBase). In con-
trast, MSEP only has several thousands of non-zero
dimensions in event representations. This means
that our structured vector representations, through
derived without explicit annotations, are far more
expressive than traditional features. When we add
the event vector representation (augmented ESA) as
features in SupervisedExtend, we improve the overall
performance by more than 1 point. When tested in-
dividually, DEP performs the best among the four
text-vector conversion methods while BC performs
the worst. A likely reason is that BC has too few di-

11We regard this tuning procedure as “independent” and
“ahead of time” because of the following reasons: 1) We could
have used as threshold-tuning co-reference examples a few
news documents from other sources; we just use ACE doc-
uments as a data source for simplicity. 2) We believe that
the threshold only depends on event representation (the model)
rather than data. 3) Tuning a single decision threshold is much
cheaper than tuning a whole set of model parameters.

mensions while DEP constructs the longest vector.
However, the results show that our augmented ESA
representation (Fig. 2) achieves even better results.

When we use knowledge to detect conflicting
events during inference, the system further im-
proves. Note that event arguments for the proposed
MSEP are predicted by SRL. We show that replac-
ing them with gold event arguments, only slightly
improves the overall performance, indicating that
SRL arguments are robust enough for the event co-
reference task.

4.6 End-to-End Event Co-reference Results

Table 6 shows the performance comparison for end-
to-end event co-reference. We use both SSED and
MSEP-EMD as event detection modules and we
evaluate on standard co-reference metrics. Results
on TAC-KBP show that “SSED+SupervisedExtend”
achieves similar performance to the TAC top ranking
system while the proposed MSEP event co-reference
module helps to outperform supervised methods on
B3 and CEAFe metrics.

4.7 Domain Transfer Evaluation

To demonstrate the superiority of the adaptation ca-
pabilities of the proposed MSEP system, we test its
performance on new domains and compare with the
supervised system. TAC-KBP corpus contains two
genres: newswire (NW) and discussion forum (DF),
and they have roughly equal number of documents.
When trained on NW and tested on DF, supervised
methods encounter out-of-domain situations. How-
ever, the MSEP system can adapt well.12 Table 7
shows that MSEP outperforms supervised methods
in out-of-domain situations for both tasks. The dif-
ferences are statistically significant with p < 0.05.

5 Related Work

Event detection has been studied mainly in the
newswire domain as the task of detecting event trig-
gers and determining event types and arguments.
Most earlier work has taken a pipeline approach
where local classifiers identify triggers first, and
then arguments (Ji and Grishman, 2008; Liao and

12Note that the supervised method needs to be re-trained and
its parameters re-tuned while MSEP does not need training and
its cut-off threshold is fixed ahead of time using event examples.

398

ACE (Cross-Validation) MUC B3 CEAFe BLANC AVG

Supervised

Graph — — 84.5 — —
Joint 74.8 92.2 87.0 — —
SupervisedBase 73.6 91.6 85.9 82.2 83.3
SupervisedExtend 74.9 92.8 87.1 83.8 84.7

Unsupervised
Type+SharedMen 59.1 83.2 76.0 72.9 72.8
HDP-Coref — 83.8 76.7 — —

MSEP

MSEP-CorefESA 65.9 91.5 85.3 81.8 81.1
MSEP-CorefBC 65.0 89.8 83.7 80.9 79.9
MSEP-CorefW2V 65.1 90.1 83.6 81.5 80.1
MSEP-CorefDEP 65.9 92.3 85.6 81.5 81.3
MSEP-CorefESA+AUG 67.4 92.6 86.0 82.6 82.2
MSEP-CorefESA+AUG+KNOW 68.0 92.9 87.4 83.2 82.9
MSEP-CorefESA+AUG+KNOW (GA) 68.8 92.5 87.7 83.4 83.1

TAC-KBP (Test Data) MUC B3 CEAFe BLANC AVG

Supervised
TAC-TOP — — — — 75.7
SupervisedBase 63.8 83.8 75.8 74.0 74.4
SupervisedExtend 65.3 84.7 76.8 75.1 75.5

Unsupervised Type+SharedMen 56.4 77.5 69.6 68.7 68.1

MSEP

MSEP-CorefESA 57.7 83.9 76.9 72.9 72.9
MSEP-CorefBC 56.9 81.8 76.2 71.7 71.7
MSEP-CorefW2V 57.2 82.1 75.9 72.3 71.9
MSEP-CorefDEP 58.2 83.3 76.7 72.8 72.8
MSEP-CorefESA+AUG 59.0 84.5 77.3 72.5 73.3
MSEP-CorefESA+AUG+KNOW 59.9 84.9 77.3 73.1 73.8
MSEP-CorefESA+AUG+KNOW (GA) 60.5 84.0 77.7 73.5 73.9

Table 5: Event Co-reference Results on Gold Event Triggers. “MSEP-CorefESA,BC,W2V,DEP” are varia-
tions of the proposed MSEP event co-reference system using ESA, Brown Cluster, Word2Vec and Depen-
dency Embedding representations respectively. “MSEP-CorefESA+AUG” uses augmented ESA event vec-
tor representation and “MSEP-CorefESA+AUG+KNOW” applies knowledge to detect conflicting events. (GA)
means that we use gold event arguments instead of approximated ones from SRL.

Grishman, 2010; Hong et al., 2011; Huang and
Riloff, 2012a; Huang and Riloff, 2012b). Li et
al. (2013) presented a structured perceptron model
to detect triggers and arguments jointly. Attempts
have also been made to use a Distributional Seman-
tic Model (DSM) to represent events (Goyal et al.,
2013). A shortcoming of DSMs is that they ignore
the structure within the context, thus reducing the
distribution to a bag of words. In our work, we pre-
serve event structure via structured vector represen-
tations constructed from event components.

Event co-reference is much less studied in com-
parison to the large body of work on entity co-
reference. Our work follows the event co-reference
definition in Hovy et al. (2013). All previous work
on event co-reference except Cybulska and Vossen
(2012) deals only with full co-reference. Early
works (Humphreys et al., 1997; Bagga and Baldwin,
1999) performed event co-reference on scenario spe-

cific events. Both Naughton (2009) and Elkhlifi and
Faiz (2009) worked on sentence-level co-reference,
which is closer to the definition of Danlos and Gaiffe
(2003). Pradhan et al. (2007) dealt with both entity
and event coreference by taking a three-layer ap-
proach. Chen and Ji (2009) proposed a clustering
algorithm using a maximum entropy model with a
range of features. Bejan and Harabagiu (2010) built
a class of nonparametric Bayesian models using a
(potentially infinite) number of features to resolve
both within and cross document event co-reference.
Lee et al. (2012) formed a system with determinis-
tic layers to make co-reference decisions iteratively
while jointly resolving entity and event co-reference.
More recently, Hovy et al. (2013) presented an un-
supervised model to capture semantic relations and
co-reference resolution, but they did not show quan-
titatively how well their system performed in each of
these two cases. Huang et al. (2016) also considered

399

ACE (Cross-Validation) MUC B3 CEAFe BLANC AVG
SSED + SupervisedExtend 47.1 59.9 58.7 44.4 52.5
SSED + MSEP-CorefESA+AUG+KNOW 42.1 60.3 59.0 44.1 51.4
MSEP-EMD + MSEP-CorefESA+AUG+KNOW 40.2 58.6 57.4 43.8 50.0

TAC-KBP (Test Data) MUC B3 CEAFe BLANC AVG
TAC-TOP — — — — 39.1
SSED + SupervisedExtend 34.9 44.2 39.6 37.1 39.0
SSED + MSEP-CorefESA+AUG+KNOW 33.1 44.6 39.7 36.8 38.5
MSEP-EMD + MSEP-CorefESA+AUG+KNOW 30.2 43.9 38.7 35.7 37.1

Table 6: Event Co-reference End-To-End Results.

Train Test MSEP Supervised
Event Detection Span+Type F1
In Domain NW NW 58.5 63.7
Out of Domain DF NW 55.1 54.8
In Domain DF DF 57.9 62.6
Out of Domain NW DF 52.8 52.3
Event Co-reference AVG F1
In Domain NW NW 73.2 73.6
Out of Domain DF NW 71.0 70.1
In Domain DF DF 68.6 68.9
Out of Domain NW DF 67.9 67.0

Table 7: Domain Transfer Results. We con-
duct the evaluation on TAC-KBP corpus with the
split of newswire (NW) and discussion form (DF)
documents. Here, we choose MSEP-EMD and
MSEP-CorefESA+AUG+KNOW as the MSEP approach
for event detection and co-reference respectively.
We use SSED and SupervisedBase as the supervised
modules for comparison. For event detection, we
compare F1 scores of span plus type match while we
report the average F1 scores for event co-reference.

the problem of event clustering. They represented
event structures based on AMR (Abstract Meaning
Representation) and distributional semantics, and
further generated event schemas composing event
triggers and argument roles. Recently, TAC has or-
ganized Event Nugget Detection and Co-reference
Evaluations, resulting in interesting works, some of
which contributed to our comparisons (Liu et al.,
2015; Mitamura et al., 2015; Hsi et al., 2015; Sam-
mons et al., 2015).

6 Conclusion

This paper proposes a novel event detection and
co-reference approach with minimal supervision,
addressing some of the key issues slowing down
progress in research on events, including the dif-

ficulty to annotate events and their relations. At
the heart of our approach is the design of struc-
tured vector representations for events which, as we
show, supports a good level of generalization within
and across domains. The resulting approach outper-
forms state-of-art supervised methods on some of
the key metrics, and adapts significantly better to
a new domain. One of the key research directions
is to extend this unsupervised approach to a range
of other relations among events, including temporal
and causality relations, as is (Do et al., 2011; Do et
al., 2012).

Acknowledgments

The authors would like to thank Eric Horn for
comments that helped to improve this work. This
material is based on research sponsored by the
US Defense Advanced Research Projects Agency
(DARPA) under agreements FA8750-13-2-000 and
HR0011-15-2-0025. The U.S. Government is autho-
rized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright
notation thereon. The views and conclusions con-
tained herein are those of the authors and should
not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or
implied, of DARPA or the U.S. Government.

References

A. Bagga and B. Baldwin. 1998. Algorithms for scoring
coreference chains. In MUC-7.

A. Bagga and B. Baldwin. 1999. Cross-document event
coreference: Annotations, experiments, and observa-
tions. In Proceedings of the Workshop on Coreference
and its Applications.

C. A. Bejan and S. Harabagiu. 2010. Unsupervised event

400

coreference resolution with rich linguistic features. In
ACL.

E. Bengtson and D. Roth. 2008. Understanding the value
of features for coreference resolution. In EMNLP.

O. Bronstein, I. Dagan, Q. Li, H. Ji, and A. Frank. 2015.
Seed-based event trigger labeling: How far can event
descriptions get us? In ACL.

P. Brown, V. Della Pietra, P. deSouza, J. Lai, and R. Mer-
cer. 1992. Class-based n-gram models of natural lan-
guage. Computational Linguistics.

M. Chang, L. Ratinov, D. Roth, and V. Srikumar. 2008.
Importance of semantic represenation: Dataless clas-
sification. In AAAI.

Z. Chen and H. Ji. 2009. Graph-based event coreference
resolution. In Proceedings of the Workshop on Graph-
based Methods for Natural Language Processing.

Z. Chen, H. Ji, and R. Haralick. 2009. A pairwise event
coreference model, feature impact and evaluation for
event coreference resolution. In Proceedings of the
Workshop on Events in Emerging Text Types.

Y. Chen, L. Xu, K. Liu, D. Zeng, and J. Zhao. 2015.
Event extraction via dynamic multi-pooling convolu-
tional neural networks. In ACL.

X. Cheng and D. Roth. 2013. Relational inference for
wikification. In EMNLP.

A. Cybulska and P. Vossen. 2012. Using semantic rela-
tions to solve event coreference in text. In Proceedings
of the Workshop on Semantic relations.

L. Danlos and B. Gaiffe. 2003. Event coreference and
discourse relations. Philosophical Studies Series.

Q. Do, Y. S. Chan, and D. Roth. 2011. Minimally super-
vised event causality extraction. In EMNLP.

Q. Do, W. Lu, and D. Roth. 2012. Joint inference for
event timeline construction. In EMNLP.

A. Elkhlifi and R. Faiz. 2009. Automatic annotation ap-
proach of events in news articles. International Jour-
nal of Computing & Information Sciences.

Evgeniy Gabrilovich and Shaul Markovitch. 2009.
Wikipedia-based semantic interpretation for natural
language processing. J. Artif. Int. Res., 34(1):443–
498, March.

K. Goyal, S. K. Jauhar, H. Li, M. Sachan, S. Srivastava,
and E. Hovy. 2013. A structured distributional seman-
tic model for event co-reference. In ACL.

Y. Hong, J. Zhang, B. Ma, J. Yao, G. Zhou, and Q. Zhu.
2011. Using cross-entity inference to improve event
extraction. In ACL.

E. Hovy, T.o Mitamura, F. Verdejo, J. Araki, and
A. Philpot. 2013. Events are not simple: Identity,
non-identity, and quasi-identity. In NAACL-HLT.

A. Hsi, J. Carbonell, and Y. Yang. 2015. Modeling event
extraction via multilingual data sources. In TAC.

R. Huang and E. Riloff. 2012a. Bootstrapped training of
event extraction classifiers. In EACL.

R. Huang and E. Riloff. 2012b. Modeling textual cohe-
sion for event extraction. In AAAI.

L. Huang, T. Cassidy, X. Feng, H. Ji, C. R. Voss, J. Han,
and A. Sil. 2016. Liberal event extraction and event
schema induction. In ACL.

K. Humphreys, R. Gaizauskas, and S. Azzam. 1997.
Event coreference for information extraction. In Pro-
ceedings of Workshop on Operational Factors in Prac-
tical, Robust Anaphora Resolution for Unrestricted
Texts.

H. Ji and R. Grishman. 2008. Refining event extraction
through cross-document inference. In ACL.

H. Lee, M. Recasens, A. Chang, M. Surdeanu, and D. Ju-
rafsky. 2012. Joint entity and event coreference reso-
lution across documents. In EMNLP.

O. Levy and Y. Goldberg. 2014. Dependencybased word
embeddings. In ACL.

Q. Li, H. Ji, and L. Huang. 2013. Joint event extraction
via structured prediction with global features. In ACL.

S. Liao and R. Grishman. 2010. Using document level
cross-event inference to improve event extraction. In
ACL.

Z. Liu, T. Mitamura, and E. Hovy. 2015. Evaluation al-
gorithms for event nugget detection: A pilot study. In
Proceedings of the Workshop on Events at the NAACL-
HLT.

X. Luo. 2005. On coreference resolution performance
metrics. In EMNLP.

T. Mikolov, W. Yih, and G. Zweig. 2013. Linguistic
regularities in continuous space word representations.
In NAACL.

T. Mitamura, Y. Yamakawa, S. Holm, Z. Song, A. Bies,
S. Kulick, and S. Strassel. 2015. Event nugget an-
notation: Processes and issues. In Proceedings of the
Workshop on Events at NAACL-HLT.

M. Naughton. 2009. Sentence Level Event Detection and
Coreference Resolution. Ph.D. thesis, National Uni-
versity of Ireland, Dublin.

V. Ng and C. Cardie. 2002. Improving machine learning
approaches to coreference resolution. In ACL.

NIST. 2005. The ACE evaluation plan.
S. Pradhan, L. Ramshaw, R. Weischedel, J. MacBride,

and L. Micciulla. 2007. Unrestricted coreference:
Identifying entities and events in ontonotes. In ICSC.

V. Punyakanok, D. Roth, W. Yih, and D. Zimak. 2004.
Semantic role labeling via integer linear programming
inference. In COLING.

M. Recasens and E. Hovy. 2011. Blanc: Implement-
ing the rand index for coreference evaluation. Natural
Language Engineering, 17(04):485–510.

401

M. Sammons, H. Peng, Y. Song, S. Upadhyay, C.-T. Tsai,
P. Reddy, S. Roy, and D. Roth. 2015. Illinois ccg tac
2015 event nugget, entity discovery and linking, and
slot filler validation systems. In TAC.

Y. Song and D. Roth. 2014. On dataless hierarchical text
classification. In AAAI.

V. Stoyanov, C. Cardie, N. Gilbert, E. Riloff, D. Buttler,
and D. Hysom. 2010. Coreference resolution with
reconcile. In ACL.

M. Vilain, J. Burger, J. Aberdeen, D. Connolly, and
L. Hirschman. 1995. A model-theoretic coreference
scoring scheme. In Proceedings of the 6th conference
on Message understanding.

R. Zhao, Q. Do, and D. Roth. 2012. A robust shallow
temporal reasoning system. In North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT Demo).

402

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 403–413,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning Term Embeddings for Taxonomic Relation Identification Using
Dynamic Weighting Neural Network

Luu Anh Tuan
Institute for Infocomm Research, Singapore

at.luu@i2r.a-star.edu.sg

Yi Tay
Nanyang Technological University

ytay2@e.ntu.edu.sg

Siu Cheung Hui
Nanyang Technological University

asschui@ntu.edu.sg

See Kiong Ng
Institute for Infocomm Research, Singapore

skng@i2r.a-star.edu.sg

Abstract
Taxonomic relation identification aims to rec-
ognize the ‘is-a’ relation between two terms.
Previous works on identifying taxonomic re-
lations are mostly based on statistical and lin-
guistic approaches, but the accuracy of these
approaches is far from satisfactory. In this pa-
per, we propose a novel supervised learning
approach for identifying taxonomic relations
using term embeddings. For this purpose, we
first design a dynamic weighting neural net-
work to learn term embeddings based on not
only the hypernym and hyponym terms, but
also the contextual information between them.
We then apply such embeddings as features
to identify taxonomic relations using a super-
vised method. The experimental results show
that our proposed approach significantly out-
performs other state-of-the-art methods by 9%
to 13% in terms of accuracy for both general
and specific domain datasets.

1 Introduction

Taxonomies which serve as the backbone of struc-
tured knowledge are useful for many NLP applica-
tions such as question answering (Harabagiu et al.,
2003) and document clustering (Fodeh et al., 2011).
However, the hand-crafted, well-structured tax-
onomies including WordNet (Miller, 1995), Open-
Cyc (Matuszek et al., 2006) and Freebase (Bol-
lacker et al., 2008) that are publicly available may
not be complete for new or specialized domains. It
is also time-consuming and error prone to identify
taxonomic relations manually. As such, methods
for automatic identification of taxonomic relations
is highly desirable.

The previous methods for identifying taxonomic
relations can be generally classified into two cate-
gories: statistical and linguistic approaches. The sta-
tistical approaches rely on the idea that frequently
co-occurring terms are likely to have taxonomic re-
lationships. While such approaches can result in
taxonomies with relatively high coverage, they are
usually heavily dependent on the choice of feature
types, and suffer from low accuracy. The linguis-
tic approaches which are based on lexical-syntactic
patterns (e.g. ‘A such as B’) are simple and efficient.
However, they usually suffer from low precision and
coverage because the identified patterns are unable
to cover the wide range of complex linguistic struc-
tures, and the ambiguity of natural language com-
pounded by data sparsity makes these approaches
less robust.

Word embedding (Bengio et al., 2001), also
known as distributed word representation, which
represents words with high-dimensional and real-
valued vectors, has been shown to be effective in
exploring both linguistic and semantic relations be-
tween words. In recent years, word embedding has
been used quite extensively in NLP research, rang-
ing from syntactic parsing (Socher et al., 2013a),
machine translation (Zou et al., 2013) to senti-
ment analysis (Socher et al., 2013b). The cur-
rent methods for learning word embeddings have
focused on learning the representations from word
co-occurrence so that similar words will have simi-
lar embeddings. However, using the co-occurrence
based similarity learning alone is not effective for
the purpose of identifying taxonomic relations.

Recently, Yu et al. (2015) proposed a super-

403

vised method to learn term embeddings based on
pre-extracted taxonomic relation data. However, this
method is heavily dependent on the training data to
discover all taxonomic relations, i.e. if a pair of
terms is not in the training set, it may become a
negative example in the learning process, and will
be classified as a non-taxonomic relation. The de-
pendency on training data is a huge drawback of the
method as no source can guarantee that it can cover
all possible taxonomic relations for learning. More-
over, the recent studies (Velardi et al., 2013; Levy
et al., 2014; Tuan et al., 2015) showed that contex-
tual information between hypernym and hyponym is
an important indicator to detect taxonomic relations.
However, the term embedding learning method pro-
posed in (Yu et al., 2015) only learns through the
pairwise relations of terms without considering the
contextual information between them. Therefore,
the resultant quality is not good in some specific do-
main areas.

In this paper, we propose a novel approach to
learn term embeddings based on dynamic weight-
ing neural network to encode not only the informa-
tion of hypernym and hyponym, but also the con-
textual information between them for the purpose
of taxonomic relation identification. We then ap-
ply the identified embeddings as features to find the
positive taxonomic relations using the supervised
method SVM. The experimental results show that
our proposed term embedding learning approach
outperforms other state-of-the-art embedding learn-
ing methods for identifying taxonomic relations
with much higher accuracy for both general and spe-
cific domains. In addition, another advantage of
our proposed approach is that it is able to general-
ize from the training dataset the taxonomic relation
properties for unseen pairs. Thus, it can recognize
some true taxonomic relations which are not even
defined in dictionary and training data. For the rest
of this paper, we will discuss the proposed term em-
bedding learning approach and its performance re-
sults.

2 Related work

Previous works on taxonomic relation identification
can be roughly divided into two main approaches of
statistical learning and linguistic pattern matching.

Statistical learning methods include co-occurrence
analysis (Lawrie and Croft, 2003), hierarchical la-
tent Dirichlet allocation (LDA) (Blei et al., 2004;
Petinot et al., 2011), clustering (Li et al., 2013), lin-
guistic feature-based semantic distance learning (Yu
et al., 2011), distributional representation (Roller et
al., 2014; Weeds et al., 2014; Kruszewski et al.,
2015) and co-occurrence subnetwork mining (Wang
et al., 2013). Supervised statistical methods (Petinot
et al., 2011) rely on hierarchical labels to learn the
corresponding terms for each label. These methods
require labeled training data which is costly and not
always available in practice. Unsupervised statis-
tical methods (Pons-Porrata et al., 2007; Li et al.,
2013; Wang et al., 2013) are based on the idea that
terms that frequently co-occur may have taxonomic
relationships. However, these methods generally
achieve low accuracies.

Linguistic approaches rely on lexical-syntactic
patterns (Hearst, 1992) (e.g. ‘A such as B’) to cap-
ture textual expressions of taxonomic relations, and
match them with the given documents or Web in-
formation to identify the relations between a term
and its hypernyms (Kozareva and Hovy, 2010; Nav-
igli et al., 2011; Wentao et al., 2012). These pat-
terns can be manually created (Kozareva and Hovy,
2010; Wentao et al., 2012) or automatically identi-
fied (Snow et al., 2004; Navigli et al., 2011). Such
liguistic pattern matching methods can generally
achieve higher precision than the statistical methods,
but they suffer from lower coverage. To balance the
precision and recall, Zhu et al. (2013) and Tuan et
al. (2014) have combined both unsupervised statis-
tical and linguistic methods for finding taxonomic
relations.

In recent years, there are a few studies on tax-
onomic relation identification using word embed-
dings such as the work of Tan et al. (2015) and Fu
et al. (2014). These studies are based on word em-
beddings from the Word2Vec model (Mikolov et al.,
2013a), which is mainly optimized for the purpose
of analogy detection using co-occurrence based sim-
ilarity learning. As such, these studies suffer from
poor performance on low accuracy for taxonomic re-
lation identification.

The approach that is closest to our work is the one
proposed by Yu et al. (2015), which also learns term
embeddings for the purpose of taxonomic relation

404

identification. In the approach, a distance-margin
neural network is proposed to learn term embed-
dings based on the pre-extracted taxonomic relations
from the Probase database (Wentao et al., 2012).
However, the neural network is trained using only
the information of the term pairs (i.e. hypernym and
hyponym) without considering the contextual infor-
mation between them, which has been shown to be
an important indicator for identifying taxonomic re-
lations from previous studies (Velardi et al., 2013;
Levy et al., 2014; Tuan et al., 2014). Moreover, if
a pair of terms is not contained in the training set,
there is high possibility that it will become a nega-
tive example in the learning process, and will likely
be recognized as a non-taxonomic relation. The key
assumption behind the design of this approach is not
always true as no available dataset can possibly con-
tain all taxonomic relations.

3 Methodology

In this section, we first propose an approach for
learning term embeddings based on hypernym, hy-
ponym and the contextual information between
them. We then discuss a supervised method for iden-
tifying taxonomic relations based on the term em-
beddings.

3.1 Learning term embeddings
As shown in Figure 1, there are three steps for learn-
ing term embeddings: (i) extracting taxonomic rela-
tions; (ii) extracting training triples; and (iii) training
neural network. First, we extract from WordNet all
taxonomic relations as training data. Then, we ex-
tract from Wikipedia all sentences which contain at
least one pair of terms involved in a taxonomic rela-
tion in the training data, and from that we identify
the triples of hypernym, hyponym and contextual
words between them. Finally, using the extracted
triples as input, we propose a dynamic weighting
neural network to learn term embeddings based on
the information of these triples.

3.1.1 Extracting taxonomic relations
This step aims to extract a set of taxonomic re-

lations for training. For this purpose, we use Word-
Net hierarchies for extracting all (direct and indirect)
taxonomic relations between noun terms in Word-
Net. However, based on our experience, the rela-

Extracting taxonomic
relations

Extracting training
triples

Training neural network

Set of taxonomic
relations

Set of
training triples

Term embeddings

Figure 1: Proposed approach for learning term embeddings.

tions involving with top-level terms such as ‘object’,
‘entity’ or ‘whole’ are usually ambiguous and be-
come noise for the learning purpose. Therefore, we
exclude from the training set all relations which in-
volve with those top-level terms. Note that we also
exclude from training set all taxonomic relations that
are happened in the datasets used for testing in Sec-
tion 4.1. As a result, the total number of extracted
taxonomic relations is 236,058.

3.1.2 Extracting training triples

This step aims to extract the triples of hypernym,
hyponym and the contextual words between them.
These triples will serve as the inputs to the neural
network for training. In this research, we define
contextual words as all words located between the
hypernym and hyponym in a sentence. We use the
latest English Wikipedia corpus as the source for ex-
tracting such triples.

Using the set of taxonomic relations extracted
from the first step as reference, we extract from
the Wikipedia corpus all sentences which contain
at least two terms involved in a taxonomic relation.
Specifically, for each sentence, we use the Stanford
parser (Manning et al., 2014) to parse it, and check
whether there is any pair of terms which are nouns
or noun phrases in the sentence having a taxonomic
relationship. If yes, we extract the hypernym, hy-
ponym and all words between them from the sen-

405

tence as a training triple. In total, we have extracted
15,499,173 training triples from Wikipedia.

Here, we apply the Stanford parser rather than
matching the terms directly in the sentence in order
to avoid term ambiguity as a term can serve for dif-
ferent grammatical functions such as noun or verb.
For example, consider the following sentence:

• Many supporters book tickets for the premiere
of his new publication.

The triple (‘publication’, ‘book’, ‘tickets for the pre-
miere of his new’) may be incorrectly added to the
training set due to the occurrence of the taxonomic
pair (‘publication’, ‘book’), even though the mean-
ing of ‘book’ in this sentence is not about the ‘pub-
lication’.

3.1.3 Training neural network
Contextual information is an important indicator

for detecting taxonomic relations. For example, in
the following two sentences:

• Dog is a type of animal which you can have as
a pet.
• Animal such as dog is more sensitive to sound

than human.

The occurrence of contextual words ‘is a type of’
and ‘such as’ can be used to identify the taxo-
nomic relation between ’dog’ and ’animal’ in the
sentences. Many works in the literature (Kozareva
and Hovy, 2010; Navigli et al., 2011; Wentao et al.,
2012) attempted to manually find these contextual
patterns, or automatically learn them. However, due
to the wide range of complex linguistic structures,
it is difficult to discover all possible contextual pat-
terns between hypernyms and hyponyms in order to
detect taxonomic relations effectively.

In this paper, instead of explicitly discovering the
contextual patterns of taxonomic relations, we pro-
pose a dynamic weighting neural network to encode
this information, together with the hypernym and
hyponym, for learning term embeddings. Specifi-
cally, the target of the neural network is to predict
the hypernym term from the given hyponym term
and contextual words. The architecture of the pro-
posed neural network is shown in Figure 2, which
consists of three layers: input layer, hidden layer and
output layer.

In our setting, the vocabulary size is V , and the
hidden layer size is N . The nodes on adjacent lay-
ers are fully connected. Given a term/word t in the
vocabulary, the input vector of t is encoded as a
one-hot V -dimensional vector xt, i.e. xt consists
of 0s in all elements except the element used to
uniquely identify t which is set as 1. The weights
between the input layer and output layer are repre-
sented by a V×N matrix W . Each row of W is a
N -dimensional vector representation vt of the asso-
ciated word/term t of the input layer.

Given a hyponym term hypo and k context words
c1, c2, .., ck in the training triple, the output of hid-
den layer h is calculated as:

h =W> · 1

2k
(k × xhypo + xc1 + xc2 + ...+ xck)

=
1

2k
(k × vhypo + vc1 + vc2 + ...+ vck)

(1)

where vt is the vector representation of the input
word/term t.

The weight of h in Equation (1) is calculated as
the average of the vector representation of hyponym
term and contextual words. Therefore, this weight
is not based on a fixed number of inputs. Instead,
it is dynamically updated based on the number of
contextual words k in the current training triple, and
the hyponym term. This model is called dynamic
weighting neural network to reflect its dynamic na-
ture. Note that to calculate h, we also multiply the
vector representation of hyponym by k to reduce the
bias problem of high number of contextual words,
so that the weight of the input vector of hyponym is
balanced with the total weight of contextual words.

From the hidden layer to the output layer, there
is another weight N × V for the output matrix W ′.
Each column of W ′ is a N -dimensional vector v′t
representing the output vector of t. Using these
weights, we can compute an output score ut for each
term/word t in the vocabulary:

ut = v′t
> · h (2)

where v′t is the output vector of t.
We then use soft-max, a log-linear classification

model, to obtain the posterior distribution of hyper-
nym terms as follows:

406

WV x N WV x N WV x N WV x N

W’N x V

Output layer

Hidden layer

Input layer

V-dimension

N-dimension

V-dimension

x hypo x c1 x c2 x ck

h

Figure 2: The architecture of the proposed dynamic weighting neural network model.

p(hype|hypo, c1, c2, .., ck)

=
euhype

∑V
i=1 e

ui

=
ev
′>
hype· 12k (k×vhypo+

∑k
j=1 vcj)

∑V
i=1 e

v′>i · 12k (k×vhypo+
∑k

j=1 vcj)

(3)

The objective function is then defined as:

O =
1

T

T∑

t=1

log(p(hypet|hypot, c1t, c2t, .., ckt))

(4)
where T is the number of training triples; hypet,
hypot and cit are hypernym term, hyponym term
and contextual words respectively in the training
triple t.

After maximizing the log-likelihood objective
function in Equation (4) over the entire training set
using stochastic gradient descent, the term embed-
dings are learned accordingly.

3.2 Supervised taxonomic relation
identification

To decide whether a term x is a hypernym of term
y, we build a classifier that uses embedding vec-
tors as features for taxonomic relation identification.

Specifically, we use Support Vector Machine (SVM)
(Cortes and Vapnik, 1995) for this purpose. Given
an ordered pair (x, y), the input feature is the con-
catenation of embedding vectors (vx,vy) of x and y.
In addition, our term embedding learning approach
has the property that the embedding of hypernym is
encoded based on not only the information of hy-
ponym but also the information of contextual words.
Therefore, we add one more feature to the input of
SVM, i.e. the offset vector (vx − vy), to contain the
information of all contextual words between x and y.
In summary, the feature vector is a 3d dimensional
vector 〈vx, vy, vx − vy〉, where d is the dimension
of term embeddings. As will be shown later in the
experimental results, the offset vector plays an im-
portant role in the task of taxonomic relation identi-
fication of our approach.

4 Experiments

We conduct experiments to evaluate the perfor-
mance of our term embedding learning approach on
the general domain areas as well as the specific do-
main areas. In performance evaluation, we compare
our approach with two other state-of-the-art super-
vised term embedding learning methods in Yu et al.
(2015) and the Word2Vec model (Mikolov et al.,
2013a).

407

4.1 Datasets

There are five datasets used in the experiments. Two
datasets, namely BLESS and ENTAILMENT, are
general domain datasets. The other three datasets,
namely Animal, Plant and Vehicle, are specific do-
main datasets.

• BLESS (Baroni and Lenci, 2011) dataset: It
covers 200 distinct, unambiguous concepts
(terms); each of which is involved with other
terms, called relata, in some relations. We ex-
tract from BLESS 14,547 pairs of terms for the
following four types of relations: taxonomic re-
lation, meronymy relation (a.k.a. part-of rela-
tion), coordinate relation (i.e. two terms hav-
ing the same hypernym), and random relation.
From these pairs, we set taxonomic relations as
positive examples, while other relations form
the negative examples.

• ENTAILMENT dataset (Baroni et al., 2012):
It consists of 2,770 pairs of terms, with equal
number of positive and negative examples of
taxonomic relations. Altogether, there are
1,376 unique hyponyms and 1,016 unique hy-
pernyms.

• Animal, Plant and Vehicle datasets (Velardi et
al., 2013): They are taxonomies constructed
based on the dictionaries and data crawled from
the Web for the corresponding domains. The
positive examples are created by extracting all
possible (direct and indirect) taxonomic rela-
tions from the taxonomies. The negative ex-
amples are generated by randomly pairing two
terms which are not involved in any taxonomic
relation.

The number of terms, positive examples and neg-
ative examples extracted from the five datasets are
summarized in Table 1.

Dataset # terms # positive # negative
BLESS 5229 1337 13210
ENTAILMENT 2392 1385 1385
Animal 659 4164 8471
Plant 520 2266 4520
Vehicle 117 283 586

Table 1: Datasets used in the experiments.

4.2 Comparison models
In the experiments, we use the following supervised
models for comparison:

• SVM+Our: This model uses SVM and the term
embeddings obtained by our learning approach.
The input is a 3d-dimensional vector 〈vx, vy,
vx− vy〉, where d is the dimension of term em-
beddings, x and y are two terms used to check
whether x is a hypernym of y or not, and vx, vy
are the term embeddings of x and y respec-
tively.

• SVM+Word2Vec: This model uses SVM and
the term embeddings obtained by applying the
Skip-gram model (Mikolov et al., 2013a) on
the entire English Wikipedia corpus. The in-
put is also a 3d-dimensional vector as in the
SVM+Our model. Note that the results of the
Skip-gram model are word embeddings. So if a
term is a multiword term, its embedding is cal-
culated as the average of all words in the term.

• SVM+Yu: This model uses SVM and the
term embeddings obtained by using Yu et al.’s
method (2015). According to the best setting
stated in (Yu et al., 2015), the input is a 2d+1
dimensional vector 〈O(x), E(y), ‖O(x)-E(y)‖1〉,
where O(x), E(y) and ‖O(x)-E(y)‖1 are hy-
ponym embedding of x, hypernym embedding
of y and 1-norm distance of the vector (O(x)-
E(y)) respectively.

Parameter settings. The SVM in the three models
is trained using a RBF kernel with λ= 0.03125 and
penalty term C = 8.0. For term embedding learning,
the vector’s dimension is set to 100. The tuning of
the dimension will be discussed in Section 4.6.

4.3 Performance on general domain datasets
For the general domain datasets, we have conducted
two experiments to evaluate the performance of our
proposed approach.

Experiment 1. For the BLESS dataset, we hold out
one concept for testing and train on the remaining
199 concepts. The hold-out concept and its rela-
tum constitute the testing set, while the remaining
199 concepts and their relatum constitute the train-
ing set. To further separate the training and test-
ing sets, we exclude from the training set any pair

408

of terms that has one term appearing in the testing
set. We report the average accuracy across all con-
cepts. For the ENTAILMENT dataset, we use the
same evaluation method: hold out one hypernym for
testing and train on the remaining hypernyms, and
we also report the average accuracy across all hy-
pernyms. Furthermore, to evaluate the effect of the
offset vector to taxonomic relation identification, we
deploy a setting that removes the offset vector in the
feature vectors of SVM. Specifically, for SVM+Our
and SVM+Word2Vec, the input vector is changed
from 〈vx, vy, vx − vy〉 to 〈vx, vy〉. We use the sub-
script short to denote this setting.

Model Dataset Accuracy
SVM+Yu BLESS 90.4%
SVM+Word2Vecshort BLESS 83.8%
SVM+Word2Vec BLESS 84.0%
SVM+Ourshort BLESS 91.1%
SVM+Our BLESS 93.6%
SVM+Yu ENTAIL 87.5%
SVM+Word2Vecshort ENTAIL 82.8%
SVM+Word2Vec ENTAIL 83.3%
SVM+Ourshort ENTAIL 88.2%
SVM+Our ENTAIL 91.7%

Table 2: Performance results for the BLESS and ENTAIL-

MENT datasets.

Table 2 shows the performance of the three su-
pervised models in Experiment 1. Our approach
achieves significantly better performance than Yu’s
method and Word2Vec method in terms of accu-
racy (t-test, p-value < 0.05) for both BLESS and
ENTAILMENT datasets. Specifically, our approach
improves the average accuracy by 4% compared to
Yu’s method, and by 9% compared to the Word2Vec
method. The Word2Vec embeddings have the worst
result because it is based only on co-occurrence
based similarity, which is not effective for the clas-
sifier to accurately recognize all the taxonomic re-
lations. Our approach performs better than Yu’s
method and it shows that our approach can learn em-
beddings more effectively. Our approach encodes
not only hypernym and hyponym terms but also the
contextual information between them, while Yu’s
method ignores the contextual information for tax-
onomic relation identification.

Moreover, from the experimental results of
SVM+Our and SVM+Ourshort, we can observe that

the offset vector between hypernym and hyponym,
which captures the contextual information, plays an
important role in our approach as it helps to improve
the performance in both datasets. However, the off-
set feature is not so important for the Word2Vec
model. The reason is that the Word2Vec model is
targeted for the analogy task rather than taxonomic
relation identification.

Experiment 2. This experiment aims to evaluate the
generalization capability of our extracted term em-
beddings. In the experiment, we train the classifier
on the BLESS dataset, test it on the ENTAILMENT
dataset and vice versa. Similarly, we exclude from
the training set any pair of terms that has one term
appearing in the testing set. The experimental results
in Table 3 show that our term embedding learning
approach performs better than other methods in ac-
curacy. It also shows that the taxonomic properties
identified by our term embedding learning approach
have great generalization capability (i.e. less depen-
dent on the training set), and can be used generically
for representing taxonomic relations.

Model Training Testing Accuracy

SVM+Yu BLESS ENTAIL 83.7%
SVM+Word2Vecshort BLESS ENTAIL 76.5%
SVM+Word2Vec BLESS ENTAIL 77.1%
SVM+Ourshort BLESS ENTAIL 85.8%
SVM+Our BLESS ENTAIL 89.4%
SVM+Yu ENTAIL BLESS 87.1%
SVM+Word2Vecshort ENTAIL BLESS 78.0%
SVM+Word2Vec ENTAIL BLESS 78.9%
SVM+Ourshort ENTAIL BLESS 87.1%
SVM+Our ENTAIL BLESS 90.6%

Table 3: Performance results for the general domain datasets

when using one domain for training and another domain for

testing.

4.4 Performance on specific domain datasets

Similarly, for the specific domain datasets, we have
conducted two experiments to evaluate the perfor-
mance of our proposed approach.

Experiment 3. For each of the Animal, Plant and
Vehicle datasets, we also hold out one term for test-
ing and train on the remaining terms. The posi-
tive and negative examples which contain the hold-
out term constitute the testing set, while other pos-
itive and negative examples constitute the training

409

set. We also exclude from the training set any pair
of terms that has one term appearing in the test-
ing set. The experimental results are given in Ta-
ble 4. We can observe that not only for general do-
main datasets but also for specific domain datasets,
our term embedding learning approach has achieved
significantly better performance than Yu’s method
and the Word2Vec method in terms of accuracy (t-
test, p-value < 0.05). Specifically, our approach im-
proves the average accuracy by 22% compared to
Yu’s method, and by 9% compared to the Word2Vec
method.

Model Dataset Accuracy
SVM+Yu Animal 67.8%
SVM+Word2Vec Animal 80.2%
SVM+Our Animal 89.3%
SVM+Yu Plant 65.7%
SVM+Word2Vec Plant 81.5%
SVM+Our Plant 92.1%
SVM+Yu Vehicle 70.5%
SVM+Word2Vec Vehicle 82.1%
SVM+Our Vehicle 89.6%

Table 4: Performance results for the Animal, Plant and Vehicle

datasets.

Another interesting point to observe is that the ac-
curacy of Yu’s method drops significantly in spe-
cific domain datasets (as shown in Table 4) when
compared to the general domain datasets (as shown
in Table 2). One possible explanation is the accu-
racy of Yu’s method depends on the training data.
As Yu’s method learns the embeddings using pre-
extracted taxonomic relations from Probase, and if a
relation does not exist in Probase, there is high pos-
sibility that it becomes a negative example and be
recognized as a non-taxonomic relation by the clas-
sifier. Therefore, the training data extracted from
Probase plays an important role in Yu’s method.
For general domain datasets (BLESS and ENTAIL-
MENT), there are about 75%-85% of taxonomic re-
lations in these datasets found in Probase, while
there are only about 25%-45% of relations in the
specific domains (i.e. Animal, Plant and Vehicle)
found in Probase. Therefore, Yu’s method achieves
better performance in general domain datasets than
the specific ones. Our approach, in contrast, less de-
pends on the training relations. Therefore, it can
achieve high accuracy in both the general and spe-

cific domain datasets.

Experiment 4. Similar to experiment 2, this ex-
periment aims to evaluate the generalization capa-
bility of our term embeddings. In this experiment,
for each of the Animal, Plant and Vehicle domains,
we train the classifier using the positive and nega-
tive examples in each domain and test the classifier
in other domains. The experimental results in Table
5 show that our approach achieves the best perfor-
mance compared to other state-of-the-art methods
for all the datasets. As also shown in Table 3, our ap-
proach has achieved high accuracy for both general
and specific domain datasets, while in Yu’s method,
there is a huge difference in accuracy between these
domain datasets.

Model Training Testing Accuracy
SVM+Yu Animal Plant 65.5%
SVM+Word2Vec Animal Plant 82.4%
SVM+Our Animal Plant 91.9%
SVM+Yu Animal Vehicle 66.2%
SVM+Word2Vec Animal Vehicle 81.3%
SVM+Our Animal Vehicle 89.5%
SVM+Yu Plant Animal 68.4%
SVM+Word2Vec Plant Animal 81.8%
SVM+Our Plant Animal 91.5%
SVM+Yu Plant Vehicle 65.2%
SVM+Word2Vec Plant Vehicle 81.0%
SVM+Our Plant Vehicle 88.5%
SVM+Yu Vehicle Animal 70.9%
SVM+Word2Vec Vehicle Animal 79.7%
SVM+Our Vehicle Animal 87.6%
SVM+Yu Vehicle Plant 66.2%
SVM+Word2Vec Vehicle Plant 78.7%
SVM+Our Vehicle Plant 87.7%

Table 5: Performance results for the specific domain datasets

when using one domain for training and another domain for

testing.

4.5 Empirical comparison with WordNet
By error analysis, we found that our results may
complement WordNet. For example, in the Animal
domain, our approach identifies ‘wild sheep’ as a
hyponym of ‘sheep’, but in WordNet, they are sib-
lings. However, many references 1, 2 consider ‘wild
sheep’ as a species of ‘sheep’. Another such ex-
ample is shown in the Plant domain, where our ap-

1http://en.wikipedia.org/wiki/Ovis
2http://www.bjornefabrikken.no/side/norwegian-sheep/

410

proach recognizes ‘lily’ as a hyponym of ‘flowering
plant’, but WordNet places them in different sub-
trees incorrectly 3. Therefore, our results may help
restructure and even extend WordNet.

Note that these taxonomic relations are not in
our training set. They are also not recognized by
the term embeddings obtained from the Word2Vec
method and Yu et al.’s method. It again shows that
our term embedding learning approach has the capa-
bility to identify taxonomic relations which are not
even defined in dictionary or training data.

4.6 Tuning vector dimensions

We also conduct experiments to learn term embed-
dings from the general domain datasets with differ-
ent dimensions (i.e. 50, 100, 150 and 300) using our
proposed approach. We then use these embeddings
to evaluate the performance of taxonomic relation
identification based on training time and accuracy,
and show the results in Table 6. The experiments
are carried out on a PC with Intel(R) Xeon(R) CPU
at 3.7GHz and 16GB RAM.

Dimension Dataset Training time Accuracy
50 BLESS 1825s 87.7%
100 BLESS 2991s 89.4%
150 BLESS 4025s 89.9%
300 BLESS 7113s 90.0%
50 ENTAIL 1825s 88.5%
100 ENTAIL 2991s 90.6%
150 ENTAIL 4025s 90.9%
300 ENTAIL 7113s 90.9%

Table 6: Performance results based on training time and accu-

racy of the SVM+Our model using different vector dimensions.

In general, when increasing the vector dimension,
the accuracy of our term embedding learning ap-
proach will be increased gradually. More specifi-
cally, the accuracy improves slightly when the di-
mension is increased from 50 to 150. But after that,
increasing the dimension has very little effect on the
accuracy. We observe that the vector dimension for
learning term embeddings can be set between 100 to
150 to achieve the best performance, based on the
trade-off between accuracy and training time.

3https://en.wikipedia.org/wiki/Lilium

5 Conclusion

In this paper, we proposed a novel approach to learn
term embeddings using dynamic weighting neural
network. This model encodes not only the hyper-
nym and hyponym terms, but also the contextual in-
formation between them. Therefore, the extracted
term embeddings have good generalization capabil-
ity to identify unseen taxonomic relations which are
not even defined in dictionary and training data. The
experimental results show that our approach signifi-
cantly outperforms other state-of-the-art methods in
terms of accuracy in identifying taxonomic relation
identification.

References
Marco Baroni and Alessandro Lenci. 2011. How we

blessed distributional semantic evaluation. Proceed-
ings of the GEMS 2011 Workshop on GEometrical
Models of Natural Language Semantics, pages 1–10.

Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do, and
Chung-chieh Shan. 2012. Entailment above the word
level in distributional semantics. Proceedings of the
13th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 23–32.

Yoshua Bengio, Rjean Ducharme, and Pascal Vincent.
2001. A Neural Probabilistic Language Model. Pro-
ceedings of the NIPS conference, pages 932–938.

David M. Blei, Thomas L. Griffiths, Michael I. Jor-
dan, and Joshua B. Tenenbaum. 2004. Hierarchical
topic models and the nested chinese restaurant process.
Advances in Neural Information Processing Systems,
pages 17–24.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pages
1247–1250.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine learning, 20(3):273–297.

Samah Fodeh, Bill Punch, and Pang N. Tan. 2011. On
ontology-driven document clustering using core se-
mantic features. Knowledge and information systems,
28(2):395–421.

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng
Wang, and Ting Liu. 2014. Learning semantic hierar-
chies via word embeddings. Proceedings of the 52nd
Annual Meeting of the ACL, pages 1199–1209.

Sanda M. Harabagiu, Steven J. Maiorano, and Marius A.
Pasca. 2003. Open-domain textual question an-

411

swering techniques. Natural Language Engineering,
9(3):231–267.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. Proceedings of the
14th Conference on Computational Linguistics, pages
539–545.

Zornitsa Kozareva and Eduard Hovy. 2010. A
Semi-supervised Method to Learn and Construct Tax-
onomies Using the Web. Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1110–1118.

German Kruszewski, Denis Paperno, and Marco Baroni.
2015. Deriving boolean structures from distributional
vectors. Transactions of the Association for Computa-
tional Linguistics, 3:375–388.

Dawn J. Lawrie and W. Bruce Croft. 2003. Generating
hierarchical summaries for web searches. Proceedings
of the 26th ACM SIGIR conference, pages 457–463.

Omer Levy, Steffen Remus, Chris Biemann, Ido Dagan,
and Israel Ramat-Gan. 2014. Do supervised distribu-
tional methods really learn lexical inference relations.
Proceedings of the NAACL conference, pages 1390–
1397.

Baichuan Li, Jing Liu, Chin Y. Lin, Irwin King, and
Michael R. Lyu. 2013. A Hierarchical Entity-based
Approach to Structuralize User Generated Content in
Social Media: A Case of Yahoo! Answers. Proceed-
ings of the EMNLP conference, pages 1521–1532.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The stanford corenlp natural language process-
ing toolkit. Proceedings of the 52nd Annual Meeting
of the ACL, pages 55–60.

Cynthia Matuszek, John Cabral, Michael J. Witbrock,
and John DeOliveira. 2006. An introduction to the
syntax and content of cyc. Proceedings of the AAAI
Spring Symposium, pages 44–49.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word rep-
resentations in vector space. arXiv preprint arX-
iv:1301.3781.

George A. Miller. 1995. WordNet: a Lexical Database
for English. Communications of the ACM, 38(11):39–
41.

Roberto Navigli, Paola Velardi, and Stefano Faralli.
2011. A Graph-based Algorithm for Inducing Lexical
Taxonomies from Scratch. Proceedings of the 20th In-
ternational Joint Conference on Artificial Intelligence,
pages 1872–1877.

Yves Petinot, Kathleen McKeown, and Kapil Thadani.
2011. A hierarchical model of web summaries. Pro-
ceedings of the 49th Annual Meeting of the ACL, pages
670–675.

Aurora Pons-Porrata, Rafael Berlanga-Llavori, and Jose
Ruiz-Shulcloper. 2007. Topic discovery based on text
mining techniques. Information processing & man-
agement, 43(3):752–768.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet selective: Supervised distributional hy-
pernymy detection. Proceedings of the COLING con-
ference, pages 1025–1036.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2004.
Learning syntactic patterns for automatic hypernym
discovery. Advances in Neural Information Process-
ing Systems 17.

Richard Socher, John Bauer, Christopher D. Manning,
and Andrew Y. Ng. 2013a. Parsing with composi-
tional vector grammars. Proceedings of the 51st An-
nual Meeting of the ACL, pages 932–937.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng, and
Christopher Potts. 2013b. Recursive deep models for
semantic compositionality over a sentiment treebank.
Proceedings of the EMNLP conference, pages 1631–
1642.

Liling Tan, Rohit Gupta, and Josef van Genabith. 2015.
Usaar-wlv: Hypernym generation with deep neural
nets. Proceedings of the SemEval, pages 932–937.

Luu A. Tuan, Jung J. Kim, and See K. Ng. 2014. Tax-
onomy Construction using Syntactic Contextual Evi-
dence. Proceedings of the EMNLP conference, pages
810–819.

Luu A. Tuan, Jung J. Kim, and See K. Ng.
2015. Incorporating Trustiness and Collective Syn-
onym/Contrastive Evidence into Taxonomy Construc-
tion. Proceedings of the EMNLP conference, pages
1013–1022.

Paola Velardi, Stefano Faralli, and Roberto Navigli.
2013. Ontolearn reloaded: A graph-based algorithm
for taxonomy induction. Computational Linguistics,
39(3):665–707.

Chi Wang, Marina Danilevsky, Nihit Desai, Yinan Zhang,
Phuong Nguyen, Thrivikrama Taula, and Jiawei Han.
2013. A phrase mining framework for recursive con-
struction of a topical hierarchy. Proceedings of the
19th ACM SIGKDD conference, pages 437–445.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David J Weir,
and Bill Keller. 2014. Learning to distinguish hyper-
nyms and co-hyponyms. Proceedings of the COLING
conference, pages 2249–2259.

Wu Wentao, Li Hongsong, Wang Haixun, and Kenny. Q.
Zhu. 2012. Probase: A probabilistic taxonomy for
text understanding. Proceedings of the ACM SIGMOD
conference, pages 481–492.

Jianxing Yu, Zheng-Jun Zha, Meng Wang, Kai Wang, and
Tat-Seng Chua. 2011. Domain-assisted product as-

412

pect hierarchy generation: towards hierarchical orga-
nization of unstructured consumer reviews. Proceed-
ings of the EMNLP conference, pages 140–150.

Zheng Yu, Haixun Wang, Xuemin Lin, and Min Wang.
2015. Learning term embeddings for hypernymy iden-
tification. Proceedings of the 24th International Joint
Conference on Artificial Intelligence, pages 1390–
1397.

Xingwei Zhu, Zhao Y. Ming, and Tat-Seng Chua. 2013.
Topic hierarchy construction for the organization of
multi-source user generated contents. Proceedings of
the 36th ACM SIGIR conference, pages 233–242.

Will Y Zou, Richard Socher, Daniel M. Cer, and Christo-
pher D. Manning. 2013. Bilingual word embeddings
for phrase-based machine translation. Proceedings of
the EMNLP conference, pages 1393–1398.

413

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 414–423,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Relation Schema Induction using Tensor Factorization with Side
Information

Madhav Nimishakavi
Indian Institute of Science

Bangalore, India
madhav@csa.iisc.ernet.in

Uday Singh Saini
Indian Institute of Science

Bangalore, India
uday.s.saini@gmail.com

Partha Talukdar
Indian Institute of Science

Bangalore, India
ppt@cds.iisc.ac.in

Abstract

Given a set of documents from a specific do-
main (e.g., medical research journals), how do
we automatically build a Knowledge Graph
(KG) for that domain? Automatic identifica-
tion of relations and their schemas, i.e., type
signature of arguments of relations (e.g., un-
dergo(Patient, Surgery)), is an important first
step towards this goal. We refer to this prob-
lem as Relation Schema Induction (RSI). In
this paper, we propose Schema Induction us-
ing Coupled Tensor Factorization (SICTF), a
novel tensor factorization method for relation
schema induction. SICTF factorizes Open
Information Extraction (OpenIE) triples ex-
tracted from a domain corpus along with ad-
ditional side information in a principled way
to induce relation schemas. To the best of
our knowledge, this is the first application
of tensor factorization for the RSI problem.
Through extensive experiments on multiple
real-world datasets, we find that SICTF is not
only more accurate than state-of-the-art base-
lines, but also significantly faster (about 14x
faster).

1 Introduction

Over the last few years, several techniques to build
Knowledge Graphs (KGs) from large unstructured
text corpus have been proposed, examples include
NELL (Mitchell et al., 2015) and Google Knowl-
edge Vault (Dong et al., 2014). Such KGs con-
sist of millions of entities (e.g., Oslo, Norway, etc.),

their types (e.g., isA(Oslo, City), isA(Norway, Coun-
try)), and relationships among them (e.g., cityLo-
catedInCountry(Oslo, Norway)). These KG con-
struction techniques are called ontology-guided as
they require as input list of relations, their schemas
(i.e., their type signatures, e.g., cityLocatedInCoun-
try(City, Country)), and seed instances of each such
relation. Listing of such relations and their schemas
are usually prepared by human domain experts.

The reliance on domain expertise poses signif-
icant challenges when such ontology-guided KG
construction techniques are applied to domains
where domain experts are either not available or are
too expensive to employ. Even when such a domain
expert may be available for a limited time, she may
be able to provide only a partial listing of relations
and their schemas relevant to that particular domain.
Moreover, this expert-mediated model is not scal-
able when new data in the domain becomes avail-
able, bringing with it potential new relations of in-
terest. In order to overcome these challenges, we
need automatic techniques which can discover rela-
tions and their schemas from unstructured text data
itself, without requiring extensive human input. We
refer to this problem as Relation Schema Induction
(RSI).

In contrast to ontology-guided KG construction
techniques mentioned above, Open Information Ex-
traction (OpenIE) techniques (Etzioni et al., 2011)
aim to extract surface-level triples from unstructured
text. Such OpenIE triples may provide a suitable
starting point for the RSI problem. In fact, KB-LDA,

414

Target task Interpretable
latent factors?

Can induce relation
schema?

Can use NP side
info?

Can use relation
side info?

Typed RESCAL (Chang et
al., 2014a)

Embedding No No Yes No

Universal Schema (Singh
et al., 2015)

Link Prediction No No No No

KB-LDA (Movshovitz-
Attias and Cohen, 2015)

Ontology Induc-
tion

Yes Yes Yes No

SICTF (this paper) Schema Induc-
tion

Yes Yes Yes Yes

Table 1: Comparison among SICTF (this paper) and other related methods. KB-LDA is the most related prior method which is

extensively compared against SICTF in Section 4

a topic modeling-based method for inducing an on-
tology from SVO (Subject-Verb-Object) triples was
recently proposed in (Movshovitz-Attias and Cohen,
2015). We note that ontology induction (Velardi et
al., 2013) is a more general problem than RSI, as we
are primarily interested in identifying categories and
relations from a domain corpus, and not necessar-
ily any hierarchy over them. Nonetheless, KB-LDA
maybe used for the RSI problem and we use it as a
representative of the state-of-the-art of this area.

Instead of a topic modeling approach, we take a
tensor factorization-based approach for RSI in this
paper. Tensors are a higher order generalization
of matrices and they provide a natural way to rep-
resent OpenIE triples. Applying tensor factoriza-
tion methods over OpenIE triples to identify relation
schemas is a natural approach, but one that has not
been explored so far. Also, a tensor factorization-
based approach presents a flexible and principled
way to incorporate various types of side informa-
tion. Moreover, as we shall see in Section 4, com-
pared to state-of-the-art baselines such as KB-LDA,
tensor factorization-based approach results in better
and faster solution for the RSI problem. In this pa-
per, we make the following contributions:

• We present Schema Induction using Coupled
Tensor Factorization (SICTF), a novel and
principled tensor factorization method which
jointly factorizes a tensor constructed out of
OpenIE triples extracted from a domain corpus,
along with various types of additional side in-
formation for relation schema induction.

• We compare SICTF against state-of-the-art
baseline on various real-world datasets from
diverse domains. We observe that SICTF is
not only significantly more accurate than such

baselines, but also much faster. For example,
SICTF achieves 14x speedup over KB-LDA
(Movshovitz-Attias and Cohen, 2015).

• We have made the data and code available 1.

2 Related Work

Schema Induction: Properties of SICTF and other
related methods are summarized in Table 12. A
method for inducing (binary) relations and the cat-
egories they connect was proposed by (Mohamed et
al., 2011). However, in that work, categories and
their instances were known a-priori. In contrast,
in case of SICTF, both categories and relations are
to be induced. A method for event schema induc-
tion, the task of learning high-level representations
of complex events and their entity roles from unla-
beled text, was proposed in (Chambers, 2013). This
gives the schemas of slots per event, but our goal
is to find schemas of relations. (Chen et al., 2013)
and (Chen et al., 2015) deal with the problem of
finding semantic slots for unsupervised spoken lan-
guage understanding, but we are interested in find-
ing schemas of relations relevant for a given domain.
Methods for link prediction in the Universal Schema
setting using matrix and a combination of matrix
and tensor factorization are proposed in (Riedel et
al., 2013) and (Singh et al., 2015), respectively. In-
stead of link prediction where relation schemas are
assumed to be given, SICTF focuses on discovering
such relation schemas. Moreover, in contrast to such

1https://github.com/malllabiisc/sictf
2Please note that not all methods mentioned in the table are

directly comparable with SICTF, the table only illustrates the
differences. KB-LDA is the only method which is directly com-
parable.

415

Figure 1: Relation Schema Induction (RSI) by SICTF, the proposed method. First, a tensor (X) is constructed to represent OpenIE

triples extracted from a domain corpus. Noun phrase side information in the form of (noun phrase, hypernym), and relation-relation

similarity side information are separately calculated and stored in two separate matrices (W and S, respectively). SICTF then

performs coupled factorization of the tensor and the two side information matrices to identify relation schemas which are stored in

the core tensor (R) in the output. Please see Section 3 for details.

methods which assume access to existing KGs, the
setting in this paper is unsupervised.

Tensor Factorization: Due to their flexibility
of representation and effectiveness, tensor factor-
ization methods have seen increased application in
Knowledge Graph (KG) related problems over the
last few years. Methods for decomposing ontolog-
ical KGs such as YAGO (Suchanek et al., 2007)
were proposed in (Nickel et al., 2012; Chang et al.,
2014b; Chang et al., 2014a). In these cases, rela-
tion schemas are known in advance, while we are
interested in inducing such relation schemas from
unstructured text. A PARAFAC (Harshman, 1970)
based method for jointly factorizing a matrix and
tensor for data fusion was proposed in (Acar et al.,
2013). In such cases, the matrix is used to provide
auxiliary information (Narita et al., 2012; Erdos and
Miettinen, 2013). Similar PARAFAC-based ideas
are explored in Rubik (Wang et al., 2015) to fac-
torize structured electronic health records. In con-
trast to such structured data sources, SICTF aims
at inducing relation schemas from unstructured text
data. Propstore, a tensor-based model for distribu-
tional semantics, a problem different from RSI, was
presented in (Goyal et al., 2013). Even though cou-
pled factorization of tensor and matrices constructed
out of unstructured text corpus provide a natural and

plausible approach for the RSI problem, they have
not yet been explored – we fill this gap in this paper.

Ontology Induction: Relation Schema Induc-
tion can be considered a sub problem of Ontol-
ogy Induction (Velardi et al., 2013). Instead of
building a full-fledged hierarchy over categories
and relations as in ontology induction, we are par-
ticularly interested in finding relations and their
schemas from unstructured text corpus. We consider
KB-LDA3 (Movshovitz-Attias and Cohen, 2015), a
topic-modeling based approach for ontology induc-
tion, as a representative of this area. Among all prior
work, KB-LDA is most related to SICTF. While
both KB-LDA and SICTF make use of noun phrase
side information, SICTF is also able to exploit rela-
tional side information in a principled manner. In
Section 4, through experiments on multiple real-
world datasets, we observe that SICTF is not only
more accurate than KB-LDA but also significantly
faster with a speedup of 14x.

A method for canonicalizing noun and relation
phrases in OpenIE triples was recently proposed in
(Galárraga et al., 2014). The main focus of this ap-
proach is to cluster lexical variants of a single entity
or relation. This is not directly relevant for RSI, as

3In this paper, whenever we refer to KB-LDA, we only refer
to the part of it that learns relations from unstructured data.

416

we are interested in grouping multiple entities of the
same type into one cluster, and use that to induce
relation schema.

3 Our Approach: Schema Induction using
Coupled Tensor Factorization (SICTF)

3.1 Overview
SICTF poses the relation schema induction problem
as a coupled factorization of a tensor along with ma-
trices containing relevant side information. Over-
all architecture of the SICTF system is presented
in Figure 1. First, a tensor X ∈ Rn×n×m+ is con-
structed to store OpenIE triples and their scores ex-
tracted from the text corpus4. Here, n and m rep-
resent the number of NPs and relation phrases, re-
spectively. Following (Movshovitz-Attias and Co-
hen, 2015), SICTF makes use of noun phrase (NP)
side information in the form of (noun phrase, hyper-
nym). Additionally, SICTF also exploits relation-
relation similarity side information. These two side
information are stored in matrices W ∈ {0, 1}n×h
and S ∈ {0, 1}m×m, where h is the number of hy-
pernyms extracted from the corpus. SICTF then per-
forms collective non-negative factorization over X ,
W , and S to output matrix A ∈ Rn×c+ and the core
tensor R ∈ Rc×c×m+ . Each row in A corresponds
to an NP, while each column corresponds to an in-
duced category (latent factor). For brevity, we shall
refer to the induced category corresponding to the
qth column of A as Aq. Each entry Apq in the out-
put matrix provides a membership score for NP p
in induced category Aq. Please note that each in-
duced category is represented using the NPs partic-
ipating in it, with the NPs ranked by their member-
ship scores in the induced category. In Figure 1,
A2 = [(John, 0.9), (Sam, 0.8), . . .] is an induced cat-
egory.

Each slice of the core tensor R is a matrix which
corresponds to a specific relation, e.g., the matrix
Rundergo highlighted in Figure 1 corresponds to the
relation undergo. Each cell in this matrix corre-
sponds to an induced schema connecting two in-
duced categories (two columns of the A matrix),
with the cell value representing model’s score of
the induced schema. For example, in Figure 1,
undergo(A2, A4) is an induced relation schema with

4R+ is the set of non-negative reals.

MEDLINE
(hypertension, disease), (hypertension, state), (hypertension,
disorder) , (neutrophil, blood element), (neutrophil, effector
cell), (neutrophil, cell type)
StackOverflow
(image, resource), (image, content), (image, file), (perl, lan-
guage), (perl, script), (perl, programs)

Table 2: Noun Phrase (NP) side information in the form of

(Noun Phrase, Hypernym) pairs extracted using Hearst patterns

from two different datasets. Please see Section 3.2 for details.

MEDLINE StackOverflow
(evaluate, analyze), (evaluate,
examine), (indicate, confirm),
(indicate, suggest)

(provides, confirms), (pro-
vides, offers), (allows, lets),
(allows, enables)

Table 3: Examples of relation similarity side information in the

form of automatically identified similar relation pairs. Please

see Section 3.2 for details.

score 0.8 involving relation undergo and induced
categories A2 and A4.

In Section 3.2, we present details of the side in-
formation used by SICTF, and then in Section 3.3
present details of the optimization problem solved
by SICTF.

3.2 Side Information

• Noun Phrase Side Information: Through this
type of side information, we would like to cap-
ture type information of as many noun phrases
(NPs) as possible. We apply Hearst patterns
(Hearst, 1992), e.g., ”<Hypernym> such as
<NP>”, over the corpus to extract such (NP,
Hypernym) pairs. Please note that neither hy-
pernyms nor NPs are pre-specified, and they are
all extracted from the data by the patterns. Ex-
amples of a few such pairs extracted from two
different datasets are shown in Table 2. These
extracted tuples are stored in a matrix Wn×h
whose rows correspond to NPs and columns
correspond to extracted hypernyms. We define,

Wij =

{
1, if NPi belongs to Hypernymj

0, otherwise
.

Please note that we don’t expectW to be a fully
specified matrix, i.e., we don’t assume that we
know all possible hypernyms for a given NP.

• Relation Side Information: In addition to the
side information involving NPs, we would also

417

like to take prior knowledge about textual rela-
tions into account during factorization. For ex-
ample, if we know two relations to be similar to
one another, then we also expect their induced
schemas to be similar as well. Consider the
following sentences ”Mary purchased a stuffed
animal toy.“ and ”Janet bought a toy car for
her son.”. From these we can say that both re-
lations purchase and buy have the schema (Per-
son, Item). Even if one of these relations is
more abundant than the other in the corpus, we
still want to learn similar schemata for both the
relations. As mentioned before, S ∈ Rm×m+ is
the relation similarity matrix, where m is the
number of textual relations. We define,

Sij =

{
1, if Similarity(Reli, Relj) ≥ γ
0, otherwise

where γ is a threshold5. For the experiments
in this paper, we use cosine similarity over
word2vec (Mikolov et al., 2013) vector repre-
sentations of the relational phrases. Examples
of a few similar relation pairs are shown in Ta-
ble 3.

3.3 SICTF Model Details

SICTF performs coupled non-negative factorization
of the input triple tensor Xn×n×m along with the
two side information matrices Wn×h and Sm×m by
solving the following optimization problem.

min
A,V,R

m∑

k=1

f(Xk, A,Rk) + fnp(W,A, V) + frel(S,R)

(1)
where,

f(Xk, A,Rk) =‖ X:,:,k −AR:,:,kA
T ‖2F +λR ‖ R:,:,k ‖2F

fnp(W,A, V) = λnp ‖W −AV ‖2F +λA ‖ A ‖2F
+ λV ‖ V ‖2F

frel(S,R) = λrel

m∑

i=1

m∑

j=1

Sij ‖ R:,:,i −R:,:,j ‖2F

Ai,j ≥ 0,Vj,r ≥ 0, Rp,q,k ≥ 0 (non negative)
∀ 1 ≤ i ≤ n, 1 ≤ r ≤ h,
1 ≤ j, p, q ≤ c, 1 ≤ k ≤ m

5For the experiments in this paper, we set γ = 0.7, a
relatively high value, to focus on highly similar relations and
thereby justifying the binary S matrix.

In the objective above, the first term f(Xk, A,Rk)
minimizes reconstruction error for the kth relation,
with additional regularization on the R:,:,k matrix6.
The second term, fnp(W,A, V), factorizes the NP
side information matrix Wn×h into two matrices
An×c and Vc×h, where c is the number of induced
categories. We also enforce A to be non-negative.
Typically, we require c � h to get a lower dimen-
sional embedding of each NP (rows of A). Finally,
the third term frel(S,R) enforces the requirement
that two similar relations as given by the matrix S
should have similar signatures (given by the corre-
sponding R matrix). Additionally, we require V
and R to be non-negative, as marked by the (non-
negative) constraints. In this objective, λR, λnp, λA,
λV , and λrel are all hyper-parameters.

We derive non-negative multiplicative updates for
A, Rk and V following the rules proposed in (Lee
and Seung, 2000), which has the following general
form:

θi = θi

∂C(θ)−

∂θi
∂C(θ)+

∂θi

α

HereC(θ) represents the cost function of the non-
negative variables θ and ∂C(θ)−

∂θi
and ∂C(θ)−

∂θi
are the

negative and positive parts of the derivative of C(θ)
(Mørup et al., 2008). (Lee and Seung, 2000) proved
that for α = 1, the cost functionC(θ) monotonically
decreases with the multiplicative updates 7. C(θ) for
SICTF is given in equation (1). The above procedure
will give the following updates:

A ← A ∗

∑
k

(XkAR
T
k +XT

k ARk) + λnpWV T

A(B̃ + λAI + λnpV V T)

B̃ =
∑

k

(RkA
TART

k +RT
kA

TARk)

Rk ← Rk ∗
ATXkA+ 2 λrel

m∑
j=1

RjSkj

ATARkATA+ D̃

D̃ = 2 λrel Rk

m∑

j=1

Skj + λRRk

V ← V ∗ λnpA
TW

λnpATAV + λV V

6For brevity, we also refer to R:,:,k as Rk, and similarly
X:,:,k as Xk

7We also use α = 1.

418

Dataset # Docs # Triples
MEDLINE 50,216 2,499
StackOverflow 5.5m 37,439

Table 4: Datasets used in the experiments.

In the equations above, ∗ is the Hadamard or
element-wise product8. In all our experiments, we
find the iterative updates above to converge in about
10-20 iterations.

4 Experiments

In this section, we evaluate performance of differ-
ent methods on the Relation Schema Induction (RSI)
task. Specifically, we address the following ques-
tions.

• Which method is most effective on the RSI
task? (Section 4.3.1)

• How important are the additional side informa-
tion for RSI? (Section 4.3.2)

• What is the importance of non-negativity in
RSI with tensor factorization? (Section 4.3.3)

4.1 Experimental Setup
Datasets: We used two datasets for the experi-
ments in this paper, they are summarized in Table 4.
For MEDLINE dataset, we used Stanford CoreNLP
(Manning et al., 2014) for coreference resolution
and Open IE v4.09 for triple extraction. Triples with
Noun Phrases that have Hypernym information were
retained. We obtained the StackOverflow triples di-
rectly from the authors of (Movshovitz-Attias and
Cohen, 2015), which were also prepared using a
very similar process. In both datasets, we use cor-
pus frequency of triples for constructing the tensor.

Side Information: Seven Hearst patterns such
as ”<hypernym> such as <NP>”, ”<NP> or
other <hypernym>” etc., given in (Hearst, 1992)
were used to extract NP side information from the
MEDLINE documents. NP side information for the
StackOverflow dataset was obtained from the au-
thors of (Movshovitz-Attias and Cohen, 2015).

As described in Section 3, word2vec embeddings
of the relation phrases were used to extract relation-
similarity based side-information. This was done for

8(A ∗B)i,j = Ai,j ×Bi,j
9Open IE v4.0: http://knowitall.github.io/openie/

both datasets. Cosine similarity threshold of γ = 0.7
was used for the experiments in the paper.

Samples of side information used in the experi-
ments are shown in Table 2 and Table 3. A total
of 2067 unique NP-hypernym pairs were extracted
from MEDLINE data and 16,639 were from Stack-
Overflow data. 25 unique pairs of relation phrases
out of 1172 were found to be similar in MEDLINE
data, whereas 280 unique pairs of relation phrases
out of approximately 3200 were found similar in
StackOverflow data.

Hyperparameters were tuned using grid search
and the set which gives minimum reconstruction er-
ror for both X and W was chosen. We set λnp =
λrel = 100 for StackOverflow, and λnp = 0.05 and
λrel = 0.001 for Medline and we use c = 50 for our
experiments. Please note that our setting is unsuper-
vised, and hence there is no separate train, dev and
test sets.

4.2 Evaluation Protocol
In this section, we shall describe how the induced
schemas are presented to human annotators and how
final accuracies are calculated. In factorizations
produced by SICTF and other ablated versions of
SICTF, we first select a few top relations with best
reconstruction score. The schemas induced for each
selected relation k is represented by the matrix slice
Rk of the core tensor obtained after factorization
(see Section 3). From each such matrix, we iden-
tify the indices (i, j) with highest values. The in-
dices i and j select columns of the matrix A. A
few top ranking NPs from the columns Ai and Aj
along with the relation k are presented to the hu-
man annotator, who then evaluates whether the tuple
Relationk(Ai, Aj) constitutes a valid schema for re-
lation k. Examples of a few relation schemas in-
duced by SICTF are presented in Table 5. A human
annotator would see the first and second columns of
this table and then offer judgment as indicated in
the third column of the table. All such judgments
across all top-reconstructed relations are aggregated
to get the final accuracy score. This evaluation pro-
tocol was also used in (Movshovitz-Attias and Co-
hen, 2015) to measure learned relation accuracy.

All evaluations were blind, i.e., the annotators
were not aware of the method that generated the
output they were evaluating. Moreover, the anno-

419

Relation Schema Top 3 NPs in Induced Categories which were presented to annotators Annotator Judgment
StackOveflow

clicks(A0, A1)
A0: users, client, person valid
A1: link, image, item

refreshes(A19, A13)
A19: browser, window, tab valid
A13: page, activity, app

can parse(A41, A17)
A41: access, permission, ability invalid
A17: image file, header file, zip file

MEDLINE

suffer from(A38, A40)
A38: patient, first patient, anesthetized patient valid
A40: viral disease, renal disease, von recklin ghausen’s disease

have undergo(A3, A37)
A3: fifth patient, third patient, sixth patient valid
A37: initial liver biopsy, gun biopsy, lymph node biopsy

have discontinue(A41, A20)
A41: patient, group, no patient invalid
A20: endemic area, this area, fiber area

Table 5: Examples of relation schemas induced by SICTF from the StackOverflow and MEDLINE datasets. Top NPs from each of

the induced categories, along with human judgment of the induced schema are also shown. See Section 4.3.1 for more details.

(a) (b)
Figure 2: (a) Relation Schema Induction (RSI) accuracies of different methods on the two datasets. SICTF, our proposed method,

significantly outperforms state-of-the-art method KBLDA. This is the main result of the paper. Results for KB-LDA on StackOve-

flow are directly taken from the paper. Please see Section 4.3.1 for details. (b) Runtime comparison between KB-LDA and SICTF.

We observe that SICTF results in 14x speedup over KB-LDA. Please see Section 4.3.1 (Runtime Comparison) for details.

tators are experts in software domain and has high-
school level knowledge in medical domain. Though
recall is a desirable statistic to measure, it is very
challenging to calculate it in our setting due to the
non-availability of relation schema annotated text on
large scale.

4.3 Results
4.3.1 Effectiveness of SICTF

Experimental results comparing performance of
various methods on the RSI task in the two datasets
are presented in Figure 2(a). RSI accuracy is cal-
culated based on the evaluation protocol described
in Section 4.2. Performance number of KB-LDA
for StackOveflow dataset is taken directly from the
(Movshovitz-Attias and Cohen, 2015) paper, we
used our implementation of KB-LDA for the MED-
LINE dataset. Annotation accuracies from two an-
notators were averaged to get the final accuracy.

From Figure 2(a), we observe that SICTF outper-
forms KB-LDA on the RSI task. Please note that
the inter-annotator agreement for SICTF is 88% and
97% for MEDLINE and StackOverflow datasets re-
spectively. This is the main result of the paper.

In addition to KB-LDA, we also compared SICTF
with PARAFAC, a standard tensor factorization
method. PARAFAC induced extremely poor and
small number of relation schemas, and hence we
didn’t consider it any further.

Runtime comparison: Runtimes of SICTF and
KB-LDA over both datasets are compared in Fig-
ure 2(b). From this figure, we find that SICTF is
able to achieve a 14x speedup on average over KB-
LDA10. In other words, SICTF is not only able to

10Runtime of KB-LDA over the StackOverflow dataset was
obtained from the authors of (Movshovitz-Attias and Cohen,
2015) through personal communication. Our own implementa-
tion also resulted in similar runtime over this dataset.

420

Ablation
MEDLINE StackOverflow

A1 A2 Avg A1 A2 Avg
SICTF 0.64 0.64 0.64 0.96 0.92 0.94

SICTF (λrel = 0) 0.60 0.56 0.58 0.83 0.70 0.77
SICTF (λnp = 0) 0.46 0.40 0.43 0.89 0.90 0.90

SICTF (λrel=0, λnp = 0) 0.46 0.50 0.48 0.84 0.33 0.59
SICTF (λrel=0, λnp = 0, and no non-negativity constraints) 0.14 0.10 0.12 0.20 0.14 0.17

Table 6: RSI accuracy comparison of SICTF with its ablated versions when no relation side information is used (λrel = 0), when

no NP side information is used (λnp = 0), when no side information of any kind is used (λrel = 0, λnp = 0), and when additionally

there are no non-negative constraints. From this, we observe that additional side information improves performance, validating one

of the central thesis of this paper. Please see Section 4.3.2 and Section 4.3.3 for details.

induce better relation schemas, but also do so at a
significantly faster speed.

4.3.2 Importance of Side Information

One of the central hypothesis of our approach is
that coupled factorization through additional side in-
formation should result in better relation schema in-
duction. In order to evaluate this thesis further, we
compare performance of SICTF with its ablated ver-
sions: (1) SICTF (λrel = 0), which corresponds to
the setting when no relation side information is used,
(2) SICTF (λnp = 0), which corresponds to the set-
ting when no noun phrases side information is used,
and (3) SICTF (λrel = 0, λnp = 0), which corre-
sponds to the setting when no side information of
any kind is used. Hyperparameters are separately
tuned for the variants of SICTF. Results are pre-
sented in the first four rows of Table 6. From this,
we observe that additional coupling through the side
information significantly helps improve SICTF per-
formance. This further validates the central thesis of
our paper.

4.3.3 Importance of Non-Negativity on
Relation Schema Induction

In the last row of Table 6, we also present an
ablated version of SICTF when no side informa-
tion no non-negativity constraints are used. Com-
paring the last two rows of this table, we observe
that non-negativity constraints over the A matrix
and core tensor R result in significant improvement
in performance. We note that the last row in Ta-
ble 6 is equivalent to RESCAL (Nickel et al., 2011)
and the fourth row is equivalent to Non-Negative
RESCAL (Krompaß et al., 2013), two tensor factor-

ization techniques. We also note that none of these
tensor factorization techniques have been previously
used for the relation schema induction problem.

The reason for this improved performance may be
explained by the fact that absence of non-negativity
constraint results in an under constrained factoriza-
tion problem where the model often overgenerates
incorrect triples, and then compensates for this over-
generation by using negative latent factor weights.
In contrast, imposition of non-negativity constraints
restricts the model further forcing it to commit to
specific semantics of the latent factors in A. This
improved interpretability also results in better RSI
accuracy as we have seen above. Similar benefits of
non-negativity on interpretability have also been ob-
served in matrix factorization (Murphy et al., 2012).

5 Conclusion

Relation Schema Induction (RSI) is an important
first step towards building a Knowledge Graph
(KG) out of text corpus from a given domain.
While human domain experts have traditionally pre-
pared listing of relations and their schemas, this
expert-mediated model poses significant challenges
in terms of scalability and coverage. In order
to overcome these challenges, in this paper, we
present SICTF, a novel non-negative coupled ten-
sor factorization method for relation schema in-
duction. SICTF is flexible enough to incorporate
various types of side information during factoriza-
tion. Through extensive experiments on real-world
datasets, we find that SICTF is not only more accu-
rate but also significantly faster (about 14x speedup)
compared to state-of-the-art baselines. As part of
future work, we hope to analyze SICTF further, as-

421

sign labels to induced categories, and also apply the
model to more domains.

Acknowledgement

Thanks to the members of MALL Lab, IISc who
read our drafts and gave valuable feedback and we
also thank the reviewers for their constructive re-
views. This research has been supported in part
by Bosch Engineering and Business Solutions and
Google.

References
Evrim Acar, Morten Arendt Rasmussen, Francesco Savo-

rani, Tormod Ns, and Rasmus Bro. 2013. Understand-
ing data fusion within the framework of coupled ma-
trix and tensor factorizations. Chemometrics and In-
telligent Laboratory Systems, 129(Complete):53–63.

Nathanael Chambers. 2013. Event schema induction
with a probabilistic entity-driven model. In EMNLP,
pages 1797–1807. ACL.

Kai-Wei Chang, Wen tau Yih, Bishan Yang, and Christo-
pher Meek. 2014a. Typed tensor decomposition of
knowledge bases for relation extraction. In Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing. ACL Association for
Computational Linguistics, October.

Kai-Wei Chang, Wen-tau Yih, Bishan Yang, and Christo-
pher Meek. 2014b. Typed tensor decomposition of
knowledge bases for relation extraction. In Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1568–
1579.

Yun-Nung Chen, William Y. Wang, and Alexander I.
Rudnicky. 2013. Unsupervised induction and fill-
ing of semantic slots for spoken dialogue systems us-
ing frame-semantic parsing. In 2013 IEEE Workshop
on Automatic Speech Recognition and Understanding
(ASRU), pages 120–125. IEEE.

Yun-Nung Chen, William Yang Wang, Anatole Gersh-
man, and Alexander I. Rudnicky. 2015. Matrix fac-
torization with knowledge graph propagation for unsu-
pervised spoken language understanding. In ACL (1),
pages 483–494. The Association for Computer Lin-
guistics.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko
Horn, Ni Lao, Kevin Murphy, Thomas Strohmann,
Shaohua Sun, and Wei Zhang. 2014. Knowledge
vault: A web-scale approach to probabilistic knowl-
edge fusion. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 601–610. ACM.

Dora Erdos and Pauli Miettinen. 2013. Discovering facts
with boolean tensor tucker decomposition. In Pro-
ceedings of the 22Nd ACM International Conference
on Information & Knowledge Management, CIKM
’13, pages 1569–1572, New York, NY, USA. ACM.

Oren Etzioni, Anthony Fader, Janara Christensen,
Stephen Soderland, and Mausam Mausam. 2011.
Open information extraction: The second generation.
In IJCAI, volume 11, pages 3–10.

Luis Galárraga, Geremy Heitz, Kevin Murphy, and
Fabian Suchanek. 2014. Canonicalizing Open Knowl-
edge Bases. CIKM.

Kartik Goyal, Sujay Kumar, Jauhar Huiying, Li Mrin-
maya, Sachan Shashank, and Srivastava Eduard Hovy.
2013. A structured distributional semantic model: In-
tegrating structure with semantics.

R. A. Harshman. 1970. Foundations of the PARAFAC
procedure: Models and conditions for an” explana-
tory” multi-modal factor analysis. UCLA Working Pa-
pers in Phonetics, 16(1):84.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In In Proceedings of
the 14th International Conference on Computational
Linguistics, pages 539–545.

Denis Krompaß, Maximilian Nickel, Xueyan Jiang, and
Volker Tresp. 2013. Non-negative tensor factorization
with rescal. Tensor Methods for Machine Learning,
ECML workshop.

Daniel D. Lee and H. Sebastian Seung. 2000. Algo-
rithms for non-negative matrix factorization. In In
NIPS, pages 556–562. MIT Press.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 55–60.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K.Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 26, pages 3111–3119.
Curran Associates, Inc.

T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Bet-
teridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel,
J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed,
N. Nakashole, E. Platanios, A. Ritter, M. Samadi,
B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen,
A. Saparov, M. Greaves, and J. Welling. 2015. Never-
ending learning. In Proceedings of AAAI.

Thahir P. Mohamed, Estevam R. Hruschka, Jr., and
Tom M. Mitchell. 2011. Discovering relations be-

422

tween noun categories. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP ’11, pages 1447–1455, Stroudsburg,
PA, USA. Association for Computational Linguistics.

M. Mørup, L. K. Hansen, and S. M. Arnfred. 2008. Al-
gorithms for sparse non-negative TUCKER. Neural
Computation, 20(8):2112–2131, aug.

Dana Movshovitz-Attias and William W. Cohen. 2015.
Kb-lda: Jointly learning a knowledge base of hierar-
chy, relations, and facts. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguis-
tics.

Brian Murphy, Partha Pratim Talukdar, and Tom M
Mitchell. 2012. Learning effective and interpretable
semantic models using non-negative sparse embed-
ding. In COLING, pages 1933–1950.

Atsuhiro Narita, Kohei Hayashi, Ryota Tomioka, and
Hisashi Kashima. 2012. Tensor factorization using
auxiliary information. Data Mining and Knowledge
Discovery, 25(2):298–324.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Lise Getoor and
Tobias Scheffer, editors, Proceedings of the 28th In-
ternational Conference on Machine Learning (ICML-
11), ICML ’11, pages 809–816, New York, NY, USA,
June. ACM.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2012. Factorizing yago: Scalable machine
learning for linked data. In Proceedings of the 21st
International Conference on World Wide Web, WWW
’12, pages 271–280, New York, NY, USA. ACM.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M. Marlin. 2013. Relation extraction
with matrix factorization and universal schemas. In
Human Language Technologies: Conference of the
North American Chapter of the Association of Com-
putational Linguistics, Proceedings, June 9-14, 2013,
Westin Peachtree Plaza Hotel, Atlanta, Georgia, USA,
pages 74–84.

Sameer Singh, Tim Rocktäschel, and Sebastian Riedel.
2015. Towards Combined Matrix and Tensor Factor-
ization for Universal Schema Relation Extraction. In
NAACL Workshop on Vector Space Modeling for NLP
(VSM).

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge.
In Proceedings of WWW.

Paola Velardi, Stefano Faralli, and Roberto Navigli.
2013. Ontolearn reloaded: A graph-based algorithm
for taxonomy induction. Computational Linguistics,
39(3):665–707.

Yichen Wang, Robert Chen, Joydeep Ghosh, Joshua C.
Denny, Abel N. Kho, You Chen, Bradley A. Malin, and
Jimeng Sun. 2015. Rubik: Knowledge guided tensor
factorization and completion for health data analytics.
In Longbing Cao, Chengqi Zhang, Thorsten Joachims,
Geoffrey I. Webb, Dragos D. Margineantu, and Gra-
ham Williams, editors, KDD, pages 1265–1274. ACM.

423

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 424–435,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Supervised Distributional Hypernym Discovery
via Domain Adaptation

Luis Espinosa-Anke1, Jose Camacho-Collados2, Claudio Delli Bovi2 and Horacio Saggion1

1Department of Information and Communication Technologies, Universitat Pompeu Fabra
2Department of Computer Science, Sapienza University of Rome

1{luis.espinosa,horacio.saggion}@upf.edu
2{collados,dellibovi}@di.uniroma1.it

Abstract

Lexical taxonomies are graph-like hierarchi-
cal structures that provide a formal representa-
tion of knowledge. Most knowledge graphs to
date rely on is-a (hypernymic) relations as the
backbone of their semantic structure. In this
paper, we propose a supervised distributional
framework for hypernym discovery which op-
erates at the sense level, enabling large-scale
automatic acquisition of disambiguated tax-
onomies. By exploiting semantic regularities
between hyponyms and hypernyms in embed-
dings spaces, and integrating a domain clus-
tering algorithm, our model becomes sensi-
tive to the target data. We evaluate several
configurations of our approach, training with
information derived from a manually created
knowledge base, along with hypernymic rela-
tions obtained from Open Information Extrac-
tion systems. The integration of both sources
of knowledge yields the best overall results ac-
cording to both automatic and manual evalua-
tion on ten different domains.

1 Introduction

Lexical taxonomies (taxonomies henceforth) are
graph-like hierarchical structures where terms are
nodes, and are typically organized over a predefined
merging or splitting criterion (Hwang et al., 2012).
By embedding cues about how we perceive con-
cepts, and how these concepts generalize in a do-
main of knowledge, these resources bear a capacity
for generalization that lies at the core of human cog-
nition (Yu et al., 2015) and have become key in Nat-
ural Language Processing (NLP) tasks where infer-
ence and reasoning have proved to be essential. In

fact, taxonomies have enabled a remarkable number
of novel NLP techniques, e.g. the contribution of
WordNet (Miller, 1995) to lexical semantics (Pile-
hvar et al., 2013; Yu and Dredze, 2014) as well
as various tasks, from word sense disambiguation
(Agirre et al., 2014) to information retrieval (Vare-
las et al., 2005), question answering (Harabagiu et
al., 2003) and textual entailment (Glickman et al.,
2005). To date, the application of taxonomies in
NLP has consisted mainly of, on one hand, formally
representing a domain of knowledge (e.g. Food),
and, on the other hand, constituting the semantic
backbone of large-scale knowledge repositories such
as ontologies or Knowledge Bases (KBs).

In domain knowledge formalization, prominent
work has made use of the web (Kozareva and Hovy,
2010), lexico-syntactic patterns (Navigli and Ve-
lardi, 2010), syntactic evidence (Luu Anh et al.,
2014), graph-based algorithms (Fountain and Lap-
ata, 2012; Velardi et al., 2013; Bansal et al., 2014) or
popularity of web sources (Luu Anh et al., 2015). As
for enabling large-scale knowledge repositories, this
task often tackles the additional problem of disam-
biguating word senses and entity mentions. Notable
approaches of this kind include Yago (Suchanek et
al., 2007), WikiTaxonomy (Ponzetto and Strube,
2008), and the Wikipedia Bitaxonomy (Flati et al.,
2014). In addition, while not being taxonomy learn-
ing systems per se, semi-supervised systems for In-
formation Extraction such as NELL (Carlson et al.,
2010) rely crucially on taxonomized concepts and
their relations within their learning process.

Taxonomy learning is roughly based on a two-
step process, namely is-a (hypernymic) relation de-

424

tection, and graph induction. The hypernym detec-
tion phase has gathered much interest not only for
taxonomy learning but also for lexical semantics. It
has been addressed by means of pattern-based meth-
ods1 (Hearst, 1992; Snow et al., 2004; Kozareva
and Hovy, 2010; Carlson et al., 2010; Boella and
Di Caro, 2013; Espinosa-Anke et al., 2016), clus-
tering (Yang and Callan, 2009) and graph-based ap-
proaches (Fountain and Lapata, 2012; Velardi et
al., 2013). Moreover, work stemming from dis-
tributional semantics introduced notions of linguis-
tic regularities found in vector representations such
as word embeddings (Mikolov et al., 2013d). In
this area, supervised approaches, arguably the most
popular nowadays, learn a feature vector between
term-hypernym vector pairs and train classifiers to
predict hypernymic relations. These pairs may be
represented either as a concatenation of both vec-
tors (Baroni et al., 2012), difference (Roller et al.,
2014), dot-product (Mikolov et al., 2013c), or in-
cluding additional linguistic information for LSTM-
based learning (Shwartz et al., 2016).

In this paper we propose TAXOEMBED2, a hy-
pernym detection algorithm based on sense em-
beddings, which can be easily applied to the con-
struction of lexical taxonomies. It is designed to
discover hypernymic relations by exploiting linear
transformations in embedding spaces (Mikolov et
al., 2013b) and, unlike previous approaches, lever-
ages this intuition to learn a specific semantically-
aware transformation matrix for each domain of
knowledge. Our best configuration (ranking first
in two thirds of the experiments conducted) consid-
ers two training sources: (1) Manually curated pairs
from Wikidata (Vrandečić and Krötzsch, 2014); and
(2) Hypernymy relations from a KB which inte-
grates several Open Information Extraction (OIE)
systems (Delli Bovi et al., 2015a). Since our method
uses a very large semantic network as reference
sense inventory, we are able to perform jointly hy-
pernym extraction and disambiguation, from which

1The terminology is not entirely unified in this respect. In
addition to pattern-based (Fountain and Lapata, 2012; Bansal et
al., 2014; Yu et al., 2015), other terms like path-based (Shwartz
et al., 2016) or rule-based (Navigli and Velardi, 2010) are also
used.

2Data and source code available from the following link:
www.taln.upf.edu/taxoembed.

expanding existing ontologies becomes a trivial task.
Compared to word-level taxonomy learning, TAXO-
EMBED results in more refined and unambiguous
hypernymic relations at the sense level, with a direct
application in tasks such as semantic search. Eval-
uation (both manual and automatic) shows that we
can effectively replicate the Wikidata is-a branch,
and capture previously unseen relations in other ref-
erence taxonomies (YAGO or WIBI).

2 Related Work

Pattern-based methods for hypernym identification
exploit the joint co-ocurrence of term and hyper-
nym in text corpora. Building up on Hearst’s pat-
terns (Hearst, 1992), these approaches have focused
on, for instance, exploiting templates for harvesting
candidate instances which are ranked via mutual in-
formation (Etzioni et al., 2005), training a classi-
fier with WordNet hypernymic relations combined
with syntactic dependencies (Snow et al., 2006),
or applying a doubly-anchored method (Kozareva
and Hovy, 2010), which queries the web with two
semantically related terms for collecting domain-
specific corpora. Syntactic information is also used
for supervised definition and hypernym extraction
(Navigli and Velardi, 2010; Boella and Di Caro,
2013), or together with Wikipedia-specific heuris-
tics (Flati et al., 2014). One of the main drawbacks
of these methods is that they require both term and
hypernym to co-occur in text within a certain win-
dow, which strongly hinders their recall. Higher re-
call can be achieved thanks to distributional meth-
ods, as they do not have co-occurrence requirements.
In addition, they can be tailored to cover any num-
ber of predefined semantic relations such as co-
hyponymy or meronymy (Baroni and Lenci, 2011),
but also cause-effect or entity-origin (Hendrickx et
al., 2009). However, they are often more imprecise
and seem to perform best in discovering broader se-
mantic relations (Shwartz et al., 2016).

One way to surmount the issue of generality was
proposed by Fu et al. (2014), who explored the pos-
sibility to learn a hypernymic transformation matrix
over a word embeddings space. As shown empiri-
cally in Fu et al.’s original work, the hypernymic re-
lation that holds for the pair (dragonfly, insect) dif-
fers from the one of e.g. (carpenter, man). Prior to

425

training, their system addresses this discrepancy via
k-means clustering using a held-out development set
for tuning.

The previously described methods for hypernym
and taxonomy learning operate inherently at the sur-
face level. This is partly due to the way evaluation
is conducted, which is often limited to very spe-
cific domains with no integrative potential (e.g. tax-
onomies in food, science or equipment from
Bordea et al. (2015)), or restricted to lists of word
pairs. Hence, a drawback of surface-level taxonomy
learning, apart from ambiguity issues, is that they
require additional and error-prone steps to identify
semantic clusters (Fu et al., 2014).

Alternatively, recent advances in OIE based
on disambiguation and deeper semantic analysis
(Nakashole et al., 2012; Grycner and Weikum, 2014;
Delli Bovi et al., 2015b) have shown their potential
to construct taxonomized disambiguated resources
both at node and at relation level. However, in ad-
dition to their inherently broader scope, OIE ap-
proaches are designed to achieve high coverage, and
hence they tend to produce noisier data compared to
taxonomy learning systems.

In our sense-based approach, instead, not only
do we leverage an unambiguous vector representa-
tion for hypernym discovery, but we also take ad-
vantage of a domain-wise clustering strategy to di-
rectly obtain specific term-hypernym training pairs,
thereby substantially refining this step. Additionally,
we exploit the complementary knowledge of OIE
systems by incorporating high-confidence relation
triples drawn from OIE-derived resources, yielding
the best average configuration as evaluated on ten
different domains of knowledge.

3 Preliminaries

TAXOEMBED leverages the vast amounts of train-
ing data available from structured and unstructured
knowledge resources, along with the mapping
among these resources and a state-of-the-art vector
representation of word senses.

BabelNet3 (Navigli and Ponzetto, 2012) con-
stitutes our sense inventory, as it is currently the
largest single multilingual repository of named en-

3http://babelnet.org

tities and concepts, integrating various resources
such as WordNet, Wikipedia or Wikidata. As in
WordNet, BabelNet is structured in synsets. Each
synset is composed of a set of words (lexicaliza-
tions or senses) representing the same meaning. For
instance, the synset referring to the members of a
business organization is represented by the set of
senses firm, house, business firm. BabelNet contains
around 14M synsets in total. We exploit BabelNet4

as (1) A repository for the manually-curated hyper-
nymic relations included in Wikidata; (2) A seman-
tic pivot of the integration of several OIE systems
into one single resource, namely KB-UNIFY; and
(3) A sense inventory for the SENSEMBED vector
representations. In the following we provide further
details about each of these resources.

3.1 Training Data
Wikidata5 (Vrandečić and Krötzsch, 2014) is a
document-oriented semantic database operated
by the Wikimedia Foundation with the goal of
providing a common source of data that can be
used by other Wikimedia projects. Our initial
training set W consists of the hypernym branch
of Wikidata, specifically the version included in
BabelNet. Each term-hypernym ∈ W is in fact a
pair of BabelNet synsets, e.g. the synset for Apple
(with the company sense), and the concept company.

KB-UNIFY6 (Delli Bovi et al., 2015a) (KB-U) is
a knowledge-based approach, based on BabelNet,
for integrating the output of different OIE systems
into a single unified and disambiguated knowledge
repository. The unification algorithm takes as input
a set K of OIE-derived resources, each of which is
modeled as a set of 〈entity, relation, entity〉 triples,
and comprises two subsequent stages: in the first
disambiguation stage, each KB in K is linked to the
sense inventory of BabelNet by disambiguating its
relation argument pairs; in the following alignment
stage, equivalent relations across different KB in K
are merged together. As a result, KB-U generates
a KB of triples where arguments are linked to
the corresponding BabelNet synsets, and relations
are replaced by relation synsets of semantically

4We use BabelNet 3.0 release version in our experiments.
5https://www.wikidata.org
6http://lcl.uniroma1.it/kb-unify

426

similar OIE-derived relation patterns. The original
experimental setup of KB-UNIFY included NELL

(Carlson et al., 2010) as one of its input resources:
since NELL features its own manually-built taxo-
nomic structure and relation type inventory (hence
its own is-a relation type), we identified the relation
synset containing NELL’s is-a7 and then drew from
the unified KB all the corresponding triples, which
we denote as K. These triples constitute, similarly
as in the previous case, a set of term-hypernym
pairs automatically extracted from OIE-derived
resources, with a disambiguation confidence of
above 0.9 according to the disambiguation strategy
described in the original paper.

Initially, |W| = 5,301,867 and |K| = 1,358,949.

3.2 Sense vectors

SENSEMBED (Iacobacci et al., 2015)8 constitutes
the sense embeddings space that we use for train-
ing our hypernym detection algorithm. Vectors in
the SENSEMBED space, denoted as S, are latent
continuous representations of word senses based on
the Word2Vec architecture (Mikolov et al., 2013a),
which was applied on a disambiguated Wikipedia
corpus. Each vector ~v ∈ S represents a BabelNet
sense, i.e. a synset along with one of its lexical-
izations (e.g. album_chart_bn:00002488n). This
differs from unsupervised approaches (Huang et al.,
2012; Tian et al., 2014; Neelakantan et al., 2014)
that learn sense representations from text corpora
only and are not mapped to any lexical resource, lim-
iting their application in our task.

4 Methodology

Our approach can be summarized as follows. First,
we take advantage of a clustering algorithm for allo-
cating each BabelNet synset of the training set into
a domain cluster C (Section 4.1). Then, we expand
the training set by exploiting the different lexical-
izations available for each BabelNet synset (Section
4.2). Finally, we learn a cluster-wise linear pro-
jection (a hypernym transformation matrix) over all
pairs (term-hypernym) of the expanded training set
(Section 4.3).

7represented by the relation generalizations.
8http://lcl.uniroma1.it/sensembed

4.1 Domain Clustering
Fu et al. (2014) induced semantic clusters via k-
means, where k was tuned on a development set.
Instead, we aim at learning a function sensitive to
a predefined knowledge domain, under the assump-
tion that vectors clustered with this criterion are
likely to exhibit similar semantic properties (e.g.
similarity). First, we allocate each synset into its
most representative domain, which is achieved by
exploiting the set of thirty four domains available
in the Wikipedia featured articles page9. Warfare,
transport, or music are some of these domains.
In the Wikipedia featured articles page each domain
is composed of 128 Wikipedia pages on average.
Then, in order to expand the set of concepts as-
sociated with each domain, we leverage NASARI10

(Camacho-Collados et al., 2015), a distributional ap-
proach that has been used to construct explicit vector
representations of BabelNet synsets.

Our goal is to associate BabelNet synsets with do-
mains. To this end, we follow Camacho-Collados
et al. (2016) and build a lexical vector for each
Wikipedia domain by concatenating all Wikipedia
pages representing the given domain into a single
text. Finally, given a BabelNet synset b, we calculate
the similarity between its corresponding NASARI

lexical vector and all the domain vectors, selecting
the domain leading to the highest similarity score:

d̂(b) = max
d∈D

WO(~d,~b) (1)

whereD is the set of all thirty-three domains, ~d is the
vector of the domain d ∈ D, ~b is the vector of the
BabelNet synset b, and WO refers to the Weighted
Overlap comparison measure (Pilehvar et al., 2013),
which is defined as follows:

WO(~v1, ~v2) =

√√√√
∑

w∈O
(
rankw, ~v1 + rankw, ~v2

)−1
∑|O|

i=1(2i)−1

(2)
where rankw,~vi is the rank of the word w in the vec-
tor ~vi according to its weight, and O is the set of
overlapping words between the two vectors. In order
to have a highly reliable set of domain labels, those

9https://en.wikipedia.org/wiki/
Wikipedia:Featured_articles

10http://lcl.uniroma1.it/nasari

427

synsets whose maximum similarity score is below
a certain threshold are not annotated with any do-
main. We fixed the threshold to 0.35, which pro-
vided a fine balance between precision (estimated in
around 85%) and recall in our development set. By
following this approach almost 2 million synsets are
labelled with a domain.

4.2 Training Data Expansion

Prior to training our model, we benefit from the
fact that a given BabelNet synset may be associ-
ated with a fixed number of lexicalizations or senses,
i.e. different ways of referring to the same con-
cept, to expand our set of training pairs. For in-
stance, the synset b associated with the concept mu-
sic_album is represented by the set of lexicalizations
Lb = {album, music_album . . . album_project}.
We take advantage of this synset representation to
expand each term-hypernym synset pair. For each
term-hypernym pair, both concepts are expanded to
their given lexicalizations and thus, each synset pair
term-hypernym in the training data is expanded to a
set of |Lt|.|Lh| sense training pairs.

This expansion step results in much larger sets
W∗ and K∗, where |W∗| = 18,291,330 and |K∗| =
15,362,268. Specifically, they are 3 and 11 times
bigger than the original training sets described in
Section 3.1. These numbers are higher than those re-
ported in recent approaches for hypernym detection,
which exploited Chinese semantic thesauri along
with manual validation of hypernym pairs (Fu et al.,
2014) (obtaining a total of 1,391 instances), or pairs
from knowledge resources such as Wikidata, Yago,
WordNet and DBpedia (Shwartz et al., 2016), where
the maximum reported split for training data (70%)
amounted to 49,475 pairs.

4.3 Learning a Hypernym Detection Matrix

The gist of our approach lies on the property of cur-
rent semantic vector space models to capture rela-
tions between vectors, in our case hypernymy. This
can be found even in disjoint spaces, where this
property has been exploited for machine translation
(Mikolov et al., 2013b) or language normalization
(Tan et al., 2015). For our purposes, however, in-
stead of learning a global linear transformation func-
tion in two spaces over a broad relation like hyper-
nymy, we learn a function sensitive to a given do-

main of knowledge. Thus, our training data becomes
restricted to those term-hypernym BabelNet sense
pairs

(
xd, yd

)
∈ Cd×Cd, where Cd is the cluster of

BabelNet synsets labelled with the domain d.
For each domain-wise expanded training set T d,

we construct a hyponym matrix Xd = [~xd1 . . . ~x
d
n]

and a hypernym matrix Yd = [~ydi . . . ~y
d
n], which are

composed by the corresponding SENSEMBED vec-
tors of the training pairs

(
xdi , y

d
i

)
∈ Cd × Cd, 0 ≤

i ≤ n.
Under the intuition that there exists a matrix Ψ so

that ~yd = Ψ~xd, we learn a transformation matrix for
each domain cluster Cd by minimizing:

min
ΨC

|T d|∑

i=1

‖ΨC~xdi − ~ydi ‖2 (3)

Then, for any unseen term xd, we obtain a ranked
list of the most likely hypernyms of its lexicalization
vectors ~xjd, using as measure cosine similarity:

argmax~v∈S
~v ·ΨC ~xj

d

||~v||||ΨC ~xj
d||

(4)

At this point, we have associated with each sense
vector a ranked list of candidate hypernym vectors.
However, in the (frequent) cases in which one synset
has more than one lexicalization, we need to con-
dense the results into one single list of candidates,
which we achieve with a simple ranking function
λ(·), which we compute as λ(~v) = cos(~v,ΨC~xd)

rank(~v) ,
where rank(~v) is the rank of ~v according to its co-
sine similarity with ΨC~xd.

The above operations allow us to cast the hyper-
nym detection task as a ranking problem. This is
also particularly interesting to enable a flexible eval-
uation framework where we can combine highly de-
manding metrics for the quality of the candidate
given at a certain rank, as well as other measures
which consider the rank of the first valid retrieved
candidate.

5 Evaluation

The performance of TAXOEMBED is evaluated by
conducting several experiments, both automatic and
manual. Specifically, we assess its ability to re-
turn valid hypernyms for a given unseen term with

428

a held-out evaluation dataset of 250 Wikidata term-
hypernym pairs (Section 5.1). In addition, we as-
sess the extent to which TAXOEMBED is able to cor-
rectly identify hypernyms outside of Wikidata (Sec-
tion 5.2).

5.1 Experiment 1: Automatic Evaluation
5.1.1 Experimental setting

For each domain, we retain 5k, 10k, 15k, 20k and
25k Wikidata term-hypernym training pairs for dif-
ferent experiments, and evaluate on 250 test pairs
for each of the 10 domains. Moreover, we aim at
improving TAXOEMBED by including 1k and 25k
extra OIE-derived training pairs per domain (gen-
erating two more systems, namely 25k+Kd

1k and
25k+Kd

25k). These OIE-derived instances are those
contained in KB-U (see Section 3.1). Moreover, in
order to quantify the empirically grounded intuition
of the need to train a cluster-wise transformation ma-
trix (Fu et al., 2014), we also introduce an additional
configuration at 25k (25k+Kr

50k), where we include
50k additional pairs randomly from KB-U, and two
more settings with only random pairs coming from
Wikidata (100krwd) and KB-U (100k+r

kbu).
We also include a distributional supervised base-

line11 based on word analogies (Mikolov et al.,
2013a), computed as follows. First, we calculate the
difference vector of each training SENSEMBED vec-
tor pair (~xd,~yd) of a given domain d. Then, we aver-
age all the difference vectors of all training pairs to
obtain a global vector ~Vd for the domain d. Finally,
given a test term t we calculate the closest vector of
the sum of the corresponding term vector and ~Vd:

t̂ = argmax~v∈S ~Vd + ~t (5)

This baseline has shown to capture different se-
mantic relations and to improve as training data in-
creases (Mikolov et al., 2013a).

Evaluation metrics. We computed, for each do-
main and for the above configurations, the follow-
ing metrics: Mean Reciprocal Rank (MRR), Mean
Average Precision (MAP), and R-Precision (R-P).
These measures provide insights on different aspects
of the outcome of the task, e.g. how often valid hy-
pernyms were retrieved in the first positions of the

11Using the 25k domain-filtered expanded Wikidata pairs as
training set.

rank (MRR), and if there were more than one valid
hypernym, whether this set was correctly retrieved,
(MAP and R-P)12.

5.1.2 Results and discussion
We summarize the main outcome of our experi-

ments in Table 1. Results suggest that the perfor-
mance of TAXOEMBED increases as training data
expands. This is consistent with the findings shown
in Mikolov et al. (2013b), who showed a substantial
improvement in accuracy in the machine translation
task by gradually increasing the training set. Ad-
ditionally, the improvement of TAXOEMBED over
the baseline is consistent across most evaluation do-
main clusters and metrics, with domain-filtered data
from KB-U contributing to the learning process in
about two thirds of the evaluated configurations.
These are very encouraging results considering the
noisy nature of OIE systems, and that the resource
we obtained from KB-U is the result of error-prone
steps such as Word Sense Disambiguation and En-
tity Linking, as well as relation clustering.

As far as the individual domains are concerned,
the biology domain seems to be easier to model
than the rest, likely due to the fact that fauna and
flora are areas where hierarchical division of species
is a field of study in itself, which traces back to Aris-
totelian times (Mayr, 1982), and therefore has been
constantly refined over the years. Also, it is no-
table how well the 100krwd configuration performs
on this domain. This is the only domain in which
training with no semantic awareness gives good re-
sults. We argue that this is highly likely due to
the fact that a vast amount of synsets are allocated
into the biology cluster (60% of them, and up
to 80% in hypernym position). This produces the
so-called lexical memorization phenomenon (Levy
et al., 2015), as the system memorizes prototypical
biology-related hypernyms like taxon as valid hy-
pernyms for many concepts. This contrasts with the
lower presence of other domains, e.g. 5% in media,
4% in music, or 2% in transport.

Another remarkable case involves the
education and media domains, which ex-
perience the highest improvement when training
with KB-U (5 and 6 MRR points, respectively).

12See Bian et al. (2008) for an in-depth analysis of these met-
rics.

429

art biology education geography health

Train MRR MAP R-P MRR MAP R-P MRR MAP R-P MRR MAP R-P MRR MAP R-P

5k 0.12 0.12 0.12 0.63 0.63 0.59 0.00 0.00 0.00 0.08 0.07 0.07 0.08 0.08 0.07
15k 0.21 0.20 0.18 0.84 0.72 0.79 0.22 0.22 0.21 0.15 0.14 0.14 0.08 0.07 0.07
25k 0.29 0.27 0.26 0.84 0.83 0.81 0.33 0.32 0.30 0.23 0.22 0.21 0.09 0.09 0.08
25k+Kd

1k 0.29 0.28 0.26 0.84 0.80 0.79 0.32 0.29 0.27 0.22 0.22 0.21 0.09 0.09 0.08
25k+Kd

25k 0.26 0.24 0.22 0.70 0.63 0.56 0.38 0.36 0.33 0.15 0.13 0.12 0.11 0.11 0.10
25k+Kr

50k 0.28 0.26 0.24 0.82 0.77 0.72 0.36 0.33 0.30 0.17 0.16 0.16 0.12 0.11 0.10

100kr
wd 0.00 0.00 0.00 0.84 0.81 0.77 0.00 0.00 0.00 0.01 0.01 0.01 0.07 0.06 0.06

100kr
kbu 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.12 0.12 0.11

Baseline 0.13 0.12 0.10 0.58 0.57 0.57 0.10 0.10 0.09 0.12 0.09 0.05 0.07 0.13 0.14
media music physics transport warfare

Train MRR MAP R-P MRR MAP R-P MRR MAP R-P MRR MAP R-P MRR MAP R-P

5k 0.28 0.28 0.27 0.10 0.10 0.09 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01
15k 0.14 0.13 0.12 0.08 0.07 0.07 0.36 0.35 0.34 0.25 0.23 0.21 0.01 0.01 0.01
25k 0.46 0.45 0.43 0.30 0.28 0.26 0.41 0.40 0.38 0.46 0.43 0.39 0.05 0.05 0.04
25k+Kd

1k 0.43 0.42 0.41 0.32 0.30 0.28 0.39 0.38 0.37 0.47 0.44 0.40 0.04 0.04 0.01
25k+Kd

25k 0.52 0.51 0.49 0.26 0.25 0.23 0.37 0.36 0.34 0.48 0.45 0.41 0.04 0.03 0.03
25k+Kr

50k 0.46 0.45 0.43 0.29 0.28 0.25 0.31 0.30 0.29 0.52 0.49 0.46 0.05 0.04 0.04
100kr

wd 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01
100kr

kbu 0.08 0.07 0.07 0.01 0.01 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.00 0.00 0.00

Baseline 0.57 0.43 0.52 0.03 0.03 0.03 0.05 0.04 0.04 0.29 0.25 0.21 0.04 0.04 0.04

Table 1: Overview of the performance of TAXOEMBED using different training data samples.

One of the main sources for is-a relations in KB-U
is NELL, which contains a vast amount of relation
triples between North American academic entities
(professors, sports teams, alumni, donators; as
well as media celebrities). Many of these entities
are missing in Wikidata, and relations among
them encoded in NELL are likely to be correct
because in most cases these are unambiguous
entities which occur in the same communicative
contexts. For example, leveraging KB-U we were
able to include the pair (university_of_north_wales,
four_year_college), which is absent in Wikidata. In
fact, many high quality is-a pairs like this can be
found in KB-U for these two domains.

We also computed P@k (number of valid hyper-
nyms on the first k returned candidates), where k
ranges from 1 to 5. Numbers are on the line of the re-
sults shown in Table 1 and therefore are not provided
in detail. The main trend we found is showcased in
Figure 1, which shows an illustrative example from
the transport domain. As we can see, all val-
ues of k exhibit a similar performance curve, with a

gradual increase of performance as the training set
becomes larger.

Figure 1: P@k scores for the transport domain.

False positives. We complement this experiment
with a manual evaluation of theoretical false posi-
tives. Our intuition is that due to the nature of the
task, some domains may be more flexible in allow-

430

ing two terms to encode an is-a relation, while others
may be more restrictive. We asked human judges to
manually validate a sample of 200 wrong pairs from
our best run in each domain, and estimated precision
over them. As expected, hard science domains like
physics obtain very low results (about 1% preci-
sion). In contrast, other domains like education
(12% precision), or transport (16% precision),
probably due to their multidisciplinary nature, allow
more valid hypernyms for a given term than what is
currently encoded in Wikidata.

5.2 Experiment 2: Extra-Coverage

In this experiment we evaluate the performance of
TAXOEMBED on instances not included in Wiki-
data. We describe the experimental setting in Sec-
tion 5.2.1 and present the results in Section 5.2.2.

5.2.1 Experimental setting

For this experiment we use two configurations of
TAXOEMBED: the first one includes 25k domain-
wise expanded training pairs (TaxE25k), whereas the
second one adds 1k pairs from KB-U (TaxE25k+Kd).
We randomly extract 200 test BabelNet synsets (20
per domain) whose hypernyms are missing in Wiki-
data. We compare against a number of taxon-
omy learning and Information Extraction systems,
namely Yago (Suchanek et al., 2007), WiBi (Flati
et al., 2014) and DefIE (Delli Bovi et al., 2015b).
Yago and WiBi are used as upper bounds due to the
nature of their hypernymic relations. They include
a great number of manually-encoded taxonomies
(e.g. exploiting WordNet and Wikipedia categories).
Yago derives its taxonomic relations from an au-
tomatic mapping between WordNet and Wikipedia
categories. WiBi, on the other hand, exploits, among
a number of different Wikipedia-specific heuristics,
categories and the syntactic structure of the intro-
ductory sentence of Wikipedia pages. Finally, DefIE
is an automaic OIE system relying on the syntactic
structure of pre-disambiguated definitions13. Three
annotators manually evaluated the validity of the hy-
pernyms extracted by each system (one per test in-
stance).

13For this experiment, we included DefIE’s is-a relations
only.

5.2.2 Results and discussion
Table 2 shows the results of TAXOEMBED and all

comparison systems. As expected, Yago and WiBi
achieve the best overall results. However, TAXOEM-
BED, based solely on distributional information, per-
formed competitively in detecting new hypernyms
when compared to DefIE, improving its recall in
most domains, and even surpassing Yago in techni-
cal areas like biology or health. However, our
model does not perform particularly well on media
and physics. In most domains our model is able
to discover novel hypernym relations that are not
captured by any other system (e.g. therapy for ra-
diation treatment planning in the health domain
or decoration for molding in the art domain)14.

In fact, the overlap between our approach and the
remaining systems is actually quite small (on aver-
age less than 25% with all of them on the Extra-
Coverage experiment). This is mainly due to the fact
that TAXOEMBED only exploits distributional infor-
mation and does not make use of predefined syntac-
tic heuristics, suggesting that the information it pro-
vides and the rule-based comparison systems may
be complementary. We foresee a potential avenue
focused on combining a supervised distributional
approach such as TAXOEMBED with syntactically-
motivated systems such as Wibi or Yago. This
combination of a distributional system and manual
patterns was already introduced by Shwartz et al.
(2016) on the hypernym detection task with highly
encouraging results.

6 Conclusion

We have presented TAXOEMBED, a supervised tax-
onomy learning framework exploiting the property
that was observed in Fu et al. (2014), namely
that there exists, for a given domain-specific ter-
minology, a shared linear projection among term-
hypernym pairs. We showed how this can be used
to learn a hypernym transformation matrix for dis-
covering novel is-a relations, which are the back-
bone of lexical taxonomies. First, we allocate al-
most 2M BabelNet synsets into a predefined domain
of knowledge. Then, we collect training data both
from a manually constructed knowledge base (Wiki-

14For simplicity, we use the word surface form to refer to
BabelNet synsets.

431

art biology education geography health

P R F P R F P R F P R F P R F

TaxE25k 0.45 0.45 0.45 0.40 0.40 0.40 0.60 0.60 0.60 0.35 0.35 0.35 0.45 0.45 0.45
TaxE25k+Kd 0.50 0.50 0.50 0.40 0.40 0.40 0.55 0.55 0.55 0.35 0.35 0.35 0.45 0.45 0.45
DefIE 0.63 0.35 0.45 0.36 0.20 0.25 0.57 0.20 0.29 0.66 0.40 0.50 0.25 0.15 0.18

Yago 0.88 0.75 0.81 0.62 0.25 0.36 0.94 0.80 0.86 0.79 0.75 0.77 0.28 0.10 0.15
Wibi 0.70 0.70 0.70 0.58 0.50 0.54 0.94 0.80 0.86 0.75 0.75 0.75 0.66 0.50 0.57

media music physics transport warfare

P R F P R F P R F P R F P R F

TaxE25k 0.10 0.10 0.10 0.45 0.45 0.45 0.15 0.15 0.15 0.35 0.35 0.35 0.25 0.25 0.25
TaxE25k+Kd 0.10 0.10 0.10 0.40 0.40 0.40 0.15 0.15 0.15 0.25 0.25 0.25 0.45 0.45 0.45
DefIE 0.81 0.45 0.58 0.71 0.50 0.58 0.42 0.15 0.22 0.54 0.30 0.38 0.60 0.30 0.40

Yago 0.76 0.65 0.70 0.84 0.55 0.67 0.80 0.40 0.53 0.93 0.70 0.80 0.81 0.65 0.72
Wibi 0.90 0.90 0.90 0.89 0.85 0.87 0.68 0.55 0.61 0.87 0.70 0.77 0.66 0.50 0.57

Table 2: Precision, recall and F-Measure between TAXOEMBED, two taxonomy learning systems (Yago and
WiBi), and a pattern-based approach that performs hypernym extraction (DefIE).

data), and from OIE systems. We substantially ex-
pand our initial training set by expanding both terms
and hypernyms to all their available senses, and in a
last step, to their corresponding disambiguated vec-
tor representations.

Evaluation shows that the general trend is that our
hypernym matrix improves as we increase training
data. Our best domain-wise configuration combines
25k training pairs from Wikidata and additional
pairs from an OIE-derived KB, achieving promis-
ing results. The domains in which the addition of
the OIE-based information contributed the most are
education, transport and media. For in-
stance, in the case of education, this may be due
to the over representation of the North American ed-
ucational system in IE systems like NELL. We ac-
company this quantitative evaluation with manual
assessment of precision of false positives, and an
analysis of the potential coverage comparing it with
knowledge taxonomies like Yago or WiBi, and with
DefIE, a quasi-OIE system.

7 Future Work

For future work we are planning to apply this strat-
egy to learn large-scale semantic relations beyond
hypernymy. This may constitute a first step towards
a global and fully automatic ontology learning sys-
tem. In the context of semantic web, we would like
to include semantic parsers and distant supervision

to our algorithm in order to capture n-ary relations
between pairs of concepts to further create and im-
prove existing KBs.

As mentioned in Section 5.2.2, we are also plan-
ning to combine our distributional approach with
rule-based heuristics, following the line of work in-
troduced by Shwartz et al. (2016). Finally, we see
potential in the domain clustering approach for im-
proving graph-based taxonomy learning systems, as
it can serve as a weighting measure as to how perti-
nent a given set of concepts in a taxonomy are for a
specific domain.

Acknowledgments

This work is partially funded by the Spanish Min-
istry of Economy and Competitiveness under the
Maria de Maeztu Units of Excellence Programme
(MDM-2015-0502) and under the TUNER project
(TIN2015-65308-C5-5-R, MINECO/FEDER, UE).
The authors also acknowledge support from Dr. In-
ventor (FP7-ICT-2013.8.1611383). José Camacho-
Collados is supported by a Google Doctoral Fellow-
ship in Natural Language Processing. We would
also like to thank Tommaso Pasini for helping us to
compute the Wibi and Yago baselines in our second
experiment.

432

References

Eneko Agirre, Oier Lopez de Lacalle, and Aitor Soroa.
2014. Random walks for knowledge-based word
sense disambiguation. Computational Linguistics,
40(1):57–84.

Mohit Bansal, David Burkett, Gerard De Melo, and Dan
Klein. 2014. Structured learning for taxonomy induc-
tion with belief propagation. In ACL (1), pages 1041–
1051.

Marco Baroni and Alessandro Lenci. 2011. How we
blessed distributional semantic evaluation. In Pro-
ceedings of the GEMS 2011 Workshop on GEometrical
Models of Natural Language Semantics, pages 1–10.
Association for Computational Linguistics.

Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do, and
Chung-chieh Shan. 2012. Entailment above the word
level in distributional semantics. In Proceedings of
EACL, pages 23–32.

Jiang Bian, Yandong Liu, Eugene Agichtein, and
Hongyuan Zha. 2008. Finding the right facts in the
crowd: factoid question answering over social media.
In Proceedings of the 17th international conference on
World Wide Web, pages 467–476. ACM.

Guido Boella and Luigi Di Caro. 2013. Super-
vised learning of syntactic contexts for uncovering
definitions and extracting hypernym relations in text
databases. In Machine learning and knowledge dis-
covery in databases, pages 64–79. Springer.

Georgeta Bordea, Paul Buitelaar, Stefano Faralli, and
Roberto Navigli. 2015. Semeval-2015 task 17: Tax-
onomy extraction evaluation (texeval). In Proceedings
of the SemEval workshop.

José Camacho-Collados, Mohammad Taher Pilehvar, and
Roberto Navigli. 2015. A Unified Multilingual Se-
mantic Representation of Concepts. In Proceedings of
ACL, pages 741–751, Beijing, China.

José Camacho-Collados, Mohammad Taher Pilehvar, and
Roberto Navigli. 2016. Nasari: Integrating explicit
knowledge and corpus statistics for a multilingual rep-
resentation of concepts and entities. Artificial Intelli-
gence, 240:36–64.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr
Settles, Estevam R. Hruschka Jr., and Tom M.
Mitchell. 2010. Toward an Architecture for Never-
Ending Language Learning. In Proceedings of AAAI,
pages 1306–1313.

Claudio Delli Bovi, Luis Espinosa Anke, and Roberto
Navigli. 2015a. Knowledge base unification via sense
embeddings and disambiguation. In Proceedings of
EMNLP, pages 726–736, Lisbon, Portugal, September.
Association for Computational Linguistics.

Claudio Delli Bovi, Luca Telesca, and Roberto Navigli.
2015b. Large-scale information extraction from tex-
tual definitions through deep syntactic and semantic
analysis. TACL, 3:529–543.

Luis Espinosa-Anke, Horacio Saggion, Francesco Ron-
zano, and Roberto Navigli. 2016. Extasem! ex-
tending, taxonomizing and semantifying domain ter-
minologies. AAAI.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-
Maria Popescu, Tal Shaked, Stephen Soderland,
Daniel S Weld, and Alexander Yates. 2005. Unsuper-
vised named-entity extraction from the web: An exper-
imental study. Artificial intelligence, 165(1):91–134.

Tiziano Flati, Daniele Vannella, Tommaso Pasini, and
Roberto Navigli. 2014. Two is bigger (and better)
than one: the wikipedia bitaxonomy project. In ACL.

Trevor Fountain and Mirella Lapata. 2012. Taxonomy
induction using hierarchical random graphs. In Pro-
ceedings of NAACL, pages 466–476. Association for
Computational Linguistics.

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng
Wang, and Ting Liu. 2014. Learning semantic hier-
archies via word embeddings. In Proceedings of ACL,
volume 1.

Oren Glickman, Ido Dagan, and Moshe Koppel. 2005. A
probabilistic classification approach for lexical textual
entailment. In Proceedings of the National Conference
On Artificial Intelligence, page 1050.

Adam Grycner and Gerhard Weikum. 2014. Harpy: Hy-
pernyms and alignment of relational paraphrases. In
Proceedings of COLING, pages 2195–2204, Dublin,
Ireland.

Sanda M Harabagiu, Steven J Maiorano, and Marius A
Pasca. 2003. Open-domain textual question an-
swering techniques. Natural Language Engineering,
9(03):231–267.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of the
14th conference on Computational linguistics, pages
539–545.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav
Nakov, Diarmuid Ó Séaghdha, Sebastian Padó, Marco
Pennacchiotti, Lorenza Romano, and Stan Szpakow-
icz. 2009. Semeval-2010 task 8: Multi-way classifi-
cation of semantic relations between pairs of nominals.
In Proceedings of SemEval: Recent Achievements and
Future Directions, pages 94–99.

Eric H. Huang, Richard Socher, Christopher D. Manning,
and Andrew Y. Ng. 2012. Improving word representa-
tions via global context and multiple word prototypes.
In Proceedings of ACL, pages 873–882, Jeju Island,
Korea.

Sung Ju Hwang, Kristen Grauman, and Fei Sha. 2012.
Semantic kernel forests from multiple taxonomies. In

433

Advances in Neural Information Processing Systems,
pages 1718–1726.

Ignacio Iacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2015. SensEmbed: Learning sense
embeddings for word and relational similarity. In Pro-
ceedings of ACL, pages 95–105, Beijing, China.

Zornitsa Kozareva and Eduard Hovy. 2010. A semi-
supervised method to learn and construct taxonomies
using the web. In Proceedings of EMNLP, pages
1110–1118.

Omer Levy, Steffen Remus, Chris Biemann, Ido Dagan,
and Israel Ramat-Gan. 2015. Do supervised distribu-
tional methods really learn lexical inference relations?
In NAACL 2015, Denver, Colorado, USA.

Tuan Luu Anh, Jung-jae Kim, and See Kiong Ng. 2014.
Taxonomy construction using syntactic contextual ev-
idence. In Proceedings of EMNLP, pages 810–819.

Tuan Luu Anh, Jung-jae Kim, and See-Kiong Ng.
2015. Incorporating trustiness and collective syn-
onym/contrastive evidence into taxonomy construc-
tion. In Proceedings of EMNLP, pages 1013–1022.

Ernst Mayr. 1982. The growth of biological thought:
Diversity, evolution, and inheritance. Harvard Univer-
sity Press.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013b.
Exploiting similarities among languages for machine
translation. arXiv preprint arXiv:1309.4168.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013c. Distributed represen-
tations of words and phrases and their composition-
ality. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013d. Linguistic regularities in continuous space
word representations. In HLT-NAACL, pages 746–
751.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Ndapandula Nakashole, Gerhard Weikum, and Fabian M.
Suchanek. 2012. PATTY: A Taxonomy of Rela-
tional Patterns with Semantic Types. In Proceedings
of EMNLP-CoNLL, pages 1135–1145.

Roberto Navigli and Simone Paolo Ponzetto. 2012. Ba-
belNet: The automatic construction, evaluation and
application of a wide-coverage multilingual semantic
network. Artificial Intelligence, 193:217–250.

Roberto Navigli and Paola Velardi. 2010. Learning
word-class lattices for definition and hypernym extrac-
tion. In ACL, pages 1318–1327.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In Proceedings of EMNLP,
pages 1059–1069, Doha, Qatar.

Mohammad Taher Pilehvar, David Jurgens, and Roberto
Navigli. 2013. Align, Disambiguate and Walk: a
Unified Approach for Measuring Semantic Similarity.
In Proceedings of ACL, pages 1341–1351, Sofia, Bul-
garia.

Simone Paolo Ponzetto and Michael Strube. 2008. Wik-
itaxonomy: A large scale knowledge resource. In
ECAI, volume 178, pages 751–752.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet selective: Supervised distributional hy-
pernymy detection. In Proceedings of COLING 2014,
Dublin, Ireland.

Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016.
Improving hypernymy detection with an integrated
path-based and distributional method. arXiv preprint
arXiv:1603.06076.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2004.
Learning syntactic patterns for automatic hypernym
discovery. Advances in Neural Information Process-
ing Systems 17.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2006.
Semantic taxonomy induction from heterogenous evi-
dence. In Proceedings of COLING/ACL 2006, pages
801–808.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: A core of semantic knowledge.
In WWW, pages 697–706. ACM.

L. Tan, H. Zhang, C. Clarke, and M. Smucker. 2015.
Lexical comparison between wikipedia and twitter
corpora by using word embeddings. In Proceedings
of ACL (2), pages 657–661, Beijing, China, July.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilistic
model for learning multi-prototype word embeddings.
In COLING, pages 151–160.

Giannis Varelas, Epimenidis Voutsakis, Paraskevi
Raftopoulou, Euripides GM Petrakis, and Evange-
los E Milios. 2005. Semantic similarity methods in
wordnet and their application to information retrieval
on the web. In Proceedings of the 7th annual ACM
international workshop on Web information and data
management, pages 10–16. ACM.

Paola Velardi, Stefano Faralli, and Roberto Navigli.
2013. OntoLearn Reloaded: A graph-based algorithm
for taxonomy induction. Computational Linguistics,
39(3):665–707.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85.

434

Hui Yang and Jamie Callan. 2009. A metric-based
framework for automatic taxonomy induction. In Pro-
ceedings of ACL/IJCNLP, pages 271–279. Association
for Computational Linguistics.

Mo Yu and Mark Dredze. 2014. Improving lexical em-
beddings with semantic knowledge. In ACL (2), pages
545–550.

Zheng Yu, Haixun Wang, Xuemin Lin, and Min Wang.
2015. Learning term embeddings for hypernymy iden-
tification. In Proceedings of IJCAI, pages 1390–1397.

435

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 436–446,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Latent Tree Language Model

Tomáš Brychcı́n
NTIS – New Technologies for the Information Society,

Faculty of Applied Sciences, University of West Bohemia,
Technická 8, 306 14 Plzeň, Czech Republic

brychcin@kiv.zcu.cz
nlp.kiv.zcu.cz

Abstract

In this paper we introduce Latent Tree Lan-
guage Model (LTLM), a novel approach to
language modeling that encodes syntax and
semantics of a given sentence as a tree of word
roles.

The learning phase iteratively updates the
trees by moving nodes according to Gibbs
sampling. We introduce two algorithms to in-
fer a tree for a given sentence. The first one is
based on Gibbs sampling. It is fast, but does
not guarantee to find the most probable tree.
The second one is based on dynamic program-
ming. It is slower, but guarantees to find the
most probable tree. We provide comparison
of both algorithms.

We combine LTLM with 4-gram Modified
Kneser-Ney language model via linear inter-
polation. Our experiments with English and
Czech corpora show significant perplexity re-
ductions (up to 46% for English and 49%
for Czech) compared with standalone 4-gram
Modified Kneser-Ney language model.

1 Introduction

Language modeling is one of the core disciplines
in natural language processing (NLP). Automatic
speech recognition, machine translation, optical
character recognition, and other tasks strongly de-
pend on the language model (LM). An improve-
ment in language modeling often leads to better
performance of the whole task. The goal of lan-
guage modeling is to determine the joint probabil-
ity of a sentence. Currently, the dominant approach
is n-gram language modeling, which decomposes

the joint probability into the product of conditional
probabilities by using the chain rule. In traditional
n-gram LMs the words are represented as distinct
symbols. This leads to an enormous number of word
combinations.

In the last years many researchers have tried to
capture words contextual meaning and incorporate
it into the LMs. Word sequences that have never
been seen before receive high probability when they
are made of words that are semantically similar to
words forming sentences seen in training data. This
ability can increase the LM performance because it
reduces the data sparsity problem. In NLP a very
common paradigm for word meaning representation
is the use of the Distributional hypothesis. It sug-
gests that two words are expected to be semanti-
cally similar if they occur in similar contexts (they
are similarly distributed in the text) (Harris, 1954).
Models based on this assumption are denoted as dis-
tributional semantic models (DSMs).

Recently, semantically motivated LMs have be-
gun to surpass the ordinary n-gram LMs. The most
commonly used architectures are neural network
LMs (Bengio et al., 2003; Mikolov et al., 2010;
Mikolov et al., 2011) and class-based LMs. Class-
based LMs are more related to this work thus we
investigate them deeper.

Brown et al. (1992) introduced class-based LMs
of English. Their unsupervised algorithm searches
classes consisting of words that are most probable
in the given context (one word window in both di-
rections). However, the computational complex-
ity of this algorithm is very high. This approach
was later extended by (Martin et al., 1998; Whit-

436

taker and Woodland, 2003) to improve the complex-
ity and to work with wider context. Deschacht et
al. (2012) used the same idea and introduced La-
tent Words Language Model (LWLM), where word
classes are latent variables in a graphical model.
They apply Gibbs sampling or the expectation max-
imization algorithm to discover the word classes
that are most probable in the context of surround-
ing word classes. A similar approach was pre-
sented in (Brychcı́n and Konopı́k, 2014; Brychcı́n
and Konopı́k, 2015), where the word clusters de-
rived from various semantic spaces were used to im-
prove LMs.

In above mentioned approaches, the meaning of a
word is inferred from the surrounding words inde-
pendently of their relation. An alternative approach
is to derive contexts based on the syntactic relations
the word participates in. Such syntactic contexts are
automatically produced by dependency parse-trees.
Resulting word representations are usually less top-
ical and exhibit more functional similarity (they are
more syntactically oriented) as shown in (Padó and
Lapata, 2007; Levy and Goldberg, 2014).

Dependency-based methods for syntactic parsing
have become increasingly popular in NLP in the last
years (Kübler et al., 2009). Popel and Mareček
(2010) showed that these methods are promising
direction of improving LMs. Recently, unsuper-
vised algorithms for dependency parsing appeared
in (Headden III et al., 2009; Cohen et al., 2009;
Spitkovsky et al., 2010; Spitkovsky et al., 2011;
Mareček and Straka, 2013) offering new possibili-
ties even for poorly-resourced languages.

In this work we introduce a new DSM that uses
tree-based context to create word roles. The word
role contains the words that are similarly distributed
over similar tree-based contexts. The word role
encodes the semantic and syntactic properties of a
word. We do not rely on parse trees as a prior knowl-
edge, but we jointly learn the tree structures and
word roles. Our model is a soft clustering, i.e. one
word may be present in several roles. Thus it is the-
oretically able to capture the word polysemy. The
learned structure is used as a LM, where each word
role is conditioned on its parent role. We present the
unsupervised algorithm that discovers the tree struc-
tures only from the distribution of words in a training
corpus (i.e. no labeled data or external sources of in-

formation are needed). In our work we were inspired
by class-based LMs (Deschacht et al., 2012), unsu-
pervised dependency parsing (Mareček and Straka,
2013), and tree-based DSMs (Levy and Goldberg,
2014).

This paper is organized as follows. We start with
the definition of our model (Section 2). The pro-
cess of learning the hidden sentence structures is ex-
plained in Section 3. We introduce two algorithms
for searching the most probable tree for a given sen-
tence (Section 4). The experimental results on En-
glish and Czech corpora are presented in Section 6.
We conclude in Section 7 and offer some directions
for future work.

2 Latent Tree Language Model

In this section we describe Latent Tree Language
Model (LTLM). LTLM is a generative statistical
model that discovers the tree structures hidden in the
text corpus.

Let L be a word vocabulary with total of |L| dis-
tinct words. Assume we have a training corpus w
divided into S sentences. The goal of LTLM or
other LMs is to estimate the probability of a text
P (w). Let Ns denote the number of words in the
s-th sentence. The s-th sentence is a sequence of
words ws = {ws,i}Ns

i=0, where ws,i ∈ L is a word
at position i in this sentence and ws,0 = < s > is
an artificial symbol that is added at the beginning of
each sentence.

Each sentence s is associated with the dependency
graph Gs. We define the dependency graph as a
labeled directed graph, where nodes correspond to
the words in the sentence and there is a label for
each node that we call role. Formally, it is a triple
Gs = (V s,Es, rs) consisting of:

• The set of nodes V s = {0, 1, ..., Ns}. Each
token ws,i is associated with node i ∈ V s.

• The set of edges Es ⊆ V s × V s.

• The sequence of roles rs = {rs,i}Ns
i=0, where

1 ≤ rs,i ≤ K for i ∈ V s. K is the number of
roles.

The artificial word ws,0 = < s > at the beginning
of the sentence has always role 1 (rs,0 = 1). Anal-
ogously to w, the sequence of all rs is denoted as r
and sequence of allGs asG.

437

Figure 1: Example of LTLM for the sentence ”Ev-
erything has beauty, but not everyone sees it.”

Edge e ∈ Es is an ordered pair of nodes (i, j).
We say that i is the head or the parent and j is the
dependent or the child. We use the notation i → j
for such edge. The directed path from node i to node
j is denoted as i ∗→ j.

We place a few constraints on the graphGs.

• The graphGs is a tree. It means it is the acyclic
graph (if i → j then not j ∗→ i), where each
node has one parent (if i → j then not k → j
for every k 6= i).

• The graph Gs is projective (there are no cross
edges). For each edge (i, j) and for each k be-
tween i and j (i.e. i < k < j or i > k > j)
there must exist the directed path i ∗→ k.

• The graphGs is always rooted in the node 0.

We denote these graphs as the projective depen-
dency trees. Example of such a tree is on Figure 1.
For the treeGs we define a function

hs(j) = i, when (i, j) ∈ Es (1)

that returns the parent for each node except the root.
We use graph Gs as a representation of the

Bayesian network with random variables Es and
rs. The roles rs,i represent the node labels and the
edges express the dependences between the roles.
The conditional probability of the role at position
i given its parent role is denoted as P (rs,i|rs,hs(i)).
The conditional probability of the word at position
i in the sentence given its role rs,i is denoted as
P (ws,i|rs,i).

We model the distribution over words in the sen-
tence s as the mixture

P (ws) = P (ws|rs,0) =
Ns∏

i=1

K∑

k=1

P (ws,i|rs,i = k)P (rs,i = k|rs,hs(i)). (2)

The root role is kept fixed for each sentence (rs,0
= 1) so P (ws) = P (ws|rs,0).

We look at the roles as mixtures over child roles
and simultaneously as mixtures over words. We can
represent dependency between roles with a set of K
multinomial distributions θ over K roles, such that
P (rs,i|rs,hs(i) = k) = θ

(k)
rs,i . Simultaneously, de-

pendency of words on their roles can be represented
as a set of K multinomial distributions φ over |L|
words, such that P (ws,i|rs,i = k) = φ

(k)
ws,i . To make

predictions about new sentences, we need to assume
a prior distribution on the parameters θ(k) and φ(k).

We place a Dirichlet prior D with the vector of
K hyper-parameters α on a multinomial distribu-
tion θ(k) ∼ D(α) and with the vector of |L| hyper-
parameters β on a multinomial distribution φ(k) ∼
D(β). In general, D is not restricted to be Dirichlet
distribution. It could be any distribution over dis-
crete children, such as logistic normal. In this paper,
we focus only on Dirichlet as a conjugate prior to
the multinomial distribution and derive the learning
algorithm under this assumption.

The choice of the child role depends only on its
parent role, i.e. child roles with the same parent are
mutually independent. This property is especially
important for the learning algorithm (Section 3) and
also for searching the most probable trees (Section
4). We do not place any assumption on the length of
the sentence Ns or on how many children the parent
node is expected to have.

3 Parameter Estimation

In this section we present the learning algorithm for
LTLM. The goal is to estimate θ and φ in a way
that maximizes the predictive ability of the model
(generates the corpus with maximal joint probability
P (w)).

Let χk
(i,j) be an operation that changes the treeGs

toG′s

χk
(i,j) : Gs → G′s, (3)

438

such that the newly created tree G′(V ′s,E
′
s, r
′
s)

consists of:

• V ′s = V s.

• E′s = (Es \ {(hs(i), i)}) ∪ {(j, i)}.

• r′s,a =

{
rs,a for a 6= i
k for a = i

, where 0 ≤ a ≤ Ns.

It means that we change the role of the selected
node i so that rs,i = k and simultaneously we
change the parent of this node to be j. We call this
operation a partial change.

The newly created graph G′ must satisfy all con-
ditions presented in Section 2, i.e. it is a projec-
tive dependency tree rooted in the node 0. Thus not
all partial changes χk

(i,j) are possible to perform on
graphGs.

Clearly, for the sentence s there is at most
Ns(1+Ns)

2 parent changes1.
To estimate the parameters of LTLM we apply

Gibbs sampling and gradually sample χk
(i,j) for trees

Gs. For doing so we need to determine the posterior
predictive distribution2

G′s ∼ P (χk
(i,j)(Gs)|w,G), (4)

from which we will sample partial changes to update
the trees. In the equation, G denote the sequence of
all trees for given sentences w and G′s is a result of
one sampling. In the following text we derive this
equation under assumptions from Section 2.

The posterior predictive distribution of Dirichlet
multinomial has the form of additive smoothing that
is well known in the context of language modeling.
The hyper-parameters of Dirichlet prior determine
how much is the predictive distribution smoothed.
Thus the predictive distribution for the word-in-role
distribution can be expressed as

P (ws,i|rs,i,w\s,i, r\s,i) =
n
(ws,i|rs,i)
\s,i + β

n
(•|rs,i)
\s,i + |L|β

, (5)

1The most parent changes are possible for the special case
of the tree, where each node i has parent i − 1. Thus for each
node i we can change its parent to any node j < i and keep the
projectivity of the tree. That is Ns(1+Ns)

2
possibilities.

2The posterior predictive distribution is the distribution of
an unobserved variable conditioned by the observed data, i.e.
P (Xn+1|X1, ..., Xn), where Xi are i.i.d. (independent and
identically distributed random variables).

where n
(ws,i|rs,i)
\s,i is the number of times the role

rs,i has been assigned to the word ws,i, exclud-
ing the position i in the s-th sentence. The sym-
bol • represents any word in the vocabulary so that
n
(•|rs,i)
\s,i =

∑
l∈L n

(l|rs,i)
\s,i . We use the symmetric

Dirichlet distribution for the word-in-role probabili-
ties as it could be difficult to estimate the vector of
hyper-parameters β for large word vocabulary. In
the above mentioned equation, β is a scalar.

The predictive distribution for the role-by-role
distribution is

P
(
rs,i|rs,hs(i), r\s,i

)
=
n
(rs,i|rs,hs(i))
\s,i + αrs,i

n
(•|rs,hs(i))
\s,i +

K∑
k=1

αk

. (6)

Analogously to the previous equation,
n
(rs,i|rs,hs(i))
\s,i denote the number of times the

role rs,i has the parent role rs,hs(i), excluding the
position i in the s-th sentence. The symbol •
represents any possible role to make the probability
distribution summing up to 1. We assume an
asymmetric Dirichlet distribution.

We can use predictive distributions of above men-
tioned Dirichlet multinomials to express the joint
probability that the role at position i is k (rs,i = k)
with parent at position j conditioned on current val-
ues of all variables, except those in position i in the
sentence s

P (rs,i = k, j|w, r\s,i) ∝
P (ws,i|rs,i = k,w\s,i, r\s,i)

× P (rs,i = k|rs,j , r\s,i)
× ∏
a:hs(a)=i

P (rs,a|rs,i = k, r\s,i).
(7)

The choice of the node i role affects the word that
is produced by this role and also all the child roles
of the node i. Simultaneously, the role of the node
i depends on its parent j role. Formula 7 is derived
from the joint probability of a sentence s and a tree
Gs, where all probabilities which do not depend on
the choice of the role at position i are removed and
equality is replaced by proportionality (∝).

We express the final predictive distribution for
sampling partial changes χk

(i,j) as

439

P (χk
(i,j)(Gs)|w,G) ∝

P (rs,i = k, j|w, r\s,i)
P (rs,i, hs(i)|w, r\s,i)

(8)
that is essentially the fraction between the joint
probability of rs,i and its parent after the partial
change and before the partial change (conditioned
on all other variables). This fraction can be in-
terpreted as the necessity to perform this partial
change.

We investigate two strategies of sampling partial
changes:

• Per sentence: We sample a single partial
change according to Equation 8 for each sen-
tence in the training corpus. It means during
one pass through the corpus (one iteration) we
perform S partial changes.

• Per position: We sample a partial change for
each position in each sentence. We perform in
totalN =

∑S
s=1Ns partial changes during one

pass. Note that the denominator in Equation 8
is constant for this strategy and can be removed.

We compare both training strategies in Section 6.
After enough training iterations, we can estimate the
conditional probabilities φ(k)l and θ

(p)
k from actual

samples as

φ
(k)
l ≈ n(ws,i=l|rs,i=k) + β

n(•|rs,i=k) + |L|β (9)

θ
(p)
k ≈ n(rs,i=k|rs,hs(i)=p) + αk

n(•|rs,hs(i)=p) +
K∑

m=1
αm

. (10)

These equations are similar to equations 5 and 6, but
here the counts n do not exclude any position in a
corpus.

Note that in the Gibbs sampling equation, we
assume that the Dirichlet parameters α and β are
given. We use a fixed point iteration technique de-
scribed in (Minka, 2003) to estimate them.

4 Inference

In this section we present two approaches for search-
ing the most probable tree for a given sentence as-
suming we have already estimated the parameters θ
and φ.

(a) The root has two or more children.

(b) The root has only one child.

Figure 2: Searching the most probable subtrees.

4.1 Non-deterministic Inference

We use the same sampling technique as for estimat-
ing parameters (Equation 8), i.e. we iteratively sam-
ple the partial changes χk

(i,j). However, we use equa-
tions 9 and 10 for predictive distributions of Dirich-
let multinomials instead of 5 and 6. In fact, these
equations correspond to the predictive distributions
over the newly added wordws,i with the role rs,i into
the corpus, conditioned on w and r. This sampling
technique rarely finds the best solution, but often it
is very near.

4.2 Deterministic Inference

Here we present the deterministic algorithm that
guarantees to find the most probable tree for a given
sentence. We were inspired by Cocke-Younger-
Kasami (CYK) algorithm (Lange and Leiß, 2009).

Let T n
s,a,c denote the subtree of Gs (subgraph

of Gs that is also a tree) containing subsequence
of nodes {a, a + 1, ..., c}. The superscript n de-
notes the number of children the root of this sub-
tree has. We denote the joint probability of a sub-
tree from position a to position c with the cor-
responding words conditioned by the root role k
as Pn({ws,i}ci=a,T

n
s,a,c|k). Our goal is to find

the tree Gs = T 1+
s,0,Ns

that maximizes probability
P (ws,Gs) = P 1+({ws,i}Ns

i=0,T
1+
s,0,Ns

|0).
Similarly to CYK algorithm, our approach fol-

440

lows bottom-up direction and goes through all pos-
sible subsequences for a sentence (sequence of
words). At the beginning, the probabilities for sub-
sequences of length 1 (i.e. single words) are calcu-
lated as P 1+({ws,a},T 1+

s,a,a|k) = P (ws,a|rs,a = k).
Once it has considered subsequences of length 1, it
goes on to subsequences of length 2, and so on.

Thanks to mutual independence of roles under the
same parent, we can find the most probable subtree
with the root role k and with at least two root chil-
dren according to

P 2+({ws,i}ci=a,T
2+
s,a,c|k) = max

b:a<b<c

[P 1+({ws,i}bi=a,T
1+
s,a,b|k)×

P 1+({ws,i}ci=b+1,T
1+
s,b+1,c|k)]. (11)

It means we merge two neighboring subtrees with
the same root role k. This is the reason why the new
subtree has at least two root children. This formula
is visualized on Figure 2a. Unfortunately, this does
not cover all subtree cases. We find the most proba-
ble tree with only root child as follows

P 1({ws,i}ci=a,T
1
s,a,c|k) = max

b,m:a≤b≤c,1≤m≤K

[P (ws,b|rs,b = m)× P (rs,b = m|k)×
P 1+({ws,i}b−1i=a ,T

1+
s,a,b−1|m)×

P 1+({ws,i}ci=b+1,T
1+
s,b+1,c|m)]. (12)

This formula is visualized on Figure 2b.
To find the most probable subtree no matter how

many children the root has, we need to take the
maximum from both mentioned equations P 1+ =
max(P 2+, P 1).

The algorithm has complexity O(N3
sK

2), i.e. it
has cubic dependence on the length of the sentence
Ns.

5 Side-dependent LTLM

Until now, we presented LTLM in its simplified ver-
sion. In role-by-role probabilities (role conditioned
on its parent role) we did not distinguish whether the
role is on the left side or the right side of the parent.
However, this position keeps important information
about the syntax of words (and their roles).

We assume separate multinomial distributions θ̇
for roles that are on the left and θ̈ for roles on the
right. Each of them has its own Dirichlet prior with
hyper-parameters α̇ and α̈, respectively. The pro-
cess of estimating LTLM parameters is almost the
same. The only difference is that we need to rede-
fine the predictive distribution for the role-by-role
distribution (Equation 6) to include only counts of
roles on the appropriate side. Also, every time the
role-by-role probability is used we need to distin-
guish sides:

P (rs,i|rs,hs(i)) =

{
θ̇
(rs,hs(i))
rs,i for i < hs(i))

θ̈
(rs,hs(i))
rs,i for i > hs(i))

.

(13)
In the following text we always assume the side-

dependent LTLM.

6 Experimental Results and Discussion

In this section we present experiments with LTLM
on two languages, English (EN) and Czech (CS).

As a training corpus we use CzEng 1.0 (Bojar
et al., 2012) of the sentence-parallel Czech-English
corpus. We choose this corpus because it contains
multiple domains, it is of reasonable length, and it
is parallel so we can easily provide comparison be-
tween both languages. The corpus is divided into
100 similarly-sized sections. We use parts 0–97 for
training, the part 98 as a development set, and the
last part 99 for testing.

We have removed all sentences longer than 30
words. The reason was that the complexity of the
learning phase and the process of searching most
probable trees depends on the length of sentences.
It has led to removing approximately a quarter of
all sentences. The corpus is available in a tokenized
form so the only preprocessing step we use is lower-
casing. We keep the vocabulary of 100,000 most fre-
quent words in the corpus for both languages. The
less frequent words were replaced by the symbol
<unk>. Statistics for the final corpora are shown
in Table 1.

We measure the quality of LTLM by perplexity
that is the standard measure used for LMs. Perplex-
ity is a measure of uncertainty. The lower perplexity
means the better predictive ability of the LM.

441

Corpora Sentences Tokens OOV rate
EN train 11,530,604 138,034,779 1.30%
EN develop. 117,735 1,407,210 1.28%
EN test 117,360 1,405,106 1.33%
CS train 11,832,388 133,022,572 3.98%
CS develop. 120,754 1,353,015 4.00%
CS test 120,573 1,357,717 4.03%

Table 1: Corpora statistics. OOV rate denotes the
out-of-vocabulary rate.

Figure 3: Learning curves of LTLM for both English
and Czech. The points in the graphs represent the
perplexities in every 100th iteration.

During the process of parameter estimation we
measure the perplexity of joint probability of sen-
tences and their trees defined as PPX(P (w,G)) =
N

√
1

P (w,G) , where N is the number of all words in
the training data w.

As we describe in Section 3, there are two ap-
proaches for the parameter estimation of LTLM.
During our experiments, we found that the per-
position strategy of training has the ability to con-
verge faster, but to a worse solution compared to the
per-sentence strategy which converges slower, but to
a better solution.

We train LTLM by 500 iterations of the per-
position sampling followed by another 500 iterations
of the per-sentence sampling. This proves to be effi-

Model EN CS
2-gram MKN 165.9 272.0
3-gram MKN 67.7 99.3
4-gram MKN 46.2 73.5

300n RNNLM 51.2 69.4
4-gram LWLM 52.7 81.5

PoS STLM 455.7 747.3
1000r STLM 113.7 211.0

1000r det. LTLM 54.2 111.1
4-gram MKN + 300n RNNLM 36.8 (-20.4%) 49.5 (-32.7%)

4-gram MKN + 4-gram LWLM 41.5 (-10.2%) 62.4 (-15.1%)
4-gram MKN + PoS STLM 42.9 (-7.1%) 63.3 (-13.9%)

4-gram MKN + 1000r STLM 33.6 (-27.3%) 50.1 (-31.8%)
4-gram MKN + 1000r det. LTLM 24.9 (-43.1%) 37.2 (-49.4%)

Table 2: Perplexity results on the test data. The
numbers in brackets are the relative improvements
compared with standalone 4-gram MKN LM.

cient in both aspects, the reasonable speed of con-
vergence and the satisfactory predictive ability of
the model. The learning curves are showed on Fig-
ure 3. We present the models with 10, 20, 50, 100,
200, 500, and 1000 roles. The higher role cardinal-
ity models were not possible to create because of
the very high computational requirements. Similarly
to the training of LTLM, the non-deterministic in-
ference uses 100 iterations of per-position sampling
followed by 100 iterations of per-sentence sampling.

In the following experiments we measure how
well LTLM generalizes the learned patterns, i.e.
how well it works on the previously unseen data.
Again, we measure the perplexity, but of prob-
ability P (w) for mutual comparison with differ-
ent LMs that are based on different architectures
(PPX(P (w)) = N

√
1

P (w)).

To show the strengths of LTLM we compare
it with several state-of-the-art LMs. We experi-
ment with Modified Kneser-Ney (MKN) interpola-
tion (Chen and Goodman, 1998), with Recurrent
Neural Network LM (RNNLM) (Mikolov et al.,
2010; Mikolov et al., 2011)3, and with LWLM (De-
schacht et al., 2012)4. We have also created syntac-
tic dependency tree based LM (denoted as STLM).
Syntactic dependency trees for both languages are
provided within CzEng corpus and are based on

3Implementation is available at http://rnnlm.org/.
Size of the hidden layer was set to 300 in our experiments. It
was computationally intractable to use more neurons.

4Implementation is available at http://liir.cs.
kuleuven.be/software.php.

442

EN CS
Model\roles 10 20 50 100 200 500 1000 10 20 50 100 200 500 1000

STLM 408.5 335.2 261.7 212.6 178.9 137.8 113.7 992.7 764.2 556.4 451.0 365.9 265.7 211.0
non-det. LTLM 329.5 215.1 160.4 126.5 105.6 86.7 78.4 851.0 536.6 367.4 292.6 235.2 186.1 157.6

det. LTLM 252.4 166.4 115.3 92.0 75.4 60.9 54.2 708.5 390.2 267.8 213.2 167.9 133.5 111.1
4-gram MKN + STLM 42.7 41.6 39.9 37.9 36.3 34.9 33.6 67.5 65.1 61.4 58.3 55.5 52.4 50.1

4-gram MKN + non-det. LTLM 41.1 38.0 35.2 32.7 30.7 28.9 27.8 65.8 59.4 55.1 51.1 47.5 43.7 41.3
4-gram MKN + det. LTLM 39.9 36.4 32.8 30.3 28.1 26.0 24.9 64.4 56.1 51.5 47.3 43.4 39.9 37.2

Table 3: Perplexity results on the test data for LTLMs and STLMs with different number of roles. Deter-
ministic inference is denoted as det. and non-deterministic inference as non-det.

MST parser (McDonald et al., 2005). We use the
same architecture as for LTLM and experiment with
two approaches to represent the roles. Firstly, the
roles are given by the part-of-speech tag (denoted as
PoS STLM). No training is required, all information
come from CzEng corpus. Secondly, we learn the
roles using the same algorithm as for LTLM. The
only difference is that the trees are kept unchanged.
Note that both deterministic and non-deterministic
inference perform almost the same in this model so
we do not distinguish between them.

We combine baseline 4-gram MKN model with
other models via linear combination (in the tables
denoted by the symbol +) that is simple but very ef-
ficient technique to combine LMs. Final probability
is then expressed as

P (w) =
S∏

s=1

Ns∏

i=1

[
λP LM1 + (λ− 1)P LM2]. (14)

In the case of MKN the probability PMKN is the
probability of a word ws,i conditioned by 3 previous
words with MKN smoothing. For LTLM or STLM
this probability is defined as

P LTLM(ws,i|rs,hs(i)) =

K∑

k=1

P (ws,i|rs,i = k)P (rs,i = k|rs,hs(i)). (15)

We use the expectation maximization algorithm
(Dempster et al., 1977) for the maximum likelihood
estimate of λ parameter on the development part of
the corpus. The influence of the number of roles
on the perplexity is shown in Table 3 and the final

0.1

0.2

0.3

0.4

0.5

0.6

10 20 50 100 200 500 1000

M
od

el
 w

ei
gh

t

Roles

EN det. LTLM
CS det. LTLM

EN non-det. LTLM
CS non-det. LTLM

EN STLM
CS STLM

Figure 4: Model weights optimized on development
data when interpolated with 4-gram MKN LM.

results are shown in Table 2. Note that these per-
plexities are not comparable with those on Figure
3 (PPX(P (w)) vs. PPX(P (w,G))). Weights of
LTLM and STLM when interpolated with MKN LM
are shown on Figure 4.

From the tables we can see several important
findings. Standalone LTLM performs worse than
MKN on both languages, however their combi-
nation leads to dramatic improvements compared
with other LMs. Best results are achieved by 4-
gram MKN interpolated with 1000 roles LTLM and
the deterministic inference. The perplexity was
improved by approximately 46% on English and
49% on Czech compared with standalone MKN.
The deterministic inference outperformed the non-
deterministic one in all cases. LTLM also signifi-

443

everything has beauty , but not everyone sees it .
it ’s one , but was he saw him .
that is thing ; course it i made it !
let was life – though not she found her ...
there knows name - or this they took them ’
something really father ... perhaps that that gave his what
nothing says mother : and the it told me “
everything comes way maybe now who felt a how
here does wife (although had you thought out why
someone gets place ? yet <unk> someone knew that –
god has idea naught except all which heard himself -

Table 4: Ten most probable word substitutions on each position in the sentence ”Everything has beauty, but
not everyone sees it.” produced by 1000 roles LTLM with the deterministic inference.

cantly outperformed STLM where the syntactic de-
pendency trees were provided as a prior knowledge.
The joint learning of syntax and semantics of a sen-
tence proved to be more suitable for predicting the
words.

An in-depth analysis of semantic and syntactic
properties of LTLM is beyond the scope of this pa-
per. For better insight into the behavior of LTLM,
we show the most probable word substitutions for
one selected sentence (see Table 4). We can see
that the original words are often on the front po-
sitions. Also it seems that LTLM is more syntac-
tically oriented, which confirms claims from (Levy
and Goldberg, 2014; Padó and Lapata, 2007), but to
draw such conclusions a deeper analysis is required.
The properties of the model strongly depends on
the number of distinct roles. We experimented with
maximally 1000 roles. To catch the meaning of var-
ious words in natural language, more roles may be
needed. However, with our current implementation,
it was intractable to train LTLM with more roles in
a reasonable time. Training 1000 roles LTLM took
up to two weeks on a powerful computational unit.

7 Conclusion and Future Work

In this paper we introduced the Latent Tree Lan-
guage Model. Our model discovers the latent tree
structures hidden in natural text and uses them to
predict the words in a sentence. Our experiments
with English and Czech corpora showed dramatic
improvements in the predictive ability compared
with standalone Modified Kneser-Ney LM. Our Java
implementation is available for research purposes at
https://github.com/brychcin/LTLM.

It was beyond the scope of this paper to explic-
itly test the semantic and syntactic properties of the
model. As the main direction for future work we
plan to investigate these properties for example by
comparison with human-assigned judgments. Also,
we want to test our model in different NLP tasks
(e.g. speech recognition, machine translation, etc.).

We think that the role-by-role distribution should
depend on the distance between the parent and the
child, but our preliminary experiments were not met
with success. We plan to elaborate on this assump-
tion. Another idea we want to explore is to use
different distributions as a prior to multinomials.
For example, Blei and Lafferty (2006) showed that
the logistic-normal distribution works well for topic
modeling because it captures the correlations be-
tween topics. The same idea might work for roles.

Acknowledgments

This publication was supported by the project
LO1506 of the Czech Ministry of Education, Youth
and Sports. Computational resources were provided
by the CESNET LM2015042 and the CERIT Sci-
entific Cloud LM2015085, provided under the pro-
gramme ”Projects of Large Research, Development,
and Innovations Infrastructures”. Lastly, we would
like to thank the anonymous reviewers for their in-
sightful feedback.

References

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-

444

guage model. Journal of Machine Learning Research,
3:1137–1155, March.

David M. Blei and John D. Lafferty. 2006. Correlated
topic models. In In Proceedings of the 23rd Interna-
tional Conference on Machine Learning, pages 113–
120. MIT Press.

Ondřej Bojar, Zdeněk Žabokrtský, Ondřej Dušek, Pe-
tra Galuščáková, Martin Majliš, David Mareček, Jiřı́
Maršı́k, Michal Novák, Martin Popel, and Aleš Tam-
chyna. 2012. The joy of parallelism with czeng 1.0.
In Proceedings of the Eight International Conference
on Language Resources and Evaluation (LREC’12),
Istanbul, Turkey, may. European Language Resources
Association (ELRA).

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vin-
cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-
based n-gram models of natural language. Computa-
tional Linguistics, 18:467–479.

Tomáš Brychcı́n and Miloslav Konopı́k. 2014. Semantic
spaces for improving language modeling. Computer
Speech & Language, 28(1):192–209.

Tomáš Brychcı́n and Miloslav Konopı́k. 2015. Latent
semantics in language models. Computer Speech &
Language, 33(1):88–108.

Stanley F. Chen and Joshua T. Goodman. 1998. An
empirical study of smoothing techniques for language
modeling. Technical report, Computer Science Group,
Harvard University.

Shay B. Cohen, Kevin Gimpel, and Noah A. Smith.
2009. Logistic normal priors for unsupervised prob-
abilistic grammar induction. In Advances in Neural
Information Processing Systems 21, pages 1–8.

Arthur P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society. Se-
ries B, 39(1):1–38.

Koen Deschacht, Jan De Belder, and Marie-Francine
Moens. 2012. The latent words language model.
Computer Speech & Language, 26(5):384–409.

Zellig Harris. 1954. Distributional structure. Word,
10(23):146–162.

William P. Headden III, Mark Johnson, and David Mc-
Closky. 2009. Improving unsupervised dependency
parsing with richer contexts and smoothing. In Pro-
ceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
101–109, Boulder, Colorado, June. Association for
Computational Linguistics.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency parsing. Synthesis Lectures on Hu-
man Language Technologies, 2(1):1–127.

Martin Lange and Hans Leiß. 2009. To cnf or not to
cnf? an efficient yet presentable version of the cyk
algorithm. Informatica Didactica, 8.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 302–308,
Baltimore, Maryland, June. Association for Computa-
tional Linguistics.

David Mareček and Milan Straka. 2013. Stop-
probability estimates computed on a large corpus im-
prove unsupervised dependency parsing. In Proceed-
ings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 281–290, Sofia, Bulgaria, August. Association
for Computational Linguistics.

Sven Martin, Jorg Liermann, and Hermann Ney. 1998.
Algorithms for bigram and trigram word clustering.
Speech Communication, 24(1):19–37.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency parsing
using spanning tree algorithms. In Proceedings of the
Conference on Human Language Technology and Em-
pirical Methods in Natural Language Processing, HLT
’05, pages 523–530, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černocký, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Proceedings
of the 11th Annual Conference of the International
Speech Communication Association (INTERSPEECH
2010), volume 2010, pages 1045–1048. International
Speech Communication Association.

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan
Černocký, and Sanjeev Khudanpur. 2011. Exten-
sions of recurrent neural network language model.
In Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, pages
5528–5531, Prague Congress Center, Prague, Czech
Republic.

Thomas P. Minka. 2003. Estimating a dirichlet distribu-
tion. Technical report.

Sebastian Padó and Mirella Lapata. 2007. Dependency-
based construction of semantic space models. Compu-
tational Linguistics, 33(2):161–199, June.

Martin Popel and David Mareček. 2010. Perplex-
ity of n-gram and dependency language models. In
Proceedings of the 13th International Conference on
Text, Speech and Dialogue, TSD’10, pages 173–180,
Berlin, Heidelberg. Springer-Verlag.

Valentin I. Spitkovsky, Hiyan Alshawi, Daniel Jurafsky,
and Christopher D. Manning. 2010. Viterbi training

445

improves unsupervised dependency parsing. In Pro-
ceedings of the Fourteenth Conference on Computa-
tional Natural Language Learning, pages 9–17, Up-
psala, Sweden, July. Association for Computational
Linguistics.

Valentin I. Spitkovsky, Hiyan Alshawi, Angel X. Chang,
and Daniel Jurafsky. 2011. Unsupervised dependency
parsing without gold part-of-speech tags. In Proceed-
ings of the 2011 Conference on Empirical Methods in
Natural Language Processing, pages 1281–1290, Ed-
inburgh, Scotland, UK., July. Association for Compu-
tational Linguistics.

Edward W. D. Whittaker and Philip C. Woodland. 2003.
Language modelling for russian and english using
words and classes. Computer Speech & Language,
17(1):87–104.

446

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 447–456,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Comparing Data Sources and Architectures for
Deep Visual Representation Learning in Semantics

Douwe Kiela, Anita L. Verő and Stephen Clark
Computer Laboratory

University of Cambridge
douwe.kiela,alv34,stephen.clark@cl.cam.ac.uk

Abstract

Multi-modal distributional models learn
grounded representations for improved
performance in semantics. Deep visual
representations, learned using convolutional
neural networks, have been shown to achieve
particularly high performance. In this study,
we systematically compare deep visual
representation learning techniques, exper-
imenting with three well-known network
architectures. In addition, we explore the
various data sources that can be used for
retrieving relevant images, showing that
images from search engines perform as well
as, or better than, those from manually crafted
resources such as ImageNet. Furthermore, we
explore the optimal number of images and
the multi-lingual applicability of multi-modal
semantics. We hope that these findings can
serve as a guide for future research in the
field.

1 Introduction

Multi-modal distributional semantics addresses the
fact that text-based semantic models, which rep-
resent word meanings as a distribution over other
words (Turney and Pantel, 2010; Clark, 2015), suf-
fer from the grounding problem (Harnad, 1990). Re-
cent work has shown that this theoretical motivation
can be successfully exploited for practical gain. In-
deed, multi-modal representation learning leads to
improvements over language-only models in a range
of tasks, including modelling semantic similarity
and relatedness (Bruni et al., 2014; Silberer and La-
pata, 2014; Kiela and Bottou, 2014; Lazaridou et

al., 2015), improving lexical entailment (Kiela et
al., 2015a), predicting compositionality (Roller and
Schulte im Walde, 2013), bilingual lexicon induc-
tion (Bergsma and Van Durme, 2011), selectional
preference prediction (Bergsma and Goebel, 2011),
linguistic ambiguity resolution (Berzak et al., 2015),
visual information retrieval (Bulat et al., 2016) and
metaphor identification (Shutova et al., 2016).

Most multi-modal semantic models tend to rely
on raw images as the source of perceptual input.
Many data sources have been tried, ranging from
image search engines to photo sharing websites to
manually crafted resources. Images are retrieved for
a given target word if they are ranked highly, have
been tagged, or are otherwise associated with the tar-
get word(s) in the data source.

Traditionally, representations for images were
learned through bag-of-visual words (Sivic and Zis-
serman, 2003), using SIFT-based local feature de-
scriptors (Lowe, 2004). Kiela and Bottou (2014)
showed that transferring representations from deep
convolutional neural networks (ConvNets) yield
much better performance than bag-of-visual-words
in multi-modal semantics. ConvNets (LeCun et al.,
1998) have become very popular in recent years:
they are now the dominant approach for almost
all recognition and detection tasks in the com-
puter vision community (LeCun et al., 2015), ap-
proaching or even exceeding human performance in
some cases (Weyand et al., 2016). The work by
Alex Krizhevsky et al. (2012), which won the Im-
ageNet Large Scale Visual Recognition Challenge
(ILSVRC) (Russakovsky et al., 2015) in 2012, has
played an important role in bringing convolutional

447

AlexNet GoogLeNet VGGNet

ILSVRC winner 2012 2014 2015

Number of layers 7 22 19

Number of parameters ∼60 million ∼6.7 million ∼144 million

Receptive field size 11× 11 3× 3 1× 1, 3× 3, 5× 5

Fully connected layers Yes No Yes

Table 1: Network architectures. Layer counts only include layers with parameters.

networks (back) to prominence. A similar network
was used by Kiela and Bottou (2014) to obtain high
quality image embeddings for semantics.

This work aims to provide a systematic compari-
son of such deep visual representation learning tech-
niques and data sources; i.e. we aim to answer the
following open questions in multi-modal semantics:

• Does the improved performance over bag-
of-visual-words extend to different convolu-
tional network architectures, or is it specific to
Krizhevsky’s AlexNet? Do others work even
better?

• How important is the source of images? Is there
a difference between search engines and manu-
ally annotated data sources? Does the number
of images obtained for each word matter?

• Do these findings extend to different languages
beyond English?

We evaluate semantic representation quality through
examining how well a system’s similarity scores cor-
relate with human similarity and relatedness judg-
ments. We examine both the visual representations
themselves as well as the multi-modal representa-
tions that fuse visual representations with linguistic
input, in this case using middle fusion (i.e., concate-
nation). To the best of our knowledge, this work is
the first to systematically compare these aspects of
visual representation learning.

2 Architectures

We use the MMFeat toolkit1 (Kiela, 2016) to obtain
image representations for three different convolu-
tional network architectures: AlexNet (Krizhevsky

1https://github.com/douwekiela/mmfeat

et al., 2012), GoogLeNet (Szegedy et al., 2015) and
VGGNet (Simonyan and Zisserman, 2014). Image
representations are turned into an overall word-level
visual representation by either taking the mean or
the elementwise maximum of the relevant image
representations. All three networks are trained to
maximize the multinomial logistic regression objec-
tive using mini-batch gradient descent with momen-
tum:

−
D∑

i=1

K∑

k=1

1{y(i) = k} log exp(θ(k)>x(i))
∑K

j=1 exp(θ
(j)>x(i))

where 1{·} is the indicator function, x(i) and y(i) are
the input and output, respectively. D is the number
of training examples andK is the number of classes.
The networks are trained on the ImageNet classifica-
tion task and we transfer layers from the pre-trained
network. See Table 1 for an overview. In this sec-
tion, we describe the network architectures and their
properties.

AlexNet The network by Krizhevsky (2012) intro-
duces the following network architecture: first, there
are five convolutional layers, followed by two fully-
connected layers, where the final layer is fed into
a softmax which produces a distribution over the
class labels. All layers apply rectified linear units
(ReLUs) (Nair and Hinton, 2010) and use dropout
for regularization (Hinton et al., 2012). This net-
work won the ILSVRC 2012 ImageNet classifica-
tion challenge. In our case, we actually use the
CaffeNet reference model, which is a replication of
AlexNet, with the difference that it is not trained
with relighting data-augmentation, and that the or-
der of pooling and normalization layers is switched
(in CaffeNet, pooling is done before normalization,

448

(a) ImageNet (b) ESP Game dataset

(c) Bing (d) Google

(e) Flickr

Figure 1: Example images for dog and golden retriever from the various data sources. ImageNet has no
images for dog, with images only at nodes lower in the hierarchy. ESP does not have images for the golden
retriever tag.

instead of the other way around). While it uses an
almost identical architecture, performance of Caf-
feNet is slightly better than the original AlexNet.

GoogLeNet The ILSVRC 2014 challenge win-
ning GoogLeNet (Szegedy et al., 2015) uses “incep-
tion modules” as a network-in-network method (Lin
et al., 2013) for enhancing model discriminability
for local patches within the receptive field. It uses
much smaller receptive fields and explicitly focuses
on efficiency: while it is much deeper than AlexNet,
it has fewer parameters. Its architecture consists of
two convolutional layers, followed by inception lay-
ers that culminate into an average pooling layer that
feeds into the softmax decision (so it has no fully
connected layers). Dropout is only applied on the
final layer. All connections use rectifiers.

VGGNet The ILSVRC 2015 ImageNet classifi-
cation challenge was won by VGGNet (Simonyan
and Zisserman, 2014). Like GoogLeNet, it is much
deeper than AlexNet and uses smaller receptive

fields. It has many more parameters than the other
networks. It consists of a series of convolutional
layers followed by the fully connected ones. All
layers are rectified and dropout is applied to the first
two fully connected layers.

These networks were selected because they are
very well-known in the computer vision commu-
nity. They exhibit interesting qualitative differences
in terms of their depth (i.e., the number of layers),
the number of parameters, regularization methods
and the use of fully connected layers. They have all
been winning network architectures in the ILSVRC
ImageNet classification challenges.

3 Sources of Image Data

Some systematic studies of parameters for text-
based distributional methods have found that the
source corpus has a large impact on representational
quality (Bullinaria and Levy, 2007; Kiela and Clark,
2014). The same is likely to hold in the case of

449

Google Bing Flickr ImageNet ESP Game

Type Search engine Search engine Photo sharing Image database Game

Annotation Automatic Automatic Human Human Human

Coverage Unlimited Unlimited Unlimited Limited Limited

Multi-lingual Yes Yes No No No

Sorted Yes Yes Yes No No

Tag specificity Unknown Unknown Loose Specific Loose

Table 2: Sources of image data.

visual representations. Various sources of image
data have been used in multi-modal semantics, but
there have not been many comparisons: Bergsma
and Goebel (2011) compare Google and Flickr, and
Kiela and Bottou (2014) compare ImageNet (Deng
et al., 2009) and the ESP Game dataset (von Ahn and
Dabbish, 2004), but most works use a single data
source. In this study, one of our objectives is to asses
the quality of various sources of image data. Table
2 provides an overview of the data sources, and Fig-
ure 1 shows some example images. We examine the
following corpora:

Google Images Google’s image search2 results
have been found to be comparable to hand-crafted
image datasets (Fergus et al., 2005).

Bing Images An alternative image search engine
is Bing Images3. It uses different underlying tech-
nology from Google Images, but offers the same
functionality as an image search engine.

Flickr Although Bergsma and Goebel (2011) have
found that Google Images works better in one exper-
iment, the photo sharing service Flickr4 is an inter-
esting data source because its images are tagged by
human annotators.

ImageNet ImageNet (Deng et al., 2009) is a large
ontology of images developed for a variety of com-
puter vision applications. It serves as a benchmark-
ing standard for various image processing and com-
puter vision tasks. ImageNet is constructed along
the same hierarchical structure as WordNet (Miller,

2https://images.google.com/
3https://www.bing.com/images
4https://www.flickr.com

MEN (3000) SimLex (999)

Google 3000 999

Bing 3000 999

Flickr 3000 999

ImageNet 1326 373

ESPGame 2927 833

Common subset 1310 360

Table 3: Coverage on MEN and SimLex for our data
sources.

1995), by attaching images to the corresponding
synset (synonym set).

ESP Game The ESP Game dataset (von Ahn and
Dabbish, 2004) was constructed through a so-called
“game with a purpose”. Players were matched on-
line and had to agree on an appropriate word label
for a randomly selected image within a time limit.
Once a word has been mentioned a certain number
of times, that word becomes a taboo word and can
no longer be used as a label.

These data sources have interesting qualitative
differences. Online services return images for al-
most any query, with much better coverage than
the fixed-size ImageNet and ESP Game datasets.
Search engines annotate automatically, while the
others are human-annotated, either through a strict
annotation procedure in the case of ImageNet, or by
letting users tag images, as in the case of Flickr and
ESP. Automatic systems sort images by relevance,
while the others are unsorted. The relevance rank-
ing method is not accessible, however, and so has
to be treated as a black box. Search results can be

450

Arch. AlexNet GoogLeNet VGGNet

Agg. Mean Max Mean Max Mean Max

Source Type/Eval SL MEN SL MEN SL MEN SL MEN SL MEN SL MEN

Wikipedia Text .310 .682 .310 .682 .310 .682 .310 .682 .310 .682 .310 .682

Google
Visual .340 .503 .334 .513 .358 .495 .367 .501 .342 .512 .332 .494

MM .380 .711 .370 .719 .379 .711 .365 .716 .380 .714 .365 .716

Bing
Visual .325 .567 .316 .554 .310 .526 .303 .520 .304 .551 .289 .507

MM .373 .727 .360 .725 .364 .723 .350 .724 .361 .727 .349 .719

Flickr
Visual .234 .483 .224 .441 .238 .407 .236 .385 .243 .460 .226 .385

MM .350 .715 .343 .711 .347 .689 .344 .703 .354 .702 .339 .696

ImageNet
Visual .313 .561 .313 .561 .341 .540 .411 .603 .404 .584 .401 .578

MM .362 .713 .362 .713 .373 .719 .401 .731 .427 .727 .412 .723

ESPGame
Visual .018 .448 .026 .376 .063 .487 .050 .434 .125 .506 .106 .451

MM .208 .686 .187 .672 .243 .700 .246 .696 .269 .708 .260 .698

Table 4: Performance on maximally covered datasets.

language-specific, while the human annotated data
sources are restricted to English. Google and Bing
will return images that were ranked highly, while
Flickr contains photos rather than just any kind of
image. ImageNet contains high-quality images de-
scriptive of a given synset, meaning that the tagged
object is likely to be centered in the image, while
the ESP Game and Flickr images may have tags de-
scribing events happening in the background also.

3.1 Selecting and processing images
Selecting images for Google, Bing and Flickr is
straightforward: using their respective APIs, the de-
sired word is given as the search query and we ob-
tain the top N returned images (unless otherwise in-
dicated, we use N=10). In the case of ImageNet and
ESP, images are not ranked and vary greatly in num-
ber: for some words there is only a single image,
while others have thousands. With ImageNet, we
are faced with the additional problem that images
tend to be associated only with leaf nodes in the hi-
erarchy. For example, dog has no directly associated
images, while its hyponyms (e.g. golden retriever,
labrador) have many. If a word has no associated
images in its subtree, we try going up one level and
seeing if the parent node’s tree yields any images.
We subsequently randomly sample 100 images as-
sociated with the word and obtain semi-ranked re-

sults by selecting the 10 images closest to the me-
dian representation as the sampled image represen-
tations. We use the same method for the ESP Game
dataset. In all cases, images are resized and center-
cropped to ensure that they are the correct size input.

4 Evaluation

Representation quality in semantics is usually evalu-
ated using intrinsic datasets of human similarity and
relatedness judgments. Model performance is as-
sessed through the Spearman ρs rank correlation be-
tween the system’s similarity scores for a given pair
of words, together with human judgments. Here,
we evaluate on two well-known similarity and re-
latedness judgment datasets: MEN (Bruni et al.,
2012) and SimLex-999 (Hill et al., 2015). MEN fo-
cuses explicitly on relatedness (i.e. coffee-tea and
coffee-mug get high scores, while bakery-zebra gets
a low score), while SimLex-999 focuses on what it
calls “genuine” similarity (i.e., coffee-tea gets a high
score, while both coffee-mug and bakery-zebra get
low scores). They are standard evaluations for eval-
uating representational quality in semantics.

In each experiment, we examine performance of
the visual representations compared to text-based
representations, as well as performance of the multi-
modal representation that fuses the two. In this

451

Arch. AlexNet GoogLeNet VGGNet

Agg. Mean Max Mean Max Mean Max

Source Type/Eval SL MEN SL MEN SL MEN SL MEN SL MEN SL MEN

Wikipedia Text .248 .654 .248 .654 .248 .654 .248 .654 .248 .654 .248 .654

Google
Visual .406 .549 .402 .552 .420 .570 .434 .579 .430 .576 .406 .560

MM .366 .691 .344 .693 .366 .701 .342 .699 .378 .701 .341 .693

Bing
Visual .431 .613 .425 .601 .410 .612 .414 .603 .400 .611 .398 .569

MM .384 .715 .355 .708 .374 .725 .343 .712 .363 .720 .340 .705

Flickr
Visual .382 .577 .371 .544 .378 .547 .354 .518 .378 .567 .340 .511

MM .372 .725 .344 .712 .367 .728 .336 .716 .370 .726 .330 .711

ImageNet
Visual .316 .560 .316 .560 .347 .538 .423 .600 .412 .581 .413 .574

MM .348 .711 .348 .711 .364 .717 .394 .729 .418 .724 .405 .721

ESPGame
Visual .037 .431 .039 .347 .104 .501 .125 .438 .188 .514 .125 .460

MM .179 .666 .147 .651 .224 .692 .226 .683 .268 .697 .222 .688

Table 5: Performance on common coverage subsets of the datasets (MEN* and SimLex*).

case, we apply mid-level fusion, concatenating the
L2-normalized representations (Bruni et al., 2014).
Middle fusion is a popular technique in multi-modal
semantics that has several benefits: 1) it allows for
drawing from different data sources for each modal-
ity, that is, it does not require joint data; 2) con-
catenation is less susceptible to noise, since it pre-
serves the information in the individual modalities;
and 3) it is straightforward to apply and computa-
tionally inexpensive. Linguistic representations are
300-dimensional and are obtained by applying skip-
gram with negative sampling (Mikolov et al., 2013)
to a recent dump of Wikipedia. The normalization
step that is performed before applying fusion en-
sures that both modalities contribute equally to the
overall multi-modal representation.

5 Results

As Table 3 shows, the data sources vary in cover-
age: it would be unfair to compare data sources on
the different subsets of the evaluation datasets that
they have coverage for. That is, when comparing
data sources we want to make sure we evaluate on
images for the exact same word pairs. When com-
paring network architectures, however, we are less
interested in the relative coverage between datasets
and more interested in overall performance, in such

a way that it can be compared to other work that was
evaluated on the fully covered datasets. Hence, we
report results on the maximally covered subsets per
data source, which we refer to as MEN and SimLex,
as well as for the overlapping common subset of
word pairs that have images in each of the sources,
which we refer to as MEN* and SimLex*.

5.1 Maximum coverage comparison
Table 4 shows the results on the maximally covered
datasets. This means we cannot directly compare be-
tween data sources, because they have different cov-
erage, but we can look at absolute performance and
compare network architectures. The first row reports
results for the text-based linguistic representations
that were obtained from Wikipedia (repeated across
columns for convenience). For each of the three ar-
chitectures, we evaluate on SimLex (SL) and MEN,
using either the mean (Mean) or elementwise max-
imum (Max) method for aggregating image repre-
sentations into visual ones (see Section 2). For each
data source, we report results for the visual repre-
sentations, as well as for the multi-modal represen-
tations that fuse the visual and textual ones together.
Performance across architectures is remarkably sta-
ble: we have had to report results up to three deci-
mal points to show the difference in performance in
some cases.

452

Figure 2: The effect of the number of images on representation quality.

For each of the network architectures, we see
a marked improvement of multi-modal representa-
tions over uni-modal linguistic representations. In
many cases, we also see visual representations out-
performing linguistic ones, especially on SimLex.
This is interesting, because e.g. Google and Bing
have full coverage over the datasets, so their visual
representations include highly abstract words, which
does not appear to have an adverse impact on the
method’s performance. For the ESP Game dataset
(on which performance is quite low) and ImageNet,
we observe an increase in performance as we move
to the right in the table. Interestingly, VGGNet on
ImageNet scores very highly, which seems to indi-
cate that VGGNet is somehow more “specialized”
on ImageNet than the others. The difference be-
tween mean and max aggregation is relatively small,
although the former seems to work better for Sim-
Lex while the latter does slightly better for MEN.

5.2 Common subset comparison

Table 5 shows the results on the common subset of
the evaluation datasets, where all word pairs have
images in each of the data sources. First, note the
same patterns as before: multi-modal representa-

tions perform better than linguistic ones. Even for
the poorly performing ESP Game dataset, the VG-
GNet representations perform better on both Sim-
Lex and MEN (bottom right of the table). Visual
representations from Google, Bing, Flickr and Im-
ageNet all perform much better than ESP Game on
this common covered subset. In a sense, the full-
coverage datasets were “punished” for their ability
to return images for abstract words in the previous
experiment: on this subset, which is more concrete,
the search engines do much better. To a certain
extent, including linguistic information is actually
detrimental to performance, with multi-modal per-
forming worse than purely visual. Again, we see the
marked improvement with VGGNet for ImageNet,
while Google, Bing and Flickr all do very well, re-
gardless of the architecture.

These numbers indicate the robustness of the ap-
proach: we find that multi-modal representation
learning yields better performance across the board:
for different network architectures, different data
sources and different aggregation methods. If com-
putational efficiency or memory usage are issues,
then GoogLeNet or AlexNet are the best choices.
The ESP Game dataset does not appear to work very

453

well, and is best avoided. If we have the right cov-
erage, then ImageNet gives good results, especially
if we can use VGGNet. However, coverage is of-
ten the main issue, in which case Google and Bing
yield images that are comparable or even better than
images from the carefully annotated ImageNet.

5.3 Number of images

Another question is the number of images we want
to use: does performance increase with more im-
ages? Is it always better to have seen 100 cats in-
stead of only 10, or do we have enough information
after having seen one or two already? There is an
obvious trade-off here, since downloading and pro-
cessing images takes time (and may incur financial
costs). This experiment only applies to relevance-
sorted data sources: the image selection procedure
for ImageNet and ESPGame is more about removing
outliers than about finding the best possible images.

As Figure 2 shows, it turns out that the optimal
number of images stabilizes surprisingly quickly:
around 10-20 images appears to be enough, and in
some cases already too many. Performance across
networks does not vary dramatically when using
more images, but in the case of Flickr images on the
MEN dataset, performance drops significantly as the
number of images increases.

5.4 Multi- and cross-lingual applicability

Although there are some indicators that visual rep-
resentation learning extends to other languages, par-
ticularly in the case of bilingual lexicon learning
(Bergsma and Van Durme, 2011; Kiela et al., 2015b;
Vulić et al., 2016), this has not been shown directly
on the same set of human similarity and relatedness
judgments. In order to examine the multi-lingual ap-
plicability of our findings, we train linguistic repre-
sentations on recent dumps of the English and Italian
Wikipedia. We then search for 10 images per word
on Google and Bing, while setting the language to
English or Italian. We compare the results on the
original SimLex, and the Italian version from Le-
viant and Reichart (2015).

Similarly, we examine a cross-lingual scenario,
where we translate Italian words into English using
Google Translate. We then obtain images for the
translated words and extract visual representations.
These cross-lingual visual representations are sub-

SimLex

EN IT (M) IT (C)

Wikipedia Linguistic .310 .179 .179

Google
Visual .340 .231 .238

Multi-modal .380 .231 .227

Bing
Visual .325 .212 .194

Multi-modal .373 .227 .207

Table 6: Performance on English and Italian Sim-
Lex, either in the multi-lingual setting (M) or the
cross-lingual settting (C) where we first map to En-
glish.

sequently evaluated on the Italian version of Sim-
Lex. Since we know that performance across archi-
tectures is similar, we use AlexNet representations.

The results can be found in Table 6. We find the
same pattern: in all cases, visual and multi-modal
representations outperform linguistic ones. The Ital-
ian version of SimLex appears to be more diffi-
cult than the English version. Google performs bet-
ter than Bing, especially on the Italian evaluations.
For Google, the cross-lingual scenario works bet-
ter, while Bing yields better results in the multi-
lingual setting where we use the language itself in-
stead of mapping to English. Although somewhat
preliminary, these results clearly indicate that multi-
modal semantics can fruitfully be applied to lan-
guages other than English.

6 Conclusion and future work

The objective of this study has been to system-
atically compare network architectures and data
sources for multi-modal systems. In particular, we
focused on the capabilities of deep visual represen-
tations in capturing semantics, as measured by cor-
relation with human similarity and relatedness judg-
ments. Our findings can be summarized as follows:

• We examined AlexNet, GoogLeNet and
VGGNet, all three recent winners of the
ILSVRC ImageNet classification challenge
(Russakovsky et al., 2015), and found that
they perform very similarly. If efficiency or
memory are issues, AlexNet or GoogLeNet
are the most suitable architectures. For overall

454

best performance, AlexNet and VGGNet are
the best choices.

• The choice of data sources appeared to have a
bigger impact: Google, Bing, Flickr and Im-
ageNet were much better than the ESP Game
dataset. Google, Flickr and Bing have the ad-
vantage that they have potentially unlimited
coverage. Google and Bing are particularly
suited to full-coverage experiments, even when
these include abstract words.

• We found that the number of images has an
impact on performance, but that it stabilizes at
around 10-20 images, indicating that it is usu-
ally not necessary to obtain more than 10 im-
ages per word. For Flickr, obtaining more im-
ages is detrimental to performance.

• Lastly, we established that these findings ex-
tend to other languages beyond English, obtain-
ing the same findings on an Italian version of
SimLex using the Italian Wikipedia. We ex-
amined both the multi-lingual setting where we
obtain search results using the Italian language
and a cross-lingual setting where we mapped
Italian words to English and retrieved images
for those.

This work answers several open questions in
multi-modal semantics and we hope that it will serve
as a guide for future research in the field. It is im-
portant to note that the multi-modal results only ap-
ply to the mid-level fusion method of concatenat-
ing normalized vectors: although these findings are
indicative of performance for other fusion methods,
different architectures or data sources may be more
suitable for different fusion methods.

In future work, downstream tasks should be ad-
dressed: it is good that multi-modal semantics im-
proves performance on intrinsic evaluations, but it
is important to show its practical benefits in more
applied tasks as well. Understanding what it is that
makes these representations perform so well is an-
other important and yet unanswered question. We
hope that this work may be used as a reference in
determining some of the choices that can be made
when developing multi-modal models.

Acknowledgments

Anita Verő is supported by the Nuance Foundation
Grant: Learning Type-Driven Distributed Represen-
tations of Language. Stephen Clark is supported by
the ERC Starting Grant: DisCoTex (306920).

References

Shane Bergsma and Randy Goebel. 2011. Using visual
information to predict lexical preference. In Proceed-
ings of RANLP, pages 399–405.

Shane Bergsma and Benjamin Van Durme. 2011. Learn-
ing bilingual lexicons using the visual similarity of la-
beled web images. In IJCAI, pages 1764–1769.

Yevgeni Berzak, Andrei Barbu, Daniel Harari, Boris
Katz, and Shimon Ullman. 2015. Do you see what
i mean? visual resolution of linguistic ambiguities. In
Proceedings of EMNLP.

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-
Khanh Tran. 2012. Distributional semantics in tech-
nicolor. In ACL, pages 136–145.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of Artif-
ical Intelligence Research, 49:1–47.

Luana Bulat, Douwe Kiela, and Stephen Clark. 2016.
Vision and Feature Norms: Improving automatic fea-
ture norm learning through cross-modal maps. In Pro-
ceedings of NAACL-HLT 2016, San Diego, CA.

John A. Bullinaria and Joseph P. Levy. 2007. Extracting
Semantic Representations from Word Co-occurrence
Statistics: A computational study. Behavior Research
Methods, 39:510–526.

Stephen Clark. 2015. Vector Space Models of Lexical
Meaning. In Shalom Lappin and Chris Fox, editors,
Handbook of Contemporary Semantic Theory, chap-
ter 16. Wiley-Blackwell, Oxford.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Fei-Fei Li. 2009. ImageNet: A large-scale hi-
erarchical image database. In Proceedings of CVPR,
pages 248–255.

Robert Fergus, Fei-Fei Li, Pietro Perona, and Andrew
Zisserman. 2005. Learning object categories from
Google’s image search. In Proceedings of ICCV,
pages 1816–1823.

Stevan Harnad. 1990. The symbol grounding problem.
Physica D, 42:335–346.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics.

455

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Douwe Kiela and Léon Bottou. 2014. Learning image
embeddings using convolutional neural networks for
improved multi-modal semantics. In Proceedings of
EMNLP, pages 36–45.

Douwe Kiela and Stephen Clark. 2014. A Systematic
Study of Semantic Vector Space Model Parameters.
In Proceedings of EACL 2014, Workshop on Contin-
uous Vector Space Models and their Compositionality
(CVSC).

Douwe Kiela, Laura Rimell, Ivan Vulić, and Stephen
Clark. 2015a. Exploiting image generality for lexical
entailment detection. In Proceedings of ACL, pages
119–124, Beijing, China, July. Association for Com-
putational Linguistics.

Douwe Kiela, Ivan Vulić, and Stephen Clark. 2015b. Vi-
sual bilingual lexicon induction with transferred con-
vnet features. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 148–158, Lisbon, Portugal, September. As-
sociation for Computational Linguistics.

Douwe Kiela. 2016. Mmfeat: A toolkit for extracting
multi-modal features. In Proceedings of ACL 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
2012. ImageNet classification with deep convolutional
neural networks. In Proceedings of NIPS, pages 1106–
1114.

Angeliki Lazaridou, Nghia The Pham, and Marco Baroni.
2015. Combining language and vision with a multi-
modal skipgram model. In Proceedings of NAACL.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. Nature, 521(7553):436—444.

Ira Leviant and Roi Reichart. 2015. Judgment language
matters: Multilingual vector space models for judg-
ment language aware lexical semantics. arXiv preprint
arXiv:1508.00106.

Min Lin, Qiang Chen, and Shuicheng Yan. 2013. Net-
work in network. CoRR, abs/1312.4400.

David G. Lowe. 2004. Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. In Proceedings of ICLR, Scotts-
dale, Arizona, USA.

George A. Miller. 1995. WordNet: A lexical database for
English. Communications of the ACM, 38(11):39–41.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified lin-
ear units improve restricted boltzmann machines. In
Proceedings of ICML, pages 807–814.

Stephen Roller and Sabine Schulte im Walde. 2013.
A multimodal LDA model integrating textual, cogni-
tive and visual modalities. In Proceedings of EMNLP,
pages 1146–1157.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. 2015. ImageNet Large
Scale Visual Recognition Challenge. International
Journal of Computer Vision (IJCV), 115(3):211–252.

Ekaterina Shutova, Douwe Kiela, and Jean Maillard.
2016. Black holes and white rabbits: Metaphor iden-
tification with visual features. In Proceedings of
NAACL-HTL 2016, San Diego. Association for Com-
putational Linguistics.

Carina Silberer and Mirella Lapata. 2014. Learning
grounded meaning representations with autoencoders.
In Proceedings of ACL, pages 721–732.

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Josef Sivic and Andrew Zisserman. 2003. Video google:
A text retrieval approach to object matching in videos.
In Proceedings of ICCV, pages 1470–1477.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich.
2015. Going deeper with convolutions. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–9.

Peter D. Turney and Patrick Pantel. 2010. From Fre-
quency to Meaning: vector space models of semantics.
Journal of Artifical Intelligence Research, 37(1):141–
188, January.

Luis von Ahn and Laura Dabbish. 2004. Labeling im-
ages with a computer game. In CHI, pages 319–326.

Ivan Vulić, Douwe Kiela, Marie-Francine Moens, and
Stephen Clark. 2016. Multi-modal representations for
improved bilingual lexicon learning. In Proceedings
of ACL, Berlin, Germany. Association for Computa-
tional Linguistics.

Tobias Weyand, Ilya Kostrikov, and James Philbin. 2016.
Planet - photo geolocation with convolutional neural
networks. CoRR, abs/1602.05314.

456

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 457–468,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Multimodal Compact Bilinear Pooling
for Visual Question Answering and Visual Grounding

Akira Fukui*1,2 Dong Huk Park*1 Daylen Yang*1

Anna Rohrbach*1,3 Trevor Darrell1 Marcus Rohrbach1

1UC Berkeley EECS, CA, United States
2Sony Corp., Tokyo, Japan

3Max Planck Institute for Informatics, Saarbrücken, Germany

Abstract

Modeling textual or visual information with
vector representations trained from large lan-
guage or visual datasets has been successfully
explored in recent years. However, tasks such
as visual question answering require combin-
ing these vector representations with each other.
Approaches to multimodal pooling include
element-wise product or sum, as well as con-
catenation of the visual and textual represen-
tations. We hypothesize that these methods
are not as expressive as an outer product of
the visual and textual vectors. As the outer
product is typically infeasible due to its high
dimensionality, we instead propose utilizing
Multimodal Compact Bilinear pooling (MCB)
to efficiently and expressively combine multi-
modal features. We extensively evaluate MCB
on the visual question answering and ground-
ing tasks. We consistently show the benefit of
MCB over ablations without MCB. For visual
question answering, we present an architec-
ture which uses MCB twice, once for predict-
ing attention over spatial features and again
to combine the attended representation with
the question representation. This model out-
performs the state-of-the-art on the Visual7W
dataset and the VQA challenge.

1 Introduction

Representation learning for text and images has been
extensively studied in recent years. Recurrent neural
networks (RNNs) are often used to represent sen-
tences or phrases (Sutskever et al., 2014; Kiros et al.,

* indicates equal contribution

CN
N

W

E, LSTM

What are all
the people

doing?

Ψ

Ψ

FFT FFT
-1

Convolution

⨀

FFT

“flying kites”

Classifier

Multimodal
Compact
Bilinear

Count Sketch

Signed Sqrt
L2 N

orm

Figure 1: Multimodal Compact Bilinear Pooling for
visual question answering.

2015), and convolutional neural networks (CNNs)
have shown to work best to represent images (Don-
ahue et al., 2013; He et al., 2015). For tasks such as
visual question answering (VQA) and visual ground-
ing, most approaches require joining the represen-
tation of both modalities. For combining the two
vector representations (multimodal pooling), current
approaches in VQA or grounding rely on concatenat-
ing vectors or applying element-wise sum or product.
While this generates a joint representation, it might
not be expressive enough to fully capture the complex
associations between the two different modalities.

In this paper, we propose to rely on Multimodal
Compact Bilinear pooling (MCB) to get a joint repre-
sentation. Bilinear pooling computes the outer prod-
uct between two vectors, which allows, in contrast
to element-wise product, a multiplicative interaction
between all elements of both vectors. Bilinear pool-
ing models (Tenenbaum and Freeman, 2000) have
recently been shown to be beneficial for fine-grained
classification for vision only tasks (Lin et al., 2015).
However, given their high dimensionality (n2), bi-
linear pooling has so far not been widely used. In

457

this paper, we adopt the idea from Gao et al. (2016)
which shows how to efficiently compress bilinear
pooling for a single modality. In this work, we dis-
cuss and extensively evaluate the extension to the
multimodal case for text and visual modalities. As
shown in Figure 1, Multimodal Compact Bilinear
pooling (MCB) is approximated by randomly pro-
jecting the image and text representations to a higher
dimensional space (using Count Sketch (Charikar
et al., 2002)) and then convolving both vectors effi-
ciently by using element-wise product in Fast Fourier
Transform (FFT) space. We use MCB to predict an-
swers for the VQA task and locations for the visual
grounding task. For open-ended question answering,
we present an architecture for VQA which uses MCB
twice, once to predict spatial attention and the second
time to predict the answer. For multiple-choice ques-
tion answering we introduce a third MCB to relate the
encoded answer to the question-image space. Addi-
tionally, we discuss the benefit of attention maps and
additional training data for the VQA task. To sum-
marize, MCB is evaluated on two tasks, four datasets,
and with a diverse set of ablations and comparisons
to the state-of-the-art.

2 Related Work

Multimodal pooling. Current approaches to mul-
timodal pooling involve element-wise operations or
vector concatenation. In the visual question answer-
ing domain, a number of models have been proposed.
Simpler models such as iBOWIMG baseline (Zhou
et al., 2015) use concatenation and fully connected
layers to combine the image and question modali-
ties. Stacked Attention Networks (Yang et al., 2015)
and Spatial Memory Networks (Xu et al., 2015) use
LSTMs or extract soft-attention on the image fea-
tures, but ultimately use element-wise product or
element-wise sum to merge modalities. D-NMN (An-
dreas et al., 2016a) introduced REINFORCE to dy-
namically create a network and use element-wise
product to join attentions and element-wise sum pre-
dict answers. Dynamic Memory Networks (DMN)
(Xiong et al., 2016) pool the image and question
with element-wise product and sum, attending to part
of the image and question with an Episodic Mem-
ory Module (Kumar et al., 2016). DPPnet (Noh et
al., 2015) creates a Parameter Prediction Network

which learns to predict the parameters of the second
to last visual recognition layer dynamically from the
question. Similar to this work, DPPnet allows mul-
tiplicative interactions between the visual and ques-
tion encodings. Lu et al. (2016) recently proposed
a model that extracts multiple co-attentions on the
image and question and combines the co-attentions
in a hierarchical manner using element-wise sum,
concatenation, and fully connected layers.

For the visual grounding task, Rohrbach et al.
(2016) propose an approach where the language
phrase embedding is concatenated with the visual
features in order to predict the attention weights over
multiple bounding box proposals. Similarly, Hu et
al. (2016a) concatenate phrase embeddings with vi-
sual features at different spatial locations to obtain a
segmentation.

Bilinear pooling. Bilinear pooling has been ap-
plied to the fine-grained visual recognition task. Lin
et al. (2015) use two CNNs to extract features from
an image and combine the resulting vectors using an
outer product, which is fully connected to an output
layer. Gao et al. (2016) address the space and time
complexity of bilinear features by viewing the bilin-
ear transformation as a polynomial kernel. Pham and
Pagh (2013) describe a method to approximate the
polynomial kernel using Count Sketches and convo-
lutions.

Joint multimodal embeddings. In order to model
similarities between two modalities, many prior
works have learned joint multimodal spaces, or em-
beddings. Some of such embeddings are based
on Canonical Correlation Analysis (Hardoon et al.,
2004) e.g. (Gong et al., 2014; Klein et al., 2015;
Plummer et al., 2015), linear models with ranking
loss (Frome et al., 2013; Karpathy and Fei-Fei, 2015;
Socher et al., 2014; Weston et al., 2011) or non-linear
deep learning models (Kiros et al., 2014; Mao et al.,
2015; Ngiam et al., 2011). Our multimodal com-
pact bilinear pooling can be seen as a complementary
operation that allows us to capture different interac-
tions between two modalities more expressively than
e.g. concatenation. Consequently, many embedding
learning approaches could benefit from incorporating
such interactions.

458

0 -xn1 ... 0 -x1 0 0 x2

-q2 0 ... q4 0 0 qn2 q9 q1 q2 ... qn2

x1 x2 ... xn1

Visual Vector

Textual Vector

Ψ

Ψ

Count Sketch of Visual Vector

Count Sketch of Textual Vector

FFT

FFT

FFT-1

C
on

vo
lu

tio
n

Figure 2: Multimodal Compact Bilinear Pooling
(MCB)

3 Multimodal Compact Bilinear Pooling
for Visual and Textual Embeddings

For the task of visual question answering (VQA) or
visual grounding, we have to predict the most likely
answer or location â for a given image x and question
or phrase q. This can be formulated as

â = argmax
a∈A

p(a|x,q; θ) (1)

with parameters θ and the set of answers or loca-
tions A. For an image embedding x = Ξ(x) (i.e. a
CNN) and question embedding q = Ω(q) (i.e. an
LSTM), we are interested in getting a good joint rep-
resentation by pooling both representations. With a
multimodal pooling Φ(x, q) that encodes the relation-
ship between x and q well, it becomes easier to learn
a classifier for Equation (1).

In this section, we first discuss our multimodal
pooling Φ for combining representations from differ-
ent modalities into a single representation (Sec. 3.1)
and then detail our architectures for VQA (Sec. 3.2)
and visual grounding (Sec. 3.3), further explaining
how we predict â with the given image representation
Ξ and text representation Ω.

3.1 Multimodal Compact Bilinear
Pooling (MCB)

Bilinear models (Tenenbaum and Freeman, 2000)
take the outer product of two vectors x ∈ Rn1 and
q ∈ Rn2 and learn a model W (here linear), i.e.
z = W [x⊗ q], where ⊗ denotes the outer product
(xqT) and [] denotes linearizing the matrix in a vec-
tor. As discussed in the introduction, bilinear pooling
is interesting because it allows all elements of both
vectors to interact with each other in a multiplicative

Algorithm 1 Multimodal Compact Bilinear
1: input: v1 ∈ Rn1 , v2 ∈ Rn2

2: output: Φ(v1, v2) ∈ Rd

3: procedure MCB(v1, v2, n1, n2, d)
4: for k ← 1 . . . 2 do
5: if hk, sk not initialized then
6: for i← 1 . . . nk do
7: sample hk[i] from {1, . . . , d}
8: sample sk[i] from {−1, 1}
9: v′k = Ψ(vk, hk, sk, nk)

10: Φ = FFT−1(FFT(v′1)� FFT(v′2))
11: return Φ
12: procedure Ψ(v, h, s, n)
13: y = [0, . . . , 0]
14: for i← 1 . . . n do
15: y[h[i]] = y[h[i]] + s[i] · v[i]

16: return y

way. However, the high dimensional representation
(i.e. when n1 and n2 are large) leads to an infeasible
number of parameters to learn in W . For example,
we use n1 = n2 = 2048 and z ∈ R3000 for VQA.
W thus would have 12.5 billion parameters, which
leads to very high memory consumption and high
computation times.

We thus need a method that projects the outer prod-
uct to a lower dimensional space and also avoids
computing the outer product directly. As suggested
by Gao et al. (2016) for a single modality, we rely
on the Count Sketch projection function Ψ (Charikar
et al., 2002), which projects a vector v ∈ Rn to
y ∈ Rd. We initialize two vectors s ∈ {−1, 1}n and
h ∈ {1, ..., d}n: s contains either 1 or −1 for each
index, and h maps each index i in the input v to an
index j in the output y. Both s and h are initialized
randomly from a uniform distribution and remain
constant for future invocations of count sketch. y is
initialized as a zero vector. For every element v[i] its
destination index j = h[i] is looked up using h, and
s[i] · v[i] is added to y[j]. See lines 1-9 and 12-16 in
Algorithm 1.

This allows us to project the outer product to a
lower dimensional space, which reduces the number
of parameters in W . To avoid computing the outer
product explicitly, Pham and Pagh (2013) showed
that the count sketch of the outer product of two
vectors can be expressed as convolution of both count
sketches: Ψ(x ⊗ q, h, s) = Ψ(x, h, s) ∗ Ψ(q, h, s),

459

1 x 14 x 14

512 x 14 x 14

CN
N

(ResN

et152) 16k x14x14

2048x14x14

2048x14x14

Conv, Relu

Conv

“Carrot”
16k

3000

2048

2048

W
E, LSTM

Softm
ax

W
eighted Sum

Tile

2048

What is the
woman feeding

the giraffe?

Multimodal
Compact
Bilinear

Multimodal
Compact
Bilinear

FC

Softm
ax

Figure 3: Our architecture for VQA: Multimodal Compact Bilinear (MCB) with Attention. Conv implies
convolutional layers and FC implies fully connected layers. For details see Sec. 3.2.

where ∗ is the convolution operator. Additionally, the
convolution theorem states that convolution in the
time domain is equivalent to element-wise product
in the frequency domain. The convolution x′ ∗ q′ can
be rewritten as FFT−1(FFT(x′) � FFT(q′)), where
� refers to element-wise product. These ideas are
summarized in Figure 2 and formalized in Algorithm
1, which is based on the Tensor Sketch algorithm of
Pham and Pagh (2013). We invoke the algorithm with
v1 = x and v2 = q. We note that this easily extends
and remains efficient for more than two multi-modal
inputs as the combination happens as element-wise
product.

3.2 Architectures for VQA

In VQA, the input to the model is an image and a
question, and the goal is to answer the question. Our
model extracts representations for the image and the
question, pools the vectors using MCB, and arrives
at the answer by treating the problem as a multi-class
classification problem with 3,000 possible classes.

We extract image features using a 152-layer Resid-
ual Network (He et al., 2015) that is pretrained on
ImageNet data (Deng et al., 2009). Images are re-
sized to 448×448, and we use the output of the layer
(“pool5”) before the 1000-way classifier. We then
perform L2 normalization on the 2048-D vector.

Input questions are first tokenized into words, and
the words are one-hot encoded and passed through
a learned embedding layer. The tanh nonlinearity
is used after the embedding. The embedding layer
is followed by a 2-layer LSTM with 1024 units in
each layer. The outputs of each LSTM layer are
concatenated to form a 2048-D vector.

The two vectors are then passed through MCB.
The MCB is followed by an element-wise signed
square-root and L2 normalization. After MCB pool-
ing, a fully connected layer connects the resulting
16,000-D multimodal representation to the 3,000 top
answers.

Attention. To incorporate spatial information, we
use soft attention on our MCB pooling method. Ex-
plored by (Xu et al., 2015) for image captioning and
by (Xu and Saenko, 2016) and (Yang et al., 2015)
for VQA, the soft attention mechanism can be easily
integrated in our model.

For each spatial grid location in the visual rep-
resentation (i.e. last convolutional layer of ResNet
[res5c], last convolutional layer of VGG [conv5]),
we use MCB pooling to merge the slice of the visual
feature with the language representation. As depicted
in Figure 3, after the pooling we use two convolu-
tional layers to predict the attention weight for each
grid location. We apply softmax to produce a nor-
malized soft attention map. We then take a weighted
sum of the spatial vectors using the attention map to
create the attended visual representation. We also ex-
periment with generating multiple attention maps to
allow the model to make multiple “glimpses” which
are concatenated before being merged with the lan-
guage representation through another MCB pooling
for prediction. Predicting attention maps with MCB
pooling allows the model to effectively learn how to
attend to salient locations based on both the visual
and language representations.

Answer Encoding. For VQA with multiple
choices, we can additionally embed the answers. We

460

Q : “What do you see?” (Ground Truth : a3)
a1 : “A courtyard with flowers”
a2 : “A restaurant kitchen”
a3 : “A family with a stroller, tables for dining”
a4 : “People waiting on a train”

a1

a2

a3

a4

Attention
 I

MCB
Q

a2 encoded
a3 encoded
a4 encoded

Conv

a3

Multimodal
Compact
Bilinear a1 encoded

W
E

LSTM

Tile

Relu
Conv

Softm
ax

Figure 4: Our architecture for VQA: MCB with At-
tention and Answer Encoding

base our approach on the proposed MCB with atten-
tion. As can be seen from Figure 4, to deal with
multiple variable-length answer choices, each choice
is encoded using a word embedding and LSTM lay-
ers whose weights are shared across the candidates.
In addition to using MCB with attention, we use an
additional MCB pooling to merge the encoded an-
swer choices with the multimodal representation of
the original pipeline. The resulting embedding is
projected to a classification vector with a dimension
equal to the number of answers.

3.3 Architecture for Visual Grounding

We base our grounding approach on the fully-
supervised version of GroundeR (Rohrbach et al.,
2016). The overview of our model is shown in Fig-
ure 5. The input to the model is a query natural
language phrase and an image along with multiple
proposal bounding boxes. The goal is to predict a
bounding box which corresponds to the query phrase.
We replace the concatenation of the visual representa-
tion and the encoded phrase in GroundeR with MCB
to combine both modalities. In contrast to Rohrbach
et al. (2016), we include a linear embedding of the
visual representation and L2 normalization of both in-
put modalities, instead of batch normalization (Ioffe
and Szegedy, 2015), which we found to be beneficial
when using MCB for the grounding task.

4 Evaluation on Visual Question
Answering

We evaluate the benefit of MCB with a diverse set of
ablations on two visual question answering datasets.

Q: “Person in blue checkered shirt”

b1

b2

b3

b4

Q

C
o

n
v

b4

Multimodal

Compact

Bilinear

Tile

R
elu

C
o

n
v

So
ftm

ax
CNN

CNN

CNN

CNN

b3b2b1

b3

W
E

LSTM

L2
 n

o
rm

Conv L2 norm

Conv L2 norm

Conv L2 norm

Conv L2 norm

Figure 5: Our Architecture for Grounding with MCB
(Sec. 3.3)

4.1 Datasets

The Visual Question Answering (VQA) real-image
dataset (Antol et al., 2015) consists of approximately
200,000 MSCOCO images (Lin et al., 2014), with
3 questions per image and 10 answers per question.
There are 3 data splits: train (80K images), validation
(40K images), and test (80K images). Additionally,
there is a 25% subset of test named test-dev. Ac-
curacies for ablation experiments in this paper are
reported on the test-dev data split. We use the VQA
tool provided by Antol et al. (2015) for evaluation.
We conducted most of our experiments on the open-
ended real-image task. In Table 4, we also report our
multiple-choice real-image scores.

The Visual Genome dataset (Krishna et al.,
2016) uses 108,249 images from the intersection of
YFCC100M (Thomee et al., 2015) and MSCOCO.
For each image, an average of 17 question-answer
pairs are collected. There are 1.7 million QA pairs
of the 6W question types (what, where, when, who,
why, and how). Compared to the VQA dataset, Vi-
sual Genome represents a more balanced distribu-
tion of the 6W question types. Moreover, the aver-
age question and answer lengths for Visual Genome
are larger than the VQA dataset. To leverage the
Visual Genome dataset as additional training data,
we remove all the unnecessary words such as ”a”,
”the”, and ”it is” from the answers to decrease the
length of the answers and extract QA pairs whose
answers are single-worded. The extracted data is fil-
tered again based on the answer vocabulary space
created from the VQA dataset, leaving us with addi-
tional 1M image-QA triplets.

The Visual7W dataset (Zhu et al., 2016) is a part
of the Visual Genome. Visual7W adds a 7th which
question category to accommodate visual answers,

461

Method Accuracy

Element-wise Sum 56.50
Concatenation 57.49
Concatenation + FC 58.40
Concatenation + FC + FC 57.10
Element-wise Product 58.57
Element-wise Product + FC 56.44
Element-wise Product + FC + FC 57.88
MCB (2048× 2048→ 16K) 59.83

Full Bilinear (128× 128→ 16K) 58.46
MCB (128× 128→ 4K) 58.69

Element-wise Product with VGG-19 55.97
MCB (d = 16K) with VGG-19 57.05

Concatenation + FC with Attention 58.36
MCB (d = 16K) with Attention 62.50

Table 1: Comparison of multimodal pooling methods.
Models are trained on the VQA train split and tested
on test-dev.

but we only evaluate the models on the Telling task
which involves 6W questions. The natural language
answers in Visual7W are in a multiple-choice format
and each question comes with four answer candidates,
with only one being the correct answer. Visual7W
is composed of 47,300 images from MSCOCO and
there are a total of 139,868 QA pairs.

4.2 Experimental Setup

We use the Adam solver with ε = 0.0007, β1 = 0.9,
β2 = 0.999. We use dropout after the LSTM layers
and in fully connected layers. For the experiments in
Table 1 and 2, we train on the VQA train split, vali-
date on the VQA validation split, and report results
on the VQA test-dev split. We use early stopping: if
the validation score does not improve for 50,000 iter-
ations, we stop training and evaluate the best iteration
on test-dev.

For the Visual7W task, we use the same hyperpa-
rameters and training settings as in the VQA exper-
iments. We use the splits from (Zhu et al., 2016) to
train, validate, and test our models. We also compute
accuracies on this data using their evaluation code.

For VQA multiple choice, we train the open-ended
models and take the argmax over the multiple choice

Compact Bilinear d Accuracy

1024 58.38
2048 58.80
4096 59.42
8192 59.69
16000 59.83
32000 59.71

Table 2: Accuracies for different values of d, the
dimension of the compact bilinear feature. Models
are trained on the VQA train split and tested on test-
dev. Details in Sec. 4.3.

Method What Where When Who Why How Avg

Zhu et al. 51.5 57.0 75.0 59.5 55.5 49.8 54.3
Concat+Att. 47.8 56.9 74.1 62.3 52.7 51.2 52.8
MCB+Att. 60.3 70.4 79.5 69.2 58.2 51.1 62.2

Table 3: Multiple-choice QA tasks accuracy (%) on
Visual7W test set.

answers at test time. For Visual7W, we use the an-
swer encoding as described in Sec. 3.2.

4.3 Ablation Results

We compare the performance of non-bilinear and
bilinear pooling methods in Table 1. We see that
MCB pooling outperforms all non-bilinear pooling
methods, such as eltwise sum, concatenation, and
eltwise product.

One could argue that the compact bilinear method
simply has more parameters than the non-bilinear
pooling methods, which contributes to its perfor-
mance. We compensated for this by stacking fully
connected layers (with 4096 units per layer, ReLU
activation, and dropout) after the non-bilinear pool-
ing methods to increase their number of parameters.
However, even with similar parameter budgets, non-
bilinear methods could not achieve the same accuracy
as the MCB method. For example, the “Concatena-
tion + FC + FC” pooling method has approximately
40962 + 40962 + 4096 × 3000 ≈ 46 million pa-
rameters, which matches the 48 million parameters
available in MCB with d = 16000. However, the per-
formance of the “Concatenation + FC + FC” method
is only 57.10% compared to MCB’s 59.83%.

Section 2 in Table 1 also shows that compact bi-

462

Test-dev Test-standard

Open Ended MC Open Ended MC

Y/N No. Other All All Y/N No. Other All All

MCB 81.2 35.1 49.3 60.8 65.4 - - - - -
MCB + Genome 81.7 36.6 51.5 62.3 66.4 - - - - -
MCB + Att. 82.2 37.7 54.8 64.2 68.6 - - - - -
MCB + Att. + GloVe 82.5 37.6 55.6 64.7 69.1 - - - - -
MCB + Att. + Genome 81.7 38.2 57.0 65.1 69.5 - - - - -
MCB + Att. + GloVe + Genome 82.3 37.2 57.4 65.4 69.9 - - - - -
Ensemble of 7 Att. models 83.4 39.8 58.5 66.7 70.2 83.2 39.5 58.0 66.5 70.1

Naver Labs (challenge 2nd) 83.5 39.8 54.8 64.9 69.4 83.3 38.7 54.6 64.8 69.3
HieCoAtt (Lu et al., 2016) 79.7 38.7 51.7 61.8 65.8 - - - 62.1 66.1
DMN+ (Xiong et al., 2016) 80.5 36.8 48.3 60.3 - - - - 60.4 -
FDA (Ilievski et al., 2016) 81.1 36.2 45.8 59.2 - - - - 59.5 -
D-NMN (Andreas et al., 2016a) 81.1 38.6 45.5 59.4 - - - - 59.4 -
AMA (Wu et al., 2016) 81.0 38.4 45.2 59.2 - 81.1 37.1 45.8 59.4 -
SAN (Yang et al., 2015) 79.3 36.6 46.1 58.7 - - - - 58.9 -
NMN (Andreas et al., 2016b) 81.2 38.0 44.0 58.6 - 81.2 37.7 44.0 58.7 -
AYN (Malinowski et al., 2016) 78.4 36.4 46.3 58.4 - 78.2 36.3 46.3 58.4 -
SMem (Xu and Saenko, 2016) 80.9 37.3 43.1 58.0 - 80.9 37.5 43.5 58.2 -
VQA team (Antol et al., 2015) 80.5 36.8 43.1 57.8 62.7 80.6 36.5 43.7 58.2 63.1
DPPnet (Noh et al., 2015) 80.7 37.2 41.7 57.2 - 80.3 36.9 42.2 57.4 -
iBOWIMG (Zhou et al., 2015) 76.5 35.0 42.6 55.7 - 76.8 35.0 42.6 55.9 62.0

Table 4: Open-ended and multiple-choice (MC) results on VQA test set (trained on train+val set) compared
with state-of-the-art: accuracy in %. See Sec. 4.4.

linear pooling has no impact on accuracy compared
to full bilinear pooling. Section 3 in Table 1 demon-
strates that the MCB brings improvements regardless
of the image CNN used. We primarily use ResNet-
152 in this paper, but MCB also improves perfor-
mance if VGG-19 is used. Section 4 in Table 1 shows
that our soft attention model works best with MCB
pooling. In fact, attending to the Concatenation + FC
layer has the same performance as not using attention
at all, while attending to the MCB layer improves
performance by 2.67 points.

Table 2 compares different values of d, the output
dimensionality of the multimodal compact bilinear
feature. Approximating the bilinear feature with a
16,000-D vector yields the highest accuracy.

We also evaluated models with multiple atten-
tion maps or channels. One attenion map achieves
64.67%, two 65.08% and four 64.24% accuracy
(trained on train+val). Visual inspection of the gen-

erated attention maps reveals that an ensembling or
smoothing effect occurs when using multiple maps.

Table 3 presents results for the Visual7W multiple-
choice QA task. The MCB with attention model out-
performs the previous state-of-the-art by 7.9 points
overall and performs better in almost every category.

4.4 Comparison to State-of-the-Art

Table 4 compares our approach with the state-of-the-
art on VQA test set. Our best single model uses
MCB pooling with two attention maps. Additionally,
we augment our training data with images and QA
pairs from the Visual Genome dataset. We also con-
catenate the learned word embedding with pretrained
GloVe vectors (Pennington et al., 2014).

Each model in our ensemble of 7 models uses
MCB with attention. Some of the models were
trained with data from Visual Genome, and some
were trained with two attention maps. This ensem-

463

Method Accuracy, %

Plummer et al. (2015) 27.42
Hu et al. (2016b) 27.80
Plummer et al. (2016)1 43.84
Wang et al. (2016) 43.89
Rohrbach et al. (2016) 47.81

Concatenation 46.50
Element-wise Product 47.41
Element-wise Product + Conv 47.86
MCB 48.69

Table 5: Grounding accuracy on Flickr30k Entities
dataset.

Method Accuracy, %

Hu et al. (2016b) 17.93
Rohrbach et al. (2016) 26.93

Concatenation 25.48
Element-wise Product 27.80
Element-wise Product + Conv 27.98
MCB 28.91

Table 6: Grounding accuracy on ReferItGame
dataset.

ble is 1.8 points above the next best approach on the
VQA open-ended task and 0.8 points above the next
best approach on the multiple-choice task (on Test-
dev). Even without ensembles, our “MCB + Genome
+ Att. + GloVe” model still outperforms the next
best result by 0.5 points, with an accuracy of 65.4%
versus 64.9% on the open-ended task (on Test-dev).

5 Evaluation on Visual Grounding

5.1 Datasets

We evaluate our visual grounding approach on two
datasets. The first is Flickr30k Entities (Plummer
et al., 2015) which consists of 31K images from
Flickr30k dataset (Hodosh et al., 2014) with 244K
phrases localized with bounding boxes. We follow
the experimental setup of Rohrbach et al. (2016),
e.g. we use the same Selective Search (Uijlings et

1Plummer et al. (2016) achieve higher accuracy of 50.89%
when taking into account box size and color. We believe our
approach would also benefit from such additional features.

al., 2013) object proposals and the Fast R-CNN (Gir-
shick, 2015) fine-tuned VGG16 features (Simonyan
and Zisserman, 2014). The second dataset is Refer-
ItGame (Kazemzadeh et al., 2014), which contains
20K images from IAPR TC-12 dataset (Grubinger et
al., 2006) with segmented regions from SAIAPR-12
dataset (Escalante et al., 2010) and 120K associated
natural language referring expressions. For Refer-
ItGame we follow the experimental setup of Hu et
al. (2016b) and rely on their ground-truth bound-
ing boxes extracted around the segmentation masks.
We use the Edge Box (Zitnick and Dollár, 2014) ob-
ject proposals and visual features (VGG16 combined
with the spatial features, which encode bounding box
relative position) from Hu et al. (2016b).

5.2 Experimental Setup

In all experiments we use Adam solver (Kingma and
Ba, 2014) with learning rate ε = 0.0001. The embed-
ding size is 500 both for visual and language embed-
dings. We use d = 2048 in the MCB pooling, which
we found to work best for the visual grounding task.
The accuracy is measured as percentage of query
phrases which have been localized correctly. The
phrase is localized correctly if the predicted bound-
ing box overlaps with the ground-truth bounding box
by more than 50% intersection over union (IOU).

5.3 Results

Tables 5 and 6 summarize our results in the visual
grounding task. We present multiple ablations of our
proposed architecture. First, we replace the MCB
with simple concatenation of the embedded visual
feature and the embedded phrase, resulting in 46.5%
on the Flickr30k Entities and 25.48% on the Refer-
ItGame datasets. The results can be improved by
replacing the concatenation with the element-wise
product of both embedded features (47.41% and
27.80%). We can further slightly increase the per-
formance by introducing additional 2048-D convo-
lution after the element-wise product (47.86% and
27.98%). However, even with fewer parameters, our
MCB pooling significantly improves over this base-
line on both datasets, reaching state-of-the-art accu-
racy of 48.69% on Flickr30k Entities and 28.91%
on ReferItGame dataset. Figure 6 (bottom) shows
examples of improved phrase localization.

464

What vegetable is the dog
chewing on?
MCB: carrot
GT: carrot

What kind of dog is this?
MCB: husky
GT: husky

What kind of flooring does
the room have?
MCB: carpet
GT: carpet

What color is the traffic
light?
MCB: green
GT: green

Is this an urban area?
MCB: yes
GT: yes

Where are the buildings?
MCB: in background
GT: on left

MCB Eltwise Product + Conv MCB Eltwise Product + Conv

A tattooed woman with a green dress and yellow back-
pack holding a water bottle is walking across the street.

A dog distracts his owner from working at her computer.

Figure 6: Top: predicted answers and attention maps from MCB model on VQA images. Bottom: predicted
grounding from MCB model (left) and Eltwise Product + Conv model (right) on Flickr30k Entities images.

6 Conclusion

We propose the Multimodal Compact Bilinear Pool-
ing (MCB) to combine visual and text representa-
tions. For visual question answering, our architecture
with attention and multiple MCBs gives significant
improvements on two VQA datasets compared to
state-of-the-art. In the visual grounding task, in-
troducing MCB pooling leads to improved phrase
localization accuracy, indicating better interaction
between query phrase representations and visual rep-

resentations of proposal bounding boxes. The code
to replicate our experiments is available at https:
//github.com/akirafukui/vqa-mcb.

Acknowledgments

We would like to thank Yang Gao and Oscar Beijbom
for helpful discussions about Compact Bilinear Pool-
ing. This work was supported by DARPA, AFRL,
DoD MURI award N000141110688, NSF awards
IIS-1427425 and IIS-1212798, and the Berkeley Ar-
tificial Intelligence Research (BAIR) Lab.

465

References
[Andreas et al.2016a] Jacob Andreas, Marcus Rohrbach,

Trevor Darrell, and Dan Klein. 2016a. Learning to
compose neural networks for question answering. In
Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguis-
tics (NAACL).

[Andreas et al.2016b] Jacob Andreas, Marcus Rohrbach,
Trevor Darrell, and Dan Klein. 2016b. Neural module
networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[Antol et al.2015] Stanislaw Antol, Aishwarya Agrawal,
Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence
Zitnick, and Devi Parikh. 2015. Vqa: Visual question
answering. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV).

[Charikar et al.2002] Moses Charikar, Kevin Chen, and
Martin Farach-Colton. 2002. Finding frequent items
in data streams. In Automata, languages and program-
ming, pages 693–703. Springer.

[Deng et al.2009] J. Deng, W. Dong, R. Socher, L.-J. Li,
K. Li, and L. Fei-Fei. 2009. ImageNet: A Large-
Scale Hierarchical Image Database. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[Donahue et al.2013] Jeff Donahue, Yangqing Jia, Oriol
Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and
Trevor Darrell. 2013. Decaf: A deep convolutional
activation feature for generic visual recognition. In
Proceedings of the International Conference on Ma-
chine Learning (ICML).

[Escalante et al.2010] Hugo Jair Escalante, Carlos A
Hernández, Jesus A Gonzalez, Aurelio López-López,
Manuel Montes, Eduardo F Morales, L Enrique Sucar,
Luis Villaseñor, and Michael Grubinger. 2010. The
segmented and annotated iapr tc-12 benchmark. Com-
puter Vision and Image Understanding, 114(4):419–
428.

[Frome et al.2013] Andrea Frome, Greg S Corrado, Jon
Shlens, Samy Bengio, Jeff Dean, Tomas Mikolov, et al.
2013. Devise: A deep visual-semantic embedding
model. In Advances in Neural Information Process-
ing Systems (NIPS).

[Gao et al.2016] Yang Gao, Oscar Beijbom, Ning Zhang,
and Trevor Darrell. 2016. Compact bilinear pooling.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[Girshick2015] Ross Girshick. 2015. Fast R-CNN. In
Proceedings of the IEEE International Conference on
Computer Vision (ICCV).

[Gong et al.2014] Yunchao Gong, Liwei Wang, Micah Ho-
dosh, Julia Hockenmaier, and Svetlana Lazebnik. 2014.
Improving image-sentence embeddings using large

weakly annotated photo collections. In Proceedings of
the European Conference on Computer Vision (ECCV).

[Grubinger et al.2006] Michael Grubinger, Paul Clough,
Henning Müller, and Thomas Deselaers. 2006. The
iapr tc-12 benchmark: A new evaluation resource for
visual information systems. In International Workshop
OntoImage, volume 5, page 10.

[Hardoon et al.2004] David R Hardoon, Sandor Szedmak,
and John Shawe-Taylor. 2004. Canonical correlation
analysis: An overview with application to learning
methods. Neural computation, 16(12):2639–2664.

[He et al.2015] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. 2015. Deep residual learning for
image recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR).

[Hodosh et al.2014] Peter Hodosh, Alice Young, Micah
Lai, and Julia Hockenmaier. 2014. From image de-
scriptions to visual denotations: New similarity met-
rics for semantic inference over event descriptions. In
Transactions of the Association for Computational Lin-
guistics (TACL).

[Hu et al.2016a] Ronghang Hu, Marcus Rohrbach, and
Trevor Darrell. 2016a. Segmentation from natural
language expressions. In Proceedings of the European
Conference on Computer Vision (ECCV).

[Hu et al.2016b] Ronghang Hu, Huazhe Xu, Marcus
Rohrbach, Jiashi Feng, Kate Saenko, and Trevor Dar-
rell. 2016b. Natural language object retrieval. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

[Ilievski et al.2016] Ilija Ilievski, Shuicheng Yan, and Ji-
ashi Feng. 2016. A focused dynamic attention model
for visual question answering. arXiv:1604.01485.

[Ioffe and Szegedy2015] Sergey Ioffe and Christian
Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate
shift. In Proceedings of the International Conference
on Machine Learning (ICML).

[Karpathy and Fei-Fei2015] Andrej Karpathy and Li Fei-
Fei. 2015. Deep visual-semantic alignments for gener-
ating image descriptions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

[Kazemzadeh et al.2014] Sahar Kazemzadeh, Vicente Or-
donez, Mark Matten, and Tamara L. Berg. 2014.
Referit game: Referring to objects in photographs of
natural scenes. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

[Kingma and Ba2014] Diederik Kingma and Jimmy Ba.
2014. Adam: A method for stochastic optimization. In
Proceedings of the International Conference on Learn-
ing Representations (ICLR).

466

[Kiros et al.2014] Ryan Kiros, Ruslan Salakhutdinov, and
Rich Zemel. 2014. Multimodal neural language mod-
els. In Proceedings of the International Conference on
Machine Learning (ICML), pages 595–603.

[Kiros et al.2015] Ryan Kiros, Yukun Zhu, Ruslan
Salakhutdinov, Richard S Zemel, Antonio Torralba,
Raquel Urtasun, and Sanja Fidler. 2015. Skip-thought
vectors. In Advances in Neural Information Processing
Systems (NIPS).

[Klein et al.2015] Benjamin Klein, Guy Lev, Gil Sadeh,
and Lior Wolf. 2015. Fisher vectors derived from
hybrid gaussian-laplacian mixture models for image
annotation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[Krishna et al.2016] Ranjay Krishna, Yuke Zhu, Oliver
Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A
Shamma, Michael Bernstein, and Li Fei-Fei. 2016.
Visual genome: Connecting language and vi-
sion using crowdsourced dense image annotations.
arXiv:1602.07332.

[Kumar et al.2016] Ankit Kumar, Ozan Irsoy, Jonathan Su,
James Bradbury, Robert English, Brian Pierce, Peter
Ondruska, Ishaan Gulrajani, and Richard Socher. 2016.
Ask me anything: Dynamic memory networks for natu-
ral language processing. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML).

[Lin et al.2014] Tsung-Yi Lin, Michael Maire, Serge Be-
longie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft
coco: Common objects in context. In Proceedings of
the European Conference on Computer Vision (ECCV).

[Lin et al.2015] Tsung-Yu Lin, Aruni RoyChowdhury, and
Subhransu Maji. 2015. Bilinear cnn models for fine-
grained visual recognition. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV).

[Lu et al.2016] Jiasen Lu, Jianwei Yang, Dhruv Batra, and
Devi Parikh. 2016. Hierarchical Co-Attention for Vi-
sual Question Answering. In Advances in Neural Infor-
mation Processing Systems (NIPS).

[Malinowski et al.2016] Mateusz Malinowski, Marcus
Rohrbach, and Mario Fritz. 2016. Ask Your Neu-
rons: A Deep Learning Approach to Visual Question
Answering. arXiv: 1605.02697.

[Mao et al.2015] Junhua Mao, Wei Xu, Yi Yang, Jiang
Wang, Zhiheng Huang, and Alan Yuille. 2015. Deep
captioning with multimodal recurrent neural networks
(m-rnn). In Proceedings of the International Confer-
ence on Learning Representations (ICLR).

[Ngiam et al.2011] Jiquan Ngiam, Aditya Khosla, Mingyu
Kim, Juhan Nam, Honglak Lee, and Andrew Y Ng.
2011. Multimodal deep learning. In Proceedings of
the International Conference on Machine Learning
(ICML), pages 689–696.

[Noh et al.2015] Hyeonwoo Noh, Paul Hongsuck Seo, and
Bohyung Han. 2015. Image question answering using
convolutional neural network with dynamic parameter
prediction. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[Pennington et al.2014] Jeffrey Pennington, Richard
Socher, and Christopher D. Manning. 2014. Glove:
Global vectors for word representation. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

[Pham and Pagh2013] Ninh Pham and Rasmus Pagh.
2013. Fast and scalable polynomial kernels via ex-
plicit feature maps. In Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’13, pages 239–247,
New York, NY, USA. ACM.

[Plummer et al.2015] Bryan Plummer, Liwei Wang, Chris
Cervantes, Juan Caicedo, Julia Hockenmaier, and Svet-
lana Lazebnik. 2015. Flickr30k entities: Collecting
region-to-phrase correspondences for richer image-to-
sentence models. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV).

[Plummer et al.2016] Bryan Plummer, Liwei Wang, Chris
Cervantes, Juan Caicedo, Julia Hockenmaier, and Svet-
lana Lazebnik. 2016. Flickr30k entities: Collecting
region-to-phrase correspondences for richer image-to-
sentence models. arXiv:1505.04870v3.

[Rohrbach et al.2016] Anna Rohrbach, Marcus Rohrbach,
Ronghang Hu, Trevor Darrell, and Bernt Schiele. 2016.
Grounding of textual phrases in images by reconstruc-
tion. In Proceedings of the European Conference on
Computer Vision (ECCV).

[Simonyan and Zisserman2014] Karen Simonyan and An-
drew Zisserman. 2014. Very deep convolutional net-
works for large-scale image recognition. In Proceed-
ings of the International Conference on Learning Rep-
resentations (ICLR).

[Socher et al.2014] Richard Socher, Andrej Karpathy,
Quoc V Le, Christopher D Manning, and Andrew Y Ng.
2014. Grounded compositional semantics for finding
and describing images with sentences. Transactions of
the Association for Computational Linguistics, 2:207–
218.

[Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V. V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in Neural Informa-
tion Processing Systems (NIPS).

[Tenenbaum and Freeman2000] Joshua B Tenenbaum and
William T Freeman. 2000. Separating style and content
with bilinear models. Neural computation, 12(6):1247–
1283.

[Thomee et al.2015] Bart Thomee, David A. Shamma,
Gerald Friedland, Benjamin Elizalde, Karl Ni, Dou-
glas Poland, Damian Borth, and Li-Jia Li. 2015. The

467

new data and new challenges in multimedia research.
CoRR, abs/1503.01817.

[Uijlings et al.2013] Jasper RR Uijlings, Koen EA van de
Sande, Theo Gevers, and Arnold WM Smeulders. 2013.
Selective search for object recognition. International
Journal of Computer Vision (IJCV), 104(2).

[Wang et al.2016] Liwei Wang, Yin Li, and Svetlana
Lazebnik. 2016. Learning deep structure-preserving
image-text embeddings. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

[Weston et al.2011] Jason Weston, Samy Bengio, and
Nicolas Usunier. 2011. Wsabie: Scaling up to large
vocabulary image annotation. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence
(IJCAI).

[Wu et al.2016] Qi Wu, Peng Wang, Chunhua Shen, An-
ton van den Hengel, and Anthony Dick. 2016. Ask
Me Anything: Free-form Visual Question Answering
Based on Knowledge from External Sources. In Proc.
IEEE Conf. Computer Vision Pattern Recognition.

[Xiong et al.2016] Caiming Xiong, Stephen Merity, and
Richard Socher. 2016. Dynamic memory networks for
visual and textual question answering. In Proceedings
of the International Conference on Machine Learning
(ICML).

[Xu and Saenko2016] Huijuan Xu and Kate Saenko. 2016.
Ask, attend and answer: Exploring question-guided spa-
tial attention for visual question answering. In Proceed-
ings of the European Conference on Computer Vision
(ECCV).

[Xu et al.2015] Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron
Courville, Ruslan Salakhutdinov, Richard Zemel, and
Yoshua Bengio. 2015. Show, attend and tell: Neural
image caption generation with visual attention. Pro-
ceedings of the International Conference on Machine
Learning (ICML).

[Yang et al.2015] Zichao Yang, Xiaodong He, Jianfeng
Gao, Li Deng, and Alex Smola. 2015. Stacked
attention networks for image question answering.
arXiv:1511.02274.

[Zhou et al.2015] Bolei Zhou, Yuandong Tian, Sainba-
yar Sukhbaatar, Arthur Szlam, and Rob Fergus.
2015. Simple baseline for visual question answering.
arXiv:1512.02167.

[Zhu et al.2016] Yuke Zhu, Oliver Groth, Michael Bern-
stein, and Li Fei-Fei. 2016. Visual7W: Grounded
Question Answering in Images. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[Zitnick and Dollár2014] C Lawrence Zitnick and Piotr
Dollár. 2014. Edge boxes: Locating object propos-
als from edges. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 391–405.
Springer.

468

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 469–478,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

The Structured Weighted Violations Perceptron Algorithm

Rotem Dror and Roi Reichart
Faculty of Industrial Engineering and Management, Technion, IIT
{rtmdrr@campus|roiri@ie}.technion.ac.il

Abstract

We present the Structured Weighted Violations
Perceptron (SWVP) algorithm, a new struc-
tured prediction algorithm that generalizes the
Collins Structured Perceptron (CSP, (Collins,
2002)). Unlike CSP, the update rule of SWVP
explicitly exploits the internal structure of the
predicted labels. We prove the convergence
of SWVP for linearly separable training sets,
provide mistake and generalization bounds,
and show that in the general case these bounds
are tighter than those of the CSP special case.
In synthetic data experiments with data drawn
from an HMM, various variants of SWVP
substantially outperform its CSP special case.
SWVP also provides encouraging initial de-
pendency parsing results.

1 Introduction

The structured perceptron ((Collins, 2002), hence-
forth denoted CSP) is a prominent training algo-
rithm for structured prediction models in NLP, due
to its effective parameter estimation and simple im-
plementation. It has been utilized in numerous NLP
applications including word segmentation and POS
tagging (Zhang and Clark, 2008), dependency pars-
ing (Koo and Collins, 2010; Goldberg and Elhadad,
2010; Martins et al., 2013), semantic parsing (Zettle-
moyer and Collins, 2007) and information extrac-
tion (Hoffmann et al., 2011; Reichart and Barzilay,
2012), if to name just a few.

Like some training algorithms in structured pre-
diction (e.g. structured SVM (Taskar et al., 2004;
Tsochantaridis et al., 2005), MIRA (Crammer and
Singer, 2003) and LaSo (Daumé III and Marcu,

2005)), CSP considers in its update rule the differ-
ence between complete predicted and gold standard
labels (Sec. 2). Unlike others (e.g. factored MIRA
(McDonald et al., 2005b; McDonald et al., 2005a)
and dual-loss based methods (Meshi et al., 2010)) it
does not exploit the structure of the predicted label.
This may result in valuable information being lost.

Consider, for example, the gold and predicted de-
pendency trees of Figure 1. The substantial differ-
ence between the trees may be mostly due to the dif-
ference in roots (are and worse, respectively). Pa-
rameter update w.r.t this mistake may thus be more
useful than an update w.r.t the complete trees.

In this work we present a new perceptron algo-
rithm with an update rule that exploits the struc-
ture of a predicted label when it differs from the
gold label (Section 3). Our algorithm is called The
Structured Weighted Violations Perceptron (SWVP)
as its update rule is based on a weighted sum of up-
dates w.r.t violating assignments and non-violating
assignments: assignments to the input example, de-
rived from the predicted label, that score higher (for
violations) and lower (for non-violations) than the
gold standard label according to the current model.

Our concept of violating assignment is based on
Huang et al. (2012) that presented a variant of the
CSP algorithm where the argmax inference problem
is replaced with a violation finding function. Their
update rule, however, is identical to that of the CSP
algorithm. Importantly, although CSP and the above
variant do not exploit the internal structure of the
predicted label, they are special cases of SWVP.

In Section 4 we prove that for a linearly separable
training set, SWVP converges to a linear separator of

469

the data under certain conditions on the parameters
of the algorithm, that are respected by the CSP spe-
cial case. We further prove mistake and generaliza-
tion bounds for SWVP, and show that in the general
case the SWVP bounds are tighter than the CSP’s.

In Section 5 we show that SWVP allows ag-
gressive updates, that exploit only violating assign-
ments derived from the predicted label, and more
balanced updates, that exploit both violating and
non-violating assignments. In experiments with syn-
thetic data generated by an HMM, we demonstrate
that various SWVP variants substantially outper-
form CSP training. We also provide initial encour-
aging dependency parsing results, indicating the po-
tential of SWVP for real world NLP applications.

2 The Collins Structured Perceptron

In structured prediction the task is to find a mapping
f : X → Y , where y ∈ Y is a structured object
rather than a scalar, and a feature mapping φ(x, y) :
X × Y(x) → Rd is given. In this work we denote
Y(x) = {y′|y′ ∈ DY

Lx}, where Lx, a scalar, is the
size of the allowed output sequence for an input x
andDY is the domain of y′i for every i ∈ {1, . . . Lx}.
1 Our results, however, hold for the general case of
an output space with variable size vectors as well.

The CSP algorithm (Algorithm 1) aims to learn
a parameter (or weight) vector w ∈ Rd, that sepa-
rates the training data, i.e. for each training example
(x, y) it holds that: y = arg maxy′∈Y(x) w ·φ(x, y′).
To find such a vector the algorithm iterates over
the training set examples and solves the above in-
ference (argmax) problem. If the inferred label
y∗ differs from the gold label y the update w =
w + ∆φ(x, y, y∗) is performed. For linearly separa-
ble training data (see definition 4), CSP is proved to
converge to a vector w separating the training data.

Collins and Roark (2004) and Huang et al. (2012)
expanded the CSP algorithm by proposing various
alternatives to the argmax inference problem which
is often intractable in structured prediction problems
(e.g. in high-order graph-based dependency parsing
(McDonald and Pereira, 2006)). The basic idea is re-
placing the argmax problem with the search for a vi-
olation: an output label that the model scores higher

1In the general case Lx is a set of output sizes, which may
be finite or infinite (as in constituency parsing (Collins, 1997)).

Algorithm 1 The Structured Perceptron (CSP)
Input: data D = {xi, yi}ni=1, feature mapping φ
Output: parameter vector w ∈ Rd
Define: ∆φ(x, y, z) , φ(x, y)− φ(x, z)

1: Initialize w = 0.
2: repeat
3: for each (xi, yi) ∈ D do
4: y∗ = arg max

y′∈Y(xi)

w · φ(xi, y′)

5: if y∗ 6= yi then
6: w = w + ∆φ(xi, yi, y∗)
7: end if
8: end for
9: until Convergence

than the gold standard label. The update rule in these
CSP variants is, however, identical to the CSP’s. We,
in contrast, propose a novel update rule that exploits
the internal structure of the model’s prediction re-
gardless of the way this prediction is generated.

3 The Structured Weighted Violations
Perceptron (SWVP)

SWVP exploits the internal structure of a predicted
label y∗ 6= y for a training example (x, y) ∈ D,
by updating the weight vector with respect to sub-
structures of y∗. We start by presenting the funda-
mental concepts at the basis of our algorithm.

3.1 Basic Concepts
Sub-structure Sets We start with two fundamen-
tal definitions: (1) An individual sub-structure of a
structured object (or label) y ∈ DY

Lx , denoted with
J , is defined to be a subset of indexes J ⊆ [Lx];2

and (2) A set of substructures for a training example
(x, y), denoted with JJx, is defined as JJx ⊆ 2[Lx].

Mixed Assignment We next define the concept of
a mixed assignment:
Definition 1. For a training pair (x, y) and a pre-
dicted label y∗ ∈ Y(x), y∗ 6= y, a mixed assign-
ment (MA) vector denoted as mJ(y∗, y) is defined
with respect to J ∈ JJx as follows:

mJ
k (y∗, y) =

{
y∗k k ∈ J
yk else

That is, a mixed assignment is a new label, de-
rived from the predicted label y∗, that is identical to
y∗ in all indexes in J and to y otherwise. For sim-
plicity we denote mJ(y∗, y) = mJ when the refer-
ence y∗ and y labels are clear from the context.

2We use the notation [n] = {1, 2, . . . n}.

470

Consider, for example, the trees of Figure 1, as-
suming that the top tree is y, the middle tree is y∗

and J = [2, 5].3 In the mJ(y∗, y) (bottom) tree the
heads of all the words are identical to those of the top
tree, except for the heads of mistakes and of then.

Violation The next central concept is that of a vi-
olation, originally presented by Huang et al. (2012):

Definition 2. A triple (x, y, y∗) is said to be a vio-
lation with respect to a training example (x, y) and
a parameter vector w if for y∗ ∈ Y(x) it holds that
y∗ 6= y and w ·∆φ(x, y, y∗) ≤ 0.

The SWVP algorithm distinguishes between
MAs that are violations, and ones that are not. For
a triplet (x, y, y∗) and a set of substructures JJx ⊆
2[Lx] we provide the following notations:

I(y∗, y, JJx)v = {J ∈ JJx|mJ 6= y,w·∆φ(x, y,mJ) ≤ 0}

I(y∗, y, JJx)nv = {J ∈ JJx|mJ 6= y,w·∆φ(x, y,mJ) > 0}

This notation divides the set of substructures into
two subsets, one consisting of the substructures
that yield violating MAs and one consisting of the
substructures that yield non-violating MAs. Here
again when the reference label y∗ and the set
JJx are known we denote: I(y∗, y, JJx)v = Iv,
I(y∗, y, JJx)nv = Inv and I = Iv ∪ Inv.

Weighted Violations The key idea of SWVP is
the exploitation of the internal structure of the pre-
dicted label in the update rule. For this aim at each
iteration we define the set of substructures, JJx, and
then, for each J ∈ JJx, update the parameter vector,
w, with respect to the mixed assignments, MAJ ’s.
This is a more flexible setup compared to CSP, as
we can update with respect to the predicted output
(if it is a violation, as is promised if inference is per-
formed via argmax), if we wish to do so, as well as
with respect to other mixed assignments.

Naturally, not all mixed assignments are equally
important for the update rule. Hence, we weigh the
different updates using a weight vector γ. This pa-
per therefore extends the observation of Huang et al.
(2012) that perceptron parameter update can be per-
formed w.r.t violations (Section 2), by showing that
w can actually be updated w.r.t linear combinations
of mixed assignments, under certain conditions on
the selected weights.

3We index the dependency tree words from 1 onwards.

Some mistakes are worse than others.

Some mistakes are worse than others.

Some mistakes are worse than others.

Figure 1: Example parse trees: gold tree (y, top), predicted tree

(y∗, middle) with arcs differing from the gold’s marked with a

dashed line, and mJ(y∗, y) for J = [2, 5] (bottom tree).

3.2 Algorithm

With these definitions we can present the SWVP al-
gorithm (Algorithm 2). SWVP is in fact a family
of algorithms differing with respect to two decisions
that can be made at each pass over each training ex-
ample (x, y): the choice of the set JJx and the im-
plementation of the SETGAMMA function.

SWVP is very similar to CSP except for in the
update rule. Like in CSP, the algorithm iterates over
the training data examples and for each example it
first predicts a label according to the current param-
eter vector w (inference is discussed in Section 4.2,
property 2). The main difference from CSP is in the
update rule (lines 6-12). Here, for each substructure
in the substructure set, J ∈ JJx, the algorithm gen-
erates a mixed assignment mJ (lines 7-9). Then, w
is updated with a weighted sum of the mixed assign-
ments (line 11), unlike in CSP where the update is
held w.r.t the predicted assignment only.

The γ(mJ) weights assigned to each of the
∆φ(x, y,mJ) updates are defined by a SETGAMMA

function (line 10). Intuitively, a γ(mJ) weight
should be higher the more the mixed assignment
is assumed to convey useful information that can
guide the update of w in the right direction. In Sec-
tion 4 we detail the conditions on SETGAMMA un-
der which SWVP converges, and in Section 5 we
describe various SETGAMMA implementations.

Going back to the example of Figure 1, one would
assume (Sec. 1) that the head word prediction for
worse is pivotal to the substantial difference between
the two top trees (UAS of 0.2). CSP does not directly
exploit this observation as it only updates its param-
eter vector with respect to the differences between
complete assignments: w = w + ∆φ(x, y, z).

In contrast, SWVP can exploit this observation in
various ways. For example, it can generate a mixed

471

assignment for each of the erroneous arcs where all
other words are assigned their correct arc (according
to the gold tree) except for that specific arc which
is kept as in the bottom tree. Then, higher weights
can be assigned to errors that seem more central than
others. We elaborate on this in the next two sections.

Algorithm 2 The Structured Weighted Violations Perceptron
Input: data D = {xi, yi}ni=1, feature mapping φ
Output: parameter vector w ∈ Rd
Define: ∆φ(x, y, z) , φ(x, y)− φ(x, z)

1: Initialize w = 0.
2: repeat
3: for each (xi, yi) ∈ D do
4: y∗ = arg max

y′∈Y(xi)

w · φ(xi, y′)

5: if y∗ 6= yi then
6: Define: JJxi ⊆ 2[L

xi]

7: for J ∈ JJxi do

8: Define: mJ s.t. mJk =

{
y∗k k ∈ J
yik else

9: end for
10: γ = SETGAMMA()
11: w = w +

∑
J∈Iv∪Inv

γ(mJ)∆φ(xi, yi,mJ)

12: end if
13: end for
14: until Convergence

4 Theory

We start this section with the convergence conditions
on the γ vector which weighs the mixed assignment
updates in the SWVP update rule (line 11). Then,
using these conditions, we describe the relation be-
tween the SWVP and the CSP algorithms. After
that, we prove the convergence of SWVP and anal-
yse the derived properties of the algorithm.

γ Selection Conditions Our main observation in
this section is that SWVP converges under two con-
ditions: (a) the training set D is linearly separable;
and (b) for any parameter vector w achievable by
the algorithm, there exists (x, y) ∈ D with JJx ⊆
2[Lx], such that for the predicted output y∗ 6= y,
SETGAMMA returns a γ weight vector that respects
the γ selection conditions defined as follows:
Definition 3. The γ selection conditions for the
SWVP algorithm are (I = Iv ∪ Inv):

(1)
∑

J∈I
γ(mJ) = 1. γ(mJ) ≥ 0, ∀J ∈ I.

(2) w ·
∑

J∈I
γ(mJ)∆φ(xi, yi,mJ) ≤ 0.

With this definition we are ready to prove the fol-
lowing property.

SWVP Generalizes the CSP Algorithm We now
show that the CSP algorithm is a special case of
SWVP. CSP can be derived from SWVP when tak-
ing: JJx = {[Lx]}, and γ(m[Lx]) = 1 for every
(x, y) ∈ D. With these parameters, the γ selection
conditions hold for every w and y∗. Condition (1)
holds trivially as there is only one γ coefficient and it
is equal to 1. Condition (2) holds as y∗ = m[Lx] and
hence I = {[Lx]} and w · ∑

J∈I
∆φ(x, y,mJ) ≤ 0.

4.1 Convergence for Linearly Separable Data
Here we give the theorem regarding the convergence
of the SWVP in the separable case. We first define:
Definition 4. A data set D = {xi, yi}ni=1 is linearly
separable with margin δ > 0 if there exists some
vector u with ‖u‖2 = 1 such that for all i:

u ·∆φ(xi, yi, z) ≥ δ,∀z ∈ Y(xi).

Definition 5. The radius of a data set D =
{xi, yi}ni=1 is the minimal scalar R s.t for all i:

‖∆φ(xi, yi, z)‖ ≤ R, ∀z ∈ Y(xi).

We next extend these definitions:

Definition 6. Given a data set D = {xi, yi}ni=1 and
a set JJ = {JJxi ⊆ 2[Lxi]|(xi, yi) ∈ D}, D is
linearly separable w.r.t JJ , with margin δJJ > 0
if there exists a vector u with ‖u‖2 = 1 such
that: u · ∆φ(xi, yi,mJ(z, yi)) ≥ δJJ for all i, z ∈
Y(xi), J ∈ JJxi .
Definition 7. The mixed assignment radius w.r.t JJ
of a data set D = {xi, yi}ni=1 is a constant RJJ s.t
for all i it holds that:

‖∆φ(xi, yi,mJ(z, yi))‖ ≤ RJJ , ∀z ∈ Y(xi), J ∈ JJxi .

With these definitions we can make the following
observation (proof in A):
Observation 1. For linearly separable data D and
a set JJ , every unit vector u that separates the data
with margin δ, also separates the data with respect to
mixed assignments with JJ , with margin δJJ ≥ δ.
Likewise, it holds that RJJ ≤ R.

We can now state our convergence theorem.
While the proof of this theorem resembles that of
the CSP (Collins, 2002), unlike the CSP proof the
SWVP proof relies on the γ selection conditions pre-
sented above and on the Jensen inequality.

472

Theorem 1. For any dataset D, linearly separable
with respect to JJ with margin δJJ > 0, the SWVP
algorithm terminates after t ≤ (RJJ)2

(δJJ)2 steps, where

RJJ is the mixed assignment radius of D w.r.t. JJ .

Proof. Let wt be the weight vector before the tth
update, thus w1 = 0. Suppose the tth update occurs
on example (x, y), i.e. for the predicted output y∗
it holds that y∗ 6= y. We will bound ‖wt+1‖2 from
both sides.
First, it follows from the update rule of the algorithm
that: wt+1 = wt +

∑
J∈Iv∪Inv

γ(mJ)∆φ(x, y,mJ).

For simplicity, in this proof we will use the notation
Iv ∪ Inv = I . Hence, multiplying each side of the
equation by u yields:

u · wt+1 = u · wt + u ·
∑

J∈I
γ(mJ)∆φ(x, y,mJ)

= u · wt +
∑

J∈I
γ(mJ)u ·∆φ(x, y,mJ)

≥ u · wt +
∑

J∈I
γ(mJ)δJJ (margin property)

≥ u · wt + δJJ ≥ . . . ≥ tδJJ .

The last inequality holds because
∑

J∈I γ(mJ) =

1. From this we get that ‖wt+1‖2 ≥ (δJJ)2t2 since
‖u‖=1. Second,

‖wt+1‖2 = ‖wt +
∑

J∈I
γ(mJ)∆φ(x, y,mJ)‖2

= ‖wt‖2 + ‖
∑

J∈I
γ(mJ)∆Φ(x, y,mJ)‖2

+ 2wt ·
∑

J∈I
γ(mJ)∆Φ(x, y,mJ).

From γ selection condition (2) we get that:

‖wt+1‖2 ≤ ‖wt‖2 + ‖
∑

J∈I
γ(mJ)∆Φ(x, y,mJ)‖2

≤ ‖wt‖2 +
∑

J∈I
γ(mJ)‖∆Φ(x, y,mJ)‖2

≤ ‖wt‖2 + (RJJ)2. (radius property)

The inequality one before the last results from the
Jensen inequality which holds due to (a) γ selection
condition (1); and (b) the squared norm function be-
ing convex. From this we finally get:

‖wt+1‖2 ≤ ‖wt‖2 + (RJJ)2 ≤ . . . ≤ t(RJJ)2.

Combining the two steps we get:
(δJJ)2t2 ≤ ‖wt+1‖2 ≤ t(RJJ)2.

From this it is easy to derive the upper bound in the
theorem: t ≤ (RJJ)2

(δJJ)2
.

4.2 Convergence Properties

We next point on three properties of the SWVP al-
gorithm, derived from its convergence proof:

Property 1 (tighter iterations bound) The con-
vergence proof of CSP (Collins, 2002) is given for
a vector u that linearly separates the data, with mar-
gin δ and for a data radius R. Following observation
1, it holds that in our case, u also linearly separates
the data with respect to mixed assignments with a
set JJ and with margin δJJ ≥ δ. Together with the
definition of RJJ ≤ R we get that: (RJJ)2

(δJJ)2 ≤ R2

δ2 .
This means that the bound on the number of updates
made by SWVP is tighter than the bound of CSP.

Property 2 (inference) From the γ selection con-
ditions it holds that any label from which at least one
violating MA can be derived through JJx is suitable
for an update. This is because in such a case we can
choose, for example, a SETGAMMA function that
assigns the weight of 1 to that MA, and the weight
of 0 to all other MAs.

Algorithm 2 employs the argmax inference func-
tion, following the basic reasoning that it is a good
choice to base the parameter update on. Importantly,
if the inference function is argmax and the algorithm
performs an update (y∗ 6= y), this means that y∗, the
output of the argmax function, is a violating MA by
definition. However, it is obvious that solving the in-
ference problem and the optimal γ assignment prob-
lems jointly may result in more informed parameter
(w) updates. We leave a deeper investigation of this
issue to future research.

Property 3 (dynamic updates) The γ selec-
tion conditions paragraph states two conditions ((a)
and (b)) under which the convergence proof holds.
While it is trivial for SETGAMMA to generate a γ
vector that respects condition (a), if there is a pa-
rameter vector w’ achievable by the algorithm for
which SETGAMMA cannot generate γ that respects
condition (b), SWVP gets stuck when reaching w’.

This problem can be solved with dynamic up-
dates. A deep look into the convergence proof re-
veals that the set JJx and the SETGAMMA func-
tion can actually differ between iterations. While
this will change the bound on the number of it-
erations, it will not change the fact that the algo-
rithm converges if the data is linearly separable.
This makes SWVP highly flexible as it can always

473

back off to the CSP setup of JJx = {[Lx]}, and
∀(x, y) ∈ D : γ(m[Lx]) = 1, update its parameters
and continue with its original JJ and SETGAMMA

when this option becomes feasible. If this does not
happen, the algorithm can continue till convergence
with the CSP setup.

4.3 Mistake and Generalization Bounds

The following bounds are proved: the number of
updates in the separable case (see Theorem 1); the
number of mistakes in the non-separable case (see
Appendix B); and the probability to misclassify an
unseen example (see supplementary material). It can
be shown that in the general case these bounds are
tighter than those of the CSP special case. We next
discuss variants of SWVP.

5 Passive Aggressive SWVP

Here we present types of update rules that can be
implemented within SWVP. Such rule types are de-
fined by: (a) the selection of γ, which should respect
the γ selection conditions (see Definition 3) and (b)
the selection of JJ = {JJx ⊆ 2[Lx]|(x, y) ∈ D},
the substructure sets for the training examples.

γ Selection A first approach we consider is the ag-
gressive approach4 where only mixed assignments
that are violations {mJ : J ∈ Iv} are exploited
(i.e. for all J ∈ Inv, γ(mJ) = 0). Note, that in
this case condition (2) of the γ selection conditions
trivially holds as: w · ∑

J∈Iv
γ(mJ)∆φ(x, y,mJ) ≤ 0.

The only remaining requirement is that condition (1)
also holds, i.e. that

∑
J∈Iv γ(mJ) = 1.

The opposite, passive approach, exploits only
non-violating MA’s {mJ : J ∈ Inv}. How-
ever, such γ assignments do not respect γ
selection condition (2), as they yield: w ·∑

J∈Inv γ(mJ)∆φ(x, y,mJ) ≤ 0 which holds if
and only if for every J ∈ Inv, γ(mJ) = 0 that in
turn contradicts condition (1).

Finally, we can take a balanced approach which
gives a positive γ coefficient for at least one violat-
ing MA and at least one positive γ coefficient for
a non-violating MA. This approach is allowed by
SWVP as long as both γ selection conditions hold.

4We borrow the term passive-aggressive from (Crammer et
al., 2006), despite the substantial difference between the works.

We implemented two weighting methods, both
based on the concept of margin:
(1) Weighted Margin (WM): γ(mJ) =
|w·∆φ(x,y,mJ)|β∑

J′∈JJx
|w·∆φ(x,y,mJ′)|β

(2) Weighted Margin Rank (WMR):

γ(mJ) =
(
|JJx|−r
|JJx|

)β
. where r is the

rank of |w · ∆φ(x, y,mJ(y∗, y))| among the
|w ·∆φ(x, y,mJ ′(y∗, y))| values for J ′ ∈ JJx.

Both schemes were implemented twice, within a
balanced approach (denoted as B) and an aggressive
approach (denoted as A).5 The aggressive schemes
respect both γ selection conditions. The balanced
schemes, however, respect the first condition but not
necessarily the second. Since all models that employ
the balanced weighting schemes converged after at
most 10 iterations, we did not impose this condition
(which we could do by, e.g., excluding terms for J ∈
Inv till condition (2) holds).

JJ Selection Another choice that strongly affects
the updates made by SWVP is that of JJ . A choice
of JJx = 2[Lx], for every (x, y) ∈ D results in an
update rule which considers all possible mixing as-
signments derived from the predicted label y∗ and
the gold label y. Such an update rule, however, re-
quires computing a sum over an exponential number
of terms (2Lx) and is therefore highly inefficient.

Among the wide range of alternative approaches,
in this paper we exploit single difference mixed as-
signments. In this approach we define: JJ =
{JJx = {{1}, {2}, . . . {Lx}}|(x, y) ∈ D}. For a
training pair (x, y) ∈ D, a predicted label y∗ and
J = {j} ∈ JJx, we will have:

mJ
k (y∗, y) =

{
yk k 6= j

y∗k k = j

Under this approach for the pair (x, y) ∈ D only
Lx terms are summed in the SWVP update rule.
We leave a further investigation of JJ selection ap-
proaches to future research.

6 Experiments

Synthetic Data We experiment with syn-
thetic data generated by a linear-chain, first-

5For the aggressive approach the equations for schemes
(1) and (2) are changed such that JJx is replaced with
I(y∗, y, JJx)v .

474

order Hidden Markov Model (HMM, (Ra-
biner and Juang, 1986)). Our learning al-
gorithm is a liner-chain conditional random
field (CRF, (Lafferty et al., 2001)): P (y|x) =

1
Z(x)

∏
i=1:Lx

exp(w · φ(yi−1, yi, x)) (where Z(x)
is a normalization factor) with binary indicator fea-
tures {xi, yi, yi−1, (xi, yi), (yi, yi−1), (xi, yi, yi−1)}
for the triplet (yi, yi−1, x).

A dataset is generated by iteratively sampling K
items, each is sampled as follows. We first sam-
ple a hidden state, y1, from a uniform prior distri-
bution. Then, iteratively, for i = 1, 2, . . . , Lx we
sample an observed state from the emission prob-
ability and (for i < Lx) a hidden state from the
transition probability. We experimented in 3 setups.
In each setup we generated 10 datasets that were
subsequently divided to a 7000 items training set,
a 2000 items development set and a 1000 items test
set. In all datasets, for each item, we set Lx = 8.
We experiment in three conditions: (1) simple(++),
learnable(+++), (2) simple(++), learnable(++) and
(3) simple(+), learnable(+).6

For each dataset (3 setups, 10 datasets per setup)
we train variants of the SWVP algorithm differing in
the γ selection strategy (WM or WMR, Section 5),
being aggressive (A) or passive (B), and in their β
parameter (β = {0.5, 1, . . . , 5}). Training is done
on the training subset and the best performing vari-
ant on the development subset is applied to the test
subset. For CSP no development set is employed
as there is no hyper-parameter to tune. We report
averaged accuracy (fraction of observed states for
which the model successfully predicts the hidden
state value) across the test sets, together with the
standard deviation.

Dependency Parsing We also report initial de-
pendency parsing results. We implemented our algo-
rithms within the TurboParser (Martins et al., 2013).

6Denoting Dx = [Cx], Dy = [Cy], and a permuta-
tion of a vector v with perm(v), the parameters of the dif-
ferent setups are: (1) simple(++), learnable(+++): Cx =
5, Cy = 3, P (y′|y) = perm(0.7, 0.2, 0.1), P (x|y) =
perm(0.75, 0.1, 0.05, 0.05, 0.05). (2) simple(++), learn-
able(++): Cx = 5, Cy = 3, P (y′|y) = perm(0.5, 0.3, 0.2),
P (x|y) = perm(0.6, 0.15, 0.1, 0.1, 0.05). (3) sim-
ple(+), learnable(+): Cx = 20 , Cy = 7 ,
P (y′|y) = perm(0.7, 0.2, 0.1, 0, . . . , 0)), P (x|y) =
perm(0.4, 0.2, 0.1, 0.1, 0.1, 0, . . . , 0).

That is, every other aspect of the parser: feature
set, probabilistic pruning algorithm, inference algo-
rithm etc., is kept fixed but training is performed
with SWVP. We compare our results to the parser
performance with CSP training (which comes with
the standard implementation of the parser).

We experiment with the datasets of the CoNLL
2007 shared task on multilingual dependency pars-
ing (Nilsson et al., 2007), for a total of 9 languages.
We followed the standard train/test split of these
dataset. For SWVP, we randomly sampled 1000 sen-
tences from each training set to serve as develop-
ment sets and tuned the parameters as in the syn-
thetic data experiments. CSP is trained on the train-
ing set and applied to the test set without any devel-
opment set involved. We report the Unlabeled At-
tachment Score (UAS) for each language and model.

7 Results

Synthetic Data Table 1 presents our results. In all
three setups an SWVP algorithm is superior. Av-
eraged accuracy differences between the best per-
forming algorithms and CSP are: 3.72 (B-WMR,
(simple(++), learnable(+++))), 5.29 (B-WM, (sim-
ple(++), learnable(++))) and 5.18 (A-WM, (sim-
ple(+), learnable(+))). In all setups SWVP outper-
forms CSP in terms of averaged performance (ex-
cept from B-WMR for (simple(+), learnable(+))).
Moreover, the weighted models are more stable than
CSP, as indicated by the lower standard deviation
of their accuracy scores. Finally, for the more sim-
ple and learnable datasets the SWVP models outper-
form CSP in the majority of cases (7-10/10).

We measure generalization from development to
test data in two ways. First, for each SWVP algo-
rithm we count the number of times its β parame-
ter results in an algorithm that outperforms the CSP
on the development set but not on the test set (not
shown in the table). Of the 120 comparisons re-
ported in the table (4 SWVP models, 3 setups, 10
comparisons per model/setup combination) this hap-
pened once (A-MV, (simple(++), learnable(+++)).

Second, we count the number of times the best de-
velopment set value of the β hyper-parameter is also
the best value on the test set, or the test set accu-
racy with the best development set β is at most 0.5%
lower than that with the best test set β. The Gener-

475

simple(++), learnable(+++) simple(++), learnable(++) simple(+), learnable(+)
Model Acc. (std) # Wins Gener. Acc. (std) # Wins Gener. Acc. (std) # Wins Gener.
B-WM 75.47(3.05) 9/10 10/10 63.18 (1.32) 9/10 10/10 28.48 (1.9) 5/10 10/10

B-WMR 75.96 (2.42) 8/10 10/10 63.02 (2.49) 9/10 10/10 24.31 (5.2) 4/10 10/10

A-WM 74.18 (2.16) 7/10 10/10 61.65 (2.30) 9/10 10/10 30.45 (1.0) 6/10 10/10
A-WMR 75.17 (3.07) 7/10 10/10 61.02 (1.93) 8/10 10/10 25.8 (3.18) 2/10 10/10

CSP 72.24 (3.45) NA NA 57.89 (2.85) NA NA 25.27(8.55) NA NA

Table 1: Overall Synthetic Data Results. A- and B- denote an aggressive and a balanced approaches, respectively. Acc. (std) is

the average and the standard deviation of the accuracy across 10 test sets. # Wins is the number of test sets on which the SWVP

algorithm outperforms CSP. Gener. is the number of times the best β hyper-parameter value on the development set is also the best

value on the test set, or the test set accuracy with the best development set β is at most 0.5% lower than that with the best test set β.

First Order Second Order
Language CSP B-WM Top B-WM Test B-WM CSP B-WM Top B-WM Test B-WM
English 86.34 86.4 86.7 86.7 88.02 87.82 87.82 87.92
Chinese 84.60 84.5 85.04 85.05 86.82 86.69 86.83 87.02
Arabic 79.09 79.17 79.21 79.21 76.07 75.94 76.09 76.09
Greek 80.41 80.20 80.28 80.28 80.31 80.40 80.40 80.61
Italian 84.63 84.64 84.74 84.70 84.03 84.08 84.15 84.28

Turkish 83.05 82.89 82.89 82.89 83.02 83.04 83.04 83.31
Basque 79.47 79.54 79.54 79.54 80.52 80.57 80.63 80.64
Catalan 88.51 88.46 88.50 88.5 88.71 88.81 88.81 88.82

Hungarian 80.17 80.07 80.07 80.21 80.61 80.45 80.45 80.55

Average 83.69 83.65 83.77 83.79 83.12 83.08 83.13 83.35

Table 2: First and second order dependency parsing UAS results for CSP trained models, as well as for models trained with SWVP

with a balanced γ selection (B) and with a weighted margin (WM) strategy. For explanation of the B-WM, Top B-WM, and Test

B-WM see text. For each language and parsing order we highlight the best result in bold font, but this do not include results from

Test B-WM as it is provided only as an upper bound on the performance of SWVP.

alization column of the table shows that this has not
happened in all of the 120 runs of SWVP.

Dependency Parsing Results are given in Table
2. For the SWVP trained models we report three
numbers: (a) B-WM is the standard setup where the
β hyper parameter is tuned on the development data;
(b) For Top B-WM we first selected the models with
a UAS score within 0.1% of the best development
data result, and of these we report the UAS of the
model that performs best on the test set; and (c) Test
B-WM reports results when β is tuned on the test set.
This measure provides an upper bound on SWVP
with our simplistic JJ (Section 5).

Our results indicate the potential of SWVP. De-
spite our simple JJ set, Top B-WM and Test B-WM
improve over CSP in 5/9 and 6/9 cases in first order
parsing, respectively, and in 7/9 cases in second or-
der parsing. In the latter case, Test B-WM improves
the UAS over CSP in 0.22% on average across lan-
guages. Unfortunately, SWVP still does not gener-
alize well from train to test data as indicated, e.g., by
the modest improvements B-WM achieves over CSP
in only 5 of 9 languages in second order parsing.

8 Conclusions

We presented the Structured Weighted Violations
Perceptron (SWVP) algorithm, a generalization of
the Structured Perceptron (CSP) algorithm that ex-
plicitly exploits the internal structure of the pre-
dicted label in its update rule. We proved the conver-
gence of the algorithm for linearly separable training
sets under certain conditions on its parameters, and
provided generalization and mistake bounds.

In experiments we explored only very simple con-
figurations of the SWVP parameters - γ and JJ .
Nevertheless, several of our SWVP variants out-
performed the CSP special case in synthetic data
experiments. In dependency parsing experiments,
SWVP demonstrated some improvements over CSP,
but these do not generalize well. While we find these
results somewhat encouraging, they emphasize the
need to explore the much more flexible γ and JJ
selection strategies allowed by SWVP (Sec. 4.2). In
future work we will hence develop γ and JJ selec-
tion algorithms, where selection is ideally performed
jointly with inference (property 2, Sec. 4.2), to make
SWVP practically useful in NLP applications.

476

A Proof Observation 1.

Proof. For every training example (x, y) ∈ D, it
holds that: ∪z∈Y(x)m

J(z, y) ⊆ Y(x). As u sepa-
rates the data with margin δ, it holds that:

u ·∆φ(x, y,mJ(z, y)) ≥ δJJx , ∀z ∈ Y(x), J ∈ JJx.
u ·∆φ(x, y, z) ≥ δ, ∀z ∈ Y(x).

Therefore also δJJx ≥ δ. As the last inequal-
ity holds for every (x, y) ∈ D we get that δJJ =
min(x,y)∈D δJJx ≥ δ.
From the same considerations it holds that RJJ ≤
R. This is because RJJ is the radius of a sub-
set of the dataset with radius R (proper subset if
∃(x, y) ∈ D, [Lx] /∈ JJx, non-proper subset oth-
erwise).

B Mistake Bound - Non Separable Case

Here we provide a mistake bound for the algorithm
in the non-separable case. We start with the follow-
ing definition and observation:

Definition 8. Given an example (xi, yi) ∈ D, for a
u, δ pair define:

ri = u · φ(xi, yi)− max
z∈Y(xi)

u · φ(xi, z)

εi = max{0, δ − ri}
ri
JJ

= u · φ(xi, yi)−
max

z∈Y(xi),J∈JJxi
u · φ(xi,mJ(z, yi))

Finally define: Du,δ =

√
n∑
i=1

ε2i

Observation 2. For all i: ri ≤ riJJ .
Observation 2 easily follows from Definition 8.
Following this observation we denote: rdiff =

mini{riJJ − ri} ≥ 0 and present the next theorem:

Theorem 2. For any training sequence D, for the
first pass over the training set of the CSP and the
SWVP algorithms respectively, it holds that:

#mistakes− CSP ≤ min
u:‖u‖=1,δ>0

(R+Du,δ)
2

δ2
.

#mistakes− SWV P ≤ min
u:‖u‖=1,δ>0

(RJJ +Du,δ)
2

(δ + rdiff)2
.

As RJJ ≤ R (Observation 1) and rdiff ≥ 0,
we get a tighter bound for SWVP. The proof for
#mistakes-CSP is given at (Collins, 2002). The
proof for #mistakes-SWVP is given below.

Proof. We transform the representation φ(x, y) ∈
Rd into a new representation ψ(x, y) ∈ Rd+n as fol-
lows: for i = 1, ..., d : ψi(x, y) = φi(x, y), for
j = 1, ..., n : ψd+j(x, y) = ∆ if (x, y) = (xj , yj)
and 0 otherwise, where ∆ > 0 is a parameter.
Given a u, δ pair define v ∈ Rd+n as follows: for
i = 1, ..., d : vi = ui, for j = 1, ..., n : vd+j =

εj
∆ .

Under these definitions we have:

v · ψ(xi, yi)− v · ψ(xi, z) ≥ δ, ∀i, z ∈ Y(xi).

For every i, z ∈ Y(xi), J ∈ JJxi :

v · ψ(xi, yi)− v · ψ(xi,mJ(z, yi)) ≥ δ + rdiff .

‖ψ(xi, yi)− ψ(xi,mJ(z, yi))‖2 ≤ (RJJ)2 + ∆2.

Last, we have,

‖v‖2 = ‖u‖2 +
n∑

i=1

ε2i
∆2

= 1 +
D2

u,δ

∆2
.

We get that the vector v
‖v‖ linearly separates the

data with respect to single decision assignments with
margin δ√

1+
D2
U,δ

∆2

. Likewise, v
‖v‖ linearly separates

the data with respect to mixed assignments with JJ ,
with margin δ+rdiff√

1+
Du,δ
∆2

. Notice that the first pass

of SWVP with representation Ψ is identical to the
first pass with representation Φ because the param-
eter weight for the additional features affects only a
single example of the training data and do not affect
the classification of test examples. By theorem 1 this
means that the first pass of SWVP with representa-

tion Ψ makes at most ((RJJ)2+∆2)
(δ+rdiff)2 ·

(
1 +

D2
u,δ

∆2

)
.

We minimize this w.r.t ∆, which gives: ∆ =√
RJJDu,δ, and obtain the result guaranteed in the

theorem.

Acknowledgments

The second author was partly supported by a re-
search grant from the GIF Young Scientists’ Pro-
gram (No. I-2388-407.6/2015): Syntactic Parsing
in Context.

477

References
Michael Collins and Brian Roark. 2004. Incremental

parsing with the perceptron algorithm. In Proc. of
ACL.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In Proc. of ACL, pages
16–23.

Michael Collins. 2002. Discriminative training methods
for hidden markov models: Theory and experiments
with perceptron algorithms. In Proc. of EMNLP, pages
1–8.

Koby Crammer and Yoram Singer. 2003. Ultraconser-
vative online algorithms for multiclass problems. The
Journal of Machine Learning Research, 3:951–991.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-
Shwartz, and Yoram Singer. 2006. Online passive-
aggressive algorithms. The Journal of Machine Learn-
ing Research, 7:551–585.

Hal Daumé III and Daniel Marcu. 2005. Learning as
search optimization: Approximate large margin meth-
ods for structured prediction. In Proc. of ICML, pages
169–176.

Yoav Freund and Robert E Schapire. 1999. Large margin
classification using the perceptron algorithm. Machine
learning, 37(3):277–296.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Proc. of NAACL-HLT 2010, pages
742–750.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S Weld. 2011. Knowledge-
based weak supervision for information extraction of
overlapping relations. In Proc. of ACL.

Liang Huang, Suphan Fayong, and Yang Guo. 2012.
Structured perceptron with inexact search. In Proc.
of NAACL-HLT, pages 142–151.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proc. of ACL, pages 1–
11.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In Proc. of ICML.

André FT Martins, Miguel Almeida, and Noah A Smith.
2013. Turning on the turbo: Fast third-order non-
projective turbo parsers. In Prc. of ACL short papers,
pages 617–622.

Ryan T McDonald and Fernando CN Pereira. 2006. On-
line learning of approximate dependency parsing algo-
rithms. In Proc. of EACL.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005a. Online large-margin training of dependency
parsers. In Proc. of ACL, pages 91–98.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005b. Non-projective dependency parsing
using spanning tree algorithms. In Proc. of EMNLP-
HLT, pages 523–530.

Ofer Meshi, David Sontag, Tommi Jaakkola, and Amir
Globerson. 2010. Learning efficiently with approxi-
mate inference via dual losses. In Proc. of ICML.

Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007.
The conll 2007 shared task on dependency parsing.
In Proceedings of the CoNLL shared task session of
EMNLP-CoNLL, pages 915–932. sn.

Lawrence Rabiner and Biing-Hwang Juang. 1986. An
introduction to hidden markov models. ASSP Maga-
zine, IEEE, 3(1):4–16.

Roi Reichart and Regina Barzilay. 2012. Multi event
extraction guided by global constraints. In Proc. of
NAACL-HLT 2012, pages 70–79.

Ben Taskar, Carlos Guestrin, and Daphne Koller. 2004.
Max-margin markov networks. In Proc. of NIPS.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hof-
mann, and Yasemin Altun. 2005. Large margin
methods for structured and interdependent output vari-
ables. In Journal of Machine Learning Research,
pages 1453–1484.

Luke S Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed ccg grammars for parsing to logical
form. In Proc. of EMNLP-CoNLL, pages 678–687.

Yue Zhang and Stephen Clark. 2008. Joint word seg-
mentation and pos tagging using a single perceptron.
In proc. of ACL, pages 888–896.

478

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 479–489,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

How Transferable are Neural Networks in NLP Applications?

Lili Mou,1 Zhao Meng,1 Rui Yan,2 Ge Li,1,† Yan Xu,1,∗ Lu Zhang,1 Zhi Jin1,†
1Key Laboratory of High Confidence Software Technologies (Peking University), MoE, China

Institute of Software, Peking University, China †Corresponding authors
2Insitute of Computer Science and Technology of Peking University, China

{doublepower.mou,rui.yan.peking}@gmail.com,zhaomeng.pku@outlook.com
{lige,xuyan14,zhanglu,zhijin}@sei.pku.edu.cn

Abstract

Transfer learning is aimed to make use of
valuable knowledge in a source domain to
help model performance in a target domain.
It is particularly important to neural networks,
which are very likely to be overfitting. In
some fields like image processing, many stud-
ies have shown the effectiveness of neural
network-based transfer learning. For neural
NLP, however, existing studies have only ca-
sually applied transfer learning, and conclu-
sions are inconsistent. In this paper, we con-
duct systematic case studies and provide an
illuminating picture on the transferability of
neural networks in NLP.1

1 Introduction

Transfer learning, or sometimes known as domain
adaptation,2 plays an important role in various nat-
ural language processing (NLP) applications, espe-
cially when we do not have large enough datasets
for the task of interest (called the target task T). In
such scenarios, we would like to transfer or adapt
knowledge from other domains (called the source
domains/tasks S) so as to mitigate the problem of
overfitting and to improve model performance in
T . For traditional feature-rich or kernel-based mod-
els, researchers have developed a variety of ele-
gant methods for domain adaptation; examples in-
clude EasyAdapt (Daumé III, 2007; Daumé III et

∗Yan Xu is currently a research scientist at Inveno Co., Ltd.
1Code released on https://sites.google.com/site/transfernlp/
2In this paper, we do not distinguish the conceptual differ-

ence between transfer learning and domain adaptation. Do-
main—in the sense we use throughout this paper—is defined by
datasets.

al., 2010), instance weighting (Jiang and Zhai, 2007;
Foster et al., 2010), and structural correspondence
learning (Blitzer et al., 2006; Prettenhofer and Stein,
2010).

Recently, deep neural networks are emerging as
the prevailing technical solution to almost every
field in NLP. Although capable of learning highly
nonlinear features, deep neural networks are very
prone to overfitting, compared with traditional meth-
ods. Transfer learning therefore becomes even more
important. Fortunately, neural networks can be
trained in a transferable way by their incremental
learning nature: we can directly use trained (tuned)
parameters from a source task to initialize the net-
work in the target task; alternatively, we may also
train two tasks simultaneously with some parame-
ters shared. But their performance should be verified
by empirical experiments.

Existing studies have already shown some evi-
dence of the transferability of neural features. For
example, in image processing, low-level neural lay-
ers closely resemble Gabor filters or color blobs
(Zeiler and Fergus, 2014; Krizhevsky et al., 2012);
they can be transferred well to different tasks. Don-
ahue et al. (2014) suggest that high-level layers
are also transferable in general visual recognition;
Yosinski et al. (2014) further investigate the trans-
ferability of neural layers in different levels of ab-
straction.

Although transfer learning is promising in image
processing, conclusions appear to be less clear in
NLP applications. Image pixels are low-level sig-
nals, which are generally continuous and less related
to semantics. By contrast, natural language tokens

479

are discrete: each word well reflects the thought
of humans, but neighboring words do not share as
much information as pixels in images do. Previ-
ous neural NLP studies have casually applied trans-
fer techniques, but their results are not consistent.
Collobert and Weston (2008) apply multi-task learn-
ing to SRL, NER, POS, and CHK,3 but obtain only
0.04–0.21% error reduction4 (out of a base error rate
of 16–18%). Bowman et al. (2015), on the contrary,
improve a natural language inference task from an
accuracy of 71.3% to 80.8% by initializing parame-
ters with an additional dataset of 550,000 samples.
Therefore, more systematic studies are needed to
shed light on transferring neural networks in the field
of NLP.

Our Contributions

In this paper, we investigate the question “How
transferable are neural networks in NLP applica-
tions?”

We distinguish two scenarios of transfer: (1)
transferring knowledge to a semantically simi-
lar/equivalent task but with a different dataset; (2)
transferring knowledge to a task that is semanti-
cally different but shares the same neural topol-
ogy/architecture so that neural parameters can in-
deed be transferred. We further distinguish two
transfer methods: (1) using the parameters trained
on S to initialize T (INIT), and (2) multi-task learn-
ing (MULT), i.e., training S and T simultaneously.
(Please see Sections 2 and 4). Our study mainly fo-
cuses on the following research questions:

RQ1: How transferable are neural networks be-
tween two tasks with similar or different se-
mantics in NLP applications?

RQ2: How transferable are different layers of NLP
neural models?

RQ3: How transferable are INIT and MULT, re-
spectively? What is the effect of combining
these two methods?

3The acronyms refer to semantic role labeling, named entity
recognition, part-of-speech tagging, and chunking, respectively.

4Here, we quote the accuracies obtained by using unsuper-
vised pretraining of word embeddings. This is the highest per-
formance in that paper; using pretrained word embeddings is
also a common practice in the literature.

We conducted extensive experiments over six
datasets on classifying sentences and sentence pairs.
We leveraged the widely-used convolutional neu-
ral network (CNN) and long short term memory
(LSTM)-based recurrent neural network (RNN) as
our models.

Based on our experimental results, we have the
following main observations, some of which are un-
expected.

• Whether a neural network is transferable in
NLP depends largely on how semantically
similar the tasks are, which is different from
the consensus in image processing.
• The output layer is mainly specific to the

dataset and not transferable. Word embed-
dings are likely to be transferable to seman-
tically different tasks.
• MULT and INIT appear to be generally com-

parable to each other; combining these two
methods does not result in further gain in our
study.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the datasets that neural models are
transferred across; Section 3 details the neural archi-
tectures and experimental settings. We describe two
approaches (INIT and MULT) to transfer learning in
Section 4. We present experimental results in Sec-
tions 5–6 and have concluding remarks in Section 7.

2 Datasets

In our study, we conducted two series of experi-
ments using six open datasets as follows.

• Experiment I: Sentence classification

− IMDB. A large dataset for binary sentiment
classification (positive vs. negative).5

− MR. A small dataset for binary sentiment clas-
sification.6

− QC. A (small) dataset for 6-way question
classification (e.g., location, time, and
number).7

5https://drive.google.com/file/d/
0B8yp1gOBCztyN0JaMDVoeXhHWm8/

6https://www.cs.cornell.edu/people/pabo/
movie-review-data/

7http://cogcomp.cs.illinois.edu/Data/QA/QC/

480

Statistics (# of Samples)
Experiment I Experiment II

IMDB MR QC SNLI SICK MSRP

#Train 550,000 8,500 4,800 550,152 4,439 3,575
#Val 50,000 1,100 600 10,000 495 501
#Test 2,000 1,100 500 10,000 4,906 1,725

Examples in Experiment I
Sentiment Analysis (IMDB and MR)

An idealistic love story that brings out
+

the latent 15-year-old romantic in everyone.
Its mysteries are transparently obvious, −
and its too slowly paced to be a thriller.

Question Classification (QC)
What is the temperature at the center of the earth? number
What state did the Battle of Bighorn take place in? location

Examples in Experiment II
Natural Language Inference (SNLI and SICK)

Premise Two men on bicycles competing in a race.
People are riding bikes. E

Hypothesis Men are riding bicycles on the streets. C
A few people are catching fish. N

Paraphrase Detection (MSRP)
The DVD-CCA then appealed to the state

Paraphrase
Supreme Court.
The DVD CCA appealed that decision
to the U.S. Supreme Court.
Earnings per share from recurring operations
will be 13 cents to 14 cents. Non-
That beat the company’s April earnings Paraphrase
forecast of 8 to 9 cents a share.

Table 1: Statistics and examples of the datasets.

• Experiment II: Sentence-pair classification

− SNLI. A large dataset for sentence entail-
ment recognition. The classification objec-
tives are entailment, contradiction,
and neutral.8

− SICK. A small dataset with exactly the same
classification objective as SNLI.9

− MSRP. A (small) dataset for paraphrase de-
tection. The objective is binary classification:
judging whether two sentences have the same
meaning.10

In each experiment, the large dataset serves as the
source domain and small ones are the target do-
mains. Table 1 presents statistics of the above
datasets.

We distinguish two scenarios of transfer regard-
ing semantic similarity: (1) semantically equivalent
transfer (IMDB→MR, SNLI→SICK), that is, the
tasks of S and T are defined by the same meaning,

8http://nlp.stanford.edu/projects/snli/
9http://http://alt.qcri.org/semeval2014/task1/

10http://research.microsoft.com/en-us/downloads/

and (2) semantically different transfer (IMDB→QC,
SNLI→MSRP). Examples are also illustrated in Ta-
ble 1 to demonstrate semantic relatedness.

It should be noticed that in image or speech pro-
cessing (Yosinski et al., 2014; Wang and Zheng,
2015), the input of neural networks pretty much con-
sists of raw signals; hence, low-level feature detec-
tors are almost always transferable, even if Yosinski
et al. (2014) manually distinguish artificial objects
and natural ones in an image classification task.

Distinguishing semantic relatedness—which
emerges from very low layers of either word em-
beddings or the successive hidden layer—is specific
to NLP and also a new insight of our paper. As
we shall see in Sections 5 and 6, the transferability
of neural networks in NLP is more sensitive to
semantics than in image processing.

3 Neural Models and Settings

In each group, we used a single neural model to
solve three problems in a unified manner. That is
to say, the neural architecture is the same among the
three datasets, which makes it possible to investi-
gate transfer learning regardless of whether the tasks
are semantically equivalent. Concretely, the neural
models are as follows.

• Experiment I: LSTM-RNN. To classify a
sentence according to its sentiment or ques-
tion type, we use a recurrent neural network
(RNN, Figure 1a) with long short term mem-
ory (LSTM) units (Hochreiter and Schmidhu-
ber, 1997). A softmax layer is added to the last
word’s hidden state for classification.

• Experiment II: CNN-pair. In this group, we
use a “Siamese” architecture (Bromley et al.,
1993) to classify the relation of two sentences.
We first apply a convolutional neural network
(CNN, Figure 1b) with a window size of 5 to
model local context, and a max pooling layer
gathers information to a fixed-size vector. Then
the sentence vectors are concatenated and fed
to a hidden layer before the softmax output.

In our experiments, embeddings were pretrained
by word2vec (Mikolov et al., 2013); all embed-
dings and hidden layers were 100 dimensional. We

481

two

men

on
. . .

people

are
. . .

Convolution Max
pooling

softmax

an idealistic
Embedding

Output(a)

(b)

Hidden LSTM LSTMLSTM LSTM

Embedding Hidden layers Output

softm
ax

. . .

0

0

Figure 1: The models in our study. (a) Experiment I: RNNs

with LSTM units for sentence classification. (b) Experiment II:

CNN for sentence pair modeling.

applied stochastic gradient descent with a mini-
batch size of 50 for optimization. In each setting, we
tuned the hyperparameters as follows: learning rate
from {3, 1, 0.3, 0.1, 0.03}, power decay of learning
rate from {fast, moderate, low} (defined by how
much, after one epoch, the learning rate residual is:
0.1x, 0.3x, 0.9x, resp). We regularized our network
by dropout with a rate from {0, 0.1, 0.2, 0.3}. Note
that we might not run nonsensical settings, e.g., a
larger dropout rate if the network has already been
underfitting (i.e., accuracy has decreased when the
dropout rate increases). We report the test perfor-
mance associated with the highest validation accu-
racy.

To setup a baseline, we trained our models with-
out transfer 5 times by different random parameter
initializations (Table 2). We have achieved reason-
able performance that is comparable to similar mod-
els reported in the literature with all six datasets.
Therefore, our implementation is fair and suitable
for further study of transfer learning.

It should be mentioned that the goal of this paper
is not to outperform state-of-the-art results; instead,

Dataset Avg acc.±std. Related model

E
xp

.I IMDB 87.0 89.3 (Non-NN, Dong+,2015)
MR 75.1± 0.6 77.7 (RAE, Socher+, 2013)
QC 90.8± 0.9 90.2 (RNN, Zhao+,2015)

E
xp

.I
I SNLI 76.3 77.6 (RNN, Bowman+,2015)

SICK 70.9± 1.3 71.3 (RNN, Bowman+,2015)
MSRP 69.0± 0.5 69.6 (Arc-I CNN, Hu+,2014)

Table 2: Accuracy (%) without transfer. We also include re-

lated models for comparison (Dong et al., 2015; Socher et al.,

2011; Zhao et al., 2015; Bowman et al., 2015; Hu et al., 2014),

showing that we have achieved comparable results, and thus are

ready to investigate transfer learning. The models were run one

only once in source domains, because we could only transfer a

particular model instead of an average of several models.

we would like to conduct a fair comparison of dif-
ferent methods and settings for transfer learning in
NLP.

4 Transfer Methods

Transfer learning aims to use knowledge in a source
domain to aid the target domain. As neural net-
works are usually trained incrementally with gradi-
ent descent (or variants), it is straightforward to use
gradient information in both source and target do-
mains for optimization so as to accomplish knowl-
edge transfer. Depending on how samples in source
and target domains are scheduled, there are two
main approaches to neural network-based transfer
learning:

• Parameter initialization (INIT). The INIT ap-
proach first trains the network on S, and then di-
rectly uses the tuned parameters to initialize the
network for T . After transfer, we may fix (

�
�

¡
♂

)
the parameters in the target domain (Glorot et al.,
2011), i.e., no training is performed on T . But
when labeled data are available in T , it would be
better to fine-tune (1) the parameters.

INIT is also related to unsupervised pretraining
such as word embedding learning (Mikolov et al.,
2013) and autoencoders (Bengio et al., 2006). In
these approaches, parameters that are (pre)trained
in an unsupervised way are transferred to initial-
ize the model for a supervised task (Plank and
Moschitti, 2013). However, our paper focuses on
“supervised pretraining,” which means we trans-
fer knowledge from a labeled source domain.

482

• Multi-task learning (MULT). MULT, on the other
hand, simultaneously trains samples in both do-
mains (Collobert and Weston, 2008; Liu et al.,
2016). The overall cost function is given by

J = λJT + (1− λ)JS (1)

where JT and JS are the individual cost function
of each domain. (Both JT and JS are normalized
by the number of training samples.) λ ∈ (0, 1) is
a hyperparameter balancing the two domains.

It is nontrivial to optimize Equation 1 in practice
by gradient-based methods. One may take the par-
tial derivative of J and thus λ goes to the learning
rate (Liu et al., 2016), but the model is then vul-
nerable because it is likely to blow up with large
learning rates (multiplied by λ or 1 − λ) and be
stuck in local optima with small ones.

Collobert and Weston (2008) alternatively choose
a data sample from either domain with a certain
probability (controlled by λ) and take the deriva-
tive for the particular data sample. In this way, do-
main transfer is independent of learning rates, but
we may not be able to fully use the entire dataset
of S if λ is large. We adopted the latter approach
in our experiment for simplicity. (More in-depth
analysis may be needed in future work.) Formally,
our multi-task learning strategy is as follows.

1 Switch to T with prob. λ, or to S with
prob. 1− λ.

2 Compute the gradient of the next data sample
in the particular domain.

Further, INIT and MULT can be combined
straightforwardly, and we obtain the third setting:

• Combination (MULT+INIT). We first pretrain on
the source domain S for parameter initialization,
and then train S and T simultaneously.

From a theoretical perspective, INIT and MULT
work in different ways. In the MULT approach, the
source domain regularizes the model by “aliasing”
the error surface of the target domain; hence the
neural network is less prone to overfitting. In INIT,
T ’s error surface remains intact. Before training on
the target dataset, the parameters are initialized in
such a meaningful way that they contain additional

knowledge in the source domain. However, in an ex-
treme case where T ’s error surface is convex, INIT
is ineffective because the parameters can reach the
global optimum regardless of their initialization. In
practice, deep neural networks usually have highly
complicated, non-convex error surfaces. By prop-
erly initializing parameters with the knowledge of
S, we can reasonably expect that the parameters are
in a better “catchment basin,” and that the INIT ap-
proach can transfer knowledge from S to T .

5 Results of Transferring by INIT

We first analyze how INIT behaves in NLP-based
transfer learning. In addition to two different trans-
fer scenarios regarding semantic relatedness as de-
scribed in Section 2, we further evaluated two set-
tings: (1) fine-tuning parameters 1, and (2) freez-
ing parameters after transfer

�
�

¡
♂

. Existing evidence
shows that frozen parameters would generally hurt
the performance (Peng et al., 2015), but this setting
provides a more direct understanding on how trans-
ferable the features are (because the factor of target
domain optimization is ruled out). Therefore, we
included it in our experiments. Moreover, we trans-
ferred parameters layer by layer to answer our sec-
ond research question.

Through Subsections 5.1–5.3, we initialized the
parameters of T with the ones corresponding to
the highest validation accuracy of S. In Subsec-
tion 5.4, we further investigated when the parame-
ters are ready to be transferred during the training
on S.

5.1 Overall Performance

Table 3 shows the main results of INIT. A quick
observation is that, in both groups, transfer learn-
ing of semantically equivalent tasks (IMDB→MR,
SNLI→SICK) appears to be successful with an im-
provement of ∼6%. The results are not surprising
and also reported in Bowman et al. (2015).

For IMDB→QC and SNLI→MSRP, however,
there is no improvement of transferring hidden lay-
ers (embeddings excluded), namely LSTM-RNN
units and CNN feature maps. The E1H1O2
setting yields a slight degradation of 0.2–0.4%,
∼.5x std. The incapability of transferring is also
proved by locking embeddings and hidden layers

483

(E
�
�

¡
♂

H
�
�

¡
♂

O2). We see in this setting, the test per-
formance is very low in QC or even worse than
majority-class guess in MSRP. By further examin-
ing its training accuracy, which is 48.2% and 65.5%,
respectively, we conclude that extracted features by
LSTM-RNN and CNN models in S are almost irrel-
evant to the ultimate tasks T (QC and MSRP).

Although in previous studies, researchers have
mainly drawn positive conclusions about transfer
learning, we find a negative result similar to ours
upon careful examination of Collobert and We-
ston (2008), and unfortunately, their results may be
somewhat misinterpreted. In that paper, the authors
report transferring NER, POS, CHK, and pretrained
word embeddings improves the SRL task by 1.91–
3.90% accuracy (out of 16.54–18.40% error rate),
but their gain is mainly due to word embeddings.
In the settings that use pretrained word embeddings
(which is common in NLP), NER, POS, and CHK
together improve the SRL accuracy by only 0.04–
0.21%.

The above results are rather frustrating, indicat-
ing for RQ1 that neural networks may not be trans-
ferable to NLP tasks of different semantics. Trans-
fer learning for NLP is more prone to semantics
than the image processing domain, where even high-
level feature detectors are almost always transfer-
able (Donahue et al., 2014; Yosinski et al., 2014).

5.2 Layer-by-Layer Analysis
To answer RQ2, we next analyze the transferabil-
ity of each layer. First, we freeze both embeddings
and hidden layers (E

�
�

¡
♂

H
�
�

¡
♂

). Even in semantically
equivalent settings, if we further freeze the output
layer (O

�
�

¡
♂

), the performance in both IMDB→MR and
SNLI→SICK drops, but by randomly initializing
the output layer’s parameters (O2), we can obtain a
similar or higher result compared with the baseline
(E4H2O2). The finding suggests that the output
layer is mainly specific to a dataset. Transferring the
output layer’s parameters yields little (if any) gain.

Regarding embeddings and hidden layers (in
the settings E1H1O2/E1H2O2 vs. E4H2O2),
the IMDB→MR experiment suggests both of em-
beddings and the hidden layer play an important
role, each improving the accuracy by 3%. In
SNLI→SICK, however, the main improvement lies
in the hidden layer. A plausible explanation is that

Experiment I
Setting IMDB→MR IMDB→QC

Majority 50.0 22.9
E4 H2 O2 75.1 90.8
E
�
�

¡
♂

H2 O2 78.2 93.2
E
�
�

¡
♂

H
�
�

¡
♂

O2 78.8 55.6
E
�
�

¡
♂

H
�
�

¡
♂

O
�
�

¡
♂

73.6 –
E1 H2 O2 78.3 92.6
E1 H1 O2 81.4 90.4
E1 H1 O1 80.9 –

Experiment II
Setting SNLI→SICK SNLI→MSRP

Majority 56.9 66.5
E4 H2 O2 70.9 69.0
E
�
�

¡
♂

H2 O2 69.3 68.1
E
�
�

¡
♂

H
�
�

¡
♂

O2 70.0 66.4
E
�
�

¡
♂

H
�
�

¡
♂

O
�
�

¡
♂

43.1 –
E1 H2 O2 71.0 69.9
E1 H1 O2 76.3 68.8
E1 H1 O1 77.6 –

Table 3: Main results of neural transfer learning by INIT. We

report test accuracies (%) in this table. E: embedding layer;

H: hidden layers; O: output layer. 4: Word embeddings are

pretrained by word2vec; 2: Parameters are randomly initial-

ized);
�
�

¡
♂

: Parameters are transferred but frozen; 1: Parame-

ters are transferred and fine-tuned. Notice that the E
�
�

¡
♂

H
�
�

¡
♂

O
�
�

¡
♂

and E1H1O1 settings are inapplicable to IMDB→QC and

SNLI→MSRP, because the output targets do not share same

meanings and numbers of target classes.

in sentiment classification tasks (IMDB and MR), in-
formation emerges from raw input, i.e., sentiment
lexicons and thus their embeddings, but natural lan-
guage inference tasks (SNLI and SICK) address
more on semantic compositionality and thus hidden
layers are more important.

Moreover, for semantically different tasks
(IMDB→QC and SNLI→MSRP), the embeddings
are the only parameters that have been observed to
be transferable, slightly benefiting the target task by
2.7x and 1.8x std, respectively.

5.3 How does learning rate affect transfer?

Bowman et al. (2015) suggest that after transferring,
a large learning rate may damage the knowledge
stored in the parameters; in their paper, they transfer
the learning rate information (AdaDelta) from S to
T in addition to the parameters.

484

Experiment I

20 60 100 140
Epoch

55

65

75

85

A
cc

u
ra

cy
(%

)

(a)

α = 0.01

α = 0.03

α = 0.1

α = 0.3

Experiment II

20 60 100 140
Epoch

50

60

70

80

A
cc

u
ra

cy
(%

)

(b)

α = 0.01

α = 0.03

α = 0.1

α = 0.3

Figure 2: Learning curves of different learning rates (de-

noted as α). (a) Experiment I: IMDB→MR; (b) Experiment II:

SNLI→SICK.

Although the rule of the thumb is to choose all
hyperparameters—including the learning rate—by
validation, we are curious whether the above con-
jecture holds. Estimating a rough range of sensible
hyperparameters can ease the burden of model selec-
tion; it also provides evidence to better understand
how transfer learning actually works.

We plot the learning curves of different learning
rates α in Figure 2 (IMDB→MR and SNLI→SICK,
E1H1O2). (In the figure, no learning rate decay is
applied.) As we see, with a large learning rate like
α = 0.3, the accuracy increases fast and peaks at
earlier epochs. Training with a small learning rate
(e.g., α = 0.01) is slow, but its peak performance is
comparable to large learning rates when iterated by,
say, 100 epochs. The learning curves in Figure 2 are
similar to classic speed/variance trade-off, and we
have the following additional discovery:

In INIT, transferring learning rate information
is not necessarily useful. A large learning rate
does not damage the knowledge stored in the
pretrained hyperparameters, but accelerates the
training process to a large extent. In all, we may
need to perform validation to choose the learning
rate if computational resources are available.

Experiment I

60

70

80

90

A
cc

.
(%

)

(b)

IMDB→MR

IMDB→QC

80

Epoch: 5 10 15 20 25

90

IM
D

B
A

cc
.

(%
)

(a)

Learning curve of IMDB

Experiment II

50

60

70

80

A
cc

.
(%

)

(d)

79.0
76.3

SNLI→SICK

SNLI→MSRP

70

Epoch: 5 10 15 20 25

80

S
N

L
I

A
cc

.
(%

)

(c)

Learning curve of SNLI

Figure 3: (a) and (c): Learning curves of S. (b) and (d): Accu-

racies of T when parameters are transferred at a certain epoch

during the training of S. Dotted lines refer to non-transfer,

which can be equivalently viewed as transferring before train-

ing on S, i.e., epoch = 0. Note that the x-axis shares across

different subplots.

5.4 When is it ready to transfer?

In the above experiments, we transfer the parame-
ters when they achieve the highest validation perfor-
mance on S . This is a straightforward and intuitive
practice.

However, we may imagine that the parameters
well-tuned to the source dataset may be too specific
to it, i.e., the model overfits S and thus may underfit
T . Another advantage of early transfer lies in com-

485

putational concerns. If we manage to transfer model
parameters after one or a few epochs on S, we can
save much time especially when S is large.

We therefore made efforts in studying when the
neural model is ready to be transferred. Figures 3a
and 3c plot the learning curves of the source tasks.
The accuracy increases sharply from epochs 1–5;
later, it reaches a plateau but is still growing slowly.

We then transferred the parameters at different
stages (epochs) of training to target tasks (also with
the setting E1H1O2). Their accuracies are plotted
in Figures 3b and 3d.

In IMDB→MR, the source performance and trans-
ferring performance align well. The SNLI→SICK
experiment, however, produces interesting yet unex-
pected results. Using the second epoch of SNLI’s
training yields the highest transfer performance on
SICK, i.e., 78.98%, when the SNLI performance
itself is comparatively low (72.65% vs. 76.26% at
epoch 23). Later, the transfer performance decreases
gradually by∼2.7%. The results in these two exper-
iments are inconsistent and lack explanation.

6 MULT, and its Combination with INIT

To answer RQ3, we investigate how multi-task
learning performs in transferring knowledge, as well
as the effect of the combination of MULT and INIT.
In this section, we applied the setting: sharing em-
beddings and hidden layers (denoted as E♥H♥O2),
analogous to E1H1O2 in INIT. When combining
MULT and INIT, we used the pretrained parameters
of embeddings and hidden layers on S to initialize
the multi-task training of S and T , visually repre-
sented by E1♥H1♥O2.

In both MULT and MULT+INIT, we had a hy-
perparameter λ ∈ (0, 1) balancing the source and
target tasks (defined in Section 4). λ was tuned with
a granularity of 0.1. As a friendly reminder, λ = 1
refers to using T only; λ = 0 refers to using S only.
After finding that a small λ yields high performance
of MULT in the IMDB+MR and SNLI+SICK exper-
iments (thick blue lines in Figures 4a and 4c), we
further tuned the λ from 0.01 to 0.09 with a fine-
grained granularity of 0.02.

The results are shown in Figure 4. From the green
curves in the 2nd and 4th subplots, we see MULT
(with or without INIT) does not improve the accu-

Experiment I

0.0 0.2 0.4 0.6 0.8 1.0
λ

60

70

80

A
cc

u
ra

cy
(%

)

(a)

81.3 81.4

IMDB+MR, MULT

IMDB+MR, MULT+INIT

0.0 0.2 0.4 0.6 0.8 1.0
λ

70

80

90

A
cc

u
ra

cy
(%

)

(b)

IMDB+QC, MULT

IMDB+QC, MULT+INIT

Experiment II

0.0 0.2 0.4 0.6 0.8 1.0
λ

60

70

80
A

cc
u

ra
cy

(%
)

(c)

79.6
77.6

SNLI+SICK, MULT

SNLI+SICK, MULT+INIT

0.0 0.2 0.4 0.6 0.8 1.0
λ

60

70

80

A
cc

u
ra

cy
(%

)

(d)

SNLI+MSRP, MULT

SNLI+MSRP, MULT+INIT

Figure 4: Results of MULT and MULT+INIT, where we share

word embeddings and hidden layers. Dotted lines are the non-

transfer setting; dashed lines are the INIT setting E1H1O2,

transferred at the peak performance of IMDB and SNLI.

racy of target tasks (QC and MSRP); the inability
to transfer is cross-checked by the INIT method in
Section 5. For MR and SICK, on the other hand,
transferability of the neural model is also consis-
tently positive (blue curves in Figures 4a and 4c),
supporting our conclusion to RQ1 that neural trans-

486

fer learning in NLP depends largely on how similar
in semantics the source and target datasets are.

Moreover, we see that the peak performance of
MULT is slightly lower than INIT in Experiment I
(Figure 4a), but higher in Experiment II (Figure 4c);
they are in the same ballpark.

In MULT+INIT (E1♥H1♥O2), the transfer
performance of MULT+INIT remains high for dif-
ferent values of λ. Because the parameters given
by INIT have already conveyed sufficient informa-
tion about the source task, MULT+INIT consis-
tently outperforms non-transferring by a large mar-
gin. Its peak performance, however, is not higher
than MULT or INIT. In summary, we answer our
RQ3 as follows: in our experiments, MULT and
INIT are generally comparable; we do not obtain
further gain by combining MULT and INIT.

7 Concluding Remarks

In this paper, we addressed the problem of trans-
fer learning in neural network-based NLP applica-
tions. We conducted two series of experiments on
six datasets, showing that the transferability of neu-
ral NLP models depends largely on the semantic re-
latedness of the source and target tasks, which is
different from other domains like image processing.
We analyzed the behavior of different neural layers.
We also experimented with two transfer methods:
parameter initialization (INIT) and multi-task learn-
ing (MULT). Besides, we reported two additional
studies in Sections 5.3 and 5.4 (not repeated here).
Our paper provides insight on the transferability of
neural NLP models; the results also help to better
understand neural features in general.

How transferable are the conclusions in this
paper? We have to concede that empirical studies
are subject to a variety of factors (e.g., models, tasks,
datasets), and that conclusions may vary in different
scenarios. In our paper, we have tested all results
on two groups of experiments involving 6 datasets
and 2 neural models (CNN and LSTM-RNN). Both
models and tasks are widely studied in the literature,
and not chosen deliberately. Results are mostly con-
sistent (except Section 5.4). Along with analyzing
our own experimental data, we have also collected
related results in previous studies, serving as addi-
tional evidence in answering our research questions.

Therefore, we think the generality of this work is
fair and that the conclusions can be generalized to
similar scenarios.

Future work. Our work also points out some fu-
ture directions of research. For example, we would
like to analyze the effect of different MULT strate-
gies. More efforts are also needed in developing an
effective yet robust method for multi-task learning.

Acknowledgments

We thank all reviewers for their constructive com-
ments, Sam Bowman for helpful suggestion, and
Vicky Li for discussion on the manuscript. This
research is supported by the National Basic Re-
search Program of China (the 973 Program) un-
der Grant No. 2015CB352201 and the National
Natural Science Foundation of China under Grant
Nos. 61232015, 91318301, 61421091, 61225007,
and 61502014.

References

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and
Hugo Larochelle. 2006. Greedy layer-wise train-
ing of deep networks. In Advances in Neural In-
formation Processing Systems, pages 153–160.

John Blitzer, Ryan McDonald, and Fernando
Pereira. 2006. Domain adaptation with struc-
tural correspondence learning. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing, pages 120–128.

Samuel R. Bowman, Gabor Angeli, Christopher
Potts, and Christopher D. Manning. 2015. A
large annotated corpus for learning natural lan-
guage inference. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language
Processing, pages 632–642.

Jane Bromley, James W Bentz, Léon Bottou, Is-
abelle Guyon, Yann LeCun, Cliff Moore, Eduard
Säckinger, and Roopak Shah. 1993. Signature
verification using a “Siamese” time delay neural
network. International Journal of Pattern Recog-
nition and Artificial Intelligence, 7(04):669–688.

Ronan Collobert and Jason Weston. 2008. A uni-
fied architecture for natural language processing:

487

Deep neural networks with multitask learning. In
Proceedings of the 25th International Conference
on Machine Learning, pages 160–167.

Hal Daumé III, Abhishek Kumar, and Avishek Saha.
2010. Frustratingly easy semi-supervised domain
adaptation. In Proceedings of the Workshop on
Domain Adaptation for Natural Language Pro-
cessing, pages 53–59.

Hal Daumé III. 2007. Frustratingly easy domain
adaptation. In Proceedings of the 45th Annual
Meeting of the Association of Computational Lin-
guistics, pages 256–263.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy
Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. 2014. DeCAF: A deep convolutional ac-
tivation feature for generic visual recognition. In
Proceedings of the 31st International Conference
on Machine Learning, pages 647–655.

Li Dong, Furu Wei, Shujie Liu, Ming Zhou, and
Ke Xu. 2015. A statistical parsing framework
for sentiment classification. Computational Lin-
guistics, 41(2):293–336.

George Foster, Cyril Goutte, and Roland Kuhn.
2010. Discriminative instance weighting for do-
main adaptation in statistical machine translation.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages
451–459.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale senti-
ment classification: A deep learning approach. In
Proceedings of the 28th International Conference
on Machine Learning, pages 513–520.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Baotian Hu, Zhengdong Lu, Hang Li, and Qing-
cai Chen. 2014. Convolutional neural network
architectures for matching natural language sen-
tences. In Advances in Neural Information Pro-
cessing Systems, pages 2042–2050.

Jing Jiang and ChengXiang Zhai. 2007. Instance
weighting for domain adaptation in NLP. In Pro-
ceedings of the 45th Annual Meeting of the Asso-
ciation of Computational Linguistics, pages 264–
271.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E
Hinton. 2012. ImageNet classification with deep
convolutional neural networks. In Advances in
Neural Information Processing Systems, pages
1097–1105.

Yang Liu, Sujian Li, Xiaodong Zhang, and Zhifang
Sui. 2016. Implicit discourse relation classifica-
tion via multi-task neural networks. In Proceed-
ings of the 30th AAAI Conference on Artificial In-
telligence, pages 2750–2756.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed rep-
resentations of words and phrases and their com-
positionality. In Advances in Neural Information
Processing Systems, pages 3111–3119.

Hao Peng, Lili Mou, Ge Li, Yunchuan Chen,
Yangyang Lu, and Zhi Jin. 2015. A comparative
study on regularization strategies for embedding-
based neural networks. In Proceedings of the
Conference on Empirical Methods in Natural
Language Processing, pages 2106–2111.

Barbara Plank and Alessandro Moschitti. 2013.
Embedding semantic similarity in tree kernels for
domain adaptation of relation extraction. In Pro-
ceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics, pages
1498–1507.

Peter Prettenhofer and Benno Stein. 2010. Cross-
language text classification using structural corre-
spondence learning. In Proceedings of the 48th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 1118–1127.

Richard Socher, Jeffrey Pennington, Eric H Huang,
Andrew Y Ng, and Christopher D Manning.
2011. Semi-supervised recursive autoencoders
for predicting sentiment distributions. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 151–161.

488

Dong Wang and Thomas Fang Zheng. 2015. Trans-
fer learning for speech and language processing.
In Proceedings of the Asia-Pacific Signal and In-
formation Processing Association Annual Summit
and Conference, pages 1225–1237.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod
Lipson. 2014. How transferable are features in
deep neural networks? In Advances in Neural In-
formation Processing Systems, pages 3320–3328.

Matthew D Zeiler and Rob Fergus. 2014. Visual-
izing and understanding convolutional networks.
In Proceedings of 13th European Conference on
Computer Vision, pages 818–833.

Han Zhao, Zhengdong Lu, and Pascal Poupart.
2015. Self-adaptive hierarchical sentence model.
In International Joint Conference on Artificial In-
telligence, pages 4069–4076.

489

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 490–500,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Morphological Priors for Probabilistic Neural Word Embeddings

Parminder Bhatia∗
Yik Yak, Inc.

3525 Piedmont Rd NE, Building 6, Suite 500
Atlanta, GA

parminder@yikyakapp.com

Robert Guthrie∗ and Jacob Eisenstein
School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA 30312 USA
{rguthrie3 + jacobe}@gatech.edu

Abstract

Word embeddings allow natural language pro-
cessing systems to share statistical information
across related words. These embeddings are
typically based on distributional statistics, mak-
ing it difficult for them to generalize to rare or
unseen words. We propose to improve word
embeddings by incorporating morphological
information, capturing shared sub-word fea-
tures. Unlike previous work that constructs
word embeddings directly from morphemes,
we combine morphological and distributional
information in a unified probabilistic frame-
work, in which the word embedding is a latent
variable. The morphological information pro-
vides a prior distribution on the latent word em-
beddings, which in turn condition a likelihood
function over an observed corpus. This ap-
proach yields improvements on intrinsic word
similarity evaluations, and also in the down-
stream task of part-of-speech tagging.

1 Introduction

Word embeddings have been shown to improve many
natural language processing applications, from lan-
guage models (Mikolov et al., 2010) to information
extraction (Collobert and Weston, 2008), and from
parsing (Chen and Manning, 2014) to machine trans-
lation (Cho et al., 2014). Word embeddings leverage
a classical idea in natural language processing: use
distributional statistics from large amounts of unla-
beled data to learn representations that allow sharing

∗The first two authors contributed equally. Code
is available at https://github.com/rguthrie3/
MorphologicalPriorsForWordEmbeddings.

across related words (Brown et al., 1992). While this
approach is undeniably effective, the long-tail nature
of linguistic data ensures that there will always be
words that are not observed in even the largest cor-
pus (Zipf, 1949). There will be many other words
which are observed only a handful of times, making
the distributional statistics too sparse to accurately
estimate the 100- or 1000-dimensional dense vectors
that are typically used for word embeddings. These
problems are particularly acute in morphologically
rich languages like German and Turkish, where each
word may have dozens of possible inflections.

Recent work has proposed to address this issue by
replacing word-level embeddings with embeddings
based on subword units: morphemes (Luong et al.,
2013; Botha and Blunsom, 2014) or individual char-
acters (Santos and Zadrozny, 2014; Ling et al., 2015;
Kim et al., 2016). Such models leverage the fact that
word meaning is often compositional, arising from
subword components. By learning representations of
subword units, it is possible to generalize to rare and
unseen words.

But while morphology and orthography are some-
times a signal of semantics, there are also many cases
similar spellings do not imply similar meanings: bet-
ter-batter, melon-felon, dessert-desert, etc. If each
word’s embedding is constrained to be a determinis-
tic function of its characters, as in prior work, then
it will be difficult to learn appropriately distinct em-
beddings for such pairs. Automated morphological
analysis may be incorrect: for example, really may
be segmented into re+ally, incorrectly suggesting a
similarity to revise and review. Even correct morpho-
logical segmentation may be misleading. Consider

490

that incredible and inflammable share a prefix in-,
which exerts the opposite effect in these two cases.1

Overall, a word’s observed internal structure gives
evidence about its meaning, but it must be possible to
override this evidence when the distributional facts
point in another direction.

We formalize this idea using the machinery of
probabilistic graphical models. We treat word em-
beddings as latent variables (Vilnis and McCallum,
2014), which are conditioned on a prior distribution
that is based on word morphology. We then maximize
a variational approximation to the expected likeli-
hood of an observed corpus of text, fitting variational
parameters over latent binary word embeddings. For
common words, the expected word embeddings are
largely determined by the expected corpus likelihood,
and thus, by the distributional statistics. For rare
words, the prior plays a larger role. Since the prior
distribution is a function of the morphology, it is pos-
sible to impute embeddings for unseen words after
training the model.

We model word embeddings as latent binary vec-
tors. This choice is based on linguistic theories of
lexical semantics and morphology. Morphemes are
viewed as adding morphosyntactic features to words:
for example, in English, un- adds a negation feature
(unbelievable), -s adds a plural feature, and -ed adds
a past tense feature (Halle and Marantz, 1993). Sim-
ilarly, the lexicon is often viewed as organized in
terms of features: for example, the word bachelor
carries the features HUMAN, MALE, and UNMAR-
RIED (Katz and Fodor, 1963). Each word’s semantic
role within a sentence can also be characterized in
terms of binary features (Dowty, 1991; Reisinger et
al., 2015). Our approach is more amenable to such
theoretical models than traditional distributed word
embeddings. However, we can also work with the ex-
pected word embeddings, which are vectors of prob-
abilities, and can therefore be expected to hold the
advantages of dense distributed representations (Ben-
gio et al., 2013).

1The confusion is resolved by morphologically analyzing the
second example as (in+flame)+able, but this requires hierarchi-
cal morphological parsing, not just segmentation.

2 Model

The modeling framework is illustrated in Figure 1,
focusing on the word sesquipedalianism. This word
is rare, but its morphology indicates several of its
properties: the -ism suffix suggests that the word is a
noun, likely describing some abstract property; the
sesqui- prefix refers to one and a half, and so on. If
the word is unknown, we must lean heavily on these
intuitions, but if the word is well attested then we can
rely instead on its examples in use.

It is this reasoning that our modeling framework
aims to formalize. We treat word embeddings as la-
tent variables in a joint probabilistic model. The prior
distribution over a word’s embedding is conditioned
on its morphological structure. The embedding it-
self then participates, as a latent variable, in a neural
sequence model over a corpus, contributing to the
overall corpus likelihood. If the word appears fre-
quently, then the corpus likelihood dominates the
prior — which is equivalent to relying on the word’s
distributional properties. If the word appears rarely,
then the prior distribution steps in, and gives a best
guess as to the word’s meaning.

Before describing these component pieces in detail,
we first introduce some notation. The representation
of word w is a latent binary vector bw ∈ {0, 1}k,
where k is the size of each word embedding. As
noted in the introduction, this binary representation
is motivated by feature-based theories of lexical se-
mantics (Katz and Fodor, 1963). Each word w is
constructed from a set of Mw observed morphemes,
Mw = (mw,1,mw,2, . . . ,mw,Mw). Each morpheme
is in turn drawn from a finite vocabulary of size
vm, so that mw,i ∈ {1, 2, . . . , vm}. Morphemes
are obtained from an unsupervised morphological
segmenter, which is treated as a black box. Fi-
nally, we are given a corpus, which is a sequence
of words, x = (x1, x2, . . . , xN), where each word
xt ∈ {1, 2, . . . , vw}, with vw equal to the size of the
vocabulary, including the token 〈UNK〉 for unknown
words.

2.1 Prior distribution

The key differentiating property of this model is that
rather than estimating word embeddings directly, we
treat them as a latent variable, with a prior distri-
bution reflecting the word’s morphological proper-

491

plagued by sesquipedalianism . . .

h1 h2 h3

bplagued bby bsesquipedalianism

uplague uby usesqui

ued upedal

uian

uism

Figure 1: Model architecture, applied to the example sequence . . . plagued by sesquipedalianism Blue solid arrows indicate

direct computation, red dashed arrows indicate probabilistic dependency. For simplicity, we present our models as recurrent neural

networks rather than long short-term memories (LSTMs).

ties. To characterize this prior distribution, each mor-
pheme m is associated with an embedding of its own,
um ∈ Rk, where k is again the embedding size. Then
for position i of the word embedding bw, we have
the following prior,

bw,i ∼ Bernoulli

(
σ(

∑

m∈Mw

um,i)

)
, (1)

where σ(·) indicates the sigmoid function. The prior
log-likelihood for a set of word embeddings is,

logP (b;M,u) (2)

=

Vw∑

w

logP (bw;Mw,u) (3)

=

Vw∑

w

k∑

i

logP (bw,i;Mw,u) (4)

=

Vw∑

w

k∑

i

bw,i log σ

(∑

m∈Mw

um,i

)
(5)

+ (1− bw,i) log

(
1− σ

(∑

m∈Mw

um,i

))
.

2.2 Expected likelihood
The corpus likelihood is computed via a recurrent
neural network language model (Mikolov et al., 2010,
RNNLM), which is a generative model of sequences
of tokens. In the RNNLM, the probability of each
word is conditioned on all preceding words through

a recurrently updated state vector. This state vector
in turn depends on the embeddings of the previous
words, through the following update equations:

ht =f(bxt ,ht−1) (6)

xt+1 ∼Multinomial (Softmax [Vht]) . (7)

The function f(·) is a recurrent update equation; in
the RNN, it corresponds to σ(Θht−1 + bxt), where
σ(·) is the elementwise sigmoid function. The matrix
V ∈ Rv×k contains the “output embeddings” of each
word in the vocabulary. We can then define the condi-
tional log-likelihood of a corpusx = (x1, x2, . . . xN)
as,

logP (x | b) =

N∑

t

logP (xt | ht−1, b). (8)

Since ht−1 is deterministically computed from
x1:t−1 (conditioned on b), we can equivalently write
the log-likelihood as,

logP (x | b) =
∑

t

logP (xt | x1:t−1, b). (9)

This same notation can be applied to compute the
likelihood under a long-short term memory (LSTM)
language model (Sundermeyer et al., 2012). The only
difference is that the recurrence function f(·) from
Equation 6 now becomes more complex, including
the input, output, and forget gates, and the recurrent
state ht now includes the memory cell. As the LSTM

492

update equations are well known, we focus on the
more concise RNN notation, but we employ LSTMs
in all experiments due to their better ability to capture
long-range dependencies.

2.3 Variational approximation

Inference on the marginal likelihood P (x1:N) =∫
P (x1:N , b)db is intractable. We address this is-

sue by making a variational approximation,

logP (x) = log
∑

b

P (x | b)P (b) (10)

= log
∑

b

Q(b)

Q(b)
P (x | b)P (b) (11)

= logEq

[
P (x | b)P (b)

Q(b)

]
(12)

≥Eq[logP (x | b) + logP (b)− logQ(b)]
(13)

The variational distribution Q(b) is defined using a
fully factorized mean field approximation,

Q(b;γ) =

vw∏

w

k∏

i

q(bw,i; γw,i). (14)

The variational distribution is a product of Bernoullis,
with parameters γw,j ∈ [0, 1]. In the evaluations
that follow, we use the expected word embeddings
q(bw), which are dense vectors in [0, 1]k. We can
then use Q(·) to place a variational lower bound on
the expected conditional likelihood,

Even with this variational approximation, the ex-
pected log-likelihood is still intractable to compute.
In recurrent neural network language models, each
word xt is conditioned on the entire prior history,
x1:t−1 — indeed, this is one of the key advantages
over fixed-length n-gram models. However, this
means that the individual expected log probabilities
involve not just the word embedding of xt and its
immediate predecessor, but rather, the embeddings

of all words in the sequence x1:t:

Eq [logP (x | b)] (15)

=
N∑

t

Eq [logP (xt | x1:t−1, b)] (16)

=
N∑

t

∑

{bw:w∈x1:t}
Q({bw : w ∈ x1:t})

× logP (xt | x1:t−1, b). (17)

We therefore make a further approximation by tak-
ing a local expectation over the recurrent state,

Eq [ht] ≈ f(Eq [bxt] , Eq [ht−1])
(18)

Eq [logP (xt | x1:t−1, b)] ≈ log Softmax (VEq [ht]) .
(19)

This approximation means that we do not propa-
gate uncertainty about ht through the recurrent up-
date or through the likelihood function, but rather, we
use local point estimates. Alternative methods such
as variational autoencoders (Chung et al., 2015) or
sequential Monte Carlo (de Freitas et al., 2000) might
provide better and more principled approximations,
but this direction is left for future work.

Variational bounds in the form of Equation 13
can generally be expressed as a difference between
an expected log-likelihood term and a term for the
Kullback-Leibler (KL) divergence between the prior
distribution P (b) and the variational distribution
Q(b) (Wainwright and Jordan, 2008). Incorporat-
ing the approximation in Equation 19, the resulting
objective is,

L =
N∑

t

logP (xt | x1:t−1;Eq[b])

−DKL(Q(b) ‖ P (b)). (20)

493

The KL divergence is equal to,

DKL(Q(b) ‖ P (b)) (21)

=

vw∑

w

k∑

i

DKL(q(bw,i) ‖ P (bw,i)) (22)

=

vw∑

w

k∑

i

γw,i log σ(
∑

m∈Mw

um,i)

+ (1− γw,i) log(1− σ(
∑

m∈Mw

um,i))

− γw,i log γw,i − (1− γw,i) log(1− γw,i).
(23)

Each term in the variational bound can be easily
constructed in a computation graph, enabling auto-
matic differentiation and the application of standard
stochastic optimization techniques.

3 Implementation

The objective function is given by the variational
lower bound in Equation 20, using the approxima-
tion to the conditional likelihood described in Equa-
tion 19. This function is optimized in terms of several
parameters:

• the morpheme embeddings, {um}m∈1...vm ;

• the variational parameters on the word embed-
dings, {γ}w∈1...vw ;

• the output word embeddings V;

• the parameter of the recurrence function, Θ.

Each of these parameters is updated via the
RMSProp online learning algorithm (Tieleman and
Hinton, 2012). The model and baseline (described be-
low) are implemented in blocks (van Merriënboer
et al., 2015). In the remainder of the paper, we refer
to our model as VAREMBED.

3.1 Data and preprocessing
All embeddings are trained on 22 million tokens
from the the North American News Text (NANT)
corpus (Graff, 1995). We use an initial vocabu-
lary of 50,000 words, with a special 〈UNK〉 token
for words that are not among the 50,000 most com-
mon. We then perform downcasing and convert all
numeric tokens to a special 〈NUM〉 token. After these

steps, the vocabulary size decreases to 48,986. Note
that the method can impute word embeddings for
out-of-vocabulary words under the prior distribution
P (b;M,u); however, it is still necessary to decide
on a vocabulary size to determine the number of
variational parameters γ and output embeddings to
estimate.

Unsupervised morphological segmentation is per-
formed using Morfessor (Creutz and Lagus, 2002),
with a maximum of sixteen morphemes per word.
This results in a total of 14,000 morphemes, which
includes stems for monomorphemic words. We do
not rely on any labeled information about morpho-
logical structure, although the incorporation of gold
morphological analysis is a promising topic for future
work.

3.2 Learning details
The LSTM parameters are initialized uniformly in
the range [−0.08, 0.08]. The word embeddings are
initialized using pre-trained word2vec embeddings.
We train the model for 15 epochs, with an initial
learning rate of 0.01, a decay of 0.97 per epoch, and
minibatches of size 25. We clip the norm of the
gradients (normalized by minibatch size) at 1, using
the default settings in the RMSprop implementation
in blocks. These choices are motivated by prior
work (Zaremba et al., 2014). After each iteration, we
compute the objective function on the development
set; when the objective does not improve beyond a
small threshold, we halve the learning rate.

Training takes roughly one hour per iteration us-
ing an NVIDIA 670 GTX, which is a commodity
graphics processing unit (GPU) for gaming. This
is nearly identical to the training time required for
our reimplementation of the algorithm of Botha and
Blunsom (2014), described below.

3.3 Baseline
The most comparable approach is that of Botha and
Blunsom (2014). In their work, embeddings are es-
timated for each morpheme, as well as for each in-
vocabulary word. The final embedding for a word is
then the sum of these embeddings, e.g.,

greenhouse = greenhouse + green + house, (24)

where the italicized elements represent learned em-
beddings.

494

We build a baseline that is closely inspired by this
approach, which we call SUMEMBED. The key differ-
ence is that while Botha and Blunsom (2014) build on
the log-bilinear language model (Mnih and Hinton,
2007), we use the same LSTM-based architecture as
in our own model implementation. This enables our
evaluation to focus on the critical difference between
the two approaches: the use of latent variables rather
than summation to model the word embeddings. As
with our method, we used pre-trained word2vec
embeddings to initialize the model.

3.4 Number of parameters

The dominant terms in the overall number of parame-
ters are the (expected) word embeddings themselves.
The variational parameters of the input word em-
beddings, γ, are of size k × vw. The output word
embeddings are of size #|h| × vw. The morpheme
embeddings are of size k × vm, with vm � vw. In
our main experiments, we set vw = 48, 896 (see
above), k = 128, and #|h| = 128. After including
the character embeddings and the parameters of the
recurrent models, the total number of parameters is
roughly 12.8 million. This is identical to number of
parameters in the SUMEMBED baseline.

4 Evaluation

Our evaluation compares the following embeddings:

WORD2VEC We train the popular word2vec
CBOW (continuous bag of words)
model (Mikolov et al., 2013), using the
gensim implementation.

SUMEMBED We compare against the baseline de-
scribed in § 3.3, which can be viewed as a
reimplementation of the compositional model
of Botha and Blunsom (2014).

VAREMBED For our model, we take the expected
embeddings Eq[b], and then pass them through
an inverse sigmoid function to obtain values
over the entire real line.

4.1 Word similarity

Our first evaluation is based on two classical word
similarity datasets: Wordsim353 (Finkelstein et al.,

2001) and the Stanford “rare words” (rw) dataset (Lu-
ong et al., 2013). We report Spearmann’s ρ, a mea-
sure of rank correlation, evaluating on both the entire
vocabulary as well as the subset of in-vocabulary
words.

As shown in Table 1, VAREMBED consistently
outperforms SUMEMBED on both datasets. On the
subset of in-vocabulary words, WORD2VEC gives
slightly better results on the wordsim words that are
in the NANT vocabulary, but is not applicable to
the complete dataset. On the rare words dataset,
WORD2VEC performs considerably worse than both
morphology-based models, matching the findings of
Luong et al. (2013) and Botha and Blunsom (2014)
regarding the importance of morphology for doing
well on this dataset.

4.2 Alignment with lexical semantic features

Recent work questions whether these word similar-
ity metrics are predictive of performance on down-
stream tasks (Faruqui et al., 2016). The QVEC statis-
tic is another intrinsic evaluation method, which has
been shown to be better correlated with downstream
tasks (Tsvetkov et al., 2015). This metric measures
the alignment between word embeddings and a set
of lexical semantic features. Specifically, we use the
semcor noun verb supersenses oracle provided at the
qvec github repository.2

As shown in Table 2, VAREMBED outperforms
SUMEMBED on the full lexicon, and gives simi-
lar performance to WORD2VEC on the set of in-
vocabulary words. We also consider the morpheme
embeddings alone. For SUMEMBED, this means that
we construct the word embedding from the sum of
the embeddings for its morphemes, without the ad-
ditional embedding per word. For VAREMBED, we
use the expected embedding under the prior distribu-
tion E[b | c]. The results for these representations
are shown in the bottom half of Table 2, revealing
that VAREMBED learns much more meaningful em-
beddings at the morpheme level, while much of the
power of SUMEMBED seems to come from the word
embeddings.

2https://github.com/ytsvetko/qvec

495

WORD2VEC SUMEMBED VAREMBED

Wordsim353
all words (353) n/a 42.9 48.8
in-vocab (348) 51.4 45.9 51.3

rare words (rw)
all words (2034) n/a 23.0 24.0
in-vocab (715) 33.6 37.3 44.1

Table 1: Word similarity evaluation results, as measured by Spearmann’s ρ× 100. WORD2VEC cannot be evaluated on all words,

because embeddings are not available for out-of-vocabulary words. The total number of words in each dataset is indicated in

parentheses.

all words
(4199)

in vocab
(3997)

WORD2VEC n/a 34.8
SUMEMBED 32.8 33.5
VAREMBED 33.6 34.7

morphemes only
SUMEMBED 24.7 25.1
VAREMBED 30.2 31.0

Table 2: Alignment with lexical semantic features, as measured

by QVEC. Higher scores are better, with a maximum possible

score of 100.

4.3 Part-of-speech tagging

Our final evaluation is on the downstream task of
part-of-speech tagging, using the Penn Treebank.
We build a simple classification-based tagger, us-
ing a feedforward neural network. (This is not in-
tended as an alternative to state-of-the-art tagging
algorithms, but as a comparison of the syntactic
utility of the information encoded in the word em-
beddings.) The inputs to the network are the con-
catenated embeddings of the five word neighbor-
hood (xt−2, xt−1, xt, xt+1, xt+2); as in all evalua-
tions, 128-dimensional embeddings are used, so the
total size of the input is 640. This input is fed into
a network with two hidden layers of size 625, and
a softmax output layer over all tags. We train using
RMSProp (Tieleman and Hinton, 2012).

Results are shown in Table 3. Both
morphologically-informed embeddings are
significantly better to WORD2VEC (p < .01,
two-tailed binomial test), but the difference between
SUMEMBED and VAREMBED is not significant

dev test

WORD2VEC 92.42 92.40
SUMEMBED 93.26 93.26
VAREMBED 93.05 93.09

Table 3: Part-of-speech tagging accuracies

0-100 100-1000 1000-10000 10000-100000
word frequency in NANT

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

er
ro

r r
at

e

embedding
VarEmbed
SumEmbed
Word2Vec

Figure 2: Error rates by word frequency.

at p < .05. Figure 2 breaks down the errors by
word frequency. As shown in the figure, the tagger
based on WORD2VEC performs poorly for rare
words, which is expected because these embeddings
are estimated from sparse distributional statistics.
SUMEMBED is slightly better on the rarest words
(the 0 − 100 group accounts for roughly 10% of
all tokens). In this case, it appears that this simple
additive model is better, since the distributional
statistics are too sparse to offer much improvement.
The probabilistic VAREMBED embeddings are
best for all other frequency groups, showing that it
effectively combines morphology and distributional
statistics.

5 Related work

Adding side information to word embeddings
An alternative approach to incorporating additional

496

information into word embeddings is to constrain the
embeddings of semantically-related words to be sim-
ilar. Such work typically draws on existing lexical
semantic resources such as WordNet. For example,
Yu and Dredze (2014) define a joint training objec-
tive, in which the word embedding must predict not
only neighboring word tokens in a corpus, but also
related word types in a semantic resource; a similar
approach is taken by Bian et al. (2014). Alternatively,
Faruqui et al. (2015) propose to “retrofit” pre-trained
word embeddings over a semantic network. Both
retrofitting and our own approach treat the true word
embeddings as latent variables, from which the pre-
trained word embeddings are stochastically emitted.
However, a key difference from our approach is that
the underlying representation in these prior works is
relational, and not generative. These methods can
capture similarity between words in a relational lex-
icon such as WordNet, but they do not offer a gen-
erative account of how (approximate) meaning is
constructed from orthography or morphology.

Word embeddings and morphology The
SUMEMBED baseline is based on the work of Botha
and Blunsom (2014), in which words are segmented
into morphemes using MORFESSOR (Creutz and
Lagus, 2002), and then word representations are
computed through addition of morpheme represen-
tations. A key modeling difference from this prior
work is that rather than computing word embeddings
directly and deterministically from subcomponent
embeddings (morphemes or characters, as in (Ling
et al., 2015; Kim et al., 2016)), we use these
subcomponents to define a prior distribution, which
can be overridden by distributional statistics for
common words. Other work exploits morphology
by training word embeddings to optimize a joint
objective over distributional statistics and rich,
morphologically-augmented part of speech tags (Cot-
terell and Schütze, 2015). This can yield better word
embeddings, but does not provide a way to compute
embeddings for unseen words, as our approach does.

Recent work by Cotterell et al. (2016) extends the
idea of retrofitting, which was based on semantic
similarity, to a morphological framework. In this
model, embeddings are learned for morphemes as
well as for words, and each word embedding is con-
ditioned on the sum of the morpheme embeddings,

using a multivariate Gaussian. The covariance of this
Gaussian prior is set to the inverse of the number of
examples in the training corpus, which has the effect
of letting the morphology play a larger role for rare
or unseen words. Like all retrofitting approaches, this
method is applied in a pipeline fashion after training
word embeddings on a large corpus; in contrast, our
approach is a joint model over the morphology and
corpus. Another practical difference is that Cotterell
et al. (2016) use gold morphological features, while
we use an automated morphological segmentation.

Latent word embeddings Word embeddings are
typically treated as a parameter, and are optimized
through point estimation (Bengio et al., 2003; Col-
lobert and Weston, 2008; Mikolov et al., 2010). Cur-
rent models use word embeddings with hundreds or
even thousands of parameters per word, yet many
words are observed only a handful of times. It is
therefore natural to consider whether it might be
beneficial to model uncertainty over word embed-
dings. Vilnis and McCallum (2014) propose to model
Gaussian densities over dense vector word embed-
dings. They estimate the parameters of the Gaussian
directly, and, unlike our work, do not consider us-
ing orthographic information as a prior distribution.
This is easy to do in the latent binary framework
proposed here, which is also a better fit for some the-
oretical models of lexical semantics (Katz and Fodor,
1963; Reisinger et al., 2015). This view is shared by
Kruszewski et al. (2015), who induce binary word
representations using labeled data of lexical seman-
tic entailment relations, and by Henderson and Popa
(2016), who take a mean field approximation over
binary representations of lexical semantic features to
induce hyponymy relations.

More broadly, our work is inspired by recent ef-
forts to combine directed graphical models with dis-
criminatively trained “deep learning” architectures.
The variational autoencoder (Kingma and Welling,
2014), neural variational inference (Mnih and Gregor,
2014; Miao et al., 2016), and black box variational
inference (Ranganath et al., 2014) all propose to use
a neural network to compute the variational approx-
imation. These ideas are employed by Chung et al.
(2015) in the variational recurrent neural network,
which places a latent continuous variable at each time
step. In contrast, we have a dictionary of latent vari-

497

ables — the word embeddings — which introduce
uncertainty over the hidden state ht in a standard re-
current neural network or LSTM. We train this model
by employing a mean field approximation, but these
more recent techniques for neural variational infer-
ence may also be applicable. We plan to explore this
possibility in future work.

6 Conclusion and future work

We present a model that unifies compositional
and distributional perspectives on lexical semantics,
through the machinery of Bayesian latent variable
models. In this framework, our prior expectations
of word meaning are based on internal structure, but
these expectations can be overridden by distributional
statistics. The model is based on the very successful
long-short term memory (LSTM) for sequence mod-
eling, and while it employs a Bayesian justification,
its inference and estimation are little more compli-
cated than a standard LSTM. This demonstrates the
advantages of reasoning about uncertainty even when
working in a “neural” paradigm.

This work represents a first step, and we see many
possibilities for improving performance by extending
it. Clearly we would expect this model to be more ef-
fective in languages with richer morphological struc-
ture than English, and we plan to explore this possi-
bility in future work. From a modeling perspective,
our prior distribution merely sums the morpheme em-
beddings, but a more accurate model might account
for sequential or combinatorial structure, through
a recurrent (Ling et al., 2015), recursive (Luong et
al., 2013), or convolutional architecture (Kim et al.,
2016). There appears to be no technical obstacle
to imposing such structure in the prior distribution.
Furthermore, while we build the prior distribution
from morphemes, it is natural to ask whether char-
acters might be a better underlying representation:
character-based models may generalize well to non-
word tokens such as names and abbreviations, they
do not require morphological segmentation, and they
require a much smaller number of underlying em-
beddings. On the other hand, morphemes encode
rich regularities across words, which may make a
morphologically-informed prior easier to learn than
a prior which works directly at the character level.
It is possible that this tradeoff could be transcended

by combining characters and morphemes in a single
model.

Another advantage of latent variable models is that
they admit partial supervision. If we follow Tsvetkov
et al. (2015) in the argument that word embeddings
should correspond to lexical semantic features, then
an inventory of such features could be used as a
source of partial supervision, thus locking dimen-
sions of the word embeddings to specific semantic
properties. This would complement the graph-based
“retrofitting” supervision proposed by Faruqui et al.
(2015), by instead placing supervision at the level of
individual words.

Acknowledgments

Thanks to Erica Briscoe, Martin Hyatt, Yangfeng Ji,
Bryan Leslie Lee, and Yi Yang for helpful discussion
of this work. Thanks also the EMNLP reviewers for
constructive feedback. This research is supported by
the Defense Threat Reduction Agency under award
HDTRA1-15-1-0019.

References
Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Janvin. 2003. A neural probabilistic language
model. The Journal of Machine Learning Research,
3:1137–1155.

Yoshua Bengio, Aaron Courville, and Pascal Vincent.
2013. Representation learning: A review and new per-
spectives. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(8):1798–1828.

Jiang Bian, Bin Gao, and Tie-Yan Liu. 2014. Knowledge-
powered deep learning for word embedding. In
Machine Learning and Knowledge Discovery in
Databases, pages 132–148. Springer.

Jan A Botha and Phil Blunsom. 2014. Compositional mor-
phology for word representations and language mod-
elling. In Proceedings of the International Conference
on Machine Learning (ICML).

Peter F Brown, Peter V Desouza, Robert L Mercer, Vin-
cent J Della Pietra, and Jenifer C Lai. 1992. Class-
based n-gram models of natural language. Computa-
tional linguistics, 18(4):467–479.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural networks.
In Proceedings of Empirical Methods for Natural Lan-
guage Processing (EMNLP), pages 740–750.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,

498

and Yoshua Bengio. 2014. Learning phrase representa-
tions using rnn encoder-decoder for statistical machine
translation. In Proceedings of Empirical Methods for
Natural Language Processing (EMNLP).

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth
Goel, Aaron Courville, and Yoshua Bengio. 2015.
A recurrent latent variable model for sequential data.
In Neural Information Processing Systems (NIPS),
Montréal.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of the International Conference on Machine Learning
(ICML), pages 160–167.

Ryan Cotterell and Hinrich Schütze. 2015. Morpho-
logical word-embeddings. In Proceedings of the North
American Chapter of the Association for Computational
Linguistics (NAACL), Denver, CO, May.

Ryan Cotterell, Hinrich Schütze, and Jason Eisner. 2016.
Morphological smoothing and extrapolation of word
embeddings. In Proceedings of the Association for
Computational Linguistics (ACL), Berlin, August.

Mathias Creutz and Krista Lagus. 2002. Unsuper-
vised discovery of morphemes. In Proceedings of the
ACL-02 workshop on Morphological and phonologi-
cal learning-Volume 6, pages 21–30. Association for
Computational Linguistics.

João FG de Freitas, Mahesan Niranjan, Andrew H. Gee,
and Arnaud Doucet. 2000. Sequential monte carlo
methods to train neural network models. Neural com-
putation, 12(4):955–993.

David Dowty. 1991. Thematic proto-roles and argument
selection. Language, pages 547–619.

Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris Dyer,
Eduard Hovy, and Noah A Smith. 2015. Retrofitting
word vectors to semantic lexicons. In Proceedings
of the North American Chapter of the Association for
Computational Linguistics (NAACL), Denver, CO, May.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi,
and Chris Dyer. 2016. Problems with evaluation of
word embeddings using word similarity tasks. arxiv,
1605.02276.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud
Rivlin, Zach Solan, Gadi Wolfman, and Eytan Ruppin.
2001. Placing search in context: The concept revisited.
In WWW, pages 406–414. ACM.

David Graff. 1995. North american news text corpus.
Morris Halle and Alec Marantz. 1993. Distributed mor-

phology and the pieces of inflection. In Kenneth L.
Hale and Samuel J. Keyser, editors, The view from
building 20. MIT Press, Cambridge, MA.

James Henderson and Diana Nicoleta Popa. 2016. A
vector space for distributional semantics for entailment.

In Proceedings of the Association for Computational
Linguistics (ACL), Berlin, August.

Jerrold J Katz and Jerry A Fodor. 1963. The structure of
a semantic theory. Language, pages 170–210.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Proceedings of the National Conference on
Artificial Intelligence (AAAI).

Diederik P Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In Proceedings of the In-
ternational Conference on Learning Representations
(ICLR).

German Kruszewski, Denis Paperno, and Marco Baroni.
2015. Deriving boolean structures from distributional
vectors. Transactions of the Association for Computa-
tional Linguistics, 3:375–388.

Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernandez
Astudillo, Silvio Amir, Chris Dyer, Alan W Black, and
Isabel Trancoso. 2015. Finding function in form: Com-
positional character models for open vocabulary word
representation. In Proceedings of Empirical Methods
for Natural Language Processing (EMNLP), Lisbon,
September.

Minh-Thang Luong, Richard Socher, and Christopher D
Manning. 2013. Better word representations with
recursive neural networks for morphology. In Pro-
ceedings of the Conference on Computational Natural
Language Learning (CoNLL).

Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural vari-
ational inference for text processing. In Proceedings
of the International Conference on Machine Learning
(ICML).

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. In INTERSPEECH,
pages 1045–1048.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems,
pages 3111–3119.

Andriy Mnih and Karol Gregor. 2014. Neural varia-
tional inference and learning in belief networks. In
Proceedings of the International Conference on Ma-
chine Learning (ICML), pages 1791–1799.

Andriy Mnih and Geoffrey Hinton. 2007. Three new
graphical models for statistical language modelling. In
Proceedings of the International Conference on Ma-
chine Learning (ICML).

Rajesh Ranganath, Sean Gerrish, and David Blei. 2014.
Black box variational inference. In Proceedings of
the Seventeenth International Conference on Artificial
Intelligence and Statistics, pages 814–822.

499

Drew Reisinger, Rachel Rudinger, Francis Ferraro, Craig
Harman, Kyle Rawlins, and Benjamin Van Durme.
2015. Semantic proto-roles. Transactions of the Asso-
ciation for Computational Linguistics, 3:475–488.

Cicero D. Santos and Bianca Zadrozny. 2014. Learning
character-level representations for part-of-speech tag-
ging. In Proceedings of the International Conference
on Machine Learning (ICML), pages 1818–1826.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. LSTM neural networks for language modeling.
In Proceedings of INTERSPEECH.

Tijman Tieleman and Geoffrey Hinton. 2012. Lecture 6.5:
Rmsprop. Technical report, Coursera Neural Networks
for Machine Learning.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guillaume
Lample, and Chris Dyer. 2015. Evaluation of word
vector representations by subspace alignment. In Pro-
ceedings of Empirical Methods for Natural Language
Processing (EMNLP), Lisbon, September.

Bart van Merriënboer, Dzmitry Bahdanau, Vincent Du-
moulin, Dmitriy Serdyuk, David Warde-Farley, Jan
Chorowski, and Yoshua Bengio. 2015. Blocks and fuel:
Frameworks for deep learning. CoRR, abs/1506.00619.

Luke Vilnis and Andrew McCallum. 2014. Word
representations via gaussian embedding. CoRR,
abs/1412.6623.

Martin J. Wainwright and Michael I. Jordan. 2008. Graph-
ical models, exponential families, and variational infer-
ence. Foundations and Trends in Machine Learning,
1(1-2):1–305.

Mo Yu and Mark Dredze. 2014. Improving lexical em-
beddings with semantic knowledge. In Proceedings of
the Association for Computational Linguistics (ACL),
pages 545–550, Baltimore, MD.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329.

George Kingsley Zipf. 1949. Human behavior and the
principle of least effort. Addison-Wesley.

500

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 501–510,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Automatic Cross-Lingual Similarization of Dependency Grammars
for Tree-based Machine Translation

Wenbin Jiang 1 and Wen Zhang 1 and Jinan Xu 2 and Rangjia Cai 3

1Key Laboratory of Intelligent Information Processing
Institute of Computing Technology, Chinese Academy of Sciences, China

2School of Computer and Information Technology, Beijing Jiaotong University, China
3Research Center of Tibetan Information, Qinghai Normal University, China

jiangwenbin@ict.ac.cn

Abstract

Structural isomorphism between languages
benefits the performance of cross-lingual ap-
plications. We propose an automatic al-
gorithm for cross-lingual similarization of
dependency grammars, which automatically
learns grammars with high cross-lingual sim-
ilarity. The algorithm similarizes the an-
notation styles of the dependency grammars
for two languages in the level of classifica-
tion decisions, and gradually improves the
cross-lingual similarity without losing linguis-
tic knowledge resorting to iterative cross-
lingual cooperative learning. The dependency
grammars given by cross-lingual similariza-
tion have much higher cross-lingual similar-
ity while maintaining non-triviality. As appli-
cations, the cross-lingually similarized gram-
mars significantly improve the performance of
dependency tree-based machine translation.

1 Introduction

Due to the inherent syntactic regularity of each
language and the discrepancy between annotation
guidelines of linguists, there is not necessarily struc-
tural isomorphism between grammars of different
languages. For many cross-lingual scenarios such
as information retrieval and machine translation, re-
lationships between linguistic units are expected to
be (at least roughly) consistent across languages
(Hwa et al., 2002; Smith and Eisner, 2009). For
cross-lingual applications, syntactic structures with
high cross-lingual similarity facilitates knowledge
extraction, feature representation and classification

decision. The structural isomorphism between lan-
guages, therefore, is an important aspect for the per-
formance of cross-lingual applications such as ma-
chine translation.

To achieve effective cross-lingual similarization
for two grammars in different languages, an ad-
equate algorithm should both improve the cross-
lingual similarity between two grammars and main-
tain the non-triviality of each grammar, where non-
triviality indicates that the resulted grammars should
not give flat or single-branched outputs. Differ-
ent from constituency structures, dependency struc-
tures are lexicalized without specialized hierarchical
structures. Such concise structures depict the syn-
tactic or semantic relationships between words, and
thus have advantage on many cross-lingual scenar-
ios. It is worth to perform cross-lingual similariza-
tion for dependency grammars, but the special prop-
erty of dependency grammars makes it hard to di-
rectly adopt the conventional structure transforma-
tion methods resorting to hand-crafted rules or tem-
plates.

Both graph-based models (McDonald et al.,
2005) and transition-based models (Nivre et al.,
2006) factorize dependency parsing into fundamen-
tal classification decisions, that is, the relation-
ships between words or the actions applied to cur-
rent states. We assume that cross-lingual simi-
larization can also be factorized into fundamen-
tal classification decisions, and propose an au-
tomatic cross-lingual similarization algorithm for
dependency grammars according to this assump-
tion. The algorithm conducts cross-lingual sim-
ilarization on the level of classification decisions

501

with simple blending operations rather than on the
level of syntactic structures with complicated hand-
crafted rules or templates, and adopts iterative cross-
lingual collaborative learning to gradually improve
the cross-lingual similarity while maintaining the
non-triviality of grammars.

We design an evaluation metric for the cross-
lingual similarity of dependency grammars, which
calculates the consistency degree of dependency re-
lationships across languages. We also propose an
effective method to measure the real performance of
the cross-lingually similarized grammars based on
the transfer learning methodology (Pan and Yang,
2010). We validate the method on the dependency
grammar induction of Chinese and English, where
significant increment of cross-lingual similarity is
achieved without losing non-triviality of the gram-
mars. As applications, the cross-lingually simi-
larized grammars gain significant performance im-
provement for the dependency tree-based machine
translation by simply replacing the parser of the
translator.

2 Graph-based Dependency Parsing

Dependency parsing aims to link each word to its
arguments so as to form a directed graph spanning
the whole sentence. Normally the directed graph is
restricted to a dependency tree where each word de-
pends on exactly one parent, and all words find their
parents. Given a sentence as a sequence n words:

x = x1 x2 .. xn

dependency parsing finds a dependency tree y,
where (i, j) ∈ y is an edge from the head word xi
to the modifier word xj . The root r ∈ x in the tree
y has no head word, and each of the other words,
j(j ∈ x and j 6= r), depends on a head word
i(i ∈ x and i 6= j).

Following the edge-based factorization method
(Eisner, 1996), the score of a dependency tree can be
factorized into the dependency edges in the tree. The
graph-based method (McDonald et al., 2005) factor-
izes the score of the tree as the sum of the scores of
all its edges, and the score of an edge is defined as
the inner product of the feature vector and the weight
vector. Given a sentence x, the parsing procedure
searches for the candidate dependency tree with the

maximum score:

y(x) = argmax
y∈GEN(x)

S(y)

= argmax
y∈GEN(x)

∑

(i,j)∈y
S(i, j)

(1)

Here, the function GEN indicates the enumer-
ation of candidate trees. The MIRA algorithm
(Crammer et al., 2003) is used to train the parameter
vector. A bottom-up dynamic programming algo-
rithm is designed for projective parsing which gives
projective parsing trees, and the Chu-Liu-Edmonds
algorithm for non-projective parsing which gives
non-projective parsing trees.

3 Cross-Lingual Similarization

Since structural analysis can be factorized into fun-
damental classification decisions, we assume that
the adjustment of the analysis results can be fac-
torized into the adjustment of the fundamental de-
cisions. The classification decision for graph-based
dependency parsing is to classify the dependency re-
lationship between each pair of words, and we hope
it works well to conduct cross-lingual similariza-
tion on the level of dependency relationship classifi-
cation. In this work, we investigate the automatic
cross-lingual similarization for dependency gram-
mars on the level of fundamental classification de-
cisions, to avoid the difficulty of using hand-crafted
transformation rules or templates.

In this section, we first introduce the evalua-
tion metric for cross-lingual similarity, then describe
the automatic cross-lingual similarization algorithm,
and finally give a method to measure the real perfor-
mance of the cross-lingually similarized grammars.

3.1 Evaluation of Cross-Lingual Similarity

The cross-lingual similarity between two depen-
dency structures can be automatically evaluated.
Dependency parsing is conducted on sentences, so
we take bilingual sentence pairs as the objects for
evaluation. The calculation of cross-lingual similar-
ity needs the lexical alignment information between
two languages, which can be obtained by manual an-
notation or unsupervised algorithms.

Given a bilingual sentence pair xα and xβ , their
dependency structures yα and yβ , and the word

502

alignment probabilities A, the cross-lingual similar-
ity can be calculated as below:

d(yα, yβ) =

∑
(i,j)∈yα

∑
(i′,j′)∈yβ Ai,i′Aj,j′∑

(i,j)∈yα
∑

i′,j′∈xβ Ai,i′Aj,j′
(2)

The bracketed word pair indicates a dependency
edge. The evaluation metric is a real number be-
tween 0 and 1, indicating the degree of cross-
lingual consistency between two dependency struc-
tures. For the cross-lingual similarity between bilin-
gual paragraphs, we simply define it as the average
over the similarity between each sentence pairs.

3.2 Factorized Cooperative Similarization
The fundamental decisions for graph-based depen-
dency parsing are to evaluate the candidate depen-
dency edges. The cross-lingual similarization for
fundamental decisions can be defined as some kinds
of blending calculation on two evaluation scores,
of which the one is directly given by the grammar
of the current language (current grammar), and the
other is bilingually projected from the grammar of
the reference language (reference grammar).

For the words i and j in the sentence xα in the
current language, their evaluated score given by the
current grammar is Sα(i, j), which can be calculated
according to formula 1. The score bilingually pro-
jected from the reference grammar, Sβ(i, j), can be
obtained according to the translation sentence xβ in
the reference language and the word alignment be-
tween two sentences:

Sβ(i, j) =
∑

i′,j′∈xβ
Ai,i′Aj,j′Sβ(i′, j′) (3)

where i′ and j′ are the corresponding words of i and
j in the reference sentence xβ , Ai,j indicates the
probability that i aligns to j, and Sβ(i

′, j′) is the
evaluated score of the candidate edge (i′, j′) given
by the reference grammar.

Given the two evaluated scores, we simply adopt
the linear weighted summation:

Sβα(i, j) = (1− λ)Sα(i, j) + λSβ(i, j) (4)

where λ is the relative weight to control the degree
of cross-lingual similarization, indicating to which
degree we consider the decisions of the reference

grammar when adjusting the decisions of the current
grammar. We have to choose a value for λ to achieve
an appropriate speed for effective cross-lingual sim-
ilarization, in order to obtain similarized grammars
with high cross-lingual similarity while maintaining
the non-triviality of the grammars.

In the re-evaluated full-connected graph, the de-
coding algorithm searches for the cross-lingually
similarized dependency structures, which are used
to re-train the dependency grammars. Based on the
cross-lingual similarization strategy, iterative coop-
erative learning simultaneously similarizes the sen-
tences in the current and reference languages, and
gradually improves the cross-lingual similarity be-
tween two grammars while maintaining the non-
triviality of each monolingual grammar. The whole
training algorithm is shown in Algorithm 1. To
reduce the computation complexity, we choose the
same λ for the cross-lingual similarization for both
the current and the reference grammars. Another
hyper-parameter for the iterative cooperative learn-
ing algorithm is the maximum training iteration,
which can be determined according to the perfor-
mance on the development sets.

3.3 Evaluation of Similarized Grammars

The real performance of a cross-lingually similar-
ized grammar is hard to directly measured. The ac-
curacy on the standard testing sets no longer reflects
the actrual accuracy, since cross-lingual similariza-
tion leads to grammars with annotation styles differ-
ent from those of the original treebanks. We adopt
the transfer learning strategy to automatically adapt
the divergence between different annotation styles,
and design a transfer classifier to transform the de-
pendency regularities from one annotation style to
another.

The training procedure of the transfer classifier is
analogous to the training of a normal classifier ex-
cept for the features. The transfer classifier adopts
guiding features where a guiding signal is attached
to the tail of each normal feature. The guiding sig-
nal is the dependency path between the pair of words
in the source annotations, as shown in Figure 2.
Thus, the transfer classifier learns the statistical reg-
ularity of the transformation from the annotations of
the cross-lingually similarized grammar to the an-
notations of the original treebank. Figure 1 shows

503

Algorithm 1 Cooperative cross-lingual similarization.
1: function BISIMILARIZE(Gα, Gβ , λ, C) . C includes a set of sentence pairs (xα, xβ)
2: repeat
3: Tα,Tβ ← BIANNOTATE(Gα,Gβ, λ,C) . it invokes BIPARSE to parse each (xα, xβ)
4: Gα ← GRAMMARTRAIN(Tα)
5: Gβ ← GRAMMARTRAIN(Tβ)
6: until SIMILARITY(Gα,Gβ) converges . according to formula 2, averaged across C
7: return Gα, Gβ

8: function BIPARSE(Gα, Gβ , λ, xα, xβ , A)
9: yα ← argmaxy(1− λ)Sα(y) + λSβ(y) . according to formula 4

10: yβ ← argmaxy(1− λ)Sβ(y) + λSα(y)
11: return yα, yβ

source corpus

train with
normal features

source classifier

train with
guiding features

transfer classifier

target corpus transformed
target corpus

Figure 1: The training procedure of the transfer classifier.

the training pipeline for the transfer classifier, where
source corpus and target corpus indicate the cross-
lingually similarized treebank and the manually an-
notated treebank, respectively.

In decoding, a sentence is first parsed by
the cross-lingually similarized grammar, and then
parsed by the transfer classifier with the result of
the similarized grammar as guiding signals to obtain
the final parsing results. The improvement achieved
by the transfer classifier against a normal classifier
trained only on the original treebank reflects the
promotion effect of the cross-lingually similarized
grammar. The accuracy of the transfer classifier,
therefore, roughly indicates the real performance of
the cross-lingually similarized grammar.

Figure 2: The guiding signal for dependency parsing, where

path(i, j) denotes the dependency path between i and j. In this

example, j is a son of the great-grandfather of i.

4 Tree-based Machine Translation

Syntax-based machine translation investigates the
hierarchical structures of natural languages, includ-
ing formal structures (Chiang, 2005), constituency
structures (Galley et al., 2006; Liu et al., 2006;
Huang et al., 2006; Mi et al., 2008) and dependency
structures (Lin, 2004; Quirk et al., 2005; Ding and
Palmer, 2005; Xiong et al., 2007; Shen et al., 2008;
Xie et al., 2011), so the performance is restricted to
the quality and suitability of the parsers. Since the
trees for training follow an annotation style not nec-
essarily isomorphic to that of the target language, it
would be not appropriate for syntax-based transla-
tion to directly use the parsers trained on the origi-
nal treebanks. The cross-lingually similarized gram-
mars, although performing poorly on a standard test-
ing set, may be well suitable for syntax-based ma-
chine translation. In this work, we use the cross-
lingually similarized dependency grammars in de-
pendency tree-to-string machine translation (Xie et
al., 2011), a state-of-the-art translation model resort-
ing to dependency trees on the source side.

504

Treebank Train Develop Test
1-270

CTB 400-931 301-325 271-300
1001-1151

WSJ 02-21 22 23
Table 1: Data partitioning for CTB and WSJ, in unit of section.

5 Experiments and Analysis

We first introduce the dependency parsing itself,
then describe the cross-lingual similarization, and
finally show the application of cross-lingually simi-
larized grammars in tree-based machine translation.
For convenience of description, a grammar trained
by the conventional dependency model is named
as original grammar, a grammar after cross-lingual
similarization is named as similarized grammar, and
the transferred version for a similarized grammar is
named as adapted grammar.

5.1 Dependency Parsing

We take Chinese dependency parsing as a case study,
and experiment on Penn Chinese Treebank (CTB)
(Xue et al., 2005). The dependency structures are
extracted from the original constituency trees ac-
cording to the head-selection rules (Yamada and
Matsumoto, 2003). The partitioning of the dataset
is listed in the Table 1, where we also give the parti-
tioning of Wall Street Journal (WSJ) (Marcus et al.,
1993) used to train the English grammar. The eval-
uation metric for dependency parsing is unlabeled
accuracy, indicating the proportion of the words cor-
rectly finding their parents. The MIRA algorithm is
used to train the classifiers.

Figure 3 gives the performance curves on the de-
velopment set with two searching modes, projective
searching and non-projective searching. The curves
show that the non-projective searching mode fall be-
hind of the projective one, this is because the depen-
dency structures extracted from constituency trees
are projective, and the projective search mode im-
plies appropriate constraints on the searching space.
Therefore, we use the projective searching mode for
the evaluation of the original grammar. Table 2 lists
the performance of the original grammar on the CTB
testing set.

1 2 3 4 5 6 7 8 9 10
training iteration

83

84

85

86

87

88

d
e
p
e
n
d
e
n
cy

 a
cc
u
ra
cy

projective parsing
non-projective parsing

Figure 3: The developing curves of Chinese dependency pars-

ing with both projective and non-projective searching modes.

5.2 Cross-Lingual Similarization

The experiments of cross-lingual similarization are
conducted between Chinese and English, with FBIS
Chinese-English dataset as bilingual corpus. The
Chinese sentences are segmented into words with
the character classification model (Ng and Low,
2004), which is trained by MIRA on CTB. The word
sequences of both languages are labeled with part-
of-speech tags with the maximum entropy hidden
markov model (Ratnaparkhi and Adwait, 1996),
which is reimplemented with MIRA and trained on
CTB and WSJ. The word alignment information is
obtained by summing and normalizing the 10 best
candidate word alignment results of GIZA++ (Och
and Ney, 2003).

The upmost configuration for cross-lingual sim-
ilarization is the searching mode. On the Chinese
side, both projective and non-projective modes can
be adopted. For English, there is an additional
fixed mode besides the previous two. In the fixed
mode, the English dependency grammar remains un-
changed during the whole learning procedure. The
fixed mode on the English side means a degenerated
version of cross-lingual similarization, where only
the Chinese grammars are revolved during training.
The combination of the searching modes for both
languages results in a total of 6 kinds of searching
configurations. For each configuration, the learning
algorithm for cross-lingual similarization has two
hyper-parameters, the coefficient λ and maximum it-
eration for iterative learning, which should be tuned
first.

505

0 1 2 3 4 5 6 7 8 9 10

50

60

70

80

90
lambda = 0.1

35

40

45

50

55

60

65

0 1 2 3 4 5 6 7 8 9 10

50

60

70

80

90
lambda = 0.2

35

40

45

50

55

60

65

0 1 2 3 4 5 6 7 8 9 10

50

60

70

80

90
lambda = 0.3

35

40

45

50

55

60

65

0 1 2 3 4 5 6 7 8 9 10

50

60

70

80

90
lambda = 0.4

35

40

45

50

55

60

65

0 1 2 3 4 5 6 7 8 9 10

50

60

70

80

90
lambda = 0.5

35

40

45

50

55

60

65

0 1 2 3 4 5 6 7 8 9 10

50

60

70

80

90
lambda = 0.6

35

40

45

50

55

60

65

0 1 2 3 4 5 6 7 8 9 10

50

60

70

80

90
lambda = 0.7

35

40

45

50

55

60

65

0 1 2 3 4 5 6 7 8 9 10

50

60

70

80

90
lambda = 0.8

35

40

45

50

55

60

65

0 1 2 3 4 5 6 7 8 9 10

50

60

70

80

90
lambda = 0.9

35

40

45

50

55

60

65

Figure 4: The developing curves of cross-lingual similarization with projective searching on both languages. X-axis: training

iteration; Left Y-axis: parsing accuracy; Right Y-axis: cross-lingual similarity. Thin dash-dotted line (gray): accuracy of the

baseline grammar; Thin dashed line (green): direct accuracy of cross-lingually similarized grammars; Thin solid line (red): adaptive

accuracy of cross-lingually similarized grammars; Thick sold line (blue): the cross-lingual similarity of grammars.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50

60

70

80

90
proj : fixed

35

40

45

50

55

60

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50

60

70

80

90
proj : proj

35

40

45

50

55

60

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50

60

70

80

90
proj : nonproj

35

40

45

50

55

60

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50

60

70

80

90
nonproj : fixed

35

40

45

50

55

60

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50

60

70

80

90
nonproj : proj

35

40

45

50

55

60

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50

60

70

80

90
nonproj : nonproj

35

40

45

50

55

60

65

Figure 5: The developing curves of cross-lingual similarization with all searching configurations. X-axis: coefficient λ; Left

Y-axis: parsing accuracy; Right Y-axis: cross-lingual similarity. The lines indicate the same as in Figure 4.

506

5.2.1 Determination of Hyper-Parameters
We select a subset of 40,000 sentence pairs out

of the FBIS dataset, and use it as the smaller bilin-
gual corpus to tune the hyper-parameters. For the
coefficient λ we try from 0.1 to 0.9 with step 0.1;
and for the iterative learning we simply set the max-
imum iteration as 10. The developing procedure
results in a series of grammars. For the configura-
tion with projective searching modes on both sides,
a total of 90 pairs of Chinese and English gram-
mars are generated. We use three indicators to vali-
date each similarized grammar generated in the de-
veloping procedure, including the performance on
the similarized grammar itself (direct accuracy), the
performance of the corresponding adapted grammar
(adaptive accuracy), and the cross-lingual similar-
ity between the similarized grammar and its English
counterpart. Figure 4 shows the developing curves
for the configuration with projective searching on
both sides. With the fixed maximum iteration 10,
we draw the developing curves for the other search-
ing configurations with respect to the weight coeffi-
cient, as shown in Figure 5.

We find that the optimal performance is also
achieved at 0.6 in most situations. In all configu-
rations, the training procedures increase the cross-
lingual similarity of grammars. Along with the in-
crement of cross-lingual similarity, the direct accu-
racy of the similarized grammars on the develop-
ment set decreases, but the adaptive accuracy given
by the corresponding adapted grammars approach to
that of the original grammars. Note that the projec-
tive searching mode is adopted for the evaluation of
the adapted grammar.

5.2.2 Selection of Searching Modes
With the hyper-parameters given by the develop-

ing procedures, cross-lingual similarization is con-
ducted on the whole FBIS dataset. All the searching
mode configurations are tried and 6 pairs of gram-
mars are generated. For each of the 6 Chinese de-
pendency grammars, we also give the three indi-
cators as described before. Table 2 shows that,
cross-lingual similarization results in grammars with
much higher cross-lingual similarity, and the adap-
tive accuracies given by the adapted grammars ap-
proach to those of the original grammars. It indi-
cates that the proposed algorithm improve the cross-

lingual similarity without losing syntactic knowl-
edge.

To determine the best searching mode for tree-
based machine translation, we use the Chinese-
English FBIS dataset as the small-scale bilingual
corpus. A 4-gram language model is trained on
the Xinhua portion of the Gigaword corpus with
the SRILM toolkit (Stolcke and Andreas, 2002).
For the analysis given by non-projective similarized
grammars, The projective transformation should be
conducted in order to produce projective depen-
dency structures for rule extraction and translation
decoding. In details, the projective transformation
first traverses the non-projective dependency struc-
tures just as they are projective, then adjusts the or-
der of the nodes according to the traversed word se-
quences. We take NIST MT Evaluation testing set
2002 (NIST 02) for developing , and use the case-
sensitive BLEU (Papineni et al., 2002) to measure
the translation accuracy.

The last column of Table 2 shows the perfor-
mance of the grammars on machine translation. The
cross-lingually similarized grammars correspond-
ing to the configurations with projective searching
for Chinese always improve the translation perfor-
mance, while non-projective grammars always hurt
the performance. It probably can be attributed to
the low performance of non-projective parsing as
well as the inappropriateness of the simple projec-
tive transformation method. In the final application
in machine translation, we adopted the similarized
grammar corresponding to the configuration with
projective searching on the source side and non-
projective searching on the target side.

5.3 Improving Tree-based Translation

Our large-scale bilingual corpus for machine
translation consists of 1.5M sentence pairs from
LDC data, including LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06. The source sen-
tences are parsed by the original grammar and the
selected cross-lingually similarized grammar. The
alignments are obtained by running GIZA++ on the
corpus in both directions and applying grow-diag-
and refinement (Koehn et al., 2003). The English
language model is trained on the Xinhua portion of
the Gigaword corpus with the SRILM toolkit (Stol-

507

Grammar Similarity (%) Dep. P (%) Ada. P (%) BLEU-4 (%)
baseline 34.2 84.5 84.5 24.6
proj : fixed 46.3 54.1 82.3 25.8 (+1.2)

proj : proj 63.2 72.2 84.6 26.1 (+1.5)

proj : nonproj 64.3 74.6 84.7 26.2 (+1.6)

nonproj : fixed 48.4 56.1 82.6 20.1 (−4.5)
nonproj : proj 63.6 71.4 84.4 22.9 (−1.7)
nonproj : nonproj 64.1 73.9 84.9 20.7 (−3.9)

Table 2: The performance of cross-lingually similarized Chinese dependency grammars with different configurations.

System NIST 04 NIST 05
(Liu et al., 2006) 34.55 31.94
(Chiang, 2007) 35.29 33.22
(Xie et al., 2011) 35.82 33.62

Original Grammar 35.44 33.08
Similarized Grammar 36.78 35.12

Table 3: The performance of the cross-lingually similarized

grammar on dependency tree-based translation, compared with

related work.

cke and Andreas, 2002). We use NIST 02 as the
development set, and NIST 04 and NIST 05 as the
testing sets. The quality of translations is evaluated
by the case insensitive NIST BLEU-4 metric.

Table 3 shows the performance of the cross-
lingually similarized grammar on dependency tree-
based translation, compared with previous work
(Xie et al., 2011). We also give the performance of
constituency tree-based translation (Liu et al., 2006)
and formal syntax-based translation (Chiang, 2007).
The original grammar performs slightly worse than
the previous work in dependency tree-based trans-
lation, this can ascribed to the difference between
the implementation of the original grammar and the
dependency parser used in the previous work. How-
ever, the similarized grammar achieves very signif-
icant improvement based on the original grammar,
and also significant surpass the previous work. Note
that there is no other modification on the translation
model besides the replacement of the source parser.

From the perspective of performance improve-
ment, tree-to-tree translation would be a better sce-
nario to verify the effectiveness of cross-lingual
similarization. This is because tree-to-tree transla-
tion suffers from more serious non-isomorphism be-
tween the source and the target syntax structures,

and our method for cross-lingual similarization can
simultaneously similarize both the source and the
target grammars. For dependency-based translation,
however, there are no available tree-to-tree models
for us to verify this assumption. In the future, we
want to propose a specific tree-to-tree translation
method to better utilize the isomorphism between
cross-lingually similarized grammars.

6 Related Work

There are some work devoted to adjusting the syn-
tactic structures according to bilingual constraints to
improve constituency tree-based translation (Huang
and Knight, 2006; Ambati and Lavie, 2008; Wang
et al., 2010; Burkett and Klein, 2012; Liu et
al., 2012). These efforts concentrated on con-
stituency structures, adopted hand-crafted transfor-
mation templates or rules, and learnt the operation
sequences of structure transformation on the bilin-
gual corpora. Such methods are hard to be di-
rectly applied to dependency structures due to the
great discrepancy between constituency and depen-
dency grammars. There are also work on automati-
cally adjusting the syntactic structures for machine
translation resorting to self-training (Morishita et
al., 2015), where the parsed trees for self-training
are selected according to translation performance.
Our work focuses on the automatic cross-lingual
similarization of dependency grammars, and learnt
grammars with higher cross-lingual similarity while
maintaining the non-triviality of the grammars.

There are substantial efforts that have been made
in recent years towards harmonizing syntactic repre-
sentations across languages. This includes the Ham-
leDT project (Zeman et al., 2012; Zeman et al.,
2014), as well as the Universal Dependencies ini-
tiative (Petrov et al., 2012; McDonald et al., 2013).

508

Our work aims to automatically harmonize the de-
pendency representations resorting to bilingual cor-
respondence, thus can be grouped into the build-
ing strategies for harmonized or universal dependen-
cies. These existing annotated treebanks would also
permit interesting control experiments, both for the
measurement of similarity and for parsing.

7 Conclusion and Future Work

We propose an automatic cross-lingual similariza-
tion algorithm for dependency grammars, design an
automatic evaluation metric to measure the cross-
lingual similarity between grammars, and use the
similarized grammars to improve dependency tree-
based machine translation. Experiments show the
efficacy of this method. The cross-lingual similar-
ization in this paper is still soft similarization, it is
worth to investigate the hard similarization, where
the syntactic structures are totally isomorphic be-
tween two languages. Of course, in such syntactic
structures, the syntactic nodes should be super-node,
that is, a graph containing one or more basic syntac-
tic nodes. Hard similarization could be more suit-
able for cross-lingual applications, and we leave this
aspect for future research.

Acknowledgments

The authors are supported by National Natural Sci-
ence Foundation of China (Contract 61379086 and
61370130). Jiang is also supported by Open-end
Fund of the Platform of Research Database and In-
formation Standard of China (No. qhkj2015-01).
We sincerely thank the anonymous reviewers for
their insightful comments.

References
Vamshi Ambati and Alon Lavie. 2008. Improving syntax

driven translation models by re-structuring divergent
and non-isomorphic parse tree structures. In Proceed-
ings of Student Research Workshop of AMTA.

David Burkett and Dan Klein. 2012. Transforming trees
to improve syntactic convergence. In Proceedings of
EMNLP-CNLL.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proceedings of
the ACL.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, pages 201–228.

Koby Crammer, Ofer Dekel, Shai Shalev-Shwartz, and
Yoram Singer. 2003. Online passive aggressive algo-
rithms. In Proceedings of NIPS.

Yuan Ding and Martha Palmer. 2005. Machine trans-
lation using probabilistic synchronous dependency in-
sertion grammars. In Proceedings of the ACL.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Proceed-
ings of COLING, pages 340–345.

Michel Galley, Jonathan Graehl, Kevin Knight, and
Daniel Marcu. 2006. Scalable inference and training
of context-rich syntactic translation models. In Pro-
ceedings of the COLING-ACL.

Bryant Huang and Kevin Knight. 2006. Relabeling syn-
tax trees to improve syntax-based machine translation
quality. In Proceedings of NAACL.

Liang Huang, Kevin Knight, and Aravind Joshi. 2006.
Statistical syntax-directed translation with extended
domain of locality. In Proceedings of the AMTA.

Rebecca Hwa, Philip Resnik, Amy Weinberg, and Okan
Kolak. 2002. Evaluating translational correspondence
using annotation projection. In Proceedings of the
ACL.

Philipp Koehn, Franz Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proceedings of
NAACL.

Dekang Lin. 2004. A path-based transfer model for ma-
chine translation. In Proceedings of the COLING.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-to-
string alignment template for statistical machine trans-
lation. In Proceedings of the ACL.

Shujie Liu, Chi-Ho Li, Mu Li, and Ming Zhou. 2012.
Re-training monolingual parser bilingually for syntac-
tic smt. In Proceedings of EMNLP-CNLL.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of english: The penn treebank. In Computational
Linguistics.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005. Online large-margin training of dependency
parsers. In Proceedings of ACL, pages 91–98.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundagez, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar
Täckström, Claudia Bedini, Nuria Bertomeu Castello,
and Jungmee Leez. 2013. Universal dependency an-
notation for multilingual parsing. In Proceedings of
ACL.

Haitao Mi, Liang Huang, and Qun Liu. 2008. Forest-
based translation. In Proceedings of the ACL.

Makoto Morishita, Koichi Akabe, Yuto Hatakoshi, Gra-
ham Neubig, Koichiro Yoshino, and Satoshi Naka-
mura. 2015. Parser self-training for syntax-based ma-
chine translation. In Proceedings of IWSLT.

509

Hwee Tou Ng and Jin Kiat Low. 2004. Chinese part-of-
speech tagging: One-at-a-time or all-at-once? word-
based or character-based? In Proceedings of EMNLP.

Joakim Nivre, Johan Hall, Jens Nilsson, Gulsen Eryigit,
and Svetoslav Marinov. 2006. Labeled pseudoprojec-
tive dependency parsing with support vector machines.
In Proceedings of CoNLL, pages 221–225.

Franz Och and Hermann Ney. 2003. A systematic com-
parison of various statistical alignment models. Com-
putational Linguistics.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. IEEE TKDE.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
ACL.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. Proceedings of
LREC.

Chris Quirk, Arul Menezes, and Colin Cherry. 2005. De-
pendency treelet translation: Syntactically informed
phrasal smt. In Proceedings of the ACL.

Ratnaparkhi and Adwait. 1996. A maximum entropy
part-of-speech tagger. In Proceedings of the Empirical
Methods in Natural Language Processing Conference.

Libin Shen, Jinxi Xu, and Ralph Weischedel. 2008. A
new string-to-dependency machine translation algo-
rithm with a target dependency language model. In
Proceedings of ACL.

David Smith and Jason Eisner. 2009. Parser adaptation
and projection with quasi-synchronous grammar fea-
tures. In Proceedings of EMNLP.

Stolcke and Andreas. 2002. Srilm - an extensible lan-
guage modeling toolkit. In Proceedings of the Inter-
national Conference on Spoken Language Processing,
pages 311–318.

Wei Wang, Jonathan May, Kevin Knight, and Daniel
Marcu. 2010. Re-structuring, re-labeling, and re-
alignment for syntax-based machine translation. Com-
putational Linguistics.

Jun Xie, Haitao Mi, and Qun Liu. 2011. A novel
dependency-to-string model for statistical machine
translation. In Proceedings of EMNLP.

Deyi Xiong, Qun Liu, and Shouxun Lin. 2007. A depen-
dency treelet string correspondence model for statisti-
cal machine translation. In Proceedings of Workshop
on SMT.

Nianwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. In Natural Lan-
guage Engineering.

H Yamada and Y Matsumoto. 2003. Statistical depen-
dency analysis using support vector machines. In Pro-
ceedings of IWPT.

Daniel Zeman, David Mareček, Martin Popel, Lo-
ganathan Ramasamy, Jan Štěpánek, Jan Hajič, and
Zdeněk Žabokrtský. 2012. Hamledt: To parse or not
to parse?

Daniel Zeman, Ondřej Dušek, David Mareček, Martin
Popel, Loganathan Ramasamy, Jan Štěpánek, Zdeněk
Žabokrtský, and Jan Hajič. 2014. Hamledt: Harmo-
nized multi-language dependency treebank. Language
Resources & Evaluation.

510

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 511–520,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

IRT-based Aggregation Model of Crowdsourced Pairwise Comparisons
for Evaluating Machine Translations

Naoki Otani1 Toshiaki Nakazawa2 Daisuke Kawahara1 Sadao Kurohashi1
1Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, Japan

2Japan Science and Technology Agency, Kawaguchi-shi, Saitama, Japan
otani.naoki.65v@st.kyoto-u.ac.jp nakazawa@pa.jst.jp {dk,kuro}@i.kyoto-u.ac.jp

Abstract

Recent work on machine translation has used
crowdsourcing to reduce costs of manual eval-
uations. However, crowdsourced judgments
are often biased and inaccurate. In this pa-
per, we present a statistical model that ag-
gregates many manual pairwise comparisons
to robustly measure a machine translation
system’s performance. Our method applies
graded response model from item response
theory (IRT), which was originally developed
for academic tests. We conducted experi-
ments on a public dataset from the Workshop
on Statistical Machine Translation 2013, and
found that our approach resulted in highly in-
terpretable estimates and was less affected by
noisy judges than previously proposed meth-
ods.

1 Introduction

Manual evaluation is a primary means of interpret-
ing the performance of machine translation (MT)
systems and evaluating the accuracy of automatic
evaluation metrics. It is also essential for natural lan-
guage processing tasks such as summarization and
dialogue systems, where (1) the number of correct
outputs is unlimited, and (2) naı̈ve text matching
cannot judge the correctness, that is, an evaluator
must consider syntactic and semantic information.

Recent work has used crowdsourcing to reduce
costs of manual evaluations. However, the judg-
ments of crowd workers are often noisy and unre-
liable because they are not experts.

To maintain quality, evaluation tasks imple-
mented using crowdsourcing should be simple.

Thus, many previous studies focused on pairwise
comparisons instead of absolute evaluations. The
same task is given to multiple workers, and their re-
sponses are aggregated to obtain a reliable answer.

We must, therefore, develop methods that ro-
bustly estimate the MT performance based on many
pairwise comparisons.

Some aggregation methods have been proposed
for MT competitions hosted by the Workshop on
Statistical Machine Translation (WMT) (Bojar et al.,
2013; Hopkins and May, 2013; Sakaguchi et al.,
2014), where a ranking of the submitted systems is
produced by aggregating many manual judgments of
pairwise comparisons of system outputs.

However, existing methods do not consider the
following important issues.

Interpretability of the estimates: For the purpose
of evaluation, their results must be interpretable so
that we could use the results to improve MT systems
and the next MT evaluation campaigns. Existing
methods, however, only yield system-level scores.

Judge sensitivity: Some judges can examine the
quality of translations with consistent standards, but
others cannot (Graham et al., 2015). Sensitivities to
the translation quality and judges’ own standards are
important factors.

Evaluation of a newly submitted system: Pre-
vious approaches considered all pairwise combina-
tions of systems and must compare a newly sub-
mitted system with all the submitted systems. This
made it difficult to allow participants to submit their
systems after starting the evaluation step.

To address these issues, we use a model from

511

item response theory (IRT). This theory was origi-
nally developed for psychometrics, and has applica-
tions to academic tests. IRT models are highly in-
terpretable and are supported by theoretical and em-
pirical studies. For example, we can estimate the
informativeness of a question in a test based on the
responses of examinees.

We focused on aggregating many pairwise com-
parisons with a baseline translation so that we could
use the analogy of standard academic tests. Figure 1
shows our problem setting. Each system of inter-
est yields translations, and the translations are com-
pared with a baseline translation by multiple human
judges. Each judge produces a preference judgment.

The pairwise comparisons correspond to ques-
tions in academic tests, a judge’s sensitivity to the
translation quality is mapped to discrimination of
questions, and the relative difficulty of winning the
pairwise comparison is mapped to the difficulty of
questions. MT systems correspond to students that
take academic tests, and IRT models can be naturally
applied to estimate the latent performance (ability)
of MT systems (students).

Additionally, our approach, fixing baseline trans-
lations, can easily evaluate a newly submitted sys-
tem. We only need to compare the new system with
the baseline instead of testing all pairwise combina-
tions of the submitted systems.

Our contributions are summarized as follows.1

1. We propose an IRT-based aggregation model of
pairwise comparisons with highly interpretable
parameters.

2. We simulated noisy judges on the WMT13
dataset and demonstrated that our model is less
affected by the noisy judges than previously
proposed methods.

2 Related Work

The WMT shared tasks have collected many manual
judgments of segment-level pairwise comparisons
and used them to produce system-level rankings for
MT tasks. Various methods has been proposed to ag-
gregate the judgments to produce reliable rankings.

1We also show that our method accurately replicated the
WMT13 official system scores using a few comparisons. How-
ever, this is not the main focus of this paper.

Figure 1: Illustration of manual pairwise comparison.
Each system yields translations. Judges compare them
with a baseline translation and report their preferences.
Our goal is to aggregate the judgments to determine the
performance of each system.

Frequency based approaches were used to pro-
duce the WMT13 official rankings (Bojar et al.,
2013), considering statistical significance of the re-
sults (Koehn, 2012).

Hopkins and May (2013) noted that we should
consider the relative matchup difficulty, and pro-
posed a statistical aggregation model. Their model
assumes that the quality of each system can be rep-
resented by a Gaussian distribution.

Sakaguchi et al. (2014) applied TrueSkill (Her-
brich et al., 2006) to reduce the number of compar-
isons to reach the final estimate based on an active
learning strategy. The same model was recently used
for grammatical error correction (Grundkiewicz et
al., 2015; Napoles et al., 2015).

These methods acquire the final system-level
scores, whereas our model also estimates segment
specific and judge specific parameters.

The Bradley–Terry (BT) model was the result of
a seminal study on aggregating pairwise compar-
isons (Bradley and Terry, 1952; Chen et al., 2013;
Dras, 2015). Recently, Chen et al. (2013) explic-
itly incorporated the quality of judges into the BT
model, and applied it to quality control in crowd-
sourcing.

The previously mentioned methods focused on
pairwise comparisons of all combination of the MT
systems, and thus, the number of comparisons in-
creases rapidly as the number of systems increases.

512

Our approach, however, only uses comparisons with
a fixed baseline. This approach enables to apply IRT
models for academic tests and makes it easy to eval-
uate a newly submitted system.

The work most relevant to our model is the IRT-
based crowdsourcing model proposed by Baba and
Kashima (2013). Their goal was to estimate the true
quality of artifacts such as design works based on
ratings assigned by reviewers. They also applied a
graded response model to incorporate the authors’
latent abilities and the reviewers’ biases.

Yet their setting differs from ours in that they fo-
cused on the quality of the artifacts, whereas we are
interested in the authors. Additionally, their model
maps task difficulty and review bias to a difficulty
parameter in IRT. However, we naturally extended
the model so that standard analysis approaches can
be applied to maintain interpretability.

Some studies have focused on absolute evalua-
tions (Goto et al., 2014; Graham et al., 2015). Gra-
ham et al. (2015) gathered continuous scale evalu-
ations in terms of adequacy and fluency for many
segments, and filtered out noisy judgments based
on their consistency. The proposed pipeline results
in very accurate evaluations, but 40-50% of all the
judgments were filtered out due to inconsistencies.
This explains the difficulties of developing absolute
evaluation methods in crowdsourcing.

3 Problem Setting

We first describe the problem setting, as shown in
Figure 1.

Assume that there are a group of systems I in-
dexed by i, a set of segments J indexed by j, and a
set of judges K indexed by k.

Before a manual evaluation, we fix an arbitrary
baseline system and use it to translate the segments
J . Then, each system i ∈ I produces a transla-
tion on segment j ∈ J . One of the judges k ∈ K
compares it with the baseline translation. The judge
produces a preference judgment.

Let ui,j,k be the observed judgment that judge k
assigns to a translation by system i on segment j,
that is,

ui,j,k =

1 (preference for baseline)
2 (no preference)
3 (preference for system i)

,

3 2 1 0 1 2 3
Latent performance of systems

0.0

0.2

0.4

0.6

0.8

1.0

G
en

er
at

iv
e

p
ro

b
ab

ili
ty

 o
f j

ud
gm

en
t

lose
tie
win

Figure 2: ICC of graded response model for (b1, b2) =
(−0.5, 0.5) and a = 1.7

and let c ∈ {1, 2, 3} be the judgment label.
Each system i has its own latent performance θi ∈

R. Our goal is to estimate θ by using the observed
judgments U = {ui,j,k}i∈I,j∈J ,k∈K.

4 Generative Judgment Model

We describe a statistical model for pairwise compar-
isons based on an IRT model.

4.1 Modified Graded Response Model

Based on the graded response model (GRM) pro-
posed by Samejima (1968), we define a generative
model of judgments. GRM deals with responses on
ordered categories including ratings such as A+, A,
B+ and B, and partial credits in tests. In our prob-
lem setting, judgments can be seen as partial credits.
When a system beats a baseline translation, the sys-
tem receives c = 3 credit. In the case of a tie, the
system receives c = 2 credit. The system receives
c = 1 credit when it lose to the baseline.

Let P∗jkc(θi) be the probability that judge k as-
signs judgment π > c to a comparison on segment j
between system i and a baseline.

P∗jkc(θi) =
1

1 + exp(−ak(θi − bjc)) ,

where P∗jk0(θi) = 1,P∗jk3(θi) = 0. Parameters a and
b are called discrimination and difficulty parameters,
respectively. a represents the discriminablity or sen-
sitivity of the judge, and b represents a segment-
specific difficulty parameter. The discrimination pa-
rameter (a) is positive, and the difficulty parameter
(b) satisfies b1 < b2, where b1 corresponds to the dif-
ficulty of not losing to the baseline (c > 1), and b2

513

corresponds to the difficulty of beating the baseline
(c > 2).

The generative probability of judgment ui,j,k is
defined as the difference in the probabilities defined
above, that is,

Pjkc(θi) = P(ui,j,k = c|θi, bj , ak)
= P∗jkc−1(θi)− P∗jkc(θi).

This function is called item characteristic curve
(ICC). Figure 2 illustrates the ICC in the GRM. The
horizontal axis represents the latent performance of
systems, and the vertical axis represents the genera-
tive probability of the judgments. This figure shows,
for example, that the probability of the system with
θ = 0 beating the baseline is 0.3, whereas the system
with θ = 1.0 is much more likely to win. The dis-
crimination parameter controls slope of the curves.
If a is small, the probability drops a little when θ
decreased.

The model described above is different from the
original GRM, which assumed that the values of a
are independent from question to question, and that
each a belongs to exactly one question. However,
in our problem setting, the judges evaluate multiple
segments, and discrimination parameter a is inde-
pendent from segment j. This modification means
that the GRM can capture the judge’s sensitivity.

4.2 Priors

We assign prior distributions to the parameters to
obtain estimates stably. We assume Gaussian dis-
tributions on θ and b, that is, θ ∼ N (0, τ2) and
bc ∼ N (µbc, σ

2
bc) (c = 1, 2). The discrimination

parameter is positive, so we assume a log Gaussian
distribution on a, i.e., log(a) ∼ N (µa, σ

2
a). Note

that τ, µ, and σ are hyper parameters.

5 Parameter Estimation

We find the values of the parameters to maximize
the log likelihood based on obtained judgments U :

L(θ, ξ) = logP(U, θ, ξ).

We denote the parameters a = {ak}k∈K and b =
{bj1, bj2}j∈J to be ξ in this section.

5.1 Marginal Likelihood Maximization of
Judge Sensitivity and Matchup Difficulty

Estimates are known to be inaccurate when all the
parameters are optimized at once, so we first esti-
mate the parameters ξ to maximize the marginal log
likelihood w.r.t. the system performance θ.

mL(ξ) = logP(U, ξ)

=
∑

i∈I
log
∫ ∞

−∞
P(θ)P(Ui|θ, ξ)dθ + logP(ξ),

where Ui is the set of judgments given to system i
The equation above can be approximated using

Gauss-Hermite quadrature, i.e.,

mL(ξ) ≈
∑

i∈I
log

T∑

t=1

1√
π
wtP(Ui|τxt, ξ) + logP(ξ)

wt =
2T−1T !

√
π

T 2 (H(xt))
2

H(xt) =

(
2xt −

d

dxt

)T−1
· 1,

where a practically good approximation is obtained
by taking T ≈ 20.2

We solve the optimization problem using the gra-
dient descent methods to maximize the approxi-
mated marginal likelihood. The inequality con-
straints on the parameters are handled by adding log
barrier functions to the objective function.

5.2 Maximum A Posteriori (MAP) Estimation
of System Performance

Given the estimates of ξ, we estimate the system per-
formance θ = {θi}i∈I by using MAP estimation.

We maximize the objective function,

L(θ) = logP(U, θ; ξ)

=
∑

i∈I
logP(θi) +

∑

i∈I
logP(Ui|θi; ξ).

The estimates of θ are obtained using the gradient
descent method.

5.3 Discussion

So far we have assumed that the estimate is based
on batch learning. However, it is known that active

2In this study, we set T = 21 to include x = 0.

514

learning can reduce the costs (i.e., the total number
of comparisons) (Sakaguchi et al., 2014).

To extend our model to the active learning frame-
work, one approach is to optimize the objective
function online and actively select the next system
to be compared based on criteria such as the uncer-
tainty of the system’s performance. We can apply
stochastic gradient descent to the online optimiza-
tion, which updates the estimates of the parame-
ters using the gradients calculated based on a single
comparison. This modification was left for future
work.

6 Experiments

We conducted experiments on the WMT13 man-
ual evaluation dataset for 10 language pairs.3 For
details of the evaluation data, see the overview of
WMT13 (Bojar et al., 2013).

6.1 Setup

Models: Our method (GRM) was initialized using
a = 1.7, b = (−0.5, 0.5), and a θ value derived
by summing up the judgments for each system and
scaling θ to fit the prior distribution. For the hyper
parameters, we set τ =

√
2, µa = log(1.7), σa =

1.0, µb = (−0.5, 0.5), σb = 2.0.
To compare with our method, we trained Ex-

pectedWins (EW) (Bojar et al., 2013), the model
by Hopkins and May (2013), (HM) and the two-
stage crowdsourcing model proposed by Baba and
Kashima (2013) (TSt). We also trained TrueSkill
(TS) (Sakaguchi et al., 2014), which was used to
produce the gold score on this experiment.

We followed Sakaguchi et al. (2014), who also
used the WMT13 datasets in their experiments, and
initialized the HM and TS parameters. For TSt, we
followed Baba and Kashima (2013).

Pairwise comparisons: The WMT dataset con-
tains five-way partial rankings, so we converted the
five-way partial rankings into pairwise comparisons.
For example, given a five-way partial ranking A >
B > C > D > E, we obtain ten pairwise compar-
isons A > B, A > C, A > D, · · · , and D > E. We
randomly sampled 800, 1,600, 3,200 and 6,400 pair-
wise comparisons from the whole dataset.

3http://statmt.org/wmt13/results.html

The training data differs between the models. For
GRM and TSt, we first sampled five-way rankings
that contained a baseline translation for each base-
line system and obtained pairwise comparisons. For
EW and HM, we first converted five-way rankings
into pairwise comparisons and selected them at ran-
dom.4 TS first receives all the pairwise compar-
isons and selects the training data based on the active
learning strategy, whereas we sampled the compar-
isons before running the other methods.

Gold scores: We followed the official evaluation
procedure of the WMT14-15 (Bojar et al., 2014; Bo-
jar et al., 2015) and made gold scores with TS. We
produced 1,000 bootstrap-resampled datasets over
all of the available comparisons. We then ran TS
and collected the system scores. The gold score is
the mean of the scores.

Evaluation metrics: We evaluated the models us-
ing the Pearson correlation coefficient and the nor-
malized discounted cumulative gain (nDCG), com-
paring the estimated scores and gold scores. We
used nDCG because we are often interested in ranks
and scores, especially in MT competitions such as
the WMT translation task.5 These metrics were also
used for experiments in Baba and Kashima (2013).

6.2 Results

Figure 3 shows the correlation and nDCG between
the estimated system performance and the gold
scores for the WMT13 Spanish–English task. For
the GRM and TSt, the baselines used in the eval-
uation are shown in parentheses in the labels. The
other language pairs showed similar tendencies. The
complete results for all language pairs can be found
in the supplementary data files.

Note that the main contribution of our method is
not to perform better than other methods in terms of
correlation and nDCG to the gold scores, but to re-
sult in highly interpretable and robust estimates dis-
cussed later.

TS resulted in the highest correlation and nDCG.
It is reasonable because the gold scores themselves
were produced by TS, and because it estimates the

4We also applied the sampling procedure of GRM and TSt
to EW and HM, but it made their estimation inaccurate.

5We did not use Spearman’s rank correlation coefficient be-
cause it does not consider a margin between ranks.

515

1000 2000 3000 4000 5000 6000 7000
#comparisons

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
C

or
r.

TS
HM
EW
TSt(CU-ZEMAN)
TSt(SHEF-WPROA)
TSt(mean)
GRM(DCU)
GRM(SHEF-WPROA)
GRM(mean)

(a) Correlation

1000 2000 3000 4000 5000 6000 7000
#comparisons

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

nD
C

G

TS
HM
EW
TSt(CU-ZEMAN)
TSt(DCU-OKITA)
TSt(mean)
GRM(DCU)
GRM(UEDIN-HEAFIELD)
GRM(mean)

(b) nDCG

Figure 3: Correlation and nDCG comparing the estimated system performance and gold scores with the number
of comparisons for the WMT13 Spanish–English task. The baseline system is shown in parenthesis for TSt and
GRM.

parameters using active learning, unlike the other
models.

The GRM with the best baseline system (DCU)
achieved almost the same scores as the TS, in terms
of correlation and nDCG. Although the TSt with the
best baseline resulted in accurate estimates in terms
of correlation, it did not in terms of nDCG. With
the worst baselines, the GRM and TSt both failed
to replicate the gold scores, but the GRM was sur-
prisingly accurate in terms of nDCG (even in the
worst case). This implies that the GRM can effec-
tively predict the top ranked systems.

6.3 Baseline Selection

It is likely that single pairwise comparisons do not
work well if the baseline is very strong or weak. As
shown in Figure 3, the baseline system influences
the final result. When we used SHEF-WPROA
as baseline, the estimated system performance was
not accurate. This is because SHEF-WPROA loses
69.4% of the pairwise comparisons and fails to dis-
criminate between the other systems. In contrast,
DCU loses 34.5% and win 34.8% of the compar-
isons and discriminate the other systems success-
fully. Thus, when we used DCU as baseline, the best
correlation and nDCG were achieved. Therefore, we
must determine the appropriate baseline system be-
fore the comparisons.

One possible solution is to consider the system-

Noise(%) 0 10 20 30 40 50

Correlation

GRM .929 .917 .900 .879 .849 .807
HM +.002 -.005 -.009 -.015 -.025 -.038
EW -.025 -.028 -.035 -.038 -.040 -.046

nDCG

GRM .883 .867 .847 .822 .793 .752
HM -.024 -.130 -.137 -.144 -.152 -.168
EW -.035 -.054 -.064 -.060 -.060 -.069

Table 1: Correlation and nDCG between the estimated
system performance and gold scores for the WMT13
Spanish–English task, based on noisy judges. The val-
ues were averaged over all the datasets. The GRM scores
were averaged over all baselines. The differences from
the GRM are reported for the HM and EW.

level scores yielded by automatic evaluation metrics
such as BLEU and METEOR. Figure 4 shows that
we obtained relatively good results when we used
a system whose system-level BLEU score and ME-
TEOR score6 were close to the mean of all the sys-
tems. 7

6.4 Analysis of Judge Sensitivity
To investigate the robustness of the GRM, we sim-
ulated “noisy” judges. We selected a subset of

6BLEU and METEOR scores were given by the WMT13
organizers.

7The system-level scores can be found in the WMT13 Met-
rics Task dataset.

516

0.15 0.10 0.05 0.00 0.05 0.10 0.15
0.5

0.4

0.3

0.2

0.1

0.0 cs-en
en-cs
de-en
en-de
es-en
en-es
fr-en
en-fr
ru-en
en-ru

(a) BLEU vs. Correlation

0.15 0.10 0.05 0.00 0.05 0.10 0.15
0.5

0.4

0.3

0.2

0.1

0.0 cs-en
en-cs
de-en
en-de
es-en
en-es
fr-en
en-fr
ru-en
en-ru

(b) BLEU vs. nDCG

0.15 0.10 0.05 0.00 0.05 0.10 0.15
0.5

0.4

0.3

0.2

0.1

0.0 cs-en
en-cs
de-en
en-de
es-en
en-es
fr-en
en-fr
ru-en
en-ru

(c) METEOR vs. Correlation

0.15 0.10 0.05 0.00 0.05 0.10 0.15
0.5

0.4

0.3

0.2

0.1

0.0 cs-en
en-cs
de-en
en-de
es-en
en-es
fr-en
en-fr
ru-en
en-ru

(d) METEOR vs. nDCG

Figure 4: Relationship between system-level BLEU/METEOR scores (horizontal) and correlation/nDCG scores
(vertical). The mean BLEU/METEOR was set to zero, and the best score was set to zero for each language pair.

judges and randomly changed their decisions based
on a uniform distribution. The percentage of noisy
judges varied between 10% and 50% (in increments
of 10%).

We trained HM and EW on the simulated datasets.
We excluded TS because it assumes that we can ac-
tively request more comparisons from judges when
their decisions are ambiguous.

As shown in Table 1, the accuracy of the GRM
was less affected by the noisy judges than HM and
EW. This is because our model estimates judge-
specific sensitivities and automatically reduces the
influence of the noisy judges.

6.5 Analysis of the Interpretability of the
Estimated Matchup Difficulty

Our model is a natural extension of the GRM Same-
jima (1968), so we can apply standard analyses for
IRT models. Item information is one of the standard
analysis methods and corresponds to sensitivity to a
latent parameter of interest. Based on the item infor-
mation, we can find which segment was difficult to
be translated better than a baseline translation.

The item information is calculated using the esti-

1.0 0.5 0.0 0.5 1.0
θ

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

It
em

 in
fo

rm
at

io
n

0.13-0.11

1858
1818

Figure 5: Item information for the WMT13 Spanish–
English task. The DCU was used as a baseline. We used
the averaged estimates of b on 100 sampled datasets with
6,400 comparisons to calculate the item information for
all segments.

mated parameters ξ (Samejima, 1968), that is,

Ij(θ) = −E
[
∂2L(θ; ξ)
∂θ2

]

=
3∑

c=1

[
−
∂2logPjkc(θ)

∂θ2

]
Pjkc

=
3∑

c=1

[P∗
′

jkc−1(θ)− P∗
′

jkc(θ)]
2

P∗jkc−1(θ)− P∗jkc(θ) ,

where P∗
′
= ∂P∗/∂θ.

Because the item information is only determined

517

Segment 1858: Difficult to beat the baseline translation.
Source Hasta 2007 los dos telescopios Keck situados en el volcán hawaiano de Mauna Kea eran

considerados los más grandes del mundo.
Reference Until 2007, the two Keck telescopes at the Hawaiian volcano, Mauna Kea, were the

largest in the world.
DCU[baseline] Until 2007, the two Keck telescopes located on the Hawaiian volcano Mauna of KEA

were considered the largest in the world.

ONLINE-B (θ =) 0.24 Until 2007 the two Keck telescopes located on the Hawaiian volcano Mauna Kea were
considered the largest in the world.

UEDIN 0.12 Until 2007, the two Keck telescopes located on the Hawaiian volcano of Mauna Kea
were considered the largest in the world.

LIMSI-NCODE-SOUL 0.10 Until 2007 the two Keck telescopes in the Hawaiian Mauna Kea volcano were consid-
ered the largest in the world.

CU-ZEMAN -0.10 Until 2007, the two Keck telescope located in the volcano Mauna Kea hawaiano of were
regarded as the world’s largest.

JHU -0.12 Until 2007, the two Telescope Keck located in the Kea volcano hawaiano of Mauna were
considered the world’s largest.

SHEF-WPROA -0.92 Until 2007 the two telescope Keck located volcano hawaiano of Mauna KEA were re-
garded larger of world.

Segment 1818: Easy to beat the baseline translation.
Source Dependiendo de las tonalidades, algunas imágenes de galaxias espirales se convierten en

verdaderas obras de arte.
Reference Depending on the colouring, photographs of spiral galaxies can become genuine works

of art.
DCU[baseline] Depending on the drink, some images of galaxias galaxies become true works of art.

ONLINE-B 0.24 Depending on the shades, some images of spiral galaxies become true works of art.
UEDIN 0.12 (Same as ONLINE-B)
LIMSI-NCODE-SOUL 0.10 Depending on the color, some images of galaxies spirals become real works of art.
CU-ZEMAN -0.10 Depending on the tonalidades, some images of spirals galaxies become true works of art.
JHU -0.12 Depending on the tonalidades, some images of galaxies spirals become true works of art.
SHEF-WPROA -0.92 Depending on the tonalidades, some images of galaxies spirals become real artwork.

Table 2: Translation examples for the WMT13 Spanish–English task. The reference is a correct translation given
by the WMT organizers and was shown to human judges. Estimates of θ (averaged over 100 sampled datasets with
6,400 comparisons) are also reported in the table.

by segments and is independent of the judges, we set
ak = 1 (k ∈ K).

Figure 5 gives two examples of the item infor-
mation. The horizontal axis corresponds to the sys-
tem performance θ, and the vertical axis represents
the informativeness of a segment. This figure in-
dicates that segment 1858 (red line) can effectively
discriminate systems with θ ≈ 0.13, whereas seg-
ment 1818 (blue dashed line) is sensitive to those
with θ ≈ −0.11. This means that systems with low
θ tend to lose to a baseline translation on segment
1858, and the segment does not tell meaningful in-
formation on performance of the systems. However,
they sometimes beat a baseline translation on seg-
ment 1818, and the segment can measure their per-
formance accurately.

Table 2 shows translations for segments 1858 and
1818. We found that the baseline translation on seg-
ment 1818 was relatively good, whereas the baseline
translation on segment 1858 contained wrong words
such as “drink” and “galaxias”. Consequently, sys-
tems with low θ tended to lose to the baseline on
segment 1858 due to their wrong translation (see the
translation of “hawaiano de Mauna Kea”). In con-
trast, some of the low-ranked systems beat the base-
line on segment 1818, and the segment contributed
to discriminate them.

The item information is used to design academic
tests that can effectively capture students’ abilities.
It could analogously be used to preselect segments
to be translated based on the item information in the
MT evaluation.

518

7 Conclusion

We have addressed the task of manual judgment ag-
gregation for MT evaluations. Our motivation was
three folded: (1) to incorporate a judge’s sensitivity
to robustly measure a system’s performance, (2) to
maintain highly interpretable estimates, and (3) to
handle with a newly submitted system.

To tackle these problems, we focused on pairwise
comparisons with a fixed baseline translation so that
we could apply the GRM model in IRT by using the
analogy of standard academic tests. Unlike testing
all pairwise combinations of systems, fixing base-
line translations makes it easy to evaluate a newly
submitted system. We demonstrated that our model
gave robust and highly interpretable estimates on the
WMT13 datasets.

In the future work, we will incorporate active
learning to the proposed method so that we could
reduce the total number of comparisons to obtain fi-
nal results. Although we evaluated the correlation
between the estimated system performance scores
and the WMT official scores, other evaluation pro-
cedures might also be considered. For example,
Hopkins and May (2013) considered model perplex-
ity and Sakaguchi et al. (2014) compared accuracy.
However, we cannot directly compare other meth-
ods to our method in terms of perplexity or accuracy
because our method focuses on comparisons with a
baseline translation, whereas they do not. It will be
required to investigate correlation between the esti-
mates and expert decisions.

Acknowledgments
We would like to thank Yukino Baba and Hisashi
Kashima for providing an implementation of their
method. We are also thankful for the useful com-
ments from the anonymous reviewers.

References
Yukino Baba and Hisashi Kashima. 2013. Statistical

quality estimation for general crowdsourcing tasks. In
Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing (KDD), pages 554–562, New York, USA, August.
ACM Press.

Ondřej Bojar, Christian Buck, Chris Callison-Burch,
Christian Federmann, Barry Haddow, Philipp Koehn,

Christof Monz, Matt Post, Radu Soricut, and Lucia
Specia. 2013. Findings of the 2013 workshop on
statistical machine translation. In Proceedings of the
Eighth Workshop on Statistical Machine Translation
(WMT), pages 1–44, Sofia, Bulgaria, August. Associ-
ation for Computational Linguistics.

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and Aleš Tam-
chyna. 2014. Findings of the 2014 workshop on statis-
tical machine translation. In Proceedings of the Ninth
Workshop on Statistical Machine Translation (WMT),
pages 12–58, Baltimore, Maryland, USA, June. Asso-
ciation for Computational Linguistics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Barry Haddow, Matthias Huck, Chris Hokamp, Philipp
Koehn, Varvara Logacheva, Christof Monz, Matteo
Negri, Matt Post, Carolina Scarton, Lucia Specia, and
Marco Turchi. 2015. Findings of the 2015 workshop
on statistical machine translation. In Proceedings of
the Tenth Workshop on Statistical Machine Translation
(WMT), pages 1–46, Lisbon, Portugal, September. As-
sociation for Computational Linguistics.

Ralph Allan Bradley and Milton E Terry. 1952. Rank
analysis of incomplete block designs: I. the method of
paired comparisons. Biometrika, 39(3-4):324–345.

Xi Chen, Paul N. Bennett, Kevyn Collins-Thompson,
and Eric Horvitz. 2013. Pairwise ranking aggrega-
tion in a crowdsourced setting. In Proceedings of the
Sixth ACM International Conference on Web Search
and Data Mining (WSDM), pages 193–202, New York,
New York, USA, February. ACM Press.

Mark Dras. 2015. Evaluating human pairwise preference
judgments. Computational Linguistics, 41(2):337–
345.

Shinsuke Goto, Donghui Lin, and Toru Ishida. 2014.
Crowdsourcing for evaluating machine translation
quality. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC), Reykjavik, Iceland, May. European Language
Resources Association.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2015. Can machine translation systems
be evaluated by the crowd alone. Natural Language
Engineering, FirstView:1–28.

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and
Edward Gillian. 2015. Human evaluation of gram-
matical error correction systems. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 461–470,
Lisbon, Portugal, June. Association for Computational
Linguistics.

519

Ralf Herbrich, Tom Minka, and Thore Graepel. 2006.
TrueSkillTM: A bayesian skill rating system. In Ad-
vances in Neural Information Processing Systems 20
(NIPS), pages 569–576, Vancouver, British Columbia,
Canada, Demeber. MIT Press.

Mark Hopkins and Jonathan May. 2013. Models of
translation competitions. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 1416–1424, Sofia, Bulgaria,
August. Association for Computational Linguistics.

Philipp Koehn. 2012. Simulating human judg-
ment in machine translation evaluation campaigns.
In Proceedings of International Workshop on Spo-
ken Language Translation (IWSLT), pages 179–184,
Hongkong, China, December. International Speech
Communication Association.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and

Joel Tetreault. 2015. Ground truth for grammatical
error correction metrics. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (ACL-IJCNLP),
pages 588–593, Beijing, China, July. Association for
Computational Linguistics.

Keisuke Sakaguchi, Matt Post, and Benjamin Van
Durme. 2014. Efficient elicitation of annotations
for human evaluation of machine translation. In Pro-
ceedings of the Ninth Workshop on Statistical Machine
Translation (WMT), pages 1–11, Baltimore, Maryland,
USA, June. Association for Computational Linguis-
tics.

Fumiko Samejima. 1968. Estimation of latent ability us-
ing a response pattern of graded scores. ETS Research

Bulletin Series, 1968(1):i–169, June.

520

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 521–530,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Variational Neural Machine Translation

Biao Zhang1,2, Deyi Xiong1∗, Jinsong Su2, Hong Duan2 and Min Zhang1

Provincial Key Laboratory for Computer Information Processing Technology
Soochow University, Suzhou, China 2150061

Xiamen University, Xiamen, China 3610052

zb@stu.xmu.edu.cn, {jssu,hduan}@xmu.edu.cn
{dyxiong, minzhang}@suda.edu.cn

Abstract

Models of neural machine translation are of-
ten from a discriminative family of encoder-
decoders that learn a conditional distribution
of a target sentence given a source sentence.
In this paper, we propose a variational model
to learn this conditional distribution for neu-
ral machine translation: a variational encoder-
decoder model that can be trained end-to-end.
Different from the vanilla encoder-decoder
model that generates target translations from
hidden representations of source sentences
alone, the variational model introduces a con-
tinuous latent variable to explicitly model un-
derlying semantics of source sentences and to
guide the generation of target translations. In
order to perform efficient posterior inference
and large-scale training, we build a neural
posterior approximator conditioned on both
the source and the target sides, and equip it
with a reparameterization technique to esti-
mate the variational lower bound. Experi-
ments on both Chinese-English and English-
German translation tasks show that the pro-
posed variational neural machine translation
achieves significant improvements over the
vanilla neural machine translation baselines.

1 Introduction

Neural machine translation (NMT) is an emerging
translation paradigm that builds on a single and
unified end-to-end neural network, instead of us-
ing a variety of sub-models tuned in a long training
pipeline. It requires a much smaller memory than

∗Corresponding author

phrase- or syntax-based statistical machine transla-
tion (SMT) that typically has a huge phrase/rule ta-
ble. Due to these advantages over traditional SMT
system, NMT has recently attracted growing inter-
ests from both deep learning and machine transla-
tion community (Kalchbrenner and Blunsom, 2013;
Cho et al., 2014; Sutskever et al., 2014; Bahdanau et
al., 2014; Luong et al., 2015a; Luong et al., 2015b;
Shen et al., 2015; Meng et al., 2015; Tu et al., 2016).

Current NMT models mainly take a discrimi-
native encoder-decoder framework, where a neu-
ral encoder transforms source sentence x into dis-
tributed representations, and a neural decoder gen-
erates the corresponding target sentence y according
to these representations1 (Cho et al., 2014; Sutskever
et al., 2014; Bahdanau et al., 2014). Typically, the
underlying semantic representations of source and
target sentences are learned in an implicit way in
this framework, which heavily relies on the atten-
tion mechanism (Bahdanau et al., 2014) to iden-
tify semantic alignments between source and target
words. Due to potential errors in these alignments,
the attention-based context vector may be insuffi-
cient to capture the entire meaning of a source sen-
tence, hence resulting in undesirable translation phe-
nomena (Tu et al., 2016).

Unlike the vanilla encoder-decoder framework,
we model underlying semantics of bilingual sen-
tence pairs explicitly. We assume that there exists
a continuous latent variable z from this underlying
semantic space. And this variable, together with x,

1In this paper, we use bold symbols to denote variables, and
plain symbols to denote their values. Without specific state-
ment, all variables are multivariate.

521

amssymb amsmath

x y

θφ

N

z

Figure 1: Illustration of VNMT as a directed graph.
We use solid lines to denote the generative model
pθ(z|x)pθ(y|z,x), and dashed lines to denote the varia-
tional approximation qφ(z|x) to the intractable posterior
p(z|x,y). Both variational parameters φ and generative
model parameters θ are learned jointly.

guides the translation process, i.e. p(y|z,x). With
this assumption, the original conditional probability
evolves into the following formulation:

p(y|x) =
∫

z
p(y, z|x)dz =

∫

z
p(y|z,x)p(z|x)dz

(1)
This brings in the benefits that the latent variable z
can serve as a global semantic signal that is com-
plementary to the attention-based context vector for
generating good translations when the model learns
undesirable attentions. However, although this la-
tent variable enables us to explicitly model under-
lying semantics of translation pairs, the incorpora-
tion of it into the above probabilistic model has two
challenges: 1) the posterior inference in this model
is intractable; 2) large-scale training, which lays
the ground for the data-driven NMT, is accordingly
problematic.

In order to address these issues, we propose a vari-
ational encoder-decoder model to neural machine
translation (VNMT), motivated by the recent suc-
cess of variational neural models (Rezende et al.,
2014; Kingma and Welling, 2014). Figure 1 illus-
trates the graphic representation of VNMT. As deep
neural networks are capable of learning highly non-
linear functions, we employ them to fit the latent-
variable-related distributions, i.e. the prior and pos-
terior, to make the inference tractable. The former is
modeled to be conditioned on the source side alone
pθ(z|x), because the source and target part of a sen-
tence pair usually share the same semantics so that
the source sentence should contain the prior infor-
mation for inducing the underlying semantics. The
latter, instead, is approximated from all observed
variables qφ(z|x,y), i.e. both the source and the tar-

get sides. In order to efficiently train parameters,
we apply a reparameterization technique (Rezende
et al., 2014; Kingma and Welling, 2014) on the vari-
ational lower bound. This enables us to use standard
stochastic gradient optimization for training the pro-
posed model. Specifically, there are three essential
components in VNMT (The detailed architecture is
illustrated in Figure 2):

• A variational neural encoder transforms
source/target sentence into distributed repre-
sentations, which is the same as the encoder of
NMT (Bahdanau et al., 2014) (see section 3.1).
• A variational neural inferer infers the repre-

sentation of z according to the learned source
representations (i.e. pθ(z|x)) together with the
target ones (i.e. qφ(z|x,y)), where the repa-
rameterization technique is employed (see sec-
tion 3.2).
• And a variational neural decoder integrates the

latent representation of z to guide the genera-
tion of target sentence (i.e. p(y|z,x)) together
with the attention mechanism (see section 3.3).

Augmented with the posterior approximation and
reparameterization, our VNMT can still be trained
end-to-end. This makes our model not only effi-
cient in translation, but also simple in implementa-
tion. To train our model, we employ the conven-
tional maximum likelihood estimation. Experiments
on both Chinese-English and English-German trans-
lation tasks show that VNMT achieves significant
improvements over several strong baselines.

2 Background: Variational Autoencoder

This section briefly reviews the variational autoen-
coder (VAE) (Kingma and Welling, 2014; Rezende
et al., 2014). Given an observed variable x, VAE in-
troduces a continuous latent variable z, and assumes
that x is generated from z, i.e.,

pθ(x, z) = pθ(x|z)pθ(z) (2)

where θ denotes the parameters of the model. pθ(z)
is the prior, e.g, a simple Gaussian distribution.
pθ(x|z) is the conditional distribution that models
the generation procedure, typically estimated via a
deep non-linear neural network.

Similar to our model, the integration of z in Eq.
(2) imposes challenges on the posterior inference as

522

reparameterization

hz

h′
z

h′
e

log σ2µ

hf

s3s2s1s0

y0 y1 y2 y3

⊕
α2,1

α2,2 α2,3 α2,4

(a) Variational Neural Encoder

(c) Variational Neural Decoder

(b) Variational Neural Inferer

mean-pooling−→
h1

←−
h1

−→
h2

←−
h2

−→
h3

←−
h3

←−
h4

−→
h4

x4x3x2x1

mean-pooling

y1 y2 y3

−→
h3

←−
h3

−→
h2

←−
h2

−→
h1

←−
h1

he

Figure 2: Neural architecture of VNMT. We use blue, gray and red color to indicate the encoder-related (x,y), under-
lying semantic (z) and decoder-related (y) representation respectively. The yellow lines show the flow of information
employed for target word prediction. The dashed red line highlights the incorporation of latent variable z into target
prediction. f and e represent the source and target language respectively.

well as large-scale learning. To tackle these prob-
lems, VAE adopts two techniques: neural approxi-
mation and reparameterization.

Neural Approximation employs deep neural net-
works to approximate the posterior inference model
qφ(z|x), where φ denotes the variational parame-
ters. For the posterior approximation, VAE regards
qφ(z|x) as a diagonal GaussianN (µ, diag(σ2)), and
parameterizes its mean µ and variance σ2 with deep
neural networks.

Reparameterization reparameterizes z as a func-
tion of µ and σ, rather than using the standard
sampling method. In practice, VAE leverages the
“location-scale” property of Gaussian distribution,
and uses the following reparameterization:

z̃ = µ+ σ � ε (3)

where ε is a standard Gaussian variable that plays
a role of introducing noises, and � denotes an
element-wise product.

With these two techniques, VAE tightly incor-
porates both the generative model pθ(x|z) and the
posterior inference model qφ(z|x) into an end-to-
end neural network. This facilitates its optimiza-
tion since we can apply the standard backpropaga-
tion to compute the gradient of the following varia-
tional lower bound:

LVAE(θ, φ;x) =− KL(qφ(z|x)||pθ(z))
+Eqφ(z|x)[log pθ(x|z)] ≤ log pθ(x)

(4)

KL(Q||P) is the Kullback-Leibler divergence be-
tween Q and P . Intuitively, VAE can be considered

as a regularized version of the standard autoencoder.
It makes use of the latent variable z to capture the
variations ε in the observed variable x.

3 Variational Neural Machine Translation

Different from previous work, we introduce a latent
variable z to model the underlying semantic space
as a global signal for translation. Formally, given
the definition in Eq. (1) and Eq. (4), the varia-
tional lower bound of VNMT can be formulated as
follows:

LVNMT(θ, φ;x,y) = −KL(qφ(z|x,y)||pθ(z|x))
+Eqφ(z|x,y)[log pθ(y|z,x)] (5)

where pθ(z|x) is our prior model, qφ(z|x,y) is our
posterior approximator, and pθ(y|z,x) is the de-
coder with the guidance from z. Based on this
formulation, VNMT can be decomposed into three
components, each of which is modeled by a neu-
ral network: a variational neural inferer that models
pθ(z|x) and qφ(z|x,y) (see part (b) in Figure 2), a
variational neural decoder that models pθ(y|z,x)
(see part (c) in Figure 2), and a variational neural
encoder that provides distributed representations of
a source/target sentence for the above two modules
(see part (a) in Figure 2). Following the information
flow illustrated in Figure 2, we describe part (a), (b)
and (c) successively.

3.1 Variational Neural Encoder
As shown in Figure 2 (a), the variational neural en-
coder aims at encoding an input sequence (w1, w2,

523

. . . , wT) into continuous vectors. In this paper,
we adopt the encoder architecture proposed by Bah-
danau et al. (2014), which is a bidirectional RNN
with a forward and backward RNN. The forward
RNN reads the sequence from left to right while
the backward RNN in the opposite direction (see the
parallel arrows in Figure 2 (a)):

−→
h i = RNN(

−→
h i−1, Ewi)

←−
h i = RNN(

←−
h i+1, Ewi)

(6)

where Ewi ∈ Rdw is the embedding for word wi,
and
−→
h i,
←−
h i are hidden states generated in two direc-

tions. Following Bahdanau et al. (2014), we employ
the Gated Recurrent Unit (GRU) as our RNN unit
due to its capacity in capturing long-distance depen-
dencies.

We further concatenate each pair of hidden states
at each time step to build a set of annotation vec-
tors (h1, h2, . . . , hT), hTi =

[−→
h Ti ;
←−
h Ti

]
. In this

way, each annotation vector hi encodes information
about the i-th word with respect to all the other sur-
rounding words in the sequence. Therefore, these
annotation vectors are desirable for the following
modeling.

We use this encoder to represent both the source
sentence {xi}Tfi=1 and the target sentence {yi}Tei=1

(see the blue color in Figure 2). Accordingly, our
encoder generates both the source annotation vec-
tors {hi}Tfi=1 ∈ R2df and the target annotation vec-
tors {h′i}Tei=1 ∈ R2de . The source vectors flow into
the inferer and decoder while the target vectors the
posterior approximator.

3.2 Variational Neural Inferer

A major challenge of variational models is how to
model the latent-variable-related distributions. In
VNMT, we employ neural networks to model both
the prior pθ(z|x) and the posterior qφ(z|x,y), and
let them subject to a multivariate Gaussian distri-
bution with a diagonal covariance structure.2 As
shown in Figure 1, these two distributions mainly
differ in their conditions.

2The reasons of choosing Gaussian distribution are twofold:
1) it is a natural choice for modeling continuous variables; 2) it
belongs to the family of “location-scale” distributions, which is
required for the following reparameterization.

3.2.1 Neural Posterior Approximator
Exactly modeling the true posterior p(z|x,y) ex-

actly usually intractable. Therefore, we adopt an
approximation method to simplify the posterior in-
ference. Conventional models typically employ the
mean-field approaches. However, a major limitation
of this approach is its inability to capture the true
posterior of z due to its oversimplification. Follow-
ing the spirit of VAE, we use neural networks for
better approximation in this paper, and assume the
approximator has the following form:

qφ(z|x,y) = N (z;µ(x,y), σ(x,y)2I) (7)

The mean µ and s.d. σ of the approximate poste-
rior are the outputs of neural networks based on the
observed variables x and y as shown in Figure 2 (b).

Starting from the variational neural encoder, we
first obtain the source- and target-side representa-
tion via a mean-pooling operation over the annota-
tion vectors, i.e. hf = 1

Tf

∑Tf
i hi, he =

1
Te

∑Te
i h′i.

With these representations, we perform a non-linear
transformation that projects them onto our con-
cerned latent semantic space:

h′z = g(W (1)
z [hf ;he] + b(1)z) (8)

where W (1)
z ∈ Rdz×2(df+de), b(1)z ∈ Rdz is the pa-

rameter matrix and bias term respectively, dz is the
dimensionality of the latent space, and g(·) is an
element-wise activation function, which we set to be
tanh(·) throughout our experiments.

In this latent space, we obtain the abovementioned
Gaussian parameters µ and log σ2 through linear re-
gression:

µ =Wµh
′
z + bµ, log σ2 =Wσh

′
z + bσ (9)

where µ, log σ2 are both dz-dimension vectors.

3.2.2 Neural Prior Model
Different from the posterior, we model (rather

than approximate) the prior as follows:

pθ(z|x) = N (z;µ′(x), σ′(x)2I) (10)

We treat the mean µ′ and s.d. σ′ of the prior as neural
functions of source sentence x alone. This is sound
and reasonable because bilingual sentences are se-
mantically equivalent, suggesting that either y or x

524

is capable of inferring the underlying semantics of
sentence pairs, i.e., the representation of latent vari-
able z.

The neural model for the prior pθ(z|x) is the
same as that (i.e. Eq (8) and (9)) for the posterior
qφ(z|x,y), except for the absence of he. Besides,
the parameters for the prior are independent of those
for the posterior.

To obtain a representation for latent variable z, we
employ the same technique as the Eq. (3) and repa-
rameterized it as hz = µ+ σ � ε, ε∼N (0, I). Dur-
ing decoding, however, due to the absence of target
sentence y, we set hz to be the mean of pθ(z|x), i.e.,
µ′. Intuitively, the reparameterization bridges the
gap between the generation model pθ(y|z,x) and
the inference model qφ(z|x,y). In other words, it
connects these two neural networks. This is impor-
tant since it enables the stochastic gradient optimiza-
tion via standard backpropagation.

We further project the representation of latent
variable hz onto the target space for translation:

h′e = g(W (2)
z hz + b(2)z) (11)

where h′e ∈ Rd′e . The transformed h′e is then in-
tegrated into our decoder. Notice that because of
the noise from ε, the representation h′e is not fixed
for the same source sentence and model parameters.
This is crucial for VNMT to learn to avoid overfit-
ting.

3.3 Variational Neural Decoder
Given the source sentence x and the latent variable
z, our decoder defines the probability over transla-
tion y as a joint probability of ordered conditionals:

p(y|z,x) =
Te∏

j=1

p(yj |y<j , z,x) (12)

where p(yj |y<j ,z,x) = g′(yj−1, sj−1, cj)

The feed forward model g′(·) (see the yellow arrows
in Figure 2) and context vector cj =

∑
i αjihi (see

the “⊕” in Figure 2) are the same as (Bahdanau et
al., 2014). The difference between our decoder and
Bahdanau et al.’s decoder (2014) lies in that in ad-
dition to the context vector, our decoder integrates
the representation of the latent variable, i.e. h′e, into
the computation of sj , which is denoted by the bold
dashed red arrow in Figure 2 (c).

Formally, the hidden state sj in our decoder is cal-
culated by3

sj = (1− uj)� sj−1 + uj � s̃j ,
s̃j = tanh(WEyj + U [rj � sj−1] + Ccj + V h′e)

uj = σ(WuEyj + Uusj−1 + Cucj + Vuh
′
e)

rj = σ(WrEyj + Ursj−1 + Crcj + Vrh
′
e)

Here, rj , uj , s̃j denotes the reset gate, update gate
and candidate activation in GRU respectively, and
Eyj ∈ Rdw is the word embedding for target word.
W, Wu, Wr ∈ Rde×dw , U, Uu, Ur ∈ Rde×de , C, Cu,
Cr ∈ Rde×2df , and V, Vu, Vr ∈ Rde×d′e are parame-
ter weights. The initial hidden state s0 is initialized
in the same way as Bahdanau et al. (2014) (see the
arrow to s0 in Figure 2).

In our model, the latent variable can affect the rep-
resentation of hidden state sj through the gate be-
tween rj and uj . This allows our model to access the
semantic information of z indirectly since the pre-
diction of yj+1 depends on sj . In addition, when the
model learns wrong attentions that lead to bad con-
text vector cj , the semantic representation he

′ can
help to guide the translation process .

3.4 Model Training
We use the Monte Carlo method to approximate
the expectation over the posterior in Eq. (5), i.e.
Eqφ(z|x,y)[·] ' 1

L

∑L
l=1 log pθ(y|x,h

(l)
z), whereL is

the number of samples. The joint training objective
for a training instance (x,y) is defined as follows:

L(θ, φ) ' −KL(qφ(z|x,y)||pθ(z|x))

+
1

L

L∑

l=1

Te∑

j=1

log pθ(yj |y<j ,x,h(l)
z) (13)

where h(l)
z = µ+ σ � ε(l) and ε(l) ∼ N (0, I)

The first term is the KL divergence between two
Gaussian distributions which can be computed and
differentiated without estimation (see (Kingma and
Welling, 2014) for details). And the second term
is the approximate expectation, which is also dif-
ferentiable. Suppose that L is 1 (which is used in
our experiments), then our second term will be de-
generated to the objective of conventional NMT. In-
tuitively, VNMT is exactly a regularized version of

3We omit the bias term for clarity.

525

System MT05 MT02 MT03 MT04 MT06 MT08 AVG
Moses 33.68 34.19 34.39 35.34 29.20 22.94 31.21

GroundHog 31.38 33.32 32.59 35.05 29.80 22.82 30.72
VNMT w/o KL 31.40 33.50 32.92 34.95 28.74 22.07 30.44

VNMT 32.25 34.50++ 33.78++ 36.72⇑++ 30.92⇑++ 24.41↑++ 32.07

Table 1: BLEU scores on the NIST Chinese-English translation task. AVG = average BLEU scores on test sets. We
highlight the best results in bold for each test set. “↑/⇑”: significantly better than Moses (p < 0.05/p < 0.01); “+/++”:
significantly better than GroundHog (p < 0.05/p < 0.01);

NMT, where the introduced noise ε increases its ro-
bustness, and reduces overfitting. We verify this
point in our experiments.

Since the objective function in Eq. (13) is differ-
entiable, we can optimize the model parameter θ and
variational parameter φ jointly using standard gradi-
ent ascent techniques.

4 Experiments

4.1 Setup

To evaluate the effectiveness of the proposed
VNMT, we conducted experiments on both Chinese-
English and English-German translation tasks. Our
Chinese-English training data4 consists of 2.9M sen-
tence pairs, with 80.9M Chinese words and 86.4M
English words respectively. We used the NIST
MT05 dataset as the development set, and the NIST
MT02/03/04/06/08 datasets as the test sets for the
Chinese-English task. Our English-German train-
ing data5 consists of 4.5M sentence pairs with 116M
English words and 110M German words6. We used
the newstest2013 (3000 sentences) as the develop-
ment set, and the newstest2014 (2737 sentences)
as the test set for English-German translation. We
employed the case-insensitive BLEU-4 (Papineni et
al., 2002) metric to evaluate translation quality, and
paired bootstrap sampling (Koehn, 2004) for signif-
icance test.

We compared our model against two state-of-the-
art SMT and NMT systems:

• Moses (Koehn et al., 2007): a phrase-based
SMT system.

4This corpus consists of LDC2003E14, LDC2004T07,
LDC2005T06, LDC2005T10 and LDC2004T08 (Hong Kong
Hansards/Laws/News).

5This corpus is from the WMT’14 training data (Jean et al.,
2015; Luong et al., 2015a)

6The preprocessed data can be found and downloaded from
http://nlp.stanford.edu/projects/nmt/

• GroundHog (Bahdanau et al., 2014): an
attention-based NMT system.

Additionally, we also compared with a variant of
VNMT, which does not contain the KL part in the
objective (VNMT w/o KL). This is achieved by set-
ting hz to µ′.

For Moses, we adopted all the default settings ex-
cept for the language model. We trained a 4-gram
language model on the Xinhua section of the English
Gigaword corpus (306M words) using the SRILM7

toolkit with modified Kneser-Ney smoothing. Im-
portantly, we used all words in the vocabulary.

For GroundHog, we set the maximum length
of training sentences to be 50 words, and pre-
served the most frequent 30K (Chinese-English) and
50K (English-German) words as both the source
and target vocabulary , covering approximately
98.9%/99.2% and 97.3%/93.3% on the source and
target side of the two parallel corpora respectively .
All other words were represented by a specific to-
ken “UNK”. Following Bahdanau et al. (2014), we
set dw = 620, df = 1000, de = 1000, and M = 80.
All other settings are the same as the default config-
uration (for RNNSearch). During decoding, we used
the beam-search algorithm, and set beam size to 10.

For VNMT, we initialized its parameters with the
trained RNNSearch model. The settings of our
model are the same as that of GroundHog, except
for some parameters specific to VNMT. Following
VAE, we set the sampling number L = 1. Addi-
tionally, we set d′e = dz = 2df = 2000 according
to preliminary experiments. We used the Adadelta
algorithm for model training with ρ = 0.95. With
regard to the source and target encoders, we shared
their recurrent parameters but not word embeddings.

We implemented our VNMT based on Ground-
Hog8. Both NMT systems are trained on a Telsa K40

7http://www.speech.sri.com/projects/srilm/download.html
8Our code is publicly available at

526

System MT05 MT02 MT03 MT04 MT06 MT08
GroundHog 18.23 22.20 20.19 21.67 19.11 13.41

VNMT 21.31 26.02 23.78 25.81 21.81 15.59

Table 2: BLEU scores on the new dataset. All improvements are significant at p < 0.01.
System Architecture BLEU

Existing end-to-end NMT systems
Jean et al. (2015) RNNSearch 16.46
Jean et al. (2015) RNNSearch + unk replace 18.97
Jean et al. (2015) RNNsearch + unk replace + large vocab 19.40
Luong et al. (2015a) LSTM with 4 layers + dropout + local att. + unk replace 20.90

Our end-to-end NMT systems

this work
RNNSearch 16.40
VNMT 17.13++

VNMT + unk replace 19.58++

Table 3: BLEU scores on the English-German translation task.

5 15 25 35 45 55
20

23

26

29

32

35

Sentence Length

B
L
E
U

S
co

re
s

GroundHog
Our VNMT

Figure 3: BLEU scores on different groups of source
sentences in terms of their length.

GPU. In one hour, GroundHog processes about 1100
batches, while our VNMT processes 630 batches.

4.2 Results on Chinese-English Translation

Table 1 summarizes the BLEU scores of different
systems on the Chinese-English translation tasks.
Clearly VNMT significantly improves translation
quality in terms of BLEU on most cases, and ob-
tains the best average results that gain 0.86 and 1.35
BLEU points over Moses and GroundHog respec-
tively. Besides, without the KL objective, VNMT
w/o KL obtains even worse results than GroundHog.
These results indicate the following two points: 1)
explicitly modeling underlying semantics by a latent
variable indeed benefits neural machine translation,
and 2) the improvements of our model are not from
enlarging the network.

https://github.com/DeepLearnXMU/VNMT.

4.3 Results on Long Sentences

We further testify VNMT on long sentence transla-
tion where the vanilla NMT usually suffers from at-
tention failures (Tu et al., 2016; Bentivogli et al.,
2016). We believe that the global latent variable can
play an important role on long sentence translation.

Our first experiment is carried out on 6 disjoint
groups according to the length of source sentences in
our test sets. Figure 3 shows the BLEU scores of two
neural models. We find that the performance curve
of our VNMT model always appears to be on top of
that of GroundHog with a certain margin. Specif-
ically, on the final group with the longest source
sentences, our VNMT obtains the biggest improve-
ment (3.55 BLEU points). Overall, these obvious
improvements on all groups in terms of the length of
source sentences indicate that the global guidance
from the latent variable benefits our VNMT model.

Our second experiment is carried out on a syn-
thetic dataset where each new source sentence is
a concatenation of neighboring source sentences in
the original test sets. As a result, the average length
of source sentences in the new dataset (> 50) is
almost twice longer than the original one. Trans-
lation results is summarized in Table 2, where our
VNMT obtains significant improvements on all new
test sets. This further demonstrates the advantage of
introducing the latent variable.

4.4 Results on English-German Translation

Table 3 shows the results on English-German trans-
lation. We also provide several existing NMT sys-

527

Source

两国官员确定了今后会谈的日程和模式 ,建立起进行持续对话的机制 ,此举标
志着巴印对话进程在中断两年后重新启动 ,为两国逐步解决包括克什米尔争
端在内的所有悬而未决的问题奠定了基础 ,体现了双方可贵的和平诚意。

Reference

the officials of the two countries have established the mechanism for continued dialogue down
the road, including a confirmed schedule and model of the talks. this symbolizes the restart
of the dialogue process between pakistan and india after an interruption of two years and has
paved a foundation for the two countries to sort out gradually all the questions hanging in the
air, including the kashmir dispute. it is also a realization of their precious sincerity for peace.

Moses

officials of the two countries set the agenda for future talks , and the pattern of a continuing
dialogue mechanism . this marks a break in the process of dialogue between pakistan and india
, two years after the restart of the two countries including kashmir dispute to gradually solve
all the outstanding issues have laid the foundation of the two sides showed great sincerity in
peace .

GroundHog

the two countries have decided to set up a mechanism for conducting continuous dialogue on
the agenda and mode of the talks . this indicates that the ongoing dialogue between the two
countries has laid the foundation for the gradual settlement of all outstanding issues including
the dispute over kashmir .

VNMT

the officials of the two countries set up a mechanism for holding a continuous dialogue on
the agenda and mode of the future talks, and this indicates that the ongoing dialogue between
pakistan and india has laid a foundation for resolving all outstanding issues , including the
kashmir disputes , and this serves as a valuable and sincere peace sincerity .

Table 4: Translation examples of different systems. We highlight important parts in red color.

tems that use the same training, development and
testing data. The results show that VNMT signifi-
cantly outperforms GroundHog and achieves a sig-
nificant gain of 0.73 BLEU points (p < 0.01). With
unknown word replacement (Jean et al., 2015; Lu-
ong et al., 2015a), VNMT reaches the performance
level that is comparable to the previous state-of-the-
art NMT results.

4.5 Translation Analysis

Table 4 shows a translation example that helps un-
derstand the advantage of VNMT over NMT . As
the source sentence in this example is long (more
than 40 words), the translation generated by Moses
is relatively messy and incomprehensible. In con-
trast, translations generated by neural models (both
GroundHog and VNMT) are much more fluent and
comprehensible. However, there are essential differ-
ences between GroundHog and our VNMT. Specifi-
cally, GroundHog does not translate the phrase “官
员” at the beginning of the source sentence. The
translation of the clause “体现了双方可贵的和
平诚意。” at the end of the source sentence is com-
pletely lost. In contrast, our VNMT model does not
miss or mistake these fragments and can convey the
meaning of entire source sentence to the target side.

From these examples, we can find that although

attention networks can help NMT trace back to rel-
evant parts of source sentences for predicting tar-
get translations, capturing the semantics of entire
sentences still remains a big challenge for neural
machine translation. Since NMT implicitly models
variable-length source sentences with fixed-size hid-
den vectors, some details of source sentences (e.g.,
the red sequence of words in Table 4) may not be
encoded in these vectors at all. VNMT seems to be
able to capture these details through a latent vari-
able that explicitly model underlying semantics of
source sentences. The promising results suggest that
VNMT provides a new mechanism to deal with sen-
tence semantics.

5 Related Work

5.1 Neural Machine Translation

Neural machine translation starts from the sequence
to sequence learning, where Sutskever et al. (2014)
employ two multilayered Long Short-Term Memory
(LSTM) models that first encode a source sentence
into a single vector and then decode the translation
word by word until a special end token is gener-
ated. In order to deal with issues caused by encoding
all source-side information into a fixed-length vec-
tor, Bahdanau et al. (2014) introduce attention-based

528

NMT that aims at automatically concentrating on
relevant source parts for predicting target words dur-
ing decoding. The incorporation of attention mech-
anism allows NMT to cope better with long sen-
tences, and makes it really comparable to or even
superior to conventional SMT.

Following the success of attentional NMT, a num-
ber of approaches and models have been proposed
for NMT recently, which can be grouped into differ-
ent categories according to their motivations: deal-
ing with rare words or large vocabulary (Jean et al.,
2015; Luong et al., 2015b; Sennrich et al., 2015),
learning better attentional structures (Luong et al.,
2015a), integrating SMT techniques (Cheng et al.,
2015; Shen et al., 2015; Feng et al., 2016; Tu et al.,
2016), memory network (Meng et al., 2015), etc. All
these models are designed within the discriminative
encoder-decoder framework, leaving the explicit ex-
ploration of underlying semantics with a variational
model an open problem.

5.2 Variational Neural Model
In order to perform efficient inference and learn-
ing in directed probabilistic models on large-scale
dataset, Kingma and Welling (2014) as well as
Rezende et al. (2014) introduce variational neural
networks. Typically, these models utilize an neural
inference model to approximate the intractable pos-
terior, and optimize model parameters jointly with a
reparameterized variational lower bound using the
standard stochastic gradient technique. This ap-
proach is of growing interest due to its success in
various tasks.

Kingma et al. (2014) revisit the approach to semi-
supervised learning with generative models and fur-
ther develop new models that allow effective gen-
eralization from a small labeled dataset to a large
unlabeled dataset. Chung et al. (2015) incorporate
latent variables into the hidden state of a recurrent
neural network, while Gregor et al. (2015) combine
a novel spatial attention mechanism that mimics the
foveation of human eyes, with a sequential varia-
tional auto-encoding framework that allows the it-
erative construction of complex images. Very re-
cently, Miao et al. (2015) propose a generic varia-
tional inference framework for generative and con-
ditional models of text.

The most related work is that of Bowman et

al. (2015), where they develop a variational autoen-
coder for unsupervised generative language model-
ing. The major difference is that they focus on the
monolingual language model, while we adapt this
technique to bilingual translation. Although varia-
tional neural models have been widely used in NLP
tasks and the variational decoding has been investi-
gated for SMT (Li et al., 2009), the adaptation and
utilization of variational neural model to neural ma-
chine translation, to the best of our knowledge, has
never been investigated before.

6 Conclusion and Future Work

In this paper, we have presented a variational model
for neural machine translation that incorporates a
continuous latent variable to model the underlying
semantics of sentence pairs. We approximate the
posterior distribution with neural networks and repa-
rameterize the variational lower bound. This en-
ables our model to be an end-to-end neural network
that can be optimized through the stochastic gradi-
ent algorithms. Comparing with the conventional
attention-based NMT, our model is better at trans-
lating long sentences. It also greatly benefits from
a special regularization term brought with this la-
tent variable. Experiments on Chinese-English and
English-German translation tasks verified the effec-
tiveness of our model.

In the future, since the latent variable in our
model is at the sentence level, we want to explore
more fine-grained latent variables for neural ma-
chine translation, such as the Recurrent Latent Vari-
able Model (Chung et al., 2015). We are also inter-
ested in applying our model to other similar tasks.

Acknowledgments

The authors were supported by National Nat-
ural Science Foundation of China (Grant Nos
61303082, 61672440, 61622209 and 61403269),
Natural Science Foundation of Fujian Province
(Grant No. 2016J05161), Natural Science Founda-
tion of Jiangsu Province (Grant No. BK20140355),
and Research fund of the Provincial Key Laboratory
for Computer Information Processing Technology in
Soochow University (Grant No. KJS1520). We also
thank the anonymous reviewers for their insightful
comments.

529

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. In Proc. of ICLR.

L. Bentivogli, A. Bisazza, M. Cettolo, and M. Federico.
2016. Neural versus Phrase-Based Machine Transla-
tion Quality: a Case Study. ArXiv e-prints, August.

S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Joze-
fowicz, and S. Bengio. 2015. Generating Sentences
from a Continuous Space. ArXiv e-prints, November.

Y. Cheng, S. Shen, Z. He, W. He, H. Wu, M. Sun, and
Y. Liu. 2015. Agreement-based Joint Training for
Bidirectional Attention-based Neural Machine Trans-
lation. ArXiv e-prints, December.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using rnn encoder–decoder for statistical ma-
chine translation. In Proc. of EMNLP, pages 1724–
1734, October.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth
Goel, Aaron C. Courville, and Yoshua Bengio. 2015.
A recurrent latent variable model for sequential data.
In Proc. of NIPS.

S. Feng, S. Liu, M. Li, and M. Zhou. 2016. Implicit
Distortion and Fertility Models for Attention-based
Encoder-Decoder NMT Model. ArXiv e-prints, Jan-
uary.

Karol Gregor, Ivo Danihelka, Alex Graves, and Daan
Wierstra. 2015. DRAW: A recurrent neural network
for image generation. CoRR, abs/1502.04623.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and
Yoshua Bengio. 2015. On using very large target vo-
cabulary for neural machine translation. In Proc. of
ACL-IJCNLP, pages 1–10, July.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proc. of EMNLP,
pages 1700–1709, October.

Diederik P Kingma and Max Welling. 2014. Auto-
Encoding Variational Bayes. In Proc. of ICLR.

Diederik P. Kingma, Shakir Mohamed, Danilo Jimenez
Rezende, and Max Welling. 2014. Semi-supervised
learning with deep generative models. In Proc. of
NIPS, pages 3581–3589.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondřej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Proc. of
ACL, pages 177–180.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proc. of EMNLP.

Zhifei Li, Jason Eisner, and Sanjeev Khudanpur. 2009.
Variational decoding for statistical machine transla-
tion. In Proc. of ACL, pages 593–601, August.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015a. Effective approaches to attention-based neural
machine translation. In Proc. of EMNLP, pages 1412–
1421, September.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals,
and Wojciech Zaremba. 2015b. Addressing the rare
word problem in neural machine translation. In Proc.
of ACL-IJCNLP, pages 11–19, July.

F. Meng, Z. Lu, Z. Tu, H. Li, and Q. Liu. 2015.
A Deep Memory-based Architecture for Sequence-to-
Sequence Learning. ArXiv e-prints, June.

Y. Miao, L. Yu, and P. Blunsom. 2015. Neural Varia-
tional Inference for Text Processing. ArXiv e-prints,
November.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proc. of ACL, pages
311–318.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. 2014. Stochastic backpropagation and ap-
proximate inference in deep generative models. In
Proc. of ICML, pages 1278–1286.

R. Sennrich, B. Haddow, and A. Birch. 2015. Neu-
ral Machine Translation of Rare Words with Subword
Units. ArXiv e-prints, August.

S. Shen, Y. Cheng, Z. He, W. He, H. Wu, M. Sun, and
Y. Liu. 2015. Minimum Risk Training for Neural Ma-
chine Translation. ArXiv e-prints, December.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
CoRR, abs/1409.3215.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Coverage-based neural machine
translation. CoRR, abs/1601.04811.

530

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 531–540,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Towards a Convex HMM Surrogate for Word Alignment

Andrei Arsene Simion
Columbia University ∗

New York, NY, 10011
aas2148@columbia.edu

Michael Collins
Columbia University†

Computer Science
New York, NY, 10027

mc3354@columbia.edu

Clifford Stein
Columbia University

IEOR Department
New York, NY, 10027

cs2035@columbia.edu

Abstract

Among the alignment models used in statis-
tical machine translation (SMT), the hidden
Markov model (HMM) is arguably the most
elegant: it performs consistently better than
IBM Model 3 and is very close in perfor-
mance to the much more complex IBM Model
4. In this paper we discuss a model which
combines the structure of the HMM and IBM
Model 2. Using this surrogate, our experi-
ments show that we can attain a similar level
of alignment quality as the HMM model im-
plemented in GIZA++ (Och and Ney, 2003).
For this model, we derive its convex relaxation
and show that it too has strong performance
despite not having the local optima problems
of non-convex objectives. In particular, the
word alignment quality of this new convex
model is significantly above that of the stan-
dard IBM Models 2 and 3, as well as the pop-
ular (and still non-convex) IBM Model 2 vari-
ant of (Dyer et al., 2013).

1 Introduction

The IBM translation models are widely used in mod-
ern statistical translation systems. Typically, one
seeds more complex models with simpler models,
and the parameters of each model are estimated
through an Expectation Maximization (EM) proce-
dure. Among the IBM Models, perhaps the most
elegant is the HMM model (Vogel et al., 1996). The
HMM is the last model whose expectation step is

∗Currently at Google.
†Currently on leave at Google.

both exact and simple, and it attains a level of ac-
curacy that is very close to the results achieved by
much more complex models. In particular, experi-
ments have shown that IBM Models 1, 2, and 3 all
perform worse than the HMM and Model 4 benefits
greatly from being seeded by the HMM (Och and
Ney, 2003).

In this paper we make the following contributions:

• We derive a new alignment model which com-
bines the structure of the HMM and IBM
Model 2 and show that its performance is very
close to that of the HMM. There are several
reasons why such a result would be of value
(for more on this, see (Simion et al., 2013) and
(Simion et al., 2015a), for example).

• The main goal of this work is not to eliminate
highly non-convex models such as the HMM
entirely but, rather, to develop a new, power-
ful, convex alignment model and thus push the
boundary of these theoretically justified tech-
niques further. Building on the work of (Simion
et al., 2015a), we derive a convex relaxation for
the new model and show that its performance
is close to that of the HMM. Although it does
not beat the HMM, the new convex model im-
proves upon the standard IBM Model 2 signif-
icantly. Moreover, the convex relaxation also
performs better than the strong IBM 2 vari-
ant FastAlign (Dyer et al., 2013), IBM Model
3, and the other available convex alignment
models detailed in (Simion et al., 2015a) and
(Simion et al., 2013).

• We derive a parameter estimation algorithm for

531

new model and its convex relaxation based on
the EM algorithm. Our model has both HMM
emission probabilities and IBM Model 2’s dis-
tortions, so we can use Model 2 to seed both the
model’s lexical and distortion parameters. For
the convex model, we need not use any initial-
ization heuristics since the EM algorithm we
derive is guaranteed to converge to a local op-
tima that is also global.

The goal of our work is to present a model which
is convex and has state of the art empirical perfor-
mance. Although one step of this task was achieved
for IBM Model 2 (Simion et al., 2015a), our tar-
get goal deals with a much more local-optima-laden,
non-convex objective. Finally, whereas IBM 2 in
some ways leads to a clear method of attack, we will
discuss why the HMM presents challenges that re-
quire the insertion of this new surrogate.

Notation. We adopt the notation introduced in
(Och and Ney, 2003) of having 1m2n denote the
training scheme of m IBM Model 1 EM iterations
followed by initializing Model 2 with these parame-
ters and running n IBM Model 2 EM iterations. We
denote by H the HMM and note that it too can be
seeded by running Model 1 followed by Model 2.
Additionally, we denote our model as 2H, and note
that it has distortion parameters like IBM Model
2 and emission parameters like that of the HMM.
Under this notation, we let 1m2n2oH denote running
Model 1 for m iterations, then Model 2 for n iter-
ation, and then finally our Model for o iterations.
As before, we are seeding from the more basic to
the more complex model in turn. We denote the
convex relaxation of 2H by 2HC. Throughout this
paper, for any integer N , we use [N] to denote
{1 . . . N} and [N]0 to denote {0 . . . N}. Finally, in
our presentation, “convex function” means a func-
tion for which a local maxima also global, for exam-
ple, f(x) = −x2.

2 IBM Models 1 and 2 and the HMM

In this section we give a brief review of IBM Models
1, 2, and the HMM, as well as the the optimization
problems arising from these models. The standard
approach for optimization within these latent vari-
able models is the EM algorithm.

Throughout this section, and the remainder of the
paper, we assume that our set of training examples
is (e(k), f (k)) for k = 1 . . . n, where e(k) is the k’th
English sentence and f (k) is the k’th French sen-
tence. Following standard convention, we assume
the task is to translate from French (the “source” lan-
guage) into English (the “target” language) 1. We
use E to denote the English vocabulary (set of pos-
sible English words), and F to denote the French
vocabulary. The k’th English sentence is a sequence
of words e(k)1 . . . e

(k)
lk

where lk is the length of the

k’th English sentence, and each e(k)i ∈ E; similarly
the k’th French sentence is a sequence f (k)1 . . . f

(k)
mk ,

where mk is the length of the k’th French sentence,
and each f (k)j ∈ F . We define e(k)0 for k = 1 . . . n
to be a special NULL word (note that E contains the
NULL word).

For each English word e ∈ E, we will assume
that D(e) is a dictionary specifying the set of possi-
ble French words that can be translations of e. The
set D(e) is a subset of F . In practice, D(e) can be
derived in various ways; in our experiments we sim-
ply define D(e) to include all French words f such
that e and f are seen in a translation pair.

Given these definitions, the IBM Model 2 opti-
mization problem is presented in several sources, for
example, (Simion et al., 2013). The parameters in
this problem are t(f |e) and d(i|j, l,m). The ob-
jective function for IBM Model 2 is then the log-
likelihood of the training data; we can simplify the
log-likelihood (Koehn, 2008) as

1

n

n∑

k=1

mk∑

j=1

log p(f
(k)
j |e(k)) ,

where

p(f
(k)
j |e(k)) =

lk∑

i=0

t(f
(k)
j |e

(k)
i)d(i|j, lk,mk) .

1Technically, in most standard sources (Koehn, 2008), this
goes as follows: when we want to translate from French to En-
glish we note that p(e|f) ∝ p(f |e)p(e) by Bayes’s Theorem.
When translating, the alignment models we consider are con-
cerned with modeling p(f |e) while the rest of the translation is
handled by the language model p(e). Therefore, in the context
of the original task, we have that English is the target language
while French is the source. However, for the sake of clarity, we
emphasize that the alignment models we study are concerned
with the development of p(f |e).

532

This last simplification is crucial as it allows for a
simple multinomial EM implementation, and can be
done for IBM Model 1 as well (Koehn, 2008). Fur-
thermore, the ability to write out the marginal like-
lihood per sentence in this manner has seen other
applications: it was crucial, for example, in deriving
a convex relaxation of IBM Model 2 and solving the
new problem using subgradient methods (Simion et
al., 2013).

An improvement on IBM Model 2, called the
HMM alignment model, was introduced by Vogel
et al (Vogel et al., 1996). For this model, the dis-
tortion parameters are replaced by emission parame-
ters d(aj |aj−1, l). These emission parameters spec-
ify the probability of the next alignment variable
for the jth target word is aj , given that the previ-
ous source word was aligned to a target word whose
position was aj−1 in a target sentence with length of
l. The objective of the HMM is given by

1

n

n∑

k=1

∑

a
(k)
1 ...a

(k)
mk

log

mk∏

j=1

t(f
(k)
j |e

(k)

akj
)d(a

(k)
j |a

(k)
j−1, lk)

and we present this in Fig 1. We note that unlike
IBM Model 2, we cannot simplify the exponential
sum within the log-likelihood of the HMM, and so
EM training for this model requires the use of a spe-
cial EM implementation knows as the Baum-Welch
algorithm (Rabiner and Juang., 1986).

Once these models are trained, each model’s high-
est probability (Viterbi) alignment is computed. For
IBM Models 1 and 2, the Viterbi alignment splits
easily (Koehn, 2008). For the HMM, dynamic pro-
gramming is used (Vogel et al., 1996). Although it
is non-convex and thus its initialization is important,
the HMM is the last alignment model in the classi-
cal setting that has an exact EM procedure (Och and
Ney, 2003): from IBM Model 3 onwards heuristics
are used within the expectation and maximization
steps of each model’s associated EM procedure.

3 Distortion and emission parameter
structure

The structure of IBM Model 2’s distortion param-
eters and the HMM’s emission parameters is im-
portant and is used in our model as well, so we

Input: Define E, F , (e(k), f (k), lk,mk) for k =
1 . . . n, D(e) for e ∈ E as in Section 2.

Parameters:
• A parameter t(f |e) for each e ∈ E, f ∈ D(e).
• A parameter d(i|i, lk) for each i ∈ [lk]0, i′ ∈
[lk]0.

Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (1)

∀e ∈ E,
∑

f∈D(e)

t(f |e) = 1 (2)

∀i, i′ ∈ [lk]0, d(i′|i, lk) ≥ 0 (3)

∀i ∈ [lk]0,
∑

i′∈[lk]0
d(i′|i, lk) = 1 (4)

Objective: Maximize

1

n

n∑

k=1

∑

a
(k)
1 ...a

(k)
mk

log

mk∏

j=1

t(f
(k)
j |e

(k)

akj
)d(a

(k)
j |a

(k)
j−1, lk)

with respect to the t(f |e) parameters d(i′|i, l).
Figure 1: The HMM Optimization Problem

detail this here. We are using the roughly same
structure as (Liang et al., 2006) and (Dyer et al.,
2013): the distortions and emissions of our model
are parametrized by forcing the model to concentrate
its alignments on the diagonal.

3.1 Distortion Parameters for IBM2

Let λ > 0. For the IBM Model 2 distortions we
set the NULL word probability as d(0|j, l,m) = p0,
where p0 = 1

l+1 and note that this will generally de-
pend on the target sentence length within a bitext
training pair that we are considering. For i 6= 0
which satisfies we set

d(i|j, l,m) =
(1− p0)e−λ|

i
l
− j

m
|

Zλ(j, l,m)
,

where Zλ(j, l,m) is a normalization constant as in
(Dyer et al., 2013).

3.2 Emission Parameters for HMM

Let θ > 0. For the HMM emissions we first set
the NULL word generation to d(0|i, l) = p0, with

533

p0 = 1
l+1 . For target word position i, i′ 6= 0, we set

d(i′|i, l) =
(1− p0)e−θ|

i′
l
− i

l
|

Zθ(i, l,m)
,

where Zθ(i, l,m) is a suitable normalization con-
stant. Lastly, if i = 0 so that we are jump-
ing from the NULL word onto a possibly different
word, we set d(i′|0, l) = p0. Aside from making
the NULL word have uniform jump probability, the
above emission parameters are modeled to favor a
jumping to an adjacent English word.

4 Combining IBM Model 2 and the HMM

In deriving the new HMM surrogate, our main goal
was to allow the current alignment to know as much
as possible about the previous alignment variable
and still have a likelihood that factors as that of IBM
Model 2 (Simion et al., 2013; Koehn, 2008). We
combine IBM Model 2 and the HMM by incorpo-
rating the generation of words using the structure
of both models. The model we introduce, IBM2-
HMM, is displayed in Fig 2.

Consider a target-source sentence pair (e, f) with
|e| = l and |f | = m. For source sentence positions j
and j+ 1 we have source words fj and fj+1 and we
assign a joint probability involving the alignments
aj and aj+1 as:

q(j, aj , aj+1, l,m) = (5)
t(fj |eaj)d(aj |j, l,m)t(fj+1|eaj+1)d(aj+1|aj , l) . (6)

From the equation above, we note that we use the
IBM Model 2’s word generation method for posi-
tion j and the HMM generative structure for position
j + 1. The generative nature of the above procedure
introduces dependency between adjacent words two
at a time. Since we want to mimic the HMM’s struc-
ture as much as possible, we devise our likelihood
function to mimic the HMM’s dependency between
alignments using q. Essentially, we move the source
word position j from 1 to m and allow for overlap-
ping terms when j ∈ {2, . . . ,m − 1}. In what fol-
lows, we describe this representation in detail.

The likelihood in Eq. 16 is actually the sum of two
likelihoods which use equations Eq. 5 and 6 repeat-
edly. To this end, we will discuss how our objective
is actually

1

n

n∑

k=1

log
∑

a(k),b(k)

p(f (k), a(k), b(k)|e(k)) , (7)

where a(k) and b(k) both are alignment vectors
whose components are independent and can take on
any values in [lk]0. To see how p(f, a, b|e) comes
about, note that we could generate the sentence f by
generating pairs (1, 2), (3, 4), (5, 6), . . . using equa-
tions Eqs. 5 and 6 for each pair. Taking all this to-
gether, the upshot of our discussion is that generat-
ing the pair (e, f) in this way gives us that the like-
lihood for an alignment a would be given by:

p1(f, a|e) =
m−1∏

j odd

q(j, aj , aj+1, l,m) . (8)

Using the same idea as above, we could also skip
the first target word position and generate pairs
(2, 3), (4, 5), . . . using Eqs. 5 and 6. Under this sec-
ond generative method, the joint probability for f
and alignment b is:

p2(f, b|e) =
m−1∏

j even

q(j, bj , bj+1, l,m) , (9)

Finally, we note that if m is even we do not
generate f1 and fm under p2 but we do generate
these words under p1. Similarly, if m is odd we
do not generate f1 under p2 and we do not gen-
erate fm under p1; however in this case as in the
first, we still generate these missing words under
the other generative method. Using p(f, a, b|e) =
p1(f, a|e)p2(f, b|e) and factoring the log-likelihood
as in IBM Model 1 and 2 (Koehn, 2008), we get the
log-likelihood in Fig 2. Finally, we note that our
model’s log-likelihood could be viewed as the sum
of the log-likelihoods of a model which generates
(e, f) using p1 and another model which generates
sentences using p2. These models share parameters
but generate words using different recipes, as dis-
cussed above.

5 The parameter estimation for
IBM2-HMM

To fully optimize our new model (over t, λ, and θ),
we can use an EM algorithm in the same fashion as

534

Input: Define E, F , (e(k), f (k), lk,mk) for k =
1 . . . n, D(e) for e ∈ E as in Section 2.

Parameters:
• A parameter t(f |e) for each e ∈ E, f ∈ D(e).
• A parameter λ > 0 for distortion centering.
• A parameter θ > 0 for emission centering.

Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (10)

∀e ∈ E,
∑

f∈D(e)

t(f |e) = 1 (11)

∀i ∈ [lk]0, j ∈ [mk], d(i|j, lk,mk) ≥ 0 (12)

∀j ∈ [mk],
∑

i∈[lk]0
d(i|j, lk,mk) = 1 (13)

∀i, i′ ∈ [lk]0, d(i′|i, lk) ≥ 0 (14)

∀i ∈ [lk]0,
∑

i′∈[lk]0
d(i′|i, lk) = 1 (15)

Objective: Maximize

1

n

n∑

k=1

mk−1∑

j=1

log

lk∑

i=0

lk∑

i′=0

q(j, i, i′, lk,mk) (16)

with respect to the parameters t(f |e), d(i′|i, l)
d(i|j, l,m), and q(j, i, i′, lk,mk) set as

t(f
(k)
j |e

(k)
i)d(i|j, l,m)t(f

(k)
j+1|ei′)d(i′|i, l) (17)

Figure 2: The IBM2-HMM Optimization Problem. We use

equation (5) within the likelihood definition.

(Dyer et al., 2013). Specifically, for the model in
question the EM algorithm still applies but we have
to use a gradient-based algorithm within the learning
step. On the other hand, since such a gradient-based
method introduces the necessary complication of a
learning rate, we could also optimize the objective
by picking θ and λ via cross-validation and using
a multinomial EM algorithm for the learning of the
lexical t terms. For our experiments, we opted for
this simpler choice: we derived a multinomial EM
algorithm and cross-validated the centering param-
eters for the distortion and emission terms. With λ
and θ fixed, the derivation of this algorithm is very
similar to the one used for IBM2-HMM’s convex re-

laxation and this uses the path discussed in (Simion
et al., 2015a) and (Simion et al., 2015b). We detail
the EM algorithm for the convex relaxation below.

6 A Convex HMM Surrogate

In this section we detail a procedure to get a con-
vex relaxation for IBM2-HMM. Let (t,d) be all the
parameters of the HMM. As a first step in getting
a convex HMM, one could follow the path devel-
oped in (Simion et al., 2015a) and directly replace
the HMM’s objective terms

mk∏

j=1

t(f
(k)
j |e

(k)

akj
)d(a

(k)
j |a

(k)
j−1, lk)

by

(

mk∏

j=1

t(f
(k)
j |e

(k)

akj
)d(a

(k)
j |a

(k)
j−1, lk))

1
2mk .

In particular, the geometric mean function

h(x1, . . . , h2mk
) = (

∏2mk
j=1 xj)

1
2mk is convex

((Boyd and Vandenberghe, 2004)) and, for a
given sentence pair (e(k), f (k)) with alignment
a(k) we can find a projection matrix P so that
P(t,d) = (t̃, d̃) where t̃ = {t(f (k)j |e

(k)

akj
)}mk
j=1

and d̃ = {d(a
(k)
j |a

(k)
j−1, lk)}mk

j=1 are exactly the
parameters used in the term above (in particular,
t,d are the set of all parameters while t̃, d̃ are
the set of parameters for the specific training pair
k; P projects from the full space onto only the
parameters used for training pair k). Given this, we
then have that g(t,d) = h(P(t,d)) = h(t̃, d̃) is
convex and, by composition, so is log g(t,d) (see
(Simion et al., 2015a; Boyd and Vandenberghe,
2004) for details; the main idea lies in the fact that
as linear transformations preserve convexity, so do
compositions of convex functions with increasing
convex functions such as log). Finally, if we run this
plan for all terms in the objective, the new objective
is convex since it is the sum of convex functions (the
new optimization problem is convex as it has linear
constraints). Although this gives a convex program,
we observed that the powers being so small made
the optimized probabilities very uninformative (i.e.
uniform). The above makes sense: no matter what
the parameters are, we will easily get the 1 we seek

535

for each term in the objective since all terms are
taken to a low (1

2mk
) power .

Since this direct relaxation does not yield fruit,
we next could turn to our model. Developing its re-
laxation in the vein of (Simion et al., 2015a), we
could be to let d(i|j, l,m) and d(i′|i, l) be multino-
mial probabilities (that is, these parameters would
not have centering parameters λ and θ and would
be just standard probabilities as in the GIZA++ ver-
sions of the HMM and IBM Model 2 (Och and Ney,
2003)) and replace all the terms q(j, i′, i, l,m) in
(16) by (q(j, i′, i, l,m))

1
4 . Although this method is

feasible, experiments showed that the relaxation is
not very competitive and performs on par with IBM
Model 2; this relaxation is far in performance from
the HMM even though we are relaxing (only) the
product of 4 terms (lastly, we mention that we tried
other variants were we replaced d(i|j, l,m)d(i′|i, l)
by d(i, i′|j, l,m) so that we would have only three
terms; unfortunately, this last attempt also produced
parameters that were “too uniform”).

The above analysis motivates why we defined our
model as we did: we now have only two terms to
relax. In particular, to rectify the above, we left
in place the structure discussed in Section 3 and
made λ and θ be tuning parameters which we can
cross-validate for on a small held-out data set. This
last constraint effectively removes the distortion and
emission parameters from the model but we still
maintain the structural property of these parame-
ters: we maintain their favoring the diagonal or ad-
jacent alignment. To get the relaxation, we replace
q(j, i, i′, l,m) by

p(j, i, i′, l,m) ∝
√
t(f

(k)
j |e

(k)
i)t(f

(k)
j+1|ei′)

and set the proportionality constant to be
d(i|j, l,m)d(i′|i, l). Using this setup we now
have a convex objective to optimize over. In
particular, we’ve formulated a convex relaxation of
the IBM2-HMM problem which, like the Support
Vector Machine, includes parameters that can be
cross-validated over (Boyd and Vandenberghe,
2004).

Input: Define E, F , (e(k), f (k), lk,mk) for k =
1 . . . n, D(e) for e ∈ E as in Section 2. Pick
λ, θ > 0 as in Section 3 via cross-validation.

Parameters:
• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (18)

∀e ∈ E,
∑

f∈D(e)

t(f |e) = 1 (19)

Objective: Maximize

1

n

n∑

k=1

mk−1∑

j=1

log

lk∑

i=0

lk∑

i′=0

p(j, i, i′, lk,mk) (20)

with respect to the parameters t(f |e) and
p(j, i, i′, lk,mk) set as
√
t(f

(k)
j |e

(k)
i)d(i|j, l,m)

√
t(f

(k)
j+1|ei′)d(i′|i, l)

Figure 3: The IBM2-HMM convex relaxation optimization

problem. Note that the distortions d(i|j, l, ,m) and emissions

d(i′|i, l) are constants held fixed and parameterized by cross-

validated parameters λ and θ as in Section 3.

7 An EM algorithm for the convex
surrogate

The EM algorithm for the convex relaxation of our
surrogate is given in Fig 4. As the model’s objective
is the sum of the objectives of two models generated
by a multinomial rule, we can get a very succinct
EM algorithm. For more details on this and a simi-
lar derivation, please refer to (Simion et al., 2015a),
(Koehn, 2008) or (Simion et al., 2015b). For this al-
gorithm, we again note that the distortion and emis-
sion parameters are constants so that the only esti-
mation that needs to be conducted is on the lexical t
terms.

To be specific, we have that the M step requires
optimizing

1

n

n∑

k=1

log
∑

a(k),b(k)

q(a
(k)

, b
(k)|e(k)

, f
(k)

)p(f
(k)

, a
(k)

, b
(k)|e(k)

) .

In the above, we have that

536

q(a(k), b(k)|e(k), f (k))

are constants proportional to

mk−1∏

j=1

√
t(f

(k)
j |e(k)

a
(k)
j

)t(f
(k)
j+1|e

(k)

a
(k)
j+1

)

mk∏

j=2

√
t(f

(k)
j |e(k)

b
(k)
j

)t(f
(k)
j+1|e

(k)

b
(k)
j+1

)

and gotten through the E step. This optimization
step is very similar to the regular Model 2 M step
since the β drops down using log tβ = β log t; the
exact same count-based method can be applied. The
upshot of this is given in Fig 4; similar to the logic
above for 2HC, we can get the EM algorithm for 2H.

8 Decoding methods for IBM2-HMM

When computing the optimal alignment we wanted
to compare our model with the HMM as closely as
possible. Because of this, the most natural method
of evaluating the quality of the parameters would be
to use the same rule as the HMM. Specifically, for
a sentence pair (e, f) with |e| = l and |f | = m,
in HMM decoding we aim to find (a1 . . . am) which
maximizes

max
a1,...,am

m∏

j=1

t(fj |eaj)d(aj |aj−1, l).

As is standard, dynamic programming can now be
used to find the Viterbi alignment. Although there
are a number of ways we could define the opti-
mal alignment, we felt that the above would be the
best since it tests dependance between alignment
variables and allows for easy comparison with the
GIZA++ HMM. Finding the optimal alignment un-
der the HMM setting is labelled “HMM” in Table 1.

We can also find the optimal alignment by taking
the objective literally (see (Simion et al., 2014) for a
similar argument dealing with the convex relaxation
of IBM Model 2) and computing

max
a1...am

p1(f, a|e)p2(f, a|e).

Above, we are asking for the optimal alignment
that yields the highest probability alignment through
generating technique p1 and p2. This method of de-
coding is a lot like the HMM style and also relies

1: Input: Define E, F , (e(k), f (k), lk,mk) for k =
1 . . . n, D(e) for e ∈ E as in Section 2. Two pa-
rameters λ, θ > 0 picked by cross-validation so that
the distortions and emissions are constants obeying
the structure in Section 3. An integer T specifying
the number of passes over the data.

2: Parameters:
• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

3: Initialization:
• ∀e ∈ E, f ∈ D(e), set t(f |e) = 1

D(e) .
4: EM Algorithm: Expectation
5: for all k = 1 . . . N do
6: for all j = 1 . . .mk do
7: δ = 0
8: ∆ = 0
9: for all i = 0 . . . lk do

10: for all i′ = 0 . . . lk do
11: δ[i, i′] = p(j, i′, i, lk,mk)
12: ∆+ = δ[i, i′]
13: for all i = 0 . . . lk do
14: for all i′ = 0 . . . lk do
15: δ[i, i′] = δ[i,i′]

∆

16: counts(f
(k)
j , e

(k)
i)+ = δ[i, i′]

17: counts(e
(k)
i)+ = δ[i, i′]

18: counts(f
(k)
j+1, e

(k)
i′)+ = δ[i, i′]

19: counts(e
(k)
i′)+ = δ[i, i′]

20: EM Algorithm: Maximization
21: for all e ∈ E do
22: for all f ∈ D(e) do
23: t(f |e) = counts(e,f)

counts(e)

24: Output: t parameters.

Figure 4: Pseudocode for the EM algorithm of the IBM2-

HMM’s convex relaxation. As the distortion and emission pa-

rameters are constants, the algorithm is very similar to that of

IBM Model 1.

on dynamic programming. In this case we have the
recursion for QJoint given by

QJoint(1, i) = t(f1|ei)d2(i|1, l,m) ,

∀i ∈ [l]0, and

QJoint(j, i
′) = t2(fj |ei′)d(i′|j, l,m)MJoint(j − 1, i′) ,

where MJoint(j − 1, i′) is

MJoint(j − 1, i′) =
l

max
i=0
{d(i′|i, l)QJoint(j − 1, i)} ,

∀ 2 ≤ j ≤ m,∀ i′ ∈ [l]0. The alignment results got-
ten by decoding with this method is labelled “Joint”
in Table 1.

537

9 Experiments

In this section we describe experiments using the
IBM2-HMM optimization problem combined with
the EM algorithm for parameter estimation.

9.1 Data Sets

We use data from the bilingual word alignment
workshop held at HLT-NAACL 2003 (Michalcea
and Pederson, 2003). We use the Canadian Hansards
bilingual corpus, with 743,989 English-French sen-
tence pairs as training data, 37 sentences of devel-
opment data, and 447 sentences of test data (note
that we use a randomly chosen subset of the origi-
nal training set of 1.1 million sentences, similar to
the setting used in (Moore, 2004)). The develop-
ment and test data have been manually aligned at the
word level, annotating alignments between source
and target words in the corpus as either “sure” (S)
or “possible” (P) alignments, as described in (Och
and Ney, 2003). As is standard, we lower-cased all
words before giving the data to GIZA++ and we ig-
nored NULL word alignments in our computation of
alignment quality scores.

9.2 Methodology

We test several models in our experiments. In par-
ticular, we empirically evaluate our models against
the GIZA++ IBM Model 3 and HMM, as well as the
FastAlign IBM Model 2 implementation of (Dyer et
al., 2013) that uses Variational Bayes. For each of
our models, we estimated parameters and got align-
ments in turn using models in the source-target and
target-source directions; using the same setup as
(Simion et al., 2013), we present the gotten inter-
sected alignments. In training, we employ the stan-
dard practice of initializing non-convex alignment
models with simpler non-convex models. In par-
ticular, we initialize, the GIZA++ HMM with IBM
Model 2, IBM Model 2 with IBM Model 1, and
IBM2-HMM and IBM Model 3 with IBM Model
2 preceded by Model 1. Lastly, for FastAlign, we
initialized all parameters uniformly since this em-
pirically was a more favorable initialization, as dis-
cussed in (Dyer et al., 2013).

We measure the performance of the models in
terms of Precision, Recall, F-Measure, and AER us-
ing only sure alignments in the definitions of the first

three metrics and sure and possible alignments in the
definition of AER , as in (Simion et al., 2013) and
(Marcu et al., 2006). For our experiments, we report
results in both AER (lower is better) and F-Measure
(higher is better) (Och and Ney, 2003).

Table 1 shows the alignment summary statistics
for the 447 sentences present in the Hansard test
data. We present alignments quality scores using
either the FastAlign IBM Model 2, the GIZA++
HMM, and our model and its relaxation using either
the “HMM” or “Joint” decoding. First, we note that
in deciding the decoding style for IBM2-HMM, the
HMM method is better than the Joint method. We
expected this type of performance since HMM de-
coding introduces positional dependance among the
entire set of words in the sentence, which is shown to
be a good modeling assumption (Vogel et al., 1996).

From the results in Table 1 we see that the HMM
outperforms all other models, including IBM2-
HMM and its convex relaxation. However, IBM2-
HMM is not far in AER performance from the HMM
and both it and its relaxation do better than FastAl-
ign or IBM Model 3 (the results for IBM Model 3
are not presented; a one-directional English-French
run of 1525315 gave AER and F-Measure numbers of
0.1768 and 0.6588, respectively, and this was behind
both the IBM Model 2 FastAlign and our models).

As a further set of experiments, we also appended
an IBM Model 1 or IBM Model 2 objective to our
models’s original objectives, so that the constraints
and parameters are the same but now we are maxi-
mizing the average of two log-likelihoods. With re-
gard to the EM optimization, we would only need
to add another δ parameter: we’d now have proba-
bilities δ1[i] ∝ t(f

(k)
j |e

(k)
i)d(i|j, ll,mk) (this is for

IBM Model 2 smoothing; we have d = 1 for IBM
1 smoothing) and δ2[i, i′] ∝ p(j, i, i′.lk,mk) in the
EM Algorithm that results (for more, see (Simion et
al., 2015a)). We note that the appended IBM Model
2 objective is still convex if we fix the distortions’
λ parameter and then optimize for the t parameters
via EM (thus, model 2HC is still convex). For us,
there were significant gains, especially in the con-
vex model. The results for all these experiments are
shown in Table 2, with IBM 2 smoothing for the con-
vex model displayed in the rightmost column.

Finally, we also tested our model in the full

538

Training 15210H 15210H 210HC 210HC FA10 1525H10

Decoding HMM Joint HMM Joint IBM2 HMM
Iteration AER

1 0.0956 0.1076 0.1538 0.1814 0.5406 0.1761
2 0.0884 0.0943 0.1093 0.1343 0.1625 0.0873
3 0.0844 0.0916 0.1023 0.1234 0.1254 0.0786
4 0.0828 0.0904 0.0996 0.1204 0.1169 0.0753
5 0.0808 0.0907 0.0992 0.1197 0.1131 0.0737
6 0.0804 0.0906 0.0989 0.1199 0.1128 0.0719
7 0.0795 0.0910 0.0986 0.1197 0.1116 0.0717
8 0.0789 0.0900 0.0988 0.1195 0.1086 0.0725
9 0.0793 0.0904 0.0986 0.1195 0.1076 0.0738
10 0.0793 0.0902 0.0986 0.1195 0.1072 0.0734

Iteration F-Measure
1 0.7829 0.7797 0.7199 0.6914 0.2951 0.7219
2 0.7854 0.7805 0.7594 0.7330 0.7111 0.8039
3 0.7899 0.7806 0.7651 0.7427 0.7484 0.8112
4 0.7908 0.7813 0.7668 0.7457 0.7589 0.8094
5 0.7928 0.7806 0.7673 0.7461 0.7624 0.8058
6 0.7928 0.7807 0.7678 0.7457 0.7630 0.8056
7 0.7939 0.7817 0.7679 0.7457 0.7633 0.8046
8 0.7942 0.7814 0.7679 0.7458 0.7658 0.8024
9 0.7937 0.7813 0.7680 0.7457 0.7672 0.8007
10 0.7927 0.7816 0.7680 0.7457 0.7679 0.8010

Table 1: Alignment quality results for IBM2-HMM (2H) and

its convex relaxation (2HC) using either HMM-style dynamic

programming or “Joint” decoding. The first and last columns

above are for the GIZA++ HMM initialized either with IBM

Model 1 or Model 1 followed by Model 2. FA above refers to

the improved IBM Model 2 (FastAlign) of (Dyer et al., 2013).

SMT pipeline using the cdec system (Dyer et al.,
2013). For our experiments, we compared our
models’ alignments (gotten by training 1525H and
25HC) against the alignments gotten by the HMM
(1525H5), IBM Model 4 (15H53343), and FastAl-
ign. Unfortunately, we found that all 4 systems
led to roughly the same BLEU score of 40 on a
Spanish-English training set of size 250000 which
was a subset of version 7 of the Europarl dataset
(Dyer et al., 2013). For our development and test
sets, we used data each of size roughly 1800 and
we preprocessed all data by considering only sen-
tences of size less than 80 and filtering out sentences
which had a very large (or small) ratio of target and
source sentence lengths. Although the SMT results
were not a success in that our gains were not signif-
icant, we felt that the experiments at least highlight
that our model mimics the HMM’s alignments even
though its structure is much more local. Lastly, we
in regards to the new convex model’s performance,
we observe much better alignment quality than any
other convex alignment models in print, for exam-
ple, (Simion et al., 2015a).

Training 15210H 15210H 210HC 210HC
Smoothing IBM1 IBM2 IBM1 IBM2
Decoding HMM HMM HMM HMM
Iteration AER

1 0.1003 0.0958 0.1703 0.1482
2 0.0949 0.0890 0.1172 0.1057
3 0.0904 0.0840 0.1039 0.0955
4 0.0886 0.0816 0.0984 0.0927
5 0.0866 0.0795 0.0948 0.0894
6 0.0851 0.0794 0.0933 0.0888
7 0.0837 0.0790 0.0922 0.0886
8 0.0825 0.0788 0.0921 0.0880
9 0.0820 0.0785 0.0921 0.0881
10 0.0820 0.0777 0.0920 0.0881

Iteration F-Measure
1 0.7791 0.7817 0.7065 0.7251
2 0.7822 0.7839 0.7559 0.7637
3 0.7856 0.7897 0.7689 0.7740
4 0.7873 0.7923 0.7729 0.7760
5 0.7899 0.7938 0.7771 0.7782
6 0.7904 0.7943 0.7789 0.7788
7 0.7917 0.7946 0.7800 0.7791
8 0.7928 0.7944 0.7806 0.7795
9 0.7930 0.7941 0.7806 0.7797
10 0.7925 0.7947 0.7806 0.7796

Table 2: Alignment quality results for IBM2-HMM and its

relaxation using IBM 1 and IBM 2 smoothing (in this case,

“smoothing” means adding these log-likelihoods to the original

objective as in (Simion et al., 2013). For the convex relaxation

of IBM2-HMM, we can only smooth by adding in the convex

IBM Model 1 objective, or by adding in an IBM Model 2 objec-

tive where the distortions are taken to be constants (these distor-

tions are identical to the ones that are used within the relaxation

itself and are cross-validated for optimal λ).

10 Conclusions and Future Work

Our work has explored some of the details of a new
model which combines the structure of IBM Model
2 the alignment HMM Model. We’ve shown that
this new model and its convex relaxation performs
very close to the standard GIZA++ implementation
of the HMM. Bridging the gap between the HMM
and convex models proves difficult for a number of
reasons (Guo and Schuurmans, 2007). In this pa-
per, we have introduced a new set of ideas aimed at
tightening this gap.

Acknowledgments

Andrei Simion was supported by a Google research
award. Cliff Stein was partially supported by NSF
grant CCF-1421161. We thank the reviewers for
their insightful commentary and suggestions.

539

References
Steven Boyd and Lieven Vandenberghe. 2004. Convex

Optimization. Cambridge University Press.
Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della

Pietra, and Robert. L. Mercer. 1993. The Mathematics
of Statistical Machine Translation: Parameter Estima-
tion. Computational Linguistics, 19:263-311.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum Likelihood From Incomplete Data via the
EM Algorithm. Journal of the royal statistical society,
series B, 39(1):1-38.

Chris Dyer , Victor Chahuneau, Noah A. Smith. 2013.
A Simple, Fast, and Effective Reparameterization of
IBM Model 2. In Proceedings of NAACL.

Alexander Fraser and Daniel Marcu. 2007. Measur-
ing Word Alignment Quality for Statistical Ma-
chine Translation. Journal Computational Linguistics,
33(3): 293-303.

Joao V. Graca, Kuzman Ganchev and Ben Taskar. 2007.
Expectation Maximization and Posterior Constraints.
In Proceedings of NIPS.

Yuhong Guo and Dale Schuurmans. 2007. Convex Re-
laxations of Latent Variable Training. In Proceedings
of NIPS.

Simon Lacoste-Julien, Ben Taskar, Dan Klein, and
Michael Jordan. 2008. Word Alignment via Quadratic
Assignment. In Proceedings of the HLT-NAACL.

Phillip Koehn. 2004. Statistical Significance Tests for
Machine Translation Evaluation. In Proceedings of the
EMNLP.

Phillip Koehn. 2008. Statistical Machine Translation.
Cambridge University Press.

Percy Liang, Ben Taskar and Dan Klein. 2006. Alignment
by Agreement. In Proceedings of NAACL.

Daniel Marcu, Wei Wang, Abdessamad Echihabi,
and Kevin Knight. 2006. SPMT: Statistical Ma-
chine Translation with Syntactified Target Language
Phrases. In Proceedings of the EMNLP.

Rada Michalcea and Ted Pederson. 2003. An Evalua-
tion Exercise in Word Alignment. HLT-NAACL 2003:
Workshop in building and using Parallel Texts: Data
Driven Machine Translation and Beyond.

Robert C. Moore. 2004. Improving IBM Word-
Alignment Model 1. In Proceedings of the ACL.

Stephan Vogel, Hermann Ney and Christoph Tillman.
1996. HMM-Based Word Alignment in Statistical
Translation. In Proceedings of COLING.

Franz Och and Hermann Ney. 2003. A Systematic
Comparison of Various Statistical Alignment Models.
Computational-Linguistics, 29(1): 19-52.

L.R. Rabiner and B.H. Juang. 1986. An Introduction to
Hidden Markov Models. In IEEE ASSP Magazine.

Andrei Simion, Michael Collins and Cliff Stein. 2013. A
Convex Alternative to IBM Model 2. In Proceedings
of EMNLP.

Andrei Simion, Michael Collins and Cliff Stein. 2013.
Some Experiments with a Convex IBM Model 2. In
Proceedings of EACL.

Andrei Simion, Michael Collins and Cliff Stein. 2015.
A Family of Latent Variable Convex Relaxations for
IBM Model 2. In Proceedings of the AAAI.

Andrei Simion, Michael Collins and Cliff Stein. 2015.
On a Strictly Concave IBM Model 1. In Proceedings
of EMNLP.

Kristina Toutanova and Michel Galley. 2011. Why Ini-
tialization Matters for IBM Model 1: Multiple Optima
and Non-Strict Convexity. In Proceedings of the ACL.

Ashish Vaswani, Liang Huang and David Chiang. 2012.
Smaller Alignment Models for Better Translations:
Unsupervised Word Alignment with the L0-norm. In
Proceedings of the ACL.

540

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 541–550,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Solving Verbal Questions in IQ Test by Knowledge-Powered Word
Embedding

Huazheng Wang
University of Virginia
hw7ww@virginia.edu

Fei Tian
Microsoft Research

fetia@microsoft.com

Bin Gao
Microsoft

bingao@microsoft.com

Chengjieren Zhu
University of California, San Diego

chz191@ucsd.edu

Jiang Bian
Yidian Inc.

jiang.bian.prc@gmail.com

Tie-Yan Liu
Microsoft Research

tyliu@microsoft.com

Abstract

Verbal comprehension questions appear very
frequently in Intelligence Quotient (IQ) tests,
which measure human’s verbal ability includ-
ing the understanding of the words with mul-
tiple senses, the synonyms and antonyms, and
the analogies among words. In this work,
we explore whether such tests can be solved
automatically by the deep learning technolo-
gies for text data. We found that the task
was quite challenging, and simply applying
existing technologies like word embedding
could not achieve a good performance, due
to the multiple senses of words and the com-
plex relations among words. To tackle these
challenges, we propose a novel framework to
automatically solve the verbal IQ questions
by leveraging improved word embedding by
jointly considering the multi-sense nature of
words and the relational information among
words. Experimental results have shown that
the proposed framework can not only outper-
form existing methods for solving verbal com-
prehension questions but also exceed the aver-
age performance of the Amazon Mechanical
Turk workers involved in the study.

1 Introduction

The Intelligence Quotient (IQ) test (Stern, 1914)
is a test of intelligence designed to formally study
the success of an individual in adapting to a spe-
cific situation under certain conditions. Common
IQ tests measure various types of abilities such as
verbal, mathematical, logical, and reasoning skills.
These tests have been widely used in the study of
psychology, education, and career development. In

the community of artificial intelligence, agents have
been invented to fulfill many interesting and chal-
lenging tasks like face recognition, speech recogni-
tion, handwriting recognition, and question answer-
ing. However, as far as we know, there are very lim-
ited studies of developing an agent to solve IQ tests,
which in some sense is more challenging, since even
common human beings do not always succeed on
such tests. Considering that IQ test scores have been
widely considered as a measure of intelligence, we
think it is worth further investigating whether we can
develop an agent that can solve IQ test questions.

The commonly used IQ tests contain several types
of questions like verbal, mathematical, logical, and
picture questions, among which a large proportion
(near 40%) are verbal questions (Carter, 2005). The
recent progress on deep learning for natural lan-
guage processing (NLP), such as word embedding
technologies, has advanced the ability of machines
(or AI agents) to understand the meaning of words
and the relations among words. This inspires us
to solve the verbal questions in IQ tests by lever-
aging the word embedding technologies. However,
our attempts show that a straightforward applica-
tion of word embedding does not result in satisfac-
tory performances. This is actually understandable.
Standard word embedding technologies learn one
embedding vector for each word based on the co-
occurrence information in a text corpus. However,
verbal comprehension questions in IQ tests usually
consider the multiple senses of a word (and often fo-
cus on the rare senses), and the complex relations
among (polysemous) words. This has clearly ex-
ceeded the capability of standard word embedding

541

technologies.
To tackle the aforementioned challenges, we pro-

pose a novel framework that consists of three com-
ponents.

First, we build a classifier to recognize the spe-
cific type (e.g., analogy, classification, synonym,
and antonym) of verbal questions. For different
types of questions, different kinds of relationships
need to be considered and the solvers could have
different forms. Therefore, with an effective ques-
tion type classifier, we may solve the questions in a
divide-and-conquer manner.

Second, we obtain distributed representations of
words and relations by leveraging a novel word em-
bedding method that considers the multi-sense na-
ture of words and the relational knowledge among
words (or their senses) contained in dictionaries. In
particular, for each polysemous word, we retrieve
its number of senses from a dictionary, and con-
duct clustering on all its context windows in the
corpus. Then we attach the example sentences for
every sense in the dictionary to the clusters, such
that we can tag the polysemous word in each con-
text window with a specific word sense. On top
of this, instead of learning one embedding vector
for each word, we learn one vector for each pair
of word-sense. Furthermore, in addition to learning
the embedding vectors for words, we also learn the
embedding vectors for relations (e.g., synonym and
antonym) at the same time, by incorporating rela-
tional knowledge into the objective function of the
word embedding learning algorithm. That is, the
learning of word-sense representations and relation
representations interacts with each other, such that
the relational knowledge obtained from dictionaries
is effectively incorporated.

Third, for each type of question, we propose a
specific solver based on the obtained distributed
word-sense representations and relation represen-
tations. For example, for analogy questions, we
find the answer by minimizing the distance between
word-sense pairs in the question and the word-sense
pairs in the candidate answers.

We have conducted experiments using a com-
bined IQ test set to test the performance of our pro-
posed framework. The experimental results show
that our method can outperform several baseline
methods for verbal comprehension questions on IQ

tests. We further deliver the questions in the test
set to human beings through Amazon Mechanical
Turk1. The average performance of the human be-
ings is even a little lower than that of our proposed
method.

2 Related Work

2.1 Verbal Questions in IQ Test
In common IQ tests, a large proportion of ques-
tions are verbal comprehension questions, which
play an important role in deciding the final IQ
scores. For example, in Wechsler Adult Intelligence
Scale (Wechsler, 2008), which is among the most fa-
mous IQ test systems, the full-scale IQ is calculated
from two IQ scores: Verbal IQ and Performance IQ,
and around 40% of questions in a typical test are ver-
bal comprehension questions. Verbal questions can
test not only the verbal ability (e.g., understanding
polysemy of a word), but also the reasoning abil-
ity and induction ability of an individual. Accord-
ing to previous studies (Carter, 2005), verbal ques-
tions mainly have the types elaborated in Table 1,
in which the correct answers are highlighted in bold
font.

Analogy-I questions usually take the form “A is
to B as C is to ?”. One needs to choose a word
D from a given list of candidate words to form an
analogical relation between pair (A, B) and pair (C,
D). Such questions test the ability of identifying
an implicit relation from word pair (A, B) and ap-
ply it to compose word pair (C, D). Note that the
Analogy-I questions are also used as a major eval-
uation task in the word2vec models (Mikolov et al.,
2013). Analogy-II questions require two words to
be identified from two given lists in order to form an
analogical relation like “A is to ? as C is to ?”. Such
questions are a bit more difficult than the Analogy-
I questions since the analogical relation cannot be
observed directly from the questions, but need to be
searched for in the word pair combinations from the
candidate answers. Classification questions require
one to identify the word that is different (or dissim-
ilar) from others in a given word list. Such ques-
tions are also known as odd-one-out, which have
been studied in (Pintér et al., 2012). Classification
questions test the ability to summarize the majority

1http://www.mturk.com/

542

Type Example
Analogy-I Isotherm is to temperature as isobar is to? (i) atmosphere, (ii) wind, (iii) pressure, (iv) latitude, (v) current.
Analogy-II Identify two words (one from each set of brackets) that form a connection (analogy)

when paired with the words in capitals: CHAPTER (book, verse, read), ACT (stage, audience, play).
Classification Which is the odd one out? (i) calm, (ii) quiet, (iii) relaxed, (iv) serene, (v) unruffled.

Synonym Which word is closest to IRRATIONAL? (i)intransigent, (ii) irredeemable, (iii) unsafe, (iv) lost, (v) nonsensical.
Antonym Which word is most opposite to MUSICAL? (i) discordant, (ii) loud, (iii) lyrical, (iv) verbal, (v) euphonious.

Table 1: Types of verbal questions.

sense of the words and identify the outlier. Synonym
questions require one to pick one word out of a list of
words such that it has the closest meaning to a given
word. Synonym questions test the ability of identi-
fying all senses of the candidate words and selecting
the correct sense that can form a synonymous rela-
tion to the given word. Antonym questions require
one to pick one word out of a list of words such
that it has the opposite meaning to a given word.
Antonym questions test the ability of identifying all
senses of the candidate words and selecting the cor-
rect sense that can form an antonymous relation to
the given word. (Turney, 2008; Turney, 2011) stud-
ied the analogy, synonym and antonym problem us-
ing a supervised classification approach.

Although there are some efforts to solve math-
ematical, logical, and picture questions in IQ
test (Sanghi and Dowe, 2003; Strannegard et al.,
2012; Kushmany et al., 2014; Seo et al., 2014; Hos-
seini et al., 2014; Weston et al., 2015), there have
been very few efforts to develop automatic methods
to solve verbal questions.

2.2 Deep Learning for Text Mining

Building distributed word representations (Bengio et
al., 2003), a.k.a. word embeddings, has attracted
increasing attention in the area of machine learn-
ing. Different from conventional one-hot represen-
tations of studies or distributional word representa-
tions based on co-occurrence matrix between words
such as LSA (Dumais et al., 1988) and LDA (Blei
et al., 2003), distributed word representations are
usually low-dimensional dense vectors trained with
neural networks by maximizing the likelihood of a
text corpus. Recently, a series of works applied deep
learning techniques to learn high-quality word rep-
resentations (Collobert and Weston, 2008; Mikolov
et al., 2013; Pennington et al., 2014).

Nevertheless, since the above works learn word
representations mainly based on the word co-

occurrence information, it is quite difficult to obtain
high quality embeddings for those words with very
little context information; on the other hand, a large
amount of noisy or biased context could give rise to
ineffective word embeddings. Therefore, it is neces-
sary to introduce extra knowledge into the learning
process to regularize the quality of word embedding.
Some efforts have paid attention to learn word em-
bedding in order to address knowledge base comple-
tion and enhancement (Bordes et al., 2011; Socher
et al., 2013; Weston et al., 2013a), and some other
efforts have tried to leverage knowledge to enhance
word representations (Luong et al., 2013; Weston et
al., 2013b; Fried and Duh, 2014; Celikyilmaz et al.,
2015). Moreover, all the above models assume that
one word has only one embedding no matter whether
the word is polysemous or not, which might cause
some confusion for the polysemous words. To solve
the problem, there are several efforts like (Huang
et al., 2012; Tian et al., 2014; Neelakantan et al.,
2014). However, these models do not leverage any
extra knowledge (e.g., relational knowledge) to en-
hance word representations.

3 Solving Verbal Questions

In this section, we introduce our proposed frame-
work to solve the verbal questions, which consists
of the following three components.

3.1 Classification of Question Types

The first component of the framework is a question
classifier, which identifies different types of verbal
questions. Since different types of questions have
their unique ways of expression, the classification
task is relatively easy, and we therefore take a simple
approach to fulfill the task. Specifically, we regard
each verbal question as a short document and use
the TF·IDF features to build its representation. Then
we train an SVM classifier with linear kernel on a
portion of labeled question data, and apply it to other

543

questions. The question labels include Analogy-I,
Analogy-II, Classification, Synonym, and Antonym.
We use the one-vs-rest training strategy to obtain a
linear SVM classifier for each question type.

3.2 Embedding of Word-Senses and Relations

The second component of our framework leverages
deep learning technologies to learn distributed rep-
resentations for words (i.e. word embedding). Note
that in the context of verbal question answering, we
have some specific requirements on this learning
process. Verbal questions in IQ tests usually con-
sider the multiple senses of a word (and focus on
the rare senses), and the complex relations among
(polysemous) words, such as synonym and antonym
relation. Figure 1 shows an example of the multi-
sense of words and the relations among word senses.
We can see that irrational has three senses. Its first
sense has an antonym relation with the second sense
of rational, while its second sense has a synonym
relation with nonsensical and an antonym relation
with the first sense of rational.

The above challenge has exceeded the capability
of standard word embedding technologies. To ad-
dress this problem, we propose a novel approach
that considers the multi-sense nature of words and
integrate the relational knowledge among words (or
their senses) into the learning process. In particu-
lar, our approach consists of two steps. The first
step aims at labeling a word in the text corpus with
its specific sense, and the second step employs both
the labeled text corpus and the relational knowledge
contained in dictionaries to simultaneously learn
embeddings for both word-sense pairs and relations.

3.2.1 Multi-Sense Identification
First, we learn a single-sense word embedding by

using the skip-gram method in word2vec (Mikolov
et al., 2013).

Second, we gather the context windows of all oc-
currences of a word used in the skip-gram model,
and represent each context by a weighted average
of the pre-learned embedding vectors of the con-
text words. We use TF·IDF to define the weight-
ing function, where we regard each context win-
dow of the word as a short document to calcu-
late the document frequency. Specifically, for a
word w0, each of its context window can be de-

noted by (w−N , · · · , w0, · · · , wN). Then we repre-
sent the window by calculating the weighted average
of the pre-learned embedding vectors of the context
words as ξ = 1

2N

∑N
i=−N,i6=0 gwivwi ,where gwi is

the TF·IDF score of wi, and vwi is the pre-learned
embedding vector of wi. After that, for each word,
we use spherical k-means to cluster all its context
representations, where cluster number k is set as the
number of senses of this word in the online dictio-
nary.

Third, we match each cluster to the correspond-
ing sense in the dictionary. On one hand, we repre-
sent each cluster by the average embedding vector
of all those context windows included in the clus-
ter. For example, suppose word w0 has k senses and
thus it has k clusters of context windows, we de-
note the average embedding vectors for these clus-
ters as ξ̄1, · · · , ξ̄k. On the other hand, since the on-
line dictionary uses some descriptions and example
sentences to interpret each word sense, we can rep-
resent each word sense by the average embedding
of those words including its description words and
the words in the corresponding example sentences.
Here, we assume the representation vectors (based
on the online dictionary) for the k senses of w0 are
ζ1, · · · , ζk. After that, we consecutively match each
cluster to its closest word sense in terms of the dis-
tance computed in the word embedding space:

(ξ̄i′ , ζj′) = argmin
i,j=1,··· ,k

d(ξ̄i, ζj), (1)

where d(·, ·) calculates the Euclidean distance and
(ξ̄i′ , ζj′) is the first matched pair of window cluster
and word sense. Here, we simply take a greedy strat-
egy. That is, we remove ξ̄i′ and ζj′ from the cluster
vector set and the sense vector set, and recursively
run (1) to find the next matched pair till all the pairs
are found. Finally, each word occurrence in the cor-
pus is relabeled by its associated word sense, which
will be used to learn the embeddings for word-sense
pairs in the next step.

3.2.2 Co-Learning Word-Sense Pair
Representations and Relation
Representations

After relabeling the text corpus, different occur-
rences of a polysemous word may correspond to
its different senses, or more accurately word-sense
pairs. We then learn the embeddings for word-

544

Irrational (sense 1)

adj. without power to reason

Irrational (sense 2)

adj. unreasonable

Irrational (sense 3)

n. real number that cannot be expressed
as the quotient of two integers

nonsensical (sense 1)

adj. foolish or absurd

Absurd (sense 1)

adj. against reason or common sense

Absurd (sense 2)

adj. funny because clearly unsuitable,
foolish, false, or impossible

Rational (sense 1)

adj. sensible

Rational (sense 2)

adj. able to reason Synonym relation
Antonym relation

Figure 1: An example on the multi-sense of words and the relations between word senses.

sense pairs and relations (obtained from dictionar-
ies, such as synonym and antonym) simultaneously,
by integrating relational knowledge into the objec-
tive function of the word embedding learning model
like skip-gram. We propose to use a function Er as
described below to capture the relational knowledge.

Specifically, the existing relational knowledge
extracted from dictionaries, such as synonym,
antonym, etc., can be naturally represented in the
form of a triplet (head, relation, tail) (denoted by
(hi, r, tj) ∈ S, where S is the set of relational
knowledge), which consists of two word-sense pairs
(i.e. word h with its i-th sense and word t with its
j-th sense), h, t ∈ W (W is the set of words) and a
relationship r ∈ R (R is the set of relationships). To
learn the relation representations, we make an as-
sumption that relationships between words can be
interpreted as translation operations and they can be
represented by vectors. The principle in this model
is that if the relationship (hi, r, tj) exists, the repre-
sentation of the word-sense pair tj should be close
to that of hi plus the representation vector of the re-
lationship r, i.e. hi + r; otherwise, hi + r should
be far away from tj . Note that this model learns
word-sense pair representations and relation repre-
sentations in a unified continuous embedding space.

According to the above principle, we define Er as
a margin-based regularization function over the set
of relational knowledge S,

Er =
∑

(hi,r,tj)∈S
(h

′
,r,t

′
)∈S′

(hi,r,tj)

[
γ + d(hi + r, tj)− d(h

′
+ r, t

′
)
]
+
.

Here [X]+ = max(X, 0), γ > 0 is a margin hyper-
parameter, and d(·, ·) is the Euclidean distance be-
tween two words in the embedding space.The set of

corrupted triplets S
′
(h,r,t) is defined as S

′
(hi,r,tj)

=

{(h′ , r, t)}⋃{(h, r, t′)},which is constructed from
S by replacing either the head word-sense pair or the
tail word-sense pair by another randomly selected
word with its randomly selected sense.

To avoid the trivial solution that simply increases
the norms of representation vectors, we use an ad-
ditional soft norm constraint on the relation repre-
sentations as ri = 2σ(xi) − 1, where σ(·) is the
sigmoid function σ(xi) = 1/(1 + e−xi), ri is the
i-th dimension of relation vector r, and xi is a latent
variable, which guarantees that every dimension of
the relation representation vector is within the range
(−1, 1).

By combining the skip-gram objective function
and the regularization function derived from rela-
tional knowledge, we get the combined objective
Jr = αEr − L that incorporates relational knowl-
edge into the word-sense pair embedding calcula-
tion process, where α is the combination coefficient.
Our goal is to minimize Jr, which can be optimized
using back propagation neural networks. Figure 2
shows the structure of the proposed model.By using
this model, we can obtain the distributed representa-
tions for both word-sense pairs and relations simul-
taneously.

3.3 Solvers for Each Type of Questions

3.3.1 Analogy-I
For the Analogy-I questions like “A is to B as C

is to ?”, we answer them by optimizing:

D = argmax
ib,ia,ic,id′ ;

D′∈T

cos(v(B,ib) − v(A,ia) + v(C,ic), v(D′,id′))

(2)

545

Embedding of

softmax softmax softmax softmax

…

…

…

…

Embedding of Embedding of

Loss of relation

Figure 2: The structure of the proposed model.

where T contains all the candidate answers, cos
means cosine similarity, and ib, ia, ic, id′ are the in-
dexes for the word senses of B,A,C,D′ respec-
tively. Finally D is selected as the answer.

3.3.2 Analogy-II
As the form of the Analogy-II questions is like

“A is to ? as C is to ?” with two lists of candidate
answers, we can apply an optimization method as
below to select the best (B,D) pair,

argmax
ib′ ,ia,ic,id′ ;
B′∈T1,D

′∈T2

cos(v(B′,ib′) − v(A,ia) + v(C,ic), v(D′,id′)),

(3)

where T1, T2 are two lists of candidate words. Thus
we get the answers B and D that can form an ana-
logical relation between word pair (A, B) and word
pair (C,D) under a certain specific word sense com-
bination.

3.3.3 Classification
For the Classification questions, we leverage the

property that words with similar co-occurrence in-
formation are distributed close to each other in
the embedding space. The candidate word that
is not similar to others does not have similar co-
occurrence information to other words in the train-
ing corpus, and thus this word should be far away
from other words in the word embedding space.
Therefore we first calculate a group of mean vec-
tors miw1 ,··· ,iwN

of all the candidate words with
any possible word senses as below miw1 ,··· ,iwN

=
1
N

∑
wj∈T v(wj ,iwj)

, where T is the set of candidate
words, N is the capacity of T , wj is a word in T ;
iwj (j = 1, · · · , N ; iwj = 1, · · · , kwj) is the index
for the word senses of wj , and kwj (j = 1, · · · , N)
is the number of word senses of wj . Therefore, the

number of the mean vectors is M =
∏N

j=1 kwj .
As both N and kwj are very small, the computation
cost is acceptable. Then, we choose the word with
such a sense that its closest sense to the correspond-
ing mean vector is the largest among the candidate
words as the answer, i.e.,

w = argmax
wj∈T

min
iwj

;l=1,··· ,M
d(v(wj ,iwj

),ml). (4)

3.3.4 Synonym
For the Synonym questions, we empirically ex-

plored two solvers. For the first solver, we also
leverage the property that words with similar co-
occurrence information are located closely in the
word embedding space. Therefore, given the ques-
tion word wq and the candidate words wi, we can
find the answer by solving:

w = argmin
iwq ,iwj

;wj∈T
d(v(wj ,iwj

), v(wq,iwq)), (5)

where T is the set of candidate words. The sec-
ond solver is based on the minimization objective
of the translation distance between entities in the re-
lational knowledge model (2). Specifically, we cal-
culate the offset vector between the embedding of
question word wq and each word wj in the candi-
date list. Then, we set the answer w as the candidate
word with which the offset is the closest to the rep-
resentation vector of the synonym relation rs, i.e.,

w = argmin
iwq ,iwj

;wj∈T

∣∣|v(wj ,iwj
) − v(wq,iwq)| − rs

∣∣. (6)

In practice, we found the second solver performs
better (the results are listed in Section 4). For our
baseline embedding model skip-gram, since it does
not assume the relation representations explicitly,
we use the first solver for it.

3.3.5 Antonym
Similar to solving the Synonym questions, we ex-

plored two solvers for Antonym questions as well.
That is, the first solver (7) is based on the small
offset distance between semantically close words
whereas the second solver (8) leverages the trans-
lation distance between two words’ offset and the
embedding vector of the antonym relation. The first
solver is based on the fact that since an antonym and

546

its original word have similar co-occurrence infor-
mation from which the embedding vectors are de-
rived, the embedding vectors of both words with
antonym relation will still lie closely in the embed-
ding space.

w = argmin
iwq ,iwj

;wj∈T
d(v(wj ,iwj

), v(wq,iwq)), (7)

w = argmin
iwq ,iwj

;wj∈T

∣∣|v(wj ,iwj
) − v(wq,iwq)| − ra

∣∣, (8)

Here T is the set of candidate words and ra is the
representation vector of the antonym relation. Again
we found that the second solver performs better.
Similarly, for skip-gram, the first solver is applied.

4 Experiments

We conduct experiments to examine whether our
proposed framework can achieve satisfying results
on verbal comprehension questions.

4.1 Data Collection

4.1.1 Training Set for Word Embedding
We trained word embeddings on a publicly avail-

able text corpus named wiki20142, which is a large
text snapshot from Wikipedia. After being pre-
processed by removing all the html meta-data and
replacing the digit numbers by English words, the
final training corpus contains more than 3.4 billion
word tokens, and the number of unique words, i.e.
the vocabulary size, is about 2 million.

4.1.2 IQ Test Set
According to our study, there is no online dataset

specifically released for verbal comprehension ques-
tions, although there are many online IQ tests for
users to play with. In addition, most of the on-
line tests only calculate the final IQ scores but do
not provide the correct answers. Therefore, we only
use the online questions to train the verbal question
classifier described in Section 3.1. Specifically, we
manually collected and labeled 30 verbal questions
from the online IQ test Websites3 for each of the
five types (i.e. Analogy-I, Analogy-II, Classifica-
tion, Synonym, and Antonym) and trained an one-

2http://en.wikipedia.org/wiki/Wikipedia:
Database_download

3http://wechsleradultintelligencescale.
com/

vs-rest SVM classifier for each type. The total accu-
racy on the training set itself is 95.0%. The classifier
was then applied in the test set below.

We collected a set of verbal comprehension ques-
tions associated with correct answers from pub-
lished IQ test books, such as (Carter, 2005; Carter,
2007; Pape, 1993; Ken Russell, 2002), and we used
this collection as the test set to evaluate the ef-
fectiveness of our new framework. In total, this
test set contains 232 questions with the correspond-
ing answers.4 The number of each question type
(i.e., Analogy-I, Analogy-II, Classification, Syn-
onym, Antonym) are respectively 50, 29, 53, 51, 49.

4.2 Compared Methods

In our experiments, we compare our new relation
knowledge powered model to several baselines.

Random Guess Model (RG). Random guess is
the most straightforward way for an agent to solve
questions. In our experiments, we used a random
guess agent which would select an answer randomly
regardless of what the question was. To measure the
performance of random guess, we ran each task for
5 times and calculated the average accuracy.

Human Performance (HP). Since IQ tests are
designed to evaluate human intelligence, it is quite
natural to leverage human performance as a base-
line. To collect human answers on the test ques-
tions, we delivered them to human beings through
Amazon Mechanical Turk (AMT), a crowd-sourcing
Internet marketplace that allows people to partici-
pate in Human Intelligence Tasks. In our study, we
published five AMT jobs, one job corresponding to
one specific question type. The jobs were deliv-
ered to 200 people. To control the quality of the
collected results, we used several strategies: (i) we
imposed high restrictions on the workers by requir-
ing all the workers to be native English speakers in
North America and to be AMT Masters (who have
demonstrated high accuracy on previous tasks on
AMT marketplace); (ii) we recruited a large number
of workers in order to guarantee the statistical confi-
dence in their performances; (iii) we tracked their
age distribution and education background, which

4It can be downloaded from https://www.dropbox.
com/s/o0very1gwv3mrt5/VerbalQuestions.zip?
dl=0.

547

are very similar to those of the overall population
in the U.S.

Latent Dirichlet Allocation Model (LDA). This
baseline model leveraged one of the most common
classical distributional word representations, i.e. La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003).
In particular, we trained word representations using
LDA on wiki2014 with the topic number 1000.

Skip-Gram Model (SG). In this baseline, we
applied the word embedding trained by skip-
gram (Mikolov et al., 2013) (denoted by SG-1) on
wiki2014. In particular, we set the window size as 5,
the embedding dimension as 500, the negative sam-
pling count as 3, and the epoch number as 3. In ad-
dition, we also employed a pre-trained word embed-
ding by Google5 with the dimension of 300 (denoted
by SG-2).

Glove. Another powerful word embedding
model (Pennington et al., 2014). Glove configura-
tions are the same as those in running SG-1.

Multi-Sense Model (MS). In this baseline, we
applied the multi-sense word embedding models
proposed in (Huang et al., 2012; Tian et al., 2014;
Neelakantan et al., 2014) (denoted by MS-1, MS-2
and MS-3 respectively). For MS-1, we directly used
the published multi-sense word embedding vectors
by the authors6, in which they set 10 senses for the
top 5% most frequent words. For MS-2 and MS-
3, we get the embedding vectors by usingf the re-
leased codes from the authors using the same con-
figurations as MS-1.

Relation Knowledge Powered Model (RK).
This is our proposed method in Section 3. In par-
ticular, when learning the embedding on wiki2014,
we set the window size as 5, the embedding dimen-
sion as 500, the negative sampling count as 3, and
the epoch number as 3. We adopted the online Long-
man Dictionary as the dictionary used in multi-sense
clustering. We used a public relation knowledge set,
WordRep (Gao et al., 2014), for relation training.

4.3 Experimental Results

4.3.1 Accuracy of Question Classifier
We applied the question classifier trained in Sec-

tion 4.1.2 on the test set, and got the total accuracy

5https://code.google.com/p/word2vec/
6http://ai.stanford.edu/˜ehhuang/

93.1%. For RG and HP, the question classifier was
not needed. For other methods, the wrongly classi-
fied questions were also sent to the corresponding
wrong solver to find an answer. If the solver re-
turned an empty result (which was usually caused
by invalid input format, e.g., an Analogy-II question
was wrongly input to the Classification solver), we
would randomly select an answer.

4.3.2 Overall Accuracy
Table 2 demonstrates the accuracy of answering

verbal questions by using all the approaches men-
tioned in Section 4.2. The numbers for all the mod-
els are mean values from five repeated runs. From
this table, we observe: (i) RK can achieve the best
overall accuracy than all the other methods. In par-
ticular, RK can raise the overall accuracy by about
4.63% over HP7. (ii) RK is empirically superior to
the skip-gram models SG-1/SG-2 and Glove. Ac-
cording to our understanding, the improvement of
RK over SG-1/SG-2/Glove comes from two aspects:
multi-sense and relational knowledge. Note that the
performance difference between MS-1/MS-2/MS-3
and SG-1/SG-2/Glove is not significant, showing
that simply changing single-sense word embedding
to multi-sense word embedding does not bring too
much benefit. One reason is that the rare word-
senses do not have enough training data (contextual
information) to produce high-quality word embed-
ding. By further introducing the relational knowl-
edge among word-senses, the training for rare word-
senses will be linked to the training of their related
word-senses. As a result, the embedding quality of
the rare word-senses will be improved. (iii) RK is
empirically superior than the two multi-sense algo-
rithms MS-1, MS-2 and MS-3, demonstrating the
effectiveness brought by adopting fewer model pa-
rameters and using an online dictionary in building
the multi-sense embedding model.

These results are quite impressive, indicating the
potential of using machines to comprehend human
knowledge and even achieve a comparable level of
human intelligence.

4.3.3 Accuracy on Different Question Types
Table 2 reports the accuracy of answering various

types of verbal questions by each method. From the
7With the t-test score p = 0.036.

548

Analogy-I Analogy-II Classification Synonym Antonym Total
RG 24.60 11.72 20.75 19.27 23.13 20.51

LDA 28.00 13.79 39.62 27.45 30.61 29.31
HP 45.87 34.37 47.23 50.38 53.30 46.23
SG

SG-1 38.00 24.14 37.74 45.10 40.82 38.36
SG-2 38.00 20.69 39.62 47.06 44.90 39.66
Glove 45.09 24.14 32.08 47.06 40.82 39.03
MS

MS-1 36.36 19.05 41.30 50.00 36.59 38.67
MS-2 40.00 20.69 41.51 49.02 40.82 40.09
MS-3 17.65 20.69 47.17 47.06 30.61 36.73
RK 48.00 34.48 52.83 60.78 51.02 50.86

Table 2: Accuracy of different methods among different human groups.

table, we can observe that the SG and MS models
can achieve competitive accuracy on certain ques-
tion types (like Synonym) compared with HP. After
incorporating knowledge into learning word embed-
ding, our RK model can improve the accuracy over
all question types. Moreover, the table shows that
RK can result in a big improvement over HP on the
question types of Synonym and Classification.

To sum up, the experimental results have demon-
strated the effectiveness of the proposed RK model
compared with several baseline methods. Although
the test set is not large, the generalization of RK to
other test sets should not be a concern due to the un-
supervised nature of our model.

5 Conclusions

We investigated how to automatically solve verbal
comprehension questions in IQ Tests by using word
embedding techniques. In particular, we proposed
a three-step framework: (i) to recognize the spe-
cific type of a verbal comprehension question by
a classifier, (ii) to leverage a novel deep learning
model to co-learn the representations of both word-
sense pairs and relations among words (or their
senses), (iii) to design dedicated solvers, based on
the obtained word-sense pair representations and re-
lation representations, for addressing each type of
questions. Experimental results have demonstrated
that this novel framework can achieve better per-
formance than existing methods for solving verbal
comprehension questions and even exceed the aver-
age performance of the Amazon Mechanical Turk
workers involved in the experiments.

References
Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Research,
3:1137–1155.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. the Journal of ma-
chine Learning research, 3:993–1022.

Antoine Bordes, Jason Weston, Ronan Collobert, Yoshua
Bengio, et al. 2011. Learning structured embeddings
of knowledge bases. In AAAI.

Philip Carter. 2005. The complete book of intelligence
tests. John Wiley & Sons Ltd.

Philip Carter. 2007. The Ultimate IQ Test Book: 1,000
Practice Test Questions to Boost Your Brain Power.
Kogan Page Publishers.

Asli Celikyilmaz, Dilek Hakkani-Tur, Panupong Pasu-
pat, and Ruhi Sarikaya. 2015. Enriching word em-
beddings using knowledge graph for semantic tagging
in conversational dialog systems. In Proceedings of
AAAI.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of ICML, pages 160–167. ACM.

Susan T Dumais, George W Furnas, Thomas K Landauer,
Scott Deerwester, and Richard Harshman. 1988. Us-
ing latent semantic analysis to improve access to tex-
tual information. In Proceedings of SIGCHI.

Daniel Fried and Kevin Duh. 2014. Incorporating both
distributional and relational semantics in word repre-
sentations. CoRR, abs/1412.4369.

Bin Gao, Jiang Bian, and Tie-Yan Liu. 2014. Wordrep:
A benchmark for research on learning word represen-
tations. arXiv preprint arXiv:1407.1640.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization. In
Proceedings of EMNLP, pages 523–533.

549

Eric H Huang, Richard Socher, Christopher D Manning,
and Andrew Y Ng. 2012. Improving word representa-
tions via global context and multiple word prototypes.
In Association for Computational Linguistics (ACL),
pages 873–882.

Philip Carter Ken Russell. 2002. The Times Book of IQ
Tests. Kogan Page Limited.

Nate Kushmany, Yoav Artziz, Luke Zettlemoyerz, and
Regina Barzilayy. 2014. Learning to automatically
solve algebra word problems. In Proceedings of ACL.

Minh-Thang Luong, Richard Socher, and Christopher D
Manning. 2013. Better word representations with
recursive neural networks for morphology. CoNLL-
2013, 104.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In NIPS, pages 3111–3119.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In Proceedings of EMNLP,
pages 1059–1069, Doha, Qatar, October. Association
for Computational Linguistics.

Dan Pape. 1993. The Original Cambridge Self Scoring
IQ Test. The Magni Group, Inc.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. Proceedings of EMNLP, 12:1532–1543.

Balázs Pintér, Gyula Vörös, Zoltán Szabó, and András
Lörincz. 2012. Automated word puzzle generation
via topic dictionaries. CoRR, abs/1206.0377.

Pritika Sanghi and David Dowe. 2003. A computer pro-
gram capable of passing i.q. tests. In Proceedings of
the Joint International Conference on Cognitive Sci-
ence.

Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, and
Oren Etzioni. 2014. Diagram understanding in geom-
etry questions. In Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, July 27 -
31, 2014, Québec City, Québec, Canada., pages 2831–
2838.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural tensor
networks for knowledge base completion. In NIPS,
pages 926–934.

William Stern. 1914. The Psychological Methods of
Testing Intelligence. Warwick & York.

Claes Strannegard, Mehrdad Amirghasemi, and Simon
Ulfsbacker. 2012. An anthropomorphic method for
number sequence problems. Cognitive Systems Re-
search.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilistic
model for learning multi-prototype word embeddings.
In Proceedings of COLING.

Peter D Turney. 2008. A uniform approach to analogies,
synonyms, antonyms, and associations. In Proceed-
ings of the Coling 2008, pages 905–912.

Peter D Turney. 2011. Analogy perception applied
to seven tests of word comprehension. Journal of
Experimental & Theoretical Artificial Intelligence,
23(3):343–362.

David Wechsler. 2008. Wechsler adult intelligence
scale–fourth edition (wais–iv). San Antonio, TX: NCS
Pearson.

Jason Weston, Antoine Bordes, Oksana Yakhnenko, and
Nicolas Usunier. 2013a. Connecting language and
knowledge bases with embedding models for relation
extraction. arXiv preprint arXiv:1307.7973.

Jason Weston, Antoine Bordes, Oksana Yakhnenko, and
Nicolas Usunier. 2013b. Connecting language and
knowledge bases with embedding models for relation
extraction. In Proceedings of EMNLP.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2015. Towards ai-complete ques-
tion answering: a set of prerequisite toy tasks. arXiv
preprint arXiv:1502.05698.

550

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 551–561,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Long Short-Term Memory-Networks for Machine Reading

Jianpeng Cheng, Li Dong and Mirella Lapata
School of Informatics, University of Edinburgh

10 Crichton Street, Edinburgh EH8 9AB
{jianpeng.cheng,li.dong}@ed.ac.uk, mlap@inf.ed.ac.uk

Abstract

In this paper we address the question of how
to render sequence-level networks better at
handling structured input. We propose a ma-
chine reading simulator which processes text
incrementally from left to right and performs
shallow reasoning with memory and atten-
tion. The reader extends the Long Short-Term
Memory architecture with a memory network
in place of a single memory cell. This en-
ables adaptive memory usage during recur-
rence with neural attention, offering a way to
weakly induce relations among tokens. The
system is initially designed to process a single
sequence but we also demonstrate how to inte-
grate it with an encoder-decoder architecture.
Experiments on language modeling, sentiment
analysis, and natural language inference show
that our model matches or outperforms the
state of the art.

1 Introduction

How can a sequence-level network induce relations
which are presumed latent during text processing?
How can a recurrent network attentively memorize
longer sequences in a way that humans do? In this
paper we design a machine reader that automatically
learns to understand text. The term machine read-
ing is related to a wide range of tasks from answer-
ing reading comprehension questions (Clark et al.,
2013), to fact and relation extraction (Etzioni et al.,
2011; Fader et al., 2011), ontology learning (Poon
and Domingos, 2010), and textual entailment (Da-
gan et al., 2005). Rather than focusing on a specific
task, we develop a general-purpose reading simula-

tor, drawing inspiration from human language pro-
cessing and the fact language comprehension is in-
cremental with readers continuously extracting the
meaning of utterances on a word-by-word basis.

In order to understand texts, our machine reader
should provide facilities for extracting and repre-
senting meaning from natural language text, storing
meanings internally, and working with stored mean-
ings to derive further consequences. Ideally, such
a system should be robust, open-domain, and de-
grade gracefully in the presence of semantic rep-
resentations which may be incomplete, inaccurate,
or incomprehensible. It would also be desirable to
simulate the behavior of English speakers who pro-
cess text sequentially, from left to right, fixating
nearly every word while they read (Rayner, 1998)
and creating partial representations for sentence pre-
fixes (Konieczny, 2000; Tanenhaus et al., 1995).

Language modeling tools such as recurrent neural
networks (RNN) bode well with human reading be-
havior (Frank and Bod, 2011). RNNs treat each sen-
tence as a sequence of words and recursively com-
pose each word with its previous memory, until the
meaning of the whole sentence has been derived. In
practice, however, sequence-level networks are met
with at least three challenges. The first one concerns
model training problems associated with vanishing
and exploding gradients (Hochreiter, 1991; Bengio
et al., 1994), which can be partially ameliorated with
gated activation functions, such as the Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997), and gradient clipping (Pascanu et al.,
2013). The second issue relates to memory com-
pression problems. As the input sequence gets com-
pressed and blended into a single dense vector, suf-

551

The FBI is chasing a criminal on the run .
TheThe FBI is chasing a criminal on the run .
TheThe FBIFBI is chasing a criminal on the run .
TheThe FBIFBI isis chasing a criminal on the run .
TheThe FBIFBI isis chasingchasing a criminal on the run .

TheThe FBIFBI isis chasingchasing aa criminal on the run .

TheThe FBIFBI isis chasingchasing aa criminalcriminal on the run .

TheThe FBIFBI isis chasingchasing aa criminalcriminal onon the run .

TheThe FBIFBI isis chasingchasing aa criminalcriminal onon thethe run .

TheThe FBIFBI isis chasingchasing aa criminalcriminal onon thethe runrun .

Figure 1: Illustration of our model while reading the
sentence The FBI is chasing a criminal on the run.
Color red represents the current word being fixated,
blue represents memories. Shading indicates the de-
gree of memory activation.

ficiently large memory capacity is required to store
past information. As a result, the network general-
izes poorly to long sequences while wasting memory
on shorter ones. Finally, it should be acknowledged
that sequence-level networks lack a mechanism for
handling the structure of the input. This imposes
an inductive bias which is at odds with the fact that
language has inherent structure. In this paper, we
develop a text processing system which addresses
these limitations while maintaining the incremental,
generative property of a recurrent language model.

Recent attempts to render neural networks more
structure aware have seen the incorporation of exter-
nal memories in the context of recurrent neural net-
works (Weston et al., 2015; Sukhbaatar et al., 2015;
Grefenstette et al., 2015). The idea is to use multiple
memory slots outside the recurrence to piece-wise
store representations of the input; read and write
operations for each slot can be modeled as an at-
tention mechanism with a recurrent controller. We
also leverage memory and attention to empower a
recurrent network with stronger memorization capa-
bility and more importantly the ability to discover
relations among tokens. This is realized by insert-
ing a memory network module in the update of a re-
current network together with attention for memory
addressing. The attention acts as a weak inductive
module discovering relations between input tokens,
and is trained without direct supervision. As a point
of departure from previous work, the memory net-
work we employ is internal to the recurrence, thus
strengthening the interaction of the two and lead-
ing to a representation learner which is able to rea-

son over shallow structures. The resulting model,
which we term Long Short-Term Memory-Network
(LSTMN), is a reading simulator that can be used
for sequence processing tasks.

Figure 1 illustrates the reading behavior of the
LSTMN. The model processes text incrementally
while learning which past tokens in the memory and
to what extent they relate to the current token being
processed. As a result, the model induces undirected
relations among tokens as an intermediate step of
learning representations. We validate the perfor-
mance of the LSTMN in language modeling, sen-
timent analysis, and natural language inference. In
all cases, we train LSTMN models end-to-end with
task-specific supervision signals, achieving perfor-
mance comparable or better to state-of-the-art mod-
els and superior to vanilla LSTMs.

2 Related Work

Our machine reader is a recurrent neural network ex-
hibiting two important properties: it is incremental,
simulating human behavior, and performs shallow
structure reasoning over input streams.

Recurrent neural network (RNNs) have been suc-
cessfully applied to various sequence modeling and
sequence-to-sequence transduction tasks. The latter
have assumed several guises in the literature such
as machine translation (Bahdanau et al., 2014), sen-
tence compression (Rush et al., 2015), and reading
comprehension (Hermann et al., 2015). A key con-
tributing factor to their success has been the abil-
ity to handle well-known problems with exploding
or vanishing gradients (Bengio et al., 1994), leading
to models with gated activation functions (Hochre-
iter and Schmidhuber, 1997; Cho et al., 2014), and
more advanced architectures that enhance the in-
formation flow within the network (Koutnı́k et al.,
2014; Chung et al., 2015; Yao et al., 2015).

A remaining practical bottleneck for RNNs is
memory compression (Bahdanau et al., 2014): since
the inputs are recursively combined into a single
memory representation which is typically too small
in terms of parameters, it becomes difficult to accu-
rately memorize sequences (Zaremba and Sutskever,
2014). In the encoder-decoder architecture, this
problem can be sidestepped with an attention mech-
anism which learns soft alignments between the de-
coding states and the encoded memories (Bahdanau

552

et al., 2014). In our model, memory and attention
are added within a sequence encoder allowing the
network to uncover lexical relations between tokens.

The idea of introducing a structural bias to neu-
ral models is by no means new. For example, it is
reflected in the work of Socher et al. (2013a) who
apply recursive neural networks for learning natural
language representations. In the context of recur-
rent neural networks, efforts to build modular, struc-
tured neural models date back to Das et al. (1992)
who connect a recurrent neural network with an ex-
ternal memory stack for learning context free gram-
mars. Recently, Weston et al. (2015) propose Mem-
ory Networks to explicitly segregate memory stor-
age from the computation of neural networks in gen-
eral. Their model is trained end-to-end with a mem-
ory addressing mechanism closely related to soft at-
tention (Sukhbaatar et al., 2015) and has been ap-
plied to machine translation (Meng et al., 2015).
Grefenstette et al. (2015) define a set of differen-
tiable data structures (stacks, queues, and dequeues)
as memories controlled by a recurrent neural net-
work. Tran et al. (2016) combine the LSTM with an
external memory block component which interacts
with its hidden state. Kumar et al. (2016) employ
a structured neural network with episodic memory
modules for natural language and also visual ques-
tion answering (Xiong et al., 2016).

Similar to the above work, we leverage memory
and attention in a recurrent neural network for induc-
ing relations between tokens as a module in a larger
network responsible for representation learning. As
a property of soft attention, all intermediate rela-
tions we aim to capture are soft and differentiable.
This is in contrast to shift-reduce type neural mod-
els (Dyer et al., 2015; Bowman et al., 2016) where
the intermediate decisions are hard and induction is
more difficult. Finally, note that our model captures
undirected lexical relations and is thus distinct from
work on dependency grammar induction (Klein and
Manning, 2004) where the learned head-modifier re-
lations are directed.

3 The Machine Reader

In this section we present our machine reader which
is designed to process structured input while retain-
ing the incrementality of a recurrent neural network.
The core of our model is a Long Short-Term Mem-

ory (LSTM) unit with an extended memory tape that
explicitly simulates the human memory span. The
model performs implicit relation analysis between
tokens with an attention-based memory addressing
mechanism at every time step. In the following, we
first review the standard Long Short-Term Memory
and then describe our model.

3.1 Long Short-Term Memory

A Long Short-Term Memory (LSTM) recurrent neu-
ral network processes a variable-length sequence
x = (x1,x2, · · · ,xn) by incrementally adding new
content into a single memory slot, with gates con-
trolling the extent to which new content should be
memorized, old content should be erased, and cur-
rent content should be exposed. At time step t, the
memory ct and the hidden state ht are updated with
the following equations:

2
664

it
ft
ot
ĉt

3
775=

2
664

s
s
s

tanh

3
775W · [ht�1, xt] (1)

ct = ft � ct�1 + it � ĉt (2)

ht = ot � tanh(ct) (3)

where i, f , and o are gate activations. Compared
to the standard RNN, the LSTM uses additive mem-
ory updates and it separates the memory c from the
hidden state h, which interacts with the environment
when making predictions.

3.2 Long Short-Term Memory-Network

The first question that arises with LSTMs is the ex-
tent to which they are able to memorize sequences
under recursive compression. LSTMs can produce
a list of state representations during composition,
however, the next state is always computed from the
current state. That is to say, given the current state
ht , the next state ht+1 is conditionally independent of
states h1 · · ·ht�1 and tokens x1 · · ·xt . While the recur-
sive state update is performed in a Markov manner, it
is assumed that LSTMs maintain unbounded mem-
ory (i.e., the current state alone summarizes well the
tokens it has seen so far). This assumption may fail
in practice, for example when the sequence is long

553

Figure 2: Long Short-Term Memory-Network.
Color indicates degree of memory activation.

or when the memory size is not large enough. An-
other undesired property of LSTMs concerns model-
ing structured input. An LSTM aggregates informa-
tion on a token-by-token basis in sequential order,
but there is no explicit mechanism for reasoning over
structure and modeling relations between tokens.

Our model aims to address both limitations. Our
solution is to modify the standard LSTM structure
by replacing the memory cell with a memory net-
work (Weston et al., 2015). The resulting Long
Short-Term Memory-Network (LSTMN) stores the
contextual representation of each input token with
a unique memory slot and the size of the memory
grows with time until an upper bound of the memory
span is reached. This design enables the LSTM to
reason about relations between tokens with a neural
attention layer and then perform non-Markov state
updates. Although it is feasible to apply both write
and read operations to the memories with attention,
we concentrate on the latter. We conceptualize the
read operation as attentively linking the current to-
ken to previous memories and selecting useful con-
tent when processing it. Although not the focus of
this work, the significance of the write operation
can be analogously justified as a way of incremen-
tally updating previous memories, e.g., to correct
wrong interpretations when processing garden path
sentences (Ferreira and Henderson, 1991).

The architecture of the LSTMN is shown in Fig-
ure 2 and the formal definition is provided as fol-
lows. The model maintains two sets of vectors
stored in a hidden state tape used to interact with the

environment (e.g., computing attention), and a mem-
ory tape used to represent what is actually stored in
memory.1 Therefore, each token is associated with
a hidden vector and a memory vector. Let xt de-
note the current input; Ct�1 = (c1, · · · ,ct�1) denotes
the current memory tape, and Ht�1 = (h1, · · · ,ht�1)
the previous hidden tape. At time step t, the model
computes the relation between xt and x1 · · ·xt�1
through h1 · · ·ht�1 with an attention layer:

at
i = vT tanh(Whhi +Wxxt +Wh̃h̃t�1) (4)

st
i = softmax(at

i) (5)

This yields a probability distribution over the hidden
state vectors of previous tokens. We can then com-
pute an adaptive summary vector for the previous
hidden tape and memory tape denoted by c̃t and h̃t ,
respectively:

h̃t
c̃t

�
=

t�1

Â
i=1

st
i ·

hi
ci

�
(6)

and use them for computing the values of ct and ht
in the recurrent update as:

2
664

it
ft
ot
ĉt

3
775=

2
664

s
s
s

tanh

3
775W · [h̃t , xt] (7)

ct = ft � c̃t + it � ĉt (8)

ht = ot � tanh(ct) (9)

where v, Wh, Wx and Wh̃ are the new weight terms of
the network.

A key idea behind the LSTMN is to use attention
for inducing relations between tokens. These rela-
tions are soft and differentiable, and components of
a larger representation learning network. Although
it is appealing to provide direct supervision for the
attention layer, e.g., with evidence collected from
a dependency treebank, we treat it as a submod-
ule being optimized within the larger network in a
downstream task. It is also possible to have a more
structured relational reasoning module by stacking
multiple memory and hidden layers in an alternat-
ing fashion, resembling a stacked LSTM (Graves,

1For comparison, LSTMs maintain a hidden vector and a
memory vector; memory networks (Weston et al., 2015) have a
set of key vectors and a set of value vectors.

554

2013) or a multi-hop memory network (Sukhbaatar
et al., 2015). This can be achieved by feeding the
output hk

t of the lower layer k as input to the upper
layer (k + 1). The attention at the (k + 1)th layer is
computed as:

at
i,k+1 = vT tanh(Whhk+1

i +Wlhk
t +Wh̃h̃k+1

t�1) (10)

Skip-connections (Graves, 2013) can be applied to
feed xt to upper layers as well.

4 Modeling Two Sequences with LSTMN

Natural language processing tasks such as machine
translation and textual entailment are concerned
with modeling two sequences rather than a single
one. A standard tool for modeling two sequences
with recurrent networks is the encoder-decoder ar-
chitecture where the second sequence (also known
as the target) is being processed conditioned on the
first one (also known as the source). In this section
we explain how to combine the LSTMN which ap-
plies attention for intra-relation reasoning, with the
encoder-decoder network whose attention module
learns the inter-alignment between two sequences.
Figures 3a and 3b illustrate two types of combina-
tion. We describe the models more formally below.

Shallow Attention Fusion Shallow fusion simply
treats the LSTMN as a separate module that can
be readily used in an encoder-decoder architecture,
in lieu of a standard RNN or LSTM. As shown in
Figure 3a, both encoder and decoder are modeled
as LSTMNs with intra-attention. Meanwhile, inter-
attention is triggered when the decoder reads a tar-
get token, similar to the inter-attention introduced in
Bahdanau et al. (2014).

Deep Attention Fusion Deep fusion combines
inter- and intra-attention (initiated by the decoder)
when computing state updates. We use different no-
tation to represent the two sets of attention. Follow-
ing Section 3.2, C and H denote the target memory
tape and hidden tape, which store representations of
the target symbols that have been processed so far.
The computation of intra-attention follows Equa-
tions (4)–(9). Additionally, we use A = [a1, · · · ,am]
and Y = [g1, · · · ,gm] to represent the source mem-
ory tape and hidden tape, with m being the length of
the source sequence conditioned upon. We compute

inter-attention between the input at time step t and
tokens in the entire source sequence as follows:

bt
j = uT tanh(Wgg j +Wxxt +Wg̃g̃t�1) (11)

pt
j = softmax(bt

j) (12)

After that we compute the adaptive representation of
the source memory tape ãt and hidden tape g̃t as:

g̃t
ãt

�
=

m

Â
j=1

pt
j ·

g j
a j

�
(13)

We can then transfer the adaptive source represen-
tation ãt to the target memory with another gating
operation rt , analogous to the gates in Equation (7).

rt = s(Wr · [g̃t ,xt]) (14)

The new target memory includes inter-alignment
rt � ãt , intra-relation ft � c̃t , and the new input in-
formation it � ĉt :

ct = rt � ãt + ft � c̃t + it � ĉt (15)

ht = ot � tanh(ct) (16)

As shown in the equations above and Figure 3b, the
major change of deep fusion lies in the recurrent
storage of the inter-alignment vector in the target
memory network, as a way to help the target net-
work review source information.

5 Experiments

In this section we present our experiments for eval-
uating the performance of the LSTMN machine
reader. We start with language modeling as it
is a natural testbed for our model. We then as-
sess the model’s ability to extract meaning repre-
sentations for generic sentence classification tasks
such as sentiment analysis. Finally, we examine
whether the LSTMN can recognize the semantic
relationship between two sentences by applying it
to a natural language inference task. Our code
is available at https://github.com/cheng6076/
SNLI-attention.

555

(a) Decoder with shallow attention fusion. (b) Decoder with deep attention fusion.

Figure 3: LSTMNs for sequence-to-sequence modeling. The encoder uses intra-attention, while the decoder
incorporates both intra- and inter-attention. The two figures present two ways to combine the intra- and
inter-attention in the decoder.

Models Layers Perplexity
KN5 — 141
RNN 1 129
LSTM 1 115
LSTMN 1 108
sLSTM 3 115
gLSTM 3 107
dLSTM 3 109
LSTMN 3 102

Table 1: Language model perplexity on the Penn
Treebank. The size of memory is 300 for all models.

5.1 Language Modeling

Our language modeling experiments were con-
ducted on the English Penn Treebank dataset. Fol-
lowing common practice (Mikolov et al., 2010), we
trained on sections 0–20 (1M words), used sec-
tions 21–22 for validation (80K words), and sec-
tions 23–24 (90K words for testing). The dataset
contains approximately 1 million tokens and a vo-
cabulary size of 10K. The average sentence length
is 21. We use perplexity as our evaluation metric:
PPL = exp(NLL/T), where NLL denotes the nega-
tive log likelihood of the entire test set and T the
corresponding number of tokens. We used stochas-
tic gradient descent for optimization with an ini-
tial learning rate of 0.65, which decays by a factor
of 0.85 per epoch if no significant improvement has
been observed on the validation set. We renormal-
ize the gradient if its norm is greater than 5. The
mini-batch size was set to 40. The dimensions of

the word embeddings were set to 150 for all models.

In this suite of experiments we compared the
LSTMN against a variety of baselines. The first
one is a Kneser-Ney 5-gram language model (KN5)
which generally serves as a non-neural baseline for
the language modeling task. We also present per-
plexity results for the standard RNN and LSTM
models. We also implemented more sophisti-
cated LSTM architectures, such as a stacked LSTM
(sLSTM), a gated-feedback LSTM (gLSTM; Chung
et al. (2015)) and a depth-gated LSTM (dLSTM;
Yao et al. (2015)). The gated-feedback LSTM has
feedback gates connecting the hidden states across
multiple time steps as an adaptive control of the in-
formation flow. The depth-gated LSTM uses a depth
gate to connect memory cells of vertically adjacent
layers. In general, both gLSTM and dLSTM are
able to capture long-term dependencies to some de-
gree, but they do not explicitly keep past memories.
We set the number of layers to 3 in this experiment,
mainly to agree with the language modeling exper-
iments of Chung et al. (2015). Also note that that
there are no single-layer variants for gLSTM and
dLSTM; they have to be implemented as multi-layer
systems. The hidden unit size of the LSTMN and all
comparison models (except KN5) was set to 300.

The results of the language modeling task are
shown in Table 1. Perplexity results for KN5 and
RNN are taken from Mikolov et al. (2015). As can
be seen, the single-layer LSTMN outperforms these

556

he sits down at the piano and plays

our view is that we may see a profit decline

products < unk > have to be first to be winners

everyone in the world is watching us very closely

Figure 4: Examples of intra-attention (language
modeling). Bold lines indicate higher attention
scores. Arrows denote which word is being focused
when attention is computed, but not the direction of
the relation.

two baselines and the LSTM by a significant mar-
gin. Amongst all deep architectures, the three-layer
LSTMN also performs best. We can study the mem-
ory activation mechanism of the machine reader by
visualizing the attention scores. Figure 4 shows
four sentences sampled from the Penn Treebank val-
idation set. Although we explicitly encourage the
reader to attend to any memory slot, much attention
focuses on recent memories. This agrees with the
linguistic intuition that long-term dependencies are
relatively rare. As illustrated in Figure 4 the model
captures some valid lexical relations (e.g., the de-
pendency between sits and at, sits and plays, every-
one and is, is and watching). Note that arcs here
are undirected and are different from the directed
arcs denoting head-modifier relations in dependency
graphs.

5.2 Sentiment Analysis

Our second task concerns the prediction of senti-
ment labels of sentences. We used the Stanford Sen-
timent Treebank (Socher et al., 2013a), which con-
tains fine-grained sentiment labels (very positive,
positive, neutral, negative, very negative) for 11,855
sentences. Following previous work on this dataset,

Models Fine-grained Binary
RAE (Socher et al., 2011) 43.2 82.4
RNTN (Socher et al., 2013b) 45.7 85.4
DRNN (Irsoy and Cardie, 2014) 49.8 86.6
DCNN (Blunsom et al., 2014) 48.5 86.8
CNN-MC (Kim, 2014) 48.0 88.1
T-CNN (Lei et al., 2015) 51.2 88.6
PV (Le and Mikolov, 2014) 48.7 87.8
CT-LSTM (Tai et al., 2015) 51.0 88.0
LSTM (Tai et al., 2015) 46.4 84.9
2-layer LSTM (Tai et al., 2015) 46.0 86.3
LSTMN 47.6 86.3
2-layer LSTMN 47.9 87.0

Table 2: Model accuracy (%) on the Sentiment Tree-
bank (test set). The memory size of LSTMN models
is set to 168 to be compatible with previously pub-
lished LSTM variants (Tai et al., 2015).

we used 8,544 sentences for training, 1,101 for val-
idation, and 2,210 for testing. The average sentence
length is 19.1. In addition, we also performed a bi-
nary classification task (positive, negative) after re-
moving the neutral label. This resulted in 6,920 sen-
tences for training, 872 for validation and 1,821 for
testing. Table 2 reports results on both fine-grained
and binary classification tasks.

We experimented with 1- and 2-layer LSTMNs.
For the latter model, we predict the sentiment la-
bel of the sentence based on the averaged hidden
vector passed to a 2-layer neural network classifier
with ReLU as the activation function. The mem-
ory size for both LSTMN models was set to 168 to
be compatible with previous LSTM models (Tai et
al., 2015) applied to the same task. We used pre-
trained 300-D Glove 840B vectors (Pennington et
al., 2014) to initialize the word embeddings. The
gradient for words with Glove embeddings, was
scaled by 0.35 in the first epoch after which all word
embeddings were updated normally.

We used Adam (Kingma and Ba, 2015) for op-
timization with the two momentum parameters set
to 0.9 and 0.999 respectively. The initial learning
rate was set to 2E-3. The regularization constant was
1E-4 and the mini-batch size was 5. A dropout rate
of 0.5 was applied to the neural network classifier.

We compared our model with a wide range of top-
performing systems. Most of these models (includ-
ing ours) are LSTM variants (third block in Table 2),
recursive neural networks (first block), or convolu-

557

tional neural networks (CNNs; second block). Re-
cursive models assume the input sentences are rep-
resented as parse trees and can take advantage of
annotations at the phrase level. LSTM-type models
and CNNs are trained on sequential input, with the
exception of CT-LSTM (Tai et al., 2015) which op-
erates over tree-structured network topologies such
as constituent trees. For comparison, we also report
the performance of the paragraph vector model (PV;
Le and Mikolov (2014); see Table 2, second block)
which neither operates on trees nor sequences but
learns distributed document representations param-
eterized directly.

The results in Table 2 show that both 1- and
2-layer LSTMNs outperform the LSTM baselines
while achieving numbers comparable to state of the
art. The number of layers for our models was set to
be comparable to previously published results. On
the fine-grained and binary classification tasks our
2-layer LSTMN performs close to the best system
T-CNN (Lei et al., 2015). Figure 5 shows examples
of intra-attention for sentiment words. Interestingly,
the network learns to associate sentiment important
words such as though and fantastic or not and good.

5.3 Natural Language Inference

The ability to reason about the semantic relation-
ship between two sentences is an integral part of
text understanding. We therefore evaluate our model
on recognizing textual entailment, i.e., whether two
premise-hypothesis pairs are entailing, contradic-
tory, or neutral. For this task we used the Stan-
ford Natural Language Inference (SNLI) dataset
(Bowman et al., 2015), which contains premise-
hypothesis pairs and target labels indicating their
relation. After removing sentences with unknown
labels, we end up with 549,367 pairs for training,
9,842 for development and 9,824 for testing. The
vocabulary size is 36,809 and the average sentence
length is 22. We performed lower-casing and tok-
enization for the entire dataset.

Recent approaches use two sequential LSTMs to
encode the premise and the hypothesis respectively,
and apply neural attention to reason about their logi-
cal relationship (Rocktäschel et al., 2016; Wang and
Jiang, 2016). Furthermore, Rocktäschel et al. (2016)
show that a non-standard encoder-decoder architec-
ture which processes the hypothesis conditioned on

it ’s tough to watch but it ’s a fantastic movie

although i did n’t hate this one , it ’s not very good either

Figure 5: Examples of intra-attention (sentiment
analysis). Bold lines (red) indicate attention be-
tween sentiment important words.

the premise results significantly boosts performance.
We use a similar approach to tackle this task with
LSTMNs. Specifically, we use two LSTMNs to read
the premise and hypothesis, and then match them
by comparing their hidden state tapes. We perform
average pooling for the hidden state tape of each
LSTMN, and concatenate the two averages to form
the input to a 2-layer neural network classifier with
ReLU as the activation function.

We used pre-trained 300-D Glove 840B vectors
(Pennington et al., 2014) to initialize the word em-
beddings. Out-of-vocabulary (OOV) words were
initialized randomly with Gaussian samples (µ=0,
s=1). We only updated OOV vectors in the first
epoch, after which all word embeddings were up-
dated normally. The dropout rate was selected from
[0.1, 0.2, 0.3, 0.4]. We used Adam (Kingma and Ba,
2015) for optimization with the two momentum pa-
rameters set to 0.9 and 0.999 respectively, and the
initial learning rate set to 1E-3. The mini-batch size
was set to 16 or 32. For a fair comparison against
previous work, we report results with different hid-
den/memory dimensions (i.e., 100, 300, and 450).

We compared variants of our model against dif-
ferent types of LSTMs (see the second block in Ta-
ble 3). Specifically, these include a model which
encodes the premise and hypothesis independently
with two LSTMs (Bowman et al., 2015), a shared
LSTM (Rocktäschel et al., 2016), a word-by-word
attention model (Rocktäschel et al., 2016), and a
matching LSTM (mLSTM; Wang and Jiang (2016)).
This model sequentially processes the hypothesis,
and at each position tries to match the current word
with an attention-weighted representation of the
premise (rather than basing its predictions on whole
sentence embeddings). We also compared our mod-

558

Models h |q|M Test
BOW concatenation — — 59.8
LSTM (Bowman et al., 2015) 100 221k 77.6
LSTM-att (Rocktäschel et al., 2016) 100 252k 83.5
mLSTM (Wang and Jiang, 2016) 300 1.9M 86.1
LSTMN 100 260k 81.5
LSTMN shallow fusion 100 280k 84.3
LSTMN deep fusion 100 330k 84.5
LSTMN shallow fusion 300 1.4M 85.2
LSTMN deep fusion 300 1.7M 85.7
LSTMN shallow fusion 450 2.8M 86.0
LSTMN deep fusion 450 3.4M 86.3

Table 3: Parameter counts |q|M, size of hidden
unit h, and model accuracy (%) on the natural lan-
guage inference task.

els with a bag-of-words baseline which averages the
pre-trained embeddings for the words in each sen-
tence and concatenates them to create features for a
logistic regression classifier (first block in Table 3).

LSTMNs achieve better performance compared
to LSTMs (with and without attention; 2nd block
in Table 3). We also observe that fusion is gen-
erally beneficial, and that deep fusion slightly im-
proves over shallow fusion. One explanation is that
with deep fusion the inter-attention vectors are re-
currently memorized by the decoder with a gating
operation, which also improves the information flow
of the network. With standard training, our deep fu-
sion yields the state-of-the-art performance in this
task. Although encouraging, this result should be in-
terpreted with caution since our model has substan-
tially more parameters compared to related systems.
We could compare different models using the same
number of total parameters. However, this would in-
evitably introduce other biases, e.g., the number of
hyper-parameters would become different.

6 Conclusions

In this paper we proposed a machine reading simula-
tor to address the limitations of recurrent neural net-
works when processing inherently structured input.
Our model is based on a Long Short-Term Mem-
ory architecture embedded with a memory network,
explicitly storing contextual representations of in-
put tokens without recursively compressing them.
More importantly, an intra-attention mechanism is
employed for memory addressing, as a way to in-

duce undirected relations among tokens. The at-
tention layer is not optimized with a direct super-
vision signal but with the entire network in down-
stream tasks. Experimental results across three tasks
show that our model yields performance comparable
or superior to state of the art.

Although our experiments focused on LSTMs, the
idea of building more structure aware neural models
is general and can be applied to other types of net-
works. When direct supervision is provided, simi-
lar architectures can be adapted to tasks such as de-
pendency parsing and relation extraction. In the fu-
ture, we hope to develop more linguistically plausi-
ble neural architectures able to reason over nested
structures and neural models that learn to discover
compositionality with weak or indirect supervision.

Acknowledgments

We thank members of the ILCC at the School of
Informatics and the anonymous reviewers for help-
ful comments. The support of the European Re-
search Council under award number 681760 “Trans-
lating Multiple Modalities into Text” is gratefully
acknowledged.

References

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Learning to compose neural net-
works for question answering. In Proceedings of the
2016 NAACL: HLT, pages 1545–1554, San Diego,
California.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. In Proceedings of the
2014 ICLR, Banff, Alberta.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradient
descent is difficult. Neural Networks, IEEE Transac-
tions on, 5(2):157–166.

Phil Blunsom, Edward Grefenstette, and Nal Kalchbren-
ner. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52nd ACL,
pages 655–665, Baltimore, Maryland.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and
Christopher D Manning. 2015. A large annotated cor-
pus for learning natural language inference. In Pro-
ceedings of the 2015 EMNLP, pages 22–32, Lisbon,
Portugal.

559

Samuel R Bowman, Jon Gauthier, Abhinav Rastogi,
Raghav Gupta, Christopher D Manning, and Christo-
pher Potts. 2016. A fast unified model for parsing and
sentence understanding. In Proceedings of the 54th
ACL, pages 1466–1477, Berlin, Germany.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statis-
tical machine translation. In Proceedings of the 2014
EMNLP, pages 1724–1734, Doha, Qatar.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and
Yoshua Bengio. 2015. Gated feedback recurrent neu-
ral networks. In Proceedings of the 32nd ICML, pages
2067–2075, Lille, France.

Peter Clark, Phil Harrison, and Niranjan Balasubrama-
nian. 2013. A study of the knowledge base require-
ments for passing an elementary science test. In Pro-
ceedings of the 3rd Workshop on Automated KB Con-
struction, San Francisco, California.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL recognising textual entailment
challenge. In Proceedings of the PASCAL Challenges
Workshop on Recognising Textual Entailment.

Sreerupa Das, C. Lee Giles, and Guo zheng Sun. 1992.
Learning context-free grammars: Capabilities and lim-
itations of a recurrent neural network with an exter-
nal stack memory. In Proceedings of the 14th Annual
Conference of the Cognitive Science Society, pages
791–795. Morgan Kaufmann Publishers.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2015. Transition-based
dependency parsing with stack long short-term mem-
ory. In Proceedings of the 53rd ACL, pages 334–343,
Beijing, China.

Oren Etzioni, Anthony Fader, Janara Christensen,
Stephen Soderland, and Mausam. 2011. Open in-
formation extraction: The second generation. In Pro-
ceedings of the 22nd IJCAI, pages 3–10, Barcelona,
Spain.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the 2011 EMNLP, pages
1535–1545, Edinburgh, Scotland, UK.

Fernanda Ferreira and John M. Henderson. 1991. Recov-
ery from misanalyses of garden-path sentences. Jour-
nal of Memory and Language, 30:725–745.

Stefan L. Frank and Rens Bod. 2011. Insensitivity of
the human sentence-processing system to hierarchical
structure. Pyschological Science, 22(6):829–834.

Alex Graves. 2013. Generating sequences with recurrent
neural networks. arXiv preprint arXiv:1308.0850.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Su-
leyman, and Phil Blunsom. 2015. Learning to trans-
duce with unbounded memory. In Advances in Neural
Information Processing Systems, pages 1819–1827.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems, pages 1684–1692.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Sepp Hochreiter. 1991. Untersuchungen zu dynamis-
chen neuronalen netzen. Diploma, Technische Univer-
sität München.

Ozan Irsoy and Claire Cardie. 2014. Deep recursive
neural networks for compositionality in language. In
Advances in Neural Information Processing Systems,
pages 2096–2104.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
EMNLP, pages 1746–1751, Doha, Qatar.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings of
the 2015 ICLR, San Diego, California.

Dan Klein and Christopher Manning. 2004. Corpus-
based induction of syntactic structure: Models of de-
pendency and constituency. In Proceedings of the
42nd ACL, pages 478–485, Barcelona, Spain.

Lars Konieczny. 2000. Locality and parsing complexity.
Journal of Psycholinguistics, 29(6):627–645.

Jan Koutnı́k, Klaus Greff, Faustino Gomez, and Jürgen
Schmidhuber. 2014. A clockwork RNN. In Pro-
ceedings of the 31st ICML, pages 1863–1871, Beijing,
China.

Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury,
Robert English, Brian Pierce, Peter Ondruska, Ishaan
Gulrajani, and Richard Socher. 2016. Ask me any-
thing: Dynamic memory networks for natural lan-
guage processing. In Proceedings of the 33rd ICML,
New York, NY.

Quoc V Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. In Pro-
ceedings of the 31st ICML, pages 1188–1196, Beijing,
China.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2015.
Molding cnns for text: non-linear, non-consecutive
convolutions. In Proceedings of the 2015 EMNLP,
pages 1565–1575, Lisbon, Portugal.

Fandong Meng, Zhengdong Lu, Zhaopeng Tu, Hang Li,
and Qun Liu. 2015. A deep memory-based architec-
ture for sequence-to-sequence learning. In Proceed-
ings of ICLR-Workshop 2016, San Juan, Puerto Rico.

560

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. In Proceedings of
11th Interspeech, pages 1045–1048, Makuhari, Japan.

Tomas Mikolov, Armand Joulin, Sumit Chopra, Michael
Mathieu, and Marc’Aurelio Ranzato. 2015. Learning
longer memory in recurrent neural networks. In Pro-
ceedings of ICLR Workshop, San Diego, California.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In Proceedings of the 30th ICML, pages
1310–1318, Atlanta, Georgia.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 EMNLP,
pages 1532–1543, Doha, Qatar.

Hoifung Poon and Pedro Domingos. 2010. Unsuper-
vised ontology induction from text. In Proceedings of
the 48th Annual Meeting of the Association for Com-
putational Linguistics, pages 296–305, Uppsala.

Keith Rayner. 1998. Eye movements in reading and in-
formation processing: 20 years of research. Psycho-
logical Bulletin, 124(3):372–422.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Her-
mann, Tomáš Kočiskỳ, and Phil Blunsom. 2016. Rea-
soning about entailment with neural attention. In Pro-
ceedings of the 2016 ICLR, San Juan, Puerto Rico.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
EMNLP, pages 379–389, Lisbon, Portugal.

Richard Socher, Eric H Huang, Jeffrey Pennin, Christo-
pher D Manning, and Andrew Y Ng. 2011. Dynamic
pooling and unfolding recursive autoencoders for para-
phrase detection. In Advances in Neural Information
Processing Systems, pages 801–809.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher
Potts. 2013a. Recursive deep models for semantic
compositionality over a sentiment treebank. In Pro-
ceedings of the 2013 EMNLP, pages 1631–1642, Seat-
tle, Washington.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013b. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 EMNLP, pages
1631–1642, Seattle, Washingtton.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances in
Neural Information Processing Systems, pages 2431–
2439.

Kai Sheng Tai, Richard Socher, and Christopher D Man-
ning. 2015. Improved semantic representations from

tree-structured long short-term memory networks. In
Proceedings of the 53rd ACL, pages 1556–1566, Bei-
jing, China.

Michael K. Tanenhaus, Michael J. Spivey-Knowlton,
Kathleen M. Eberhard, and Julue C. Sedivy. 1995. In-
tegration of visual and linguistic information in spoken
language comprehension. Science, 268:1632–1634.

Ke Tran, Arianna Bisazza, and Christof Monz. 2016. Re-
current memory network for language modeling. In
Proceedings of the 15th NAACL, San Diego, CA.

Shuohang Wang and Jing Jiang. 2016. Learning natu-
ral language inference with lstm. In Proceedings of
the 2016 NAACL: HLT, pages 1442–1451, San Diego,
California.

Jason Weston, Sumit Chopra, and Antoine Bordes. 2015.
Memory networks. In Proceedings of the 2015 ICLR,
San Diego, USA.

Caiming Xiong, Stephen Merity, and Richard Socher.
2016. Dynamic memory networks for visual and tex-
tual question answering. In Proceedings of the 33rd
ICML, New York, NY.

Kaisheng Yao, Trevor Cohn, Katerina Vylomova, Kevin
Duh, and Chris Dyer. 2015. Depth-gated recurrent
neural networks. arXiv preprint arXiv:1508.03790.

Wojciech Zaremba and Ilya Sutskever. 2014. Learning
to execute. arXiv preprint arXiv:1410.4615.

561

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 562–572,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

On Generating Characteristic-rich Question Sets for QA Evaluation

Yu Su1, Huan Sun2, Brian Sadler3, Mudhakar Srivatsa4

Izzeddin Gür1, Zenghui Yan1 and Xifeng Yan1

1University of California, Santa Barbara, Department of Computer Science
2The Ohio State University, Department of Computer Science and Engineering

3U.S. Army Research Lab, 4IBM Research

{ysu,izzeddingur,zyan,xyan}@cs.ucsb.edu, sun.397@osu.edu

brian.m.sadler6.civ@mail.mil, msrivats@us.ibm.com

Abstract
We present a semi-automated framework for
constructing factoid question answering (QA)
datasets, where an array of question character-
istics are formalized, including structure com-
plexity, function, commonness, answer cardi-
nality, and paraphrasing. Instead of collecting
questions and manually characterizing them,
we employ a reverse procedure, first generat-
ing a kind of graph-structured logical forms
from a knowledge base, and then converting
them into questions. Our work is the first
to generate questions with explicitly specified
characteristics for QA evaluation. We con-
struct a new QA dataset with over 5,000 log-
ical form-question pairs, associated with an-
swers from the knowledge base, and show that
datasets constructed in this way enable fine-
grained analyses of QA systems. The dataset
can be found in https://github.com/
ysu1989/GraphQuestions.

1 Introduction

Factoid question answering (QA) has gained great
attention recently, owing to the fast growth of large
knowledge bases (KBs) such as DBpedia (Lehmann
et al., 2014) and Freebase (Bollacker et al., 2008),
which avail QA systems of comprehensive and pre-
cise knowledge of encyclopedic scope (Yahya et al.,
2012; Berant et al., 2013; Cai and Yates, 2013;
Kwiatkowski et al., 2013; Berant and Liang, 2014;
Fader et al., 2014; Reddy et al., 2014; Bao et al.,
2014; Zou et al., 2014; Yao and Van Durme, 2014;
Yih et al., 2015; Sun et al., 2015; Dong et al., 2015;
Yao, 2015; Berant and Liang, 2015). With the blos-
soming of QA systems, evaluation is becoming an

increasingly important problem. QA datasets, con-
sisting of a set of questions with ground-truth an-
swers, are critical for both comparing existing sys-
tems and gaining insights to develop new systems.

Questions have rich characteristics, constituting
dimensions along which question difficulty varies.
Some questions are difficult due to their com-
plex semantic structure (“Who was the coach when
Michael Jordan stopped playing for the Chicago
Bulls?”), while some others may be difficult because
they require a precise quantitative analysis over the
answer space (“What is the best-selling smartphone
in 2015?”). Many other characteristics shall be con-
sidered too, e.g., what topic a question is about
(questions about common topics may be easier to
answer) and how many answers there are (it is harder
to achieve a high recall in case of multiple answers).
Worse still, due to the flexibility of natural language,
different people often describe the same question in
different ways, i.e., paraphrasing. It is important for
a QA system to be robust to paraphrasing.

A QA dataset explicitly specifying such ques-
tion characteristics allows for fine-grained inspec-
tion of system performance. However, to the
best of our knowledge, none of the existing QA
datasets (Voorhees and Tice, 2000; Berant et al.,
2013; Cai and Yates, 2013; Lopez et al., 2013; Bor-
des et al., 2015; Serban et al., 2016) provides ques-
tion characteristics. In this work, we make the first
attempt to generate questions with explicitly speci-
fied characteristics, and examine the impact of vari-
ous question characteristics in QA.

We present a semi-automated framework (Fig-
ure 1) to construct QA datasets with characteristic

562

Figure 1: Running example of our framework. Graph queries are first generated from a knowledge base. After refinement (not

shown), graph queries are sent to human annotators and converted into natural language questions. Answers are collected from the

knowledge base.

specification from a knowledge base. The frame-
work revolves around an intermediate graph query
representation, which helps to formalize question
characteristics and collect answers. We first auto-
matically generate graph queries from a knowledge
base, and then employ human annotators to convert
graph queries into questions.

Automating graph query generation brings with
it the challenge of assessing the quality of graph
queries and filtering out bad ones. Our framework
tackles the challenge by combining structured infor-
mation in the knowledge base and statistical infor-
mation from the Web. First, we identify redundant
components in a graph query and develop techniques
to remove them. Furthermore, based on the fre-
quency of entities, classes, and relations mined from
the Web, we quantify the commonness of a graph
query and filter out too rare ones.

We employ a semi-automated approach for the
conversion from graph query to natural language
question, which provides two levels of paraphras-
ing: Common lexical forms of an entity (e.g.,
“Queen Elizabeth” and “Her Majesty the Queen”
for ElizabethII) mined from the Web are used
as entity paraphrases, and the remaining parts of a
question are paraphrased by annotators. As a result,
dozens of paraphrased questions can be produced for
a single graph query.

To demonstrate the usefulness of question char-
acteristics in QA evaluation, we construct a new
dataset with over 5,000 questions based on Freebase
using the proposed framework, and extensively eval-

uate several QA systems. A couple of new find-
ings about system performance and question diffi-
culty are discussed. For example, different from
the results based on previous QA datasets (Yao et
al., 2014), we find that semantic parsing in gen-
eral works better than information extraction on our
dataset. Information extraction based QA systems
have trouble dealing with questions requiring aggre-
gation or with multiple answers. A holistic under-
standing of the whole question is often needed for
hard questions. The experiments point out an array
of issues that future QA systems may need to solve.

2 Related Work

Early QA research has extensively studied problems
like question taxonomy, answer type, and knowl-
edge sources (Burger et al., 2001; Hirschman and
Gaizauskas, 2001; Voorhees and Tice, 2000). This
work mainly targets factoid questions with one or
more answers that are guaranteed to exist in a KB.

A few KB-based QA datasets have been pro-
posed recently. QALD (Lopez et al., 2013) and
FREE917 (Cai and Yates, 2013) contain hundreds
of hand-crafted questions. QALD also indicates
whether a question requires aggregation. Both
based on single Freebase triples, SIMPLEQUES-
TIONS (Bordes et al., 2015) employ human an-
notators to formulate questions, while Serban et
al. (2016) use a recurrent neural network to auto-
matically formulate questions. They are featured
by a large size, but the questions only concern sin-
gle triples, while our framework can generate ques-

563

tions involving multiple triples and various func-
tions. Wang et al. (2015) generate question-answer
pairs for closed domains like basketball. They
also first generate logical forms (λ-DCS formu-
lae (Liang, 2013) in their case), and then convert log-
ical forms into questions via crowdsourcing. Logi-
cal forms are first converted into canonical questions
to help crowdsourcing workers. Different from pre-
vious works, we put a particular focus on generating
questions with diversified characteristics in a sys-
tematic way, and examining the impact of different
question characteristics in QA.

Another attractive way for QA dataset construc-
tion is to collect questions from search engine
logs (Bendersky and Croft, 2009). For exam-
ple, WEBQUESTIONS (Berant et al., 2013) contains
thousands of popular questions from Google search,
and Yih et al. (2016) have manually annotated these
questions with logical forms. However, automatic
characterization of questions is hard, while man-
ual characterization is costly and requires exper-
tise. Moreover, users’ search behavior is shaped by
search engines (Aula et al., 2010). Due to the inade-
quacy of current search engines to answer advanced
questions, users may adapt themselves accordingly
and mostly ask simple questions. Thus questions
collected in this way, to some extent, may still not
well reflect the true distribution of user information
needs, nor does it fully exploit the potential of KB-
based QA. Collecting answers is yet another chal-
lenge for this approach. Yih et al. (2016) show that
only 66% of the WEBQUESTIONS answers, which
were collected via crowdsourcing, are completely
correct. On the other hand, although questions gen-
erated from a KB may not follow the distribution of
user information needs, it has the advantage of ex-
plicit question characteristics, and enables program-
matic configuration of question generation. Also,
answer collecting is automated without involving
human labor and errors.

3 Background

3.1 Knowledge Base

In this work, we mainly concern knowledge bases
storing knowledge about entities and relations in the
form of triples (simply knowledge bases hereafter).
Suppose E is a set of entities, L a set of literals (I =

E ∪ L is also called individuals), C a set of classes,
and R a set of directed relations, a knowledge base
K consists of two parts: an ontologyO ⊆ C×R×C
and a modelM ⊆ E × R × (C ∪ E ∪ L). In other
words, an ontology specifies classes and relations
between classes, and a model consists of facts about
individuals. Such knowledge bases can be naturally
represented as a directed graph, e.g., Figure 1(a).
Literal classes such as Datetime are represented as
diamonds, and other classes are rounded rectangles.
Individuals are shaded. We assume relations are
typed, i.e., each relation is associated with a set of
domain and range classes. Facts of a relation must
be compatible with its domain and range constraints.
Without loss of generality, we use Freebase (June
2013 version) in this work for compatibility with the
to-be-tested QA systems. It has 24K classes, 65K
relations, 41M entities, and 596M facts.

3.2 Graph Query
Motivated by the graph-structured nature of knowl-
edge bases, we adopt a graph-centric approach. We
hinge on a formal representation named graph query
(e.g., Figure 1(c)), developed on the basis of Yih et
al. (2015) and influenced by λ-DCS (Liang, 2013).
Syntax. A graph query q is a connected directed
graph built on a given knowledge base K. It com-
prises three kinds of nodes: (1) Question node (dou-
ble rounded rectangle), a free variable. (2) Un-
grounded node (rounded rectangle or diamond), an
existentially quantified variable. (3) Grounded node
(shaded rounded rectangle or diamond), an individ-
ual. In addition, there are functions (shaded circle)
such as < and count applied on a node. Nodes are
typed, each associated with a class. Nodes are con-
nected by directed edges representing relations. En-
tities on the grounded nodes are called topic entities.
Semantics. Graph query is a strict subset of λ-
calculus. For example, the graph query in Fig-
ure 1(c) can be written in λ-calculus (an existentially
quantified variable is imposed by <):

λx.∃y.∃z.type(x, DeceasedPerson)
∧ type(y, DeceasedPerson)
∧ type(z, Datetime) ∧ parents(x, y)
∧ causeOfDeath(x, LungCancer)
∧ causeOfDeath(y, LungCancer)
∧ dateOfDeath(x, z)∧ < (z, 1960).

564

The answer of a graph query q, denoted as JqKK,
can be easily obtained from K. For example, if K
is stored in a RDF triplestore, then q can be au-
tomatically converted into a SPARQL query and
run against K to get the answer. Compared with
Yih et al. (2015), graph queries are not constrained
to be tree-structured, which grants us a higher ex-
pressivity. For example, linguistic phenomena like
anaphora (e.g., Figure 1(d)) become easier to model.

4 Automatic Graph Query Generation

Our framework proceeds as follows: (1) Generate
query templates from a knowledge base, ground
the templates to generate graph queries, and col-
lect answers (this section). (2) Refine graph queries
to retain high-quality ones (Section 5). (3) Con-
vert graph queries into questions via crowdsourcing
(Section 6).

We now describe an algorithm to generate the
query template shown in Figure 1(b) (excluding the
function for now). For simplicity, we will focus on
the case of a single question node. Nevertheless,
the proposed framework can be extended to generate
graph queries with multiple question nodes. The al-
gorithm takes as input an ontology (Figure 1(a)) and
the desired number of edges. All the operations are
conducted in a random manner to avoid systematic
biases in query generation. The DeceasedPerson
class is first selected as the question node. We then
iteratively grow it by adding neighboring nodes and
edges in the ontology. In each iteration, an exist-
ing node is selected, and a new edge, which might
introduce a new node, is appended to it. For exam-
ple, the relation causeOfDeath, whose domain in-
cludes DeceasedPerson, is first appended to the
question node, and then one of its range classes,
CauseOfDeath, is added as a new node. When a
node with the class CauseOfDeath already exists,
it is possible to add an edge without introducing a
new node. The same relation or class can be added
multiple times, e.g., “parent of parent”.

Topic entities like LungCancer play an impor-
tant role in a question. A query template contains
some template nodes that can be grounded with
different topic entities to generate different graph
queries. We randomly choose a few nodes as tem-
plate. It may cause problems. For example, ground-

Figure 2: Mutual exclusivity example. Entities on different

nodes should be different.

ing one node may make some others redundant. We
conduct a formal study on this in Section 5.1.

Functions such as counting and comparatives are
pervasive in real-life questions, e.g., “how many”,
“the most recent”, and “people older than”, but
are scarce in existing QA datasets. We incorpo-
rate functions as an important question characteris-
tic, and consider nine common functions, grouped
into three categories: counting (count), superlative
(max, min, argmax, argmin), and comparative (>,
≥, <, ≤). More functions can be incorporated in
the future. See Appendix A for examples. We ran-
domly add functions to compatible nodes in query
templates. In the running example, the < function
imposes the constraint that only people who passed
away before a certain date should be considered.
Each query will have at most one function.

We then ground the template nodes with indi-
viduals to generate graph queries. A grounding is
valid if the individuals conform with the class of
the corresponding template nodes, and the resulted
answer is not empty. For example, by grounding
CauseOfDeath with LungCancer and Datetime

with 1960, we get the graph query in Figure 1(c). A
query template can render multiple groundings.

Finally, we convert a graph query into a SPARQL
query and execute it using Virtuoso Open-Source 7
to collect answers. We further impose mutual exclu-
sivity in SPARQL queries, that is, the entities on any
two nodes in a graph query should be different. Con-
sider the example in Figure 2, which is asking for
the siblings of Natasha Obama. Wihout mutual ex-
clusivity, however, Natash Obama herself will also
be included as an answer, which is not desired.

5 Query Refinement

Since graph queries are randomly generated, some
of them may not correspond to an interesting ques-
tion. Next we study two query characteristics, re-
dundancy and commonness, based on which we pro-
vide mechanisms for automatic query refinement.

565

Figure 3: Query minimization example: (a) Graph query with

redundant components. (b) Graph query after minimization.

Figure 4: Uncommon query example. It is uncommon to ask

for somebody’s great-great-grandparents.

5.1 Query Redundancy and Minimization

Some components (nodes and edges) in a graph
query may not effectively impose any constraint on
the answer. The query in Figure 3(a) is to “find
the US president whose child is Natasha Obama,
and Natasha Obama was born on 2001-06-10”.
Intuitively, the bold-faced clause does not change
the answer of the question. Correspondingly, the
dateOfBirth edge and the date node are redun-
dant. As a comparison, removing any component
from the query in Figures 3(b) will change the an-
swer. Formally, given a knowledge base K, a com-
ponent in a graph query q is redundant iff. removing
it does not change the answer JqKK.

Redundancy can be desired or not. In a question,
redundant information may be inserted to reduce
ambiguity. In Figure 3(a), if one uses “Natasha”
to refer to NatashaObama, there comes ambiguity
since it may be matched with many other entities.
The additional information “who was born on 2001-
06-10” then helps. Next we describe an algorithm to
remove redundancy from queries. One can choose to
either only generate queries with no redundant com-
ponent, or intentionally generate redundant queries
and test QA systems in presence of redundancy.

We manage to generate minimal queries, for
which there exists no sub-query having the same an-
swer. An important theorem, as we prove in Ap-
pendix B, is the equivalency of minimality and non-
redundancy: A query is minimal iff. it has no redun-
dant component. This renders a simple algorithm
for query minimization, which directly detects and
removes the redundant components in a query. We
first examine every edge (in an arbitrary order), and
remove an edge if it is redundant. Redundant nodes

will then become disconnected to the question node
and are thus eliminated. It is easy to prove that the
produced query (e.g., Figure 3(b)) is minimal, and
has the same answer as the original query.

5.2 Commonness Checking
We now quantify the commonness of graph queries.
The benefits of this study are two-fold. First, it pro-
vides a refinement mechanism to reduce too rare
queries. Second, commonness is itself an important
question characteristic. It is interesting to examine
its impact on question difficulty. Consider the ex-
ample in Figure 4, which asks for “the great-great-
grandparents of Ernest Solvay”. It is minimal and
logically plausible. Few users, however, are likely
to come up with it. Ernest Solvay is famous for the
Solvay Conferences, but few people outside the sci-
ence community may know him. Although Person

and parents are common, asking for the great-
great-grandparents is quite uncommon.

A query is more common if users would more
likely come up with it. We define the commonness
of a query q as its probability p(q) of being picked
among all possible queries from a knowledge base.
The problem then boils down to estimating p(q).
It is hard, if not impossible, to exhaust the whole
query space. We thus make the following simplifica-
tion. We break down query commonness by compo-
nents, assuming mutual independence between com-
ponents, and omit functions:

p(q) =
∏

i∈Iq
p(i)× ∏

c∈Cq
p(c)× ∏

r∈Rq

p(r), (1)

where Iq, Cq,Rq are the multi-set of the individuals,
classes, and relations in q, respectively. Repeating
components are thus accumulated (c.f. Figure 4).

We propose a data-driven method, using statisti-
cal information from the Web, to estimate p(i), p(c),
and p(r). Other methods like domain-knowledge
based estimation are also applicable if available. We
start with entity probability p(e) (excluding literals
for now). If users mention an entity more frequently,
its probability of being observed in a question should
be higher. We use a large entity linking dataset,
FACC1 (Gabrilovich et al., 2013), which identifies
around 10 billion mentions of Freebase entities in
over 1 billion web documents. The estimated link-
ing precision and recall are 80-85% and 70-85%, re-

566

Figure 5: Question generation and paraphrasing.

spectively. Suppose entity e has n(e) mentions, then
p(e) = n(e)∑

e′∈E n(e
′) . For a class c, probability p(c)

is higher if it has more frequently mentioned enti-
ties. If we use e ∈ c to indicate e is an instance of
c, then p(c) =

∑
e∈c n(e)∑

c′∈C
∑

e∈c′ n(e)
. Estimating p(r) re-

quires relation extraction from texts, which is hard.
We make the following simplification: If (e1, r, e2)
is a fact in the knowledge base, we increase n(r) by
1 if e1 and e2 co-occur in a document. This suffices
to distinguish common relations from uncommon
ones. We then define p(r) = n(r)∑

r′∈R n(r′) . Finally,
we use frequency information from the knowledge
base to smooth the probabilities, e.g., to avoid zero
probabilities. The probability of literals are solely
determined by the frequency information from the
knowledge base. Refer to Appendix C for the re-
sulted probability distributions.

6 Natural Language Conversion

In order to ensure naturalness and diversity, we em-
ploy human annotators to manually convert graph
queries into natural language questions. We man-
age to provide two levels of paraphrasing (Fig-
ure 5). Each query is sent to multiple annotators for
sentence-level paraphrasing. In addition, we use dif-
ferent lexical forms of an entity mined from FACC1
for entity-level paraphrasing. We provide a ranked
list of common lexical forms and the corresponding
frequency for each topic entity. For example, the
lexical form list for UnitedStatesOfAmerica is
“us” (108M), “united states” (44M), “usa” (22M),
etc. Finally, graph queries are automatically trans-
lated into SPARQL queries to collect answers.

Natural language generation (NLG) (Wen et al.,
2015; Serban et al., 2016; Dušek and Jurčı́ček, 2015)
would be a good complement to our framework, the
combination of which can lead to a fully-automated

pipeline to generate QA datasets. For example,
Serban et al. (2016) automatically convert Free-
base triples into questions with a neural network.
More sophisticated NLG techniques able to handle
graph queries involving multiple relations and vari-
ous functions are an interesting future direction.

7 Experiments

We have constructed a new QA dataset, named
GRAPHQUESTIONS, using the proposed frame-
work, and tested several QA systems to show that
it enables fine-grained inspection of QA systems.

7.1 Dataset Construction
We first randomly generated a set of minimal graph
queries, and removed the ones whose common-
ness is below a certain threshold. The remaining
graph queries were then screened by graduate stu-
dents, and a canonical question was generated for
each query, with each being verified by at least two
students. We recruited 160 crowdsourcing work-
ers from Amazon MTurk to generate sentence-level
paraphrases of the canonical questions. Trivial para-
phrases (e.g., “which city” vs. “what city”) were
manually removed to retain a high diversity in para-
phrasing. At most 3 entity-level paraphrases were
used for each sentence-level paraphrase.

7.2 Dataset Analysis
GRAPHQUESTIONS contains 500 graph queries,
2,460 sentence-level paraphrases, and 5,166 ques-
tions2. The dataset presents a high diversity and
covers a wide range of domains including People,
Astronomy, Medicine, etc. Specifically, it con-
tains 148, 506, 596, 376 and 3,026 distinct domains,
classes, relations, topic entities, and words, respec-
tively. We evenly split GRAPHQUESTIONS into a
training set and a testing set. All the paraphrases of
the same graph query are in the same set.

While there are other question characteristics
derivable from graph query, we will focus on the
following ones: structure complexity, function, com-
monness, paraphrasing, and answer cardinality. We

2For each query template, we only generate one graph query,
but one can also generate multiple graph queries, and easily get
the corresponding questions by replacing the topic entities. This
will significantly increase the total number of questions, and can
be helpful in training.

567

of edges Function log10(p(q)) |A|
1 2 3 none count super. comp. [−40, 30) [−30, 20) [−20, 10) [−10, 0) 1 > 1

of graph queries 321 144 35 350 61 42 47 60 135 283 22 332 168

of questions 3094 1648 424 3855 710 332 269 653 1477 2766 270 3487 1679

Table 1: Characteristic statistics. |A| is answer cardinality. Refer to Appendix D for paraphrase and other fine-grained distributions.

Question Domain Answer # of edges Function log10(p(q)) |A|
Find terrorist organizations involved in

September 11 attacks.

The September 11 attacks were carried out with
the involvement of what terrorist organizations? Terrorism alQaeda 1 none -16.67 1

Who did nine eleven?

How many children of Eddard Stark were born
in Winterfell?

Winterfell is the home of how many of Eddard
Stark’s children?

Fictional
Universe 3 2 count -23.34 1

What’s the number of Ned Stark’s children
whose birthplace is Winterfell?

In which month does the average rainfall of New
York City exceed 86 mm?

Rainfall averages more than 86 mm in New York
City during which months? Travel March, August

. . .
3 comp. -37.84 7

List the calendar months when NYC averages in
excess of 86 millimeters of rain?

Table 2: Example questions and characteristics. Three sentence-level paraphrases are shown for each graph query, with the last

one also involving entity-level paraphrasing. Topic entities are bold-faced. More examples can be found in Appendix D.

use the number of edges to quantify structure com-
plexity, and limit it to at most 3. Commonness is
limited to log10(p(q)) ≥ −40 (c.f. Eq. 1). As
shown in Section 7.4.2, such questions are already
very hard for existing QA systems. Nevertheless,
the proposed framework can be used to generate
questions with different characteristic distributions.
Some statistics are shown in Table 1 and more fine-
grained statistics can be found in Appendix D.

Several example questions are shown in Ta-
ble 2. Sentence-level paraphrasing requires to han-
dle both commands (the first example) and “Wh”
questions, light verbs (“Who did nine eleven?”),
and changes of syntactic structure (“The Septem-
ber 11 attacks were carried out with the involve-
ment of what terrorist organizations?”). Entity-
level paraphrasing tests the capability of QA systems
on abbreviation (“NYC” for New York City),
world knowledge (“Her Majesty the Queen” for
ElizabethII), or even common typos (“Shaks-
peare” for WilliamShakespeare). Numbers and
dates are also common, e.g., “Which computer oper-
ating system was released on Sept. the 20th, 2008?”

We compare several QA datasets constructed
from Freebase, shown in Table 3. Datasets focus-
ing on single-relation questions are of a larger scale,

but are also of a significant lack in question charac-
teristics. Overall GRAPHQUESTIONS presents the
highest diversity in question characteristics.

7.3 Setup

We evaluate three QA systems whose source code
is publicly available: SEMPRE (Berant et al., 2013),
PARASEMPRE (Berant and Liang, 2014), and JA-
CANA (Yao and Van Durme, 2014). SEMPRE

and PARASEMPRE follow the semantic parsing
paradigm. SEMPRE conducts a bottom-up beam-
based parsing on questions to find the best logical
form. PARASEMPRE, in a reverse manner, enumer-
ates a set of logical forms, generates a canonical
utterance for each logical form, and ranks logical
forms according to how well the canonical utter-
ance paraphrases the input question. In contrast, JA-
CANA follows the information extraction paradigm,
and builds a classifier to directly predict whether an
individual is the answer. They all use Freebase.

The main metric for answer quality is the aver-
age F1 score, following Berant and Liang (2014).
Because a question can have more than one an-
swer, individual precision, recall, and F1 scores are
first computed on each question and then averaged.
When a system generates no response for a question,

568

Dataset # of Questions # of Multi-relation Function (count/super./comp.) Commonness Paraphrase Multi-answer

GRAPHQUESTIONS (this work) 5166 2072 710 / 332 / 269 + + +

WEBQUESTIONSSP (Yih et al., 2016)1 4737 2075 2 / 168 / 334 - - +

FREE917 (Cai and Yates, 2013) 917 229 185 / 0 / 0 - - +

Serban et al. (2016) 30M 0 0 / 0 / 0 - - -

SIMPLEQUESTIONS (Bordes et al., 2015) 108K 0 0 / 0 / 0 - - -

Table 3: Comparison of QA datasets constructed from Freebase. GRAPHQUESTIONS is the richest in question characteristics.

System F1 Time/s

SEMPRE 10.80 56.19

PARASEMPRE 12.79 18.43

JACANA 5.08 2.01

Table 4: Overall performance on GRAPHQUESTIONS.

precision is 1, recall is 0, and F1 is 0. Average run-
time is used for efficiency. Results are shown in per-
centage. Systems are trained on the training set us-
ing the suggested configurations (Appendix E). We
use student’s t test at p = 0.05 for significance test.

7.4 Results

7.4.1 Overall Evaluation

Compared with the scores on WEBQUESTIONS

(30%-40%), the scores on GRAPHQUESTIONS are
lower (Table 4). This is because GRAPHQUES-
TIONS contains questions over a broader range of
difficulty levels. For example, it is more diverse in
topics (Appendix D); also the scores become much
closer when excluding paraphrasing (Section 7.4.2).

JACANA achieves a comparable F1 score with
SEMPRE and PARASEMPRE on WEBQUES-
TIONS (Yao et al., 2014). On GRAPHQUESTIONS,
however, SEMPRE and PARASEMPRE significantly
outperform JACANA (both p < 0.0001). The
following experiments will give more insights
about where the performance difference comes
from. On the other hand, JACANA is much faster,
showing an advantage of information extraction.
The semantic parsing systems spend a lot of time on
executing SPARQL queries. Bypassing SPARQL
and directly working on the knowledge base may be
a promising way to speed up semantic parsing on
large knowledge bases (Yih et al., 2015).

2WEBQUESTIONSSP is WEBQUESTIONS with manually
annotated logical forms. Only those with a full logical form
are included (4737 / 5810).

7.4.2 Fine-grained Evaluation
With explicitly specified question characteristics,

we are able to further inspect QA systems.

Structure Complexity. We first break down system
performance by structure. Answer quality is in gen-
eral sensitive to the complexity of question struc-
ture: As the number of edges increases, F1 score
decreases (Figure 6(a)). The tested systems often
fail to take into account auxiliary constraints in a
question. For example, for “How many children
of Ned Stark were born in Winterfell?” SEMPRE

fails to identify the constraint “born in Winterfell”,
so it also considers Ned Stark’s bastard son, Jon
Snow, as an answer, who was not born in Winter-
fell. Answering questions involving multiple rela-
tions using large knowledge bases remain an open
problem. The large size of knowledge bases pro-
hibits exhaustive search, so smarter algorithms are
needed to efficiently prune the answer space. Be-
rant and Liang (2015) point out an interesting direc-
tion, leveraging agenda-based parsing with imitation
learning for efficient search in the answer space.

Function. In terms of functions, while SEMPRE and
PARASEMPRE perform well on count questions, all
the tested systems perform poorly on questions with
superlatives or comparatives (Figure 6(b)). JACANA

has trouble dealing with functions because it does
not conduct quantitative analysis over the answer
space. SEMPRE and PARASEMPRE do not generate
logical forms with superlatives and comparatives, so
they cannot answer such questions well.

Commonness. Not surprisingly, more common
questions are in general easier to answer (Fig-
ure 6(c)). An interesting observation is that SEM-
PRE’s performance gets worse on the most common
questions. The cause is likely rooted in how the
QA systems construct their candidate answer sets.
PARASEMPRE and JACANA exhaustively construct
candidate sets, while SEMPRE employs a bottom-up
beam search, making it more sensitive to the size of

569

1 2 3
0

0.05

0.1

0.15

0.2

(a) # of edges

A
v
e
ra

g
e
 F

1

SEMPRE
PARASEMPRE
JACANA

none count super. comp.
0

0.05

0.1

0.15

0.2

(b) Function

A
v
e
ra

g
e
 F

1

SEMPRE
PARASEMPRE
JACANA

−35 −25 −15 −5
0

0.05

0.1

0.15

0.2

0.25

(c) commonness

A
v
e
ra

g
e
 F

1

SEMPRE
PARASEMPRE
JACANA

1 3 5 7 9 11 13 15 17
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(d) Rank of paraphrases

A
v
e

ra
g

e
 F

1

SEMPRE
PARASEMPRE
JACANA

Figure 6: Performance breakdown by (a) structure complexity, (b) function, (c) commonness, and (d) paraphrase. Note that in (c)

x = −5 indicates the commonness range −10 ≤ log10(p(q)) < 0.

the candidate answer space. Common entities like
UnitedStatesOfAmerica are often featured by
a high degree in knowledge bases (e.g., 1 million
neighboring entities), which dramatically increases
the size of the candidate answer space. During SEM-
PRE’s iterative beam search, many correct logical
forms may have fallen off beam before getting into
the final candidate set. We checked the percentage of
questions for which the correct logical form is in the
final candidate set, and found that it decreased from
19.8% to 16.7% when commonness increased from
-15 to -5, providing an evidence for the intuition.

Paraphrasing. It is critical for a system to toler-
ate the wording varieties of users. We make the
first effort to evaluate QA systems on paraphras-
ing. For each system, we rank, in descending or-
der, all the paraphrases derived from the same graph
query by their F1 score achieved by the system, and
then compute the average F1 score of each rank. In
Figure 6(d), the decreasing rate of a curve thus de-
scribes a system’s robustness to paraphrasing; the
higher, the less robust. All the systems achieve a
reasonable score on the top-1 paraphrases, i.e., when
a system can choose the paraphrase it can best an-
swer. The F1 scores drop quickly in general. On
the fourth-ranked paraphrases, the F1 score of SEM-
PRE, PARASEMPRE, and JACANA are respectively
only 37.65%, 53.2%, and 36.2% of their score on
the top-1 paraphrases. Leveraging paraphrasing in
its model, PARASEMPRE does seem to be more ro-
bust. The results show that how to handle para-
phrased questions is still a challenging problem.

Answer Cardinality. SEMPRE and JACANA get a
significantly lower F1 score (both p < 0.0001)
on multi-answer questions (Table 5), mainly com-
ing from a decrease on recall. The decrease of
PARASEMPRE is not significant (p=0.29). The par-
ticularly significant decrease of JACANA demon-

System |A| Prec. Rec. F1

SEMPRE
1 59.81 16.11 12.68

> 1 62.38 9.17 6.78

PARASEMPRE
1 17.42 17.58 13.25

> 1 19.65 17.23 11.82

JACANA
1 14.77 6.56 6.56

> 1 11.80 1.43 1.98

Table 5: Performance breakdown by answer cardinality |A|.

strates the difficulty of training a classifier that can
predict all of the answers correctly; semantic pars-
ing is more robust in this case. The precision of
SEMPRE is high because it generates no response for
many questions. Note that under the current defini-
tion, the average F1 score is not the harmonic mean
of the average precision and recall (c.f. Section 7.3).

8 Conclusion

We proposed a framework to generate characteristic-
rich questions for question answering (QA) evalua-
tion. Using the proposed framework, we constructed
a new and challenging QA dataset, and extensively
evaluated several QA systems. The findings point
out an array of issues that future QA research may
need to solve.

9 Acknowledgements

This research was sponsored in part by the Army
Research Laboratory under cooperative agreements
W911NF09-2-0053, NSF IIS 0954125, and NSF
IIS 1528175. The views and conclusions contained
herein are those of the authors and should not be in-
terpreted as representing the official policies, either
expressed or implied, of the Army Research Lab-
oratory or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Government purposes notwithstanding
any copyright notice herein.

570

References
Anne Aula, Rehan M. Khan, and Zhiwei Guan. 2010.

How does search behavior change as search becomes
more difficult? In Proceedings of CHI.

Junwei Bao, Nan Duan, Ming Zhou, and Tiejun Zhao.
2014. Knowledge-based question answering as ma-
chine translation. In Proceedings of ACL.

Michael Bendersky and W. Bruce Croft. 2009. Analysis
of long queries in a large scale search log. In Proceed-
ings of the 2009 workshop on Web Search Click Data.

Jonathan Berant and Percy Liang. 2014. Semantic pars-
ing via paraphrasing. In Proceedings of ACL.

Jonathan Berant and Percy Liang. 2015. Imitation learn-
ing of agenda-based semantic parsers. Transactions of
the Association for Computational Linguistics, 3:545–
558.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of EMNLP.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of SIGMOD.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple question
answering with memory networks. arXiv preprint
arXiv:1506.02075.

John Burger, Claire Cardie, Vinay Chaudhri, Robert
Gaizauskas, Sanda Harabagiu, David Israel, Christian
Jacquemin, Chin-Yew Lin, Steve Maiorano, George
Miller, et al. 2001. Issues, tasks and program
structures to roadmap research in question & answer-
ing (q&a). In Document Understanding Conferences
Roadmapping Documents, pages 1–35.

Qingqing Cai and Alexander Yates. 2013. Large-scale
semantic parsing via schema matching and lexicon ex-
tension. In Proceedings of ACL.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015. Ques-
tion answering over Freebase with multi-column con-
volutional neural networks. In Proceedings of ACL.

Ondřej Dušek and Filip Jurčı́ček. 2015. Training a nat-
ural language generator from unaligned data. In Pro-
ceedings of ACL.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2014. Open question answering over curated and ex-
tracted knowledge bases. In Proceedings of KDD.

Evgeniy Gabrilovich, Michael Ringgaard, and Amarnag
Subramanya. 2013. FACC1: Freebase annotation
of ClueWeb corpora, version 1 (release date 2013-06-
26, format version 1, correction level 0). http://
lemurproject.org/clueweb09/ and http:
//lemurproject.org/clueweb12/.

Lynette Hirschman and Robert Gaizauskas. 2001. Natu-
ral language question answering: the view from here.
natural language engineering, 7(4):275–300.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with on-
the-fly ontology matching. In Proceedings of EMNLP.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick van Kleef,
Sören Auer, et al. 2014. DBpedia - a large-scale, mul-
tilingual knowledge base extracted from wikipedia.
Semantic Web Journal, 6(2):167–195.

Percy Liang. 2013. Lambda dependency-based compo-
sitional semantics. arXiv preprint arXiv:1309.4408.

Vanessa Lopez, Christina Unger, Philipp Cimiano, and
Enrico Motta. 2013. Evaluating question answering
over linked data. Web Semantics: Science, Services
and Agents on the World Wide Web, 21:3–13.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-answer
pairs. Transactions of the Association for Computa-
tional Linguistics, 2:377–392.

Iulian Vlad Serban, Alberto Garcı́a-Durán, Caglar Gul-
cehre, Sungjin Ahn, Sarath Chandar, Aaron Courville,
and Yoshua Bengio. 2016. Generating factoid ques-
tions with recurrent neural networks: The 30m factoid
question-answer corpus. In Proceedings of ACL.

Huan Sun, Hao Ma, Wen-tau Yih, Chen-Tse Tsai,
Jingjing Liu, and Ming-Wei Chang. 2015. Open do-
main question answering via semantic enrichment. In
Proceedings of WWW.

Ellen M Voorhees and Dawn M Tice. 2000. Building a
question answering test collection. In Proceedings of
SIGIR.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceedings
of ACL.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-Hao
Su, David Vandyke, and Steve Young. 2015. Semanti-
cally conditioned LSTM-based natural language gen-
eration for spoken dialogue systems. In Proceedings
of EMNLP.

Mohamed Yahya, Klaus Berberich, Shady Elbassuoni,
Maya Ramanath, Volker Tresp, and Gerhard Weikum.
2012. Deep answers for naturally asked questions on
the web of data. In Proceedings of WWW.

Xuchen Yao and Benjamin Van Durme. 2014. Informa-
tion extraction over structured data: Question answer-
ing with Freebase. In Proceedings of ACL.

Xuchen Yao, Jonathan Berant, and Benjamin Van Durme.
2014. Freebase QA: Information extraction or seman-
tic parsing? In Proceedings of ACL.

Xuchen Yao. 2015. Lean question answering over Free-
base from scratch. In Proceedings of NAACL.

571

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of ACL.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of

semantic parse labeling for knowledge base question
answering. In Proceedings of ACL.

Lei Zou, Ruizhe Huang, Haixun Wang, Jeffrey Xu Yu,
Wenqiang He, and Dongyan Zhao. 2014. Natural lan-
guage question answering over rdf: a graph data driven
approach. In Proceedings of SIGMOD.

572

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 573–584,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning to Translate for Multilingual Question Answering

Ferhan Ture
Comcast Labs∗

1110 Vermont Ave NW Ste 600
Washington, DC, 20005 USA

ferhan ture@cable.comcast.com

Elizabeth Boschee
Raytheon BBN Technologies

10 Moulton St
Cambridge, MA, 02138 USA
eboschee@bbn.com

Abstract

In multilingual question answering, either the
question needs to be translated into the docu-
ment language, or vice versa. In addition to
direction, there are multiple methods to per-
form the translation, four of which we explore
in this paper: word-based, 10-best, context-
based, and grammar-based. We build a fea-
ture for each combination of translation direc-
tion and method, and train a model that learns
optimal feature weights. On a large forum
dataset consisting of posts in English, Arabic,
and Chinese, our novel learn-to-translate ap-
proach was more effective than a strong base-
line (p < 0.05): translating all text into En-
glish, then training a classifier based only on
English (original or translated) text.

1 Introduction

Question answering (QA) is a specific form of the
information retrieval (IR) task, where the goal is
to find relevant well-formed answers to a posed
question. Most QA pipelines consist of three main
stages: (a) preprocessing the question and collec-
tion, (b) retrieval of candidate answers in the col-
lection, and (c) ranking answers with respect to their
relevance to the question and return the top N an-
swers. The types of questions can range from fac-
toid (e.g., “What is the capital of France?”) to causal
(e.g., “Why are trees green?”), and opinion ques-
tions (e.g., “Should USA lower the drinking age?”).

The most common approach to multilingual QA
(MLQA) has been to translate all content into its

∗This work was completed while author was an employee
of Raytheon BBN Technologies.

most probable English translation via machine trans-
lation (MT) systems. This strong baseline, which we
refer to as one-best MT (1MT), has been successful
in prior work (Hartrumpf et al., 2009; Lin and Kuo,
2010; Shima and Mitamura, 2010). However, re-
cent advances in cross-lingual IR (CLIR) show that
one can do better by representing the translation
space as a probability distribution (Ture and Lin,
2014). In addition, MT systems perform substan-
tially worse with user-generated text, such as web
forums (Van der Wees et al., 2015), which provide
extra motivation to consider alternative translation
approaches for higher recall. To our knowledge, it
has yet to be shown whether these recent advance-
ments in CLIR transfer to MLQA.

We introduce a novel answer ranking approach for
MLQA (i.e., Learning to Translate or L2T), a model
that learns the optimal translation of question and/or
candidate answer, based on how well it discrimi-
nates between good and bad answers. We achieve
this by introducing a set of features that encapsulate
lexical and semantic similarities between a question
and a candidate answer through various translation
strategies (Section 3.1). The model then learns fea-
ture weights for each combination of translation di-
rection and method, through a discriminative train-
ing process (Section 3.2). Once a model is trained,
it can be used for MLQA, by sorting each candidate
answer in the collection by model score. Instead of
learning a single model to score candidate answers
in any language, it might be meaningful to train a
separate model that can learn to discriminate be-
tween good and bad answers in each language. This
can let each model learn feature weights custom to

573

the language, therefore allowing a more fine-grained
ranking (Section 3.4). We call this alternative ap-
proach Learning to Custom Translate (L2CT).

Experiments on the DARPA Broad Operational
Language Technologies (BOLT) IR task1 confirm
that L2T yields statistically significant improve-
ments over a strong baseline (p < 0.05), in three out
of four experiments. L2CT outperformed the base-
line as well, but was not more effective than L2T.

2 Related Work

For the last decade or so, research in QA has mostly
been driven by annual evaluation campaigns like
TREC,2 CLEF,3 and NTCIR.4 Most earlier work re-
lied on either rule-based approaches where a set of
rules were manually crafted for each type of ques-
tion, or IR-like approaches where each pair of ques-
tion and candidate answer was scored using retrieval
functions (e.g., BM25 (Robertson et al., 2004)). On
the other hand, training a classifier for ranking can-
didate answers allows the exploitation of various
features extracted from the question, candidate an-
swer, and surrounding context (Madnani et al., 2007;
Zhang et al., 2007). In fact, an explicit comparison
at 2007 TREC confirmed the superiority of machine
learning-based (ML-based) approaches (F-measure
35.9% vs 38.7%) (Zhang et al., 2007). Learning-to-
rank approaches have also been applied to QA suc-
cessfully (Agarwal et al., 2012).

Previous ML-based approaches have introduced
useful features from many aspects of natural lan-
guage, including lexical (Brill et al., 2001; At-
tardi et al., 2001), syntactic (Alfonseca et al., 2001;
Katz et al., 2005), semantic (Cui et al., 2005;
Katz et al., 2005; Alfonseca et al., 2001; Hovy et
al., 2001), and discourse features, such as coref-
erence resolution (Morton, 1999), or identifying
temporal/spatial references (Saquete et al., 2005;
Harabagiu and Bejan, 2005), which are especially
useful for “why” and “how” questions (Kolomiyets
and Moens, 2011). Additionally, semantic role la-
beling and dependency trees are other forms of
semantic analysis used widely in NLP applica-
tions (Shen and Lapata, 2007; Cui et al., 2005).

1http://www.darpa.mil/Our_Work/I2O/Programs
2http://trec.nist.gov
3http://www.clef-initiative.eu
4http://research.nii.ac.jp/ntcir/index.html

When dealing with multilingual collections, most
prior approaches translate all text into English be-
forehand, then treat the task as monolingual retrieval
(previously referred to as 1MT). At recent evalua-
tion campaigns like CLEF and NTCIR,5 almost all
teams simply obtained the one-best question trans-
lation, treating some online MT system as a black
box (Adafre and van Genabith, 2009; Hartrumpf et
al., 2009; Martinez-Gonzalez et al., 2009; Lin and
Kuo, 2010; Shima and Mitamura, 2010), with few
notable exceptions that took term importance (Ren
et al., 2010), or semantics (Munoz-Terol et al., 2009)
into account. Even for non-factoid MLQA, most
prior work does not focus on the translation com-
ponent (Luo et al., 2013; Chaturvedi et al., 2014).

Contributions. Ture and Lin described three meth-
ods for translating queries into the collection lan-
guage in a probabilistic manner, improving docu-
ment retrieval effectiveness over a one-best transla-
tion approach (2014). Extending this idea to MLQA
appears as a logical next step, yet most prior work
relies solely on the one-best translation of questions
or answers (Ko et al., 2010b; Garcı́a-Cumbreras et
al., 2012; Chaturvedi et al., 2014), or selects the
best translation out of few options (Sacaleanu et al.,
2008; Mitamura et al., 2006). Mehdad et al. re-
ported improvements by including the top ten trans-
lations (instead of the single best) and computing
a distance-based entailment score with each (2010).
While Espla-Gomis et al. argue that using MT as a
black box is more convenient (and modular) (2012),
there are potential benefits from a closer integra-
tion between statistical MT and multilingual re-
trieval (Nie, 2010). To the best of our knowledge,
there is no prior work in the literature, where the
optimal query and/or answer translation is learned
via machine learning. This is our main contribu-
tion, with which we outperform the state of the art.

In addition to learning the optimal translation, we
learn the optimal subset of the training data for a
given task, where the criteria of whether we include
a certain data instance is based on either the source
language of the sentence, or the language in which
the sentence was annotated. Training data selection
strategies have not been studied extensively in the

5Most recent MLQA tracks were in 2008 (CLEF) and 2010
(NTCIR).

574

QA literature, therefore the effectiveness of our sim-
ple language-related criteria can provide useful in-
sights to the community.

When there are multiple independent approaches
for ranking question-answer pairs, it is required
to perform a post-retrieval merge: each approach
generates a ranked list of answers, which are then
merged into a final ranked list. This type of sys-
tem combination approach has been applied to var-
ious settings in QA research. Merging at the
document-level is common in IR systems (e.g., (Tsai
et al., 2008)), and has shown to improve multilin-
gual QA performance as well (Garcı́a-Cumbreras
et al., 2012). Many QA systems combine an-
swers obtained by different variants of the under-
lying model (e.g., (Brill et al., 2001) for monolin-
gual, (Ko et al., 2010a; Ko et al., 2010b) for multi-
lingual QA). We are not aware, however, of any prior
work that has explored the merging of answers that
are generated by language-specific ranking mod-
els. Although this does not show increased effec-
tiveness in our experiments, we believe that it brings
a new perspective to the problem.

3 Approach

Our work is focused on a specific stage of the
QA pipeline, namely answer ranking: Given a
natural-language question q and k candidate answers
s1, . . . , sk, we score each answer in terms of its rel-
evance to q. In our case, candidate answers are sen-
tences extracted from all documents retrieved in the
previous stage of the pipeline (using Indri (Metzler
and Croft, 2005)). Hereafter, sentence and answer
might be used interchangeably.

While our approach is not language-specific, we
assume (for simplicity) that questions are in English,
whereas sentences are in either English, Arabic, or
Chinese. Non-English answers are translated back
into English before returning to user.

Our approach is not limited to any question type,
factoid or non-factoid. Our main motivation is to
provide good QA quality on any multilingual Web
collection. This entails finding answers to questions
where there is no single answer, and for which hu-
man agreement is low. We aim to build a system
that can successfully retrieve relevant information
from open-domain and informal-language content.

In this scenario, two assumptions made by many of
the prior approaches fail:

1) We can accurately classify questions via tem-
plate patterns (Chaturvedi et al. argue that this does
not hold for non-factoid questions (2014))

2) We can accurately determine the relevance of
an answer, based on its automatic translation into
English (Wees et al. show how recall decreases
when translating user-generated text (2015))

To avoid these assumptions, we opted for a more
adaptable approach, in which question-answer rele-
vance is modeled as a function of features, intended
to capture the relationship between the question and
sentence text. Also, instead of relying solely on a
single potentially incorrect English translation, we
increase our chances of a hit by translating both the
question and the candidate answer, using four dif-
ferent translation methods. Our main features, de-
scribed throughout this section, are based on lexical
similarity computed using these translations. The
classifier is trained on a large number of question-
answer pairs, each labeled by a human annotator
with a binary relevance label.6

3.1 Representation

In MLQA, since questions and answers are in differ-
ent languages, most approaches translate both into
an intermediary language (usually English). Due to
the error-prone nature of MT, valuable information
often gets “lost in translation”. These errors are es-
pecially noticeable when translating informal text or
less-studied languages (Van der Wees et al., 2015).

Translation Direction. We perform a two-way
translation to better retain the original meaning:
in addition to translating each non-English sen-
tence into English, we also translate the English
questions into Arabic and Chinese (using multiple
translation methods, described below). For each
question-answer pair, we have two “views”: com-
paring translated question to the original sentence
(i.e., collection-language (CL) view); and compar-
ing original question to the translated sentence (i.e.,
question-language (QL) view).

Translation Method. When translating text for re-
trieval tasks like QA, including a variety of alterna-

6Annotators score each answer from 1 to 5. We label any
score of 3 or higher as relevant.

575

tive translations is as important as finding the most
accurate translation, especially for non-factoid ques-
tions, where capturing (potentially multiple) under-
lying topics is essential. Recent work in cross-
language IR (CLIR) has shown that incorporating
probabilities from the internal representations of an
MT system to “translate” the question can accom-
plish this, outperforming standard one-best transla-
tion (Ture and Lin, 2014). We hypothesize that these
improvements transfer to multilingual QA as well.

In addition to translation directions, we explored
four translation methods for converting the English
question into a probabilistic representation (in Ara-
bic and Chinese). Each method builds a probability
distribution for every question word, expressing the
translation space in the collection language. More
details of first three methods can be found in (Ture
and Lin, 2014), while fourth method is a novel query
translation method adapted from the neural network
translation model described in (Devlin et al., 2014).
Word: In MT, a word alignment is a many-to-
many mapping between source- and target-language
words, learned without supervision, at the beginning
of the training pipeline (Och, 2003). These align-
ments can be converted into word translation proba-
bilities for CLIR (Darwish and Oard, 2003).
For example, in an English-Arabic parallel corpus,
if an English word appears m times in total and is
aligned to a certain Arabic word k times, we assign
a probability of k

m for this translation. This simple
idea has performed greatly in IR for generating a
probability distribution for query word translations.
Grammar: Probabilities are derived from a syn-
chronous context-free grammar, which is a typical
translation model found in MT systems (Ture and
Lin, 2014). The grammar contains rules r that
follow the form α|β|A|`(r), stating that source-
language word α can be translated into target-
language word β with an associated likelihood value
`(r) (A represents word alignments). For each rule r
that applies to the question, we identify each source
word sj . From the word alignment information in-
cluded in the rule, we can find all target words that
sj is aligned to. By processing all the rules to ac-
cumulate likelihood values, we construct translation
probabilities for each word in the question.
10-best: Statistical MT systems retrieve a ranked list
of translations, not a single best. Ture and Lin ex-

ploited this to obtain word translation probabilities
from the top 10 translations of the question (2014).
For each question word w, we can extract which
grammar rules were used to produce the translation
– once we have the rules, word alignments allow us
to find all target-language words that w translates
into. By doing this for each question translation, we
construct a probability distribution that defines the
translation space of each question word.
Context: Neural network-based MT models learn
context-dependent word translation probabilities –
the probability of a target word is dependent on the
source word it aligns to, as well as a 5-word window
of context (Devlin et al., 2014). For example, if the
Spanish word “placer” is aligned to the English word
“pleasure”, the model will not only learn from this
word-to-word alignment but also consider the source
sentence context (e.g., “Fue un placer conocerte y
tenerte unos meses.”). However, since short ques-
tions might lack full sentence context, our model
should have the flexibility to translate under par-
tial or no context. Instead of training the NN-base
translation model on full, well-formed sentences, we
custom-fit it for question translation: words in the
context window are randomly masked by replacing
it with a special filler token <F>. This teaches the
model how to accurately translate with full, partial
context, or no context. For the above example, we
generate partial contexts such as “fue un placer <F>
y” or “<F> <F> placer conocerte y”. Since there are
many possibilities, if the context window is large,
we randomly sample a few of the possibilities (e.g.,
4 out of 9) per training word.

In Figure 1, we display the probabilistic structure
produced the grammar-based translation method,
when implemented as described above. Each En-
glish word in the question is translated into a prob-
abilistic structure, consisting of Chinese words and
corresponding probabilities that represent how much
weight the method decides to put on that specific
word. Similar structures are learned with the other
three translation methods.

We are not aware of any other MLQA approach
that represents the question-answer pair based on
their probabilistic translation space.

576

child:'['0.32'
��0.25'���0.21'���0.15'�
�...']'

labor:'['0.36'
��0.26'���0.17'���0.13'����...']'
Africa:'['0.89'�	�0.02'��0.02'���0.01'���...']'

non#$ developmentof

child$labor$ child$$$$$$$$$$$$$$$$$$$$$$$$children$$$$$$$$$$$$$$$$$$$$child$

labor$$$$$$$$$$$$$$$$$$$$$$$$$labor$$$$$$$$$$$$$$$$$$$$$$$$labor$force$

Africa$ South$Africa$

Figure 1: Probabilistic grammar-based translation of example

question. The example question “Tell me about child labor in

Africa” is simplified by our preprocessing engine to “child labor

africa”.

3.2 Features
Given two different translation directions (CL and
QL), and four different translation methods (Word,
Grammar, 10-best, Context), our strategy is to lever-
age a machine learning process to determine how
helpful each signal is with respect to the end task.
For this, we introduced separate question-answer
similarity features based on each combination of
translation direction and method.
Collection-language Features. In order to compute
a single real-valued vector to represent the question
in the collection language (LexCL), we start with
the probabilistic structure representing the question
translation (e.g., Figure 1 is one such structure when
the translation method is grammar-based). For
each word in the collection-language vocabulary, we
compute a weight by averaging its probability across
the terms in the probabilistic structure.

vqgrammar(w) = avgiPr(w|qi) (1)

where w is a non-Engish word and Pr(w|qi) is the
probability of w in the probability distribution cor-
responding to the ith query term.

Figure 2 shows the real-valued vector computed
based on the probabilistic question translation in
Figure 1. The Chinese word translated as “child la-
bor” has a weight of 0.32, 0.36, and 0 in the proba-
bility distributions of the three query terms, respec-
tively. Averaging these three values results in the fi-
nal weight of 0.23 in vqgrammar in Figure 2. Notice
that these weights are normalized by construction.

Similarly, a candidate answer s in Chinese is rep-
resented by normalized word frequencies:

vs(w) =
freq(w|s)∑
w′ freq(w′|s) (2)

Given the two vectors, we compute the co-
sine similarity. Same process is repeated for the

Feature Question Sentence Feature
category repr. (vq′) repr. (vs′) Value

LexCL

vqword vs

vq10best vs
cosine
(vq′ , vs′)

vqcontext vs
vqgrammar vs

LexQL vq vs1best
Table 1: List of features used in L2T, and how the values are

computed from vector representations.

other three translation methods. The four lexical
collection-language similarity features are collec-
tively called LexCL.

vqgrammar
:([(0.30(���0.23(���0.08(�
�0.09(���…(](

s:(�	��������������	������������
vs:([(2.0(�(1.0(���1.0(��(1.0(����…(](

Figure 2: Vector representation of grammar-translated question

(qgrammar) and sentence (s).

Question-language Features. As mentioned be-
fore, we also obtain a similarity value by translating
the sentence (s1best) and computing the cosine sim-
ilarity with the original question (q). vq and vs1best
are computed using Equation 2. Although it is pos-
sible to translate the sentence into English using the
same four methods, we only used the one-best trans-
lation due to the computational cost. Hence, we have
only one lexical similarity feature in the QL view
(call LexQL).

The computation process for the five lexical sim-
ilarity features is summarized in Table 1. Af-
ter computation, feature weights are learned via a
maximum-entropy model.7 Although not included
in the figure or table, we also include the same set
of features from the sentence preceding the answer
(within the corresponding forum post), in order to
represent the larger discourse.

3.3 Data Selection

In order to train a machine learning model with our
novel features, we need positive and negative exam-
ples of question-answer pairs (i.e., (q, s)). For this,
for each training question, our approach is to hire

7Support vector machines yielded worse results.

577

human annotators to label sentences retrieved from
the non-English collections used in our evaluation.
It is possible to label the sentences in the source lan-
guage (i.e., Arabic or Chinese) or in the question
language (i.e., translated into English). In this sec-
tion, we explore the question of whether it is useful
to distinguish between these two independently cre-
ated labels, and whether this redundancy can be used
to improve the machine learning process.

We hypothesize two reasons why selecting train-
ing data based on language might benefit MLQA:
i) The translation of non-English candidate an-
swers might lack in quality, so annotators are likely
to judge some relevant answers as non-relevant.
Hence, training a classifier on this data might lead
to a tendency to favor English answers.
ii) For the question-answer pairs that were annotated
in both languages, we can remove noisy (i.e., la-
beled inconsistently by annotators) instances from
the training set.

The question of annotation is an unavoidable part
of evaluation of MLQA systems, so finding the opti-
mal subset for training is a relevant problem. In or-
der to explore further, we generated six subsets with
respect to (a) the original language of the answer, or
(b) the language of annotation (i.e., based on origi-
nal text or its English translation):
en: Sentences from the English corpus.
ar/ch: Sentences from the Arabic / Chinese corpus
(regardless of how it was judged).
consist: All sentences except those that were judged
inconsistently.
src+: Sentences judged only in original text, or
judged in both consistently.
en+: Sentences that are either judged only in En-
glish, or judged in both original and English transla-
tion consistently.
all: All sentences.

These subsets were determined based on linguis-
tically motivated heuristics, but choosing the most
suitable one (for a given task) is done via machine
learning (see Section 4).

3.4 Language-specific Ranking
Scoring Arabic sentences with respect to a question
is inherently different than scoring English (or Chi-
nese) sentences. The quality of resources, grammar,
etc., as well as other internal dynamics might differ

greatly across languages. We hypothesize that there
is no one-size-fits-all model, so the parameters that
work best for English retrieval might not be as useful
when scoring sentences in Arabic, and/or Chinese.

Our proposed solution is to apply a separate clas-
sifier, custom-tuned to each collection, and retrieve
three single-language ranked lists (i.e., in English,
Arabic, and Chinese). In addition to comparing each
custom-tuned, language-specific classifier to a sin-
gle, language-independent one, we also use this idea
to propose an approach for MLQA:
L2CT(n) Retrieve answers from each language us-
ing separate classifiers (call these lists English-only,
Arabic-only, and Chinese-only), take the best an-
swers from each language, then merge them into a
mixed-language set of n answers.

We compare this to the standard approach:
L2T(n) Retrieve up to n mixed-language answers
using a single classifier.

Four heuristics were explored for merging lists in
the L2CT approach.8 Two common approaches are
uniform and alternate merging (Savoy, 2004):
Uniform: A straightforward merge can be achieved
by using the classifier scores (i.e., probability of an-
swer relevance, given question) to sort all answers,
across all languages, and include the top n in the fi-
nal list of answers. Classifier scores are normalized
into the [0,1] range for comparability.
Alternate: We alternate between the lists, picking
one answer at a time from each, stopping when the
limit n has been reached.

Since answers are expected in English, there is a
natural preference for answers that were originally
written English, avoiding noisy text due to transla-
tion errors. However, it is also important not to re-
strict answers entirely to English sources, since that
would defeat the purpose of searching in a multi-
lingual collection. We implemented the following
methods to account for language preferences:
English first: We keep all sufficiently-confident (i.e.,
normalized score above a fixed threshold) answers
from the English-only list first, and start including
answers from Arabic- and Chinese-only lists only if
the limit of n answers has not been reached.

8In addition to these heuristics, the optimal merge could be
learned from training data, as a “learning to rank” problem. This
is out of the scope of this paper, but we plan to explore the idea
in the future.

578

Weighted: Similar to Uniform, but we weight the
normalized scores before sorting. The optimal
weights can be learned by using a grid-search pro-
cedure and a cross-validation split.

4 Evaluation

In order to perform controlled experiments and gain
more insights, we split our evaluation into four
separate tasks: three tasks focus on retrieving an-
swers from posts written in a specified language
(English-only, Arabic-only, or Chinese-only) 9, and
the last task is not restricted to any language (Mixed-
language). All experiments were conducted on the
DARPA BOLT-IR task. The collection consists of
12.6M Arabic, 7.5M Chinese, and 9.6M English
Web forum posts. All runs use a set of 45 non-
factoid (mostly opinion and causal) English ques-
tions, from a range of topics. All questions and fo-
rum posts were processed with an information ex-
traction (IE) toolkit (Boschee et al., 2005), which
performs sentence-splitting, named entity recogni-
tion, coreference resolution, parsing, and part-of-
speech tagging.

All non-English posts were translated into En-
glish (one-best only), and all questions were trans-
lated into Arabic and Chinese (probabilistic transla-
tion methods from Section 3.1). For all experiments,
we used the same state-of-the-art English↔Arabic
(En-Ar) and English↔Chinese (En-Ch) MT sys-
tems (Devlin et al., 2014). Models were trained
on parallel corpora from NIST OpenMT 2012, in
addition to parallel forum data collected as part of
the BOLT program (10M En-Ar words; 30M En-
Ch words). Word alignments were learned with
GIZA++ (Och and Ney, 2003) (five iterations of
IBM Models 1–4 and HMM).

After all preprocessing, features were computed
using the original post and question text, and their
translations. Training data were created by having
annotators label all sentences of the top 200 docu-
ments retrieved by Indri from each collection (for
each question). Due to the nature of retrieval tasks,
training data usually contains an unbalanced portion
of negative examples. Hence, we split the data into
balanced subsets (each sharing the same set of pos-
itively labeled data) and train multiple classifiers,

9Shortened as Eng, Arz, and Cmn, respectively.

then take a majority vote when predicting.
For testing, we froze the set of candidate answers

and applied the trained classifier to each question-
answer pair, generating a ranked list of answers for
each question. This ranked list was evaluated by av-
erage precision (AP).10 Due to the size and redun-
dancy of the collections, we sometimes end up with
over 1000 known relevant answers for a question.
So it is neither reasonable nor meaningful to com-
pute AP until we reach 100% recall (e.g., 11-point
AP) for these cases. Instead, we computed AP-k, by
accumulating precision values at every relevant an-
swer until we get k relevant answers.11 In order to
provide a single metric for the test set, it is common
to report the mean average precision (MAP), which
in this case is the average of the AP-k values across
all questions.

Baseline. As described earlier, the baseline system
computes similarity between question text and the
one-best translation of the candidate answer (we run
the sentence through our state-of-the-art MT sys-
tem). After translation, we compute similarity via
scoring the match between the parse of the ques-
tion text and the parse of the candidate answer, us-
ing our finely-tuned IE toolkit [reference removed
for anonymization]. This results in three different
similarity features: matching the tree node similar-
ity, edge similarity, and full tree similarity. Fea-
ture weights are then learned by training this clas-
sifier discriminatively on the training data described
above. This already performs competitively, outper-
forming the simpler baseline where we compute a
single similarity score between question and trans-
lated text, and matching the performance of the
system by Chaturvedi et al. on the BOLT evalua-
tion (2014). Baseline MAP values are reported on
the leftmost column of Table 2.

Data effect. In the baseline approach, we do not
perform any data selection, and use all available
data for training the classifier. In order to test our
hypothesis that selecting a linguistically-motivated
subset of the training data might help, we used 10-
fold cross-validation to choose the optimal data set

10Many other metrics (e.g., NDCG, R-precision) were ex-
plored during BOLT, and results were very similar.

11k was fixed to 20 in our evaluation, although we verified
that conclusions do not change with varying k.

579

(among seven options described in Section 3.3). Re-
sults indicate that including English or Arabic sen-
tences when training a classifier for Chinese-only
QA is a bad idea, since effectiveness increases when
restricted to Chinese sentences (lang=ch). On the
other hand, for the remaining three tasks, the most
effective training data set is annot=en+consist.
These selections are consistent across all ten folds,
and the difference is statistically significant for all
but Arabic-only. The second column in Table 2 dis-
plays the MAP achieved when data selection is ap-
plied before training the baseline model.

Feature effect. To measure the impact of our novel
features, we trained classifiers using either LexCL,
LexQL, or both feature sets (Section 3.2). In these
experiments, the data is fixed to the optimal subset
found earlier. Results are summarized on right side
of Table 2. Statistically significants improvements
over Baseline/Baseline+Data selection are indicated
with single/double underlining.

For Arabic-only QA, adding LexQL features
yields greatest improvements over the baseline,
while the same statement holds for LexCL features
for the Chinese-only task. For the English-only
and mixed-language tasks, the most significant in-
crease in MAP is observed with all of our proba-
bilistic bilingual features. For all but Arabic-only
QA, the MAP is statistically significantly better (p <
0.05) than the baseline; for Chinese-only and mixed-
language tasks, it also outperforms baseline plus
data selection (p < 0.05).12 All of this indicates
the effectiveness of our probabilistic question trans-
lation, as well as our data selection strategy.

Task Base +Data +Feats
Cmn 0.416 0.425 (ch) 0.451 (LexCL)
Arz 0.421 0.423 (en+) 0.425 (LexQL)
Eng 0.637 0.657 (en+) 0.660 (all)

Mixed 0.665 0.675 (en+) 0.681 (all)
Table 2: L2T evaluated using MAP with 10-fold cross-

validation for each task. A statistically significant increase

over Baseline/Base+Data is shown by single/double underlin-

ing (p < 0.05).

Understanding the contribution of each of the four
12Note that bilingual features are not expected to help on the

English-only task, and the improvements come solely from data
selection.

LexCL features is also important. To gain insight,
we trained a classifier using all LexCL features (us-
ing the optimal data subset learned earlier for each
task), and then incrementally removed one of the
features, and tested on the same task. This con-
trolled experiment revealed that the word translation
feature is most useful for Chinese-only QA (i.e., re-
moving it produces largest drop in MAP, 0.6 points),
whereas context translation appears to be most use-
ful (by a slighter margin) in Arabic-only QA. In the
former case, the diversity provided by word transla-
tion might be useful at increasing recall in retriev-
ing Chinese answers. In retrieving Arabic answers,
using context to disambiguate the translation might
be useful at increasing precision. This result further
emphasizes the importance of a customized transla-
tion approach for MLQA.

Furthermore, to test the effectiveness of the prob-
abilistic translation approach (Section 3.1), we re-
placed all LexCL features with a single lexical sim-
ilarity feature computed from the one-best ques-
tion translation. This resulted in lower MAP: 0.427
to 0.423 for Arabic-only, and 0.451 to 0.425 for
Chinese-only task (p < 0.01), supporting the hy-
pothesis that probabilistic translation is more effec-
tive than the widely-used one-best translation. In
fact, almost all gains in Chinese-only QA seems to
be coming from the probabilistic translation.

For a robustness test, we let cross-validation se-
lect the best combination of (data, feature), mimick-
ing a less controlled, real-world setting. In this case,
the best MAP for the Arabic-, Chinese-, English-
only, and Mixed-language tasks are 0.403, 0.448,
0.657, and 0.679, respectively. In all but Arabic-
only, these are statistically significantly better (p <
0.05) than not tuning the feature set or training data
(i.e., Baseline). This result suggests that our ap-
proach can be used for any MLQA task out of the
box, and provide improvements.

Learning to Custom Translate (L2CT). We took
the ranked list of answers output by each language-
specific model, and merged all of them into a ranked
list of mixed-language answers. For the weighted
heuristic, we tried three values for the weight. In
Table 3, we see that training separate classifiers
for each subtask does not bring overall improve-
ments to the end task. Amongst merging strategies,

580

the most effective were weighted (weights for each
query learned by performing a grid-search on other
queries) and English first – however, both are sta-
tistically indistinguishable from the single classifier
baseline. In the latter case, the percentage of English
answers is highest (88%), which might not be desir-
able. Depending on the application, the ratio of lan-
guages can be adjusted with an appropriate merging
method. For instance, alternate and norm heuristics
tend to represent languages almost equally.

Approach (En-Ch-Ar) % MAP
L2T 64-19-16 0.681

L2CT

Uniform 24-35-41 0.548
Alt. 32-34-34 0.574

Eng. First 88-6-6 0.668

Weight
2 37-30-34 0.599
5 51-24-25 0.654
10 61-20-19 0.669

Table 3: L2T vs. L2CT for multilingual QA.

Even though we get lower MAP in the overall
task, Table 2 suggests that it is worthwhile customiz-
ing classifiers for each subtask (e.g., the Chinese re-
sponses in the ranked list of L2CT are more relevant
than Single.). The question of how to effectively
combine the results into a mixed-language list, how-
ever, remains an open question.

5 Conclusions

We introduced L2T, a novel approach for MLQA,
inspired from recent success in CLIR research. To
our knowledge, this is the first use of probabilistic
translation methods for this task, and the first at-
tempt at using machine learning to learn the optimal
question translation.

We also proposed L2CT, which uses language-
specific classifiers to treat the ranking of English,
Arabic, and Chinese answers as three separate sub-
tasks, by applying a separate classifier for each
language. While post-retrieval merging has been
studied in the past, we have not come across any
work that applies this idea specifically to create a
language-aware ranking for MLQA.

Our experimental analysis shows the importance
of data selection when dealing with annotations on
source and translated text, and the effect of com-
bining translation methods. L2T improved answer

ranking effectiveness significantly for Chinese-only,
English-only, and mixed-language QA.

Although results did not support the hypothesis
that learning a custom classifier for the retrieval of
each language would outperform the single classi-
fier baseline, we think that more research is needed
to fully understand how language-specific modeling
can benefit MLQA. More sophisticated merging of
multiple ranked lists of answers need to be explored.
Learning to rank between answers from different
languages might be more effective than heuristics.
This would allow us to predict the final language ra-
tio, based on many features (e.g., general collection
statistics, quality of candidate answers, question cat-
egory and complexity, MT system confidence levels)
to merge question-answer pairs.

An even more comprehensive use of machine
learning would be to learn word-level translation
scores, instead of relying on translation probabili-
ties from the bilingual dictionary, resulting in a fully
customized translation. Similar approaches have ap-
peared in learning-to-rank literature for monolingual
IR (Bendersky et al., 2010), but not for multilingual
retrieval. Another extension of this work would be
to apply the same translation for translating answers
into the question language (in addition to question
translation). By doing this, we would be able to cap-
ture the semantics of each answer much better, since
we have discussed that one-best translation discards
a lot of potentially useful information.

Finally, since one of the take-away messages of
our work is that a deeper understanding of linguistic
context can improve QA effectiveness via more so-
phisticated question translation, we are hoping to see
even more improvements by creating features based
on word embeddings. One potential next step is to
learn bilingual embeddings directly for the task of
QA, for which we have started adapting some re-
lated work (Bai et al., 2010).

Acknowledgements

Jacob Devlin has provided great help in the design
and implementation of the context-based question
translation approach. We would also like to thank
the anonymous reviewers for their helpful feedback.

581

References
SisayFissaha Adafre and Josef van Genabith. 2009.

Dublin city university at qaclef 2008. In Carol Pe-
ters, Thomas Deselaers, Nicola Ferro, Julio Gonzalo,
GarethJ.F. Jones, Mikko Kurimo, Thomas Mandl,
Anselmo Peñas, and Vivien Petras, editors, Evaluating
Systems for Multilingual and Multimodal Information
Access, volume 5706 of Lecture Notes in Computer
Science, pages 353–360. Springer Berlin Heidelberg.

Arvind Agarwal, Hema Raghavan, Karthik Subbian,
Prem Melville, Richard D Lawrence, David C
Gondek, and James Fan. 2012. Learning to Rank
for Robust Question Answering. In Proceedings of
the 21st ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’12, pages
833–842, New York, NY, USA. ACM.

Enrique Alfonseca, Marco De Boni, José-Luis Jara-
Valencia, and Suresh Manandhar. 2001. A prototype
question answering system using syntactic and seman-
tic information for answer retrieval. In TREC.

Giuseppe Attardi, Antonio Cisternino, Francesco
Formica, Maria Simi, and Alessandro Tommasi.
2001. Piqasso: Pisa question answering system. In
TREC.

Bing Bai, Jason Weston, David Grangier, Ronan
Collobert, Kunihiko Sadamasa, Yanjun Qi, Olivier
Chapelle, and Kilian Q. Weinberger. 2010. Learn-
ing to rank with (a lot of) word features. Inf. Retr.,
13(3):291–314.

Michael Bendersky, Donald Metzler, and W. Bruce Croft.
2010. Learning concept importance using a weighted
dependence model. In Proceedings of the Third ACM
International Conference on Web Search and Data
Mining, WSDM ’10, pages 31–40, New York, NY,
USA. ACM.

Elizabeth Boschee, Ralph Weischedel, and Alex Zama-
nian. 2005. Automatic information extraction. In
Proceedings of the International Conference on Intel-
ligence Analysis, volume 71.

Eric Brill, Jimmy Lin, Michele Banko, Susan Dumais,
and Andrew Ng. 2001. Data-intensive question an-
swering. In In Proceedings of the Tenth Text REtrieval
Conference (TREC, pages 393–400.

Snigdha Chaturvedi, Vittorio Castelli, Radu Florian,
Ramesh M Nallapati, and Hema Raghavan. 2014.
Joint Question Clustering and Relevance Prediction
for Open Domain Non-factoid Question Answering.
In Proceedings of the 23rd International Conference
on World Wide Web, WWW ’14, pages 503–514, New
York, NY, USA. ACM.

Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-
Seng Chua. 2005. Question answering passage re-
trieval using dependency relations. In Proceedings

of the 28th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Re-
trieval, SIGIR ’05, pages 400–407, New York, NY,
USA. ACM.

Kareem Darwish and Douglas W. Oard. 2003. Proba-
bilistic structured query methods. In SIGIR.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas
Lamar, Richard M. Schwartz, and John Makhoul.
2014. Fast and robust neural network joint models
for statistical machine translation. In Proceedings of
the 52nd Annual Meeting of the Association for Com-
putational Linguistics, ACL 2014, June 22-27, 2014,
Baltimore, MD, USA, pages 1370–1380.

Miquel Esplà-Gomis, Felipe Sánchez-Martı́nez, and
Mikel L Forcada. 2012. UAlacant: Using Online
Machine Translation for Cross-lingual Textual Entail-
ment. In Proceedings of the First Joint Conference
on Lexical and Computational Semantics - Volume 1:
Proceedings of the Main Conference and the Shared
Task, and Volume 2: Proceedings of the Sixth Inter-
national Workshop on Semantic Evaluation, SemEval
’12, pages 472–476, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

M Á Garcı́a-Cumbreras, F Martı́nez-Santiago, and L A
Ureña López. 2012. Architecture and Evaluation of
BRUJA, a Multilingual Question Answering System.
Inf. Retr., 15(5):413–432, October.

Sanda Harabagiu and Cosmin Adrian Bejan. 2005.
Question answering based on temporal inference. In
Proceedings of the AAAI-2005 workshop on inference
for textual question answering, pages 27–34.

Sven Hartrumpf, Ingo GlÃckner, and Johannes Level-
ing. 2009. Efficient question answering with ques-
tion decomposition and multiple answer streams. In
Carol Peters, Thomas Deselaers, Nicola Ferro, Julio
Gonzalo, GarethJ.F. Jones, Mikko Kurimo, Thomas
Mandl, Anselmo PeÃ±as, and Vivien Petras, editors,
Evaluating Systems for Multilingual and Multimodal
Information Access, volume 5706 of Lecture Notes
in Computer Science, pages 421–428. Springer Berlin
Heidelberg.

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin-
Yew Lin, and Deepak Ravichandran. 2001. Toward
semantics-based answer pinpointing. In Proceedings
of the first international conference on Human lan-
guage technology research, pages 1–7. Association for
Computational Linguistics.

Boris Katz, Gary Borchardt, and Sue Felshin. 2005. Syn-
tactic and semantic decomposition strategies for ques-
tion answering from multiple resources. In Proceed-
ings of the AAAI 2005 workshop on inference for tex-
tual question answering, pages 35–41.

Jeongwoo Ko, Luo Si, and Eric Nyberg. 2010a. Com-
bining Evidence with a Probabilistic Framework for

582

Answer Ranking and Answer Merging in Question
Answering. Inf. Process. Manage., 46(5):541–554,
September.

Jeongwoo Ko, Luo Si, Eric Nyberg, and Teruko Mi-
tamura. 2010b. Probabilistic Models for Answer-
ranking in Multilingual Question-answering. ACM
Trans. Inf. Syst., 28(3):16:1—-16:37, July.

Oleksandr Kolomiyets and Marie-Francine Moens. 2011.
A survey on question answering technology from an
information retrieval perspective. Information Sci-
ences, 181(24):5412–5434.

Chuan-Jie Lin and Yu-Min Kuo. 2010. Description
of the ntou complex qa system. In Proceedings of
NTCIR-8 Workshop.

Xiaoqiang Luo, Hema Raghavan, Vittorio Castelli,
Sameer Maskey, and Radu Florian. 2013. Finding
what matters in questions. In Proceedings of NAACL-
HLT’13.

N Madnani, Jimmy Lin, and Bonnie J Dorr. 2007. TREC
2007 ciQA Task: University of Maryland. Proceed-
ings of TREC.

Ãngel Martinez-Gonzalez, Cesar de Pablo-Sanchez,
Concepcion Polo-Bayo, MarÃaTeresa Vicente-Diez,
Paloma Martinez-Fernandez, and Jose Luis Martinez-
Fernandez. 2009. The miracle team at the clef 2008
multilingual question answering track. In Carol Pe-
ters, Thomas Deselaers, Nicola Ferro, Julio Gonzalo,
GarethJ.F. Jones, Mikko Kurimo, Thomas Mandl,
Anselmo PeÃ±as, and Vivien Petras, editors, Evalu-
ating Systems for Multilingual and Multimodal Infor-
mation Access, volume 5706 of Lecture Notes in Com-
puter Science, pages 409–420. Springer Berlin Heidel-
berg.

Yashar Mehdad, Matteo Negri, and Marcello Federico.
2010. Towards Cross-lingual Textual Entailment. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics, HLT ’10,
pages 321–324, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Donald Metzler and W Bruce Croft. 2005. A Markov
random field model for term dependencies. In Pro-
ceedings of the 28th annual international ACM SIGIR
conference on Research and development in informa-
tion retrieval, SIGIR ’05, pages 472–479, New York,
NY, USA. ACM.

Teruko Mitamura, Mengqiu Wang, Hideki Shima, and
Frank Lin. 2006. Keyword translation accuracy
and cross-lingual question answering in chinese and
japanese. In Proceedings of the Workshop on Multilin-
gual Question Answering, MLQA ’06, pages 31–38,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Thomas S Morton. 1999. Using Coreference for Ques-
tion Answering. In Proceedings of the Workshop
on Coreference and Its Applications, CorefApp ’99,
pages 85–89, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Rafael Munoz-Terol, Marcel Puchol-Blasco, Maria Par-
dino, Jose Manuel Gomez, Sandra Roger, Katia Vila,
Antonio Ferrandez, Jesus Peral, and Patricio Martinez-
Barco. 2009. Integrating logic forms and anaphora
resolution in the aliqan system. In Evaluating Systems
for Multilingual and Multimodal Information Access,
LNCS, pages 438–441. Springer Berlin Heidelberg.

Jian-Yun Nie. 2010. Cross-language information re-
trieval. Synthesis Lectures on Human Language Tech-
nologies, 3(1):1–125.

Franz J. Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19–51.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
the 41st Annual Meeting on Association for Compu-
tational Linguistics - Volume 1, ACL ’03, pages 160–
167, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Han Ren, Donghong Ji, and Jing Wan. 2010. Whu ques-
tion answering system at ntcir-8 aclia task. In Pro-
ceedings of NTCIR-8 Workshop.

Stephen Robertson, Hugo Zaragoza, and Michael Taylor.
2004. Simple {BM25} extension to multiple weighted
fields. In Proc. CIKM, pages 42–49.

Bogdan Sacaleanu, Günter Neumann, and Christian
Spurk. 2008. Dfki-lt at qaclef 2008. In Carol Peters
and et al., editors, CLEF 2008 Working Notes, Work-
ing Notes. Springer Verlag.

E Saquete, J L Vicedo, P Martı́nez-Barco, R Muñoz,
and F Llopis. 2005. Evaluation of Complex Tem-
poral Questions in CLEF-QA. In Proceedings of the
5th Conference on Cross-Language Evaluation Fo-
rum: Multilingual Information Access for Text, Speech
and Images, CLEF’04, pages 591–596, Berlin, Heidel-
berg. Springer-Verlag.

Jacques Savoy. 2004. Combining multiple strategies
for effective monolingual and cross-language retrieval.
Information Retrieval, 7(1-2):121–148.

Dan Shen and Mirella Lapata. 2007. Using seman-
tic roles to improve question answering. In EMNLP-
CoNLL, pages 12–21. Citeseer.

Hideki Shima and Teruko Mitamura. 2010. Bootstrap
pattern learning for open-domain clqa. In Proceedings
of NTCIR-8 Workshop.

Ming-Feng Tsai, Yu-Ting Wang, and Hsin-Hsi Chen.
2008. A study of learning a merge model for multilin-
gual information retrieval. In Proceedings of the 31st

583

Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SI-
GIR ’08, pages 195–202, New York, NY, USA. ACM.

Ferhan Ture and Jimmy Lin. 2014. Exploiting represen-
tations from statistical machine translation for cross-
language information retrieval. ACM Trans. Inf. Syst.,
32(4):19:1–19:32, October.

Marlies Van der Wees, Arianna Bisazza, Wouter
Weerkamp, and Christof Monz. 2015. What’s in a do-
main? analyzing genre and topic differences in statis-
tical machine translation. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short Pa-
pers), pages 560–566, Beijing, China, July. Associa-
tion for Computational Linguistics.

Chen Zhang, Matthew Gerber, Tyler Baldwin, Steven
Emelander, Joyce Chai, and Rong Jin. 2007. Michi-
gan State University at the 2007 TREC ciQA Task.
In Proceedings of the Sixteenth Text Retrieval Confer-
ence, Gaithersburg, Maryland, November.

584

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 585–594,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

A Semiparametric Model for Bayesian Reader Identification

Ahmed Abdelwahab1 and Reinhold Kliegl2 and Niels Landwehr1

1 Department of Computer Science, Universität Potsdam
August-Bebel-Straße 89, 14482 Potsdam, Germany
{ahmed.abdelwahab, niels.landwehr}@uni-potsdam.de

2 Department of Psychology, Universität Potsdam
Karl-Liebknecht-Straße 24/25, 14476 Potsdam OT/Golm

kliegl@uni-potsdam.de

Abstract

We study the problem of identifying individu-
als based on their characteristic gaze patterns
during reading of arbitrary text. The motiva-
tion for this problem is an unobtrusive biomet-
ric setting in which a user is observed during
access to a document, but no specific chal-
lenge protocol requiring the user’s time and at-
tention is carried out. Existing models of indi-
vidual differences in gaze control during read-
ing are either based on simple aggregate fea-
tures of eye movements, or rely on paramet-
ric density models to describe, for instance,
saccade amplitudes or word fixation durations.
We develop flexible semiparametric models of
eye movements during reading in which den-
sities are inferred under a Gaussian process
prior centered at a parametric distribution fam-
ily that is expected to approximate the true dis-
tribution well. An empirical study on read-
ing data from 251 individuals shows signifi-
cant improvements over the state of the art.

1 Introduction

Eye-movement patterns during skilled reading con-
sist of brief fixations of individual words in a
text that are interleaved with quick eye movements
called saccades that change the point of fixation to
another word. Eye movements are driven both by
low-level visual cues and high-level linguistic and
cognitive processes related to text understanding; as
a reflection of the interplay between vision, cog-
nition, and motor control during reading they are
frequently studied in cognitive psychology (Kliegl
et al., 2006; Rayner, 1998). Computational mod-
els (Engbert et al., 2005; Reichle et al., 1998) as well

as models based on machine learning (Matties and
Søgaard, 2013; Hara et al., 2012) have been devel-
oped to study how gaze patterns arise based on text
content and structure, facilitating the understanding
of human reading processes.

A central observation in these and earlier psycho-
logical studies (Huey, 1908; Dixon, 1951) is that eye
movement patterns strongly differ between individu-
als. Holland et al. (2012) and Landwehr et al. (2014)
have developed models of individual differences in
eye movement patterns during reading, and studied
these models in a biometric problem setting where
an individual has to be identified based on observing
her eye movement patterns while reading arbitrary
text. Using eye movements during reading as a bio-
metric feature has the advantage that it suffices to
observe a user during a routine access to a device
or document, without requiring the user to react to
a specific challenge protocol. If the observed eye
movement sequence is unlikely to be generated by
an authorized individual, access can be terminated or
an additional verification requested. This is in con-
trast to approaches where biometric identification is
based on eye movements in response to an artificial
visual stimulus, for example a moving (Kasprowski
and Ober, 2004; Komogortsev et al., 2010; Rigas et
al., 2012b; Zhang and Juhola, 2012) or fixed (Bed-
narik et al., 2005) dot on a computer screen, or a
specific image stimulus (Rigas et al., 2012a).

The model studied by Holland & Komogort-
sev (2012) uses aggregate features (such as average
fixation duration) of the observed eye movements.
Landwehr et al. (2014) showed that readers can be
identified more accurately with a model that cap-
tures aspects of individual-specific distributions over

585

eye movements, such as the distribution over fixa-
tion durations or saccade amplitudes for word refix-
ations, regressions, or next-word movements. Some
of these distributions need to be estimated from very
few observations; a key challenge is thus to design
models that are flexible enough to capture character-
istic differences between readers yet robust to sparse
data. Landwehr et al. (2014) used a fully paramet-
ric approach where all densities are assumed to be in
the gamma family; gamma distributions were shown
to approximate the true distribution of interest well
for most cases (see Figure 1). This model is robust
to sparse data, but might not be flexible enough to
capture all differences between readers.

The model we study in this paper follows ideas
developed by Landwehr et al. (2014), but em-
ploys more flexible semiparametric density models.
Specifically, we place a Gaussian process prior over
densities that concentrates probability mass on den-
sities that are close to the gamma family. Given
data, a posterior distribution over densities is de-
rived. If data is sparse, the posterior will still be
sharply peaked around distributions in the gamma
family, reducing the effective capacity of the model
and minimizing overfitting. However, given enough
evidence in the data, the model will also deviate
from the gamma-centered prior—depending on the
kernel function chosen for the GP prior, any density
function can in principle be represented. Integrating
over the space of densities weighted by the posterior
yields a marginal likelihood for novel observations
from which predictions are inferred. We empirically
study this model in the same setting as studied by
Landwehr et al. (2014), but using an order of mag-
nitude more individuals. Identification error is re-
duced by more than a factor of three compared to
the state of the art.

The rest of the paper is organized as follows.
After defining the problem setting in Section 2,
Section 3 presents the semiparametric probabilis-
tic model. Section 4 discusses inference, Section 5
presents an empirical study on reader identification.

2 Problem Setting

Assume R different readers, indexed by r ∈
{1, . . . , R}, and letX = {X1, . . . ,Xn} denote a set
of texts. Each r ∈ R generates a set of eye move-

ment patterns S(r) = {S(r)
1 , . . . ,S

(r)
n } on X , by

S
(r)
i ∼ p(S|Xi, r,Γ)

where p(S|Xi, r,Γ) is a reader-specific distribution
over eye movement patterns given a text Xi. Here,
r is a variable indicating the reader generating the
sequence, and Γ is a true but unknown model that
defines all reader-specific distributions. We assume
that Γ can be broken down into reader-specific mod-
els, Γ = (γ1, . . . ,γk), such that the distribution

p(S|Xi, r,Γ) = p(S|Xi,γr) (1)

is defined by the partial model γr. We aggregate the
observations of all readers on the training data into a
variable S(1:R) = (S(1), . . . ,S(R)).

We follow a Bayesian approach, defining a prior
p(Γ) over the joint model that factorizes into priors
over reader-specific models, p(Γ) =

∏R
r=1 p(γr).

At test time, we observe novel eye movement
patterns S̄ = {S̄1, . . . , S̄m} on a novel set of
texts X̄ = {X̄1, . . . , X̄m} generated by an unknown
reader r ∈ R. We assume a uniform prior over
readers, that is, each r ∈ R is equally likely to be
observed at test time. The goal is to infer the most
likely reader to have generated the novel eye move-
ment patterns. In a Bayesian setting, this means in-
ferring the most likely reader given the training ob-
servations (X ,S(1:R)) and test observation (X̄ , S̄):

r∗ = arg max
r∈R

p(r|X̄ , S̄,X ,S(1:R)). (2)

We can rewrite Equation 2 to

r∗ = arg max
r∈R

p(S̄|r, X̄ ,X ,S(1:R)) (3)

= arg max
r∈R

∫
p(S̄|r, X̄ ,Γ)p(Γ|X ,S(1:R))dΓ

= arg max
r∈R

∫
p(S̄|X̄ ,γr)p(γr|X ,S(r))dγr (4)

where

p(S̄|X̄ ,γr) =

m∏

i=1

p(S̄i|X̄i,γr) (5)

p(γr|X ,S(r)) ∝ p(γr)
n∏

i=1

p(S
(r)
i |Xi,γr). (6)

586

In Equation 3 we exploit that readers are uniformly
chosen at test time, and in Equation 4 we exploit
the factorization p(Γ) =

∏R
r=1 p(γr) of the prior,

which together with Equation 1 entails a factoriza-
tion p(Γ|X ,S(1:R)) =

∏R
r=1 p(γr|X ,S(r)) of the

posterior. Note that Equation 4 states that at test
time we predict the reader r for which the marginal
likelihood (that is, after integrating out the reader-
specific model γr) of the test observations is high-
est. The next section discusses the reader-specific
models p(S|X,γr) and prior distributions p(γr).

3 Probabilistic Model

The probabilistic model we employ follows the gen-
eral structure proposed by Landwehr et al. (2014),
but employs semiparametric density models and al-
lows for fully Bayesian inference. To reduce nota-
tional clutter, let γ ∈ {γ1, . . . ,γR} denote a par-
ticular reader-specific model, and let X ∈ X de-
note a text. An eye movement pattern is a sequence
S = ((s1, d1), . . . , (sT , dT)) of gaze fixations, con-
sisting of a fixation position st (position in text that
was fixated) and duration dt ∈ R (length of fixation
in milliseconds). In our experiments, individual sen-
tences are presented in a single line on screen, thus
we only model a horizontal gaze position st ∈ R.
We model p(S|X,γ) as a dynamic process that suc-
cessively generates fixation positions st and dura-
tions dt in S, reflecting how a reader generates a se-
quence of saccades in response to a text stimulus X:

p(S|X,γ) = p(s1, d1|X,γ)

T∏

t=2

p(st, dt|st−1,X,γ),

where p(st, dt|st−1,X,γ) models the generation of
the next fixation position and duration given the old
fixation position st−1. In the psychological litera-
ture, four different saccade types are distinguished:
a reader can refixate the current word (refixation),
fixate the next word in the text (next word move-
ment), move the fixation to a word after the next
word, that is, skip one or more words (forward skip),
or regress to fixate a word occurring earlier in the
text (regression), see, e.g., Heister et al. (2012).
We observe empirically that for each saccade type,
there is a characteristic distribution over saccade am-
plitudes and fixation durations, and that both ap-
proximately follow gamma distributions—see Fig-

−20 −10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

Amplitude

Refixation

Empirical Distribution
Semiparametric Fit
Gamma Fit

−20 −10 0 10 20
0

0.05

0.1

0.15

0.2

0.25

D
en

si
ty

Amplitude

Next Word Move

Empirical Distribution
Semiparametric Fit
Gamma Fit

−20 −10 0 10 20
0

0.05

0.1

0.15

0.2

D
en

si
ty

Amplitude

Forward Skip

Empirical Distribution
Semiparametric Fit
Gamma Fit

−20 −10 0 10 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
en

si
ty

Amplitude

Regression

Empirical Distribution
Semiparametric Fit
Gamma Fit

Figure 1: Empirical distributions of saccade amplitudes in

training data for first individual, with fitted Gamma distribu-

tions and semiparametric distribution fits.

ure 1. We therefore model p(st, dt|st−1,X,γ) us-
ing a mixture over distributions for the four different
saccade types. At each time t, the model first draws
a saccade type ut ∈ {1, 2, 3, 4}, and then draws a
saccade amplitude at and fixation duration dt from
type-specific distributions p(a|ut, st−1,X,γ) and
p(d|ut,γ). More formally,

ut ∼ p(u|π) (7)

at ∼ p(a|ut, st−1,X,α) (8)

dt ∼ p(d|ut, δ), (9)

where γ = (π,α, δ) is decomposed into compo-
nents π, α, and δ. Afterwards, the model updates
the fixation position according to st = st−1 + at,
concluding the definition of p(st, dt|st−1,X,γ).
Figure 2 shows a slice in the dynamical model.

The distribution p(u|π) over saccade types
(Equation 7) is multinomial with parameter vector
π ∈ R4. The distributions over amplitudes and du-
rations (Equations 8 and 9) are modeled semipara-
metrically as discussed in the following subsections.

3.1 Model of Saccade Amplitudes

We first discuss the amplitude model
p(a|ut, st−1,X,α) (Equation 8). We first de-
fine a distribution p(a|ut,α) over amplitudes for
saccade type ut, and subsequently discuss condi-
tioning on the text X and old fixation position st−1,

587

tu 1tu

ta 1ta td 1td

t 1t

X

ts 1ts

π

α

δ

Figure 2: Plate notation of of a slice in the dynamic model.

leading to p(a|ut, st−1,X,α). We define

p(a|ut = 1,α) =

{
µα1(a) : a > 0

(1− µ)ᾱ1(−a) : a ≤ 0
(10)

where µ is a mixture weight and α1, ᾱ1 are densities
defining the distribution over positive and negative
amplitudes for the saccade type refixation, and

p(a|ut = 2,α) = α2(a) (11)

p(a|ut = 3,α) = α3(a) (12)

p(a|ut = 4,α) = α4(−a) (13)

where α2(a), α3(a), and α4(a) are densities defin-
ing the distribution over amplitudes for the remain-
ing saccade types. Finally, the distribution

p(s1|X,α) = α0(s1) (14)

over the initial fixation position is given by another
density function α0. The variables µ, α0, α1, ᾱ1,
α2, α3, and α4 are aggregated into model compo-
nent α. For resolving the most likely reader at test
time (Equation 4), densities in α will be integrated
out under a prior based on Gaussian processes (Sec-
tion 3.3) using MCMC inference (Section 4).

Given the old fixation position st−1, the text X,
and the chosen saccade type ut, the amplitude is
constrained to fall within a specific interval. For in-
stance, for a refixation the amplitude has to be cho-
sen such that the novel fixation position lies within
the beginning and the end of the currently fixated
word; a regression implies an amplitude that is neg-
ative and makes the novel fixation position lie be-
fore the beginning of the currently fixated word.

These constraints imposed by the text structure de-
fine the conditional distribution p(a|ut, st−1,X,α).
More formally, p(a|ut, st−1,X,α) is the distribu-
tion p(a|ut,α) conditioned on a ∈ [l, r], that is,

p(a|ut, st−1,X,α) = p(a|a ∈ [l, r], ut,α),

where l and r are the minimum and maximum am-
plitude consistent with the constraints. Recall that
for a distribution over a continuous variable x given
by density α(x), the distribution over x conditioned
on x ∈ [l, r] is given by the truncated density

α(x|x ∈ [l, r]) =

{
α(x)∫ r

l α(x̄)dx̄
: x ∈ [l, r]

0 : x /∈ [l, r].
(15)

We derive p(a|ut, st−1,X,α) by truncating the dis-
tributions given by Equations 10 to 13 to the min-
imum and maximum amplitude consistent with the
current fixation position st−1 and text X. Let w◦l
(w◦r) denote the position of the left-most (right-
most) character of the currently fixated word, and
let w+

l , w
+
r denote these positions for the next word

in X. Let furthermore l◦ = w◦l − st−1, r◦ = w◦r −
st−1, l+ = w+

l − st−1, and r+ = w+
r − st−1. Then

p(a|ut = 1, st−1,X,α) =
{
µα1(a|a ∈ [0, r◦]) : a > 0

(1− µ)ᾱ1(−a|a ∈ [l◦, 0]) : a ≤ 0
(16)

p(a|ut = 2, st−1,X,α) =α2(a|a∈ [l+, r+]) (17)

p(a|ut = 3, st−1,X,α) =α3(a|a∈ (r+,∞)) (18)

p(a|ut = 4, st−1,X,α) =α4(−a|a∈ (−∞, l◦))
(19)

defines the appropriately truncated distributions.

3.2 Model of Fixation Durations
The model for fixation durations (Equation 9) is sim-
ilarly specified by saccade type-specific densities,

p(d|ut = u, δ) = δu(d) for u ∈ {1, 2, 3, 4} (20)

and a density for the initial fixation durations

p(d1|X, δ) = δ0(d1) (21)

where δ0, ..., δ4 are aggregated into model compo-
nent δ. Unlike saccade amplitude, the fixation du-
ration is not constrained by the text structure and
accordingly densities are not truncated. This con-
cludes the definition of the model p(S|X,γ).

588

3.3 Prior Distributions
The prior distribution over the entire model γ fac-
torizes over the model components as

p(γ|λ, ρ, κ) = (22)

p(π|λ)p(µ|ρ)p(ᾱ1|κ)
4∏

i=0

p(αi|κ)
4∏

i=0

p(δi|κ)

where p(π) = Dir(π|λ) is a symmetric Dirich-
let prior and p(µ) = Beta(µ|ρ) is a Beta prior.
The key challenge is to develop appropriate pri-
ors for the densities defining saccade amplitude
(p(ᾱ1|κ), p(αi|κ)) and fixation duration (p(δi|κ))
distributions. Empirically, we observe that ampli-
tude and duration distributions tend to be close to
gamma distributions—see the example in Figure 1.

Our goal is to exploit the prior knowledge that
distributions tend to be closely approximated by
gamma distributions, but allow the model to devi-
ate from the gamma assumption in case there is
enough evidence in the data. To this end, we de-
fine a prior over densities that concentrates probabil-
ity mass around the gamma family. For all densities
f ∈ {ᾱ1, α0, ..., α4, δ0, ..., δ4}, we employ identical
prior distributions p(f |κ). Intuitively, the prior is
given by first drawing a density function from the
gamma family and then drawing the final density
from a Gaussian process (with covariance function
κ) centered at this function. More formally, let

G(x|η) =
exp(ηTu(x))∫

exp(ηTu(x′))dx′
(23)

denote the gamma distribution in exponential family
form, with sufficient statistics u(x) = (log(x), x)T

and parameters η = (η1, η2). Let p(η) denote a
prior over the gamma parameters, and define

p(f |κ) =

∫
p(η)p(f |η, κ)dη (24)

where p(f |η, κ) is given by drawing

g ∼ GP(0, κ) (25)

from a Gaussian process prior GP(0, κ) with mean
zero and covariance function κ, and letting

f(x) =
exp(ηTu(x) + g(x))∫

exp(ηTu(x′) + g(x′))dx′
. (26)

Note that decreasing the variance of the Gaussian
process means regularizing g(x) towards zero, and
therefore Equation 26 towards Equation 23. This
concludes the specification of the prior p(γ|λ, ρ, κ).

The density model defined by Equations 24 to 26
draws on ideas from the large body of literature
on GP-based density estimation, for example by
Adams et al. (2009), Leonard (1978), or Tokdar et
al. (2010), and semiparametric density estimation,
e.g. as discussed by Yang (2009), Lenk (2003) or
Hjort & Glad (1995). However, note that existing
density estimation approaches are not applicable off-
the-shelf as in our domain distributions are truncated
differently at each observation due to constraints that
arise from the way eye movements interact with the
text structure (Equations 16 to 19).

4 Inference

To solve Equation 4, we need to integrate for each
r ∈ R over the reader-specific model γr. To reduce
notational clutter, let γ ∈ {γ1, . . . ,γR} denote a
reader-specific model, and let S ∈ {S(1), . . . ,S(R)}
denote the eye movement observations of that reader
on the training texts X . We approximate

∫
p(S̄|X̄ ,γ)p(γ|X ,S)dγ ≈ 1

K

K∑

k=1

p(S̄|X̄ ,γ(k))

by a sample γ(1), . . . ,γ(K) of models drawn by

γ(k) ∼ p(γ|X ,S, λ, ρ, κ),

where p(γ|X ,S, λ, ρ, κ) is the posterior as given by
Equation 6 but with the dependence on the prior hy-
perparameters λ, ρ, κ made explicit. Note that with
X and S, all saccade types ut are observed. Together
with the factorizing prior (Equation 22), this means
that the posterior factorizes according to

p(γ|X ,S, λ, ρ, κ) = p(π|X ,S, λ)p(µ|X ,S, ρ)

· p(ᾱ1|X ,S, κ)
4∏

i=0

p(αi|X ,S, κ)
4∏

i=0

p(δi|X ,S, κ)

as is easily seen from the graphical model in Fig-
ure 2. Obtaining samples π(k) ∼ p(π|X ,S)
and µ(k) ∼ p(µ|X ,S) is straightforward because
their prior distributions are conjugate to the likeli-
hood terms. Let now f ∈ {ᾱ1, α0, ..., α4, δ0, ..., δ4}

589

denote a particular density in the model. The
posterior p(f |X ,S, κ) is proportional to the prior
p(f |κ) (Equation 24) multiplied by the likeli-
hood of all observations that are generated by
this density, that is, that are generated accord-
ing to Equation 14, 16, 17, 18, 19, 20, or 21.
Let y = (y1, . . . , y|y|)T ∈ R|y| denote the vector of
all observations generated from density f , and let
l = (l1, . . . , l|l|)T ∈ R|l|, r = (r1, . . . , r|r|)T ∈ R|r|
denote the corresponding left and right boundaries
of the truncation intervals (again see Equations 14
to 21), where for densities that are not truncated we
take li = 0 and ri =∞ throughout. Then the likeli-
hood of the observations generated from f is

p(y|f, l, r) =

|y|∏

i=1

f(yi|yi ∈ [li, ri]) (27)

and the posterior over f is given by

p(f |X ,S, κ) ∝ p(f |κ)p(y|f, l, r). (28)

Note that y, l and r are observable from X , S.
We obtain samples from the posterior given by

Equation 28 from a Metropolis-Hastings sampler
that explores the space of densities f : R → R,
generating density samples f (1), ..., f (K). A density
f is given by a combination of gamma parameters
η ∈ R2 and function g : R → R; specifically, f is
obtained by multiplying the gamma distribution with
parameters η by exp(g) and normalizing appropri-
ately (Equation 26). During sampling, we explicitly
represent a density sample f (k) by its gamma param-
eters η(k) and function g(k). The proposal distribu-
tion of the Metropolis-Hastings sampler is

q(η(k+1), g(k+1)|η(k), g(k)) =

p(g(k+1)|κ)N (η(k+1)|η(k), σ2I)

where p(g(k+1)|κ) is the probability of g(k+1) ac-
cording to the GP prior GP(0, κ) (Equation 25),
and N (η(k+1)|η(k), σ2I) is a symmetric proposal
that randomly perturbs the old state η(k) accord-
ing to a Gaussian. In every iteration k a proposal
η?, g? ∼ q(η, g|η(k), g(k)) is drawn based on the
old state (η(k), g(k)). The acceptance probability is
A(η?, g?|η(k), g(k)) = min(1, Q) with

Q =

q(η(k), g(k)|η?, g?)p(η?)p(g?|κ)p(y|f?, l, r)

q(η?, g?|η(k), g(k))p(η(k))p(g(k)|κ), p(y|f (k), l, r)
.

Here, p(η?) is the prior probability of gamma pa-
rameters η? (Section 3.3) and p(y|f?, l, r) is given
by Equation 27 where f? is obtained from η?, g?

according to Equation 26.
To compute the likelihood terms p(y|f (k), l, r)

(Equation 27) and also to compute the likelihood
of test data under a model (Equation 5), the den-
sity f : R → R needs to be evaluated. Accord-
ing to Equation 26, f is represented by parame-
ter vector η together with the nonparametric func-
tion g : R → R. As usual when working with
distributions over functions in a Gaussian process
framework, the function g only needs to be repre-
sented at those points for which we need to evalu-
ate it. Clearly, this includes all observations of sac-
cade amplitudes and fixation durations observed in
the training and test set. However, we also need
to evaluate the normalizer in Equation 26, and (for
f ∈ {α1, ᾱ1, α2, α3, α4}) the additional normalizer
required when truncating the distribution (see Equa-
tion 15). As these integrals are one-dimensional,
they can be solved relatively accurately using nu-
merical integration; we use 2-point Newton-Cotes
quadrature. Newton-Cotes integration requires the
evaluation (and thus representation) of g at an addi-
tional set of equally spaced supporting points.

When the set of test observations S̄, X̄ is large,
the need to evaluate p(S̄|X̄ ,γ(k)) for all γk and all
test observations leads to computational challenges.
In our experiments, we use a heuristic to reduce
computational load. While generating samples, den-
sities are only represented at the training observa-
tions and the supporting points needed for Newton-
Cotes integration. We then estimate the mean of the
posterior by γ̂ = 1

K

∑K
k=1 γ

(k), and approximate
1
K

∑K
k=1 p(S̄|X̄ ,γ(k)) ≈ p(S̄|X̄ , γ̂). To evaluate

p(S̄|X̄ , γ̂), we infer the approximate value of the
density γ̂ at a test observation by linearly interpo-
lating based on the available density values at the
training observations and supporting points.

5 Empirical Study

We conduct a large-scale study of biometric iden-
tification performance using the same setup as dis-
cussed by Landwehr et al. (2014) but a much larger
set of individuals (251 rather than 20).

Eye movement records for 251 individuals are

590

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of test data used

A
cc

ur
ac

y

Semiparametric Landwehr et al. Landwehr et al. (TA)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of individuals R

A
cc

ur
ac

y

Landwehr et al. (T) Holland & K. (unweighted) Holland & K. (weighted)

Figure 3: Multiclass accuracy over number of test observations (left) and number of individuals R (right) with standard errors.

Method Accuracy
Semiparametric 0.9502 ± 0.0130
Semiparametric (TD) 0.8853 ± 0.0142
Semiparametric (TA) 0.7717 ± 0.0361
Landwehr et al. 0.8319 ± 0.0218
Landwehr et al. (TA) 0.5964 ± 0.0262
Landwehr et al. (T) 0.2749 ± 0.0369
Holland & K. (unweighted) 0.6988 ± 0.0241
Holland & K. (weighted) 0.4566 ± 0.0220
Table 1: Multiclass identification accuracy ± standard error.

obtained from an EyeLink II system with a 500-
Hz sampling rate (SR Research, Ongoode, Ontario,
Canada) while reading sentences from the Potsdam
Sentence Corpus (Kliegl et al., 2006). There are 144
sentences in the corpus, which we split into equally
sized sets of training and test sentences. Individu-
als read between 100 and 144 sentences, the training
(testing) observations for one individual are the ob-
servations on those sentences in the training (testing)
set of sentences that the individual has read. Results
are averaged over 10 random train-test splits. Each
sentence is shown as a single line on the screen.

We study the semiparametric model discussed in
Section 3 with MCMC inference as presented in
Section 4 (denoted Semiparametric1). We employ a
squared exponential covariance function κ(x, x′) =

α exp
(
−‖x−x′‖2

2σ2

)
, where the multiplicative con-

stant α is tuned on the training data by cross-

1An implementation is available at github.com/
abdelwahab/SemiparametricIdentification

validation and the bandwidth σ is set to the av-
erage distance between points in the training data.
The Beta and Dirichlet parameters λ and ρ are
set to one (Laplace smoothing), the prior p(η)
for the Gamma parameters is uninformative. We
use backoff-smoothing as discussed by Landwehr
et al. (2014). We initialize the sampler with the
maximum-likelihood Gamma fit and perform 10000
sampling iterations, 5000 of which are burn-in it-
erations. As a baseline, we study the model by
Landwehr et al. (2014) (Landwehr et al.) and sim-
plified versions proposed by them that only use sac-
cade type and amplitude (Landwehr et al. (TA)) or
saccade type (Landwehr et al. (T)). We also study
the weighted and unweighted version of the feature-
based model of Holland & Komogortsev (2012) with
a feature set adapted to the Potsdam Sentence Cor-
pus data as described in Landwehr et al. (2014).

We note that there are two recent extensions of the
feature-based model (by Rigas et al. (2016) and Ab-
dulin & Komogortsev (2015)) that are unfortunately
not applicable in our empirical setting but might
yield improved results in other scenarios. Rigas et
al. (2016) study a model that is focused on repre-
senting reader-specific differences in saccadic vigor
and acceleration, which are both derived from the
dynamics of saccadic velocity. In the preprocessed
data set that we use, saccadic velocities are not avail-
able, therefore we do not make use of velocities in
our model and cannot easily compare against their
model. Abdulin & Komogortsev (2015) study a
model that is based on features that relate eye move-

591

0 0.02 0.04 0.06 0.08 0.1
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

False reject

F
al

se
 a

cc
ep

t

Semiparametric
Landwehr et al.
Landwehr et al. (TA)
Landwehr et al. (T)
Holland & K. (unweighted)
Holland & K. (weighted)

Figure 4: False-accept over false-reject rate when varying τ .

ments to the 2D text structure, that is, to the way
words are arranged into lines in a text. As in our
empirical study each sentence is presented as a sin-
gle line on screen, this 2D structure does not ex-
ist. Moreover, Abdulin & Komogortsev (2015) only
report accuracy improvements for their method in
a setting where individuals have to be identified in
the future based on data collected in the past (aging
test), which is not the focus of our study.

We first study multiclass identification accuracy.
All test observations of one particular individual
constitute one test example; the task is to infer the
individual that has generated these test observations.
Multiclass identification accuracy is the fraction of
cases in which the correct individual is identified.
Table 1 shows multiclass identification accuracy for
all methods, including variants of Semiparametric
discussed below. We observe that Semiparametric
outperforms Landwehr et al., reducing the error by
more than a factor of three. Consistent with results
reported in Landwehr et al. (2014), Holland & K.
(unweighted) is less accurate than Landwehr et al.,
but more accurate than the simplified variants. We
next study how the amount of data available at test
time—that is, the amount of time we can observe a
reader before having to make a decision—influences
accuracy. Figure 3 (left) shows identification accu-
racy as a function of the fraction of test data avail-
able, obtained by randomly removing a fraction of
sentences from the test set. We observe that iden-
tification accuracy steadily improves with more test
observations for all methods. Figure 3 (right) shows
identification accuracy when varying the number R
of individuals that need to be distinguished. We ran-
domly draw a subset of R individuals from the set

0 0.02 0.04 0.06 0.08 0.1
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

False reject

F
al

se
 a

cc
ep

t

Semiparametric
Landwehr et al.
Holland & K. (unweighted)

Figure 5: False-accept over false-reject rate when using 40%

(dotted), 60% (dashed-dotted), 80% (dashed), and 100% (solid)

of test observations, for selected subset of methods.

Method Area under curve
Semiparametric 0.0000119
Semiparametric (TD) 0.0000821
Semiparametric (TA) 0.0001833
Landwehr et al. 0.0001743
Landwehr et al. (TA) 0.0010371
Landwehr et al. (T) 0.0017040
Holland & K. (unweighted) 0.0027853
Holland & K. (weighted) 0.0039978

Table 2: Area under the curve in binary classification setting.

of 251 individuals, and perform identification based
on only these individuals. Results are averaged over
10 such random draws. As expected, accuracy im-
proves if fewer individuals need to be distinguished.

We next study a binary setting in which for each
individual and each set of test observations a deci-
sion has to be made whether or not the test observa-
tions have been generated by that individual. This
setting more closely matches typical use cases for
the deployment of a biometric system. Let X̄ de-
note the text being read at test time, and let S̄ de-
note the observed eye movement sequences. Our
model infers for each reader r ∈ R the marginal
likelihood p(S̄|r, X̄ ,X ,S(1:R)) of the eye move-
ment observations under the reader-specific model
(Equation 3). The binary decision is made by
dividing this marginal likelihood by the average
marginal likelihood assigned to the observations by
all reader-specific models, and comparing the result
to a threshold τ . Figure 4 shows the fraction of false
accepts as a function of false rejects as the thresh-
old τ is varied, averaged over all individuals. The
Landwehr et al. model and variants also assign a

592

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of test data used

A
cc

ur
ac

y

Figure 6: Multiclass accuracy over number of test observations

with standard errors for Semiparametric variants.

reader-specific likelihood to novel test observations;
we compute the same statistics again by normaliz-
ing the likelihood and comparing to a threshold τ .
Finally, Holland & K. (unweighted) and Holland
& K. (weighted) compute a similarity measure for
each combination of individual and set of test ob-
servations, which we normalize and threshold anal-
ogously. We observe that Semiparametric accom-
plishes a false-reject rate of below 1% at virtually
no false accepts; Landwehr et al. and variants tend
to perform better than Holland & K. (unweighted)
and Holland & K. (weighted) . Table 2 shows the
error under the curve for the experiment shown in
Figure 4, as well as for variants of Semiparametric
discussed below.

We finally study the contribution of the individual
model components for saccade type, saccade am-
plitude, and fixation duration (see Figure 2) by re-
moving the corresponding model components, as in
Landwehr et al. (2014). By Semiparametric (TD)
we denote a variant of Semiparametric in which the
variable at and the corresponding distribution is re-
moved, that is, only the distribution over the sac-
cade type and duration is modeled. Semiparamet-
ric (TA) denotes a variant in which the variable
dt and the corresponding distribution is removed.
Figure 6 shows identification accuracy as a func-
tion of the fraction of test data available for model
variants Semiparametric (TD) and Semiparametric
(TA) in comparison to Semiparametric; results for
these variants are also included in Table 1. Figure 7
shows the fraction of false accepts as a function of

0 0.02 0.04 0.06 0.08 0.1
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

False reject

F
al

se
 a

cc
ep

t

Semiparametric Full
Semiparametric (TD)
Semiparametric (TA)

Figure 7: False-accept over false-reject rate when varying τ for

the Semiparametric variants.

false rejects in the binary classification setting dis-
cussed above for these two model variants; Table 2
includes area under the curve results for the experi-
ment shown in Figure 7. We observe that accuracy
is substantially reduced when removing any model
component. Note that if both the amplitude and du-
ration components of the model are removed, it be-
comes identical to the model Landwehr et al. (T) .

Training the joint model for all 251 individuals
takes 46 hours on a single eight-core CPU (Intel
Xeon E5520, 2.27GHz); predicting the most likely
individual to have generated a set of 72 test sen-
tences takes less than 2 seconds.

6 Conclusions

We have studied the problem of identifying read-
ers unobtrusively during reading of arbitrary text.
For fitting reader-specific distributions, we employ a
Bayesian semiparametric approach that infers den-
sities under a Gaussian process prior centered at the
gamma family of distributions, striking a balance be-
tween robustness to sparse data and modeling flex-
ibility. In an empirical study with 251 individuals,
the model was shown to reduce identification er-
ror by more than a factor of three compared to ear-
lier approaches to reader identification proposed by
Landwehr et al. (2014) and Holland & Komogort-
sev (2012).

Acknowledgements

We gratefully acknowledge support from the
German Research Foundation (DFG), grant
LA 3270/1-1.

593

References
Evgeniy Abdulin and Oleg Komogortsev. 2015. Per-

son verification via eye movement-driven text reading
model. In Proceedings of the Sixth International Con-
ference on Biometrics: Theory, Applications and Sys-
tems.

Ryan P. Adams, Iain Murray, and David J.C. MaxKay.
2009. Gaussian process density sampler. In Proceed-
ings of the 21st Annual Conference on Neural Infor-
mation Processing Systems.

Roman Bednarik, Tomi Kinnunen, Andrei Mihaila, and
Pasi Fränti. 2005. Eye-movements as a biometric. In
Proceedings of the 14th Scandinavian Conference on
Image Analysis.

W. Robert Dixon. 1951. Studies in the psychology of
reading. In W. S. Morse, P. A. Ballantine, and W. R.
Dixon, editors, Univ. of Michigan Monographs in Ed-
ucation No. 4. Univ. of Michigan Press.

Ralf Engbert, Antje Nuthmann, Eike M. Richter, and
Reinhold Kliegl. 2005. SWIFT: A dynamical model
of saccade generation during reading. Psychological
Review, 112(4):777–813.

Tadayoshi Hara, Daichi Mochihashi, Yoshino Kano, and
Akiko Aizawa. 2012. Predicting word fixations in text
with a CRF model for capturing general reading strate-
gies among readers. In Proceedings of the First Work-
shop on Eye-Tracking and Natural Language Process-
ing.

Julian Heister, Kay-Michael Würzner, and Reinhold
Kliegl. 2012. Analysing large datasets of eye move-
ments during reading. In James S. Adelman, editor,
Visual word recognition. Vol. 2: Meaning and context,
individuals and development, pages 102–130.

Nils L. Hjort and Ingrid K. Glad. 1995. Nonparametric
density estimation with a parametric start. The Annals
of Statistics, 23(3):882–904.

Corey Holland and Oleg V. Komogortsev. 2012. Biomet-
ric identification via eye movement scanpaths in read-
ing. In Proceedings of the 2011 International Joint
Conference on Biometrics.

Edmund B. Huey. 1908. The psychology and pedagogy
of reading. Cambridge, Mass.: MIT Press.

Pawel Kasprowski and Jozef Ober. 2004. Eye move-
ments in biometrics. In Proceedings of the 2004 Inter-
national Biometric Authentication Workshop.

Reinhold Kliegl, Antje Nuthmann, and Ralf Engbert.
2006. Tracking the mind during reading: The influ-
ence of past, present, and future words on fixation du-
rations. Journal of Experimental Psychology: Gen-
eral, 135(1):12–35.

Oleg V. Komogortsev, Sampath Jayarathna, Cecilia R.
Aragon, and Mechehoul Mahmoud. 2010. Biomet-
ric identification via an oculomotor plant mathemati-

cal model. In Proceedings of the 2010 Symposium on
Eye-Tracking Research & Applications.

Niels Landwehr, Sebastian Arzt, Tobias Scheffer, and
Reinhold Kliegl. 2014. A model of individual differ-
ences in gaze control during reading. In Proceedings
of the 2014 Conference on Empirical Methods on Nat-
ural Language Processing.

Peter J. Lenk. 2003. Bayesian semiparametric den-
sity estimation and model verification using a logistic-
Gaussian process. Journal of Computational and
Graphical Statistics, 12(3):548–565.

Tom Leonard. 1978. Density estimation, stochastic pro-
cesses and prior information. Journal of the Royal Sta-
tistical Society, 40(2):113–146.

Franz Matties and Anders Søgaard. 2013. With blinkers
on: robust prediction of eye movements across readers.
In Proceedings of the 2013 Conference on Empirical
Natural Language Processing.

Keith Rayner. 1998. Eye movements in reading and in-
formation processing: 20 years of research. Psycho-
logical Bulletin, 124(3):372–422.

Erik D. Reichle, Alexander Pollatsek, Donald L. Fisher,
and Keith Rayner. 1998. Toward a model of eye
movement control in reading. Psychological Review,
105(1):125–157.

Ioannis Rigas, George Economou, and Spiros Fotopou-
los. 2012a. Biometric identification based on the eye
movements and graph matching techniques. Pattern
Recognition Letters, 33(6).

Ioannis Rigas, George Economou, and Spiros Fotopou-
los. 2012b. Human eye movements as a trait for bio-
metrical identification. In Proceedings of the IEEE 5th
International Conference on Biometrics: Theory, Ap-
plications and Systems.

Ioannis Rigas, Oleg Komogortsev, and Reza Shadmehr.
2016. Biometric recognition via eye movements: Sac-
cadic vigor and acceleration cues. ACM Transaction
on Applied Perception, 13(2):1–21.

Surya T. Tokdar, Yu M. Zhuy, and Jayanta K. Ghoshz.
2010. Bayesian density regression with logistic gaus-
sian process and subspace projection. Bayesian Anal-
ysis, 5(2):319–344.

Ying Yang. 2009. Penalized semiparametric density es-
timation. Statistics and Computing, 19(1):355–366.

Youming Zhang and Martti Juhola. 2012. On biomet-
ric verification of a user by means of eye movement
data mining. In Proceedings of the 2nd International
Conference on Advances in Information Mining and
Management.

594

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 595–605,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Inducing Domain-Specific Sentiment Lexicons from Unlabeled Corpora

William L. Hamilton, Kevin Clark, Jure Leskovec, Dan Jurafsky
Department of Computer Science, Stanford University, Stanford CA, 94305

wleif,kevclark,jure,jurafsky@stanford.edu

Abstract

A word’s sentiment depends on the domain in
which it is used. Computational social science
research thus requires sentiment lexicons that
are specific to the domains being studied. We
combine domain-specific word embeddings
with a label propagation framework to in-
duce accurate domain-specific sentiment lex-
icons using small sets of seed words, achiev-
ing state-of-the-art performance competitive
with approaches that rely on hand-curated re-
sources. Using our framework we perform
two large-scale empirical studies to quantify
the extent to which sentiment varies across
time and between communities. We induce
and release historical sentiment lexicons for
150 years of English and community-specific
sentiment lexicons for 250 online communi-
ties from the social media forum Reddit. The
historical lexicons show that more than 5%
of sentiment-bearing (non-neutral) English
words completely switched polarity during the
last 150 years, and the community-specific
lexicons highlight how sentiment varies dras-
tically between different communities.

1 Introduction

Inducing domain-specific sentiment lexicons is cru-
cial to computational social science (CSS) research.
Sentiment lexicons allow us to analyze key subjec-
tive properties of texts like opinions and attitudes
(Taboada et al., 2011). But lexical sentiment is
hugely influenced by context. The word soft has a
very different sentiment in an online sports commu-
nity than it does in one dedicated to toy animals (Fig-
ure 1). Terrific once had a highly negative conno-

r/sports
r/mylittlepony

−6
−4
−2

0
2
4
6

S
en

tim
en

to
fs

of
t

Figure 1: The sentiment of soft in different online commu-
nities. Sentiment values computed using SENTPROP (Section
3) on comments from Reddit communities illustrate how sen-
timent depends on social context. Bootstrap-sampled standard
deviations provide a measure of confidence with the scores.

tation; now it is essentially synonymous with good
(Figure 2). Without domain-specific lexicons, social
scientific analyses can be misled by sentiment as-
signments biased towards domain-general contexts,
neglecting factors like genre, community-specific
vernacular, or demographic variation (Deng et al.,
2014; Hovy, 2015; Yang and Eisenstein, 2015).

Using experts or crowdsourcing to construct
domain-specific sentiment lexicons is expensive
and often time-consuming (Mohammad and Turney,
2010; Fast et al., 2016), and is especially prob-
lematic when non-standard language (as in histori-
cal documents or obscure social media forums) pre-
vents annotators from understanding the sociolin-
guistic context of the data.

Web-scale sentiment lexicons can be automat-
ically induced for large socially-diffuse domains,
such as the internet-at-large (Velikovich et al., 2010)
or all of Twitter (Tang et al., 2014). However, to
study sentiment in domain-specific cases—financial
documents, historical texts, or tight-knit social me-

595

dia forums—such generic lexicons may be inaccu-
rate, and even introduce harmful biases (Loughran
and McDonald, 2011).1 Researchers need a princi-
pled and accurate framework for inducing lexicons
that are specific to their domain of study.

To meet these needs, we introduce SENTPROP, a
framework to learn accurate sentiment lexicons from
small sets of seed words and domain-specific cor-
pora. SENTPROP combines the well-known method
of label propagation with advances in word em-
beddings, and unlike previous approaches, is de-
signed to be accurate even when using modestly-
sized domain-specific corpora (∼107 tokens). Our
framework also provides confidence scores along
with the learned lexicons, which allows researchers
to quantify uncertainty in a principled manner.

The key contributions of this work are:

1. A simple state-of-the-art sentiment induction al-
gorithm, combining high-quality word vector
embeddings with a label propagation approach.

2. A novel bootstrap-sampling framework for infer-
ring confidence scores with the sentiment values.

3. Two large-scale studies that reveal how sentiment
depends on both social and historical context.
(a) We induce community-specific sentiment
lexicons for the largest 250 “subreddit” commu-
nities on the social-media forum Reddit, reveal-
ing substantial variation in word sentiment be-
tween communities.
(b) We induce historical sentiment lexicons for
150 years of English, revealing that >5% of
words switched polarity during this time.

To the best of our knowledge, this is the first work
to systematically analyze the domain-dependency of
sentiment at a large-scale, across hundreds of years
and hundreds of user-defined online communities.

All of the inferred lexicons along with code for
SENTPROP and all methods evaluated are made
available in the SOCIALSENT package released with
this paper.2 The SOCIALSENT package provides a
benchmark toolkit for inducing sentiment lexicons,
including implementations of previously published
algorithms (Velikovich et al., 2010; Rothe et al.,
2016), which are not otherwise publicly available.

1
http://brandsavant.com/brandsavant/

the-hidden-bias-of-social-media-sentiment-analysis
2http://nlp.stanford.edu/projects/socialsent

Figure 2: The sentiment of terrific changed from negative to
positive over the last 150 years. Sentiment values and boot-
strapped confidences were computed using SENTPROP on his-
torical data (see Section 6).

2 Related work

Our work builds upon a wealth of previous research
on inducing sentiment lexicons, along two threads:

Corpus-based approaches use seed words and
patterns in unlabeled corpora to induce domain-
specific lexicons. These patterns may rely on syn-
tactic structures (Hatzivassiloglou and McKeown,
1997; Jijkoun et al., 2010; Rooth et al., 1999; The-
len and Riloff, 2002; Widdows and Dorow, 2002),
which can be domain-specific and brittle (e.g., in
social media lacking usual grammatical structures).
Other models rely on general co-occurrence (Igo
and Riloff, 2009; Riloff and Shepherd, 1997; Tur-
ney and Littman, 2003). Often corpus-based meth-
ods exploit distant-supervision signals (e.g., review
scores, emoticons) specific to certain domains (As-
ghar et al., 2015; Blair-Goldensohn et al., 2008;
Bravo-Marquez et al., 2015; Choi and Cardie, 2009;
Severyn and Moschitti, 2015; Speriosu et al., 2011;
Tang et al., 2014). An effective corpus-based ap-
proach that does not require distant-supervision—
which we adapt here—is to construct lexical graphs
using word co-occurrences and then to perform
some form of label propagation over these graphs
(Huang et al., 2014; Velikovich et al., 2010). Re-
cent work has also learned transformations of word-
vector representations in order to induce sentiment
lexicons (Rothe et al., 2016). Fast et al. (2016) com-
bine word vectors with crowdsourcing to produce
domain-independent topic lexicons.

Dictionary-based approaches use hand-curated
lexical resources—usually WordNet (Fellbaum,
1998)—in order to propagate sentiment from seed

596

Domain Positive seed words Negative seed words

Standard
English

good, lovely, excellent, fortunate, pleasant,
delightful, perfect, loved, love, happy

bad, horrible, poor, unfortunate, unpleasant,
disgusting, evil, hated, hate, unhappy

Finance successful, excellent, profit, beneficial, im-
proving, improved, success, gains, positive

negligent, loss, volatile, wrong, losses, dam-
ages, bad, litigation, failure, down, negative

Twitter love, loved, loves, awesome, nice, amazing,
best, fantastic, correct, happy

hate, hated, hates, terrible, nasty, awful,
worst, horrible, wrong, sad

Table 1: Seed words. The seed words were manually selected to be context insensitive (without knowledge of the test lexicons).

labels (Esuli and Sebastiani, 2006; Hu and Liu,
2004; Kamps et al., 2004; Rao and Ravichandran,
2009; San Vicente et al., 2014; Takamura et al.,
2005; Tai and Kao, 2013). There is an implicit con-
sensus that dictionary-based approaches will gener-
ate higher-quality lexicons, due to their use of these
clean, hand-curated resources; however, they are not
applicable in domains lacking such a resource (e.g.,
most historical texts).

Most previous work seeks to enrich or enlarge ex-
isting lexicons (Qiu et al., 2009; San Vicente et al.,
2014; Velikovich et al., 2010), emphasizing recall
over precision. This recall-oriented approach is mo-
tivated by the need for massive polarity lexicons in
tasks like web-advertising (Velikovich et al., 2010).
In contrast to these previous efforts, the goal of this
work is to induce high-quality lexicons that are ac-
curate to a specific social context.

Algorithmically, our approach is inspired by Ve-
likovich et al. (2010). We extend Velikovich
et al. (2010) by incorporating high-quality word
vector embeddings, a new graph construction ap-
proach, an alternative label propagation algorithm,
and a bootstrapping method to obtain confidence
values. Together these improvements, especially
the high-quality word vectors, allow our corpus-
based method to even outperform the state-of-the-art
dictionary-based approach.

3 Framework

Our framework, SENTPROP, is designed to meet
four key desiderata:
1. Resource-light: Accurate performance without

massive corpora or hand-curated resources.
2. Interpretable: Uses small seed sets of

“paradigm” words to maintain interpretabil-
ity and avoid ambiguity in sentiment values.

3. Robust: Bootstrap-sampled standard deviations
provide a measure of confidence.

4. Out-of-the-box: Does not rely on signals that are
specific to only certain domains.
SENTPROP involves two steps: constructing a

lexical graph from unlabeled corpora and propagat-
ing sentiment labels over this graph.

3.1 Constructing a lexical graph

Lexical graphs are constructed from distributional
word embeddings learned on unlabeled corpora.

Distributional word embeddings
The first step in our approach is to build high-

quality semantic representations for words using a
vector space model (VSM). We embed each word
wi ∈ V as a vector wi that captures information
about its co-occurrence statistics with other words
(Landauer and Dumais, 1997; Turney and Pantel,
2010). This VSM approach has a long history in
NLP and has been highly successful in recent appli-
cations (see Levy et al., 2015 for a survey).

When recreating known lexicons, we used a num-
ber of publicly available embeddings (Section 4).

In the cases where we learned embeddings our-
selves, we employed an SVD-based method to con-
struct the word-vectors. First, we construct a matrix
MPPMI ∈ R|V|×|V| with entries given by

MPPMI
i,j = max

{
log

(
p̂(wi, wj)

p̂(w)p̂(wj)

)
, 0

}
, (1)

where p̂ denotes smoothed empirical probabilities of
word (co-)occurrences within fixed-size sliding win-
dows of text.3 MPPMI

i,j is equal to a smoothed vari-
ant of the positive pointwise mutual information be-
tween words wi and wj (Levy et al., 2015). Next,
we compute MPPMI = UΣV>, the truncated sin-
gular value decomposition of MPPMI . The vector

3We use contexts of size four on each side and context-
distribution smoothing with c = 0.75 (Levy et al., 2015).

597

a. Run random walks from seed words. b. Assign polarity scores based on frequency of random walk visits.

love

hate

despise

adore

loath

dislike

like

find

appreciate

acknowledge

see

+++

idolize

relish

abhor

notice

execrate

disapprove

uncover

love

hate

despise

adore

loath

dislike

like

find

appreciate

acknowledge

see

+++

idolize

relish

abhor

notice

execrate

disapprove

uncover

--

-

--
-

++

++

++ +

++

Figure 3: Visual summary of the SENTPROP algorithm.

embedding for word wi is then given by

wSVD
i = (U)i . (2)

Excluding the singular value weights, Σ, has been
shown known to dramatically improve embedding
quality (Turney and Pantel, 2010; Bullinaria and
Levy, 2012). Following standard practices, we learn
embeddings of dimension 300.

We found that this SVD-based method signif-
icantly outperformed word2vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014) on pre-
liminary experiments with the domain-specific data
we used (see Section 4).

Defining the graph edges
Given a set of word embeddings, a weighted lex-

ical graph is constructed by connecting each word
with its nearest k neighbors within the semantic
space (according to cosine-similarity). The weights
of the edges are set as

Ei,j = arccos

(
− wi

>wj

‖wi‖‖wj‖

)
. (3)

3.2 Propagating polarities from a seed set
Once a weighted lexical graph is constructed, we
propagate sentiment labels over this graph using a
random walk method (Zhou et al., 2004). A word’s
polarity score for a seed set is proportional to the
probability of a random walk from the seed set hit-
ting that word (Figure 3).

Let p ∈ R|V| be a vector of word-sentiment
scores constructed using seed set S (e.g., ten nega-
tive words); p is initialized to have 1

|V| in all entries.
And let E be the matrix of edge weights given by
equation (3). First, we construct a symmetric tran-
sition matrix from E by computing T = D

1
2 ED

1
2 ,

where D is a matrix with the column sums of E on
the diagonal. Next, using T we iteratively update p
until numerical convergence:

p(t+1) = βTp(t) + (1− β)s, (4)

where s is a vector with values set to 1
|S| in the en-

tries corresponding to the seed set S and zeros else-
where. The β term controls the extent to which the
algorithm favors local consistency (similar labels for
neighbors) vs. global consistency (correct labels on
seed words), with lower βs emphasizing the latter.

To obtain a final polarity score for a word wi,
we run the walk using both positive and negative
seed sets, obtaining positive (pP (wi)) and nega-
tive (pN (wi)) label scores. We then combine these
values into a positive-polarity score as p̄P (wi) =

pP (wi)
pP (wi)+pN (wi)

and standardize the final scores to
have zero mean and unit variance (within a corpus).

3.3 SENTPROP variants
Many variants of the random walk approach and re-
lated label propagation techniques exist in the lit-
erature (San Vicente et al., 2014; Velikovich et al.,
2010; Zhou et al., 2004; Zhu and Ghahramani, 2002;
Zhu et al., 2003). For example, there are differ-
ences in how to normalize the transition matrix in
the random walks (Zhou et al., 2004) and variants
of label propagation, e.g. where the labeled seeds
are clamped to the correct values (Zhu and Ghahra-
mani, 2002) or where only shortest-paths through
the graph are used for propagation (Velikovich et al.,
2010).

We experimented with a number of these ap-
proaches and found little difference in their perfor-
mance. We opted to use the random walk method
because it had a slight edge in terms of performance

598

in preliminary experiments4 and because it pro-
duces well-behaved distributions over label scores,
whereas Zhu and Ghahramani (2002)’s method and
its variants produce extremely peaked distributions.
We do note report in detail on all the label propa-
gation variants here, but the SOCIALSENT package
contains a full suite of these methods.

3.4 Bootstrap-sampling for robustness

Propagated sentiment scores are inevitably influ-
enced by the seed set, and it is important for re-
searchers to know the extent to which polarity values
are simply the result of corpus artifacts that are cor-
related with these seeds words. We address this issue
by using a bootstrap-sampling approach to obtain
confidence regions over our sentiment scores. We
bootstrap by running our propagation over B ran-
dom equally-sized subsets of the positive and neg-
ative seed sets. Computing the standard deviation
of the bootstrap-sampled polarity scores provides a
measure of confidence and allows the researcher to
evaluate the robustness of the assigned polarities.
We set B = 50 and used 7 words per random subset
(full seed sets are size 10; see Table 1).

4 Recreating known lexicons

We validate our approach by recreating known sen-
timent lexicons in the three domains: Standard En-
glish, Twitter, and Finance. Table 1 lists the seed
words used in each domain.

Standard English: To facilitate comparison with
previous work, we focus on the well-known General
Inquirer lexicon (Stone et al., 1966). We also use the
continuous valence (i.e., polarity) scores collected
by Warriner et al. (2013) in order to evaluate the
fine-grained performance of our framework. We test
our framework’s performance using two different
embeddings: off-the-shelf Google news embeddings
constructed from 1011 tokens5 and embeddings we
constructed from the 2000s decade of the Corpus of
Historical American English (COHA), which con-
tains ∼2 × 107 words in each decade, from 1850
to 2000 (Davies, 2010). The COHA corpus allows
us to test how the algorithms deal with this smaller

4>2% improvement across metrics on the standard and his-
torical English datasets described in Section 4.

5https://code.google.com/p/word2vec/

historical corpus, which is important since we will
use the COHA corpus to infer historical sentiment
lexicons (Section 6).

Finance: Previous work found that general pur-
pose sentiment lexicons performed very poorly on
financial text (Loughran and McDonald, 2011), so
a finance-specific sentiment lexicon (containing bi-
nary labels) was hand-constructed for this domain
(ibid.). To test against this lexicon, we constructed
embeddings using a dataset of∼2×107 tokens from
financial 8K documents (Lee et al., 2014).

Twitter: Numerous works attempt to induce
Twitter-specific sentiment lexicons using supervised
approaches and features unique to that domain (e.g.,
follower graphs; Speriosu et al., 2011). Here, we
emphasize that we can induce an accurate lexicon
using a simple domain-independent and resource-
light approach, with the implication that lexicons
can easily be induced for related social media
domains without resorting to complex supervised
frameworks. We evaluate our approach using the
test set from the 2015 SemEval task 10E competition
(Rosenthal et al., 2015), and we use the embeddings
constructed by Rothe et al. (2016).6

4.1 Baselines and state-of-the-art comparisons

We compare SENTPROP against standard baselines
and state-of-the-art approaches. The PMI base-
line of Turney and Littman (2003) computes the
pointwise mutual information between the seeds and
the targets without using propagation. The base-
line method of Velikovich et al. (2010) is simi-
lar to our method but uses an alternative propa-
gation approach and raw co-occurrence vectors in-
stead of learned embeddings. Both these methods
require raw corpora, so they function as baselines
in cases where we do not use off-the-shelf embed-
dings. We also compare against DENSIFIER, a state-
of-the-art method that learns orthogonal transforma-
tions of word vectors instead of propagating labels
(Rothe et al., 2016). Lastly, on standard English we
compare against a state-of-the-art WordNet-based
method, which performs label propagation over a
WordNet-derived graph (San Vicente et al., 2014).
Several variant baselines, all of which SENTPROP

6The official SemEval task 10E involved fully-supervised
learning, so we do not use their evaluation setup.

599

Method AUC Ternary F1 τ

SENTPROP 90.6 58.6 0.44
DENSIFIER 93.3 62.1 0.50
WordNet 89.5 58.7 0.34
Majority – 24.8 –

(a) Corpus methods outperform WordNet on standard
English. Using word-vector embeddings learned on a mas-
sive corpus (1011 tokens), we see that both corpus-based
methods outperform the WordNet-based approach overall.

Method AUC Ternary F1 τ

SENTPROP 86.0 60.1 0.50
DENSIFIER 90.1 59.4 0.57
Sentiment140 86.2 57.7 0.51
Majority – 24.9 –

(b) Corpus approaches are competitive with a distantly
supervised method on Twitter. Using Twitter embeddings
learned from ∼109 tokens, we see that the semi-supervised
corpus approaches using small seed sets perform very well.

Method AUC Ternary F1

SENTPROP 91.6 63.1
DENSIFIER 80.2 50.3
PMI 86.1 49.8
Velikovich et al. (2010) 81.6 51.1
Majority – 23.6

(c) SENTPROP performs best with domain-specific finance
embeddings. Using embeddings learned from financial cor-
pus (∼2×107 tokens) , SENTPROP significantly outperforms
the other methods.

Method AUC Ternary F1 τ

SENTPROP 83.8 53.0 0.28
DENSIFIER 77.4 46.6 0.19
PMI 70.6 41.9 0.16
Velikovich et al. (2010) 52.7 32.9 0.01
Majority – 24.3 –

(d) SENTPROP performs well on standard English even
with 1000x reduction in corpus size. SENTPROP maintains
strong performance even when using embeddings learned
from the 2000s decade of COHA (only 2×∼107 tokens).

Table 2: Results on recreating known lexicons.

outperforms, are omitted for brevity (e.g., using
word-vector cosines in place of PMI in Turney and
Littman (2003)’s framework). Code for all these
variants is available in the SOCIALSENT package.

4.2 Evaluation setup
We evaluate the approaches according to (i) their
binary classification accuracy (ignoring the neutral
class, as is common in previous work), (ii) ternary
classification performance (positive vs. neutral vs.
negative)7, and (iii) Kendall τ rank-correlation with
continuous human-annotated polarity scores.

For all methods in the ternary-classification con-
dition, we use the class-mass normalization method
(Zhu et al., 2003) to label words as positive, neutral,
or negative. This method assumes knowledge of the
label distribution—i.e., how many positive/negative
vs. neutral words there are—and simply assigns la-
bels to best match this distribution.

4.3 Evaluation results
Tables 2a-2d summarize the performance of our
framework along with baselines and other state-of-

7Only GI contains words explicitly marked neutral, so for
ternary evaluations in Twitter and Finance we sample neutral
words from GI to match its neutral-vs-not distribution.

the-art approaches. Our framework significantly
outperforms the baselines on all tasks, outperforms a
state-of-the-art approach that uses WordNet on stan-
dard English (Table 2a), and is competitive with
Sentiment140 on Twitter (Table 2b), a distantly-
supervised approach that uses signals from emoti-
cons (Mohammad and Turney, 2010). DENSIFIER

also performs extremely well, outperforming SENT-
PROP when off-the-shelf embeddings are used (Ta-
bles 2a and 2b). However, SENTPROP significantly
outperforms all other approaches when using the
domain-specific embeddings (Tables 2c and 2d).

Overall our results show that SENTPROP— a rel-
atively simple method, which combines high-quality
word vectors embeddings with standard label prop-
agation — can perform at a state-of-the-art level,
even performing competitively with methods rely-
ing on hand-curated lexical graphs. Unlike previous
published approaches, SENTPROP is able to main-
tain high accuracy even when modest-sized domain-
specific corpora are used. In cases where very large
corpora are available and where there is an abun-
dance of training data, DENSIFIER performs ex-
tremely well, since it was designed for this sort of
setting (Rothe et al., 2016).

600

We found that the baseline method of Velikovich
et al. (2010), which our method is closely related
to, performed relatively poorly with these domain-
specific corpora. This indicates that using high-
quality word-vector embeddings can have a drastic
impact on performance. However, it is worth noting
that Velikovich et al. (2010)’s method was designed
for high recall with massive corpora, so its poor per-
formance in our regime is not surprising.

Lastly, we found that the choice of embedding
method could have a drastic impact. Prelimi-
nary experiments on the COHA data showed that
using word2vec SGNS vectors (with default set-
tings) instead of our SVD-based embeddings led to
a >40% performance drop for SENTPROP across
all measures and a >10% performance drop for
DENSIFIER. It is possible that certain settings of
word2vec could perform better, but previous work
has shown that SVD-based methods have superior
results on smaller datasets and rare-word similarity
tasks (Levy et al., 2015; Hamilton et al., 2016), so
this result is not surprising.

5 Inducing community-specific lexicons

As a first large-scale study, we investigate how sen-
timent depends on the social context in which a
word is used. It is well known that there is sub-
stantial sociolinguistic variation between different
communities, whether these communities are de-
fined geographically (Trudgill, 1974) or via under-
lying sociocultural differences (Labov, 2006). How-
ever, no previous work has systematically investi-
gated community-specific variation in word senti-
ment at a large scale. Yang and Eisenstein (2015)
exploit social network structure in Twitter to infer
a small number (1-10) of communities and analyzed
sentiment variation via a supervised framework. Our
analysis extends this line of work by analyzing the
sentiment across hundreds of user-defined commu-
nities using only unlabeled corpora and a small set
of “paradigm” seed words (the Twitter seed words
outlined in Table 1).

In our study, we induced sentiment lexicons for
the top-250 (by comment-count) subreddits from the
social media forum Reddit.8 We used all the 2014
comment data to induce the lexicons, with words

8Subreddits are user-created topic-specific forums.

lower cased and comments from bots and deleted
users removed.9 Sentiment was induced for the top-
5000 non-stop words in each subreddit (again, by
comment-frequency).

5.1 Examining the lexicons

Analysis of the learned lexicons reveals the ex-
tent to which sentiment can differ across com-
munities. Figure 4 highlights some words with
opposing sentiment in two communities: in
r/TwoXChromosomes (r/TwoX), a community
dedicated to female perspectives and gender issues,
the words crazy and insane have negative polarity,
which is not true in the r/sports community, and,
vice-versa, words like soft are positive in r/TwoX
but negative in r/sports.

To get a sense of how much sentiment differs
across communities in general, we selected a ran-
dom subset of 1000 community pairs and examined
the correlation in their sentiment values for highly
sentiment-bearing words (Figure 5). We see that the
distribution is noticeably skewed, with many com-
munity pairs having highly uncorrelated sentiment
values. The 1000 random pairs were selected such
that each member of the pair overlapped in at least
half of their top-5000 word vocabulary. We then
computed the correlation between the sentiments in
these community-pairs. Since sentiment is noisy and
relatively uninteresting for neutral words, we com-
pute τ25%, the Kendall-τ correlation over the top-
25% most sentiment bearing words shared between
the two communities.

Analysis of individual pairs reveals some inter-
esting insights about sentiment and inter-community
dynamics. For example, we found that the sentiment
correlation between r/TwoX and r/TheRedPill
(τ25% = 0.58), two communities that hold con-
flicting views and often attack each other10, was
actually higher than the sentiment correlation be-
tween r/TwoX and r/sports (τ25% = 0.41), two
communities that are entirely unrelated. This re-
sult suggests that conflicting communities may have

9
https://archive.org/details/2015_reddit_comments_corpus

10This conflict is well-known on Reddit; for example, both
communities mention each others’ names along with fuck-based
profanity in the same comment far more than one would expect
by chance (χ2

1 > 6.8, p < 0.01 for both). r/TheRedPill is
dedicated to male empowerment.

601

Figure 4: Word sentiment differs drastically between a community dedicated to sports (r/sports) and one dedicated to
female perspectives and gender issues (r/TwoX). Words like soft and animal have positive sentiment in r/TwoX but negative
sentiment in r/sports, while the opposite holds for words like crazy and insane.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Community-community sentiment correlation (τ25%)

0

1

2

3

4

5

6

C
ou

nt

Figure 5: There is a long tail of communities with very dif-
ferent word sentiments. Some communities have very similar
sentiment (e.g., r/sports and r/hockey), while other com-
munity pairs differ drastically (e.g., r/sports and r/TwoX).

more similar sentiment in their language compared
to communities that are entirely unrelated.

6 Inducing diachronic sentiment lexicons

Sentiment also depends on the historical time-period
in which a word is used. To investigate this depen-
dency, we use our framework to analyze how word
polarities have shifted over the last 150 years. The
phenomena of amelioration (words becoming more
positive) and pejoration (words becoming more neg-
ative) are well-discussed in the linguistic literature
(Traugott and Dasher, 2001); however, no compre-
hensive polarity lexicons exist for historical data
(Cook and Stevenson, 2010). Such lexicons are cru-
cial to the growing body of work on NLP analyses of

historical text (Piotrowski, 2012) which are inform-
ing diachronic linguistics (Hamilton et al., 2016),
the digital humanities (Muralidharan and Hearst,
2012), and history (Hendrickx et al., 2011).

Our work is inspired by the only previous work
on automatically inducing historical sentiment lexi-
cons, Cook and Stevenson (2010); they use the PMI
method and a full modern sentiment lexicon as their
seed set, which relies on the assumption that all
these words have not changed in sentiment. In con-
trast, in addition to our different algorithm, we use a
small seed set of words that were manually selected
based on having strong and stable sentiment over the
last 150 years (Table 1; confirmed via historical en-
tries in the Oxford English Dictionary).

6.1 Examining the lexicons

We constructed lexicons from COHA, since it was
carefully constructed to be genre balanced (e.g.,
compared to the Google N-Grams; Pechenick et al.,
2015). We built lexicons for all adjectives with
counts above 100 in a given decade and also for the
top-5000 non-stop words within each year. In both
these cases we found that>5% of sentiment-bearing
(positive/negative) words completely switched po-
larity during this 150-year time-period and >25%
of all words changed their sentiment label (includ-
ing switches to/from neutral).11 The prevalence of

11We defined the thresholds for polar vs. neutral using the
class-mass normalization method and compared scores aver-

602

(a) Lean becomes more positive. Lean underwent amelioration,
becoming more similar to muscular and less similar to weak.

(b) Pathetic becomes more negative. Pathetic underwent pejo-
ration, becoming similar to weak and less similar to passionate.

Figure 6: Examples of amelioration and pejoration.

full polarity switches highlights the importance of
historical sentiment lexicons for work on diachronic
linguistics and cultural change.

Figure 6a shows an example amelioration de-
tected by this method: the word lean lost its neg-
ative connotations associated with “weakness” and
instead became positively associated with concepts
like “muscularity” and “fitness”. Figure 6b shows
an example pejoration, where pathetic, which used
to be more synonymous with passionate, gained
stronger negative associations with the concepts
of “weakness” and “inadequacy” (Simpson et al.,
1989). In both these cases, semantic similarities
computed using our learned historical word vectors
were used to contextualize the shifts.

Some other well-known examples of sentiment
changes captured by our framework include the se-
mantic bleaching of sorry, which shifted from nega-
tive and serious (“he was in a sorry state”) to uses
as a neutral discourse marker (“sorry about that”)
and worldly, which used to have negative conno-
tations related to materialism and religious impu-
rity (“sinful worldly pursuits”) but now is frequently
used to indicate sophistication (“a cultured, worldly
woman”) (Simpson et al., 1989). Our hope is that
the full lexicons released with this work will spur
further examinations of such historical shifts in sen-
timent, while also facilitating CSS applications that
require sentiment ratings for historical text.

7 Conclusion

SENTPROP allows researchers to easily induce ro-
bust and accurate sentiment lexicons that are rel-

aged over 1850-1880 to those averaged over 1970-2000.

evant to their particular domain of study. Such
lexicons are crucial to CSS research, as evidenced
by our two studies showing that sentiment depends
strongly on both social and historical context.

Our methodological comparisons show that sim-
ply combining label propagation with high-quality
word vector embeddings can achieve state-of-the-
art performance competitive with methods that rely
on hand-curated dictionaries, and the code pack-
age released with this work contains a full bench-
mark toolkit for this area, including implementations
of several variants of SENTPROP. We hope these
tools will facilitate future quantitative studies on the
domain-dependency of sentiment.

Of course, the sentiment lexicons induced by
SENTPROP are not perfect, which is reflected in the
uncertainty associated with our bootstrap-sampled
estimates. However, we believe that these user-
constructed, domain-specific lexicons, which quan-
tify uncertainty, provide a more principled founda-
tion for CSS research compared to domain-general
sentiment lexicons that contain unknown biases.
In the future our method could also be integrated
with supervised domain-adaption (e.g.,Yang and
Eisenstein, 2015) to further improve these domain-
specific results.

Acknowledgements

The authors thank P. Liang for his helpful com-
ments. This research has been supported in part
by NSF CNS-1010921, IIS-1149837, IIS-1514268
NIH BD2K, ARO MURI, DARPA XDATA, DARPA
SIMPLEX, Stanford Data Science Initiative, SAP
Stanford Graduate Fellowship, NSERC PGS-D,
Boeing, Lightspeed, and Volkswagen.

603

References
Muhammad Zubair Asghar, Aurangzeb Khan, Shakeel

Ahmad, Imran Ali Khan, and Fazal Masud Kundi.
2015. A Unified Framework for Creating Domain De-
pendent Polarity Lexicons from User Generated Re-
views. PLOS ONE, 10(10):e0140204, October.

Sasha Blair-Goldensohn, Kerry Hannan, Ryan McDon-
ald, Tyler Neylon, George A. Reis, and Jeff Reynar.
2008. Building a sentiment summarizer for local ser-
vice reviews. In WWW Workshop on NLP in the Infor-
mation Explosion Era.

Felipe Bravo-Marquez, Eibe Frank, and Bernhard
Pfahringer. 2015. From Unlabelled Tweets to Twitter-
specific Opinion Words. In SIGIR.

John A. Bullinaria and Joseph P. Levy. 2012. Extract-
ing semantic representations from word co-occurrence
statistics: stop-lists, stemming, and SVD. Behavior
Research Methods, 44(3):890–907, September.

Yejin Choi and Claire Cardie. 2009. Adapting a polarity
lexicon using integer linear programming for domain-
specific sentiment classification. In EMNLP.

Paul Cook and Suzanne Stevenson. 2010. Automati-
cally Identifying Changes in the Semantic Orientation
of Words. In LREC.

Mark Davies. 2010. The Corpus of Historical
American English: 400 million words, 1810-2009.
http://corpus.byu.edu/coha/.

Lingjia Deng, Janyce Wiebe, and Yoonjung Choi. 2014.
Joint inference and disambiguation of implicit senti-
ments via implicature constraints. In COLING.

Andrea Esuli and Fabrizio Sebastiani. 2006. Sentiword-
net: A publicly available lexical resource for opinion
mining. In LREC.

Ethan Fast, Binbin Chen, and Michael S. Bernstein.
2016. Empath: Understanding Topic Signals in Large-
Scale Text. In CHI.

Christiane Fellbaum. 1998. WordNet. Wiley Online Li-
brary.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky.
2016. Diachronic Word Embeddings Reveal Statisti-
cal Laws of Semantic Change. In ACL.

Vasileios Hatzivassiloglou and Kathleen R. McKeown.
1997. Predicting the semantic orientation of adjec-
tives. In EACL.

Iris Hendrickx, Michel Gnreux, and Rita Marquilhas.
2011. Automatic pragmatic text segmentation of his-
torical letters. In Language Technology for Cultural
Heritage, pages 135–153. Springer.

Dirk Hovy. 2015. Demographic factors improve classifi-
cation performance. In ACL.

Minqing Hu and Bing Liu. 2004. Mining and summariz-
ing customer reviews. In KDD.

Sheng Huang, Zhendong Niu, and Chongyang Shi.
2014. Automatic construction of domain-specific sen-
timent lexicon based on constrained label propagation.
Knowledge-Based Systems, 56:191–200.

Sean P. Igo and Ellen Riloff. 2009. Corpus-based seman-
tic lexicon induction with web-based corroboration. In
ACL Workshop on Unsupervised and Minimally Super-
vised Learning of Lexical Semantics.

Valentin Jijkoun, Maarten de Rijke, and Wouter
Weerkamp. 2010. Generating focused topic-specific
sentiment lexicons. In ACL.

Jaap Kamps, M. J. Marx, Robert J. Mokken, and M. de
Rijke. 2004. Using wordnet to measure semantic ori-
entations of adjectives. In LREC.

William Labov. 2006. The social stratification of English
in New York City. Cambridge University Press.

Thomas K. Landauer and Susan T. Dumais. 1997. A so-
lution to Plato’s problem: The latent semantic analysis
theory of acquisition, induction, and representation of
knowledge. Psychol. Rev., 104(2):211.

Heeyoung Lee, Mihai Surdeanu, Bill MacCartney, and
Dan Jurafsky. 2014. On the Importance of Text Anal-
ysis for Stock Price Prediction. In LREC.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Trans. Assoc. Comput. Ling.,
3.

Tim Loughran and Bill McDonald. 2011. When is a
liability not a liability? Textual analysis, dictionaries,
and 10-Ks. The Journal of Finance, 66(1):35–65.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
NIPS.

Saif M. Mohammad and Peter D. Turney. 2010. Emo-
tions evoked by common words and phrases: Using
Mechanical Turk to create an emotion lexicon. In
NAACL.

Aditi Muralidharan and Marti A Hearst. 2012. Support-
ing exploratory text analysis in literature study. Liter-
ary and Linguistic Computing.

Eitan Adam Pechenick, Christopher M. Danforth, and
Peter Sheridan Dodds. 2015. Characterizing the
Google Books corpus: Strong limits to inferences of
socio-cultural and linguistic evolution. PLoS ONE,
10(10).

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP.

Michael Piotrowski. 2012. Natural language processing
for historical texts. Synthesis Lectures on Human Lan-
guage Technologies, 5(2):1–157.

604

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen. 2009.
Expanding Domain Sentiment Lexicon through Dou-
ble Propagation. In IJCAI.

Delip Rao and Deepak Ravichandran. 2009. Semi-
supervised polarity lexicon induction. In EACL.

Ellen Riloff and Jessica Shepherd. 1997. A corpus-
based approach for building semantic lexicons. arXiv
preprint cmp-lg/9706013.

Mats Rooth, Stefan Riezler, Detlef Prescher, Glenn Car-
roll, and Franz Beil. 1999. Inducing a semantically
annotated lexicon via EM-based clustering. In ACL.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif M. Mohammad, Alan Ritter, and Veselin Stoy-
anov. 2015. SemEval-2015 task 10: Sentiment analy-
sis in Twitter. SemEval-2015.

Sascha Rothe, Sebastian Ebert, and Hinrich Schutze.
2016. Ultradense Word Embeddings by Orthogonal
Transformation. In NAACL-HLT.

Inaki San Vicente, Rodrigo Agerri, German Rigau, and
Donostia-San Sebastin. 2014. Simple, Robust and (al-
most) Unsupervised Generation of Polarity Lexicons
for Multiple Languages. In EACL.

Aliaksei Severyn and Alessandro Moschitti. 2015. On
the automatic learning of sentiment lexicons. In
NAACL-HLT.

John Andrew Simpson, Edmund SC Weiner, et al. 1989.
The Oxford English Dictionary, volume 2. Clarendon
Press Oxford, Oxford, UK.

Michael Speriosu, Nikita Sudan, Sid Upadhyay, and Ja-
son Baldridge. 2011. Twitter polarity classifica-
tion with label propagation over lexical links and the
follower graph. In ACL Workshop on Unsupervised
Learning in NLP.

Philip J Stone, Dexter C Dunphy, and Marshall S Smith.
1966. The General Inquirer: A Computer Approach to
Content Analysis.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kimberly
Voll, and Manfred Stede. 2011. Lexicon-based meth-
ods for sentiment analysis. Comput. Ling., 37(2):267–
307.

Yen-Jen Tai and Hung-Yu Kao. 2013. Automatic
domain-specific sentiment lexicon generation with la-
bel propagation. In Proceedings of International Con-
ference on Information Integration and Web-based Ap-
plications & Services, page 53. ACM.

Hiroya Takamura, Takashi Inui, and Manabu Okumura.
2005. Extracting semantic orientations of words using
spin model. In ACL.

Duyu Tang, Furu Wei, Bing Qin, Ming Zhou, and Ting
Liu. 2014. Building Large-Scale Twitter-Specific
Sentiment Lexicon: A Representation Learning Ap-
proach. In COLING.

Michael Thelen and Ellen Riloff. 2002. A bootstrapping
method for learning semantic lexicons using extraction
pattern contexts. In EMNLP.

Elizabeth Closs Traugott and Richard B Dasher. 2001.
Regularity in Semantic Change. Cambridge Univer-
sity Press, Cambridge, UK.

Peter Trudgill. 1974. Linguistic change and diffusion:
Description and explanation in sociolinguistic dialect
geography. Language in Society, 3(2):215–246.

Peter D. Turney and Michael L. Littman. 2003. Mea-
suring praise and criticism: Inference of semantic
orientation from association. ACM Trans. Inf. Sys.,
21(4):315–346.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of semantics.
J. Artif. Intell. Res., 37(1):141–188.

Leonid Velikovich, Sasha Blair-Goldensohn, Kerry Han-
nan, and Ryan McDonald. 2010. The viability of web-
derived polarity lexicons. In NAACL-HLT.

Amy Beth Warriner, Victor Kuperman, and Marc Brys-
baert. 2013. Norms of valence, arousal, and domi-
nance for 13,915 English lemmas. Behavior research
methods, 45(4):1191–1207.

Dominic Widdows and Beate Dorow. 2002. A graph
model for unsupervised lexical acquisition. In COL-
ING.

Yi Yang and Jacob Eisenstein. 2015. Putting Things
in Context: Community-specific Embedding Pro-
jections for Sentiment Analysis. arXiv preprint
arXiv:1511.06052.

Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal,
Jason Weston, and Bernhard Scholkopf. 2004. Learn-
ing with local and global consistency. In NIPS.

Xiaojin Zhu and Zoubin Ghahramani. 2002. Learning
from labeled and unlabeled data with label propaga-
tion. Technical report.

Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, and oth-
ers. 2003. Semi-supervised learning using Gaussian
fields and harmonic functions. In ICML.

605

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 606–615,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Attention-based LSTM for Aspect-level Sentiment Classification

Yequan Wang and Minlie Huang and Li Zhao* and Xiaoyan Zhu
State Key Laboratory on Intelligent Technology and Systems

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

*Microsoft Research Asia
wangyequan@live.cn, aihuang@tsinghua.edu.cn
lizo@microsoft.com, zxy-dcs@tsinghua.edu.cn

Abstract

Aspect-level sentiment classification is a fine-
grained task in sentiment analysis. Since it
provides more complete and in-depth results,
aspect-level sentiment analysis has received
much attention these years. In this paper, we
reveal that the sentiment polarity of a sentence
is not only determined by the content but is
also highly related to the concerned aspect.
For instance, “The appetizers are ok, but the
service is slow.”, for aspect taste, the polar-
ity is positive while for service, the polarity
is negative. Therefore, it is worthwhile to ex-
plore the connection between an aspect and
the content of a sentence. To this end, we
propose an Attention-based Long Short-Term
Memory Network for aspect-level sentiment
classification. The attention mechanism can
concentrate on different parts of a sentence
when different aspects are taken as input. We
experiment on the SemEval 2014 dataset and
results show that our model achieves state-of-
the-art performance on aspect-level sentiment
classification.

1 Introduction

Sentiment analysis (Nasukawa and Yi, 2003), also
known as opinion mining (Liu, 2012), is a key
NLP task that receives much attention these years.
Aspect-level sentiment analysis is a fine-grained
task that can provide complete and in-depth results.
In this paper, we deal with aspect-level sentiment
classification and we find that the sentiment polar-
ity of a sentence is highly dependent on both con-
tent and aspect. For example, the sentiment polarity

of “Staffs are not that friendly, but the taste covers
all.” will be positive if the aspect is food but neg-
ative when considering the aspect service. Polarity
could be opposite when different aspects are consid-
ered.

Neural networks have achieved state-of-the-art
performance in a variety of NLP tasks such as ma-
chine translation (Lample et al., 2016), paraphrase
identification (Yin et al., 2015), question answer-
ing (Golub and He, 2016) and text summariza-
tion (Rush et al., 2015). However, neural net-
work models are still in infancy to deal with aspect-
level sentiment classification. In some works, tar-
get dependent sentiment classification can be ben-
efited from taking into account target information,
such as in Target-Dependent LSTM (TD-LSTM)
and Target-Connection LSTM (TC-LSTM) (Tang et
al., 2015a). However, those models can only take
into consideration the target but not aspect informa-
tion which is proved to be crucial for aspect-level
classification.

Attention has become an effective mechanism to
obtain superior results, as demonstrated in image
recognition (Mnih et al., 2014), machine transla-
tion (Bahdanau et al., 2014), reasoning about entail-
ment (Rocktäschel et al., 2015) and sentence sum-
marization (Rush et al., 2015). Even more, neural
attention can improve the ability to read comprehen-
sion (Hermann et al., 2015). In this paper, we pro-
pose an attention mechanism to enforce the model
to attend to the important part of a sentence, in re-
sponse to a specific aspect. We design an aspect-to-
sentence attention mechanism that can concentrate

606

on the key part of a sentence given the aspect.
We explore the potential correlation of aspect and

sentiment polarity in aspect-level sentiment classifi-
cation. In order to capture important information in
response to a given aspect, we design an attention-
based LSTM. We evaluate our approach on a bench-
mark dataset (Pontiki et al., 2014), which contains
restaurants and laptops data.

The main contributions of our work can be sum-
marized as follows:

• We propose attention-based Long Short-Term
memory for aspect-level sentiment classifica-
tion. The models are able to attend differ-
ent parts of a sentence when different aspects
are concerned. Results show that the attention
mechanism is effective.

• Since aspect plays a key role in this task, we
propose two ways to take into account aspect
information during attention: one way is to
concatenate the aspect vector into the sentence
hidden representations for computing attention
weights, and another way is to additionally ap-
pend the aspect vector into the input word vec-
tors.

• Experimental results indicate that our ap-
proach can improve the performance compared
with several baselines, and further examples
demonstrate the attention mechanism works
well for aspect-level sentiment classification.

The rest of our paper is structured as follows:
Section 2 discusses related works, Section 3 gives a
detailed description of our attention-based propos-
als, Section 4 presents extensive experiments to jus-
tify the effectiveness of our proposals, and Section 5
summarizes this work and the future direction.

2 Related Work

In this section, we will review related works on
aspect-level sentiment classification and neural net-
works for sentiment classification briefly.

2.1 Sentiment Classification at Aspect-level

Aspect-level sentiment classification is typically
considered as a classification problem in the liter-

ature. As we mentioned before, aspect-level sen-
timent classification is a fine-grained classification
task. The majority of current approaches attempt to
detecting the polarity of the entire sentence, regard-
less of the entities mentioned or aspects. Traditional
approaches to solve those problems are to manu-
ally design a set of features. With the abundance of
sentiment lexicons (Rao and Ravichandran, 2009;
Perez-Rosas et al., 2012; Kaji and Kitsuregawa,
2007), the lexicon-based features were built for sen-
timent analysis (Mohammad et al., 2013). Most of
these studies focus on building sentiment classifiers
with features, which include bag-of-words and sen-
timent lexicons, using SVM (Mullen and Collier,
2004). However, the results highly depend on the
quality of features. In addition, feature engineering
is labor intensive.

2.2 Sentiment Classification with Neural
Networks

Since a simple and effective approach to learn dis-
tributed representations was proposed (Mikolov et
al., 2013), neural networks advance sentiment anal-
ysis substantially. Classical models including Re-
cursive Neural Network (Socher et al., 2011; Dong
et al., 2014; Qian et al., 2015), Recursive Neu-
ral Tensor Network (Socher et al., 2013), Recur-
rent Neural Network (Mikolov et al., 2010; Tang
et al., 2015b), LSTM (Hochreiter and Schmidhuber,
1997) and Tree-LSTMs (Tai et al., 2015) were ap-
plied into sentiment analysis currently. By utilizing
syntax structures of sentences, tree-based LSTMs
have been proved to be quite effective for many NLP
tasks. However, such methods may suffer from syn-
tax parsing errors which are common in resource-
lacking languages.

LSTM has achieved a great success in various
NLP tasks. TD-LSTM and TC-LSTM (Tang et
al., 2015a), which took target information into con-
sideration, achieved state-of-the-art performance
in target-dependent sentiment classification. TC-
LSTM obtained a target vector by averaging the
vectors of words that the target phrase contains.
However, simply averaging the word embeddings of
a target phrase is not sufficient to represent the se-
mantics of the target phrase, resulting a suboptimal
performance.

607

Despite the effectiveness of those methods, it is
still challenging to discriminate different sentiment
polarities at a fine-grained aspect level. Therefore,
we are motivated to design a powerful neural net-
work which can fully employ aspect information for
sentiment classification.

3 Attention-based LSTM with Aspect
Embedding

3.1 Long Short-term Memory (LSTM)

Recurrent Neural Network(RNN) is an extension of
conventional feed-forward neural network. How-
ever, standard RNN has the gradient vanishing
or exploding problems. In order to overcome
the issues, Long Short-term Memory network
(LSTM) was developed and achieved superior per-
formance (Hochreiter and Schmidhuber, 1997). In
the LSTM architecture, there are three gates and a
cell memory state. Figure 1 illustrates the architec-
ture of a standard LSTM.

LSTM LSTM LSTM…

softmax

𝑤1 𝑤2 𝑤𝑁

ℎ1 ℎ2 ℎ𝑁

Figure 1: The architecture of a standard LSTM.

{w1, w2, . . . , wN} represent the word vector in a sen-

tence whose length is N . {h1, h2, . . . , hN} is the hidden

vector.

More formally, each cell in LSTM can be com-
puted as follows:

X =

[
ht−1

xt

]
(1)

ft = σ(Wf · X + bf) (2)

it = σ(Wi · X + bi) (3)

ot = σ(Wo · X + bo) (4)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc · X + bc) (5)

ht = ot ⊙ tanh(ct) (6)

where Wi,Wf ,Wo ∈ Rd×2d are the weighted ma-
trices and bi, bf , bo ∈ Rd are biases of LSTM to be
learned during training, parameterizing the transfor-
mations of the input, forget and output gates respec-
tively. σ is the sigmoid function and ⊙ stands for
element-wise multiplication. xt includes the inputs
of LSTM cell unit, representing the word embed-
ding vectors wt in Figure 1. The vector of hidden
layer is ht.

We regard the last hidden vector hN as the rep-
resentation of sentence and put hN into a softmax
layer after linearizing it into a vector whose length is
equal to the number of class labels. In our work, the
set of class labels is {positive, negative, neutral}.

3.2 LSTM with Aspect Embedding
(AE-LSTM)

Aspect information is vital when classifying the po-
larity of one sentence given aspect. We may get op-
posite polarities if different aspects are considered.
To make the best use of aspect information, we pro-
pose to learn an embedding vector for each aspect.

Vector vai ∈ Rda is represented for the embed-
ding of aspect i, where da is the dimension of aspect
embedding. A ∈ Rda×|A| is made up of all aspect
embeddings. To the best of our knowledge, it is the
first time to propose aspect embedding.

3.3 Attention-based LSTM (AT-LSTM)

The standard LSTM cannot detect which is the im-
portant part for aspect-level sentiment classification.
In order to address this issue, we propose to de-
sign an attention mechanism that can capture the
key part of sentence in response to a given aspect.
Figure 2 represents the architecture of an Attention-
based LSTM (AT-LSTM).

Let H ∈ Rd×N be a matrix consisting of hid-
den vectors [h1, . . . , hN] that the LSTM produced,
where d is the size of hidden layers and N is the
length of the given sentence. Furthermore, va rep-
resents the embedding of aspect and eN ∈ RN is a
vector of 1s. The attention mechanism will produce
an attention weight vector α and a weighted hidden

608

LSTM LSTM LSTM

Word Representation

…

Attention

Aspect Embedding

H

𝑤2 𝑤3 𝑤𝑁

ℎ2 ℎ3 ℎ𝑁

𝑣𝑎 𝑣𝑎 𝑣𝑎

LSTM

𝑤1

ℎ1

𝑣𝑎

r

𝛼

Figure 2: The Architecture of Attention-based LSTM. The aspect embeddings have been used to decide the attention weights

along with the sentence representations. {w1, w2, . . . , wN} represent the word vector in a sentence whose length is N . va

represents the aspect embedding. α is the attention weight. {h1, h2, . . . , hN} is the hidden vector.

representation r.

M = tanh(

[
WhH

Wvva ⊗ eN

]
) (7)

α = softmax(wT M) (8)

r = HαT (9)

where, M ∈ R(d+da)×N , α ∈ RN , r ∈ Rd.
Wh ∈ Rd×d, Wv ∈ Rda×da and w ∈ Rd+da are
projection parameters. α is a vector consisting of
attention weights and r is a weighted representation
of sentence with given aspect. The operator in 7 (a
circle with a multiplication sign inside, OP for short
here) means: va⊗eN = [v; v; . . . ; v], that is, the op-
erator repeatedly concatenates v for N times, where
eN is a column vector with N 1s. Wvva ⊗ eN is
repeating the linearly transformed va as many times
as there are words in sentence.

The final sentence representation is given by:

h∗ = tanh(Wpr + WxhN) (10)

where, h∗ ∈ Rd, Wp and Wx are projection param-
eters to be learned during training. We find that this
works practically better if we add WxhN into the fi-
nal representation of the sentence, which is inspired
by (Rocktäschel et al., 2015).

The attention mechanism allows the model to
capture the most important part of a sentence when
different aspects are considered.

h∗ is considered as the feature representation of
a sentence given an input aspect. We add a linear
layer to convert sentence vector to e, which is a real-
valued vector with the length equal to class number
|C|. Then, a softmax layer is followed to trans-
form e to conditional probability distribution.

y = softmax(Wsh
∗ + bs) (11)

where Ws and bs are the parameters for softmax
layer.

3.4 Attention-based LSTM with Aspect
Embedding (ATAE-LSTM)

The way of using aspect information in AE-LSTM
is letting aspect embedding play a role in com-
puting the attention weight. In order to better
take advantage of aspect information, we append
the input aspect embedding into each word input
vector. The structure of this model is illustrated
in 3. In this way, the output hidden representa-
tions (h1, h2, ..., hN) can have the information from
the input aspect (va). Therefore, in the following
step that compute the attention weights, the inter-

609

LSTM LSTM LSTM

Word Representation

…

Attention

Aspect Embedding

H

𝑤2 𝑤3 𝑤𝑁

ℎ2 ℎ3 ℎ𝑁

𝑣𝑎 𝑣𝑎 𝑣𝑎

LSTM

𝑤1

ℎ1

𝑣𝑎

𝑣𝑎 𝑣𝑎 𝑣𝑎𝑣𝑎
Aspect Embedding

𝑟

𝛼

Figure 3: The Architecture of Attention-based LSTM with Aspect Embedding. The aspect embeddings have been take as input

along with the word embeddings. {w1, w2, . . . , wN} represent the word vector in a sentence whose length is N . va represents the

aspect embedding. α is the attention weight. {h1, h2, . . . , hN} is the hidden vector.

dependence between words and the input aspect can
be modeled.

3.5 Model Training

The model can be trained in an end-to-end way by
backpropagation, where the objective function (loss
function) is the cross-entropy loss. Let y be the tar-
get distribution for sentence, ŷ be the predicted sen-
timent distribution. The goal of training is to mini-
mize the cross-entropy error between y and ŷ for all
sentences.

loss = −
∑

i

∑

j

yj
i logŷj

i + λ||θ||2 (12)

where i is the index of sentence, j is the index of
class. Our classification is three way. λ is the L2 -
regularization term. θ is the parameter set.

Similar to standard LSTM, the parameter set
is {Wi, bi,Wf , bf ,Wo, bo,Wc, bc,Ws, bs}. Fur-
thermore, word embeddings are the parameters
too. Note that the dimension of Wi, Wf ,Wo,Wc

changes along with different models. If the aspect
embeddings are added into the input of the LSTM

cell unit, the dimension of Wi, Wf ,Wo,Wc will be
enlarged correspondingly. Additional parameters
are listed as follows:

AT-LSTM: The aspect embedding A is added
into the set of parameters naturally. In addition,
Wh,Wv,Wp,Wx, w are the parameters of atten-
tion. Therefore, the additional parameter set of AT-
LSTM is {A,Wh,Wv,Wp,Wx, w}.

AE-LSTM: The parameters include the as-
pect embedding A. Besides, the dimension of
Wi, Wf ,Wo,Wc will be expanded since the aspect
vector is concatenated. Therefore, the additional pa-
rameter set consists of {A}.

ATAE-LSTM: The parameter set consists of
{A, Wh,Wv, Wp,Wx, w}. Additionally, the dimen-
sion of Wi,Wf ,Wo,Wc will be expanded with the
concatenation of aspect embedding.

The word embedding and aspect embedding are
optimized during training. The percentage of out-
of-vocabulary words is about 5%, and they are ran-
domly initialized from U(−ϵ, ϵ), where ϵ = 0.01.

In our experiments, we use AdaGrad (Duchi et
al., 2011) as our optimization method, which has

610

improved the robustness of SGD on large scale
learning task remarkably in a distributed environ-
ment (Dean et al., 2012). AdaGrad adapts the learn-
ing rate to the parameters, performing larger updates
for infrequent parameters and smaller updates for
frequent parameters.

4 Experiment

We apply the proposed model to aspect-level sen-
timent classification. In our experiments, all word
vectors are initialized by Glove1 (Pennington et al.,
2014). The word embedding vectors are pre-trained
on an unlabeled corpus whose size is about 840 bil-
lion. The other parameters are initialized by sam-
pling from a uniform distribution U(−ϵ, ϵ). The
dimension of word vectors, aspect embeddings and
the size of hidden layer are 300. The length of at-
tention weights is the same as the length of sentence.
Theano (Bastien et al., 2012) is used for implement-
ing our neural network models. We trained all mod-
els with a batch size of 25 examples, and a momen-
tum of 0.9, L2-regularization weight of 0.001 and
initial learning rate of 0.01 for AdaGrad.

4.1 Dataset
We experiment on the dataset of SemEval 2014 Task
42 (Pontiki et al., 2014). The dataset consists of
customers reviews. Each review contains a list of
aspects and corresponding polarities. Our aim is to
identify the aspect polarity of a sentence with the
corresponding aspect. The statistics is presented in
Table 1.

4.2 Task Definition
Aspect-level Classification Given a set of pre-
identified aspects, this task is to determine the
polarity of each aspect. For example, given a
sentence, “The restaurant was too expensive.”,
there is an aspect price whose polarity is negative.
The set of aspects is {food, price, service, ambi-
ence, anecdotes/miscellaneous}. In the dataset of
SemEval 2014 Task 4, there is only restaurants
data that has aspect-specific polarities. Table 2

1Pre-trained word vectors of Glove can be obtained from
http://nlp.stanford.edu/projects/glove/

2The introduction about SemEval 2014 can be obtained
from http://alt.qcri.org/semeval2014/

Asp.
Positive Negative Neural

Train Test Train Test Train Test
Fo. 867 302 209 69 90 31
Pr. 179 51 115 28 10 1
Se. 324 101 218 63 20 3
Am. 263 76 98 21 23 8
An. 546 127 199 41 357 51
Total 2179 657 839 222 500 94

Table 1: Aspects distribution per sentiment class. {Fo., Pr.,

Se, Am., An.} refer to {food, price, service, ambience, anec-

dotes/miscellaneous}. “Asp.” refers to aspect.

Models Three-way Pos./Neg.
LSTM 82.0 88.3
TD-LSTM 82.6 89.1
TC-LSTM 81.9 89.2
AE-LSTM 82.5 88.9
AT-LSTM 83.1 89.6
ATAE-LSTM 84.0 89.9

Table 2: Accuracy on aspect level polarity classification about

restaurants. Three-way stands for 3-class prediction. Pos./Neg.

indicates binary prediction where ignoring all neutral instances.

Best scores are in bold.

illustrates the comparative results.

Aspect-Term-level Classification For a given set
of aspects term within a sentence, this task is to de-
termine whether the polarity of each aspect term is
positive, negative or neutral. We conduct experi-
ments on the dataset of SemEval 2014 Task 4. In
the sentences of both restaurant and laptop datasets,
there are the location and sentiment polarity for
each occurrence of an aspect term. For example,
there is an aspect term fajitas whose polarity is neg-
ative in sentence “I loved their fajitas.”.

Experiments results are shown in Table 3 and Ta-
ble 4. Similar to the experiment on aspect-level
classification, our models achieve state-of-the-art
performance.

4.3 Comparison with baseline methods

We compare our model with several baselines, in-
cluding LSTM, TD-LSTM, and TC-LSTM.

LSTM: Standard LSTM cannot capture any as-
pect information in sentence, so it must get the same

611

𝜶

(a) the aspect of this sentence: service

𝜶

(b) the aspect of this sentence: food

Figure 4: Attention Visualizations. The aspects of (a) and (b) are service and food respectively. The color depth expresses the

importance degree of the weight in attention vector α. From (a), attention can detect the important words from the whole sentence

dynamically even though multi-semantic phrase such as “fastest delivery times” which can be used in other areas. From (b),

attention can know multi-keypoints if more than one keypoint existing.

Models Three-way Pos./Neg.
LSTM 74.3 -
TD-LSTM 75.6 -
AE-LSTM 76.6 89.6
ATAE-LSTM 77.2 90.9

Table 3: Accuracy on aspect term polarity classification about

restaurants. Three-way stands for 3-class prediction. Pos./Neg.

indicates binary prediction where ignoring all neutral instances.

Best scores are in bold.

Models Three-way Pos./Neg.
LSTM 66.5 -
TD-LSTM 68.1 -
AE-LSTM 68.9 87.4
ATAE-LSTM 68.7 87.6

Table 4: Accuracy on aspect term polarity classification about

laptops. Three-way stands for 3-class prediction. Pos./Neg. in-

dicates binary prediction where ignoring all neutral instances.

Best scores are in bold.

sentiment polarity although given different aspects.
Since it cannot take advantage of the aspect infor-
mation, not surprisingly the model has worst per-
formance.

TD-LSTM: TD-LSTM can improve the perfor-
mance of sentiment classifier by treating an aspect
as a target. Since there is no attention mechanism in

TD-LSTM, it cannot “know” which words are im-
portant for a given aspect.

TC-LSTM: TC-LSTM extended TD-LSTM by
incorporating a target into the representation of a
sentence. It is worth noting that TC-LSTM per-
forms worse than LSTM and TD-LSTM in Table 2.
TC-LSTM added target representations, which was
obtained from word vectors, into the input of the
LSTM cell unit.

In our models, we embed aspects into another
vector space. The embedding vector of aspects can
be learned well in the process of training. ATAE-
LSTM not only addresses the shortcoming of the
unconformity between word vectors and aspect em-
beddings, but also can capture the most important
information in response to a given aspect. In ad-
dition, ATAE-LSTM can capture the important and
different parts of a sentence when given different
aspects.

4.4 Qualitative Analysis
It is enlightening to analyze which words decide the
sentiment polarity of the sentence given an aspect.
We can obtain the attention weight α in Equation 8
and visualize the attention weights accordingly.

Figure 4 shows the representation of how atten-
tion focuses on words with the influence of a given
aspect. We use a visualization tool Heml (Deng

612

The appetizers are ok, but the service is slow.

I highly recommend it for not just its superb cuisine, but also for its friendly owners and staff.

The service, however, is a peg or two below the quality of food (horrible bartenders), and

the clientele, for the most part, are rowdy, loud-mouthed commuters (this could explain the

bad attitudes from the staff) getting loaded for an AC/DC concert or a Knicks game.

aspect: service; polarity: negativeaspect: food; polarity: neutral

(a)

aspect: food; polarity: positive aspect: food; polarity: positive

(b)

aspect: food; polarity: positive aspect: service; polarity: positive aspect: ambience; polarity: negative

(c)

Figure 5: Examples of classification. (a) is an instance with different aspects. (b) represents that our model can focus on where

the keypoints are and not disturbed by the privative word not. (c) stands for long and complicated sentences. Our model can obtain

correct sentiment polarity.

et al., 2014) to visualize the sentences. The color
depth indicates the importance degree of the weight
in attention vector α, the darker the more important.
The sentences in Figure 4 are “I have to say they
have one of the fastest delivery times in the city .”
and “The fajita we tried was tasteless and burned
and the mole sauce was way too sweet.”. The corre-
sponding aspects are service and food respectively.
Obviously attention can get the important parts from
the whole sentence dynamically. In Figure 4 (a),
“fastest delivery times” is a multi-word phrase, but
our attention-based model can detect such phrases
if service can is the input aspect. Besides, the atten-
tion can detect multiple keywords if more than one
keyword is existing. In Figure 4 (b), tastless and too
sweet are both detected.

4.5 Case Study

As we demonstrated, our models obtain the state-of-
the-art performance. In this section, we will further
show the advantages of our proposals through some
typical examples.

In Figure 5, we list some examples from the test
set which have typical characteristics and cannot be
inferred by LSTM. In sentence (a), “The appetiz-
ers are ok, but the service is slow.”, there are two

aspects food and service. Our model can discrimi-
nate different sentiment polarities with different as-
pects. In sentence (b), “I highly recommend it for
not just its superb cuisine, but also for its friendly
owners and staff.”, there is a negation word not. Our
model can obtain correct polarity, not affected by
the negation word who doesn’t represent negation
here. In the last instance (c), “The service, however,
is a peg or two below the quality of food (horri-
ble bartenders), and the clientele, for the most part,
are rowdy, loud-mouthed commuters (this could ex-
plain the bad attitudes from the staff) getting loaded
for an AC/DC concert or a Knicks game.”, the sen-
tence has a long and complicated structure so that
existing parser may hardly obtain correct parsing
trees. Hence, tree-based neural network models
are difficult to predict polarity correctly. While our
attention-based LSTM can work well in those sen-
tences with the help of attention mechanism and as-
pect embedding.

5 Conclusion and Future Work

In this paper, we have proposed attention-based
LSTMs for aspect-level sentiment classification.
The key idea of these proposals are to learn aspect

613

embeddings and let aspects participate in computing
attention weights. Our proposed models can con-
centrate on different parts of a sentence when dif-
ferent aspects are given so that they are more com-
petitive for aspect-level classification. Experiments
show that our proposed models, AE-LSTM and
ATAE-LSTM, obtain superior performance over the
baseline models.

Though the proposals have shown potentials for
aspect-level sentiment analysis, different aspects are
input separately. As future work, an interesting
and possible direction would be to model more than
one aspect simultaneously with the attention mech-
anism.

Acknowledgments

This work was partly supported by the National
Basic Research Program (973 Program) under
grant No.2012CB316301/2013CB329403, the Na-
tional Science Foundation of China under grant
No.61272227/61332007, and the Beijing Higher
Education Young Elite Teacher Project. The work
was also supported by Tsinghua University Beijing
Samsung Telecom R&D Center Joint Laboratory for
Intelligent Media Computing.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, David Warde-Farley, and Yoshua
Bengio. 2012. Theano: new features and speed im-
provements. arXiv preprint arXiv:1211.5590.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Andrew Senior, Paul
Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale
distributed deep networks. In Advances in Neural
Information Processing Systems, pages 1223–1231.

Wankun Deng, Yongbo Wang, Zexian Liu, Han Cheng,
and Yu Xue. 2014. Hemi: a toolkit for illustrating
heatmaps. PloS one, 9(11):e111988.

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming
Zhou, and Ke Xu. 2014. Adaptive recursive neural
network for target-dependent twitter sentiment classi-
fication. In ACL (2), pages 49–54.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159.

David Golub and Xiaodong He. 2016. Character-level
question answering with attention. arXiv preprint
arXiv:1604.00727.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems, pages 1684–1692.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Nobuhiro Kaji and Masaru Kitsuregawa. 2007. Building
lexicon for sentiment analysis from massive collection
of html documents. In EMNLP-CoNLL, pages 1075–
1083.

Guillaume Lample, Miguel Ballesteros, Sandeep Subra-
manian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.

Bing Liu. 2012. Sentiment analysis and opinion mining.
Synthesis lectures on human language technologies,
5(1):1–167.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Re-
current neural network based language model. In
INTERSPEECH, volume 2, page 3.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Volodymyr Mnih, Nicolas Heess, Alex Graves, et al.
2014. Recurrent models of visual attention. In
Advances in Neural Information Processing Systems,
pages 2204–2212.

Saif M Mohammad, Svetlana Kiritchenko, and Xiaodan
Zhu. 2013. Nrc-canada: Building the state-of-the-
art in sentiment analysis of tweets. arXiv preprint
arXiv:1308.6242.

Tony Mullen and Nigel Collier. 2004. Sentiment analy-
sis using support vector machines with diverse infor-
mation sources. In EMNLP, volume 4, pages 412–
418.

Tetsuya Nasukawa and Jeonghee Yi. 2003. Sen-
timent analysis: Capturing favorability using natu-
ral language processing. In Proceedings of the 2nd
international conference on Knowledge capture, pages
70–77. ACM.

614

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. Proceedings of the Empiricial Methods
in Natural Language Processing (EMNLP 2014),
12:1532–1543.

Veronica Perez-Rosas, Carmen Banea, and Rada Mihal-
cea. 2012. Learning sentiment lexicons in spanish. In
LREC, volume 12, page 73.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Har-
ris Papageorgiou, Ion Androutsopoulos, and Suresh
Manandhar. 2014. Semeval-2014 task 4: Aspect
based sentiment analysis. In Proceedings of the
8th international workshop on semantic evaluation
(SemEval 2014), pages 27–35.

Qiao Qian, Bo Tian, Minlie Huang, Yang Liu, Xuan
Zhu, and Xiaoyan Zhu. 2015. Learning tag embed-
dings and tag-specific composition functions in re-
cursive neural network. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing, volume 1, pages
1365–1374.

Delip Rao and Deepak Ravichandran. 2009. Semi-
supervised polarity lexicon induction. In Proceedings
of the 12th Conference of the European Chapter of
the Association for Computational Linguistics, pages
675–682. Association for Computational Linguistics.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Her-
mann, Tomáš Kočiskỳ, and Phil Blunsom. 2015. Rea-
soning about entailment with neural attention. arXiv
preprint arXiv:1509.06664.

Alexander M Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-
stractive sentence summarization. arXiv preprint
arXiv:1509.00685.

Richard Socher, Jeffrey Pennington, Eric H Huang, An-
drew Y Ng, and Christopher D Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing, pages 151–161. Association for
Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In EMNLP, volume 1631, page 1642. Citeseer.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representa-
tions from tree-structured long short-term memory
networks. arXiv preprint arXiv:1503.00075.

Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting
Liu. 2015a. Target-dependent sentiment classifica-

tion with long short term memory. arXiv preprint
arXiv:1512.01100.

Duyu Tang, Bing Qin, and Ting Liu. 2015b. Docu-
ment modeling with gated recurrent neural network
for sentiment classification. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1422–1432.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen
Zhou. 2015. Abcnn: Attention-based convolutional
neural network for modeling sentence pairs. arXiv
preprint arXiv:1512.05193.

615

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 616–626,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Recursive Neural Conditional Random Fields
for Aspect-based Sentiment Analysis

Wenya Wang†‡ Sinno Jialin Pan† Daniel Dahlmeier‡ Xiaokui Xiao†
†Nanyang Technological University, Singapore

‡SAP Innovation Center Singapore
†{wa0001ya, sinnopan, xkxiao}@ntu.edu.sg, ‡{d.dahlmeier}@sap.com

Abstract

In aspect-based sentiment analysis, extract-
ing aspect terms along with the opinions be-
ing expressed from user-generated content is
one of the most important subtasks. Previ-
ous studies have shown that exploiting con-
nections between aspect and opinion terms is
promising for this task. In this paper, we pro-
pose a novel joint model that integrates recur-
sive neural networks and conditional random
fields into a unified framework for explicit as-
pect and opinion terms co-extraction. The
proposed model learns high-level discrimina-
tive features and double propagates informa-
tion between aspect and opinion terms, simul-
taneously. Moreover, it is flexible to incor-
porate hand-crafted features into the proposed
model to further boost its information extrac-
tion performance. Experimental results on the
dataset from SemEval Challenge 2014 task 4
show the superiority of our proposed model
over several baseline methods as well as the
winning systems of the challenge.

1 Introduction

Aspect-based sentiment analysis (Pang and Lee,
2008; Liu, 2011) aims to extract important infor-
mation, e.g., opinion targets, opinion expressions,
target categories, and opinion polarities, from user-
generated content, such as microblogs, reviews, etc.
This task was first studied by Hu and Liu (2004a;
2004b), followed by Popescu and Etzioni (2005),
Zhuang et al. (2006), Zhang et al. (2010), Qiu et
al. (2011), Li et al. (2010). In aspect-based senti-
ment analysis, one of the goals is to extract explicit
aspects of an entity from text, along with the opin-
ions being expressed. For example, in a restaurant
review “I have to say they have one of the fastest de-

livery times in the city.”, the aspect term is delivery
times, and the opinion term is fastest.

Among previous work, one of the approaches
is to accumulate aspect and opinion terms from a
seed collection without label information, by utiliz-
ing syntactic rules or modification relations between
them (Qiu et al., 2011; Liu et al., 2013b). In the
above example, if we know fastest is an opinion
word, then delivery times is probably inferred to be
an aspect because fastest is its modifier. However,
this approach largely relies on hand-coded rules and
is restricted to certain Part-of-Speech (POS) tags,
e.g., opinion words are restricted to be adjectives.
Another approach focuses on feature engineering
based on predefined lexicons, syntactic analysis,
etc. (Jin and Ho, 2009; Li et al., 2010). A sequence
labeling classifier is then built to extract aspect and
opinion terms. This approach requires extensive ef-
forts for designing hand-crafted features and only
combines features linearly for classification which
ignores higher order interactions.

To overcome the limitations of existing methods,
we propose a novel model, named Recursive Neu-
ral Conditional Random Fields (RNCRF). Specif-
ically, RNCRF consists of two main components.
The first component is a recursive neural network
(RNN)1 (Socher et al., 2010) based on a depen-
dency tree of each sentence. The goal is to learn
a high-level feature representation for each word in
the context of each sentence and make the represen-
tation learning for aspect and opinion terms inter-
active through the underlying dependency structure
among them. The output of the RNN is then fed into
a Conditional Random Field (CRF) (Lafferty et al.,
2001) to learn a discriminative mapping from high-

1Note that in this paper, RNN stands for recursive neural
network instead of recurrent neural network.

616

level features to labels, i.e., aspects, opinions, or
others, so that context information can be well cap-
tured. Our main contributions are to use RNN for
encoding aspect-opinion relations in high-level rep-
resentation learning and to present a joint optimiza-
tion approach based on maximum likelihood and
backpropagation to learn the RNN and CRF com-
ponents simultaneously. In this way, the label in-
formation of aspect and opinion terms can be dually
propagated from parameter learning in CRF to rep-
resentation learning in RNN. We conduct expensive
experiments on the dataset from SemEval challenge
2014 task 4 (subtask 1) (Pontiki et al., 2014) to ver-
ify the superiority of RNCRF over several baseline
methods as well as the winning systems of the chal-
lenge.

2 Related Work

2.1 Aspects and Opinions Co-Extraction

Hu et al. (2004a) proposed to extract product aspects
through association mining, and opinion terms by
augmenting a seed opinion set using synonyms and
antonyms in WordNet. In follow-up work, syntactic
relations are further exploited for aspect/opinion ex-
traction (Popescu and Etzioni, 2005; Wu et al., 2009;
Qiu et al., 2011). For example, Qiu et al. (2011) used
syntactic relations to double propagate and augment
the sets of aspects and opinions. Although the above
models are unsupervised, they heavily depend on
predefined rules for extraction and are restricted to
specific types of POS tags for product aspects and
opinions. Jin et al. (2009), Li et al. (2010), Jakob
et al. (2010) and Ma et al. (2010) modeled the ex-
traction problem as a sequence tagging problem and
proposed to use HMMs or CRFs to solve it. These
methods rely on rich hand-crafted features and do
not consider interactions between aspect and opin-
ion terms explicitly. Another direction is to use word
alignment model to capture opinion relations among
a sentence (Liu et al., 2012; Liu et al., 2013a). This
method requires sufficient data for modeling desired
relations.

Besides explicit aspects and opinions extraction,
there are also other lines of research related to
aspect-based sentiment analysis, including aspect
classification (Lakkaraju et al., 2014; McAuley et
al., 2012), aspect rating (Titov and McDonald, 2008;

Wang et al., 2011; Wang and Ester, 2014), domain-
specific and target-dependent sentiment classifica-
tion (Lu et al., 2011; Ofek et al., 2016; Dong et al.,
2014; Tang et al., 2015).

2.2 Deep Learning for Sentiment Analysis

Recent studies have shown that deep learning mod-
els can automatically learn the inherent semantic and
syntactic information from data and thus achieve
better performance for sentiment analysis (Socher et
al., 2011b; Socher et al., 2012; Socher et al., 2013;
Glorot et al., 2011; Kalchbrenner et al., 2014; Kim,
2014; Le and Mikolov, 2014). These methods gen-
erally belong to sentence-level or phrase/word-level
sentiment polarity predictions. Regarding aspect-
based sentiment analysis, Irsoy et al. (2014) ap-
plied deep recurrent neural networks for opinion ex-
pression extraction. Dong et al. (2014) proposed
an adaptive recurrent neural network for target-
dependent sentiment classification, where targets or
aspects are given as input. Tang et al. (2015) used
Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) for the same task. Neverthe-
less, there is little work in aspects and opinions co-
extraction using deep learning models.

To the best of our knowledge, the work of Liu
et al. (2015) and Yin et al. (2016) are the most re-
lated to ours. Liu et al. (2015) proposed to com-
bine recurrent neural network and word embeddings
to extract explicit aspects. However, the proposed
model simply uses recurrent neural network on top
of word embeddings, and thus its performance heav-
ily depends on the quality of word embeddings. In
addition, it fails to explicitly model dependency re-
lations or compositionalities within certain syntactic
structure in a sentence. Recently, Yin et al. (2016)
proposed an unsupervised learning method to im-
prove word embeddings using dependency path em-
beddings. A CRF is then trained with the embed-
dings independently in the pipeline.

Different from (Yin et al., 2016), our model does
not focus on developing a new unsupervised word
embedding methods, but encodes the information of
dependency paths into RNN for constructing syntac-
tically meaningful and discriminative hidden repre-
sentations with labels. Moreover, we integrate RNN
and CRF into a unified framework and develop a
joint optimization approach, instead of training word

617

embeddings and a CRF separately as in (Yin et al.,
2016). Note that Weiss et al. (2015) proposed to
combine deep learning and structured learning for
language parsing which can be learned by structured
perceptron. However, they also separate neural net-
work training with structured prediction.

2.3 Recursive Neural Networks

Among deep learning methods, RNN has shown
promising results on various NLP tasks, such as
learning phrase representations (Socher et al., 2010),
sentence-level sentiment analysis (Socher et al.,
2013), language parsing (Socher et al., 2011a), and
question answering (Iyyer et al., 2014). The tree
structures used for RNNs include constituency tree
and dependency tree. In a constituency tree, all the
words lie at leaf nodes, each internal node repre-
sents a phrase or a constituent of a sentence, and the
root node represents the entire sentence (Socher et
al., 2010; Socher et al., 2012; Socher et al., 2013).
In a dependency tree, each node including terminal
and nonterminal nodes, represents a word, with de-
pendency connections to other nodes (Socher et al.,
2014; Iyyer et al., 2014). The resultant model is
known as dependency-tree RNN (DT-RNN). An ad-
vantage of using dependency tree over the other is
the ability to extract word-level representations con-
sidering syntactic relations and semantic robustness.
Therefore, we adopt DT-RNN in this work.

3 Problem Statement

Suppose that we are given a training set of cus-
tomer reviews in a specific domain, denoted by S=
{s1, ..., sN}, where N is the number of review sen-
tences. For any si∈S, there may exist a set of aspect
terms Ai = {ai1, ..., ail}, where each aij ∈ Ai can
be a single word or a sequence of words expressing
explicitly some aspect of an entity, and a set of opin-
ion terms Oi = {oi1, ..., oim}, where each oir can
be a single word or a sequence of words expressing
the subjective sentiment of the comment holder. The
task is to learn a classifier to extract the set of aspect
terms Ai and the set of opinion terms Oi from each
review sentence si∈S.

This task can be formulated as a sequence tag-
ging problem by using the BIO encoding scheme.
Specifically, each review sentence si is composed

of a sequence of words si = {wi1, ..., wini}. Each
word wip ∈ si is labeled as one out of the following
5 classes: BA (beginning of aspect), IA (inside of as-
pect), BO (beginning of opinion), IO (inside of opin-
ion), and O (others). Let L= {BA, IA,BO, IO,O}.
We are also given a test set of review sentences de-
noted by S′={s′1, ..., s′N ′}, where N ′ is the number
of test reviews. For each test review s′i∈S′, our ob-
jective is to predict the class label y′iq ∈ L for each
word w′iq. Note that a sequence of predictions with
BA at the beginning followed by IA are indication
of one aspect, which is similar for opinion terms.2

4 Recursive Neural CRFs

As described in Section 1, RNCRF consists of two
main components: 1) a DT-RNN to learn a high-
level representation for each word in a sentence, and
2) a CRF to take the learned representation as input
to capture context around each word for explicit as-
pect and opinion terms extraction. Next, we present
these two components in details.

4.1 Dependency-Tree RNNs

We begin by associating each word w in our vo-
cabulary with a feature vector x ∈ Rd, which cor-
responds to a column of a word embedding matrix
We ∈ Rd×v, where v is the size of the vocabulary.
For each sentence, we build a DT-RNN based on the
corresponding dependency parse tree with word em-
beddings as initialization. An example of the depen-
dency parse tree is shown in Figure 1(a), where each
edge starts from the parent and points to its depen-
dent with a syntactic relation.

In a DT-RNN, each node n, including leaf nodes,
internal nodes and the root node, in a specific sen-
tence is associated with a word w, an input feature
vector xw, and a hidden vector hn∈Rd of the same
dimension as xw. Each dependency relation r is as-
sociated with a separate matrix Wr∈Rd×d. In addi-
tion, a common transformation matrixWv∈Rd×d is
introduced to map the word embedding xw at node
n to its corresponding hidden vector hn.

2In this work we focus on extraction of aspect and opinion
terms, not polarity predictions on opinion terms. Polarity pre-
diction can be done by either post-processing on the extracted
opinion terms or redefining the BIO labels by encoding the po-
larity information.

618

(a) Example of a dependency tree. (b) Example of a DT-RNN tree structure. (c) Example of a RNCRF structure.

Figure 1: Examples of dependency tree, DT-RNN structure and RNCRF structure for a review sentence.

Along with a particular dependency tree, a hidden
vector hn is computed from its own word embedding
xw at node n with the transformation matrixWv and
its children’s hidden vectors hchild(n) with the cor-
responding relation matrices {Wr}’s. For instance,
given the parse tree shown in Figure 1(a), we first
compute the leaf nodes associated with the words I
and the using Wv as follows,

hI = f(Wv · xI + b),

hthe = f(Wv · xthe + b),

where f is a nonlinear activation function and b is a
bias term. In this paper, we adopt tanh(·) as the ac-
tivation function. Once the hidden vectors of all the
leaf nodes are generated, we can recursively gener-
ate hidden vectors for interior nodes using the corre-
sponding relation matrix Wr and the common trans-
formation matrix Wv as follows,

hfood = f(Wv · xfood +WDET · hthe + b),

hlike = f(Wv · xlike +WDOBJ · hfood
+WNSUBJ · hI + b).

The resulting DT-RNN is shown in Figure 1(b). In
general, a hidden vector for any node n associated
with a word vector xw can be computed as follows,

hn = f

Wv · xw + b+

∑

k∈Kn

Wrnk
· hk

 , (1)

where Kn denotes the set of children of node n, rnk
denotes the dependency relation between node n and
its child node k, and hk is the hidden vector of the
child node k. The parameters of DT-RNN, ΘRNN =
{Wv,Wr,We, b}, are learned during training.

4.2 Integration with CRFs
CRFs are a discriminative graphical model for struc-
tured prediction. In RNCRF, we feed the output
of DT-RNN, i.e., the hidden representation of each
word in a sentence, to a CRF. Updates of parameters
for RNCRF are carried out successively from the
top to bottom, by propagating errors through CRF
to the hidden layers of RNN (including word em-
beddings) using backpropagation through structure
(BPTS) (Goller and Küchler, 1996).

Formally, for each sentence si, we denote the in-
put for CRF by hi, which is generated by DT-RNN.
Here hi is a matrix with columns of hidden vec-
tors {hi1, ..., hini} to represent a sequence of words
{wi1, ..., wini} in a sentence si. The model com-
putes a structured output yi = {yi1, ..., yini} ∈Y,
where Y is a set of possible combinations of la-
bels in label set L. The entire structure can be
represented by an undirected graph G = (V,E)
with cliques c ∈ C. In this paper, we employed
linear-chain CRF, which has two different cliques:
unary cliques (U) representing input-output connec-
tion, and pairwise cliques (P) representing adjacent
output connections, as shown in Figure 1(c). Dur-
ing inference, the model aims to output ŷ with the
maximum conditional probability p(y|h). (We drop
the subscript i here for simplicity.) The probability
is computed from potential outputs of the cliques:

p(y|h) =
1

Z(h)

∏

c∈C
ψc(h,yc), (2)

where Z(h) is the normalization term, and
ψc(h,yc) is the potential of clique c, computed as
ψc(h,yc) = exp 〈Wc, F (h,yc)〉, where the RHS is
the exponential of a linear combination of feature
vector F (h,yc) for clique c, and the weight vec-
tor Wc is tied for unary and pairwise cliques. We

619

Figure 2: An example for computing input-ouput
potential for the second position like.

also incorporate a context window of size 2T + 1
when computing unary potentials (T is a hyper-
parameter). Thus, the potential of unary clique at
node k can be written as

ψU (h, yk) = exp

(
(W0)yk ·hk +

T∑

t=1

(W−t)yk ·hk−t

+
T∑

t=1

(W+t)yk · hk+t

)
, (3)

where W0, W+t and W−t are weight matrices of the
CRF for the current position, the t-th position to the
right, and the t-th position to the left within context
window, respectively. The subscript yk indicates the
corresponding row in the weight matrix.

For instance, Figure 2 shows an example of win-
dow size 3. At the second position, the input features
for like are composed of the hidden vectors at posi-
tion 1 (hI), position 2 (hlike) and position 3 (hthe).
Therefore, the conditional distribution for the entire
sequence y in Figure 1(c) can be calculated as

p(y|h)=
1

Z(h)
exp

(
4∑

k=1

(W0)yk
·hk+

4∑

k=2

(W−1)yk
·hk−1

+

3∑

k=1

(W+1)yk
·hk+1+

3∑

k=1

Vyk,yk+1

)
,

where the first three terms in the exponential of the
RHS consider unary clique while the last term con-
siders the pairwise clique with matrix V represent-
ing pairwise state transition score. For simplicity
in description on parameter updates, we denote the
log-potential for clique c ∈ {U,P} by gc(h,yc) =
〈Wc, F (h,yc)〉.

4.3 Joint Training for RNCRF
Through the objective of maximum likelihood, up-
dates for parameters of RNCRF are first conducted
on the parameters of the CRF (unary weight matri-
ces ΘU = {W0,W+t,W−t} and pairwise weight
matrix V) by applying chain rule to log-potential
updates. Below is the gradient for ΘU (updates for

V are similar through the log-potential of pairwise
clique gP (y′k, y

′
k+1)):

4ΘU =
∂ − log p(y|h)

∂gU (h, y′k)
· ∂gU (h, y′k)

∂ΘU
, (4)

where

∂ − log p(y|h)

∂gU (h, y′k)
= −(1yk=y′

k
− p(y′k|h)), (5)

and y′k represents possible label configuration of
node k. The hidden representations of each word
and the parameters of DT-RNN are updated sub-
sequently by applying chain rule with (5) through
BPTS as follows,

4hroot =
∂ − log p(y|h)

∂gU (h, y′root)
· ∂gU (h, y′root)

∂hroot
, (6)

4hk 6=root =
∂ − log p(y|h)

∂gU (h, y′k)
· ∂gU (h, y′k)

∂hk

+4hpar(k) ·
∂hpar(k)
∂hk

, (7)

4ΘRNN =
K∑

k=1

∂ − log p(y|h)

∂hk
· ∂hk
∂ΘRNN

, (8)

where hroot represents the hidden vector of the word
pointed by ROOT in the corresponding DT-RNN.
Since this word is the topmost node in the tree, it
only inherits error from the CRF output. In (7),
hpar(k) denotes the hidden vector of the parent node
of node k in DT-RNN. Hence the lower nodes re-
ceive error from both the CRF output and error prop-
agation from parent node. The parameters within
DT-RNN, ΘRNN, are updated by applying chain
rule with respect to updates of hidden vectors, and
aggregating among all associated nodes, as shown
in (8). The overall procedure of RNCRF is summa-
rized in Algorithm 1.

5 Discussion

The best performing system (Toh and Wang, 2014)
for SemEval challenge 2014 task 4 (subtask 1) em-
ployed CRFs with extensive hand-crafted features
including those induced from dependency trees.
However, their experiments showed that the addition
of the features induced from dependency relations
does not improve the performance. This indicates

620

Algorithm 1 Recursive Neural CRFs
Input: A set of customer review sequences: S =
{s1, ..., sN}, and feature vectors of d dimensions for each
word {xw}’s, window size T for CRFs
Output: Parameters: Θ=

{
ΘRNN,ΘU , V

}
Initialization: Initialize We using word2vec. Initialize Wv

and {Wr}’s randomly with uniform distribution between[
−

√
6√

2d+1
,
√
6√

2d+1

]
. Initialize W0, {W+t}’s, {W−t}’s, V ,

and b with all 0’s
for each sentence si do

1: Use DT-RNN (1) to generate hi

2: Compute p(yi|hi) using (2)
3: Use the backpropagation algorithm to update parame-
ters Θ through (4)-(8)

end for

the difficulty of incorporating dependency structure
explicitly as input features, which motivates the de-
sign of our model to use DT-RNN to encode depen-
dency between words for feature learning. The most
important advantage of RNCRF is the ability to learn
the underlying dual propagation between aspect and
opinion terms from the tree structure itself. Specif-
ically as shown in Figure 1(c), where the aspect is
food and the opinion expression is like. In the de-
pendency tree, food depends on like with the relation
DOBJ. During training, RNCRF computes the hid-
den vector hlike for like, which is also obtained from
hfood. As a result, the prediction for like is affected
by hfood. This is one-way propagation from food
to like. During backpropagation, the error for like is
propagated through a top-down manner to revise the
representation hfood. This is the other-way propa-
gation from like to food. Therefore, the dependency
structure together with the learning approach help to
enforce the dual propagation of aspect-opinion pairs
as long as the dependency relation exists, either di-
rectly or indirectly.

5.1 Adding Linguistic/Lexicon Features

RNCRF is an end-to-end model, where feature engi-
neering is not necessary. However, it is flexible to in-
corporate light hand-crafted features into RNCRF to
further boost its performance, such as features from
POS tags, name-list, or sentiment lexicon. These
features could be appended to the hidden vector of
each word, but keep fixed during training, unlike
learnable neural inputs and the CRF weights as de-
scribed in Section 4.3. As will be shown in exper-

Domain Training Test Total
Restaurant 3,041 800 3,841
Laptop 3,045 800 3,845
Total 6,086 1,600 7,686

Table 1: SemEval Challenge 2014 task 4 dataset

iments, RNCRF without any hand-crafted features
slightly outperforms the best performing systems
that involve heavy feature engineering efforts, and
RNCRF with light feature engineering can achieve
even better performance.

6 Experiment

6.1 Dataset and Experimental Setup
We evaluate our model on the dataset from SemEval
Challenge 2014 task 4 (subtask 1), which includes
reviews from two domains: restaurant and laptop3.
The detailed description of the dataset is given in
Table 1. As the original dataset only includes manu-
ally annotate labels for aspect terms but not for opin-
ion terms, we manually annotated opinion terms for
each sentence by ourselves to facilitate our experi-
ments.

For word vector initialization, we train word em-
beddings with word2vec (Mikolov et al., 2013) on
the Yelp Challenge dataset4 for the restaurant do-
main and on the Amazon reviews dataset5 (McAuley
et al., 2015) for the laptop domain. The Yelp dataset
contains 2.2M restaurant reviews with 54K vocab-
ulary size. For the Amazon reviews, we only ex-
tracted the electronic domain that contains 1M re-
views with 590K vocabulary size. We vary differ-
ent dimensions for word embeddings and chose 300
for both domains. Empirical sensitivity studies on
different dimensions of word embeddings are also
conducted. Dependency trees are generated using
Stanford Dependency Parser (Klein and Manning,
2003). Regarding CRFs, we implement a linear-
chain CRF using CRFSuite (Okazaki, 2007). Be-
cause of the relatively small size of training data
and a large number of parameters, we perform pre-
training on the parameters of DT-RNN with cross-

3Experiments with more publicly available datasets, e.g.
restaurant review dataset from SemEval Challenge 2015 task
12 will be conducted in our future work.

4http://www.yelp.com/dataset challenge
5http://jmcauley.ucsd.edu/data/amazon/links.html

621

entropy error, which is a common strategy for deep
learning (Erhan et al., 2009). We implement mini-
batch stochastic gradient descent (SGD) with a batch
size of 25, and an adaptive learning rate (AdaGrad)
initialized at 0.02 for pretraining of DT-RNN, which
runs 4 epochs for the restaurant domain and 5 epochs
for the laptop domain. For parameter learning of the
joint model RNCRF, we implement SGD with a de-
caying learning rate initialized at 0.02. We also try
with varying context window size, and use 3 for the
laptop domain and 5 for the restaurant domain, re-
spectively. All parameters are chosen by cross vali-
dation.

As discussed in Section 5.1, hand-crafted features
can be easily incorporated into RNCRF. We gen-
erate three types of simple features based on POS
tags, name-list and sentiment lexicon to show fur-
ther improvement by incorporating these features.
Following (Toh and Wang, 2014), we extract two
sets of name list from the training data for each
domain, where one includes high-frequency aspect
terms, and the other includes high-probability as-
pect words. These two sets are used to construct two
lexicon features, i.e. we build a 2D binary vector:
if a word is in a set, the corresponding value is 1,
otherwise 0. For POS tags, we use Stanford POS
tagger (Toutanova et al., 2003), and convert them
to universal POS tags that have 15 different cate-
gories. We then generate 15 one-hot POS tag fea-
tures. For sentiment lexicon, we use the collection of
commonly used opinion words (around 6,800) (Hu
and Liu, 2004a). Similar to name list, we create a bi-
nary feature to indicate whether the word belongs to
opinion lexicon. We denote by RNCRF+F the pro-
posed model with the three types of features.

Compared to the winning systems of SemEval
Challenge 2014 task 4 (subtask 1), RNCRF or RN-
CRF+F uses additional labels of opinion terms for
training. Therefore, to conduct fair comparison ex-
periments with the winning systems, we implement
RNCRF-O by omitting opinion labels to train our
model (i.e., labels become “BA”, “IA”, “O”). Ac-
cordingly, we denote by RNCRF-O+F the RNCRF-
O model with the three additional types of hand-
crafted features.

6.2 Experimental Results

We compare our model with several baselines:

• CRF-1: a linear-chain CRF with standard lin-
guistic features including word string, stylis-
tics, POS tag, context string, and context POS
tags.

• CRF-2: a linear-chain CRF with both stan-
dard linguistic features and dependency infor-
mation including head word, dependency rela-
tions with parent token and child tokens.

• LSTM: an LSTM network built on top of word
embeddings proposed by (Liu et al., 2015). We
keep original settings in (Liu et al., 2015) but
replace their word embeddings with ours (300
dimension). We try different hidden layer di-
mensions (50, 100, 150, 200) and reported the
best result with size 50.

• LSTM+F: the above LSTM model with the
three additional types of hand-crafted features
as with RNCRF.

• SemEval-1, SemEval-2: the top two winning
systems for SemEval challenge 2014 task 4
(subtask 1).

• WDEmb+B+CRF6: the model proposed
by (Yin et al., 2016) using word and de-
pendency path embeddings combined with
linear context embedding features, dependency
context embedding features and hand-crafted
features (i.e., feature engineering) as CRF
input.

The comparison results are shown in Table 2 for both
the restaurant domain and the laptop domain. Note
that we provide the same annotated dataset (both as-
pect labels and opinion labels are included for train-
ing) for CRF-1, CRF-2 and LSTM for fair compar-
ison. It is clear that our proposed model RNCRF
achieves superior performance compared with most
of the baseline models. The performance is even bet-
ter by adding simple hand-crafted features, i.e., RN-
CRF+F, with 0.92% and 3.87% absolute improve-
ment over the best system in the challenge for aspect
extraction for the restaurant domain and the laptop
domain, respectively. This shows the advantage of

6We report the best results from the original paper (Yin et
al., 2016).

622

Restaurant Laptop
Models Aspect Opinion Aspect Opinion
SemEval-1 84.01 - 74.55 -
SemEval-2 83.98 - 73.78 -
WDEmb+B+CRF 84.97 - 75.16 -
CRF-1 77.00 78.95 66.21 71.78
CRF-2 78.37 78.65 68.35 70.05
LSTM 81.15 80.22 72.73 74.98
LSTM+F 82.99 82.90 73.23 77.67

RNCRF-O 82.73 - 74.52 -
RNCRF-O+F 84.25 - 77.26 -
RNCRF 84.05 80.93 76.83 76.76
RNCRF+F 84.93 84.11 78.42 79.44

Table 2: Comparison results in terms of F1 scores.

combining high-level continuous features and dis-
crete hand-crafted features. Though CRFs usually
show promising results in sequence tagging prob-
lems, they fail to achieve comparable performance
when lacking of extensive features (e.g., CRF-1). By
adding dependency information explicitly in CRF-
2, the result only improves slightly for aspect ex-
traction. Alternatively, by incorporating dependency
information into a deep learning model (e.g., RN-
CRF), the result shows more than 7% improvement
for aspect extraction and 2% for opinion extraction.

By removing the labels for opinion terms,
RNCRF-O produces inferior results than RNCRF
because the effect of dual propagation of aspect and
opinion pairs disappears with the absence of opinion
labels. This verifies our previous assumption that
DT-RNN could learn the interactive effects within
aspects and opinions. However, the performance of
RNCRF-O is still comparable to the top systems and
even better with the addition of simple linguistic fea-
tures: 0.24% and 2.71% superior than the best sys-
tem in the challenge for the restaurant domain and
the laptop domain, respectively. This shows the ro-
bustness of our model even without additional opin-
ion labels.

LSTM has shown comparable results for aspect
extraction (Liu et al., 2015). However, in their
work, they used well-pretrained word embeddings
by training with large corpus or extensive external
resources, e.g., chunking, and NER. To compare
their model with RNCRF, we re-implement LSTM
with the same word embedding strategy and label-
ing resources as ours. The results show that our

Restaurant Laptop
Models Aspect Opinion Aspect Opinion
DT-RNN+SoftMax 72.45 69.76 66.11 64.66
CRF+word2vec 82.57 78.83 63.62 56.96
RNCRF 84.05 80.93 76.83 76.76
RNCRF+POS 84.08 81.48 77.04 77.45
RNCRF+NL 84.24 81.22 78.12 77.20
RNCRF+Lex 84.21 84.14 77.15 78.56
RNCRF+F 84.93 84.11 78.42 79.44

Table 3: Impact of different components.

model outperforms LSTM in aspect extraction by
2.90% and 4.10% for the restaurant domain and
the laptop domain, respectively. We conclude that
a standard LSTM model fails to extract the rela-
tions between aspect and opinion terms. Even with
the addition of same linguistic features, LSTM is
still inferior than RNCRF itself in terms of as-
pect extraction. Moreover, our result is compara-
ble with WDEmb+B+CRF in the restaurant domain
and better in the laptop domain (+3.26%). Note that
WDEmb+B+CRF appended dependency context in-
formation into CRF while our model encode such
information into high-level representation learning.

To test the impact of each component of RNCRF
and the three types of hand-crafted features, we con-
duct experiments on different model settings:

• DT-RNN+SoftMax: rather than using a CRF,
a softmax classifier is used on top of DT-RNN.

• CRF+word2vec: a linear-chain CRF with
word embeddings only without using DT-RNN.

• RNCRF+POS/NL/Lex: the RNCRF model
with POS tag or name list or sentiment lexicon
feature(s).

The comparison results are shown in Table 3. Sim-
ilarly, both aspect and opinion term labels are pro-
vided for training for each of the above mod-
els. Firstly, RNCRF achieves much better re-
sults compared to DT-RNN+SoftMax (+11.60% and
+10.72% for the restaurant domain and the lap-
top domain in aspect extraction). This is because
DT-RNN fails to fully exploit context information
for sequence labeling, which, in contrast, can be
achieved by CRF. Secondly, RNCRF outperforms
CRF+word2vec, which proves the importance of

623

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

dimension

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

f1
-s
co

re

aspect
opinion

(a) On the restaurant domain.

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

dimension

0.55

0.60

0.65

0.70

0.75

0.80

0.85

f1
-s
co

re

aspect
opinion

(b) On the laptop domain.

Figure 3: Sensitivity studies on word embeddings.

DT-RNN for modeling interactions between aspects
and opinions. Hence, the combination of DT-RNN
and CRF inherits the advantages from both mod-
els. Moreover, by separately adding hand-crafted
features, we can observe that name-list-based fea-
tures and the sentiment lexicon feature are most ef-
fective for aspect extraction and opinion extraction,
respectively. This may be explained by the fact that
name-list-based features usually contain informative
evident for aspect terms and sentiment lexicon pro-
vides explicit indication about opinions.

Besides the comparison experiments, we also
conduct sensitivity test for our proposed model in
terms of word vector dimensions. We tested a set of
different dimensions ranging from 25 to 400, with
25 increment. The sensitivity plot is shown in Fig-
ure 3. The performance for aspect extraction is
smooth with different vector lengths for both do-
mains. For restaurant domain, the result is stable
when dimension is larger than or equal to 100, with
the highest at 325. For the laptop domain, the best
result is at dimension 300, but with relatively small

variations. For opinion extraction, the performance
reaches a good level when the dimension is larger
than or equal to 75 for the restaurant domain and
125 for the laptop domain. This proves the stability
and robustness of our model.

7 Conclusion

We have presented a joint model, RNCRF, that
achieves the state-of-the-art performance for explicit
aspect and opinion term extraction on a benchmark
dataset. With the help of DT-RNN, high-level fea-
tures can be learned by encoding the underlying dual
propagation of aspect-opinion pairs. RNCRF com-
bines the advantages of DT-RNNs and CRFs, and
thus outperforms the traditional rule-based meth-
ods in terms of flexibility, because aspect terms and
opinion terms are not only restricted to certain ob-
served relations and POS tags. Compared to fea-
ture engineering methods with CRFs, the proposed
model saves much effort in composing features, and
it is able to extract higher-level features obtained
from non-linear transformations.

Acknowledgements

This research is partially funded by the Economic
Development Board and the National Research
Foundation of Singapore. Sinno J. Pan thanks the
support from Fuji Xerox Corporation through joint
research on Multilingual Semantic Analysis and the
NTU Singapore Nanyang Assistant Professorship
(NAP) grant M4081532.020.

References

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming
Zhou, and Ke Xu. 2014. Adaptive recursive neural
network for target-dependent twitter sentiment classi-
fication. In ACL, pages 49–54.

Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Ben-
gio, Samy Bengio, and Pascal Vincent. 2009. The
difficulty of training deep architectures and the effect
of unsupervised pre-training. In AISTATS, pages 153–
160.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In ICML,
pages 97–110.

624

Christoph Goller and Andreas Küchler. 1996. Learning
task-dependent distributed representations by back-
propagation through structure. In ICNN, pages 347–
352.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Minqing Hu and Bing Liu. 2004a. Mining and summa-
rizing customer reviews. In KDD, pages 168–177.

Minqing Hu and Bing Liu. 2004b. Mining opinion fea-
tures in customer reviews. In AAAI, pages 755–760.

Ozan İrsoy and Claire Cardie. 2014. Opinion min-
ing with deep recurrent neural networks. In EMNLP,
pages 720–728.

Mohit Iyyer, Jordan L. Boyd-Graber, Leonardo
Max Batista Claudino, Richard Socher, and
Hal Daumé III. 2014. A neural network for
factoid question answering over paragraphs. In
EMNLP, pages 633–644.

Niklas Jakob and Iryna Gurevych. 2010. Extracting
opinion targets in a single- and cross-domain setting
with conditional random fields. In EMNLP, pages
1035–1045.

Wei Jin and Hung Hay Ho. 2009. A novel lexicalized
hmm-based learning framework for web opinion min-
ing. In ICML, pages 465–472.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In ACL, pages 655–665.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In EMNLP, pages 1746–1751.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. In ACL, pages 423–430.

John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In ICML, pages 282–289.

Himabindu Lakkaraju, Richard Socher, and Christo-
pher D. Manning. 2014. Aspect specific senti-
ment analysis using hierarchical deep learning. In
NIPS Workshop on Deep Learning and Representation
Learning.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In ICML,
pages 1188–1196.

Fangtao Li, Chao Han, Minlie Huang, Xiaoyan Zhu,
Ying-Ju Xia, Shu Zhang, and Hao Yu. 2010.
Structure-aware review mining and summarization. In
COLING, pages 653–661.

Kang Liu, Liheng Xu, and Jun Zhao. 2012. Opinion
target extraction using word-based translation model.
In EMNLP-CoNLL, pages 1346–1356.

Kang Liu, Liheng Xu, Yang Liu, and Jun Zhao. 2013a.
Opinion target extraction using partially-supervised
word alignment model. In IJCAI, pages 2134–2140.

Qian Liu, Zhiqiang Gao, Bing Liu, and Yuanlin Zhang.
2013b. A logic programming approach to aspect ex-
traction in opinion mining. In WI, pages 276–283.

Pengfei Liu, Shafiq Joty, and Helen Meng. 2015. Fine-
grained opinion mining with recurrent neural networks
and word embeddings. In EMNLP, pages 1433–1443.

Bing Liu. 2011. Web Data Mining: Exploring Hy-
perlinks, Contents, and Usage Data. Second Edition.
Data-Centric Systems and Applications. Springer.

Yue Lu, Malu Castellanos, Umeshwar Dayal, and
ChengXiang Zhai. 2011. Automatic construction of a
context-aware sentiment lexicon: An optimization ap-
proach. In WWW, pages 347–356.

Tengfei Ma and Xiaojun Wan. 2010. Opinion target
extraction in Chinese news comments. In COLING,
pages 782–790.

Julian McAuley, Jure Leskovec, and Dan Jurafsky. 2012.
Learning attitudes and attributes from multi-aspect re-
views. In ICDM, pages 1020–1025.

Julian McAuley, Christopher Targett, Qinfeng Shi, and
Anton van den Hengel. 2015. Image-based recom-
mendations on styles and substitutes. In SIGIR, pages
43–52.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Nir Ofek, Soujanya Poria, Lior Rokach, Erik Cam-
bria, Amir Hussain, and Asaf Shabtai. 2016. Un-
supervised commonsense knowledge enrichment for
domain-specific sentiment analysis. Cognitive Com-
putation, 8(3):467–477.

Naoaki Okazaki. 2007. CRFsuite: a fast im-
plementation of conditional random fields (CRFs).
http://www.chokkan.org/software/crfsuite/.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and Trends in Infor-
mation Retrieval, 2(1-2).

Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Har-
ris Papageorgiou, Ion Androutsopoulos, and Suresh
Manandhar. 2014. Semeval-2014 task 4: Aspect
based sentiment analysis. In SemEval, pages 27–35.

Ana-Maria Popescu and Oren Etzioni. 2005. Extract-
ing product features and opinions from reviews. In
EMNLP, pages 339–346.

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen.
2011. Opinion word expansion and target extraction
through double propagation. Computational Linguis-
tics, 37(1):9–27.

625

Richard Socher, Christopher D. Manning, and Andrew Y.
Ng. 2010. Learning Continuous Phrase Representa-
tions and Syntactic Parsing with Recursive Neural Net-
works. In NIPS, pages 1–9.

Richard Socher, Cliff C. Lin, Andrew Y. Ng, and Christo-
pher D. Manning. 2011a. Parsing natural scenes and
natural language with recursive neural networks. In
ICML, pages 129–136.

Richard Socher, Jeffrey Pennington, Eric H. Huang, An-
drew Y. Ng, and Christopher D. Manning. 2011b.
Semi-Supervised Recursive Autoencoders for Predict-
ing Sentiment Distributions. In EMNLP, pages 151–
161.

Richard Socher, Brody Huval, Christopher D. Manning,
and Andrew Y. Ng. 2012. Semantic Compositionality
Through Recursive Matrix-Vector Spaces. In EMNLP,
pages 1201–1211.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Y. Ng, and Christo-
pher Potts. 2013. Recursive deep models for se-
mantic compositionality over a sentiment treebank. In
EMNLP, pages 1631–1642.

Richard Socher, Andrej Karpathy, Quoc V. Le, Christo-
pher D. Manning, and Andrew Y. Ng. 2014.
Grounded compositional semantics for finding and de-
scribing images with sentences. TACL, 2:207–218.

Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting Liu.
2015. Target-dependent sentiment classification with
long short term memory. CoRR, abs/1512.01100.

Ivan Titov and Ryan T. McDonald. 2008. A joint model
of text and aspect ratings for sentiment summarization.
In ACL, pages 308–316.

Zhiqiang Toh and Wenting Wang. 2014. DLIREC: As-
pect term extraction and term polarity classification
system. In SemEval, pages 235–240.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In NAACL,
pages 173–180.

Hao Wang and Martin Ester. 2014. A sentiment-aligned
topic model for product aspect rating prediction. In
EMNLP, pages 1192–1202.

Hongning Wang, Yue Lu, and ChengXiang Zhai. 2011.
Latent aspect rating analysis without aspect keyword
supervision. In KDD, pages 618–626.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In ACL-IJCNLP, pages 323–
333.

Yuanbin Wu, Qi Zhang, Xuanjing Huang, and Lide Wu.
2009. Phrase dependency parsing for opinion mining.
In EMNLP, pages 1533–1541.

Yichun Yin, Furu Wei, Li Dong, Kaimeng Xu, Ming
Zhang, and Ming Zhou. 2016. Unsupervised word
and dependency path embeddings for aspect term ex-
traction. In IJCAI, pages 2979–2985.

Lei Zhang, Bing Liu, Suk Hwan Lim, and Eamonn
O’Brien-Strain. 2010. Extracting and ranking prod-
uct features in opinion documents. In COLING, pages
1462–1470.

Li Zhuang, Feng Jing, and Xiao-Yan Zhu. 2006. Movie
review mining and summarization. In CIKM, pages
43–50.

626

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 627–637,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Extracting Aspect Specific Opinion Expressions

Abhishek Laddha
IIT Delhi ∗

New Delhi, India, 110016
laddhaabhishek11@gmail.com

Arjun Mukherjee
Department of Computer Science,
University of Houston, TX, USA

arjun@cs.uh.edu

Abstract

Opinionated expression extraction is a cen-
tral problem in fine-grained sentiment anal-
ysis. Most existing works focus on either
generic subjective expression or aspect ex-
pression extraction. However, in opinion
mining, it is often desirable to mine the as-
pect specific opinion expressions (or aspect-
sentiment phrases) containing both the as-
pect and the opinion. This paper proposes
a hybrid generative-discriminative framework
for extracting such expressions. The hybrid
model consists of (i) an unsupervised gener-
ative component for modeling the semantic
coherence of terms (words/phrases) based on
their collocations across different documents,
and (ii) a supervised discriminative sequence
modeling component for opinion phrase ex-
traction. Experimental results using Ama-
zon.com reviews demonstrate the effective-
ness of the approach that significantly outper-
forms several state-of-the-art baselines.

1 Introduction

Aspect based sentiment analysis is one of the main
frameworks in opinion mining (Liu and Zhang,
2012). Most of the websites only display the ag-
gregated ratings of products but people are more in-
terested in fine-grained opinions that capture aspect
specific properties in reviews. Therefore, it is desir-
able to have a holistic approach to mine aspect spe-
cific opinion expressions containing both aspect and

∗Research performed during author’s internship at Univer-
sity of Houston

opinion terms within the sentence context as a com-
posite aspect-sentiment phrase (e.g., “had to flash
firmware everyday”, “clear directions in voice” etc.)
and further group them under coherent aspect cate-
gories. Apart from knowing the key issues in prod-
ucts that are often expressed via aspect-sentiment
phrases, they are also useful in applications such
as comparing similar products and summarizing
their important features where it is more conve-
nient to have the aspect-sentiment phrases rather
than generic aspect/sentiment words lacking the nat-
ural aspect opinion correspondence in the right con-
text. They can also be applied to the various tasks
such as sentiment classification, comparative aspect
evaluations, aspect rating prediction, etc.

The thread of research in (Brody and Elhadad,
2010; Titov and McDonald, 2008; Zhao et al., 2010;
Mei et al., 2007; Jo and Oh, 2011) focus on extract-
ing and grouping aspect and opinion words via gen-
erative models but lack the natural aspect opinion
correspondence (e.g., in the manner they appear in
sentences). (Wang et al., 2016; Fei et al., 2016) can
discover aspect specific opinion unigrams but does
not focus on phrases. The thread on fine grained
opinion expressions (Wiebe et al., 2005; Choi et al.,
2006; Breck et al., 2007) focus on subjective expres-
sion extraction which are generic instead of aspect
specific. Formally, the task can be stated as follows:

Given a set of reviews, for each sentence,
s = (w1, . . . wn), with the head aspect
(HA), wHA=i, i ∈ [1, n], discover a sub-sequence
(wp, . . . wq) where p ≤ i ≤ q that best describes
the aspect-sentiment phrase containing the head
aspect. We refer head aspect to the word describing

627

fine-grained property of product. Further, group
these phrases under relevant aspect categories. The
examples below show labeled aspect-sentiment
phrases within [[]] with the head aspect (HA)
italicized:

• I’ve been very happy with it so far done a
[[firmware update without a hitch]].
• After less than two years, the [[signal became

spotty]].

In this paper, we propose a novel hybrid model
to solve the problem. We call this Phrase Senti-
ment Model (PSM). PSM is capable of extracting
a myriad of expression types covering: verb phrases
(“screen has poor viewability”), noun, adjective or
adverbial phrase (“recurrent black screen of death”,
“quite stable and fast connection”), implied positive
(“voice activated directions”), implied negative (“re-
quires reboot every few hours”) etc. The hybrid
framework facilitates holistic modeling that caters
for varied expression types (leveraging its discrim-
inative sequence model) and also grouping them un-
der relevant aspect categories with context (exploit-
ing its generative framework). Our approach is also
context and polarity independent facilitating generic
aspect-sentiment phrase extraction in any domain.

Further, we propose a novel sampling scheme
based on Generalized Pólya urn models that opti-
mizes phrasal collocations to improve coherence. To
the best of our knowledge, a hybrid framework has
not been attempted before for opinion phrase ex-
traction. Additionally, the paper produced a labeled
dataset of aspect specific opinion phrases across 4
domains containing more than 5200 sentences coded
with phrase boundaries across both positive and neg-
ative polarities which will be released to serve as a
language resource. Experimental evaluation shows
that our approach outperformed the baselines by a
large margin.

2 Related Work

Subjective expression extraction (Choi et al., 2005)
has traditionally used sequence models (e.g., CRFs).
Various parsing, syntactic, lexical and dictionary
based features (Kim and Hovy, 2006; Jakob and
Gurevych, 2010; Kobayashi et al., 2007) have been
used for subjective expression extraction. In (Yang

and Cardie, 2013; Johansson and Moschitti, 2011)
dependency relations were also used for opinion ex-
pression extraction. Sauper et al., (2011) employs
an HMM over words and model the latent topics as
states in an HMM to discover the product properties
(often aspects) and its associated attributes (pos/neg)
polarities separately. In Yang and Cardie, (2012)
a semi-CRF based approach is used which allow
sequence labeling at segment level and (Yang and
Cardie, 2014) employed semi-CRF for opinion ex-
pression intensity and polarity classification. How-
ever, all the above works focus on generic subjective
expressions as opposed to aspect specific opinion-
sentiment phrases.

In (Choi et al., 2006; Yang and Cardie, 2013)
joint models were proposed for identifying opin-
ion holders and expression, relations among them in
news articles. In (Johansson and Moschitti, 2011)
a re-ranking approach was used on the output of
a sequence model to improve opinion expression
extraction. In (Li et al., 2015; Mukherjee, 2016)
subjective expressions implying a negative opin-
ion were discovered using sequence models and
markov networks; while in (Berend, 2011) super-
vised keyphrase extraction was used for phrase ex-
traction. These works mostly relied on word level
features under the first-order Markov assumption.
Above works are tailored for only expression extrac-
tion and do not group coherent phrases under rele-
vant aspect categories.

Another thread of research involves topic phrase
mining. Wang et al., (2007) proposes a Topical n-
gram model (TNG) that mines phrases based on sta-
tistical collocation. Lindsey et al., (2012) employ
hierarchical Pitman-Yor process to model phrases.
In Fei et al., (2014), Generalized Pólya urn model
(LDA-P-GPU) was used to group the candidate noun
phrases. In (El-Kishky et al., 2014; Liu et al., 2015),
frequency based information were used for mining
phrases that are good for generic phrases but can-
not model relevant yet longer phrases due to their
infrequency. Thus, they are unable to capture long
phrases containing both aspect and opinion. The
models TNG and LDA-P-GPU are closest to our
task as they can discover relevant aspect expressions
that can contain opinions and are considered as base-
lines.

Next there are works that generate phrasal

628

Figure 1: Plate Notation of PSM

datasets. In SemEval 2015, Aspect based Sentiment
Analysis Task (Pontiki et al., 2015), a dataset was
produced that had annotations for aspect phrases.
The focus was on aspect phrases as opposed to
aspect-sentiment phrases. The MPQA 2.0 corpus
(Wiebe et al., 2005) has some labeled opinion ex-
pressions, but they are generic subjective expres-
sions as opposed to aspect-sentiment phrases (see
Section 1) we find in reviews.

Zhao et al., (2011) extracts topical phrase in
tweets using relevance and interestingness. Wu et
al., (2009) proposed a phrase dependency parsing
approach to extract product feature (aspect expres-
sion) and opinion expression and the relation be-
tween them. They considered all noun and verb
phrases (NPs, VPs) as product features and its sur-
rounding dictionary opinion words as opinions. Fea-
tures were constructed using phrase dependency tree
to extract relation among all product features and
opinions that were later used in aspect and opinion
expression extraction. Although, Wu et al., (2009)
doesn’t discover aspect specific opinion phrases, its
use of NPs in extracting candidate opinion phrases
is similar to Fei et al., (2014) which is considered as
a baseline.

3 Phrase Sentiment Model (PSM)

PSM is a hybrid between generative and discrimina-
tive modeling that combines the best of both worlds.
Its generative modeling lays the foundation for emis-
sion of aspects and aspect specific opinion phrases in
documents, while its discriminative sequence mod-
eling component (via an embedded CRF) facilitates
aspect specific opinion phrase extraction.

As noted in Titov and McDonald (2008), model-
ing entire reviews as documents tend to correspond

to the global properties of a product (e.g., brand,
name, etc.) resulting in rather overlapping aspects.
To avoid this, we perform sentence level model-
ing that helps improve aspect sharpness. A review
sentence sd of N words, is denoted as wd,s,j =
{wd,s,1, wd,s,2 . . . wd,s,N} where each wd,s,j is one
of the V words in the vocabulary. There can be ex-
ponential number of phrase sequence possible for
each sentence sd i.e. 〈wd,s,j〉j=st+len−1

j=st of arbi-
trary length len(len = 1 for words; len > 1 for
phrases) starting at an index st ∈ [0, |sd|]. We
observed that most of opinion expression are cen-
tered around the head aspect thereby causing the
space of potential opinion expressions to be quite
sparse. We took advantage of following observa-
tion and trained a sequence model (e.g., CRF) for
phrase sequence tagging as described in the next
subsection. We generated M = 5 best sequence
labelings of each sentence sd(s

m∈1...M
d) via for-

ward Viterbi and backward A∗ search1. Hence, our
vocabulary is the union of unigrams and n-grams
discovered by CRF over M best sequence label-
ing, i.e., the model’s vocabulary, V = {wd,s,j} ∪
{〈wd,smd ,j〉

j=st+len−1
j=st } ∀d, s, j, len, st,m.

In PSM, for each aspect a, we model its aspect
specific terms (words/phrases) distributions and as-
pect background word distributions using multino-
mials ϕAa and ϕBa , drawn from Dir(β) over the vo-
cabulary v1...V . For each domain d, we first draw a
domain specific aspect distribution θd ∼ Dir(α).
Next, for each review sentence (document), sd of
a domain, d we draw an aspect, zd,s ∼ Mult(θd).
We assume that each sentence evaluates one as-
pect which mostly holds true in the review do-
main. We associate a latent switch variable for
each word rd,s,j and each phrase 〈rd,smd ,j〉

j=st+len−1
j=st

of vocabulary where each switch variable r ∈
{0, 1}. To generate each term 〈wd,smd ,j〉

j=st+len−1
j=st

of the labeled sequence s
m∈{1...M}
d , we first set

the switch variables for the sentence, sd via the
discriminative CRF model, i.e. 〈rd,smd ,j〉

j=|sd|
j=1 ←

1
Z exp

(∑
j

∑
k λkfk (rj−1, rj , wj)

)
by fitting a

previously trained CRF model. The switch vari-
ables, r ∈ {1, 0} for a particular tagging smd of

1Value of M was tuned via pilot experiments using the
CRF++ toolkit (Kudo, 2009)

629

sentence sd span over all its words and take val-
ues r = 1 for words being part of an aspect spe-
cific opinion phrase or r = 0 for aspect background
words, upon observing all words in sd. Finally, de-
pending upon the aspect, zd,s and the switch vari-
able rd,s,j , we emit (unigram) terms in the sentence
as follows:

wd,s,j ∼
{
Mult(ϕAzd,s) if rd,s,j = 1

Mult(ϕBzd,s) if rd,s,j = 0
(1)

and for phrasal terms (i.e., when
〈rd,smd ,j〉

j=st+len−1
j=1 = 1∀ valid st and len),

we emit〈wd,smd ,j〉
j=st+len−1
j=st ∼Mult(ϕAzd,s).

3.1 Inference

We employ MCMC Gibbs sampling for posterior in-
ference. As latent variables z and r belong to differ-
ent levels, we hierarchically sample z and then r for
each sweep of a Gibbs iteration as follows:
p(zd,s = a|Z¬d,s, R¬d,s,W¬d,s) ∝

(nsd,a)¬d,s+α
(ns
d,(·))¬d,s+Aα

×
[(
∏V
v=1

Γ(nAa,v+β)

Γ((nAa,v)¬d,s+β)

)
/

(
Γ(nA

a,(·)+V β)

Γ((nA
a,(·))¬d,s+V β)

)]
×

[(
∏V
v=1

Γ(nBa,v+β)

Γ((nBa,v)¬d,s+β)

)
/

(
Γ(nB

a,(·)+V β)

Γ((nB
a,(·))¬d,s+V β)

)]
(2)

Samplers for r consist of three cases: (i) individual
aspect-specific opinion words, (ii) individual back-
ground words, and (iii) phrasal opinion:
p(rd,s,j = 1|zd,s = a,wd,s,j = v, . . .) ∝

(nAa,v)¬d,s,j+β)

(nA
a,(·))¬d,s,j+V β)

× pCRF (rd,s,j−1, rd,s,j = 1|v) (3)

p(rd,s,j = 0|zd,s = a,wd,s,j = v, . . .) ∝
(nBa,v)¬d,s,j+β)

(nB
a,(·))¬d,s,j+V β)

× pCRF (rd,s,j−1, rd,s,j = 0|v) (4)

p(〈rd,s,j = 1〉j=st+len−1
j=st |zd,s = a, 〈wd,s,j = v

′〉j=st+len−1
j=st , . . .) ∝

(nAa,v)¬d,s,j+β)

(nA
a,(·))¬d,s,j+V β)

× pCRF (rd,s,j=st−1, rd,s,j=st = 1,

rd,s,j=st+1 = 1, . . . rd,s,j=st+len−1 = 1|v′) (5)
where nsd,a denotes the # of sentences in domain d
assigned to aspect a, nAa,v, n

B
a,v denote the # of times

term v was assigned to aspect a in the aspect specific
opinion, and aspect specific background language
models respectively. A count variable with subscript
(·) signifies the marginalized sum over the latter in-
dex and ¬ denotes the discounted counts. The sam-
pler in (5) computes the likelihood of a sequence
of contiguous terms, 〈rd,s,j = 1〉j=st+len−1

j=st form-
ing an aspect (zd,s = a) specific opinion phrase, v

′

starting at index j = st and of length len, where
v
′

= 〈wd,s,j〉j=st+len−1
j=st . The sequence probabili-

ties, pCRF in equations (3, 4, 5) can be obtained as
follows.

Let w = (wt=1 . . . wt=T) denote the sequence of
observed words in a sentence, and let each obser-
vation wt have a label yt ∈ Y indicating whether
wt is part of a aspect specific opinion phrase, where
Y = {1, 0}. We consider a first order Markov
linear-chain CRF in our hybrid model. We define
the Markovian transition and forward-backward
variables of our embedded CRF as follows:
ψt(j, i, w) = p(yt = j|yt−1 = i)p(wt = w|yt = j) (6)

αt(j) =
∑

i∈Y ψt(j, i, wt)αt−1(i) (7)

βt(j) =
∑

j∈Y ψt+1(j, i, wt+1)βt+1(j) (8)
where α1(j) = ψ1(j, y0, w1) and βT (i) = 1.
This lays the foundation for expressing the sequence
probabilities, pCRF in closed form as follows:
pCRF (yt−1, yt|w) ∝ αt−1(yt−1)ψt(yt, yt−1, wt)βt(yt) (9)
pCRF (yt−2, yt−1, yt|w) ∝

αt−2(yt−2)ψt−1(yt−1, yt−2, wt−1)ψt(yt, yt−1, wt)βt(yt) (10)
Eq. (9) is used for computing the sequence proba-
bilities for individual opinion/background words for
samplers in eq. (3, 4) while eq. (10) and its exten-
sions are used for computing the sequence probabil-
ities in the phrase samplers in eq. (5). The values
for ψt, αt, βt are obtained from a previously trained
CRF model upon fitting to the current sentence sd
for which sampling is being performed.

3.2 Embedded CRF Training

We employ linear-chain CRFs (Lafferty et al., 2001)
for modeling phrases. While word (W) and Part-Of-
Speech (POS) tag features are effective in various
sequence modeling tasks (Yang and Cardie, 2014;
Yang and Cardie, 2012), in our problem context,
(W+POS) features are insufficient as they do not
consider the head aspect (HA) and its relevant posi-
tional/contextual features, i.e., how do different POS
tags, syntactic units (chunks), polar sentiments ap-
pear in proximity to the head aspect? Hence, center-
ing on the HA, we propose a set of pivot features to
model context.
Pivot Features: We consider five feature families:
POS Tags (T): DT, IN, JJ, MD, NN, RB, VB, etc.
Phrase Chunks (C): ADJP, ADVP, NP, PP, VP, etc.
Prefixes (P): anti, in, mis, non, pre, sub, un, etc.

630

Category Feature Template Example of feature apperaing in a sentence
1st order features
Wi+j ;−4 ≤ j ≤ 4
W ∈ {T,C, P, S, SP}

SPi+j SPi−1 = NEG; previous term of HA is of NEG
polarity,. . . have this terrible voice on the . . .

Si+j Si−2 = ing; suffix of 2nd previous term of head aspect
is “ing”, . . . kept dropping the signal . . .

.
2nd order features
Wi+j , Yi+j ;−4 ≤ j ≤ 4
W,Y ∈ {T,C, P, S, SP}

Ti+j , Ti+j′ Ti−2 = JJ, Ti−1 = V BZ, · · · frequently drops
connection. . .

Ti+j , Ci+j′ Ti+2 = RB,Ci+3 = ADJP ; . . . screen clarity is
good. . .

.
3rd order features
Wi+j , Yi+j , Zi+j ;−4 ≤
j ≤ 4
W,Y,Z ∈ {T,C, P, S, SP}

Ti+j , Si+j′ , Ti+j′′ Ti+2 = JJ, Pi+4 = un, Ti+4 = JJ ; . . . screen is blank
and unresponsive. . .

.

Table 1: Pivot Templates: Subscript i denotes the index of the head aspect, HA (italicized). Subscript j denotes the
index relative to i

Suffixes (S): able, est, ful, ic, ing, ive, ness etc.
Word Sentiment Polarity (SP): POS, NEG, NEU

Pivoting on the head aspect, we look forward and
backward to generate a family of binary features de-
fined by a specific template (see Table 1). Each tem-
plate generates several features that capture various
positional context around the HA. Additionally, we
consider up to 3rd order pivot features allowing us to
model various dependencies as features. For polar-
ity, we used the opinion lexicon2 derived from (Hu
and Liu, 2004).
Feature Templates: Table 1 details the templates
for features pivoting on the head aspect. Various fea-
tures from these templates coupled with the value
of the current sequence tag at yt or a combination
of current and previous labels yt, yt−1 serve as our
linear chain features (LCF), f(yi−1, yi, w). Further,
the index i for LCF can refer to any word in the sen-
tence and not necessarily the head aspect, yielding
us a very rich feature space.
Learning the CRF λs: Given a set of training ex-
amples {wi, yt} where yt are the correct sequence
tags, we estimate the CRF Λ = {λk}parameters by
minimizing the negative log-likelihood (NLL),
Λ = argminΛ(C

∑
i log(p(yt|wi,Λ)) +

∑
k λ

2
k) (11)

Where p(yt|w,Λ) ∝ exp(∑k

∑
t λkfk(yt−1, yt, w)), C is

the soft-margin parameter, and the term
∑

k λ
2
k indi-

cates L2 regularization on the feature weights, λk.

2http://www.cs.uic.edu/∼liub/FBS/opinion-lexicon-
English.rar

The training set for learning the embedded CRF
models λs is detailed in Table 3 (col 1, 2).

4 Optimizing Phrasal Collocations

Topic models can be described in terms of a simple
Pólya urn (SPU) sampling schemes in the sense that
when a particular term (word or phrase) is drawn
from a topic, count of that term is incremented in
that topic. This enforces the topic distribution to
tend towards these terms over time as frequency of
them increases. Therefore, the posterior of gen-
erative topic models often favors terms with high
frequency e.g., unigrams, while phrasal terms are
ranked lower due to their lower frequencies. This
is undesirable for phrase extraction.

In contrast, Generalized Pőlya urn (GPU) model
differs from SPU in its sampling process. When
a certain term is drawn, the count of that term in-
creases as well as it also increases the count of terms
which are similar to drawn word/phrases via pseudo-
counts for promotion. Thus, GPU caters for promo-
tion of others terms in a principled manner. It has
been previously used for unigram topic modeling in
(Mimno et al., 2011). In this work we leverage it for
phrases.

4.1 Proposed PSM-GPU model

We optimize the collocations of relevant aspect
words and phrases in the GPU framework in two
ways:

631

Word to phrase: Intuitively, if an aspect word is as-
signed to a topic then that topic should represent that
aspect and to all other phrases in that aspect’s phrase
set (i.e., phrases containing that aspect) should be-
long to the same topic. Thus, when an aspect word
is assigned to a topic then each phrase in its aspect
set is promoted with a small count in that topic.
Phrase to word: When a phrase 〈wd,s,j〉j=st+len−1

j=st

is assigned to a topic, each component word wd,s,j
where j ∈ [st, st+len−1] in it is also promoted with
a certain small count, i.e., each word of that phrase
is also assigned to that topic by a certain amount.

We now define the term promotion matrix, A for
the GPU framework. Every element of A,Aw,w′
refers to the promotion pseudocount, i.e., whenever
a w was seen in an urn, we increment the count by
Aw,w′ of w

′
. w,w

′
can be word or phrases.

Aw,w′ =

1 if w = w
′

σ if w is an aspect word,

w
′
is a phrase ∈ Phrase set of w

δ w
′
is a word ∈ Phrase w

0 otherwise

(12)

To improve the ranking of phrases, the value of σ
is kept greater than δ. Empirically values are given
section 5.1.

4.2 PSM-GPU Inference

Accounting the GPU process above, the approxi-
mate Gibbs samplers for z and r take the following
form:

p(zd,s = a|Z¬d,s, R¬d,s,W¬d,s) ∝
[

(nsd,a)¬d,s+α)

(ns
d,(·))¬d,s+Aα)

]
×

∏V

v=1

Γ(
∑V

w
′
=1

(A
v,w
′ ∗nA

a,w
′)+β)

Γ(
∑V

w
′
=1

(A
v,w
′ ∗nA

a,w
′)¬d,s+β)

Γ(
∑V
v=1

∑V

w
′
=1

(A
v,w
′ ∗nA

a,w
′)+V β)

Γ(
∑V
v=1

∑V

w
′
=1

(A
v,w
′ ∗nA

a,w
′)¬d,s+V β)

×

[(∏V
v=1

Γ(nBa,v+β)

Γ((nBa,v)¬d,s+β)

)
/

(
Γ(nB

a,(·)+V β)

Γ((nB
a,(·))¬d,s+V β)

)]
(13)

p(rd,s,j = 1|zd,s = a,wd,s,j = v, . . .) ∝
∑V

w
′
=1

(A
v,w
′ ∗nA

a,w
′)¬d,s,j+β)

∑V
v=1

∑V

w
′
=1

(A
v,w
′ ∗nA

a,w
′)¬d,s,j+V β

×

pCRF (rd,s,j−1, rd,s,j = 1|v) (14)
Similarly, phrasal opinion switch variable can be de-
rived. The sampler for individual background words
remains unchanged.

5 Experimental Evaluation

In this section, we evaluate our proposed models.
We first detail our dataset, followed by baselines and
results.

5.1 Dataset and Parameter Settings

Domain
Pos. LabeledNeg. Labeled

Positive Negative Total
Phrase Phrase

Router 414 1256 1937 5291 7228
GPS 948 672 2473 2231 4704

Mouse 376 477 1421 2591 4012
Keyboard 398 660 912 1539 2451

Table 3: Statistics of dataset of four domain

Dataset Statistics: For CRF training, we created
a phrase labeled dataset of aspect opinion phrases
using product reviews from Amazon across 4 do-
mains each spanning 4 head aspects. In this work,
head aspects for a domain are known a priori ei-
ther directly using unsupervised topic induction or
guided by domain knowledge (e.g. using aspect
models such as (Zhao et al., 2010; Chen et al., 2013;
Mukherjee and Liu, 2012)). Our focus is on phrase
extraction and grouping. We labeled the positive and
negative opinion phrases spans (Table 3; col 2, 3)
in the reviews following the annotation schemes in
(Wilson et al., 2005) for embedded CRF training in
PSM. Table 3 details our labeled data for CRF train-
ing. This phrase boundary labeled dataset (Table 3;
col 2, 3) is “orthogonal” or disjoint from the data
where the PSM model was fit and evaluated (Table
3, col 4, 5). This avoids overfitting and makes a fair
case for all the experiments of PSM.
Preprocessing and Parameter Setting: We re-
moved the stopwords, punctuation, special charac-
ters and words appearing less than 5 times in each
domain. For all models, posterior estimates of la-
tent variables were taken with a sampling lag of 50
iterations post burn-in phase (of 200 iterations) with
2,000 iterations in total. Dirichlet priors were set to
α = 50/K, where K is the number of topics (em-
pirically set to 10 via pilot) and β = 0.1. The CRF
parameters C = 1 and GPU parameters σ = 0.05
and δ = 0.01 were estimated using cross validation.

5.2 Baselines
We consider the following relevant phrase extraction
models as our baselines:

632

PSM-GPU sMC-GPU LDA-P-GPU
Router→Connection:“updating
firmware secure connection”,
“dropping connection”, “con-
nection excellent”, “instability
wireless connection”, “crashes
entire connection”, “updating”,
“kills current connection in-
cluding downloads”, “affected
plugged connection”,“cable radio
frequency connection”, “halfway”

Router→Connection:“connection
big time”, “signal weak time
connection”, “connection time sta-
ble”, “lose connection”, “internet
connection speed dropped”, “stop
working lot connection”, “started
dropping internet connection”,
“started dropping connection”,
“drop wireless connection drops
wired connection”, “connection
dropping problems”

Router→Connection:“drops”,
“times day internet connection”,
“internet connection multiple
times”, “internet connection
times”, “internet connection
minutes”, “dropping internet
connection”, “broadband internet
connection”, “extremely slow
internet connection”, “lost internet
connection”,“internet connection
couple”

GPS→Screen:“poor screen con-
trast daylight”, “direction screen
missing poor screen contrast”,
“slow screen size makes useless”,
“screen turned”, “turn”, “nothing
screen”, “night screen bit bright”,
“screen unpredictable directions”,
“lacks faster screen refresh rate”,
“smoother screen refresh”

GPS→Screen:“bright”, “excellent
nice touch screen”, “touch screen
n’t”, “nice big touch screen”,
”touch screen big size”, “smaller”,
“touch screen but nice”, “screen
accurate spoken direction”, “touch
screen nice”, “nice slim touch
screen”

GPS→Screen:“smaller screen but
dont”, “wide screen”, “nothing but
screen”, “ok but screen”, “screen
but normal”, “screen size”, “large
screen”, “better traffic features cons
touch screen”, “screen real estate
than”, “than years screen”

Table 2: Example aspect specific opinion phrases (comma delimited in order) discovered by PSM-GPU, sMC-GPU,
LDA-P-GPU. Errors are italicized and marked in red.

LDA with phrases (LDA-P): As aspect-sentiment
phrases are often noun phrases, a basic approach
is to include the noun phrases (extracted using a
parser) as separate terms in the corpus.
Topical N-gram (TNG): The TNG model in (Wang
et al., 2007) extends LDA to model n-grams of arbi-
trary length. As aspects often appear close to their
opinion in the sentence, topical n-grams for each as-
pect form a natural baseline. We used the authors
original implementation in the MALLET toolbox.
LDA-P with GPU (LDA-P-GPU): This model is
due to (Fei et al., 2014) and is tailored for phrase
extraction in opinion mining. It employs LDA with
noun phrases in the GPU framework to rank the as-
pect phrases higher in their topics. Our implemen-
tations of LDA-P and LDA-P-GPU use the noun
phrases discovered by the Stanford Parser.
semi-Markov CRF with GPU(sMC-GPU): This
model builds over the model of (Yang and Cardie,
2012) that used dependency tree features and semi-
CRF to model the arbitrarily long expressions. We
used these expression spans as multiword in vocab-
ulary. Then we employ GPU based sampling with
LDA proposed by (Fei et al., 2014) to collocate opin-
ion expressions.

5.3 Qualitative Analysis

To assess the quality of extracted expressions, we la-
beled the topics following instructions in (Mimno et
al., 2011). First, each topic was labeled as coher-
ent or incoherent and an aspect name was given if
the topic was coherent. Each topic was presented as
a list of top 45 terms in descending order of their
probabilities under that topic. A topic was consid-
ered coherent if the terms in the topic were semanti-
cally related to each other.

Next, for coherent topics, their terms were labeled
as correct (if the terms semantics was relevant to the
topic) or incorrect (otherwise). Two human judges
were used in the annotation. Agreements being high
(κ > 0.78), disagreements were resolved upon con-
sensus among judges.

Table 2 reports the top 10 terms(words/phrases)
for aspect ’connection’ (Router domain) and aspect
’screen’(GPS domain) across PSM-GPU, sMC-GPU
and LDA-P-GPU (the two closest competitor). We
note that PSM-GPUs phrases are more expressive
compared to sMC-GPU because sMC-GPU is prone
to have longer phrases due to segment features but
PSM’s switch variable captured more relevant aspect
specific opinion expressions. sMC-GPU has better

633

Figure 2: Charts from left to right are Topical words Precision@15, Precision@30, Precision@45 of coherent topics
of each model and last one is number of coherent topics of each model.

Domain PSM-GPU PSM sMC-GPU LDA-P-GPU TNG LDA-P
P R F Ac. P R F Ac. P R F Ac. P R F Ac. P R F Ac. P R F Ac.

Router 71.867.869.768.8 69.067.368.167.7 69.667.768.668.2 65.267.966.567.1 65.266.866.065.9 65.568.066.767.4
GPS 69.369.269.269.3 66.767.767.267.4 65.368.065.765.5 63.668.465.966.8 64.168.366.158.8 66.069.767.868.6

Mouse 87.481.484.087.3 82.980.481.382.4 83.481.582.682.3 81.378.379.480.9 82.977.980.082.5 77.977.377.177.7
Keyboard 92.572.981.284.1 90.270.178.481.6 88.470.377.681.0 86.769.376.479.9 88.866.675.879.1 83.663.471.475.0

Avg. 80.372.876.077.4 77.271.473.874.8 76.771.973.674.3 74.271.072.173.7 75.369.972.071.6 73.369.670.872.2

Table 4: Sentiment classification: Precision, Recall, F1 and accuracy from top to down for each domain and each
model

phrases compared to LDA-P-GPU because the lat-
ter only considers noun phrases which may not al-
ways be semantically coherent under an aspect. The
qualitative results of other baselines TNG and LDA-
P were worse than that of LDA-P-GPU and hence
omitted due to space constraints. However, the sub-
sequent experiments compare all models quantita-
tively.

5.4 Quantitative Analysis

We consider the following metrics and tasks:
Average Precision: Figure 2 shows the average
Precision@n (p@n) for n = 15, 30, 45 of all coher-
ent topics for each model in each domain. We note
that PSM-GPU achieves the highest precision for all
domains significantly (p < 0.01) outperforming its
closest competitor sMC-GPU. sMC-GPU tends to
discover longer phrases due to segment features in
semi-CRF and combined with GPU gains the max-
imum strength among other baselines. Next in or-
der are LDA-P-GPU, PSM, and TNG. We have not
shown the result of LDA-P as its top terms didn’t
contain enough phrases and its precision scores were
quite lower compared to other models. But it is
worthwhile to note that PSM outperforms LDA-P-
GPU (2nd best competitor) at lower ranks which is
more important (e.g., in majority domains for p@15)

and shows its effectiveness. It is a bit unfair to
compare PSM with sMC-GPU because PSM is lack-
ing phrase rank optimization whereas sMC-GPU en-
forces it, and the p@n metric uses rank position as
its goodness criterion. However, we will see that in
an actual application task, both PSM and PSM-GPU
does better than sMC-GPU. Also, we observed that
p@45 is higher compare to p@15 or p@30. The
reason is even though we are promoting the phrases
using GPU it is not able to remove some aspect opin-
ion words from top 15 terms due to their high occur-
rence in phrases. For e.g. Table 2 has opinion words
like “updating”, “turn” which are considered incor-
rect because of non-phrasal terms.
of coherent topics: Figure 2 (rightmost chart)
shows the number of coherent topics produced by
each model. A model that can discover more co-
herent topics is better. We find that PSM-GPU can
discover more coherent topics with phrases than its
baselines across all domains. The trends of other
models are similar to p@n and can be analogously
explained.
We note that the Topic Coherence (TC) metric in
(Mimno et al., 2011) which is often used to approx-
imate coherence in unigram topic models as it cor-
relates with human notions of coherence, uses co-
document frequency of individual words in topics.

634

However, in our problem as phrases are sparse, their
co-document frequency is far lower than words.
Hence, the TC metric is not directly applicable. Our
measure of coherence is based on human judgment
(achieves high agreements, κ > 0.78 see Section
5.3) and from Table 2 we can see the discovered
phrases do reflect coherence. Hence, to evaluate the
phrases quantitatively, we employ an actual senti-
ment classification task that uses the posterior of our
models (top phrases) as features. This is reasonable
because the estimated topics (when used as features)
improve sentiment classification, it shows that they
are meaningful and capable of capturing latent sen-
timent that govern polarities.
Sentiment Classification: For this task, instead of
using all the words as features, we used the poste-
rior on ϕA (top 50 terms of ϕA) as features. For all
models, all possible n-grams of top 50 terms are also
considered as features. We trained SVMs3 (using
the SVMLight toolkit) with the features described
above. Evaluation for this task employed 5-fold
cross validation on the data in Table 3 (col 4, 5). For
each test fold, the features were induced upon fitting
the aspect extraction models on the training data of
that fold. From Table 4 we note that both PSM-GPU
and PSM outperform all competitors on average F1
across all domains. More specifically, we note that
PSM alone that uses no rank optimization performs
better than sMC-GPU employing phrasal rank op-
timization under GPU scheme. We believe this is
due to PSM’s switching component that can dis-
cover correct aspect/sentiment terms (sufficient for
polarity classification) and rank it higher based on
frequency even though the expressive aspect specific
phrases remain ranked lower. sMC-GPU tends to
have longer phrases so it does well, however, under
GPU, longer phrases may not be promoted well as
they lack anchor aspect terms under a relevant topic.
LDA-P-GPU uses standard (Noun Phrases) NPs for
phrases with rank optimization and hence is the next
in performance order as NPs may not capture opin-
ion well. TNG does not perform as well as it relies
on multiword collocation as opposed to NP/VP for
phrase extraction. LDA-P’s performance is lowest
as it cannot rank the relevant NPs high. PSM-GPU

3Using an RBF kernel (C = 10, g = 0.01) which per-
formed best upon tuning various SVM parameters via cross val-
idation.

has the right balance of phrase boundary span and
phrasal rank optimization via GPU that makes it sig-
nificantly outperform (p < 0.01) all competitors.

Domain Precision Recall F1 Acc.
Router 69.68 67.3 68.4 67.9
GPS 66.47 68.6 67.5 68.00

Mouse 87.24 80.5 83.4 86.9
Keyboard 85.45 70.9 77.1 81.1

Table 5: Domain ablation result on polarity classification

Sequence Model Sensitivity: To assess the robust-
ness of the hybrid framework, we evaluate the sensi-
tivity of the embedded CRF model via domain abla-
tion. We choose the best performer PSM-GPU and
ablate each domain during its CRF training. We re-
peat the previous experiment on sentiment classifi-
cation using the ablated model. From the results in
Table 5, we note that the reduction in precision is
relatively more than that of recall. However, the F1
score does not drop significantly (compared to Table
4) for any domain showing the robustness of the hy-
brid framework. We note that even with some skew-
ness in the labeled data (Table 3), CRF is not over-
fitting here and the proposed pivot features (Table
1) are powerful enough to learn the phrasal structure
across domain.

6 Conclusion

This paper presented a novel hybrid framework for
aspect specific opinion expression extraction. Two
models PSM and PSM-GPU were proposed that
employ CRF discriminative sequence modeling for
phrase boundary extraction and generative modeling
for grouping relevant terms under a topic. PSM-
GPU further optimized the aspect coherence using
the generalized Pólya urn sampling scheme. Ex-
perimental results showed that the proposed hybrid
models can extract more coherent aspect specific
opinion expressions significantly outperforming all
competitors across all domains and are robust in
cross-domain knowledge transfer.

Acknowledgment

This work was supported in part by NSF 1527364.

635

References
Gábor Berend. 2011. Opinion expression mining by

exploiting keyphrase extraction. In IJCNLP, pages
1162–1170. Citeseer.

Eric Breck, Yejin Choi, and Claire Cardie. 2007. Iden-
tifying expressions of opinion in context. In IJCAI,
volume 7, pages 2683–2688.

Samuel Brody and Noemie Elhadad. 2010. An unsu-
pervised aspect-sentiment model for online reviews.
In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 804–
812. Association for Computational Linguistics.

Zhiyuan Chen, Arjun Mukherjee, Bing Liu, Meichun
Hsu, Malu Castellanos, and Riddhiman Ghosh. 2013.
Exploiting domain knowledge in aspect extraction. In
EMNLP, pages 1655–1667.

Yejin Choi, Claire Cardie, Ellen Riloff, and Siddharth
Patwardhan. 2005. Identifying sources of opinions
with conditional random fields and extraction patterns.
In Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Lan-
guage Processing, pages 355–362. Association for
Computational Linguistics.

Yejin Choi, Eric Breck, and Claire Cardie. 2006. Joint
extraction of entities and relations for opinion recog-
nition. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing,
pages 431–439. Association for Computational Lin-
guistics.

Ahmed El-Kishky, Yanglei Song, Chi Wang, Clare R
Voss, and Jiawei Han. 2014. Scalable topical phrase
mining from text corpora. Proceedings of the VLDB
Endowment, 8(3):305–316.

Geli Fei, Zhiyuan Chen, and Bing Liu. 2014. Re-
view topic discovery with phrases using the pólya urn
model. In COLING, pages 667–676.

Geli Fei, Zhiyuan Brett Chen, Arjun Mukherjee, and
Bing Liu. 2016. Discovering correspondence of senti-
ment words and aspects. In In proceedings of the 17th
International Conference on Intelligent Text Process-
ing and Computational Linguistics.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.
ACM.

Niklas Jakob and Iryna Gurevych. 2010. Extracting
opinion targets in a single-and cross-domain setting
with conditional random fields. In Proceedings of the
2010 conference on empirical methods in natural lan-
guage processing, pages 1035–1045. Association for
Computational Linguistics.

Yohan Jo and Alice H Oh. 2011. Aspect and sentiment
unification model for online review analysis. In Pro-
ceedings of the fourth ACM international conference
on Web search and data mining, pages 815–824. ACM.

Richard Johansson and Alessandro Moschitti. 2011. Ex-
tracting opinion expressions and their polarities: ex-
ploration of pipelines and joint models. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies: short papers-Volume 2, pages 101–106. As-
sociation for Computational Linguistics.

Soo-Min Kim and Eduard Hovy. 2006. Extracting opin-
ions, opinion holders, and topics expressed in online
news media text. In Proceedings of the Workshop on
Sentiment and Subjectivity in Text, pages 1–8. Associ-
ation for Computational Linguistics.

Nozomi Kobayashi, Kentaro Inui, and Yuji Matsumoto.
2007. Extracting aspect-evaluation and aspect-of re-
lations in opinion mining. In EMNLP-CoNLL, vol-
ume 7, pages 1065–1074. Citeseer.

T Kudo. 2009. Crf++: Yet another crf toolkit [ol].
John Lafferty, Andrew McCallum, and Fernando CN

Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.

Huayi Li, Arjun Mukherjee, Jianfeng Si, and Bing Liu.
2015. Extracting verb expressions implying negative
opinions. In AAAI, pages 2411–2417.

Robert V Lindsey, William P Headden III, and Michael J
Stipicevic. 2012. A phrase-discovering topic model
using hierarchical pitman-yor processes. In Proceed-
ings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning, pages 214–222.
Association for Computational Linguistics.

Bing Liu and Lei Zhang. 2012. A survey of opinion
mining and sentiment analysis. In Mining text data,
pages 415–463. Springer.

Jialu Liu, Jingbo Shang, Chi Wang, Xiang Ren, and Ji-
awei Han. 2015. Mining quality phrases from mas-
sive text corpora. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of
Data, pages 1729–1744. ACM.

Qiaozhu Mei, Xu Ling, Matthew Wondra, Hang Su, and
ChengXiang Zhai. 2007. Topic sentiment mixture:
modeling facets and opinions in weblogs. In Pro-
ceedings of the 16th international conference on World
Wide Web, pages 171–180. ACM.

David Mimno, Hanna M Wallach, Edmund Talley,
Miriam Leenders, and Andrew McCallum. 2011. Op-
timizing semantic coherence in topic models. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 262–272. Asso-
ciation for Computational Linguistics.

636

Arjun Mukherjee and Bing Liu. 2012. Aspect extraction
through semi-supervised modeling. In Proceedings of
the 50th Annual Meeting of the Association for Com-
putational Linguistics: Long Papers-Volume 1, pages
339–348. Association for Computational Linguistics.

Arjun Mukherjee. 2016. Extracting aspect specific sen-
timent expres-sions implying negative opinions. In
In proceedings of the 17th International Conference
on Intelligent Text Processing and Computational Lin-
guistics.

Maria Pontiki, Dimitrios Galanis, Haris Papageorgiou,
Suresh Manandhar, and Ion Androutsopoulos. 2015.
Semeval-2015 task 12: Aspect based sentiment anal-
ysis. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), Asso-
ciation for Computational Linguistics, Denver, Col-
orado, pages 486–495.

Christina Sauper, Aria Haghighi, and Regina Barzi-
lay. 2011. Content models with attitude. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies-Volume 1, pages 350–358. Association
for Computational Linguistics.

Ivan Titov and Ryan McDonald. 2008. Modeling on-
line reviews with multi-grain topic models. In Pro-
ceedings of the 17th international conference on World
Wide Web, pages 111–120. ACM.

Xuerui Wang, Andrew McCallum, and Xing Wei. 2007.
Topical n-grams: Phrase and topic discovery, with an
application to information retrieval. In Data Mining,
2007. ICDM 2007. Seventh IEEE International Con-
ference on, pages 697–702. IEEE.

Shuai Wang, Zhiyuan Chen, and Bing Liu. 2016. Mining
aspect-specific opinion using a holistic lifelong topic
model. In Proceedings of the 25th International Con-
ference on World Wide Web, pages 167–176. Interna-
tional World Wide Web Conferences Steering Com-
mittee.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating expressions of opinions and emotions in
language. Language resources and evaluation, 39(2-
3):165–210.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of the conference
on human language technology and empirical methods
in natural language processing, pages 347–354. Asso-
ciation for Computational Linguistics.

Yuanbin Wu, Qi Zhang, Xuanjing Huang, and Lide Wu.
2009. Phrase dependency parsing for opinion mining.
In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume 3-
Volume 3, pages 1533–1541. Association for Compu-
tational Linguistics.

Bishan Yang and Claire Cardie. 2012. Extracting opin-
ion expressions with semi-markov conditional random
fields. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 1335–1345. Association for Computational Lin-
guistics.

Bishan Yang and Claire Cardie. 2013. Joint inference
for fine-grained opinion extraction. In ACL (1), pages
1640–1649.

Bishan Yang and Claire Cardie. 2014. Joint modeling
of opinion expression extraction and attribute classifi-
cation. Transactions of the Association for Computa-
tional Linguistics, 2:505–516.

Wayne Xin Zhao, Jing Jiang, Hongfei Yan, and Xiaoming
Li. 2010. Jointly modeling aspects and opinions with
a maxent-lda hybrid. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 56–65. Association for Computa-
tional Linguistics.

Wayne Xin Zhao, Jing Jiang, Jing He, Yang Song,
Palakorn Achananuparp, Ee-Peng Lim, and Xiaoming
Li. 2011. Topical keyphrase extraction from twitter.
In Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, pages 379–388. Asso-
ciation for Computational Linguistics.

637

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 638–647,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Emotion Distribution Learning from Texts

Deyu Zhou, Xuan Zhang, Yin Zhou, Quan Zhao, Xin Geng∗

MOE Key Laboratory of Computer Network and Information Integration
School of Computer Science and Engineering

Southeast University, Nanjing, China
{d.zhou, zhouying1, xuanzhang, zhaoquan, xgeng}@seu.edu.cn

Abstract

The advent of social media and its prosperity
enable users to share their opinions and views.
Understanding users’ emotional states might
provide the potential to create new business
opportunities. Automatically identifying user-
s’ emotional states from their texts and clas-
sifying emotions into finite categories such
as joy, anger, disgust, etc., can be consid-
ered as a text classification problem. How-
ever, it introduces a challenging learning sce-
nario where multiple emotions with differen-
t intensities are often found in a single sen-
tence. Moreover, some emotions co-occur
more often while other emotions rarely co-
exist. In this paper, we propose a novel ap-
proach based on emotion distribution learning
in order to address the aforementioned issues.
The key idea is to learn a mapping function
from sentences to their emotion distributions
describing multiple emotions and their respec-
tive intensities. Moreover, the relations of e-
motions are captured based on the Plutchik’s
wheel of emotions and are subsequently in-
corporated into the learning algorithm in order
to improve the accuracy of emotion detection.
Experimental results show that the proposed
approach can effectively deal with the emo-
tion distribution detection problem and perfor-
m remarkably better than both the state-of-the-
art emotion detection method and multi-label
learning methods.

1 Introduction

The advent of social media and its prosperity enable
the creation of massive online user-generated con-

∗Corresponding author

Sentence Trains crash near Thai resort town

Emotions
anger disgust fear joy sadness surprise

2 0 62 0 90 10

Table 1: An example of a sentence containing emotions select-

ed from SemEval 2007 Task#14, Affective Text, where each of

the six emotions are indicated using a score of [0, 100].

tent including opinions and product reviews. Ana-
lyzing such user-generated content allows the detec-
tion of users’ emotional states, which might be po-
tentially useful for downstream applications such as
brand watching, product recommendation, and de-
tection of health-related issues, etc. Based on the
way emotions are represented, computational mod-
els for emotion analysis can be categorized into di-
mensional models and categorical models (Calvo
and D’Mello, 2010). Dimensional approaches (Rus-
sell, 2003) emphasize the fundamental dimension-
s of valence and arousal in understanding emotion-
al experience, which have long been studied by e-
motion theorists. Categorical models (Gupta et al.,
2013) involve the use of a categorical representa-
tion, in which emotions are represented by a num-
ber of labels. For example, Ekman’s basic emotion
set (Ekman, 1992) consists of anger, disgust, fear,
happiness, sadness and surprise. An example of a
sentence and the annotated emotions can be found
in Table 1.

Considering each basic emotion as class label for
the sentence, emotion detection can be treated as a
classification problem. There is a large body of pri-
or work on emotion classification (Mishne and de
Rijke, 2006; Lin and He, 2009; Quan et al., 2015;
Wang and Pal, 2015). By choosing the strongest e-
motion as the emotion label for the sentence, most of

638

classification approaches are based on single-label
learning. However, as shown in Table 1, a sentence
might contain multiple emotions with varying inten-
sities. Although, some lexicon-based approach such
as (Wang and Pal, 2015) can output multiple emo-
tions with intensities using non-negative matrix fac-
torization. It can only guarantee convergence to a
local minimum, which is prohibitive on the large,
realistically-sized emotion detection problem.

Machine learning methods such as multi-label
learning (MLL) can be employed to identify mul-
tiple emotions for each sentence (Zhang and Zhou,
2014). MLL usually selects a threshold, then label-
s emotions with scores higher than the threshold as
relevant and the others as irrelevant. However, these
methods are not able to learn the intensity of each
emotion. To address this problem, a new machine
learning paradigm called Label Distribution Learn-
ing (LDL) (Geng, 2016) was proposed in recently
years. Similarly, in this paper, we propose an e-
motion distribution learning (EDL) algorithm. Dif-
ferent from the previous approaches, EDL assumes
that each sentence contains a mixture of basic e-
motions with different intensities. Using categori-
cal model, we can label each sentence with an emo-
tion vector where each element corresponds to one
basic emotion and the value of each element indi-
cates the intensity of the emotion. We require that
each vector element has a value between 0 and 1
and they sum up to 1. By doing so, the emotion
vectors can be considered as emotion distributions
and the proposed EDL algorithm aims to learn the
mapping from sentences to their corresponding e-
motion distributions by minimizing the differences
between the true distributions and the predicted dis-
tributions. Both the single-label learning and ML-
L can be considered as special cases of EDL in e-
motion detection. Moreover, as some emotions co-
occur more often while others rarely co-exist, the
relations between basic emotions are captured ac-
cording to the Plutchik’s wheel of emotions theo-
ry (Plutchik, 1980) and are incorporated in the learn-
ing framework as constraints in order to improve the
accuracy of emotion detection.

Our work makes the following contributions:

• We propose a novel approach based on emo-
tion distribution learning to identify multiple

emotions with their intensities from texts. To
the best of our knowledge, it is the first attempt
to identify both emotions and intensities in the
distribution learning framework.

• The relations between basic emotions are in-
corporated into the learning framework as con-
straints to improve the emotion detection accu-
racy. To avoid the incorporation of noisy in-
formation from the training data, the relation
constraint is set based on the Plutchik’s wheel
of emotions theory.

• Experimental results show that the proposed
approach can effectively deal with the emotion
distribution detection problem and perform re-
markably better than the state-of-the-art multi-
label learning methods and emotion detection
method.

2 Related Work

In general, emotion classification can be approached
by two types of methods, lexicon-based or corpus-
based. Lexicon-based approaches rely on emotion
lexicons consisting of words and their correspond-
ing emotion labels for detecting emotions from tex-
t. For example, WordNetAffect (Strapparava and
Valitutti, 2004) was constructed by extending Word-
net, a lexical database of English terms, with infor-
mation on affective terms. EmoSenticNet assigns
six WordNetAffect emotion labels to SenticNet con-
cepts (Poria et al., 2013), which can be thought of
as an expansion of WordNetAffect emotion label-
s to a larger vocabulary. Many approaches were
proposed based on emotion lexicons. For example,
(Aman and Szpakowicz, 2007) classified emotional
and non-emotional sentences using the constructed
emotion lexicon. (Choudhury et al., 2012) employed
a classifier to detect human affective states in social
media. (Wang and Pal, 2015) proposed a model with
several constraints based on an emotion lexicon for
emotion classification.

Corpus-based methods aim to train supervised
classifiers from annotated training data where each
sentence or document is labelled with an emotion
class. (Mishne and de Rijke, 2006) constructed
models to predict the levels of various moods ac-
cording to the language used by bloggers at a giv-

639

en time. (Aman and Szpakowicz, 2007) described
an emotion annotation task of identifying emotion
category, emotion intensity and the words/phrases
that indicate emotions in text. Emotion classifica-
tion was conducted using trained support vector ma-
chines. (Agrawal and An, 2012) proposed an un-
supervised context-based approach to detect emo-
tions from text at the sentence level. They comput-
ed an emotion vector for each potential affect bear-
ing word based on the semantic relatedness between
words and various emotion concepts. The scores are
then tuned using the syntactic dependencies with-
in the sentence structure. (Bao et al., 2009) pro-
posed an emotion topic model by augmenting laten-
t Dirichlet allocation with an intermediate emotion
layer. (Quan et al., 2015) proposed a logistic regres-
sion model for social emotion detection. Intermedi-
ate hidden variables were also introduced to model
the latent structure of input text corpora.

Our work is partly inspired by (Quan et al., 2015).
However, our proposed approach differs from (Quan
et al., 2015) in two aspects: 1) by introducing the
emotion distribution learning framework, many dif-
ferent criteria can be used to measure the distance
between the true distribution and the predicted dis-
tribution, such as squared X 2, Euclidean, Jeffery’s
divergence apart from Kullback-Leibler divergence
employed in logistic regression model. 2) the re-
lations between basic emotions are captured based
on the Plutchik’s wheel of emotions theory to avoid
the incorporation of any noisy information from the
training data.

3 Emotion Distribution Learning

3.1 Problem Setting

As have discussed in section 1, one sentence might
contain one or more emotions, and each emotion has
its own intensity. We use dy

x to indicate the intensi-
ty of emotion y for sentence x, where x ∈ X and
y ∈ Y . The emotion intensity is normalized to make
dy

x ∈ [0, 1] and
∑

y dy
x = 1 to constitute the emotion

distribution.
Note that dy

x denotes the proportion that y accounts
for in a full emotion distribution of x. It is differ-
ent from the probability of y being a correct emo-
tion label for x. Probability distribution implies that
only one emotion label is correct for each sentence,

while emotion distribution allows multiple emotions
in one sentence. The goal of EDL is to learn a map-
ping from sentences X = Rm to the distributions
over a finite set of labels Y = {y1, y2, ...yc}. Each
label represents one of the basic emotions.

3.2 Learning
Given a training set P = {(x1, E1), (x2, E2), ...,
(xn, En)}, where xi ∈ X is a sentence and Ei =
{dy1

xi , dy2
xi , ..., dyc

xi } is the emotion distribution asso-
ciated with xi. The goal of EDL is to learn a con-
ditional probability mass function p(y|x) from P ,
where x ∈ X and y ∈ Y . Assuming that p(y|x)
is a parametric model p(y|x; θ), where θ are mod-
el parameters, many different criteria can be used
to measure the distance between two distribution-
s, such as Squared X 2, Euclidean, Jeffery’s diver-
gence, Kullback-Leibler (K-L) divergence and so
on. Here we use Divergence defined by

DJ(Qa||Qb) = 2
∑

j

(Qj
a − Qj

b)
2

(Qj
a + Qj

b)
2

, where Qj
a and Qj

b are the j-th element of the t-
wo distributions Qa and Qb, respectively. Diver-
gence is balanced, which makes DJ(Qa||Qb) equal
to DJ(Qb||Qa). The formula above calculates the
sum of all the distances between emotion intensities
in the same position.

Then the optimal model parameters θ∗ is deter-
mined by

θ∗ = arg min
θ

∑

i

DJ(Ei||Êi) +
ξ1

n

∑

k,r

|θk,r|1

+
ξ2

n

∑

u

∑

j,k

ωjk∥θu,j − θu,k∥2
2

= arg min
θ

2
∑

i,j

(d
yj
xi − p(yj |xi, θ))

2

(d
yj
xi + p(yj |xi, θ))2

+
ξ1

n

∑

k,r

|θk,r|1

+
ξ2

n

∑

u

∑

j,k

ωjk∥θu,j − θu,k∥2
2

(1)

640

, where Ei is the ground truth emotion distribution
of the i-th sentence and the Êi is the predicted one
by p(y|xi; θ). The second term is a regularizer to
make the predicted emotion distribution sparse, and
the third term considers the relationship between d-
ifferent emotions. As mentioned in section 1, some
emotions often co-occur such as joy and love, and
some rarely co-exist such as joy and anger. There-
fore, the third term is employed to incorporate such
prior knowledge. The weight ωjk models the rela-
tionship between the j-th emotion and the k-th emo-
tion in the distribution. In this paper, we capture
the relationships between different emotions based
on Plutchik’s wheel of emotions (Plutchik, 1980)
which is produced in psychology view. Plutchik’s
wheel of emotions includes several typical emotions
and its eight sectors indicate eight primary emotion
dimensions arranged as four pairs of opposites. We
re-produce a wheel of eight emotions’ relationship-
s according to Plutchik’s theory, which is shown in
Figure 1.

Figure 1: Plutchik’s wheel of emotions.

In the emotion wheel, emotions sat at opposite
end have an opposite relationship, while emotion-
s next to each other are more closely related. We
quantify the relations between each pair of emotions
based on the angle between them in wheel of emo-
tions (Plutchik, 2001). For example, emotion pairs
with 180 degrees are opposite to each other, which
are described by −1, while emotion pairs with 90
degrees are described by 0, meaning no relation-
ship between them. Emotion pairs with 45 degrees
have the relationship value of 0.5, while emotion
pairs with 135 degrees have the relationship value

of −0.5. Figure 2 shows the gray-scale image of the
pair-wise relationships of emotions presented in Fig-
ure 1. In each cell, the darker the color is, the more
similar the two emotions are.

As for p(y|x; θ), similar to (Geng, 2016), we as-
sume it takes a maximum entropy model, i.e.,

p(yk|xi; θ) =
1

Zi
exp(

∑

r

θkrxr
i) (2)

, where Zi =
∑

k exp(
∑

r θkrxr
i) is the normaliza-

tion factor, xr
i is the r-th feature of xi, and θkr is

an element in θ. Substituting Equation 2 into Equa-
tion 1 yields the target function,

T (θ) = 2
∑

i,j

(
1 − 4Zid

yj
xi exp (

∑
r θjrxr

i)

(Zid
yj
xi + exp (

∑
r θjrxr

i))
2

)

+
ξ1

n

∑

k,r

|θk,r|1

+
ξ2

n

∑

u

∑

j,k

ωjk∥θu,j − θu,k∥2
2.

(3)

The minimization of the function T (θ) can be effec-
tively solved by the limited-memory quasi-Newton
method (L-BFGS). The basic idea of L-BFGS is to
avoid explicit calculation of the inverse Hessian ma-
trix used in the Newton method. L-BFGS approxi-
mates the inverse Hessian matrix with an iteratively
updated matrix instead of actually storing the ful-
l matrix. Here we follow the idea of an effective
quasi-Newton method BFGS. Consider the second-
order Taylor series of T ′(θ) = −T (θ) at the current
estimate of the parameter vector θ(l):

T ′(θ(l+1)) ≈ T ′(θ(l)) + ∇T ′(θ(l+1))T ∆

+
1

2
∆T H(θ(l))∆, (4)

where ∆ = θ(l+1)−θ(l) is the update step, ∇T ′(θ(l))
and h(θ(l)) are the gradient and Hessian matrix of
T ′(θ(l)) at θ(l), respectively. The minimizer of E-
quation 4 is

∆l = −H−1(θ(l))∇T ′(θ(l)). (5)

The line search Newton method uses ∆(l) as the
search direction p(l) = ∆(l) and updates model pa-
rameters by

θ(l+1) = θ(l) + α(l)p(l), (6)

641

where the step length α(l) is obtained from a line
search procedure to satisfy the strong Wolfe condi-
tions (Nocedal and Wright, 2006):

T ′(θ(l)+α(l)p(l)) ≤ T ′(θ(l))+c1α
(l)∇T ′(θ(l))T p(l)

|∇T ′(θ(l) + α(l)p(l)| ≤ c2|∇T ′(θ(l))T p(l)|,
where 0 < c1 < c2 < 1. The idea of BFGS is to
avoid explicit calculation of H−1(θ(l)) by approxi-
mating it with an iteratively updated matrix B, i.e.

B(L+1) = (I − ρ(l)s(l)(u(l))T) × B(l)

×(I − ρ(l)u(l)(s(l))T)

+ρ(l)s(l)(s(l))T

where

s(l) = θ(l+1) − θ(l),

u(l) = ∇T ′(θ(l+1)) − ∇T ′(θ(l)),

ρ(l) =
1

s(l)u(l)
.

Figure 2: Gray-scale image of the pair-wise relationships of

emotions shown in Figure 1.

As for the optimization of the target function
T (θ), the computation of BFGS is mainly related
to the first-order gradient of T ′(θ), which can be
achieved by

∂T (θ)

∂θjr
=

4d
yj
xi pij(1 − pij)(d

yj
xi − pij)

(d
yj
xi + pij)3

+ξ1

∑

k,r

sgn(θk,r)

+
1

n
ξ2

∑

k

ωjk(θj − 2θk), (7)

where pij = 1
Zi

exp(
∑

r θjrx
r
i). Thus it performs

more efficiently than the standard line search New-
ton method.

In order to compare with the MLL methods, la-
bels in the predicted distribution need to be divid-
ed into two sets, i.e, the relevant and irrelevant set-
s. For this purpose, an extra virtual label y0 is
added into the label set, i.e., the extended label set
Y ′ = Y ∪ {y0}={y0, y1, y2...yc}. Using the new ex-
tended label set in the training process, the optimal
parameter vector θ∗ is learned. As y0 is the label
that distinguishes the relevant and irrelevant emo-
tions directly, it is initialized as the threshold used in
MLL. Given a sentence x′, its emotion distribution
is predicted by p(y|x′; θ∗). The intensity value of y0

splits the predicted distribution into two sets. The
emotions with the intensity value higher than y0’s
are regarded as the relevant emotions, and the rest
emotions are regarded as irrelevant ones. Therefore,
EDL in fact implements the function of MLL with-
out the need of setting the threshold manually.

4 Experiments

4.1 Setup

We evaluate the proposed approach on the Ren-
CECps corpus (Quan and Ren, 2010). It contains
35, 096 sentences selected from blogs in Chinese.
Each sentence is annotated with 8 basic emotion-
s, such as anger, anxiety, expect, hate, joy, love,
sorrow and surprise, together with their emotion s-
cores. Higher score represents higher emotion inten-
sity. We use ASi(j) to represent the score of emo-
tion j in sentence i. Given a sentence xi, the inten-
sity of emotion j is calculated by d

yj
xi = ASi(j)∑

k ASi(k) .

By doing so, each intensity value fulfills d
yj
xi ∈ [0, 1]

and
∑

y d
yj
xi = 1.

For each sentence, features are extracted using re-
cursive auto-encoders (RAEs) (Socher et al., 2011).
RAEs are neural networks that represent meanings
of fixed-size inputs in the reduced dimensional s-
pace. For example, each word in a sentence is repre-
sented using a vector w ∈ Rd, and the RAE method
reduces the entire sentence to a single vector of size
Rd. Sentences are sequences of words that can be
represented by a binary tree structure. The words are
the leaves of the tree and their combined grouping is
used to get a notion of the meaning of the sentence.

642

The internal nodes of the tree correspond to the com-
bined meaning of the nodes underneath them. Each
internal node is also represented in the same manner
as individual words in the form of a vector ŵ ∈ Rd.
These internal nodes are the hidden representations
of the neural network. In the RAE model, the vocab-
ulary is stored in an embedding matrix V ∈ Rd × D
where D is the cardinality of the vocabulary. Typi-
cally, each word w ∈ V is initialized independently
following a Gaussian distribution wi ∼ N(0, γ2). In
our experiment, we set the dimension of each sen-
tence representation to 100.

We build a gray-scale image shown in Figure 3
by computing the correlation coefficient of the emo-
tions from the Ren-CECps corpus. It can be ob-
served that Figure 3 is quite similar to Figure 2,
which shows that our proposed way in capturing
the relations between emotions is inline with what
have been revealed by the emotion annotations in the
Ren-CECps corpus.

Figure 3: Gray-scale image of the pair-wise relations of the

emotions in the Ren-CECps corpus.

4.2 Experimental Results

As the output of EDL is a distribution, a natural
choice of criteria is the averaged similarity or dis-
tance between the actual emotion distribution and
the predicted distribution. There are many metric-
s that can be applied to measure the distance be-
tween two distributions. In this paper six of them are
used to evaluate the results of EDL, i.e, Euclidean,
Sϕrensen, Squared X 2, KL divergence, Intersection
and Fidelity, as suggested in (Geng and Ji, 2013).

Name Formula

D
is

ta
nc

e

Euclidean Euclidean(P, Q)

=
√∑c

j=1(Pj − Qj)2

Sϕrensen Sϕrensen(P, Q) =
∑c

j=1 |Pj−Qj |∑c
j=1(Pj+Qj)

Squared X 2 SquaredX 2(P,Q) =
∑c

j=1
(Pj−Qj)

2

Pj+Qj

Kullback-Leibler (KL) K-L(P, Q) =
∑c

j=1 Pj ln
Pj

Qj

Si
m

ila
ri

ty Intersection Intersection(P, Q)

=
∑c

j=1 min(Pj , Qj)

Fidelity Fidelity(P,Q) =
∑c

j=1

√
PjQj

Table 2: Evaluation criteria for the Label Distribution Learning

(LDL) methods.

Name Formula

Hamming Loss hloss(h) = 1
P

∑P
i=1 |h(xi)△Yi|

One error one-error(f) = 1
P

∑P
i=1[arg maxy∈Y f(xi, y)] /∈ Yi

Coverage Coverage(f) = 1
P

∑P
i=1 maxy∈Yi rankf (xi, y) − 1

Ranking Loss rloss(f) = 1
P

∑P
i=1

1
|Yi||Ȳi| · |R|,Where

R = (y′, y′′)|f(xi, y′) ≤ f(xi, y′′), (y′, y′′) ∈ Yi × Ȳi

Average Precision Average(f) = 1
P

∑P
i=1

1
|Yi|
∑

y∈Yi

|Pi|
rankf (xi,y)

, where

Pi = y′|rankf (xi, y′) ≤ rankf (xi, y), (y)′ ∈ Yi

Table 3: Evaluation criteria for the MLL methods.

The formulae of the six criteria are summarized in
Table 4.2. Note that the virtual label y0 is removed
before evaluation.

As EDL can output both the relevant emotions
and their respective emotion intensities, MLL can
be seen as a special case of EDL that it only outputs
emotion labels but not their intensities. Several e-
valuation criteria typically used in MLL can also be
used to measure EDL’s ability of distinguishing rel-
evant emotions from irrelevant ones, including ham-
ming loss, one error, coverage, ranking loss, and av-
erage precision as suggested by (Zhang and Zhou,
2014), which are summarized in Table 4.2. Ham-
ming loss evaluates how many times an emotion la-
bel is misclassified. One-error evaluates the fraction
of sentences whose top-ranked emotion is not in the
relevant emotion set. Coverage evaluates how many
steps are needed to move down the ranked emotion
list so as to cover all the relevant emotions of the
example. Ranking loss evaluates the fraction of re-
versely ordered emotion pairs. Average precision
evaluates the average fraction of the relevant emo-
tions ranked higher than a particular emotion y ∈ Y .

For each algorithm, ten-fold cross validation is
conducted. EDL is first compared with four existing
Label Distribution Learning (LDL) methods (Geng,

643

Algorithm
Evaluation Criterion

Euclidean(↓) Sϕrensen(↓) Squared X 2(↓) K-L(↓) Intersection(↑) Fidelity(↑)

EDL 0.2361±0.0057 0.2346±0.0061 0.1780±0.0037 0.2067±0.0046 0.7654±0.0046 0.9523±0.0019
AA-KNN (Geng, 2016) 0.2948±0.0101• 0.2941±0.0123• 0.2688±0.0102• 0.3163±0.0087• 0.7059±0.0078• 0.9258±0.0090•
PT-Bayes (Geng, 2016) 0.3295±0.0125• 0.3288±0.0158• 0.2826±0.0115• 0.3263±0.0238• 0.6711±0.0241• 0.9238±0.0060•
PT-SVM (Geng, 2016) 0.3614±0.0869• 0.3625±0.0145• 0.3415±0.0089• 0.4073±0.0209• 0.6375±0.0099• 0.9069±0.0073•
AA-BP (Geng, 2016) 0.3299±0.0159• 0.3430±0.0264• 0.2885±0.0251• 0.3406±0.0092• 0.6569±0.0166• 0.9229±0.0056•
emoDetect (Wang and Pal, 2015) 0.3333±0.0678• 0.3468±0.0719• 0.2928±0.0674• 0.3463±0.0790• 0.6532±0.0719• 0.9212±0.0180•

Table 4: Experimental results in comparison with the LDL methods and the emotion detection approach.

Algorithm
Evaluation Criterion

Average Precision(↑) Coverage(↓) Hamming Loss(↓) One Error(↓) Ranking Loss(↓)

EDL 0.6419±0.0235 2.1412±0.0235 0.1772±0.0568 0.5239±0.0945 0.2513±0.0560
ML-KNN (Zhang and Zhou, 2014) 0.5917±0.0742• 2.448±0.0981• 0.2459±0.0781• 0.5339±0.0954• 0.2908±0.0431•
LIFT (Zhang, 2011) 0.5979±0.0891• 2.4267±0.0492• 0.1779±0.0597• 0.5131±0.0666• 0.2854±0.0427•
Rank-SVM (Zhang and Zhou, 2014) 0.5738±0.0892• 2.5861±0.0777• 0.2485±0.0458• 0.5603±0.0921• 0.3055±0.0579•
MLLOC (Huang and Zhou, 2012) 0.4135±0.0568• 3.6994±0.0764• 0.1850±0.0659• 0.6971±0.0924• 0.4742±0.0734•
BP-MLL (Zhang and Zhou, 2006) 0.4791±0.0999• 3.3773±0.0681• 0.2108±0.0986• 0.6316±0.0988• 0.4293±0.0956•
ECC (Read et al., 2011) 0.5121±0.0892• 2.7767±0.0876• 0.1812±0.0945• 0.6969±0.0598• 0.3281±0.0659•

Table 5: Experimental results in comparison with the MLL methods.

2016), i.e., PT-Bayes, PT-SVM, AA-KNN, AA-BP.
k in AA-KNN is set to 8. Linear kernel is used in
PT-SVM. The number of hidden-layer neurons for
AA-BP is set to 60. The evaluation results of our
proposed approach in comparison to the LDL base-
lines are presented in Table 4.2. For all the mea-
sures, “↓” indicates “the smaller the better”, while
“↑” indicates “the larger the better”. The best perfor-
mance on each measure is highlighted by boldface.
The two-tailed t-tests with 5% significance level are
performed to see whether the differences between
EDL and the baselines are statistically significan-
t. We use • to indicate significance difference. As
the state-of-the-art emotion detection method pro-
posed in (Wang and Pal, 2015) can output the e-
motion distributions based on a dimensional reduc-
tion method, we present its experimental results on
the Ren-CECps corpus in the last row of Table 4.2.
It can be observed that EDL performs significant-
ly better than all the baseline LDL methods and the
state-of-the-art emotion detection approach on al-
l criteria considered here.

Since EDL can be seen as an extension of MLL,
EDL is compared with 7 widely used MLL methods
using the virtual label y0, namely ML-KNN (Zhang
and Zhou, 2014), ECC (Read et al., 2011), MLLOC
(Huang and Zhou, 2012), LIFT (Zhang, 2011), ML-
RBF (Zhang, 2009), Rank-SVM (Zhang and Zhou,
2014), BP-MLL (Zhang and Zhou, 2006). Among

the compared algorithms, ML-kNN is derived from
the traditional k-nearest neighbor (kNN) algorithm.
Maximum a posteriori (MAP) principle is used to
determine which emotion set is related to the giv-
en sentence. CC (classifier chains method) over-
comes the limitations of BR and performs better but
requires more computations. ECC (ensemble clas-
sifier chains) applies classifier chains in an ensem-
ble framework and obtains high predictive perfor-
mances. MLLOC (Multi-label LOcal Correlation)
tries to exploit emotion correlations in the expres-
sion data locally. The global discrimination fitting
and local correlation sensitivity are incorporated in-
to a unified framework, and solution for the opti-
mization are developed. Rank-SVM provides a way
of controlling the complexity of the overall learning
system while having a small empirical error. The
architectures of Rank-SVM is based on linear mod-
els of Support Vector Machines (SVM) (Boser et al.,
1992). LIFT constructs features specific to each e-
motion by conducting clustering analysis on its pos-
itive or negative instances, and then performs train-
ing and testing by querying the clustering result-
s (Zhang, 2011). BP-MLL is derived from the fa-
mous backpropagation algorithm through employ-
ing a novel error function capturing the character-
istics of multi-label learning, i.e., the emotions be-
longing to a sentence should be ranked higher than
those not belonging to that sentence (Zhang and

644

Zhou, 2006).

The virtual label y0 used in EDL and the thresh-
old value used in MLL are all set to 2.5. Besides, the
ε, ξ1 and ξ2 are set as 0.25, 0.0001, 0.1 respectively.
For the MLL methods, the value of k is set to 8 in
ML-KNN, ratio is 0.02 and µ is 2 in ML-RBF. Lin-
ear kernel is used in LIFT. Rank-SVM uses the RBF
kernel with the width σ equals to 1. The evaluation
results of the proposed approach in comparison to
all MLL baselines are presented in Table 4.2. EDL
performs best on all evaluation measures. It verifies
the advantage of EDL owing to the consideration of
varying intensity of the basic emotions.

4.3 Further Analysis

To fully understand the emotion detection results,
we use word cloud (Harris, 2011) to output the top
30 frequent words in the testing data for the emotion
love and anxiety based on the annotation as shown
in the left part of Figure 4. We also output the top
30 frequent words for the two emotions based on the
prediction generated by EDL as shown in Figure 4
’s right part. It can be observed that most words
based on prediction indeed express their associated
emotions. For example, word “like” delivers the e-
motion of love (right part of Figure 4(a)) and word
“problem” tells anxiety (right part of Figure 4(b)).
Moreover, the annotation and the prediction share 20
out of the top 30 most frequent words for the emo-
tion love such as “friend”, “joy”, “happiness”, etc as
shown in the middle of Figure 4(a) and 19 out of 30
for the emotion of anxiety (the middle of Figure 4(b).
It demonstrates that EDL can learn emotions from
text precisely.

To investigate the emotion distributions generated
by EDL, a sentence from the Ren-CECps corpus to-
gether with the emotion distribution output by EDL
is illustrated in Figure 5. The ground truth emotion
distribution is obtained by normalizing the scores
and the virtual label y0. As can be seen, the curve
of the predicted emotion distribution is very similar
as the ground truth distribution, which demonstrates
that EDL can learn the varying intensities of all the
basic emotions well.

Ground truth
y

xd

Predicted

Relevant emotions

Irrelevant

emotions

y

xd

Relevant emotions

Irrelevant

emotions

Dreams die one by one, but life should go on and we have to eat.

Figure 5: A sentence with the emotion distribution predicted

by EDL.

5 Conclusions and Future Work

In this paper, we have proposed a novel approach
based on EDL to identify multiple emotions with
their intensities from texts. Moreover, the relations
between basic emotions is incorporated in the learn-
ing framework as constraints to improve the learning
accuracy. Experimental results show that the pro-
posed approach can effectively deal with the emo-
tion distribution detection problem and perform re-
markably better than the state-of-the-art multi-label
learning methods and the emotion detection method.
In future work, we will investigate the efficiency of
the proposed approach in other datasets and explore
other methods in capturing the inter-relations of e-
motions.

Acknowledgments

This work was funded by the National Nat-
ural Science Foundation of China (61273300,
61232007, 61528302, 61622203), the Jiangsu Natu-
ral Science Funds for Distinguished Young Scholar
(BK20140022), the Natural Science Foundation of
Jiangsu Province of China (BK20161430), and the
Collaborative Innovation Center of Wireless Com-
munications Technology.

645

⑩
⑨

⑧

⑦

⑥⑤④
③②

①

⑰

⑪

⑫

⑬
⑭

⑮

⑯

⑲

⑱

⑳

③

④

⑤
⑥

⑦
⑧

⑨

⑩

①

②

⑪

⑫

⑬

⑭

⑮
⑯

⑰

⑱

⑲

① Like

② Friend

③ Beauty

④ Affection

⑤ Joy

⑥ Year

⑦ Heart

⑧ Ever

⑨ World

⑩ Happiness

⑪ Eat

⑫ Life

⑬ That

⑭ Always

⑮ Real

⑯ Pretty

⑰Warm

⑱ Sentence

⑲ Piece

⑳ All the Time

Based on Annotation Based on Prediction

⑳

(a) Love

①

②

⑩

⑨
⑧

⑦
⑥

⑤

④

③

⑪

⑫

⑬

⑭

⑮

⑯

⑰

⑱⑲

⑩⑨

⑧

⑥

⑤

④

③

②
①

⑦

⑯

⑮

⑭
⑬

⑫

⑪

⑲

⑱

⑰

Based on PredictionBased on Annotation

① Matter

② Thing

③ Problem

④ Again

⑤ These

⑥ Can’t
⑦ I won’t
⑧ Who

⑨ Should

⑩ Hard

⑪ Work

⑫ Eh

⑬ What about

⑭ How

⑮ Really

⑯ Maybe

⑰ Some

⑱ Eat

⑲ Year

(b) Anxiety

Figure 4: Top 30 frequent words for the emotion love and anxiety based on the annotation or the prediction.

References
Ameeta Agrawal and Aijun An. 2012. Unsuper-

vised emotion detection from text using semantic
and syntactic relations. In Proceedings of the 2012
IEEE/WIC/ACM International Joint Conferences on
Web Intelligence and Intelligent Agent Technology,
pages 346–353.

Saima Aman and Stan Szpakowicz. 2007. Identifying
expressions of emotion in text. Lecture Notes in Com-
puter Science, 4629:196–205.

S. Bao, Shengliang Xu, Li Zhang, Rong Yan, Zhong Su,
Dingyi Han, and Yong Yu. 2009. Joint emotion-topic
modeling for social affective text mining. In Proceed-
ings of the Ninth IEEE International Conference on
Data Mining, pages 699–704.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N.
Vapnik. 1992. A training algorithm for optimal mar-
gin classifiers. In Proceedings of the Fifth Annual
Workshop on Computational Learning Theory, pages
144–152.

R.A. Calvo and S. D’Mello. 2010. Affect detection: An
interdisciplinary review of models, methods, and their
applications. Affective Computing, IEEE Transactions
on, 1(1):18–37.

Munmun De Choudhury, Michael Gamon, and Scot-
t Counts. 2012. Happy, nervous or surprised? clas-
sification of human affective states in social media. In

Proceedings of the Sixth International AAAI Confer-
ence on Weblogs and Social Media, pages 435–438.

Paul Ekman. 1992. An argument for basic emotions.
Cogition and emotion, 6(3-4):169–200.

Xin Geng and Rongzi Ji. 2013. Label distribution learn-
ing. In Proceedings of the 13th IEEE International
Conference on Data Mining Workshops, pages 377–
383.

Xin Geng. 2016. Label distribution learning. IEEE
Transactions on Knowledge and Data Engineering,
28(7):1734–1748.

Narendra Gupta, Mazin Gilbert, and Giuseppe Di Fab-
brizio. 2013. Emotion detection in email customer
care. Computational Intelligence, 29(3):489–505.

Jacob Harris. 2011. Word clouds considered harmful.
Nieman Journalism Lab.

Sheng-Jun Huang and Zhi-Hua Zhou. 2012. Multi-label
learning by exploiting label correlations locally. In
Proceedings of the 26th AAAI Conference on Artificial
Intelligence, pages 949–955, Toronto, Canada.

Chenghua Lin and Yulan He. 2009. Joint sentiment/topic
model for sentiment analysis. In Proceedings of the
18th ACM Conference on Information and Knowledge
Management, CIKM ’09, pages 375–384, New York,
NY, USA. ACM.

Gilad Mishne and Maarten de Rijke. 2006. Capturing
global mood levels using blog posts. In AAAI Sympo-

646

sium on Computational Approaches to Analysing We-
blogs (AAAI-CAAW), pages 145–152, June.

Jorge Nocedal and Stephen Wright. 2006. Numerical
optimization. Springer Science & Business Media.

Robert Plutchik. 1980. A general psychoevolutionary
theory of emotion. Theories of emotion, 1.

Robert Plutchik. 2001. An argument for basic emotions.
American Scientist, 89(4):344–350.

S. Poria, A. Gelbukh, A. Hussain, N. Howard, D. Das,
and S. Bandyopadhyay. 2013. Enhanced senticnet
with affective labels for concept-based opinion min-
ing. Intelligent Systems, IEEE, 28(2):31–38.

Changqin Quan and Fuji Ren. 2010. Sentence emotion
analysis and recognition based on emotion words us-
ing ren-cecps. International Journal of Advanced In-
telligence, 2(1):105–117.

Xiaojun Quan, Qifan Wang, Ying Zhang, Luo Si, and Li-
u Wenyin. 2015. Latent discriminative models for
social emotion detection with emotional dependency.
ACM Trans. Inf. Syst., 34(1):2:1–2:19.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and
Eibe Frank. 2011. Classifier chains for multi-label
classification. Machine Learning, 85(3):333–359.

James A. Russell. 2003. Core affect and the psycholog-
ical construction of emotion. Psychological Review,
110(1):145–172.

Richard Socher, Jeffrey Pennington, Eric H Huang, An-
drew Y Ng, and Christopher D Manning. 2011. Semi-
supervised recursive autoencoders for predicting sen-
timent distributions. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing, pages 151–161.

Carlo Strapparava and Alessandro Valitutti. 2004.
Wordnet-affect: an affective extension of wordnet.
In Proceedings of the 4th International Conference
on Language Resources and Evaluation, pages 1083–
1086.

Yichen Wang and Aditya Pal. 2015. Detecting emo-
tions in social media: A constrained optimization ap-
proach. In Proceedings of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence,
pages 996–1002.

Min-Ling Zhang and Zhi-Hua Zhou. 2006. Multilabel
neural networks with applications to functional ge-
nomics and text categorization. IEEE Transactions on
Knowledge and Data Engineering, 18(10):1338–1351.

Min-Ling Zhang and Zhi-Hua Zhou. 2014. A review on
multi-label learning algorithms. IEEE Transactions on
Knowledge and Data Engineering, 26(8):1819–1837.

Min-Ling Zhang. 2009. Ml-rbf: Rbf neural networks
for multi-label learning. Neural Processing Letters,
29(2):61–74.

Min-Ling Zhang. 2011. Lift: Multi-label learning with
label-specific features. In Proceedings of the 22nd In-
ternational Joint Conference on Artificial Intelligence,
pages 1609–1614, Barcelona, Spain.

647

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 648–657,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Building an Evaluation Scale using Item Response Theory

John P. Lalor1, Hao Wu2, Hong Yu1,3

1 University of Massachusetts, MA, USA
2 Boston College, MA, USA

3 Bedford VAMC and CHOIR, MA, USA
lalor@cs.umass.edu, hao.wu.5@bc.edu, hong.yu@umassmed.edu

Abstract

Evaluation of NLP methods requires test-
ing against a previously vetted gold-standard
test set and reporting standard metrics (ac-
curacy/precision/recall/F1). The current as-
sumption is that all items in a given test set are
equal with regards to difficulty and discrim-
inating power. We propose Item Response
Theory (IRT) from psychometrics as an alter-
native means for gold-standard test-set gener-
ation and NLP system evaluation. IRT is able
to describe characteristics of individual items -
their difficulty and discriminating power - and
can account for these characteristics in its es-
timation of human intelligence or ability for
an NLP task. In this paper, we demonstrate
IRT by generating a gold-standard test set for
Recognizing Textual Entailment. By collect-
ing a large number of human responses and
fitting our IRT model, we show that our IRT
model compares NLP systems with the per-
formance in a human population and is able to
provide more insight into system performance
than standard evaluation metrics. We show
that a high accuracy score does not always im-
ply a high IRT score, which depends on the
item characteristics and the response pattern.1

1 Introduction

Advances in artificial intelligence have made it pos-
sible to compare computer performance directly
with human intelligence (Campbell et al., 2002; Fer-
rucci et al., 2010; Silver et al., 2016). In most cases,
a common approach to evaluating the performance

1Data and code will be made available for download at
https://people.cs.umass.edu/lalor/irt.html

of a new system is to compare it against an unseen
gold-standard test dataset (GS items). Accuracy, re-
call, precision and F1 scores are commonly used to
evaluate NLP applications. These metrics assume
that GS items have equal weight for evaluating per-
formance. However, individual items are different:
some may be so hard that most/all NLP systems an-
swer incorrectly; others may be so easy that every
NLP system answers correctly. Neither item type
provides meaningful information about the perfor-
mance of an NLP system. Items that are answered
incorrectly by some systems and correctly by oth-
ers are useful for differentiating systems according
to their individual characteristics.

In this paper we introduce Item Response The-
ory (IRT) from psychometrics and demonstrate its
application to evaluating NLP systems. IRT is a the-
ory of evaluation for characterizing test items and
estimating human ability from their performance on
such tests. IRT assumes that individual test ques-
tions (referred to as “items” in IRT) have unique
characteristics such as difficulty and discriminating
power. These characteristics can be identified by fit-
ting a joint model of human ability and item charac-
teristics to human response patterns to the test items.
Items that do not fit the model are removed and the
remaining items can be considered a scale to eval-
uate performance. IRT assumes that the probabil-
ity of a correct answer is associated with both item
characteristics and individual ability, and therefore
a collection of items of varying characteristics can
determine an individual’s overall ability.

Our aim is to build an intelligent evaluation metric
to measure performance for NLP tasks. With IRT we

648

can identify an appropriate set of items to measure
ability in relation to the overall human population as
scored by an IRT model. This process serves two
purposes: (i) to identify individual items appropri-
ate for a test set that measures ability on a particular
task, and (ii) to use the resulting set of items as an
evaluation set in its own right, to measure the ability
of future subjects (or NLP models) for the same task.
These evaluation sets can measure the ability of an
NLP system with a small number of items, leaving a
larger percentage of a dataset for training.

Our contributions are as follows: First, we in-
troduce IRT and describe its benefits and method-
ology. Second, we apply IRT to Recognizing Tex-
tual Entailment (RTE) and show that evaluation
sets consisting of a small number of sampled items
can provide meaningful information about the RTE
task. Our IRT analyses show that different items ex-
hibit varying degrees of difficulty and discrimina-
tion power and that high accuracy does not always
translate to high scores in relation to human perfor-
mance. By incorporating IRT, we can learn more
about dataset items and move past treating each test
case as equal. Using IRT as an evaluation metric
allows us to compare NLP systems directly to the
performance of humans.

2 Background and Related Work

2.1 Item Response Theory

IRT is one of the most widely used methodologies
in psychometrics for scale construction and eval-
uation. It is typically used to analyze human re-
sponses (graded as right or wrong) to a set of ques-
tions (called “items”). With IRT individual ability
and item characteristics are jointly modeled to pre-
dict performance (Baker and Kim, 2004). This sta-
tistical model makes the following assumptions: (a)
Individuals differ from each other on an unobserved
latent trait dimension (called “ability” or “factor”);
(b) The probability of correctly answering an item
is a function of the person’s ability. This function
is called the item characteristic curve (ICC) and in-
volves item characteristics as parameters; (c) Re-
sponses to different items are independent of each
other for a given ability level of the person (“lo-
cal independence assumption”); (d) Responses from
different individuals are independent of each other.

Figure 1: Example ICC for a 3PL model with the following

parameters: a = 1.0, b = 0.0, c = 0.25.

More formally, if we let j be an individual, i be an
item, and θj be the latent ability trait of individual j,
then the probability that individual j answers item i
correctly can be modeled as:

pij(θj) = ci +
1− ci

1 + e−ai(θj−bi)
(1)

where ai, bi, and ci are item parameters: ai (the
slope or discrimination parameter) is related to the
steepness of the curve, bi (the difficulty parameter)
is the level of ability that produces a chance of cor-
rect response equal to the average of the upper and
lower asymptotes, and ci (the guessing parameter)
is the lower asymptote of the ICC and the proba-
bility of guessing correctly. Equation 1 is referred
to as the three-parameter logistic (3PL) IRT model.
A two-parameter logistic (2PL) IRT model assumes
that the guessing parameter ci is 0.

Figure 1 shows an ICC of a 3PL model. The
ICC for a good item will look like a sigmoid plot,
and should exhibit a relatively steep increasing ICC
between ability levels −3 and 3, where most peo-
ple are located, in order to have appropriate power
to differentiate different levels of ability. We have
described a one factor IRT model where ability is
uni-dimensional. Multi-factor IRT models would in-
volve two or more latent trait dimensions and will
not be elaborated here.

To identify the number of factors in an IRT model,
the polychoric correlation matrix of the items is cal-
culated and its ordered eigenvalues are plotted. The

649

number of factors is suggested by the number of
large eigenvalues. It can be further established by
fitting (see below) and comparing IRT models with
different numbers of factors. Such comparison may
use model selection indices such as Akaike Infor-
mation Criterion (AIC) and Conditional Bayesian
Information Criterion (CBIC) and should also take
into account the interpretablility of the loading pat-
tern that links items to factors.

An IRT model can be fit to data with the marginal
maximum likelihood method through an EM algo-
rithm (Bock and Aitkin, 1981). The marginal likeli-
hood function is the probability to observe the cur-
rent response patterns as a function of the item pa-
rameters with the persons’ ability parameters inte-
grated out as random effects. This function is max-
imized to produce estimates of the item parameters.
For IRT models with more than one factor, the slope
parameters (i.e. loadings) that relate items and fac-
tors must be properly rotated (Browne, 2001) be-
fore they can be interpreted. Given the estimated
item parameters, Bayesian estimates of the individ-
ual person’s ability parameters are obtained with the
standard normal prior distribution.

After determining the number of factors and fit-
ting the model, the local independence assumption
can be checked using the residuals of marginal re-
sponses of item pairs (Chen and Thissen, 1997) and
the fit of the ICC for each item can be checked with
item fit statistics (Orlando and Thissen, 2000) to de-
termine whether an item should be retained or re-
moved. If both tests are passed and all items have
proper discrimination power, then the set of items is
considered a calibrated measurement scale and the
estimated item parameters can be further used to es-
timate an individual person’s ability level.

IRT accounts for differences among items when
estimating a person’s ability. In addition, ability es-
timates from IRT are on the ability scale of the pop-
ulation used to estimate item parameters. For exam-
ple, an estimated ability of 1.2 can be interpreted as
1.2 standard deviations above the average ability in
this population. The traditional total number of cor-
rect responses generally does not have such quanti-
tative meaning.

IRT has been widely used in educational test-
ing. For example, it plays an instrumental role in
the construction, evaluation, or scoring of standard-

ized tests such as the Test of English as a Foreign
Language (TOEFL), Graduate Record Examinations
(GRE) and the SAT college admissions standardized
test.

2.1.1 IRT Terminology
Here we outline common IRT terminology in

terms of RTE. An item refers to a pair of sentences to
which humans or NLP systems assign a label (entail-
ment, contradiction, or neutral). A set of responses
to all items (each graded as correct or incorrect) is a
response pattern. An evaluation scale is a test set of
items to be administered to an NLP system and as-
signs an ability score (or theta score) to the system
as its performance.

2.2 Recognizing Textual Entailment

RTE was introduced to standardize the challenge
of accounting for semantic variation when building
models for a number of NLP applications (Dagan
et al., 2006). RTE defines a directional relationship
between a pair of sentences, the text (T) and the hy-
pothesis (H). T entails H if a human that has read
T would infer that H is true. If a human would in-
fer that H is false, then H contradicts T. If the two
sentences are unrelated, then the pair are said to be
neutral. Table 1 shows examples of T-H pairs and
their respective classifications. Recent state-of-the-
art systems for RTE require a large amount of fea-
ture engineering and specialization to achieve high
performance (Beltagy et al., 2015; Lai and Hocken-
maier, 2014; Jimenez et al., 2014).

A number of gold-standard datasets are available
for RTE (Marelli et al., 2014; Young et al., 2014;
Levy et al., 2014). We consider the Stanford Natu-
ral Language Inference (SNLI) dataset (Bowman et
al., 2015). SNLI examples were obtained using only
human-generated sentences with Amazon Mechan-
ical Turk (AMT) to mitigate the problem of poor
data that was being used to build models for RTE.
In addition, SNLI included a quality control assess-
ment of a sampled portion of the dataset (about 10%,
56,951 sentence pairs). This data was provided to 4
additional AMT users to provide labels (entailment,
contradiction, neutral) for the sentence pairs. If at
least 3 of the 5 annotators (the original annotator
and 4 additional annotators) agreed on a label the
item was retained. Most of the items (98%) received

650

Text Hypothesis Label
Retained - 4GS
1. A toddler playing with a toy car next to a dog A toddler plays with toy cars

while his dog sleeps
Neutral

2. People were watching the tournament in the stadium The people are sitting outside on
the grass

Contradiction

Retained - 5GS
3. A person is shoveling snow It rained today Contradiction
4 Two girls on a bridge dancing with the city skyline in the
background

The girls are sisters. Neutral

5. A woman is kneeling on the ground taking a photograph A picture is being snapped Entailment
Removed - 4GS
6. Two men and one woman are dressed in costume hats The people are swingers Neutral
7. Man sweeping trash outside a large statue A man is on vacation Contradiction
8. A couple is back to back in formal attire Two people are facing away

from each other
Entailment

9. A man on stilts in a purple, yellow and white costume A man is performing on stilts Entailment
Removed - 5GS
10. A group of soccer players are grabbing onto each other
as they go for the ball

A group of football players are
playing a game

Contradiction

11. Football players stand at the line of scrimmage The players are in uniform Neutral
12. Man in uniform waiting on a wall Near a wall, a man in uniform is

waiting
Entailment

Table 1: Examples of retained & removed sentence pairs. The selection is not based on right/wrong labels but based on IRT model

fitting and item elimination process. Note that no 4GS entailment items were retained (Section 4.2)

a gold-standard label. Specifics of SNLI generation
are at Bowman et al. (2015).

2.3 Related Work

To identify low-quality annotators (spammers),
Hovy et al. (2013) modeled annotator responses, ei-
ther answering correctly or guessing, as a random
variable with a guessing parameter varying only
across annotators. Passonneau and Carpenter (2014)
used the model of Dawid and Skene (1979) in which
an annotator’s response depends on both the true la-
bel and the annotator. In both models an annotator’s
response depends on an item only through its correct
label. In contrast, IRT assumes a more sophisticated
response mechanism involving both annotator qual-
ities and item characteristics. To our knowledge we
are the first to introduce IRT to NLP and to create a
gold standard with the intention of comparing NLP
applications to human intelligence.

Bruce and Wiebe (1999) analyze patterns of
agreement between annotators in a case-study sen-
tence categorization task, and use a latent-trait
model to identify true labels. That work uses 4 an-
notators at varying levels of expertise and does not

consider the discriminating power of dataset items.
Current gold-standard dataset generation methods

include web crawling (Guo et al., 2013), automatic
and semi-automatic generation (An et al., 2003), and
expert (Roller and Stevenson, 2015) and non-expert
human annotation (Bowman et al., 2015; Wiebe et
al., 1999). In each case validation is required to
ensure that the data collected is appropriate and us-
able for the required task. Automatically generated
data can be refined with visual inspection or post-
collection processing. Human annotated data usu-
ally involves more than one annotator, so that com-
parison metrics such as Cohen’s or Fleiss’ κ can be
used to determine how much they agree. Disagree-
ments between annotators are resolved by researcher
intervention or by majority vote.

3 Methods

We collected and evaluated a random selection from
the SNLI RTE dataset (GSRTE) to build our IRT
models. We first randomly selected a subset of
GSRTE , and then used the sample in an AMT Hu-
man Intelligence Task (HIT) to collect more labels

651

for each text-hypothesis pair. We then applied IRT
to evaluate the quality of the examples and used the
final IRT models to create evaluation sets (GSIRT)
to measure ability for RTE.

3.1 Item Selection

For our evaluation we looked at two sets of data:
sentence-pairs selected from SNLI where 4 out of
5 annotators agreed on the gold-standard label (re-
ferred to as 4GS), and sentence-pairs where 5 out of
5 annotators agreed on the gold-standard label (re-
ferred to as 5GS). We make the assumption for our
analysis that the 4GS items are harder than the 5GS
items due to the fact that there was not a unanimous
decision regarding the gold-standard label.

We selected the subset of GSRTE to use as an ex-
amination set in 4GS and 5GS according to the fol-
lowing steps: (1) Identify all “quality-control” items
from GSRTE (i.e. items where 5 annotators pro-
vided labels, see §2.2), (2) Identify items in this sec-
tion of the data where 4 of the 5 annotators agreed on
the eventual gold label (to be selected from for 4GS)
and 5 of the 5 annotators agreed on the gold standard
label (to be selected from for 5GS), (3) Randomly
select 30 entailment sentence pairs, 30 neutral pairs,
and 30 contradiction pairs from those items where 4
of 5 annotators agreed on the gold label (4GS) and
those items where 5 of 5 annotators agreed on the
gold label (5GS) to obtain two sets of 90 sentence
pairs.

90 sentence pairs for 4GS and 5GS were sam-
pled so that the annotation task (supplying 90 labels)
could be completed in a reasonably short amount of
time during which users remained engaged. We se-
lected items from 4GS and 5GS because both groups
are considered high quality for RTE. We evaluated
the selected 180 sentence pairs using the model
provided with the original dataset (Bowman et al.,
2015) and found that accuracy scores were similar
compared to performance on the SNLI test set.

3.2 AMT Annotation

For consistency we designed our AMT HIT to match
the process used to validate the SNLI quality con-
trol items (Bowman et al., 2015) and to generate la-
bels for the SICK RTE dataset (Marelli et al., 2014).
Each AMT user was shown 90 premise-hypothesis
pairs (either the full 5GS or 4GS set) one pair at a

time, and was asked to choose the appropriate label
for each. Each user was presented with the full set,
as opposed to one-label subsets (e.g. just the entail-
ment pairs) in order to avoid a user simply answering
with the same label for each item.

For each 90 sentence-pair set (5GS and 4GS), we
collected annotations from 1000 AMT users, result-
ing in 1000 label annotations for each of the 180 sen-
tence pairs. While there is no set standard for sam-
ple sizes in IRT models, this sample size satisfies
the standards based on the non-central χ2 distribu-
tion (MacCallum et al., 1996) used when comparing
two multidimensional IRT models. This sample size
is also appropriate for tests of item fit and local de-
pendence that are based on small contingency tables.

Only AMT users with approval ratings above 97%
were used to ensure that users were of a high qual-
ity. The task was only available to users located in
the United States, as a proxy for identifying English
speakers. Attention check questions were included
in the HIT, to ensure that users were paying attention
and answering to the best of their ability. Responses
where the attention-check questions were answered
incorrectly were removed. After removing individ-
uals that failed the attention-check, we retained 976
labels for each example in the 4GS set and 983 labels
for each example in the 5GS set. Average time spent
for each task was roughly 30 minutes, a reasonable
amount for AMT users.

3.3 Statistical Analysis
Data collected for 4GS and 5GS were analyzed sep-
arately in order to evaluate the differences between
“easier” items (5GS) and “harder” items (4GS), and
to demonstrate the ability to show that theta score is
consistent even if dataset difficulty varies. For both
sets of items, the number of factors was identified
by a plot of eigenvalues of the 90 x 90 tetrachoric
correlation matrix and by a further comparison be-
tween IRT models with different number of factors.
A target rotation (Browne, 2001) was used to iden-
tify a meaningful loading pattern that associates fac-
tors and items. Each factor could then be interpreted
as the ability of a user to recognize the correct rela-
tionship between the sentence pairs associated with
that factor (e.g. contradiction).

Once the different factors were associated with
different sets of items, we built a unidimensional

652

4GS 5GS Overall
Pairs with majority
agreement

95.6% 96.7% 96.1%

Pairs with superma-
jority agreement

61.1% 82.2% 71.7%

Table 2: Summary statistics from the AMT HITs.

IRT model for each set of items associated with a
single factor. We fit and compared one- and two-
factor 3PL models to confirm our assumption and
the unidimensional structure underlying these items,
assuming the possible presence of guessing in peo-
ple’s responses. We further tested the guessing pa-
rameter of each item in the one factor 3PL model. If
the guessing parameter was not significantly differ-
ent from 0, a 2PL ICC was used for that particular
item.

Once an appropriate model structure was deter-
mined, individual items were evaluated for goodness
of fit within the model (§2.1). If an item was deemed
to fit the ICC poorly or to give rise to local depen-
dence, it was removed for violating model assump-
tions. Furthermore, if the ICC of an item was too
flat, it was removed for low discriminating power
between ability levels. The model was then refit with
the remaining items. This iterative process contin-
ued until no item could be removed (2 to 6 iterations
depending on how many items were removed from
each set).

The remaining items make up our final test set
(GSIRT), which is a calibrated scale of ability to
correctly identify the relationship between the two
sentence pairs. Parameters of these items were esti-
mated as part of the IRT model and the set of items
can be used as an evaluation scale to estimate ability
of test-takers or RTE systems. We used the mirt R
package (Chalmers et al., 2015) for our analyses.

4 Results

4.1 Response Statistics

Table 2 lists key statistics from the AMT HITs. Most
of the sampled sentence pairs resulted in a gold stan-
dard label being identified via a majority vote. Due
to the large number of individuals providing labels
during the HIT, we also wanted to see if a gold stan-
dard label could be determined via a two-thirds su-
permajority vote. We found that 28.3% of the sen-

Fleiss’ κ 4GS 5GS Bowman et al. 2015
Contradiction 0.37 0.59 0.77
Entailment 0.48 0.63 0.72
Neutral 0.41 0.54 0.6
Overall 0.43 0.6 0.7

Table 3: Comparison of Fleiss’ κ scores with scores from SNLI

quality control sentence pairs.

tence pairs did not have a supermajority gold label.
This highlights the ambiguity associated with iden-
tifying entailment.

We believe that the items selected for analysis
are appropriate for our task in that we chose high-
quality items, where at least 4 annotators selected
the same label, indicating a strong level of agree-
ment (Section 3.1). We argue that our sample is a
high-quality portion of the dataset, and further anal-
ysis of items where the gold-standard label was only
selected by 3 annotators originally would result in
lower levels of agreement.

Table 3 shows that the level of agreement as mea-
sured by the Fleiss’ κ score is much lower when the
number of annotators is increased, particularly for
the 4GS set of sentence pairs, as compared to scores
noted in Bowman et al. (2015). The decrease in
agreement is particularly large with regard to con-
tradiction. This could occur for a number of rea-
sons. Recognizing entailment is an inherently dif-
ficult task, and classifying a correct label, particu-
larly for contradiction and neutral, can be difficult
due to an individual’s interpretation of the sentences
and assumptions that an individual makes about the
key facts of each sentence (e.g. coreference). It may
also be the case that the individuals tasked with cre-
ating the sentence pairs on AMT created sentences
that appeared to contradict a premise text, but can be
interpreted differently given a different context.

Before fitting the IRT models we performed a vi-
sual inspection of the 180 sentence pairs and re-
moved items clearly not suitable for an evaluation
scale due to syntactic or semantic discrepancies. For
example item 10 in Table 1 was removed from the
5GS contradiction set for semantic reasons. While
many people would agree that the statement is a con-
tradiction due to the difference between football and
soccer, individuals from outside the U.S. would pos-
sibly consider the two to be synonyms and classify
this as entailment. Six such pairs were identified

653

and removed from the set of 180 items, leaving 174
items for IRT model-fitting.

4.2 IRT Evaluation

4.2.1 IRT Models

We used the methods described in Section 3.3 to
build IRT models to scale performance according to
the RTE task. For both 4GS and 5GS items three
factors were identified, each related to items for the
three GSRTE labels (entailment, contradiction, neu-
tral). This suggests that items with the sameGSRTE
label within each set defines a separate ability. In the
subsequent steps, items with different labels were
analyzed separately. After analysis, we were left
with a subset of the 180 originally selected items.
Refer to Table 1 for examples of the retained and
removed items based on the IRT analysis. We re-
tained 124 of the 180 items (68.9%). We were able
to retain more items from the 5GS datasets (76 out
of 90 - 84%) than from the 4GS datasets (48 out
of 90 - 53.5%). Items that measure contradiction
were retained at the lowest rate for both 4GS and
5GS datasets (66% in both cases). For the 4GS en-
tailment items, our analysis found that a one-factor
model did not fit the data, and a two-factor model
failed to yield an interpretable loading pattern after
rotation. We were unable to build an IRT model that
accurately modeled ability to recognize entailment
with the obtained response patterns. As a result, no
items from the 4GS entailment set were retained.

Figure 2 plots the empirical spline-smoothed ICC
of one item (Table 1, item 9) with its estimated re-
sponse curve. The ICC is not continuously increas-
ing, and thus a logistic function is not appropriate.
This item was spotted for poor item fit and removed.
Figure 3 shows a comparison between the ICC plot
of a retained item (Table 1, item 4) and the ICC of
a removed item (Table 1, item 8). Note that the re-
moved item has an ICC that is very flat between -3
and 3. This item cannot discriminate individuals at
any common level of ability and thus is not useful.

The items retained for each factor can be consid-
ered as an evaluation scale that measures a single
ability of an individual test-taker. As each factor is
associated with a separate gold-standard label, each
factor (θ) is a person’s ability to correctly classify
the relationship between the text and hypothesis for

Figure 2: Estimated (solid) and actual (dotted) response curves

for a removed item.

Figure 3: ICCs for retained (solid) and removed (dotted) items.

one such label (e.g. entailment).

4.2.2 Item Parameter Estimation
Parameter estimates of retained items for each la-

bel are summarized in Table 4, and show that all
parameters fall within reasonable ranges. All re-
tained items have 2PL ICCs, suggesting no signif-
icant guessing. Difficulty parameters of most items
are negative, suggesting that an average AMT user
has at least 50% chance to answer these items cor-
rectly. Although some minimum difficulties are
quite low for standard ranges for a human popula-
tion, the low range of item difficulty is appropriate
for the evaluation of NLP systems. Items in each
scale have a wide range of difficulty and discrimina-
tion power.

With IRT we can use the heterogeneity of items to
properly account for such differences in the estima-
tion of a test-taker’s ability. Figure 4 plots the esti-
mated ability of each AMT user from IRT against
their total number of correct responses to the re-
tained items in the 4GS contradiction item set. The
two estimates of ability differ in many aspects. First,
test-takers with the same total score may differ in
their IRT score because they have different response

654

Item Set Min.
Diffi-
culty

Max.
Diffi-
culty

Min.
Slope

Max.
Slope

5GS
Contradiction -2.765 0.704 0.846 2.731
Entailment -3.253 -1.898 0.78 2.61
Neutral -2.082 -0.555 1.271 3.598
4GS
Contradiction -1.829 1.283 0.888 2.753
Neutral -2.148 0.386 1.133 3.313

Table 4: Parameter estimates of the retained items

Figure 4: Plot of total correct answers vs. IRT scores.

patterns (i.e. they made mistakes on different items),
showing that IRT is able to account for differences
among items. Second, despite a rough monotonic
trend between the two scores, people with a higher
number of correct responses may have a lower abil-
ity estimate from IRT.

We can extend this analysis to the case of RTE
systems, and use the newly constructed scales to
evaluate RTE systems. A system could be trained on
an existing dataset and then evaluated using the re-
tained items from the IRT models to estimate a new
ability score. This score would be a measurement of
how well the system performed with respect to the
human population used to fit the model. With this
approach, larger sections of datasets can be devoted
to training, with a small portion held out to build an
IRT model that can be used for evaluation.

4.2.3 Application to an RTE System

As a demonstration, we evaluate the LSTM model
presented in Bowman et al. (2015) with the items in
our IRT evaluation scales. In addition to the theta
scores, we calculate accuracy for the binary classi-
fication task of identifying the correct label for all

Item Set Theta Score Percentile Test
Acc.

5GS
Entailment -0.133 44.83% 96.5%

Contradiction 1.539 93.82% 87.9%
Neutral 0.423 66.28% 88%

4GS
Contradiction 1.777 96.25% 78.9%

Neutral 0.441 67% 83%
Table 5: Theta scores and area under curve percentiles for

LSTM trained on SNLI and tested on GSIRT . We also report

the accuracy for the same LSTM tested on all SNLI quality con-

trol items (see Section 3.1). All performance is based on binary

classification for each label.

items eligible for each subset in Table 5 (e.g. all test
items where 5 of 5 annotators labeled the item as en-
tailment for 5GS). Note that these accuracy metrics
are for subsets of the SNLI test set used for binary
classifications and therefore do not compare with the
standard SNLI test set accuracy measures.

The theta scores from IRT in Table 5 show that,
compared to AMT users, the system performed well
above average for contradiction items compared to
human performance, and performed around the av-
erage for entailment and neutral items. For both the
neutral and contradiction items, the theta scores are
similar across the 4GS and 5GS sets, whereas the
accuracy of the more difficult 4GS items is consis-
tently lower. This shows the advantage of IRT to ac-
count for item characteristics in its ability estimates.
A similar theta score across sets indicates that we
can measure the “ability level” regardless of whether
the test set is easy or hard. Theta score is a con-
sistent measurement, compared to accuracy which
varies with the difficulty of the dataset.

The theta score and accuracy for 5GS entailment
show that high accuracy does not necessarily mean
that performance is above average when compared
to human performance. However, theta score is not
meant to contradict accuracy score, but to provide a
better idea of system performance compared against
a human population. The theta scores are a result of
the IRT model fit using human annotator responses
and provide more context about the system perfor-
mance than an accuracy score can alone. If accuracy
is high and theta is close to 0 (as is the case with 5GS
entailment), we know that the performance of RTE

655

is close to the average level of the AMT user pop-
ulation and that 5GS entailment test set was “easy”
to both. Theta score and percentile are intrinsically
in reference to human performance and independent
of item difficulty, while accuracy is intrinsically in
reference to a specific set of items.

5 Discussion and Future Work

As NLP systems have become more sophisticated,
sophisticated methodologies are required to com-
pare their performance. One approach to create an
intelligent gold standard is to use IRT to build mod-
els to scale performance on a small section of items
with respect to the tested population. IRT models
can identify dataset items with different difficulty
levels and discrimination powers based on human
responses, and identify items that are not appropriate
as scale items for evaluation. The resulting small set
of items can be used as a scale to score an individ-
ual or NLP system. This leaves a higher percentage
of a dataset to be used in the training of the system,
while still having a valuable metric for testing.

IRT is not without its challenges. A large popu-
lation is required to provide the initial responses in
order to have enough data to fit the models; however,
crowdsourcing allows for the inexpensive collection
of large amounts of data. An alternative methodol-
ogy is Classical Test Theory, which has its own limi-
tations, in particular that it is test-centric, and cannot
provide information for individual items.

We have introduced Item Response Theory from
psychometrics as an alternative method for generat-
ing gold-standard evaluation datasets. Fitting IRT
models allows us to identify a set of items that when
taken together as a test set, can provide a meaningful
evaluation of NLP systems with the different diffi-
culty and discriminating characteristics of the items
taken into account. We demonstrate the usefulness
of the IRT-generated test set by showing that high
accuracy does not necessarily indicate high perfor-
mance when compared to a population of humans.

Future work can adapt this analysis to create eval-
uation mechanisms for other NLP tasks. The ex-
pectation is that systems that perform well using a
standard accuracy measure can be stratified based
on which types of items they perform well on. High
quailty systems should also perform well when the

models are used together as an overall test of abil-
ity. This new evaluation for NLP systems can lead
to new and innovative methods that can be tested
against a novel benchmark for performance, instead
of gradually incrementing on a classification accu-
racy metric.

Acknowledgments

We thank the AMT Turkers who completed our an-
notation task. We would like to also thank the
anonymous reviewers for their insightful comments.

This work was supported in part by the HSR&D
award IIR 1I01HX001457 from the United States
Department of Veterans Affairs (VA). We also ac-
knowledge the support of HL125089 from the Na-
tional Institutes of Health. This work was also sup-
ported in part by the Center for Intelligent Informa-
tion Retrieval. The contents of this paper do not rep-
resent the views of CIIR, NIH, VA, or the United
States Government

References

Joohui An, Seungwoo Lee, and Gary Geunbae Lee.
2003. Automatic Acquisition of Named Entity Tagged
Corpus from World Wide Web. In Proceedings of
the 41st Annual Meeting on Association for Compu-
tational Linguistics - Volume 2, ACL ’03, pages 165–
168, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Frank B. Baker and Seock-Ho Kim. 2004. Item Re-
sponse Theory: Parameter Estimation Techniques,
Second Edition. CRC Press, July.

Islam Beltagy, Stephen Roller, Pengxiang Cheng, Ka-
trin Erk, and Raymond J. Mooney. 2015. Represent-
ing Meaning with a Combination of Logical Form and
Vectors. arXiv:1505.06816 [cs]. arXiv: 1505.06816.

R Darrell Bock and Murray Aitkin. 1981. Marginal max-
imum likelihood estimation of item parameters: Appli-
cation of an em algorithm. Psychometrika, 46(4):443–
459.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Michael W Browne. 2001. An overview of analytic ro-
tation in exploratory factor analysis. Multivariate Be-
havioral Research, 36(1):111–150.

656

Rebecca F Bruce and Janyce M Wiebe. 1999. Recog-
nizing subjectivity: a case study in manual tagging.
Natural Language Engineering, 5(02):187–205.

Murray Campbell, A Joseph Hoane, and Feng-hsiung
Hsu. 2002. Deep blue. Artificial intelligence,
134(1):57–83.

Phil Chalmers, Joshua Pritikin, Alexander Robitzsch, and
Mateusz Zoltak. 2015. mirt: Multidimensional Item
Response Theory, November.

Wen-Hung Chen and David Thissen. 1997. Local De-
pendence Indexes for Item Pairs Using Item Response
Theory. Journal of Educational and Behavioral Statis-
tics, 22(3):265–289, September.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL Recognising Textual Entailment
Challenge. In Machine Learning Challenges. Evalu-
ating Predictive Uncertainty, Visual Object Classifica-
tion, and Recognising Tectual Entailment, pages 177–
190. Springer. DOI: 10.1007/11736790 9.

Alexander Philip Dawid and Allan M Skene. 1979. Max-
imum likelihood estimation of observer error-rates us-
ing the em algorithm. Applied statistics, pages 20–28.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James
Fan, David Gondek, Aditya A Kalyanpur, Adam Lally,
J William Murdock, Eric Nyberg, John Prager, et al.
2010. Building watson: An overview of the deepqa
project. AI magazine, 31(3):59–79.

Weiwei Guo, Hao Li, Heng Ji, and Mona T. Diab. 2013.
Linking Tweets to News: A Framework to Enrich
Short Text Data in Social Media. In ACL (1), pages
239–249. Citeseer.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard H Hovy. 2013. Learning whom to trust
with mace. In HLT-NAACL, pages 1120–1130.

Sergio Jimenez, George Duenas, Julia Baquero, Alexan-
der Gelbukh, Av Juan Dios Btiz, and Av Mendizbal.
2014. UNAL-NLP: Combining soft cardinality fea-
tures for semantic textual similarity, relatedness and
entailment. SemEval 2014, page 732.

Alice Lai and Julia Hockenmaier. 2014. Illinois-LH: A
Denotational and Distributional Approach to Seman-
tics. SemEval 2014, page 329.

Omar Levy, Ido Dagan, and Jacob Goldberger. 2014.
Focused entailment graphs for open IE propositions.
Proc. CoNLL.

Robert C MacCallum, Michael W Browne, and Hazuki M
Sugawara. 1996. Power analysis and determination of
sample size for covariance structure modeling. Psy-
chological methods, 1(2):130.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, Roberto Zamparelli,
and Fondazione Bruno Kessler. 2014. A SICK cure
for the evaluation of compositional distributional se-
mantic models.

Maria Orlando and David Thissen. 2000. Likelihood-
Based Item-Fit Indices for Dichotomous Item Re-
sponse Theory Models. Applied Psychological Mea-
surement, 24(1):50–64, March.

Rebecca J Passonneau and Bob Carpenter. 2014. The
benefits of a model of annotation. Transactions of
the Association for Computational Linguistics, 2:311–
326.

Roland Roller and Mark Stevenson. 2015. Held-
out versus Gold Standard: Comparison of Evalua-
tion Strategies for Distantly Supervised Relation Ex-
traction from Medline abstracts. In Sixth Interna-
tional Workshop on Health Text Mining and Informa-
tion Analysis (LOUHI), page 97.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George van den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game
of go with deep neural networks and tree search. Na-
ture, 529(7587):484–489.

Janyce M. Wiebe, Rebecca F. Bruce, and Thomas P.
O’Hara. 1999. Development and use of a gold-
standard data set for subjectivity classifications. In
Proceedings of the 37th annual meeting of the Associ-
ation for Computational Linguistics on Computational
Linguistics, pages 246–253. Association for Computa-
tional Linguistics.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hock-
enmaier. 2014. From image descriptions to visual de-
notations: New similarity metrics for semantic infer-
ence over event descriptions. Transactions of the As-
sociation for Computational Linguistics, 2(0):67–78,
February.

657

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 658–668,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

WordRank: Learning Word Embeddings via Robust Ranking

Shihao Ji
Parallel Computing Lab, Intel
shihao.ji@intel.com

Hyokun Yun
Amazon

yunhyoku@amazon.com

Pinar Yanardag
Purdue University

ypinar@purdue.edu

Shin Matsushima
University of Tokyo

shin matsushima@mist.
i.u-tokyo.ac.jp

S. V. N. Vishwanathan
Univ. of California, Santa Cruz

vishy@ucsc.edu

Abstract

Embedding words in a vector space has gained
a lot of attention in recent years. While state-
of-the-art methods provide efficient computa-
tion of word similarities via a low-dimensional
matrix embedding, their motivation is often
left unclear. In this paper, we argue that word
embedding can be naturally viewed as a rank-
ing problem due to the ranking nature of the
evaluation metrics. Then, based on this in-
sight, we propose a novel framework Wor-
dRank that efficiently estimates word repre-
sentations via robust ranking, in which the
attention mechanism and robustness to noise
are readily achieved via the DCG-like rank-
ing losses. The performance of WordRank is
measured in word similarity and word anal-
ogy benchmarks, and the results are com-
pared to the state-of-the-art word embedding
techniques. Our algorithm is very competi-
tive to the state-of-the- arts on large corpora,
while outperforms them by a significant mar-
gin when the training set is limited (i.e., sparse
and noisy). With 17 million tokens, WordRank
performs almost as well as existing methods
using 7.2 billion tokens on a popular word
similarity benchmark. Our multi-node dis-
tributed implementation of WordRank is pub-
licly available for general usage.

1 Introduction

Embedding words into a vector space, such that se-
mantic and syntactic regularities between words are
preserved, is an important sub-task for many appli-
cations of natural language processing. Mikolov et
al. (2013a) generated considerable excitement in the

machine learning and natural language processing
communities by introducing a neural network based
model, which they call word2vec. It was shown that
word2vec produces state-of-the-art performance on
both word similarity as well as word analogy tasks.
The word similarity task is to retrieve words that
are similar to a given word. On the other hand,
word analogy requires answering queries of the form
a:b;c:?, where a, b, and c are words from the vocab-
ulary, and the answer to the query must be semanti-
cally related to c in the same way as b is related to
a. This is best illustrated with a concrete example:
Given the query king:queen;man:? we expect the
model to output woman.

The impressive performance of word2vec led to
a flurry of papers, which tried to explain and im-
prove the performance of word2vec both theoreti-
cally (Arora et al., 2015) and empirically (Levy and
Goldberg, 2014). One interpretation of word2vec
is that it is approximately maximizing the positive
pointwise mutual information (PMI), and Levy and
Goldberg (2014) showed that directly optimizing
this gives good results. On the other hand, Penning-
ton et al. (2014) showed performance comparable to
word2vec by using a modified matrix factorization
model, which optimizes a log loss.

Somewhat surprisingly, Levy et al. (2015) showed
that much of the performance gains of these new
word embedding methods are due to certain hyper-
parameter optimizations and system-design choices.
In other words, if one sets up careful experiments,
then existing word embedding models more or less
perform comparably to each other. We conjecture
that this is because, at a high level, all these methods

658

are based on the following template: From a large
text corpus eliminate infrequent words, and compute
a |W| × |C| word-context co-occurrence count ma-
trix; a context is a word which appears less than d
distance away from a given word in the text, where
d is a tunable parameter. Let w ∈ W be a word
and c ∈ C be a context, and let Xw,c be the (poten-
tially normalized) co-occurrence count. One learns a
function f(w, c) which approximates a transformed
version ofXw,c. Different methods differ essentially
in the transformation function they use and the para-
metric form of f (Levy et al., 2015). For exam-
ple, GloVe (Pennington et al., 2014) uses f (w, c) =
〈uw,vc〉 where uw and vc are k dimensional vec-
tors, 〈·, ·〉 denotes the Euclidean dot product, and
one approximates f (w, c) ≈ logXw,c. On the other
hand, as Levy and Goldberg (2014) show, word2vec
can be seen as using the same f(w, c) as GloVe
but trying to approximate f (w, c) ≈ PMI(Xw,c) −
log n, where PMI(·) is the pairwise mutual informa-
tion (Cover and Thomas, 1991) and n is the number
of negative samples.

In this paper, we approach the word embedding
task from a different perspective by formulating
it as a ranking problem. That is, given a word
w, we aim to output an ordered list (c1, c2, · · ·)
of context words from C such that words that co-
occur with w appear at the top of the list. If
rank(w, c) denotes the rank of c in the list, then typ-
ical ranking losses optimize the following objective:∑

(w,c)∈Ω ρ (rank(w, c)), where Ω ⊂ W × C is the
set of word-context pairs that co-occur in the corpus,
and ρ(·) is a ranking loss function that is monotoni-
cally increasing and concave (see Sec. 2 for a justi-
fication).

Casting word embedding as ranking has two dis-
tinctive advantages. First, our method is discrimina-
tive rather than generative; in other words, instead
of modeling (a transformation of) Xw,c directly, we
only aim to model the relative order of Xw,· val-
ues in each row. This formulation fits naturally to
popular word embedding tasks such as word simi-
larity/analogy since instead of the likelihood of each
word, we are interested in finding the most relevant
words in a given context1. Second, casting word

1Roughly speaking, this difference in viewpoint is analo-
gous to the difference between pointwise loss function vs list-

embedding as a ranking problem enables us to de-
sign models robust to noise (Yun et al., 2014) and
focusing more on differentiating top relevant words,
a kind of attention mechanism that has been proved
very useful in deep learning (Larochelle and Hin-
ton, 2010; Mnih et al., 2014; Bahdanau et al., 2015).
Both issues are very critical in the domain of word
embedding since (1) the co-occurrence matrix might
be noisy due to grammatical errors or unconven-
tional use of language, i.e., certain words might co-
occur purely by chance, a phenomenon more acute
in smaller document corpora collected from diverse
sources; and (2) it’s very challenging to sort out a
few most relevant words from a very large vocabu-
lary, thus some kind of attention mechanism that can
trade off the resolution on most relevant words with
the resolution on less relevant words is needed. We
will show in the experiments that our method can
mitigate some of these issues; with 17 million to-
kens our method performs almost as well as existing
methods using 7.2 billion tokens on a popular word
similarity benchmark.

2 Word Embedding via Ranking

2.1 Notation
We use w to denote a word and c to denote a con-
text. The set of all words, that is, the vocabulary
is denoted as W and the set of all context words is
denoted C. We will use Ω ⊂ W × C to denote the
set of all word-context pairs that were observed in
the data, Ωw to denote the set of contexts that co-
occured with a given word w, and similarly Ωc to
denote the words that co-occurred with a given con-
text c. The size of a set is denoted as |·|. The inner
product between vectors is denoted as 〈·, ·〉.

2.2 Ranking Model
Let uw denote the k-dimensional embedding of a
word w, and vc denote that of a context c. For
convenience, we collect embedding parameters for
words and contexts as U := {uw}w∈W , and V :=
{vc}c∈C .

We aim to capture the relevance of context c for
word w by the inner product between their embed-
ding vectors, 〈uw,vc〉; the more relevant a context
is, the larger we want their inner product to be.

wise loss function used in ranking (Lee and Lin, 2013).

659

We achieve this by learning a ranking model that is
parametrized by U and V. If we sort the set of con-
texts C for a given word w in terms of each context’s
inner product score with the word, the rank of a spe-
cific context c in this list can be written as (Usunier
et al., 2009):

rank (w, c) =
∑

c′∈C\{c}
I (〈uw,vc〉 − 〈uw,vc′〉 ≤ 0)

=
∑

c′∈C\{c}
I (〈uw,vc − vc′〉 ≤ 0) , (1)

where I(x ≤ 0) is a 0-1 loss function which is 1 if
x ≤ 0 and 0 otherwise. Since I(x ≤ 0) is a dis-
continuous function, we follow the popular strategy
in machine learning which replaces the 0-1 loss by
its convex upper bound `(·), where `(·) can be any
popular loss function for binary classification such
as the hinge loss `(x) = max (0, 1− x) or the lo-
gistic loss `(x) = log2 (1 + 2−x) (Bartlett et al.,
2006). This enables us to construct the following
convex upper bound on the rank:

rank (w, c)≤rank (w, c)=
∑

c′∈C\{c}
`(〈uw,vc−vc′〉) (2)

It is certainly desirable that the ranking model po-
sitions relevant contexts at the top of the list; this
motivates us to write the objective function to mini-
mize as:

J (U,V):=
∑

w∈W

∑

c∈Ωw

rw,c ·ρ
(

rank (w, c)+β

α

)
(3)

where rw,c is the weight between word w and con-
text c quantifying the association between them, ρ(·)
is a monotonically increasing and concave ranking
loss function that measures goodness of a rank, and
α > 0, β > 0 are the hyperparameters of the model
whose role will be discussed later. Following Pen-
nington et al. (2014), we use

rw,c =

{
(Xw,c/xmax)ε if Xw,c < xmax

1 otherwise,
(4)

where we set xmax = 100 and ε = 0.75 in our ex-
periments. That is, we assign larger weights (with a
saturation) to contexts that appear more often with
the word of interest, and vice-versa. For the ranking

loss function ρ(·), on the other hand, we consider
the class of monotonically increasing and concave
functions. While monotonicity is a natural require-
ment, we argue that concavity is also important so
that the derivative of ρ is always non-increasing; this
implies that the ranking loss to be the most sensitive
at the top of the list (where the rank is small) and
becomes less sensitive at the lower end of the list
(where the rank is high). Intuitively this is desir-
able, because we are interested in a small number of
relevant contexts which frequently co-occur with a
given word, and thus are willing to tolerate errors on
infrequent contexts2. Meanwhile, this insensitivity
at the bottom of the list makes the model robust to
noise in the data either due to grammatical errors or
unconventional use of language. Therefore, a sin-
gle ranking loss function ρ(·) serves two different
purposes at two ends of the curve (see the example
plots of ρ in Figure 1); while the left hand side of
the curve encourages “high resolution” on most rel-
evant words, the right hand side becomes less sen-
sitive (with “low resolution”) to infrequent and pos-
sibly noisy words3. As we will demonstrate in our
experiments, this is a fundamental attribute (in addi-
tion to the ranking nature) of our method that con-
tributes its superior performance as compared to the
state-of-the-arts when the training set is limited (i.e.,
sparse and noisy).

What are interesting loss functions that can be
used for ρ (·)? Here are four possible alternatives,
all of which have a natural interpretation (see the
plots of all four ρ functions in Figure 1(a) and the
related work in Sec. 3 for a discussion).

ρ0 (x) := x (identity) (5)

ρ1 (x) := log2 (1 + x) (logarithm) (6)

ρ2 (x) := 1− 1

log2(2 + x)
(negative DCG) (7)

ρ3 (x) :=
x1−t − 1

1− t (logt with t 6= 1) (8)

2This is similar to the attention mechanism found in human
visual system that is able to focus on a certain region of an im-
age with “high resolution” while perceiving the surrounding im-
age in “low resolution” (Larochelle and Hinton, 2010; Mnih et
al., 2014).

3Due to the linearity of ρ0(x)=x, this ranking loss doesn’t
have the benefit of attention mechanism and robustness to noise
since it treats all ranking errors uniformly.

660

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

x

ρ(
x)

ρ
0
(x)

ρ
1
(x)

ρ
2
(x)

ρ
3
(x) with t=1.5

0 20 40 60 80 100
0

1

2

3

4

5

6

7

x

ρ 1((
x+

β)
/α

)

ρ
0

ρ
1
 with (α=1, β=0)

ρ
1
 with (α=10, β=9)

ρ
1
 with (α=100,β=99)

Figure 1: (a) Visualizing different ranking loss functions ρ(x) as defined in Eqs. (5–8); the lower part of ρ3(x) is truncated in

order to visualize the other functions better. (b) Visualizing ρ1((x + β)/α) with different α and β; ρ0 is included to illustrate the

dramatic scale differences between ρ0 and ρ1.

We will explore the performance of each of these
variants in our experiments. For now, we turn our
attention to efficient stochastic optimization of the
objective function (3).

2.3 Stochastic Optimization
Plugging (2) into (3), and replacing

∑
w∈W

∑
c∈Ωw

by
∑

(w,c)∈Ω, the objective function becomes:

J (U,V) =
∑

(w,c)∈Ω

rw,c·

ρ

(∑
c′∈C\{c}` (〈uw,vc−vc′〉)+β

α

)
. (9)

This function contains summations over Ω and C,
both of which are expensive to compute for a large
corpus. Although stochastic gradient descent (SGD)
(Bottou and Bousquet, 2011) can be used to re-
place the summation over Ω by random sampling,
the summation over C cannot be avoided unless ρ(·)
is a linear function. To work around this problem,
we propose to optimize a linearized upper bound of
the objective function obtained through a first-order
Taylor approximation. Observe that due to the con-
cavity of ρ(·), we have

ρ(x) ≤ ρ
(
ξ−1
)

+ ρ′
(
ξ−1
)
·
(
x− ξ−1

)
(10)

for any x and ξ 6= 0. Moreover, the bound is tight
when ξ = x−1. This motivates us to introduce a
set of auxiliary parameters Ξ := {ξw,c}(w,c)∈Ω and
define the following upper bound of J (U,V):

J (U,V,Ξ) :=
∑

(w,c)∈Ω

rw,c ·
{
ρ(ξ−1

wc) + ρ′(ξ−1
wc) ·

(
α−1β+α−1

∑

c′∈C\{c}
` (〈uw,vc−vc′〉)−ξ−1

w,c

)}
. (11)

Note that J (U,V) ≤ J (U,V,Ξ) for any Ξ, due
to (10)4. Also, minimizing (11) yields the same U
and V as minimizing (9). To see this, suppose Û :=
{ûw}w∈W and V̂ := {v̂c}c∈C minimizes (9). Then,

by letting Ξ̂ :=
{
ξ̂w,c

}
(w,c)∈Ω

where

ξ̂w,c =
α∑

c′∈C\{c} ` (〈ûw, v̂c − v̂c′〉) + β
, (12)

we have J
(
Û, V̂, Ξ̂

)
= J

(
Û, V̂

)
. Therefore,

it suffices to optimize (11). However, unlike (9),
(11) admits an efficient SGD algorithm. To see this,
rewrite (11) as

J(U,V,Ξ)=
∑

(w,c,c′)

rw,c·
(
ρ(ξ−1

w,c)+ρ
′(ξ−1

w,c)·(α−1β−ξ−1
w,c)

|C| − 1

+
1

α
ρ′(ξ−1

w,c) · ` (〈uw,vc − vc′〉)
)
, (13)

where (w, c, c′) ∈ Ω × (C \ {c}). Then, it can be
seen that if we sample uniformly from (w, c) ∈ Ω
and c′ ∈ C \ {c}, then j(w, c, c′) :=

|Ω|·(|C|−1) · rw,c ·
(
ρ(ξ−1

w,c)+ρ′(ξ−1
w,c)·(α−1β−ξ−1

w,c)

|C| − 1

+
1

α
ρ′(ξ−1

w,c)·` (〈uw,vc − vc′〉)
)
, (14)

which does not contain any expensive summa-
tions and is an unbiased estimator of (13), i.e.,
E [j(w, c, c′)] = J (U,V,Ξ). On the other hand,
one can optimize ξw,c exactly by using (12). Putting

4When ρ = ρ0, one can simply set the auxiliary variables
ξw,c=1 because ρ0 is already a linear function.

661

everything together yields a stochastic optimiza-
tion algorithm WordRank, which can be special-
ized to a variety of ranking loss functions ρ(·) with
weights rw,c (e.g., DCG (Discounted Cumulative
Gain) (Manning et al., 2008) is one of many pos-
sible instantiations). Algorithm 1 contains detailed
pseudo-code. It can be seen that the algorithm is di-
vided into two stages: a stage that updates (U,V)
and another that updates Ξ. Note that the time com-
plexity of the first stage is O(|Ω|) since the cost of
each update in Lines 8–10 is independent of the size
of the corpus. On the other hand, the time complex-
ity of updating Ξ in Line 15 is O(|Ω| |C|), which
can be expensive. To amortize this cost, we em-
ploy two tricks: we only update Ξ after a few it-
erations of U and V update, and we exploit the fact
that the most computationally expensive operation
in (12) involves a matrix and matrix multiplication
which can be calculated efficiently via the SGEMM
routine in BLAS (Dongarra et al., 1990).

Algorithm 1 WordRank algorithm.
1: η: step size
2: repeat
3: // Stage 1: Update U and V
4: repeat
5: Sample (w, c) uniformly from Ω
6: Sample c′ uniformly from C \ {c}
7: // following three updates

are executed simultaneously
8: uw ← uw − η · rw,c · ρ′(ξ−1

w,c) ·
`′ (〈uw,vc−vc′〉) · (vc−vc′)

9: vc ← vc − η · rw,c · ρ′(ξ−1
w,c) ·

`′ (〈uw,vc−vc′〉) · uw
10: vc′ ← vc′ + η · rw,c · ρ′(ξ−1

w,c) ·
`′ (〈uw,vc−vc′〉) · uw

11: until U and V are converged
12: // Stage 2: Update Ξ
13: for w ∈ W do
14: for c ∈ C do
15: ξw,c=α/

(∑
c′∈C\{c} ` (〈uw,vc−vc′〉)+β

)

16: end for
17: end for
18: until U, V and Ξ are converged

2.4 Parallelization
The updates in Lines 8–10 have one remarkable
property: To update uw, vc and vc′ , we only need
to read the variables uw, vc, vc′ and ξw,c. What this
means is that updates to another triplet of variables
uŵ, vĉ and vĉ′ can be performed independently.
This observation is the key to developing a parallel
optimization strategy, by distributing the computa-
tion of the updates among multiple processors. Due
to lack of space, details including pseudo-code are
relegated to the supplementary material.

2.5 Interpreting of α and β
The update (12) indicates that ξ−1

w,c is proportional
to rank (w, c). On the other hand, one can observe
that the loss function ` (·) in (14) is weighted by a
ρ′
(
ξ−1
w,c

)
term. Since ρ (·) is concave, its gradient

ρ′ (·) is monotonically non-increasing (Rockafellar,
1970). Consequently, when rank (w, c) and hence
ξ−1
w,c is large, ρ′

(
ξ−1
w,c

)
is small. In other words, the

loss function “gives up” on contexts with high ranks
in order to focus its attention on top of the list. The
rate at which the algorithm gives up is determined
by the hyperparameters α and β. For the illustration
of this effect, see the example plots of ρ1 with dif-
ferent α and β in Figure 1(b). Intuitively, α can be
viewed as a scale parameter while β can be viewed
as an offset parameter. An equivalent interpretation
is that by choosing different values of α and β one
can modify the behavior of the ranking loss ρ (·) in a
problem dependent fashion. In our experiments, we
found that a common setting of α= 1 and β= 0 of-
ten yields uncompetitive performance, while setting
α=100 and β=99 generally gives good results.

3 Related Work

Our work sits at the intersection of word embed-
ding and ranking optimization. As we discussed in
Sec. 2.2 and Sec. 2.5, it’s also related to the atten-
tion mechanism widely used in deep learning. We
therefore review the related work along these three
axes.

Word Embedding. We already discussed some
related work (word2vec and GloVe) on word em-
bedding in the introduction. Essentially, word2vec
and GloVe derive word representations by modeling
a transformation (PMI or log) ofXw,c directly, while

662

WordRank learns word representations via robust
ranking. Besides these state-of-the-art techniques, a
few ranking-based approaches have been proposed
for word embedding recently, e.g., (Collobert and
Weston, 2008; Vilnis and McCallum, 2015; Liu et
al., 2015). However, all of them adopt a pair-wise
binary classification approach with a linear rank-
ing loss ρ0. For example, (Collobert and Weston,
2008; Vilnis and McCallum, 2015) employ a hinge
loss on positive/negative word pairs to learn word
representations and ρ0 is used implicitly to evaluate
ranking losses. As we discussed in Sec. 2.2, ρ0 has
no benefit of the attention mechanism and robust-
ness to noise since its linearity treats all the rank-
ing errors uniformly; empirically, sub-optimal per-
formances are often observed with ρ0 in our exper-
iments. More recently, by extending the Skip-Gram
model of word2vec, Liu et al. (2015) incorporates
additional pair-wise constraints induced from 3rd-
party knowledge bases, such as WordNet, and learns
word representations jointly. In contrast, WordRank
is a fully ranking-based approach without using any
additional data source for training.

Robust Ranking. The second line of work that is
very relevant to WordRank is that of ranking objec-
tive (3). The use of score functions 〈uw,vc〉 for
ranking is inspired by the latent collaborative re-
trieval framework of Weston et al. (2012). Writing
the rank as a sum of indicator functions (1), and
upper bounding it via a convex loss (2) is due to
Usunier et al. (2009). Using ρ0 (·) (5) corresponds
to the well-known pairwise ranking loss (see e.g.,
(Lee and Lin, 2013)). On the other hand, Yun et
al. (2014) observed that if they set ρ = ρ2 as in
(7), then −J (U,V) corresponds to the DCG (Dis-
counted Cumulative Gain), one of the most popular
ranking metrics used in web search ranking (Man-
ning et al., 2008). In their RobiRank algorithm they
proposed the use of ρ = ρ1 (6), which they consid-
ered to be a special function for which one can de-
rive an efficient stochastic optimization procedure.
However, as we showed in this paper, the general
class of monotonically increasing concave functions
can be handled efficiently. Another important differ-
ence of our approach is the hyperparameters α and
β, which we use to modify the behavior of ρ, and
which we find are critical to achieve good empirical

results. Ding and Vishwanathan (2010) proposed the
use of ρ=logt in the context of robust binary classi-
fication, while here we are concerned with ranking,
and our formulation is very general and applies to a
variety of ranking losses ρ (·) with weights rw,c. Op-
timizing over U and V by distributing the computa-
tion across processors is inspired by work on dis-
tributed stochastic gradient for matrix factorization
(Gemulla et al., 2011).

Attention. Attention is one of the most impor-
tant advancements in deep learning in recent years
(Larochelle and Hinton, 2010), and is now widely
used in state-of-the-art image recognition and ma-
chine translation systems (Mnih et al., 2014; Bah-
danau et al., 2015). Recently, attention has also been
applied to the domain of word embedding. For ex-
ample, under the intuition that not all contexts are
created equal, Wang et al. (2015) assign an impor-
tance weight to each word type at each context po-
sition and learn an attention-based Continuous Bag-
Of-Words (CBOW) model. Similarly, within a rank-
ing framework, WordRank expresses the context im-
portance by introducing the auxiliary variable ξw,c,
which “gives up” on contexts with high ranks in or-
der to focus its attention on top of the list.

4 Experiments

In our experiments, we first evaluate the impact of
the weight rw,c and the ranking loss function ρ(·)
on the test performance using a small dataset. We
then pick the best performing model and compare it
against word2vec (Mikolov et al., 2013b) and GloVe
(Pennington et al., 2014). We closely follow the
framework of Levy et al. (2015) to set up a careful
and fair comparison of the three methods. Our code
is publicly available at https://bitbucket.
org/shihaoji/wordrank.

Training Corpus Models are trained on a com-
bined corpus of 7.2 billion tokens, which consists
of the 2015 Wikipedia dump with 1.6 billion tokens,
the WMT14 News Crawl5 with 1.7 billion tokens,
the “One Billion Word Language Modeling Bench-
mark”6 with almost 1 billion tokens, and UMBC

5http://www.statmt.org/wmt14/
translation-task.html

6http://www.statmt.org/lm-benchmark

663

Corpus Size 17M∗ 32M 64M 128M 256M 512M 1.0B 1.6B 7.2B
Vocabulary Size |W| 71K 100K 100K 200K 200K 300K 300K 400K 620K
Window Size win 15 15 15 10 10 10 10 10 10
Dimension k 100 100 100 200 200 300 300 300 300

* This is the Text8 dataset from http://mattmahoney.net/dc/text8.zip, which is widely used for word embedding demo.
Table 1: Parameter settings used in the experiments.

Task Robi ρ0 ρ1 ρ2 ρ3

off on off on off on off on
Similarity 41.2 69.0 71.0 66.7 70.4 66.8 70.8 68.1 68.0
Analogy 22.7 24.9 31.9 34.3 44.5 32.3 40.4 33.6 42.9

Table 2: Performance of different ρ functions on Text8 dataset with 17M tokens.

webbase corpus7 with around 3 billion tokens. The
pre-processing pipeline breaks the paragraphs into
sentences, tokenizes and lowercases each corpus
with the Stanford tokenizer. We further clean up
the dataset by removing non-ASCII characters and
punctuation, and discard sentences that are shorter
than 3 tokens or longer than 500 tokens. In the end,
we obtain a dataset of 7.2 billion tokens, with the
first 1.6 billion tokens from Wikipedia. When we
want to experiment with a smaller corpus, we ex-
tract a subset which contains the specified number
of tokens.

Co-occurrence matrix construction We use the
GloVe code to construct the co-occurrence matrix
X , and the same matrix is used to train GloVe and
WordRank models. When constructing X , we must
choose the size of the vocabulary, the context win-
dow and whether to distinguish left context from
right context. We follow the findings and design
choices of GloVe and use a symmetric window of
size win with a decreasing weighting function, so
that word pairs that are d words apart contribute 1/d
to the total count. Specifically, when the corpus is
small (e.g., 17M, 32M, 64M) we let win = 15 and
for larger corpora we let win= 10. The larger win-
dow size alleviates the data sparsity issue for small
corpus at the expense of adding more noise to X .
The parameter settings used in our experiments are
summarized in Table 1.

Using the trained model It has been shown by
Pennington et al. (2014) that combining the uw and
vc vectors with equal weights gives a small boost

7http://ebiquity.umbc.edu/resource/html/
id/351

in performance. This vector combination was origi-
nally motivated as an ensemble method (Pennington
et al., 2014), and later Levy et al. (2015) provided
a different interpretation of its effect on the cosine
similarity function, and show that adding context
vectors effectively adds first-order similarity terms
to the second-order similarity function. In our ex-
periments, we find that vector combination boosts
the performance in word analogy task when training
set is small, but when dataset is large enough (e.g.,
7.2 billion tokens), vector combination doesn’t help
anymore. More interestingly, for the word similarity
task, we find that vector combination is detrimen-
tal in all the cases, sometimes even substantially8.
Therefore, we will always use uw on word similarity
task, and use uw + vc on word analogy task unless
otherwise noted.

4.1 Evaluation

Word Similarity We use six datasets to evaluate
word similarity: WS-353 (Finkelstein et al., 2002)
partitioned into two subsets: WordSim Similarity
and WordSim Relatedness (Agirre et al., 2009);
MEN (Bruni et al., 2012); Mechanical Turk (Radin-
sky et al., 2011); Rare words (Luong et al., 2013);
and SimLex-999 (Hill et al., 2014). They contain
word pairs together with human-assigned similarity
judgments. The word representations are evaluated
by ranking the pairs according to their cosine simi-
larities, and measuring the Spearman’s rank correla-
tion coefficient with the human judgments.

8This is possible since we optimize a ranking loss: the ab-
solute scores don’t matter as long as they yield an ordered list
correctly. Thus, WordRank’s uw and vc are less comparable
to each other than those generated by GloVe, which employs a
point-wise L2 loss.

664

Word Analogies For this task, we use the Google
analogy dataset (Mikolov et al., 2013a). It contains
19544 word analogy questions, partitioned into 8869
semantic and 10675 syntactic questions. A question
is correctly answered only if the algorithm selects
the word that is exactly the same as the correct word
in the question: synonyms are thus counted as mis-
takes. There are two ways to answer these questions,
namely, by using 3CosAdd or 3CosMul (see (Levy
and Goldberg, 2014) for details). We will report
scores by using 3CosAdd by default, and indicate
when 3CosMul gives better performance.

4.2 The impact of rw,c and ρ(·)
In Sec. 2.2 we argued the need for adding weight
rw,c to ranking objective (3), and we also presented
our framework which can deal with a variety of
ranking loss functions ρ. We now study the utility
of these two ideas. We report results on the 17 mil-
lion token dataset in Table 2. For the similarity task,
we use the WS-353 test set and for the analogy task
we use the Google analogy test set. The best scores
for each task are underlined. We set t= 1.5 for ρ3.
“Off” means that we used uniform weight rw,c = 1,
and “on” means that rw,c was set as in (4). For com-
parison, we also include the results using RobiRank
(Yun et al., 2014)9.

It can be seen from Table 2 that adding the weight
rw,c improves performance in all the cases, espe-
cially on the word analogy task. Among the four
ρ functions, ρ0 performs the best on the word simi-
larity task but suffers notably on the analogy task,
while ρ1 = log performs the best overall. Given
these observations, which are consistent with the re-
sults on large scale datasets, in the experiments that
follow we only report WordRank with the best con-
figuration, i.e., using ρ1 with the weight rw,c as de-
fined in (4).

4.3 Comparison to state-of-the-arts
In this section we compare the performance of Wor-
dRank with word2vec10 and GloVe11, by using the

9We used the code provided by the authors at https://
bitbucket.org/d_ijk_stra/robirank. Although
related to RobiRank, we attribute the superior performance of
WordRank to the use of weight rw,c (4), introduction of hyper-
parameters α and β, and many implementation details.

10https://code.google.com/p/word2vec/
11http://nlp.stanford.edu/projects/glove

code provided by the respective authors. For a fair
comparison, GloVe and WordRank are given as in-
put the same co-occurrence matrix X; this elimi-
nates differences in performance due to window size
and other such artifacts, and the same parameters
are used to word2vec. Moreover, the embedding di-
mensions used for each of the three methods is the
same (see Table 1). With word2vec, we train the
Skip-Gram with Negative Sampling (SGNS) model
since it produces state-of-the-art performance, and
is widely used in the NLP community (Mikolov et
al., 2013b). For GloVe, we use the default parame-
ters as suggested by (Pennington et al., 2014). The
results are provided in Figure 2 (also see Table 4 in
the supplementary material for additional details).

As can be seen, when the size of corpus increases,
in general all three algorithms improve their predic-
tion accuracy on both tasks. This is to be expected
since a larger corpus typically produces better statis-
tics and less noise in the co-occurrence matrix X .
When the corpus size is small (e.g., 17M, 32M,
64M, 128M), WordRank yields the best performance
with significant margins among three, followed by
word2vec and GloVe; when the size of corpus in-
creases further, on the word analogy task word2vec
and GloVe become very competitive to WordRank,
and eventually perform neck-to-neck to each other
(Figure 2(b)). This is consistent with the findings of
(Levy et al., 2015) indicating that when the number
of tokens is large even simple algorithms can per-
form well. On the other hand, WordRank is dom-
inant on the word similarity task for all the cases
(Figure 2(a)) since it optimizes a ranking loss explic-
itly, which aligns more naturally with the objective
of word similarity than the other methods; with 17
million tokens our method performs almost as well
as existing methods using 7.2 billion tokens on the
word similarity benchmark.

To further evaluate the model performance on the
word similarity/analogy tasks, we use the best per-
forming models trained on the 7.2-billion-token cor-
pus to predict on the six word similarity datasets de-
scribed in Sec. 4.1. Moreover, we breakdown the
performance of the models on the Google word anal-
ogy dataset into the semantic and syntactic subtasks.
Results are listed in Table 3. As can be seen, Wor-
dRank outperforms word2vec and GloVe on 5 of 6
similarity tasks, and 1 of 2 Google analogy subtasks.

665

17M 32M 64M 128M 256M 512M 1B 1.6B 7.2B
45

50

55

60

65

70

75

80

Number of Tokens

A
cc

ur
ac

y
[%

]

Word2Vec
GloVe
WordRank

17M 32M 64M 128M 256M 512M 1B 1.6B 7.2B
30

35

40

45

50

55

60

65

70

75

80

Number of Tokens

A
cc

ur
ac

y
[%

]

Word2Vec
GloVe
WordRank

Figure 2: Performance evolution as a function of corpus size (a) on WS-353 word similarity benchmark; (b) on Google word

analogy benchmark.

Word Similarity Word Analogy
Model WordSim WordSim Bruni et Radinsky Luong et Hill et al. Goog Goog

Similarity Relatedness al. MEN et al. MT al. RW SimLex Sem. Syn.
word2vec 73.9 60.9 75.4 66.4 45.5 36.6 78.8 72.0
GloVe 75.7 67.5 78.8 69.7 43.6 41.6 80.9 71.1
WordRank 79.4 70.5 78.1 73.5 47.4 43.5 78.4 74.7

Table 3: Performance of the best word2vec, GloVe and WordRank models, learned from 7.2 billion tokens, on six similarity tasks

and Google semantic and syntactic subtasks.

5 Visualizing the results

To understand whether WordRank produces syntat-
ically and semantically meaningful vector space,
we did the following experiment: we use the best
performing model produced using 7.2 billion to-
kens, and compute the nearest neighbors of the word
“cat”. We then visualize the words in two dimen-
sions by using t-SNE (Maaten and Hinton, 2008).
As can be seen in Figure 3, our ranking-based model
is indeed capable of capturing both semantic (e.g.,
cat, feline, kitten, tabby) and syntactic (e.g., leash,
leashes, leashed) regularities of the English lan-
guage.

6 Conclusion

We proposed WordRank, a ranking-based approach,
to learn word representations from large scale tex-
tual corpora. The most prominent difference be-
tween our method and the state-of-the-art tech-
niques, such as word2vec and GloVe, is that Wor-
dRank learns word representations via a robust rank-
ing model, while word2vec and GloVe typically
model a transformation of co-occurrence countXw,c

directly. Moreover, by a ranking loss function ρ(·),
WordRank achieves its attention mechanism and ro-
bustness to noise naturally, which are usually lack-

25 30 35 40 45 50

−6

−4

−2

0

2

4

6

8

10

12

14

cats
feline

kitten

felines

dog

pet

dogs

kittens
pets

tabby

paws

caninepuppypuppiespooch

doggie
canines

pups

kitties

puppaw

leashed

feral

pawprints

zoo

doggy

pooches

aspca

zoos

cub

mutts

petting

stray

zookeepers

groomers

leash

panda

groomer

pandas

leashes

mutt

cat

Figure 3: Nearest neighbors of “cat” found by projecting a

300d word embedding learned from WordRank onto a 2d space.

ing in other ranking-based approaches. These at-
tributes significantly boost the performance of Wor-
dRank in the cases where training data are sparse and
noisy. Our multi-node distributed implementation of
WordRank is publicly available for general usage.

Acknowledgments

We’d like to thank Omer Levy for sharing his script
for preprocessing the corpora used in the paper. We
also thank the anonymous reviewers for their valu-
able comments and suggestions.

666

References

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
Kravalova, Marius Pasca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distributional
and wordnet-based approaches. Proceedings of Hu-
man Language Technologies, pages 19–27.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,
and Andrej Risteski. 2015. Random walks on context
spaces: Towards an explanation of the mysteries of se-
mantic word embeddings. Technical report, ArXiV.
http://arxiv.org/pdf/1502.03520.pdf.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the International Conference on Learning Represen-
tations (ICLR).

Peter L. Bartlett, Michael I. Jordan, and Jon D.
McAuliffe. 2006. Convexity, classification, and risk
bounds. Journal of the American Statistical Associa-
tion, 101(473):138–156.

Léon Bottou and Olivier Bousquet. 2011. The trade-
offs of large-scale learning. Optimization for Machine
Learning, page 351.

Elia Bruni, Gemma Boleda, Marco Baroni, and
Nam Khanh Tran. 2012. Distributional semantics
in technicolor. Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics,
pages 136–145.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of the 25th international conference on Machine learn-
ing, pages 160–167. ACM.

T. M. Cover and J. A. Thomas. 1991. Elements of Infor-
mation Theory. John Wiley and Sons, New York.

Nan Ding and S. V. N. Vishwanathan. 2010. t-logistic re-
gression. In Richard Zemel, John Shawe-Taylor, John
Lafferty, Chris Williams, and Alan Culota, editors, Ad-
vances in Neural Information Processing Systems 23.

J. J. Dongarra, J. Du Croz, S. Duff, and S. Hammarling.
1990. A set of level 3 basic linear algebra subpro-
grams. ACM Transactions on Mathematical Software,
16:1–17.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2002. Placing search in context: The concept
revisited. ACM Transactions on Information Systems,
20:116–131.

R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sisma-
nis. 2011. Large-scale matrix factorization with dis-
tributed stochastic gradient descent. In Conference on
Knowledge Discovery and Data Mining, pages 69–77.

Felix Hill, Roi Reichart, and Anna Korhonen. 2014.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Proceedings of the Sev-
enteenth Conference on Computational Natural Lan-
guage Learning.

Hugo Larochelle and Geoffrey E. Hinton. 2010. Learn-
ing to combine foveal glimpses with a third-order
boltzmann machine. In Advances in Neural Informa-
tion Processing Systems (NIPS) 23, pages 1243–1251.

Ching-Pei Lee and Chih-Jen Lin. 2013. Large-scale lin-
ear ranksvm. Neural Computation. To Appear.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Max
Welling, Zoubin Ghahramani, Corinna Cortes, Neil
Lawrence, and Kilian Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
2177–2185.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associa-
tion for Computational Linguistics, 3:211–225.

Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling, and Yu Hu.
2015. Learning semantic word embeddings based on
ordinal knowledge constraints. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 1501–1511.

Minh-Thang Luong, Richard Socher, and Christopher D.
Manning. 2013. Better word representations with re-
cursive neural networks for morphology. Proceedings
of the Seventeenth Conference on Computational Nat-
ural Language Learning, pages 104–113.

L. van der Maaten and G.E. Hinton. 2008. Visualizing
high-dimensional data using t-sne. jmlr, 9:2579–2605.

C. D. Manning, P. Raghavan, and H. Schütze. 2008. In-
troduction to Information Retrieval. Cambridge Uni-
versity Press.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed represen-
tations of words and phrases and their composition-
ality. In Chris Burges, Leon Bottou, Max Welling,
Zoubin Ghahramani, and Kilian Weinberger, editors,
Advances in Neural Information Processing Systems
26.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Ko-
ray Kavukcuoglu. 2014. Recurrent models of visual
attention. In Advances in Neural Information Process-
ing Systems (NIPS) 27, pages 2204–2212.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. Proceedings of the Empiricial Methods in
Natural Language Processing (EMNLP 2014), 12.

667

Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich,
and Shaul Markovitch. 2011. A word at a time: Com-
puting word relatedness using temporal semantic anal-
ysis. Proceedings of the 20th international conference
on World Wide Web, pages 337–346.

R. T. Rockafellar. 1970. Convex Analysis, volume 28 of
Princeton Mathematics Series. Princeton University
Press, Princeton, NJ.

Nicolas Usunier, David Buffoni, and Patrick Gallinari.
2009. Ranking with ordered weighted pairwise clas-
sification. In Proceedings of the International Confer-
ence on Machine Learning.

Luke Vilnis and Andrew McCallum. 2015. Word repre-
sentations via gaussian embedding. In Proceedings of
the International Conference on Learning Representa-
tions (ICLR).

Ling Wang, Chu-Cheng Lin, Yulia Tsvetkov, Silvio Amir,
Ramon Fernandez Astudillo, Chris Dyer, Alan Black,
and Isabel Trancoso. 2015. Not all contexts are cre-
ated equal: Better word representations with variable
attention. In EMNLP.

Jason Weston, Chong Wang, Ron Weiss, and Adam
Berenzweig. 2012. Latent collaborative retrieval.
arXiv preprint arXiv:1206.4603.

Hyokun Yun, Parameswaran Raman, and S. V. N. Vish-
wanathan. 2014. Ranking via robust binary classifi-
cation and parallel parameter estimation in large-scale
data. In nips.

668

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 669–679,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Exploring Semantic Representation in Brain Activity
Using Word Embeddings

Yu-Ping Ruan1, Zhen-Hua Ling1 and Yu Hu1,2

1National Engineering Laboratory for Speech and Language Information Processing
University of Science and Technology of China, Hefei, China

2iFLYTEK Research, Hefei, China
ypruan@mail.ustc.edu.cn, zhling@ustc.edu.cn, yuhu@iflytek.com

Abstract

In this paper, we utilize distributed word rep-
resentations (i.e., word embeddings) to anal-
yse the representation of semantics in brain
activity. The brain activity data were recorded
using functional magnetic resonance imaging
(fMRI) when subjects were viewing words.
First, we analysed the functional selectivity of
different cortex areas by calculating the corre-
lations between neural responses and several
types of word representations, including skip-
gram word embeddings, visual semantic vec-
tors, and primary visual features. The results
demonstrated consistency with existing neu-
roscientific knowledge. Second, we utilized
behavioural data as the semantic ground truth
to measure their relevance with brain activity.
A method to estimate word embeddings under
the constraints of brain activity similarities is
further proposed based on the semantic word
embedding (SWE) model. The experimental
results show that the brain activity data are sig-
nificantly correlated with the behavioural data
of human judgements on semantic similarity.
The correlations between the estimated word
embeddings and the semantic ground truth
can be effectively improved after integrating
the brain activity data for learning, which
implies that semantic patterns in neural rep-
resentations may exist that have not been fully
captured by state-of-the-art word embeddings
derived from text corpora.

1 Introduction

Recently, the topic of exploring semantic represen-
tation in human brain has attracted the attention of

researchers from both neuroscience and computa-
tional linguistics fields. In these studies, concepts
are represented in terms of neural activation patterns
in the brain that can be recorded by functional
magnetic resonance imaging (fMRI) (Haxby et al.,
2001). It has been found that the semantic space
shared among different individuals is distributed
continuously across the cortex (Huth et al., 2012).
A recent study proposed an efficient way to measure
and visualize the semantic selectivity of different
cortex areas (Huth et al., 2016).

Similar to the distributed semantic representation
in the brain, describing the meaning of a word
using a dense low-dimensional and continuous vec-
tor (i.e., word embedding) is currently a popular
approach in computational linguistics (Hinton et
al., 1986; Turney et al., 2010). Word embeddings
are commonly estimated from large text corpora
utilizing statistics concerning the co-occurrences
of words (Mikolov et al., 2013a; Mikolov et al.,
2013b; Pennington et al., 2014). To investigate
the correlation between word embeddings and the
brain activity involved in viewing words, Mitchell
et al. (2008) designed a computational model to
predict brain responses using hand-tailored word
embeddings as input. Further, Fyshe et al. (2014)
proposed a joint non-negative sparse embedding
(JNNSE) method to combine fMRI data and textual
data to estimate word embeddings. This work
improved the correlation between word embeddings
and human behavioural data, which lends support
to the view that fMRI data can provide additional
semantic information that may not exist in textual
data.

669

The factors that can influence the activities of
cortex areas are diverse. Recent studies show that vi-
sual semantic features such as bag-of-visual-words
(BoVW) are significantly correlated with the fMRI
data captured when viewing words (Anderson et al.,
2013). The primary visual features derived using
Gabor wavelets can be used to determine the images
presented to the subjects from their recorded brain
activity (Kay et al., 2008; Naselaris et al., 2009).
Some other research work also indicates that visual
experiences (Nishimoto et al., 2011) and speech
information (Ryali et al., 2010) can affect neural
responses in cortex areas.

In this paper, we first study the semantic repre-
sentation of words in brain activity by correlation
analysis (Anderson et al., 2013; Carlson et al.,
2014). Then, we calculate the correlations between
subjects’ neural responses when viewing words and
three types of word representations: skip-gram word
embeddings, primary visual features, and visual
semantic vectors. The goal of doing this is to in-
vestigate whether these representations can account
for the brain data and the functional selectivity of
different cortex areas. Then, we utilize behavioural
data as the semantic ground truth to measure the
semantic relevance of brain activity. A method of
estimating word embeddings within the constraints
of similar brain activities is proposed. This method
is based on the semantic word embedding (SWE)
model (Liu et al., 2015) which develops from the
skip-gram model. It aims at verifying whether textu-
al data and brain activity data can be complementary
to derive word embeddings that are more consistent
with human judgement.

The contributions of this study are twofold. First,
this study involved a comprehensive correlation
analysis on brain activity data and state-of-the-art
skip-gram word embeddings at both whole-brain
and brain lobe levels. Primary visual features
and visual semantic vectors are also introduced
as auxiliary representations to better understand
the functional selectivity across the cortex. Some
results of this analysis are interpretable using
existing neuroscience knowledge. Second, to our
knowledge, this study marks the first attempt to
integrate brain activity data into the skip-gram
model for estimating word embeddings. The
experimental results show that the correlation

between the estimated word embeddings and the
behavioural measure of semantics can be effectively
improved after integrating brain activity data for
learning.

2 Related work

The correlation between brain data and word vectors
has been studied in previous work. The experiments
in Carlson et al. (2014) adopted brain activity data
for correlation analysis from only the ventral tempo-
ral pathway, not from the whole brain. Anderson et
al. (2013) performed correlation analysis using the
voxels of the whole brain and compared the HAL-
based textual semantic model (Lund and Burgess,
1996) with the BoVW-based visual semantic model
(Sivic and Zisserman, 2003; Csurka et al., 2004) in
terms of these two model’s ability to account for
the patterns found in the neural data. However,
the experiments in Anderson et al. (2013) failed to
detect differential interactions of semantic models
with brain areas. In this paper, considering the
popularity of word embedding estimation approach-
es based on neural networks in recent years, we
adopt skip-gram word embeddings (Mikolov et al.,
2013a) for correlation analysis. To our knowledge,
this is the first time that the association between
skip-gram word embeddings and brain activity data
have been studied. Furthermore, our work improves
on the voxel selection strategy used in Anderson
et al. (2013), leading to more interpretable results
when demonstrating the functional selectivity of
brain areas.

To our knowledge, the first and only attempt
to integrate brain activity data into the acquisition
of textual word embedding is the JNNSE method
(Fyshe et al., 2014). In this method, word em-
beddings were estimated as latent representations
using matrix factorization. The objective functions
contained additional constraints for reconstructing
brain activity data. In this paper, we adopt the
SWE model (Liu et al., 2015) to incorporate brain
activity knowledge into word embedding estimation.
The SWE model was developed from the skip-gram
model. In SWE, semantically related knowledge
is converted into inequality constraints for learning
word embeddings. The experimental results show
that our proposed method using SWE can improve

670

the semantic consistency between word embeddings
and human judgements.

3 From Skip-Gram to SWE

3.1 Skip-gram model
The skip-gram model (Mikolov et al., 2013b) adopts
a neural network structure to derive the distributed
representation of words from textual corpus. The
word vectors are learned based on the distribution-
al hypothesis (Harris, 1954; Miller and Charles,
1991), which assumes that words with similar con-
texts tend to have similar semantic meanings. For
a sequence of training data of T words, denoted
as {w1, w2, w3, · · · , wT }, the skip-gram model is
trained to maximize the following objective function

Q =
1

T

T∑

t=1

∑

−c≤j≤c,j 6=0

log p(wt+j |wt), (1)

where wt and ww+j are the central word and neigh-
bouring words in a context window respectively, and
c denotes the size of the context window. The condi-
tional probability p(wt+j |wt) in Eq.(1) is calculated
as

p(wt+j |wt) =
exp(w(2)

t+j · w
(1)
t)

∑V
k=1 exp(w

(2)
k · w

(1)
t)

, (2)

where w(1)
t and w(2)

k denote row vectors in the
matrices W(1) and W(2) respectively, and V is
the vocabulary size of the corpus. The matrix
W(1) stores the word vectors of input central words,
and the matrix W(2) stores the word vectors of
predicted neighbouring words. The optimization of
the objective function Q is solved by the stochastic
gradient descent (SGD) method (Mikolov et al.,
2013b). Finally, the learned matrix W(1) is used as
the estimated word embeddings of all words in the
vocabulary.

3.2 Semantic word embedding (SWE)
The skip-gram model learns word embeddings
based on the distributional hypothesis; however, this
hypothesis still has some limitations. For example,
antonyms often appear in similar contexts although
they have opposite meanings. The semantic word
embedding (SWE) model (Liu et al., 2015) has

been proposed to address this issue by incorporating
external semantic knowledge into the text-based
learning process for word embeddings.

In this method, semantic knowledge is repre-
sented as a set of ranking inequalities. Each in-
equality contains a triplet (i, j, k) of three words
{wi, wj , wk} with a similarity relation

similarity(wi, wj) > similarity(wi, wk), (3)

which can be notated in simplified form as sij > sik.
Then, the learning method of SWE is defined as the
following constrained optimization problem

{W(1),W(2)} = arg max
W(1),W(2)

Q(W(1),W(2)),

s.t. sij > sik,∀(i, j, k) ∈ S, (4)

where function Q is defined in Eq. (1) and S
denotes the inequality set. Then, the constrained
optimization problem in Eq. (4) is simplified into
an unconstrained problem by introducing a penalty
term into the objective function of the skip-gram
model. The penalty term is defined as

D =
∑

(i,j,k)∈S
f(i, j, k), (5)

where f(i, j, k) = max(0, sik − sij) is a Hinge
loss function. Finally, the object function to be
maximized in SWE can be written as follows:

Q′ = Q− β ·D, (6)

where β is a parameter to control the contribution
of the penalty term. Similar to the skip-gram model,
theQ′ function in the SWE model is optimized using
SGD to estimate word embeddings. The detailed
formulae can be found in Liu et al. (2015).

3.3 Integrating brain activity into SWE
In the implementation of the SWE model in Liu et al.
(2015), the ranking inequalities were collected us-
ing hypernym-hyponym and synonym-antonym re-
lationships extracted from WordNet (Fellbaum and
others, 1998). In this paper, the SWE model is
utilized as a tool to explore the semantic relevance of
brain activity by examining the performance of the
estimated word embeddings after integrating brain-
activity-related knowledge. Therefore, we construct

671

the ranking inequalities in Eq. (3) using brain
activity data. When a subject is viewing a word,
the neural response in the cortex is captured using
fMRI and further stored as a vector. After collecting
the fMRI data for a set of words, the inequalities
in Eq. (3) can be constructed by using a similarity
measure on the neural response vectors of word
pairs. Here, we adopt Pearson correlation as the
similarity measure. The details will be introduced
in Section 5.1.

4 Data

4.1 Brain data
The fMRI data used in our experiments was record-
ed and preprocessed by Mitchell et al. (2008). It
includes the recorded data of 9 subjects. To record
the data, each of 60 concrete nouns was presented
visually to each subject with a textual label and a
simple line drawing. The subjects were asked to
think about the properties of the objects indicated
by the words during fMRI scanning. This procedure
repeated 6 times, and the stimuli of the 60 nouns
were presented in a random order in each run. More
details about the data acquisition and preprocessing
procedures can be found in Mitchell et al. (2008)
and its supplement materials. Finally, an fMRI
vector measuring the neural response at all voxels
across the cortex was created for each word and each
subject.

4.2 Behavioural data
The behavioural data collects human judgements on
the semantic similarity between word pairs. The
approach to behavioural data collection in our exper-
iment is similar to the one used in the WordSim-353
dataset (Finkelstein et al., 2001). For the 60 concrete
nouns used in Section 4.1, we obtained C2

60 =
1, 770 word pairs. Then, we asked 15 participants
to score the semantic similarity of each word pair
on a scale from 0 to 10, in which “0” signified
that the two words were totally unrelated and “10”
signified that the two words were highly related or
had identical meanings. This collection procedure
was conducted on the Amazon Mechanical Turk1

crowdsourcing platform. We tested the average
Spearman correlation coefficient among the scores

1http://www.mturk.com/

given by different annotators and found that it was
approximately 0.4873 with a p-value of 1.1e-02.
After gathering the scores for all the word pairs,
the highest and lowest scores for each word pair
were discarded, and the average of the remaining 13
scores was calculated as the similarity score for each
word pair2.

To verify the reliability of the above data col-
lection process, we also added 15 word pairs from
the WordSim-353 dataset into our 1,770 word pairs
during score collection. Then, we calculated the
similarity scores of these 15 word pairs using the
collected scores and compared them with the scores
in the WordSim-353 dataset using Spearman cor-
relation analysis. The correlation coefficient was
0.8451 with a p-value of 2.7e − 04. This high
correlation verifies the reliability of our behavioural
data collection.

5 Experiments

5.1 Correlations between brain activity and
word vectors

We calculated the correlations between the fMRI
vectors and the different types of word represen-
tations to investigate whether these representations
can account for the brain activity and the functional
selectivity of different cortex areas. We adopted
the method of representational similarity analysis
(Kriegeskorte et al., 2008) in our experiments. For
a specific word representation, we calculated the
cosine similarity for each word pair in a set of n
words, resulting in a similarity vector with a total
length of C2

n. For the fMRI data3, we constructed
a similarity vector for each subject using the Pear-
son correlation coefficients between pairs of fMRI
vectors (Anderson et al., 2013). Then, the 9 vectors
of the 9 subjects were averaged to obtain an overall
similarity vector in the fMRI space (Anderson et
al., 2013). Finally, the Spearman rank correlation
coefficient between the similarity vectors given by
the fMRI data and each word representation was
calculated together with a p-value for significance

2The behavioural data are available at http:
//home.ustc.edu.cn/˜ypruan/work/emnlp2016/
behaviour_data/

3Before using the fMRI data, we first regularized its mean
value to 0 and variance to 1.

672

analysis. The p-value was calculated using a per-
mutation test under a positive hypothesis with the
word pair labels randomly shuffled 10,000 times.
Empirically, two similarity vectors are considered
to be correlated when p < 0.05, and they are
considered significantly correlated when p < 0.01.

5.1.1 Word vectors
Three types of word representations, i.e., skip-

gram word embeddings, visual semantic vectors,
and primary visual features, were used in the
correlation analysis. Some details about the
acquisitions of these three word representations will
be introduced in the following paragraphs.

Skip-gram word embeddings The Wikipedia
text corpus4, containing 130 million words, was
adopted to train our skip-gram word embeddings,
and the hierarchical softmax scheme was followed.
The dimension of word embedding was 200. The
window size, learning rate, and negative sampling
number were set to 8, 0.05, and 8, respectively. The
model was trained for one iteration using a single
execution thread.

Visual semantic vectors On one hand, distributed
word representations are usually learnt from text
corpora. On the other hand, visual perception also
contributes to semantic cognition according to
some neuroscience research (Louwerse, 2011), and
it has been utilized to complement the semantic
representation learned from texts (Bruni et al.,
2012). One approach to constructing visual
semantic vectors is to first extract the low-level
visual features from images and then convert them
into higher-level semantic representations using the
bag-of-visual-words (BoVW) (Grauman and Leibe,
2011) model. In our experiments, we built the
BoVW representations from ImageNet (Deng et al.,
2009) using the VSEM5 toolkit. Due to coverage
limitations, only 57 of the 60 concrete nouns
in the fMRI data could be found in ImageNet6

and each noun has approximately 1000 image
samples. Similar to Anderson et al. (2013), we
adopted the Scale Invariant Feature Transform

4http://mattmahoney.net/dc/enwik9.zip
5http://clic.cimec.unitn.it/vsem/
6The three missing words are arm, eye and saw.

(SIFT) (Lowe, 2004) to extract lower-level visual
features; however, we did not use the “object”
box to discriminate “object” and “context” areas
during the extraction. Then, we clustered the SIFT
features into 1000 classes to construct the visual
vocabulary, and each image was divided into 8
regions. Thus, the BoVW representation of an
image was a vector of 8000 dimensions. The BoVW
vectors of all images in ImageNet corresponding to
the same word were averaged to obtain the BoVW
representation of that word. Finally, we transformed
the BoVW representation matrix of the 57 nouns to
nonnegative point-wise mutual information (PMI)
association scores (Church and Hanks, 1990) to
obtain the final visual semantic vectors.

Primary visual features As introduced in
Section 4.1, a line drawing of each word was
presented to subjects together with the textual
label when collecting the fMRI data (Mitchell
et al., 2008). This presentation led to neural
responses in visual cortices that may be irrelevant
to semantic representation. Because the receptive
fields of simple cells in the primary visual cortex
of mammalian brains can be modelled by Gabor
functions (Marĉelja, 1980; Daugman, 1985), we
adopted Gabor wavelets to extract the primary visual
features from the line drawings of the 60 nouns
and further analysed their correlations with fMRI
data. The original resolution of the image stimuli
used in Mitchell et al. (2008) was 500 x 500 pixels.
These images were converted to 64 x 64 pixels after
trimming the black borders and downsampling.
The Gabor wavelet filter bank was designed using
an open source tool (Haghighat et al., 2015). The
number of scales and orientations were set to 5 and
8, respectively. Thus, we represented the primary
visual features of each noun as a vector of 163,840
dimensions. The singular value decomposition
(SVD) technique was employed to reduce the
dimension of each vector to 60.

5.1.2 Correlation analysis at the whole-brain
level

The fMRI recording measures the neural respons-
es of more than 20,000 voxels across the cortex. To
perform dimensionality reduction, we selected 500
voxels from all voxels for each subject according to

673

word representation rho (p-value)
skip-gram 0.0065 (4.0e-01)

BoVW 0.3515 (0.0e-00)
Gabor 0.3924 (0.0e-00)

Table 1: Spearman’s rank correlation coefficients
(rho) between different word representations and
whole-brain fMRI data for 57 nouns and their
corresponding p-values.

Lobe Proportion (%)
frontal 5.89

temporal 6.96
parietal 10.13
occipital 58.40

other 18.62

Table 2: The proportions of the regional distribu-
tions of the 500 selected voxels.

the stability of the voxel responses across 6 runs of
fMRI recordings. This selection strategy was the
same as the one used in Mitchell et al. (2008) and
Anderson et al. (2013). The correlation analysis
followed the method described at the beginning of
Section 5.1. Table 1 shows the results, where skip-
gram, BoVW, and Gabor denote the skip-gram word
embeddings, visual semantic vectors, and primary
visual features introduced above, respectively.

As Table 1 shows, the visual semantic vectors and
primary visual features are significantly correlated
with the fMRI vectors at the whole-brain level;
however, the skip-gram word embeddings are not
correlated with the fMRI data. To investigate the
reason for this lack of correlation, we analysed the
distribution of the 500 selected voxels across the
four brain lobes (i.e., frontal, temporal, parietal and
occipital) using the automated anatomical labeling
scheme (Tzourio-Mazoyer et al., 2002). From the
results shown in Table 2, we can find that most of
the selected voxels are located in the occipital lobe
although it is the smallest of the four main lobes
in the human brain. The occipital lobe occupies
most of the anatomical area of the visual cortex and
is considered to be the visual processing centre of
the mammalian brain. This unbalanced distribution
led to the conclusion that the semantic information
related to skip-gram word embeddings is not well
represented by the 500 selected voxels. Thus, an al-

ternative strategy to select stable voxels at the brain
lobe level for correlation analysis was necessary.

5.1.3 Correlation analysis at the brain lobe
level

As an alternative approach, rather than selecting
the 500 most stable voxels from the whole-brain
data as in (Mitchell et al., 2008; Anderson et al.,
2013), we selected the 100 most stable voxels at
each of the four main brain lobes independently for
this experiment. Then, the correlations between the
fMRI vectors measuring different lobes and word
representations were calculated and are shown in
Table 3.

From this table, we can observe the association
differences of different word representations with
brain lobe level activities. First, the primary visual
features (Gabor) are highly correlated with the oc-
cipital fMRI data and are uncorrelated with the other
three lobes. This is reasonable considering that the
primary visual cortex (V1) is located in the occipital
lobe. Second, the skip-gram word embeddings are
significantly correlated with the fMRI data of all
brain lobes except the occipital lobe. Previous
neuroscience research has revealed that the frontal,
temporal, and parietal lobes all play important roles
in semantic cognition, including high-level and ab-
stract knowledge processing (Miller et al., 2002),
integration of lexical information (Hagoort, 2005),
speech comprehension (Hickok and Poeppel, 2007),
and knowledge retrieval (Binder et al., 2009). This
indicates that the skip-gram word embeddings can
partly account for the semantic processing in the
cortex and contain little visual information about
words. Third, the visual sematic vectors (BoVW)
are significantly correlated with all four brain lobes.
It has been found that the temporal lobe plays a
key role in both the formation of long-term visual
memories (Smith and Kosslyn, 2007) and in the
recognition of visual stimuli and objects (Chao et
al., 1999; Kanwisher and Yovel, 2006). The parietal
lobe is relevant to high-level vision and is part
of the dorsal visual stream correlated with spatial
cognition (Sack, 2009; Vannini et al., 2004). This
indicates that the visual sematic vectors used in our
experiment may contain not only low-level but also
high-level and semantically related visual informa-
tion.

674

Frontal Temporal Parietal Occipital
Skip-gram 0.1450 (0.0e+00) 0.1483 (0.0e+00) 0.2317 (0.0e+00) -0.0385 (9.4e-01)

BoVW 0.0601 (8.2e-03) 0.2053 (0.0e+00) 0.2750 (0.0e+00) 0.3120 (0.0e+00)
Gabor -0.0823 (1.0e+00) -0.0879 (1.0e+00) 0.0111 (3.4e-01) 0.5116 (0.0e+00)

Table 3: Spearman’s rank correlation coefficients (rho) between different word representations and the fMRI
data at four main brain lobes and their corresponding p-values.

fMRI data rho (p-value)
whole brain 0.1266 (0.0e+00)
frontal lobe 0.0160 (2.5e-01)

temporal lobe 0.0694 (1.7e-03)
parietal lobe 0.0698 (1.6e-03)
occipital lobe 0.0814 (4.0e-04)

Table 4: Spearman’s rank correlation coefficients
(rho) between the behaviour data and the fMRI data
of different brain lobes.

5.2 Correlations between brain activity and
behavioural data

After analysing the correlation between brain activi-
ty and the three types of word vectors in the previous
experiments, we further examined the correlations
between brain activity and the behavioural data
introduced in Section 4.2. Here, the behavioural data
were used as the semantic ground truth to evaluate
the semantic relevance of the brain activity and word
embeddings. The results are shown in Table 4. In
this subsection, the fMRI data at the whole-brain
and brain lobe levels adopted the voxel selection
strategies introduced in Sections 5.1.2 and 5.1.3,
respectively. As Table 4 shows, the behavioural data
are significantly correlated with the fMRI data of the
whole brain and the occipital lobe, and they are also
correlated with the fMRI data of the temporal and
parietal lobes.

Furthermore, we utilized the SWE model in-
troduced in Section 3.2 to explore the semantic
relevance of brain activity by examining the per-
formance of the estimated word embeddings after
integrating brain activity related knowledge. The
inequality set used in Eq. (3) was created using the
fMRI data, where the similarity score sij was calcu-
lated as the Pearson correlation coefficient between
the fMRI vectors of the i-th and the j-th words. For
the 60 nouns (a total of 12 categories with 5 words
in each category), we produced 12× 3× C3

5 = 360

Figure 1: Spearman’s rank correlation coefficients
between the estimated word embeddings with
different β values and the behavioural data of two
datasets.

intra-category inequalities and 3×C3
12 = 660 inter-

category inequalities. To collect the inter-category
inequalities, we first used the label words of each
category and averaged the fMRI vectors of the 5
words belonging to each category to obtain the fMRI
data for these label words. Then, the inter-category
inequalities were produced from the triplets of these
label words. The text corpus and parameter settings
we used to train SWE were the same as those
used for training the skip-gram word embeddings as
described in Section 5.1.1. The penalty term β in
Eq. (6) was tuned through experiments.

We evaluated the word embeddings estimated
with brain activity constraints using the collected
behavioural data for the 60 nouns and the WordSim-
353 dataset. WordSim-353 is a behavioural dataset
containing semantic similarity scores for 353 word-
pairs (Finkelstein et al., 2001). We checked to
ensure these word-pairs have no overlap with the
60 nouns used in our experiments. The purpose
of using the WordSim-353 dataset is to explore the
effects of utilizing the brain data of the 60 nouns on
other words for which we had no brain data.

675

60 nouns WordSim353
skip-gram 0.2232 0.6876
SWE (whole brain) 0.3814 0.6878
SWE (frontal) 0.3173 0.6822
SWE (temporal) 0.3613 0.6890
SWE (parietal) 0.3516 0.6706
SWE (occipital) 0.3348 0.6803
JNNSE 0.3006 0.1795

Table 5: Spearman’s rank correlation coefficients
between different word embeddings and the be-
havioural data of the two datasets.

The performance of the word embeddings esti-
mated using the SWE model and the whole-brain
fMRI data are shown in Figure 1. In this figure,
the SWE model becomes a conventional skip-gram
model when β = 0. The correlation coefficient
between the skip-gram word embeddings and the
behavioural data of the 60 nouns was 0.2232. As β
was increased, this correlation coefficient increased
significantly. The maximum correlation efficient
was 0.3814 when β = 2.8. This result implies
that textual data and brain activity data can be
used in a complementary fashion to derive word
embeddings that are more consistent with human
judgements. On one hand, semantic patterns may
exist in neural representations that have not been
fully captured by state-of-the-art word embeddings
derived from text corpora. On the other hand, we can
see that the variation of the correlation coefficients
for the WordSim-353 dataset with different β values
is small. This indicates that our SWE training did-
n’t negatively affect the word embeddings without
fMRI observations.

Furthermore, we produced ranking inequalities
using the fMRI data measuring each brain lobe to
estimate word embeddings under the SWE frame-
work. The correlations between the learned word
embeddings and the behavioural data of the two
datasets were calculated and are shown in Table 5.
For each SWE model in this table, the value of β
was tuned to obtain the highest correlation on the
60 nouns. Comparing the correlation coefficients of
the different models on the 60 nouns, we can see
that the fMRI data at all brain lobes can contribute
to learning more semantically related word embed-
dings using the SWE model. The improvement from

using the fMRI data of the temporal lobe is the most
significant among the four lobes, but the highest
correlation coefficient is achieved when utilizing the
fMRI data of whole brain.

Finally, we compared the performance of our
SWE models with the JNNSE model proposed
by Fyshe et al. (2014) on the two datasets. The
word embeddings estimated by the JNNSE model
utilized either fMRI or magnetoencephalography
(MEG) measures of the 60 nouns. We adopted
the best JNNSE word embeddings reported by the
authors7 for these comparisons, and the results
are shown in the last row of Table 58. As Table
5 shows, the performance of the JNNSE word
embeddings on the WordSim-353 dataset is not as
good as those of the skip-gram and SWE results.
Examining the correlation coefficients on the 60
nouns with brain activity data, we can see that the
JNNSE model achieves better performance than
the skip-gram model, but is still below that of the
SWE models. It should be noted that it is unfair to
directly compare the SWE models and the JNNSE
model because they used different training corpora
and word embedding dimensions. Moreover, the β
values of the SWE models were tuned to achieve
the best performance on these 60 nouns. Here, the
motivation behind introducing the JNNSE model as
a reference is to help readers better understand the
effects of integrating brain data into SWE training.
These experimental results demonstrate that the
SWE model is an effective model structure for
integrating external knowledge into the estimation
of word embeddings.

6 Conclusion

This study utilized word embeddings to investigate
the semantic representations in brain activity as
measured by fMRI. First, the functional selectivity
of different cortex areas is explored by calculating
the correlations between neural responses and three
types of word vectors: skip-gram word embeddings,
visual semantic vectors, and primary visual features.

7http://www.cs.cmu.edu/˜afyshe/papers/
acl2014/

8Because there were 32 word-pairs in the WordSim-353
dataset that were not covered by the vocabulary of the JNNSE
word embeddings, the value 0.1795 in the last row of Table 5
was calculated using only 321 word-pairs.

676

Experimental results demonstrate the differences
between the associations of different word vectors
with brain-lobe-level brain activities. The skip-
gram word embeddings are significantly correlated
with the fMRI data of all brain lobes except the
occipital lobe. Furthermore, we utilized behavioural
data as the semantic ground truth to measure its
relevance to brain activity. The SWE model was
employed to explore the semantic relevance of brain
activity by examining the performances of word
embeddings after integrating brain-activity-related
knowledge into their estimations. Experimental
results show that whole-brain fMRI data are sig-
nificantly correlated with human judgement with
respect to semantic similarity. The correlations
between the estimated word embeddings and the
human-assigned similarity scores are effectively im-
proved after integrating brain activity data into SWE
training.

The experiments in this paper provide information
about how semantic features correlate with brain ac-
tivities, laying foundations for further investigations
of higher-level semantic processing in the human
brain. Furthermore, our experiments with SWE
modelling show the potential of applying fMRI
data to obtain better word embeddings. Although
this approach is still far from being a practical
engineering application due to issues such as the
high costs and low signal-to-noise ratio of fMRI
recordings and the diversity among individuals, it
provides us with an alternative method for verifying
the semantic relevance of brain activities and with
evidence for recognizing the limitations of estimat-
ing word embeddings using only text corpora.

Acknowledgements

This work was supported in part by the Science
and Technology Development of Anhui Province,
China (Grant No. 2014z02006), the Fundamental
Research Funds for the Central Universities (Grant
No. WK2350000001) and the CAS Strategic Prior-
ity Research Program (Grant No. XDB02070006).
The authors also want to thank Quan Liu for his help
and wonderful suggestions during the experiments.

References

[Anderson et al.2013] Andrew J Anderson, Elia Bruni,
Ulisse Bordignon, Massimo Poesio, and Marco
Baroni. 2013. Of words, eyes and brains: Correlating
image-based distributional semantic models with
neural representations of concepts. In EMNLP, pages
1960–1970.

[Binder et al.2009] Jeffrey R Binder, Rutvik H Desai,
William W Graves, and Lisa L Conant. 2009.
Where is the semantic system? a critical review and
meta-analysis of 120 functional neuroimaging studies.
Cerebral Cortex, 19(12):2767–2796.

[Bruni et al.2012] Elia Bruni, Jasper Uijlings, Marco
Baroni, and Nicu Sebe. 2012. Distributional
semantics with eyes: Using image analysis to improve
computational representations of word meaning. In
Proceedings of the 20th ACM international conference
on Multimedia, pages 1219–1228. ACM.

[Carlson et al.2014] Thomas A Carlson, Ryan A Sim-
mons, Nikolaus Kriegeskorte, and L Robert Slevc.
2014. The emergence of semantic meaning in the
ventral temporal pathway. Journal of cognitive
neuroscience, 26(1):120–131.

[Chao et al.1999] Linda L Chao, James V Haxby, and
Alex Martin. 1999. Attribute-based neural substrates
in temporal cortex for perceiving and knowing about
objects. Nature neuroscience, 2(10):913–919.

[Church and Hanks1990] Kenneth Ward Church and
Patrick Hanks. 1990. Word association norms,
mutual information, and lexicography. Computational
linguistics, 16(1):22–29.

[Csurka et al.2004] Gabriella Csurka, Christopher Dance,
Lixin Fan, Jutta Willamowski, and Cédric Bray. 2004.
Visual categorization with bags of keypoints. In
Workshop on statistical learning in computer vision,
ECCV, pages 1–2. Prague.

[Daugman1985] John G Daugman. 1985. Uncertainty
relation for resolution in space, spatial frequency,
and orientation optimized by two-dimensional visual
cortical filters. JOSA A, 2(7):1160–1169.

[Deng et al.2009] Jia Deng, Wei Dong, Richard Socher,
Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A
large-scale hierarchical image database. In Computer
Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 248–255. IEEE.

[Fellbaum and others1998] Christiane Fellbaum et al.
1998. Wordnet: An electronic lexical database mit
press. Cambridge MA.

[Finkelstein et al.2001] Lev Finkelstein, Evgeniy
Gabrilovich, Yossi Matias, Ehud Rivlin, Zach
Solan, Gadi Wolfman, and Eytan Ruppin. 2001.
Placing search in context: The concept revisited. In

677

Proceedings of the 10th international conference on
World Wide Web, pages 406–414. ACM.

[Fyshe et al.2014] Alona Fyshe, Partha P Talukdar, Brian
Murphy, and Tom M Mitchell. 2014. Interpretable
semantic vectors from a joint model of brain-and text-
based meaning. In Proceedings of the conference.
Association for Computational Linguistics. Meeting,
volume 2014, page 489. NIH Public Access.

[Grauman and Leibe2011] Kristen Grauman and Bastian
Leibe. 2011. Visual object recognition. Synthesis lec-
tures on artificial intelligence and machine learning,
5(2):1–181.

[Haghighat et al.2015] Mohammad Haghighat, Saman
Zonouz, and Mohamed Abdel-Mottaleb. 2015. Clou-
did: Trustworthy cloud-based and cross-enterprise
biometric identification. Expert Systems with Appli-
cations, 42(21):7905–7916.

[Hagoort2005] Peter Hagoort. 2005. On broca, brain,
and binding: a new framework. Trends in cognitive
sciences, 9(9):416–423.

[Harris1954] Zellig S Harris. 1954. Distributional
structure. Word, 10(2-3):146–162.

[Haxby et al.2001] James V Haxby, M Ida Gobbini,
Maura L Furey, Alumit Ishai, Jennifer L Schouten,
and Pietro Pietrini. 2001. Distributed and overlapping
representations of faces and objects in ventral temporal
cortex. Science, 293(5539):2425–2430.

[Hickok and Poeppel2007] Gregory Hickok and David
Poeppel. 2007. The cortical organization of speech
processing. Nature Reviews Neuroscience, 8(5):393–
402.

[Hinton et al.1986] Geoffrey E Hinton, James L Mcclel-
land, and David E Rumelhart. 1986. Distributed
representations, parallel distributed processing: ex-
plorations in the microstructure of cognition, vol. 1:
foundations.

[Huth et al.2012] Alexander G Huth, Shinji Nishimoto,
An T Vu, and Jack L Gallant. 2012. A continuous
semantic space describes the representation of thou-
sands of object and action categories across the human
brain. Neuron, 76(6):1210–1224.

[Huth et al.2016] Alexander G Huth, Wendy A de Heer,
Thomas L Griffiths, Frédéric E Theunissen, and
Jack L Gallant. 2016. Natural speech reveals the
semantic maps that tile human cerebral cortex. Nature,
532(7600):453–458.

[Kanwisher and Yovel2006] Nancy Kanwisher and Galit
Yovel. 2006. The fusiform face area: a cortical region
specialized for the perception of faces. Philosophical
Transactions of the Royal Society of London B:
Biological Sciences, 361(1476):2109–2128.

[Kay et al.2008] Kendrick N Kay, Thomas Naselaris,
Ryan J Prenger, and Jack L Gallant. 2008. Identifying

natural images from human brain activity. Nature,
452(7185):352–355.

[Kriegeskorte et al.2008] Nikolaus Kriegeskorte, Marieke
Mur, and Peter A Bandettini. 2008. Representational
similarity analysis-connecting the branches of systems
neuroscience. Frontiers in systems neuroscience, 2:4.

[Liu et al.2015] Quan Liu, Hui Jiang, Si Wei, Zhen-Hua
Ling, and Yu Hu. 2015. Learning semantic word
embeddings based on ordinal knowledge constraints.
Proceedings of ACL, Beijing, China.

[Louwerse2011] Max M Louwerse. 2011. Symbol
interdependency in symbolic and embodied cognition.
Topics in Cognitive Science, 3(2):273–302.

[Lowe2004] David G Lowe. 2004. Distinctive image
features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110.

[Lund and Burgess1996] Kevin Lund and Curt Burgess.
1996. Producing high-dimensional semantic spaces
from lexical co-occurrence. Behavior Research
Methods, Instruments, & Computers, 28(2):203–208.

[Marĉelja1980] S Marĉelja. 1980. Mathematical
description of the responses of simple cortical cells*.
JOSA, 70(11):1297–1300.

[Mikolov et al.2013a] Tomas Mikolov, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013a. Efficient
estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.

[Mikolov et al.2013b] Tomas Mikolov, Ilya Sutskever,
Kai Chen, Greg S Corrado, and Jeff Dean. 2013b.
Distributed representations of words and phrases
and their compositionality. In Advances in neural
information processing systems, pages 3111–3119.

[Miller and Charles1991] George A Miller and Walter G
Charles. 1991. Contextual correlates of semantic
similarity. Language and cognitive processes, 6(1):1–
28.

[Miller et al.2002] Earl K Miller, David J Freedman, and
Jonathan D Wallis. 2002. The prefrontal cortex:
categories, concepts and cognition. Philosophical
Transactions of the Royal Society of London B:
Biological Sciences, 357(1424):1123–1136.

[Mitchell et al.2008] Tom M Mitchell, Svetlana V
Shinkareva, Andrew Carlson, Kai-Min Chang,
Vicente L Malave, Robert A Mason, and Marcel Adam
Just. 2008. Predicting human brain activity
associated with the meanings of nouns. science,
320(5880):1191–1195.

[Naselaris et al.2009] Thomas Naselaris, Ryan J Prenger,
Kendrick N Kay, Michael Oliver, and Jack L Gallant.
2009. Bayesian reconstruction of natural images from
human brain activity. Neuron, 63(6):902–915.

[Nishimoto et al.2011] Shinji Nishimoto, An T Vu,
Thomas Naselaris, Yuval Benjamini, Bin Yu, and

678

Jack L Gallant. 2011. Reconstructing visual
experiences from brain activity evoked by natural
movies. Current Biology, 21(19):1641–1646.

[Pennington et al.2014] Jeffrey Pennington, Richard
Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In EMNLP,
volume 14, pages 1532–1543.

[Ryali et al.2010] Srikanth Ryali, Kaustubh Supekar,
Daniel A Abrams, and Vinod Menon. 2010. Sparse
logistic regression for whole-brain classification of
fMRI data. NeuroImage, 51(2):752–764.

[Sack2009] Alexander T Sack. 2009. Parietal cortex
and spatial cognition. Behavioural brain research,
202(2):153–161.

[Sivic and Zisserman2003] Josef Sivic and Andrew Zis-
serman. 2003. Video google: A text retrieval
approach to object matching in videos. In Computer
Vision, 2003. Proceedings. Ninth IEEE International
Conference on, pages 1470–1477. IEEE.

[Smith and Kosslyn2007] EE Smith and SM Kosslyn.
2007. Cognitive Psychology: Mind and Brain.
Pearson Prentice Hall, Upper Saddle River, NJ.

[Turney et al.2010] Peter D Turney, Patrick Pantel, et al.
2010. From frequency to meaning: Vector space
models of semantics. Journal of artificial intelligence
research, 37(1):141–188.

[Tzourio-Mazoyer et al.2002] Nathalie Tzourio-Mazoyer,
Brigitte Landeau, Dimitri Papathanassiou, Fabrice
Crivello, Olivier Etard, Nicolas Delcroix, Bernard
Mazoyer, and Marc Joliot. 2002. Automated
anatomical labeling of activations in SPM using a
macroscopic anatomical parcellation of the mni mri
single-subject brain. Neuroimage, 15(1):273–289.

[Vannini et al.2004] Patrizia Vannini, Ove Almkvist, An-
ders Franck, Tomas Jonsson, Umberto Volpe, Mari-
a Kristoffersen Wiberg, Lars-Olof Wahlund, and
Thomas Dierks. 2004. Task demand modulations
of visuospatial processing measured with functional
magnetic resonance imaging. Neuroimage, 21(1):58–
68.

679

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 680–689,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

AMR Parsing with an Incremental Joint Model

Junsheng Zhou†, Feiyu Xu‡, Hans Uszkoreit‡, Weiguang Qu†, Ran Li† and Yanhui Gu†
† Language Information Processing and Social Computing Lab

School of Computer Science and Technology, Nanjing Normal University, China
{zhoujs, wgqu, gu}@njnu.edu.cn, liran3277@sina.com

‡ Language Technology Lab, DFKI, Germany
{feiyu, uszkoreit}@dfki.de

Abstract

To alleviate the error propagation in the tra-
ditional pipelined models for Abstract Mean-
ing Representation (AMR) parsing, we for-
mulate AMR parsing as a joint task that per-
forms the two subtasks: concept identification
and relation identification simultaneously. To
this end, we first develop a novel component-
wise beam search algorithm for relation iden-
tification in an incremental fashion, and then
incorporate the decoder into a unified frame-
work based on multiple-beam search, which
allows for the bi-directional information flow
between the two subtasks in a single incre-
mental model. Experiments on the public
datasets demonstrate that our joint model sig-
nificantly outperforms the previous pipelined
counterparts, and also achieves better or com-
parable performance than other approaches to
AMR parsing, without utilizing external se-
mantic resources.

1 Introduction

Producing semantic representations of text is moti-
vated not only by theoretical considerations but also
by the hypothesis that semantics can be used to im-
prove many natural language tasks such as question
answering, textual entailment and machine transla-
tion. Banarescu et al. (2013) described a semantics
bank of English sentences paired with their logical
meanings, written in Abstract Meaning Representa-
tion (AMR), which is rapidly emerging as an impor-
tant practical form of structured sentence semantics.
Recently, some literatures reported some promising
applications of AMR. Pan et al. (2015) presented

an unsupervised entity linking system with AMR,
achieving the performance comparable to the super-
vised state-of-the-art. Liu et al. (2015) demonstrated
a novel abstractive summarization framework driven
by the AMR graph that shows promising results.
Garg et al. (2016) showed that AMR can signifi-
cantly improve the accuracy of a biomolecular in-
teraction extraction system compared to only using
surface- and syntax-based features. Mitra and Baral
(2016) presented a question-answering system by
exploiting the AMR representation, obtaining good
performance.

Automatic AMR parsing is still in a nascent
stage. Flanigan et al. (2014) built the first AMR
parser, JAMR, based on a pipelined approach, which
breaks down the whole task into two separate sub-
tasks: concept identification and relation identifica-
tion. Considering that node generation is an impor-
tant limiting factor in AMR parsing, Werling et al.
(2015) proposed an improved approach to the con-
cept identification subtask by using a simple clas-
sifier over actions which generate these subgraphs.
However, the overall architecture is still based on the
pipelined model.

As a common drawback of the staged architec-
ture, errors in upstream component are often com-
pounded and propagated to the downstream predic-
tion. The downstream components, however, can-
not impact earlier decision. For example, for the
verb “affect” in the example shown in Figure 1,
there exist two possible concepts: “affect-01” and
“affect-02”. Comparatively, the first concept has
more common use cases than the second one. But,
when the verb “affect” is followed by the noun “ac-

680

cent”, it should evoke the concept “affect-02”. Ob-
viously, the correct concept choice for the verb “af-
fect” should exploit a larger context, and even the
whole semantic structure of the sentence, which is
more probable to be unfolded at the downstream re-
lation identification stage. This example indicates
that it is necessary to allow for the interaction of in-
formation between the two stages.

try-01

He

affect-02

accent

:ARG0

:ARG1

:ARG1
:ARG0

country

name

British

:op1

:name
:mod

Figure 1: The AMR graph for the sentence “He tries to affect a

British accent.”

To address this problem, in this paper we refor-
mulate this task as a joint parsing problem by ex-
ploiting an incremental parsing model. The under-
lying learning algorithm has shown the effectiveness
on some other Natural Language Processing (NLP)
tasks, such as dependency parsing and extraction of
entity mentions and relations (Collins and Roark,
2004; Hatori et al., 2012; Li and Ji, 2014). However,
compared to these NLP tasks, the AMR parsing is
more challenging in that the AMR graph is more
complicated. In addition, the nodes in the graph are
latent.

One main challenge to search for concept frag-
ments and relations incrementally is how to com-
bine the two subtasks in a unified framework. To
this end, we first develop a novel Component-Wise
Beam Search (CWBS) algorithm for incremental re-
lation identification to examine the accuracy loss in
a fully incremental fashion compared to the global
fashion in which a sequence of concept fragments
derived from the whole sentence are required as in-
put, as the MSCG algorithm in JAMR. Secondly,
we adopt a segment-based decoder similar to the
multiple-beam algorithm (Zhang and Clark, 2008b)
for concept identification, and then incorporate the
CWBS algorithm for relation identification into this
framework, combining the two subtasks in a sin-
gle incremental model. For parameter estimation,
“violation-fixing” perceptron is adopted since it is

designed specifically for inexact search in structured
learning (Huang et al., 2012).

Experimental results show that the proposed joint
framework significantly outperforms the pipelined
counterparts, and also achieves better or comparable
performance than other AMR parsers, even without
employing external semantic resources.

2 Background

2.1 AMR Parsing Task

Nodes of an AMR graph are labeled with con-
cepts, and edges are labeled with relations. Con-
cepts can be English words (“He”), PropBank event
predicates (“try-01”, “affect-02”), or special key-
words (“British”). For example, “affect-02” rep-
resents a PropBank roleset that corresponds to the
first sense of “affect”. According to (Banarescu et
al., 2013), AMR uses approximately 100 relations.
The rolesets and core semantic relations (e.g., ARG0
to ARG5) are adopted from the PropBank annota-
tions in OntoNotes. Other semantic relations include
“mode”, “name”, “time”, “topic” and so on. The
AMR guidelines provide more detailed descriptions.

2.2 The Pipelined Models for AMR Parsing

The AMR parser JAMR is a two-stage algorithm that
first identifies concepts and then identifies the rela-
tions that obtain between these.

The concept identification stage maps spans of
words in the input sentence to a sequence of con-
cept graph fragments. Note that these graph frag-
ments, in some cases, are subgraphs with multi-
ple nodes and edges, not just one labeled concept
node. The relation identification stage adds edges
among the concept subgraph fragments identified in
the first stage. JAMR requires the output subgraph
G =< VG, EG > should respect the following con-
straints:

(1) Simple: For any two vertices u and v ∈ VG, EG

includes at most one edge between u and v.

(2) Connected: G must be weakly connected (every
vertex reachable from every other vertex, ignor-
ing the direction of edges).

(3) Deterministic: For each node u ∈ VG, and for
each label l ∈ {ARG0, . . . ,ARG5} , there is at

681

most one outgoing edge inEG from uwith label
l.

To find a maximum spanning AMR graph, JAMR
proposed a two-step approach1 . First, a graph that
ignores constraint (3) but respects the others was
created, by searching for the maximum spanning
connected subgraph from an edge-labeled, directed
graph representing all possible relations between the
identified concepts; Second, a Lagrangian relaxation
was adopted to iteratively adjust the edge scores so
as to enforce constraint (3).

In order to train the parser, JAMR built an auto-
matic aligner that uses a set of rules to greedily align
concepts to spans of words in the training data to
generate an alignment table.

3 Algorithms

Based on the hypothesis that concept identification
and relation identification are interrelated, we pro-
pose to jointly perform the two subtasks in a sin-
gle model. To this end, we present an incremental
model for AMR parsing. Evidence from psycholin-
guistic research also suggests that human language
comprehension is incremental. Comprehenders do
not wait until the end of the sentence before they
build a syntactic or semantic representation for the
sentence.

However, the challenges of successfully applying
the incremental joint model to this problem formu-
lation are: 1) how can we design an effective decod-
ing algorithm for identifying the relations between
the nodes in an incremental fashion, given a partial
sequence of spans, i.e., a partial sequence of gold-
standard concept fragments; 2) further, if given a
sentence, how can we design an incremental frame-
work to perform concept identification and relation
identification simultaneously. In the following sub-
sections we introduce our solutions to these chal-
lenges in detail.

3.1 An Incremental Decoding Algorithm for
Relation Identification

We define the relation identification problem as find-
ing the highest scoring graph y from all possible out-

1In this paper, we refer to this two-step approach for relation
identification as MSCG algorithm.

puts given a sequence of concept fragments c:

F (c) = argmax
Gen(c)

Score(y) (1)

where Gen(c) denotes the set of possible AMR
graph for the input c. The score of an output parse
y is defined to be decomposed by edges, and with a
linear model:

Score(y) =
∑

e∈Ey

wT · ϕ(e) (2)

where ϕ(e) is the feature vector over the edge e, and
w is weight vector of the model.

The AMR graph is a directed graph that respects
three constraints (see section 2.2) and has a node
marked as the focus node. Obviously, finding such a
maximum spanning graph in AMR parsing in fact
carries more complexities than that of maximum
spanning tree (MST) decoding for syntactic parsing.
Especially, performing the task incrementally is sub-
stantially harder than doing it non-incrementally. In
both cases, parsing is in general intractable and we
provide an approximate inference algorithm to make
these cases tractable.

Inspired by the graph-based dependency parser
under the framework of beam-search, which yields
a competitive performance compared to the exact-
search-based counterpart (Zhang and Clark, 2008a),
we develop a CWBS algorithm for the relation iden-
tification task.

Basically, the decoder works incrementally, build-
ing a state item (i.e. a partial AMR graph) fragment
by fragment. When each concept fragment is pro-
cessed, edges are added between the current con-
cept fragment and its predecessors. However, how
to treat its predecessors is a difficult problem. In
our experiments, we found that if we consider every
preceding concept fragment to the left of the cur-
rent fragment in a right-to-left order in the search
process, the decoder suffers from low efficiency
and poor performance. Unlike the beam-search for
dependency parsing, which can greatly reduce the
search space by exploiting the projectivity property
of the dependency tree (Covington, 2001; Zhang and
Clark, 2008a), this naive search process in this con-
text inevitably leads to huge search space, and fur-
thermore is difficult to guarantee the connectivity of

682

output graph. Instead, we propose a component-
wise beam search scheme, which can not only al-
leviate much noisy partial candidate, but also ensure
that the final output graph is connected.

Algorithm 1 shows the pseudocode for the com-
plete procedure of the decoder. In a nutshell, the
algorithm builds the AMR graph in one left-to-right
pass over the sequence of concept fragments. Beam
search is applied by keeping the B-best2 items in
the agenda at each processing stage, according to the
scores of partial graph up to the current concept frag-
ment. Lets take an illustrative diagram to demon-
strate the procedure (see Figure 2). When appending
the current concept fragment to the left partial graph
to extend it, we just need to consider the relations be-
tween current concept and each preceding connected
component. However, even at this single step, pick-
ing B-best extended partial graphs is still a difficult
task due to the large combination space. Here, we
adopt an effective nested beam search strategy at
this step. In other words, edges are added between
the current concept fragment and its preceding con-
nected components by iterating through these com-
ponents in a right-to-left order3 using an inner beam-
search. When examining the edges between the cur-
rent concept fragment and some preceding compo-
nent, four elementary actions are used:

(1) SHIFT (lines 12-14): Add only current concept
to the partial graph.

(2) LEFT-ARC (lines 16-19): Add current concept
and a highest-scoring edge from a node in the
current concept to a node in some preceding
connected component to the partial graph.

(3) RIGHT-ARC (lines 21-24): Add current con-
cept and a highest-scoring edge from a node in
some preceding connected component to a node
in current concept to the partial graph.

(4) LEFT & RIGHT-ARCS (lines 26-27): Add
current concept and highest-scoring left arc and
right arc to the partial graph.

The first three actions are similar in form to those
in the Arc-Standard algorithm for transition-based

2The constant B denotes the beam size.
3The right-to-left order reflects the principle of local priority.

Figure 2: An illustrative diagram for CWBS algorithm. Each

dotted box corresponds to a connected component in the par-

tial graph, each of which consists one or multiple concept frag-

ments. The rightmost subgraph corresponds to the current con-

cept fragment.

dependency parsing (Nivre, 2008; Zhang and Clark,
2008a). The last one is defined to cope with the
cases where there may be multiple parents for some
nodes in an AMR graph. Note that the “SHIFT”
action does not add any edges. This operation is
particularly necessary because the partial graphs are
not always connected during the search process. In
our experiments, we also found that the number of
connected components during search process is rel-
atively small, which is generally less than 6. It is im-
portant to note that, in order to guarantee the output
graph connected, when the last concept fragment is
encountered, the “SHIFT” action is skipped (see line
10 in Algorithm 1), and the other three ‘arc’ actions
will add edges to connect the last concept fragment
with all preceding connected components to yield a
connected graph.

For purpose of brevity, we introduce some
functional symbols in Algorithm 1. Function
CalEdgeScores(state, ci) calculates the scores of
all candidate edges between the nodes in current
concept fragment ci and the nodes in the partial
graph in state covering (c1, c2, . . . , ci−1). For com-
puting the scores of edges, we use the same fea-
tures as JAMR (refer to Flanigan et al. (2014) for
more details). Function FindComponents(state)
returns all connected components (p1, p2, . . . , pm)
in the partial graph in state, sorted by the max-
imum end position of spans including in every
component. The AddItem function adds the cur-
rent concept fragment and left/right arc to the
partial graph. Function AppendItem(buf, item)
inserts the partial graph item into buf by its
score. Functions GetMaxLeftEdge(ci, pj) and

683

Algorithm 1 The incremental decoding algorithm for
relation identification.
Input: A sequence of concept fragments (c1, c2, . . . , cn)
Output: Best AMR graph including (c1, c2, . . . , cn)

1: agenda← {Empty-graph}
2: for i← 1 . . . n do
3: for state in agenda do
4: CalEdgeScores(state, ci)
5: (p1, p2, . . . , pm)← FindComponents(state)
6: innerAgenda← state
7: for j ← m. . . 1 do
8: buf ← NULL
9: for item in innerAgenda do

10: if i < n then
11: //Add only ci to the item
12: newitem← item
13: AddItem(newitem, ci)
14: AppendAgenda(buf, newitem, i, n)
15: // Add a left arc from ci to pj to the item
16: newitem← item
17: le← GetMaxLeftEdge(ci, pj)
18: AddItem(newitem, ci, le)
19: AppendAgenda(buf, newitem, i, n)
20: //Add a right arc from pj to ci the item
21: newitem← item
22: re← GetMaxRightEdge(pj , ci)
23: AddItem(newitem, ci, le)
24: AppendAgenda(buf, newitem, i, n)
25: //Add both left and right arc to the item
26: AddItem(item, ci, le, re)
27: AppendAgenda(buf, item, i, n)
28: innerAgenda← B-best(buf)
29: agenda← innerAgenda

30: return agenda[0]
31: function AppendAgenda(buf, item, i, n)
32: //parameter n represents the terminal position
33: if i = n then
34: CalRootFeatures(item)
35: AppendItem(buf, item)

GetMaxRightEdge(pj , ci) pick the highest-scoring
left-arc and right-arc linking current fragment ci and
the connected component pj by the scores returned
from the CalEdgeScores function, respectively.

Finally, the function CalRootFeatures(g) first
computes the scores for all nodes in the output graph
g by treating them as the candidate root respectively,
and then pick the node with the highest score as
the focus node of the graph. When computing the
score for each candidate node, similar to JAMR, two

types of features were used: the concept of the node,
and the shortest dependency path from a word in the
span to the root of the dependency tree.

The time complexity of the above algorithm is
O(MB2n), where M is the maximum number of
connected components during search, B is beam
size and n is the number of concept fragments. It
is linear in the length of sequence of concept frag-
ments. However, the constant in the O is relatively
large. In practice, the search space contains a large
number of invalid partial candidates. Therefore,
we introduce three partial output pruning schemes
which are helpful in reducing search space as well
as making the input for parameter update less noisy.

Firstly, we limit the number of children and par-
ents of every node. By observing the training data,
we set the maximum numbers of children and par-
ents of every node as 7 and 4, respectively. Sec-
ondly, due to the fact that all frame arguments
ARG0-ARG5 are derived from the verb framesets,
the edges with label l ∈ {ARG0, . . . , ARG5} that
do not outgo from a verb node will be skipped.

Finally, consider the determinism constraint (as il-
lustrated in section 2.2) that should be satisfied by an
AMR representation. When one edge has the same
label l ∈ {ARG0, . . . , ARG5} as one of edges out-
going from the same parent node, this edge will also
be skipped. Obviously, this type of pruning can en-
force the determinism constraint for every decoding
output.

3.2 Joint Decoding for Concept Identifica-tion
and Relation Identification

In this section, we further consider the joint decod-
ing problem for a given sentence x, which maps the
sentence x to an output AMR graph y. The objective
function for the joint decoding is as follows:

ŷ = argmax
y′∈Gen(x)

(wT · φ(x, y′) + wT · f(y′)) (3)

where the first term is to calculate the score over
all concept fragments derived from the words in the
sentence x, and the second one is to calculate the
score over all edges linking the concept fragments.
Maximizing Equation (3) amounts to concurrently
maximizing the score over the concept fragments
and the score over the edges. Admittedly, the joint
decoding problem is more intricate and in general

684

intractable. Therefore, we use a beam-search-based
incremental decoder for approximate joint inference
during training and testing.

In order to combine the two subtasks in a uni-
fied framework, we first relax the exact-search for
concept identification in JAMR by beam search,
resulting in a segment-based decoder similar to
the multiple-beam algorithm in (Zhang and Clark,
2008b; Li and Ji, 2014), and then incorporate the
CWBS algorithm for relation identification (as de-
picted in section 3.1) into this framework, which
provides a natural formulation for combining the
two subtasks in a single incremental model.

Algorithm 2 shows the joint decoding algorithm.
In short, during performing joint decoding incre-
mentally for the input sentence, for each word index
i in the input sentence, it maintains a beam for the
partial graphs whose last segments end at the i-th
word, which is denoted as agendas[i] in the algo-
rithm. When the i-th word is processed, it either trig-
gers concepts starting from this word by looking up
the alignment table generated from the training data,
or evokes no concept (we refer to this type of words
as function words). If the current word triggers mul-
tiple concepts, we first append each candidate con-
cept to the partial graphs in the beam agendas[i−1],
by using a component-wise beam search way (see
section 3.1), and then pick B-best extended partial
graphs by exploiting the features from both the con-
cept level and relation level to compute the overall
scores.

In particular, judging whether a word is a func-
tion word is an important and difficult task. For
example, the word “make” corresponds to multiple
candidate concepts in the alignment table, such as
“make-01” and “make-02”. However, it can also
act as a functional word in some cases. To re-
solve the judgement problem, we view each word
as a function word and a non-function word at the
same time to allow them to compete against each
other by their scores. For instance, for the i-th
word, this is done by combining all partial graphs
in the beam agendas[i − 1] with those in the beam
agendas[i] to select B-best items and then record
them in agendas[i], which is represented as the
Union function in Algorithm 2.

After all words are processed, the highest-scoring
graph in the beam corresponding to the terminal po-

Algorithm 2 The joint decoding algorithm.
Input: Input sentence x = (w1, w2, . . . , wn)
Output: Best AMR graph derived from x

1: agendas[0]← ∅
2: last← Scan(x)
3: for i← 1 . . . n do
4: list← Lookup(x, i)
5: if list.size > 0 then
6: preAgenda← agendas[i− 1]
7: for cf ∈ list do
8: end← i+ cf .size− 1
9: if preAgenda.size = 0 then

10: g ← Graph.empty
11: CalConceptFeatures(g, cf)
12: AppConcept(agendas, end, g, cf, last)
13: else
14: for item ∈ preAgenda do
15: g ← item
16: CalConceptFeatures(g, cf)
17: AppConcept(agendas, end, g, cf, last)
18: Union(agendas, i, i− 1)
19: else
20: agendas[i]← agendas[i− 1]

21: bestGraph← agendas[last][0]
22: return bestGraph

sition of the sentence is selected as the output.
In algorithm 2, function Scan(x) is used to search

the terminal position corresponding to the last con-
cept fragment in the sentence x, which will be
passed as a parameter to the function AppConcept.
The Scan function can be efficiently implemented by
calling the function Lookup in a right-to-left order.
Function Lookup(x, i) maps a sequence of words
starting from the index i in sentence x to a set of can-
didate concept fragments, by looking up the align-
ment table that was generated from the training data.
The alignments are accomplished using an aligner
from JAMR. Motivated by Werling et al. (2015), we
also adopt two additional actions to generate the can-
didate concept fragments: LEMMA and VERB. The
action LEMMA is executed by using the lemma of
the source token as the generated node title, and the
action VERB is to find the most similar verb in Prop-
Bank based on Jaro-Winkler distance, and adopt its
most frequent sense.

Function CalConceptFeatures(g, cf) calculates
the feature vector for the candidate concept frag-
ment cf and the partial graph g, using the features

685

defined in Table 1. Among them, features 1-4
are from JAMR. Additional features 5-16 aim to
capture the association between the current concept
and the context in which it appears. Function
AppConcept(agendas, end, g, cf, last) appends
the current concept cf to the partial graph g,
and then inserts the extended partial graph into
agendas[end]. Note that when the parameter end
equals to the parameter last, this function will call
the function CalRootFeatures to select the focus
node, as illustrated in Algorithm 1.

Name Description

1 Fragment given
words

Relative frequency estimates of
the probability of a concept
fragment given the span of
words.

2 Span length The length of the span.
3 NER 1 if the span corresponds to a

named entity, 0 otherwise.
4 Bias 1 for any concept fragment

from the alignment table, 0 oth-
erwise.

5 c

c represents the current con-
cept label, w represents the cur-
rent words, lem represents the
current lemmas, pos represents
the current POS tags. w−1 de-
notes the first word to the left of
current word, w+1 denotes the
first word to the right of current
word, and so on.

6 c+ w
7 c+ lem
8 c+ pos
9 c+ w−1
10 c+ w+1

11 c+ pos−1
12 c+ pos+1

13 c+ w−2
14 c+ w+2

15 c+ pos−2
16 c+ pos+2

Table 1: Features associated with the concept fragments.

3.3 Violation-Fixing Perceptron for Training
Online learning is an attractive method for the struc-
tured learning since it quickly converges within a
few iterations (Collins, 2002). Particularly, Huang
et al. (2012) establish a theoretical framework called
“violation-fixing perceptron” which is tailored for
structured learning with inexact search and has prov-
able convergence properties. Since our incremen-
tal decoding for AMR parsing is an approximate in-
ference, it is very natural to employ violation-fixing
perceptron here for AMR parsing training.

Specifically, we use an improved update method
“max-violation” which updates at the worst mistake,

and converges much faster than early update with
similar or better accuracy. We adopt this idea here
as follows: decode the whole sentence, and find
the word index i∗ where the difference between the
candidate partial graph and gold-standard one is the
biggest. Only part of the graph ending at the word
index i∗ is used to calculate the weight update, in
order to account for search errors.

To reduce overfitting, we used averaged parame-
ters after training to decode test instances in our ex-
periments. The resulting model is called averaged
perceptron (Collins, 2002).

Additionally, in our training algorithms, the im-
plementation of the oracle function is rela-tively
straightforward. Specifically, when the i-th span is
processed in the incremental parsing process, the
partial gold-standard AMR graph up to the i-th span
consists of the edges and nodes that appear before
the end position of the i-th span, over which the
gold-standard feature vectors are calculated.

4 Experiments

4.1 Dataset and Evaluation Metric

Following previous studies on AMR parsing, our ex-
periments were performed on the newswire sections
of LDC2013E117 and LDC2014T12, and we also
follow the official split for training, development and
evaluation. Finally, we also show our parsers perfor-
mance on the full LDC2014T12 dataset. We evalu-
ate the performance of our parser using Smatch v2.0
(Cai and Knight, 2013), which counts the precision,
recall and F1 of the concepts and relations together.

4.2 Development Results

Generally, larger beam size will increase the com-
putational cost while smaller beam size may reduce
the performance. As a tradeoff, we set the beam size
as 4 throughout our experiments. Figure 3 shows the
training curves of the averaged violation-fixing per-
ceptron with respect to the performance on the both
development sets. As we can see the curves con-
verge very quickly, at around iteration 3.

686

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0 1 2 3 4 5 6 7 8 9 10

F
-m

ea
su

re

Number of training iterations

LDC2014T112
LDC2103E117

Figure 3: Learning curves on development sets.

Dataset System P R F1

LDC2013E117 MSCG .85 .77 .81
CWBS .85 .78 .81

LDC2014T12 MSCG .84 .77 .80
CWBS .84 .77 .80

Table 2: Results of two different relation identification algo-

rithms.

4.3 Incremental Relation Identification
Performance

Before performing joint decoding, we should first
verify the effectiveness of our incremental algorithm
CWBS. The first question about CWBS is whether
the component-wise search is a valid scheme for de-
riving the gold-standard AMR graph given the se-
quence of gold-standard concepts. Therefore, we
first implement an oracle function by performing the
incremental component-wise search for each frag-
ment sequence c to get a “pseudo-gold” graph G

′
c;

Then we compare with gold-standard AMR graph
Gc . On the training data of LDC2013E117 and
LDC2014T12, we respectively got an overall 99.6%
and 99.7% F-scores for all < G

′
c, Gc > pairs, which

indicates that our component-wise search is an ef-
fective incremental search scheme.

Further, we train a perceptron model using the
max-violation update to approximate the oracle
search procedure. As shown in Table 2, our in-
cremental algorithm CWBS achieves almost the
same performance as the non-incremental algorithm
MSCG in JAMR, using the same features as MSCG.
The results indicate that CWBS is a competitive al-
ternative to MSCG.

4.4 Joint Model vs. Pipelined Model
In this section, we compare the overall performance
of our joint model to the pipelined model, JAMR4.
To give a fair comparison, we first implemented sys-
tem 1 only using the same features (i.e., features 1-
4 in Table 1) as JAMR for concept fragments. Ta-
ble 3 gives the results on the two datasets. In terms
of F-measure, we gain a 6% absolute improvement,
and a 5% absolute improvement over the results of
JAMR on the two different experimental setups re-
spectively.

Next, we implemented system 2 by using more
lexical features to capture the association between
concept and the context (i.e., features 5-16 in Table
1). Intuitively, these lexical contextual features
should be helpful in identifying concepts in parsing
process. As expected, the results in Table 3 show
that we gain 3% improvement over the two different
datasets respectively, by adding only some addi-
tional lexical features.

Dataset System P R F1

LDC2013E117
JAMR(fixed) .67 .58 .62

System 1 .72 .65 .68
System 2 .73 .69 .71

LDC2014T12
JAMR(fixed) .68 .59 .63

System 1 .74 .63 .68
System 2 .73 .68 .71

Table 3: Comparison between our joint approaches and the

pipelined counterparts.

Dataset System P R F1

LDC2013E117
CAMR* .69 .67 .68
CAMR .71 .69 .70

Our approach .73 .69 .71

LDC2014T12
CAMR* .70 .66 .68
CAMR .72 .67 .70

CCG-based .67 .66 .66
Our approach .73 .68 .71

Table 4: Final results of various methods.

4.5 Comparison with State-of-the-art
We give a comparison between our approach and
other state-of-the-art AMR parsers, including CCG-
based parser (Artzi et al., 2015) and dependency-
based parser (Wang et al., 2015b). For comparison

4We use the latest, fixed version of JAMR, available at
https://tiny.cc/jamr.

687

purposes, we give two results from two different ver-
sions of dependency-based AMR parser5: CAMR*
and CAMR. Compared to the latter, the former de-
notes the system that does not use the extended fea-
tures generated from the semantic role labeling sys-
tem, word sense disambiguation system and so on,
which is directly comparable to our system.

From Table 4 we can see that our parser achieves
better performance than other approaches, even
without utilizing any external semantic resources.

We also evaluate our parser on the full
LDC2014T12 dataset. We use the train-
ing/development/test split recommended in the
release: 10,312 sentences for training, 1,368 sen-
tences for development and 1,371 sentences for
testing. For comparison, we include the results of
JAMR, CAMR*, CAMR and SMBT-based parser
(Pust et al., 2015), which are also trained on the
same dataset. The results in Table 5 show that
our approach outperforms CAMR*, and obtains
comparable performance with CAMR. However,
our approach achieves slightly lower performance,
compared to the SMBT-based parser, which adds
data and features drawn from various external
semantic resources.

Dataset System P R F1

LDC2014T12

JAMR(fixed) .64 .53 .58
CAMR* .68 .60 .64
CAMR .70 .62 .66

SMBT-based - - .67
Our approach .70 .62 .66

Table 5: Final results on the full LDC2014T12 dataset.

5 Related Work

Our work is motivated by JAMR (Flanigan et al.,
2014), which is based on a pipelined model, re-
sulting in a large drop in overall performance when
moving from gold concepts to system concepts.

Wang et al. (2015a) uses a two-stage approach;
dependency parses are modified by executing a se-
quence of actions to resolve dis-crepancies between
dependency tree and AMR structure. Goodman
et al. (2016) improves the transition-based parser
with the imitation learning algorithms, achieving al-
most the same performance as that of Wang et al.

5The code is available at https://github.com/
Juicechuan/AMRParsing

(2015b), which exploits the extended features from
additional trained analysers, including co-reference
and semantic role labelers. Artzi et al. (2015) in-
troduces a new CCG grammar induction algorithm
for AMR parsing, combined with a factor graph
to model non-compositional phenomena. Pust et
al. (2015) adapts the SBMT parsing framework to
AMR parsing by designing an AMR transformation,
and adding external semantic resources. More re-
cently, Damonte et al. (2016) also presents an incre-
mental AMR parser based on a simple transition sys-
tem for dependency parsing. However, compared to
our parser, their parser cannot parse non-projective
graphs, resulting in a limited coverage.

Our work is also inspired by a new computa-
tional task of incremental semantic role labeling, in
which semantic roles are assigned to incomplete in-
put (Konstas et al., 2014).

6 Conclusions and Future Work

In this paper, we present a new approach to AMR
parsing by using an incremental model for perform-
ing the concept identification and relation identifica-
tion jointly, which alleviates the error propagation in
the pipelined model.

In future work, we plan to improve the parsing
performance by exploring more features from the
coreference resolution, word sense disambiguation
system and other external semantic resources. In
addition, we are interested in further incorporating
the incremental semantic role labeling into our in-
cremental framework to allow bi-directional infor-
mation flow between the two closely related tasks.

Acknowledgments

This research is supported by projects 61472191,
61272221 under the National Natural Science
Foundation of China, projects 14KJB520022,
15KJA420001 under the Natural Science Research
of Jiangsu Higher Education Institutions of China,
and partially supported by the German Federal Min-
istry of Education and Research (BMBF) through
the project ALL SIDES (01IW14002) and BBDC
(contract 01IS14013E). We would also like to thank
the insightful comments from the three anonymous
reviewers.

688

References
Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.

Broad-coverage CCG Semantic Parsing with AMR. In
Proc. of EMNLP, pages 1699–1710.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, , and Nathan
Schneider. 2013. Abstract Meaning Representation
for Sembanking. In Proc. of the Linguistic Annotation
Workshop and Interoperability with Discourse.

Shu Cai and Kevin Knight. 2013. Smatch: an Evaluation
Metric for Semantic Feature Structures. In Proc. of
ACL, pages 748–752.

Michael Collins and Brian Roark. 2004. Incremental
Parsing with the Perceptron Algorithm. In Proc. of
ACL, pages 111–118.

Michael Collins. 2002. Discriminative Training Meth-
ods for Hidden Markov Models: Theory and Ex-
periments with Perceptron algorithms. In Proc. of
EMNLP, pages 1–8.

Michael A. Covington. 2001. A Fundamental Algorithm
for Dependency Parsing. In Proc. of ACM Southeast
Conference.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2016. An Incremental Parser for Abstract Meaning
Representation. arXiv preprint at arXiv:1608.06111.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris
Dyer, and Noah A. Smith. 2014. A Discriminative
Graph-Based Parser for the Abstract Meaning Repre-
sentation. In Proc. of ACL, pages 1426–1436.

Sahil Garg, Aram Galstyan, Ulf Hermjakob, and Daniel
Marcu. 2016. Extracting Biomolecular Interactions
Using Semantic Parsing of Biomedical Text. In Proc.
of AAAI.

James Goodman, Andreas Vlachos, and Jason Na-
radowsky. 2016. Noise Reduction and Targeted Ex-
ploration in Imitation Learning for Abstract Meaning
Representation Parsing. In Proc. of ACL, pages 1–11.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and Ju-
nichi Tsujii. 2012. Incremental Joint Approach to
Word Segmentation, POS Tagging, and Dependency
Parsing in Chinese. In Proc. of ACL, pages 1045–
1053.

Liang Huang, Suphan Fayong, and Yang Guo. 2012.
Structured Perceptron with Inexact Search. In Proc.
of HLT-NAACL, pages 142–151.

Ioannis Konstas, Frank Keller, Vera Demberg, and
Mirella Lapata. 2014. Incremental Semantic Role
Labeling with Tree Adjoining Grammar. In Proc. of
EMNLP, pages 301–312.

Qi Li and Heng Ji. 2014. Incremental Joint Extraction of
Entity Mentions and Relations. In Proc. of ACL, pages
402–412.

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman Sadeh,
and Noah A. Smith. 2015. Toward Abstractive Sum-
marization Using Semantic Representations. In Proc.
of NAACL, pages 1086–1077.

Arindam Mitra and Chitta Baral. 2016. Addressing a
Question Answering Challenge by Combining Statis-
tical Methods with Inductive Rule Learning and Rea-
soning. In Proc. of AAAI.

Joakim Nivre. 2008. Algorithms for Deterministic Incre-
mental Dependency Parsing. Computational Linguis-
tics, 34(4):513–553.

Xiaoman Pan, Taylor Cassidy, Ulf Hermjakob, Heng Ji,
and Kevin Knight. 2015. Unsupervised Entity Link-
ing with Abstract Meaning Representation. In Proc. of
NAACL, pages 1130–1139.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel
Marcu, and Jonathan May. 2015. Parsing English
into Abstract Meaning Representation Using Syntax-
Based Machine Translation. In Proc. of EMNLP,
pages 1143–1154.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015a. A Transition-based Algorithm for AMR Pars-
ing. In Proc. of NAACL, pages 366–375.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015b. Boosting Transition-based AMR Parsing with
Re-fined Actions and Auxiliary Analyzers. In Proc. of
ACL, pages 857–862.

Keenon Werling, Gabor Angeli, and Christopher D. Man-
ning. 2015. Robust Subgraph Generation Improves
Abstract Meaning Representation Parsing. In Proc. of
ACL, pages 982–991.

Yue Zhang and Stephen Clark. 2008a. A Tale of
Two Parsers: Investigating and Combining Graph-
Based And transition-Based Dependency Parsing Us-
ing Beam-search. In Proc. of EMNLP, pages 562–571.

Yue Zhang and Stephen Clark. 2008b. Joint Word Seg-
mentation and POS Tagging Using a Single Percep-
tron. In Proc. of ACL, pages 888–896.

689

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 690–699,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Identifying Dogmatism in Social Media: Signals and Models

Ethan Fast and Eric Horvitz
ethaen@stanford.edu, horvitz@microsoft.com

Abstract

We explore linguistic and behavioral features
of dogmatism in social media and construct
statistical models that can identify dogmatic
comments. Our model is based on a corpus of
Reddit posts, collected across a diverse set of
conversational topics and annotated via paid
crowdsourcing. We operationalize key aspects
of dogmatism described by existing psychol-
ogy theories (such as over-confidence), find-
ing they have predictive power. We also find
evidence for new signals of dogmatism, such
as the tendency of dogmatic posts to refrain
from signaling cognitive processes. When we
use our predictive model to analyze millions
of other Reddit posts, we find evidence that
suggests dogmatism is a deeper personality
trait, present for dogmatic users across many
different domains, and that users who engage
on dogmatic comments tend to show increases
in dogmatic posts themselves.

1 Introduction
“I’m supposed to trust the opinion of a MS min-
ion? The people that produced Windows ME, Vista
and 8? They don’t even understand people, yet they
think they can predict the behavior of new, self-
guiding AI?” –anonymous

“I think an AI would make it easier for Patients to
confide their information because by nature, a robot
cannot judge them. Win-win? :D”’ –anonymous

Dogmatism describes the tendency to lay down
opinions as incontrovertibly true, without respect for
conflicting evidence or the opinions of others (Ox-
ford Dictionary, 2016). Which user is more dog-
matic in the examples above? This question is sim-
ple for humans. Phrases like “they think” and “they

don’t even understand,” suggest an intractability of
opinion, while “I think” and “win-win?” suggest
the opposite. Can we train computers to draw sim-
ilar distinctions? Work in psychology has called
out many aspects of dogmatism that can be modeled
computationally via natural language, such as over-
confidence and strong emotions (Rokeach, 1954).

We present a statistical model of dogmatism that
addresses two complementary goals. First, we val-
idate psychological theories by examining the pre-
dictive power of feature sets that guide the model’s
predictions. For example, do linguistic signals of
certainty help to predict a post is dogmatic, as the-
ory would suggest? Second, we apply our model to
answer four questions:

R1: What kinds of topics (e.g., guns, LGBT) at-
tract the highest levels of dogmatism?

R2: How do dogmatic beliefs cluster?
R3: How does dogmatism influence a conversa-

tion on social media?
R4: How do other user behaviors (e.g., frequency

and breadth of posts) relate to dogmatism?
We train a predictive model to classify dogmatic

posts from Reddit, one of the most popular discus-
sion communities on the web.1 Posts on Reddit cap-
ture discussion and debate across a diverse set of do-
mains and topics – users talk about everything from
climate change and abortion, to world news and re-
lationship advice, to the future of artificial intelli-
gence. As a prerequisite to training our model, we
have created a corpus of 5,000 Reddit posts anno-
tated with levels of dogmatism, which we are releas-
ing to share with other researchers.

1http://www.reddit.com

690

Figure 1: We crowdsourced dogmatism labels for 5000 com-

ments. The distribution is slightly skewed towards higher lev-

els of dogmatism. For example, crowdworkers unanimously la-

beled 206 comments as highly dogmatic (5× 3 = 15), but only

47 as minimally dogmatic (1× 3 = 3).

Using the model, we operationalize key domain-
independent aspects of psychological theories of
dogmatism drawn from the literature. We find these
features have predictive power that largely supports
the underlying theory. For example, posts that use
less confident language tend to be less dogmatic.
We also discover evidence for new attributes of dog-
matism. For example, dogmatic posts tend not to
verbalize cognition, through terms such as “I think,”
“possibly,” or “might be.”

Our model is trained on only 5,000 annotated
posts, but once trained, we use it to analyze millions
of other Reddit posts to answer our research ques-
tions. We find a diverse set of topics are colored by
dogmatic language (e.g., people are dogmatic about
religion, but also about LGBT issues). Further, we
find some evidence for dogmatism as a deeper per-
sonality trait – people who are strongly dogmatic
about one topic are more likely to express dogmatic
views about others as well. Finally, in conversation,
we discover that one user’s dogmatism tends to bring
out dogmatism in their conversational partner, form-
ing a vicious cycle.

2 Dogmatism data

Posts on Reddit capture debate and discussion across
a diverse set of topics, making them a natural start-
ing point for untangling domain-independent lin-
guistic features of dogmatism.

Data collection. Subreddits are sub-communities
on Reddit oriented around specific interests or top-
ics, such as technology or politics. Sampling from
Reddit as a whole would bias the model towards the

most commonly discussed content. But by sampling
posts from individual subreddits, we can control the
kinds of posts we use to train our model. To collect a
diverse training dataset, we have randomly sampled
1000 posts each from the subreddits politics, busi-
ness, science, and AskReddit, and 1000 additional
posts from the Reddit frontpage. All posts in our
sample appeared between January 2007 and March
2015, and to control for length effects, contain be-
tween 300 and 400 characters. This results in a total
training dataset of 5000 posts.

Dogmatism annotations. Building a useful com-
putational model requires labeled training data. We
labeled the Reddit dataset using crowdworkers on
Amazon Mechanical Turk (AMT), creating the first
public corpus annotated with levels of dogmatism.
We asked crowdworkers to rate levels of dogmatism
on a 5-point Likert scale, as supported by similar
annotation tasks in prior work (Danescu-Niculescu-
Mizil et al., 2013). Concretely, we gave crowdwork-
ers the following task:

Given a comment, imagine you hold a well-
informed, different opinion from the com-
menter in question. We’d like you to tell us
how likely that commenter would be to engage
you in a constructive conversation about your
disagreement, where you each are able to ex-
plore the other’s beliefs. The options are:
(5): It’s unlikely you’ll be able to engage in
any substantive conversation. When you re-
spectfully express your disagreement, they are
likely to ignore you or insult you or otherwise
lower the level of discourse.
(4): They are deeply rooted in their opinion,
but you are able to exchange your views with-
out the conversation degenerating too much.
(3): It’s not likely you’ll be able to change
their mind, but you’re easily able to talk and
understand each other’s point of view.
(2): They may have a clear opinion about the
subject, but would likely be open to discussing
alternative viewpoints.
(1): They are not set in their opinion, and it’s
possible you might change their mind. If the
comment does not convey an opinion of any
kind, you may also select this option.

To ensure quality work, we restricted the task
to Masters workers and provided examples corre-
sponding to each point on the scale. Including ex-
amples in a task has been shown to significantly
increase the agreement and quality of crowdwork

691

(Doroudi et al., 2016). For instance, here is an ex-
ample of a highly dogmatic (5) comment:

I won’t be happy until I see the executive
suite of BofA, Wells, and all the others, frog-
marched into waiting squad cars. It’s AL-
READY BEEN ESTABLISHED that...

And a minimally dogmatic (1) comment:

I agree. I would like to compile a playlist for
us trance yogi’s, even if you just would like to
experiment with it. Is there any preference on
which platform to use?

Each comment has been annotated by three indepen-
dent workers on AMT, which is enough to produce
reliable results in most labeling tasks (Sheng et al.,
2008). To compute an aggregate measure of dogma-
tism for each comment, we summed the scores of all
three workers. We show the resulting distribution of
annotations in Figure 1.

Inter-annotator agreement. To evaluate the reli-
ability of annotations we compute Krippendorff’s α,
a measure of agreement designed for variable levels
of measurement such as a Likert scale (Hayes and
Krippendorff, 2007). An α of 0 indicates agreement
indistinguishable from chance, while an α of 1 indi-
cates perfect agreement. Across all annotations we
find α = 0.44. While workers agree much more
than chance, clearly dogmatism is also subjective.
In fact, when we examine only the middle two quar-
tiles of the dogmatism annotations, we find agree-
ment is no better than chance. Alternatively, when
we measure agreement only among the top and bot-
tom quartiles of annotations, we find agreement of
α = 0.69. This suggests comments with scores that
are only slightly dogmatic are unreliable and often
subject to human disagreement. For this reason, we
use only the top and bottom quartiles of comments
when training our model.

3 Approaches to Identifying Dogmatism

We now consider strategies for identifying dog-
matism based on prior work in psychology. We
start with the Linguistic Inquiry and Word Count
(LIWC), a lexicon popular in the social sciences
(Pennebaker et al., 2001). LIWC provides human
validated lists of words that correspond to high-
level psychological categories such as certainty or
perception. In other studies, LIWC has uncovered

linguistic signals relating to politeness (Danescu-
Niculescu-Mizil et al., 2013), deception (Yoo and
Gretzel, 2009), or authority in texts (Gilbert, 2012).
Here, we examine how dogmatism relates to 17 of
LIWC’s categories (Table 1).

To compute the relationships between LIWC cat-
egories and dogmatism, we first count the relevant
category terms that appear in each annotated Reddit
comment, normalized by its word count. We then
calculate odds ratios on the aggregate counts of each
LIWC category over the top and bottom quartiles of
dogmatic comments. As we have discussed, using
the top and bottom quartiles of comments provides
a more reliable signal of dogmatism. We check for
significant differences in categories between dog-
matic and non-dogmatic comments using the Mann-
Whitney U test and apply Holmes method for cor-
rection. All odds we report in this section are signif-
icant after correction.

Dogmatic statements tend to express a high de-
gree of certainty (Rokeach, 1954). Here we consider
LIWC categories that express certainty both posi-
tively (certainty) and negatively (tentativeness). For
example, the word “always” is certain, while “possi-
bly” is tentative. Conforming to existing theory, cer-
tainty is more associated with dogmatic comments
(1.52 odds), while tentativeness is more associated
with the absence of dogmatism (0.88 odds).

Terms used to verbalize cognition can act as a
hedge that often characterizes non-dogmatic lan-
guage. LIWC’s insight category captures this effect
through words such as “think,” “know,” or “believe.”
These words add nuance to a statement (Pennebaker
and Francis, 1996), signaling it is the product of
someone’s mind (“I think you should give this paper
a good review”) and not meant to be interpreted as
an objective truth. Along these lines, we find the use
of terms in the insight category is associated with
non-dogmatic comments (0.83 odds).

Sensory language, with its focus on description
and detail, often signals a lack of any kind of opin-
ion, dogmatic or otherwise. LIWC’s perception cat-
egory captures this idea through words associated
with hearing, feeling, or seeing. For example, these
words might occur when recounting a personal ex-
perience (“I saw his incoming fist”), which even if
emotionally charged or negative, is less likely to
be dogmatic. We find perception is associated with

692

Strategy Odds Example
Certainty 1.33* Be a hate monger all you want... Your life will never truly be

happy though, and you will never know peace.
Tentativeness 0.88* Most are likely to be more technically advanced and, if still using

radio, might very well be emitting signals we could detect
Insight 0.83* I think stating the obvious is a necessary function. Information

like this is important to consider...
Perception 0.77* I saw four crows on that same branch, staring at the deceased.

The silence of the crows was deafening.
Relativity 0.82* I’ve known a number to go into shock during the procedure
Comparison 0.91 This may be more than a coincidence.
I (pronouns) 0.68* Like I said, I want to believe the former. I’m glad it worked out.
You (pronouns) 2.18* I don’t give a fuck what you do. You can get drink yourself to

death, you can get yourself pregnant...
We (pronouns) 0.96 We need a bigger, better, colder fridge. We have worked hard...
They (pronouns) 1.63* They want the ability to prosecute who they please.
Past 0.69* I was walking past and thought about asking if they needed help.
Present 1.11* Can I steal your organs and nutrients if I need them and you don’t

want to give them up?
Future 1.06 Trump’s thugs will be pretending to be Bernie supporters and will

set fire to Philadelphia.
Interrogatory 1.12* Gee, where was the NY Times back in the day? Why didn’t we

hear of the Kennedys, LBJ and FDR?
Negation 1.35* If you didn’t know the woman well enough to know she didn’t

take BC regularly, you certainly don’t know her well enough to
know she doesn’t have an std.

Negative emotion 2.32* A prank?!? You arrogant son of a bitch
Positive emotion 0.96 They were excellent fishermen - they built fine boats.

Table 1: Linguistic features that capture high level psychological categories and their relationship with dogmatic comments.

Strategy describes the psychological category. Odds describes the likelihood that a category will appear more often in a dogmatic

comment (e.g., dogmatic comments are 2.18 times more likely to mention you-oriented phrases). Example illustrates a comment

that matches the category. * indicates significance (p < 0.05) after correction with Holmes method.

non-dogmatic comments at 0.77 odds.
Drawing comparisons or qualifying something as

relative to something else conveys a nuance that is
absent from traditionally dogmatic language. The
LIWC categories comparison and relativity capture
these effects through comparison words such as
“than” or “as” and qualifying words such as “dur-
ing” or “when.” For example, the statement “I hate
politicians” is more dogmatic than “I hate politicians
when they can’t get anything done.’ Relativity is as-
sociated with non-dogmatic comments at 0.80 odds,

but comparison does not reach significance.
Pronouns can be surprisingly revealing indicators

of language: for example, signaling one’s gender
or hierarchical status in a conversation (Pennebaker,
2011). We find first person singular pronouns are
a useful negative signal for dogmatism (0.46 odds),
while second person singular pronouns (2.18 odds)
and third person plural (1.63 odds) are a useful pos-
itive signal. Looking across the corpus, we see I of-
ten used with a hedge (“I think” or “I know”), while
you and they tend to characterize the beliefs of oth-

693

ers, often in a strongly opinionated way (“you are a
moron” or “they are keeping us down”). Other pro-
noun types do not show significant relationships.

Like pronouns, verb tense can reveal subtle sig-
nals in language use, such as the tendency of medi-
cal inpatients to focus on the past (Wolf et al., 2007).
On social media, comments written in the present
tense are more likely to be oriented towards a user’s
current interaction (“this is all so stupid”), creating
opportunities to signal dogmatism. Alternatively,
comments in the past tense are more likely to re-
fer to outside experiences (“it was an awful party”),
speaking less to a user’s stance towards an ongoing
discussion. We find present tense is a positive sig-
nal for dogmatism (1.11 odds) and past tense is a
negative signal (0.69 odds).

Dogmatic language can be either positively or
negatively charged in sentiment: for example, con-
sider the positive statement “Trump is the SAVIOR
of this country!!!” or the negative statement “Are
you REALLY that stupid?? Education is the only
way out of this horrible mess. It’s hard to imagine
how anyone could be so deluded.” In diverse com-
munities, where people hold many different kinds
of opinions, dogmatic opinions will often tend to
come into conflict with one another (McCluskey and
Hmielowski, 2012), producing a greater likelihood
of negative sentiment. Perhaps for this reason, neg-
ative emotion (2.09 odds) is a useful positive signal
of dogmatism, while positive emotion shows no sig-
nificant relationship.

Finally, we find that interrogative language (1.12
odds) and negation (1.35 odds) are two additional
positive signals of dogmatism. While interrogative
words like “how” or “what” have many benign uses,
they disproportionately appear in our data in the
form of rhetorical or emotionally charged questions,
such as “how can anyone be that dumb?”

Many of these linguistic signals are correlated
with each other, suggesting that dogmatism is the
cumulative effect of many component relationships.
For example, consider the relatively non-dogmatic
statement: “I think the reviewers are wrong in this
instance.” Removing signals of insight, we have:
“the reviewers are wrong in this instance,” which
is slightly more dogmatic. Then removing relativ-
ity, we have: “the reviewers are wrong.” And fi-
nally, adding certainty, we have a dogmatic state-

Classifier In-domain Cross-domain
BOW 0.853 0.776
SENT 0.677 0.646
LING 0.801 0.728
BOW + SENT 0.860 0.783
BOW + LING 0.881 0.791

Table 2: The AUC scores for dogmatism classifiers within and

across domains. BOW (bag-of-words) and SENT (sentiment

signals) are baselines, and LING uses the linguistic features

from Table 1. We compute in-domain accuracy using 15-fold

cross-validation on the Reddit dataset, and cross-domain accu-

racy by training on Reddit and evaluating on comments on arti-

cles from the New York Times. Chance AUC is 0.5.

ment: “the reviewers are always wrong.”

4 Predicting dogmatism

We now show how we can use the linguistic feature
sets we have described to build a classifier that pre-
dicts dogmatism in comments. A predictive model
further validates our feature sets, and also allows us
to analyze dogmatism in millions of other Reddit
comments in a scalable way, with multiple uses in
ongoing, downstream analyses.

Prediction task. Our goal is (1) to understand
how well we can use the strategies in Section 3
to predict dogmatism, and (2) to test the domain-
independence of these strategies. First, we test the
performance of our model under cross-validation
within the Reddit comment dataset. We then eval-
uate the Reddit-based model on a held out corpus
of New York Times comments annotated using the
technique in Section 2. We did not refer to this sec-
ond dataset during feature construction.

For classification, we consider two classes of
comments: dogmatic and non-dogmatic. As in the
prior analysis, we draw these comments from the top
and bottom quartiles of the dogmatism distribution.
This means the classes are balanced, with 2,500 total
comments in the Reddit training data and 500 total
comments in the New York Times testing data.

We compare the predictions of logistic regression
models based on unigram bag-of-words features
(BOW), sentiment signals2 (SENT), the linguistic

2For SENT, we use normalized word counts from LIWC’s
positive and negative emotional categories.

694

features from our earlier analyses (LING), and com-
binations of these features. BOW and SENT provide
baselines for the task. We compute BOW features
using term frequency-inverse document frequency
(TF-IDF) and category-based features by normaliz-
ing counts for each category by the number of words
in each document. The BOW classifiers are trained
with regularization (L2 penalties of 1.5).

Classification results. We present classification
accuracy in Table 2. BOW shows an AUC of 0.853
within Reddit and 0.776 on the held out New York
Times comments. The linguistic features boost clas-
sification results within Reddit (0.881) and on the
held out New York Times comments (0.791). While
linguistic signals by themselves provide strong pre-
dictive power (0.801 AUC within domain), senti-
ment signals are much less predictive.

These results suggest that linguistic features in-
spired by prior efforts in psychology are useful
for predicting dogmatism in practice and generalize
across new domains.

5 Dogmatism in the Reddit Community

We now apply our dogmatism classifier to a larger
dataset of posts, examining how dogmatic language
shapes the Reddit community. Concretely, we ap-
ply the BOW+LING model trained on the full Red-
dit dataset to millions of new unannotated posts, la-
beling these posts with a probability of dogmatism
according to the classifier (0=non-dogmatic, 1=dog-
matic). We then use these dogmatism annotations to
address four research questions.

5.1 What subreddits have the highest and
lowest levels of dogmatism? (R1)

A natural starting point for analyzing dogmatism on
Reddit is to examine how it characterizes the site’s
sub-communities. For example, we might expect to
see that subreddits oriented around topics such as
abortion or climate change are more dogmatic, and
subreddits about cooking are less so.

To answer this question, we randomly sample 1.6
million posts from the entire Reddit community be-
tween 2007 and 2015. We then annotate each of
these posts with dogmatism using our classifier, and
compute the average dogmatism level for each sub-
reddit in the sample with at least 100 posts.

Highest Score Lowest Score
cringepics 0.553 photography 0.399
DebateAChristian 0.551 DIY 0.399
DebateReligion 0.540 homebrewing 0.401
politics 0.536 cigars 0.402
ukpolitics 0.533 wicked edge 0.404
atheism 0.529 guitar 0.406
lgbt 0.527 gamedeals 0.406
TumblrInAction 0.524 buildapc 0.407
islam 0.523 techsupport 0.410
SubredditDrama 0.520 travel 0.410

Table 3: Subreddits with the highest and lowest dogmatism

scores. Politics and religion are common themes among the

most dogmatic subreddits, while hobbies (e.g., photography,

homebrewing, buildapc) show the least dogmatism.

We present the results of this analysis in Table 3.
The subreddits with the highest levels of dogmatism
tend to be oriented around politics and religion (De-
bateAChristian or ukpolitics), while those with the
lowest levels tend to focus on hobbies (photogra-
phy or homebrewing). The subreddit with the high-
est average dogmatism level, cringepics, is a place
to make fun of socially awkward messages, often
from would-be romantic partners. Dogmatism here
tends to take the form of “how could someone be
that stupid” and is directed at the subject of the post,
as opposed to other members of the community.

Similarly, SubredditDrama is a community where
people come to talk about fights on the internet or
social media. These fights are often then extended
in discussion, for example: “If the best you can
come up with is that something you did was legal,
it’s probably time to own up to being an ass.” The
presence of this subreddit in our analysis provides
a further sanity check that our model is capturing a
robust signal of dogmatism.

5.2 How do dogmatic beliefs cluster? (R2)
Dogmatism is widely considered to be a domain-
specific attitude (for example, oriented towards re-
ligion or politics) as opposed to a deeper personality
trait (Rokeach, 1954). Here we use Reddit as a lens
to examine this idea more closely. Are users who
are dogmatic about one topic likely to be dogmatic
about others? Do clusters of dogmatism exist around
particular topics? To find out, we examine the re-

695

Libertarianism business conspiracy science Christianity lgbt
Anarcho Capitalism Bitcoin Republican Christianity DebateAChristian feminisms
Bitcoin economy conspiritard relationship advice DebateReligion Equality
ronpaul entertainment ronpaul worldpolitics science SubredditDrama
Conservative TrueReddit collapse MensRights videos TwoXChromosomes
Android socialism guns IAmA news MensRights
ukpolitics bestof worldpolitics TwoXChromosomes Libertarianism offbeat
Equality philosophy occupywallstreet WTF atheism fffffffuuuuuuuuuuuu

Table 4: Clusters of subreddits that share dogmatic users. For example, users who are dogmatic on the conspiracy subreddit (a

place to discuss conspiracy theories) are also likely to be dogmatic on guns or occupywallstreet.

lationships between subreddits over which individ-
ual users are dogmatic. For example, if many users
often post dogmatic comments on both the politics
and Christianity subreddits, but less often on world-
news, that would suggest politics and Christianity
are linked per a boost in likelihood of individuals
being dogmatic in both.

We sample 1000 Reddit users who posted at least
once a year between 2007 and 2015 to construct a
corpus of 10 million posts that constitute their entire
post history. We then annotate these posts using the
classifier and compute the average dogmatism score
per subreddit per user. For example, one user might
have an average dogmatism level of 0.55 for the pol-
itics subreddit and 0.45 for the economics subred-
dit. Most users do not post in all subreddits, so we
track only subreddits for which a user had posted at
least 10 times. Any subreddits with an average dog-
matism score higher than 0.50 we consider to be a
user’s dogmatic subreddits. We then count all pairs
of these dogmatic subreddits. For example, 45 users
have politics and technology among their dogmatic
subreddits, so we consider politics and technology
as linked 45 times. We compute the mutual informa-
tion (Church and Hanks, 1990) between these links,
which gives us a measure of the subreddits that are
most related through dogmatism.

We present the results of this analysis in Table 4,
choosing clusters that represent a diverse set of top-
ics. For example, Libertarianism is linked through
dogmatism to other political communities like An-
archo Capitalism, ronpaul, or ukpolitics, as well as
other topical subreddits like guns or economy. Sim-
ilarly, people who are dogmatic in the business sub-
reddit also tend to be dogmatic in subreddits for Bit-
coin, socialism, and technology. Notably, when we
apply the same mutual information analysis to links
defined by subreddits posted in by the same user, we

Feature Direction
total user posts ↑
proportion of posts in most active subreddit ↑
number of subreddits posted in ↓
average number of posts in active articles ↓

Table 5: User behavioral features that are positively and nega-

tively associated with dogmatism. ↑ means the feature is pos-

itively predictive with dogmatism, and ↓ means the feature is

negatively predictive. For example, the more subreddits a user

posts in, the less likely they are to be dogmatic. All features are

statistically significant (p < 0.001).

see dramatically different results. For example, the
subreddits most linked to science through user posts
are UpliftingNews, photoshopbattles, and firstworl-
danarchist, and millionairemakers.

Finally, we see less obvious connections between
subreddits that suggest some people may be dog-
matic by nature. For example, among the users who
are dogmatic on politics, they are also disproportion-
ately dogmatic on unrelated subreddits such as sci-
ence (p < 0.001), technology (p < 0.001), IAmA
(p < 0.001), and AskReddit (p < 0.05), with p-
values computed under a binomial test.

5.3 What user behaviors are predictive of
dogmatism? (R3)

We have shown dogmatism is captured by many lin-
guistic features, but can we discover other high-level
user behaviors that are similarly predictive?

To find out, we compute metrics of user behavior
using the data sample of 1000 users and 10 million
posts described in Section 5.2. Specifically, we cal-
culate (1) activity: a user’s total number of posts, (2)
breadth: the number of subreddits a user has posted
in, (3) focus: the proportion of a user’s posts that
appear in the subreddit where they are most active,
and (4) engagement: the average number of posts a
user contributes to each discussion they engage in.

696

We then fit these behavioral features to a linear re-
gression model where we predict each user’s average
dogmatism level. Positive coefficients in this model
are positively predictive of dogmatism, while nega-
tive coefficients are negatively predictive.

We find this model is significantly predicitive of
dogmatism (R2 = 0.1, p < 0.001), with all features
reaching statistical significance (p < 0.001). Activ-
ity and focus are positively associated with dogma-
tism, while breadth and engagement are negatively
associated (Table 5). Together, these results suggest
dogmatic users tend to post frequently and in spe-
cific communities, but are not as inclined to continue
to engage with a discussion, once it has begun.

5.4 How does dogmatism impact a
conversation? (R4)

How does interacting with a dogmatic comment im-
pact a conversation? Are users able to shrug it off?
Or do otherwise non-dogmatic users become more
dogmatic themselves?

To answer this question, we sample 600,000 con-
versations triples from Reddit. These conversations
consist of two people (A and B) talking, with the
structure: A1 → B → A2. This allows us to mea-
sure the impact of B’s dogmatism on A’s response,
while also controlling for the dogmatism level ini-
tially set by A. Concretely, we model the impact of
dogmatism on these conversations through a linear
regression. This model takes two features, the dog-
matism levels of A1 and B, and predicts the dogma-
tism response of A2. If B’s dogmatism has no effect
on A’s response, the coefficient that corresponds to
B will not be significant in the model. Alternatively,
if B’s dogmatism does have some effect, it will be
captured by the model’s coefficient.

We find the coefficient of the B feature in the
model is positively associated with dogmatism (p <
0.001). In other words, engagement with a dog-
matic comment tends to make a user more dogmatic
themselves. This effect holds when we run the same
model on data subsets consisting only of dogmatic
or non-dogmatic users, and also when we conserva-
tively remove all words used by B from A’s response
(i.e., controlling for quoting effects).

6 Related Work

In contrast to the computational models we have pre-
sented, dogmatism is usually measured in psychol-
ogy through survey scales, in which study partic-
ipants answer questions designed to reveal under-
lying personality attributes (Rokeach, 1954). Over
time, these surveys have been updated (Shearman
and Levine, 2006) and improved to meet standards
of psychometric validity (Crowson, 2009).

These surveys are often used to study the rela-
tionship between dogmatism and other psychologi-
cal phenomena. For example, dogmatic people tend
to show an increased tendency for confrontation (El-
Nawawy and Powers, 2010) or moral conviction and
religiosity (Swink, 2011), and less likelihood of cog-
nitive flexibility (Martin et al., 2011), even among
stereotypically non-dogmatic groups like atheists
(Gurney et al., 2013). From a behavioral standpoint,
dogmatic people solve problems differently, spend-
ing less time framing a problem and expressing more
certainty in their solution (Lohman, 2010). Here we
similarly examine how user behaviors on Reddit re-
late to a language model of dogmatism.

Ertel sought to capture dogmatism linguistically,
though a small lexicon of words that correspond
with high-level concepts like certainty and compro-
mise (1985). McKenny then used this dictionary to
relate dogmatism to argument quality in student es-
says (2005). Our work expands on this approach,
applying supervised models based on a broader set
of linguistic categories to identify dogmatism in text.

Other researchers have studied topics similar to
dogmatism, such as signals of cognitive style in
right-wing political thought (Van Hiel et al., 2010),
the language used by trolls on social media (Cheng
et al., 2015), or what makes for impartial language
on twitter (Zafar et al., 2016). A similar flavor of
work has examined linguistic models that capture
politeness (Danescu-Niculescu-Mizil et al., 2013),
deception (Ott et al., 2011), and authority (Gilbert,
2012). We took inspiration from these models when
constructing the feature sets in our work.

Finally, while we examine what makes an opin-
ion dogmatic, other work has pushed further into the
structure of arguments, for example classifying their
justifications (Hasan and Ng, 2014), or what makes
an argument likely to win (Tan et al., 2016). Our

697

model may allow future researchers to probe these
questions more deeply.

7 Conclusion

We have constructed the first corpus of social me-
dia posts annotated with dogmatism scores, allowing
us to explore linguistic features of dogmatism and
build a predictive model that analyzes new content.
We apply this model to Reddit, where we discover
behavioral predictors of dogmatism and topical pat-
terns in the comments of dogmatic users.

Could we use this computational model to help
users shed their dogmatic beliefs? Looking forward,
our work makes possible new avenues for encourag-
ing pro-social behavior in online communities.

References
Justin Cheng, Cristian Danescu-Niculescu-Mizil, and

Jure Leskovec. 2015. Antisocial behavior in
online discussion communities. arXiv preprint
arXiv:1504.00680.

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicogra-
phy. Computational linguistics, 16(1):22–29.

H Michael Crowson. 2009. Does the dog scale measure
dogmatism? another look at construct validity. The
Journal of social psychology, 149(3):365–383.

Cristian Danescu-Niculescu-Mizil, Moritz Sudhof, Dan
Jurafsky, Jure Leskovec, and Christopher Potts. 2013.
A computational approach to politeness with applica-
tion to social factors. arXiv preprint arXiv:1306.6078.

Shayan Doroudi, Ece Kamar, Emma Brunskill, and Eric
Horvitz. 2016. Toward a learning science for complex
crowdsourcing tasks. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems,
pages 2623–2634. ACM.

Mohammed El-Nawawy and Shawn Powers. 2010. Al-
jazeera english a conciliatory medium in a conflict-
driven environment? Global Media and Communi-
cation, 6(1):61–84.

S Ertel. 1985. Content analysis: An alternative approach
to open and closed minds. The High School Journal,
68(4):229–240.

Eric Gilbert. 2012. Phrases that signal workplace hierar-
chy. In Proceedings of the ACM 2012 conference on
Computer Supported Cooperative Work, pages 1037–
1046. ACM.

Daniel J Gurney, Shelley McKeown, Jamie Churchyard,
and Neil Howlett. 2013. Believe it or not: Explor-
ing the relationship between dogmatism and openness

within non-religious samples. Personality and Indi-
vidual Differences, 55(8):936–940.

Kazi Saidul Hasan and Vincent Ng. 2014. Why are you
taking this stance? identifying and classifying reasons
in ideological debates. In EMNLP, pages 751–762.

Andrew F Hayes and Klaus Krippendorff. 2007. An-
swering the call for a standard reliability measure for
coding data. Communication methods and measures,
1(1):77–89.

Margaret C Lohman. 2010. An unexamined triumvi-
rate: dogmatism, problem solving, and hrd. Human
Resource Development Review.

Matthew M Martin, Sydney M Staggers, and Carolyn M
Anderson. 2011. The relationships between cogni-
tive flexibility with dogmatism, intellectual flexibil-
ity, preference for consistency, and self-compassion.
Communication Research Reports, 28(3):275–280.

Michael McCluskey and Jay Hmielowski. 2012. Opin-
ion expression during social conflict: Comparing on-
line reader comments and letters to the editor. Jour-
nalism, 13(3):303–319.

John McKenny. 2005. Content analysis of dogmatism
compared with corpus analysis of epistemic stance in
student essays. Information Design Journal & Docu-
ment Design, 13(1).

Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T Han-
cock. 2011. Finding deceptive opinion spam by any
stretch of the imagination. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1, pages 309–319. Association for Computational Lin-
guistics.

English Oxford Dictionary. 2016. Definition of dogma-
tism.

James W Pennebaker and Martha E Francis. 1996. Cog-
nitive, emotional, and language processes in disclo-
sure. Cognition & Emotion, 10(6):601–626.

James W Pennebaker, Martha E Francis, and Roger J
Booth. 2001. Linguistic inquiry and word count:
Liwc 2001. Mahway: Lawrence Erlbaum Associates,
71:2001.

James W Pennebaker. 2011. The secret life of pronouns.
New Scientist, 211(2828):42–45.

Milton Rokeach. 1954. The nature and meaning of dog-
matism.

Sachiyo M Shearman and Timothy R Levine. 2006.
Dogmatism updated: A scale revision and validation.
Communication Quarterly, 54(3):275–291.

Victor S Sheng, Foster Provost, and Panagiotis G Ipeiro-
tis. 2008. Get another label? improving data qual-
ity and data mining using multiple, noisy labelers.
Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 614–622.

698

Nathan Swink. 2011. Dogmatism and moral conviction
in individuals: Injustice for all.

Chenhao Tan, Vlad Niculae, Cristian Danescu-
Niculescu-Mizil, and Lillian Lee. 2016. Winning
arguments: Interaction dynamics and persuasion
strategies in good-faith online discussions. In
Proceedings of WWW.

Alain Van Hiel, Emma Onraet, and Sarah De Pauw.
2010. The relationship between social-cultural atti-
tudes and behavioral measures of cognitive style: A
meta-analytic integration of studies. Journal of per-
sonality, 78(6):1765–1800.

Markus Wolf, Jan Sedway, Cynthia M Bulik, and Hans
Kordy. 2007. Linguistic analyses of natural written
language: Unobtrusive assessment of cognitive style
in eating disorders. International Journal of Eating
Disorders, 40(8):711–717.

Kyung-Hyan Yoo and Ulrike Gretzel. 2009. Compari-
son of deceptive and truthful travel reviews. Informa-
tion and communication technologies in tourism 2009,
pages 37–47.

Muhammad Bilal Zafar, Krishna P Gummadi, and Cris-
tian Danescu-Niculescu-Mizil. 2016. Message impar-
tiality in social media discussions. In Tenth Interna-
tional AAAI Conference on Web and Social Media.

699

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 700–710,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Enhanced Personalized Search using Social Data

Dong Zhou1 , Séamus Lawless2 , Xuan Wu1 , Wenyu Zhao1, Jianxun Liu1
1. Key Laboratory of Knowledge Processing and Networked Manufacturing &

School of Computer Science and Engineering, Hunan University of Science and
Technology, Xiangtan, Hunan, 411201, China

2. ADAPT Centre, Knowledge and Date Engineering Group, School of Com-
puter Science and Statistics, Trinity College Dublin, Dublin 2, Ireland

dongzhou1979@hotmail.com, seamus.lawless@scss.tcd.ie

Abstract

Search personalization that considers the social
dimension of the web has attracted a significant
volume of research in recent years. A user pro-
file is usually needed to represent a user’s inter-
ests in order to tailor future searches. Previous
research has typically constructed a profile sole-
ly from a user’s usage information. When the
user has only limited activities in the system,
the effect of the user profile on search is also
constrained. This research addresses the setting
where a user has only a limited amount of usage
information. We build enhanced user profiles
from a set of annotations and resources that us-
ers have marked, together with an external
knowledge base constructed according to usage
histories. We present two probabilistic latent
topic models to simultaneously incorporate so-
cial annotations, documents and the external
knowledge base. Our web search strategy is
achieved using personalized social query ex-
pansion. We introduce a topical query expan-
sion model to enhance the search by utilizing
individual user profiles. The proposed ap-
proaches have been intensively evaluated on a
large public social annotation dataset. Results
show that our models significantly outper-
formed existing personalized query expansion
methods which use user profiles solely built
from past usage information in personalized
search.

1 Introduction

On today’s social web, users can enrich the social
context of web pages. The most notable fact is
that users can often freely tag web pages with an-

notations (Gupta et al., 2011). These tags could be
high quality descriptors of the web pages’ topics
and a good indicator of web users’ interests.
However, the uncontrolled manner of social tag-
ging results in the use of an unrestricted vocabu-
lary. This makes searching through the collection
difficult and generally less accurate. Thus the so-
cial annotation or bookmarking system demon-
strates an extreme example of the vocabulary
mismatch problem encountered in personalized
web search. To tackle the problem, various per-
sonalized query expansion (QE) and results re-
ranking techniques have been proposed and eval-
uated (Bouadjenek et al., 2016).

There have been some attempts to achieve per-
sonalized QE using social data. For example, Re-
searchers have considered selecting the most re-
lated tags from a user’s profile to expand queries
(Bender et al., 2008; Bertier et al., 2009;
Bouadjenek et al., 2011). Local analysis and co-
occurrence based user profile representation have
also been adopted to expand the query (Chirita et
al., 2007; Biancalana et al., 2013). Recently, Zhou
et al. proposed a query expansion framework
based on individual user profiles (Zhou et al.,
2012a). In their work, terms in the user profile are
modeled according to their associations, which
can be defined by co-occurrence statistics or de-
fined by a tag-topic model.

All of the previously mentioned systems are
dependent upon historical usage information be-
ing available in an individual user profile
(Sugiyama et al., 2004; Teevan et al., 2005;
Bennett et al., 2012; Zhou et al., 2014; Guha et al.,
2015; Zhou et al., 2016). This information is piv-
otal when tailoring search results to the prefer-
ences of specific individuals. However, in some

700

cases a user may have very limited previous inter-
actions with the system. With little usage infor-
mation to hand, the personalized search experi-
ence is poor. Furthermore, using only historical
usage information to personalize search may not
be enough.

In this paper, we extend personalized search us-
ing social data in two directions. First, we exploit
external knowledge bases to enhance the user pro-
file built from a user’s historical usage infor-
mation. We build queries from the user tags and
annotated web pages. Subsequently, we fetch the
relevant documents from an external corpus to be
included in the user profile. We then propose to
incorporate the user’s annotations, web page con-
tent information and external documents through
two statistical models, which we have named
Mixture Enhanced User Profiling (MEUP) Model
and Separated Enhanced User Profiling (SEUP)
Model. Both models infer latent topics, their
probabilities of being relevant and a multinomial
distribution of topics of the documents being con-
sidered. MEUP mixed the tags, annotated docu-
ments and external documents together to infer
unified latent topics, while SEUP is an extension
of MEUP which learns topics that are shared be-
tween the two groups of document-aligned pairs.

Second, we propose a topical query expansion
model to personalize web search by utilizing the
user profiles. In the topical QE model, profile
terms are calculated based on their topical rele-
vance to the query terms to expand the query.

Experimental results show that the Enhanced
User Profiling models together with the topic QE
can significantly improve retrieval performance
over user profiles solely built from a user’s histor-
ical information. Improvements were observed for
users with both a rich amount of usage informa-
tion and a small amount of information. We also
demonstrate that the approach proposed in the
paper outperforms existing QE methods proposed
for personalized search using social data.

The contribution of this paper can be summa-
rized as follows:

i. We tackle the challenge of personalized
web search using social data in a novel way by
enhancing user profiles that are built solely from
users’ historical usage information.

ii. We propose and systematically evaluate
two novel generative models to construct enriched
user profiles with the help of external corpora in

the context of personalized search using social
data.

iii. We suggest and evaluate a novel query
expansion method. Instead of relying on lexical
relevance information between query terms and
profile terms, we also consider the topical rele-
vance between them to expand the query.

2 Related Work

2.1 Personalized Search Using Social Media

In personalized search using social media (Jamali
and Ester, 2010; Lin et al., 2013), the search pro-
cess is either performed over “social” data gath-
ered from Web 2.0 applications such as social
bookmarking systems, wikis, blogs etc., or it re-
adapts the web search results produced by search
engines by using social data (Carman et al., 2008;
Bouadjenek et al., 2016). For example, the authors
in (Vallet et al., 2010) investigated how the rank-
ing of search engine results can be improved with
respect to users if the users’ social information is
taken into consideration. A similar approach was
also explored in (Noll and Meinel, 2007) where
the system performed re-ranking of Google search
results based on social bookmarks and tags har-
vested from del.icio.us1. However, the data sparsi-
ty problem poses a challenge to this approach as
not all Web pages returned by search engines are
tagged in the del.icio.us dataset.

2.2 Personalized Results Re-Ranking

Because of this problem, researchers started to use
social data as a test collection to develop personal-
ized techniques. In this way, personalization usu-
ally involves two general approaches. The first
approach submits a query into the collection but
re-ranks the returned results based on an individu-
al user profile. In (Xu et al., 2008) the authors re-
rank the results according to the topical relevance
of documents and users’ interests. Carmel et al.
(Carmel et al., 2009) investigated personalized
results re-ranking based on the user’s social rela-
tions. Wang and Jin (Wang and Jin, 2010) ex-
plored gathering data from multiple online social
systems for adaptive search personalization.
Bouadjenek et al. (Bouadjenek et al., 2013a;
Bouadjenek et al., 2013b) propose to use social
data and user relationships to enhance document

1 http://www.delicious.com

701

representation for re-ranking purposes. Though
this group of work is attractive, if relevant items
cannot be fetched in the first place, regardless of
the complex re-ranking process, the results still
tend to be unsatisfactory.

2.3 Personalized Query Expansion

Another group of work modifies or augments a
user’s original query. This approach is termed
query expansion (Zhou et al., 2015). Researchers
have considered tag-tag relationships for personal-
ized query expansion, by selecting the most relat-
ed tags from a user’s profile (Bender et al., 2008;
Bertier et al., 2009). However, tags cannot be re-
lied upon to consistently provide precise descrip-
tions of resources for use when searching. Local
analysis and co-occurrence based user profile rep-
resentation have also been adopted to expand the
query (Chirita et al., 2007; Biancalana and
Micarelli, 2009). However, the expansion terms
are solely based on lexical matching between the
query and the terms which exist in the user profile.
Zhou et al. proposed a query expansion frame-
work based on individual user profiles (Zhou et al.,
2012a; Zhou et al., 2012b). In their work, terms in
the user profile are modeled according to their
associations, which can be defined by co-
occurrence statistics or defined by a tag-topic
model. The method simultaneously incorporates
annotations and web documents in a latent graph,
regularized by terms extracted from the top-
ranked documents.

However, all of the previously mentioned sys-
tems consider constructing user profiles solely
from past usage information. In contrast, in this
paper we extend personalized web search using
social data by exploiting an external knowledge
base to enhance the user profile.

3 Problem Definition and Solution Over-
view

In social annotation and bookmarking systems
such as del.icio.us or CiteUlike2, users can label
interesting web resources with primarily short and
unstructured annotations in natural language
called tags. These web resources are denoted as a
URL in the del.icio.us website. Textual content
can be crawled by following a URL that refers to
a document or web page. Please refer to Table 1
for the basic notations used in this paper.

Formally, social tagging data can be represent-
ed by a tuple 𝒫 ≔ (𝒰,𝒟,𝒯,𝒜). 𝒜 ⊆ 𝒰×𝒟×𝒯 is
a ternary relation, whose elements are called tag
assignments or annotations (or bookmarks). The

2 http://www.citeulike.org

Notation	 Meaning

𝒰 finite sets of users

𝒟 finite sets of web pages/documents

𝒯 finite sets of tags

𝒜 a ternary relation, elements are tags

𝒜! the set of annotations of a user

𝒯! the tag vocabulary of a user

𝒟! a user’s set of documents

𝑡 a tag

𝑑 a document

𝑢 a user

𝑤 a word/term

𝑑𝑜𝑐𝑇𝑒𝑟𝑚! the vocabulary extracted from the documents that a
user has tagged

𝑒𝑥𝑡𝑒𝑟𝑇𝑒𝑟𝑚! the full set of terms extracted from a user’s external
documents

𝒟!"#!$ an external corpus

𝒟!"#!$
! a user’s set of external documents

𝑞 a source query

𝑞𝒯! a query concatenated by tags of a user

𝑄𝒟! queries extracted from a user’s set of documents

𝑄!"#!$ queries to be sent to an external corpus

𝑠!,! retrieval score of a query 𝑞! to retrieve a document
𝑑!

𝐾 number of topics

𝜇! mean of Log-normal distribution of retrieval scores
for topic 𝑧

𝜎! deviation of Log-normal distribution of retrieval
scores for topic 𝑧

𝑁!! number of words in document 𝑑!

𝑧!,!
topic associated with the i-th word in the document
𝑑!

𝑤!,! i-th word in document 𝑑!

𝑛! ,! the number of times that topic 𝑘 sampled w.r.t.
document 𝑑!

𝑣!,!!,!
the number of times 𝑤! ,! has been generated by topic
𝑘

𝜃 multinomial distribution of topics

𝜑 multinomial distribution of words

𝜙 multinomial distribution of words (used in SEUP)

𝛼 the parameter of topic Dirichlet prior

𝛽 the parameter of word Dirichlet prior

Table 1. Basic notations used in the paper

702

set of annotations of a user is defined as:
𝒜! ≔ {(𝑡,𝑑)|𝑢,𝑑, 𝑡 ∈ 𝒜}. The tag vocabulary of
a user, is given as 𝒯! ≔ {𝑡|(𝑡,𝑑) ∈ 𝒜!}. A us-
er’s set of documents is 𝒟! ≔ {𝑑|(𝑡,𝑑) ∈ 𝒜!}.
We define terms extracted from a user’s set of
documents as 𝑑𝑜𝑐𝑇𝑒𝑟𝑚! ≔ {𝑤|𝑤 ∈ 𝒟!}, where
𝑤 denotes a word/term in the annotated docu-
ments. Similarly, we define terms extracted from
a user’s set of external documents as
𝑒𝑥𝑡𝑒𝑟𝑇𝑒𝑟𝑚! ≔ {𝑤|𝑤 ∈ 𝒟!"#!$! } , where 𝒟!"#!$!
denotes a user’s set of external documents from an
external corpus 𝒟!"#!$.

In a typical personalized search scenario, given
a source query 𝑞 and a set of words in the user
profile {𝑤!,𝑤!…𝑤!} the goal is to return a
ranked list of profile terms to be added to the que-
ry, for a second round retrieval of results.

Our personalization approach consists of three
main steps (see Table 2): Fetching external docu-
ments; User profile modelling; and Personalized
query expansion. We enhance a user’s historical
usage information in step one. We firstly concate-

nate all tags 𝑡 in 𝒯! into a query 𝑞𝒯! (line 1).
Then for each document 𝑑 in 𝒟! , we extract
terms with the highest inverted document fre-
quency (idf) scores as queries 𝑄𝒟! (lines 2-3, with
the EXTRACTTOP function returns top λ terms).
Next we send queries in 𝑄!"#!$ (𝑞𝒯! ∪ 𝑄𝒟!) to an
external corpus 𝒟!"#!$ to fetch 𝒟!"#!$! together
with their retrieval scores 𝑠!,! (lines 5-7, the num-
ber of documents retrieved by each query is con-
trolled by the parameter 𝛾). Step two integrates
𝒯! (here all tags are concatenated and viewed as a
single document), 𝒟! , 𝒟!"#!$! and their retrieval
scores 𝑠!,! into a topic model such that a multi-
nomial distribution of topics specific to each doc-
ument can be inferred (lines 8-14, we eliminate
the procedure for the SEUP model because its
similarity to the simpler model, see the next sec-
tion). In the last step, the algorithm uses the out-
put of step two to build a topical query expansion
model in order to expand the original query (lines
15-18). Note that step one and step two could be
executed off-line so as to improve the efficiency
of the algorithm.

4 Enhanced User Profiling Models

In this section we describe how to model user pro-
files (i.e. step two in Table 2). We present two
Enhanced User Profiling (EUP) models for this
purpose.

4.1 Mixture Enhanced User Profiling

Topic discovery in the EUP models is influenced
not only by term co-occurrences, but also by the
retrieval scores of documents. To avoid normali-
zation, we employ a log-normal distribution for
retrieval scores to infer latent topics via the docu-
ments and their relevance probabilities.

The MEUP model developed here is a genera-
tive model of retrieval scores and the words in the
documents. The generative process is as follows:
Generative process of the MEUP model

1. for each topic 𝑘 ∈ [1,𝐾] do
sample the mixture of words 𝜑~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛽)

2. for each document 𝑑! ∈ 𝒯! ∪ 𝒟! ∪ 𝒟!"#!$
! do

sample the mixture of topics 𝜃!~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼)

for each word 𝑤! indexed by 𝑖 = 1,… ,𝑁!! do

 sample the topic index topic 𝑧!,!~𝑀𝑢𝑙𝑡(𝜃!!)

 sample the weight of word 𝑤!,!~𝑀𝑢𝑙𝑡(𝜑!!,!)

 sample the retrieval score 𝑠,!~𝒩(𝜇!!,! ,𝜎!!,!)

Input: A query 𝑞
Tags of a user 𝒯!
Documents of a user 𝒟!
An external corpus 𝒟!"#!$

Output: An expanded query 𝑞′

/* step one: External documents fetch */

1. 𝑞𝒯! ← ⋃(𝑡 ∈ 𝒯!)
2. for all 𝑑! ∈ 𝒟! do

3. 𝑄𝒟! ← 𝐸𝑋𝑇𝑅𝐴𝐶𝑇𝑇𝑂𝑃(𝑤 ∈ 𝑑!)

4. 𝑄!"#!$ ← 𝑞𝒯! ∪ 𝑄𝒟!
5. for all 𝑞! ∈ 𝑄!"#!$ do

6. 𝒟!"#!$
! ← 𝑅𝐸𝑇𝑅𝐼𝐸𝑉𝐸𝒟!"#!$(𝑞!)

7. Record retrieval score 𝑠!,!

/* step two: User profile modelling */

8. for 𝑘 ∈ [1,𝐾] do
9. Initialize 𝜇! and 𝜎! randomly
10. for 𝑑! ∈ 𝒯! ∪ 𝒟! ∪ 𝒟!"#!$

! do

11. for 𝑤! indexed by 𝑖 = 1,… ,𝑁!! do

12. Draw 𝑧!,! from 𝑝!𝑧!,! = 𝑘!

13. Update 𝑛!,! and 𝑣!,!!,!

14. Calculate the posterior estimate of 𝜃 and 𝜑
/* step three: Personalized query expansion */

15. {𝑤! ,𝑤! …𝑤!} ← 𝑒𝑥𝑡𝑒𝑟𝑇𝑒𝑟𝑚! ∪ 𝑑𝑜𝑐𝑇𝑒𝑟𝑚! ∪ 𝒯!
16. for all 𝑤 ∈ {𝑤!,𝑤! …𝑤!} do
17. calculate 𝑃(𝑤|𝑞) using topics from step two
18. Output 𝑞′ consists of top 𝛿 terms with the highest 𝑃(𝑤|𝑞)

Table 2. Procedure for personalized search using
social data

703

In the above process, the retrieval scores of
terms in the same document are the same and cal-
culated by a language model retrieval function
(Manning et al., 2008) for retrieved documents in
𝒟!"#!$! . The retrieval scores for 𝒯! (here all tags
are concatenated and viewed as a single document)
and documents in 𝒟! are set to one. We normal-
ize the scores by the max score in the retrieval list.
We used a fixed number of latent topics 𝐾. The
posterior distribution of topics depends on two
sets of information, both the terms and retrieval
scores of the documents.

In this model, inference is intractable. We use
Gibbs Sampling (Heck and Thomas, 2015) to per-
form approximate inference. We employ a conju-
gate prior for the multinomial distributions, and
integrate out 𝜃 and 𝜑. In the sampling procedure,
we need to calculate the conditional distribution
𝑝 𝑧!,! = 𝑘 (line 12 in Table 2). By using Gibbs
Sampling, for each word the topic is sampled
from:

𝑝 𝑧!,! = 𝑘 ∝
𝑛!,!,¬! + 𝛼
𝑛!,∙,¬! + 𝐾 ∙ 𝛼

 ×
𝑣!,!!,!,¬ + 𝛽
𝑣!,∙,¬ + 𝑉 ∙ 𝛽

×
1

𝑠!,!𝜎!!,! 2𝜋
exp −

ln 𝑠!,! − 𝜇!!,!
!

2𝜎!!,!!

where 𝑛!,!,¬! counts the number of times that top-
ic with index 𝑘 has been sampled from the
multinomial distribution specific to document 𝑑!
with the current 𝑧!,! not counted. Another counter
variable 𝑣!,!!,!,¬ counts the number of times 𝑤!,!
has been generated by topic 𝑘, but not counting
the current 𝑤!,!. A dot denotes summation over all
values of the variable whose index that dot takes.
𝜇!!,! and 𝜎!!,! are elements from 𝜇! and 𝜎!, respec-
tively. After that we can calculate the posterior
estimate of 𝜃 and 𝜑 (line 14 in Table 2).

4.2 Separated Enhanced User Profiling

In the MEUP model, 𝒯! , 𝒟! and 𝒟!"#!$! are
mixed together to infer unified latent topics. How-
ever, the MEUP model may miss important in-
formation when the topics are learned. Our SEUP
model extends the MEUP model by learning top-
ics which are shared between document-aligned
pairs. In order to do this, we create pseudo-aligned
documents between 𝒯!, 𝒟! and 𝒟!"#!$! . This pro-
cedure works as follows. For each external docu-
ment in 𝒟!"#!$! retrieved by a query from 𝑄!"#!$,

which is formed through step one of our approach,
we treat the document (from 𝒟!"#!$!) and the que-
ry (from 𝑄!"#!$) as pseudo-aligned documents in
two groups. The first group we named source
group 𝐶, the other group we named target group 𝐸.
By using the aligned documents, we propose a
model to learn the latent topics between the two
groups.

Note that in this case, there is a comparable
document set aligned at the document-level.
Therefore, 𝜃 can be viewed as a group inde-
pendent factor, and shared among comparable
aligned documents. Henceforth, the generation
process for the SEUP model is slightly different
from the MEUP model. The generative process is
summarized below:

Generative process of the SEUP model

1. for each of topics 𝑘 ∈ [1,𝐾] do
 sample the mixture of words 𝜑~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛽
 sample the mixture of words 𝜙~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛽)
2. for each document pair

𝑑! = {𝑑!! ∈ 𝒯! ∪ 𝒟! ,𝑑!! ∈ 𝒟!!"#$
! } do

 sample the mixture of topics 𝜃!~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼)

for each word 𝑤!
! indexed by 𝑖 = 1,… ,𝑁!!

! do

 sample the topic index topic 𝑧!,!! ~𝑀𝑢𝑙𝑡(𝜃!!)

 sample the weight of word 𝑤!,!!~𝑀𝑢𝑙𝑡(𝜑!!,!!)

 sample the retrieval score 𝑠!,!! ~𝒩(𝜇!!,!
! ,𝜎!!,!

!)

for each word 𝑤!
! indexed by 𝑖 = 1,… ,𝑁!!

! do

 sample the topic index topic 𝑧!,!!~𝑀𝑢𝑙𝑡 𝜃!!

 sample the weight of word 𝑤!,!!~𝑀𝑢𝑙𝑡(𝜙!!,!!)

 sample the retrieval score 𝑠!,!!~𝒩(𝜇!!,!
! ,𝜎!!,!

!)

Similar to the MEUP model, the updated for-
mulas for Gibbs sampling for the SEUP model are:

𝑝 𝑧!,!! = 𝑘 ∝
𝑛!,!,¬!! + 𝑛!,!! + 𝛼
𝑛!,∙,¬!! + 𝑛!,∙! + 𝐾 ∙ 𝛼

×
𝑣!,!!,!! ,¬
! + 𝛽

𝑣!,∙,¬! + 𝑉! ∙ 𝛽

×
1

𝑠!,!! 𝜎!!,!
! 2𝜋

exp −
ln 𝑠!,!! − 𝜇!!,!

!
!

2𝜎!!,!
! !

𝑝 𝑧!,!! = 𝑘 ∝
𝑛!,!,¬!! + 𝑛!,!! + 𝛼
𝑛!,∙,¬!! + 𝑛!,∙! + 𝐾 ∙ 𝛼

×
𝑣!,!!,!! ,¬
! + 𝛽

𝑣!,∙,¬! + 𝑉! ∙ 𝛽

×
1

𝑠!,!! 𝜎!!,!
! 2𝜋

exp −
ln 𝑠!,!! − 𝜇!!,!

!
!

2𝜎!!,!
! !

The meaning of the symbols used in the SEUP
model is the same as in the MEUP model, except
this time for two groups E and C. In the two EUP
models, the multinomial distribution of topics is
specific to each document and each word can be
easily inferred.

704

5 Topical Query Expansion

In step three of our approach to personalization,
we use the output from step two to build a QE
model that calculates the weights of the profile
terms to be added to the initial query. In this sec-
tion we detail this process.

Given the query 𝑞 = {𝑤!
!}!!!! of 𝑛 independent

query terms, the probability of the query generat-
ing a word 𝑤 is defined as (see also (Lavrenko
and Croft, 2001; Ganguly et al., 2012)):

𝑃 𝑤 𝑞 = 𝑃(𝑤|𝑤!
! ,… ,𝑤!

!) ∝ 𝑃(𝑤|𝑤!
!)

!

!!!

We further assume that there are a set of rele-
vant documents {𝑑!}!!!! related to the query and
the word being considered, where 𝑁 is the number
of documents. Incorporating this set of documents
into the above equation leads to:

𝑃 𝑤 𝑤!
! = 𝑃 𝑤 𝑑! 𝑃 𝑑! 𝑤!

! ∝
!

!!!

1
𝑁 𝑃 𝑤 𝑑! 𝑃 𝑤!

! 𝑑!

!

!!!

The calculation discards the uniform prior for
𝑃(𝑤!

!), and takes the uniform prior of documents
outside the summation.

 As we already have outputs from step two, the
documents inside the user profile can be used as a
set of relevant documents in the above calculation.
In addition, because we now have latent topics
related to each document and each word, there is
no longer a direct dependency of 𝑤 on 𝑑! and 𝑞.
In this case, in order to estimate 𝑃 𝑤 𝑑! , we can
marginalize the probability over the latent topic
variables 𝑧!, then we have:

𝑃 𝑤 𝑑! = 𝑃 𝑤 𝑧! 𝑃(𝑧!|𝑑!

!

!!!

)

Similarly, the probability 𝑃 𝑤!
! 𝑑! becomes:

𝑃 𝑤!
! 𝑑! = 𝑃 𝑤!

! 𝑧! 𝑃(𝑧!|𝑑!

!

!!!

)

 So that the probability of the query generating
a word 𝑤 can be re-defined as:

𝑃 𝑤 𝑤!
! ∝

1
𝑁 (𝑃 𝑤 𝑧! 𝑃(𝑧!|𝑑!

!

!!!

))×(𝑃 𝑤!
! 𝑧! 𝑃(𝑧!|𝑑!

!

!!!

))
!

!!!

In the SEUP Model, we use one side of the
word-topic distributions from the group that con-
tains tags and annotated documents to calculate
the weighting. All the profile terms
{𝑤!,𝑤!…𝑤!} = 𝑒𝑥𝑡𝑒𝑟𝑇𝑒𝑟𝑚! ∪ 𝑑𝑜𝑐𝑇𝑒𝑟𝑚! ∪
𝒯! are ranked by their probability of being gener-
ated by the given query 𝑃 𝑤 𝑞 (line 16-17 in
Table 2), and the top 𝛿 terms are chosen to expand
the query.

6 Evaluation

In the following section we describe experiments
which have been designed to evaluate the pro-
posed method. We start the section by discussing
the experimental settings, and then we present and
analyze the results.

6.1 Experimental Setup

In order to evaluate the above proposed methods
on real-world data, we selected two delicious da-
tasets: socialbm0311 and deliciousT140, which
are public, described and analyzed in (Zubiaga et
al., 2009; Zubiaga et al., 2013). The deliciousT140
dataset is made up by 144,574 unique URLs, all
of them with their corresponding social tags re-
trieved from del.icio.us. However, this dataset
does not contain the actual web pages (i.e. docu-
ments). So we used another socialbm0311 dataset.
It contains the complete bookmarking activity for
almost 2 million users. After matching the docu-
ments in deliciousT140 with the bookmark activi-
ties in socialbm0311, we obtained a total of
5,153,720 bookmark activities, 259,511 users,
131,283 web pages and 137,870 tags. We used a
public parser3 to parse the web pages in order to
get their textual content.

We constructed two corpora from different ex-
ternal knowledge bases. The first corpus was ob-
tained from the largest encyclopedia – Wikipedia4.
A Wikipedia snapshot was obtained on the
14/08/2014, which contained a collection of
4,634,369 articles. The second corpus consists of
English news documents from the Glasgow Her-
ald 1995, Los Angeles Times 1994 and Los Ange-
les Times 2002, a collection made available by the
CLEF AdHoc-News Test Suites (2004-2008) 5 ,
which we refer to as CLEF. This collection con-
tains 304,630 documents.

To investigate the effects of enhanced user pro-
files, we selected two groups of users as test users.
One group contains 1,000 randomly selected users
with no more than 50 bookmarks (refer to as Us-
er-SMALL) and another group contains 1,000
randomly selected users with more than 200
bookmarks (refer to as User-LARGE). These two
groups of users represent users with small amount

3 http://htmlparser.sourceforge.net/
4 http://www.wikipedia.org
5 http://catalog.elra.info/

705

of and rich amount of past usage information re-
spectively. The English terms were processed by
down-casing the alphabetic characters, removing
the stop words and stemming words using the Por
ter stemmer. For each user, 75% of his/her tags
with annotated web pages were used to create the
user profile and the other 25% were used as a test
collection.

The evaluation method used by previous re-
searchers in personalized social search (Xu et al.,
2008; Wang and Jin, 2010; Zhou et al., 2012a) is
employed. The main assumption is as follows:
Any documents tagged by 𝑢 with 𝑡 are considered
relevant for the personalized query (𝑢, t) (𝑢 sub-
mits the query 𝑡).

The following evaluation metrics were chosen
to measure the effectiveness of the various ap-
proaches: the normalized discounted cumulative
gain (NDCG), mean reciprocal rank (MRR) and
mean average precision (MAP) (Voorhees, 1999;
Järvelin and Kekäläinen, 2000). The average per-
formance over all users is calculated. Statistically
significant differences were determined using a
paired t-test at a confidence level of 95%.

6.2 Experimental Runs

The proposed approach is applied to social search
personalization through the means of query ex-
pansion. We evaluate our proposed models and
compare with several state-of-the-art methods as
follows.
LM A popular and quite robust language model

retrieval method which has previously demon-
strated good results (Zhai and Lafferty, 2001).
We compute the Kullback-Leibler divergence
between the query and document language mod-
el as described in (Zhai and Lafferty, 2001).

LMRM A relevance model involves pseudo-
relevance feedback in the language model as in
(Lavrenko and Croft, 2001). We include this
model as a competitive non-personalized query
expansion baseline.

LMRM-external This is a modified version of
the relevance model as described in (Diaz and
Metzler, 2006). Instead of using the top-ranked
documents as pseudo-relevance documents, this
model uses external corpora to obtain the rele-
vance documents. We include this model as a
strong non-personalized baseline as we also
used external corpora in our models. In the ex-
periments, this method will acquire external

documents from the Wikipedia corpus and
CLEF.

Co-occur This method has been used by several
researchers. In this method the selection of ex-
pansion terms is based on their co-occurrence
statistics with the query terms and other terms
inside the user model. We used this approach as
previously it demonstrated satisfactory perfor-
mance as in (Chirita et al., 2007).

Co-tag Pure tag-tag relationships are also fa-
vored by many researchers. This method is
based on the co-tagging activities a user per-
formed (Bender et al., 2008; Bertier et al., 2009;
Bouadjenek et al., 2011). In this case, the user
profiles contain training tags with their co-
tagging statistics computed using the Jaccard
coefficient.

Tag-topic-regu Zhou et al. (Zhou et al., 2012a)
proposed a query expansion framework based
on regularizing the smoothness of word associa-
tions over a connected graph using terms ex-
tracted from top-ranked documents. The user
profiles are built according to a Tag-Topic mod-
el in a latent graph. We include the highest per-
forming method from their work for comparison.

MEUP From our proposed methods, the MEUP
method using the MEUP model and the topical
query expansion method for social web search.

SEUP This is our alternative proposed method,
by using the SEUP model and the topical query
expansion method to personalize search.
The number of documents retrieved by each

query in step one is set to γ = 5 empirically. Pa-
rameter λ used in the EXTRACTTOP function is
set to 10. For the EUP modeling, 𝛼 and 𝛽 were set
to 50/𝐾 and 0.01. In the expansion method, the
number of expansion terms 𝛿 are set to 5. All the
parameters in the other baseline models are set
according to their tuning procedures in the origi-
nal papers

6.3 Results

Firstly we examine the experimental results that
describe the performance of the proposed methods
in this paper together with three non-personalized
baselines on the overall test users, which are
shown in Table 3. The statistically significant dif-
ferences are marked as l and w with respect to the
LMRM and LMRM-external baselines as the-
se two methods work better than the simpler LM

706

method. As illustrated by the results, the LM
model was the lowest performer for all evaluation
metrics for two groups of users. This result shows
that merely borrowing common lexical-matching
techniques from traditional information retrieval
will not solve the personalized search problem.
With the help of pseudo-relevance feedback, the
LMRM and LMRM-external methods work
consistently better than the LM baseline. This
demonstrates the power of query expansion. Spe-
cifically, the technique that explores external cor-
pora to obtain the relevant documents works bet-
ter than the method which simply uses top-ranked
documents. The results are consistent with previ-
ous research (Diaz and Metzler, 2006). The im-
provements are more noticeable when using Wik-
ipedia as the external corpus. However, all the
non-personalized baselines are outperformed by
the personalized approaches including our pro-
posed methods MEUP and SEUP, all with statis-
tically significant results. This illustrates that non-
personalized query expansion methods can only
bring limited improvements while methods with
additional terms from the user profiles can greatly
improve retrieval effectiveness.

Next we evaluate the performance of the pro-
posed methods compared to several personalized

baselines that use only the users’ past information
for query expansion, i.e. Co-occur, Co-tag and
Tag-topic-regu methods.

As seen from Table 3, three conclusions
emerge. First, MEUP and SEUP both outper-
form all personalization methods previously pro-
posed, in all metrics measured with two external
corpora for both groups of users. Moreover, the
difference between our proposed methods and the
baseline runs is always significant. We believe
that the strong performance of our methods is due
to the fact that our methods do not only consider a
user’s past usage information, but also uses an
external knowledge base to enhance the user pro-
filing process. Secondly, the SEUP method
works consistently better than the MEUP method.
This result confirms that merely mixing the doc-
uments from the historical evidence and external
knowledge bases will miss some important infor-
mation. By treating the documents as a pseudo-
aligned corpus, we obtain much better perfor-
mance. The highest improvement over the best
performing run reaches 54.95% (in terms of the
SEUP method with the MRR metric when com-
pared to Tag-topic-regu by using Wikipedia as
the external corpus in the User-SMALL group).
Third, further improvements are achieved by us-

User-SMALL
 Wikipedia CLEF
 MAP NDCG MRR MAP NDCG MRR

LM 0.0216 0.0449 0.0226 0.0216 0.0449 0.0226
LMRM 0.0241 0.0547 0.0261 0.0241 0.0547 0.0261

LMRM-external 0.0283 0.0588 0.0307 0.0272 0.0585 0.0290
Co-occur 0.0499 l, w 0.0812 l, w 0.0600 l, w 0.0499 l, w 0.0812 l, w 0.0600 l, w
Co-tag 0.0491 l, w 0.0758 l, w 0.0538 l, w 0.0491 l, w 0.0758 l, w 0.0538 l, w

Tag-topic-regu 0.0597 l, w, o, t, 0.0955 l, w, o, t, 0.0666 l, w, o, t, 0.0597 l, w, o, t, 0.0955 l, w, o, t, 0.0666 l, w, o, t,
MEUP 0.0729 l, w, o, t, r 0.1058 l, w, o, t, r 0.0844 l, w, o, t, r 0.0722 l, w, o, t, r 0.0981 l, w, o, t, r 0.0770 l, w, o, t, r
SEUP 0.0906 l, w, o, t, r 0.1316 l, w, o, t, r 0.1032 l, w, o, t, r 0.0802 l, w, o, t, r 0.1221 l, w, o, t, r 0.0940 l, w, o, t, r

User-LARGE

 Wikipedia CLEF

 MAP NDCG MRR MAP NDCG MRR
LM 0.0178 0.0366 0.0194 0.0178 0.0366 0.0194

LMRM 0.0185 0.0400 0.0201 0.0185 0.0400 0.0201
LMRM-external 0.0195 0.0433 0.0263 0.0190 0.0420 0.0245

Co-occur 0.0386 l, w 0.0578 l, w 0.0409 l, w 0.0386 l, w 0.0578 l, w 0.0409 l, w
Co-tag 0.0381 l, w 0.0546 l, w 0.0399 l, w 0.0381 l, w 0.0546 l, w 0.0399 l, w

Tag-topic-regu 0.0470 l, w, o, t, 0.0778 l, w, o, t, 0.0498 l, w, o, t, 0.0470 l, w, o, t, 0.0778 l, w, o, t, 0.0498 l, w, o, t,
MEUP 0.0579 l, w, o, t, r 0.0971 l, w, o, t, r 0.0629 l, w, o, t, r 0.0545 l, w, o, t, r 0.0805 l, w, o, t, r 0.0581 l, w, o, t, r
SEUP 0.0633 l, w, o, t, r 0.1049 l, w, o, t, r 0.0678 l, w, o, t, r 0.0604 l, w, o, t, r 0.0978 l, w, o, t, r 0.0651 l, w, o, t, r

Table 3. Overall results, statistically significant differences between our methods and LMRM, LMRM-
External, Co-occur, Co-tag, Tag-topic-regu are indicated by l, w, o, t, r respectively.

707

Fig. 1. Performance with different number of topics by using Wikipedia as external corpus in the

user-SMALL group

ing Wikipedia as the external corpus rather than
using the CLEF collection. The possible reason,
as pointed out by Diaz and Metzler (Diaz and
Metzler, 2006), is that an external corpus is likely
to be a better source of expansion terms if it has
better topic coverage over the target corpus. The
results also show that the improvements over
baseline models in the User-SMALL group are
more noticeable than in the User-LARGE group.
However, the differences are small. This result
confirms that our methods work well both for us-
ers with small amounts, and those with rich
amounts of past usage information.

We now examine the effect of the performance
of the number of latent topics used in MEUP and
SEUP. We vary the number of topics in both
methods from 5 to 30, the results are shown in
Figure 1, using Wikipedia as the external corpus
in the user-SMALL group (we eliminated other
results as they gave similar results). As can be
seen from the figure, the highest performance is
reached when the number of latent topics is 20 in
MEUP and 25 in SEUP. When the number of
topics continues to grow, the performance starts to
degrade. However, even the lowest scored run still
outperformed the strongest baseline. By varying
the topic numbers, SEUP still outperforms
MEUP.

7 Conclusion and Future Work

In this paper, we tackle the challenge of personal-
ized web search using social data in a novel way
by building enhanced user profiles from the anno-
tations and resources the user has marked, togeth-
er with an external knowledge base. We present

two probabilistic latent models to simultaneously
incorporate social annotations, documents and the
external knowledge base. In addition, we intro-
duce a topical query expansion model to enhance
the search by utilizing individual user profiles.
The proposed methods performed well on the so-
cial data crawled from the web, delivering statisti-
cally significant improvements over non-
personalized and personalized representative base-
line systems by constructing user profiles from a
user’s historical usage information only. It is also
confirmed that our proposed methods work well
for both active and less active users. In future re-
search, we aim to automatically estimate the num-
ber of topics to be used in the EUP models. We
also plan to explore the use of more external re-
sources and novel latent semantic models to en-
hance performance.

Acknowledgements
The work described in this paper was supported by the
National Natural Science Foundation of China under
Project No. 61300129, No. 61572187 and No.
61272063, Scientific Research Fund of Hunan Provin-
cial Education Department of China under Grant No.
16K030, Scientific Research Foundation for the Re-
turned Overseas Chinese Scholars, State Education
Ministry, China under grant No. [2013] 1792, Hunan
Provincial Innovation Foundation For Postgraduate
under grant No. CX2016B575. This work is also sup-
ported by the ADAPT Centre for Digital Content
Technology, which is funded under the Science Foun-
dation Ireland Research Centres Programme (Grant
13/RC/2106) and is co-funded under the European Re-
gional Development Fund.

708

References

M. Bender, T. Crecelius, M. Kacimi, S. Michel, T.
Neumann, J. X. Parreira, R. Schenkel and G. Weikum
(2008). Exploiting social relations for query
expansion and result ranking. In Proceedings of the
IEEE 24th International Conference on Data
Engineering Workshop, ICDEW 2008, Chicago, IL,
USA, IEEE. p. 501-506.

Paul N. Bennett, Ryen W. White, Wei Chu, Susan T.
Dumais, Peter Bailey, Fedor Borisyuk and Xiaoyuan
Cui (2012). Modeling the impact of short- and long-
term behavior on search personalization. In
Proceedings of the 35th international ACM SIGIR
conference on Research and development in
information retrieval, Portland, Oregon, USA, ACM.
p. 185-194.

Marin Bertier, Rachid Guerraoui, Vincent Leroy and
Anne-Marie Kermarrec (2009). Toward personalized
query expansion. In Proceedings of the Second ACM
EuroSys Workshop on Social Network Systems,
Nuremberg, Germany, ACM. p. 7-12.

Claudio Biancalana, Fabio Gasparetti, Alessandro
Micarelli and Giuseppe Sansonetti (2013). Social
semantic query expansion. ACM Transactions on
Intelligent Systems and Technology, 4(4): 1-43.

Claudio Biancalana and Alessandro Micarelli (2009).
Social Tagging in Query Expansion: A New Way for
Personalized Web Search. In Proceedings of the 2009
International Conference on Computational Science
and Engineering - Volume 04, IEEE. p. 1060-1065.

Mohamed Reda Bouadjenek, Hakim Hacid and
Mokrane Bouzeghoub (2013a). Sopra: a new social
personalized ranking function for improving web
search. In Proceedings of the 36th international ACM
SIGIR conference on Research and development in
information retrieval, Dublin, Ireland, ACM. p. 861-
864.

Mohamed Reda Bouadjenek, Hakim Hacid and
Mokrane Bouzeghoub (2016). Social networks and
information retrieval, how are they converging? A
survey, a taxonomy and an analysis of social
information retrieval approaches and platforms.
Information Systems 56: 1-18.

Mohamed Reda Bouadjenek, Hakim Hacid, Mokrane
Bouzeghoub and Johann Daigremont (2011).
Personalized social query expansion using social
bookmarking systems. In Proceedings of the 34th
international ACM SIGIR conference on Research
and development in Information Retrieval, Beijing,
China, ACM. p. 1113-1114.

Mohamed Reda Bouadjenek, Hakim Hacid, Mokrane
Bouzeghoub and Athena Vakali (2013b). Using
social annotations to enhance document
representation for personalized search. In

Proceedings of the 36th international ACM SIGIR
conference on Research and development in
information retrieval, Dublin, Ireland, ACM. p.
1049-1052.

Mark J. Carman, Mark Baillie and Fabio Crestani
(2008). Tag data and personalized information
retrieval. In Proceeding of the 2008 ACM workshop
on Search in social media, Napa Valley, California,
USA, ACM. p. 27-34.

David Carmel, Naama Zwerdling, Ido Guy, Shila
Ofek-Koifman, Nadav Har'el, Inbal Ronen, Erel
Uziel, Sivan Yogev and Sergey Chernov (2009).
Personalized social search based on the user's social
network. In Proceeding of the 18th ACM conference
on Information and knowledge management, Hong
Kong, China, ACM. p. 1227-1236.

Paul - Alexandru Chirita, Claudiu S. Firan and
Wolfgang Nejdl (2007). Personalized query
expansion for the web. In Proceedings of the 30th
annual international ACM SIGIR conference on
Research and development in information retrieval,
Amsterdam, The Netherlands, ACM. p. 7-14.

Fernando Diaz and Donald Metzler (2006). Improving
the estimation of relevance models using large
external corpora. In Proceedings of the 29th annual
international ACM SIGIR conference on Research
and development in information retrieval, Seattle,
Washington, USA, ACM. p. 154-161.

Debasis Ganguly, Johannes Leveling and GarethJ F.
Jones (2012). Topical Relevance Model. Information
Retrieval Technology. Yuexian Hou, Jian-Yun Nie,
Le Sun, Bo Wang and Peng Zhang, Springer Berlin
Heidelberg. 7675: 326-335.

Ramanathan Guha, Vineet Gupta, Vivek Raghunathan
and Ramakrishnan Srikant (2015). User Modeling for
a Personal Assistant. In Proceedings of the Eighth
ACM International Conference on Web Search and
Data Mining, Shanghai, China, ACM. p. 275-284.

Manish Gupta, Rui Li, Zhijun Yin and Jiawei Han
(2011). An Overview of Social Tagging and
Applications. Social Network Data Analytics. Charu
C. Aggarwal, Springer US: 447-497.

Ronald H Heck and Scott L Thomas (2015). An
Introduction to Multilevel Modeling Techniques:
MLM and SEM Approaches Using Mplus, Routledge.

Mohsen Jamali and Martin Ester (2010). A matrix
factorization technique with trust propagation for
recommendation in social networks. In Proceedings
of the fourth ACM conference on Recommender
systems, Barcelona, Spain, ACM. p. 135-142.

Kalervo Järvelin and Jaana Kekäläinen (2000). IR
evaluation methods for retrieving highly relevant
documents. In Proceedings of the 23rd annual
international ACM SIGIR conference on Research
and development in information retrieval, Athens,
Greece, ACM. p. 41-48.

709

Victor Lavrenko and W. Bruce Croft (2001).
Relevance based language models. In Proceedings of
the 24th annual international ACM SIGIR conference
on Research and development in information
retrieval, New Orleans, Louisiana, USA, ACM. p.
120-127.

Jovian Lin, Kazunari Sugiyama, Min-Yen Kan and
Tat-Seng Chua (2013). Addressing cold-start in app
recommendation: latent user models constructed from
twitter followers. In Proceedings of the 36th
international ACM SIGIR conference on Research
and development in information retrieval, Dublin,
Ireland, ACM. p. 283-292.

Christopher D. Manning, Prabhakar Raghavan and
Hinrich Schütze (2008). Introduction to Information
Retrieval, Cambridge University Press.

MichaelG Noll and Christoph Meinel (2007). Web
Search Personalization Via Social Bookmarking and
Tagging. The Semantic Web. Karl Aberer, Key-Sun
Choi, Natasha Noyet al, Springer Berlin Heidelberg.
4825: 367-380.

Kazunari Sugiyama, Kenji Hatano and Masatoshi
Yoshikawa (2004). Adaptive web search based on
user profile constructed without any effort from users.
In Proceedings of the 13th international conference
on World Wide Web, New York, NY, USA, ACM. p.
675-684.

Jaime Teevan, Susan T. Dumais and Eric Horvitz
(2005). Personalizing search via automated analysis
of interests and activities. In Proceedings of the 28th
annual international ACM SIGIR conference on
Research and development in information retrieval,
Salvador, Brazil, ACM. p. 449-456.

David Vallet, Iván Cantador and Joemon M Jose
(2010). Personalizing web search with folksonomy-
based user and document profiles. In Proceedings of
the 32nd European Conference on IR Research,
ECIR 2010, Milton Keynes, UK, Springer. p. 420-431.

E. M. Voorhees (1999). The TREC-8 Question
Answering Track Report. In Proceedings of the 8th
Text REtrieval Conference (TREC-8).

Qihua Wang and Hongxia Jin (2010). Exploring online
social activities for adaptive search personalization.
In Proceedings of the 19th ACM international
conference on Information and knowledge
management, Toronto, ON, Canada, ACM. p.999-
1008.

Shengliang Xu, Shenghua Bao, Ben Fei, Zhong Su and
Yong Yu (2008). Exploring folksonomy for
personalized search. In Proceedings of the 31st
annual international ACM SIGIR conference on
Research and development in information retrieval,
Singapore, Singapore, ACM. p. 155-162.

Chengxiang Zhai and John Lafferty (2001). Model-
based feedback in the language modeling approach to
information retrieval. In Proceedings of the tenth

international conference on Information and
knowledge management, ACM. p. 403-410.

D. Zhou, S. Lawless, J. Liu, S. Zhang and Y. Xu
(2015). Query expansion for personalized cross-
language information retrieval. In Proceedings of the
10th International Workshop on Semantic and Social
Media Adaptation and Personalization (SMAP),
Trento, Italy, IEEE. p. 1-5.

Dong Zhou, Séamus Lawless and Vincent Wade
(2012a). Improving search via personalized query
expansion using social media. Information Retrieval,
15(3-4): 218-242.

Dong Zhou, Séamus Lawless and Vincent Wade
(2012b). Web Search Personalization Using Social
Data. In Proceedings of the Second International
Conference on Theory and Practice of Digital
Libraries, TPDL 2012, Paphos, Cyprus, Springer. p.
298-310.

Dong Zhou, Séamus Lawless, Xuan Wu, Wenyu Zhao
and Jianxun Liu (2016). A study of user profile
representation for personalized cross-language
information retrieval. Aslib Journal of Information
Management, 68(4): 448-477.

Dong Zhou, Mark Truran, Jianxun Liu, Wei Li and
Gareth Jones (2014). Iterative Refinement Methods
for Enhanced Information Retrieval. International
Journal of Intelligent Systems, 29(4): 341-364.

Arkaitz Zubiaga, Victor Fresno, Ricardo Martinez and
Alberto Perez Garcia-Plaza (2013). Harnessing
folksonomies to produce a social classification of
resources. IEEE Transactions on Knowledge and
Data Engineering, 25(8): 1801-1813.

Arkaitz Zubiaga, Alberto Pérez Garcia-Plaza, Víctor
Fresno and Ricardo Martinez (2009). Content-based
clustering for tag cloud visualization. In Proceedings
of the International Conference on Advances in
Social Network Analysis and Mining, ASONAM,
IEEE. p. 316-319.

710

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 711–720,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Effective Greedy Inference for Graph-based
Non-Projective Dependency Parsing

Ilan Tchernowitz Liron Yedidsion
Faculty of Industrial Engineering and Management, Technion, IIT

{ilantc@campus|lirony@ie|roiri@ie}.technion.ac.il

Roi Reichart

Abstract

Exact inference in high-order graph-based
non-projective dependency parsing is in-
tractable. Hence, sophisticated approximation
techniques based on algorithms such as be-
lief propagation and dual decomposition have
been employed. In contrast, we propose a sim-
ple greedy search approximation for this prob-
lem which is very intuitive and easy to im-
plement. We implement the algorithm within
the second-order TurboParser and experiment
with the datasets of the CoNLL 2006 and 2007
shared task on multilingual dependency pars-
ing. Our algorithm improves the run time of
the parser by a factor of 1.43 while losing 1%
in UAS on average across languages. More-
over, an ensemble method exploiting the joint
power of the parsers, achieves an average UAS
0.27% higher than the TurboParser.

1 Introduction

Dependency parsing is instrumental in NLP appli-
cations, with recent examples in information extrac-
tion (Wu and Weld, 2010), word embeddings (Levy
and Goldberg, 2014), and opinion mining (Almeida
et al., 2015). The two main approaches for this task
are graph based (McDonald et al., 2005) and transi-
tion based (Nivre et al., 2007).

The graph based approach aims to optimize a
global objective function. While exact polyno-
mial inference algorithms exist for projective pars-
ing (Eisner, 1996; McDonald et al., 2005; Carreras,
2007; Koo and Collins, 2010, inter alia), high order
non-projective parsing is NP-hard (McDonald and
Pereira, 2006). The current remedy for this comes in

the form of advanced optimization techniques such
as dual decomposition (Martins et al., 2013), LP re-
laxations (Riedel et al., 2012), belief propagation
(Smith and Eisner, 2008; Gormley et al., 2015) and
sampling (Zhang et al., 2014b; Zhang et al., 2014a).

The transition based approach (Zhang and Nivre,
2011; Bohnet and Nivre, 2012; Honnibal et al.,
2013; Choi and McCallum, 2013a, inter alia), and
the easy first approach (Goldberg and Elhadad,
2010) which extends it by training non-directional
parsers that consider structural information from
both sides of their decision points, lack a global ob-
jective function. Yet, their sequential greedy solvers
are fast and accurate in practice.

We propose a greedy search algorithm for high-
order, non-projective graph-based dependency pars-
ing. Our algorithm is a simple iterative graph-based
method that does not rely on advanced optimization
techniques. Moreover, we factorize the graph-based
objective into a sum of terms and show that our basic
greedy algorithm relaxes the global objective by se-
quentially optimizing these terms instead of globally
optimizing their sum.

Unlike previous greedy approaches to depen-
dency parsing, transition based and non-directional,
our algorithm does not require a specialized feature
set or a training method that specializes in local deci-
sions. In contrast, it supports global parameter train-
ing based on the comparison between an induced
tree and the gold tree. Hence, it can be integrated
into any graph-based parser.

We first present a basic greedy algorithm that re-
laxes the global graph-based objective (Section 3).
However, as this simple algorithm does not provide a

711

realistic estimation of the impact of an arc selection
on uncompleted high-order structures in the partial
parse forest, it is not competitive with state of the
art approximations. We hence present an advanced
version of our algorithm with an improved arc score
formulation and show that this simple algorithm pro-
vides high quality solutions to the graph-based infer-
ence problem (Section 4).

Particularly, we implement the algorithm within
the TurboParser (Martins et al., 2013) and exper-
iment (Sections 8 and 9) with the datasets of the
CoNLL 2006-2007 shared tasks on multilingual de-
pendency parsing (Buchholz and Marsi, 2006; Nils-
son et al., 2007). On average across languages our
parser achieves UAS scores of 87.78% and 89.25%
for first and second order parsing respectively, com-
pared to respective UAS of 87.98% and 90.26%
achieved by the original TurboParser.

We further implement (Section 6) an ensemble
method that integrates information from the output
tree of the original TurboParser and the arc weights
learned by our variant of the parser into our search
algorithm to generate a new tree. This yields an im-
provement: average UAS of 88.03% and 90.53% for
first and second parsing, respectively.

Despite being greedy, the theoretical runtime
complexity of our advanced algorithm is not better
than the best previously proposed approximations
for our problem (O(nk+1), for nword sentences and
k order parsing, Section 5). In experiments, our al-
gorithms improve the runtime of the TurboParser by
a factor of up to 2.41.

The main contribution of this paper is hence in
providing a simple, intuitive and easy to implement
solution for a long standing problem that has been
addressed in past with advanced optimization tech-
niques. Besides the intellectual contribution, we
believe this will make high-order graph-based de-
pendency parsing accessible to a much broader re-
search and engineering community as it substan-
tially relaxes the coding and algorithmic proficiency
required for the implementation and understanding
of parsing algorithms.

2 Problem Formulation

We start with a brief definition of the high order
graph-based dependency parsing problem. Given an

n word input sentence, an input graph G = (V,E)
is defined. The set of vertices is V = {0, ..., n},
with the {1, . . . , n} vertices representing the words
of the sentence, in their order of appearance, and the
0 vertex is a specialized root vertex. The set of arcs
is E = {(u, v) : u ∈ {0, ..., n}, v ∈ {1, ..., n}, u 6=
v}, that is, the root vertex has no incoming arcs.

We further define a part of order k to be a subset
of E of size k, and denote the set of all parts with
parts. For the special case of k = 1 a part is an
arc. Different works employed different parts sets
(e.g. (Martins et al., 2013; McDonald et al., 2005;
Koo and Collins, 2010)). Generally, most parts sets
consist of arcs connecting vertices either vertically
(e.g. {(u, v), (v, z)} for k = 2) or horizontally (e.g.
{(u, v), (u, z)}, for k = 2). In this paper we focus
on the parts employed by (Martins et al., 2013), a
state-of-the-art parser, but our algorithms are gener-
ally applicable for any parts set consistent with this
general definition.1

In graph-based dependency parsing, each part p
is given a score Wp ∈ R. A Dependency Tree
(DT) T is a subset of arcs for which the following
conditions hold: (1) Every vertex, except for the
root, has an incoming arc: ∀v ∈ V \ {0} : ∃u ∈
V s.t.(u, v) ∈ T ; (2) No vertex has multiple incom-
ing arcs: ∀(u, u′, v) ∈ V, (u, v) ∈ T → (u′, v) /∈ T ;
and (3) There are no cycles in T . The score of a DT
T is finally defined by:

score(T) =
∑

part⊆T
Wpart

The inference problem in this model is to find the
highest scoring DT in the input weighted graph.

3 Basic Greedy Inference

We start with a basic greedy algorithm (Algorithm
1), analyze the approximation it provides for the
graph-based objective and its inherent limitations.

1More generally, a part is defined by two arc subsets, A and
B, such that a part p belongs to a tree T if ∀e ∈ A : e ∈
T and ∀e ∈ B : e /∈ T . In this paper we assume B = φ.
Hence, we cannot experiment with the third order TurboParser
as in all its third order parts B 6= φ. Also, when we integrate
our algorithms into the second order TurboParser we omit the
nextSibling part for whichB 6= φ. For the original TurboParser
to which we compare our results, we do not omit this part as it
improves the parser’s performance.

712

Algorithm 1 maintains a partial tree data struc-
ture, T i, to which it iteratively adds arcs from the
input graph G, one in each iteration, until a depen-
dency tree Tn is completed. For this end, in every
iteration, i, a value, vie, composed of lossie and gainie
terms, is computed for every arc e ∈ E and the arc
with the lowest vie value is added to T i−1 to create
the extended partial tree T i.

Due to the aforementioned conditions on the in-
duced dependency tree, every arc that is added to
T i−1 yields a set of lostArcs and lostParts that can-
not be added to the partial tree in subsequent itera-
tions. The loss value is defined to be:

lossie :=
∑

part∈lostParts
Wpart

That is, every part that contains one or more arcs
that violate the dependency tree conditions for a tree
that extends the partial tree T i−1∪{e} is considered
a lost part as it will not be included in any tree ex-
tending T i−1∪{e}. The loss value sums the weights
of these parts.

Likewise, the gain value is the sum of the weights
of all the parts that are added to T i−1 when we add
e to it. Denote this set of parts with Pe := {part :
part ⊆ T i−1 ∪ {e}, part /∈ T i−1}, then:

gainie :=
∑

part∈Pe

Wpart

Finally, vie is given by:

vie = lossie − gainie
After the arc with the minimal value vie is added to
T i−1, the arcs that violate the structural constraints
on dependency trees are removed from G.

An example of an update iteration of the algo-
rithm (lines 3-16) is given in Figure 1. In this ex-
ample we consider two types of parts: first-order,
arc, parts (ARC) and second-order grandparent parts
(GP), consisting of arc pairs, {(g, u), (u, v)}. The
upper graph shows the partial tree T 2 (solid arcs) as
well as the rest of the graph G (dashed arcs). The
parts included in T 2 are ARC(0,2), ARC(2,1) and
GP[(0,2),(2,1)]. The table contains the weights of
the parts and the values computed for the arcs dur-
ing the third iteration. The arc that is chosen is (2,3),
as it has the minimal v3e value. Thus, in the bottom

root John walked home
0 1 2 3

part weight loss3e gain3
e v3e

ARC(0,3) 2 3.5 2 1.5
ARC(1,3) 1 5.5 0 5.5
ARC(2,3) 1.5 2 3.5 -1.5

GP[(0,2)(2,3)] 2 – – –
GP[(2,1)(1,3)] -1 – – –

root John walked home
0 1 2 3

Figure 1: An example of an iteration of Algorithm 1
(lines 3-16)). See description in text.

graph that corresponds to T 3 all other incoming arcs
to vertex 3 are removed. (in this instance there are
no cycle forming arcs).
Analysis We now turn to an analysis of the
relaxation that Algorithm 1 provides for the global
graph-based objective. Recall that our objective in
iteration i is: vi

ei
= min{vie}. For the inferred tree

Tn it holds that:
∑

ei∈Tn

viei −
∑

part⊆G
Wpart =

∑

part*Tn

Wpart −
∑

part⊆Tn

Wpart −
∑

part⊆G
Wpart =

− 2×
∑

part⊆Tn

Wpart +
∑

part*Tn

Wpart −
∑

part*Tn

Wpart =

− 2×
∑

part⊆Tn

Wpart

The first equation holds since
∑

ei∈Tn viei is the
sum of all lost parts (parts that are not in Tn) minus
all the gained parts (parts in Tn). Each of these parts
was counted exactly once: when the part was added
to the partial tree or when one of its arcs was re-
moved from G. The second equation splits the term
of
∑

part⊆GWpart to two sums, one over parts in Tn

and the other over the rest. Since
∑

part⊆GWpart

and 2 are constants, we get:

argmin
Tn

(−
∑

part⊆Tn

Wpart) = argmin
Tn

∑

ei∈Tn

viei

From this argument it follows that our inference
algorithm performs sequential greedy optimization
over the presented factorization of the graph-based

713

objective instead of optimizing the sum of terms,
and hence the objective, globally.

The main limitation of Algorithm 1 is that it does
not take into account high order parts contribution
until the part is actually added to T . For exam-
ple, in Figure 1, when the arc (2, 1) is added, the
part GP[(2,1),(1,3)] is getting closer to completion.
Yet, this is not taken into account when considering
whether (2, 1) should be added to the tree or not. In-
cluding this information in the gain and loss values
of an arc can improve the accuracy of the algorithm,
especially in high-order parsing.

Algorithm 1 Basic Greedy Inference

1: T 0 = {}
2: for i ∈ 1..n do
3: for e = (u, v) ∈ E do
4: Pe := {part ∈ parts : part ⊆ T i−1 ∪
{e}, part * T i−1}

5: gaini
e :=

∑
part∈Pe

Wpart

6: incomingSet := {(u′, v) ∈ E : u′ 6= u}
7: cycleSet := {(u′, v′) ∈ E : T i−1 ∪ {e} ∪

(u′, v′) contains a cycle}
8: lostArcs = (incomingSet ∪ cycleSet)
9: lostParts = {part : ∃e ∈ lostArcs ∩ part}

10: lossie :=
∑

part∈lostPartsWpart

11: vie := lossie − gaini
e

12: end for
13: ei = (ui, vi) = argmine′{vie′}
14: T i = T i−1 ∪ {ei}
15: remove from G all incoming arcs to vi

16: remove from G all cycle forming arcs w.r.t T i

17: end for

4 Greedy Inference with Partial Part
Predictions

In order for the algorithm to account for information
about partial high order parts, we estimate the prob-
ability that such parts would be eventually included
in Tn. Our way to do this (Algorithm 2) is by es-
timating these probabilities for arcs and from these
derive parts probabilities.

Particularly, for the set of incoming arcs of a ver-
tex v, Ev = {e = (u, v) : e ∈ E}, a probability
measure pe is computed according to:

pe=(u,v) =
expα×We

∑
e′=(u′,v) exp

α×We′

Where α is a hyper parameter of the model. For
α = 0 we get a uniform distribution over all possible

Algorithm 2 Greedy Inference with Partial Part Pre-
dictions

1: T 0 = {}
2: for i ∈ 1..n do
3: for e = (u, v) ∈ E do
4: Pe := {part ∈ parts : e ∈ part}
5: gaini

e :=
∑

part∈Pe
Wpart× ppart|(T i−1 ∪{e})

6: incomingSet := {(u′, v) ∈ E : u′ 6= u}
7: cycleSet := {(u′, v′) ∈ E : T i−1 ∪ {e} ∪

(u′, v′) contains a cycle}
8: lostArcs = (incomingSet ∪ cycleSet)
9: lostParts = {part : ∃e ∈ lostArcs ∩ part}

10: lossie :=
∑

part∈lostPartsWpart × ppart|T i−1

11: vie := β × lossie − (1− β)× gaini
e

12: end for
13: ei = (ui, vi) = argmine′{vie′}
14: T i = T i−1 ∪ {ei}
15: remove from G all incoming arcs to vi

16: remove from G all cycle forming arcs w.r.t T i

17: end for

heads of a vertex v, and for large α values arcs with
larger weights get higher probabilities.

The intuition behind this measure is that arcs
mostly compete with other arcs that have the same
target vertex and hence their weight should be nor-
malized accordingly. Using this measure, we define
the arc-factored probability of a part to be:

ppart =
∏

e∈part
pe

And the residual probability of a part given an exist-
ing partial tree T :

ppart|T =
ppart∏

e∈(part⋂T) pe

These probability measures are used in both the
gain and the loss computations (lines 5 and 10 in
Algorithm 2) as follows:

gainie :=
∑

part:e∈part
Wpart × ppart|(T i−1 ∪ {e})

lossie :=
∑

part∈lostParts
Wpart × ppart|T i−1

Finally, as adding an arc to the dependency sub-
tree results in an exclusion of several arcs, the num-
ber of lost parts is also likely to be much higher
than the number of gained parts. In order to com-
pensate for this effect, we introduce a balancing

714

hyper-parameter, β ∈ [0, 1], and change the com-
putation of vie (line 10 in Algorithm 2) to be: vie :=
β × lossie − (1− β)× gainie.

5 Runtime Complexity Analysis

In this section we provide a sketch of the runtime
complexity analysis of the algorithm. Full details
are in appendix A. In what follows, we denote the
maximal indegree of a vertex with nin.

Algorithm 1 Algorithm 1 consists of two nested
loops (lines 2-3) and hence lines 4-11 are repeated
O (n× |E|) = O(n×n×nin) times. At each repe-
tition, loss (lines 6-10) and gain (lines 4-5) values
are computed. Afterwards the graph’s data struc-
tures are updated (lines 13-16). We define data
structures (DSs) that keep our computations effi-
cient. With these DSs the total runtime of lines 4-11
is O(nin + min{nk−1in , n2in}). The DSs are initial-
ized in O(|parts| × k) time and their total update
time is O(k × |parts|) = O(nk+1

in). Thus algo-
rithm 1 runs in O(|parts| × k + n2 × nin × (nin +
min{nk−1in , n2in})) time.

Algorithm 2 Algorithm 2 is similar in structure to
Algorithm 1. The enhanced loss and gain computa-
tions take O(nin +min{nk−1in , n2in}) time. The ini-
tialization of the DSs takes O(|parts| × k) time and
their update time is O(nkin × k2). The total runtime
of Algorithm 2 isO(nk+1

in ×k+n×(n×nin×(nin+
min{n2in, nk−1in })+nkin×k2)). For unpruned graphs
and k ≥ 2 this is equivalent to O(nk+1), the theo-
retical runtime of the TurboParser’s dual decompo-
sition inference algorithm.

6 Error Propagation

Unlike modern approximation algorithms for our
problem, our algorithm is greedy and determinis-
tic. That is, in each iteration it selects an arc to
be included in its final dependency tree and this de-
cision cannot be changed in subsequent iterations.
Hence, our algorithm is likely to suffer from error-
propagation. We propose two solutions to this prob-
lem described within Algorithm 2.

Beam search In each iteration (lines 3-16) the al-
gorithm outputs its |B| best solutions to be subse-
quently considered in the next iteration. That is,
lines 4-10 are performed |B| times for each edge

e ∈ E, one for each of the |B| partial solutions in
the beam, bj ∈ B. For each such solution, we de-
note its weight, as calculated by the previous itera-
tion of the algorithm with beamV albj . When evalu-
ating vie for an arc e with respect to bj (line 11), we
set vi,je = beamV albj+β×lossie−(1−β)×gainie.

Post-search improvements After Algorithm 2 is
executed, we perform s iterations of local greedy arc
swaps. That is, for every vertex v, s.t. (u, v) ∈ Tn,
we try to switch the arc (u, v) with the arc (u′, v) as
follows. Let Tnv be the sub tree that is rooted at v,
we distinguish between two cases:
(1) If u′ /∈ Tnv then Tn = Tn \ {(u, v)} ∪ {(u′, v)}.
(2) If u′ ∈ Tnv then let w be the first vertex on the
path from v to u′ (if (v, u′) ∈ T then w = u′):
Tn = Tn \ {(u, v), (v, w)} ∪ {(u′, v), (u,w)}.

After inspecting all possible substitutions, we
choose the one that yields the best increase in the
tree score (if such a substitution exists) and perform
the substitution.

7 Parser Combination

In our experiments (see below), we implemented our
algorithms within the TurboParser so that each of
them, in turn, serves as its inference algorithm. In
development data experiments with Algorithm 2 we
found that for first order parsing, both our algorithm
and the TurboParser predict on average over all lan-
guages around 1% of the gold arcs that are not in-
cluded in the output of the other algorithm. For sec-
ond order parsing, the corresponding numbers are
1.75% (for gold arcs in the output of our algorithm
but not of the original TurboParser) and 4.3% (for
the other way around). This suggests that an ensem-
ble method may improve upon both parsers.

We hence introduce a variation of Algorithm 2
that accepts a dependency tree To as an input, and
biases its output towards that tree. As different
parsers usually generate weights on different scales,
we do not directly integrate part weights. Instead,
we change the weight of each part part ⊆ To of
order j, to be Wpart = Wpart + γj , where γj is
an hyperparameter reflecting our belief in the pre-
diction of the other parser on parts of order j. The
change is applied only at test time, thus integrating
two pre-trained parsers.

715

8 Experimental Setup

We implemented our algorithms within the Tur-
boParser (Martins et al., 2013)2. That is, every other
aspect of the parser – feature set, pruning algorithm,
cost-augmented MIRA training (Crammer et al.,
2006) etc., is kept fixed but our algorithms replace
the inference algorithms: Chu-Liu-Edmonds ((Ed-
monds, 1967), first order) and dual-decomposition
(higher order). We implemented two variants, for
algorithm 1 and 2 respectively, and compare their
results to those of the original TurboParser.

We experiment with the datasets of the CoNLL
2006 and 2007 shared task on multilingual depen-
dency parsing (Buchholz and Marsi, 2006; Nilsson
et al., 2007), for a total of 17 languages. When a
language is represented in both sets, we used the
2006 version. We followed the standard train/test
split of these datasets and, for the 8 languages with
a training set of at least 10000 sentences, we ran-
domly sampled 1000 sentences from the training set
to serve as a development set. For these languages,
we first trained the parser on the training set and then
used the development set for hyperparameter tuning
(|B|, s, α, β, and γ1, . . . , γk for k order parsing).34

We employ four evaluation measures, where ev-
ery measure is computed per language, and we re-
port the average across all languages: (1) Unlabeled
Attachment Score (UAS); (2) Undirected UAS (U-
UAS) - for error analysis purposes; (3) Shared arcs
(SARC) - the percentage of arcs shared by the pre-
dictions of each of our algorithms and of the origi-
nal TurboParser; and (4) Tokens per second (TPS)
- for ensemble models this measure includes the
TurboParser’s inference time.5 We also report a
gold(x,y) = (a,b) measure: where a is the percentage
of gold standard arcs included in trees produced by
algorithm x but not by y, and b is the corresponding
number for y and x. We consider two setups.

2https://github.com/andre-martins/TurboParser
3|B| = 3, s = 5, α ∈ [0, 2.5], β ∈ [0.2, 0.5], γ1 ∈

[0.5, 1.5], γ2 ∈ [0.2, 0.3]. Our first order part weights are in
[−9, 4], and second order part weights in [−3, 13].

4The original TurboParser is trained on the training set of
each language and tested on its test set, without any further di-
vision of the training data to training and development sets.

5Run times where computed on an Intel(R) Xeon(R) CPU
E5-2697 v3@2.60GHz machine with 20GB RAM memory.

Fully Supervised Training In this setup we only
consider the 8 languages with a development set.
For each language, the parser is trained on the train-
ing set and then the hyperparameters are tuned. First
we set the beam size (|B|) and number of improve-
ment iterations (s) to 0, and tune the other hyperpa-
rameters on the language-specific development set.
Then, we tune |B| and s, using the optimal parame-
ters of the first step, on the English dev. set.

Minimally Supervised Training Here we con-
sider all 17 languages. For each language we ran-
domly sampled 20 training sets of 500 sentences
from the original training set, trained a parser on
each set and tested on the original test set. Results
for each language were calculated as the average
over these 20 folds. The hyper parameters for all
languages were tuned once on the English develop-
ment set to the values that yielded the best average
results across the 20 training samples.

9 Results

Fully Supervised Training Average results for
this setup are presented in table 1 (top). Unsur-
prisingly, UAS for second order parsing with basic
greedy inference (Algorithm 1, BGI) is very low, as
this model does not take information about partial
high order parts into account in its edge scores. We
hence do not report more results for this algorithm.

The table further reflects the accuracy/runtime
tradeoff provided by Algorithm 2 (basic greedy in-
ference with partial part predictions, BGI-PP): a
UAS degradation of 0.34% and 2.58% for first and
second order parsing respectively, with a runtime
improvement by factors of 1.01 and 2.4, respec-
tively. Employing beam search and post search im-
provements (BGI-PP+i+b) to compensate for error
propagation improves UAS but harms the runtime
gain: for example, the UAS gap in second order
parsing is 1.01% while the speedup factor is 1.43.

As discussed in footnote 1 and Section 11, our
algorithm does not support the third-order parts of
the TurboParser. However, the average UAS of
the third-order TurboParser is 90.62% (only 0.36%
above second order TurboParser) and its TPS is
72.12 (almost 5 times slower).

The accuracy gaps according to UAS and undi-
rected UAS are similar, indicating that the source

716

Fully supervised Individual Models Ensemble Models
UAS TPS SARC U-UAS UAS TPS SARC U-UAS

TurboParser order1 87.98 5621.30 – 88.82 – – – –
order2 90.26 356.63 – 90.98 – – – –

BGI order1 83.78 5981.91 90.87 90.87 – – – –
order2 27.54 715.41 27.76 27.77 – – – –

BGI-PP order1 87.64 5680.60 97.15 88.53 88.03 2876.03 99.59 88.84
order2 87.68 858.25 92.66 88.73 90.50 249.40 99.54 91.20

BGI-PP + i order1 87.76 4648.4 98.10 88.64 87.96 2557.00 99.47 88.80
order2 88.98 639.97 94.40 89.81 90.50 297.10 99.43 91.19

BGI-PP + i + b order1 87.78 3253.80 98.29 88.73 87.91 2053.00 99.07 88.82
order2 89.25 511.47 94.79 90.02 90.53 212.40 99.40 91.21

(a) The fully supervised setup.

Minimally supervised Individual Models Ensemble Models
UAS TPS SARC U-UAS UAS TPS SARC U-UAS

TurboParser order1 78.99 13097.00 – 80.38 – – –
order2 80.52 830.05 – 81.84 – – –

BGI-PP order1 78.76 13848.00 85.36 80.15 79.14 6499.00 87.36 80.50
order2 78.80 3089.40 84.59 80.27 80.60 636.30 95.57 81.88

BGI-PP + i order1 78.87 11673.00 85.54 80.25 79.24 6516.00 87.55 80.59
order2 79.36 2414.00 84.81 80.76 80.67 621.50 95.41 82.16

BGI-PP + i + b order1 78.91 4212.50 85.58 80.29 79.29 4349.00 87.61 80.62
order2 79.45 1372.70 84.89 80.84 80.69 518.10 95.44 81.96

(b) The minimally supervised setup.

Table 1: Results for the fully supervised (top table) and minimally supervised (bottom table) setups. The left column
section of each table is for individual models while the right column section is for ensemble models (Section 7). BGI-
PP is the basic greedy inference algorithm with partial part predictions, +i indicates post-search improvements and
+b indicates beam search (Section 6). The Tokens per Second (TPS) measure for the ensemble models reports the
additional inference time over the TurboParser inference. All scores are averaged across individual languages.

of differences between the parsers is not arc direc-
tionality. The percentage of arcs shared between
the parsers increases with model complexity but is
still as low as 94.79% for BGI-PP+i+b in second or-
der parsing. In this setup, gold(BGI-PP+i+b, Tur-
boParser) = (1.6%,2.6%) which supports the devel-
opment data pattern reported in Section 6 and further
justifies an ensemble approach.

The right column section of the table indeed
shows consistent improvements of the ensemble
models over the TurboParser for second order pars-
ing: the ensemble models achieve UAS of 90.5-
90.53% compared to 90.26% of the TurboParser.
Naturally, running the TurboParser alone is faster by
a factor of 1.67. Like for the individual inference
algorithms, the undirected UAS measure indicates
that the gain does not come from arc directionality
improvements. The ensemble methods share almost
all of their arcs with the TurboParser, but in cases of
disagreement ensembles tend to be more accurate.

Table 2 complements our results, providing UAS
values for each of the 8 languages participat-
ing in this setup. The UAS difference between

BGI+PP+i+b and the TurboParser are (+0.24)-(-
0.71) in first order parsing and (+0.18)-(-2.46) in
second order parsing. In the latter case, combining
these two models (BGI+PP+i+b+e) yields improve-
ments over the TurboParser in 6 out of 8 languages.

Minimally Supervised Training Results for this
setup are in table 1 (bottom). While result pat-
terns are very similar to the fully supervised case,
two observations are worth mentioning. First,
the percentage of arcs shared by our algorithms
and the original parser is much lower than in
the fully supervised case. This is true also for
shared gold arcs: gold(BGI-PP+b+i,TurboParser) =
(4.86%,5.92%) for second order parsing. This sug-
gests that more sophisticated ensemble techniques
may be useful in this setup.

Second, ensemble modeling improves UAS over
the TurboParser also for first order parsing, lead-
ing to a gain of 0.3% in UAS for the BGI+i+b
ensemble (79.29% vs. 78.99%). As the percent-
age of shared arcs between the ensemble mod-
els and the TurboParser is particularly low in first
order parsing, as well as the shared gold arcs

717

language First Order Second Order
TurboParser BGI-PP BGI-PP BGI-PP TurboParser BGI-PP BGI-PP BGI-PP

+ i + b + i + b + e + i + b + i + b + e
swedish 87.12 86.35 86.93 87.12 88.65 86.14 87.85 89.29
bulgarian 90.66 90.22 90.42 90.66 92.43 89.73 91.50 92.58
chinese 84.88 83.89 84.17 84.17 86.53 81.33 85.18 86.59
czech 83.53 83.46 83.44 83.44 86.35 84.91 86.26 87.50
dutch 88.48 88.56 88.43 88.43 91.30 89.64 90.49 91.34
japanese 93.03 93.18 93.27 93.27 93.83 93.78 94.01 94.01
catalan 88.94 88.50 88.67 88.93 92.25 89.3 90.46 92.24
english 87.18 86.94 86.84 87.18 90.70 86.52 88.24 90.66

Table 2: Per language UAS for the fully supervised setup. Model names are as in Table 1, ‘e’ stands for ensemble.
Best results for each language and parsing model order are highlighted in bold.

(gold(BGI+i+b,TurboParser) = (4.98%,5.5%)), im-
proving the ensemble techniques is a promising fu-
ture research direction.

10 Related Work

Our work brings together ideas that have been con-
sidered in past, although in different forms.

Greedy Inference Goldberg and Elhadad (2010)
introduced an easy-first, greedy, approach to depen-
dency parsing. Their algorithm adds at each iteration
the best candidate arc, in contrast to the left to right
ordering of standard transition based parsers. This
work is extended at (Tratz and Hovy, 2011; Gold-
berg and Nivre, ; Goldberg and Nivre, 2013).

The easy-first parser consists of a feature set and
a specialized variant of the structured perceptron
training algorithm, both dedicated to greedy infer-
ence. In contrast, we show that a variant of the Tur-
boParser that employs Algorithm 2 for inference and
is trained with its standard global training algorithm,
performs very similarly to the same parser that em-
ploys dual decomposition inference.

Error Propagation in Deterministic Parsing
Since deterministic algorithms are standard in
transition-based parsing, the error-propagation prob-
lem has been dealt with in that context. Various
methods were employed, with beam search being a
prominent idea (Sagae and Lavie, 2006; Titov and
Henderson, 2007; Zhang and Clark, 2008; Huang et
al., 2009; Zhang and Nivre, 2011; Bohnet and Nivre,
2012; Choi and McCallum, 2013b, inter alia).

Post Search Improvements Several previous
works employed post-search improvements tech-
niques. Like in our case, these techniques improve

the tree induced by an initial, possibly more princi-
pled, search technique through local, greedy steps.

McDonald and Pereira (2006) proposed to ap-
proximate high-order graph-based non-projective
parsing, by arc-swap iterations over a previously in-
duced projective tree. Levi et al. (2016) proposed
a post-search improvements method, different than
ours, to compensate for errors of their graph-based,
undirected inference algorithm. Finally, Zhang et
al. (2014a) demonstrated that multiple random ini-
tialization followed by local improvements with re-
spect to a high-order parsing objective result in ex-
cellent parsing performance. Their algorithm, how-
ever, shouldbhhb employ hundreds of random ini-
tializations in order to provide state-of-the-art re-
sults.

Ensemble Approaches Finally, several previous
works combined dependency parsers. These include
Nivre and McDonald (2008) who used the output
of one parser to provide features for another, Zhang
and Clark (2008) that proposed a beam-search based
parser that combines two parsers into a single sys-
tem for training and inference, and Martins et al.
(2008) that employed stacked learning, in which a
second predictor is trained to improve the perfor-
mance of the first. Our work complements these
works by integrating information from a pre-trained
TurboParser in our algorithm at test time only.

11 Discussion

We presented a greedy inference approach for
graph-based, high-order, non-projective dependency
parsing. Our experiments with 17 languages show
that our simple and easy to implement algorithm is a
decent alternative for dual-decomposition inference.

A major limitation of our algorithm is in-

718

cluding information from parts that require a
given set of arcs not to be included in the de-
pendency tree (footnote 1). For example, the
nextSibling((1, 2), (1, 5)) part of the TurboParser
would fire iff the tree includes the arcs (1, 2) and
(1, 5) but not the arcs (1, 3) and (1, 4).

In order to account for such parts, we should de-
cide how to compute their probabilities and, addi-
tionally, at which point they are considered part of
the tree. We explored several approaches, but failed
to improve our results. Hence, we did not experi-
ment with the third-order TurboParser as all of its
third-order parts contain ”non-included” arcs. This
is left for future work.

A Runtime Complexity Analysis

Here we analyze the complexity of our algorithms,
denoting the maximal indegree of a vertex with nin.

Algorithm 1 Algorithm 1 consists of two nested
loops (lines 2-k3) and hence lines 4-11 are repeated
O (n× |E|) = O(n×n×nin) times. At each repe-
tition, loss (lines 6-10) and gain (lines 4-5) values
are computed. Afterwards the graph’s data struc-
tures are updated (lines 13-16).

For every arc that we examine (line 3), there are
O(nin) lost arcs, as there are O(nin) incoming arcs
(set 1) and O(nin) cycles to break (set 2). Since
every lost arc translates to a set of lost parts, we
can avoid repeating computations by storing the par-
tial loss of every arc in a data structure (DS): e →∑

part:e∈partwpart. Now, instead of summing all
the lost parts, (every edge participates in O(nk−1in)
parts,6 thus there are O(nkin) lost parts per added
arc), we can sum only O(nin) partial loss values.
However, since some lost parts may contain an arc
from set 1 and an arc from set 2, we need to sub-
tract the values that were summed twice, this can be
done in O(min{nk−1in , n2in}) time by holding a sec-
ond DS: e1 × e2 →

∑
part:e1∈part∧e2∈partwpart.

7

In order to efficiently compute the gain values, we
hold a mapping from arcs to the sum of weights of
parts that can be completed in the current iteration
by adding the arc to the tree. With this DS, gain val-

6Assuming that a part is a connected component.
7For first order parsing this is not needed; for second order

parsing it is done in O(nin) time.

ues can be computed in constant time. In total, the
runtime of lines 4-11 is O(nin +min{nk−1in , n2in}).

The DSs are initialized in O(|parts| × k) time.
Since every part is deleted at most once, and gets
updated (its arcs are added to the tree) at most k
times, the total DS update time is O(k × |parts|) =
O(nk+1

in). Thus algorithm 1 runs in O(|parts|×k+
n2 × nin × (nin +min{nk−1in , n2in})) time.

Algorithm 2 Algorithm 2 is similar in structure
to Algorithm 1 but the loss and gain computations
are more complex. To facilitate efficiency, we hold
two DSs: (a) a mapping from arcs to the sum of
lost parts values, which are now wpart × Ppart for
part ∈ parts; and (b) a mapping from arc pairs
to the sum of part values for parts that contain both
arcs. The loss and gain values can be computed, as
above, in O(nin +min{nk−1in , n2in}) time.

The initialization of the DSs takes O(|parts|×k)
time. In the i-th iteration we add e = (u, v) to
T i, and remove the lostArcs from E. Every lost
arc participates in O(nk−1in) parts, and we need to
update O(k) entries for each lost part in DS(a) (as
the value of the other arcs of that part should no
longer account for that part’s weight) and O(k2) en-
tries in DS (b). Thus, the total update time of the
DSs is O(nkin × k2) and the total runtime of Algo-
rithm 2 is O(nk+1

in × k + n × (n × nin × (nin +
min{n2in, nk−1in })+nkin×k2)). For unpruned graphs
and k ≥ 2 this is equivalent to O(nk+1), the theo-
retical runtime of the TurboParser’s dual decompo-
sition inference algorithm.

Acknowledgments

The third author was partly supported by a research
grant from the Microsoft/Technion research center
for electronic commerce: Context Sensitive Sen-
tence Understanding for Natural Language Process-
ing.

References
Mariana SC Almeida, Cláudia Pinto, Helena Figueira,

Pedro Mendes, and André FT Martins. 2015. Align-
ing opinions: Cross-lingual opinion mining with de-
pendencies. In ACL.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Pro-

719

ceedings of EMNLP-CoNLL. Association for Compu-
tational Linguistics.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x shared
task on multilingual dependency parsing. In CoNLL.

Xavier Carreras. 2007. Experiments with a higher-order
projective dependency parser. In EMNLP-CoNLL.

Jinho D Choi and Andrew McCallum. 2013a.
Transition-based dependency parsing with selectional
branching. In ACL.

Jinho D Choi and Andrew McCallum. 2013b.
Transition-based dependency parsing with selectional
branching. In ACL.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-
Shwartz, and Yoram Singer. 2006. Online passive-
aggressive algorithms. The Journal of Machine Learn-
ing Research, 7:551–585.

J. Edmonds. 1967. Optimum branchings. Journal of Re-
search of the National Bureau of Standards, 71B:233–
240.

Jason Eisner. 1996. Efficient normal-form parsing for
combinatory categorial grammar. In ACL.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In NAACL-HLT.

Yoav Goldberg and Joakim Nivre. A dynamic oracle for
arc-eager dependency parsing. In COLING.

Yoav Goldberg and Joakim Nivre. 2013. Training
deterministic parsers with non-deterministic oracles.
Transactions of the Association for Computational
Linguistics, 1(Oct):403–414.

Matthew Gormley, Mark Dredze, and Jason Eisner. 2015.
Approximation-aware dependency parsing by belief
propagation. Transactions of the Association for Com-
putational Linguistics, 3:489–501.

Matthew Honnibal, Yoav Goldberg, and Mark Johnson.
2013. A non-monotonic arc-eager transition system
for dependency parsing. In CoNLL.

Liang Huang, Wenbin Jiang, and Qun Liu. 2009.
Bilingually-constrained (monolingual) shift-reduce
parsing. In EMNLP.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In ACL.

Effi Levi, Roi Reichart, and Ari Rappoport. 2016. Edge-
linear first-order dependency parsing with undirected
minimum spanning tree inference. In ACL.

Omer Levy and Yoav Goldberg. 2014. Neural word em-
bedding as implicit matrix factorization. In NIPS.

André FT Martins, Dipanjan Das, Noah A Smith, and
Eric P Xing. 2008. Stacking dependency parsers. In
EMNLP.

A. Martins, M. Almeida, and N. A. Smith. 2013. Turn-
ing on the turbo: Fast third-order non-projective turbo
parsers. In ACL.

Ryan McDonald and Fernando Pereira. 2006. On-
line learning of approximate dependency parsing al-
gorithms. In EACL.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic. 2005. Non-projective dependency parsing
using spanning tree algorithms. In HLT-EMNLP.

Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007.
The conll 2007 shared task on dependency parsing.
In Proceedings of the CoNLL shared task session of
EMNLP-CoNLL.

Joakim Nivre and Ryan McDonald. 2008. Integrating
graph-based and transition-based dependency parsers.
In ACL-08: HLT, June.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,
Gülsen Eryigit, Sandra Kübler, Svetoslav Marinov,
and Erwin Marsi. 2007. Maltparser: A language-
independent system for data-driven dependency pars-
ing. Natural Language Engineering, 13(02):95–135.

Sebastian Riedel, David Smith, and Andrew McCallum.
2012. Parse, price and cut – delayed column and
row generation for graph based parsers. In EMNLP-
CoNLL.

Kenji Sagae and Alon Lavie. 2006. A best-first prob-
abilistic shift-reduce parser. In Proc. of the COL-
ING/ACL on Main conference poster sessions.

David Smith and Jason Eisner. 2008. Dependency pars-
ing by belief propagation. In EMNLP.

Ivan Titov and James Henderson. 2007. Fast and robust
multilingual dependency parsing with a generative la-
tent variable model. In EMNLP-CoNLL.

Stephen Tratz and Eduard Hovy. 2011. A fast, accu-
rate, non-projective, semantically-enriched parser. In
EMNLP.

Fei Wu and Daniel S Weld. 2010. Open information
extraction using wikipedia. In ACL.

Yue Zhang and Stephen Clark. 2008. A tale of
two parsers: Investigating and combining graph-based
and transition-based dependency parsing using beam-
search. In EMNLP.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
ACL.

Yuan Zhang, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2014a. Greed is good if randomized: New
inference for dependency parsing. In EMNLP.

Yuan Zhang, Tao Lei, Regina Barzilay, Tommi Jaakkola,
and Amir Globerson. 2014b. Steps to excellence:
Simple inference with refined scoring of dependency
trees. In ACL.

720

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 721–730,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Generating Abbreviations for Chinese Named Entities Using Recurrent
Neural Network with Dynamic Dictionary

Qi Zhang, Jin Qian, Ya Guo, Yaqian Zhou, Xuanjing Huang
Shanghai Key Laboratory of Data Science

School of Computer Science, Fudan University
Shanghai, P.R. China

{qz, jqian12, yguo13, zhouyaqian, xjhuang}@fudan.edu.cn

Abstract

Chinese named entities occur frequently in
formal and informal environments. Various
approaches have been formalized the problem
as a sequence labelling task and utilize a
character-based methodology, in which char-
acter is treated as the basic classification unit.
One of the main drawbacks of these methods
is that some of the generated abbreviations
may not follow the conventional wisdom of
Chinese. To address this problem, we pro-
pose a novel neural network architecture to
perform task. It combines recurrent neural
network (RNN) with an architecture determin-
ing whether a given sequence of characters
can be a word or not. For demonstrating
the effectiveness of the proposed method, we
evaluate it on Chinese named entity generation
and opinion target extraction tasks. Experi-
mental results show that the proposed method
can achieve better performance than state-of-
the-art methods.

1 Introduction

Abbreviations of Chinese named entities are fre-
quently used on different kinds of environments.
Along with the development of social media, this
kinds of circumstance occurs more frequently. Un-
like western languages such as English, Chinese
does not insert spaces between words or word forms
that undergo morphological alternations. Hence,
most of the Chinese natural language processing
methods assume a Chinese word segmenter is used
in a pre-processing step to produce word-segmented
Chinese sentences as input. However, if the Chinese

word segmenter produces erroneous output, the
quality of these methods will be degraded as a direct
result. Moreover, since the word segmenter may
split the targets into two individual words, many
methods adopted character-based methodologies,
such as methods for named entity recognition (Wu
et al., 2005), aspect-based opinion mining (Xu et al.,
2014), and so on.

Through character-based methodology, most of
the previous abbreviation generation approaches
have been formalized as sequence labelling prob-
lem. Chinese characters are treated as the basic
classification unit and are classified one by one.
In these methods, dictionaries play important effect
in constructing features and avoiding meaningless
outputs. Various previous works have demonstrated
the significant positive effectiveness of the external
dictionary (Zhang et al., 2010). However, because
these external dictionaries are usually static and pre-
constructed, one of the main drawbacks of these
methods is that the words which are not included
in the dictionaries cannot be well processed. This
issue has also been mentioned by numerous previous
works (Peng et al., 2004; Liu et al., 2012).

Hence, understanding how Chinese words are
constructed can benefit a variety of Chinese NLP
tasks to avoid meaningless output. For example,
to generate the abbreviation for a named entity, we
can use a binary classifier to determine whether a
character should be removed or retained. Both “国
航” and “中国国航” are appropriate abbreviations
for “中国国际航空公司(Air China)”. However
“国航司” is not a Chinese word and cannot be
understood by humans.

721

tt-1 t+1

yt

st

ct

mt

W

V

U
Fs

Fy

Output
Layer

Hidden
Layer

Feature
Layer

Input
Layer

mi
t mi+1

tmi−1
t

RADD RADDRADD

... ...

tt-1 t+1

... ...

mt generation

Figure 1: The architecture of RNN with dynamic dictionary.

Thus we are motivated to study the task of
“dynamic dictionary” and integrating it with se-
quence labelling model to perform the abbreviation
generation task. Dynamic dictionary denotes a
binary classification problem which tries to deter-
mine whether or not a given sequence of characters
is a word. Although human can use implicit
knowledge to easily recognize whether an unseen
text segment is a word or not at first glance,
the task is not as easy as it may seem. First,
Chinese has a different morphological system from
English. Each Chinese character represents both
a syllable and a morpheme (McBride-Chang et
al., 2003). Hence, Chinese script is sometimes
described as being morphosyllabic. Second, there
are many homophones in Chinese. This means that
characters that have very different written forms
may sound identical. Third, there are a huge number
of Chinese words. Without taking the implicit
knowledge of morphology into consideration, an
arbitrary sequence of characters can be used as a
name. In Mandarin, there are approximately 7,000
characters in daily use. Hence, determining whether
a given sequence of characters is a word or not is an
challenging task.

Since the length of Chinese words is variable, in
this paper, we propose a modified recurrent architec-
ture to model the dynamic dictionary construction
task. For processing sequence labelling tasks,
we also combine the proposed method with RNN.
Since the proposed dynamic dictionary model can

be pre-trained independently with extensive domain
independent dictionaries, the combined model can
be easily used in different domains. The proposed
model can take advantage of both the sequence-
level discrimination ability of RNN and the ability
of external dictionary.

The main contributions of this work can be
summarized as follows:

• We define the dynamic dictionary problem and
construct a large dataset, which consists of
more than 20 million words for training and
evaluation.

• We integrate RNN with a deep feedforward
network based dynamic dictionary learning
method for processing Chinese NLP tasks
which are formalized as sequence labelling
tasks.

• Experimental results demonstrate that the accu-
racy of the proposed method can achieve better
results than current state-of-the-arts methods
on two different tasks.

2 Model Architecture

2.1 Dynamic Dictionary

The task of dynamic dictionary is to predict whether
a given sequence of characters can be a word or
not. The input is a text segment, which contains
a variable number of characters. The output is an

722

...

...

nn-1n-2...1

y

sn

cn

W

V

U

Figure 2: The recurrent architecture used in this work for

modelling dynamic dictionary (RADD).

binary value. It is different from the traditional
sequence classification tasks, whose the number of
outputs are usually same as the input. However, the
information of the whole sequence is an important
factor and should be incorporated. Hence, in this
work, we use a modified recurrent architecture
(RADD is used to represent the network in the
following literature for short), which is shown in
Fig.2.

In Fig.2, n represents the number of characters of
the input text segment. ck represents input character
at time k encoded using embeddings of characters
through table lookup. The hidden layer sk maintains
the past and current information. The hidden
activations of the last step sn could be considered
as the representation of the whole text segment. sn
is used as the input to the classification layer. y
produces a probability distribution over the binary
labels. Each layer is also represents a set of neurons.
Layers are also connected with weights denoted by
the matrices U, W, and V. The values in the hidden
and output layers are calculated as follows:

sk = f(Uck +Wsk−1)

y = f(Vsn) (1)

where f(·) is sigmoid activation function f(z) =
1

1+exp−z . The architecture can be unfolded as a deep
feedforward network.

We define all the parameters for the stage of
modelling dynamic dictionary to be trained as θ =
(W,U, V). Given an input text segment, the
network with parameter θ outputs the probability,
p(1|x, θ), of the given text segment can be a
word or not. Cross entropy criterion is used as

the loss function O of the binary classification
problem. The network is trained by stochastic
gradient descent using backpropagation through
time (BPTT) (Werbos, 1990). The hidden layer
activation of position i at time t, sit, is:

sit = f(ait), (2)

ait =
∑

j

uijc
j
t +

∑

l

wils
l
t−1. (3)

The error firstly propagates from output layer to
hidden layer of last time step N . The derivatives
with respect to the hidden active of position i at the
last time step N can be calculated as follows:

δiN = f ′(aiN)
∂O

y
vi, (4)

where vi represents the weight of hidden-output
connection and the activation of the output layer y.
The gradients of hidden layer of previous time steps
can be recursively computed as:

δit = f ′(ait)
∑

j

δjt+1wij . (5)

Given all (suppose the number is T) the training
examples (xi, yi), we can then define the objective
function as follows:

J(θ) =

T∑

i=1

logp(y(i)|x(i), θ). (6)

To compute the network parameter θ, we max-
imize the log likelihood J(θ) through stochastic
gradient decent over shuffled mini-batches with the
Adadelta(Zeiler, 2012) update rule.

2.2 RNN-RADD
As mentioned in the previous section, features
extracted from external dictionary have been empir-
ically proved to be useful for Chinese NLP various
tasks. However, since these external dictionaries
are usually pre-constructed, the out-of-vocabulary
problem may impact the performance. Hence, we in
this work propose to use RNN to determine whether
a given sequence of characters is a word or not.
Then the proposed RADD is incorporated into RNN
(RNN-RADD is used as the abbreviation of the
combined model).

723

2-gram
ct−2ct−1, ct−2ct−1, ct−1ct
ctct+i, ct+1ct+2

3-gram ct−2ct−1ct, ct−1ctct+1, ctct+1ct+2

4-gram ct−2ct−1ctct+1, ct−1ctct+1ct+2

Table 1: Illustration of the templates used to generate mt.

RNN-RADD also follows the character based
methodology. Hence, the basic units of RNN-
RADD are Chinese characters. The architecture
is illustrated in Fig. 1, where ct denotes the input
character at time t encoded using dense distributed
representation. The hidden layer st also maintains
the history of the character sequence. yt denotes the
probability distribution over labels. mt represents
the features generated through RADD. Following
previous works, we construct a number of text
segments from the contexts of the character based
on pre-defined templates. The templates used in
this work is shown in the Table. For an input text
segment, RADD generates a binary value to indicate
whether or not the text segment is a word a not. mtj

represents the value of the output corresponding to
the jth template for the tth character. Each layer
represents a set of neurons. Layers are connected
with weights denoted by the matrices U, W, V, Fs,
and Fy.

The values in the hidden and output layers in the
RNN-RADD can be expressed as follows:

st = f(Uct + Fsmt +Wst−1), (7)

yt = g(Vst + Fymt).

Since RAD is trained separately with large scale
domain independent dictionaries. In this work, the
weight matrices of the RNN-RADD are updated
with the similar way as RNN. The error loss function
is computed via cross entropy criterion. The
parameters are trained by stochastic gradient descent
using BPTT. In order to speed up training process,
the mt and character embeddings are keep statistic,
during the training procedure.

2.3 Learning Method
Based on the Eq.(3) and Eq.(4), Log-scale objective
functionsQ(θ) of RNN-RADD can be calculated as:

Q(θ) =

T∑

t=1

(ηay∗t−1y
∗
t
+ z

y∗t
t − logZR−CRF).

To update the label transition weights, we compute
gradients as follows:

∂Q(θ)

∂aji
= η

∑

t

δ(yt−1 = j, yt = i)

− η
∑

t

(
αj
t−1β

i
texp(ηaji + zti)∑

j α
j
tβ

j
t

),

where αi
t−1 is the sum of partial path scores ending

at position t−1, with label i, which can be computed
as follows:

αi
t−1 = exp(zit−1)

∑

j

αj
t−2exp(ηaji).

βjt is the sum of partial path scores starting at
position t, with label j and exclusive of observation
t, which can be computed as follows:

βjt =
∑

q

βqt+1exp(ηajq + zjt+1).

The model parameters θ are updated using stochastic
gradient ascent (SGA) over the training data multi-
ple passes.

3 Experiments

To demonstrate the effectiveness of the proposed
method, we first compared the proposed RNN-based
dynamic dictionary construction method against
several baseline methods on the task. Then, we
evaluated the performance of the proposed method
on two Chinese natural language processing tasks:
Chinese word segmentation, and opinion target
extraction.

3.1 Experimental Settings
To generate the distributed representations for Chi-
nese characters, we use the method similar to Skip-
ngram (Mikolov et al., 2013), which has been suc-
cessfully employed in comparable tasks. However,

724

in this work, characters were considered the basic
units of data, and the toolkit was provided by the
authors1. We used Sogou news corpus (SogouCA2),
which consists of news articles belonging to 18
different domains published from June 2012 to July
2012, as the training data to optimize the distributed
representations of Chinese characters. After several
experiments on development, we decided to set
the dimension of the character embedding to 200.
Through several evaluations on the validation set, in
both RNN-RAD and RAD, the hidden layer size is
set to 50.

3.2 Learning Chinese Dynamic Dictionary

For training and testing the proposed dynamic
dictionary method, we constructed a dataset by
collecting words and names from publicly available
resources belonging to different domains, including
a Chinese dictionary3, an English-Chinese bilin-
gual wordlist4, Baidu Baike5, the Chinese Domain
Dictionary6, and the Chinese person names list7.
After removing duplicates, the dataset contains
11,406,995 words in total. Based on the statics of
the dictionary we used, about 80.6% of Chinese
person names are three characters, and words with
two characters comprise the majority of the normal
Chinese dictionary. Since some sources contain
corporation and organization names, there are also
a number of words whose lengths are longer than
ten characters. However, in all sources, most of the
words are less than five characters.

We randomly selected 50,000 items for use as
test data and an additional 50,000 items for use as
development data for tuning parameters. In addition
to these positive examples, for training and testing,
we also needed negative examples, so we extracted
bigrams, trigrams, 4-grams, and 5-grams from the
SogouCA Then, we randomly extracted a number
of n-grams which were not included in the collected
word lists described above as negative training data.
We treat these n-grams as negative results. For

1https://code.google.com/p/word2vec/
2http://www.sogou.com/labs/dl/ca.html
3http://download.csdn.net/detail/logken/3575376
4https://catalog.ldc.upenn.edu/LDC2002L27
5http://baike.baidu.com
6http://www.datatang.com/data/44250/
7http://www.datatang.com/data/13482

training, testing, and development, we randomly
selected 20 million, 50,000, and 50,000 n-grams
respectively.

Besides the proposed RADD method, we also
evaluated some state-of-the-art supervised methods,
including:

Support Vector Machine (SVM) is one of the most
common supervised methods and has been success-
fully used for various tasks (Hearst et al., 1998).
Hence, in this work, we also evaluated its perfor-
mance on the same task. We used the characters as
features to construct the vector representation. Since
the number of Chinese characters is limited, we used
all of the characters existing in the training data. We
used LIBSVM to implement (Chang and Lin, 2011).

Conditional Random Fields (CRFs) were pro-
posed by Lafferty et al. (2001) to model sequence
labeling tasks. According to the description given in
§2.2, an NLP task can be converted into a sequence
labeling problem. Hence, we used CRF to model
characters as basic features and several combination
templates of them. Compared to SVM, CRF takes
both richer features and the labeling sequence into
consideration. CRF++ 0.588 was used to do the
experiments.

Dynamic Convolutional Neural Network
(DCNN), defined by Kalchbrenner et al. (2014), is
used to model sentence semantics. The proposed
method can handle input sequences of varying
length, so we adopted their method by using the
embeddings of characters as input. The toolkit we
used in this work is provided by the authors9.

Recursive Autoencoder (RAE) (Socher et al.,
2011), is a machine learning framework for
representing variable sized words with a fixed
length vector. In this work, we used greedy
unsupervised RAE for modeling sequences of
Chinese characters. The toolkit was provided by the
authors 10. Then, SVM was used to do the binary
classification based on the generated vectors.

Table 3.2 illustrates the results of the different
methods on this task. From the results, we see
that the proposed method obtains the best perfor-

8http://crfpp.googlecode.com/svn/trunk/doc/index.html
9http://nal.co/DCNN

10http://www.socher.org/

725

Methods P R F1
SVM 82.27% 84.74% 83.49%
CRF 80.81% 86.82% 83.71%

DCNN 86.86% 86.55% 86.71%
RAE 84.77% 85.45% 85.11%

RADD 89.74% 91.00% 90.39%
Table 2: Comparison of different methods on the dynamic

dictionary construction task.

mance among all of the approaches. DCNN, RAE,
and RADD outperform SVM and CRF, which use
characters as features. One possible reason is that
the character representations are more powerful in
capturing morphology than characters only. Another
advantage of the deep learning framework is that it
can be easily trained and makes feature engineering
efforts unnecessary.

We also note that although DCNN can capture
word relations of varying size in modelling sen-
tences, RADD achieves better performance on the
task of learning the morphology of Chinese. One
possible interpretation is that although the relations
between words in a given sentence can be well
captured by DCNN, relations usually exist between
nearby characters hence the recurrent network is
more appropriate for the task. Moreover, RADD is
much easier to implement and is more efficient than
DCNN.

Fig. 3 shows the performance of RADD with dif-
ferent character embedding dimensions and hidden
layer sizes. From the figure, we see that RADD
achieves the best result when the hidden layer size
is larger than 200. We also observe that RNN can
achieve the highest performance with many different
parameters. This means that we can easily find
optimal hyper parameters.

3.3 Experimental Results

3.3.1 Abbreviation Generation
The task of generating entity abbreviations in-

volves producing abbreviated equivalents of the
original entities. For example, 北大 is an
abbreviation of 北京大学 (Peking University).
Previous methods usually formulate the task as
a sequence labeling problem and model it using
character features (Yang et al., 2009; Xie et al.,

50

100

200
86.0%

87.0%

88.0%

89.0%

90.0%

91.0%

50

100

200

300

F1
 S

co
re

Figure 3: The results of RAD with different character

embedding dimension and hidden layer size.

2011). Although Chen et al. (2013) proposed to
use Markov logic networks (MLN) (Richardson
and Domingos, 2006) to combine local and global
constraints, the morphology of Chinese was rarely
considered.

In this work, we report the performance of
“RNN-RADD”, which takes the dynamic Chinese
dictionary into consideration, on the dataset con-
structed by Chen et al. (2013). The dataset contains
50,232 entity abbreviation pairs. They also reported
the performance achieved by their method on the
dataset. We follow the strategy used by Chen et
al. (2013) to generate training and test data. 75% of
randomly selected pairs are used for training data,
5% for development, and the other 20% are used for
testing purposes.

For comparison, we also report results achieved
by the state-of-the-art methods. Yang et al. (2009)
transferred the abbreviation generation method into
a sequence labeling problem and proposed to use
CRF to model it with several linguistic features.
Chen et al. (2013) introduced local and position
features and proposed to use MLN to achieve the
task. We directly reference and report the results
achieved by these methods on the dataset.

Table 3.3.1 shows the relative performances of
the different methods. “SVM” and “RNN” denote
the results of SVM and RNN on the sequence
labeling problem, respectively. From the results,
we see that RNN-RADD achieves the best result
among all the methods. The relative improvement

726

Methods Accuracy
CRFs-Yang (Yang et al., 2009) 39.70%
CRFs-LF+DPF (Chen et al., 2013) 40.60%
MLN (Chen et al., 2013) 56.80%
SVM 40.00%
RNN 60.65%
RNN-RADD 65.98%

Table 3: Performance of different methods on abbreviation

generation task. CRFs-Yang represents the method and feature

sets proposed by Yang et al. (2009). CRF-LF+DPF denotes the

local and position features introduced by Chen et al. (2013).

MLN represents the method incorporating local and global

constraints with MLN.

of it over the previous best result achieved by
MLN is about 16.2%. Comparing the performance
of RNN-RADD with RNN, we also observe that
the dynamic dictionary of Chinese can benefit
the abbreviation generation task. The relative
improvement is approximately 7.3%.

Fig. 4 shows the values of log-scale objective
function of RNN and RNN-RADD during training
on the data set. From this figure, we can conclude
that the RNN based dynamic dictionary can ben-
efit the task. Although additional feature vector
mi is included, the absolutely value of objective
function is lower than its of RNN. It can in some
degree demonstrate the effectiveness of the proposed
method.

RNN
RNN-RADD

Lo
ss

102

103

104

105

Epoch
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4: Comparison of RNN and RNN-RADD during

training on the abbreviation data set. The vertical axis is the

value of log-scale objective functions. Horizontal axis is the

number of epochs during training.

Sentences Targets
Training 59,786 40,227
Test 11,829 8,034
Development 4,061 2,673

Table 4: Statistics of the dataset used for the opinion target

extraction task.

3.3.2 Opinion Target Extraction
Opinion target extraction is a key subtask in the

fine-grained opinion mining problem. The goal of it
is to identify the items which opinions are expressed
on from the given sentences. For example:

The image quality of the camera is amazing.
The “image quality” is the opinion target of the
sentence. Previous methods studied the problem
from different perspectives using supervised and un-
supervised methods. Syntactic structure constituent
is one of the most common assumptions used by
previous works (Popescu and Etzioni, 2007; Qiu et
al., 2009; Wu et al., 2009; Xu et al., 2014). Since
these works usually use character level features,
meaningless text segments are one of the major error
types. Therefore, we integrate the dynamic Chinese
dictionary into this method to detect and discard
meaningless text segments.

To evaluate the proposed method, we used a
dataset containing more than 6,000 reviews, which
contains 75,676 sentences, about vehicles. The
opinion target and opinion words were manually
labeled. About 80% of the whole dataset is
randomly selected for training. 15% and 5% reviews
are selected as the test and development datasets
respectively. Details of the data are listed in
Table 3.3.2.

The task can also be modelled by sequence
labelling problem. Hence, besides the proposed
RNN-RADD method, we also evaluated some state-
of-the-art supervised methods, including: CRF,
SVM, and RNN. We used SVM and CRF under
the character-based methodology for comparison.
RNN is based on the character level embeddings.
Table 3.3.2 shows the results of the different meth-
ods on the opinion target extraction task. From
the results, we can see that, the proposed method
RNN-RADD achieve the best performance in F1
score. Comparing the results of RNN with RNN-
RADD, we see that the proposed dynamic dictionary

727

Methods P R F1
CRF 71.1% 77.5% 74.2%
CRF+D 72.5% 74.3% 73.4%
SVM 77.2% 74.9% 76.0%
SVM+D 78.1% 74.3% 76.2%
RNN 79.5% 81.7% 80.6%
RNN-RADD 85.5% 81.5% 83.4%

Table 5: Results of different methods on the opinion target

extraction task.

method can benefit the RNN based method. The
error reduction achieved by its incorporation is about
11.4%. From the results of CRF and CRF+D, we
can observe that dictionary is not always usefulness.
We think that the main reason that the dictionary
may bring too much conflict. From the results
of CRF and RNN, we can see that similar to the
Chinese word segmentation task, methods using
character dense representations can usually achieve
better performance than character based methods.

4 Related Work

Although dictionary can be manually constructed, it
is a time-consuming work. Moreover, these man-
ually constructed dictionaries are usually updated
only occasionally. It would take months before
it could be updated. Hence, automatic dictionary
construction methods have also been investigated
in recent years. Chang and Su (1997) proposed
an unsupervised iterative approach for extracting
out-of-vocabulary words from Chinese text corpora.
Khoo (Khoo et al., 2002) introduced a method based
on stepwise logistic regression to identify two-and
three-character words in Chinese text. Jin and
Wong (2002) incorporated local statistical informa-
tion, global statistical information and contextual
constraints to identify Chinese words. For collecting
Thai unknown words, Haruechaiyasak et al. (2006)
proposes a collaborative framework for achieving
the task based on Web pages over the Internet.

Except these unsupervised methods, there have
been other approaches requiring additional infor-
mation or selective input. Yarowsky and Wicen-
towski (2000) proposed to use labeled corpus to
train a supervised method for transforming past-
tense in English. Rogati et al. (2003) introduced
a stemming model based on statistical machine

translation for Arabic. They used a parallel corpus
to train the model. Luong et al. (2013) studied
the problem of word representations for rare and
complex words. They proposed to combine recur-
sive neural networks and neural language models to
build representations for morphologically complex
words from their morphemes. Since English is
usually considered limited in terms of morphology,
their method can handle unseen words, whose
representations could be constructed from vectors of
known morphemes.

However, most of the existing Chinese dictio-
nary construction methods focused on find out-
of-vocabulary words from corpus. In this paper,
we propose to transfer the dictionary construction
problem to classification task and use a modified
recurrent neutral network to directly model whether
a given sequences of characters is a word or not.

5 Conclusion

In this work, we studied the problem of dynamic dic-
tionary which tries to determine whether a sequence
of Chinese characters is a word or not. We proposed
a deep feed forward network architecture (RADD)
to model the problem and integrated it into RNN
method. To train the model and evaluate the ef-
fectiveness of the proposed method, we constructed
a dataset containing more than 11 million words.
By applying the proposed combined method to two
different Chinese NLP tasks, we can see that it
can achieve better performance than state-of-the-art
methods. Comparing to the previous methods, the
number of hyper parameters of the proposed method
RNN-RADD is small and less feature engineering
works are needed. In the future, we plan to integrate
the dynamic dictionary into the term construction
model in information retrieval.

6 Acknowledgement

The authors wish to thank the anonymous reviewers
for their helpful comments. This work was partially
funded by National Natural Science Foundation of
China (No. 61532011, 61473092, and 61472088),
the National High Technology Research and Devel-
opment Program of China (No. 2015AA015408).

728

References
Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM:

A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology,
2:27:1–27:27.

Jing-Shin Chang and Keh-Yih Su. 1997. An
unsupervised iterative method for chinese new lexicon
extraction. Computational Linguistics and Chinese
Language Processing, 2(2):97–148.

Huan Chen, Qi Zhang, Jin Qian, and Xuanjing Huang.
2013. Chinese named entity abbreviation generation
using first-order logic. In Proceedings of the Sixth
International Joint Conference on Natural Language
Processing.

Choochart Haruechaiyasak, Chatchawal
Sangkeettrakarn, Pornpimon Palingoon, Sarawoot
Kongyoung, and Chaianun Damrongrat. 2006.
A collaborative framework for collecting thai
unknown words from the web. In Proceedings of the
COLING/ACL.

Marti A. Hearst, ST Dumais, E Osman, John Platt,
and Bernhard Scholkopf. 1998. Support vector
machines. Intelligent Systems and their Applications,
IEEE, 13(4):18–28.

Honglan Jin and Kam-Fai Wong. 2002. A chinese
dictionary construction algorithm for information
retrieval. ACM Transactions on Asian Language
Information Processing (TALIP).

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of ACL.

Christopher SG Khoo, Yubin Dai, and Teck Ee Loh.
2002. Using statistical and contextual information
to identify two-and three-character words in chinese
text. Journal of the American Society for Information
Science and Technology, 53(5):365–377.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling
sequence data. In Proceedings of ICML.

Xiaohua Liu, Ming Zhou, Furu Wei, Zhongyang Fu, and
Xiangyang Zhou. 2012. Joint inference of named
entity recognition and normalization for tweets. In
Proceedings of ACL.

Minh-Thang Luong, Richard Socher, and Christopher D.
Manning. 2013. Better word representations with
recursive neural networks for morphology. In CoNLL,
Sofia, Bulgaria.

Catherine McBride-Chang, Hua Shu, Aibao Zhou,
Chun Pong Wat, and Richard K Wagner. 2003.
Morphological awareness uniquely predicts young
children’s chinese character recognition. Journal of
Educational Psychology, 95(4).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems,
pages 3111–3119.

Fuchun Peng, Fangfang Feng, and Andrew McCallum.
2004. Chinese segmentation and new word detection
using conditional random fields. In Proceedings of
the 20th international conference on Computational
Linguistics.

Ana-Maria Popescu and Orena Etzioni. 2007. Extracting
product features and opinions from reviews. In
Natural language processing and text mining, pages
9–28. Springer.

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen. 2009.
Expanding domain sentiment lexicon through double
propagation. In IJCAI, volume 9, pages 1199–1204.

Matthew Richardson and Pedro Domingos. 2006.
Markov logic networks. Machine Learning, 62(1-
2):107–136.

Monica Rogati, Scott McCarley, and Yiming Yang. 2003.
Unsupervised learning of arabic stemming using a
parallel corpus. In Proceedings of ACL 2003.

Richard Socher, Jeffrey Pennington, Eric H. Huang,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Semi-supervised recursive autoencoders for predicting
sentiment distributions. In Proceedings of the EMNLP
’11.

Paul J Werbos. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the
IEEE.

Youzheng Wu, Jun Zhao, Bo Xu, and Hao Yu. 2005.
Chinese named entity recognition based on multiple
features. In Proceedings of HLT/EMNLP.

Yuanbin Wu, Qi Zhang, Xuangjing Huang, and Lide Wu.
2009. Phrase dependency parsing for opinion mining.
In Proceedings of EMNLP.

Li-Xing Xie, Ya-Bin Zheng, Zhi-Yuan Liu, Mao-Song
Sun, and Can-Hui Wang. 2011. Extracting chinese
abbreviation-definition pairs from anchor texts. In
Machine Learning and Cybernetics (ICMLC).

Liheng Xu, Kang Liu, Siwei Lai, and Jun Zhao.
2014. Product feature mining: Semantic clues versus
syntactic constituents. In Proceedings of the 52nd
ACL.

Dong Yang, Yi-cheng Pan, and Sadaoki Furui. 2009.
Automatic chinese abbreviation generation using
conditional random field. In Proceedings of NAACL
2009.

David Yarowsky and Richard Wicentowski. 2000.
Minimally supervised morphological analysis by
multimodal alignment. In Proceedings of ACL.

Matthew D Zeiler. 2012. Adadelta: An adaptive learning
rate method. arXiv preprint arXiv:1212.5701.

729

Lei Zhang, Bing Liu, Suk Hwan Lim, and Eamonn
O’Brien-Strain. 2010. Extracting and ranking product
features in opinion documents. In Proceedings of
the 23rd international conference on computational
linguistics: Posters.

730

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 731–741,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Neural Network for Heterogeneous Annotations

Hongshen Chen∗†§ Yue Zhang ‡ Qun Liu♢†

†Key Laboratory of Intelligent Information Processing
Institute of Computing Technology, Chinese Academy of Sciences

§University of Chinese Academy of Sciences
‡Singapore University of Technology and Design

♢ ADAPT centre, School of Computing, Dublin City University
chenhongshen@ict.ac.cn, yue zhang@sutd.edu.sg

Abstract

Multiple treebanks annotated under heteroge-
neous standards give rise to the research ques-
tion of best utilizing multiple resources for im-
proving statistical models. Prior research has
focused on discrete models, leveraging stack-
ing and multi-view learning to address the
problem. In this paper, we empirically inves-
tigate heterogeneous annotations using neu-
ral network models, building a neural network
counterpart to discrete stacking and multi-
view learning, respectively, finding that neural
models have their unique advantages thanks to
the freedom from manual feature engineering.
Neural model achieves not only better accu-
racy improvements, but also an order of mag-
nitude faster speed compared to its discrete
baseline, adding little time cost compared to
a neural model trained on a single treebank.

1 Introduction

For many languages, multiple treebanks have been
annotated according to different guidelines. For ex-
ample, several linguistic theories have been used
for defining English dependency treebanks, includ-
ing Yamada and Matsumoto (2003), LTH (Johans-
son and Nugues, 2007) and Stanford dependencies
(De Marneffe et al., 2006). For German, there exist
TIGER (Brants et al., 2002) and TüBa-D/Z (Telljo-
hann et al., 2006). For Chinese, treebanks have been
made available under various segmentation granu-
larities (Sproat and Emerson, 2003; Emerson, 2005;
Xue, 2003). These give rise to the research problem

∗Work done when the first author was visiting SUTD.

of effectively making use of multiple treebanks un-
der heterogeneous annotations for improving output
accuracies (Jiang et al., 2015; Johansson, 2013; Li
et al., 2015).

The task has been tackled using two typical ap-
proaches. The first is based on stacking (Wolpert,
1992; Breiman, 1996; Wu et al., 2003). As shown in
Figure 1(a), the main idea is to have a model trained
using a source treebank, which is then used to guide
a target treebank model by offering source-style fea-
tures. This method has been used for leveraging two
different treebanks for word segmentation (Jiang et
al., 2009; Sun and Wan, 2012) and dependency pars-
ing (Nivre and McDonald, 2008; Johansson, 2013).

The second approach is based on multi-view
learning (Johansson, 2013; Li et al., 2015). The
idea is to address both annotation styles simul-
taneously by sharing common feature representa-
tions. In particular, Johansson (2013) trained depen-
dency parsers using the domain adaptation method
of Daumé III (2007), keeping a copy of shared fea-
tures and a separate copy of features for each tree-
bank. Li et al. (2015) trained POS taggers by cou-
pling the labelsets from two different treebanks into
a single combined labelset. A summary of such
multi-view methods is shown in Figure 1(b), which
demonstrates their main differences compared to
stacking (Figure 1(a)).

Recently, neural network has gained increasing
research attention, with highly competitive results
being reported for numerous NLP tasks, including
word segmentation (Zheng et al., 2013; Pei et al.,
2014; Chen et al., 2015), POS-tagging (Ma et al.,
2014; Plank et al., 2016), and parsing (Chen and

731

B model

A model

Train A model

Corpus A

Train B model

Corpus B Corpus B
& A labels

Output B

A model

B model

Raw
sentence Output A

Multi-view model

Train multi-view
model

Corpus A Corpus B

Output A

Multi-view model

Raw
sentence

Training

(a) stacking

(b) multi-view learning

Testing

Training

Testing Output B

Figure 1: Two main approaches to utilizing hetero-
geneous annotations.

Manning, 2014; Dyer et al., 2015; Weiss et al., 2015;
Zhou et al., 2015). On the other hand, the aforemen-
tioned methods on heterogeneous annotations are in-
vestigated mainly for discrete models. It remains an
interesting research question how effective multiple
treebanks can be utilized by neural NLP models, and
we aim to investigate this empirically.

We follow Li et al. (2015), taking POS-tagging
for case study, using the methods of Jiang et al.
(2009) and Li et al. (2015) as the discrete stacking
and multi-view training baselines, respectively, and
building neural network counterparts to their mod-
els for empirical comparison. The base tagger is
a neural CRF model (Huang et al., 2015; Lample
et al., 2016), which gives competitive accuracies to
discrete CRF taggers.

Results show that neural stacking allows deeper

integration of the source model beyond one-best out-
puts, and further the fine-tuning of the source model
during the target model training. In addition, the ad-
vantage of neural multi-view learning over its dis-
crete counterpart are many-fold. First, it is free
from the necessity of manual cross-labelset inter-
active feature engineering, which is far from triv-
ial for representing annotation correspondence (Li
et al., 2015). Second, compared to discrete model,
parameter sharing in deep neural network eliminates
the issue of exponential growth of search space, and
allows separated training of each label type, in the
same way as multi-task learning (Collobert et al.,
2011).

Our neural multi-view learning model achieves
not only better accuracy improvements, but
also an order of magnitude faster speed com-
pared to its discrete baseline, adding little time
cost compared to a neural model trained on
a single treebank. The C++ implementations
of our neural network stacking and multi-view
learning models are available under GPL, at
https://github.com/chenhongshen/NNHetSeq.

2 Baseline Neural Network Tagger

We adopt a neural CRF with a Long-Short-Term-
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) feature layer for baseline POS tagger. As
shown in Figure 2, the model consists of three main
neural layers: the input layer calculates dense rep-
resentation of input words using attention model on
character embeddings; the feature layer employs a
bi-directional LSTM model to extract non-local fea-
tures from input vectors; the output layer uses a
CRF structure to infer the most likely label for each
input word.

2.1 Input Layer

Given a sentence w(1:n), the input layer builds a vec-
tor representation r⃗i

w for each word wi based on both
word and character embeddings. In particular, an
embedding lookup table is used to convert vocabu-
lary words into their embedding forms directly. To
obtain a character based embedding of wi, we de-
note the character sequence of wi with c(1:n), where
cj is the jth character in wi.

A character lookup table is used to map each char-

732

Input layer

...

...

...

...

CRF layer

Feature

layer

...

...

...

...

...

...

...

...

...

...

...

...

...

Bi-

LSTM

Tanh

Linear

Output tags

w
1 w

2
w

n-1
w

n

Output

layer

...t
1

t
2

t
n-1

t
n

Figure 2: Baseline neural network tagger.

acter cj into a character embedding e⃗j
c. The char-

acter embeddings e⃗1
c , e⃗

2
c , ..., e⃗

m
c are combined using

an attention model(Bahdanau et al., 2015): w⃗i
c =∑m

j=1 aj
c ⊙ e⃗j

c, where aj
c is the weight for e⃗j

c, ⊙ is
the Hadamard product function, and

∑m
j=1 aj

c = 1.

Each aj
c is computed according to both the word

embedding vector and 5-character embedding win-
dow with the current character e⃗j

c in the middle:

aj
c =

tjc∑m
1 tjc

tjc =exp(Wth⃗j
c + Ute⃗i

w + b⃗t)

h⃗i
c =tanh

(
Wc(e⃗j−2

c ⊕ e⃗j−1
c ⊕ e⃗j

c ⊕ e⃗j+1
c

⊕ e⃗j+2
c) + b⃗c

)

Here ⊕ denotes vector concatenation and e⃗i
w is the

embedding of current word wi. Wt, Ut, Wc and b⃗t,
b⃗c are model parameters. Finally, w⃗i

c is concatenated
with word embedding to form final word represen-
tation r⃗i

w: r⃗i
w = e⃗i

w ⊕ w⃗i
c

2.2 Feature Layer

Recently, bi-directional LSTM has been success-
fully applied in various NLP tasks (Liu et al., 2015;
Zhou and Xu, 2015; Klerke et al., 2016; Plank et al.,
2016). The feature layer uses a bi-directional LSTM
to extract a feature vector h⃗i for each word wi, re-
spectively. An input vector x⃗i = (r⃗i−2

w ⊕r⃗i−1
w ⊕r⃗i

w⊕
r⃗i+1
w ⊕ r⃗i+2

w) is used to represent each word wi.
We use a LSTM variation with peephole connec-

tions (Graves and Schmidhuber, 2005) to extract fea-
tures based on x⃗(1:n). The model computes a hid-
den vector h⃗i for each input x⃗i , passing information
from h⃗1, ..., h⃗i−1 to h⃗n via a sequence of cell states

c⃗1, c⃗2, ..., c⃗n. Information flow is controlled using an
input gate g⃗i, a forget gate f⃗ i, and an output gate o⃗i:

g⃗i =σ(W(g)x⃗i + U(g)h⃗i−1 + V(g)c⃗i−1 + b⃗(g))

f⃗ i =σ(W(f)x⃗i + U(f)h⃗i−1 + V(f)c⃗i−1 + b⃗(f))

c⃗i =f⃗ i ⊙ c⃗i−1+

g⃗i ⊙ tanh(W(u)x⃗i + U(u)h⃗i−1 + b⃗(u))

o⃗i =σ(W(o)x⃗i + U(o)h⃗i−1 + V(o)c⃗i + b⃗(o))

h⃗i =o⃗i ⊙ tanh(c⃗i),

where σ denotes the component-wise sigmoid func-
tion. W(g), W(f), W(u), W(o), U(g), U(f), U(u),
U(o), V(g), V(f), V(o), b⃗(g), b⃗(f), b⃗(u), b⃗(o) are
model parameters.

Bi-directional extension of the above LSTM
structure is applied in both the left-to-right direc-
tion and the right-to-left direction, resulting in two
hidden vector sequences h

(1:n)
l , h

(1:n)
r , respectively.

Each h⃗i
l is combined with its corresponding h⃗i

r for
final feature vector h⃗i

f :

h⃗i
f = tanh(Wlh⃗i

l + Wrh⃗i
r + b⃗),

where Wl, Wr and b⃗ are model parameters.

2.3 Output Layer
The output layer employs a conditional random field
(CRF) to infer the POS ti of each word wi based on
the feature layer outputs. The conditional probabil-
ity of a tag sequence given an input sentence is:

p(y⃗|x⃗) =

∏n
i=1 Ψ(x⃗, y⃗i)

∏n
i=1 Φ(x⃗, y⃗i, y⃗i−1)

Z(x⃗)
,

where Z(x⃗) is the partition function:

Z(x⃗) =
∑

y⃗

n∏

i=1

Ψ(x⃗, y⃗i)
n∏

i=1

Φ(x⃗, y⃗i, y⃗i−1)

In particular, the output clique potential Ψ(x⃗, y⃗i)
shows the correlation between inputs and output la-
bels: Ψ(x⃗, y⃗i) = exp(s⃗i), with the emission vector
s⃗i being defined as:

s⃗i = θ⃗0h⃗
i
f , (1)

where θ⃗0 is the model parameter.
The edge clique potential shows the correlation

between consecutive output labels using a single
transition weight τ(y⃗i, y⃗i−1).

733

A tagger

...

B tagger

... Å

...

w
2

ta
2

tb
2

... Å

w
1

ta
1

...

tb
1

... Å

...

w
n-1

ta
n-1

tb
n-1

w
n

... Å

...

ta
n

tb
n

A tagger

...

B tagger

... Å

...

w
2

tb
2

... Å

w
1

...

tb
1

... Å

...
w

n-1

tb
n-1

w
n

... Å

...

tb
n

...

(a) one-best-output level stacking (b) feature level stacking

Figure 3: Neural stacking.

3 Stacking

3.1 Discrete Stacking
Stacking integrates corpora A and B by first training
a tagger on corpus A, and then using the A tagger
to provide additional features to a corpus B model.
Figure 1(a) shows the training and testing of dis-
crete stacking models, where the B tagger extracts
features from both the raw sentence and A tagger
output. This method achieves feature combination
at the one-best-output level.

3.2 Neural Stacking
Figure 3(a) and (b) shows the two neural stacking
methods of this paper, respectively.

Shallow Integration. Figure 3(a) is a variation of
discrete stacking, with the output tags from tagger A
being converted to a low-dimensional dense embed-
ding features, and concatenated to the word embed-
ding inputs to tagger B. Formally, for each word wi,
denote the tagger A output as tia, we concatenate the
embedding form of tia, denoted as e⃗i

a, to the word
representation r⃗i

w.

r⃗i′
w = r⃗i

w ⊕ e⃗i
a = e⃗i

w ⊕ w⃗i
c ⊕ e⃗i

a (2)

Deep Integration. Figure 3(b) offers deeper inte-
gration between the A and B models, which is fea-
sible only with neural network features. We call this
method feature-level stacking. For feature-level in-
tegration, the emission vector s⃗i in Eq.(1) is taken
for input to tagger B via a projection:

w⃗i
a = tanh(Wss⃗i)

r⃗i
w = e⃗i

w ⊕ w⃗i
c ⊕ w⃗i

a,

where Ws is a model parameter.
Fine-tuning. Feature-level stacking further al-

lows tagger A to be fine-tuned during the training

Output layer A

Input layer

Feature layer

Output layer B

...w
1

w
2

w
n-1

w
n

Figure 4: Neural multi-view model.

of tagger B, with the loss function being back prop-
agated to tagger A via the w⃗i

a layer (shown in the red
dotted lines in Figure 3(b)). This is a further benefit
of neural stacking compared with discrete stacking.

4 Multi-view Learning

4.1 Discrete Label Coupling
As shown in Figure 1(b), multi-view learning (Li et
al., 2015) utilizes corpus A and corpus B simultane-
ously for training. The coupled tagger directly learns
the logistic correspondences between both corpora,
therefore can lead a more comprehensive usage of
corpus A compared with stacking. In order to better
capture such correlation, specifically designed fea-
ture templates between two tag sets are essential.

For each training instances, both A and B labels
are needed. However, one type of tag is missing.
Li et al. (2015) used a mapping function to supple-
ment the missing annotations with the help of the
annotated tag. The result is a set of sentence with
bundled tags in both annotations, but with ambigu-
ities on one side, due to one-to-many mappings. Li
et al. (2015) showed that speed can be significantly
improved by manually restricting possible mappings
between the labelsets, but a full mapping without re-
striction yields the highest accuracies.

4.2 Neural Multi-task Learning
Neural multi-task learning is free from manual fea-
ture engineering, and avoids manual mapping func-

734

tions between tag sets by establishing two separate
output layers, one for each type of label, with shared
low-level parameters. The general structure of a
neural multi-view model is shown in Figure 4, which
can be regarded as a variation of the parameter shar-
ing model of Caruana (1993) and Collobert et al.
(2011). Leveraging heterogeneous annotations for
the same task, compared to parameter sharing be-
tween different NLP tasks (Collobert et al., 2011),
can benefit from tighter integration of information,
and hence allows deeper parameter sharing. These
are verified empirically in the experiments.

In training and testing, sentences from both cor-
pora go through the same input layer and feature
layer. The outputs of each type of tag is then com-
puted separately according to the shared parameters.
The conditional probability of a tag sequence given
an input sentence and its corpus type is:

p(y⃗|x⃗, T) =

∏n
i=1 ΨT (x⃗, y⃗i)

∏n
i=1 ΦT (x⃗, y⃗i, y⃗i−1)

ZT (x⃗)
,

where T is the corpus type, T ∈ {A,B}. ΨT (x⃗, y⃗i)
and ΦT (x⃗, y⃗i, y⃗i−1) are the corresponding output
clique potential and edge clique potential, respec-
tively. ZT (x⃗) is the partition function:

ZT (x⃗) =
∑

y⃗

n∏

i=1

ΨT (x⃗, y⃗i)
n∏

i=1

ΦT (x⃗, y⃗i, y⃗i−1)

This indicates that each time only one output layer
is activated according to the corpus type of input
sentences.

5 Training

A max-margin objective is used to train the full set
of model parameters Θ:

L(Θ) =
1

D

D∑

d=1

l(x⃗d, y⃗d, Θ) +
λ

2
∥Θ∥2 ,

where x⃗d, y⃗d|Dd=1 are the training examples, λ is
a regularization parameter, and l(x⃗d, y⃗d, Θ) is the
max-margin loss function towards one example
(x⃗d, ȳd).

The max-margin loss function is defined as:

l(x⃗d, y⃗d, Θ) = max
y

(
s(y⃗|x⃗d, Θ) + δ(y⃗, y⃗d)

)

− s(y⃗d|x⃗d,Θ),

Algorithm 1 Neural multi-view training

Input: Two training datasets: D(1) =

(x
(1)
n , y

(1)
n)|Nn=1, D(2) = (x

(2)
m , y

(2)
m)|Mm=2;

Parameters: E, A, R
Output: Θ

1: for i = 1 to E do
2: Sample A instances from D(1) and A ∗ R in-

stances from D(2) to form a new dataset Di

3: Shuffle Di.
4: for each batch Db

i in Di do
5: Forward: compute the cost
6: Backward: compute the loss of each pa-

rameter
7: Update the parameters
8: end for
9: end for

sentences tokens

CTB
train 16091 437991
dev 803 20454
test 1910 50319

PD
train 100749 5194829
dev 18875 958026

Table 1: Data statistics.

where y⃗ is the model output, s(y⃗|x⃗) = logP (y⃗|x⃗) is
the log probability of y⃗ and δ(y⃗, y⃗d) is the Hamming
distance between y⃗ and y⃗d.

We adopt online learning, updating parameters
using AdaGrad (Duchi et al., 2011). To train the
neural stacking model, we first train a base tagger
using corpus A. Then, we train the stacked tagger
with corpus B, where the parameters of the A tagger
has been pretrained from corpus A and the B tagger
is randomly initialized.

For neural multi-view model, we follow Li et al.
(2015) and take a the corpus-weighting strategy to
sample a number of training instances from both cor-
pora for each training iteration, as shown in Algo-
rithm 1. At each epoch, we randomly sample from
the two datasets according to a corpus weights ratio,
namely the ratio between the number of sentences in
each dataset used for training, to form a training set
for the epoch.

735

6 Experiments

6.1 Experimental Settings

We adopt the Penn Chinese Treebank version 5.0
(CTB5) (Xue et al., 2005) as our main corpus,
with the standard data split following previous work
(Zhang and Clark, 2008; Li et al., 2015). People’s
Daily (PD) is used as second corpus with a differ-
ent scheme. We filter out PD sentences longer than
200 words. Details of the datasets are listed in Table
1. The standard token-wise POS tagging accuracy
is used as the evaluation metric. The systems are
implemented with LibN3L (Zhang et al., 2016).

For all the neural models, we set the hidden layer
size to 100, the initial learning rate for Adagrad to
0.01 and the regularization parameter λ to 10−8.
word2vec1 is used to pretrain word embeddings.
The Chinese Giga-word corpus version 5 (Graff and
Chen, 2005), segmented by zpar2 (Zhang and Clark,
2011), is used for the training corpus for word em-
beddings. The size of word embedding is 50.

6.2 Development Experiments

We use the development dataset for two main pur-
poses. First, under each setting, we tune the model
parameters, such as the number of training epochs.
Second, we study the influence of several important
hyper-parameters using the development dataset.
For example, for the NN multi-view learning model,
the corpus weights ratio (section 5) plays an im-
portant role for the performance. We determine the
parameters of the model by studying the accuracy
along with the increasing epochs.

Effect of batch size and dropout. The batch size
affects the speed of training convergence and the fi-
nal accuracies of the neural models, and the dropout
rate has been shown to significantly influence the
performance (Chen et al., 2015). We investigate the
effects of these two hyper-parameters by adopting
a corpus weight ratio of 1 : 1 (All the CTB train-
ing data is used, while the same amount of PD is
sampled randomly), drawing the accuracies of the
neural multi-view learning model against the num-
ber of training epochs with various combinations of
the dropout rate d and batch size b. The results are

1https://code.google.com/p/word2vec
2https://github.com/SUTDNLP/ZPar

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 0 5 10 15 20 25 30

A
cc

ur
ac

y
on

 C
T

B
-d

ev
(\

%
)

epoches

b=1;d=0.2
b=20;d=0.2

b=1;d=0
b=20;d=0
b=1;d=0.5

b=20;d=0.5

Figure 5: Accuracy on CTB-dev with different batch
sizes and dropout rates for a multi-view learning
model. b represents batch size, d denotes dropout
rate.

 92.5

 93

 93.5

 94

 94.5

 95

 95.5

 96

 0 5 10 15 20 25 30

A
cc

ur
ac

y
on

 C
T

B
-d

ev
(\

%
)

epoches

1:0.2
1:1
1:4

Figure 6: Accuracy on CTB-dev with different cor-
pus weights ratio.

shown for the multi-view learning model. For the
stacking model, we use b=100 for the PD sub model.

The results are shown in Figure 5, where the two
dashed lines on the top at epoch 30 represent the
dropout rate of 20%, the two solid lines in the mid-
dle represent zero dropout rate, and the two dotted
lines in the bottom represent a dropout rate 50%.
Without using dropout, the performance increases
in the beginning, but then decreases as the number
of training epochs increases beyond 10. This indi-
cates that the NN models can overfit the training data
without dropout. However, when a 50% dropout
rate is used, the initial performances are significantly
worse, which implies that the 50% dropout rate can
be too large and leads to underfitting. As a result, we
choose a dropout rate of 20% for the remaining ex-
periments, which strikes the balance between over-

736

System Accuracy
CRF Baseline (Li et al., 2015) 94.10
CRF Stacking (Li et al., 2015) 94.81
CRF Multi-view (Li et al., 2015) 95.00
NN Baseline 94.24
NN Stacking 94.74
NN Feature Stacking 95.01
NN Feature Stacking & Fine-tuning 95.32
NN Multi-view 95.40
Integrated NN Multi-view & Stacking 95.53

Table 2: Accuracies on CTB-test.

fitting and underfitting.
Figure 5 also shows that the batch size has a rela-

tive small influence on the accuracies, which varies
according to the dropout rate. We simply choose a
batch size of 1 for the remaining experiments ac-
cording to the performance at the dropout rate 20%.

Effect of corpus weights ratio. Figure 6 shows
the effects of different corpus weights ratios. In par-
ticular, a corpus weights ratio of 1:0.2 yields relative
low accuracies. This is likely because it makes use
of the least amount of PD data. The ratios of 1:1
and 1:4 give comparable performances. We choose
the former for our final tests because it is a much
faster choice.

6.3 Final Results

Table 2 shows the final results on the CTB test data.
We lists the results of stacking method of Jiang et
al. (2009) re-implemented by Li et al. (2015), and
CRF multi-view method reported by Li et al. (2015).
We adopt pair-wise significance test (Collins et al.,
2005) when comparing the results between two dif-
ferent models.

Stacking. For baseline tagging using only CTB,
NN model achieves a result of 94.24, slightly higher
than CRF baseline (94.10). NN stacking model in-
tegrating PD data achieves comparable performance
(94.74) compared with CRF stacking model (94.81).
Compared with NN baseline, NN stacking model
boosts the performance from 94.24 to 94.74, which
is significant at the confidence level p < 10−5. This
demonstrates that neural network model can utilize
one-best prediction of the PD model for the CTB
task as effectively as the discrete stacking method
of Jiang et al. (2009).

One advantage of NN stacking as compared with
discrete stacking method is that it can directly lever-

age features of PD model for CTB tagging. Com-
parison between feature-level stacking and one-best-
output level stacking of the NN stacking model
shows that the former gives significantly higher re-
sults, namely 95.01 vs 94.74 at the confidence level
p < 10−3.

One further advantage of NN stacking is that it
allows the PD model to be fine-tuned as an integral
sub-model during CTB training. This is not possible
for the discrete stacking model, because the output
of the PD model are used as atomic feature in the
stacking CTB model rather than a gradient admis-
sive neural layer. By fine-tuning the PD sub-model,
the performance is further improved from 95.01 to
95.32 at the confidence level p < 10−3. The final
NN stacking model improves over the NN baseline
model from 94.24 to 95.32. The improvement is sig-
nificantly higher compared to that by using discrete
stacking which improves over the discrete baseline
from 94.01 to 94.74. The final accuracy of the NN
stacking model is higher than that of the CRF stack-
ing model, namely 94.81 vs 95.32 at the confidence
level p < 10−3. This shows that neural stacking is a
preferred choice for stacking.

Multi-view training. With respect of the multi-
view training method, the NN model improves over
the NN baseline from 94.24 to 95.40, by a margin
of +1.16, which is higher than that of 0.90 brought
by discrete method of Li et al. (2015) over its base-
line, from 94.10 to 95.00. NN multi-view training
method gives relatively higher improvements com-
pared with NN stacking method. This is consis-
tent with the observation of Li et al. (2015), who
showed that discrete label coupling training gives
slightly better improvement compared with discrete
stacking. The final accuracies of NN multi-view
training is also higher than that of its CRF counter-
part, namely 95.00 vs 95.40 at the confidence level
p < 10−3. The difference between the final NN
multi-view training result of 95.40 and the final NN
stacking results is not significant.3

Integration. The flexibility of the NN models
further allows both stacking (on the input) and multi-
viewing (on the output) to be integrated. When

3Note, however, NN stacking method with one-best PD out-
put gives significantly lower accuracies (94.74). It is the fine-
tuning strategy that allows stacking to give comparable results
compared to multi-view training for the NN models.

737

System Time Cost(s)
CRF Baseline 176.925
CRF Multi-view (Li et al., 2015) 3992.27
NN Baseline 416.338
NN Multi-view 418.484

Table 3: Time for testing CTB training data.

NN multi-view training is combined with a fine-
tuned NN feature stacking model, the performance
further increases from 95.40 to 95.53. This is the
best results we are aware of on this dataset. The
improvement is significant at the confidence level
p < 10−2 compared with fine-tuned NN stacking
model (95.32). This indicates that NN multi-view
training and stacking model each provide unique ad-
vantages for heterogeneous annotations.

6.4 Speed Test

We compare the efficiencies of neural and discrete
multi-view training by running our models and the
model of Li et al. (2015)4 with default configura-
tions on the CTB5 training data. The CRF baseline
is adapted from Li et al. (2015). All the systems are
implemented in C++ running on an Intel E5-1620
CPU. The results are shown in Table 3.

The NN baseline model is slower than the CRF
baseline model. This is due to the higher computa-
tion cost of a deep neural network on a CPU. Com-
pared with the CRF baseline, the CRF multi-view
model is significantly slower because of its large fea-
ture set and the multi-label search space. However,
the NN multi-view model achieves almost the same
time cost with the NN baseline, and is much more
efficient than the CRF counterpart. This shows the
efficiency advantage of the NN multi-view model by
parameter sharing and output splitting.

7 Related Work

Early research on heterogeneous annotations fo-
cuses on annotation conversion. For example,
Gao et al. (2004) proposed a transformation-based
method to convert the annotation style of a word
segmentation corpus to that of another. Manually
designed transformation templates are used, which
makes it difficult to generalize the method to other

4http://hlt.suda.edu.cn/zhli/resources/zhenghua-acl2015-
resources.zip

tasks and treebanks.
Jiang et al. (2009) described a stacking-based

model for heterogeneous annotations, using a
pipeline to integrate the knowledge from one cor-
pus to another. Sun and Wan (2012) proposed a
structure-based stacking model, which makes use
of structured features such as sub-words for model
combination. These feature integration is stronger
compared to those of Jiang et al. (2009). Johansson
(2013) introduced path-based feature templates in
using one parser to guide another. In contrast to the
above discrete methods, our neural stacking method
offers further feature integration by directly connect-
ing the feature layer of the source tagger with the in-
put layer of the target tagger. It also allows the fine-
tuning of the source tagger. As one of the reviewers
mentioned, two extensions of CRFs, dynamic CRFs
(Sutton et al., 2004) and hidden-state CRFs (Quat-
toni et al., 2004), can also perform similar deep in-
tegration and fine-tuning.

For multi-view training, Johansson (2013) used
a shared feature representation along with separate
individual feature representation for each treebank.
Qiu et al. (2013) proposed a multi-task learning
model to jointly predict two labelsets given an in-
put sentences. The joint model uses the union of
baseline features for each labelset, without consid-
ering additional features to capture the interaction
between the two labelsets. Li et al. (2015) im-
proves upon this method by using a tighter integra-
tion between the two labelsets, treating the Carte-
sian product of the base labels as a single combined
labelset, and exploiting joint features from two la-
belsets. Though capturing label interaction, their
method suffers speed penalty from the sharply in-
creased search space. In contrast to their methods,
our neural approach enables parameter sharing in
the hidden layers, thereby modeling label interaction
without directly combining the two output labelsets.
This leads to a lean model with almost the same time
efficiency as a single-label baseline.

Recently, Zhang and Weiss (2016) proposed
a stack-propagation model for learning a stacked
pipeline of POS tagging and dependency parsing.
Their method is similar to our neural stacking in
fine-tuning the stacked module which yields features
for the target model. While their multi-task learning
is on heterogenous tasks, our multi-task learning is

738

defined on heterogenous treebanks.

8 Conclusion

We investigated two methods for utilizing heteroge-
neous annotations for neural network models, show-
ing that they have respective advantages compared
to their discrete counterparts. In particular, neural
stacking allows tighter feature integration compared
to discrete stacking, and neural multi-view training
is free from the feature and efficiency constraints
of discrete one. On a standard CTB test, the neu-
ral method gives the best integration effect, with a
multi-view training model enjoying the same speed
as its single treebank baseline.

Acknowledgments

The corresponding author is Yue Zhang. We thank
Zhenghua Li and Meishan Zhang for providing data
and the anonymous reviewers for their constructive
comments, which helped to improve the paper. This
work is supported by Singapore Ministry of Educa-
tion Tier 2 Grant T2MOE201301 and Natural Sci-
ence Foundation of China (61379086).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang
Lezius, and George Smith. 2002. The tiger treebank.
In Proceedings of the workshop on treebanks and lin-
guistic theories, volume 168.

Leo Breiman. 1996. Stacked regressions. Machine
learning, 24(1):49–64.

Richard A Caruana. 1993. Multitask learning: A
knowledge-based source of inductive bias1. In Pro-
ceedings of the Tenth International Conference on Ma-
chine Learning, pages 41–48. Citeseer.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In EMNLP, pages 740–750.

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Pengfei Liu, and
Xuanjing Huang. 2015. Long short-term memory
neural networks for chinese word segmentation. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing.

Michael Collins, Philipp Koehn, and Ivona Kučerová.
2005. Clause restructuring for statistical machine

translation. In Proceedings of the 43rd annual meet-
ing on association for computational linguistics, pages
531–540. Association for Computational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Hal Daumé III. 2007. Frustratingly easy domain adapta-
tion. pages 256–263.

Marie-Catherine De Marneffe, Bill MacCartney, Christo-
pher D Manning, et al. 2006. Generating typed de-
pendency parses from phrase structure parses. In Pro-
ceedings of LREC, volume 6, pages 449–454.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependeny parsing with stack long short-term
memory. In Proceedings of the 53rd Annual Meet-
ing of the Association of Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing of the Asian Federation of Natu-
ral Language Processing (ACL-IJCNLP 2015). ACL.

Thomas Emerson. 2005. The second international chi-
nese word segmentation bakeoff. In Proceedings of
the fourth SIGHAN workshop on Chinese language
Processing, volume 133.

Jianfeng Gao, Andi Wu, Mu Li, Chang-Ning Huang,
Hongqiao Li, Xinsong Xia, and Haowei Qin. 2004.
Adaptive chinese word segmentation. In Proceed-
ings of the 42nd Annual Meeting on Association for
Computational Linguistics, page 462. Association for
Computational Linguistics.

David Graff and Ke Chen. 2005. Chinese gigaword.
LDC Catalog No.: LDC2003T09, ISBN, 1:58563–
58230.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5):602–610.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Wenbin Jiang, Liang Huang, and Qun Liu. 2009. Au-
tomatic adaptation of annotation standards: Chinese
word segmentation and pos tagging: a case study. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International

739

Joint Conference on Natural Language Processing of
the AFNLP: Volume 1-Volume 1, pages 522–530. As-
sociation for Computational Linguistics.

Wenbin Jiang, Yajuan , Liang Huang, and Qun Liu.
2015. Automatic adaptation of annotations. Compu-
tational Linguistics, 41(1):1–29.

Richard Johansson and Pierre Nugues. 2007. Extended
constituent-to-dependency conversion for English. In
Proceedings of NODALIDA 2007, pages 105–112,
Tartu, Estonia, May 25-26.

Richard Johansson. 2013. Training parsers on incompat-
ible treebanks. In HLT-NAACL, pages 127–137.

Sigrid Klerke, Yoav Goldberg, and Anders Søgaard.
2016. Improving sentence compression by learning to
predict gaze. arXiv preprint arXiv:1604.03357.

Guillaume Lample, Miguel Ballesteros, Sandeep Subra-
manian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.

Zhenghua Li, Jiayuan Chao, Min Zhang, and Wenliang
Chen. 2015. Coupled sequence labeling on hetero-
geneous annotations: pos tagging as a case study. In
Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing, volume 1, pages 1783–1792.

Pengfei Liu, Shafiq Joty, and Helen Meng. 2015. Fine-
grained opinion mining with recurrent neural networks
and word embeddings. In Conference on Empirical
Methods in Natural Language Processing (EMNLP
2015).

Ji Ma, Yue Zhang, and Jingbo Zhu. 2014. Tagging
the web: Building a robust web tagger with neural
network. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 144–154, Baltimore,
Maryland, June. Association for Computational Lin-
guistics.

Joakim Nivre and Ryan T McDonald. 2008. Integrating
graph-based and transition-based dependency parsers.
In ACL, pages 950–958.

Wenzhe Pei, Tao Ge, and Baobao Chang. 2014. Max-
margin tensor neural network for chinese word seg-
mentation. In ACL, pages 293–303.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with bidi-
rectional long short-term memory models and auxil-
iary loss. arXiv preprint arXiv:1604.05529.

Xipeng Qiu, Jiayi Zhao, and Xuanjing Huang. 2013.
Joint chinese word segmentation and pos tagging on
heterogeneous annotated corpora with multiple task
learning. In EMNLP, pages 658–668.

Ariadna Quattoni, Michael Collins, and Trevor Darrell.
2004. Conditional random fields for object recogni-
tion. Advances in Neural Information Processing Sys-
tems, pages 1097–1104.

Richard Sproat and Thomas Emerson. 2003. The first
international chinese word segmentation bakeoff. In
Proceedings of the second SIGHAN workshop on Chi-
nese language processing-Volume 17, pages 133–143.
Association for Computational Linguistics.

Weiwei Sun and Xiaojun Wan. 2012. Reducing approx-
imation and estimation errors for chinese lexical pro-
cessing with heterogeneous annotations. In Proceed-
ings of the 50th Annual Meeting of the Association
for Computational Linguistics: Long Papers-Volume
1, pages 232–241. Association for Computational Lin-
guistics.

Charles Sutton, Andrew Mccallum, and Khashayar Ro-
hanimanesh. 2004. Dynamic conditional random
fields: Factorized probabilistic models for labeling and
segmenting sequence data. In ICML, pages 693–723.

Heike Telljohann, Erhard W Hinrichs, Sandra Kübler,
Heike Zinsmeister, and Kathrin Beck. 2006. Style-
book for the tübingen treebank of written german
(tüba-d/z). In Seminar fur Sprachwissenschaft, Uni-
versitat Tubingen, Tubingen, Germany.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Pa-
pers), pages 323–333, Beijing, China, July. Associa-
tion for Computational Linguistics.

David H Wolpert. 1992. Stacked generalization. Neural
networks, 5(2):241–259.

Dekai Wu, Grace Ngai, and Marine Carpuat. 2003.
A stacked, voted, stacked model for named entity
recognition. In Proceedings of the seventh conference
on Natural language learning at HLT-NAACL 2003-
Volume 4, pages 200–203. Association for Computa-
tional Linguistics.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta Palmer.
2005. The penn chinese treebank: Phrase structure an-
notation of a large corpus. Natural language engineer-
ing, 11(02):207–238.

Nianwen Xue. 2003. Chinese word segmentation as
character tagging. Computational Linguistics and
Chinese Language Processing, 8(1):29–48.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical
dependency analysis with support vector machines. In
Proceedings of IWPT, volume 3, pages 195–206.

Yue Zhang and Stephen Clark. 2008. A tale of
two parsers: investigating and combining graph-based

740

and transition-based dependency parsing using beam-
search. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, pages
562–571. Association for Computational Linguistics.

Yue Zhang and Stephen Clark. 2011. Syntactic process-
ing using the generalized perceptron and beam search.
Computational linguistics, 37(1):105–151.

Yuan Zhang and David Weiss. 2016. Stack-propagation:
Improved representation learning for syntax. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1557–1566. Association for Computa-
tional Linguistics.

Meishan Zhang, Jie Yang, Zhiyang Teng, and Yue
Zhang. 2016. Libn3l:a lightweight package for neu-
ral nlp. In Nicoletta Calzolari (Conference Chair),
Khalid Choukri, Thierry Declerck, Sara Goggi, Marko
Grobelnik, Bente Maegaard, Joseph Mariani, He-
lene Mazo, Asuncion Moreno, Jan Odijk, and Stelios
Piperidis, editors, Proceedings of the Tenth Interna-
tional Conference on Language Resources and Evalu-
ation (LREC 2016), Paris, France, may. European Lan-
guage Resources Association (ELRA).

Xiaoqing Zheng, Hanyang Chen, and Tianyu Xu. 2013.
Deep learning for chinese word segmentation and pos
tagging. In EMNLP, pages 647–657.

Jie Zhou and Wei Xu. 2015. End-to-end learning of se-
mantic role labeling using recurrent neural networks.
In Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics.

Hao Zhou, Yue Zhang, Shujian Huang, and Jiajun Chen.
2015. A neural probabilistic structured-prediction
model for transition-based dependency parsing. In
Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1213–1222,
Beijing, China, July. Association for Computational
Linguistics.

741

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 742–752,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

LAMB: A Good Shepherd of Morphologically Rich Languages

Sebastian Ebert and Thomas Müller and Hinrich Schütze
Center for Information and Language Processing

LMU Munich, Germany
ebert@cis.lmu.de

Abstract

This paper introduces STEM and LAMB, em-
beddings trained for stems and lemmata in-
stead of for surface forms. For morpholog-
ically rich languages, they perform signif-
icantly better than standard embeddings on
word similarity and polarity evaluations. On
a new WordNet-based evaluation, STEM and
LAMB are up to 50% better than standard em-
beddings. We show that both embeddings
have high quality even for small dimension-
ality and training corpora.

1 Introduction

Despite their power and prevalence, embeddings,
i.e., (low-dimensional) word representations in vec-
tor space, have serious practical problems. First,
large text corpora are necessary to train high-quality
embeddings. Such corpora are not available for un-
derresourced languages. Second, morphologically
rich languages (MRLs) are a challenge for stan-
dard embedding models because many inflectional
forms are rare or absent even in a large corpus. For
example, a Spanish verb has more than 50 forms,
many of which are rarely used. This leads to miss-
ing or low quality embeddings for such inflectional
forms, even for otherwise frequent verbs, i.e., spar-
sity is a problem. Therefore, we propose to com-
pute normalized embeddings instead of embeddings
for surface/inflectional forms (referred to as forms
throughout the rest of the paper): STem EMbed-
dings (STEM) for word stems and LemmA eMBed-
dings (LAMB) for lemmata.

Stemming is a heuristic approach to reducing
form-related sparsity issues. Based on simple rules,
forms are converted into their stem.1 However, often
the forms of one word are converted into several dif-
ferent stems. For example, present indicative forms
of the German verb “brechen” (to break) are mapped
to four different stems (“brech”, “brich”, “bricht”,
“brecht”). A more principled solution is lemmatiza-
tion. Lemmatization unites many individual forms,
many of which are rare, in one equivalence class,
represented by a single lemma. Stems and equiva-
lence classes are more frequent than each individual
form. As we will show, this successfully addresses
the sparsity issue.

Both methods can learn high-quality semantic
representations for rare forms and thus are most ben-
eficial for MRLs as we show below. Moreover, less
training data is required to train lemma embeddings
of the same quality as form embeddings. Alterna-
tively, we can train lemma embeddings that have the
same quality but fewer dimensions than form em-
beddings, resulting in more efficient applications.

If an application such as parsing requires in-
flectional information, then stem and lemma em-
beddings may not be a good choice since they
do not contain such information. However, NLP
applications such as similarity benchmarks (e.g.,
MEN (Bruni et al., 2014)) and (as we show below)
polarity classification are semantic and are largely

1In this paper, we use the term “stem” not in its linguistic
meaning, but to refer to the character string that is produced
when a stemming algorithm like SNOWBALL is applied to a
word form. The stem is usually a prefix of the word form, but
some orthographic normalization (e.g., “possibly” → “possi-
ble” or “possibli”) is often also performed.

742

independent of inflectional morphology.
Our contributions are the following. (i) We intro-

duce the normalized embeddings STEM and LAMB

and show their usefulness on different tasks for five
languages. This paper is the first study that compre-
hensively compares stem/lemma-based with form-
based embeddings for MRLs. (ii) We show the ad-
vantage of normalization on word similarity bench-
marks. Normalized embeddings yield better perfor-
mance for MRL languages on most datasets (6 out
of 7 datasets for German and 2 out of 2 datasets for
Spanish). (iii) We propose a new intrinsic related-
ness evaluation based on WordNet graphs and pub-
lish datasets for five languages. On this new evalua-
tion, LAMB outperforms form-based baselines by a
big margin. (iv) STEM and LAMB outperform base-
lines on polarity classification for Czech and En-
glish. (v) We show that LAMB embeddings are effi-
cient in that they are high-quality for small training
corpora and small dimensionalities.

2 Related Work

There have been a large number of studies on En-
glish, a morphologically simple language, that show
that the effect of normalization, in particular stem-
ming, is different for different applications. For in-
stance, Karlgren and Sahlgren (2001) analyze the
impact of morphological analysis on creating word
representations for synonymy detection. They com-
pare several stemming methods. Bullinaria and
Levy (2012) use stemming and lemmatization be-
fore training word representations. The improve-
ment of morphological normalization in both stud-
ies is moderate in the best case. Melamud et al.
(2014) compute lemma embeddings to predict re-
lated words given a query word. They do not com-
pare form and lemma representations.

A finding about English morphology does not
provide insight into what happens with the morphol-
ogy of an MRL. In this paper we use English to
provide a data point for morphologically poor lan-
guages. Although we show that normalization for
embeddings increases performance significantly on
some applications – a novel finding to the best of
our knowledge – morphologically simple languages
(for which normalization is expected to be less im-
portant) are not the main focus of the paper. Instead,

MRLs are the main focus. For these, we show large
improvements on several tasks.

Recently, Köper et al. (2015) compared form and
lemma embeddings on English and German focus-
ing on morpho-syntactic and semantic relation tasks.
Generally, they found that lemmatization has lim-
ited impact. We extensively study MRLs and find a
strong improvement on MRLs when using normal-
ization, on intrinsic as well as extrinsic evaluations.

Synonymy detection is a well studied problem
in the NLP community (Turney, 2001; Turney et
al., 2003; Baroni and Bisi, 2004; Ruiz-Casado et
al., 2005; Grigonytė et al., 2010). Rei and Briscoe
(2014) classify hyponomy relationships through em-
bedding similarity. Our premise is that seman-
tic similarity comprises all of these relations and
more. Our ranking-based word relation evaluation
addresses this issue. Similar to Melamud et al.
(2014), our motivation is that, in contrast to standard
word similarity benchmarks, large resources can be
automatically generated for any language with a
WordNet. This is also exploited by Tsvetkov et al.
(2015). Their intrinsic evaluation method requires
an annotated corpus, e.g., annotated with WordNet
supersenses. Our approach requires only the Word-
Net.

An alternative strategy of dealing with data spar-
sity is presented by Soricut and Och (2015). They
compute morphological features in an unsupervised
fashion in order to construct a form embedding by
the combination of the word’s morphemes. We ad-
dress scenarios (such as polarity classification) in
which morphological information is less important,
thus morpheme embeddings are not needed.

3 Stem/Lemma Creation

The main hypothesis of this work is that normaliza-
tion addresses sparsity issues, especially for MRLs,
because although a particular word form might not
have been seen in the text, its stem or lemma is more
likely to be known. For all stemming experiments
we use SNOWBALL,2 a widely used stemmer. It nor-
malizes a form based on deterministic rules, such as
replace the suffix ‘tional’ by ‘tion’ for English.

For lemmatization we use the pipeline version of
the freely available, high-quality lemmatizer LEM-

2snowball.tartarus.org

743

MING (Müller et al., 2015). Since it is a language-
independent token-based lemmatizer it is especially
suited for our multi-lingual experiments. Moreover,
it reaches state-of-the-art performance for the five
languages that we study. We train the pipeline us-
ing the Penn Treebank (Marcus et al., 1993) for En-
glish, SPMRL 2013 shared task data (Seddah et al.,
2013) for German and Hungarian, and CoNLL 2009
(Hajič et al., 2009) datasets for Spanish and Czech.
We additionally use a unigram list extracted from
Wikipedia datasets and the ASPELL dictionary of
each language.3

4 Experiments

4.1 Word Similarity
Our first experiment evaluates how well
STEM/LAMB embeddings predict human word
similarity judgments. Given a pair of words (m,n)
with a human-generated similarity value and a set
of embeddings E we compute their similarity as
cosine similarity. For form embeddings EF , we
directly use the embeddings of the word pairs’
forms (EF

m and EF
n) and compute their similarity.

For STEM we use ES
stem(w), where stem(w) is the

stem of w. For LAMB we use EL
lemma(w), where

lemma(w) is the lemma of w; we randomly select
one of w’s lemmata if there are several. We conduct
experiments on English (en), German (de) and
Spanish (es). Table 1 gives dataset statistics.

For good performance, high-quality embeddings
trained on large corpora are required. Hence,
the training corpora for German and Spanish are
web corpora taken from COW14 (Schäfer, 2015).
Preprocessing includes removal of XML, conver-
sion of HTML characters, lowercasing, stemming
using SNOWBALL and lemmatization using LEM-
MING. We use the entire Spanish corpus (3.7 bil-
lion tokens), but cut the German corpus to approxi-
mately 8 billion tokens to be comparable to Köper
et al. (2015). We train CBOW models (Mikolov
et al., 2013) for forms, stems and lemmata us-
ing WORD2VEC4 with the following settings: 400
dimensions, symmetric context of size 2 (no dy-
namic window), 1 training iteration, negative sam-
pling with 15 samples, a learning rate of 0.025, min-

3ftp://ftp.gnu.org/gnu/aspell/dict
4code.google.com/p/word2vec/

imum count of words of 50, and a sampling param-
eter of 10−5. CBOW is chosen, because it trains
much faster than skip-gram, which is beneficial on
these large corpora.

Since the morphology of English is rather sim-
ple we do not expect STEM and LAMB to reach or
even surpass highly optimized systems on any word
similarity dataset (e.g., Bruni et al. (2014)). There-
fore, for practical reasons we use a smaller train-
ing corpus, namely the preprocessed and tokenized
Wikipedia dataset of Müller and Schütze (2015).5

Embeddings are trained with the same settings (us-
ing 5 iterations instead of only 1, due to the smaller
size of the corpus: 1.8 billion tokens).

Table 1 shows results. We also report the Spear-
man correlation on the vocabulary intersection, i.e.,
only those word pairs that are covered by the vocab-
ularies of all models.

Results. Although English has a simple morphol-
ogy, LAMB improves over form performance on
MEN and SL. A tie is achieved on RW. These are
the three largest English datasets, giving a more re-
liable result. Both models perform comparably on
WS. Here, STEM is ahead by 1 point. Forms are
better on the small datasets MC and RG, where a
single word pair can have a large influence on the
result. Additionally, these are datasets with high fre-
quency forms, where form embeddings can be well
trained. Because of the simple morphology of En-
glish, STEM/LAMB do not outperform forms or only
by a small margin and thus they cannot compete with
highly optimized state-of-the-art systems.6

On German, both STEM and LAMB perform bet-
ter on all datasets except WS. We set the new state-
of-the-art of 0.79 on Gur350 (compared to 0.77
(Szarvas et al., 2011)) and 0.39 on ZG (compared
to 0.25 (Botha and Blunsom, 2014)); 0.83 on Gur65
(compared to 0.79 (Köper et al., 2015)) is the best
performance of a system that does not need addi-
tional knowledge bases (cf. Navigli and Ponzetto
(2012), Szarvas et al. (2011)).

LAMB’s results on Spanish are equally good. 0.82
on MC and 0.58 on WS are again the best per-

5cistern.cis.lmu.de/marmot/naacl2015
6Baroni et al. (2014)’s numbers are higher on some of the

datasets for the best of 48 different parameter configurations.
In contrast, we do not tune parameters.

744

formances of a system not requiring an additional
knowledge base (cf. Navigli and Ponzetto (2012)).
The best performance before was 0.64 for MC and
0.50 for WS (both Hassan and Mihalcea (2009)).
STEM cannot improve over form embeddings, show-
ing the difficulty of Spanish morphology.

4.2 Word Relations
Word similarity benchmarks are not available for
many languages and are expensive to create. To rem-
edy this situation, we create word similarity bench-
marks that leverage WordNets, which are available
for a great number of languages.

Generally, a representation is deemed good if
words related by a lexical relation in WordNet – syn-
onymy, hyponymy etc. – have high cosine similar-
ity with this representation. Since the gold standard
necessary for measuring this property of a represen-
tation can be automatically derived from a WordNet,
we can create very large similarity benchmarks with
up to 50k lemmata for the five languages we investi-
gate: Czech, English, German, Hungarian and Span-
ish.

We view each WordNet as a graph whose edges
are the lexical relations encoded by the WordNet,
e.g., synonymy, antonymy and hyponymy. We then
define L as the set of lemmata in a WordNet and the
distance d(l, l′) between two lemmata l and l′ as the
length of the shortest path connecting them in the
graph. The k-neighborhood Nk(l) of l is the set of
lemmata l′ that have distance k or less, excluding l:
Nk(l) := {l′|d(l, l′) ≤ k, l 6= l′}. The rank of l for
an embedding set E is defined as:

rankkE(l) := argmin
i

li ∈ Nk(l) (1)

where li is the lemma at position i in the list of all
lemmata in the WordNet, ordered according to co-
sine similarity to l in descending order. We restrict
i ∈ [1, 10] and set k = 2 for all experiments in this
paper. We omit the indexes k and E when they are
clear from context.

To measure the quality of a set of embeddings
we compute the mean reciprocal rank (MRR) on the
rank results of all lemmata:

MRRE =
1

|L|
∑

l∈L

1

rankE(l)
(2)

We create large similarity datasets for five lan-
guages: Czech (cz), English (en), German (de),
Hungarian (hu) and Spanish (es) by extracting all
lemmata from the WordNet version of the respec-
tive language. For English and Spanish we use the
preprocessed WordNets from the Open Multilingual
WordNet (Bond and Paik, 2012). We use the Czech
and Hungarian WordNets (PALA and SMRZ, 2004;
Miháltz et al., 2008) and GermaNet (Hamp and
Feldweg, 1997) for German. We keep all lemmata
that have a known form in the form embeddings and
that exist in the lemma embeddings. Moreover, we
filter out all synsets that contain only one lemma and
discard all multiword phrases. The split into devel-
opment and test sets is done in a way that the distri-
bution of synset sizes (i.e., the number of lemmata
per synset) is nearly equal in both sets.

The number of lemmata in our evaluation sets can
be found in Table 2. For more insight, we report
results on all parts-of-speech (POS), as well as sep-
arately for nouns (n), verbs (v) and adjectives (a).7

The data is provided as supplementary material.8

We propose the following models for the embed-
ding evaluation. For form embeddings we com-
pare three different strategies, a realistic one, an op-
timistic one and a lemma approximation strategy.
In the realistic strategy (form real), given a query
lemma we randomly sample a form, for which we
then compute the k-neighborhood. If the neigh-
bors contain multiple forms of the same equivalence
class, we exclude the repetitions and use the next
neighbors instead. For instance, if house is already
a neighbor, then houses will be skipped. The opti-
mistic strategy (form opt) works similarly, but uses
the embedding of the most frequent surface form of
a lemma. This is the most likely form to perform
best in the form model. This strategy presupposes
the availability of information about lemma and sur-
face form counts. As a baseline lemma approxi-
mation strategy, we sum up all surface form em-
beddings that belong to one equivalence class (form
sum). For STEM we repeat the same experiments as
described for forms, leading to stem real, stem opt
and stem sum.

For embedding training, Wikipedia comes as a
7The all-POS setting includes all POS, not just n, v, a.
8All supplementary material is available at www.cis.

uni-muenchen.de/ebert/

745

full vocabulary vocabulary intersection

lang dataset reference pairs form STEM LAMB cov. form STEM LAMB cov.

de Gur30 Gurevych (2005) 29 0.76 0.83 0.80 29, 29, 29 0.76 0.83 0.80 29
Gur350 Gurevych (2005) 350 0.74 0.79 0.79 336, 340, 339 0.74 0.79 0.79 336
Gur65 Gurevych (2005) 65 0.80 0.83 0.82 65, 65, 65 0.80 0.83 0.82 65
MSL Leviant and Reichart (2015) 999 0.44 0.44 0.47 994, 995, 995 0.44 0.44 0.47 994
MWS Leviant and Reichart (2015) 350 0.60 0.61 0.62 348, 350, 350 0.60 0.61 0.61 348
WS Köper et al. (2015) 280 0.72 0.72 0.71 279, 280, 280 0.72 0.71 0.71 279
ZG Zesch and Gurevych (2006) 222 0.36 0.38 0.39 200, 207, 208 0.36 0.40 0.41 200

en MC Miller and Charles (1991) 30 0.82 0.77 0.80 30, 30, 30 0.82 0.77 0.80 30
MEN Bruni et al. (2014) 1000 0.72 0.73 0.74 1000, 1000, 1000 0.72 0.73 0.74 1000
RG Rubenstein et al. (1965) 65 0.82 0.79 0.79 65, 65, 65 0.82 0.79 0.79 65
RW Luong et al. (2013) 2034 0.47 0.47 0.47 1613, 1947, 1819 0.47 0.47 0.48 1613
SL Hill et al. (2014) 999 0.42 0.38 0.43 998, 999, 999 0.42 0.38 0.43 998
WS Finkelstein et al. (2002) 353 0.63 0.64 0.63 353, 353, 353 0.63 0.64 0.63 353

es MC Hassan and Mihalcea (2009) 30 0.70 0.69 0.82 30, 30, 30 0.70 0.69 0.82 30
WS Hassan and Mihalcea (2009) 352 0.54 0.54 0.58 350, 352, 352 0.54 0.54 0.58 350

Table 1: Word similarity results. The left part shows dataset information. The right part shows Spearman correlation (ρ) for the

models with their full vocabulary and for the intersection of vocabularies. Coverage is shown for all models in order of appearance.

Bold is best per vocabulary and row.

lang set all a n v

cz dev 9694 852 6436 2315
test 9763 869 6381 2433

de dev 51682 6347 40674 5018
test 51827 6491 40623 5085

en dev 44448 9713 30825 5661
test 44545 9665 30736 5793

es dev 12384 1711 8634 1989
test 12476 1727 8773 1971

hu dev 19387 1953 15268 2057
test 19486 1928 15436 2011

Table 2: Number of lemmata in WordNet datasets

natural choice as corpus, because it is available for
many languages. Therefore, we use the prepro-
cessed and tokenized Wikipedia datasets of Müller
and Schütze (2015). We train 50-dimensional
skip-gram embeddings (Mikolov et al., 2013) with
WORD2VEC on the original, the stemmed and the
lemmatized corpus, respectively. Embeddings are
trained for all tokens, because we need high cover-
age; the context size is set to 5, all remaining param-
eters are left at their default value.9

9We train smaller embeddings than before, because we have
more models to train and training corpora are smaller.

Results. The MRR results in the left half of Ta-
ble 3 (“unfiltered”) show that for all languages and
for all POS, form real has the worst performance
among the form models. This comes at no surprise
since this model does barely know anything about
word forms and lemmata. The form opt model im-
proves these results based on the additional infor-
mation it has access to (the mapping from lemma to
its most frequent form). form sum performs simi-
lar to form opt. For Czech, Hungarian and Spanish
it is slightly better (or equally good), whereas for
English and German there is no clear trend. There
is a large difference between these two models on
German nouns, with form sum performing consider-
ably worse. We attribute this to the fact that many
German noun forms are rare compounds and there-
fore lead to badly trained form embeddings, which
summed up do not lead to high quality embeddings
either.

Among the stemming models, stem real also is the
worst performing model. We can further see that for
all languages and almost all POS, stem sum performs
worse than stem opt. That indicates that stemming
leads to many low-frequency stems or many words
sharing the same stem. This is especially apparent
in Spanish verbs. There, the stemming models are
clearly inferior to form models.

Overall, LAMB performs best for all languages
and POS types. Most improvements of LAMB are

746

significant. The improvement over the best form-
model reaches up to 6 points (e.g., Czech nouns). In
contrast to form sum, LAMB improves over form opt
on German nouns. This indicates that the sparsity
issue is successfully addressed by LAMB.

In general, morphological normalization in terms
of stemming or lemmatization improves the result
on all languages, leading to an especially substantial
improvement on MRLs. For the morphologically
very rich languages Czech and Hungarian, the rela-
tive improvement of STEM or LAMB to form-based
models is especially high, e.g., Hungarian all: 50%.
Moreover, we find that MRLs yield lower absolute
performance. This confirms the findings of Köper et
al. (2015). Surprisingly, LAMB yields better perfor-
mance on English despite its simple morphology.

The low absolute results – especially for Hungar-
ian – show that we address a challenging task and
that our new evaluation methodology is a good eval-
uation for new types of word representations.

For further insight, we restrict the nearest neigh-
bor search space to those lemmata that have the same
POS as the query lemma. The general findings in
the right half of Table 3 (“filtered”) are similar to the
unrestricted experiment: Normalization leads to su-
perior results. The form real and stem real models
yield the lowest performance. Form opt improves
the performance and form sum is better on average
than form opt. Stem sum can rarely improve on stem
opt. The best stemming model most often is better
than the best form model. LAMB can benefit more
from the POS type restriction than the form models.
The distance to the best form model generally in-
creases, especially on German adjectives and Span-
ish verbs. In all cases except on English adjectives,
LAMB yields the best performance. Again, in al-
most all cases LAMB’s improvement over the form-
models is significant.

4.3 Polarity Classification
Our first two evaluations were intrinsic. We now
show the benefit of normalization on an extrinsic
task. The task is classification of Czech movie
reviews (CSFD, Habernal et al. (2013)) into posi-
tive, negative or neutral (Table 4). We reimplement
lingCNN (Ebert et al., 2015), a Convolutional Neu-
ral Network that uses linguistic information to im-
prove polarity classification. This model reaches

close to state-of-the-art performance on data of the
SemEval 2015 Task 10B (message level polarity).
LingCNN takes several features as input: (i) embed-
ding features, (ii) linguistic features at word level
and (iii) linguistic features at review level.

We reuse the 50-dimensional Wikipedia embed-
dings from Section 4.2 and compare three experi-
mental conditions: using forms, STEM and LAMB.

Linguistic word level features are: (i) SubLex
1.0 sentiment lexicon (Veselovská and Bojar, 2013)
(two binary indicators that word is marked posi-
tive/negative); (ii) SentiStrength10 (three binary in-
dicators that word is an emoticon marked as posi-
tive/negative/neutral); (iii) prefix “ne” (binary nega-
tion indicator in Czech).11

All word level features are concatenated to form
a single word representation of the review’s input
words. The concatenation of these representations
is the input to a convolution layer, which has sev-
eral filters spanning the whole representation height
and several representations (i.e., several words) in
width. The output of the convolution layer is input
to a k-max pooling layer (Kalchbrenner et al., 2014).
The max values are concatenated with the follow-
ing linguistic review level features: (i) the count of
elongated words, such as “cooool”; (ii) three count
features for the number of positive/negative/neutral
emoticons using the SentiStrength list; (iii) a count
feature for punctuation sequences, such as “!!!”; (iv)
and a feature that counts the number of negated
words. (v) A final feature type comprises one count
feature each for the number of sentiment words in a
review, the sum of sentiment values of these words
as provided by the sentiment lexicon, the maximum
sentiment value and the sentiment value of the last
word (Mohammad et al., 2013). The concatenation
of max values and review level features is then for-
warded into a fully-connected three-class (positive,
negative, neutral) softmax layer. We train lingCNN
with AdaGrad (Duchi et al., 2011) and early stop-
ping, batch size = 100, 200 filters per width of 3-6;
k-max pooling with k = 5; learning rate 0.01; and
`2 regularization (λ = 5 · 10−5).

We also perform this experiment for English on

10sentistrength.wlv.ac.uk/
11We disregard words with the prefix “nej”, because they in-

dicate superlatives. Exceptions are common negated words with
this prefix, such as “nejsi” (engl. “you are not”).

747

unfiltered filtered

form STEM form STEM

lang POS real opt sum real opt sum LAMB real opt sum real opt sum LAMB

cz a 0.03 0.04 0.05 0.02 0.05 0.05 0.06 0.03‡ 0.05† 0.07 0.04† 0.08 0.08 0.09
n 0.15‡ 0.21‡ 0.24‡ 0.18‡ 0.27‡ 0.26‡ 0.30 0.17‡ 0.23‡ 0.26‡ 0.20‡ 0.29‡ 0.28‡ 0.32
v 0.07‡ 0.13‡ 0.16† 0.08‡ 0.14‡ 0.16‡ 0.18 0.09‡ 0.15‡ 0.17‡ 0.09‡ 0.17† 0.18 0.20
all 0.12‡ 0.18‡ 0.20‡ 0.14‡ 0.22‡ 0.21‡ 0.25 - - - - - - -

de a 0.14‡ 0.22‡ 0.25† 0.17‡ 0.26 0.21‡ 0.27 0.17‡ 0.25‡ 0.27‡ 0.23‡ 0.33 0.33 0.33
n 0.23‡ 0.35‡ 0.30‡ 0.28‡ 0.35† 0.33‡ 0.36 0.24‡ 0.36‡ 0.31‡ 0.28‡ 0.36 0.35‡ 0.37
v 0.11‡ 0.19‡ 0.18‡ 0.11‡ 0.22 0.18‡ 0.23 0.13‡ 0.20‡ 0.21‡ 0.13‡ 0.24‡ 0.23‡ 0.26
all 0.21‡ 0.32‡ 0.28‡ 0.24‡ 0.33† 0.30‡ 0.34 - - - - - - -

en a 0.22‡ 0.25‡ 0.24‡ 0.16‡ 0.26‡ 0.25‡ 0.28 0.25‡ 0.28‡ 0.28‡ 0.18‡ 0.29‡ 0.32 0.31
n 0.24‡ 0.27‡ 0.28‡ 0.22‡ 0.30 0.28‡ 0.30 0.25‡ 0.28‡ 0.29‡ 0.23‡ 0.31† 0.31‡ 0.32
v 0.29‡ 0.35‡ 0.37 0.17‡ 0.35 0.24‡ 0.37 0.33‡ 0.39‡ 0.42‡ 0.21‡ 0.42† 0.39‡ 0.44
all 0.23‡ 0.26‡ 0.27‡ 0.20‡ 0.28‡ 0.25‡ 0.29 - - - - - - -

es a 0.20‡ 0.23‡ 0.23‡ 0.08‡ 0.21‡ 0.18‡ 0.27 0.21‡ 0.25‡ 0.26‡ 0.10‡ 0.26‡ 0.26‡ 0.30
n 0.21‡ 0.25‡ 0.25‡ 0.16‡ 0.25‡ 0.23‡ 0.29 0.22‡ 0.26‡ 0.27‡ 0.17‡ 0.27‡ 0.26‡ 0.30
v 0.19‡ 0.35† 0.36 0.11‡ 0.29‡ 0.19‡ 0.38 0.22‡ 0.36‡ 0.36‡ 0.16‡ 0.36‡ 0.33‡ 0.42
all 0.20‡ 0.26‡ 0.26‡ 0.14‡ 0.24‡ 0.21‡ 0.30 - - - - - - -

hu a 0.02‡ 0.06‡ 0.06‡ 0.05‡ 0.08 0.08 0.09 0.04‡ 0.08‡ 0.08‡ 0.06‡ 0.12 0.11 0.12
n 0.01‡ 0.04‡ 0.05‡ 0.03‡ 0.07 0.06‡ 0.07 0.01‡ 0.04‡ 0.05‡ 0.04‡ 0.07† 0.06‡ 0.07
v 0.04‡ 0.11‡ 0.13‡ 0.07‡ 0.14‡ 0.15 0.17 0.05‡ 0.13‡ 0.14‡ 0.07‡ 0.15‡ 0.16† 0.19
all 0.02‡ 0.05‡ 0.06‡ 0.04‡ 0.08‡ 0.07‡ 0.09 - - - - - - -

Table 3: Word relation results. MRR per language and POS type for all models. unfiltered is the unfiltered nearest neighbor search

space; filtered is the nearest neighbor search space that contains only one POS. ‡ (resp. †): significantly worse than LAMB (sign

test, p < .01, resp. p < .05). Best unfiltered/filtered result per row is in bold.

the SemEval 2015 Task 10B dataset (cf. Table 4).
We reimplement Ebert et al. (2015)’s lexicon fea-
tures. They exploit the fact that there are many more
sentiment lexicons available in English. Other word
level features are the same as above. Sentiment
count features at review level are computed sepa-
rately for the entire tweet, for all hashtag words and
for each POS type (Ebert et al., 2015).

Considering the much smaller dataset size and
shorter sentences of the SemEval data we chose
the following hyperparameters: 100k most frequent
word types, 100 filters per filter width of 2-5; and
k-max pooling with k = 1.

Results. Table 5 lists the 10-fold cross-validation
results (accuracy and macro F1) on the CSFD
dataset. LAMB/STEM results are consistently better
than form results.

In our analysis, we found the following example
for the benefit of normalization: “popis a název za-
jmavý a film je taková filmařská prasárna” (engl.
“description and title are interesting, but it is bad
film-making”). This example is correctly classified
as negative by the LAMB model because it has an

embedding for “prasárna” (bad, smut) whereas the
form model does not.

The out-of-vocabulary counts for form and LAMB

on the first fold of the CSFD experiment are 26.3k
and 25.5k, respectively. The similarity of these two
numbers suggests that the quality of word embed-
dings (form vs. LAMB) are responsible for the per-
formance gain.

On the SemEval data, LAMB improves the results
over form and stem (cf. Table 5).12 Hence, LAMB

can still pick up additional information despite the
simple morphology of English. This is probably due
to better embeddings for rare words. The SemEval
2015 winner (Hagen et al., 2015) is a highly domain-
dependent and specialized system that we do not
outperform.

In the introduction, we discussed that normaliza-
tion removes inflectional information that is nec-
essary for NLP tasks like parsing. For polarity
classification, comparatives and superlatives can be
important. Further analysis is necessary to deter-

12To be comparable with published results we report the
macro F1 of positive and negative classes.

748

dataset total pos neg neu

CSFD 91379 30896 29716 30767
SemEval train 9845 3636 1535 4674
SemEval dev 3813 1572 601 1640
SemEval test 2390 1038 365 987

Table 4: Polarity classification datasets

lang features acc F1

cz Brychcin et al. (2013) - 81.53
form 80.86 80.75
STEM 81.51 81.39
LAMB 81.21 81.09

en Hagen et al. (2015) - 64.84
form 66.78 62.21
STEM 66.95 62.06
LAMB 67.49 63.01

Table 5: Polarity classification results. Bold is best per lan-

guage and column.

mine whether their normalization hurts in our exper-
iments. However, note that we evaluate on polarity
only, not on valence.

5 Analysis

Normalized embeddings deal better with sparsity
than form embeddings. In this section, we demon-
strate two additional benefits of LAMB based on its
robustness against sparsity.

Embedding Size. We now show that LAMB can
train embeddings with fewer dimensions on the
same amount of data and still reach the same per-
formance as larger form embeddings. We repeat the
word relation experiments of Section 4.2 (all POS)
and train all models with embedding sizes 10, 20, 30
and 40 for Spanish. We choose Spanish because it
has richer morphology than English and more train-
ing data than Czech and Hungarian.

Figure 1 depicts the MRR results of all models
with respect to embedding size. The relative rank-
ing of form models is real < opt < sum. That
comes from the additional information the more
complex models have access to. All stemming mod-
els reach lower performance than their form coun-
terparts (similar to results in Table 3). That suggests
that stemming is not a proper alternative to correctly

dealing with Spanish morphology. LAMB reaches
higher performance than form real with already 20
dimensions. The 30 dimensional LAMB model is
better than all other models. Thus, we can create
lower-dimensional lemma embeddings that are as
good as higher-dimensional form embeddings; this
has the benefits of reducing the number of parame-
ters in models using these embeddings and of reduc-
ing training times and memory consumption.

Corpus Size. Our second hypothesis is that less
training data is necessary to train good embeddings.
We create 10 training corpora consisting of the first
k percent, k ∈ {10, 20, . . . , 100}, of the random-
ized Spanish Wikipedia corpus. With these 10 sub-
corpora we repeat the word relation experiments of
Section 4.2 (all POS). As query lemmata, we use the
lemmata from before that exist in all subcorpora.

Figure 2 shows that the relative ranking among
the models is the same as before. This time how-
ever, form sum yields slightly better performance
than form opt, especially when little training data is
available. The stemming models again are inferior
to their form counterparts. Only stem opt is able
to reach performance similar to form opt. LAMB

always reaches higher performance than form real,
even when only 10% of the training corpus is used.
With 30% of the training corpus, LAMB surpasses
the performance of the other models.13 Again, by
requiring less than 30% of the training data, embed-
ding training becomes much more efficient. Further-
more, in low-resource languages that lack the avail-
ability of a large homogeneous corpus, LAMB can
still be trained successfully.

6 Conclusion

We have presented STEM and LAMB, embeddings
based on stems and lemmata. In three experiments
we have shown the superiority compared to com-
monly used form embeddings. Especially (but not
only) on MRLs, where data sparsity is a problem,
both normalized embeddings perform better than
form embeddings by a large margin. In a new chal-
lenging WordNet-based experiment we have shown
four methods of adding morphological information

13Recall that form opt is similar to an approach that is used in
most systems that have embeddings, which just use the available
surface forms.

749

10 20 30 40 50
embeddings size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
R

R

LAMB

form sum
form opt

form real
stem sum

stem opt
stem real

Figure 1: Embedding size analysis

10 20 30 40 50 60 70 80 90 100
corpus size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
R

R

LAMB

form sum
form opt

form real
stem sum

stem opt
stem real

Figure 2: Corpus size analysis

(opt, sum, STEM, LAMB). Here, LAMB is the best
of the proposed ways of using morphological infor-
mation, consistently reaching higher performance,
often by a large margin. STEM methods are not
consistently better, indicating that the more princi-
pled way of normalization as done by LAMB is to be
preferred. The datasets are available as supplemen-
tary material at www.cis.uni-muenchen.de/
ebert/.

Our analysis shows that LAMB needs fewer em-
bedding dimensions and less embedding training

data to reach the same performance as form embed-
dings, making LAMB appealing for underresourced
languages.

As morphological analyzers are becoming more
widely available, our method – which is easy to
implement, only requiring running the analyzer –
should become applicable to more and more lan-
guages.

Acknowledgments This work was supported by
DFG (grant SCHU 2246/10).

750

References

Marco Baroni and Sabrina Bisi. 2004. Using cooccur-
rence statistics and the web to discover synonyms in a
technical language. In Proceedings of LREC.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski.
2014. Don’t count, predict! A systematic compari-
son of context-counting vs. context-predicting seman-
tic vectors. In Proceedings of ACL.

Francis Bond and Kyonghee Paik. 2012. A Survey of
Wordnets and their Licenses. In Proceedings of the
6th Global WordNet Conference.

Jan A. Botha and Phil Blunsom. 2014. Compositional
Morphology for Word Representations and Language
Modelling. In Proceedings of ICML.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal Distributional Semantics. Journal of Arti-
ficial Intelligence Research, 49.

John A. Bullinaria and Joseph P. Levy. 2012. Extract-
ing semantic representations from word co-occurrence
statistics: stop-lists, stemming, and SVD. Behavior
Research Methods, 44(3):890–907.

John C. Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization. Journal of Machine
Learning Research, 12.

Sebastian Ebert, Ngoc Thang Vu, and Hinrich Schütze.
2015. A Linguistically Informed Convolutional Neu-
ral Network. In Proceedings of WASSA.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2002. Placing search in context: the concept
revisited. ACM Trans. Inf. Syst., 20(1).

Gintarė Grigonytė, Joao Cordeiro, Gaël Dias, Rumen
Moraliyski, and Pavel Brazdil. 2010. Paraphrase
alignment for synonym evidence discovery. In COL-
ING.

Iryna Gurevych. 2005. Using the Structure of a Concep-
tual Network in Computing Semantic Relatedness. In
Proceedings of IJCNLP.

Ivan Habernal, Tomáš Ptáček, and Josef Steinberger.
2013. Sentiment Analysis in Czech Social Media Us-
ing Supervised Machine Learning. In Proceedings of
WASSA.

Matthias Hagen, Martin Potthast, Michel Büchner, and
Benno Stein. 2015. Webis: An Ensemble for Twitter
Sentiment Detection. In Proceedings of SemEval.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
Padó, Jan Štěpánek, et al. 2009. The CoNLL-2009
shared task: Syntactic and semantic dependencies in
multiple languages. In Proceedings of CoNLL.

Birgit Hamp and Helmut Feldweg. 1997. GermaNet -
a Lexical-Semantic Net for German. In In Proceed-
ings of ACL workshop Automatic Information Extrac-
tion and Building of Lexical Semantic Resources for
NLP Applications.

Samer Hassan and Rada Mihalcea. 2009. Cross-lingual
Semantic Relatedness Using Encyclopedic Knowl-
edge. In Proceedings of EMNLP.

Felix Hill, Roi Reichart, and Anna Korhonen. 2014.
SimLex-999: Evaluating Semantic Models with (Gen-
uine) Similarity Estimation. CoRR, abs/1408.3456.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A Convolutional Neural Network for
Modelling Sentences. In Proceedings of ACL.

Jussi Karlgren and Magnus Sahlgren. 2001. From Words
to Understanding. In Foundations of Real World Intel-
ligence. CSLI Publications.

Maximilian Köper, Christian Scheible, and Sabine
Schulte im Walde. 2015. Multilingual Reliability and
”Semantic” Structure of Continuous Word Spaces. In
Proceedings of IWCS.

Ira Leviant and Roi Reichart. 2015. Judgment Lan-
guage Matters: Multilingual Vector Space Models for
Judgment Language Aware Lexical Semantics. CoRR,
abs/1508.00106.

Minh-Thang Luong, Richard Socher, and Christopher D.
Manning. 2013. Better Word Representations with
Recursive Neural Networks for Morphology. In Pro-
ceedings of CoNLL.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of English: The Penn treebank. Computational
linguistics.

Oren Melamud, Ido Dagan, Jacob Goldberger, Idan
Szpektor, and Deniz Yuret. 2014. Probabilistic Mod-
eling of Joint-context in Distributional Similarity. In
Proceedings of CoNLL.

Márton Miháltz, Csaba Hatvani, Judit Kuti, György
Szarvas, János Csirik, Gábor Prószéky, and Tamás
Váradi. 2008. Methods and Results of the Hungar-
ian WordNet Project. In Proceedings of the 4th Global
WordNet Conference.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. In Proceedings of ICLR: Work-
shop.

George A. Miller and Walter G. Charles. 1991. Contex-
tual correlates of semantic similarity. Language and
Cognitive Processes, 6(1).

Saif M. Mohammad, Svetlana Kiritchenko, and Xiaodan
Zhu. 2013. NRC-Canada: Building the State-of-the-
Art in Sentiment Analysis of Tweets. In Proceedings
of SemEval.

751

Thomas Müller and Hinrich Schütze. 2015. Robust mor-
phological tagging with word representations. In Pro-
ceedings of NAACL.

Thomas Müller, Ryan Cotterell, Alexander Fraser, and
Hinrich Schütze. 2015. Joint lemmatization and mor-
phological tagging with Lemming. In Proceedings of
EMNLP.

Roberto Navigli and Simone Paolo Ponzetto. 2012. Ba-
belRelate! A Joint Multilingual Approach to Comput-
ing Semantic Relatedness July 22-26, 2012, Toronto,
Ontario, Canada. In Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence.

Karel PALA and Pavel SMRZ. 2004. Building Czech
Wordnet. Romanian Journal of Information Science
and Technology, 7(1-2).

Marek Rei and Ted Briscoe. 2014. Looking for Hy-
ponyms in Vector Space Language Learning, CoNLL
2014, Baltimore, Maryland, USA, June 26-27, 2014.
In Proceedings of CoNLL.

Maria Ruiz-Casado, Enrique Alfonseca, and Pablo
Castells. 2005. Using context-window overlapping
in synonym discovery and ontology extension. In Pro-
ceedings of RANLP.

Roland Schäfer. 2015. Processing and querying large
web corpora with the COW14 architecture. In Pro-
ceedings of CMLC.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, Jinho Choi, Richárd Farkas, Jennifer Fos-
ter, Iakes Goenaga, Koldo Gojenola, Yoav Goldberg,
et al. 2013. Overview of the SPMRL 2013 shared
task: Cross-Framework evaluation of parsing morpho-
logically rich languages. In Proceddings of SPMRL.

Radu Soricut and Franz Josef Och. 2015. Unsupervised
Morphology Induction Using Word Embeddings. In
Proceedings of NAACL-HLT.

György Szarvas, Torsten Zesch, and Iryna Gurevych.
2011. Combining Heterogeneous Knowledge Re-
sources for Improved Distributional Semantic Models.
In Proceedings of CICLing.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guillaume
Lample, and Chris Dyer. 2015. Evaluation of Word
Vector Representations by Subspace Alignment. In
Proceedings of EMNLP.

Peter D. Turney, Michael L. Littman, Jeffrey Bigham,
and Victor Shnayder. 2003. Combining independent
modules to solve multiple-choice synonym and anal-
ogy problems. ACM Transactions on Information Sys-
tems.

Peter D. Turney. 2001. Mining the Web for Synonyms:
PMI-IR versus LSA on TOEFL. In Proceedings of
ECML.

Kateřina Veselovská and Ondřej Bojar. 2013. Czech
SubLex 1.0.

Torsten Zesch and Iryna Gurevych. 2006. Automatically
Creating Datasets for Measures of Semantic Related-
ness. In Proceedings of the Workshop on Linguistic
Distances.

752

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 753–762,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Fast Coupled Sequence Labeling on Heterogeneous Annotations
via Context-aware Pruning

Zhenghua Li, Jiayuan Chao, Min Zhang∗, Jiwen Yang
Soochow University, Suzhou, China

{zhli13,minzhang,jwyang}@suda.edu.cn, chaojiayuan.china@gmail.com

Abstract

The recently proposed coupled sequence label-
ing is shown to be able to effectively exploit
multiple labeled data with heterogeneous an-
notations but suffer from severe inefficiency
problem due to the large bundled tag space (Li
et al., 2015). In their case study of part-of-
speech (POS) tagging, Li et al. (2015) man-
ually design context-free tag-to-tag mapping
rules with a lot of effort to reduce the tag space.

This paper proposes a context-aware prun-
ing approach that performs token-wise con-
straints on the tag space based on contextual
evidences, making the coupled approach effi-
cient enough to be applied to themore complex
task of joint word segmentation (WS) and
POS tagging for the first time. Experiments
show that using the large-scale People Daily
as auxiliary heterogeneous data, the coupled
approach can improve F-score by 95.55 −
94.88 = 0.67% on WS, and by 90.58 −
89.49 = 1.09% on joint WS&POS on Penn
Chinese Treebank. All codes are released at
http://hlt.suda.edu.cn/~zhli.

1 Introduction

In statistical natural language processing, manually
labeled data is inevitable for model supervision, but
is also very expensive to build. However, due to
the long-debated differences in underlying linguistic
theories or emphasis of application, there often exist
multiple labeled corpora for the same or similar tasks
following different annotation guidelines (Jiang et

∗Correspondence author

Especially our nation economy declines .
CTB 特别是/AD 我/PN 国/NN 经济/NN 下滑/VV 。/PU
PD 特别/d 是/v 我国/n 经济/n 下滑/v 。/w

Table 1: An example of heterogeneous annotations.

al., 2009). For instance, in Chinese language pro-
cessing, Penn Chinese Treebank version 5 (CTB5) is
a widely used benchmark data and contains about 20
thousand sentences annotated with word boundaries,
part-of-speech (POS) tags, and syntactic structures
(Xue et al., 2005; Xia, 2000), whereas People’s
Daily corpus (PD)1 is a large-scale corpus annotated
withwords and POS tags, containing about 300 thou-
sand sentences from the first half of 1998 of People’s
Daily newspaper (Yu et al., 2003). Table 1 gives an
example with both CTB and PD annotations. We can
see that CTB and PD differ in both word boundary
standards and POS tag sets.
Previous work on exploiting heterogeneous data

mainly focuses on indirect guide-feature methods.
The basic idea is to use one resource to generate
extra guide features on another resource (Jiang et
al., 2009; Sun and Wan, 2012), which is similar to
stacked learning (Nivre and McDonald, 2008). Li
et al. (2015) propose a coupled sequence labeling
approach that can directly learn and predict two het-
erogeneous annotations simultaneously. The basic
idea is to transform a single-side tag into a set of
bundled tags for weak supervision based on the idea
of ambiguous labeling. Due to the huge size of the
bundled tag space, their coupled model is extremely
inefficient. They then carefully design tag-to-tag

1http://icl.pku.edu.cn/icl_groups/
corpustagging.asp

753

mapping rules to constrain the search space. Their
case study on POS tagging shows that the coupled
model outperforms the guide-feature method. How-
ever, the requirement of manually designed mapping
rules makes their approach less attractive, since such
mapping rules may be very difficult to construct for
more complex tasks such as joint word segmentation
(WS) and POS tagging.
This paper proposes a context-aware pruning ap-

proach that can effectively solve the inefficiency
problem of the coupled model, making coupled se-
quence labeling more generally applicable. Specifi-
cally, this work makes the following contributions:

(1) We propose and systematically compare two
ways for realizing context-aware pruning, i.e.,
online and offline pruning. Experiments on
POS tagging show that both online and offline
pruning can greatly improve the model effi-
ciency with little accuracy loss.

(2) We for the first time apply coupled sequence
labeling to the more complex task of joint
WS&POS tagging. Experiments show that
online pruning works badly due to the much
larger tag set while offline pruning works
well. Further analysis gives a clear explanation
and leads to more insights in learning from
ambiguous labeling.

(3) Experiments on joint WS&POS tagging show
that our coupled approach with offline pruning
improves F-score by 95.55 − 94.88 = 0.67%
onWS, and by 90.58−89.49 = 1.09% on joint
WS&POS on CTB5-test over the baseline, and
is also consistently better than the guide-feature
method.

2 Coupled Sequence Labeling

Given an input sequence of n tokens, denoted by
x = w1...wn, coupled sequence tagging aims to si-
multaneously predict two tag sequences ta = ta1...t

a
n

and tb = tb1...t
b
n, where tai ∈ T a and tbi ∈ T b

(1 ≤ i ≤ n), and T a and T b are two different
predefined tag sets. Alternatively, we can view the
two tag sequences as one bundled tag sequence t =
[ta, tb] = [ta1, t

b
1]...[t

a
n, tbn], where [tai , t

b
i] ∈ T a × T b

is called a bundled tag.

In this work, we treat CTB as the first-side anno-
tation and PD as the second-side. For POS tagging,
T a is the set of POS tags in CTB, and T b is the set
of POS tags in PD, and we ignore the word boundary
differences in the two datasets, following Li et al.
(2015). We have |T a| = 33 and |T b| = 38.
For joint WS&POS tagging, we employ the stan-

dard four-tag label set to mark word boundaries,
among which B, I, E respectively represent that the
concerned character situates at the begining, inside,
end position of a word, and S represents a single-
character word. Then, we concatenate word bound-
ary labels with POS tags. For instance, the first
three characters in Table 1 correspond to “特/B@AD
别/I@AD 是/E@AD” in CTB, and to “特/B@d 别/E@d
是/S@v” in PD. We have |T a| = 99 and |T b| = 128.

2.1 Coupled Conditional Random Field (CRF)
Following Li et al. (2015), we build the coupled
sequence labeling model based on a bigram linear-
chain CRF (Lafferty et al., 2001). The conditional
probability of a bundled tag sequence t is:

p(t|x, S̃; θ) =
eScore(x,t;θ)

Z(x, S̃; θ)

Z(x, S̃; θ) =
∑

t∈S̃
eScore(x,t;θ)

(1)

where θ is the feature weights; Z(x, S̃; θ) is the
normalization factor; S̃ is the search space including
all legal tag sequences for x. We use T̃i ⊆ T a × T b

to denote the set of all legal tags for token wi, so
S̃ = T̃1 × · · · × T̃n.
According to the linear-chain Markovian assump-

tion, the score of a bundled tag sequence is:

Score(x, t; θ) = θ · f(x, [ta, tb])

n+1∑

i=1

θ ·

fjoint(x, i, [tai−1, t

b
i−1], [t

a
i , t

b
i])

fsep_a(x, i, tai−1, t
a
i)

fsep_b(x, i, tbi−1, t
b
i)

(2)

where f(x, [ta, tb]) is the accumulated sparse feature
vector; fjoint/sep_a/sep_b(x, i, t′, t) share the same list
of feature templates, and return local feature vectors
for tagging wi−1 as t′ and wi as t.
Traditional single-side tagging models can only

exploit a single set of separate features fsep_a(.) or
fsep_b(.). In contrast, the coupled model makes

754

use of all three sets of features. Li et al. (2015)
demonstrate that the joint features fjoint(.) capture
the implicit mappings between heterogeneous anno-
tations, and the separate features function as back-off
features for alleviating the data sparseness problem
of the joint features.
For the feature templates, we follow Li et al.

(2015) and adopt those described in Zhang and Clark
(2008) for POS tagging, and use those described in
Zhang et al. (2014b) for joint WS&POS tagging.

2.2 Learn from Incomplete Data

The key challenge for coupled sequence labeling is
that both CTB and PD are non-overlapping and each
contains only one-side annotations. Based on the
idea of ambiguous labeling, Li et al. (2015) first
concatenate a single-side tag with many possible
second-side tags, and then use the set of bundled tags
as possibly-correct references during training.
Suppose x = w1...wn is a training sentence from

CTB, and ta = ťa1...ť
a
n is the manually labeled tag

sequence. Then we define Ti = {ťai } × T b as the
set of possibly-correct bundled tags, and S = T1 ×
· · ·×Tn as a exponential-size set of possibly-correct
bundled tag sequences used for model supervision.
Given x and the whole legal search space S̃ , the

probability of the possibly-correct space S ⊆ S̃ is:

p(S|x, S̃; θ) =
∑

t∈V
p(t|x, S̃; θ) =

Z(x, S; θ)

Z(x, S̃; θ)
(3)

where Z(x, S; θ) is analogous to Z(x, S̃; θ) in Eq.
(3) but only sums over S.
Given D = {(xj , Sj , S̃j)}N

j=1, the gradient of the
log likelihood is:

∂LL(D; θ)

∂θ
=

∂log
∑

j p(Sj |xj , S̃j ; θ)

∂θ

=
∑

j

(
∂logZ(xj ,Sj ; θ)

∂θ
− ∂logZ(xj , S̃j ; θ)

∂θ

)

=
∑

j

(
Et|xj ,Sj ;θ[f(xj , t)] − Et|xj ,S̃j ;θ

[f(xj , t)]
)

(4)

where the two terms are the feature expectations
under Sj and S̃j respectively. And the detailed

derivations are as follows:

∂logZ(x, S; θ)

∂θ

=
1

Z(x, S; θ)
× ∂

∑
t∈S eScore(x,t;θ)

∂θ

=
∑

t∈S

(
eScore(x,t;θ)

Z(x, S; θ)
× ∂Score(x, t; θ)

∂θ

)

=
∑

t∈S
p(t|x,S; θ) × f(x, t)

=Et|x,S;θ[f(x, t)]

(5)

Please notice that t = [ta, tb] denotes a bundled
tag sequence in this context of coupled sequence
labeling.

2.3 Efficiency Issue
Under complete mapping, each one-side tag is
mapped to all the-other-side tags for constructing
bundled tags, producing a very huge set of legal
bundled tags T̃i = T a × T b. Using the classic
Forward-Backward algorithm, we still need
O(n × |T a|2 × |T b|2) time complexity to compute
Et|x,S̃;θ[f(x, t)], which is prohibitively expensive.

2

In order to improve efficiency, Li et al. (2015) pro-
pose to use a set of context-free tag-to-tag mapping
rules for reducing the search space. For example,
we may specify that the CTB POS tag “NN” can
only be concatenated with a set of PD tags like “{n,
vn, ns}”.3 With much effort, they propose a set
of relaxed mapping rules that greatly reduces the
number of bundled tags from |T a| × |T b| = 33 ×
38 = 1, 254 to 179 for POS tagging.

3 Context-aware Pruning

Using manually designed context-free tag-to-tag
mapping rules to constrain the search space has
two major drawbacks. On the one hand, for more
complex problems such as joint WS&POS tagging,
it becomes very difficult to design proper mapping
rules due to the much larger tag set. On the other
hand, the experimental results in Li et al. (2015)

2In contrast, computingEt|x,S;θ[f(x, t)] is not the bottleneck,
since |Ti| = |T b| for CTB or |Ti| = |T a| for PD.

3Please refer to http://hlt.suda.edu.cn/~zhli/
resources/pos-mapping-CTB-PD.html for their detailed
mapping rules.

755

B@AD I@AD E@AD S@PN

[I@AD,E@d][I@AD,E@v]

[I@NN,E@d][I@NN,E@v]

Bundled tags

Figure 1: Illustration of context-aware pruning with r = 2 on
a CTB training sentence.

suggest that the coupled model can best learn the
implicit context-sensitive mapping relationships
between annotations under complete mapping,
and imposing strict tag-to-tag mapping constraints
usually hurts tagging accuracy.
In this work, our intuition is that the mapping

relationships between heterogeneous annotations are
highly context-sensitive. Therefore, we propose a
context-aware pruning approach to more accurately
capture such mappings, thus solving the efficiency
issue. The basic idea is to consider only a small
set of most likely bundled tags, instead of the whole
bundled tag space T a × T b, based on evidences of
surrounding contexts. Specifically, for each token
wi, we only keep r one-side tags according to sep-
arate features fsep_a/b(.) for each side, and then use
the remaining single-side tags to construct T̃i and Ti.
We use the second character “别/I@AD” in Fig.

1 as an example. We list the single-side tags in
the descending order of their marginal probabilities
according to fsep_a/b(.). Then we only keep r = 2

single-side tags, used as T a
i and T b

i . Then T̃i = T a×
T b contains the four bundled tags shown in the upper
box, known as the whole possible tag set for search-
ing. And Ti = {ťa}×T b contains two bundled tags,
as marked in bold, knowns as the possibly-correct
tag set, since ťa is the manually labeled tag. The case
when the word has the second-side manually-labeled
tag {ťb} can be similarly handled.
Beside r, we use another hyper-parameter λ to

further reduce the number of one-side tag candidates.
The intuition is that inmany cases, wemay only need
to use a smaller number r′ < r of possible candi-
dates, since the remaining tags are very unlikely ones
according to the marginal probabilities. Therefore,
for each itemwi, we define r′ as the smallest number

prune

Baseline TaggerCTB

CTB-train PD-train

CTB-dev CTB-test PD-testPD-dev

Baseline TaggerPD

prune

train train

n-fold: train & prune n-fold: train & prune

pruneprune

Figure 2: Workflow of offline pruning.

of most likely candidate tags whose accumulative
probability is larger than λ. Then, we only keep the
min(r′, r) most likely candidate tags.
We have |T̃i| = r2 without considering the ac-

cumulated probability threshold λ. Thus, it requires
O(nr4) time complexity to compute Et|x,S̃;θ[f(x, t)]
using the Forward-Backward algorithm.
In the following, we propose two ways for real-

izing context-aware pruning, i.e., online and offline
pruning. Their comparison and analysis are given in
the experiment parts.

3.1 Online Pruning
The online pruning approach directly uses the cou-
pled model to perform pruning. Given a sentence,
we first use a subset of features fsep_a(.) and corre-
sponding feature weights trained so far to compute
marginal probabilities of first-side tags, and then
analogously process the second-side tags based on
fsep_b(.). This requires roughly the same time com-
plexity as two baseline models. Then the marginal
probabilities are used for pruning.

3.2 Offline Pruning
The offline pruning approach is a little bit more
complex, and uses many additional single-side tag-
ging models for pruning. Fig. 2 shows the work-
flow. Particularly, n-fold jack-knifing is adopted
to perform pruning on the same-side training data.
Finally, all training/dev/test datasets of CTB and PD
are preprocessed in an offline way, so that each word
in a sentence has a set of most likely CTB tags (T a

i)
and another set of most likely PD tags (T b

i).

4 Experiment Settings

Data. Following Li et al. (2015), we use CTB5 and
PD for the heterogeneous data. Under the standard

756

data split of CTB5, the training/dev/test datasets
contain 16, 091/803/1, 910 sentences respectively.
For PD, we use the 46, 815 sentences in January
1998 as the training data, the first 2, 000 sentences
in February as the development data, and the first
5, 000 sentences in June as the test data.
Evaluation Metrics. We use the standard token-

wise tagging accuracy for POS tagging. For joint
WS&POS tagging, besides character-wise tagging
accuracy, we also use the standard precision (P),
recall (R), and F-score of only words (WS) or POS-
tagged words (WS&POS).
Parameter settings. Stochastic gradient descent

(SGD) is adopted to train the baseline single-side
tagging models, the guide-feature models, and the
coupled models.4
For the coupled models, we directly follow the

simple corpus-weighting strategy proposed in Li et
al. (2015) to balance the contribution of the two
datasets. We randomly sample 5, 000 CTB-train
sentences and 5, 000 PD-train sentences, which are
then merged and shuffled for one-iteration training.
After each iteration, the coupled model is evaluated
on both CTB-dev and PD-dev, providing us two
single-side tag accuracies, one on CTB-side tags,
and the other on PD-dev tags. Another advantage
of using a subset of training data in one iteration
is to monitor the training progress in smaller steps.
For fair comparison, when building the baseline
and guide-feature models, we also randomly sample
5, 000 training sentences from the whole training
data for one-iteration training, and then report an
tagging accuracy on development data. For all mod-
els, the training terminates if peak accuracies stop
improving within 30 consecutive iterations, and we
use the model that performs the best on development
data for final evaluation on test data.

5 Experiments on POS Tagging

5.1 Parameter Tuning

For both online and offline pruning, we need to de-
cide the maximum number of single-side tag candi-
dates r and the accumulative probability threshold λ
for further truncating the candidates. Table 2 shows

4We use the implementation of SGD in CRFsuite (http://
www.chokkan.org/software/crfsuite/), and set b = 30
as the batch-size and C = 0.1 as the regularization factor.

r λ
Accuracy (%) #Tags (pruned)

CTB5-dev PD-dev CTB-side PD-side
Online Pruning

2 0.98 94.25 95.03 2.0 2.0
4 0.98 95.06 95.66 3.9 4.0
8 0.98 95.14 95.83 6.3 7.4
16 0.98 95.12 95.81 7.8 14.1
8 0.90 95.15 95.79 3.7 6.3
8 0.95 95.13 95.82 5.1 7.1
8 0.99 95.15 95.74 7.4 7.9
8 1.00 95.15 95.76 8.0 8.0

Offline Pruning
8 0.9999 94.95 96.05 4.1 5.1
16 0.9999 95.15 96.09 5.2 7.6
32 0.9999 95.13 96.09 5.5 9.3
16 0.99 94.42 95.77 1.6 2.2
16 0.999 95.02 96.10 2.6 4.0
16 0.99999 95.10 96.09 6.8 8.9

Table 2: POS tagging performance of online and offline pruning
with different r and λ on CTB5 and PD.

the tagging accuracies and the averaged numbers of
single-side tags for each token after pruning.

The first major row tunes the two hyper-
parameters for online pruning. We first fix λ = 0.98
and increase r from 2 to 8, leading to consistently
improved accuracies on both CTB5-dev and PD-
dev. No further improvement is gained with r = 16,
indicating that tags below the top-8 are mostly very
unlikely ones and thus insignificant for computing
feature expectations. Then we fix r = 8 and try
different λ. We find that λ has little effect on
tagging accuracies but influences the numbers of
remaining single-side tags. We choose r = 8 and
λ = 0.98 for final evaluation.

The second major row tunes r and λ for offline
pruning. Different from online pruning, λ has much
greater effect on the number of remaining single-side
tags. Under λ = 0.9999, increasing r from 8 to 16
leads to 0.20%accuracy improvement on CTB5-dev,
but using r = 32 has no further gain. Then we fix
r = 16 and vary λ from 0.99 to 0.99999. We choose
r = 16 and λ = 0.9999 for offline pruning for final
evaluation, which leaves each word with about 5.2
CTB-tags and 7.6 PD-tags on average.

757

Accuracy (%) Speed
CTB5-test PD-test Toks/Sec

Coupled (Offline) 94.83 95.90 246
Coupled (Online) 94.74 95.95 365

Coupled (No Prune) 94.58 95.79 3
Coupled (Relaxed) 94.63 95.87 127
Guide-feature 94.35 95.63 584
Baseline 94.07 95.82 1573

Li et al. (2012b) 94.60 — —

Table 3: POS tagging performance of difference approaches on
CTB5 and PD.

5.2 Main Results
Table 3 summarizes the accuracies on the test data
and the tagging speed during the test phase. “Cou-
pled (No Prune)” refers to the coupled model with
complete mapping in Li et al. (2015), which maps
each one-side tag to all the-other-side tags. “Coupled
(Relaxed)” refers the coupled model with relaxed
mapping in Li et al. (2015), which maps a one-side
tag to a manually-designed small set of the-other-
side tags. Li et al. (2012b) report the state-of-the-
art accuracy on this CTB data, with a joint model of
Chinese POS tagging and dependency parsing.
It is clear that both online and offline pruning

greatly improve the efficiency of the coupled model
by about two magnitudes, without the need of a
carefully predefined set of tag-to-tagmapping rules.5
Moreover, the coupled model with offline pruning
achieves 0.76% accuracy improvement on CTB5-
test over the baseline model, and 0.48% over our
reimplemented guide-feature approach of Jiang et al.
(2009). The gains on PD-test are marginal, possibly
due to the large size of PD-train, similar to the results
in Li et al. (2015).

6 Experiments on Joint WS&POS Tagging

6.1 Parameter Tuning
Table 4 shows results for tuning r and λ. From
the results in the first major row, we can see that
in the online pruning method, λ seems useless and
r becomes the only threshold for pruning unlikely
single-side tags. The accuracies are much inferior to

5Due to the model complexity of “Coupled (No Prune)”, we
discard all low-frequency (< 3) features in the training data to
speed up training. This explains why “Coupled (No Prune)” has
slightly lower accuracies than “Coupled (Relaxed)”.

r λ
Accuracy (%) #Tags (pruned)

CTB5-dev PD-dev CTB-side PD-side
Online Pruning

8 1.00 90.41 89.91 8.0 8.0
16 0.95 90.65 90.22 15.9 16.0
16 0.99 90.77 90.49 16.0 16.0
16 1.00 90.79 90.49 16.0 16.0

Offline Pruning
8 0.995 91.22 91.62 2.6 3.1
16 0.995 91.66 91.85 3.2 4.3
32 0.995 91.67 91.87 3.5 5.6
16 0.95 90.69 91.30 1.6 2.1
16 0.99 91.64 91.92 2.5 3.5
16 0.999 91.62 91.75 5.1 6.4

Table 4: WS&POS tagging performance of online and offline
pruning with different r and λ on CTB5 and PD.

those from the offline pruning approach. We believe
that the accuracies can be further improved with
larger r, which would nevertheless lead to severe
inefficiency issue. Based on the results, we choose
r = 16 and λ = 1.00 for final evaluation.
The second major row tries to decide r and λ for

the offline pruning approach. Under λ = 0.995,
increasing r from 8 to 16 improves accuracies both
on CTB5-dev and PD-dev, but further using r = 32
leads to little gain. Then we fix r = 16 and vary
λ from 0.95 to 0.999. Using λ = 0.95 leaves only
1.6 CTB tags and 2.1 PD tags for each character, but
has a large accuracy drop. We choose r = 16 and
λ = 0.995 for offline pruning for final evaluation,
which leaves each character with 3.2 CTB-tags and
4.3 PD-tags on average.

6.2 Main Results
Table 5 summarizes the accuracies on the test data
and the tagging speed (characters per second) during
the test phase. “Coupled (No Prune)” is not tried due
to the prohibitive tag set size in joint WS&POS tag-
ging, and “Coupled (Relaxed)” is also skipped since
it seems impossible to manually design reasonable
tag-to-tag mapping rules in this case.
In terms of efficiency, the coupled model with

offline pruning is on par with the baseline single-side
tagging model.6

6The time estimation does not include the two separate
processes of pruning single-side tags, which is approximately

758

P/R/F (%) on CTB5-test P/R/F (%) on PD-test Speed
Only WS Joint WS&POS Only WS Joint WS&POS Char/Sec

Coupled (Offline) 95.65/95.46/95.55 90.68/90.49/90.58 96.39/95.86/96.12 92.70/92.19/92.44 115
Coupled (Online) 95.17/94.71/94.94 89.80/89.37/89.58 95.76/95.45/95.60 91.71/91.41/91.56 26
Guide-feature 95.26/94.89/95.07 89.96/89.61/89.79 95.99/95.33/95.66 91.92/91.30/91.61 27
Baseline 95.00/94.77/94.88 89.60/89.38/89.49 96.56/96.00/96.28 92.74/92.20/92.47 119

Table 5: WS&POS tagging performance of difference approaches on CTB5 and PD.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8 >8

A
v
e
ra

g
e
d
 M

a
rg

in
a
l
P

ro
b
a
b
ili

ty

Kth-best Tag

online pruning
offline pruning

Figure 3: Probability distribution with online/offline pruning
for the task of joint WS&POS.

In terms of F-score, the coupled model with
offline pruning achieves 0.67% (WS) and 1.09%
(WS&POS) gains on CTB5-test over the baseline
model, and 0.48% (WS) and 0.79% (WS&POS)
over our reimplemented guide-feature approach
of Jiang et al. (2009). Similar to the case of POS
tagging, the baseline model is very competitive on
PD-test due to the large scale of PD-train.

6.3 Analysis
Online vs. offline pruning. The averaged numbers
of single-side tags after pruning in Table 4 and
2), suggest that the online pruning approach works
badly in assigning proper marginal probabilities to
different tags. Our first guess is that in online prun-
ing, the weights of separate features are optimized
as a part of the coupled model, and thus producing
somewhat flawed probabilities. However, our fur-
ther analysis gives a more convincing explanation.
Fig. 3 compares the distribution of averaged

probabilities of kth-best CTB-side tags after online
and offline pruning. The statistics are gathered on
CTB5-test. Under online pruning, the averaged
probability of the best tag is only about 0.4, which
is surprisingly low and cannot be explained with the
equal to the time of two baseline models.

aforementioned improper optimization issue. Please
note that both the online and offline models uses the
best choices of r and λ based on Table 4, and are
trained until convergence.
After a few trials of reducing the size of PD-train

for training the coupled model, we realize that the
underlying reason is that ambiguous labeling makes
the probability mass more uniformly distributed,
since for a PD-train sentence, the characters only
have the gold-standard PD-side tags, and the model
basically uses all CTB-side tags as gold-standard
answers. Thanks to the CTB-train sentences, the
model may be able to choose the correct tag, but
inevitably becomes more indecisive at the same time
due to the PD-train sentences.
In contrast, the offline pruning approach directly

uses two baseline models for pruning, which is a
job perfectly suitable for the baseline models. The
entropy of the probability distribution for online
pruning is about 1.524 while that for offline pruning
is only 0.355.

Error distributions. To better understand the
gains from the coupled approach, we show the F-
score of specific POS tags for both the baseline
and coupled models in Fig. 4, in the descending
order of absolute F-score improvements. The largest
improvement is from words tagged as “LB” (mostly
for the word “被”, marking a certain type of passive
construction), and the F-score increases by 65.22 −
54.55 = 10.67%. Nearly all POS tags have more
or less F-score improvement. Due to the space
limit, we only show the tags with more than 2.0%
improvement. The most noticeable exception is that
F-score drops by 84.80 − 86.49 = −1.69% for
words tagged as “OD” (ordinal numbers, as opposed
to cardinal numbers).
In terms of words, we find the largest gain is from

“卢森博格/NR” (Luxemburgo, place name), which
appears 11 times in CTB5-test, with an absolute

759

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

LB DER SP CS DEV VE BA P VV OD

F
-s

c
o
re

 (
%

)

baseline
coupled

Figure 4: F-score comparison between the baseline and coupled
WS&POS tagging models on different CTB POS tags.

F (%) on CTB5X-test
Only WS Joint WS&POS

Coupled (Offline) 98.01 94.39
Guide-feature 97.96 94.06
Baseline 97.37 93.23

Sun and Wan (2012) — 94.36
Jiang et al. (2009) 98.23 94.03

Table 6: WS&POS tagging performance of difference ap-
proaches on CTB5X and PD.

improvement of 90.00 − 16.67 = 73.33% in recall
ratio. The reason is that PD-train contains a lot of
related words such as “卢森堡” (Luxembourg, place
name) and “克拉泽博格” (Krayzelburg, person
name) while CTB5-train has none.

6.4 Comparison with Previous Work

In order to compare with previous work, we also
run our models on CTB5X and PD, where CTB5X
adopts a different data split of CTB5 and is widely
used in previous research on joint WS&POS
tagging (Jiang et al., 2009; Sun and Wan, 2012).
CTB5X-dev/test only contain 352/348 sentences
respectively. Table 6 presents the F scores on
CTB5X-test. We can see that the coupled model
with offline pruning achieves 0.64% (WS) and
1.16% (WS&POS) F-score improvements over
the baseline model, and 0.05% (WS) and 0.33%
(WS&POS) over the guide-feature approach.
The original guide-feature method in Jiang et al.

(2009) achieves 98.23% and 94.03% F-score, which
is very close to the results of our reimplemented
model. The sub-word stacking approach of Sun and
Wan (2012) can be understood as a more complex

variant of the basic guide-feature method.7

The results on both the larger CTB5-test (in Ta-
ble 5) and CTB5X-test suggest that the coupled
approach is more consistent and robust than the
guide-feature method. The reason may be two-
fold. First, in the coupled approach, the model is
able to actively learn the implicit mappings between
two sets of annotations, whereas the guide-feature
model can only passively learn when to trust the
automatically produced tags. Second, the coupled
approach can directly learn from both heterogeneous
training datasets, thus covering more phenomena of
language usage.

7 Related Work

A lot of research has been devoted to design an effec-
tive way to exploit non-overlapping heterogeneous
labeled data, especially in Chinese language process-
ing, where such heterogeneous resources are ubiqui-
tous due to historical reasons. Jiang et al. (2009) first
propose the guide-feature approach, which is similar
to stacked learning (Nivre andMcDonald, 2008), for
joint WS&POS tagging on CTB and PD. Sun and
Wan (2012) further extend the guide-feature method
and propose a more complex sub-word stacking ap-
proach. Qiu et al. (2013) propose a linear coupled
model similar to that of Li et al. (2015). The key
difference is that the model of Qiu et al. (2013) only
uses separate features, while Li et al. (2015) and this
work explore joint features as well.
Li et al. (2012a) apply the guide-feature idea to

dependency parsing on CTB and PD. Zhang et al.
(2014a) extend a shift-reduce dependency parsing
model in order to simultaneously learn and produce
two heterogeneous parse trees, which however as-
sumes the existence of training data with both-side
annotations.
Our context-aware pruning approach is similar to

coarse-to-fine pruning in parsing community (Koo
and Collins, 2010; Rush and Petrov, 2012), which is
a useful technique that allows us to use very complex
parsing models without too much efficiency cost.
The idea is first to use a simple and basic off-shelf
model to prune the search space and only keep highly
likely dependency links, and then let the complex

7Sun and Wan (2012) achieve 94.68% F-score on CTB5X-
test by further employing a re-training strategy.

760

model infer in the remaining search space. Weiss
and Taskar (2010) propose structured prediction cas-
cades: a sequence of increasingly complex models
that progressively filter the space of possible outputs,
and provide theoretical generalization bounds on a
novel convex loss function that balances pruning
error with pruning efficiency.
This work is also closely related with multi-task

learning, which aims to jointly learn multiple
related tasks with the benefit of using interactive
features under a share representation (Ben-David
and Schuller, 2003; Ando and Zhang, 2005;
Parameswaran and Weinberger, 2010). However, as
far as we know, multi-task learning usually assumes
the existence of data with labels for multiple tasks at
the same time, which is unavailable in our scenario,
making our problem more particularly difficult.
Our coupled CRF model is similar to a factorial

CRF (Sutton et al., 2004), in the sense that the
bundled tags can be factorized into two connected
latent variables. Initially, factorial CRFs are de-
signed to jointly model two related (and typically
hierarchical) sequential labeling tasks, such as POS
tagging and chunking. In this work, our coupled
CRF model jointly handles two same tasks with
different annotation schemes. Moreover, this work
provides a natural way to learn from incomplete
annotations where one sentence only contains one-
side labels.
Learning with ambiguous labeling is previously

explored for classification (Jin and Ghahramani,
2002), sequence labeling (Dredze et al., 2009),
parsing (Riezler et al., 2002; Täckström et al.,
2013). Recently, researchers propose to derive
natural annotations from web data to supervise
Chinese word segmentation models in the form of
ambiguous labeling (Jiang et al., 2013; Liu et al.,
2014; Yang and Vozila, 2014).

8 Conclusion

This paper proposes a context-aware pruning ap-
proach for the coupled sequence labeling model of
Li et al. (2015). The basic idea is to more accurately
constrain the bundled tag space of a token according
to its contexts in the sentence, instead of using
heuristic context-free tag-to-tag mapping rules in
the original work. We propose and compare two

different ways of realizing pruning, i.e., online and
offline pruning. In summary, extensive experiments
leads to the following findings.

(1) Offline pruning works well on both POS tag-
ging and joint WS&POS tagging, whereas on-
line pruning only works well on POS tagging
but fails on joint WS&POS tagging due to the
much larger tag set. Further analysis shows
that the reason is that under online pruning,
ambiguous labeling during training makes the
probabilities of single-side tags more evenly
distributed.

(2) In terms of tagging accuracy and F-score, the
coupled approach with offline pruning outper-
forms the baseline single-side tagging model by
largemargin, and is also consistently better than
the mainstream guide-feature method on both
POS tagging and joint WS&POS tagging.

Acknowledgments

The authors would like to thank the anonymous
reviewers for the helpful comments. We are very
grateful to Meishan Zhang for inspiring us to use
online pruning to improve the efficiency of the cou-
pled approach. We also thank Wenliang Chen for
the helpful discussions. This work was supported
by National Natural Science Foundation of China
(Grant No. 61525205, 61502325, 61432013).

References
Rie Kubota Ando and Tong Zhang. 2005. A framework

for learning predictive structures from multiple tasks
and unlabeled data. Journal of Machine Learn
Research, 6:1817–1853.

Shai Ben-David and Reba Schuller. 2003. Exploiting
task relatedness for multiple task learning. In COLT.

Mark Dredze, Partha Pratim Talukdar, and Koby Cram-
mer. 2009. Sequence learning from data with multiple
labels. In ECML/PKDD Workshop on Learning from
Multi-Label Data.

Wenbin Jiang, Liang Huang, and Qun Liu. 2009. Au-
tomatic adaptation of annotation standards: Chinese
word segmentation and POS tagging – a case study.
In Proceedings of ACL, pages 522–530.

Wenbin Jiang, Meng Sun, Yajuan Lü, Yating Yang, and
Qun Liu. 2013. Discriminative learning with natural
annotations: Word segmentation as a case study. In
Proceedings of ACL, pages 761–769.

761

Rong Jin and Zoubin Ghahramani. 2002. Learning with
multiple labels. In Proceedings of NIPS.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In ACL, pages 1–11.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In
Proceedings of ICML 2001, pages 282–289.

Zhenghua Li, Wanxiang Che, and Ting Liu. 2012a.
Exploiting multiple treebanks for parsing with qua-
sisynchronous grammar. In ACL, pages 675–684.

Zhenghua Li, Min Zhang, Wanxiang Che, and Ting
Liu. 2012b. A separately passive-aggressive training
algorithm for joint POS tagging and dependency
parsing. In COLING, pages 1681–1698.

Zhenghua Li, Jiayuan Chao, Min Zhang, and Wenliang
Chen. 2015. Coupled sequence labeling on
heterogeneous annotations: POS tagging as a case
study. In Proceedings of ACL, pages 1783–1792.

Yijia Liu, Yue Zhang, Wanxiang Che, Ting Liu, and
Fan Wu. 2014. Domain adaptation for CRF-based
Chinese word segmentation using free annotations. In
Proceedings of EMNLP, pages 864–874.

Joakim Nivre and Ryan McDonald. 2008. Integrating
graph-based and transition-based dependency parsers.
In Proceedings of ACL, pages 950–958.

S. Parameswaran and K.Q. Weinberger. 2010. Large
margin multi-task metric learning. In J. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and
A. Culotta, editors, Advances in Neural Information
Processing Systems 23, pages 1867–1875.

Xipeng Qiu, Jiayi Zhao, and Xuanjing Huang. 2013.
Joint Chinese word segmentation and POS tagging on
heterogeneous annotated corpora with multiple task
learning. In Proceedings of EMNLP, pages 658–668.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan,
Richard Crouch, John T. III Maxwell, and Mark
Johnson. 2002. Parsing the wall street journal
using a lexical-functional grammar and discriminative
estimation techniques. In Proceedings of ACL, pages
271–278.

Alexander Rush and Slav Petrov. 2012. Vine pruning
for efficient multi-pass dependency parsing. In
Proceedings of NAACL-2012, pages 498–507.

Weiwei Sun and Xiaojun Wan. 2012. Reducing
approximation and estimation errors for Chinese
lexical processing with heterogeneous annotations. In
Proceedings of ACL, pages 232–241.

Charles Sutton, Khashayar Rohanimanesh, and Andrew
McCallum. 2004. Dynamic conditional random
fields: Factorized probabilistic models for labeling
and segmenting sequence data. In International
Conference on Machine Learning (ICML).

Oscar Täckström, Ryan McDonald, and Joakim Nivre.
2013. Target language adaptation of discriminative
transfer parsers. In Proceedings of NAACL, pages
1061–1071.

DavidWeiss and Ben Taskar. 2010. Structured prediction
cascades. In Proceedings of International Conference
on Artificial Intelligence and Statistics (AISTATS).

Fei Xia. 2000. The part-of-speech tagging guidelines for
the penn Chinese treebank 3.0. In Technical Report,
Linguistic Data Consortium.

Nianwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The Penn Chinese Treebank: Phrase
structure annotation of a large corpus. In Natural
Language Engineering, volume 11, pages 207–238.

Fan Yang and Paul Vozila. 2014. Semi-supervised
Chinese word segmentation using partial-label learn-
ing with conditional random fields. In Proceedings of
EMNLP, pages 90–98.

Shiwen Yu, Huiming Duan, Xuefeng Zhu, Bin Swen,
and Baobao Chang. 2003. Specification for corpus
processing at Peking University: Word segmentation,
POS tagging and phonetic notation (In Chinese). Jour-
nal of Chinese Language and Computing, 13(2):121–
158.

Yue Zhang and Stephen Clark. 2008. Joint word segmen-
tation and POS tagging using a single perceptron. In
Proceedings of ACL-08: HLT, pages 888–896.

Meishan Zhang, Wanxiang Che, Yanqiu Shao, and Ting
Liu. 2014a. Jointly or separately: Which is better for
parsing heterogeneous dependencies? In Proceedings
of COLING, pages 530–540.

Meishan Zhang, Yue Zhang, Wanxiang Che, and Ting
Liu. 2014b. Character-level Chinese dependency
parsing. In Proceedings of ACL, pages 1326–1336.

762

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 763–771,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Unsupervised Neural Dependency Parsing∗

Yong Jiang, Wenjuan Han and Kewei Tu
{jiangyong,hanwj,tukw}@shanghaitech.edu.cn

School of Information Science and Technology
ShanghaiTech University, Shanghai, China

Abstract

Unsupervised dependency parsing aims to
learn a dependency grammar from text anno-
tated with only POS tags. Various features
and inductive biases are often used to incorpo-
rate prior knowledge into learning. One use-
ful type of prior information is that there exist
correlations between the parameters of gram-
mar rules involving different POS tags. Pre-
vious work employed manually designed fea-
tures or special prior distributions to encode
such information. In this paper, we propose
a novel approach to unsupervised dependen-
cy parsing that uses a neural model to predict
grammar rule probabilities based on distribut-
ed representation of POS tags. The distributed
representation is automatically learned from
data and captures the correlations between
POS tags. Our experiments show that our
approach outperforms previous approaches u-
tilizing POS correlations and is competitive
with recent state-of-the-art approaches on nine
different languages.

1 Introduction

Unsupervised structured prediction from data is an
important problem in natural language processing,
with applications in grammar induction, POS tag in-
duction, word alignment and so on. Because the
training data is unannotated in unsupervised struc-
tured prediction, learning is very hard. In this pa-
per, we focus on unsupervised dependency parsing,
which aims to identify the dependency trees of sen-
tences in an unsupervised manner.

∗This work was supported by the National Natural Science
Foundation of China (61503248).

Previous work on unsupervised dependency pars-
ing is mainly based on the dependency model with
valence (DMV) (Klein and Manning, 2004) and it-
s extension (Headden III et al., 2009; Gillenwater
et al., 2010). To effectively learn the DMV mod-
el for better parsing accuracy, a variety of induc-
tive biases and handcrafted features have been pro-
posed to incorporate prior information into learning.
One useful type of prior information is that there
exist correlations between the parameters of gram-
mar rules involving different POS tags. Cohen and
Smith (2009; 2010) employed special prior distribu-
tions to encourage learning of correlations between
POS tags. Berg-Kirkpatrick et al. (2010) encoded
the relations between POS tags using manually de-
signed features.

In this work, we propose a neural based ap-
proach to unsupervised dependency parsing. We
incorporate a neural model into the DMV model
to predict grammar rule probabilities based on dis-
tributed representation of POS tags. We learn the
neural network parameters as well as the distribut-
ed representations from data using the expectation-
maximization algorithm. The correlations between
POS tags are automatically captured in the learned
POS embeddings and contribute to the improvemen-
t of parsing accuracy. In particular, probabilities of
grammar rules involving correlated POS tags are au-
tomatically smoothed in our approach without the
need for manual features or additional smoothing
procedures.

Our experiments show that on the Wall Street
Journal corpus our approach outperforms the pre-
vious approaches that also utilize POS tag correla-

763

tions, and achieves a comparable result with recent
state-of-the-art grammar induction systems. On the
datasets of eight additional languages, our approach
is able to achieve better performance than the base-
line methods without any parameter tuning.

2 Related work

2.1 Dependency Model with Valence

The dependency model with valence (DMV) (Klein
and Manning, 2004) is the first model to outperform
the left-branching baseline in unsupervised depen-
dency parsing of English. The DMV model is a
generative model of a sentence and its parse tree. It
generates a dependency parse from the root in a re-
cursive top-down manner. At each step, a decision is
first made as to whether a new child POS tag shall be
generated from the current head tag; if the decision
is yes, then a new child POS tag is sampled; other-
wise, the existing child tags are recursively visited.
There are three types of grammar rules in the mod-
el: CHILD, DECISION and ROOT, each with a set
of multinomial parameters PCHILD(c|h, dir, val),
PDECISION (dec|h, dir, val) and PROOT (c|root),
where dir is a binary variable indicating the genera-
tion direction (left or right), val is a boolean variable
indicating whether the current head POS tag already
has a child in the current direction or not, c indicates
the child POS tag, h indicates the head POS tag, and
dec indicates the decision of either STOP or CON-
TINUE. A CHILD rule indicates the probability of
generating child c given head h on direction dir and
valence val. A DECISION rule indicates the proba-
bility of STOP or CONTINUE given the head, direc-
tion and valence. A ROOT rule is the probability of
a child c generated by the root. The probability of a
dependency tree is the product of probabilities of all
the grammar rules used in generating the dependen-
cy tree. The probability of a sentence is the sum of
probabilities of all the dependency trees consistent
with the sentence.

The basic DMV model has the limitation of being
oversimplified and unable to capture certain linguis-
tic structures. Headden et al. (2009) incorporated
more types of valence and lexicalized information in
the DMV model to increase its representation power
and achieved better parsing accuracy than the basic
DMV model.

2.2 DMV-based Learning Algorithms for
Unsupervised Dependency Parsing

To learn a DMV model from text, the Expectation
Maximization (EM) algorithm (Klein and Manning,
2004) can be used. In the E step, the model calcu-
lates the expected number of times each grammar
rule is used in parsing the training text by using the
inside-outside algorithm. In the M-step, these ex-
pected counts are normalized to become the proba-
bilities of the grammar rules.

There have been many more advanced learning al-
gorithms of the DMV model beyond the basic EM
algorithm. In the work of Cohen and Smith (2008),
a logistic normal prior was used in the DMV model
to capture the similarity between POS tags. In the
work of Berg-Kirkpatrick et al. (2010), features that
group various morphological variants of nouns and
verbs are used to predict the DECISION and CHILD
parameters. These two approaches both utilize the
correlations between POS tags to obtain better prob-
ability estimation of grammar rules involving such
correlated POS tags. In the work of Tu and Honavar
(2012), unambiguity of parse trees is incorporated
into the training objective function of DMV to ob-
tain a better performance.

2.3 Other Approaches to Unsupervised
Dependency Parsing

There are many other approaches to unsupervised
dependency parsing that are not based on DMV.
Daumé III (2009) proposed a stochastic search based
method to do unsupervised Shift-Reduce transition
parsing. Rasooli and Faili (2012) proposed a transi-
tion based unsupervised dependency parser together
with "baby-step" training (Spitkovsky et al., 2010) to
improve parsing accuracy. Le and Zuidema (2015)
proposed a complicated reranking based unsuper-
vised dependency parsing system and achieved the
state-of-the-art performance on the Penn Treebank
dataset.

2.4 Neural based Supervised Dependency
Parser

There exist several previous approaches on using
neural networks for supervised dependency pars-
ing. Garg and Henderson (2011) proposed a Tem-
poral Restricted Boltzmann Machine to do transition

764

Head POS TagValencyInputs:

Continous Representation:

Hidden Layer:

…Softmax Layer:

Outputs (CHILD or DECISION)

Wdir

p = Softmax(Wf)

W

f = ReLU(Wdir[vh; vval])

[vh; vval]

Figure 1: Structure of the neural network. Both CHILD and

DECISION use the same architecture for the calculation of dis-

tributions.

based dependency parsing. Stenetorp (2013) applied
recursive neural networks to transitional based de-
pendency parsing. Chen and Manning (2014) built a
neural network based parser with dense features in-
stead of sparse indicator features. Dyer et al. (2015)
proposed a stack long short-term memory approach
to supervised dependency parsing. To our knowl-
edge, our work is the first attempt to incorporate
neural networks into a generative grammar for un-
supervised dependency parsing.

3 Neural DMV

In this section, we introduce our neural based gram-
mar induction approach. We describe the model in
section 3.1 and the learning method in section 3.2.

3.1 Model

Our model is based on the DMV model (section 2.1),
except that the CHILD and DECISION probabilities
are calculated through two neural networks. We do
not compute the ROOT probabilities using a neural
network because doing that complicates the mod-
el while leads to no significant improvement in the
parsing accuracy. Parsing a sentence using our mod-
el can be done in the same way as using DMV.

Below we show how the CHILD rule probabilities
are computed in our neural based DMV model. De-
note the set of all possible POS tags by T . We build
a neural network to compute the probabilities of pro-
ducing child tag c ∈ T conditioned on the head, di-
rection and valence (h, dir, val).

The full architecture of the neural network is
shown in Figure 1. First, we represent each head
tag h as a d dimensional vector vh ∈ Rd, represent
each value of valence val as a d′ dimensional vector
vval ∈ Rd′ . We concatenate vh and vval as the in-
put embedding vector. Then we map the input layer
to a hidden layer with weight matrix Wdir through a
ReLU activation function. We have two versions of
weight matrix Wdir for the direction dir being left
and right respectively.

f(h, dir, val) = ReLU(Wdir[vh; vval])

We then take the inner product of f and all the child
POS tag vectors and apply a softmax function to ob-
tain the rule probabilities:

[pc1 , pc2 , ..., pc‖T‖] = Softmax(WTf)

whereW = [vc1 , vc2 , ..., vc‖T‖] is an embedding ma-
trix composed of all the child POS tag vectors.

We use the same neural architecture to predict the
probabilities of DECISION rules. The difference is
that the neural network for DECISION has only t-
wo outputs (STOP and CONTINUE). Note that the
two networks share parameters such as head POS
tag embeddings and direction weight matricesWleft

and Wright. Valence embeddings are either shared
or distinct between the two networks depending on
the variant of DMV we use (i.e., whether the max-
imal valences for CHILD and DECISION are the
same).

The parameters of our neural based model in-
clude the weights of the neural network and
all the POS and valence embeddings, denoted
by a set Θ = {vh, vc, vval, vdec,Wdir;h, c ∈
T, val ∈ {0, 1, ...}, dir ∈ {left, right}, dec ∈
{STOP,CONTINUE}}.

3.2 Learning

In this section, we describe an approach based on the
EM algorithm to learn our neural DMV model. To
learn the parameters, given a set of unannotated sen-
tences x1, x2, ..., xN , our objective function is the
log-likelihood function.

L(Θ) =

N∑

α=1

log P(xα; Θ)

765

P

E

W

Dynamic Programming

Neural Network Training

Forward
Evaluating

Count
Normalizing

Figure 2: Learning procedure of our neural based DMV model.

Green dashed lines represent the EM algorithm for learning tra-

ditional DMV. Red solid lines represent the learning procedure

of our model. P represents the rule probabilities of DMV, E

represents the expected counts of rules, and W represents the

parameters of the neural networks. In the traditional EM algo-

rithm, the expected counts are directly used to re-estimate the

rule probabilities. In our approach, parameter re-estimation is

divided into two steps: training the neural networks from the

expected counts and forward evaluation of the neural networks

to produce the rule probabilities.

The approach is visualized in the Figure 2. The E-
step computes the expected number of times each
grammar rule used in parsing each training sentence
xi, denoted by ec(xi) for CHILD rule c, ed(xi) for
DECISION rule d, and er(xi) for ROOT rule r. In
the M-step of traditional DMV learning, these ex-
pected counts are normalized to re-estimate the pa-
rameters of DMV. This maximizes the expected log
likelihood (ELL) with respect to the DMV model
parameters.

ELL(Θ) =
N∑

α=1

(∑

c

ec(xi) log pc

+
∑

d

ed(xi) log pd +
∑

r

er(xi) log pr

)

In our model, however, we do not directly as-
sign the optimal rule probabilities of CHILD and
DECISION; instead, we train the neural networks to
output rule probabilities that optimize ELL, which is
equivalent to a weighted cross-entropy loss function
for each neural network. Note that while the tradi-
tional M-step produces the global optimum of ELL,
our neural-based M-step does not. This is because a

neural network tends to produce similar outputs for
correlated inputs. In our case, the neural network
is able to capture the correlations between different
POS tags as well as different valence values and s-
mooth the probabilities involving correlated tags and
valences. In other words, our M-step can be seen as
optimizing the ELL with a regularization term tak-
ing into account the input correlations. We use mo-
mentum based batch stochastic gradient descent al-
gorithm to train the neural network and learn all the
embeddings and weight matrices.

In addition to standard EM, we can also learn our
neural based DMV model based on the Viterbi EM
algorithm. The difference from standard EM is that
in the E-step, we compute the number of times each
grammar rule is used in the best parse of a training
sentence instead of considering all possible parses.

4 Experiments

4.1 Setup

We used the Wall Street Journal corpus (with section
2-21 for training, section 22 for validation and sec-
tion 23 for testing) in section 4.2 and 4.3. Then we
reported the results on eight additional languages in
section 4.4. In each experiment, we trained our mod-
el on gold POS tags with sentences of length less
than 10 after punctuation has been stripped off. As
the EM algorithm is very sensitive to initializations,
we used the informed initialization method proposed
in (Klein and Manning, 2004).

The length of embeddings is set to 10 for both
POS tags and valence. We trained the neural net-
works with batch size 10 and used the change of
the validation set loss function as the stop criteria.
We ran our model for five times and reported the av-
eraged directed dependency accuracy (DDA) of the
learned grammars on the test sentences with length
less than 10 and all sentences.

4.2 Comparisons of Approaches based on POS
Correlations

We first evaluated our approach in learning the basic
DMV model and compared the results against (Co-
hen and Smith, 2009) and (Berg-Kirkpatrick et al.,
2010), both of which have very similar motivation as
ours in that they also utilize the correlation between
POS tags to learn the basic DMV model. Table 1

766

Methods WSJ10 WSJ
Standard EM 46.2 34.9
Viterbi EM 58.3 39.4
LN (Cohen et al., 2008) 59.4 40.5
Shared LN (Cohen and Smith, 2009) 61.3 41.4
Feature DMV (Berg-Kirkpatrick et al., 2010) 63.0 -
Neural DMV (Standard EM) 51.3 37.1
Neural DMV (Viterbi EM) 65.9 47.0

Table 1: Comparisons of Approaches based on POS Correla-

tions

shows the results. It can be seen that our approach
with Viterbi EM significantly outperforms the EM
and viterbi EM baselines and also outperforms the
two previous approaches.

4.3 Results on the extended DMV model

We directly apply our neural approach to learning
the extended DMV model (Headden III et al., 2009;
Gillenwater et al., 2010) (with the maximum va-
lence value set to 2 for both CHILD and DECISION
rules). As shown in Table 2, we achieve comparable
accuracy with recent state-of-the-art systems. If we
initialize our model with the grammar learned by Tu
and Honavar (2012), the accuracy of our approach
can be further improved.

Most of the recent state-of-the-art systems em-
ploy more complicated models and learning algo-
rithms. For example, Spitkovsky et al. (2013) take
several grammar induction techniques as modules
and connect them in various ways; Le and Zuide-
ma (2015) use a neural-based supervised parser and
reranker that make use of high-order features and
lexical information. We expect that the performance
of our approach can be further improved when these
more advanced techniques are incorporated.

4.4 Results on other languages

We also applied our approach on datasets of eight
additional languages from the PASCAL Challenge
on Grammar Induction (Gelling et al., 2012). We
ran our approach using the hyper-parameters from
experiment 4.2 on the new datasets without any fur-
ther tuning. We tested three versions of our ap-
proach based on standard EM, softmax EM (Tu and
Honavar, 2012) and Viterbi EM respectively. The
results are shown in Table 3 for test sentence length
no longer than ten and Table 4 for all test sentences.

Methods WSJ10 WSJ
Systems with Basic Setup

EVG (Headden III et al., 2009) 65.0 -
TSG-DMV (Blunsom and Cohn, 2010) 65.9 53.1
PR-S (Gillenwater et al., 2010) 64.3 53.3
UR-A E-DMV (Tu and Honavar, 2012) 71.4 57.0
Neural E-DMV 69.7 52.5
Neural E-DMV (Good Init) 72.5 57.6

Systems Using Extra Info
LexTSG-DMV (Blunsom and Cohn, 2010) 67.7 55.7
L-EVG (Headden III et al., 2009) 68.8 -
CS (Spitkovsky et al., 2013) 72.0 64.4
MaxEnc (Le and Zuidema, 2015) 73.2 65.8

Table 2: Comparison of recent unsupervised dependency pars-

ing systems. Basic setup means learning from POS tags with

sentences of length ≤ 10 and punctuation stripped off. Extra

information may contain punctuations, longer sentences, lexi-

cal information, etc. For Neural E-DMV, “Good Init” means

using the learned DMV model from Tu and Honavar (2012) as

our initialization.

Our neural based methods achieve better results than
their corresponding baselines in 75.0% of the cases
for test sentences no longer than 10 and 77.5% for
all test sentences. The good performance of our ap-
proach without data-specific hyper-parameter tuning
demonstrates the robustness of our approach. Care-
fully tuned hyper-parameters on validation datasets,
in our experience, can further improve the perfor-
mance of our approach, in some cases by a large
margin.

4.5 Effects of Hyper-parameters

We examine the influence of hyper-parameters on
the performance of our approach with the same ex-
perimental setup as in section 4.3.

Activation function We compare different linear
and non-linear functions: ReLU, Leaky ReLU, Tan-
h, Sigmoid. The results are shown in Table 5. Non-
linear activation functions can be seen to significant-
ly outperform linear activation functions.

Length of the embedding vectors The dimen-
sion of the embedding space is an important hyper-
parameter in our system. As Figure 3 illustrates,
when the dimension is too low (such as dim = 5),
the performance is bad probably because the embed-
ding vectors cannot effectively discriminate between

767

Arabic Basque Czech Danish Dutch Portuguese Slovene Swedish
Standard EM

DMV 45.8 41.1 31.3 50.8 47.1 36.7 36.7 43.5
Neural DMV 43.4 46.5 33.1 55.6 49.0 30.4 42.2 44.3

Softmax EM σ = 0.25
DMV 49.3 45.6 30.4 43.6 46.1 33.5 29.8 50.3
Neural DMV 54.2 46.3 36.8 44.0 39.9 35.8 31.2 49.7

Softmax EM σ = 0.5
DMV 54.2 47.6 43.2 38.8 38.0 33.7 23.0 37.2
Neural DMV 44.6 48.9 33.4 50.3 37.5 35.3 32.2 43.3

Softmax EM σ = 0.75
DMV 42.2 48.6 22.7 41.0 33.8 33.5 23.2 41.6
Neural DMV 56.7 45.3 31.6 41.3 33.7 34.7 22.9 42.0

Viterbi EM
DMV 32.5 47.1 27.1 39.1 37.1 32.3 23.7 42.6
Neural DMV 48.2 48.1 28.6 39.8 37.2 36.5 39.9 47.9

Table 3: DDA results (on sentences no longer than 10) on eight additional languages. Our neural based approaches are compared

with traditional approaches using standard EM, softmax EM (parameterized by σ) and Viterbi EM.

Activation function WSJ10
ReLU 69.7
Leaky ReLU 67.0
Tanh 66.2
Sigmoid 62.5
Linear 55.1

Table 5: Comparison between activation functions.

Length of POS embedding

6 8 10 12 16 24
62

64

66

68

70

P
ar
si
ng
 a
cc
ur
ac
y

Figure 3: Parsing accuracy vs. length of POS embedding

different POS tags. On the other hand, when the di-
mension is too high (such as dim = 30), since we
have only 35 POS tags, the neural network is prone
to overfitting.

Shared parameters An alternative to our neural
network architecture is to have two separate neural
networks to compute CHILD and DECISION rule
probabilities respectively. The embeddings of the
head POS tag and the valence are not shared be-
tween the two networks. As can be seen in Table

WSJ10 WSJ
Separate Networks 68.6 52.1
Merged Network 69.7 52.5

Table 6: Comparison between using two separate networks and

using a merged network.

6, sharing POS tags embeddings attribute to better
performance.

5 Model Analysis

In this section, we investigate what information our
neural based DMV model captures and analyze how
it contributes to better parsing performance.

5.1 Correlation of POS Tags Encoded in
Embeddings

A main motivation of our approach is to encode cor-
relation between POS tags in their embeddings so
as to smooth the probabilities of grammar rules in-
volving correlated POS tags. Here we want to ex-
amine whether the POS embeddings learned by our
approach successfully capture such correlation.

We collected the POS embeddings learned in the
experiment described in section 4.3 and visualized
them on a 2D plane using the t-SNE algorithm
(Van der Maaten and Hinton, 2008). t-SNE is a
dimensionality reduction algorithm that maps data
from a high dimensional space to a low dimensional
one (2 or 3) while maintaining the distances between

768

Arabic Basque Czech Danish Dutch Portuguese Slovene Swedish
Standard EM

DMV 28.0 31.2 28.1 40.3 44.2 23.5 25.2 32.0
Neural DMV 30.6 38.5 29.3 46.1 46.2 16.2 36.6 32.8

Softmax EM σ = 0.25
DMV 30.0 38.1 27.1 35.1 42.5 27.4 23.1 41.6
Neural DMV 31.5 40.5 32.6 38.0 35.7 26.7 24.2 41.3

Softmax EM σ = 0.5
DMV 32.3 41.0 33.0 32.2 33.9 27.6 15.0 29.6
Neural DMV 22.5 42.6 30.6 40.8 37.5 28.6 25.0 33.7

Softmax EM σ = 0.75
DMV 30.1 43.0 15.6 33.9 29.9 25.8 15.2 32.7
Neural DMV 34.9 37.4 24.7 34.2 29.5 28.9 15.1 33.3

Viterbi EM
DMV 23.9 40.9 20.4 32.6 33.0 26.9 16.5 36.2
Neural DMV 31.0 41.8 23.8 34.2 33.6 29.4 30.8 40.2

Table 4: DDA results (on all the sentences) on eight additional languages. Our neural based approaches are compared with

traditional approaches using standard EM, softmax EM (parameterized by σ) and viterbi EM.

the data points in the high dimensional space. The
"perplexity" hyper-parameter of the algorithm was
set to 20.0 and the distance metric we used is the
Euclidean distance.

Figure 4 shows the visualization result. It can be
seen that in most cases, nearby POS tags in the figure
are indeed similar. For example, VBP (Verb, non-
3rd person singular present), VBD (Verb, past tense)
and VBZ (Verb, 3rd person singular present) can be
seen to be close to each other, and they indeed have
very similar syntactic behavior. Similar observation
can be made to NN (Noun, singular or mass), NNPS
(Proper noun, plural) and NNS (Noun, plural).

5.2 Smoothing of Grammar Rule Probabilities

By using similar embeddings to represent correlat-
ed POS tags, we hope to smooth the probabilities of
rules involving correlated POS tags. Here we an-
alyze whether our neural networks indeed predict
more similar probabilities for rules with correlated
POS tags.

We conducted a case study on all types of verb-
s: VBP (Verb, non-3rd person singular present),
VBZ (Verb, 3rd person singular present), VBD (Ver-
b, past tense), VBN (Verb, past participle), VB (Verb,
base form), VBG (Verb, gerund or present participle).
We used the neural networks in our N-DMV model
learned in the experiment described in section 4.2 to
predict the probabilities of all the CHILD rules head-
ed by a verb. For each pair of verb tags, we com-

-500 -400 -300 -200 -100 0 100 200 300 400 500

-500

-400

-300

-200

-100

0

100

200

300

400

500

JJ

MD

WDT
UH

T0

RP

PRP$

PRP

POS

PDT

$

CC

CD

DT

EX

FW

IN

WP
WP$

WRB

VBZ

VB

VBD

VBG

VBN

VBP

NNS

NNPS

NNP

NN

JJS

JJR

RBS RBR

RB

Adj

Adv

Noun

Others

Verb

Figure 4: A visualization of the distances between embeddings

of different POS tags.

puted the total variation distance between the multi-
nomial distributions of CHILD rules headed by the
two verb tags. We also computed the total variation
distances between CHILD rules of verb tags in the
baseline DMV model learned by EM.

In Figure 5, We report the differences between the
total variation distances computed from our model
and from the baseline. A positive value means the
distance is reduced in our model compared with that
in the baseline. It can be seen that overall the dis-
tances between CHILD rules of different verb tags

769

VBP VBZ VBD VBN VB VBG

VBP

VBZ

VBD

VBN

VB

VBG 0.000

0.461

1.745

0.300

0.122

0.122

0.461

0.000

0.890

0.025

-0.229

-0.127

1.745

0.890

0.000

0.552

0.539

0.653

0.300

0.025

0.552

0.000

0.470

0.020

0.122

-0.229

0.539

0.470

0.000

0.161

0.122

-0.127

0.653

0.020

0.161

0.000

-0.229 1.745

VBP VBZ VBD VBN VB VBG

VBP

VBZ

VBD

VBN

VB

VBG 0.000

0.461

1.745

0.300

0.122

0.122

0.461

0.000

0.890

0.025

-0.229

-0.127

1.745

0.890

0.000

0.552

0.539

0.653

0.300

0.025

0.552

0.000

0.470

0.020

0.122

-0.229

0.539

0.470

0.000

0.161

0.122

-0.127

0.653

0.020

0.161

0.000

-0.229 1.745

Figure 5: The change of the total variation distances between

probabilities of CHILD rules headed by different verb tags in

our model vs. the baseline. A positive value means the distance

is reduced in our model compared with that in the baseline.

become smaller in our model. This verifies that our
approach smooths the probabilities of rules involv-
ing correlated POS tags. From the figure one can
see that the distance that reduces the most is be-
tween VBG and VBN. These two verb tags indeed
have very similar syntactic behaviors and thus have
similar embeddings as shown in figure 4. One the
other hand, the distances between VB and VBZ/VBP
become larger. This is reasonable since VB is syn-
tactically different from VBZ/VBP in that it is very
likely to generate a child tag TO to the left while
VBZ/VBP always generate a subject (e.g., a noun or
a pronoun) to the left.

6 Conclusion

We propose a neural based DMV model to do unsu-
pervised dependency parsing. Our approach learn-
s neural networks with continuous representations
of POS tags to predict the probabilities of grammar
rules, thus automatically taking into account the cor-
relations between POS tags. Our experiments show
that our approach outperforms previous approaches
utilizing POS correlations and is competitive with
recent state-of-the-art approaches on nine different
languages.

For future work, we plan to extend our approach
in learning lexicalized DMV models. In addition,

we plan to apply our approach to other unsupervised
tasks such as word alignment and sentence cluster-
ing.

References

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté,
John DeNero, and Dan Klein. 2010. Painless unsu-
pervised learning with features. In Human Language
Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 582–590. Association for
Computational Linguistics.

Phil Blunsom and Trevor Cohn. 2010. Unsupervised in-
duction of tree substitution grammars for dependency
parsing. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing,
pages 1204–1213. Association for Computational Lin-
guistics.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural network-
s. In EMNLP, pages 740–750.

Shay B Cohen and Noah A Smith. 2009. Shared logistic
normal distributions for soft parameter tying in unsu-
pervised grammar induction. In Proceedings of Hu-
man Language Technologies: The 2009 Annual Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 74–82. As-
sociation for Computational Linguistics.

Shay B Cohen and Noah A Smith. 2010. Covariance
in unsupervised learning of probabilistic grammars.
The Journal of Machine Learning Research, 11:3017–
3051.

Shay B Cohen, Kevin Gimpel, and Noah A Smith. 2008.
Logistic normal priors for unsupervised probabilistic
grammar induction. In Advances in Neural Informa-
tion Processing Systems, pages 321–328.

Hal Daumé III. 2009. Unsupervised search-based struc-
tured prediction. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages
209–216. ACM.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2015. Transition-based
dependency parsing with stack long short-term memo-
ry. arXiv preprint arXiv:1505.08075.

Nikhil Garg and James Henderson. 2011. Temporal re-
stricted boltzmann machines for dependency parsing.
In Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies: short papers-Volume 2, pages
11–17. Association for Computational Linguistics.

770

Douwe Gelling, Trevor Cohn, Phil Blunsom, and Joao
Graça. 2012. The pascal challenge on grammar in-
duction. In Proceedings of the NAACL-HLT Workshop
on the Induction of Linguistic Structure, pages 64–80.
Association for Computational Linguistics.

Jennifer Gillenwater, Kuzman Ganchev, Joao Graça, Fer-
nando Pereira, and Ben Taskar. 2010. Sparsity in de-
pendency grammar induction. In Proceedings of the
ACL 2010 Conference Short Papers, pages 194–199.
Association for Computational Linguistics.

William P Headden III, Mark Johnson, and David Mc-
Closky. 2009. Improving unsupervised dependency
parsing with richer contexts and smoothing. In Pro-
ceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
101–109. Association for Computational Linguistics.

Dan Klein and Christopher D Manning. 2004. Corpus-
based induction of syntactic structure: Models of de-
pendency and constituency. In Proceedings of the
42nd Annual Meeting on Association for Computa-
tional Linguistics, page 478. Association for Compu-
tational Linguistics.

Phong Le and Willem Zuidema. 2015. Unsupervised
dependency parsing: Let’s use supervised parsers.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 651–661, Denver, Colorado, May–June. Asso-
ciation for Computational Linguistics.

Mohammad Sadegh Rasooli and Heshaam Faili. 2012.
Fast unsupervised dependency parsing with arc-
standard transitions. In Proceedings of the Joint Work-
shop on Unsupervised and Semi-Supervised Learn-
ing in NLP, pages 1–9. Association for Computational
Linguistics.

Valentin I Spitkovsky, Hiyan Alshawi, and Daniel Juraf-
sky. 2010. From baby steps to leapfrog: How less is
more in unsupervised dependency parsing. In Human
Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics, pages 751–759. Associa-
tion for Computational Linguistics.

Valentin I Spitkovsky, Hiyan Alshawi, and Daniel Juraf-
sky. 2013. Breaking out of local optima with coun-
t transforms and model recombination: A study in
grammar induction. In EMNLP, pages 1983–1995.

Pontus Stenetorp. 2013. Transition-based dependen-
cy parsing using recursive neural networks. In NIPS
Workshop on Deep Learning.

Kewei Tu and Vasant Honavar. 2012. Unambiguity reg-
ularization for unsupervised learning of probabilistic
grammars. In Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language Pro-

cessing and Computational Natural Language Learn-
ing, pages 1324–1334. Association for Computational
Linguistics.

Laurens Van der Maaten and Geoffrey Hinton. 2008. Vi-
sualizing data using t-sne. Journal of Machine Learn-
ing Research, 9(2579-2605):85.

771

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 772–783,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Generating Coherent Summaries of Scientific Articles
Using Coherence Patterns

Daraksha Parveen Mohsen Mesgar

NLP Group and Research Training Group AIPHES
Heidelberg Institute for Theoretical Studies gGmbH

Heidelberg, Germany
{daraksha.parveen|mohsen.mesgar|michael.strube}@h-its.org

Michael Strube

Abstract

Previous work on automatic summarization
does not thoroughly consider coherence while
generating the summary. We introduce a
graph-based approach to summarize scientific
articles. We employ coherence patterns to en-
sure that the generated summaries are coher-
ent. The novelty of our model is twofold:
we mine coherence patterns in a corpus of ab-
stracts, and we propose a method to combine
coherence, importance and non-redundancy to
generate the summary. We optimize these fac-
tors simultaneously using Mixed Integer Pro-
gramming. Our approach significantly outper-
forms baseline and state-of-the-art systems in
terms of coherence (summary coherence as-
sessment) and relevance (ROUGE scores).

1 Introduction

The growth in the scientific output of many differ-
ent fields makes the task of automatic summariza-
tion imperative. Automatic summarizers assist re-
searchers to have an informative and coherent gist
of long scientific articles. An automatic summarizer
produces summaries considering three properties:
Importance: The summary should contain the im-
portant information of the input document.
Non-redundancy: The summary should contain
non-redundant information. The information should
be diverse in the summary.
Coherence: Though the summary should comprise
diverse and important information of the input doc-
ument, its sentences should be connected to one an-
other such that it becomes coherent and easy to read.

If we do not ensure that a summary is coher-
ent, its sentences may not be properly connected.
This results in an obscure summary. In previous
work coherence has not been thoroughly considered.
Parveen and Strube (2015) use single sentence con-
nectivity in the input document as a coherence mea-
sure. They measure coherence by calculating the
outdegree of a sentence in a graph representation
of an input document. This has two disadvantages:
first, since it is computed only based on one sen-
tence, it is not sufficient to generate coherent sum-
maries; second, it is obtained based on sentence con-
nectivity in the input document rather than in the
summary.

In this work, we focus on the coherence aspect of
summarization. We use discourse entities as the unit
of information that relate sentences. Here, discourse
entities are referred to as head nouns of noun phrases
(see Section 2). The main goal is to extract sentences
which refer to those entities which are important and
unique, and also to entities which connect the ex-
tracted sentences in a coherent manner. Entities in
connected sentences can be used to create linguis-
tically motivated coherence patterns (Daneš, 1974).
Recently, Mesgar and Strube (2015) modeled these
coherence patterns by subgraphs of the graph repre-
sentation (nodes represent sentences and edges rep-
resent entity connections among sentences) of doc-
uments. They show that the frequency of coherence
patterns can be used as features for coherence.

The key idea of this paper is to apply coherence
patterns to long scientific articles to extract (possi-
bly) non-adjacent sentences which, however, are al-
ready coherent. Based on the assumption that ab-

772

c

ba

(i)

S1 Cardiometabolic diseases are a growing concern across sub-Saharan Africa (SSA).

S2 According to current estimates, the prevalence of diabetes among adults aged 20–79 y in Africa is 3.8% and
 will increase to 4.6% by 2030.
S3 Urban environments and associated lifestyles, including diets high in salt, sugar, and fat, and physical inactivity, have been
 widely implicated as leading causes of the rise in cardiometabolic diseases.

S4 If and how these changes affect the health of rural residents, however, remains poorly understood.
S5 Existing research on lifestyle risk factors for cardiometabolic diseases has almost exclusively focused on exposures
 to urban environments.

a

b

c

(ii)

Figure 1: (i) A sample of mined coherence patterns from abstracts; nodes are sentences and edges are entity connections; (ii)

Sentences S1, S3 and S5 constitute the pattern in an input document.

stracts of scientific articles are similar in style to co-
herent summaries, we obtain coherence patterns by
analyzing a corpus of abstracts of articles from bio-
medicine (PubMed corpus). Then we apply the most
frequent coherence patterns to input documents, i.e.
long scientific articles from bio-medicine (PLOS
Medicine dataset), extract corresponding sentences
to generate coherent summaries, and evaluate them
by comparing with summaries written by a PLOS
Medicine editor. Figure 1 illustrates the extraction
of sentences from an input document (Figure 1, (ii))
which constitute a coherence pattern (Figure 1, (i)).
If we overlay the input document with coherence
patterns and extract the sentences which constitute
those patterns, then the extracted sentences are al-
ready coherent. We also take into account impor-
tance and non-redundancy. We capture all three fac-
tors in an objective function maximized by Mixed
Integer Programming (MIP) (Section 2).

We evaluate our method on two different datasets:
PLOS Medicine (Parveen and Strube, 2015) and
DUC 2002. We extract frequent coherence patterns
from all abstracts in the PubMed corpus, and gen-
erate summaries of unseen scientific articles of the
PLOS Medicine dataset (Section 3.1). For DUC
2002 we extract coherence patterns from the human
summaries of DUC 2005 (Dang, 2005). We evaluate
our model on DUC 2002 to compare with state-of-
the-art systems.

Our experimental results show that using coher-
ence patterns for summarization produces more in-
formative (but not redundant) and coherent sum-
maries as compared to several baseline methods and
state-of-the-art methods based on ROUGE scores
and human judgements.

2 Method

We solve the task of creating coherent summaries by
employing coherence patterns. We tightly integrate
determining importance, non-redundancy and co-
herence by applying global optimization, i.e., MIP.

2.1 Document Representation
We use the entity graph (Guinaudeau and Strube,
2013) to represent scientific articles. The entity
graph is a bipartite graph which consists of entities
and sentences as two disjoint sets of nodes (Figure 2,
ii). Entity nodes are connected only with sentence
nodes and not among each other. An entity node is
connected with a sentence node if and only if the en-
tity is present in the sentence. Entities are the head
nouns of noun phrases.

We perform a one-mode projection on sentence
nodes to create a directed one-mode projection
graph (Figure 2, iii). Two sentence nodes in the one-
mode projection graph are connected if they share at
least one entity in the entity graph. Edge directions
encode the sentence order in the input document.

2.2 Mining Coherence Patterns
We use one-mode projection graphs of abstracts in
the PubMed corpus (see Section 3.1) to mine coher-
ence patterns. The weight of a coherence pattern,
weight(patu), is its frequency in the PubMed cor-
pus normalized by the maximum number of its oc-
currence in abstracts in the PubMed corpus (Equa-
tion 1).

weight(patu) =

∑q
k=1 freq(patu, gk)

maxqk=1freq(patu, gk)
, (1)

where q is the number of graphs associated with ab-
stracts in the corpus, and gk represents the graph of
the kth abstract in the PubMed corpus.

773

S1 The overall [rates]e1 of cesarean [delivery]e2 are increasing signifi-
cantly in the [world]e3 .

S2 In [parts]e4 of [England]e5 in 2010, the [proportion]e6 of total
[births]e7 by cesarean [section]e8 was almost 25%, compared with
just 2% in the 1950s.

S3 In the United States and Australia rates of greater than 33% have been
reported and in [China]e9 and [parts]e4 of South [America]e10 ,
including Brazil and [Paraguay]e11 , cesarean [rates]e1 of between
40% and 50% are common.

S4 [Concerns]e12 have been expressed regarding the [impact]e13
of a cesarean [section]e8 on subsequent [pregnancy]e14
[outcome]e15 particularly the [rate]e16 of subsequent
[stillbirth]e17 , [miscarriage]e18 , and ectopic pregnancy.

S5 Hypothesized biological [mechanisms]e19 include placental
[abnormalities]e20 , prior [infection]e21 , and adhesion
[formation]e22 due to cesarean [section]e8 .

(i)

s1 s2 s3 s4 s5

e2 e3 e4 e5 e6 e7 e8e1 e22....

(ii)

s1 s2

s3 s4

s5

(iii)

Figure 2: (i) A sample text from PLOS Medicine; (ii) entity

graph; (iii) projection graph of the text.

The weights of the coherence patterns are not on
the same scale. We normalize the weights using the
standard score

(x−µ
σ

)
, where µ is the mean and σ

is the standard deviation. A sigmoid function scales
weights to the interval [0, 1].

2.3 Summary Generation

We maximize importance, non-redundancy and
pattern-based coherence with their respective
weights λ to generate coherent summaries. The
objective function is:

max(λIfI(S) + λRfR(E) + λCfC(P)), (2)

where S is a set of binary variables for sentences in
an article, E is a set of binary variables for entities
and P is a set of binary variables for coherence pat-
terns.

Importance (fI(S)): The importance function
quantifies the overall importance of information in
the summary, which is calculated by considering the

ranks of selected sentences for the summary:

fI(S) =

n∑

i=1

Rank(senti) · si. (3)

In Equation 3, Rank (senti) represents the rank of
sentence senti and si is the binary variable of sen-
tence senti. n is the number of sentences.

Kleinberg (1999) develops the Hubs and Author-
ities algorithm (HITS) to rank web pages. He di-
vides web pages into two sets: Hubs, pages which
contain links to informative web pages, and Author-
ities, informative web pages. Here, Hubs are entities
and Authorities are sentences. We calculate the rank
of sentences using the HITS algorithm (Parveen and
Strube, 2015). Initial ranks for sentences and enti-
ties are computed by Equations 4 and 5 in an entity
graph:

Rankinit(senti) = 1 + sim(senti, title), (4)

Rankinit(entj) = 1. (5)

In Equation 4, sim(senti, title) is the cosine sim-
ilarity between the scientific article’s title and sen-
tence senti. In Equation 5, entj refers to the jth

entity in the entity graph. After applying the HITS
algorithm on the entity graph using the above initial-
ization, the final rank of a sentence is its importance.

Non-redundancy (fR (E)): In the objective func-
tion, fR(E) represents the non-redundancy of in-
formation in the summary. Intuitively, if the sum-
mary has unique information in every sentence then
the summary is non-redundant. We measure non-
redundancy as follows:

fR(E) =

m∑

j=1

ej , (6)

where m is the number of entities and ej is a binary
variable for each entity. The summary becomes non-
redundant if we include only unique entities.

On the basis of fI(S) and fR(E) we define the
following optimization constraints:

n∑

i=1

|Senti| · si ≤ lmax, (7)

∑

j∈Ei

ej ≥ |Ei| · si for i = 1, . . . , n, (8)

774

∑

si∈Sj

si ≥ ej for j = 1, . . . ,m. (9)

The constraint in Equation 7 limits the length of the
summary. lmax is the maximal length of the sum-
mary and |Senti| is the length of sentence senti.

In Equation 8, the constraint ensures that if sen-
tence senti is selected (si = 1), then all entities
Ei present in sentence senti must also be selected.
In Equation 9, Sj represents the set of binary vari-
ables of sentences which contain entity entj . This
constraint prescribes that if entity entj is selected
(ej = 1), then at least one of the sentences in Sj
must be selected, too.

Coherence (fC(P)): We use the mined patterns
to extract sentences from the input document of
PLOS Medicine to create a coherent summary. We
extract sentences, if the connectivity among nodes
in their projection graph matches the connectivity
among nodes in a coherence pattern. In Figure 3 we
overlay the projection graph from Figure 2, ii with
the coherence pattern from Figure 1, i. This results
in three instances of this coherence pattern. How-
ever, we select only one since we simultaneously op-
timize for importance and non-redundancy.

s2

s3 s4

s2

s5

s4

s2

s5

s3

s1 s2

s3 s4

s5

(i)

(ii)

Figure 3: (i) A projection graph; (ii) several instances of a

coherence pattern in Figure 1, ii.

In the objective function, fC(P) measures the co-
herence of the summary based on the weights of the

coherence patterns occurring in it (Section 2.2):

fC(P) =
U∑

u=1

weight(patu) · pu, (10)

where pu is a boolean variable associated with co-
herence pattern patu.

The optimization considers pattern patu for sum-
marizing the input article, if patu is a subgraph of
the projection graph of the article. To find the coher-
ence pattern in a projection graph we apply a graph
matching algorithm (Lerouge et al., 2015).

g
patu

xa,s

=1
2

xa,s

=0
4

xc,s

=0
2

xc,s =1
4

yac,s s

=1
42

s1 s2

s3 s4

s5

Figure 4: An illustration of mapping variables to overlay graph

g with coherence pattern patu.

To model the graph matching problem between
projection graph g = (Vg, Eg) and patterns patu =
(Vpatu , Epatu), two kinds of mapping binary vari-
ables are used: xi,k for the node map, and yij,kl for
the edge map. xi,k, = 1, if vertices i ∈ Vpatu and
k ∈ Vg match. yij,kl = 1, if for each pair of edges
ij ∈ Epatu and kl ∈ Eg match (Figure 4). Con-
straints for graph matching are as follows:

• Every node of the pattern matches at most one
unique node of the graph:

∑

k∈Vg
xi,k ≤ 1 ∀i ∈ Vpatu . (11)

• Every edge of the pattern matches at most one
unique edge of the graph:

∑

kl∈Eg

yij,kl ≤ 1 ∀ij ∈ Epatu . (12)

775

• Every node of the graph matches at most one
node of the pattern:

∑

i∈Vpatu
xi,k ≤ 1 ∀k ∈ Vg. (13)

• A node of pattern patu matches a node of graph
g if an edge originating from the node of patu
matches an edge originating from the node of g:

∑

kl∈Eg

yij,kl = xi,k ∀k ∈ Vg, ∀ij ∈ Epatu . (14)

• A node of pattern patu matches a node of graph
g if an edge targeting the node of patu matches
an edge targeting the node of g:

∑

kl∈Eg

yij,kl = xj,l ∀l ∈ Vg, ∀ij ∈ Epatu . (15)

• We need a constraint to extract induced pat-
terns1:

∑

i∈Vpatu
xi,k +

∑

j∈Vpatu
xj,l

−
∑

ij∈Epatu

yij,kl ≤ 1 ∀kl ∈ Eg. (16)

The constraints in Equations 11 − 16 are defined
to find pattern patu in projection graph g of the input
article. However these constraints do not ensure that
the pattern is in the summary. For this, we define
constraints in Equations 17 − 19 to assure that an
existing pattern in an article is selected if there are
some sentences in the summary which constitute the
pattern.

• The constraint in Equation 17 ensures that if
sentences sk and sl are selected for the sum-
mary then the edge between them is selected
(zkl = 1), too:

sk · sl = zkl ∀k, l ∈ Vg. (17)

• Pattern patu is present in the summary (pu = 1)
if and only if one of its instances in the projec-
tion graph is included in the summary, i.e., some

1Pattern patu is an induced subgraph of graph g if patu con-
tains all possible edges which appear in g.

of the selected sentence nodes must be present in
an instance of pattern patu. |Vpatu | is the num-
ber of nodes in pattern patu, and |Epatu | is the
number of edges in pattern patu. This constraint
is shown below:

∑

i∈vpatu

∑

k∈vg
sk · xi,k +

∑

ij∈epatu

∑

kl∈eg
zkl · yij,kl

= pu(|Vpatu |+ |Epatu |). (18)

• If a sentence is selected then it has to match a
node of at least one of the patterns:

∑

patu∈P

∑

i∈Vpatu
xi,k ≥ sk ∀k ∈ Vg. (19)

3 Experiments

In this section we discuss the datasets and the experi-
mental setup. We evaluate our model using ROUGE
scores and human judgements.

3.1 Datasets
PLOS Medicine: This dataset contains 50 scien-
tific articles. In this dataset every scientific article
is accompanied by a summary written by an editor
of the month. This editor’s summary has a broader
perspective than the authors’ abstract. We use the
editor’s summary as a gold summary for calculat-
ing the ROUGE scores. We use 700 different PLOS
Medicine articles from the PubMed2 corpus to mine
coherence patterns from their abstracts and to calcu-
late patterns’ weights.
DUC: The DUC 2002 dataset has been annotated
for the Document Understanding Conference 2002.
It contains 567 news articles for summarization.
Every article is accompanied by at least two gold
summaries. DUC 2002 articles are shorter than
PLOS Medicine articles (25 vs. 154 sentences av-
erage length). We use all (300) DUC 2005 human
summaries to mine coherence patterns and to calcu-
late their weights.

3.2 Experimental Setup
First, we extract the text of an article. We remove
figures, tables, references and non-alphabetical char-
acters. Then we use the Stanford parser (Klein and

2http://www.ncbi.nlm.nih.gov/pmc/tools/
ftp/

776

Manning, 2003) to determine sentence boundaries.
We apply the Brown coherence toolkit (Elsner and
Charniak, 2011) to convert the articles into entity
grids (Barzilay and Lapata, 2008) which then are
transformed into entity graphs. We use gSpan (Yan
and Han, 2002) to extract all subgraphs from the pro-
jection graphs of the abstracts of the PubMed cor-
pus.

It is possible that patterns with a large number
of nodes are not at all present in the projection
graph. Hence, we use coherence patterns with 3 and
4 nodes, referred to as CP3 and CP4, respectively.
We use Gurobi (Gurobi Optimization, Inc., 2014) to
solve the MIP problem. We use a pronoun resolution
system (Martschat, 2013) to replace all pronouns in
the summary with their antecedents.

We determine the best values for λI , λR, and λc
on the development sets. λI = 0.4, λR = 0.3, and
λc = 0.3 are the best weights for the PLOS Medicine
development set. Weights for the DUC 2002 devel-
opment set are λI = 0.5, λR = 0.2 and λc = 0.3.

3.3 Results

We evaluate our model in two ways. First, we use
ROUGE scores to compare our model with other
models. Second, we explicitly evaluate the coher-
ence of the summaries by human judgements.

3.3.1 ROUGE Assessment
The ROUGE score (Lin, 2004) is a standard evalua-
tion score in automatic text summarization. It calcu-
lates the overlap between gold summary and system
summary. In automatic text summarization ROUGE
1, ROUGE 2 and ROUGE SU4 are usually reported
(see Graham (2015) for an assessment of evaluation
metrics for summarization).

We compare our system (CP3 andCP4) with four
baselines: Lead, Random, Maximal Marginal Rel-
evance (MMR) and TextRank. Lead selects adja-
cent sentences from the beginning of an input ar-
ticle. Random selects sentences randomly. MMR
(Carbonell and Goldstein, 1998) uses a trade-off
between relevance and redundancy. TextRank is a
graph-based system using sentences as nodes and
edges weighted by cosine similarity between sen-
tences (Mihalcea and Tarau, 2004).

We compare our system with three state-of-the-art
systems: ECoh (Parveen and Strube, 2015), TCoh

Systems R-SU4 R-2
Baselines
Lead 0.067 0.055
Random 0.048 0.031
MMR 0.069 0.048
TextRank 0.068 0.048
State-of-the-art
ECoh 0.131 0.098
TCoh 0.129 0.095
Mead 0.084 0.068
Our Model
CP3 0.135 0.103

Table 1: PLOS Medicine, editor’s summaries with 5 sentences.

(Parveen et al., 2015), and Mead (Radev et al.,
2004). ECoh uses entity graphs which consists of
entities and sentences, and TCoh uses topical graphs
where entities are replaced by the topics. They
both use the outdegree of sentence nodes in the un-
weighted and the weighted projection graph, respec-
tively, as the coherence measure of each sentence.
Mead employs a linear combination of three fea-
tures: centroid score, position score and overlap
score. The linear combination is used to add sen-
tences to the summary up to the required length. The
centroid score gives the highest score to the most
central sentence in the cluster of sentences, the po-
sition score gives a higher score to the sentences
which are in the beginning of the document, and the
overlap score computes the similarity between the
sentences of a document. All three features do not
take care of the coherence of a summary as they do
not have any notion of the order and the structure of
a summary.

To compare with the state-of-the-art systems on
PLOS Medicine, ECoh (Parveen and Strube, 2015)
and TCoh (Parveen et al., 2015), we limit the length
of summaries to 5 sentences. Table 1 reports
ROUGE scores of different systems. Our system
outperforms baselines and state-of-the-art systems.

Since the word length limit of a summary is more
meaningful than the sentence length limit of a sum-
mary, we limit the length of a summary to the av-
erage length of editor’s summaries in the dataset
(750 words). Table 2 shows the performance of
different systems with 750 words limit for a sum-
mary. In Table 2, we use different versions of
ROUGE-SU4 and ROUGE-2 where W/WO stands

777

PLOS Medicine WOStop WOStop WStop WStop WOStop WOStop WStop WStop

Editor’s summaries WStem WOStem WStem WOStem WStem WOStem WStem WOStem

ROUGE SU4 (*pvalue < 0.05) ROUGE 2 (*pvalue < 0.01)
Upper Bound 0.423 0.354 0.519 0.470 0.344 0.304 0.430 0.399
Baselines
Lead 0.191 0.158 0.246 0.222 0.158 0.140 0.185 0.171
Random 0.140 0.113 0.169 0.153 0.102 0.088 0.125 0.116
MMR 0.183 0.149 0.240 0.215 0.141 0.125 0.171 0.157
TextRank 0.148 0.104 0.161 0.159 0.115 0.084 0.126 0.118
State-of-the-art
ECoh 0.204* 0.167 0.254 0.228 0.160* 0.145 0.187 0.173
TCoh 0.195 0.161 0.231 0.206 0.157 0.140 0.169 0.165
Mead 0.197 0.165 0.246 0.222 0.156 0.139 0.186 0.172
Our Model
CP3 0.215* 0.178 0.268 0.241 0.172* 0.153 0.200 0.184
CP4 0.218 0.179 0.270 0.245 0.175 0.156 0.201 0.187

Table 2: ROUGE scores on PLOS Medicine with 750 words.

for With/Without. Here, WOStop means without
considering stopwords while calculating ROUGE
scores, and WOStem means without applying the
Porter Stemmer on summaries while calculating
ROUGE scores. Our models outperform baseline
and state-of-the-art systems (Table 2). We compute
statistical significance between ECoh and CP3 on
both scores, ROUGE SU4 is significantly different
by 95%. ROUGE 2 is significantly different by 99%.

Upper Bound in Table 2 represents maximum
ROUGE scores that can be achieved in extractive
summarization on the PLOS Medicine dataset. It is
calculated by considering the whole scientific article
as a summary and the corresponding editor’s sum-
mary as the gold standard. The Upper Bound scores
are not very high showing that a significant im-
provement in ROUGE scores on the PLOS Medicine
dataset is difficult. Thus, the performance achieved
by our systems, CP3 and CP4, is a considerable im-
provement on the PLOS Medicine dataset.

Furthermore, we apply CP3 on the dataset intro-
duced by Liakata et al. (2013). The dataset con-
sists of 28 scientific articles from the chemistry do-
main. The state-of-the-art system on this dataset is
CoreSC, which is developed by Liakata et al. (2013).
CoreSC considers discourse information while sum-
marizing a scientific article. The ROUGE-1 score
of CP3 (0.96) is significantly better than CoreSC
(0.75) and Microsoft Office Word 2007 AutoSuma-
rize (0.73) (Garcı́a-Hernández et al., 2009), in re-
spect of abstracts. This shows that our system per-

forms well in other domains.
We further calculate the average number of sen-

tences per summary obtained by Mead andCP3. On
average Mead produces 17.5 sentences per summary
whereasCP3 produces 27.2 sentences per summary.
The possibility of longer sentences containing more
topic irrelevant entities is higher than shorter sen-
tences (Jin et al., 2010).

We calculate the average percentage of sentences
selected from the sections Introduction, Method, Re-
sults and Discussion by different systems. CP3 ex-
tracts sentences mainly from Introduction (32.5%)
and Method (38.5%), but also a considerable num-
ber of sentences from Results (17.67%) and Discus-
sion (11.33%). The distribution is quite similar to
TextRank and MMR. Lead, obviously, extracts only
from Introduction (80.59%) and Method (19.41%).
Mead extracts maximum sentences from the begin-
ning of the document using its positional feature.
The sentences in a summary extracted by CP3 are
evenly distributed indicating that they are not biased
to any sections. This clearly represents that coher-
ence patterns not only seeks for nearby sentences but
also for any distant sentences of a scientific article.

Table 3 shows the results on DUC 2002 to com-
pare the results with state-of-the-art systems. There
is no significant difference between the ROUGE
scores of using CP3 and CP4 on DUC 2002. Thus,
we only report the results of using CP3 on DUC
2002.

In Table 3, LREG is a baseline system us-

778

Systems R-1 R-2 R-SU4
Baselines
Lead 0.459 0.180 0.201
DUC 2002 Best 0.480 0.228
TextRank 0.470 0.195 0.217
LREG 0.438 0.207
State-of-the-art
Mead 0.445 0.200 0.210
ILPphrase 0.454 0.213
URANK 0.485 0.215
UniformLink (k = 10) 0.471 0.201
ECoh 0.485 0.230 0.253
TCoh 0.481 0.243 0.242
NN-SE 0.474 0.230
Our Model
CP3 0.490 0.247 0.258

Table 3: ROUGE scores on DUC 2002.

ing logistic regression and hand-made features
(Cheng and Lapata, 2016). We compare our
model to previously published state-of-the-art sys-
tems. These systems show reasonable performance
on the DUC 2002 summarization task. ILPphrase
is a phrase-based extraction model, which selects
important phrases and combines them via inte-
ger linear programming (Woodsend and Lapata,
2010). URANK utilizes a unified ranking process for
single-document and multi-document summariza-
tion tasks (Wan, 2010). UniformLink (k=10), con-
siders similar documents for document expansion in
the single-document summarization task (Wan and
Xiao, 2010). The more recent system, NN-SE, uti-
lizes a neural network hierarchical document en-
coder and an attention-based extractor to extract sen-
tences from a document for a summary (Cheng and
Lapata, 2016). ROUGE scores of our approach on
this dataset are better than baselines and state-of-the-
art systems. This shows that our system performs
well even in a different genre (robust) and with con-
siderably shorter input documents (scalable).

3.3.2 Coherence Assessment

ROUGE scores do not evaluate summary coher-
ence, since ROUGE only calculates overlapping re-
call scores and does not consider the structure of the
summary. Haghighi and Vanderwende (2009), Ce-
likyilmaz and Hakkani-Tür (2010) and Christensen
et al. (2013) evaluate the overall summary quality
by asking human subjects to rank system generated

summaries. Parveen and Strube (2015) and Parveen
et al. (2015) assess the coherence by asking human
assessors to rank system generated summaries and
compare their system with baseline systems.

We perform summary coherence assessment by
asking one Postdoc, two PhD students and one Mas-
ters student from the field of natural language pro-
cessing. We provide them with the output sum-
maries of four different systems for ten articles. We
ask them to rank the summaries, i.e., the best sum-
mary gets rank 1, the second best gets rank 2, the
third best gets rank 3, and the worst gets rank 4.

The four systems assessed are CP3, ECoh, Text-
Rank, and Lead. We apply the Kendall concordance
coefficient (W) (Siegel and Castellan, 1988) to mea-
sure whether the human assessors agree in ranking
the four systems. With W = 0.6725 the correla-
tion between the human assessors is high. Applying
the χ2 test shows that W is significant at least at the
99% level indicating that the ranks provided by the
human assessors are reliable and informative. Table
4 shows the overall average rank of a system given
by the four human assessors. The lower the value of
average human scores the more coherent the sum-
mary. Unsurprisingly Lead gets the best overall av-

PLOS Medicine
System Average Human Score
TextRank 3.950
ECoh 2.325
CP3 1.875
Lead 1.625

Table 4: The average human scores.

erage rank. Lead extracts adjacent sentences from
the beginning of the document. Hence, these sum-
maries are as coherent as the author intends them
to be, but they are not informative. However, CP3

is very close in coherence to Lead indicating that
our strategy is successful. It also performs substan-
tially better than TextRank and ECoh. This confirms
that using coherence patterns for sentence extraction
yields more coherent summaries.

4 Related Work

Summarizing scientific articles is as difficult as
multi-document summarization because scientific
articles are tend to be long and the important infor-

779

mation is spread all over the article unlike informa-
tion in news articles (Teufel and Moens, 2002).

There are various approaches for summarizing
scientific articles. Citations have been used by many
researchers for summarization in this domain (Elkiss
et al., 2008; Mohammad et al., 2009; Qazvinian and
Radev, 2008; Abu-Jbara and Radev, 2011). Nanba
and Okumura (2000) develop rules for categoriz-
ing citations by analyzing citation sentences. New-
man (2001) analyzes the structure using a citation
network. Similarly, Siddharthan and Teufel (2007)
discover scientific attributions using citations. Dis-
course structure (but not necessarily coherence) has
been used by Teufel and Moens (2002), Liakata et
al. (2013) and others for summarizing scientific arti-
cles.

Several state-of-the-art extractive summarization
systems implement summarization as maximizing
an objective function using constraints. McDonald
(2007) interprets text summarization as a global in-
ference problem, where he is maximizing the im-
portance score of a summary by considering the
length constraint. Similarly, various approaches for
summarization are based on optimization using ILP
(Gillick et al., 2009; Nishikawa et al., 2010; Galanis
et al., 2012; Parveen and Strube, 2015).

Until now, only few works have considered co-
herence while summarizing scientific articles. Abu-
Jbara and Radev (2011) work on citation based
summarization. They preprocess the citation sen-
tences to filter out irrelevant sentences or sentence
fragments, then extract sentences for the summary.
Eventually, they refine the summary sentences to im-
prove readability. Jha et al. (2015) consider Min-
imum Independent Discourse Contexts (MIDC) to
solve the problem of non-coherence in extractive
summarization. However, none of them deals with
the problem of coherence within the task of sentence
selection. Sentence selection and ensuring the co-
herence of summaries are not tightly integrated in
their techniques. They model coherence in summa-
rization by only considering adjacent sentences.

There are few methods (Hirao et al., 2013;
Parveen and Strube, 2015; Gorinski and Lapata,
2015) which integrate coherence in optimization.
These methods do not take into account the overall
structure of the summary. Unlike earlier methods,
we incorporate coherence patterns in optimization.

5 Conclusion

We introduce a novel graph-based approach to gen-
erate coherent summaries of scientific articles. Our
approach takes care of coherence distinctively by co-
herence patterns. We have experimented with PLOS
Medicine and DUC 2002. The results show that
the approach is robust, works on both scientific and
news documents and with input documents of dif-
ferent length. It considerably outperforms state-of-
the-art systems on both datasets. We collected hu-
man assessments to evaluate the coherence of sum-
maries. Our system substantially outperforms base-
lines and state-of-the-art systems, i.e., incorporat-
ing coherence patterns produces more coherent sum-
maries. The results show that our approach performs
well in human summary coherence assessment and
relevance evaluation (ROUGE scores).

Acknowledgments

This work has been funded by the Klaus Tschira
Foundation, Heidelberg, Germany. The first and
second authors have been supported by a Heidel-
berg Institute for Theoretical Studies Ph.D. schol-
arship. This work has been supported by the Ger-
man Research Foundation as part of the Research
Training Group “Adaptive Preparation of Informa-
tion from Heterogeneous Sources” (AIPHES) under
grant No. GRK 1994/1. We would like to thank our
colleagues Alexander Judea, Isabell Wolter, Mark-
Christoph Müller and Nafise Moosavi who became
human subjects for coherence assessment evalua-
tion.

References
Amjad Abu-Jbara and Dragomir Radev. 2011. Co-

herent citation-based summarization of scientific pa-
pers. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), Portland, Oreg., 19–24 June
2011, pages 500–509.

Regina Barzilay and Mirella Lapata. 2008. Modeling
local coherence: An entity-based approach. Computa-
tional Linguistics, 34(1):1–34.

Jaime G. Carbonell and Jade Goldstein. 1998. The
use of MMR, diversity-based reranking for reordering
documents and producing summaries. In Proceedings
of the 21st Annual International ACM-SIGIR Confer-
ence on Research and Development in Information

780

Retrieval, Melbourne, Australia, 24–28 August 1998,
pages 335–336.

Asli Celikyilmaz and Dilek Hakkani-Tür. 2010. A hy-
brid hierarchical model for multi-document summa-
rization. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, Up-
psala, Sweden, 11–16 July 2010, pages 815–824.

Jianpeng Cheng and Mirella Lapata. 2016. Neural sum-
marization by extracting sentences and words. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), Berlin, Germany, 7–12 August 2016, pages
484–494.

Janara Christensen, Mausam, Stephen Soderland, and
Oren Etzioni. 2013. Towards coherent multi-
document summarization. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Atlanta, Georgia, 9–14 June
2013, pages 1163–1173.

František Daneš, editor. 1974. Papers on Functional
Sentence Perspective. Academia, Prague.

Hoa Trang Dang. 2005. Overview of DUC 2005. In Pro-
ceedings of the 2005 Document Understanding Con-
ference held at the Human Language Technology Con-
ference and Conference on Empirical Methods in Nat-
ural Language Processing, Vancouver, B.C., Canada,
9–10 October 2005.

Aaron Elkiss, Siwei Shen, Anthony Fader, Güneş Erkan,
David States, and Dragomir Radev. 2008. Blind
men and elephants: What do citation summaries tell
us about a research article? Journal of the Ameri-
can Society for Information Science and Technology,
59(1):51–62.

Micha Elsner and Eugene Charniak. 2011. Extending the
entity grid with entity-specific features. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
Portland, Oreg., 19–24 June 2011, pages 125–129.

Dimitrios Galanis, Gerasimos Lampouras, and Ion An-
droutsopoulos. 2012. Extractive multi-document
summarization with integer linear programming and
support vector regression. In Proceedings of the 24th
International Conference on Computational Linguis-
tics, Mumbai, India, 8–15 December 2012, pages 911–
926.

René Arnulfo Garcı́a-Hernández, Yulia Ledeneva,
Griselda Matı́as Mendoza, Ángel Hernández
Dominguez, Jorge Chavez, Alexander Gelbukh, and
José Luis Tapia Fabela. 2009. Comparing commercial
tools and state-of-the-art methods for generating text
summaries. In Proceedings of Advances in Artificial
Intelligence, 8th Mexican International Conference

on Artificial Intelligence, Guanajuato, Mexico, 9-13
November 2009, pages 92–96.

Daniel Gillick, Korbinian Riedhammer, Benoit Favre,
and Dilek Hakkani-Tür. 2009. A global optimiza-
tion framework for meeting summarization. In Pro-
ceedings of the 2009 IEEE International Conference
on Acoustics, Speech, and Signal Processing, Taipei,
Taiwan, 19–24 June 2009, pages 4769–4772.

Philip John Gorinski and Mirella Lapata. 2015. Movie
script summarization as graph-based scene extraction.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Denver, Col., 31 May – 5 June 2015, pages 1066–
1076.

Yvette Graham. 2015. Re-evaluating automatic sum-
marization with BLEU and 192 shades of ROUGE.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, Lisbon,
Portugal, 17–21 September 2015, pages 128–137.

Camille Guinaudeau and Michael Strube. 2013. Graph-
based local coherence modeling. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), Sofia,
Bulgaria, 4–9 August 2013, pages 93–103.

Gurobi Optimization, Inc. 2014. Gurobi optimizer refer-
ence manual.

Aria Haghighi and Lucy Vanderwende. 2009. Exploring
content models for multi-document summarization. In
Proceedings of Human Language Technologies 2009:
The Conference of the North American Chapter of the
Association for Computational Linguistics, Boulder,
Col., 31 May – 5 June 2009, pages 362–370.

Tsutomu Hirao, Yasuhisa Yoshida, Masaaki Nishino,
Norihito Yasuda, and Masaaki Nagata. 2013. Single-
document summarization as a tree knapsack problem.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, Seattle,
Wash., 18–21 October 2013, pages 1515–1520.

Rahul Jha, Reed Coke, and Dragomir Radev. 2015.
Surveyor: A system for generating coherent survey
articles for scientific topics. In Proceedings of the
29th Conference on the Advancement of Artificial In-
telligence, Austin, Texas, 25–30 January 2015, pages
2167–2173.

Feng Jin, Minlie Huang, and Xiaoyan Zhu. 2010. A
comparative study on ranking and selection strategies
for multi-document summarization. In Proceedings of
Coling 2010: Poster Volume, Beijing, China, 23–27
August 2010, pages 525–533.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. In Proceedings of the 41st
Annual Meeting of the Association for Computational

781

Linguistics, Sapporo, Japan, 7–12 July 2003, pages
423–430.

Jon M. Kleinberg. 1999. Authoritative sources in
a hyperlinked environment. Journal of the ACM,
46(5):604–632.

Julien Lerouge, Pierre Le Bodic, Pierre Héroux, and
Sébastien Adam. 2015. GEM++: A tool for solving
substitution-tolerant subgraph isomorphism. In C.-L.
Liu, B. Luo, W.G. Kropatsch, and J. Cheng, editors,
Graph-Based Representations in Pattern Recognition,
pages 128–137. Springer, Heidelberg, Germany.

Maria Liakata, Simon Dobnik, Shyamasree Saha, Colin
Batchelor, and Dietrich Rebholz-Schuhmann. 2013.
A discourse-driven content model for summarising
scientific articles evaluated in a complex question an-
swering task. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Process-
ing, Seattle, Wash., 18–21 October 2013, pages 747–
757.

Chin-Yew Lin. 2004. ROUGE: A package for automatic
evaluation of summaries. In Proceedings of the Text
Summarization Branches Out Workshop at ACL ’04,
Barcelona, Spain, 25–26 July 2004, pages 74–81.

Sebastian Martschat. 2013. Multigraph clustering for
unsupervised coreference resolution. In 51st Annual
Meeting of the Association for Computational Linguis-
tics: Proceedings of the Student Research Workshop,
Sofia, Bulgaria, 5–7 August 2013, pages 81–88.

Ryan McDonald. 2007. A study of global inference al-
gorithms in multi-document summarization. In Pro-
ceedings of the European Conference on Information
Retrieval, Rome, Italy, 2-5 April 2007.

Mohsen Mesgar and Michael Strube. 2015. Graph-based
coherence modeling for assessing readability. In Pro-
ceedings of STARSEM 2015: The Fourth Joint Confer-
ence on Lexical and Computational Semantics, Den-
ver, Col., 4–5 June 2015, pages 309–318.

Rada Mihalcea and Paul Tarau. 2004. TextRank: Bring-
ing order into texts. In Proceedings of the 2004 Con-
ference on Empirical Methods in Natural Language
Processing, Barcelona, Spain, 25–26 July 2004, pages
404–411.

Saif Mohammad, Bonnie Dorr, Melissa Egan, Ahmed
Hassan, Pradeep Muthukrishan, Vahed Qazvinian,
Dragomir Radev, and David Zajic. 2009. Using ci-
tations to generate surveys of scientific paradigms. In
Proceedings of Human Language Technologies 2009:
The Conference of the North American Chapter of the
Association for Computational Linguistics, Boulder,
Col., 31 May – 5 June 2009, pages 584–592.

Hidetsugu Nanba and Manabu Okumura. 2000. Pro-
ducing more readable extracts by revising them. In
Proceedings of the 18th International Conference on

Computational Linguistics, Saarbrücken, Germany, 31
July – 4 August 2000, pages 1071–1075.

Mark E.J. Newman. 2001. Scientific collaboration net-
works. I. Network construction and fundamental re-
sults. Physical Review E, 64(1):016131.

Hitoshi Nishikawa, Takaaki Hasegawa, Yoshihiro Mat-
suo, and Genichiro Kikui. 2010. Opinion summariza-
tion with integer linear programming formulation for
sentence extraction and ordering. In Proceedings of
the 23rd International Conference on Computational
Linguistics, Beijing, China, 23–27 August 2010, pages
910–918.

Daraksha Parveen and Michael Strube. 2015. Integrating
importance, non-redundancy and coherence in graph-
based extractive summarization. In Proceedings of the
24th International Joint Conference on Artificial In-
telligence, Buenos Aires, Argentina, 25–31 July 2015,
pages 1298–1304.

Daraksha Parveen, Hans-Martin Ramsl, and Michael
Strube. 2015. Topical coherence for graph-based ex-
tractive summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, Lisbon, Portugal, 17–21 September
2015, pages 1949–1954.

Vahed Qazvinian and Dragomir R. Radev. 2008. Scien-
tific paper summarization using citation summary net-
works. In Proceedings of the 22nd International Con-
ference on Computational Linguistics, Manchester,
U.K., 18–22 August 2008, pages 689–696.

Dragomir Radev, Timothy Allison, Sasha Blair-
Goldensohn, John Blitzer, Arda Celibi, Stanko
Dimitrov, Elliott Drabek, Ali Hakim, Wai Lam, Danyu
Liu, Jahna Otterbacher, Hong Qi, Horacio Saggion,
Simone Teufel, Michael Topper, Adam Winkel, and
Zhu Zhang. 2004. MEAD – a platform for multidocu-
ment multilingual text summarization. In Proceedings
of the 4th International Conference on Language
Resources and Evaluation, Lisbon, Portugal, 26–28
May 2004.

Advaith Siddharthan and Simone Teufel. 2007. Whose
idea was this, and why does it matter? Attributing sci-
entific work to citations. In Proceedings of Human
Language Technologies 2007: The Conference of the
North American Chapter of the Association for Com-
putational Linguistics, Rochester, N.Y., 22–27 April
2007, pages 316–223.

Sidney Siegel and N. John Castellan. 1988. Non-
parametric Statistics for the Behavioral Sciences.
McGraw-Hill, New York, 2nd edition.

Simone Teufel and Marc Moens. 2002. Summariz-
ing scientific articles: Experiments with relevance
and rhetorical status. Computational Linguistics,
28(4):409–445.

782

Xiaojun Wan and Jianguo Xiao. 2010. Exploiting neigh-
borhood knowledge for single document summariza-
tion and keyphrase extraction. ACM Transactions on
Information Systems, 28(2):8 pages.

Xiaojun Wan. 2010. Towards a unified approach
to simultaneous single-document and multi-document
summarizations. In Proceedings of the 23rd Interna-
tional Conference on Computational Linguistics, Bei-
jing, China, 23–27 August 2010, pages 1137–1145.

Kristian Woodsend and Mirella Lapata. 2010. Automatic
generation of story highlights. In Proceedings of the
48th Annual Meeting of the Association for Computa-
tional Linguistics, Uppsala, Sweden, 11–16 July 2010,
pages 565–574.

Xifeng Yan and Jiawei Han. 2002. gSpan: Graph-based
substructure pattern mining. In Proceedings of the
International Conference on Data Mining, Maebashi
City, Japan, 9–12 December 2002, pages 721–724.

783

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 784–794,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

News Stream Summarization using Burst Information Networks

Tao Ge1,2∗, Lei Cui3, Baobao Chang1,2, Sujian Li1,2, Ming Zhou3, Zhifang Sui1,2
1Key Laboratory of Computational Linguistics, Ministry of Education,

School of EECS, Peking University, Beijing, 100871, China
2Collaborative Innovation Center for Language Ability, Xuzhou, Jiangsu, 221009, China

3Microsoft Research
getao@pku.edu.cn, lecu@microsoft.com, chbb@pku.edu.cn

lisujian@pku.edu.cn, mingzhou@microsoft.com, szf@pku.edu.cn

Abstract

This paper studies summarizing key informa-
tion from news streams. We propose sim-
ple yet effective models to solve the problem
based on a novel and promising representation
of text streams – Burst Information Networks
(BINets). A BINet can be aware of redundant
information, allows global analysis of a text
stream, and can be efficiently built and dy-
namically updated, which perfectly fits the de-
mands of text stream summarization. Exten-
sive experiments show that the BINet-based
approaches are not only efficient and can be
used in a real-time online summarization set-
ting, but also can generate high-quality sum-
maries, outperforming the state-of-the-art ap-
proach.

1 Introduction

Text stream summarization aims to summarize key
information from a text stream containing huge
numbers of documents, which is an important and
useful task that can be used for many real-world ap-
plications. For example, a news portal website ed-
itor needs to summarize news streams in the past
day for generating a list of headline news; an edi-
tor of Sports Weekly may want a summary of the
past week news stream for editing the magazine; and
geologists and meteorologists will benefit from a
summary of disaster events from the past year news
stream (as shown in Table 1) for their study.

In contrast to traditional text summarization tasks
(e.g., single and multi-document summarization)

∗ This work was done when the first author was visiting
Microsoft Research Asia

single-document
summarization

multi-document
summarization

stream summarization

= sentence = document

Figure 1: Stream summarization paradigm.

that have been extensively studied for decades, the
task of stream summarization is a younger research
problem which attempts to solve a summarization
problem in the big-data setting. For a text stream
with millions of documents involving various topics
and events, traditional single- and multi-document
summarization approaches cannot address the infor-
mation overload challenge. For example, a single-
document summarization model will generate 1 mil-
lion document summaries for a text stream with 1
million documents, which are still overwhelming for
a person to learn the key information in the stream.
In such cases, one needs to a summary of the whole
stream instead of summaries of each document.

Figure 1 shows the paradigm of stream sum-
marization. Compared with single- and multi-
document summarization, stream summarization
has three differences: (1) it summarizes a text
stream containing millions of documents involving
a variety of topics and events while single- and

784

2009 disaster summary 2010 disaster summary
• ... • ...
• Sep 2, 2009: About 60 people die when a 7.1-

magnitude earthquake hit the island of Java.
• Jan 12, 2010: A 7.0-magnitude earthquake hit Haiti,
killing about 200,000 people.

• Sep 9, 2009: More than 30 people are killed when
fast moving floods caused by heavy rain sweep through
Istanbul.

• Feb 27, 2010: An 8.8-magnitude earthquake rocked
Chile, killing at least 700 people dead and affecting
more than 1.5 million people.

• Sep 30, 2009: A 7.6-magnitude earthquake hit the
island of Sumatra, leaving more than 1,000 people dead
and thousands injured.

• Apr 5, 2010: An explosion in a West Virginia coal
mine kills at least 25 people and leaves 4 unaccounted
for.

• ... • ...
Table 1: Stream summary about disasters in 2009 and 2010. The disaster summary of 2009 can be used a reference summary to

supervise generating a disaster summary for the 2010 news stream.

multi-document summarization summarizes one or
a handful of documents about the same news event;
(2) instead of selecting sentences to generate a sum-
mary, stream summarization selects representative
documents to summarize a text stream; (3) sum-
maries for a text stream may vary significantly for
users who have different interests and preferences
(e.g., summaries for an environmental expert and
a sports fan should not be the same). Therefore,
in order to generate targeted summaries for spe-
cific users, a stream summary needs to be generated
based on a reference summary. For instance, one
can use the 2009 disaster summary (the left part in
Table 1) as a reference to learn how to write the 2010
disaster summary (the right part in Table 1).

In general, there are three challenges for summa-
rizing a text stream. First, a stream summarization
model should be able to be aware of redundant in-
formation in the stream for avoiding generating re-
dundant content in the summary; second, a stream
summarization algorithm should be capable of an-
alyzing text content on the stream level for identi-
fying the most important information in the stream;
third, a stream summarization model should be effi-
cient, scalable and able to run in an online fashion
because data size of a text stream is usually huge,
and it is dynamic and updated every second.

The previous approaches (e.g., (Ge et al., 2015b))
tend to cluster similar documents as event detection
to avoid redundancy, rank the clusters based on their
sizes and topical relevance to the reference sum-
maries, and select one document from each cluster
as representative documents. Due to the high time
complexity of clustering models, their approaches
usually run slowly and are not scalable.

To overcome the limitations, we propose Burst In-
formation Networks (BINet) as a novel representa-
tion of a text stream. In a BINet (Figure 2), a node is
a burst word (including entities) with the time span
of one of its burst periods, and an edge between two
nodes indicates how strongly they are related. Based
on the BINet representation, we propose two mod-
els – NodeRank and AreaRank – for summarizing a
news stream. We conduct extensive experiments to
evaluate our approaches by comparing several base-
lines and the state-of-the-art approaches in various
settings and show that the BINet-based approaches
are efficient, scalable and can work in an online fash-
ion and that they can generate high-quality sum-
maries for a news stream, outperforming the state-
of-the-art.

The major contributions of this paper are:
• We propose BINets as a novel representation

of text streams. BINets can perfectly address
the challenges of text stream summarization,
which can be aware of information redundancy
(Section 3), enables global analysis of the text
stream (Section 4.1 and 4.2), and be efficiently
built and updated incrementally (Section 4.3).
• We propose two ranking-based models based

on the BINet representation, which can effec-
tively learn to summarize a text stream from a
reference summary, and outperform the state-
of-the-art model.
• We create and release a new benchmark dataset

for evaluating real-time stream summarization.

2 Stream Summarization

The task of text stream summarization is to gen-
erate a summary including key information from a

785

earthquake
(Jan 12 - Jan 31)Haiti

magnitudehit

kill

aid

injure

donation

government

police

damage house quake

Haitian

World Cup
(Jun 11 - Jul 14)

Spain final

South Africa

goal PK

Netherland

ForlanMVP Uruguay

champion Iniesta

host

grouptournament

standings

…

…

…

…

Figure 2: Illustration of a BINet. Due to space limitation, we only show the burst period of some nodes.

given text stream (e.g., 1-year news stream). In con-
trast to traditional summarization tasks which sum-
marize a single or a handful of documents related
to the same event by extracting sentences, the task
of stream summarization aims to summarize a text
stream which contains huge numbers of documents
involving a variety of topics and events by select-
ing representative documents, as Figure 1 shows.
In a stream summary, each selected document is
considered as an entry which can be shown us-
ing the title or the first paragraph of the document.
Since documents in a news stream are always about
news events, we also call an entry as an event en-
try and call a stream summary as an event chron-
icle which is a list of event entries, as shown in
Table 1. In a stream summary, entries should not
be redundant. Formally, we define a stream sum-
mary (i.e., event chronicle) E = {e1, e2, · · · , eK}
where ek = (tek ,wek) is an event entry including
the event’s time information tek and text description
wek which is set of words in text.

Due to the diversity of ways to summarize a text
stream as Section 1 discusses, we use a reference
summary of a text stream during an early period to
supervise summary generation for new text streams.
It is a practical setting since many historical manu-
ally edited summaries of early streams are available
and can be used as an example to demonstrate what
kind of information is preferred in a stream sum-
mary.

3 Representing a text stream using Burst
Information Network

3.1 Burst

A word’s burst refers to a remarkable increase in the
number of occurrences of the word during a period
and might indicate important events or trending top-

ics. For example, as shown in Figure 3, the word
earthquake has bursts from the Jan 12 to Jan 31,
2010 and from Feb 27 to Mar 8, 2010 because of
the strong earthquakes occurring in Haiti and Chile
respectively.

Days
0 10 20 30 40 50 60 70 80 90 100

Fr
eq
ue
nc
y

0

100

200

300

400

500

600

Figure 3: Frequency of earthquake during the first 90 days in

the 2010 news stream.

Specifically, if a word w is in a burst state at every
time t during a period, we call this period as a burst
period of w, and w has a burst during this period. In
Figure 3, earthquake has 2 burst periods (i.e., (Jan
12 - Jan 31) and (Feb 27 - Mar 8))

Formally, we define P as one burst period of the
word w. P is a consecutive time sequence during
which w bursts at every time epoch t:

P = (ti, ti+1, ti+2, ..., ti+n)
∀t ∈ P st = 1

where st is a binary indicator of the burst state of w
at time t.

3.2 Burst Information Network

To build an information network which can repre-
sent associations between key facts in a text stream,
we propose a new representation called “Burst Infor-
mation Network (BINet)” by using burst elements as
nodes:

A Burst Element is a burst of a word. It can be
represented by a tuple: 〈w,P〉 where w denotes the

786

word and P denotes one burst period of w.
According to the above definition, a burst element

is a joint representation of a word type and one of its
burst periods. A word may have multiple burst peri-
ods while a burst element only has one burst period.
A word during its different burst periods will be re-
garded as different burst elements.

Formally, we define the BINet G = 〈V,E〉 as fol-
lows. Each node v ∈ V is a burst element and each
edge e ∈ E denotes the association between burst el-
ements. Intuitively, if two burst elements frequently
co-occur, the edge between them should be highly
weighted. We define ωi,j as the weight of an edge
between vi and vj , which is equal to the number of
documents where vi and vj co-occur.

Besides w(v) and P(v) that denote a node v’s
word and burst period respectively, we also record
a node’s context words1 and its source documents
which the node is from during constructing a BINet.
Formally, we use C(v) and D(v) to denote the con-
text word set and source document set of v. Also, for
a document d in the stream, we use A(d) to denote
the set of nodes whose source documents include d.
Since nodes in A(d) are usually adjacent, we also
callA(d) document d’s area on the BINet. The con-
struction of a BINet is efficient: the time complexity
of building a BINet is O(n) where n is the number
of documents in a stream.

BINets can be properly aware of redundant in-
formation: since nodes in a community in a BINet
are topically and temporally coherent, information
about the same news event tends to be adjacent and
redundant information of the same event is naturally
removed. For example, assuming that there are hun-
dreds of documents about Haiti earthquake in a text
stream, by using the BINet representation, the infor-
mation is concentrated in a few adjacent nodes with-
out redundancy (left part in Figure 2). Moreover, in-
formation about different events is not considered as
redundant. For example, the information regarding
Haiti earthquake and Chile earthquake is not treated
as redundant, which is allocated to different areas in
the BINet, as Figure 2 shows. Therefore, as long as
we do not select overlapping areas on the BINet, we
can avoid selecting redundant content as entries.

1Here, the context window size is set to 10. Note that in
our experiments, only words frequently (more than 5 times) co-
occur in the context will be reserved.

0.1

0.9

0.1

0.7
0.5

0.2

0.3 1.0

0.8

0.3

0.2

Figure 4: NodeRank (left) and AreaRank (right).

In addition to the awareness of information redun-
dancy, BINets also allow global importance analysis
on the stream level and online stream summariza-
tion, which will be discussed in Section 4.

4 Summarizing a text stream on the BINet

Based on the BINet representation, we propose two
models – NodeRank and AreaRank – to summarize
a text stream by generating entries of the summary.
As Figure 4 shows, the NodeRank model scores ev-
ery node on the BINet independently for identify-
ing the most valuable information to be included
in the stream summary, while the AreaRank model
attempts to score an area that covers a handful of
nodes for locating the most informative information
blocks.

To train NodeRank and AreaRank models, we
use reference summaries and the (reference) BINets
built from the text stream during the reference sum-
mary’s period as supervision.

4.1 NodeRank
Intuitively, if we can find the most valuable infor-
mation on the BINet that should be included in the
summary, then we can generate a high-quality sum-
mary of a text stream. For this goal, we label the
corresponding nodes of words appearing in the ref-
erence summary on the reference BINet as score 1
(positive). Formally, for a reference summary E , we
label the following set of nodes in the reference BI-
Net Gr = 〈Vr, Er〉 as score 1:

Vpos =
⋃

ek∈E
{v|v ∈ Vr ∧ w(v) ∈ wek ∧ tek ∈ P(v)}

(1)
where w(v) and P(v) are word and burst period of
node v respectively, ek is an event entry in the ref-
erence summary E , wek is the set of words in ek’s
text, and tek is ek’s time. The nodes that are not
in Vpos in the reference BINet will be labeled as 0
(negative).

787

After labeling the reference BINet, we train a
learning to rank (L2R) model2 using the follow-
ing features for scoring nodes in the target BINet
Gτ = {Vτ , Eτ} (shown in Figure 4):
• w(v): the word of node v, indicating its seman-

tic information.
• pr(v): node v’s PageRank value can reflect the

global importance of the node on the stream
level, which can be easily obtained by running
the PageRank algorithm on the BINet.
• C(v): the context words of node v defined in

Section 3.2, indicating the topic information.
After scoring nodes in the target BINet, we greed-

ily choose a document areaA(d) that covers a set of
nodes whose score is the largest:

d∗ = arg max
d∈Dτ

∑

v∈A(d)

scoreNR(v) (2)

where Dτ is the document sets in the target stream
and scoreNR(v) is the score of node v outputted by
NodeRank model. Document d∗’s first paragraph
and its document creation time (DCT) will be used
to generate an event entry for the summary of the
target stream. Note that though we do not normal-
ize the length of a document in Eq (2), we constrain
the maximum length of a document’s first paragraph
is 50 words and will not select the document whose
first paragraph is longer than 50 words.

By repeating this step for k times, we can generate
a stream summary with k event entries. Note that
in order to avoid generating redundant entries in the
summary, we will not choose d∗ if its document area
A(d∗) overlaps with the areas of the documents that
have been already chosen as entries.

4.2 AreaRank

Instead of scoring nodes independently like NodeR-
ank, we propose AreaRank model for scoring an
area on the BINet for finding areas that corresponds
to the most important news events in the stream.

Different from NodeRank where each instance is
one node in the BINet, instances are areas on the BI-
Net in the AreaRank model, as shown in Figure 4. In
this paper, we mainly consider document area A(d)

2We use SVMRank (Joachims, 2006). During training, we
randomly sample 50% of negative examples which are used to
generate the training set with positive examples.

since we select representative documents as entries
in the summary.

As NodeRank, we first label reference BINet us-
ing the reference summary. In the AreaRank model,
we find the areas on the reference BINet correspond-
ing to each event entry in the reference summary and
label such areas as score 1 (positive). Formally, for
a reference summary E , the positive areas are in the
following set:

Apos =
⋃

ek∈E
{A|A = Vek} (3)

where Vek = {v|v ∈ Vr ∧ w(v) ∈ wek ∧ tek ∈
P(v)} is the set of nodes to which words in ek cor-
respond in the reference BINet.

We label other document areas that do not over-
lap any positive area on the reference BINet as score
0. Then, we use the training data to train AreaRank
using the following features:
• w(A): words of nodes in areaA, indicating the

area’s semantic and topic information.
• pr(A): this feature includes maximum, sum

and average of PageRank value of nodes in the
area and sum of top 3 PageRank value of nodes
in the area, indicating the area’s general im-
portance, which can reflects the impact of the
events corresponding to the area in the stream.
• C(A): context of nodes in area A. This feature

is useful for indicating topical information.
In the test phase, we use AreaRank model to score

all possible document areas on the target BINet.
Then, we greedily choose the document area with
the top score to generate an event entry for the sum-
mary:

d∗ = arg max
d∈Dτ

scoreAR(A(d)) (4)

As NodeRank, d∗’s first paragraph and DCT will
be used to generate an event entry for the stream
summary if d∗’s areaA(d) does not overlap the areas
of the documents that have been already selected for
generating event entries. The maximum length of
the first paragraph of a document is 50 words. This
step will be repeated for multiple times for generat-
ing event entries of the summary.

788

4.3 Online stream summarization
An advantage of the BINet is that it can be incre-
mentally updated when new streams arrive, which is
useful for online stream summarization. Assuming
we have a news stream from time t0 to tk at hand,
we can detect word bursts and construct a BINet G
based on the stream. When the news stream at tk+1

comes, we first detect burst words in the newly arriv-
ing data, update the BINet and calculate the PageR-
ank value forG(tk+1) which denotes the slice of BI-
Net G at time tk+1, which is defined as follows:

G(t) = 〈V (t), E(t)〉
where V (t) = {v|t ∈ P(v)} and E(t) =
{ei,j |ei,j ∈ E ∧ i ∈ V (t) ∧ j ∈ V (t)}. Then, we
can apply NodeRank and AreaRank on G(tk+1) to
generate a stream summary at tk+1.

5 Experiments and Evaluations

5.1 Experiments on Gigaword corpus
For comparison to the previous work, we use the
same data with Ge et al. (2015b) (i.e., 2009 and
2010 APW and XIN news stories in English Giga-
word (Graff et al., 2003)) as a news stream. We de-
tect burst words using Kleinberg algorithm (Klein-
berg, 2003), which models word burst detection as
a burst state decoding problem. In total, there are
140,557 documents in the dataset.

Topic #Entry #Entry in corpus
Disaster 35 28
Sports 19 12
Politics 8 5
Military 14 13

Comprehensive 85 64
Table 2: The number of event entries in the reference sum-

maries. The third column is the number of event entries exclud-

ing those events that do not appear in the corpus.

We removed stopwords and used Stanford
CoreNLP (Manning et al., 2014) to do lemmatiza-
tion and named tagging, and built BINets on the
news stream during 2009 and 2010 separately. On
the 2009 news stream, there are 31,888 nodes and
833,313 edges while there are 32,997 nodes and
825,976 edges on the 2010 stream.

Ge et al. (2015b) used manually edited event
chronicles of various topics on the web3 during 2009

3http://www.mapreport.com; http://www.infoplease.com;

as reference summaries for summarizing the news
stream during 2010. The information of the refer-
ence summaries is summarized in Table 2. In evalu-
ation, they pooled entries in stream sumamries gen-
erated by various approaches, annotated each entry
based on the reference summary and the manually
edited event chronicles on the web, and used preci-
sion@K to evaluate the quality of top K event entries
in a stream summary instead of using ROUGE (Lin,
2004) because news stream summaries are event-
centric.

In this paper, we adopt the same evaluation setting
and use the same reference summaries and the anno-
tations with our previous work (Ge et al., 2015b) to
evaluate our summaries’ quality. For the event en-
tries that are not in Ge et al. (2015b)’s annotations,
we have 3 human judges annotate them according
to the previous annotation guideline and consider an
entry correct if it is annotated as correct by at least 2
judges.

We evaluate our approaches by comparing to Ge
et al. (2015b)’s approach and the baselines in their
work:
• RANDOM: this baseline randomly selects doc-

uments in the dataset as event entries.
• NB: this baseline uses Naive Bayes to clus-

ter documents for event detection and ranks the
clusters based on the combination score of top-
ical relevance and the event impact (i.e., event
cluster size). The earliest documents in the top-
ranked clusters are selected as entries.
• B-HAC: similar to NB except that BurstVSM

representation (Zhao et al., 2012) is used for
event detection using Hierarchical Agglomera-
tive Clustering algorithm.
• TAHBM: similar to NB except that the state-

of-the-art event detection model (TaHBM) pro-
posed by Ge et al. (2015b) is used for event de-
tection.
• Ge et al. (2015b): the state-of-the-art stream

summarization approach which used TaHBM
to detect events and L2R model to rank events.

Note that we did not compare with previous multi-
document summarization models because the goal
and setting of stream summarization are different
from multi-document summarization, as Section 1

https://en.wikipedia.org/wiki/2009

789

sports politics disaster military comprehensive
P@50 P@100 P@50 P@100 P@50 P@100 P@50 P@100 P@50 P@100

Random 0.02 0.08 0 0 0.02 0.04 0 0 0.02 0.03
NB 0.08 0.12 0.18 0.19 0.42 0.36 0.18 0.17 0.38 0.31

B-HAC 0.10 0.13 0.30 0.26 0.50 0.47 0.30 0.22 0.36 0.32
TaHBM 0.18 0.15 0.30 0.29 0.50 0.43 0.46 0.36 0.38 0.33

Ge et al. (2015b) 0.20 0.15 0.38 0.36 0.64 0.53 0.54 0.41 0.40 0.33
BINet-NodeRank 0.24 0.20 0.38 0.30 0.54 0.51 0.48 0.43 0.36 0.33
BINet-AreaRank 0.40 0.33 0.40 0.34 0.80 0.62 0.50 0.49 0.32 0.30

Table 3: Performance of various approaches on stream summarization on five topics.

discussed. Moreover, these two tasks differ greatly
in the data size and redundancy identification mech-
anism. Therefore, it is not feasible to directly com-
pare multi-document summarization models to our
approaches unless they are adapted for our setting.

The results are shown in Table 3. It can be clearly
observed that BINet-based approaches outperform
baselines and perform comparably to the state-of-
the-art model on generating the summaries on most
topics: AreaRank achieves the significant improve-
ment over the state-of-the-art model on sports and
disasters, and performs comparably on politics and
military and NodeRank’s performance achieves the
comparable performance to previous state-of-the-art
model though it is inferior to AreaRank on most top-
ics. Among these five topics, almost all models per-
form well on disaster and military topics because
disaster and military reference summaries have more
entries than the topics such as politics and sports
and topics of event entries in the summaries are fo-
cused. The high-quality training data benefits mod-
els’ performance especially for AreaRank which is
purely data-driven. In contrast, on sports and pol-
itics, the number of entries in the reference sum-
maries is small, which results in weaker supervi-
sion and affect the performance of models. It is no-
table that AreaRank does not perform well on gen-
erating the comprehensive summary in which top-
ics of event entries are miscellaneous. The reason
for the undesirable performance is that the topics of
event entries in the comprehensive reference sum-
mary are not focused, which results in very few ref-
erence (positive) examples for each topic. As a re-
sult, the miscellaneousness of topics of positive ex-
amples makes them tend to be overwhelmed by large
numbers of negative examples during training the
model, leading to very week supervision and mak-
ing it difficult for AreaRank to learn the patterns

Model Features Precision@100

NodeRank
w(v) 0.18

w(v)+pr(v) 0.22
w(v)+C(v) 0.46

w(v)+pr(v)+C(v) 0.51

AreaRank
w(A) 0.25

w(A) + pr(A) 0.34
w(A)+C(A) 0.58

w(A)+pr(A)+C(A) 0.62
Table 4: Ablation test on feature combination for generating

disaster summaries.

Model Topic Irrelevant Minor Redundant

NodeRank
disaster 35.3% 64.7% 0
sports 21.3% 77.5% 1.3%

comprehensive - 100% 0

AreaRank
disaster 34.2% 63.1% 2.6%
sports 7.5% 91.1% 1.5%

comprehensive - 100% 0

Table 5: Error analysis of BINet-based approaches.

of positive examples. Compared to AreaRank, the
strategy of selecting documents for generating event
entries in other baselines and NodeRank use more or
less heuristic knowledge, which makes these models
perform stably even if the training examples are not
sufficient.

We conducted an ablation test to study the effects
of features on generating summaries in our model.
Table 4 shows the performance of models using vari-
ous feature combination on generating disaster sum-
maries. In both NodeRank and AreaRank models,
PageRank features enhance the models that only use
word features of nodes, demonstrating the effects of
global importance analysis on the stream level. Con-
text features are also useful for improving the results
because words (both burst and non-burst words) in
context can help the model learn the preference of
topics and styles from the reference summary.

We conducted error analysis for NodeRank and
AreaRank, shown in Table 5. Among topically irrel-
evant, minor and redundant event entries, minor (i.e.,

790

Model Module Run time Can be run in parallel

BINet

burst detection 14ms per word Yes
BINet construction 213.88s on 1-year news Partially

PageRank 1.36s per iteration No
Ranking negligible No

Ge et al. (2015b) Event detection 1,018s per iteration No
Ranking negligible No

Table 6: Run time of BINet-based approaches and Ge et al. (2015b)’s approach

trivial) event entries that are not important enough to
be included in the stream summary account for the
majority of errors for both models. This is because
it is difficult to distinguish these trivial events since
the corpus we used as a text stream is not as ideal as
the assumption that the more important events, the
more times they are reported. As shown in Table 2,
many entries in the reference summaries even do not
appear or burst in our corpus because the Gigaword
corpus used is just a small sample of news stream
during the period. As a result, the importance fea-
tures (e.g., PageRank value) in our ranking model do
not work very well for distinguishing trivial events.

At last, we tested the run time of our BINet ap-
proach and compare to the state-of-the-art model
proposed by Ge et al. (2015b) in terms of efficiency.
The results are shown in Table 6. The run time is
tested on a workstation with Intel Xeon 3.5 GHz
CPU and 64GB RAM. The efficiency of our model
is much better than Ge et al. (2015b)’s approach
whose event detection model takes much time to it-
erate thousands of times for Gibbs sampling. For
memory cost, the peak memory cost of our BINet-
based approaches is 5GB while Ge et al. (2015b)’s
approach needs more than 10GB memory to run the
event detection model and thus cannot work on a
large dataset.

5.2 Experiments on a real-time news stream

To evaluate our approaches in a real setting, we cre-
ate a benchmark dataset4 containing 7.9 million En-
glish news stories (without exact duplication) dur-
ing Feb 5 to Mar 31, 2015, collecting from Bing
news portal5. On average, there are approximately
150,000 news documents per day.

We applied our BINet-based approaches (i.e.,

4The dataset and the gold standard are available at
http://getao.github.io

5https://www.bing.com/news

Models Disaster Attack
Random 0.012 0.019

Online-B-HAC 0.096 0.138
NodeRank 0.111 0.153
AreaRank 0.182 0.157

Table 7: MRR of BINet-based approaches on generating sum-

maries for the real-time news stream.

NodeRank and AreaRank) on the real-time stream.
Specifically, we used news stream during Feb 5 to
Mar 23 for training to generate news summaries for
every day during Mar 24 to Mar 30 in an online fash-
ion. This is a practical setting and can be useful for
automatically generating headline news every day.

Daily news summaries in Current Event Portal6 at
Wikipedia are used as reference summaries for train-
ing and gold standard for evaluating our approaches.
In this paper, we tested on generating summaries
on Disaster and accident (Disaster) and Armed con-
flicts and attacks (Attack) topics. Instead of evaluat-
ing Precision@K as we did on the Gigaword corpus
which is a small dataset, we used Mean Reciprocal
Rank (MRR) which is defined as follows to see the
ranking position of event entries of the gold standard
in the summaries generated by our approaches:

MRR =

∑
t∈Ttest(

∑
ek∈E(t)gold

1

rank
(t)
ek

)

∑
t∈Ttest |E

(t)
gold|

(5)

where E(t)gold is the gold standard summaries at time
t, Ttest is the period of test set (i.e., Mar 24 to Mar
30) and rank(t)ek is the highest rank of an event entry
ek of the gold standard summary in our summary
at t. A high MRR means the event entries of gold
standard tend to be ranked at top positions in our
generated summaries. The evaluation is conducted
manually.

Table 7 shows the performance of BINet-based

6https://en.wikipedia.org/wiki/Portal:Current events/

791

approaches on the real-time news stream. The
BINet-based approaches achieve better results than
the online version of B-HAC model on both topics,
demonstrating the advantages of the BINet represen-
tation. It is also notable that AreaRank performs
better than NodeRank because it scores a document
area as a whole by taking into account various in-
formation of the area. For AreaRank, MRR on the
disaster topic is about 0.2, meaning that the average
ranking position of gold standard event entries is 5,
which is a promising result and shows our approach
can be effective to find key information. More im-
portantly, it only takes 500 seconds to build a BINet
and 388 seconds to run PageRank for 1,000 itera-
tions for global importance analysis on the 7.9 mil-
lion documents while other methods in Table 3 even
cannot be applied on the stream because they cannot
handle so large scale of data or work in an online
fashion, which is why we did not compare to them
in this setting.

6 Related Work

Stream summarization is not a hot topic in NLP
community. Despite the related work that studies
corpus summarization of research papers (Sipos et
al., 2012), Ge et al. (2015b) is the only work ex-
actly dealing with the news stream summarization
challenge. However, they studied the problem on a
static timestamped corpus instead of on a dynamic
text stream and their proposed pipeline-style ap-
proach cannot be applied on a real-time text stream
due to high complexity in time and space. Other
previous work dealing with stream data is mainly
focused on topic and event detection (Yang et al.,
1998; Swan and Allan, 2000; Allan, 2002; He et al.,
2007; Sayyadi et al., 2009; Sakaki et al., 2010; Zhao
et al., 2012; Ge et al., 2015a), dynamic language and
topic modelling (Blei and Lafferty, 2006; Iwata et
al., 2010; Wang et al., 2012; Yogatama et al., 2014),
incremental (temporal) summarization and timeline
generation for one major news event (Allan et al.,
2001; Hu et al., 2011; Yan et al., 2011; Lin et al.,
2012; Li and Li, 2013; Kedzie et al., 2015; Tran et
al., 2015; Yao et al., 2016), a sports match (Taka-
mura et al., 2011) or users on the social network (Li
and Cardie, 2014).

Different from traditional single and multi-

document summarization (Carbonell and Goldstein,
1998; Lin, 2004; Erkan and Radev, 2004; Con-
roy et al., 2004; Li et al., 2007; Wan and Yang,
2008; Chen and Chen, 2012; Wan and Zhang, 2014)
whose focus is to select important sentences, the fo-
cus of stream summarization is to select representa-
tive documents referring to important news events.
The novel paradigm focuses on the summarization
problem in the big data age and is useful for many
applications.

7 Conclusions and Future work

In this paper, we study the news stream summa-
rization problem by proposing a novel text stream
representation – Burst Information Networks and
presenting two summarization models based on it.
The proposed approaches can efficiently generate
high-quality summaries, achieving the state-of-the-
art performance. Moreover, the experiments on our
created benchmark dataset showed our approach can
be effectively applied on the real-time news stream
for finding key information, demonstrating its po-
tential values for many real-world applications (e.g.,
personalized headline news recommendation).

In the future, we plan to generalize the stream
summarization problem to various streams such as
social (e.g., Twitter), image (e.g., Imgur) and even
video streams (e.g., Youtube), which would yield
many interesting and practical applications (Lu et
al., 2016) to deal with the information overload chal-
lenge in the big data era.

Acknowledgments

We would like to thank the anonymous reviewers for
their helpful comments. We also want to specially
thank Prof. Heng Ji for her valuable suggestions
and discussion on the early ideas of this work. This
work is supported by the National Key Basic Re-
search Program of China (No.2014CB340504) and
the National Natural Science Foundation of China
(No.61375074,61273318). The contact author is
Zhifang Sui.

References

James Allan, Rahul Gupta, and Vikas Khandelwal. 2001.
Temporal summaries of new topics. In SIGIR.

792

James Allan. 2002. Topic detection and tracking: event-
based information organization, volume 12. Springer
Science & Business Media.

David M Blei and John D Lafferty. 2006. Dynamic topic
models. In ICML.

Jaime Carbonell and Jade Goldstein. 1998. The use of
mmr, diversity-based reranking for reordering docu-
ments and producing summaries. In SIGIR.

Chien Chin Chen and Meng Chang Chen. 2012. Tscan:
A content anatomy approach to temporal topic sum-
marization. Knowledge and Data Engineering, IEEE
Transactions on, 24(1):170–183.

John M Conroy, Judith D Schlesinger, Jade Goldstein,
and Dianne P Oleary. 2004. Left-brain/right-brain
multi-document summarization. In DUC.

Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text sum-
marization. Journal of Artificial Intelligence Re-
search, pages 457–479.

Tao Ge, Wenzhe Pei, Baobao Chang, and Zhifang Sui.
2015a. Distinguishing specific and daily topics. In
APWeb.

Tao Ge, Wenzhe Pei, Heng Ji, Sujian Li, Baobao Chang,
and Zhifang Sui. 2015b. Bring you to the past: Auto-
matic generation of topically relevant event chronicles.
In ACL.

David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda.
2003. English gigaword. Linguistic Data Consortium,
Philadelphia.

Qi He, Kuiyu Chang, and Ee-Peng Lim. 2007. Us-
ing burstiness to improve clustering of topics in news
streams. In ICDM.

Po Hu, Minlie Huang, Peng Xu, Weichang Li, Adam K
Usadi, and Xiaoyan Zhu. 2011. Generating
breakpoint-based timeline overview for news topic ret-
rospection. In ICDM.

Tomoharu Iwata, Takeshi Yamada, Yasushi Sakurai, and
Naonori Ueda. 2010. Online multiscale dynamic topic
models. In KDD.

Thorsten Joachims. 2006. Training linear svms in linear
time. In SIGKDD.

Chris Kedzie, Kathleen McKeown, and Fernando Diaz.
2015. Predicting salient updates for disaster summa-
rization.

Jon Kleinberg. 2003. Bursty and hierarchical structure
in streams. Data Mining and Knowledge Discovery,
7(4):373–397.

Jiwei Li and Claire Cardie. 2014. Timeline generation:
Tracking individuals on twitter. In WWW.

Jiwei Li and Sujian Li. 2013. Evolutionary hierarchical
dirichlet process for timeline summarization. In ACL.

Sujian Li, You Ouyang, Wei Wang, and Bin Sun. 2007.
Multi-document summarization using support vector
regression. In DUC. Citeseer.

Chen Lin, Chun Lin, Jingxuan Li, Dingding Wang, Yang
Chen, and Tao Li. 2012. Generating event storylines
from microblogs. In CIKM.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summarization
branches out: Proceedings of the ACL-04 workshop,
volume 8.

Di Lu, Clare Voss, Fangbo Tao, Xiang Ren, Rachel Guan,
Rostyslav Korolov, Tongtao Zhang, Dongang Wang,
Hongzhi Li, Taylor Cassidy, Heng Ji, Shih-fu Chang,
Jiawei Han, William Wallace, James Hendler, Mei Si,
and Lance Kaplan. 2016. Cross-media event extrac-
tion and recommendation. In NAACL Demo Session.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In ACL (System Demonstrations),
pages 55–60.

Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo.
2010. Earthquake shakes twitter users: real-time event
detection by social sensors. In WWW.

Hassan Sayyadi, Matthew Hurst, and Alexey Maykov.
2009. Event detection and tracking in social streams.
In ICWSM.

Ruben Sipos, Adith Swaminathan, Pannaga Shivaswamy,
and Thorsten Joachims. 2012. Temporal corpus
summarization using submodular word coverage. In
CIKM.

Russell Swan and James Allan. 2000. Automatic gener-
ation of overview timelines. In SIGIR.

Hiroya Takamura, Hikaru Yokono, and Manabu Oku-
mura. 2011. Summarizing a document stream. In
Advances in Information Retrieval, pages 177–188.
Springer.

Giang Tran, Mohammad Alrifai, and Eelco Herder. 2015.
Timeline summarization from relevant headlines. In
Advances in Information Retrieval.

Xiaojun Wan and Jianwu Yang. 2008. Multi-document
summarization using cluster-based link analysis. In
SIGIR.

Xiaojun Wan and Jianmin Zhang. 2014. Ctsum: extract-
ing more certain summaries for news articles. In SI-
GIR.

Chong Wang, David Blei, and David Heckerman. 2012.
Continuous time dynamic topic models. arXiv
preprint arXiv:1206.3298.

Rui Yan, Xiaojun Wan, Jahna Otterbacher, Liang Kong,
Xiaoming Li, and Yan Zhang. 2011. Evolution-
ary timeline summarization: a balanced optimization
framework via iterative substitution. In SIGIR.

Yiming Yang, Tom Pierce, and Jaime Carbonell. 1998.
A study of retrospective and on-line event detection.
In SIGIR.

793

Jin-ge Yao, Feifan Fan, Wayne Xin Zhao, Xiaojun Wan,
Edward Chang, and Jianguo Xiao. 2016. Tweet time-
line generation with determinantal point processes. In
AAAI.

Dani Yogatama, Chong Wang, Bryan R Routledge,
Noah A Smith, and Eric P Xing. 2014. Dynamic
language models for streaming text. Transactions of
the Association for Computational Linguistics, 2:181–
192.

Wayne Xin Zhao, Rishan Chen, Kai Fan, Hongfei Yan,
and Xiaoming Li. 2012. A novel burst-based text
representation model for scalable event detection. In
ACL.

794

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 795–804,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Rationale-Augmented Convolutional Neural Networks
for Text Classification

Ye Zhang,1 Iain Marshall,2 Byron C. Wallace3
1Department of Computer Science, University of Texas at Austin

2Department of Primary Care and Public Health Sciences, Kings College London
3College of Computer and Information Science, Northeastern University
yezhang@cs.utexas.edu, iain.marshall@kcl.ac.uk

byron@ccs.neu.edu

Abstract

We present a new Convolutional Neural Net-
work (CNN) model for text classification that
jointly exploits labels on documents and their
constituent sentences. Specifically, we con-
sider scenarios in which annotators explic-
itly mark sentences (or snippets) that sup-
port their overall document categorization,
i.e., they provide rationales. Our model ex-
ploits such supervision via a hierarchical ap-
proach in which each document is represented
by a linear combination of the vector repre-
sentations of its component sentences. We
propose a sentence-level convolutional model
that estimates the probability that a given sen-
tence is a rationale, and we then scale the
contribution of each sentence to the aggre-
gate document representation in proportion to
these estimates. Experiments on five classifi-
cation datasets that have document labels and
associated rationales demonstrate that our ap-
proach consistently outperforms strong base-
lines. Moreover, our model naturally provides
explanations for its predictions.

1 Introduction
Neural models that exploit word embeddings have
recently achieved impressive results on text classifi-
cation tasks (Goldberg, 2015). Feed-forward Con-
volutional Neural Networks (CNNs), in particular,
have emerged as a relatively simple yet powerful
class of models for text classification (Kim, 2014).

These neural text classification models have
tended to assume a standard supervised learning set-
ting in which instance labels are provided. Here we
consider an alternative scenario in which we assume

that we are provided a set of rationales (Zaidan et
al., 2007; Zaidan and Eisner, 2008; McDonnell et
al., 2016) in addition to instance labels, i.e., sen-
tences or snippets that support the corresponding
document categorizations. Providing such rationales
during manual classification is a natural interaction
for annotators, and requires little additional effort
(Settles, 2011; McDonnell et al., 2016). Therefore,
when training new classification systems, it is natu-
ral to acquire supervision at both the document and
sentence level, with the aim of inducing a better pre-
dictive model, potentially with less effort.

Learning algorithms must be designed to capital-
ize on these two types of supervision. Past work
(Section 2) has introduced such methods, but these
have relied on linear models such as Support Vector
Machines (SVMs) (Joachims, 1998), operating over
sparse representations of text. We propose a novel
CNN model for text classification that exploits both
document labels and associated rationales.

Specific contributions of this work as follows. (1)
This is the first work to incorporate rationales into
neural models for text classification. (2) Empiri-
cally, we show that the proposed model uniformly
outperforms relevant baseline approaches across five
datasets, including previously proposed models that
capitalize on rationales (Zaidan et al., 2007; Mar-
shall et al., 2016) and multiple baseline CNN vari-
ants, including a CNN equipped with an attention
mechanism. We also report state-of-the-art results
on the important task of automatically assessing the
risks of bias in the studies described in full-text
biomedical articles (Marshall et al., 2016). (3) Our
model naturally provides explanations for its predic-

795

tions, providing interpretability.
We have made available online both a Theano1

and a Keras implementation2 of our model.

2 Related Work

2.1 Neural models for text classification

Kim (2014) proposed the basic CNN model we de-
scribe below and then build upon in this work. Prop-
erties of this model were explored empirically in
(Zhang and Wallace, 2015). We also note that Zhang
et al. (2016) extended this model to jointly accom-
modate multiple sets of pre-trained word embed-
dings. Roughly concurrently to Kim, Johnson and
Zhang (2014) proposed a similar CNN architecture,
although they swapped in one-hot vectors in place
of (pre-trained) word embeddings. They later de-
veloped a semi-supervised variant of this approach
(Johnson and Zhang, 2015).

In related recent work on Recurrent Neural Net-
work (RNN) models for text, Tang et al. (2015) pro-
posed using a Long Short Term Memory (LSTM)
layer to represent each sentence and then passing
another RNN variant over these. And Yang et al.
(2016) proposed a hierarchical network with two
levels of attention mechanisms for document clas-
sification. We discuss this model specifically as well
as attention more generally and its relationship to
our proposed approach in Section 4.3.

2.2 Exploiting rationales

In long documents the importance of sentences
varies; some are more central than others. Prior
work has investigated methods to measure the rel-
ative importance sentences (Ko et al., 2002; Murata
et al., 2000). In this work we adopt a particular view
of sentence importance in the context of document
classification. In particular, we assume that docu-
ments comprise sentences that directly support their
categorization. We call such sentences rationales.

The notion of rationales was first introduced by
Zaidan et al. (2007). To harness these for classifi-
cation, they proposed modifying the Support Vec-
tor Machine (SVM) objective function to encode
a preference for parameter values that result in in-
stances containing manually annotated rationales

1https://github.com/yezhang-xiaofan/Rationale-CNN
2https://github.com/bwallace/rationale-CNN

being more confidently classified than ‘pseudo’-
instances from which these rationales had been
stripped. This approach dramatically outperformed
baseline SVM variants that do not exploit such ra-
tionales. Yessenalina et al. (2010) later developed
an approach to generate rationales.

Another line of related work concerns models that
capitalize on dual supervision, i.e., labels on indi-
vidual features. This work has largely involved in-
serting constraints into the learning process that fa-
vor parameter values that align with a priori feature-
label affinities or rankings (Druck et al., 2008; Mann
and McCallum, 2010; Small et al., 2011; Settles,
2011). We do not discuss this line of work further
here, as our focus is on exploiting provided ratio-
nales, rather than individual labeled features.

3 Preliminaries: CNNs for text
classification

Convolution
layer

word embedding

1 max pooling

Patients
were

randomized
to

placebo
or

intervention

Four feature
maps

Sentence feature
vector o

Softmax layer

Figure 1: A toy example of a CNN for sentence
classification. Here there are four filters, two with
heights 2 and two with heights 3, resulting in feature
maps with lengths 6 and 5 respectively.

We first review the simple one-layer CNN
for sentence modeling proposed by Kim (2014).
Given a sentence or document comprising n words
w1, w2,...,wn, we replace each word with its d-
dimensional pretrained embedding, and stack them
row-wise, generating an instance matrix A ∈ Rn×d.

796

We then apply convolution operations on this ma-
trix using multiple linear filters, these will have the
same width d but may vary in height. Each filter
thus effectively considers distinct n-gram features,
where n corresponds to the filter height. In practice,
we introduce multiple, redundant features of each
height; thus each filter height might have hundreds
of corresponding instantiated filters. Applying filter
i parameterized by Wi ∈ Rhi·d to the instance ma-
trix induces a feature map fi ∈ Rn−hi+1. This pro-
cess is performed by sliding the filter from the top
of the matrix (the start of the document or sentence)
to the bottom. At each location, we apply element-
wise multiplication between filter i and sub-matrix
A[j : j + hi − 1], and then sum up the resultant
matrix elements. In this way, we induce a vector
(feature map) for each filter.

We next run the feature map through an element-
wise non-linear transformation. Specifically, we use
the Rectified Linear Unit, or ReLU (Krizhevsky et
al., 2012). We extract the maximum value oi from
each feature map i (1-max pooling).

Finally, we concatenate all of the features oi to
form a vector representation o ∈ R|F | for this in-
stance, where |F | denotes the total number of filters.
Classification is then performed on top of o, via a
softmax function. Dropout (Srivastava et al., 2014)
is often applied at this layer as a means of regular-
ization. We provide an illustrative schematic of the
basic CNN architecture just described in Figure 1.
For more details, see (Zhang and Wallace, 2015).

This model was originally proposed for sentence
classification (Kim, 2014), but we can adapt it for
document classification by simply treating the doc-
ument as one long sentence. We will refer to this
basic CNN variant as CNN in the rest of the paper.
Below we consider extensions that account for doc-
ument structure.

4 Rationale-Augmented CNN for
Document Classification

We now move to the main contribution of this
work: a rationale-augmented CNN for text classi-
fication. We first introduce a simple variant of the
above CNN that models document structure (Section
4.1) and then introduce a means of incorporating
rationale-level supervision into this model (Section

4.2). In Section 4.3 we discuss connections to atten-
tion mechanisms and describe a baseline equipped
with one, inspired by Yang et al. (2016).

4.1 Modeling Document Structure

Recall that rationales are snippets of text marked
as having supported document-level categorizations.
We aim to develop a model that can exploit these an-
notations during training to improve classification.
Here we achieve this by developing a hierarchical
model that estimates the probabilities of individual
sentences being rationales and uses these estimates
to inform the document level classification.

As a first step, we extend the CNN model above
to explicitly account for document structure. Specif-
ically, we apply a CNN to each individual sentence
in a document to obtain sentence vectors indepen-
dently. We then sum the respective sentence vectors
to create a document vector.3 As before, we add a
softmax layer on top of the document-level vector
to perform classification. We perform regularization
by applying dropout both on the individual sentence
vectors and the final document vector. We will re-
fer to this model as Doc-CNN. Doc-CNN forms the
basis for our novel approach, described below.

4.2 RA-CNN

In this section we present the Rationale-Augmented
CNN (RA-CNN). Briefly, RA-CNN induces a
document-level vector representation by taking a
weighted sum of its constituent sentence vectors.
Each sentence weight is set to reflect the estimated
probability that it is a rationale in support of the most
likely class. We provide a schematic of this model
in Figure 2.

RA-CNN capitalizes on both sentence- and
document-level supervision. There are thus two
steps in the training phase: sentence level training
and document level training. For the former, we ap-
ply a CNN to each sentence j in document i to obtain
sentence vectors xij

sen. We then add a softmax layer
parametrized by Wsen; this takes as input sentence
vectors. We fit this model to maximize the probabil-
ities of the observed rationales:

3We also experimented with taking the average of sentence
vectors, but summing performed better in informal testing.

797

p()�

sentence vectors

Films adapted from
comic books... ... The film, however,

is all good.
Now onto from hell’s
appearance: it’s...

...

... ...

sentence model

Σ

......

yidoc

yi0senp() Wsen

xsen
i0

xsen
i0exp(.)

.xsen
ij

= k k

xsen
il

xsen
i

yilsen= k

Ni

j=1

Ni

p()yisen= kNi

xdoc
i

Wdoc xdoc
iexp()k�p()= k

document i

Films adapted from
comic books...

Now onto from hell’s
appearance: it’s...

...

...
The film, however, is
all good.

N
i s

en
te

nc
es

positive rationale

neutral

neutral

= =

document model

max{ }yij
sen

positive
rationale

=p()yij
sen

negative
rationale

=, p()document vector

Figure 2: A schematic of our proposed Rationale-Augmented Convolution Neural Network (RA-CNN).
The sentences comprising a text are passed through a sentence model that outputs probabilities encoding the
likelihood that sentences are neutral or a (positive or negative) rationale. Sentences likely to be rationales
are given higher weights in the global document vector, which is the input to the document model.

p(yijsen = k;E,C,Wsen) =
exp(W(k)T

sen xij
sen)∑Ksen

k=1 exp(W(k)T
sen xij

sen)
(1)

Where yijsen denotes the rationale label for sentence j
in document i, Ksen denotes the number of possible
classes for sentences, E denotes the word embed-
ding matrix, C denotes the convolution layer param-
eters, and Wsen is a matrix of weights (comprising
one weight vector per sentence class).

In our setting, each sentence has three possible
labels (Ksen = 3). When a rationale sentence ap-
pears in a positive document,4 it is a positive ratio-
nale; when a rationale sentence appears in a negative
document, it is a negative rationale. All other sen-

4All of the document classification tasks we consider here
are binary, although extension of our model to multi-class sce-
narios is straight-forward.

tences belong to a third, neutral class: these are non-
rationales. We also experimented with having only
two sentence classes: rationales and non-rationales,
but this did not perform as well as explicitly main-
taining separate classes for rationales of different
polarities.

We train an estimator using the provided ratio-
nale annotations, optimizing over {E,C,Wsen} to
minimize the categorical cross-entropy of sentence
labels. Once trained, this sub-model can provide
conditional probability estimates regarding whether
a given sentence is a positive or a negative rationale,
which we will denote by ppos and pneg, respectively.

We next train the document-level classification
model. The inputs to this are vector representations
of documents, induced by summing over constituent
sentence vectors, as in Doc-CNN. However, in the
RA-CNN model this is a weighted sum. Specifi-
cally, weights are set to the estimated probabilities

798

that corresponding sentences are rationales in the
most likely direction. More precisely:

xi
doc =

Ni∑

j=1

xij
sen ·max{pijpos, p

ij
neg} (2)

Where Ni is the number of sentences in the ith doc-
ument. The intuition is that sentences likely to be ra-
tionales will have greater influence on the resultant
document vector representation, while the contribu-
tion of neutral sentences (which are less relevant to
the classification task) will be minimized.

The final classification is performed by a softmax
layer parameterized by Wdoc; the inputs to this layer
are the document vectors. The Wdoc parameters are
trained using the document-level labels, yidoc:

p(yidoc = k;E,C,Wdoc) =
exp(W(k)T

doc xi
doc)∑Kdoc

k=1 exp(W(k)T
doc xi

doc)
(3)

where Kdoc is the cardinality of the document label
set. We optimize over parameters to minimize cross-
entropy loss (w.r.t. the document labels).

We note that the sentence- and document-level
models share word embeddings E and convolution
layer parameters C, but the document-level model
has its own softmax parameters Wdoc. When train-
ing the document-level model, E, C and Wdoc are
fit, but we hold Wsen fixed.

The above two-step strategy can be equivalently
described as follows. We first estimate E, C and
Wsen, which parameterize our model for identifying
rationales in documents. We then move to fitting our
document classification model. For this we initialize
the word embedding and convolution parameters to
the E and C estimates from the preceding step. We
then directly minimize the document level classifica-
tion objective, tuning E and C and simultaneously
fitting Wdoc.

Note that this sequential training strategy differs
from the alternating training approach commonly
used in multi-task learning (Collobert and Weston,
2008). We found that the latter approach does not
work well here, leading us to instead adopt the
cascade-like feature learning approach (Collobert
and Weston, 2008) just described.

One nice property of our model is that it naturally
provides explanations for its predictions: the model
identifies rationales and then categorizes documents
informed by these. Thus if the model classifies a test
instance as positive, then by construction the sen-
tences associated with the highest pijpos estimates are
those that the model relied on most in coming to this
disposition. These sentences can of course be out-
put in conjunction with the prediction. We provide
concrete examples of this in Section 7.2.

4.3 Rationales as ‘Supervised Attention’
One may view RA-CNN as a supervised variant of a
model equipped with an attention mechanism (Bah-
danau et al., 2014). On this view, it is apparent that
rather than capitalizing on rationales directly, we
could attempt to let the model learn which sentences
are important, using only the document labels. We
therefore construct an additional baseline that does
just this, thereby allowing us to assess the impact of
learning directly from rationale-level supervision.

Following the recent work of Yang et al. (2016),
we first posit for each sentence vector a hidden rep-
resentation uij

sen. We then define a sentence-level
context vector us, which we multiply with each uij

sen
to induce a weight αij . Finally, the document vec-
tor is taken as a weighted sum over sentence vectors,
where weights reflect α’s. We have:

uij
sen = tanh(Wsx

ij
sen + bs) (4)

αij =
exp(uT

s u
ij
sen)∑Ni

j exp(uT
s u

ij
sen)

(5)

xi
doc =

Ni∑

j

αijx
ij
sen (6)

where xi
doc again denotes the document vector fed

into a softmax layer, and Ws, us and bs are learned
during training. We will refer to this attention-based
method as AT-CNN.

5 Datasets

We used five text classification datasets to evaluate
our approach in total. Four of these are biomedical
text classification datasets (5.1) and the last is a col-
lection of movie reviews (5.2). These datasets share
the property of having recorded rationales associated

799

with each document categorization. We summarize
attributes of all datasets used in this work in Table 1.

5.1 Risk of Bias (RoB) Datasets

We used a collection Risk of Bias (RoB) text classifi-
cation datasets, described at length elsewhere (Mar-
shall et al., 2016). Briefly, the task concerns as-
sessing the reliability of the evidence presented in
full-text biomedical journal articles that describe the
conduct and results of randomized controlled trials
(RCTs). This involves, e.g., assessing whether or
not patients were properly blinded as to whether they
were receiving an active treatment or a comparator
(such as a placebo). If such blinding is not done
correctly, it compromises the study by introducing
statistical bias into the treatment efficacy estimate(s)
derived from the trial.

A formal system for making bias assessments is
codified by the Cochrane Risk of Bias Tool (Hig-
gins et al., 2011). This tool defines multiple do-
mains; the risk of bias may be assessed in each of
these. We consider four domains here. (1) Random
sequence generation (RSG): were patients were as-
signed to treatments in a truly random fashion? (2)
Allocation concealment (AC): were group assign-
ments revealed to the person assigning patients to
groups (so that she may have knowingly or unknow-
ingly) influenced these assignments? (3) Blinding
of Participants and Personnel (BPP): were all trial
participants and individuals involved in running the
trial blinded as to who was receiving which treat-
ment? (4) Blinding of outcome assessment (BOA):
were the parties who measured the outcome(s) of in-
terest blinded to the intervention group assignments?
These assessments are somewhat subjective. To in-
crease transparency, researchers performing RoB as-
sessment therefore record rationales (sentences from
articles) supporting their assessments.

5.2 Movie Review Dataset

We also ran experiments on a movie review (MR)
dataset with accompanying rationales. Pang and Lee
(2004) developed and published the original ver-
sion of this dataset, which comprises 1000 positive
and 1000 negative movie reviews from the Internet
Movie Database (IMDB).5 Zaidan et al. (2007) then

5http://www.imdb.com/

N #sen #token #rat
RSG 8399 300 9.92 0.31
AC 11512 297 9.87 0.15
BPP 7997 296 9.95 0.21
BOA 2706 309 9.92 0.2
MR 1800 32.6 21.2 8.0

Table 1: Dataset characteristics. N is the number of
instances, #sen is the average sentence count, #token
is the average token per-sentence count and #rat is
the average number of rationales per document.

augmented this dataset by adding rationales corre-
sponding to the binary classifications for 1800 doc-
uments, leaving the remaining 200 for testing. Be-
cause 200 documents is a modest test sample size,
we ran 9-fold cross validation on the 1800 annotated
documents (each fold comprising 200 documents).
The rationales, as originally marked in this dataset,
were sub-sentential snippets; for the purposes of our
model, we considered the entire sentences contain-
ing the marked snippets as rationales.

6 Experimental Setup

6.1 Baselines
We compare against several baselines to assess the
advantages of directly incorporating rationale-level
supervision into the proposed CNN architecture. We
describe these below.
SVMs. We evaluated a few variants of linear Sup-
port Vector Machines (SVMs). These rely on sparse
representations of text. We consider variants that ex-
ploit uni- and bi-grams; we refer to these as uni-SVM
and bi-SVM, respectively. We also re-implemented
the rationale augmented SVM (RA-SVM) proposed
by Zaidan et al. (2007), described in Section 2.

For the RoB dataset, we also compare to a re-
cently proposed multi-task SVM (MT-SVM) model
developed specifically for these RoB datasets (Mar-
shall et al., 2015; Marshall et al., 2016). This model
exploits the intuition that the risks of bias across the
domains codified in the aforementioned Cochrane
RoB tool will likely be correlated. That is, if we
know that a study exhibits a high risk of bias for one
domain, then it seems reasonable to assume it is at
an elevated risk for the remaining domains. Further-
more, Marshall et al. (2016) include rationale-level
supervision by first training a (multi-task) sentence-
level model to identify sentences likely to support

800

RoB assessments in the respective domains. Special
features extracted from these predicted rationales are
then activated in the document-level model, inform-
ing the final classification. This model is the state-
of-the-art on this task.

CNNs. We compare against several baseline CNN
variants to demonstrate the advantages of our ap-
proach. We emphasize that our focus in this work
is not to explore how to induce generally ‘better’
document vector representations – this question has
been addressed at length elsewhere, e.g., (Le and
Mikolov, 2014; Jozefowicz et al., 2015; Tang et al.,
2015; Yang et al., 2016).

Rather, the main contribution here is an augmen-
tation of CNNs for text classification to capitalize on
rationale-level supervision, thus improving perfor-
mance and enhancing interpretability. This informed
our choice of baseline CNN variants: standard CNN
(Kim, 2014), Doc-CNN (described above) and AT-
CNN (also described above) that capitalizes on an
(unsupervised) attention mechanism at the sentence
level, described in Section 4.3.6

6.2 Implementation/Hyper-Parameter Details

Sentence splitting. To split the documents from all
datasets into sentences for consumption by our Doc-
CNN and RA-CNN models, we used the Natural
Language Toolkit (NLTK)7 sentence splitter.

SVM-based models. We kept the 50,000 most
frequently occurring features in each dataset. For
estimation we used SGD. We tuned the C hyper-
parameter using nested development sets. For the
RA-SVM, we additionally tuned the µ and Ccontrast

parameters, as per Zaidan et al. (2007).

CNN-based models. For all models and datasets
we initialized word embeddings to pre-trained vec-
tors fit via Word2Vec. For the movie reviews
dataset these were 300-dimensional and trained on
Google News.8 For the RoB datasets, these were
200-dimensional and trained on biomedical texts in
PubMed/PubMed Central (Pyysalo et al., 2013).9

6We also experimented briefly with LSTM and GRU (Gated
Recurrent Unit) models, but found that simple CNN performed
better than these. Moreover, CNNs are relatively robust and less
sensitive to hyper-parameter selection.

7http://www.nltk.org/api/nltk.tokenize.html
8https://code.google.com/archive/p/word2vec/
9http://bio.nlplab.org/

Training proceeded as follows. We first extracted
all sentences from all documents in the training
data. The distribution of sentence types is highly
imbalanced (nearly all are neutral). Therefore, we
downsampled sentences before each epoch, so that
sentence classes were equally represented. After
training on sentence-level supervision, we moved to
document-level model fitting. For this we initialized
embedding and convolution layer parameters to the
estimates from the preceding sentence-level training
step (though these were further tuned to optimize the
document-level objective).

For RA-CNN, we tuned the dropout rate (range:
0-.9) applied at the sentence vector level on each
training fold (using a subset of the training data as
a validation set) during the document level training
phase. Anecdotally, we found this has a greater ef-
fect than the other model hyperparameters, which
we thus set after a small informal process of exper-
imentation on a subset of the data. Specifically, we
fixed the dropout rate at the document level to 0.5,
and we used 3 different filter heights: 3, 4 and 5,
following (Zhang and Wallace, 2015). For each fil-
ter height, we used 100 feature maps for the baseline
CNN, and 20 for all the other CNN variants.

For parameter estimation we used ADADELTA
(Zeiler, 2012), mini-batches of size 50, and an early
stopping strategy (using a validation set).

7 Results and Discussion

7.1 Quantitative Results

For all CNN models, we replicated experiments 5
times, where each replication constituted 5-fold and
9-fold CV respectively the RoB and the movies
datasets, respectively. We report the mean and ob-
served ranges in accuracy across these 5 replications
for these models, because attributes of the model
(notably, dropout) and the estimation procedure ren-
der model fitting stochastic (Zhang and Wallace,
2015). We do not report ranges for SVM-based
models because the variance inherent in the estima-
tion procedure is much lower for these simpler, lin-
ear models.

Results on the RoB datasets and the movies
dataset are shown in Tables 2 and Table 3, respec-
tively. RA-CNN consistently outperforms all of the
baseline models, across all five datasets. We also

801

Method RSG AC BPP BOA
Uni-SVM 72.16 72.81 72.80 65.85
Bi-SVM 74.82 73.62 75.13 67.29
RA-SVM 72.54 74.11 75.15 66.29
MT-SVM 76.15 74.03 76.33 67.50
CNN 72.50 (72.22, 72.65) 72.16 (71.49, 72.93) 75.03 (74.16, 75.44) 63.76 (63.12, 64.15)
Doc-CNN 72.60 (72.43, 72.90) 72.92 (72.19, 73.48) 74.24 (74.03, 74.38) 63.64 (63.23, 64.37)
AT-CNN 74.14 (73.40, 74.58) 73.66 (73.12, 73.92) 74.29 (74.09, 74.74) 63.34 (63.21, 63.49)
RA-CNN 77.42 (77.33, 77.59) 76.14 (75.89, 76.29) 76.47 (76.15, 76.75) 69.67 (69.33, 69.93)
Human 85.00 80.00 78.10 83.20

Table 2: Accuracies on the four RoB datasets. Uni-SVM: unigram SVM, Bi-SVM: Bigram SVM, RA-SVM:
Rationale-augmented SVM (Zaidan et al., 2007), MT-SVM: a multi-task SVM model specifically designed
for the RoB task, which also exploits the available sentence supervision (Marshall et al., 2016). We also
report an estimate of human-level performance, as calculated using subsets of the data for each domain that
were assessed by two experts (one was arbitrarily assumed to be correct). We report these numbers for
reference; they are not directly comparable to the cross-fold estimates reported for the models.

observe that CNN/Doc-CNN do not necessarily im-
prove over the results achieved by SVM-based mod-
els, which prove to be strong baselines for longer
document classification. This differs from previ-
ous comparisons in the context of classifying shorter
texts. In particular, in previous work (Zhang and
Wallace, 2015) we observed that CNN outperforms
SVM uniformly on sentence classification tasks (the
average sentence-length in these datasets was about
10). In contrast, in the datasets we consider in the
present paper, documents often comprise hundreds
of sentences, each in turn containing multiple words.
We believe that it is in these cases that explicitly
modeling which sentences are most important will
result in the greatest performance gains, and this
aligns with our empirical results.

Another observation is that AT-CNN does of-
ten improve performance over vanilla variants of
CNN (i.e., without attention), especially on the RoB
datasets, probably because these comprise longer
documents. However, as one might expect, RA-
CNN clearly outperforms AT-CNN by exploiting
rationale-level supervision directly. And by exploit-
ing rationale information directly, RA-CNN is able
to consistently perform better than baseline CNN
and SVM model variants. Indeed, we find that RA-
CNN outperformed MT-SVM on all of the RoB
datasets, and this was accomplished without exploit-
ing cross-domain correlations (i.e., without multi-
task learning).

Method Accuracy
Uni-SVM 86.44
Bi-SVM 86.94
RA-SVM 88.89
CNN 85.59 (85.27, 86.17)
Doc-CNN 87.14 (86.70, 87.60)
AT-CNN 86.69 (86.28, 87.17)
RA-CNN 90.43 (90.11, 91.00)

Table 3: Accuracies on the movie review dataset.

7.2 Qualitative Results: Illustrative Rationales

In addition to realizing superior classification perfor-
mance, RA-CNN also provides explainable catego-
rizations. The model can provide the highest scoring
rationales (ranked by max{ppos, pneg}) for any given
target instance, which in turn – by construction – are
those that most influenced the final document classi-
fication.

For example, a sample positive rationale support-
ing a correct designation of a study as being at low
risk of bias with respect to blinding of outcomes
assessment reads simply The study was performed
double blind. An example rationale extracted for a
study (correctly) deemed at high risk of bias, mean-
while, reads as the present study is retrospective,
there is a risk that the woman did not properly re-
call how and what they experienced

Turning to the movie reviews dataset, an exam-
ple rationale extracted from a glowing review of
‘Goodfellas’ (correctly classified as positive) reads
this cinematic gem deserves its rightful place among
the best films of 1990s. While a rationale extracted

802

from an unfavorable review of ‘The English Patient’
asserts that the only redeeming qualities about this
film are the fine acting of Fiennes and Dafoe and the
beautiful desert cinematography.

In each of these cases, the extracted rationales
directly support the respective classifications. This
provides direct, meaningful insight into the auto-
mated classifications, an important benefit for neural
models, which are often seen as opaque.

8 Conclusions

We developed a new model (RA-CNN) for text clas-
sification that extends the CNN architecture to di-
rectly exploit rationales when available. We showed
that this model outperforms several strong, rele-
vant baselines across five datasets, including vanilla
and hierarchical CNN variants, and a CNN model
equipped with an attention mechanism. Moreover,
RA-CNN automatically provides explanations for
classifications made at test time, thus providing in-
terpretability.

Moving forward, we plan to explore additional
mechanisms for exploiting supervision at lower lev-
els in neural architectures. Furthermore, we believe
an alternative approach may be a hybrid of the AT-
CNN and RA-CNN models, wherein an auxiliary
loss might be incurred when the attention mecha-
nism output disagrees with the available direct su-
pervision on sentences.

Acknowledgments

Research reported in this article was supported by
the National Library of Medicine (NLM) of the Na-
tional Institutes of Health (NIH) under award num-
ber R01LM012086. The content is solely the re-
sponsibility of the authors and does not necessarily
represent the official views of the National Institutes
of Health. This work was also made possible by
the support of the Texas Advanced Computer Center
(TACC) at UT Austin.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of the 25th international conference on Machine learn-
ing, pages 160–167. ACM.

Gregory Druck, Gideon Mann, and Andrew McCallum.
2008. Learning from labeled features using gener-
alized expectation criteria. In Proceedings of the
31st annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 595–602. ACM.

Yoav Goldberg. 2015. A primer on neural network mod-
els for natural language processing. arXiv preprint
arXiv:1510.00726.

Julian PT Higgins, Douglas G Altman, Peter C Gøtzsche,
Peter Jüni, David Moher, Andrew D Oxman, Je-
lena Savović, Kenneth F Schulz, Laura Weeks, and
Jonathan AC Sterne. 2011. The cochrane collabo-
rations tool for assessing risk of bias in randomised
trials. Bmj, 343:d5928.

Thorsten Joachims. 1998. Text categorization with sup-
port vector machines: Learning with many relevant
features. Springer.

Rie Johnson and Tong Zhang. 2014. Effective use of
word order for text categorization with convolutional
neural networks. arXiv preprint arXiv:1412.1058.

Rie Johnson and Tong Zhang. 2015. Semi-supervised
convolutional neural networks for text categorization
via region embedding. In Advances in Neural Infor-
mation Processing Systems (NIPs), pages 919–927.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever.
2015. An empirical exploration of recurrent network
architectures. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning (ICML-15),
pages 2342–2350.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. arXiv preprint arXiv:1408.5882.

Youngjoong Ko, Jinwoo Park, and Jungyun Seo. 2002.
Automatic text categorization using the importance of
sentences. In Proceedings of the 19th international
conference on Computational linguistics-Volume 1,
pages 1–7. Association for Computational Linguistics.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
2012. Imagenet classification with deep convolutional
neural networks. In Advances in neural information
processing systems, pages 1097–1105.

Quoc V Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. arXiv preprint
arXiv:1405.4053.

Gideon S Mann and Andrew McCallum. 2010. Gener-
alized expectation criteria for semi-supervised learn-
ing with weakly labeled data. The Journal of Machine
Learning Research, 11:955–984.

803

Iain J Marshall, Joël Kuiper, and Byron C Wallace. 2015.
Automating risk of bias assessment for clinical trials.
Biomedical and Health Informatics, IEEE Journal of,
19(4):1406–1412.

Iain J Marshall, Joël Kuiper, and Byron C Wallace.
2016. Robotreviewer: evaluation of a system for
automatically assessing bias in clinical trials. Jour-
nal of the American Medical Informatics Association,
23(1):193–201.

Tyler McDonnell, Matthew Lease, Tamer Elsayad, and
Mucahid Kutlu. 2016. Why Is That Relevant?
Collecting Annotator Rationales for Relevance Judg-
ments. In Proceedings of the 4th AAAI Conference on
Human Computation and Crowdsourcing (HCOMP).
10 pages.

Masaki Murata, Qing Ma, Kiyotaka Uchimoto, Hiromi
Ozaku, Masao Utiyama, and Hitoshi Isahara. 2000.
Japanese probabilistic information retrieval using lo-
cation and category information. In Proceedings of
the fifth international workshop on on Information re-
trieval with Asian languages, pages 81–88. ACM.

Bo Pang and Lillian Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. In Proceedings of the 42nd
annual meeting on Association for Computational Lin-
guistics, page 271. Association for Computational Lin-
guistics.

Sampo Pyysalo, Filip Ginter, Hans Moen, Tapio
Salakoski, and Sophia Ananiadou. 2013. Distribu-
tional semantics resources for biomedical text pro-
cessing. Proceedings of Languages in Biology and
Medicine.

Burr Settles. 2011. Closing the loop: Fast, interactive
semi-supervised annotation with queries on features
and instances. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 1467–1478. Association for Computational Lin-
guistics.

Kevin Small, Byron Wallace, Thomas Trikalinos, and
Carla E Brodley. 2011. The constrained weight space
svm: learning with ranked features. In Proceedings of
the 28th International Conference on Machine Learn-
ing (ICML-11), pages 865–872.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document
modeling with gated recurrent neural network for sen-
timent classification. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1422–1432.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex
Smola, and Eduard Hovy. 2016. Hierarchical atten-
tion networks for document classification. In Proceed-
ings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies.

Ainur Yessenalina, Yejin Choi, and Claire Cardie. 2010.
Automatically generating annotator rationales to im-
prove sentiment classification. In Proceedings of the
ACL 2010 Conference Short Papers, pages 336–341.
Association for Computational Linguistics.

Omar F Zaidan and Jason Eisner. 2008. Modeling anno-
tators: A generative approach to learning from anno-
tator rationales. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 31–40. Association for Computational Linguis-
tics.

Omar Zaidan, Jason Eisner, and Christine D Piatko.
2007. Using” annotator rationales” to improve ma-
chine learning for text categorization. In HLT-NAACL,
pages 260–267. Citeseer.

Matthew D Zeiler. 2012. Adadelta: an adaptive learning
rate method. arXiv preprint arXiv:1212.5701.

Ye Zhang and Byron C. Wallace. 2015. A sensitivity
analysis of (and practitioners’ guide to) convolutional
neural networks for sentence classification. arXiv
preprint arXiv:1510.03820.

Ye Zhang, Stephen Roller, and Byron C. Wallace. 2016.
Mgnc-cnn: A simple approach to exploiting multiple
word embeddings for sentence classification. In Pro-
ceedings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 1522–
1527, San Diego, California, June. Association for
Computational Linguistics.

804

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 805–814,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Transferring User Interests Across Websites with Unstructured Text for

Cold-Start Recommendation

Yu-Yang Huang and Shou-De Lin

Department of Computer Science and Information Engineering,

National Taiwan University, Taipei, Taiwan

{r02922050,sdlin}@csie.ntu.edu.tw

Abstract

In this work, we investigate the possibility

of cross-website transfer learning for tackling

the cold-start problem. To address the cold-

start issues commonly present in a collabora-

tive �ltering (CF) system, most existing cross-

domain CF models require auxiliary rating

data from another domain; nevertheless, un-

der the cross-website scenario, such data is of-

ten unobtainable. Therefore, we propose the

nearest-neighbor transfer matrix factorization

(NT-MF) model, where a topic model is ap-

plied to the unstructured user-generated con-

tent in the source domain, and the similarity

between users in the latent topic space is uti-

lized to guide the target-domain CF model.

Speci�cally, the latent factors of the nearest-

neighbors are regarded as a set of pseudo ob-

servations, which can be used to estimate the

unknown parameters in the model. Improve-

ment over previous methods, especially for the

cold-start users, is demonstrated with experi-

ments on a real-world cross-website dataset.

1 Introduction

While collaborative �ltering (CF) approaches are

one of the most successful methods for building rec-

ommender systems, their performance deteriorates

dramatically under cold-start situations. That is, low

prediction accuracy is observed for users/items with

very few ratings. Content-based recommender sys-

tems may also suffer from the cold-start problem.

For instance, content-based nearest-neighbor mod-

els (Pazzani and Billsus, 2007) might not be as ef-

fective if some users contain too few information to

generate a meaningful set of neighbors.

Two types of solutions have been proposed to ad-

dress the cold-start problem. The �rst is to cre-

ate hybrid recommendation models that impose a

content-based model on a CF model to enrich the

information for users/items with sparse rating pro-

�les (Burke, 2002; Burke, 2007). The second is to

transfer the information from auxiliary domains as

a remedy to the cold-start individuals (Deng et al.,

2015). This paper aims at bringing a marriage be-

tween these two types of strategies.

Although transfer learning gradually gains pop-

ularity in handling the cold-start issue (Roy et al.,

2012), most of them assume a homogeneous model

where observations in both domains are of the same

type. That is, to transfer knowledge to a rating-

based/text-based recommender system, the source

system must also be rating-based/text-based. Some

earlier works even require the ratings from both do-

mains to be in the same format (Li et al., 2009),

or assume speci�c structured text, such as user-

provided tags (Shi et al., 2011; Deng et al., 2015). In

this work, by contrast, no source-domain ratings are

available and unstructured user-generated content is

treated as the auxiliary data. We propose a hetero-

geneous transfer learning framework to utilize un-

structured auxiliary text for a better target-domain

CF model.

As there is no single service satisfying all so-

cial needs, users nowadays hold multiple accounts

across many websites. Furthermore, the account

linking mechanism is often available on these web-

sites. This allows a precise mapping between the

accounts of the same user to be built. One major ap-

plication of our approach is to improve the recom-

805

mendation quality in the target service using auxil-

iary data obtained from another seemingly irrelevant

service.

For instance, consider a new user on YouTube.

The initial recommended videos for this user is

likely to be irrelevant as there is very few infor-

mation available. However, with the account link-

ing mechanism, YouTube accounts can be linked to

Twitter accounts with a simple click. Our goal is to

utilize the content generated by this user on Twitter,

despite the possibility that the content is irrelevant

to their preference on video browsing, to produce a

better video recommendation list on YouTube.

Seemingly intuitive, there exist some dif�culties

in such cross-website transfer learning approach.

The biggest challenge lies in the fact that most users

do not use multiple services (e.g. social media sites)

for the same purpose. Usually a user registers for

multiple services because each of them serves its

own purpose. As a result, we cannot assume the ex-

istence of direct mentions about target-domain items

in the source-domain text data. For example, a regu-

lar YouTube viewer does not necessarily tweet about

the videos he/she has viewed. Thus simple meth-

ods such as keyword matching are likely to fail.

The same reasoning also implies that, when transfer-

ring knowledge across websites or services, the as-

sumption of a shared rating format or structured text

is overly optimistic. Even websites aiming for the

same purpose often violate this assumption, let alone

websites of different types. Therefore, we expect

that the source and target services contain heteroge-

neous information (e.g. content vs. rating). In our

model, we make a less strong assumption: regard-

less of the type of information available in each do-

main, the users that are similar in one domain should

have similar taste in the other domain. Thus, instead

of directly transfer the content material from source

to target domain, we transfer the similarity between

users, and use it as a guide to improve the CF model

in the target domain.

2 LDA-MF Model

We �rst introduce an intuitive model to realize the

above-mentioned idea, and point out several in-

trinsic weaknesses making it unsuitable for cross-

website transfer learning.

Here we rely on the probabilistic matrix factoriza-

tion (PMF) model as our target-domain CF model.

In the PMF model, each user latent factor is mod-

eled (a priori) by a zero-mean Gaussian. To incor-

porate source-domain information into the target-

domain PMF model, for each user i, a topic vector
θi is extracted from source-domain text content and

assigned as the prior mean of this user's PMF latent

factor, that is,

ui ∼ N (θi, λ
−1
U I), (1)

where λU is the precision parameter and I is the

identity matrix. Different from the original PMF

model, prior distributions of different user latent fac-

tors are no longer identical. For users having simi-

lar source-domain topic vectors, their latent factors

are expected to be close in the target-domain latent

space. Such property allows the similarity between

users to be transferred from source domain to the

target domain.

With the latent Dirichlet allocation (LDA) (Blei

et al., 2003) topic model being used, the graphical

model is depicted in Figure 1. This model is sim-

ilar in structure to the recently proposed collabora-

tive topic regression (CTR) (Wang and Blei, 2011)

model. The main difference is that, instead of mod-

eling description about items, now user-generated

content from the source domain is modeled in our

problem. We call this model the LDA-MF model.

rij

ui vj

λU λV

z

w

θi

α

ψ

β

N

M

K

Figure 1: The LDA-MF model.

Although LDA-MF indeed incorporates knowl-

edge from the source domain, it has certain weak-

nesses which need to be addressed. The most sig-

ni�cant drawback is that the dimensionalities of the

LDA topic vector θi and the PMF user latent fac-

tor ui are required to be equal. These two variables

are of very different nature. One is extracted from

text data in the source domain to model the topics

806

of the user-generated content, and the other is gen-

erated from the rating data in the target domain to

model the latent interests of users. It is an overly

strong assumption to assume the optimal dimension-

alities for LDA and PMF are equal. In practice, if

we choose the dimensionality to optimize the pre-

dictive power of PMF (e.g. by cross-validation on

the rating data), the LDA model is likely to yield

sub-optimal results and vice versa. The experiments

that will be shown later con�rm this concern. Fur-

thermore, since the two variables are modeling dif-

ferent types of observations coming from different

websites, the underlying meanings of the latent di-

mensions are unlikely to be identical. By treating

the LDA topic vector as the prior mean of the PMF

user latent factor, the latent dimensions are forced to

be one-to-one aligned, which is again a strong as-

sumption. Finally, the topic vectors are drawn from

the Dirichlet distribution which has a bounded (and

positive) support S, while the latent factors in PMF

are unbounded Gaussian random vectors. If the op-

timal solution of ui is far from S, the performance
of the model could be affected, particularly in the

cold-start situation where data is sparse and the prior

plays an important role.

3 Nearest-Neighbor Transfer MF Model

To alleviate the drawbacks of the LDA-MF model,

here we propose nearest-neighbor transfer matrix

factorization (NT-MF) model to transfer user inter-

ests across websites. The entire framework is de-

picted in Figure 2.

We begin by describing the scenario in which our

model operates. First, there is a rating-based rec-

ommender system (i.e. PMF) in the target domain,

which suffers from the cold-start problem. The tar-

get domain might or might not contain content in-

formation. For example, in the video recommenda-

tion task, we can use the titles of all rated videos of

a user to generate content information in the target

domain. Such information is not available for the

cold-start users since they have not rated any videos.

However, in the source domain there are some con-

tent information available for these users. This can

be, say, the content of a user's tweets. As previously

mentioned, this type of auxiliary text data is imme-

diately available when a user connects the accounts

Figure 2: The entire system.

from two domains. Therefore, we assume this aux-

iliary text data is available for all users.

3.1 Model Outline

Next, we describe the high level concept of our

model. As described previously, we have observed

that the hypotheses encoded by the LDA-MF model

is too strong as the PMF latent factor is enforced

to inherit certain mathematical properties from the

LDA topic vector. Here we loosen the constraint to

only enforce that users should have similar distri-

butions over the target-domain PMF latent factors

if there is a high similarity between their source-

domain topic vectors.

It is a reasonable hypothesis since our objective

is to make the target-domain rating matrix factorize

in a way that is consistent with the knowledge ex-

tracted from source-domain text. After all, the fac-

torization of incomplete matrix is not unique, and

there is no reason that the latent factor should match

the topic factor of the user. In fact, our hypothesis

implies a different distribution over the PMF latent

factor for each user, i.e. ui ∼ N (µi, Σi), where
(µi, Σi) are unknown parameters, and are (possibly)
different for each user.

To estimate the unknown parameters in a dis-

tribution, normally we need a set of observations,

(u
(1)
i , u

(2)
i , . . .). However, the parameters now be-

long to a distribution over a latent variable, which is

non-trivial to estimate since we have no observations

about the user latent factor. An exhaustive search

807

over the parameter space is obviously intractable.

Even if we treat the entire model as a hierarchical

model and learn the parameters indirectly from rat-

ing data, the cold-start problem immediately comes

in and forbids us from learning a representative dis-

tribution for users.

We propose the idea of using the latent factors of

the nearest-neighbors to estimate the unknown pa-

rameters in the distribution for a user. That is, the

latent factors of the nearest-neighbors, {ul}l∈kNN(i),

are regarded as a set of pseudo observations to re-

place the unavailable data, (u
(1)
i , u

(2)
i , . . .). How-

ever, the de�nition of �closeness� is not based on

target-domain rating data, but computed by the topic

vectors obtained from the content in the source do-

main (and the target domain, if available). Our

model is thus not hampered by the cold-start prob-

lem.

Note that, in addition to the set of k-nearest-
neighbors kNN(i), we also have the corresponding

similarity scores sim(i, l) between each neighbor

l and user i. The similarity scores along with the

list of nearest-neighbors are transferred to the tar-

get domain to form a set of weighted samples, D,

which can be used to estimate the unknown parame-

ters (µi, Σi), i.e.,

D ≡
{

{ul}l∈kNN(i)

wl = sim(i, l).
(2)

The main purpose of assigning a sample weight

wl to each of the pseudo observations ul is that by

doing so, users with a higher source-domain simi-

larity to user i will have a larger impact on the esti-
mation of the target-domain parameters (µi, Σi). In
other words, with this model speci�cation, the simi-

larity between users is transferred across domains.

3.2 Inference in NT-MF Model

To perform inference in our model, we adopt the

maximum a posteriori (MAP) strategy and alter-

nately update the user and item latent factors (i.e.

by block coordinate ascent), similar to some previ-

ous solutions (Salakhutdinov andMnih, 2007; Wang

and Blei, 2011).

To solve for the optimal user latent factor ui,

we need to �rst estimate the unknown parameters

(µi, Σi). Therefore, in our coordinate ascent algo-

rithm, different from the original PMF model, we

update the user latent factors one by one. That is,

all user latent factors are regarded as �xed constants

except for the one, ui, to be updated. By doing so,

for each user i, a set of pseudo observations about

ui (Eq. 2) is available. Using these pseudo obser-

vations, the unknown parameters (µi, Σi) can then

be estimated with standard techniques such as maxi-

mum likelihood estimation (MLE). After an estima-

tor of (µi, Σi) is obtained, we can analytically solve
for the MAP solution of the user latent factor ui.

Then, we move on to the next user, and the coor-

dinate ascent procedure continues. These two steps,

namely the estimation of unknown parameters and

the updating of the latent factors, are repeated until

convergence.

One advantage of this procedure is that the list

of nearest-neighbors and the similarities in Eq. 2

need not be recomputed during inference, avoiding

expensive recomputation of pairwise similarities. It

is also noticeable that, different from other transfer-

based approaches, rating information and structured

text from the source domain are not required in this

procedure of model optimization. This further adds

a level of �exibility to our framework for transfer-

ring user interests across websites.

3.3 Case Study: Inferring Unknown Mean

To clarify the previous discussions, we present a

simple but detailed case-study on how an NT-MF

model and its optimization procedure can be de-

rived. The latent factor ui for each user is assumed

to be generated from a multivariate normal distribu-

tion with unknown mean µi and a known precision

parameter λU , which is shared among the users.

The generative process proceeds as follows:

1. For each user i, draw user latent factor ui ∼
N (µi, λ

−1
U I).

2. For each item j, draw item latent factor vj ∼
N (0, λ−1

V I).

3. For each observed user-to-item pair (i, j), draw
the rating rij ∼ N (uT

i vj , λ
−1
0),

where λ0 is the precision parameter of the rat-

ings, and λU , λV are the precision parameter of the

808

users and items, respectively. We use the notation

N (x|µ, Σ) to denote the Gaussian pdf with mean µ
and covariance Σ.

The model is optimized by maximizing the pos-

terior likelihood of the latent variables (an additive

term is omitted),

L = −λ0

2

M∑

i=1

N∑

j=1

γij

(
rij − uT

i vj

)2

− λU

2

M∑

i=1

(ui − µi)
T (ui − µi) − λV

2

N∑

j=1

vT
j vj ,

(3)

where γij is an indicator variable which is equal to

1 if item j is rated by user i, and 0 otherwise.

To solve the MAP problem, we need to �rst es-

timate the unknown parameters in the distribution,

which in this case is the mean vector µi. The

likelihood function over the pseudo observations,

{ul}l∈kNN(i), is de�ned as,

p(D|µi, λU) =
∏

l∈kNN(i)

N (ul|µi, λ
−1
U I). (4)

By taking derivative of Eq. 4 with respect to µi

and set it to zero, we obtain,

∑

l∈kNN(i)

(ul − µi) = 0, (5)

which implies that the MLE of µi is the sample

mean. However, since we are dealing with a set of

weighted samples, the sample mean is replaced by

the weighted average (the weights wl are assumed

to add up to one):

µi =
∑

l∈kNN(i)

wlul. (6)

Our model yields an intuitive result: to estimate

the mean vector µi of ui, we can simply take the

weighted average of the latent factors ul from the

nearest-neighbors as an estimator, where the weights

are the similarity scores between the textual pro�les

of user i and its neighbors.

Given µi, we can now maximize Eq. 3 with re-

spect to ui and vj . By taking derivative of Eq. 3

with respect to ui and vj and set it to zero, we obtain

the update equations,

N∑

j=1

γijvjv
T
j +

λU

λ0
I

ui =

N∑

j=1

γijrijvj +
λU

λ0
µi

(7)
(

M∑

i=1

γijuiu
T
i +

λV

λ0
I

)
vj =

M∑

i=1

γijrijui. (8)

Now with Eq. 6 to Eq. 8 at hand, we can itera-

tively solve for µi, ui and vj for all users and items

until the model converges.

It can be seen from this case-study that NT-MF

eliminates the three major drawbacks of the previ-

ously mentioned LDA-MF model. First, the topic

vectors and the user latent factors are not required

to have equal dimensionalities, which allows for the

optimal dimensionality to be chosen in both models.

Second, the mean vector, that is, the kNN weighted

average in Eq. 6, is a linear combination of a set of

user latent factors; as a result, the latent dimensions

of ui and µi are naturally aligned. Third, the mean

vector µi has the same support as the user latent fac-

tor ui, avoiding the risk of prior misspeci�cation in

cold-start situations.

4 Experiment

We use YouTube video recommendation to test the

usefulness of NT-MF under the cold-start scenario.

The NT-MF model used in this section follows the

optimization procedure derived in Section 3.3.

4.1 Dataset and Statistics

To construct a dataset containing both the users' rat-

ing history and textual information, we begin with

the user pro�le pages on Google+. A large propor-

tion of Google+ users provide links to their pro�le

pages from other social network services (e.g. Twit-

ter). More importantly, if a user owns a YouTube

account, a link to the user's YouTube channel will

be automatically added to his Google+ pro�le. This

makes a fully aligned dataset available. Users' Twit-

ter accounts are obtained via their Google+ pro�le

page, and the concatenation of tweets is regarded as

the auxiliary text data. It has been shown that by

concatenating the tweets, more representative user

809

topic vectors can be obtained (Hong and Davison,

2010). We refer to this text data as the Twitter cor-

pus.

Videos in a user's �liked� or �favorite� playlists

are considered to have a rating rij = 1. Other

videos are assigned rij = 0. In other words, we

are dealing with a one-class collaborative �ltering

(OCCF) problem (Pan et al., 2008). We adopt the

same strategy as in (Wang and Blei, 2011) to deal

with OCCF. First, all ratings are assumed to be ob-

served, i.e. γij = 1 for all user-item pairs. Next,

a con�dence parameter cij is introduced to reduce

the in�uence of the huge number of zeroes during

model optimization. The con�dence parameter takes

place of the original rating precision parameter λ0

and is de�ned in (Wang and Blei, 2011) as cij =
a if rij = 1 and cij = b otherwise (a > b > 0). All
the derivations in the previous sections follow intu-

itively.

The titles of the liked videos are concatenated and

treated as the text data in the target domain (which

we refer to as the YouTube corpus). As for the vo-

cabulary, stopwords are �rst removed, and then 5000

words are selected from the YouTube corpus based

on their TF-IDF scores (Blei and Lafferty, 2009).

On average, each user's Twitter text data contains

5149 words and 1193 distinct terms, and each user's

YouTube text data contains 158 words and 116 dis-

tinct terms. These statistics are in accordance with

our assumption that text data in the source domain is

abundant comparing to that in the target domain.

To validate the prediction result, each user has at

least 10 liked videos. Videos with less than 5 likes

are removed from the dataset. After data cleansing,

there are 7328 users and 18691 videos in the dataset.

The maximum number of likes received by a video is

98, and the average is 19.1. Among all videos, 92%

of them are liked by less than 40 users. The max-

imum number of likes given by a user is 908, and

the average is 48.8. Among all users, 89% of them

have liked less than 100 videos. The sparsity (ratio

of zeroes to the total number of entries) of the rating

matrix is 99.74%, which illustrates the dif�culty of

this recommendation task.

4.2 Evaluation and Scenario

We choose the area under ROC curve (AUC) as the

evaluation metric. AUC is often used to compare

models when there is severe class imbalance, which

is the case in our OCCF problem since we regard

all zeroes as observed. All reported results are the

average of 5 random data splits.

Similar to the experiments performed in (Wang

and Blei, 2011), we test the performance of each

model under two different scenarios. The �rst one is

the task of in-matrix prediction. In this task, the likes

received by each video are partitioned into three sets,

namely the training, validation and testing sets. The

ratio of data partition is 3:1:1. There are no cold-

start users for the in-matrix prediction.

The second task is the out-of-matrix prediction,

where the users are partitioned into three sets with

the same 3:1:1 ratio. To make the two tasks compa-

rable, we randomly split the data until the number of

observations in each of the three sets is closed to that

of the in-matrix task. Users in the testing set are all

cold-start users. The only data we have when mak-

ing prediction on the cold-start users is the auxiliary

text data.

4.3 Baseline Methods

• LDA:We run linear regression on the LDA fea-

tures to predict the ratings. This model serves

as a content-based baseline.

• UKNN: The user-kNN algorithm (Herlocker

et al., 1999) based on LDA features is imple-

mented. This model serves as a neighborhood-

based baseline.

• PMF: PMF (Salakhutdinov and Mnih, 2007) is

a classic and widely-used CF model. It uses

only the rating information, and thus is not ca-

pable of performing the out-of-matrix task.

• LDA-MF: This model is implemented as has

been described in Section 2. It is similar to

CTR (Wang and Blei, 2011) in structure. Since

the optimization of the full model converges

badly, we pre-train the LDA part of the model,

and �x the topic vector when optimizing the

PMF part.

All hyperparameters are tuned on the validation

set. Due to ef�ciency and storage considerations,

for UKNN and NT-MF, the k-nearest-neighbors are
computed approximately with the FLANN library

810

50 200

0.80

0.81

0.82

0.83

0.84

0.85

(0
.7
6
9
)

(0
.7
6
2
)

K

A
U
C

LDA UKNN PMF LDA-MF NT-MF

50 200

0.80

0.81

0.82

0.83

0.84

0.85

(0
.7
4
9
)

(0
.7
5
7
)

(0
.7
1
6
)

(0
.7
1
8
)

K

A
U
C

LDA UKNN PMF LDA-MF NT-MF

50 200

0.80

0.81

0.82

0.83

0.84

0.85

(0
.7
5
9
)

(0
.7
7
6
)

(0
.7
9
1
)

(0
.7
9
1
)

K

A
U
C

LDA UKNN PMF LDA-MF NT-MF

(a) YouTube corpus (b) Twitter corpus (c) YouTube + Twitter corpus

Figure 3: In-matrix AUC using different corpus. For methods signi�cantly worse than others, we cut off the plot and put the AUC

values on top of the bars. NT-MF is signi�cantly better than the baselines in all plots, according to a paired t-test (p < 0.05).

(Muja and Lowe, 2014). The symmetric Kullback-

Leibler divergence is chosen to be the distance met-

ric between topic vectors. For all baseline methods,

we use K to denote the dimensionality of the latent

variables. However, when discussing about NT-MF,

since the number of topics can be different from the

number of user latent factors, we use T to denote the

former andK to denote the latter to avoid confusion.

4.4 In-Matrix Prediction

In this section, the in-matrix prediction is discussed.

First, we test the model's general performance on

different corpora. Normally, the optimal number

of topics will not be the same for different cor-

pora. Since the LDA model performs the best with

K = 50 on the YouTube corpus and K = 200 on

the Twitter corpus, we report the results when K is

set to these two numbers.

Figure 3(a) shows the results when no source-

domain information is available and thus no trans-

fer learning is performed. That is, all models are

provided only with the YouTube ratings and the

YouTube corpus. Because the YouTube corpus is

scarce, the LDA model results in lower AUC when

more topics are used, signifying over�tting. The

same reason also leads to limited improvement of

LDA-MF over PMF. Using neighborhood informa-

tion alone, UKNN performs poorly. On the other

hand, as a model bringing neighborhood information

into PMF, NT-MF outperforms all baselines signi�-

cantly. The above analysis shows that, although us-

ing either content (LDA) or neighborhood (UKNN)

information alone is insuf�cient to generate good

predictions, they can effectively improve the factor-

ization of the rating matrix if used correctly.

To demonstrate the advantage of transfer learning,

we study the scenario where only source-domain

text and target-domain ratings are available. That is,

the YouTube corpus in the previous analysis is re-

placed with the Twitter corpus. The result is shown

in Figure 3(b). Comparing to Figure 3(a), we can

see that although the Twitter corpus is larger than

the YouTube corpus, it leads to a worse performance

for LDA and UKNN. Content information from the

noisy Twitter corpus alone is not suf�cient to capture

the rating behavior of users. However, by integrat-

ing the content information and rating history, both

LDA-MF and NT-MF bene�t from a larger corpus.

In the following analyses, we use data from both

websites. For LDA, PMF and LDA-MF, we merge

the two corpora by summing up the word counts.

For UKNN and NT-MF, however, there is a more

elegant way to combine the knowledge from differ-

ent websites. First, we compute user similarity sep-

arately from the two corpora. Then, the two sets of

similarity scores are weighted and averaged. Finally,

the nearest-neighbors are computed based on this set

of newly generated similarity scores. By applying

this strategy to NT-MF, not only can θi and ui dif-

fer in dimensionality, but also the optimal number of

topics can be used for different corpora. Regardless

of K, we use T = 50 for YouTube and T = 200 for

Twitter in our NT-MF model. The result is shown in

Figure 3(c). By comparing it with Figure 3(b), we

can see that the AUC of NT-MF increases while that

of LDA-MF remains unchanged. UKNN also bene-

�ts from this strategy. These facts show that, instead

of merging the two corpora directly, our strategy of

averaging the similarities is more advantageous.

811

20 40 60 80 100 120 140 160 180 200

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

of observed ratings

A
U
C

LDA UKNN PMF LDA-MF NT-MF

20 40 60 80 100 120 140 160 180 200

0.01

0.02

0.03

0.04

0.05

0.06

0.07

of observed ratings

A
U
C

d
iff
er
en

ce

LDA
UKNN
PMF

LDA-MF

(a) (b)

Figure 4: (a) Cumulative in-matrix AUC. Each point (x, y) in the �gure means that the model gives an averaged AUC of y among

all users who have less than or equal to x observed ratings. (b) Difference in cumulative in-matrix AUC between NT-MF and

baseline methods.

Next, as a preliminary investigation of the perfor-

mance on cold-start users, in Figure 4(a), we plot

the cumulative AUC with respect to the total num-

ber of observed ratings. NT-MF outperforms other

methods in terms of cumulative AUC regardless of

the number of observed ratings. The advantage of

NT-MF over the baseline methods is even greater

as the number of observed ratings decreases (except

for LDA). To make it clear, we plot the difference

in AUC between NT-MF and the baseline methods

in Figure 4(b). This phenomenon sheds light on the

advantage of NT-MF under cold-start scenario.

4.5 Out-of-Matrix Prediction

In this section, we discuss the out-of-matrix predic-

tion. Users in the testing set are all completely cold-

start users. That is, we are only provided the Twit-

ter corpus when making prediction for these users.

Therefore, our previous strategy of averaging the

similarities only applies to users in the training set.

For this study we adopt the strategy of merging the

two corpus instead of averaging the similarities. The

number of topics T = 150 is chosen for NT-MFwith

respect to the validation AUC.

The result is presented in Figure 5. We plot the

AUC against the dimensionality of the latent vari-

ables K. It can be observed that NT-MF beats all

baseline methods regardless of K. Comparing to

Figure 3, the out-of-matrix AUC is much lower, sig-

nifying the dif�culty of cold-start recommendation.

Under the cold-start scenario, the latent factor

10 20 50 100 150 200

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

K

A
U
C

LDA
UKNN
LDA-MF
NT-MF

Figure 5: Out-of-matrix AUC. NT-MF is signi�cantly better

than the baselines, according to a paired t-test (p < 0.05).

used in the prediction phase is taken to be the prior

mean for the MF-based models. For LDA-MF the

prior mean is the topic vector θi, while for NT-MF it

is the weighted average µi given by Eq. 6.

Since θi is used in place of ui in the LDA-MF

model when generating predictions, the curves of

LDA and LDA-MF look very similar. A paired

t-test (p < 0.05) shows no statistically signi�cant

difference between these two methods when K =
10 (p = 0.48) and K = 20 (p = 0.09). Despite the
fact that ui = θi is �xed for the cold-start users in

the LDA-MF model, as K becomes larger, the item

latent factors can carry more information in the rat-

ing data, which results in a higher AUC than LDA.

However, since the dimensionalities of the LDA part

and PMF part must match, the inference procedure

of LDA-MF becomes very slow whenK is large. To

812

make a better use of the available data, the compu-

tational ef�ciency must be sacri�ced.

On the other hand, note that NT-MF achieves the

highest AUC when K = 50. In fact, not only does

NT-MF beat all baseline methods under different K
values, it also outperforms the best LDA-MF model

(K = 200) with fewer latent factors (K = 20). Un-
like LDA-MF, the latent factors of the cold-start

users are not �xed in NT-MF. Therefore, NT-MF can

represent the information in a more concise way. In

this case, NT-MF is better than LDA-MF in terms of

both execution speed and predictive power.

10 20 50 100 150 200

0.72

0.73

0.74

0.75

0.76

K

A
U
C

T = 10 T = 20 T = 50 T = 100

T = 150 T = 200

Figure 6: Performance of NT-MF based on out-of-matrix AUC

for different values of K and T .

In Figure 6 we investigate the effect of different

values of K and T . For each curve, we can see that
the performance is about the same for K ≥ 50. This
is in accordance with the observation that NT-MF

does not need as many latent factors as LDA-MF to

achieve the same level of performance. Also, while

increasing the number of topics T improves the per-

formance in general, increasing T from 150 to 200

gives no signi�cant improvement. The most impor-

tant observation is that the highest AUC is achieved

when K = 50 and T = 150. In other words, the op-
timal number of topics is different from that of user

latent factors. This further justi�es the advantage of

NT-MF against previous methods.

5 Related Work

Although not directly aiming to solve the problem

we have proposed, there exists some models of sim-

ilar structure or adopt similar ideas.

As previously mentioned, LDA-MF is similar in

structure to CTR. Collaborative topic Poisson fac-

torization (CTPF) (Gopalan et al., 2014) combines

the ideas of CTR and Poisson factorization (Gopalan

et al., 2013) for a better performance. We have also

tried CTPF on our dataset; nevertheless, there is no

signi�cant improvement over LDA-MF.

Recently, the neighborhood-aware probabilistic

matrix factorization (NHPMF) model is proposed

(Wu et al., 2012) as a method to combine kNN and

PMF. It is originally proposed to leverage tagging

data for improving PMF. This model can also be

applied to our problem if we use the Twitter cor-

pus in place of the unavailable tagging data. How-

ever, in the NHPMFmodel, the mean parameters are

not treated as constants when the user latent factors

are updated. As a result, an extra term appears in

the gradient formula, which leads to an O(k2) time
complexity, with k being the number of nearest-

neighbors considered. On the other hand, the com-

putation of the weighted average (i.e. Eq. 6) takes

O(k) time complexity. We have implemented NH-

PMF for comparison. As we increase k, NHPMF

becomes signi�cantly slower than NT-MF, while its

performance is no better than NT-MF on our dataset.

6 Conclusion

In this work, we propose NT-MF, a cross-website

transfer learning model which integrates content,

neighborhood and rating information to alleviate the

cold-start problem. A signi�cant improvement over

previous methods is demonstrated on a real-world

cross-website dataset. The improvement is even

more signi�cant under the cold-start scenario.

So far we use the LDA topic vector to represent

a user. As future work, different aspects of text can

be taken into account to generate a more comprehen-

sive user model. For example, writing styles or opin-

ion mining may provide different insights on user

behavior. Another possible extension is to apply our

idea to more realistic settings such as large-scale and

online recommender systems.

Acknowledgments

This material is based upon work supported by Mi-

crosoft Research Asia (MSRA) under award number

FY16-RES-THEME-013 and by Taiwan Ministry of

Science and Technology (MOST) under grant num-

ber 103-2221-E-002-104-MY2.

813

References

DavidM. Blei and John D. Lafferty. 2009. Topic models.

In Text Mining: Theory and Applications. Taylor and

Francis.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.

2003. Latent dirichlet allocation. J. Mach. Learn.

Res., 3:993�1022, March.

Robin Burke. 2002. Hybrid recommender systems:

Survey and experiments. User Modeling and User-

Adapted Interaction, 12(4):331�370, November.

Robin Burke. 2007. The adaptive web. chapter Hy-

brid Web Recommender Systems, pages 377�408.

Springer-Verlag, Berlin, Heidelberg.

Zhengyu Deng, Ming Yan, Jitao Sang, and Changsheng

Xu. 2015. Twitter is faster: Personalized time-

aware video recommendation from twitter to youtube.

ACM Trans. Multimedia Comput. Commun. Appl.,

11(2):31:1�31:23, January.

Prem Gopalan, Jake M. Hofman, and David M. Blei.

2013. Scalable recommendation with poisson factor-

ization. CoRR, abs/1311.1704.

Prem Gopalan, Laurent Charlin, and David M. Blei.

2014. Content-based recommendations with pois-

son factorization. In Z. Ghahramani, M. Welling,

C. Cortes, N. D. Lawrence, and K. Q. Weinberger, ed-

itors, Advances in Neural Information Processing Sys-

tems 27, pages 3176�3184. Curran Associates, Inc.

Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers,

and John Riedl. 1999. An algorithmic framework

for performing collaborative �ltering. In Proceedings

of the 22Nd Annual International ACM SIGIR Con-

ference on Research and Development in Information

Retrieval, SIGIR '99, pages 230�237, New York, NY,

USA. ACM.

Liangjie Hong and Brian D. Davison. 2010. Empirical

study of topic modeling in twitter. In Proceedings of

the First Workshop on Social Media Analytics, SOMA

'10, pages 80�88, New York, NY, USA. ACM.

Bin Li, Qiang Yang, and Xiangyang Xue. 2009. Can

movies and books collaborate?: Cross-domain collab-

orative �ltering for sparsity reduction. In Proceedings

of the 21st International Joint Conference on Arti�cal

Intelligence, IJCAI'09, pages 2052�2057, San Fran-

cisco, CA, USA. Morgan Kaufmann Publishers Inc.

Marius Muja and David G. Lowe. 2014. Scalable nearest

neighbor algorithms for high dimensional data. Pat-

tern Analysis and Machine Intelligence, IEEE Trans-

actions on, 36.

Rong Pan, Yunhong Zhou, Bin Cao, Nathan Nan Liu, Ra-

jan M. Lukose, Martin Scholz, and Qiang Yang. 2008.

One-class collaborative �ltering. In Proceedings of

the 8th IEEE International Conference on Data Min-

ing (ICDM 2008), December 15-19, 2008, Pisa, Italy,

pages 502�511.

Michael J. Pazzani and Daniel Billsus. 2007. The

adaptive web. chapter Content-based Recommenda-

tion Systems, pages 325�341. Springer-Verlag, Berlin,

Heidelberg.

Suman Deb Roy, TaoMei, Wenjun Zeng, and Shipeng Li.

2012. Socialtransfer: Cross-domain transfer learning

from social streams for media applications. In Pro-

ceedings of the 20th ACM International Conference on

Multimedia, MM '12, pages 649�658, New York, NY,

USA. ACM.

Ruslan Salakhutdinov and Andriy Mnih. 2007. Proba-

bilistic matrix factorization. In Advances in Neural In-

formation Processing Systems 20, Proceedings of the

Twenty-First Annual Conference on Neural Informa-

tion Processing Systems, Vancouver, British Columbia,

Canada, December 3-6, 2007, pages 1257�1264.

Yue Shi, Martha Larson, and Alan Hanjalic. 2011. Tags

as bridges between domains: Improving recommenda-

tion with tag-induced cross-domain collaborative �l-

tering. In Proceedings of the 19th International Con-

ference on User Modeling, Adaption, and Personaliza-

tion, UMAP'11, pages 305�316, Berlin, Heidelberg.

Springer-Verlag.

Chong Wang and David M. Blei. 2011. Collaborative

topic modeling for recommending scienti�c articles.

In Proceedings of the 17th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data

Mining, KDD '11, pages 448�456, New York, NY,

USA. ACM.

Le Wu, Enhong Chen, Qi Liu, Linli Xu, Tengfei

Bao, and Lei Zhang. 2012. Leveraging tagging

for neighborhood-aware probabilistic matrix factoriza-

tion. In Proceedings of the 21st ACM International

Conference on Information and Knowledge Manage-

ment, CIKM '12, pages 1854�1858, New York, NY,

USA. ACM.

814

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 815–825,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Speculation and Negation Scope Detection via Convolutional Neural

Networks

Zhong Qian
1
, Peifeng Li

1
, Qiaoming Zhu

1
, Guodong Zhou

1
, Zhunchen Luo

2
 and Wei

Luo
2

School of Computer Science and Technology, Soochow University, Suzhou, 215006, China1

China Defense Science and Technology Information Center, Beijing, 100142, China2

qianzhongqz@163.com, {pfli, qmzhu, gdzhou}@suda.edu.cn,

zhunchenluo@gmail.com, htqxjj@126.com

Abstract

Speculation and negation are important infor-

mation to identify text factuality. In this paper,

we propose a Convolutional Neural Network

(CNN)-based model with probabilistic

weighted average pooling to address specula-

tion and negation scope detection. In particular,

our CNN-based model extracts those meaning-

ful features from various syntactic paths be-

tween the cues and the candidate tokens in both

constituency and dependency parse trees. Eval-

uation on BioScope shows that our CNN-based

model significantly outperforms the state-of-

the-art systems on Abstracts, a sub-corpus in

BioScope, and achieves comparable perfor-

mances on Clinical Records, another sub-

corpus in BioScope.

1 Introduction

Factual information is critical to understand a sen-

tence or a document in most typical NLP applica-

tions. Speculation and negation extraction has

been drawing more and more attentions in recent

years due to its importance in distinguishing coun-

terfactual or uncertain information from the facts.

Generally speaking, speculation is a type of uncer-

tain expression between certainty and negation,

while negation is a grammatical category which

reverses the truth value of a proposition.

Commonly, speculation and negation extraction

involves two typical subtasks: cue identification

and scope detection. Here, a cue is a word or

phrase that has speculative or negative meaning

(e.g., suspect, guess, deny, not), while a scope is a

text fragment governed by the corresponding cue

in a sentence. Consider the following two sentenc-

es for examples:

(S1) The doctors warn that smoking [may harm

our lungs].

(S2) He does [not like playing football] but

likes swimming.
 1

In sentence S1, the speculative cue “may” gov-

erns the scope “may harm our lungs”, while the

negative cue “not” governs the scope “not like

playing football” in sentence S2.

Previous work have achieved quite success on

cue identification (e.g., with F1-score of 86.79 for

speculative cue detection in Tang et al. (2010)). In

comparison, speculation and negation scope detec-

tion is still a challenge due to its inherent difficul-

ties and those upstream errors. In this paper, we

focus on scope detection. Previous work on scope

detection can be classified into heuristic rules

based methods (e.g., Özgür et al., 2009; Øvrelid et

al., 2010), machine learning based methods (e.g.,

Tang et al., 2010; Zou et al., 2013), and hybrid

approaches which integrate empirical models with

manual rules (Velldal et al., 2012).

Different from those previous studies, this paper

presents a Convolutional Neural Network (CNN)-

based approach for scope detection. CNN models,

firstly invented to capture more abstract features

for computer vision (LeCun et al., 1989), have

achieved certain success on various NLP tasks in

1 In this paper, cues are in bold face, and scopes are in

[brackets] in the example sentences.

815

recent years, such as semantic role labeling (Col-

lobert et al., 2011), machine translation (Meng et

al., 2015; Hu et al., 2015), event extraction (Chen

et al., 2015; Nguyen et al., 2015), etc. These stud-

ies have proved the ability of CNN models in

learning meaningful features.

In particular, our CNN-based model extracts

various kinds of meaningful features from the syn-

tactic paths between the cue and the candidate to-

ken in both constituency and dependency parse

trees. The importance of syntactic information in

scope detection has been justified in previous

work (Velldal et al., 2012; Lapponi et al., 2012;

Zou et al., 2013, etc). Our model can also benefit

from the ability of neural networks in extracting

useful information from syntactic paths (Xu et al.,

2015a; Xu et al., 2015b) or more complex syntac-

tic trees (Ma et al., 2015; Tai et al., 2015). Moreo-

ver, instead of traditional average pooling, our

CNN-based model utilizes probabilistic weighted

average pooling to alleviate the overfitting prob-

lem (Zeiler et al., 2013). Experimental results on

BioScope prove the effectiveness of our CNN-

based model.

The reminder of this paper is organized as fol-

lows: Section 2 gives an overview of the related

work. Section 3 describes our CNN-based model

with probabilistic weighted average pooling for

scope detection. Section 4 illustrates the experi-

mental settings, and reports the experimental re-

sults and analysis. Finally, Section 5 draws the

conclusion.

2 Related Work

In this section, we give an overview of previous

work on both scope detection and utilization of

CNNs in NLP applications.

2.1 Scope Detection

Earlier studies on speculation and negation scope

detection focused on developing various heuristic

rules manually to detect scopes.

Chapman et al. (2001) developed various regu-

lar expressions for negation scope detection. Sub-

sequently, various kinds of heuristic rules began to

emerge. Özgür et al. (2009) resorted to the part-of-

speech of the speculative cues and the syntactic

structures of the current sentences for identifying

scopes, and developed heuristic rules according to

the syntactic trees. Øvrelid et al. (2010) construct-

ed a set of heuristic rules on dependency structures

and obtained the accuracy of 66.73% on the

CoNLL evaluation data. The approaches based on

heuristic rules were effective because the sentence

structures in BioScope satisfy some grammatical

rules to a certain extent.

With the release of the BioScope corpus (Szar-

vas et al., 2008), machine learning based methods

began to dominate the research of speculation and

negation scope detection.

Morante et al. (2008) regarded negation scope

detection as a chunk classification task utilizing

lexical and syntactic features. Morante et al.

(2009a) further implemented a scope detection

system combining three classifiers, i.e., TiMBL,

SVM and CRF, based on shallow syntactic fea-

tures, and achieved the performance of 77.13%

and 73.36% in Percentage of Correct Scopes (PCS)

on speculation and negation scope detection on

Abstracts, a sub-corpus of BioScope. Velldal et al.

(2012) explored a hybrid method, adopting manu-

ally crafted rules over dependency parse trees and

a discriminative ranking function over nodes in

constituent parse trees. Zou et al. (2013) proposed

a tree kernel based approach on the syntactic parse

trees to detect speculation and negation scopes.

Alternative studies treated scope detection as a

sequential labeling task. Tang et al. (2010) pro-

posed a CRF model with POS, chunks, NERs, de-

pendency relations as features. Similarly, Lapponi

et al. (2012) employed a CRF model with lexical

and dependency features for negation scope and

event resolution on the Conan Doyle corpus. The-

se machine learning methods manifest the effec-

tiveness of syntactic features.

2.2 CNN based NLP Applications

Currently, CNNs have obtained certain success on

various NLP tasks, e.g., part-of-speech tagging,

chunking, named entity recognition (Collobert et

al., 2011). Specifically, CNNs have been proven

effective in extracting sentence-level features. For

instance, Zeng et al. (2014) utilized a CNN-based

model to extract sentence-level features for rela-

tion classification. Zhang et al. (2015) proposed a

shallow CNN-based model for implicit discourse

relation recognition. Chen et al. (2015) presented a

CNN-based model with dynamic multi-pooling on

event extraction.

More recently, researchers tend to learn features

from complex syntactic trees. Ma et al. (2015) use

816

a CNN-based model for sentence embedding, uti-

lizing dependency tree-based n-grams. Xu et al.

(2015a) exploited a CNN-based model to learn

features from the shortest dependency path be-

tween the subject and the object for semantic rela-

tion classification.

3 CNN-based Modeling with Probabilis-

tic Weighted Average Pooling

This section describes our CNN-based model for

speculation and negation scope detection, which is

recast as a classification task to determine whether

each token in a sentence belongs to the scope of

the corresponding cue or not. Principally, our

CNN-based model first extracts path features from

syntactic trees with a convolutional layer and con-

catenates them with their relative positions into

one feature vector, which is then fed into a soft-

max layer to compute the confidence scores of its

location labels, described in subsection 3.1.

3.1 Token Labeling

We employ following labeling scheme for each

candidate token:

 A token is labeled as O if it is NOT an ele-

ment of a speculation or negation scope;

 A token is labeled as B if it is inside a scope

and occurs before the cue, i.e., Ptoken＜Pcue,

where Ptoken and Pcue are the positions of the

token and the cue in a sentence, respectively;

 A token is labeled as A if it is inside a scope

and occurs after the cue (inclusive), i.e., Ptoken

≥Pcue.

Under this scheme, each token in a sentence is

classified into B, A or O. For example, the labels

of all the tokens in sentence S3 are shown in sen-

tence S4.

(S3) They think that [those bacteria may be

killed by white blood cells] , but other researchers

do not think so.

(S4) They/O think/O that/O [those/B bacteria/B

may/A be/A killed/A by/A white/A blood/A

cells/A] ,/O but/O other/O researchers/O do/O

not/O think/O so/O ./O

The advantage of our scheme is that it can de-

scribe the location relationship among the tokens,

cues and scopes more precisely than some previ-

ous studies, which regarded scope detection as a

binary classification task (Øvrelid et al., 2010; Zou

et al., 2013). Compared to other schemes with

more than two labels (Morante et al., 2009a; Tang

et al., 2010; Lapponi et al., 2012), our scheme can

much alleviate the imbalance of labels, because

the tokens occurring at the first or last positions of

the scopes are much fewer than other tokens.

3.2 Input Representation

Figure 1 shows the framework of our model based

on neural network. We concentrate on Path Fea-

ture and Position Feature. They are concatenated

into one feature vector, which is finally fed into

the softmax layer to obtain the output vector.

Hidden

 Layer

Word

embeddings of

a path

Convolutional

Layer

W1× + b1

 Max Min Pavg

Path Features

tanh(W2× +b2)softmax(W3× +b3)

Embeddings

Position Features & Path Features

Input

Features Position features Path features

Softmax

Layer

concatenate

Dropout

 Layer

×Mmask

W0

output

Input may↑MD↑VP↓VP↓NP↓PRPP↓our

not↑neg↑does↓prep↓like↓pcomp↓playing

Normalization

Figure 1: The framework of CNN for scope detection. Figure 2: The architecture of CNN-based model to extract

path features.

817

Relative Position has been proven useful in

previous studies (Zeng et al., 2014; Chen et al.,

2015). In this paper, relative position is defined as

the relative distance of the cue to the candidate

token. For instance, in sentence S1, the relative

distances of the cue “may” to the candidate tokens

“warn” and “our” are 3 and -2, respectively. The

values of position features are mapped into a vec-

tor P of dimension dp, with P initialized randomly.

Instead of the word sequence (e.g., Zeng et al.,

2014; Zhang et al. 2015; Chen et al., 2015), we

argue that the Shortest Syntactic Path from the

cue to the candidate token can offer effective fea-

tures to determine whether a token belongs to the

scope. It is remarkable that the lowest common

ancestor node of the cue and the token is the high-

est tree node in the path.

Figure 2 illustrates the architecture of our CNN-

based model to extract path features. Here, convo-

lutional features are first extracted from the matrix

of embeddings of the path, and then fed into the

hidden layer to produce more complicated features.

In this paper, the syntactic paths between the

cues and the candidate tokens in constituency and

dependency parse trees are both considered. Fig-

ure 3 presents the constituency parse tree of sen-

tence S1 and the constituency path from the cue

“may” to the candidate token “our”. It shows that

the tokens are at both the beginning and the end of

the path with the arrows indicating the directions.

Meanwhile, Figure 4 displays the dependency

parse tree of sentence S2 and the dependency path

from the cue “not” to the token “playing”.

As the input of our CNN-based model, both the

constituency path and the dependency path be-

tween the cue and the token can be regarded as the

special “sentences” S=(t1, t2,…, tn), whose “words”

can be tokens of sentences, syntactic categories,

dependency relations, and arrows.

Similar to other CNN-based models, we also

consider a fixed size window of tokens around the

current token to capture its local features in the

path. Here, the window size is set as an odd num-

ber w, indicating that there are (w-1)/2 tokens be-

fore and after the candidate token, respectively. In

this case, path S is transferred into matrix
0

nw d

0

X R according to embedding table

0 0
| |Td

 R
0

W , where d0 is the dimension of the em-

beddings and |T0| is the size of the table.

3.3 Convolutional Neural Networking

After fed into the convolutional layer, the matrix

of the syntactic path X0 is processed with a linear

operation:

1 1 0 1

Y W X b (1)

where 01
n w d

1

W R is the parameter matrix, and

1
n

1

b R is the bias term. To extract the most active

convolutional features from 1
n n

1

Y R , we consid-

er two features Cmax and Cmin whose elements

are maximum, minimum values of rows in Y1, re-

spectively:

ROOT

S

NP VP PERIOD

DT NN

The doctors

VBZ SBAR

warn IN S

that NP

NN

smoking

.

VP

MD

may

VP

VB NP

harm PRPP NNS

our lungs
Cue: may

Current candidate token: our

Constituency path:

may↑MD↑VP↓VP↓NP↓PRPP↓our

Figure 3: An example for the constituency parse tree

of sentence S1 and the path from the cue to the candi-

date token.

neg

ROOT

does
root

He

nsubj

not like

prep

playing

pcomp

football
dobj

but

cc

swimming

conj

likes

amod

Cue: not

Current candidate token: playing

Dependency path:

not↑neg↑does↓prep↓like↓pcomp↓playing

Figure 4: An example for the dependency parse tree of

sentence S2 and the path from the cue to the candidate

token.

818

() [(, 0), (,1), ..., (, 1)]r m a x r r r n
1 1 1

C m a x Y Y Y (2)

() [(, 0), (,1), ..., (, 1)]r m in r r r n
1 1 1

C m in Y Y Y (3)

where
1

0 1r n . Moreover, we extract a con-

volutional feature Cpavg, whose elements are

probabilistic weighted average values of rows in

Y1. Formally, Cpavg can be written as:

1

0

() (,)

n

i

i

r p r i

 1
C p a vg Y (4)

In Equation (4), pi is the probability of the ele-

ment (,)r i
1

Y in the vector (,)r
1

Y :

1

0

(,)

(,)

i n

j

r i
p

r j

1

1

Y

Y

 (5)

Cpavg is a variant probabilistic weighted aver-

age pooling used by Zeiler et al. (2013). Compared

to the standard average pooling, each element in

Cpavg has a weight depending on its value. That is,

during computing Cpavg, the most active elements

with the largest absolute values (i.e., the maximum

and minimum values) play the leading roles, while

those less active elements with smaller absolute

values have less effect. In this way, we can reduce

the influence of less active elements, and can cap-

ture more active information in (,)r
1

Y . From this

respect, Cpavg can be regarded as a meaningful

convolutional feature.

 The extracted convolutional features above are

first concatenated into 1
3 n

 RC , as the output of

the convolutional layer:

[],C C m ax C m in ,C pavg (6)

Then, C is fed into the hidden layer to learn

more complex and meaningful features. Here, we

process C with a linear operation just like in the

convolutional layer, and choose hyperbolic tanh as

the activation function to get 2

2

n
 RY :

ta n h ()
2 2 2

Y W C b (7)

 where 2 1
3n n

 R
2

W is the parameter matrix, and

2
n

 R
2

b is the bias term. To produce the output of

the hidden layer, a normalization operation is ap-

plied to eliminate the manifold differences among

various features:

/
2 2

H Y Y (8)

In this way we obtain the path feature 2
n

H R

for each candidate token and then concatenate it

with the position feature P into one vector F0:

[,]
T T T

0

F P H (9)

where f
n

 R
0

F is the feature vector of a candi-

date token with the dimension equaling the sum of

n2 and the dimension of P. Besides, we also con-

sider the dropout operation for regularization to

prevent the co-adaptation of hidden units on the

penultimate layer:

1 0

F F M (10)

where is an element-wise multiplication and M

is a mask vector whose elements follow the Ber-

noulli distribution with the probability p of being 1.

We determine whether the candidate token is in

the scope of the current cue according to its F1.

3.4 Output

Finally, F1 is fed into the softmax layer:

()= so ftm a x
3 1 3

O W F b (11)

where 3 f
n n

 R
3

W is the parameter matrix, and

3
n

3

b R is the bias term. The dimension of O is

n3=3, which is equal to the number of labels repre-

senting whether the token is an element of the

scope, just as described in subsection 3.1, and the

elements of O can be interpreted as the confidence

scores of the three labels, i.e., B, A and O.

To learn the parameters of the network, we su-

pervise the predicted labels of O with the gold la-

bels in the training set, and utilize the following

training objection function:

2

1

1
() lo g (| ,)

2

m

i i

i

J p y x
m

 (12)

where (| ,)
i i

p y x is the confidence score of the

golden label yi (B, A, O) of the training instance xi,

m is the number of the training instances, λ is the

regularization coefficient and θ={W0, W1, b1, W2,

b2, W3, b3} is the set of parameters. To train the

CNN-based model, the Stochastic Gradient De-

scent algorithm is applied to fine-tune θ.

819

4 Experimentation

In this section, we first introduce the evaluation

data, and then describe the experimental settings.

Finally, we report the experimental results and

analysis.

4.1 Corpus

We evaluate our CNN-based model on BioScope

(Szarvas et al., 2008; Vincze et al., 2008), a widely

used and freely available resource consisting of

sentences annotated with speculative and negative

cues and their scopes in biomedical domain.

 Abs Papers Cli

Total

#Documents 1273 9 1954

#Sentences 11871 2670 6383

Ave. Len Sentences 25.47 24.54 7.71

Spe

#Sentences 2101 519 855

#Scopes 2659 672 1112

Ave. Len Sentences 29.77 30.76 11.96

Ave. Len Scopes 15.10 13.38 4.92

Neg

#Sentences 1597 339 865

#Scopes 1719 376 870

Ave. Len Sentences 29.28 30.55 8.53

Ave. Len Scopes 7.60 7.35 3.87

(Notes: “Ave. Len” denotes average length; “Abs”, “Papers”

and “Cli” denote Abstracts, Full Papers and Clinical Records,

respectively; “Spe” and “Neg” denote speculation and nega-

tion, respectively.)

Table 1: Statistics on the BioScope corpus.

BioScope includes 3 different sub-corpora: Ab-

stracts of biological papers from the GENIA cor-

pus (Collier et al., 1999), Full scientific Papers

from Flybase and BMC Bioinformatics website,

and Clinical radiology Records corpus. These texts

in three sub-corpora ensure that BioScope can cap-

ture the heterogeneity of language use in biomedi-

cal domain. While Abstracts and Full Papers share

the same genre, Clinical Records consists of short-

er sentences. Previous studies regarded Abstracts

as the main resource for text mining applications

due to its public accessibility (e.g. through Pub-

Med).

Table 1 shows the statistics of the BioScope

corpus. While in both Abstracts and Full Papers,

the average lengths of speculation and negation

sentences are comparable (Abstracts: 29.77 vs

29.28; Full Papers: 30.76 vs 30.55). However,

their average lengths of the negation scopes are

shorter than those of speculation ones (Abstracts:

7.60 vs 15.10; Full Papers: 7.35 vs 13.38). Moreo-

ver, both the average lengths of sentences and

scopes in Clinical Records are shorter than those

of other two sub-corpora (Average length: 11.96

(speculation sentence), 8.53 (negation sentence),

4.92 (speculation scope) and 3.87 (negation

scope)).

4.2 Experimental Settings

Following the previous work (e.g., Özgür et al.,

2009; Morante et al., 2009a, 2009b; Zou et al.,

2013), we divide the Abstracts sub-corpus into 10

folds to perform 10-fold cross-validation. Moreo-

ver, to examine the robustness of our CNN-based

model towards different text types within biomed-

ical domain, all the models are trained on the same

Abstracts sub-corpus. Therefore, the results on

Abstracts can be regarded as in-domain evaluation

while the results on Clinical Records and Full Pa-

pers can be regarded as cross-domain evaluation.

For the measurement, traditional Precision, Re-

call, and F1-score are used to report the token-

based performance in scope detection, while the

Percentage of Correct Scopes (PCS) is adopted to

report the scope-based performance, which con-

siders a scope correct if all the tokens in the sen-

tence have been assigned the correct scope classes

for a specific cue. Obviously, PCS can better de-

scribe the overall performance in scope detection.

Besides, Percentage of Correct Left Boundaries

(PCLB) and Percentage of Correct Right Bounda-

ries (PCRB) are reported as partial measurements.

In all our experiments, both the constituency

and dependency parse trees are produced by Stan-

ford Parser
2
. Specially, we train the parser on the

GENIA Treebank 1.0
3
 (Tateisi et al., 2005), which

contains Penn Treebank-style syntactic (phrase

structure) annotation for the GENIA corpus. The

parser achieves the performance of 87.12% in F1-

score in terms of 10-fold cross-validation on

GENIA TreeBank 1.0.

For the hyper-parameters in our CNN-based

model, we set d0=100, dp=10, w=3, n1=200,

n2=500, λ=10
-4

, p=0.8. The embeddings of the to-

kens in ordinary sentences (as word sequences) are

initialized by Word2Vec
4
 (Mikolov et al., 2013).

For the baseline, we utilize the classifier-based

baseline developed by Zou et al. (2013). Besides

those typical features, constituency and dependen-

2 http://nlp.stanford.edu/software/lex-parser.shtml
3 http://www.geniaproject.org/genia-corpus/treebank
4 https://code.google.com/archive/p/word2vec/

820

cy syntactic features are also included. Further-

more, Mallet
5
 is selected as the classifier.

In addition, since our CNN-based model may

result in discontinuous blocks, we utilize a post-

processing algorithm (Morante et al., 2008) to en-

sure the continuity of scopes. Meanwhile, the cue

must be in its scope as defined in Bioscope.

4.3 Experimental Results on Abstracts

Table 2 summarizes the performances of scope

detection on Abstracts. In Table 2, CNN_C and

CNN_D refer the CNN-based model with constit-

uency paths and dependency paths, respectively

(the same below). It shows that our CNN-based

models (both CNN_C and CNN_D) can achieve

better performances than the baseline in most

measurements. This indicates that our CNN-based

models can better extract and model effective fea-

tures. Besides, compared to the baseline, our

CNN-based models consider fewer features and

need less human intervention. It also manifests

that our CNN-based models improve significantly

more on negation scope detection than on specula-

tion scope detection. Much of this is due to the

better ability of our CNN-based models in identi-

fying the right boundaries of scopes than the left

ones on negation scope detection, with the huge

gains of 29.44% and 25.25% on PCRB using

CNN_C and CNN_D, respectively.

Table 2 illustrates that the performance of spec-

ulation scope detection is higher than that of nega-

tion (Best PCS: 85.75% vs 77.14%). It is mainly

attributed to the shorter scopes of negation cues.

Under the circumstances that the average length of

negation sentences is almost as long as that of

speculation ones (29.28 vs 29.77), shorter negation

scopes mean that more tokens do not belong to the

scopes, indicating more negative instances. The

imbalance between positive and negative instances

has negative effects on both the baseline and the

5 http://mallet.cs.umass.edu/

CNN-based models for negation scope detection.

Table 2 also shows that our CNN_D outper-

forms CNN_C in negation scope detection (PCS:

77.14% vs 70.86%), while our CNN_C performs

better than CNN_D in speculation scope detection

(PCS: 85.75% vs 74.43%). To explore the results

of our CNN-based models in details, we present

the analysis of top 10 speculative and negative

cues below on CNN_C and CNN_D, respectively.

Figure 5: PCSs of top 10 speculative cues for scope detection

in Abstracts sub-corpus.

Figure 5 illustrates the PCSs of the most fre-

quent 10 speculative cues using CNN_C. The cues

in the horizontal axis are in the order of lowest to

highest in frequency. Among those cues, “sug-

gest”, “may”, “indicate”, and “appear” are

commonly used to express opinions of certain in-

dividuals. The scopes of these cues are integrated

semantic fragments (probably clauses) governed

by corresponding cues in grammatical sense, and

the tokens in the scope tend to share the same

chunk with the cue in the constituency parse tree.

Hence, constituency paths are more useful for

speculation scope detection. Figure 5 also shows

that the PCSs of all the top 10 speculative cues are

higher than 70% except “or” (PCS: 60.44%),

mainly due to the flexible usage of “or”, which

 Systems P(%) R(%) F1 PCLB(%) PCRB(%) PCS(%)

Speculation

Baseline 94.71 90.54 92.56 84.81 85.11 72.47

CNN_C 95.95 95.19 95.56 93.16 91.50 85.75

CNN_D 92.25 94.98 93.55 86.39 84.50 74.43

Negation

Baseline 85.46 72.95 78.63 84.00 58.29 46.42

CNN_C 85.10 92.74 89.64 81.04 87.73 70.86

CNN_D 89.49 90.54 89.91 91.91 83.54 77.14

Table 2: The performances on the Abstracts sub-corpus.

821

can connect two words, two professional terms, or

even two clauses.

 Figure 6: PCSs of top 10 negative cues for scope detection in

Abstracts sub-corpus.

Figure 6 illustrates the performances of the most

frequent 10 negative cues using CNN_D. In those

negative cues, “not” is in the absolute majority,

and “not” and “no” cover over 70%. We have no-

ticed that most negative cues (e.g., “not”, “no”,

“without”, “fail”) are often applied to negate

phrases, and the tokens in negation scope tend to

have the tight dependency relationship with them.

Therefore, our model can achieve better results

using dependency paths for negation scope.

In Figure 6, most negative cues have good PCSs

(higher than 70%). However, “unable” has poor

PCS of 16.67%. This is due to the fact that “una-

ble” usually occurs in the phrase structure “be un-

able to”, which often follows a subject. It is nota-

ble that a cue is always in its scope and most cues

in BioScope are much closer to the left boundaries

than to the right ones. Hence, the tokens labeled as

B (i.e., inside the scope and before the cue) are

much fewer than the ones labeled as A or O. Such

imbalance makes it hard to judge whether the to-

kens before “unable” are in of its scope or not.

4.4 Experimental Results on Clinical Records

and Full Papers

The performances of our CNN-based models on

the other two sub-corpora, i.e., Clinical Records

and Full Papers, are presented in Table 3. Alt-

hough Abstracts and Clinical Records have differ-

ent genres, our CNN-based models can obtain sat-

isfactory results on Clinical Records using both

constituency paths and dependency paths, proving

the portability of our models.

Table 3 also shows that the results of negation

scope are better than those of speculation scope on

Clinical Records (PCS: 89.66% vs 73.92%). We

argue the reason is that both the lengths of nega-

tion sentences and scopes (8.53 and 3.87, respec-

tively) in Clinical Records are much shorter, indi-

cating that the structures of negation sentences are

simpler than those of speculation ones. After error

analysis of speculation scopes, we find that

54.83% of our error scopes contain the annotated

scopes, just like sentence S5:

(S5) This does not [appear to represent a stone]

and is not mobile.

The annotated scope of the cue “appear” is

“appear to represent a stone”. However, our

CNN-based model identifies the whole sentence as

the scope. These errors indicate that some words

may be wrongly identified as the components of

scopes because the scopes in Clinical Records are

short and their structures are simple.

Compared with Abstracts and Clinical Records,

the results on Full Papers are much lower. This is

mainly due to the poor PCRBs, indicating a con-

siderable quantity of right boundaries of scopes

cannot be identified correctly. We should note that

the average lengths of both speculation and nega-

tion sentences (30.76 and 30.55, respectively) in

Full Papers are longer than those in Abstracts and

 Systems P(%) R(%) F1 PCLB(%) PCRB(%) PCS(%)

Speculation

Clinical

Records

CNN_C 86.85 93.84 90.21 84.35 86.87 73.92

CNN_D 89.02 85.41 87.18 82.91 76.17 64.39

Full

Papers

CNN_C 86.78 86.59 86.69 86.01 68.60 59.82

CNN_D 86.13 85.09 85.61 80.95 64.14 52.98

Negation

Clinical

Records

CNN_C 88.29 97.00 92.44 95.98 93.45 89.66

CNN_D 91.97 97.03 94.43 95.98 90.57 87.82

Full

Papers

CNN_C 80.92 82.26 81.58 82.71 67.29 55.32

CNN_D 82.08 84.90 83.46 84.04 64.89 53.99

Table 3: The performances of our CNN-based models on Clinical Records and Full Papers.

822

Clinical Records. Normally, longer sentences

mean more complicated syntactic structures.

Besides the results trained on Abstracts, we also

consider the 10-fold cross-validation on Clinical

Records and Full Papers. The PCSs of speculation

and negation scope detection are 74.73% (CNN_C)

and 91.03% (CNN_C) on Clinical Records, which

are both higher than the ones trained on Abstracts.

Remember that Abstracts and Clinical Records

come from the different genres. However, we get

lower PCSs on Full Papers (49.54% for specula-

tion scope detection using CNN_C, and 44.67%

for negation scope detection using CNN_C). In

addition to the complex structures of long sentenc-

es, another reason is that the smaller size of the

Full Papers sub-corpus compared to the other two

sub-corpora. Fewer sentences and scopes (only

672 speculation scopes in 519 sentences and 376

negation scopes in 339 sentences) mean that we

cannot get an excellent model.

4.5 Comparison with the State-of-the-Art

Table 4 compares our CNN-based models with the

state-of-the-art systems. It shows that our CNN-

based models can achieve higher PCSs (+1.54%)

than those of the state-of-the-art systems for spec-

ulation scope detection and the second highest

PCS for negation scope detection on Abstracts,

and can get comparable PCSs on Clinical Records

(73.92% vs 78.69% for speculation scopes,

89.66% vs 90.74% for negation scopes). It is

worth noting that Abstracts and Clinical Records

come from different genres.

It also displays that our CNN-based models per-

form worse than the state-of-the-art on Full Papers

due to the complex syntactic structures of the sen-

tences and the cross-domain nature of our evalua-

tion. Although our evaluation on Clinical Records

is cross-domain, the sentences in Clinical Records

are much simpler and the results on Clinical Rec-

ords are satisfactory. Remind that our CNN-based

models are all trained on Abstracts. Another rea-

son is that those state-of-the-art systems on Full

Papers (e.g., Li et al., 2010; Velldal et al., 2012)

are tree-based, instead of token-based. Li et al.

(2010) proposed a semantic parsing framework

and focused on determining whether a constituent,

rather than a word, is in the scope of a negative

cue. Velldal et al. (2012) presented a hybrid

framework, combining a rule-based approach us-

ing dependency structures and a data-driven ap-

proach for selecting appropriate subtrees in con-

stituent structures. Normally, tree-based models

can better capture long-distance syntactic depend-

ency than token-based ones. Compared to those

tree-based models, however, our CNN-based

model needs less manual intervention. To improve

the performances of scope detection task, we will

explore this alternative in our future work.

 System Abs Cli Papers

Spe

Morante (2009a) 77.13 60.59 47.94

Özgür (2009) 79.89 N/A 61.13

Velldal (2012) 79.56 78.69 75.15

Zou (2013) 84.21 72.92 67.24

Ours 85.75 73.92 59.82

Neg

Morante (2008) 57.33 N/A N/A

Morante (2009b) 73.36 87.27 50.26

Li (2010) 81.84 89.79 64.02

Velldal (2012) 74.35 90.74 70.21

Zou (2013) 76.90 85.31 61.19

Ours 77.14 89.66 55.32

Table 4: Comparison of our CNN-based model with the state-

of-the-art in PCS.

5 Conclusion

This paper proposes a CNN-based model for spec-

ulation and negation scope detection. Compared

with various lexical and syntactic features adopted

in previous studies (e.g., Lapponi et al., 2012; Zou

et al., 2013), our CNN-based model only considers

the position feature and syntactic path feature.

Experimental results on the BioScope corpus

show that our CNN-based model can get the best

performances for speculation scopes and the se-

cond highest performances for negation scopes on

Abstracts in in-domain evaluation. In cross-

domain evaluations, we can achieve comparable

results on Clinical Records, but our CNN-based

model performs worse on Full Papers. This sug-

gests our future direction to extend the model from

token level to parse tree level in better capturing

long-distance syntactic dependency and to address

the cross-domain adaptation issue.

Acknowledgments

This research was supported by the National Natu-

ral Science Foundation of China (Grant Nos.

61472265, 61402314 and 61331011), and partially

supported by Collaborative Innovation Center of

Novel Software Technology and Industrialization.

In addition, thanks to the three anonymous re-

viewers for their valuable comments.

823

References

Wendy W. Chapman, Will Bridewell, Paul Hanbury,

Gregory F. Cooper, and Bruce G. Buchanan. 2001.

Evaluation of Negation Phrases in Narrative Clinical

Reports. In Proceedings of American Medical Infor-

matics Association Symposium, 2001, pages 105-109.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and

Jun Zhao. 2015. Event Extraction via Dynamic Mul-

ti-Pooling Convolutional Neural Networks. In Pro-

ceedings of the 53rd Annual Meeting of the Associa-

tion for Computational Linguistics and the 7th Inter-

national Joint Conference on Natural Language

Processing (ACL2015), Beijing, China, July 26-31,

2015, pages 167-176.

Nigel Collier, Hyun Seok Park, Norihiro Ogata, et al.

1999. The GENIA Project: Corpus-based

Knowledge Acquisition and Information Extraction

from Genome Research Papers. In Proceedings of

the European Chapter of the ACL 1999 (EACL

1999).

Ronan Collobert, Jason Weston, Léon Bottou, Michael

Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.

Natural Language Processing (almost) from Scratch.

Journal of Machine Learning Research, 2011, 12(1):

2493-2537.

Baotian Hu, Zhaopeng Tu, Zhengdong Lu, Hang Li,

and Qingcai Chen. 2015. Context-Dependent Trans-

lation Selection Using Convolutional Neural Net-

work. In Proceedings of the 53rd Annual Meeting of

the Association for Computational Linguistics and

the 7th International Joint Conference on Natural

Language Processing (ACL2015), Beijing, China,

July 26-31, 2015, pages 536-541.

Emanuele Lapponi, Erik Velldal, Lilja Øvrelid, and

Jonathon Read. 2012. UiO2: Sequence-Labeling Ne-

gation Using Dependency Features. In First Joint

Conference on Lexical and Computational Semantics

(*SEM), Montreal, Canada, June 7-8, 2012, pages

319–327.

Yann LeCun, Bernhard E. Boser, John S. Denker, Don-

nie Henderson, R. E. Howard, Wayne E. Hubbard,

and Lawrence D. Jackel. 1989. Backpropagation

Applied to Handwritten Zip Code Recognition. Neu-

ral Computation, 1989, 1(4): 541-551.

Junhui Li, Guodong Zhou, Hongling Wang, and

Qiaoming Zhu. 2010. Learning the Scope of

Negation via Shallow Semantic Parsing. In

Proceedings of the 23rd International Conference on

Computational Linguistics (Coling 2010), Beijing,

2010, pages 671-679.

Mingbo Ma, Liang Huang, Bing Xiang, and Bowen

Zhou. 2015. Dependency-based Convolutional Neu-

ral Networks for Sentence Embedding. In Proceed-

ings of the 53rd Annual Meeting of the Association

for Computational Linguistics and the 7th Interna-

tional Joint Conference on Natural Language Pro-

cessing (Short Papers) (ACL2015), Beijing, China,

2015, pages 174-179.

Fandong Meng, Zhengdong Lu, Mingxuan Wang, Hang

Li, Wenbin Jiang, and Qun Liu. 2015. Encoding

Source Language with Convolutional Neural Net-

work for Machine Translation. In Proceedings of the

53rd Annual Meeting of the Association for Compu-

tational Linguistics and the 7th International Joint

Conference on Natural Language Processing

(ACL2015), Beijing, China, July 26-31, 2015, pages

20-30.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-

rado, and Jeffrey Dean. 2013. Distributed Represen-

tations of Words and Phrases and their Composition-

ality. Advances in Neural Information Processing

Systems, 2013(26): 3111-3119.

Roser Morante, Anthony Liekens, and Walter Daele-

mans. 2008. Learning the Scope of Negation in Bi-

omedical Texts. In Proceedings of the 2008 Confer-

ence on Empirical Methods in Natural Language

Processing (EMNLP 2008), Honolulu, 2008, pages

715-724.

Roser Morante and Walter Daelemans. 2009a. Learning

the Scope of Hedge Cues in Biomedical Texts. In

Proceedings of the Workshop on BioNLP. Boulder,

Colorado, 2009, pages 28-36.

Roser Morante and Walter Daelemans. 2009b. A Met-

alearning Approach to Processing the Scope of Ne-

gation. In Proceedings of the Thirteenth Conference

on Computational Natural Language Learning

(CoNLL 2009), Boulder, Colorado, June 2009, pages

21-29.

Thien Huu Nguyen and Ralph Grishman. 2015. Event

Detection and Domain Adaptation with Convolu-

tional Neural Networks. In Proceedings of the 53rd

Annual Meeting of the Association for Computation-

al Linguistics and the 7th International Joint Con-

ference on Natural Language Processing (ACL2015),

Beijing, China, July 26-31,2015, pages 365-371.

Arzucan Özgür and Dragomir R. Radev. 2009. Detect-

ing Speculations and their Scopes in Scientific Text.

In Proceedings of the 2009 Conference on Empirical

Methods in Natural Language Processing (EMNLP

2009), Singapore, 2009, pages 1398-1407.

Lilja Øvrelid, Erik Velldal, and Stephan Oepen. 2010.

Syntactic Scope Resolution in Uncertainty Analysis.

824

In Proceedings of the 23rd International Conference

on Computational Linguistics (Coling 2010), Beijing,

August 2010, pages 1379-1387.

György Szarvas, Veronika Vincze, Richárd Farkas, and

János Csirik. 2008. The BioScope corpus: Annota-

tion for Negation, Uncertainty and their Scope in Bi-

omedical Texts. In Proceedings of BioNLP 2008:

Current Trends in Biomedical Natural Language

Processing, Columbus, Ohio, USA, 2008, pages 38-

45.

Kai Sheng Tai, Richard Socher and Christopher D.

Manning. 2015. Improved Semantic Representations

from Tree-Structured Long Short-Term Memory

Networks. In Proceedings of the 53rd Annual Meet-

ing of the Association for Computational Linguistics

and the 7th International Joint Conference on Natu-

ral Language Processing (ACL-IJCNLP 2015), Bei-

jing, China, July 26-31, 2015, pages 1556-1566.

Buzhou Tang, Xiaolong Wang, XuanWang, Bo Yuan,

and Shixi Fan. 2010. A Cascade Method for Detect-

ing Hedges and their Scope in Natural Language

Text. In Proceedings of the Fourteenth Conference

on Computational Natural Language Learning

(CoNLL 2010): Shared Task, Uppsala, Sweden, 15-

16 July 2010, pages 13-17.

Yuka Tateisi, Akane Yakushiji, Tomoko Ohta, and

Jun'ichi Tsujii. 2005. Syntax annotation for the

GENIA corpus. In Proceedings of IJCNLP 2005, Je-

ju Island, Korea, October 2005, pages 222-227.

Erik Velldal, Lilja Øvrelid, Jonathon Read, and Stephan

Oepen. 2012. Speculation and Negation: Rules,

Rankers, and the Role of Syntax. Computational

Linguistics, 2012, 38(2): 369-410.

Andreas Vlachos and Mark Craven. 2010. Detecting

Speculative Language Using Syntactic Dependencies

and Logistic Regression. In Proceedings of the Four-

teenth Conference on Computational Natural Lan-

guage Learning (CoNLL 2010): Shared Task, Upp-

sala, Sweden, 15-16 July 2010, pages 18-25.

Kun Xu, Yansong Feng, Songfang Huang, and Dong-

yan Zhao. 2015a. Semantic Relation Classification

via Convolutional Neural Networks with Simple

Negative Sampling. In Proceedings of the 2015 Con-

ference on Empirical Methods in Natural Language

Processing (EMNLP 2015), Lisbon, Portugal, 2015,

pages 536-540.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,

Zhi Jin. 2015b. Classifying Relations via Long Short

Term Memory Networks along Shortest Dependency

Paths. In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing

(EMNLP 2015), Lisbon, Portugal, 2015, pages 1785-

1794.

Matthew D. Zeiler and Rob Fergus. 2013. Stochastic

Pooling for Regularization of Deep Convolutional

Neural Networks. arXiv preprint arXiv: 1301.3557v1.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,

and Jun Zhao. 2014. Relation Classification via

Convolutional Deep Neural Network. In Proceed-

ings of the 25th International Conference on Compu-

tational Linguistics: Technical Papers (COLING

2014), Dublin, Ireland, August 23-29, 2014, pages

2335-2344.

Biao Zhang, Jinsong Su, Deyi Xiong, Yaojie Lu, Hong

Duan, and Junfeng Yao. 2015. Shallow Convolu-

tional Neural Network for Implicit Discourse Rela-

tion Recognition. In Proceedings of the 2015 Con-

ference on Empirical Methods in Natural Language

Processing (EMNLP 2015), Lisbon, Portugal, 17-21

September 2015, pages 2230-2235.

Bowei Zou, Guodong Zhou, and Qiaoming Zhu. 2013.

Tree Kernel-based Negation and Speculation Scope

Detection with Structured Syntactic Parse Features.

In Proceedings of the 2013 Conference on Empirical

Methods in Natural Language Processing (EMNLP

2013), Seattle, Washington, USA, 2013, pages 968-

976.

825

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 826–835,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Analyzing Linguistic Knowledge in Sequential Model of Sentence

Peng Qian Xipeng Qiu∗ Xuanjing Huang
Shanghai Key Laboratory of Intelligent Information Processing, Fudan University

School of Computer Science, Fudan University
825 Zhangheng Road, Shanghai, China

{pqian11, xpqiu, xjhuang}@fudan.edu.cn

Abstract

Sentence modelling is a fundamental top-
ic in computational linguistics. Recently,
deep learning-based sequential models of sen-
tence, such as recurrent neural network, have
proved to be effective in dealing with the
non-sequential properties of human language.
However, little is known about how a recurrent
neural network captures linguistic knowledge.
Here we propose to correlate the neuron
activation pattern of a LSTM language model
with rich language features at sequential,
lexical and compositional level. Qualitative
visualization as well as quantitative analy-
sis under multilingual perspective reveals the
effectiveness of gate neurons and indicates
that LSTM learns to allow different neurons
selectively respond to linguistic knowledge
at different levels. Cross-language evidence
shows that the model captures different as-
pects of linguistic properties for different
languages due to the variance of syntactic
complexity. Additionally, we analyze the
influence of modelling strategy on linguistic
knowledge encoded implicitly in different
sequential models.

1 Introduction

Sentence modelling is a central and fundamental
topic in the study of language generation and
comprehension. With the application of popular
deep learning methods, researchers have found that
recurrent neural network can successfully model the
non-sequential linguistic properties with sequential

∗Corresponding author.

data input (Vinyals et al., 2015; Zhou and Xu,
2015; Rocktäschel et al., 2015). However, due
to the complexity of the neural networks and the
lack of effective analytic methodology, little is
known about how a sequential model of sentence,
such as recurrent neural network, captures linguistic
knowledge. This makes it hard to understand
the underlying mechanism as well as the model’s
strength and weakness. Previous work (Li et al.,
2016) has attempted to visualize neural models in
NLP, but only focus on analyzing the hidden layer
and sentiment representation rather than grammar
knowledge.

Currently, there have been a few attempts (Yo-
gatama et al., 2014; Köhn, 2015; Faruqui and Dyer,
2015) at understanding what is embedded in the
word vectors or building linguistically interpretable
embeddings. Few works focus on investigating
the linguistic knowledge encoded in a sequential
neural network model of a sentence, not to mention
the comparison of model behaviours from a cross-
language perspective. Our work, therefore, aims to
shedding new insights into the following topics:

a) How well does a sequential neural model (e.g.
language model) encodes linguistic knowledge
of different levels?

b) How does modelling strategy (e.g. the optimiza-
tion objective) influence the neuron’s ability of
capturing linguistic knowledge?

c) Does the sequential model behave similarly to-
wards typologically diverse languages?

To tackle the questions above, we propose to
visualize and analyze the neuron activation pattern

826

dětem (chidren.Female.Plural.Dative)

en (in.ADP.case)
1868 (1868.NUM.nmod)
, (,.PUNCT.punct)
le (the.DET.det)
journal (journal.NOUN.nsubjpass)
est (is.AUX.auxpass)
transformé (transform.VERB.root)

en
1868
,
le
journal
est
transformé

Model

···

· · ·

A
ct

iv
at

io
n

Input Sequence

(journal.NOUN.nsubjpass)

· · ·

E
E

G
 S

ig
n

al

Processing Time

en
1868
,
le
journal
est
transformé

Model

···

· · ·

A
ct

iv
at

io
n

Input Sequence

(journal.NOUN.nsubjpass)

· · ·

E
E

G
 S

ig
n

al

Processing Time

·
·
·

Brain

Is the mapping

possible?

en
1868
,
le
journal
est

Model

···

· · ·

A
ct

iv
at

io
n

Input Sequence

(NOUN.nsubjpass)
Is the mapping possible?

Figure 1: Experiment paradigm: correlating the
dynamic activation pattern of the model neurons
with linguistic features .

ID (Non-)Linguistic Knowledge Level
I Sequence Length Sequential

II
Gender / Definiteness

Lexical
Part-of-Speech

III
Case / VerbForm / Mood

Compositional
Syntactic Role

Table 1: List of the linguistic features to be
correlated with model neuron behaviours.

so as to understand how a sequential neural model
of sentence encodes linguistic properties of different
level. By training vanilla LSTM language models
with multilingual data and correlating the model
neuron’s activation with various linguistic features,
we not only qualitatively show the activation pattern
of a certain model neuron, but also quantify the
selectivity of the neuron towards input language data
or certain linguistic properties.

2 Methodology

2.1 A ‘Brain’ Metaphor of Artificial Model

Mitchell et al. (2008) correlates brain activities with
linguistic stimuli under a popular brain-mapping
paradigm. Since brain is a ‘black box’, researchers
want to decode what is represented in a certain
neuronal cluster of the brain at a certain time step.
Here we propose that this paradigm can be applied
to similar ‘black-box’ model, such as the neural
network. This is what we call a ‘brain’ metaphor
of the artificial model, as is visualized in Figure 1.
We treat the neural network as a simplified ‘brain’.
We correlate the neuron behaviours with the input
stimuli and design experiments to map the neuron
activation to an explicit linguistic feature.

A sentence is, of course, a linear sequential
arrangement of a cluster of words, but more than just
a simple addition of words, as there exist compli-
cated non-sequential syntactic relations. Thus, we

consider three levels of features in the analysis of
model behaviours, a) Sequential feature, a kind of
superficial feature shared by any sequence data, b)
Lexical feature, which is stable and almost indepen-
dent of the sentence context, and c) Compositional
feature, which is required for building the meaning
of a sentence. Table 1 lists the details of the features
involved in this paper.

2.2 Model Description
Since the goal is to understand the internal neurons’
behaviour and how the behaviour patterns can be
interpreted as a way to encode dynamic linguistic
knowledge, we choose the most fundamental se-
quential sentence models as the research objects. We
do not consider tree-structured model, as it explicitly
involves linguistic structure in model architecture.
We focus on word-based language model and com-
pare it to two other counterparts in this paper.

Word-based Language Model Word-based lan-
guage model (Mikolov et al., 2010) predicts the
incoming word given the history context.

Character-based Language Model Instead of
predicting the next word, character-based language
model (Hermans and Schrauwen, 2013) predicts
the incoming character given the history character
sequence.

Task-specific Model A common task-specific
model takes word sequence as input, but only
predicts the category (e.g. sentiment) of the sentence
after all the words are processed. In this paper, we
consider a sequential model utilized for sentiment
analysis task.

All the three sequential models are built on recur-
rent neural network with LSTM unit (Hochreiter and
Schmidhuber, 1997). LSTM unit has a memory cell
c and three gates: input gate i, output gate o and
forget gate f , in addition to the hidden layer h of
a vanilla RNN. The states of LSTM are updated as
follows:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi), (1)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf), (2)

ct = ft � ct−1
+ it � tanh(Wxcxt +Whcht−1 + bc), (3)

ot = σ(Wxoxt +Whoht−1 +Wcoct−1 + bo), (4)

827

ht = ot � tanh(ct), (5)

where xt is the input vector at the current time
step, σ denotes the logistic sigmoid function and �
denotes elementwise multiplication.

The dimension of the embeddings and the LSTM
unit is 64. All three models use pretrained word
embedding from Polyglot multilingual embeddings
(Al-Rfou et al., 2013) trained with C&W (Collobert
et al., 2011) model on Wikipedia. We train a lot
of word-based and character-based LSTM language
models with multilingual data from the Universal
Treebank 1.2 (Joakim Nivre and Zhu, 2015), as
well as a task-specific sentiment model on Stanford
Sentiment Treebank (Socher et al., 2013b). We
separate the training and testing data according to
90%/10% principle. We stop training when the loss
of the test data does not decrease.

Regarding the analysis of the model behaviours,
we collect the internal neuron activation of the
hidden layer, three gates, and memory cell for all
the data in the treebank/sentiment corpus1. For the
sake of notation, we refer the hidden layer, input
gate, output gate, forget gate and memory cell as
h, i, f , o, c for three models, word-based language
model (WL), character-based language model (CL)
and task-specific model for sentiment analysis (SA).
We mark the index of the neuron in the superscript
and the meta information about the model in the
subscript.

3 Qualitative Analysis

3.1 Sequential Feature
Karpathy et al. (2015) finds that some memory
neurons of the character language model are se-
lective towards the length of the input sequence.
Similar patterns are also observed among the mem-
ory neuron activation pattern of the word-level
language model as is shown in Figure 2, where deep
purple color indicate strong negative activation and
deep green color indicate strong positive activation.
Moreover, we compute the correlation between the
input sequence length and the activation pattern of

1The analyses cover languages such as English (en), German
(de), Latin (la), Ancient Greek (grc), Bulgarian (bg), Spanish
(es), Portuguese (pt), Italian (it), French (fr), Dutch (nl),
Norwegian (no), Hindi (hi), Slovenian (sl), Hungarian (hu),
Indonesian (id) and Chinese (zh).

B
ag

hd
ad

is do n'
t

ve
nt

ur
e

m
uc

h

ou
t of

th
ei

r

ne
ig

hb
ou

rh
oo

ds an
y

m
or

e ,

yo
u

ne
ve

r

kn
ow

w
he

re

yo
u

m
ig

ht ge
t

st
uc

k .

Figure 2: Memory neuron c21en,WL that are sensitive
to the length of the input word sequence.

en fr la grc es pt it nl no bg cs hi zh
0.2

0.4

0.6

0.8

1

M
ax

C
or

re
la

tio
n
r

h i
f o
c

Figure 3: Comparison of neurons on correlating
with the length of input sequence. Only the best
correlation results are reported.

if

th
es

e

w
ea

po
ns

ha
ve

go
ne

m
is

si
ng it 's a

te
rr

ify
in

g

pr
os

pe
ct . "

(a) h30en,WL + raw sent

w
ea

po
ns

ha
ve if it

pr
os

pe
ct a

th
es

e "

m
is

si
ng

. 's

te
rr

ify
in

g

go
ne

(b) h30en,WL + shuffled sent

Figure 4: Visualising the activation of a neuron
towards raw English sentences and sentences with
shuffled word order.

every single neuron of h, i, f , o, c. Quantitative
results in Figure 3 reveal that none of the hidden
layer or gate neurons are strongly correlated with
this sequential feature.

3.2 Lexical Feature

For a inner neuron of the model, we can get the
activation of a certain neuron in a certain model
component towards a certain input word. A model
neuron may be most active towards the words of
some category instead of other words.

We notice that some neurons (e.g. Neuron
h30en,WL) strongly activate towards functional words
such as the determiners ‘a’, as is visualized in Figure
4. This activation can be observed even when we
feed the model with a abnormal English sentence
with shuffled word order.

Since it is not easy to go through all the neuron
activation pattern, we design a visualization method
to vividly show how a neuron selectively respond to

828

(a) h22en,WL (b) h30en,WL (c) h35en,WL (d) h23en,WL

(e) i30en,WL (f) f18fr,WL (g) i54pt,WL (h) i28de,WL

Figure 5: Visualising the lexical space responded by a certain neuron of the word-level language model
trained on different languages.

certain words, inspired by the work in Cukur et al.
(2013) and Huth et al. (2016).

Suppose the vocabulary of a language spans
a default lexical space. An internal neuron of
the artificial model modulates this linguistic space
via showing selective activation pattern towards
certain words. we carry out PCA on all the word
embedding in the language model and extract the
most prominent 3 principal components as the bases.
Then we project the word vectors onto these three
basis to get a new representation of the words in a
low dimensional space. We draw all the words on a
plane, where the location of each word is determined
by the first two components and the text color
is determined by three main components as RGB
value. To visualize how a target neuron x respond to
this lexical space, we modify the appearance of the
word by scaling the size of the word text against the
product of the log-transformed word frequency and
the absolute value of the mean activation, and setting
the degree of transparency of the text against the
relative positive/negative activation strength among
all the existed activation value of a target neuron

x. In this way, large font size and low degree of
transparency of a word w indicate that the target
neuron x frequently activates towards the word
w. This means that we can interpret a neuron’s
selectivity towards the lexical space just by looking
for large and explicit words on the visualized two-
dimensional space.

Figure 5 visualizes the lexical space responded by
four hidden layer neuron of the English language
model, as well as four gate neurons of different
languages respectively. We can see that words
with the similar grammatical functions are located
near each other. Besides, it is interesting to see
that some hidden layer neurons activate selectively
towards determiner words, pronoun, preposition or
auxiliary verbs. This phenomena have also been
observed on gate neurons. For example, forget gate
neuron f18fr,WL activates towards the determiners in
French. Input gate neuron i54pt,WL activates towards
the determiners in Portuguese. Notice that not all
of the inner neurons show interpretable activation
pattern towards the lexical space.

829

Sh
ar

on 's

ha
rd lin
e

ha
s

w
or

ke
d in

ta
nd

em w
ith

H
am

as 's

te
rr

or
is

m to

ra
tc

he
t

up

te
ns

io
ns

fu
rth

er

an
d

fu
rth

er ,

w
hi

ch

sp
ill

ov
er

in
to th
e

M
us

lim

w
or

ld an
d

se
rv

e as a

re
cr

ui
tin

g

to
ol fo
r al -

Q
ae

da in its

se
ar

ch fo
r

ag
en

ts

w
ill

in
g to hi
t

th
e

U
ni

te
d

St
at

es .

Sh
ar

on 's

ha
rd lin
e

ha
s

w
or

ke
d in

ta
nd

em w
ith

H
am

as 's

te
rr

or
is

m to

ra
tc

he
t

up

te
ns

io
ns

fu
rth

er

an
d

fu
rth

er ,

w
hi

ch

sp
ill

ov
er

in
to th
e

M
us

lim

w
or

ld an
d

se
rv

e as a

re
cr

ui
tin

g

to
ol fo
r al -

Q
ae

da in its

se
ar

ch fo
r

ag
en

ts

w
ill

in
g to hi
t

th
e

U
ni

te
d

St
at

es .

Figure 6: Visualising the Neuron h35en,WL neuron
activation towards verb-preposition composition.

3.3 Compositional Feature
To validate whether the internal neuron of the model
can discriminate the local composition and long-
distance composition, we choose the preposition as
the object for observation.

In English, preposition can be combined with the
previous verb to form a compound verbal phrase,
such as ‘check it in’,‘give him up’, ‘find out what
it will take’. This function of the preposition is
annotated as the compound particle in the Universal
Dependency Treebank. Another function of the
preposition is to serve as the case marker, such as the
preposition in the phrase ‘lives in the central area’,
‘Performances will be performed on a project basis’.
Given that these two functions of the preposition are
not explicitly discriminated in the word form, the
language model should tell the difference between
the prepositions served as the compound particle
and the prepositions served as the case marker if
it indeed has the ability to handle word meaning
composition.

For the hidden layer, we notice that hidden layer
neuron h35en,WL is sensitive to the function of the
preposition. It only activates when the possible
preposition does not form a composition with the
former verb, as is vividly shown in Figure 6. The
prepositions marked by dashed box serve as case
marker while those in solid box form a phrase with
previous verb. The activation pattern are obviously
different. Similar pattern is also found in the gate
neurons.

4 Quantitative Analysis

4.1 Decoding Lexical/Compositional Feature
Visualization only provides us with an intuitive
idea of what a single neuron is encoding when

processing language data. In this section, we
employ a mapping paradigm to quantitatively reveal
the linguistic knowledge distributed in the model
components.

Instead of looking at one single neuron, here
we use the whole 64 neurons of each model
component as a 64-dimensional vector h, i, f , o,
c respectively. The basic method is to decode
interpretable linguistic features from target neuron
clusters, which has been used in (Köhn, 2015; Qian
et al., 2016). We hypothesize that there exists a
map between a neuron cluster activation vector x
and a high-level sparse linguistic feature vector y
if the neuron cluster’s activation pattern implicitly
encode sufficient information about a certain lexical
or compositional feature.

Hence we design a series of experiments to map
the hidden layer, three gates, and memory cell
vector activated by a target input word w in a
sentence to the corresponding linguistic features of
the word w, which are annotated in the Universal
Dependency Treebank. Our experiments cover
POS TAG, SYNTACTIC ROLE, GENDER, CASE,
DEFINITENESS, VERB FORM and MOOD. These
linguistic features are all represented as a one-hot
vector. The mapping model is a simple softmax
layer, with the activation vector as the input and
the sparse vector as the output. For each linguistic
feature of each language, a mapping model is trained
on the randomly-selected 90% of all the word tokens
and evaluated over the remaining 10%. Notice that
GENDER, CASE, DEFINITENESS, VERB FORM,
and MOOD only apply to certain word categories.
We give a default ‘N/A’ tag to the words without
these annotations so that all the word can be used
for training. The evaluation result is only computed
from the words with the features. This requires the
mapping model to not only recognize the differences
between the sub-categories of a linguistic feature
(e.g. CASE), but also discriminate the words that
we are interested in from other unrelated words (e.g.
words without CASE annotations). Accuracies for
each model component h, i, f , o, c are reported in
Figure 7 and 8.

Comparing different model components, we no-
tice that gate neurons except output gate are general-
ly better than hidden layer and memory cell neurons
on decoding linguistic knowledge. Input gate and

830

en bg sl fr de la nl no pt es it hu id hi zh grc
0.4

0.6

0.8

A
cc

ur
ac

y

h i
f o
c

(a) POS TAG

en bg sl fr de la nl no pt es it hu id hi zh grc

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

h i
f o
c

(b) SYNTACTIC ROLE

bg es pt sl nl la no

0.4

0.6

0.8

A
cc

ur
ac

y

(c) CASE

bg es pt it no

0.2

0.4

0.6

0.8

(d) GENDER

Figure 7: Comparison of neurons on decoding POS
AG, SYNTACTIC ROLE, CASE, and GENDER.

forget gate are the best, while memory cell is the
worst. It shows that the gates of a recurrent language
model are more sensitive to the grammar knowledge
of the input words.

Comparing decoding results on different lan-
guages, we find that it is generally easier to de-
code POS TAG than SYNTACTIC ROLE for all
the languages. One interesting thing is that the
mapping model works better with Bulgarian, a slavic
language, but worse on Norwegian on decoding
CASE while the situation is opposite on decoding
GENDER. It might be because that gender is a
weakened grammatical feature in Bulgarian. There-
fore, knowledge about GENDER may not be so
important in building the grammatical structure of
the Bulgarian language data.

es pt it no nl

0.2

0.4

0.6

A
cc

ur
ac

y

h i
f o
c

(a) VERB FORM

es pt it no

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

(b) TENSE

bg es pt it no

0.4

0.6

0.8

1

h i
f o
c

(c) DEFINITENESS

Figure 8: Comparison of LSTM neurons on decod-
ing VERB FORM, TENSE, and DEFINITENESS.

4.2 The Dynamics of Neuron Behaviour

Since sentence meaning is dynamically constructed
by processing the input sequence in a word-by-
word way, it is reasonable to hypothesize that the
linguistic feature of an input word w won’t sharply
decay in the process. Naturally, we would like to
ask whether it is possible to decode, or at least
partially infer, a word’s property from the neuron
behaviours of its context words. Specifically, if
the model process a verbal phrase ‘spill over’ or
‘in the garden’, will the property of the word
‘spill’, ‘in’ be combined with the following word
and decodable from the model neuron activation
behaviours towards the following word, or will the
property of the word ‘over’, ‘the garden’ be primed
by the previous word and decodable from the model
neuron behaviours towards the previous word?

To quantitatively explore this question, we carry
out a mapping experiment similar to the previous
one. The difference is that here we map the
hidden layer, three gates, and memory cell vector
activated by a target input word w in a sentence
to the corresponding linguistic features of the pre-
vious/following word w−2/−1/w+1/+2 in a 5-word
window context. Results in Figure 9 shows that the
linguistic feature POS TAG is partially primed or

831

-2 -1 0 1 2 h
i

f
o

c

0.5

Word Position Model NeuronA
cc

ur
ac

y

Figure 9: Neuron dynamics on decoding POS.

ISO Language f i o h
en English 0.316 -0.022 0.107 0.156
la Latin 0.152 0.131 0.158 0.085

grc Ancient Greek 0.293 0.248 0.166 0.274
pt Portuguese 0.301 0.313 0.161 0.209
nl Dutch 0.196 0.096 0.205 -0.134
no Norwegian 0.335 0.057 0.269 0.033
bg Bulgarian 0.324 0.280 0.071 -0.082

Table 2: Comparison of model components’ corre-
lation with tree structure stastistics.

kept in the context words in English. The longer
distance, the less probability to decode it from
the neuron activations. Still, the nearest context
words w−1 and w+1 prime/keep the most relevant
information of the target word w. Similar patterns
are also found for other linguistic feature in other
languages.

4.3 Correlation with Dependency Tree

Since the sequential model can modelling non-
sequential input, we naturally want to know whether
any component of the model is dynamically corre-
lated with the statistics of tree structure. Inspired
by the case study in Zhou and Xu (2015), we count
the syntactic depth of each word in a sentence and
compute the correlation between the depth sequence
and the dynamics of the average activation of the
model neurons in Table 2. We did not find strong
correlation between the mean neuron activation
dynamics with the syntactic tree depth. One possible
explanation is that the language model only use the
history information, while the depth of a word is
computed in a relative global context.

5 Model Comparison

In this section, we would like to investigate whether
different sentence modelling strategy and optimiza-
tion objective affect the neuron’s implicit encoding
of linguistic knowledge, especially the grammatical
properties.

5.1 Word vs. Character

It is obvious that word-based language model and
character-based language model intend to model the
language data at different granularity. Although both
of them are effective, the latter is often criticized for
an unreasonable modelling strategy.

In addition to the findings in Karpathy et al.
(2015), we see that some of the hidden layer neurons
of the character-based language model seems to be
sensitive to specific characters and character cluster-
s, as is indicated from the visualization of the neuron
activation pattern in Figure 10. We are surprised to
find that some neuron of the hidden layer activates
selectively towards white space character. This is
interesting as it means that the model learns to
detect word boundary, which is exactly an important
linguistic feature.

Besides, some neuron activates selectively to-
wards vowel/consonant characters in a phonograph-
ic language, such as English. This interesting
phenomenon also indicates that the model implic-
itly captures the phonology system, since it can
discriminate the vowel character clusters from the
consonant character clusters. We also find these two
detectors in other languages, such as Indonesian and
Czech in Figure 10.

5.2 Word Prediction vs. Task-specific Model

We compare a word-based LSTM language model
and a word-based LSTM sentiment model. Here,
for a fair comparison, all the models are trained only
on the Stanford Sentiment Treebank Dataset (Socher
et al., 2013a). The results show that the neurons
in these two models displays similar behaviours
towards superficial sequential features, but totally
different behaviours towards high-level linguistic
features, such as semantic and syntactic knowledge.

Both some of the internal neurons of the mem-
ory cell in the language model and the sentiment
model emerge to be sensitive to the length of the

832

l i k e h a v i n g j . e d g a r h o o v e r u n w i t t i n g l yl i k e h a v i n g j . e d g a r h o o v e r u n w i t t i n g l y

j a r a k d e k a t , d u a k a p a l p e r u s a k , s t e r
e

j a r a k d e k a t , d u a k a p a l p e r u s a k , s t e r
e

l n é h o t e x t u n a s t r á n c e a 4 , p i á d k o v
á

(a) h19en,CL, h33id,CL, h9cs,CL detect white space.
n o s i n f o r m a c e f a x e m z h r u b a t i k r á t r y c h

l
1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

(b) h16en,CL, h7id,CL, h15cs,CL detect phonology.

Figure 10: Visualising the activation of hidden neurons of English, Indonesian and Czech language model.

h i f o c
0.4

0.6

0.8

Model Neurons

A
cc

ur
ac

y WordLM

CharLM

SA

Figure 11: Comparison between the internal neurons
of English word-based language model, character-
based language model and sentiment model on
decoding POS TAG.

input sequence, as we expected, since the sentence
length is a non-linguistic features shared by all the
sequential input. However, different optimization
objectives force the models to represent and capture
the linguistic properties of different aspects. The
language model focus more on the syntactic aspect,
as is visualized and quantified in previous sections.
Neurons of the sentiment model tends to be sensitive
only towards the sentiment aspect of the words,
although the sentiment model use the similar LSTM
unit, dimensionality and pretrained embedding. We
apply the same visualization method in Section 3.2
to the 64 hidden layer neurons of the sentiment mod-
el and manually interpret the visualization results
one by one. We did not see any strong activation
pattern towards the functional words like those
found in language model hidden layer neurons.

To quantify the differences of the linguistic
knowledge encoded in different sentential model,
we again use the previous feature-decoding exper-
iment method. We compare the performance of the
components in three models on decoding POS TAG

from English data. Notice that we use Stanford
POS Tagger (Kristina Toutanova and Singer, 2003)
to automatically tag the sentences in the sentiment
data. For the character-based language model, we
use the neuron activation towards the end character

of each words in the decoding experiment.
Results in Figure 11 shows that even a character-

based language model can achieve pretty well on
decoding the most important lexical features from
the activation pattern of the internal neurons. This
is a strong evidence that word-level feature detector
can emerge from a pure character-based model.
Sentiment model, on the contrary, fails to capture the
grammatical knowledge, although we might think
that a successful sentiment analysis model should be
able to combines the grammar property of the words
with the sentiment information. Current results
indicate that for pure sequential model with vanilla
LSTM units, the objective of the sentence modelling
tasks will largely affect how the model acquires and
encodes linguistic knowledge.

6 Related Works

Karpathy et al. (2015) explores the memory cell in
character-based language model. Their visualization
results show some interesting properties of the
memory neurons in LSTM unit. However, their ex-
ploration on character-based model does not intend
to correlate high-level linguistic knowledge, which
are intuitively required for sequential modelling of a
sentence.

Li et al. (2016) propose a method for visualizing
RNN-based sentiment analysis models and word-
based LSTM auto-encoder in NLP tasks. Li et al.
(2015) investigates the necessity of tree structure
for the modelling non-sequential properties of lan-
guages. Bowman et al. (2015) studies the LSTM’s
ability of capturing non-sequential tree structure.
Despite the useful findings, these works make no
attempts to investigate the internal states of the
neurons for a better understanding of the model’s
power or weakness.

Our work not only provides qualitative visual-
ization of model neurons’ behaviours and detailed

833

quantitative investigation with multilingual evidence
(16 for POS decoding experiment), but also reveal
the influence of language syntactic complexity and
modelling strategy on how well the internal neurons
capture linguistic knowledge, which have been
overlooked by previous work on interpreting neural
network models.

7 Conclusion

In this work, we analyze the linguistic knowledge
implicitly encoded in the sequential model of sen-
tence. Through the visualization and quantification
of the correlation between the neuron activation
behaviour of different model components and lin-
guistic features, we summarize that:

• Model neurons encode linguistic features at
different level. Gate neurons encode more lin-
guistic knowledge than memory cell neurons.
• Low-level sequential features are shared across

models while high-level linguistic knowledge
(lexical/compositional feature) are better cap-
tured by language model instead of task-
specified model on sentiment analysis.
• Multilingual evidence indicates that the model

are sensitive to the syntactic complexity of
the language. It would also be a promising
direction to incorporate the factor of language
typological diversity when designing advanced
general sequential model for languages other
than English.
• Word-level feature detector can emerge from a

pure character-based model, due to the utility
of character composition.

Acknowledgments

We would like to thank the anonymous reviewers for
their valuable comments. This work was partially
funded by National Natural Science Foundation of
China (No. 61532011 and 61672162), the National
High Technology Research and Development Pro-
gram of China (No. 2015AA015408).

References
Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. 2013.

Polyglot: Distributed word representations for multi-
lingual nlp. In Proceedings of the Seventeenth Confer-
ence on Computational Natural Language Learning,

pages 183–192, Sofia, Bulgaria, August. Association
for Computational Linguistics.

Samuel R. Bowman, Christopher D. Manning, and
Christopher Potts. 2015. Tree-structured com-
position in neural networks without tree-structured
architectures. Proceedings of the NIPS Workshop
on Cognitive Computation: Integrating Neural and
Symbolic Approaches.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Tolga Cukur, Shinji Nishimoto, Alexander G Huth, and
Jack L Gallant. 2013. Attention during natural vision
warps semantic representation across the human brain.
Nature Neuroscience, 16(6):763–70.

Manaal Faruqui and Chris Dyer. 2015. Non-
distributional word vector representations. arXiv
preprint arXiv:1506.05230.

M. Hermans and B. Schrauwen. 2013. Training and
analysing deep recurrent neural networks. Advances
in Neural Information Processing Systems, pages 190–
198.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Alexander G. Huth, Wendy A. De Heer, Thomas L.
Griffiths, Frdric E. Theunissen, and Jack L. Gallant.
2016. Natural speech reveals the semantic maps that
tile human cerebral cortex. Nature.

Maria Jesus Aranzabe Masayuki Asahara Aitziber Atutx-
a Miguel Ballesteros John Bauer Kepa Bengoetx-
ea Riyaz Ahmad Bhat Cristina Bosco Sam Bow-
man Giuseppe G. A. Celano Miriam Connor Marie-
Catherine de Marneffe Arantza Diaz de Ilarraza Kaja
Dobrovoljc Timothy Dozat Tomaž Erjavec Richárd
Farkas Jennifer Foster Daniel Galbraith Filip Ginter
Iakes Goenaga Koldo Gojenola Yoav Goldberg Berta
Gonzales Bruno Guillaume Jan Hajič Dag Haug Radu
Ion Elena Irimia Anders Johannsen Hiroshi Kanayama
Jenna Kanerva Simon Krek Veronika Laippala A-
lessandro Lenci Nikola Ljubešić Teresa Lynn Christo-
pher Manning Ctlina Mrnduc David Mareček Héctor
Martı́nez Alonso Jan Mašek Yuji Matsumoto Ryan
McDonald Anna Missilä Verginica Mititelu Yusuke
Miyao Simonetta Montemagni Shunsuke Mori Hanna
Nurmi Petya Osenova Lilja Øvrelid Elena Pascual
Marco Passarotti Cenel-Augusto Perez Slav Petrov
Jussi Piitulainen Barbara Plank Martin Popel Prokopis
Prokopidis Sampo Pyysalo Loganathan Ramasamy
Rudolf Rosa Shadi Saleh Sebastian Schuster Wolfgang
Seeker Mojgan Seraji Natalia Silveira Maria Simi
Radu Simionescu Katalin Simkó Kiril Simov Aaron

834

Smith Jan Štěpánek Alane Suhr Zsolt Szántó Takaaki
Tanaka Reut Tsarfaty Sumire Uematsu Larraitz Uria
Viktor Varga Veronika Vincze Zdeněk Žabokrtský
Daniel Zeman Joakim Nivre, Željko Agić and Hanzhi
Zhu. 2015. Universal dependencies 1.2. In LIN-
DAT/CLARIN digital library at Institute of Formal and
Applied Linguistics, Charles University in Prague.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

Arne Köhn. 2015. Whats in an embedding? analyzing
word embeddings through multilingual evaluation.

Christopher Manning Kristina Toutanova, Dan Klein and
Yoram Singer. 2003. Part-of-speech tagging with a
cyclic dependency network. In Proceedings of HLT-
NAACL.

Jiwei Li, Minh Thang Luong, Jurafsky Dan, and Eudard
Hovy. 2015. When are tree structures necessary for
deep learning of representations? Proceedings of
EMNLP.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models in
nlp. In Proceedings of NAACL.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In INTER-
SPEECH, pages 1045–1048.

Tom M Mitchell, Svetlana V Shinkareva, Andrew Carl-
son, Kai-Min Chang, Vicente L Malave, Robert A
Mason, and Marcel Adam Just. 2008. Predicting
human brain activity associated with the meanings of
nouns. Science, 320(5880):1191–1195.

Peng Qian, Xipeng Qiu, and Xuanjing Huang. 2016. In-
vestigating language universal and specific properties
in word embeddings. In Proceedings of ACL.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomáš Kočiskỳ, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
arXiv preprint arXiv:1509.06664.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher Manning, and Andrew Ng andmChristo-
pher Potts. 2013a. Parsing with compositional vector
grammars. In EMNLP.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng, and
Christopher Potts. 2013b. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the EMNLP.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar
as a foreign language. In Advances in Neural
Information Processing Systems, pages 2755–2763.

Dani Yogatama, Manaal Faruqui, Chris Dyer, and
Noah A Smith. 2014. Learning word representations
with hierarchical sparse coding. arXiv preprint
arXiv:1406.2035.

Jie Zhou and Wei Xu. 2015. End-to-end learning of
semantic role labeling using recurrent neural networks.
In Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics.

835

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 836–845,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Keyphrase Extraction Using Deep Recurrent Neural Networks on Twitter

Qi Zhang, Yang Wang, Yeyun Gong, Xuanjing Huang
Shanghai Key Laboratory of Data Science

School of Computer Science, Fudan University
Shanghai, P.R. China

{qz, ywang14, yygong12, xjhuang}@fudan.edu.cn

Abstract

Keyphrases can provide highly condensed
and valuable information that allows users to
quickly acquire the main ideas. The task of
automatically extracting them have received
considerable attention in recent decades.
Different from previous studies, which are
usually focused on automatically extracting
keyphrases from documents or articles, in
this study, we considered the problem of
automatically extracting keyphrases from
tweets. Because of the length limitations
of Twitter-like sites, the performances of
existing methods usually drop sharply. We
proposed a novel deep recurrent neural
network (RNN) model to combine keywords
and context information to perform this
problem. To evaluate the proposed method,
we also constructed a large-scale dataset
collected from Twitter. The experimental
results showed that the proposed method
performs significantly better than previous
methods.

1 Introduction

Keyphrases are usually the selected phrases that can
capture the main topics described in a given docu-
ment (Turney, 2000). They can provide users with
highly condensed and valuable information, and
there are a wide variety of sources for keyphrases,
including web pages, research articles, books, and
even movies. In contrast to keywords, keyphrases
usually contain two or more words. Normally, the
meaning representations of these phrases are more
precise than those of single words. Moreover, along

with the increasing development of the internet,
this kind of summarization has received continuous
consideration in recent years from both the academic
and entiprise communities (Witten et al., 1999; Wan
and Xiao, 2008; Jiang et al., 2009; Zhao et al., 2011;
Tuarob et al., 2015).

Because of the enormous usefulness of
keyphrases, various studies have been conducted on
the automatic extraction of keyphrases using
different methods, including rich linguistic
features (Barker and Cornacchia, 2000; Paukkeri
et al., 2008), supervised classification-based
methods (Witten et al., 1999; Wu et al., 2005;
Wang et al., 2006), ranking-based methods (Jiang
et al., 2009), and clustering-based methods (Mori
et al., 2007; Danilevsky et al., 2014). These
methods usually focus on extracting keyphrases
from a single document or multiple documents.
Typically, a large number of words exist in even a
document of moderate length, where a few hundred
words or more is common. Hence, statistical and
linguistic features can be considered to determine
the importance of phrases.

In addition to the previously mentioned methods,
a few researchers have studied the problem of
extracting keyphrases from collections of tweets
(Zhao et al., 2011; Bellaachia and Al-Dhelaan,
2012). In contrast to traditional web applications,
Twitter-like services usually limit the content length
to 140 characters. In (Zhao et al., 2011), the context-
sensitive topical PageRank method was proposed
to extract keyphrases by topic from a collection
of tweets. NE-Rank was also proposed to rank
keywords for the purpose of extracting topical

836

keyphrases (Bellaachia and Al-Dhelaan, 2012). Be-
cause multiple tweets are usually organized by
topic, many document-level approaches can also
be adopted to achieve the task. In contrast with
the previous methods, Marujo et al. (2015) focused
on the task of extracting keywords from single
tweets. They used several unsupervised methods and
word embeddings to construct features. However,
the proposed method worked on the word level.

In this study, we investigated the problem of
automatically extracting keyphrases from single
tweets. Compared to the problem of identifying
keyphrases from documents containing hundreds of
words, the problem of extracting keyphrases from a
single short text is generally more difficult. Many
linguistic and statistical features (e.g., the number
of word occurrences) cannot be determined and
used. Moreover, the standard steps of keyphrase
extraction usually include keyword ranking, candi-
date keyphrase generation, and keyphrase ranking.
Previous works usually used separate methods to
handle these steps. Hence, the error of each step
is propagated, which may highly impact the final
performance. Another challenge of keyphrase ex-
traction on Twitter is the lack of training and eval-
uation data. Manual labelling is a time-consuming
procedure. The labelling consistency of different
labellers cannot be easily controlled.

To meet these challenges, in this paper, we
propose a novel deep recurrent neural network
(RNN) model for the joint processing of the key-
word ranking, keyphrase generation, and keyphrase
ranking steps. The proposed RNN model contains
two hidden layers. In the first hidden layer, we
capture the keyword information. Then, in the
second hidden layer, we extract the keyphrases
based on the keyword information using a sequence
labelling method. In order to train and evaluate the
proposed method, we also proposed a novel method
to construct a dataset that contained a large number
of tweets with golden standard keyphrases. The
proposed dataset construction method was based on
the hashtag definitions in Twitter and how these
were used in specific tweets.

The main contributions of this work can be
summarized as follows:

• We proposed a two-hidden-layer RNN-based

method to jointly model the keyword ranking,
keyphrase generation, and keyphrase ranking
steps.

• To train and evaluate the proposed method, we
proposed a novel method for constructing a
large dataset, which consisted of more than one
million words.

• Experimental results demonstrated that the pro-
posed method could achieve better results than
the current state-of-the-art methods for these
tasks.

2 Proposed Methods

In this paper, we will first describe the deep recur-
rent neural network (RNN). Then, we will discuss
the proposed joint-layer recurrent neural network
model, which jointly processes the keyword ranking,
keyphrase generation, and keyphrase ranking.

2.1 Deep Recurrent Neural Networks

One way to capture the contextual information of
a word sequence is to concatenate neighboring
features as input features for a deep neural net-
work. However, the number of parameters rapidly
increases according to the input dimension. Hence,
the size of the concatenating window is limited.
A recurrent neural network (RNN) can be con-
sidered to be a deep neural network (DNN) with
an indefinite number of layers, which introduces
the memory from previous time steps. A potential
weakness of a RNN is its lack of hierarchical
processing for the input at the current time step.
To further provide hierarchical information through
multiple time scales, deep recurrent neural networks
(DRNNs) are explored (Hermans and Schrauwen,
2013). Fig. 1 (a) shows an L intermediate layer
DRNN with full temporal connections (called a
stacked RNN (sRNN) in (Pascanu et al., 2013)).

2.2 Joint-layer Recurrent Neural Networks

The proposed joint-layer recurrent neural network
(joint-layer RNN) is a variant of an sRNN with two
hidden layers. The joint-layer RNN has two output
layers, which are combined into a objective layer.
Suppose there is an L intermediate layer sRNN that
has an output layer for each hidden layer. The l-th

837

(a) (b)

Figure 1: Deep recurrent neural network (DRNN) architectures: arrows represent connection matrices; white, black, and grey circles

represent input frames, hidden states, and output frames, respectively; (a): L intermediate layer DRNN with recurrent connections

at all levels (called stacked RNN); (b): joint-layer RNN folded out in time. Each hidden layer can be interpreted to be an RNN that

receives the time series of the previous layer as input, where the hidden layer transforms into an output layer. Two output layers are

combined via linear superposition into the objective function.

hidden activation is defined as:

hl
t = fh(hl−1

t ,hl
t−1)

= φl(U
lhl

t−1 + Wlhl−1
t), (1)

where hl
t is the hidden state of the l-th layer at

time t. Ul and Wl are the weight matrices for
the hidden activation at time t − 1 and the lower
level activation hl−1

t , respectively. When l = 1,
the hidden activation is computed using h0

t = xt.
φl is an element-wise non-linear function, such as
the sigmoid function. The l-th output activation is
defined as:

ŷl
t = fo(h

l
t)

= ϕl(V
lhl

t), (2)

where Vl is the weight matrix for the l-th hidden
layer hl

t. ϕl is also an element-wise non-linear
function, such as the softmax function.

A joint-layer recurrent neural network is an
extension of a stacked RNN with two hidden layers.
At time t, the training input, xt, of the network is
the concatenation of features from a mixture within
a window. We use word embedding as a feature in
this paper. The output targets, y1

t and y2
t , and output

predictions, ŷ1
t and ŷ2

t , of the network indicate
whether the current word is a keyword and part of a
keyphrase, respectively. ŷ1

t just has two values True
and False indicating whether the current word is
keyword. ŷ2

t has 5 values Single, Begin, Middle,
End and Not indicating the current word is a single
keyword, the beginning of a keyphrase, the middle
(neither beginning nor ending) of a keyphrase, the
ending of a keyphrase or not a part of a keyphrase.

Since our goal is to extract a keyphrase from a
word sequence, we adopt a framework to simul-
taneously model keyword finding and keyphrase
extraction. Figure 1 (b) shows the architecture of our
model. The hidden layer formulation is defined as:

h1
t = fh(xt,h

1
t−1) (3)

h2
t = fh(h1

t ,h
2
t−1). (4)

The output layer formulation is defined as:

ŷ1
t = fo(h

1
t) (5)

ŷ2
t = fo(h

2
t). (6)

838

2.3 Training
In this work, we joined learning the parameters θ in
the deep neural network.

θ = {X,W1,W2,U1,U2,V1,V2},

where X are the words embeddings, the other
parameters are defined before. Once give a la-
beled sentence we can know both the keyword and
keyphrase (keyphrase is made of keywords). At the
first output layer we use our model to discriminate
keyword and at the second output layer we use
our model to discriminate keyphrase. Then we
combine these two sub-objective which at different
discrimination level into the final objective. The final
objection is defined as:

J(θ) = αJ1(θ) + (1− α)J2(θ), (7)

where α is linear weighted factor. Given N training

sequences D =
{(

xt,y
1
t ,y

2
t

)Tn

t=1

}N

n=1
, the sub-

objective formulation is defined as:

J1(θ) =
1

N

N∑

n=1

Tn∑

t=1

d(ŷ1
t ,y

1
t) (8)

J2(θ) =
1

N

N∑

n=1

Tn∑

t=1

d(ŷ2
t ,y

2
t), (9)

where d(a,b) is a predefined divergence measure
between a and b, such as Euclidean distance or
cross-entropy.

Eq. (8) and Eq. (9) show that we discover keyword
and extract keyphrase at different level simulta-
neously. The experimental results will show that
combination of different granularity discrimination
can significantly improve the performance.

To minimize the objective function, we optimize
our models by back-propagating the gradients with
respect to the training objectives. The stochastic
gradient descent (SGD) algorithm is used to train the
models. The update rule for the i-th parameter θi at
epoch e is as follows:

θe,i = θe−1,i − λge,i, (10)

where the λ is a global learning rate shared by all
dimensions. ge is the gradient of the parameters at
the e-th iteration. We select the best model according
to the validation set.

#tweets W T N̄w N̄t

41,644,403 147,377 112,515 13.22 1.0

Table 1: Statistical information of dataset. W , T , N̄w, and N̄t

are the vocabulary of words, number of tweets with hashtags,

average number of words in each tweet, and average number of

hashtags in each tweet, respectively.

3 Experiments

3.1 Data Construction

To analyze the effectiveness of our model for
keyphrase extraction on Twitter, we constructed an
evaluation dataset. We crawled a large number of
tweets. Generally, for each user, we gathered about
3K tweets, with a final total of more than 41 million
tweets.

From analyzing these tweets, we found that
some of the hashtags can be considered as the
keyphrases of the tweet. For example: “The Warriors
take Game 1 of the #NBAFinals 104-89 behind
a playoff career-high 20 from Shaun Livingston.”.
“NBA Finals” can be considered as the keyphrase
of the twitter. Based on this intuition, to construct
the dataset, we firstly filtered out all non-Latin
tweets using regular expressions. Then, we removed
any URL links from the tweets since we were
focusing on the textual content. Tweets that start
with the “@username” are generally considered
replies and have a conversational nature more than
topical nature. Therefore, we also removed any
tweets that start with “@username” to focus on
topical tweets only. Moreover, we designed some
rules about the hashtags in tweets to filter the
remaining tweets. First, one tweet could have only
one hashtag. Second, the position of the hashtag had
to be inside the tweet because we needed the hashtag
and tweet to be semantically inseparable. When a
hashtag appears inside a tweet, it is most likely to
be an inseparable semantical part of the tweet and
has important meaning. Therefore, we regarded this
hashtag as a keyphrase of the tweet.

Each hashtag was split into keywords if it en-
compassed more than one word, for example “Old-
StockCanadians” for “Old Stock Canadians”. After
an effort to filter the tweets we finally had 110K
tweets with the hashtags which could meet our

839

Algorithm 1 Twitter Dataset Construction
Require: Tweets list tList
Ensure: Filtered Tweets and hashtags

1: resultList← ∅
2: while t in tList do
3: if t not contains latin letters then
4: continue
5: end if
6: if t starts with “@username” then
7: continue
8: end if
9: removed any URL links from t

10: if t not exactly contains one hashtag then
11: continue
12: end if
13: get hashtag from t
14: split hashtag into keywords
15: resultList.append((t, hashtag))
16: end while
17: return resultList

needs. The pseudocode is defined in Alg. 1. The
statistical information of the dataset can be seen
in Table 1. To evaluate the quality of the tweets
in our dataset, we randomly selected 1000 tweets
from our dataset and chose three volunteers. Every
tweet was assigned a score of 2 (perfectly suitable),
1 (suitable), or 0 (unsuitable) to indicate whether the
hashtag of the tweet was a good keyphrase for it.
The results showed that 90.2% were suitable and
66.1% were perfectly suitable. This demonstrated
that our constructed dataset was good for keyphrase
extraction on Twitter.

3.2 Experiment Configurations

To perform an experiment on extracting keyphrases,
we used 70% as a training set, 10% as a development
set, and 20% as a testing set. For evaluation metrics,
we used the precision (P), recall (R), and F1-score
(F1) to evaluate the performance. The precision was
calculated based on the percentage of keyphrases
truly identified among the keyphrases labeled by
the system. Recall was calculated based on the
keyphrases truly identified among the golden stan-
dard keyphrases.

In the experiments, we use word embeddings as
input to the neural network. The word embeddings

we used in this work were pre-trained vectors trained
on part of a Google News dataset (about 100 billion
words). A skip-gram model (Mikolov et al., 2013)
was used to generate these 300-dimensional vectors
for 3 million words and phrases. We used the word
embeddings to initialize our word weight matrix.
The matrix was updated in the training process.

The default parameters of our model are as
follows: The window size is 3, number of neurons
in the hidden layer is 300, and α is 0.5, which were
chosen based on the performance using the valid set.

3.3 Methods for Comparison

Several algorithms were implemented and used to
evaluate the validity of the proposed approach.
Among these algorithms, CRF, RNN, LSTM, and
R-CRF treat the keyphrase extraction task as a
sequence labelling task. Automatic keyword ex-
traction on Twitter (AKET) uses an unsupervised
method to extract keywords on Twitter.

• CRF: The keyphrase extraction task can be
formalized as a sequence labeling task that
involves the algorithmic assignment of a cat-
egorical label to each word of a tweet. CRF is a
type of discriminative undirected probabilistic
graphical model and can process a sequence
labeling task. Hence, we applied CRF to extract
keyphrases on Twitter.

• RNN: A recurrent neural network (RNN) is a
type of artificial neural network where the con-
nections between units form a directed cycle.
This creates an internal state of the network
that allows it to exhibit dynamic temporal
behavior. In an RNN model, word embedding
is introduced to represent the semantics of
words.

• LSTM: Long short-term memory (LSTM) is
a recurrent neural network (RNN) architecture.
Unlike traditional RNNs, an LSTM network is
well-suited to learn from experience to classify,
process, and predict time series when there are
very long time lags of unknown size between
important events.

• R-CRF: A recurrent conditional random field
(R-CRF)(Yao et al., 2014) is a mixture model

840

P R F1

CRF 72.37% 71.82% 72.09%

RNN 78.65% 70.08% 74.14%

LSTM 77.52% 71.19% 74.22%

R-CRF 79.29% 73.15% 76.10%

AKET 11.00% 46.10% 17.80%

Joint-layer RNN 80.74% 81.19% 80.97%
Table 2: Keyphrase Extraction on Twitter

combining an RNN and a CRF. This model has
the advantages of both the CRF and RNN. The
previous work showed that the performance of
R-CRF can be significantly improved.

• AKET (Automatic Keyword Extraction on
Twitter) (Marujo et al., 2015): Several unsuper-
vised methods and word embeddings were used
to construct features to obtain keyword.

3.4 Experiment Results
Table 2 shows the performances of different meth-
ods on the dataset for keyphrase extraction. From
the results, we observe that the joint-layer RNN
achieved a better performance than the state-of-the-
art methods. The relative improvement in the F-
score of the joint-layer RNN over the second best
result was 6.1%. AKET performed the worst. This
was because AKET worked on the word level. Of the
other methods, CRF performed the worst, RNN and
LSTM were almost the same but better than CRF,
and R-CRF was the best of these methods, with the
exception of our joint-layer RNN. The results can be
explained by the word embedding and long short-
term memory cell providing some benefits. The best
result was found with our joint-layer RNN. This
indicated that the joint processing of the keyword
finding and keyphrase extraction worked well and
could to some degree demonstrate the effectiveness
of our model in keyphrase extraction on Twitter.

To further analyze the keyword extraction results
on Twitter, we compared AKET and our method.
In Table 3, we can see that except for the recall,
AKET is a little better than our method, but our
method performed significantly better than AKET
in the precision and F-score. This indicates that our

P R F1

AKET 20.68% 87.56% 33.46%

Joint-layer RNN 87.45% 85.38% 86.40%
Table 3: Keyword Extraction on Twitter

model indeed has better performance in keyword
finding.

In summary, the experimental results conclusively
demonstrated that the proposed joint-layer RNN
method is superior to the state-of-the-art methods
when measured using commonly accepted perfor-
mance metrics on Twitter.

To analysis the sensitivity of the hyper-parameters
of the joint-layer RNN, we conducted several empir-
ical experiments on the dataset.

Fig.2(a) shows the performances of the joint-
layer RNN with different numbers of neurons in the
hidden layers. To simplify, we made hidden layer
1 and hidden layer 2 have the same number of
neurons. In the figure, the x-axis denotes the number
of neurons, and the y-axis denotes the precision,
recall, and F-score. The data used for constructing
the test set were the same as we used in the previous
section. From the figure, we can observe that the
number of neurons in the hidden layers do not highly
affect the final performance. Three performance
indicators of the joint-layer RNN change stably with
different numbers of neurons.

Fig.2(b) shows the performances of the joint-layer
RNN with different window sizes. In the figure, the
x-axis denotes the different window size, and the y-
axis denotes the precision, recall, and F-score. From
the figure, we observe that when the window size
is one, the three performance indicators of joint-
layer RNN perform badly. Then, as the window size
increases, the three performance indicators change
stably. The main reason may possibly be that when
the window size is one, the model just uses the
current word information. When the window size
increases, the model uses the context information
of the current word but the most important context
information is nearby the current word.

Fig.2(c) shows the performances of the joint-layer
RNN with different α values. In the figure, the x-
axis denotes the value of α used for training, and
the y-axis denotes the precision, recall, and F-score.

841

Precision
Recall
F1-score

60

65

70

75

80

85

90

of Neurons
50 100 150 200 250 300 350 400

Precision
Recall
F1-score

60

65

70

75

80

85

90

Window Size
1 3 5 7 9

Precision
Recall
F1-score

60

65

70

75

80

85

90

Alpha
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) (b) (c)

Figure 2: (a): Performance with varying number of neurons in the hidden layer; (b): Performance with varying window size; (c):

Performance with varying α.

P R F1

WEU 80.74% 81.19% 80.97%

WENU 74.10% 69.30% 71.62%

REU 79.01% 79.75% 79.38%

RENU 78.16% 64.55% 70.70%
Table 4: Effects of embedding on performance. WEU, WENU,

REU and RENU represent word embedding update, word

embedding without update, random embedding update and

random embedding without update respectively.

We can see that the best performance is obtained
when α is around 0.5. This indicates that our model
emphasizes the combination of keyword finding and
keyphrase extraction.

Table 4 lists the effects of word embedding. We
can see that the performance when updating the
word embedding is better than when not updating,
and the performance of word embedding is a little
better than random word embedding. The main
reason is that the vocabulary size is 147,377, but the
number of words from tweets that exist in the word
embedding trained on the Google News dataset is
just 35,133. This means that 76.2% of the words are
missing. This also confirms that the proposed joint-
layer RNN is more suitable for keyphrase extraction
on Twitter.

Fig.3(a) shows the performances of the joint-layer
RNN with different percentages of training data.
In the figure, the x-axis denotes the percentages
of data used for training, and the y-axis denotes
the precision, recall, and F-score. From the figure,

we observe that as the amount of training data
increases, the three performance indicators of the
joint-layer RNN consequently improve. When the
percentage of training data is greater than 60% of
the whole dataset, the performance indicators slowly
increase. The main reason may possibly be that the
number concepts included in these data sets are
small. However, on the other hand, we can say that
the proposed joint-layer RNN method can achieve
acceptable results with a few ground truths. Hence,
it can be easily adopted for other data sets.

Since the keyphrase extraction training process
is solved using an iterative procedure, we also
evaluated its convergence property. Fig.3 (b) shows
the precision, recall, and F-score performances of
the joint-layer RNN. In the figure, the x-axis denotes
the number of epochs for optimizing the model,
and the y-axis denotes the precision, recall, and F-
score. From the figure, we observe that the joint-
layer RNN can coverage with less than six iterations.
This means that the joint-layer RNN can achieve a
stable and superior performance under a wide range
of parameter values.

4 Related Work

In general, keyphrase extraction methods can be
roughly divided into two groups: supervised ma-
chine learning approaches and unsupervised ranking
approaches.

In the supervised line of research, keyphrase
extraction is treated as a classification problem,
in which a candidate must be classified as either
a keyphrase (i.e., keyphrases) or not (i.e., non-

842

Precision
Recall
F1-score

60

65

70

75

80

85

90

Percents of Training Data
20% 40% 60% 80% 100%

Precision
Recall
F1-score

60

65

70

75

80

85

90

Number of Epochs
1 2 3 4 5 6 7 8 9 10

(a) (b)

Figure 3: (a): Effects of train size on performance; (b): Effects

of the number of epochs on performance.

keyphrases). A classifier needs to be trained using
annotated training data. The trained model is then
applied to documents for which keyphrases are
to be identified. For example (Frank et al., 1999)
developed a system called KEA that used two
features: tf-idf and first occurrence of the term and
used them as input to Naive Bayes (Hulth, 2003)
used linguistic knowledge (i.e., part-of-speech tags)
to determine candidate sets: potential pos-patterns
were used to identify candidate phrases from the
text. Tang et al. (2004) applied Bayesian decision
theory for keyword extraction. Medelyan and Witten
extended the KEA to KEA++, which uses semantic
information on terms and phrases extracted from a
domain specific thesaurus, thus enhances automatic
keyphrase extraction (Medelyan and Witten, 2006).

In the unsupervised line of research, keyphrase
extraction is formulated as a ranking problem. A
well-known approach is the Term Frequency In-
verse Document Frequency (TF-IDF) (Sparck Jones,
1972; Zhang et al., 2007; Lee and Kim, 2008).
Measures like term frequencies (Wu and Giles,
2013; Rennie and Jaakkola, 2005; Kireyev, 2009),
inverse document frequencies, topic proportions,
etc. and knowledge of specific domain are applied
to rank terms in documents which are aggregated to
score the phrases. The ranking based on tf-idf has
been shown to work well in practice (Hasan and Ng,
2010). Mihalcea et al. proposed the TextRank, which
constructs keyphrases using the PageRank values
obtained on a graph based ranking model for graphs
extracted from texts (Mihalcea and Tarau, 2004). Liu
et al. proposed to extract keyphrases by adopting
a clustering-based approach, which ensures that
the document is semantically covered by these
keyphrases (Liu et al., 2009). Ali Mehri et al. put

forward a method for ranking the words in texts,
which can also be used to classify the correlation
range between word-type occurrences in a text,
by using non-extensive statistical mechanics (Mehri
and Darooneh, 2011).

Recurrent neural networks(RNNs) (Elman, 1990)
has been applied to many sequential prediction
tasks, which is an important class of naturally deep
architecture. In NLP, RNNs deal with a sentence
as a sequence of tokens and have been successfully
applied to various tasks like spoken language under-
standing (Mesnil et al., 2013) and language model-
ing (Mikolov et al., 2011). Classical recurrent neural
networks incorporate information from preceding,
there are kinds of variants, bidirectional RNNs are
also useful for NLP tasks, especially when making a
decision on the current token, information provided
by the following tokens is generally useful.

5 Conclusion

In this work, we proposed a novel deep recurrent
neural network (RNN) model to combine keywords
and context information to perform the keyphrase
extraction task. The proposed model can jointly
process the keyword ranking and keyphrase gener-
ation task. It has two hidden layers to discriminate
keywords and classify keyphrases, and these two
sub-objectives are combined into a final objective
function. We evaluated the proposed method on a
dataset filtered from ten million crawled tweets. The
proposed method can achieve better results than
the state-of-the-art methods. The experimental re-
sults demonstrated the effectiveness of the proposed
method for keyphrase extraction on single tweets.

6 Acknowledgement

The authors wish to thank the anonymous reviewers
for their helpful comments. This work was partially
funded by National Natural Science Foundation of
China (No. 61532011, 61473092, and 61472088),
the National High Technology Research and Devel-
opment Program of China (No. 2015AA015408).

References
Ken Barker and Nadia Cornacchia. 2000. Using noun

phrase heads to extract document keyphrases. In
Advances in Artificial Intelligence.

843

Abdelghani Bellaachia and Mohammed Al-Dhelaan.
2012. Ne-rank: A novel graph-based keyphrase
extraction in twitter. In Proceedings of IEEE CS.

Marina Danilevsky, Chi Wang, Nihit Desai, Xiang Ren,
Jingyi Guo, and Jiawei Han. 2014. Automatic
construction and ranking of topical keyphrases on
collections of short documents. In Proceedings of
SDM.

Jeffrey L Elman. 1990. Finding structure in time.
Cognitive science.

Eibe Frank, Gordon W Paynter, Ian H Witten, Carl
Gutwin, and Craig G Nevill-Manning. 1999. Domain-
specific keyphrase extraction.

Kazi Saidul Hasan and Vincent Ng. 2010. Conundrums
in unsupervised keyphrase extraction: making sense of
the state-of-the-art. In Proceedings of COLING.

Michiel Hermans and Benjamin Schrauwen. 2013.
Training and analysing deep recurrent neural net-
works. In Proceedings of NIPS.

Anette Hulth. 2003. Improved automatic keyword
extraction given more linguistic knowledge. In
Proceedings of EMNLP.

Xin Jiang, Yunhua Hu, and Hang Li. 2009. A ranking
approach to keyphrase extraction. In Proceedings of
SIGIR.

Kirill Kireyev. 2009. Semantic-based estimation of term
informativeness. In Proceedings of NAACL.

Sungjick Lee and Han-joon Kim. 2008. News keyword
extraction for topic tracking. In Proceedings of NCM.

Zhiyuan Liu, Peng Li, Yabin Zheng, and Maosong Sun.
2009. Clustering to find exemplar terms for keyphrase
extraction. In Proceedings of EMNLP.

Luis Marujo, Wang Ling, Isabel Trancoso, Chris Dyer,
Alan W Black, Anatole Gershman, David Martins de
Matos, João Neto, and Jaime Carbonell. 2015. Auto-
matic keyword extraction on twitter. In Proceedings
of ACL.

Olena Medelyan and Ian H Witten. 2006. Thesaurus
based automatic keyphrase indexing. In Proceedings
of JCDL.

Ali Mehri and Amir H Darooneh. 2011. Keyword
extraction by nonextensivity measure. Physical
Review E.

Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua
Bengio. 2013. Investigation of recurrent-neural-
network architectures and learning methods for spoken
language understanding. In Proceedings of INTER-
SPEECH.

Rada Mihalcea and Paul Tarau. 2004. Textrank:
Bringing order into texts. In Proceedings of ACL.

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget,
Jan Honza Černockỳ, and Sanjeev Khudanpur. 2011.
Extensions of recurrent neural network language
model. In Proceedings of ICASSP.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
Proceedings of NIPS.

Junichiro Mori, Mitsuru Ishizuka, and Yutaka Matsuo.
2007. Extracting keyphrases to represent relations in
social networks from web. In Proceedings of IJCAI.

Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and
Yoshua Bengio. 2013. How to construct deep
recurrent neural networks. arXiv.

Mari-Sanna Paukkeri, Ilari T Nieminen, Matti Pöllä,
and Timo Honkela. 2008. A language-independent
approach to keyphrase extraction and evaluation. In
Proceedings of COLING.

Jason DM Rennie and Tommi Jaakkola. 2005. Using
term informativeness for named entity detection. In
Proceedings of SIGIR.

Karen Sparck Jones. 1972. A statistical interpretation of
term specificity and its application in retrieval. JDoc.

Jie Tang, Juan-Zi Li, Ke-Hong Wang, and Yue-Ru Cai.
2004. Loss minimization based keyword distillation.
In Advanced Web Technologies and Applications.

Suppawong Tuarob, Wanghuan Chu, Dong Chen, and
Conrad S Tucker. 2015. Twittdict: Extracting social
oriented keyphrase semantics from twitter. IJCNLP.

Peter D Turney. 2000. Learning algorithms for
keyphrase extraction. Information Retrieval.

Xiaojun Wan and Jianguo Xiao. 2008. Single document
keyphrase extraction using neighborhood knowledge.
In Proceedings of AAAI.

Jiabing Wang, Hong Peng, and Jing-song Hu. 2006.
Automatic keyphrases extraction from document using
neural network. In Advances in Machine Learning and
Cybernetics.

Ian H Witten, Gordon W Paynter, Eibe Frank, Carl
Gutwin, and Craig G Nevill-Manning. 1999.
Kea: Practical automatic keyphrase extraction. In
Proceedings of DL.

Zhaohui Wu and C Lee Giles. 2013. Measuring term
informativeness in context. In Proceedings of NAACL.

Yi-fang Brook Wu, Quanzhi Li, Razvan Stefan Bot,
and Xin Chen. 2005. Domain-specific keyphrase
extraction. In Proceedings of CIKM.

Kaisheng Yao, Baolin Peng, Geoffrey Zweig, Dong Yu,
Xiaolong Li, and Feng Gao. 2014. Recurrent
conditional random field for language understanding.
In Proceedings of ICASSP.

Yongzheng Zhang, Evangelos Milios, and Nur Zincir-
Heywood. 2007. A comparative study on key
phrase extraction methods in automatic web site
summarization. JDIM.

Wayne Xin Zhao, Jing Jiang, Jing He, Yang Song,
Palakorn Achananuparp, Ee-Peng Lim, and Xiaoming

844

Li. 2011. Topical keyphrase extraction from twitter.
In Proceedings of ACL.

845

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 846–855,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Solving and Generating Chinese Character Riddles

Chuanqi Tan† ∗ Furu Wei‡ Li Dong+ Weifeng Lv† Ming Zhou‡
†State Key Laboratory of Software Development Environment, Beihang University, China

‡Microsoft Research Asia +University of Edinburgh
†tanchuanqi@nlsde.buaa.edu.cn +li.dong@ed.ac.uk
‡{fuwei, mingzhou}@microsoft.com †lwf@buaa.edu.cn

Abstract

Chinese character riddle is a riddle game in
which the riddle solution is a single Chi-
nese character. It is closely connected with
the shape, pronunciation or meaning of Chi-
nese characters. The riddle description (sen-
tence) is usually composed of phrases with
rich linguistic phenomena (such as pun, sim-
ile, and metaphor), which are associated to
different parts (namely radicals) of the so-
lution character. In this paper, we propose
a statistical framework to solve and generate
Chinese character riddles. Specifically, we
learn the alignments and rules to identify the
metaphors between phrases in riddles and rad-
icals in characters. Then, in the solving phase,
we utilize a dynamic programming method
to combine the identified metaphors to obtain
candidate solutions. In the riddle generation
phase, we use a template-based method and
a replacement-based method to obtain candi-
date riddle descriptions. We then use Rank-
ing SVM to rerank the candidates both in the
solving and generation process. Experimental
results in the solving task show that the pro-
posed method outperforms baseline methods.
We also get very promising results in the gen-
eration task according to human judges.

1 Introduction

The riddle is regarded as one of the most unique
and vital elements in traditional Chinese culture,
which is usually composed of a riddle description

∗The work was done when the first author and the third
author were interns at Microsoft Research Asia.

and a corresponding solution. The character rid-
dle is one of the most popular forms of various rid-
dles in which the riddle solution is a single Chinese
character. While English words are strings of let-
ters together, Chinese characters are composed of
radicals that associate with meaning or metaphor.
In other words, Chinese characters are usually posi-
tioned into some common structures, such as upper-
lower structure, left-right structure, inside-outside
structure, which means they can be decomposed
into other characters or radicals. For example, “好”
(good), a character with left-right structure, can be
decomposed into “女” (daughter) and “子” (son). As
illustrated in Figure 1(a), the left part of “好” is “女”
and the right part is “子”. “女” and “子” are called
the “radical” of “好”. Figure 1(b) is another exam-
ple of the character “思” (miss) with an upper-lower
structure.

好

女 子

good

daughter son

(a) Left-Right Structure

思
田

心

field

miss

heart

(b) Upper-Lower Structure

Figure 1: Examples of the structure of Chinese characters

One of the most important characteristics of char-
acter riddle lies in the structure of Chinese charac-
ters. Unlike the common riddles which imply the
object in the riddle descriptions, character riddles
pay more attention to structures such as combination
of radicals and decomposition of characters. Ac-
cording to these characteristics, metaphors in the

846

千 里 会 千 金
thousand kilometer meet thousand gold

马 女

妈

horse daughter

mother

Figure 2: An example of Chinese character riddle: The solution

“妈” is composed of the radical “女” derived from “千金” and

“马” derived from “千里”.

riddles always imply the radicals of characters.
We show an example of a Chinese character rid-

dle in Figure 2. The riddle description is “千里会
千金” and the riddle solution is “妈”. In this exam-
ple, “千 里” (thousand kilometer) aligns with “马”
(horse) because in Chinese culture it is said that a
good horse can run thousands of kilometers per day.
Furthermore, “千 金” (thousand gold) aligns with
“女” (daughter) because of the analogy that a daugh-
ter is very important in the family. The final solution
“妈” is composed of these two metaphors because
the radical “女” meets the radical “马”. Radicals can
be derived not only from the meaning of metaphors,
but also from the structure of characters. We will de-
scribe the alignments and rules in detail in Section 3.

In this paper, we propose a statistical framework
to solve and generate Chinese character riddles. We
show our pipeline in Figure 3. First, we learn the
common alignments and the combination rules from
large riddle-solution pairs which are mined from the
Web. The alignments and rules are used to identify
the metaphors in the riddles. Second, in the solving
phase, we utilize a dynamic programming algorithm
on the basis of the alignments and rules to figure out
the candidate solutions. For the generating phase,
we use a template-based method and a replacement-
based method based on the decomposition of the
character to generate the candidate riddles. Finally,
we employ Ranking SVM to rank the candidates in
both the solving and generation task. We conduct
the evaluation on 2,000 riddles in the riddle solving
task and 100 Chinese characters in the riddle gener-
ation task. Experimental results show that the pro-
posed method outperforms baseline methods in the
solving task. We also get very promising results in
the generation task according to human judges.

2 Related Work

To the best of our knowledge, no previous work has
studied on Chinese riddles. For other languages,
there are a few approaches concentrated on solv-
ing English riddles. Pepicello and Green (1984) de-
scribe the various strategies incorporated in riddles.
(De Palma and Weiner, 1992; Weiner and De Palma,
1993) use the knowledge representation system to
solve English riddles that consist of a single sen-
tence question followed by a single sentence an-
swer. They propose to build the relation between the
phonemic representation and their associated lexi-
cal concepts. Binsted and Ritchie (1994) imple-
ment a program JAPE which generates riddles from
humour-independent lexical entries and evaluate the
behaviour of the program by 120 children (Binsted
et al., 1997). Olaosun and Faleye (2015) identify
meaning construction strategies in selected English
riddles in the web and account for the mental pro-
cesses involved in their production, which shows
that the meaning of a riddle is an imposed mean-
ing that relates to the logical, experiential, linguistic,
literary and intuitive judgments of the riddles. Be-
sides, there are some studies in Yoruba(Akı́nyemı́,
2015b; Akı́nyemı́, 2015a; Magaji, 2014). All of
these works focus on the semantic meaning, which
is different from Chinese character riddles that focus
on the structure of characters.

Another popular word game is Crossword Puzzles
(CPs) that normally has the form of a square or rect-
angular grid of white and black shaded squares. The
white squares on the border of the grid or adjacent to
the black ones are associated with clues. Compared
with our riddle task, the clues in the CPs are derived
from each question where the radicals in solution are
derived from the metaphors in the riddles. Proverb
(Littman et al., 2002) is the first system for the au-
tomatic resolution of CPs. Ernandes et al. (2005)
utilize a web-search module to find sensible candi-
dates to questions expressed in natural language and
get the final answer by ranking the candidates. And
the rule-based module and the dictionary module are
mentioned in his work. The tree kernel is used to
rerank the candidates proposed by Barlacchi et al.
(2014) for automatic resolution of crossword puz-
zles.

From another perspective, there are a few projects

847

 Riddle Solving

 Offline Learning

Riddle/Solution Pairs
Phrase-Radical Alignment

and Rule Learning

Alignment

Table
Rule Table

Solution
Solution

Ranking

Solution Candidate

Generation
Riddle Description

 Riddle Generation

Riddle Description
Riddle

Ranking

Riddle Candidate

Generation

Solution (Chinese

Character)

Figure 3: The pipeline of offline learning, riddle solving and riddle generation

on Chinese language cultures, such as the couplet
generation and the poem generation. A statistical
machine translation (SMT) framework is proposed
to generate Chinese couplets and classic Chinese po-
etry (He et al., 2012; Zhou et al., 2009; Jiang and
Zhou, 2008). Jiang and Zhou (2008) use a phrase-
based SMT model with linguistic filters to generate
Chinese couplets satisfied couplet constraints, using
both human judgments and BLEU scores as the eval-
uation. Zhou et al. (2009) use the SMT model to
generate quatrain with a human evaluation. He et al.
(2012) generate Chinese poems with the given topic
words by combining a statistical machine translation
model with an ancient poetic phrase taxonomy. Fol-
lowing the approaches in SMT framework, it is valid
to regard the metaphors with its radicals as the align-
ments. There are several works using neural network
to generate Chinese poems(Zhang and Lapata, 2014;
Yi et al., 2016). Due to the limited data and strict
rules, it is hard to transfer to the riddle generation.

3 Phrase-Radical Alignments and Rules

The metaphor is one of the key components in both
solving and generation. On the one hand we need to
identify these metaphors since each of them aligns
a radical in the final solution. On the other hand,
we need to integrate these metaphors into the rid-
dle descriptions to generate riddles. Thus, how to
extract the metaphors of riddles becomes a big chal-
lenge in our task. Below we introduce our method
to extract the metaphors based on the phrase-radical
alignments and rules.

We exploit the phrase-radical alignments as to de-

scribe the simple metaphors, e.g. “千 里” aligns
“马”, which aligns the phrase and the radical by the
meaning. We employ a statistical framework with
a word alignment algorithm to automatically mine
phrase-radical metaphors from riddle dataset. Con-
sidering the alignment is often represented as the
matching between successive words in the riddle and
a radical in the solution, we propose two methods
specifically to extract alignments. The first method
in according with (Och and Ney, 2003) is described
as follows. With a riddle description q and corre-
sponding solution s, we tokenize the input riddle
q to character as (w1, w2, . . . , wn) and decompose
the solution s into radicals as (r1, r2, . . . , rm). We
count all ([wi, wj], rk)(i, j ∈ [1, n], k ∈ [1,m])
as alignments. The second method takes into ac-
count more structural information of characters. Let
(w1, w2) denote two successive characters in the rid-
dle q. If w1 is a radical of w2 and the rest parts of
w2 as r appear in the solution q, we strongly sup-
port that ((w1, w2), r) is a alignment. It is identical
if w2 is a radical of w1. We count all alignments and
filter out the alignments whose occurrence number
is lower than 3. Some high-frequency alignments
are shown in Table 1. For example, “四方”(square)
aligns “口”(mouth) because of the similar shape and
“二十载”(two decades) aligns “艹”(grass) because
“艹” looks like two small “十”s.

Besides alignments are represented as common
collocations, there is another kind of common
metaphors concentrating on the structure of char-
acters. We define 6 categories of rules shown in
Table 2 to identify this kind of metaphors. A

848

Bigram Alignments Radical Frequency Trigram Alignments Radical Frequency
西湖 氵 77 二十载 艹 21(west lake) (water) (two decades) (grass)
四方 口 40 党中央 口 19(square) (mouth) (center of party) (mouth)
千里 马 36 意中人 日 16(thousand kilometer) (horse) (sweetheart) (sun)

Table 1: The high-frequency alignments

Category Description Examples

Half take half of the matched placeholder as radicals [半折断边](.)
[half,snap,break,side](.)

A-B remove the B as radical in A to compose a new Chinese character [减走无缺](.)(.)
[subtract,leave,not,lack](.)(.)

UpperRemove remove the upper-side radical of the matched placeholder (.)[字]0,1[下南]
(.)[character](0,1)[lower,south]

LowerRemove remove the lower-side radical of the matched placeholder [首前上北](.)
[top,front,up,north](.)

LeftRemove remove the left-side radical of the matched placeholder (.)[字]0,1[右东]
(.)[character](0,1)[right,east]

RightRemove remove the right-side radical of the matched placeholder (.)[字]0,1[左西]
(.)[character](0,1)[left,west]

Table 2: The descriptions and examples of rules

rule is often represented as an operation that ap-
plies to a character for obtaining parts of it as rad-
icals. For example, the character “上” (up) is usu-
ally represented as an operation to get the upper
radical of the corresponding character. We extract
the rules from the phrase-radical alignments we just
obtain. In a phrase-radical alignment, if a radi-
cal appears in the one part of a character, we sup-
port that this radical is derived from this charac-
ter, which means the other words in the phrase
may describe an operation to this character. We
replace this radical to a placeholder and generate
a candidate rule with the corresponding direction
by the radical position in this character. Thus,
for each phrase-radical alignment ([w1, wn], r), we
count (w1, . . . , wi−1, (.), wi+1, . . . , wn) as a poten-
tial rule only if r is a radical ofwi. We count all rules
learned from data, and filter out the rules whose oc-
currence number is lower than 5. Some rules are
shown in Table 2. The word or phrase in the rule
“A-B” mostly has the analogous meaning of “re-
moving”. The word or phrase in the rule “Half”
mostly has the analogous meaning of “half”. As
for the rules “LeftRemove”, “RightRemove”, “Up-
perRemove” and “LowerRemove”, there are usually

a word or phrase that means “removing” as well as
the others mean the “position” and “direction”.

We mine 14,090 phrase-radical alignments in to-
tal. More than 1,000 Chinese characters have at least
one alignment, and there are 27 characters with more
than 100 alignments. Common radicals are almost
all contained in our alignments set. Chinese char-
acter is mostly composed of these common radical,
so these alignments are enough for our task. We ex-
tract 193 rules in total for all categories of rules, all
of them are applied to the riddle solving and the rid-
dle generation.

4 Riddle Solving and Generation

4.1 Solving Chinese Character Riddles

The process of solving riddles has two components.
First, we identify the metaphors in the riddle as
much as possible by matching the phrase-radical
alignments and rules, and integrate these metaphors
to obtain a candidate set of solutions. Each candi-
date contains the corresponding parsing clues that
imply how and why it is generated as its features.
Second, we employ a ranking model to determine
the best solution as output. Below we introduce our
method to generate solution candidates, and we will

849

R

S

A

F

Path[1,2]

-> 山

Path[1,7] ->

Path[3,3]

-> 必

Path[5,7]

-> 宀

on sentry must wear safety helmet

密

宀

必

山

1 2 3 4 5 6 7

上 岗 必 戴 安 全 帽

S

Path[4,4]

-> 戴

戴

Figure 4: The decoding process of “上 岗 必 戴 安 全 帽”.

-R: Path[1,2] records the clue that “上 岗” matches “山” by

the rule. -S: Path[3,3] records the clue that “必” matches itself

and Path[4,4] records ”戴”. -A: Path[5,7] records the clue that

“安 全 帽” matches “宀” by the alignment. -F: We get a final

solution candidate in Path[1,7] by above clues. In this example,

the character ”戴” from Path[4,4] is irrelevant to the solution.

introduce the ranking model in Section 4.3.
It is common that two metaphors do not share a

character and the metaphor is composed of succes-
sive characters. Therefore, we utilize a dynamic pro-
gramming algorithm based on the CYK algorithm
(Kasami, 1965) to identify the metaphors with the
help of the learned alignments and the predefined
rules. We describe the algorithm in Algorithm 1.

An example to illustrate our algorithm is “上 岗
必 戴 安 全 帽”, where the corresponding solution
is “密”. As shown in Figure 4, “上 岗”(on sentry)
aligns “山” by matching the rule “上(up) (.)” which
means to take the upper part of the character “岗”.
“必” and “戴” aligns itself. And the phrase “安 全
帽”(safety helmet) aligns to the radical “宀” by the
alignments because of the analogical shape. Our
ranking model will get the final solution “密” by
these clues.

4.2 Generating Chinese Character Riddles

Two major components are required in the process
of riddle generation. The first step is to generate a
list of candidates of riddle descriptions for a Chi-
nese character as the solution. The second step is to
rank the candidate riddle descriptions and select the
top-N (e.g. 10) candidates as the output. Below we

Algorithm 1: Candidate generation for riddle
solving

Input : Riddle q, Alignment, Rule
Output: Path[1,n]

1 Tokenize the input riddle q to w1, w2, . . . , wn;
2 for len← 0 to n− 1 do
3 for j − i = len do
4 if len = 0 then
5 Character can align itself ;
6 Path[i, j].Add([wi, wi]→ wi) ;
7 end
8 else if [wi, wj] in Alignment then
9 Obtain the corresponding radical r

in Alignment ;
10 Path[i, j].Add([wi, wj]→ r) ;
11 end
12 else if [wi, wj] matchs Rule then
13 Run the predefined operation of the

Rule, obtain radical r ;
14 Path[i, j].Add([wi, wj]→ r) ;
15 end
16 foreach k in [i,j-1] do
17 Path[i, j].Add(Path[i, k]⊕

Path[k + 1, j]) ;
18 end
19 end
20 end

introduce our method to generate candidates of rid-
dle descriptions, and we will introduce the ranking
model in Section 4.3.

We propose two strategies to generate the candi-
date riddle descriptions for a given Chinese charac-
ter, called the template-based method and the re-
placement based-method, respectively. First we
show our template-based method to generate rid-
dles. The most natural method is to connect the
metaphor of each radical. For a character and its
possible splitting RD = rdi, we select a correspond-
ing metaphor by the alignment or rule, and then we
connect all metaphor without any other conjunction
words to form a riddle. The further method is to add
a few conjunction words between each metaphor,
which can make the riddle more coherent. We re-
move the recognized metaphors in riddle sentences,

850

Feature Description
Correct Radical number of radicals matched
Missing Radical number of radicals not matched
Disappearing Radical number of radicals that disappear in all characters of riddle descriptions
Single Matching number of clues derived from character itself
Alignment Matching number of clues derived from alignments
Rule Matching number of clues derived from rules
Length Rate ratio of the length of clues
Frequency prior probability of this character as a solution

Table 3: Features for riddle solving

Feature Description
Riddle Length length in characters of the candidate riddle
Riddle Relative Length abs(Riddle Length-5) because the length of common riddles is between 3 and 7
Number Radical number of radicals that the character decompose
Avg Freq Character average number of frequencies of characters in riddle
Max Freq Radical maximized number of frequencies of characters in riddle
Number Alignment number of alignments used for generating the candidate
Length Alignment length of words from alignments
Number Rule number of rules used for generating the candidate
Length Rule length of words from rules
LM Score R score of language model trained by Chinese riddles, poems and couplets
LM Score G score of language model trained by web documents

Table 4: Features for riddle generation

and count the unigram and bigram word frequency
of the rest words. These words are usually common
conjunctions. We sample these words based on the
frequency distribution and add them into the riddles
to connect the metaphor of each radical.

Second, we use an alternative replacement-based
method to generate the candidate riddle descriptions.
Instead of generating the riddle descriptions totally
from scratch, we try to replacement part of an ex-
isting riddle to generate a new riddle description.
Let w = (w1, w2, . . . , wn) denote the word se-
quence of a riddle description on our dataset, where
n denotes the length of the riddle in character. Let
[wi, wj] (i,j ∈ [1,n]) denote the word span that can
be aligned to a radical rd, and let X=(x1, . . . , xm)
denotes the corresponding phrase descriptions of rd.
We then replace [wi, wj] ∈ X with the other alter-
native phrases descriptions of rd in X. We try all the
possible replacements to generate riddle candidates.
This method can generate candidate riddles that are
more natural and fluent.

4.3 Ranking Model
Above we introduce the algorithm to solve and gen-
erate candidates, respectively. Then, we develop a

ranking model to determine the final output. Below
we show the ranking model.

The ranking score is calculated as

Score(c) =
m∑

i=1

λi ∗ gi(c) (1)

where c represents a candidate, gi(c) represents the
i-th feature in the ranking model, m represents the
number of features in total, and λi represents the
weight of the feature. The features of riddle solving
and riddle generation are in Table 3 and Table 4, re-
spectively. We use Ranking SVM (Joachims, 2006)1

to do the model training to get the feature weights.
The weights of the features are trained with riddle-
solution pairs. Specifically, in the riddle solving
task, for the set of solution candidates, we hold that
the original solution as the positive sample and oth-
ers are the negative samples. Using the dynamic
programming algorithm to obtain a list of solution
candidates, the training process try to optimize the
feature weights so that the ranking score of the orig-
inal solution is greater than any of the ones from the

1https://www.cs.cornell.edu/people/tj/
svm_light/svm_rank.html

851

candidate list. In the riddle generation task, we se-
lect 100 characters on the basis of the frequency dis-
tribution of characters as a solution. For each char-
acter we use the riddle generation module to gener-
ate a list of riddle candidates. And we label these
candidates manually where the better riddle descrip-
tions get the higher score. Then the training process
optimizes the feature weights.

5 Experimental Study

5.1 Dataset

We crawl 77,308 character riddles including riddle
descriptions with its solution from the Web. All of
these riddle-solution pairs concentrate on the struc-
ture of characters.

A stroke table, that contains 3,755 characters en-
coded in the first level of GB2312-80, is provided
to describe how a Chinese character is decomposed
into its corresponding radicals. Characters may have
more than one splitting forms and a character is typ-
ically composed of no more than 3 radicals.

The data for training language model in riddle
style include two parts: One is the corpus of rid-
dles mentioned above, and the other is a corpus of
Chinese poem and Chinese couplets because of the
similar language style. We follow the method that
proposed by (He et al., 2012; Zhou et al., 2009),
to download the <Tang Poems>,<Song Poems>,
<Ming Poems>, <Qing Poems>, <Tai Poems>
from the Internet, and use the method proposed by
Fan et al. (2007) to recursively mine those data
with the help of some seed poems and couplets.
It amounts to more than 3,500,000 sentences and
670,000 couplets. Besides the language model
trained in riddle style, we also train a general lan-
guage model with the web documents.

5.2 Evaluation on Riddle Solving

We randomly select 2,000 riddles from the riddle
dataset as the test data, and 500 riddles as the de-
velopment data, while the rest as training data.

Our system always returns a ranking list of candi-
date solutions, so we use the Acc@k (k = 1, 5, 10)
as the evaluation metric. The Acc@k is the fraction
of questions which obtain correct answers in their
top-k results.

Giza++ (Och, 2001) is a common tool to extract

Feature Set Acc@1 Acc@5 Acc@10
G 10.3 12.0 13.6
G+A 17.0 19.2 19.9
A 18.7 22.7 24.2
G+A+R 28.4 31.0 31.4
A+R 28.8 31.8 32.1

Table 5: Results of evaluation on test dataset with 2,000 rid-

dles. -G: The alignments from GIZA++. -A: The alignments

extracted following our method in Section 3. -R: Using the rules

to identify the metaphors between the phrase and the radical fol-

lowing our method in Section 3. Our method (A+R) achieves

better performances than the baseline methods from GIZA++.

Ranking Method Acc@1 Acc@5 Acc@10
Jaccard Similarity 26.2 30.2 31.2
Ranking SVM 28.8 31.8 32.1

Table 6: Results of evaluation between ranking methods us-

ing the feature set (A+R). The Ranking SVM achieves better

performances than the baseline metric from Jaccard similarity

coefficient.

the alignment between bilingual corpuses. We use
it as our baseline system that extracts the alignments
automatically. And we use the Jaccard similarity co-
efficient as the baseline ranking metric. The Jaccard
similarity coefficient is defined as:

J(A,B) =
A
⋂
B

A
⋃
B

(2)

where A means the radicals set of the solution and B
means the radicals set of the candidate.

The results are reported in the Table 5 and Ta-
ble 6. The baseline method can only give about
one-tenth correct solution at the Acc@1. Compared
with the baseline model, by using the alignments
extracted by our method, the system can improve
6.7% at the Acc@1 and 6.3% at Acc@10. A phe-
nomenon is that only using the alignments we ex-
tract has the better results than combining it with the
alignments from Giza++ because metaphors match-
ing between phrases and characters are particular
in our riddle task. Small changes in the phrase
can affect the character that it implies and it may
be not a metaphor even if a character in phrase is
changed. Furthermore, by using rules to identify
the metaphors in riddles, we get an improvement of
10.1% at Acc@1, which proves the validity of the

852

Score Criterion
5 Elegant metaphors, totally coherent
4 Correct metaphors, mostly coherent
3 Acceptable metaphors, more of less coherent
2 Tolerable metaphors, little coherent
1 Wrong metaphors, incoherent

Table 7: The criterion of riddle evaluation

rule we define. The results prove that it is valid to
use the alignments and rules that we extract to iden-
tify the metaphors in our character riddle task. The
comparison between Jaccard similarity coefficient
and our Ranking SVM method shows that the Rank-
ing SVM is better with an improvement of 2.6% at
Acc@1, which prove that compared to the Jaccard
similarity coefficient, the Ranking SVM determine
the solution more correct if we successfully iden-
tify all metaphors in riddle descriptions. Moreover,
there is less improvement beyond Acc@5, which
means the ranking model gets better results even if
the system cannot identify all metaphors in riddle
descriptions. We think that unlike the Jaccard sim-
ilarity coefficient which only uses the features be-
tween the candidate character and the correct solu-
tion, the ranking model uses extra features in the
riddles descriptions, e.g. the number of disappear-
ing radicals, which helps to exclude obvious wrong
candidates.

5.3 Evaluation on Riddle Generation

Because there is no previous work about Chinese
riddle generation, in order to prove its soundness,
we conduct human evaluations on this task in accor-
dance with the following two reasons. Firstly, the
generated riddles, which is different from the certain
and unique solution in the riddle solving task, are
varied. So it is hard to measure the quality of gen-
erated riddles with a well defined answer set. Sec-
ondly, small differences in riddles have a great effect
on the corresponding solution. It may imply distinct
radicals even if only a character in the metaphors is
changed. The existing metrics such as BLEU, are
not suitable for our task. Based on above analysis,
each riddle that the system generates is evaluated by
human annotators according to a 5 division criterion
described in Table 7.

We randomly sample 100 characters following
the distribution of the character as a solution. The

Method Avg(Score)
Template-based Method 3.49
Replacement-based Method 4.14
Riddle from dataset 4.38

Table 8: Human evaluation of different methods

system generates riddle descriptions following the
methods in Section 4.2 for each character. Some-
times the riddles we generate exist in our training
data. We remove these riddles for the reason that
we want to evaluate the ability of generating new
riddles. In order to avoid the influence of annota-
tors and compare the riddles generated by the sys-
tem with the riddles written by human beings, the
riddles are randomly disordered so that the annota-
tors do not know the generating method of each rid-
dle. For each character, we select 5 riddles generated
by the template-base method, 5 riddles generated by
the replacement-based method, and 2 riddles from
the riddles dataset written by human beings, which
form a set of 12 riddles in total. The annotators score
each riddle according to the above criterion.

The result is shown in Table 8. The riddles writ-
ten by human beings from the riddle dataset get
the highest score than the riddles generated by the
system. The riddles generated by the replacement-
based method have a greater improvement than the
basic template-based method. We consider that the
replacement-based method retains some human in-
formation, which makes the generated riddles more
coherent.

Another result is that the riddle whose solution
is a common character or is composed of common
radicals gets the higher score, which is explicit that
we can get the better results if we have the more
alternative metaphors of a radical.

Below we show two examples of the riddle de-
scriptions generated with the solution “思”(miss)
which often decompose into “田”(field) and
“心”(heart) shown in Figure 1(b).

• 三 星 伴 月 似 画 里 (Three stars with the
moon, like in the picture): The radical “田” is
the inside part of “画”. The shape of “心” is
three points and a curved line, which looks like
three stars around a crescent.

• 日日相系在心头 (Every day in my heart):

853

The radical “田” is composed of two “日”s, and
“心” occurs in the riddle description. The char-
acter “头”(top) means the radical “田” is on the
top position.

6 Conclusion

We introduce a novel approach to solving and gen-
erating Chinese character riddles. We extract align-
ments and rules to capture the metaphors of phrases
in riddle descriptions and radicals in the solution
characters. In total, we obtain 14,090 alignments
that imply the metaphors between phrases and rad-
icals as well as 193 rules in 6 categories formed
as regular expressions. To solve riddles, we utilize
a dynamic programming algorithm to combine the
identified metaphors based on the alignments and
rules to obtain the candidate solutions. To gener-
ate riddles, we propose a template-based method and
a replacement-based method to generate candidate
riddle descriptions. We employ the Ranking SVM
to rank the candidates on both the riddle solving and
generation. Our method outperforms baseline meth-
ods in the solving task. We also get promising re-
sults in the generation task by human evaluation.

Acknowledgments

The first author and the fourth author are sup-
ported by the National Natural Science Foundation
of China (Grant No. 61421003).

References

Akı́ntúndé Akı́nyemı́. 2015a. Riddles and metaphors:
The creation of meaning. pages 37–87. Springer.

Akı́ntúndé Akı́nyemı́. 2015b. Yorùbá riddles in perfor-
mance: Content and context. In Orature and Yoruba
Riddles, pages 11–35. Springer.

Gianni Barlacchi, Massimo Nicosia, and Alessandro
Moschitti. 2014. Learning to rank answer candi-
dates for automatic resolution of crossword puzzles.
In CoNLL, pages 39–48.

Kim Binsted and Graeme Ritchie. 1994. An imple-
mented model of punning riddles. Technical report,
University of Edinburgh, Department of Artificial In-
telligence.

Kim Binsted, Helen Pain, and Graeme Ritchie. 1997.
Children’s evaluation of computer-generated punning
riddles. Pragmatics & Cognition, 5(2):305–354.

Paul De Palma and E Judith Weiner. 1992. Riddles:
accessibility and knowledge representation. In Pro-
ceedings of the 14th conference on Computational
linguistics-Volume 4, pages 1121–1125. Association
for Computational Linguistics.

Marco Ernandes, Giovanni Angelini, and Marco Gori.
2005. Webcrow: A web-based system for crossword
solving. In AAAI, pages 1412–1417.

Cong Fan, Long Jiang, Ming Zhou, and Shi-Long Wang.
2007. Mining collective pair data from the web.
In Machine Learning and Cybernetics, 2007 Interna-
tional Conference on, volume 7, pages 3997–4002.
IEEE.

Jing He, Ming Zhou, and Long Jiang. 2012. Generat-
ing chinese classical poems with statistical machine
translation models. In Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, July 22-26,
2012, Toronto, Ontario, Canada.

Long Jiang and Ming Zhou. 2008. Generating chinese
couplets using a statistical mt approach. In Proceed-
ings of the 22nd International Conference on Compu-
tational Linguistics-Volume 1, pages 377–384. Associ-
ation for Computational Linguistics.

Thorsten Joachims. 2006. Training linear svms in linear
time. In Proceedings of the 12th ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining, pages 217–226. ACM.

Tadao Kasami. 1965. An efficient recognition and syntax
analysis algorithm for context-free languages. Techni-
cal report, DTIC Document.

Michael L Littman, Greg A Keim, and Noam Shazeer.
2002. A probabilistic approach to solving crossword
puzzles. Artificial Intelligence, 134(1):23–55.

Maryam Yusuf Magaji. 2014. Morphology, syntax and
functions of the kilba folk riddles. International Jour-
nal on Studies in English Language and LiteratureI-
JSELL.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational linguistics, 29(1):19–51.

Franz Josef Och. 2001. Training of statistical translation
models.

Ibrahim Esan Olaosun and James Oladunjoye Faleye.
2015. A cognitive semantic study of some english rid-
dles and their answers in amidst a tangled web. Asian
Journal of Social Sciences & Humanities Vol, 4:2.

William J Pepicello and Thomas A Green. 1984. Lan-
guage of riddles: new perspectives. The Ohio State
University Press.

E Judith Weiner and Paul De Palma. 1993. Some prag-
matic features of lexical ambiguity and simple riddles.
Language & communication, 13(3):183–193.

854

Xiaoyuan Yi, Ruoyu Li, and Maosong Sun. 2016.
Generating chinese classical poems with rnn encoder-
decoder. arXiv preprint arXiv:1604.01537.

Xingxing Zhang and Mirella Lapata. 2014. Chinese
poetry generation with recurrent neural networks. In
EMNLP, pages 670–680.

Ming Zhou, Long Jiang, and Jing He. 2009. Generat-
ing chinese couplets and quatrain using a statistical ap-
proach. In PACLIC, pages 43–52.

855

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 856–865,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Structured prediction models for RNN based sequence labeling in clinical
text

Abhyuday N Jagannatha1, Hong Yu1,2

1 University of Massachusetts, MA, USA
2 Bedford VAMC and CHOIR, MA, USA

abhyuday@cs.umass.edu , hong.yu@umassmed.edu

Abstract

Sequence labeling is a widely used method
for named entity recognition and information
extraction from unstructured natural language
data. In the clinical domain one major ap-
plication of sequence labeling involves ex-
traction of relevant entities such as medica-
tion, indication, and side-effects from Elec-
tronic Health Record Narratives. Sequence la-
beling in this domain presents its own set of
challenges and objectives. In this work we
experiment with Conditional Random Field
based structured learning models with Recur-
rent Neural Networks. We extend the pre-
viously studied CRF-LSTM model with ex-
plicit modeling of pairwise potentials. We also
propose an approximate version of skip-chain
CRF inference with RNN potentials. We use
these methods1 for structured prediction in or-
der to improve the exact phrase detection of
clinical entities.

1 Introduction

Patient data collected by hospitals falls into two cat-
egories, structured data and unstructured natural lan-
guage texts. It has been shown that natural text
clinical documents such as discharge summaries,
progress notes, etc are rich sources of medically rel-
evant information like adverse drug events, medica-
tion prescriptions, diagnosis information etc. Infor-
mation extracted from these natural text documents
can be useful for a multitude of purposes ranging

1Code is available at https://github.com/abhyudaynj/LSTM-
CRF-models

from drug efficacy analysis to adverse effect surveil-
lance.

A widely used method for Information Extrac-
tion from natural text documents involves treating
the text as a sequence of tokens. This format al-
lows sequence labeling algorithms to label the rel-
evant information that should be extracted. Sev-
eral sequence labeling algorithms such as Condi-
tional Random Fields (CRFs), Hidden Markov Mod-
els (HMMs), Neural Networks have been used for
information extraction from unstructured text. CRFs
and HMMs are probabilistic graphical models that
have a rich history of Natural Language Process-
ing (NLP) related applications. These methods try
to jointly infer the most likely label sequence for a
given sentence.

Recently, Recurrent (RNN) or Convolutional
Neural Network (CNN) models have increasingly
been used for various NLP related tasks. These Neu-
ral Networks by themselves however, do not treat
sequence labeling as a structured prediction prob-
lem. Different Neural Network models use dif-
ferent methods to synthesize a context vector for
each word. This context vector contains informa-
tion about the current word and its neighboring con-
tent. In the case of CNN, the neighbors comprise
of words in the same filter size window, while in
Bidirectional-RNNs (Bi-RNN) they contain the en-
tire sentence.

Graphical models and Neural Networks have their
own strengths and weaknesses. While graphical
models predict the entire label sequence jointly, they
usually rely on special hand crafted features to pro-
vide good results. Neural Networks (especially Re-

856

current Neural Networks), on the other hand, have
been shown to be extremely good at identifying pat-
terns from noisy text data, but they still predict each
word label in isolation and not as a part of a se-
quence. In simpler terms, RNNs benefit from rec-
ognizing patterns in the surrounding input features,
while structured learning models like CRF benefit
from the knowledge about neighboring label predic-
tions. Recent work on Named Entity Recognition
by (Huang et al., 2015) and others have combined
the benefits of Neural Networks(NN) with CRF by
modeling the unary potential functions of a CRF as
NN models. They model the pairwise potentials as
a paramater matrix [A] where the entry Ai,j corre-
sponds to the transition probability from the label i
to label j. Incorporating CRF inference in Neural
Network models helps in labeling exact boundaries
of various named entities by enforcing pairwise con-
straints.

This work focuses on labeling clinical events
(medication, indication, and adverse drug events)
and event related attributes (medication dosage,
route, etc) in unstructured clinical notes from Elec-
tronic Health Records. Later on in the Section 4,
we explicitly define the clinical events and attributes
that we evaluate on. In the interest of brevity, for the
rest of the paper, we use the broad term “Clinical En-
tities” to refer to all medically relevant information
that we are interested in labeling.

Detecting entities in clinical documents such as
Electronic Health Record notes composed by hospi-
tal staff presents a somewhat different set of chal-
lenges than similar sequence labeling applications
in the open domain. This difference is partly due
to the critical nature of medical domain, and partly
due to the nature of clinical texts and entities therein.
Firstly, in the medical domain, extraction of exact
clinical phrase is extremely important. The names
of clinical entities often follow polynomial nomen-
clature. Disease names such as Uveal melanoma
or hairy cell leukemia need to be identified exactly,
since partial names (hairy cell or melanoma) might
have significantly different meanings. Addition-
ally, important clinical entities can be relatively rare
events in Electronic Health Records. For example,
mentions of Adverse Drug Events occur once ev-
ery six hundred words in our corpus. CRF inference
with NN models cited previously do improve exact

phrase labeling. However, better ways of modeling
the pairwise potential functions of CRFs might lead
to improvements in labeling rare entities and detect-
ing exact phrase boundaries.

Another important challenge in this domain is a
need to model long term label dependencies. For ex-
ample, in the sentence “the patient exhibited A sec-
ondary to B”, the label for A is strongly related to
the label prediction of B. A can either be labeled as
an adverse drug reaction or a symptom if B is a Med-
ication or Diagnosis respectively. Traditional linear
chain CRF approaches that only enforce local pair-
wise constraints might not be able to model these
dependencies. It can be argued that RNNs may im-
plicitly model label dependencies through patterns
in input features of neighboring words. While this is
true, explicitly modeling the long term label depen-
dencies can be expected to perform better.

In this work, we explore various methods of struc-
tured learning using RNN based feature extractors.
We use LSTM as our RNN model. Specifically,
we model the CRF pairwise potentials using Neural
Networks. We also model an approximate version of
skip chain CRF to capture the aforementioned long
term label dependencies. We compare the proposed
models with two baselines. The first baseline is a
standard Bi-LSTM model with softmax output. The
second baseline is a CRF model using handcrafted
feature vectors. We show that our frameworks im-
prove the performance when compared to the base-
lines or previously used CRF-LSTM models. To
the best of our knowledge, this is the only work fo-
cused on usage and analysis of RNN based struc-
tured learning techniques on extraction of clinical
entities from EHR notes.

2 Related Work

As mentioned in the previous sections, both Neural
Networks and Conditional Random Fields have been
widely used for sequence labeling tasks in NLP.
Specially, CRFs (Lafferty et al., 2001) have a long
history of being used for various sequence labeling
tasks in general and named entity recognition in par-
ticular. Some early notable works include McCal-
lum et. al. (2003), Sarawagi et al. (2004) and Sha et.
al. (2003). Hammerton et. al. (2003) and Chiu et.
al. (2015) used Long Short Term Memory (LSTM)

857

(Hochreiter and Schmidhuber, 1997) for named en-
tity recognition.

Several recent works on both image and text based
domains have used structured inference to improve
the performance of Neural Network based mod-
els. In NLP, Collobert et al (2011) used Convolu-
tional Neural Networks to model the unary poten-
tials. Specifically for Recurrent Neural Networks,
Lample et al. (2016) and Huang et. al. (2015) used
LSTMs to model the unary potentials of a CRF.

In biomedial named entity recognition, several
approaches use a biological corpus annotated with
entities such as protein or gene name. Settles (2004)
used Conditional Random Fields to extract occur-
rences of protein, DNA and similar biological en-
tity classes. Li et. al. (2015) recently used LSTM
for named entity recognition of protein/gene names
from BioCreative corpus. Gurulingappa et. al.
(2010) evaluated various existing biomedical dictio-
naries on extraction of adverse effects and diseases
from a corpus of Medline abstracts.

This work uses a real world clinical corpus of
Electronic Health Records annotated with various
clinical entities. Jagannatha et. al. (2016) recently
showed that RNN based models outperform CRF
models on the task of Medical event detection on
clinical documents. Other works using a real world
clinical corpus include Rochefort et al. (2015), who
worked on narrative radiology reports. They used a
SVM-based classifier with bag of words feature vec-
tor to predict deep vein thrombosis and pulmonary
embolism. Miotto et. al. (2016) used a denoising
autoencoder to build an unsupervised representation
of Electronic Health Records which could be used
for predictive modeling of patient’s health.

3 Methods

We evaluate the performance of three different Bi-
LSTM based structured prediction models described
in section 3.2, 3.3 and 3.4. We compare this perfor-
mance with two baseline methods of Bi-LSTM(3.1)
and CRF(3.5) model.

3.1 Bi-LSTM (baseline)

This model is a standard bidirectional LSTM neu-
ral network with word embedding input and a Soft-
max Output layer. The raw natural language input

sentence is processed with a regular expression to-
kenizer into sequence of tokens x = [xt]

T
1 . The to-

ken sequence is fed into the embedding layer, which
produces dense vector representation of words. The
word vectors are then fed into a bidirectional RNN
layer. This bidirectional RNN along with the em-
bedding layer is the main machinery responsible for
learning a good feature representation of the data.
The output of the bidirectional RNN produces a
feature vector sequence ω(x) = [ω(x)]T1 with the
same length as the input sequence x. In this base-
line model, we do not use any structured inference.
Therefore this model alone can be used to predict the
label sequence, by scaling and normalizing [ω(x)]T1 .
This is done by using a softmax output layer, which
scales the output for a label l where l ∈ {1, 2, ..., L}
as follows:

P (ỹt = j|x) =
exp(ω(x)tWj)∑L
l=1 exp(ω(x)tWl)

(1)

The entire model is trained end-to-end using cate-
gorical cross-entropy loss.

3.2 Bi-LSTM CRF

This model is adapted from the Bi-LSTM CRF
model described in Huang et. al. (2015). It
combines the framework of bidirectional RNN
layer[ω(x)]T1 described above, with linear chain
CRF inference. For a general linear chain CRF the
probability of a label sequence ỹ for a given sentence
x can be written as :

P (ỹ|x) =
1

Z

N∏

t=1

exp{φ(ỹt) + ψ(ỹt, ỹt+1)} (2)

Where φ(yt) is the unary potential for the label po-
sition t and ψ(yt, yt+1) is the pairwise potential be-
tween the positions t,t+1. Similar to Huang et. al.
(2015), the outputs of the bidirectional RNN layer
ω(x) are used to model the unary potentials of a lin-
ear chain CRF. In particular, the NN based unary po-
tential φnn(yt) is obtained by passing ω(x)t through
a standard feed-forward tanh layer. The binary po-
tentials or transition scores are modeled as a matrix
[A]L×L. Here L equals the number of possible la-
bels including the Outside label. Each element Ai,j

represents the transition score from label i to j. The

858

probability for a given sequence ỹ can then be cal-
culated as :

P (ỹ|x; θ) =
1

Z

T∏

t=1

exp{φnn(ỹt) +Aỹt,ỹt+1} (3)

The network is trained end-to-end by minimizing
the negative log-likelihood of the ground truth label
sequence ŷ for a sentence x as follows:

L(x, ŷ; θ) = −
∑

t

∑

yt

δ(yt = ŷt) logP (yt|x; θ)}

(4)
The negative log likelihood of given label se-

quence for an input sequence is calculated by sum-
product message passing. Sum-product message
passing is an efficient method for exact inference in
Markov chains or trees.

3.3 Bi-LSTM CRF with pairwise modeling
In the previous section, the pairwise potential is cal-
culated through a transition probability matrix [A]
irrespective of the current context or word. For rea-
sons mentioned in section 1, this might not be an
effective strategy. Some clinical entities are rela-
tively rare. Therefore transition from an Outside la-
bel to a clinical label might not be effectively mod-
eled by a fixed parameter matrix. In this method,
the pairwise potentials are modeled through a non-
linear Neural Network which is dependent on the
current word and context. Specifically, the pairwise
potential ψ(yt, yt+1) in equation 2 is computed by
using a one dimensional CNN with 1-D filter size 2
and tanh non-linearity. At every label position t, it
takes [ω(x)t;ω(x)t+1] as input and produces a L×L
pairwise potential output ψnn(yt, yt+1). This CNN
layer effectively acts as a non-linear feed-forward
neuron layer, which is repeatedly applied on con-
secutive pairs of label positions. It uses the output
of the bidirectional LSTM layer at positions t and
t+ 1 to prepare the pairwise potential scores.

The unary potential calculation is kept the same as
in Bi-LSTM-CRF. Substituting the neural network
based pairwise potential ψnn(yt, yt+1) into equation
2 we can reformulate the probability of the label se-
quence ỹ given the word sequence x as :

P (ỹ|x; θ) =
1

Z

N∏

t=1

exp{φnn(ỹt) + ψnn(ỹt, ỹt+1)}

(5)

Labels Num. of
Instances

Avg word length
± std

ADE 1807 1.68 ± 1.22
Indication 3724 2.20 ± 1.79
Other SSD 40984 2.12 ± 1.88
Severity 3628 1.27 ± 0.62
Drugname 17008 1.21 ± 0.60
Duration 926 2.01 ± 0.74
Dosage 5978 2.09 ± 0.82
Route 2862 1.20± 0.47
Frequency 5050 2.44± 1.70

Table 1: Annotation statistics for the corpus.

The neural network is trained end-to-end with the
objective of minimizing the negative log likelihood
in equation 4. The negative log-likelihood scores are
obtained by sum-product message passing.

3.4 Approximate Skip-chain CRF

Skip chain models are modifications to linear chain
CRFs that allow long term label dependencies
through the use of skip edges. These are basically
edges between label positions that are not adjacent
to each other. Due to these skip edges, the skip chain
CRF model (Sutton and McCallum, 2006) explicitly
models dependencies between labels which might
be more than one position apart. The joint inference
over these dependencies are taken into account while
decoding the best label sequence. However, unlike
the two models explained in the preceding section,
the skip-chain CRF contains loops between label
variables. As a result we cannot use the sum-product
message passing method to calculate the negative
log-likelihood.The loopy structure of the graph in
skip chain CRF renders exact message passing in-
ference intractable. Approximate solutions for these
models include loopy belief propagation(BP) which
requires multiple iterations of message passing.

However, an approach like loopy BP is pro-
hibitively expensive in our model with large Neural
Net based potential functions. The reason for this is
that each gradient descent iteration for a combined
RNN-CRF model requires a fresh calculation of the
marginals. In one approach to mitigate this, Lin et.
al. (2015) directly model the messages in the mes-
sage passing inference of a 2-D grid CRF for image
segmentation. This bypasses the need for modeling
the potential function, as well as calculating the ap-

859

proximate messages on the graph using loopy BP.
Approximate CRF message passing inference:
Lin et. al. (2015) directly estimate the factor to
variable message using a Neural Network that uses
input image features. Their underlying reasoning is
that the factor-to-variable message from factor F to
label variable yt for any iteration of loopy BP can
be approximated as a function of all the input vari-
ables and previous messages that are a part of that
factor. They only model one iteration of loopy BP,
and empirically show that it leads to an apprecia-
ble increase in performance. This allows them to
model the messages as a function of only the input
variables, since the messages for the first iteration of
message passing are computed using the potential
functions alone.

We follow a similar approach for calculation
of variable marginals in our skip chain model.
However, instead of estimating individual factor-to-
variable messages, we exploit the sequence struc-
ture in our problem and estimate groups of factor-
to-variable messages. For any label node yt, the first
group contains factors that involve nodes which oc-
cur before yt in the sentence (from left). The second
group of factor-to-variable messages corresponds to
factors involving nodes occurring later in the sen-
tence. We use recurrent computational units like
LSTM to estimate the sum of log factor-to-variable
messages within a group. Essentially, we use bidi-
rectional recurrent computation to estimate all the
incoming factors from left and right separately.

To formulate this, let us assume for now that we
are using skip edges to connect the current node t
to m preceding and m following nodes. Each edge,
skip or otherwise, is denoted by a factor which con-
tains the binary potential of the edge and the unary
potential of the connected node. As mentioned ear-
lier, we will divide the factors associated with node
t into two sets, FL(t) and FR(t). Here FL(t) , con-
tains all factors formed between the variables from
the group {yt−m, ..., yt−1} and yt. So we can for-
mulate the combined message from factors in FL(t)
as

βL(yt) = [
∑

F∈FL(t)

βF→t(yt)] (6)

The combined messages from factors in FR(t)
which contains variables from yt+1 to yt+m can be

formulated as :

βR(yt) = [
∑

F∈FR(t)

βF→t(yt)] (7)

We also need the unary potential of the label vari-
able t to compose its marginal. The unary po-
tentials of each variable from {yt−m, ..., yt−1} and
{yt+1, ..., yt+m} should already be included in their
respective factors. The log of the unnormalized
marginal P̄ (yt|x) for the variable yt, can therefore
be calculated by

log P̄ (yt|x) = βR(yt) + βL(yt) + φ(yt) (8)

Similar to Lin et. al. (2015), in the interest of
limited network complexity, we use only one mes-
sage passing iteration. In our setup, this means that a
variable-to-factor message from a neighboring vari-
able yi to the current variable yt contains only the
unary potentials of yi and binary potential between
yi , yt. As a consequence of this, we can see that
βL(yt) can be written as :

βL(yt) =

t−m∑

i=t−1
log
∑

yi

[expψ(yt, yi) + φ(yi)] (9)

Similarly, we can formulate a function for βR(yt) in
a similar way :

βR(yt) =
t+m∑

i=t+1

log
∑

yi

[expψ(yt, yi) + φ(yi)]

(10)

Modeling the messages using RNN: As mentioned
previously in equation 8, we only need to estimate
βL(yt), βR(yt) and φ(yt) to calculate the marginal
of variable yt. We can use φnn(yt) framework intro-
duced in section 3.2 to estimate the unary potential
for yt. We use different directions of a bidirectional
LSTM to estimate βR(yt) and βL(yt). This elim-
inates the need to explicitly model and learn pair-
wise potentials for variables that are not immediate
neighbors.

The input to this layer at position t is
[φnn(yt);ψnn(yt, yt+1)] (composed of potential
functions described in section 3.3). This can be
viewed as an LSTM layer aggregating beliefs about
yt from the unary and binary potentials of [y]t−11

860

Strict Evaluation (Exact Match) Relaxed Evaluation (Word based)
Models Recall Precision F-score Recall Precision F-score

CRF 0.7385 0.8060 0.7708 0.7889 0.8040 0.7964
Bi-LSTM 0.8101 0.7845 0.7971 0.8402 0.8720 0.8558

Bi-LSTM CRF 0.7890 0.8066 0.7977 0.8068 0.8839 0.8436
Bi-LSTM CRF-pair 0.8073 0.8266 0.8169 0.8245 0.8527 0.8384

Approximate Skip-Chain CRF 0.8364 0.8062 0.8210 0.8614 0.8651 0.8632
Table 2: Cross validated micro-average of Precision, Recall and F-score for all clinical tags

to approximate the sum of messages from left side
βL(yt). Similarly, βR(yt) can be approximated from
the LSTM aggregating information from the oppo-
site direction. Formally, βL(yt) is approximated as
a function of neural network based unary and binary
potentials as follows:

βL(yt) ≈ f ([φnn(yi);ψnn(yi, yi+1)]
t−1
1) (11)

Using LSTM as a choice for recurrent compu-
tation here is advantageous, because LSTMs are
able to learn long term dependencies. In our
framework, this allows them to learn to prioritize
more relevant potential functions from the sequence
[[φnn(yi);ψnn(yi, yi+1)]

t−1
1 . Another advantage of

this method is that we can approximate skip edges
between all preceding and following nodes, instead
of modeling just m surrounding ones. This is be-
cause LSTM states are maintained throughout the
sentence.

The partition function for yt can be easily ob-
tained by using logsumexp over all label entries of
the unnormalized log marginal shown in equation 8
as follows:

Zt =
∑

yt

exp[βR(yt) + βL(yt) + φ(yt)] (12)

Here the partition function Z is a different for differ-
ent positions of t. Due to our approximations, it is
not guaranteed that the partition function calculated
from different marginals of the same sentence are
equal. The normalized marginal can be now calcu-
lated by normalizing log P̄ (yt|x) in equation 8 using
Zt.

L(x, ŷ; θ) = −
∑

t

∑

yt

δ(yt = ŷt)(βR(yt; θ)

+βL(yt; θ) + φ(yt; θ)− logZt(θ))

(13)

The model is optimized using cross entropy
loss between the true marginal and the predicted
marginal. The loss for a sentence x with a ground
truth label sequence ŷ is provided in equation 13.

3.5 CRF (baseline)
We use the linear chain CRF, which is a widely used
model in extraction of clinical named entities. As
mentioned previously, Conditional Random Fields
explicitly model dependencies between output vari-
ables conditioned on a given input sequence.

The main inputs to CRF in this model are not
RNN outputs, but word inputs and their correspond-
ing word vector representations. We add additional
sentence features consisting of four vectors. Two of
them are bag of words representation of the sentence
sections before and after the word respectively. The
remaining two vectors are dense vector representa-
tions of the same sentence sections. The dense vec-
tors are calculated by taking the mean of all indi-
vidual word vectors in the sentence section. We add
these features to explicitly mimic information pro-
vided by the bidirectional chains of the LSTM mod-
els.

4 Dataset

We use an annotated corpus of 1154 English Elec-
tronic Health Records from cancer patients. Each
note was annotated2 by two annotators who label
clinical entities into several categories. These cate-
gories can be broadly divided into two groups, Clin-
ical Events and Attributes. Clinical events include
any specific event that causes or might contribute to
a change in a patient’s medical status. Attributes
are phrases that describe certain important proper-
ties about the events.

2The annotation guidelines can be found
at https://github.com/abhyudaynj/LSTM-CRF-
models/blob/master/annotation.md

861

Figure 1: Plots of Recall, Precision and F-score for RNN based methods. The metrics with prefix Strict are using phrase based

evaluation. Relaxed metrics use word based evaluation.Bar-plots are in order with Bi-LSTM on top and Approx-skip-chain-CRF at

the bottom.

Clinical Event categories in this corpus are Ad-
verse Drug Event (ADE), Drugname , Indication
and Other Sign Symptom and Diseases (Other SSD).
ADE, Indication and Other SSD are events having
a common vocabulary of Sign, Symptoms and Dis-
eases (SSD). They can be differentiated based on the
context that they are used in. A certain SSD should
be labeled as ADE if it can be manually identified as
a side effect of a drug based on the evidence in the
clinical note. It is an Indication if it is an affliction
that a doctor is actively treating with a medication.
Any other SSD that does not fall into the above two
categories (for e.g. an SSD in patients history) is
labeled as Other SSD. Drugname event labels any
medication or procedure that a physician prescribes.

The attribute categories contain the following
properties, Severity , Route, Frequency, Duration
and Dosage. Severity is an attribute of the SSD event
types , used to label the severity a disease or symp-
tom. Route, Frequency, Duration and Dosage are
attributes of Drugname. They are used to label the
medication method, frequency of dosage, duration
of dosage, and the dosage quantity respectively. The

annotation statistics of the corpus are provided in the
Table 1.

5 Experiments

Each document is split into separate sentences and
the sentences are tokenized into individual word and
special character tokens. The models operate on
the tokenized sentences. In order to accelerate the
training procedure, all LSTM models use batch-wise
training using a batch of 64 sentences. In order to do
this, we restricted the sentence length to 50 tokens.
All sentences longer than 50 tokens were split into
shorter size samples, and shorter sentences were pre-
padded with masks. The CRF baseline model(3.5)
does not use batch training and so the sentences were
used unaltered.

The first layer for all LSTM models was a 200
dimensional word embedding layer. In order to im-
prove performance, we initialized embedding layer
values in these models with a skip-gram word em-
bedding (Mikolov et al., 2013). The skip-gram em-
bedding was calculated using a combined corpus

862

of PubMed open access articles, English Wikipedia
and an unlabeled corpus of around hundred thousand
Electronic Health Records. The EHRs used in the
annotated corpus are not in this unlabeled EHR cor-
pus. This embedding is also used to provide word
vector representation to the CRF baseline model.

The bidirectional LSTM layer which outputs
ω(x) contains LSTM neurons with a hidden size
ranging from 200 to 250. This hidden size is
kept variable in order to control for the number of
trainable parameters between different LSTM based
models. This helps ensure that the improved perfor-
mance in these models is only because of the modi-
fied model structure, and not an increase in trainable
parameters. The hidden size is varied in such a way
that the number of trainable parameters are close to
3.55 million parameters. Therefore, the Approx skip
chain CRF has 200 hidden layer size, while stan-
dard Bi-LSTM model has 250 hidden layer. Since
theω(x) layer is bidirectional, this effectively means
that the Bi-LSTM model has 500 hidden layer size,
while Approx skip chain CRF model has 400 dimen-
sional hidden layer.

We use dropout (Srivastava et al., 2014) with a
probability of 0.50 in all LSTM models in order to
improve regularization performance. We also use
batch norm (Ioffe and Szegedy, 2015) between lay-
ers wherever possible in order to accelerate training.
All RNN models are trained in an end-to-end fashion
using Adagrad (Duchi et al., 2011) with momentum.
The CRF model was trained using L-BFGS with L2
regularization. We use Begin Inside Outside (BIO)
label modifiers for models that use CRF objective.

We use ten-fold cross validation for our results.
The documents are divided into training and test
documents. From each training set fold, 20% of the
sentences form the validation set which is used for
model evaluation during training and for early stop-
ping.

We report the word based and exact phrase match
based micro-averaged recall, precision and F-score.
Exact phrase match based evaluation is calculated
on a per phrase basis, and considers a phrase as pos-
itively labeled only if the phrase exactly matches
the true boundary and label of the reference phrase.
Word based evaluation metric is calculated on labels
of individual words. A word’s predicted label is con-
sidered as correct if it matches the reference label,

irrespective of whether the remaining words in its
phrase are labeled correctly. Word based evaluation
is a more relaxed metric than phrase based evalua-
tion.

6 Results

The micro-averaged Precision, Recall and F-score
for all five models are shown in Table 2. We report
both strict (exact match) and relaxed (word based)
evaluation results. As shown in Table 2, the best per-
formance is obtained by Skip-Chain CRF (0.8210
for strict and 0.8632 for relaxed evaluation). All
LSTM based models outperform the CRF baseline.
Bi-LSTM-CRF and Bi-LSTM-CRF-pair models us-
ing exact CRF inference improve the precision of
strict evaluation by 2 to 5 percentage points. Bi-
LSTM CRF-pair achieved the highest precision for
exact-match. However, the recall (both strict and re-
laxed) for exact CRF-LSTM models is less than Bi-
LSTM. This reduction in recall is much less in the
Bi-LSTM-pair model. In relaxed evaluation, only
the Skip Chain model has a better F-score than the
baseline LSTM. Overall, Bi-LSTM-CRF-pair and
Approx-Skip-Chain models lead to performance im-
provements. However, the standard Bi-LSTM-CRF
model does not provide an appreciable increase over
the baseline.

Figure 1 shows the breakdown of performance
for each RNN model with respect to individual
clinical entity labels. CRF baseline model perfor-
mance is not shown in Figure 1, because its per-
formance is consistently lower than Bi-LSTM-CRF
model across all label categories. We use pairwise
t-test on strict evaluation F-score for each fold in
cross validation, to calculate the statistical signifi-
cance of our scores. The improvement in F-score
for Bi-LSTM-CRF-pair and Approx-Skip Chain as
compared to Bi-LSTM baseline is statistically sig-
nificant (p < 0.01). The difference in Bi-LSTM-
CRF and Bi-LSTM baseline, does not appear to be
statistically significant (p > 0.05). However, the im-
provements over CRF baseline for all LSTM models
are statistically significant.

7 Discussion

Overall, Approx-Skip-Chain CRF model achieved
better F-scores than CRF,Bi-LSTM and Bi-LSTM-

863

CRF in both strict and relaxed evaluations. The re-
sults of strict evaluation, as shown in Figure 1, are
our main focus of discussion due to their impor-
tance in the clinical domain. As expected, two ex-
act inference-based CRF-LSTM models (Bi-LSTM-
CRF and Bi-LSTM-CRF-pair) show the highest pre-
cision for all labels. Approx-Skip-Chain CRF’s pre-
cision is lower(due to approximate inference) but it
still mostly outperforms Bi-LSTM. The recall for
Skip Chain CRF is almost equal or better than all
other models due to its robustness in modeling de-
pendencies between distant labels. The variations in
recall contribute to the major differences in F-scores.
These variations can be due to several factors includ-
ing the rarity of that label in the dataset, the com-
plexity of phrases of a particular label, etc.

We believe, exact CRF-LSTM models described
here require more training samples than the baseline
Bi-LSTM to achieve a comparable recall for labels
that are complex or “difficult to detect”. For exam-
ple, as shown in table 1, we can divide the labels into
frequent (Other SSD, Indication, Severity, Drug-
name, Dosage, and Frequency) and rare or sparse
(Duration, ADE, Route). We can make a broad gen-
eralization, that exact CRF models (especially Bi-
LSTM-CRF) have somewhat lower recall for rare
labels. This is true for most labels except for Route,
Indication, and Severity. The CRF models have very
close recall (0.780,0.782) to the baseline Bi-LSTM
(0.803) for Route even though its number of inci-
dences are lower (2,862 incidences) than Indication
(3,724 incidences) and Severity (3,628 incidences),
both of which have lower recall even though their
incidences are much higher.

Complexity of each label can explain the afore-
mentioned phenomenon. Route for instance, fre-
quently contains unique phrases such as “by mouth”
or “p.o.,” and is therefore easier to detect. In con-
trast, Indication is ambiguous. Its vocabulary is
close to two other labels: ADE (1,807 incidences)
and the most populous Other SSD (40,984 inci-
dences). As a consequence, it is harder to sepa-
rate the three labels. Models need to learn cues
from surrounding context, which is more difficult
and requires more samples. This is why the re-
call for Indication is lower for CRF-LSTM models,
even though its number of incidences is higher than
Route. To further support our explanation, our re-

sults show that the exact CRF-LSTM models mis-
labeled around 40% of Indication words as Other
SSD, as opposed to just 20 % in case of the Bi-
LSTM baseline. The label Severity is a similar case.
It contains non-label-specific phrases such as “not
terribly”, “very rare” and “small area,” which may
explain why almost 35% of Severity words are mis-
labeled as Outside by the bi-LSTM-CRF as opposed
to around 20% by the baseline.

It is worthwhile to note that among exact CRF-
LSTM models, the recall for Bi-LSTM-CRF-pair is
much better than Bi-LSTM-CRF even for sparse la-
bels. This validates our initial hypothesis that Neu-
ral Net based pairwise modeling may lead to better
detection of rare labels.

8 Conclusion

We have shown that modeling pairwise potentials
and using an approximate version of Skip-chain in-
ference increase the performance of the LSTM-CRF
models. We also show that these models perform
much better than baseline LSTM and CRF models.
These results suggest that the structured prediction
models are good directions for improving the exact
phrase extraction for clinical entities.

Acknowledgments

We thank the UMassMed annotation team: Elaine
Freund, Wiesong Liu, Steve Belknap, Nadya Frid,
Alex Granillo, Heather Keating, and Victoria Wang
for creating the gold standard evaluation set used in
this work. We also thank the anonymous reviewers
for their comments and suggestions.

This work was supported in part by the grant
HL125089 from the National Institutes of Health
(NIH). We also acknowledge the support from the
United States Department of Veterans Affairs (VA)
through Award 1I01HX001457. This work was also
supported in part by the Center for Intelligent Infor-
mation Retrieval. The contents of this paper do not
represent the views of CIIR, NIH, VA or the United
States Government.

References
Jason PC Chiu and Eric Nichols. 2015. Named en-

tity recognition with bidirectional lstm-cnns. arXiv
preprint arXiv:1511.08308.

864

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Harsha Gurulingappa, Roman Klinger, Martin Hofmann-
Apitius, and Juliane Fluck. 2010. An empirical evalu-
ation of resources for the identification of diseases and
adverse effects in biomedical literature. In 2nd Work-
shop on Building and evaluating resources for biomed-
ical text mining (7th edition of the Language Resources
and Evaluation Conference).

James Hammerton. 2003. Named entity recognition with
long short-term memory. In Proceedings of the sev-
enth conference on Natural language learning at HLT-
NAACL 2003-Volume 4, pages 172–175. Association
for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Sergey Ioffe and Christian Szegedy. 2015. Batch
normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167.

Abhyuday Jagannatha and Hong Yu. 2016. Bidirectional
rnn for medical event detection in electronic health
records. In Proceedings of NAACL-HLT, pages 473–
482.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.

Guillaume Lample, Miguel Ballesteros, Sandeep Subra-
manian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.

Lishuang Li, Liuke Jin, Zhenchao Jiang, Dingxin Song,
and Degen Huang. 2015. Biomedical named entity
recognition based on extended recurrent neural net-
works. In Bioinformatics and Biomedicine (BIBM),
2015 IEEE International Conference on, pages 649–
652. IEEE.

Guosheng Lin, Chunhua Shen, Ian Reid, and Anton
van den Hengel. 2015. Deeply learning the messages
in message passing inference. In Advances in Neural
Information Processing Systems, pages 361–369.

Andrew McCallum and Wei Li. 2003. Early results
for named entity recognition with conditional random

fields, feature induction and web-enhanced lexicons.
In Proceedings of the seventh conference on Natu-
ral language learning at HLT-NAACL 2003-Volume 4,
pages 188–191. Association for Computational Lin-
guistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111–3119.

Riccardo Miotto, Li Li, Brian A Kidd, and Joel T Dud-
ley. 2016. Deep patient: An unsupervised representa-
tion to predict the future of patients from the electronic
health records. Scientific reports, 6:26094.

Christian M Rochefort, Aman D Verma, Tewodros
Eguale, Todd C Lee, and David L Buckeridge. 2015.
A novel method of adverse event detection can ac-
curately identify venous thromboembolisms (vtes)
from narrative electronic health record data. Jour-
nal of the American Medical Informatics Association,
22(1):155–165.

Sunita Sarawagi and William W Cohen. 2004. Semi-
markov conditional random fields for information ex-
traction. In Advances in neural information process-
ing systems, pages 1185–1192.

Burr Settles. 2004. Biomedical named entity recognition
using conditional random fields and rich feature sets.
In Proceedings of the International Joint Workshop on
Natural Language Processing in Biomedicine and its
Applications, pages 104–107. Association for Compu-
tational Linguistics.

Fei Sha and Fernando Pereira. 2003. Shallow parsing
with conditional random fields. In Proceedings of the
2003 Conference of the North American Chapter of the
Association for Computational Linguistics on Human
Language Technology-Volume 1, pages 134–141. As-
sociation for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Charles Sutton and Andrew McCallum. 2006. An in-
troduction to conditional random fields for relational
learning. Introduction to statistical relational learn-
ing, pages 93–128.

865

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 866–875,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning to Represent Review
with Tensor Decomposition for Spam Detection

Xuepeng Wang1,2, Kang Liu1, Shizhu He1 and Jun Zhao1,2

1 National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing, 100190, China

2 University of Chinese Academy of Sciences, Beijing, 100049, China
{xpwang, kliu, shizhu.he, jzhao}@nlpr.ia.ac.cn

Abstract

Review spam detection is a key task in opin-
ion mining. To accomplish this type of de-
tection, previous work has focused mainly on
effectively representing fake and non-fake re-
views with discriminative features, which are
discovered or elaborately designed by expert-
s or developers. This paper proposes a nov-
el review spam detection method that learn-
s the representation of reviews automatically
instead of heavily relying on experts’ knowl-
edge in a data-driven manner. More specifi-
cally, according to 11 relations (generated au-
tomatically from two basic patterns) between
reviewers and products, we employ tensor de-
composition to learn the embeddings of the re-
viewers and products in a vector space. We
collect relations between any two entities (re-
viewers and products), which results in much
useful and global information. We concate-
nate the review text, the embeddings of the re-
viewer and the reviewed product as the rep-
resentation of a review. Based on such rep-
resentations, the classifier could identify the
opinion spam more precisely. Experimental
results on an open Yelp dataset show that our
method could effectively enhance the spam
detection accuracy compared with the state-
of-the-art methods.

1 Introduction

With the development of E-commerce, more and
more customers share their experiences about prod-
ucts and services by posting reviews on the we-
b. These reviews could heavily guide the purchas-
ing behaviors of customers. The products which

receive more positive reviews tend to attract more
consumers and result in more profits. Studies on
Yelp.com have shown that an extra half-star rating
could cause a restaurant to sell out 19% more prod-
ucts (Anderson and Magruder, 2012), and a one-
star increase leads to a 5-9% profit increase (Luca,
2011). Therefore, more and more sellers and manu-
facturers have begun to place emphasis on analyzing
reviews. However, the question remains: is every
online review trustful? It has been reported that up
to 25% of the reviews on Yelp.com could be fraudu-
lent1. Due to the great profit or reputation, impostors
or spammers energetically post fake reviews on the
web to promote or defame targeted products (Jindal
and Liu, 2008). Such fake reviews could mislead
consumers and damage the online review websites’
reputations. Therefore, it is necessary and urgent to
detect fake reviews (review spam).

To accomplish this goal, much work has been
conducted. They commonly regard this task as a
classification task and most efforts are devoted to
exploring useful features for representing target re-
views. Li et al. (2013) and Kim et al. (2015) rep-
resent reviews with linguistic features; Lim et al.
(2010) and Mukherjee et al. (2013c) represent re-
views with reviewers’ behavioral features2; Wang
et al. (2011) and Akoglu et al. (2013) explore
graph structure features3; Mukherjee et al. (2013b),

1http://www.bbc.com/news/technology-24299742
2Reviewers’ spammer-like behaviors, e.g., if a reviewer con-

tinuously posts reviews within a short period of time, (s)he
might be a spammer, and her (his) posted reviews could be s-
pam.

3A kind of behavioral features which contain much interac-
tions between reviewers and products

866

Rayana and Akoglu (2015) use the combination of
aforementioned features. According to the exist-
ing studies, reviewers’ behavioral features have been
proven to be more effective than reviews’ linguistic
features for detecting review spam (Mukherjee et al.,
2013c). It is because that foxy spammers could eas-
ily disguise their writing styles and forge reviews,
discovering discriminative linguistic features is very
difficult. Recently, most of the researchers (Rayana
and Akoglu, 2015) have focused on the reviewer-
s’ behavioral features, the intuition behind which is
to capture the reviewers’ actions and supposes that
those reviews written with spammer-like behaviors
would be spam.

Although, the existing work has made signifi-
cant progress in combating review spamming, they
also have several limitations as follows. (1) The
representations of reviews rely heavily on experts’
prior knowledge or developers’ ingenuity. To dis-
cover more discriminative features for representing
reviews, previous work (Mukherjee et al., 2013b;
Rayana and Akoglu, 2015) have spent lots of man-
power and time on the statistics of the review
datasets. Besides, experts’ prior knowledge or de-
velopers’ ingenuity is not always reliable with the
variations of domains and languages. For exam-
ple, based on the datasets from Dianping site4, Li
et al. (2015) find that the real users tend to review
the restaurants nearby, but the spammers are not re-
stricted to the geographical location, they may come
from anywhere. However, it is not true in the Yelp
datasets (Mukherjee et al., 2013b). We found that
72% of the Yelp’s review spam is posted from the
areas near the restaurants, but only 64% of the au-
thentic reviews are near the restaurants. Therefore,
how to learn the representations of reviews direct-
ly from data instead of heavily relying on the ex-
perts’ prior knowledge or developers’ ingenuity be-
comes crucial and urgent. (2) Furthermore, limited
by the experts’ knowledge, previous work only uses
partial information of the review system. For exam-
ple, traditional behavioral features (Lim et al., 2010;
Mukherjee et al., 2013c) only utilize the information
of individual reviewer. Although the work (Wang
et al., 2011; Rayana and Akoglu, 2015) have tried
to employ graph structure to consider the interac-

4http://www.dianping.com

tions among the reviewers and products, it is a kind
of local interaction defined within the same produc-
t review page. However, the interaction among the
reviewers and products from different review pages
also provides much useful and global information,
which is ignored by the previous work.

To tackle the problems described above, we pro-
pose a novel review spam detection method which
can learn the representations of reviews instead of
heavily relying on the experts’ knowledge, develop-
ers’ ingenuity, or spammer-like assumption, and can
reserve the original information with a global man-
ner. Inspired by the work about distributional repre-
sentation or embedding for text and knowledge base,
we propose a tensor factorization-based model to
learn the representation of each review automatical-
ly. The finally learnt representation of each review is
determined by the original data, rather than the fea-
tures or clues found by experts. More specifically,
we defined two basic patterns without any expert-
s’ knowledge, developers’ ingenuity, or spammer-
like assumptions. Based on the two basic patterns,
we extended 11 interactive relations between entities
(reviewers and products) in terms of time, locations,
social contact, etc. Then, we build a 3-mode tensor
on these 11 interactive relations between reviewers
and products. In order to reserve the original infor-
mation with a global manner, we collect the relation-
s of any two entities regardless of whether they are
from the same review page. In this way, we could
reserve the original information of the data as much
as possible, which dispenses with human selection.
Next, we utilize tensor factorization to perform ten-
sor decomposition, and the representations of re-
viewers and products are embedded in a latent vector
space by collective learning. Afterward, we could
obtain vector representations (embeddings) for both
the reviewers and products. Then, we concatenate
the review text (e.g., bigram), the embedding of a
reviewer and the reviewed product as the represen-
tation of a review. In this way, the representations
of reviews driven by data could be learnt in the en-
tire review system in a global manner. Finally, such
representations are fed into a classifier to detect the
review spam.

In summary, this paper makes the following con-
tributions:
• It addresses the spam detection issue with a

867

1 2 3 … N
α1
α2

…

αn
β1

β2

…

βm

α1
α2

…αn
β1

β2
…βm

kX Factorize

A TA

αi

βj

αi

Concatenate

Review Representation

Input Classifier

βj

kR

Review
Data Product βj

Reviewer αi

Review Text τk

Relations

Figure 1: Illustrated of our method. The αi denotes the i-th reviewer, and the βj denotes the j-th product.

new perspective. Specifically, it learns the rep-
resentation of reviews directly from the da-
ta. The key advantage is that it can represent
the reviews instead of heavily relying on hu-
man ingenuity cost, experts’ knowledge or any
spammer-like assumption.
• It collects the relations between any two en-

tities regardless of whether they are from the
same review page, which results in much global
information. With the help of tensor factoriza-
tion, it could collectively embed the informa-
tion of different relations into the final repre-
sentations of reviews, and further optimize the
representations. Therefore it could faithfully
reflect the original characteristics of the entire
review system with a global manner.
• An extra advantage is that the learnt represen-

tations of reviews are embeddings in a latent s-
pace. They are hardly comprehended by human
beings included spammers. It’s a robust detec-
tion method in contrast to the previous meth-
ods in which the reviews are represented by
the explicit detecting clues and features. Once
have realized the explicit features that were
captured, experienced spammers could change
their spamming strategies.
• The method of this paper renders 89.2%

F1-score in detecting restaurant review spam
which is higher than the F1-score of 86.1%
rendered by the method in (Mukherjee et al.,
2013b) (in hotel domain, it’s 87.0% vs 84.8%).
These experimental results give good confi-
dence to the proposed approach, and the learnt
representations of reviews are more robust and
effective than in previous methods.

2 The Proposed Method

In this section, we propose our method (shown in
Figure 1) in detail. Compared with the previous
work, we address the review spam detection issue by
learning the representation of the reviews automati-
cally in a latent space without experts’ knowledge.
First, we extend 11 interactive relations between en-
tities (reviewers and products) from the two basic
patterns in terms of time, locations, social contact,
etc. Then, our method generates 11 relation matrices
of the reviewers (αi) and products (βj). After that,
we construct a 3-mode tensor X, where each slice
Xk in X denotes the link relationship between the
reviewers and products in the relation k. Second, we
factorize the tensor X by employing the algorithm
RESCAL (Nickel et al., 2011). In the factorization
results, A represents the embeddings of the review-
ers (αi) and products (βj) in the latent space with
the collective learning. Third, we concatenate the
review text (bigram), the embedding of its reviewer
and the reviewed product together, as the representa-
tion of the review. Last, the concatenated embedding
of the review is fed into a classifier (e.g., SVM) to
detect whether it is a fake or non-fake review.

2.1 Relation Matrices Generation
In the review system, there are two kinds of entities:
reviewers and products5. Each entity has several at-
tributes, e.g., the attribute ‘location’ of a restaurant
is Chicago (the restaurant is regarded as a product).
More details are shown in Table 1.

To learn the representations of reviews directly
from the data instead of experts’ knowledge, we de-
fined two basic patterns:

5The product refers to a hotel/restaurant in our experiments.

868

Reviewer Attribute Product Attribute
set of reviewed products set of reviewers
set of reviews
(rating score, time)

set of reviews
(rating score, time)

website joining date average rating
friend count review count
location location

Table 1: Entities and Attributes

Pattern 1:Record the relationships between two
entities.

Pattern 2:Record the relationships between at-
tributes of two entities.

These patterns do not contain any spammer-like
prior assumption, just record the natural relation
in the original review system. Based on the t-
wo basic patterns, we extended 11 interactive rela-
tions between entities and their attributes (showed
in Table 1). They will be described in detail as
follows. Meanwhile, we define that avg(ak,i) =
1

n

∑n
k=1 ak,i.

1. Have reviewed: This relation records whether
a reviewer has reviewed a product. If reviewer
αi reviewed product βj , the value X[i, j, 1] in
this relation matrix X[:, :, 1] is 1, otherwise it’s
0.

2. Rating score: What score (1 to 5 star) a
reviewer-rated product receives. The value
X[i, j, 2] ∈ {1, 2, ..., 5}.

3. Commonly reviewed products: The number
of products that a reviewer commonly reviewed
with other reviewers. The value X[i, j, 3] =
|Pij | , Pij = Pi ∩ Pj ; Pi is the product set re-
viewed by reviewer αi.

4. Commonly reviewed time difference: The
time differences that a reviewer who commonly
reviews with other reviewers on the same prod-
ucts. The valueX[i, j, 4] = ti− tj , where ti =
avg(tk,i); tk,i is the time that the reviewer αi
reviewed the product βk in the Pij set.

5. Commonly reviewed rating difference: The
rating differences that a reviewer who com-
monly reviews with other reviewers on the
same products. The value X[i, j, 5] = ri −
rj , where ri = avg(rk,i); rk,i is the score of
the reviewer αi rated the product βk in Pij set.

6. Date difference of websites joined: The date
differences of joining review websites between
a reviewer and others. The value X[i, j, 6] =
di− dj , where di is the date on which reviewer
αi joining websites.

7. Average rating difference: The differences in
the average rating of a reviewer over all his re-
views compared with other reviewers. The val-
ueX[i, j, 7] = γri −γrj , where γri = avg(γrk,i);
γrk,i is the score with which the reviewer αi rat-
ed the product βk in Pi.

The differences in the average rating of a
product over all its reviews compared with oth-
er products. X[i, j, 7] = γpi − γ

p
j , where γpi =

avg(γpk,i); γ
p
k,i is the score of review k in Rβi ,

which is the review set for product βi.

8. Friend count difference: The differences in
the friend count of a reviewer compared to oth-
ers. At the review website, a reviewer can make
friends with others. The value X[i, j, 8] =
fi−fj ; where fi is the friend count of reviewer
αi.

9. Have the same location or not: Whether t-
wo reviewers/products are from the same city
or whether a reviewer has the same location
with a product. If two entities have the same
location, the value X[i, j, 9] = 1, otherwise
X[i, j, 9] = 0.

10. Common reviewers: The number of the same
reviewers that a product has with other product-
s. The value X[i, j, 10] = |Θij | , where Θij =
Θi ∩ Θj ; Θi is the set of reviewers who re-
viewed product βi.

11. Review count difference: The differences in
the reviews count of any two reviewers. The
value X[i, j, 11] = |Rαi | −

∣∣∣Rαj
∣∣∣, where Rαi is

the reviews set of reviewer αi. Or the differ-
ences in the reviews count of any two products,
where X[i, j, 11] =

∣∣∣Rβi
∣∣∣−
∣∣∣Rβj

∣∣∣, where Rβi is
the reviews set of product βi.

According to the relations that we present above,
we build 11 relation matrices among the reviewers
and products. To unify the values of different ma-
trices to a reference system, we normalize with the

869

sigmoid function. Thus, the value ‘0’ will be nor-
malized to ‘0.5’. Moreover, we set the values that
make no sense to ‘0’, such as the value between t-
wo products in Relation 1: Have reviewed. Then,
we unite the 11 matrices to form the adjacent ten-
sor. Each of the matrices is a slice of the tensor. The
reviewers and products are regarded as the same en-
tities in the tensor. We build two separate tensors for
the hotel domain and restaurant domain respective-
ly. Next, we perform tensor factorization to learn the
representations (embeddings) of reviewers and prod-
ucts. Note that the word “relation” is normally used
for binary (0/1) relations, but some values of afore-
mentioned relations could be between 0 and 1. How-
ever, our experiments show that this type of rela-
tion is actually practicable. Besides, there is not any
spammer-like assumption in the relations. Namely,
the values of relations don’t indicate how suspicious
the reviewers are. The values faithfully reflect the
original characteristics of the entire review system.
This can help to reduce the need of carefully design-
ing expert features and the understanding of domain-
s as much as possible.

2.2 Learning to Represent Reviews
In general case, a review contains the text, the re-
viewer and the reviewed product. We firstly learn
to represent reviewers and products. As mentioned
above, based on the relations, we could construct an
adjacency tensor X. Then, we convert the global re-
lation information related reviewers and products in-
to embeddings through tensor factorization, where
an efficient factorization algorithm called RESCAL
(Nickel et al., 2011) is employed. First, we intro-
duce it briefly.

To identify latent components in a tensor for
collective learning, Nickel et al. (2011) proposed
RESCAL, which is a tensor factorization algorithm.
Given a tensor Xn′×n′×m′ , RESCAL aims to have
a rank-r approximation, where each slice Xk is fac-
torized as

Xk ≈ ARkAT , for all k = 1...m′, (1)

A is an n′× r matrix, where the i-th row denotes the
i-th entity. Rk is an asymmetric r × r matrix that
describes the interactions of the latent components
according to the k-th relation. Note that while Rk
differs in each slice, A remains the same.

A andRk are derived by minimizing the loss func-
tion below.

min
A,Rk

f(A, Rk) + λ · g(A, Rk), (2)

where f(A, Rk) = 1
2(
∑

k ‖ Xk − ARkAT ‖2F
) is the mean-squared reconstruction error, and
g(A, Rk) = 1

2(‖ A ‖2F +
∑

k ‖ Rk ‖2F) is the
regularization term.

In our method, sliceXk is the k-th relation above.
The i-th entity is the i-th reviewer or product.

As mentioned in Section 2.1, in order to obtain
more useful and global information automatically,
we collect the relations of any two entities no mat-
ter whether they are from the same review page.
Then we could embed the informations over multi-
relations into the finally learnt representation by the
tensor factorization. As Nickel et al. (2011) proved,
all the relations have a determining influence on the
learnt latent-component representation of the i-th
entity. It removes the noise of the original data by
learning through the global loss function. Conse-
quently, we get the representation of reviewers and
products with a further optimization by the collec-
tive learning.

2.3 Detecting Review Spam in Latent Space

After learning the representations of reviewers and
products, we begin to represent the reviews that were
written by reviewers for the products. Our final pur-
pose is to detect the review spam. We concatenate
the review text (bigram), the embedding of a review-
er and the reviewed product as the representation of
a review. The representations of the review text by
bigram have been proved to be effective in sever-
al previous work (Mukherjee et al., 2013b; Rayana
and Akoglu, 2015; Kim et al., 2015). It’s also a kind
of data-driven representation. Then, we take the em-
beddings of the reviews as the input to the classifiers.
Here, we use the linear kernel SVM model to com-
pare with the experimental results in (Mukherjee et
al., 2013b) and (Rayana and Akoglu, 2015).

3 Experiments

3.1 Datasets and Evaluation Metrics

Datasets: To evaluate the proposed method, we con-
ducted experiments on Yelp dataset that was used in

870

previous studies (Mukherjee et al., 2013b; Mukher-
jee et al., 2013c; Rayana and Akoglu, 2015). Al-
though there are other datasets for evaluation, such
as (Jindal and Liu, 2008), (Lim et al., 2010; Xie et
al., 2012) and (Ott et al., 2011), they are generated
by human labeling or crowd sourcing and have been
proved not to be reliable since human labeling fake
reviews is quite poor (Ott et al., 2011). There was
lack of real-life and nearly ground truth data, until
Mukherjee et al. (2013c) proposed the Yelp review
dataset. The statistics of the Yelp dataset are listed in
Table 2. The reviewed product here refers to a hotel
or restaurant.
Evaluation Metrics: We select precision (P), recall
(R), F1-Score (F1) and accuracy (A) as metrics.

Domain Hotel Restaurant
fake 802 8368

non-fake 4876 50149
%fake 14.1% 14.3%

#reviews 5678 58517
#reviewers 5124 35593

Table 2: Yelp Labeled Dataset Statistics.

3.2 Our Method vs. The State-of-the-art
Methods

To illustrate the effectiveness of the proposed ap-
proach, we select several state-of-the-arts for com-
parison. The first one is SPEAGLE+ (Rayana and
Akoglu, 2015), which is a kind of graph-based
method. The representations of reviews in (Rayana
and Akoglu, 2015) are combined with linguistic fea-
tures, behavioral features and review graph structure
features. It’s a semi-supervised method. For a fair
comparison with our 5-fold CV classification, we
set the ratio of labeled data in SPEAGLE+ to 80%.
The second one is Mukherjee et al. (2013b). KC and
Mukherjee (2016) also conduct experiments on the
restaurant subset in Table 2. But they mainly focus
on analyzing the effects of temporal dynamics. It’s
not our focus. So we didn’t take it into comparison.
In our experiments, we employ behavioral features
(Mukherjee BF) and both of behavioral and linguis-
tic features (Mukherjee BF+Bigram) proposed in
Mukherjee et al. (2013b), respectively. The parame-
ters used in these compared methods are same as the
original papers. For our approach, we set the param-
eter r to 150, λ to 10, and the iteration number to

100.
The compared results are shown in Table 3. We u-

tilize our learnt embeddings of reviewers (Ours RE),
both of reviewers’ embeddings and products’ em-
beddings (Ours RE+PE), respectively. Moreover,
to perform fair comparison, like Mukherjee et al.
(2013b), we add representations of the review text in
classifier (Ours RE+PE+Bigram). From the result-
s, we can observe that our method could outperform
all state-of-the-arts in both the hotel and restaurant
domains. It proves that our method is effective. Fur-
thermore, the improvements in both the hotel and
restaurant domains prove that our model possesses
preferable domain-adaptability. It could represent
the reviews more accurately and globally by learn-
ing from the original data, rather than the experts’
knowledge or assumption.

3.3 The Effectiveness of Learning to Represent
Review

To further prove the representations learnt by our
method are effective for detecting review spam, we
compare the learnt representation (embeddings) of
reviewers (Ours RE) (Table 3 (a,b) rows 7, 8) with
existing behavioral features of reviewers (Mukher-
jee BF) (Mukherjee et al., 2013b) (Table 3 (a,b)
rows 3, 4). In results, using the learnt reviewer-
s’ representations in our method, results in around
2.0% (in 50:50) and 4.0% (in N.D.) improvement in
F1 and A in the hotel domain, and results in around
2.1% (in 50:50) and 7.0%(in N.D.) improvement in
F1 and A in the restaurant domain. These results
show that our data-driven representations of review-
ers are more helpful for review spam detection than
existing reviewers’ behavioral features, and that new
method embeds more useful and accurate informa-
tion from the original data. It isn’t limited to expert-
s’ knowledge. Moreover, the latent representations
are more robust because they are hardly perceived
by spammers. Having realized the explicit existing
behavioral features, crafty spammers tend to change
their spamming strategies. Consider the feature “Re-
view Length”, which is used in (Mukherjee et al.,
2013b), as an example. They find that the average
review length of the spammers is quite short com-
pared with non-spammers. However, once a crafty
spammer realizes that he left this type of footprint,
he could produce a review that is as long as the non-

871

Method C.D. P R F1 A

SPEAGLE+(80%) 50:50 75.7 83.0 79.1 81.0
N.D. 26.5 56.0 36.0 80.4

Mukherjee BF 50:50 82.4 85.2 83.7 83.8
N.D. 41.4 84.6 55.6 82.4

Mukherjee BF+Bigram 50:50 82.8 86.9 84.8 85.1
N.D. 46.5 82.5 59.4 84.9

Ours RE 50:50 83.3 88.1 85.6 85.5
N.D. 47.1 83.5 60.2 85.0

Ours RE+PE 50:50 83.6 89.0 86.2 85.7
N.D. 47.5 84.1 60.7 85.3

Ours RE+PE+Bigram 50:50 84.2 89.9 87.0 86.5
N.D. 48.2 85.0 61.5 85.9
(a) Hotel

P R F1 A
80.5 83.2 81.8 82.5 1
50.1 70.5 58.6 82.0 2
82.8 88.5 85.6 83.3 3
48.2 87.9 62.3 78.6 4
84.5 87.8 86.1 86.5 5
48.9 87.3 62.7 82.3 6
85.4 90.2 87.7 87.4 7
56.9 90.1 69.8 85.8 8
86.0 90.7 88.3 88.0 9
57.4 89.9 70.1 86.1 10
86.8 91.8 89.2 89.9 11
58.2 90.3 70.8 87.8 12

(b) Restaurant
Table 3: Classification results across the behavioral features (BF), the reviewer embeddings (RE) , product embeddings (PE) and
bigram of the review texts. Training uses balanced data (50:50). Testing uses two class distributions (C.D.): 50:50 (balanced) and
Natural Distribution (N.D.). Improvements of our method are statistically significant with p<0.005 based on paired t-test.

84%

86%

88%
BF

Rels

RE

80%

82%

P R F1 A

(a) Hotel

86%

88%

90%
BF

Rels

RE

82%

84%

P R F1 A

(b) Restaurant
Figure 2: SVM 5-fold CV classification results across behav-
ioral features (BF), 11 relations (Rels) and reviewer embed-
dings (RE) in our method. Both training and testing use bal-
anced data (50:50). Improvements are statistically significant
with p<0.005 based on paired t-test.

spammers to pretend to be a normal reviewer. Be-
sides, as there isn’t any spammer-like assumption
in our extended relations (Section 2.1), crafty spam-
mers have little influence on them.

We also compared existing behavioral features
(BF) (Mukherjee et al., 2013b) with detecting re-
view spam by only employing the 11 generated re-
lations (Rels). We take the relation matrix row of
each reviewer as the representations of the reviews.
According to the results shown in Figure 2, the 11
generated relations (Rels) results in an obvious im-
provement than the existing behavioral features (BF)
(Mukherjee et al., 2013b) (Table 3 (a,b) row 3) in
both the hotel and restaurant domains. It proves that
the generated relations could obtain more useful and
global informations, as they collect the relations of
any entities (reviewers and products) regardless of
whether they are from the same review page. Fur-
thermore, Figure 2 also showed that the embeddings

Dropped
Relation

Hotel Restaurant
F1 A F1 A

1 -2.1 -2.0 -2.0 -3.1
2 -2.3 -2.1 -1.9 -2.9
3 -3.9 -4.0 -4.0 -6.3
4 -3.7 -3.5 -3.6 -5.5
5 -3.5 -3.6 -2.8 -4.5
6 -2.5 -2.5 -3.4 -5.2
7 -3.2 -3.2 -3.3 -5.0
8 -2.8 -2.6 -3.0 -4.6
9 -4.0 -3.7 -3.7 -5.4

10 -2.2 -2.4 -1.8 -2.8
11 -2.6 -2.4 -2.7 -4.4

Table 4: SVM 5-fold CV classification results by dropping re-
lations from our method utilizing RE+PE+Bigram. Both train-
ing and testing use balanced data (50:50). Differences in clas-
sification metrics for each dropped relation are statistically sig-
nificant with p<0.01 based on paired t-test.

of reviewers (RE) learnt by the tensor decomposi-
tion perform better than the Rels. As we mentioned
in Section 2.2, the tensor decomposition embeds the
informations over all the relations collectively, and
removes the noise of the original data by learning
through the global loss function. Consequently, we
get the representations with a further optimization.

3.4 The Effectiveness of Product Embeddings

In general case, a review contains the review tex-
t, the reviewer and the reviewed product. But most
of the previous work represent the reviews with the
reviewers’ behavioral features and the reviews’ lin-
guistic features. The products are seldom represent-
ed. As shown in Table 3 (a,b) rows 9,10 , the rep-
resentations which added the products embeddings

872

perform better than just using the reviewer embed-
dings. Statistics of the datasets suggest that there
are about 1% of spammers who not only write fake
reviews, but also write non-fake reviews. Liu (2015)
also proved that some reviewers have contributed
many genuine reviews and have built up their reputa-
tion; then they started to spam for some businesses,
or even sell their accounts to spammers. Compared
with previous work, our method by adding produc-
t embeddings could distinguish the reviews of the
same reviewer for different products.

3.5 The Effects of Different Relations

We also drop relations of our method with a grace-
ful degradation. Table 4 shows the performances of
our method utilizing BF+PE+Bigram for hotel and
restaurant domains. We found that dropping Rela-
tions 1, 2 and 10 results in a relatively gentle re-
duction (about 2.2%) in F1-score. According to our
survey, the sparseness of the slices generated by Re-
lation 1, 2 and 10 is about 99.9%. For this reason,
the result is a relatively gentle reduction. Dropping
other relations also result in a 2.5-4.0% performance
reduction. It proves that each relation has an influ-
ence on the learning to represent reviews.

4 Related Work

Jindal and Liu (2008) first propose the problem of
review spam detection. They identify three cate-
gories of spam: fake reviews (also called untruth-
ful opinions), reviews on the brand only, and non-
reviews.Stepping studies focus on studying fake re-
views because of its difficulty to be detected. Most
efforts are devoted to represent fake and non-fake
reviews with effective features.
Linguistic Features Ott et al. (2011) apply psy-
chological and linguistic clues to identify review
spam. They produce the first dataset of gold-
standard deceptive review spam, employing crowd-
sourcing through the Amazon Mechanical Turk.
Harris (2012) explores several human- and machine-
based assessment methods with writing style fea-
tures. Feng et al. (2012a) investigate syntactic sty-
lometry for review spam detection. Li et al. (2013)
propose a generative LDA-based topic modeling ap-
proach for fake review detection. They (Li et al.,
2014b) further investigate the general difference of

language usage between deceptive and truthful re-
views. Li et al. (2014a) propose a positive-unlabeled
learning method base on unigrams and bigrams.
Kim et al. (2015) carry out a frame-based deep se-
mantic analysis on deceptive opinions.
Behavioral Features Lim et al. (2010) investigate
reviewers’ rating behavioral features. Jindal et
al. (2010) identify unusual review patterns which
can represent suspicious behaviors of reviews. Li
et al. (2011) provide a two-view semi-supervised
method, co-training method base on behavioral fea-
tures. Feng et al. (2012b) study the distributions of
behavioral features. Xie et al. (2012) explore the s-
ingleton reviews with abnormal temporal patterns.
Mukherjee et al. (2012) study the group spammers’
behavioral features. Mukherjee et al. (2013a) pro-
pose a principal method which models the spamici-
ty of reviewers. Fei et al. (2013) model the review-
ers’ co-occurrence in review bursts. Mukherjee et
al. (2013c) prove that reviewers’ behavioral features
are more effective than reviews’ linguistic features
for detecting review spam. Li et al. (2015) explore
the temporal and spatial patterns at Dianping.com.
KC and Mukherjee (2016) analyze the temporal dy-
namics of opinion spamming.
Graph Structure Wang et al. (2011) investigate the
review graph features of online store review. Akoglu
et al. (2013) exploit the network effect among re-
viewers and products.
Combined Features There are also some work
which explores methods via the combined features
referred above. Mukherjee et al. (2013b) prose a
method base on the linguistic features and behav-
ioral features. Rayana and Akoglu (2015) propose a
model that utilizes clues from review text, reviewer-
s’ behaviors and the review graph structure.

5 Conclusion and Future Work

This paper proposes a new review spam detection
method that learns the representations of reviews in-
stead of heavily relying on experts’ knowledge in
a data-driven manner. A 3-mode tensor is built on
the relations which are generated from two patterns,
and a tensor factorization algorithm is used to auto-
matically learn the vector representations of review-
ers and products. Afterwards, we concatenate the
review text, the embedding of a reviewer and the

873

reviewed product as the representation of a review.
Then, a classifier is applied to detect the review s-
pam. Experimental results prove the effectiveness of
the proposed method, which learns more robust re-
view representations. In future work, we plan to ex-
plore a more effective way to learn the embeddings
of review text.

Acknowledgments

This work was supported by the Natural Sci-
ence Foundation of China (No. 61533018), the
National Basic Research Program of China (No.
2014CB340503) and the National Natural Science
Foundation of China (No. 61502493). We would
like to thank Prof. Bing Liu for sharing the Yelp re-
view dataset with us, and the anonymous reviewers
for their detailed comments and suggestions.

References

Leman Akoglu, Rishi Chandy, and Christos Faloutsos.
2013. Opinion fraud detection in online reviews by
network effects. ICWSM, 13:2–11.

Michael Anderson and Jeremy Magruder. 2012. Learn-
ing from the crowd: Regression discontinuity esti-
mates of the effects of an online review database*. The
Economic Journal, 122(563):957–989.

Geli Fei, Arjun Mukherjee, Bing Liu, Meichun Hsu,
Malu Castellanos, and Riddhiman Ghosh. 2013. Ex-
ploiting burstiness in reviews for review spammer de-
tection. In ICWSM. Citeseer.

Song Feng, Ritwik Banerjee, and Yejin Choi. 2012a.
Syntactic stylometry for deception detection. In Pro-
ceedings of the 50th ACL: Short Papers-Volume 2,
pages 171–175. ACL.

Song Feng, Longfei Xing, Anupam Gogar, and Yejin
Choi. 2012b. Distributional footprints of deceptive
product reviews. In ICWSM.

C Harris. 2012. Detecting deceptive opinion spam using
human computation. In Workshops at AAAI on Artifi-
cial Intelligence.

Nitin Jindal and Bing Liu. 2008. Opinion spam and anal-
ysis. In Proceedings of the First WSDM, pages 219–
230. ACM.

Nitin Jindal, Bing Liu, and Ee-Peng Lim. 2010. Find-
ing unusual review patterns using unexpected rules.
In Proceedings of the 19th CIKM, pages 1549–1552.
ACM.

Santosh KC and Arjun Mukherjee. 2016. On the tem-
poral dynamics of opinion spamming: Case studies on

yelp. In Proceedings of the 25th International Confer-
ence on World Wide Web, pages 369–379. International
World Wide Web Conferences Steering Committee.

Seongsoon Kim, Hyeokyoon Chang, Seongwoon Lee,
Minhwan Yu, and Jaewoo Kang. 2015. Deep semantic
frame-based deceptive opinion spam analysis. In Pro-
ceedings of the 24th CIKM, pages 1131–1140. ACM.

Fangtao Li, Minlie Huang, Yi Yang, and Xiaoyan Zhu.
2011. Learning to identify review spam. In IJCAI
Proceedings, volume 22, page 2488.

Jiwei Li, Claire Cardie, and Sujian Li. 2013. Topicspam:
a topic-model based approach for spam detection. In
ACL (2), pages 217–221.

Huayi Li, Bing Liu, Arjun Mukherjee, and Jidong Shao.
2014a. Spotting fake reviews using positive-unlabeled
learning. Computación y Sistemas, 18(3):467–475.

Jiwei Li, Myle Ott, Claire Cardie, and Eduard Hovy.
2014b. Towards a general rule for identifying decep-
tive opinion spam. ACL.

Huayi Li, Zhiyuan Chen, Arjun Mukherjee, Bing Liu,
and Jidong Shao. 2015. Analyzing and detecting
opinion spam on a large-scale dataset via temporal and
spatial patterns. In Ninth International AAAI Confer-
ence on Web and Social Media.

Ee-Peng Lim, Viet-An Nguyen, Nitin Jindal, Bing Liu,
and Hady Wirawan Lauw. 2010. Detecting product
review spammers using rating behaviors. In Proceed-
ings of the 19th CIKM, pages 939–948. ACM.

Bing Liu. 2015. Sentiment Analysis: Mining Opinion-
s, Sentiments, and Emotions. Cambridge University
Press.

Michael Luca. 2011. Reviews, reputation, and revenue:
The case of yelp. com. Com (September 16, 2011).
Harvard Business School NOM Unit Working Paper,
(12-016).

Arjun Mukherjee, Bing Liu, and Natalie Glance. 2012.
Spotting fake reviewer groups in consumer reviews. In
Proceedings of the 21st WWW, pages 191–200. ACM.

Arjun Mukherjee, Abhinav Kumar, Bing Liu, Junhui
Wang, Meichun Hsu, Malu Castellanos, and Riddhi-
man Ghosh. 2013a. Spotting opinion spammers using
behavioral footprints. In Proceedings of the 19th ACM
SIGKDD, pages 632–640. ACM.

Arjun Mukherjee, Vivek Venkataraman, Bing Liu, and
Natalie Glance. 2013b. Fake review detection: Classi-
fication and analysis of real and pseudo reviews. Tech-
nical report, Technical Report UIC-CS-2013-03, Uni-
versity of Illinois at Chicago.

Arjun Mukherjee, Vivek Venkataraman, Bing Liu, and
Natalie S Glance. 2013c. What yelp fake review filter
might be doing? In ICWSM.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective

874

learning on multi-relational data. In Proceedings of
the 28th ICML, pages 809–816.

Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T Han-
cock. 2011. Finding deceptive opinion spam by any
stretch of the imagination. In Proceedings of the 49th
ACL: Human Language Technologies-Volume 1, pages
309–319. ACL.

Shebuti Rayana and Leman Akoglu. 2015. Collective
opinion spam detection: Bridging review networks and
metadata. In Proceedings of the 21th ACM SIGKD-
D International Conference on Knowledge Discovery
and Data Mining, pages 985–994. ACM.

Guan Wang, Sihong Xie, Bing Liu, and Philip S Yu.
2011. Review graph based online store review spam-
mer detection. In Proceedings of the 11th ICDM,
pages 1242–1247. IEEE.

Sihong Xie, Guan Wang, Shuyang Lin, and Philip S Yu.
2012. Review spam detection via temporal pattern dis-
covery. In Proceedings of the 18th KDD, pages 823–
831. ACM.

875

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 876–885,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Stance Detection with Bidirectional Conditional Encoding

Isabelle Augenstein and Tim Rocktäschel
Department of Computer Science

University College London
i.augenstein@ucl.ac.uk, t.rocktaschel@cs.ucl.ac.uk

Andreas Vlachos and Kalina Bontcheva
Department of Computer Science

University of Sheffield
{a.vlachos, k.bontcheva}@sheffield.ac.uk

Abstract

Stance detection is the task of classifying the
attitude Previous work has assumed that ei-
ther the target is mentioned in the text or that
training data for every target is given. This pa-
per considers the more challenging version of
this task, where targets are not always men-
tioned and no training data is available for
the test targets. We experiment with condi-
tional LSTM encoding, which builds a rep-
resentation of the tweet that is dependent on
the target, and demonstrate that it outperforms
encoding the tweet and the target indepen-
dently. Performance is improved further when
the conditional model is augmented with bidi-
rectional encoding. We evaluate our approach
on the SemEval 2016 Task 6 Twitter Stance
Detection corpus achieving performance sec-
ond best only to a system trained on semi-
automatically labelled tweets for the test tar-
get. When such weak supervision is added,
our approach achieves state–of-the-art results.

1 Introduction

The goal of stance detection is to classify the attitude
expressed in a text towards a given target, as “pos-
itive”, ”negative”, or ”neutral”. Such information
can be useful for a variety of tasks, e.g. Mendoza
et al. (2010) showed that tweets stating actual facts
were affirmed by 90% of the tweets related to them,
while tweets conveying false information were pre-
dominantly questioned or denied. In this paper we
focus on a novel stance detection task, namely tweet
stance detection towards previously unseen targets
(mostly entities such as politicians or issues of pub-

lic interest), as defined in the SemEval Stance De-
tection for Twitter task (Mohammad et al., 2016).
This task is rather difficult, firstly due to not having
training data for the targets in the test set, and sec-
ondly, due to the targets not always being mentioned
in the tweet. For example, the tweet “@realDon-
aldTrump is the only honest voice of the @GOP”
expresses a positive stance towards the target Don-
ald Trump. However, when stance is annotated with
respect to Hillary Clinton as the implicit target, this
tweet expresses a negative stance, since supporting
candidates from one party implies negative stance
towards candidates from other parties.

Thus the challenge is twofold. First, we need to
learn a model that interprets the tweet stance towards
a target that might not be mentioned in the tweet it-
self. Second, we need to learn such a model without
labelled training data for the target with respect to
which we are predicting the stance. In the example
above, we need to learn a model for Hillary Clinton
by only using training data for other targets. While
this renders the task more challenging, it is a more
realistic scenario, as it is unlikely that labelled train-
ing data for each target of interest will be available.

To address these challenges we develop a neu-
ral network architecture based on conditional encod-
ing (Rocktäschel et al., 2016). A long-short term
memory (LSTM) network (Hochreiter and Schmid-
huber, 1997) is used to encode the target, followed
by a second LSTM that encodes the tweet using
the encoding of the target as its initial state. We
show that this approach achieves better F1 than an
SVM baseline, or an independent LSTM encoding
of the tweet and the target. Results improve fur-

876

ther (0.4901 F1) with a bidirectional version of our
model, which takes into account the context on ei-
ther side of the word being encoded. In the context
of the shared task, this would have been the second
best result, except for an approach which uses auto-
matically labelled tweets for the test targets (F1 of
0.5628). Lastly, when our bidirectional conditional
encoding model is trained on such data, it achieves
state-of-the-art performance (0.5803 F1).

2 Task Setup

The SemEval 2016 Stance Detection for Twitter
shared task (Mohammad et al., 2016) consists of
two subtasks, Task A and Task B. In Task A the
goal is to detect the stance of tweets towards tar-
gets given labelled training data for all test targets
(Climate Change is a Real Concern, Feminist Move-
ment, Atheism, Legalization of Abortion and Hillary
Clinton). In Task B, which is the focus of this paper,
the goal is to detect stance with respect to an un-
seen target, Donald Trump, for which labeled train-
ing/development data is not provided.

Systems need to classify the stance of each tweet
as “positive” (FAVOR), “negative” (AGAINST) or
“neutral” (NONE) towards the target. The official
metric reported for the shared task is F1 macro-
averaged over the classes FAVOR and AGAINST.
Although the F1 of NONE is not considered, sys-
tems still need to predict it to avoid precision errors
for the other two classes.

Even though participants were not allowed to
manually label data for the test target Donald Trump,
they were allowed to label data automatically. The
two best-performing systems submitted to Task B,
pkudblab (Wei et al., 2016) and LitisMind (Zarrella
and Marsh, 2016) made use of this, thus changing
the task to weakly supervised seen target stance de-
tection, instead of an unseen target task. Although
the goal of this paper is to present stance detec-
tion methods for targets for which no training data
is available, we show that they can also be used
successfully in a weakly supervised framework and
outperform the state-of-the-art on the SemEval 2016
Stance Detection for Twitter dataset.

3 Methods

A common stance detection approach is to treat it
as a sentence-level classification task similar to sen-
timent analysis (Pang and Lee, 2008; Socher et al.,
2013). However, such an approach cannot capture
the stance of a tweet with respect to a particular tar-
get, unless training data is available for each of the
test targets. In such cases, we could learn that a
tweet mentioning Donald Trump in a positive man-
ner expresses a negative stance towards Hillary Clin-
ton. Despite this limitation, we use two such base-
lines, one implemented with a Support Vector Ma-
chine (SVM) classifier and one with an LSTM net-
work, in order to assess whether we are successful
in incorporating the target in stance prediction.

A naive approach to incorporate the target in
stance prediction would be to generate features con-
catenating the target with words from the tweet. Ig-
noring the issue that such features would be rather
sparse, a classifier could learn that some words have
target-dependent stance weights, but it still assumes
that training data is available for each target.

In order to learn how to combine the stance target
with the tweet in a way that generalises to unseen
targets, we focus on learning distributed represen-
tations and ways to combine them. The following
sections develop progressively the proposed bidirec-
tional conditional LSTM encoding model, starting
from independently encoding the tweet and the tar-
get using LSTMs.

3.1 Independent Encoding

Our initial attempt to learn distributed representa-
tions for the tweets and the targets is to encode
the target and tweet independently as k-dimensional
dense vectors using two LSTMs (Hochreiter and
Schmidhuber, 1997).

H =

[
xt

ht−1

]

it = σ(WiH+ bi)

ft = σ(WfH+ bf)

ot = σ(WoH+ bo)

ct = ft � ct−1 + it � tanh(WcH+ bc)

ht = ot � tanh(ct)

877

x1

c→1

c←1

h→1

h←1

x2

c→2

c←2

h→2

h←2

x3

c→3

c←3

h→3

h←3

x4

c→4

c←4

h→4

h←4

x5

c→5

c←5

h→5

h←5

x6

c→6

c←6

h→6

h←6

x7

c→7

c←7

h→7

h←7

x8

c→8

c←8

h→8

h←8

x9

c→9

c←9

h→9

h←9

Legalization of Abortion A foetus has rights too !

Target Tweet

Figure 1: Bidirectional encoding of tweet conditioned on bidirectional encoding of target ([c→3 c←1]). The stance is predicted using

the last forward and reversed output representations ([h→9 h←4]).

Here, xt is an input vector at time step t, ct denotes
the LSTM memory, ht ∈ Rk is an output vector and
the remaining weight matrices and biases are train-
able parameters. We concatenate the two output vec-
tor representations and classify the stance using the
softmax over a non-linear projection

softmax(tanh(Wtahtarget +Wtwhtweet + b))

into the space of the three classes for stance detec-
tion where Wta,Wtw ∈ R3×k are trainable weight
matrices and b ∈ R3 is a trainable class bias. This
model learns target-independent distributed repre-
sentations for the tweets and relies on the non-
linear projection layer to incorporate the target in the
stance prediction.

3.2 Conditional Encoding

In order to learn target-dependent tweet representa-
tions, we use conditional encoding as previously ap-
plied to the task of recognising textual entailment
(Rocktäschel et al., 2016). We use one LSTM to en-
code the target as a fixed-length vector. Then, we
encode the tweet with another LSTM, whose state
is initialised with the representation of the target.
Finally, we use the last output vector of the tweet
LSTM to predict the stance of the target-tweet pair.

Formally, let (x1, . . . ,xT) be a sequence of tar-
get word vectors, (xT+1, . . . ,xN) be a sequence of
tweet word vectors and [h0 c0] be a start state of

zeros. The two LSTMs map input vectors and a pre-
vious state to a next state as follows:

[h1 c1] = LSTMtarget(x1,h0, c0)

. . .

[hT cT] = LSTMtarget(xT ,hT−1, cT−1)

[hT+1 cT+1] = LSTMtweet(xT+1,h0, cT)

. . .

[hN cN] = LSTMtweet(xN ,hN−1, cN−1)

Finally, the stance of the tweet w.r.t. the target is
classified using a non-linear projection

c = tanh(WhN)

where W ∈ R3×k is a trainable weight matrix.
This effectively allows the second LSTM to read the
tweet in a target-specific manner, which is crucial
since the stance of the tweet depends on the target
(recall the Donald Trump example above).

3.3 Bidirectional Conditional Encoding
Bidirectional LSTMs (Graves and Schmidhuber,
2005) have been shown to learn improved represen-
tations of sequences by encoding a sequence from
left to right and from right to left. Therefore, we
adapt the conditional encoding model from Sec-
tion 3.2 to use bidirectional LSTMs, which repre-
sent the target and the tweet using two vectors for
each of them, one obtained by reading the target

878

and then the tweet left-to-right (as in the conditional
LSTM encoding) and one obtained by reading them
right-to-left. To achieve this, we initialise the state
of the bidirectional LSTM that reads the tweet by
the last state of the forward and reversed encoding
of the target (see Figure 1). The bidirectional encod-
ing allows the model to construct target-dependent
representations of the tweet such that when a word
is considered, both its left- and the right-hand side
context are taken into account.

3.4 Unsupervised Pretraining
In order to counter-balance the relatively small
amount of training data available (5,628 instances
in total), we employ unsupervised pre-training
by initialising the word embeddings used in the
LSTMs with an appropriately trained word2vec
model (Mikolov et al., 2013). Note that these em-
beddings are used only for initialisation, as we allow
them to be optimised further during training.

In more detail, we train a word2vec model on a
corpus of 395,212 unlabelled tweets, collected with
the Twitter Keyword Search API1 between Novem-
ber 2015 and January 2016, plus all the tweets con-
tained in the official SemEval 2016 Stance Detec-
tion datasets (Mohammad et al., 2016). The unla-
belled tweets are collected so that they contain the
targets considered in the shared task, using up to
two keywords per target, namely “hillary”, “clin-
ton”, “trump”, “climate”, “femini”, “aborti”. Note
that Twitter does not allow for regular expression
search, so this is a free text search disregarding pos-
sible word boundaries. We combine this large unla-
belled corpus with the official training data and train
a skip-gram word2vec model (dimensionality 100, 5
min words, context window of 5).

Tweets and targets are tokenised with the Twitter-
adapted tokeniser twokenize2. Subsequently, all to-
kens are lowercased, URLs are removed, and stop-
word tokens are filtered (i.e. punctuation characters,
Twitter-specific stopwords (“rt”, “#semst”, “via”).

As it will be shown in our experiments, unsuper-
vised pre-training is quite helpful, since it is difficult
to learn representations for all the words using only
the relatively small training datasets available.

1https://dev.twitter.com/rest/public/
search

2https://github.com/leondz/twokenize

Corpus Favor Against None All
TaskA Tr+Dv 1462 2684 1482 5628
TaskA Tr+Dv HC 224 722 332 1278
TaskB Unlab - - - 278,013
TaskB Auto-lab* 4681 5095 4026 13,802
TaskB Test 148 299 260 707
Crawled Unlab* - - - 395,212

Table 1: Data sizes of available corpora. TaskA Tr+Dv HC
is the part of TaskA Tr+Dv with tweets for the target Hillary

Clinton only, which we use for development. TaskB Auto-
lab is an automatically labelled version of TaskB Unlab.

Crawled Unlab is an unlabelled tweet corpus collected by us.

Finally, to ensure that the proposed neural net-
work architectures contribute to the performance,
we also use the word vectors from word2vec to de-
velop a Bag-of-Word-Vectors baseline (BOWV), in
which the tweet and target representations are fed
into a logistic regression classifier with L2 regular-
ization (Pedregosa et al., 2011).

4 Experiments

Experiments are performed on the SemEval 2016
Task 6 corpus for Stance Detection on Twitter (Mo-
hammad et al., 2016). We report experiments for
two different experimental setups: one is the unseen
target setup (Section 5), which is the main focus of
this paper, i.e. detecting the stance of tweets towards
previously unseen targets. We show that conditional
encoding, by reading the tweets in a target-specific
way, generalises to unseen targets better than base-
lines which ignore the target. Next, we compare
our approach to previous work in a weakly super-
vised framework (Section 6) and show that our ap-
proach outperforms the state-of-the-art on the Se-
mEval 2016 Stance Detection Subtask B corpus.

Table 1 lists the various corpora used in the ex-
periments and their sizes. TaskA Tr+Dv is the
official SemEval 2016 Twitter Stance Detection
TaskA training and development corpus, which
contain instances for the targets Legalization of
Abortion, Atheism, Feminist Movement, Climate
Change is a Real Concern and Hillary Clinton.
TaskA Tr+Dv HC is the part of the corpus which
contains only the Hillary Clinton tweets, which
we use for development purposes. TaskB Test
is the TaskB test corpus on which we report re-
sults containing Donald Trump testing instances.

879

TaskB Unlab is an unlabelled corpus containing
Donald Trump tweets supplied by the task organ-
isers, and TaskB Auto-lab* is an automatically la-
belled version of a small portion of the corpus for
the weakly supervised stance detection experiments
reported in Section 6. Finally, Crawled Unlab* is
a corpus we collected for unsupervised pre-training
(see Section 3.4).

For all experiments, the official task evalua-
tion script is used. Predictions are post pro-
cessed so that if the target is contained in a
tweet, the highest-scoring non-neutral stance is
chosen. This was motivated by the observation
that in the training data most target-containing
tweets express a stance, with only 16% of them
being neutral. The code used in our experi-
ments is available from https://github.com/
sheffieldnlp/stance-conditional.

4.1 Methods
We compare the following baseline methods:

• SVM trained with word and character tweet
n-grams features (SVM-ngrams-comb) Mo-
hammad et al. (2016)
• a majority class baseline (Majority baseline),

reported in (Mohammad et al., 2016)
• bag of word vectors (BoWV) (see Section 3.4)
• independent encoding of tweet and the target

with two LSTMs (Concat) (see Section 3.1)
• encoding of the tweet only with an LSTM

(TweetOnly) (see Section 3.1)

to three versions of conditional encoding:

• target conditioned on tweet (TarCondTweet)
• tweet conditioned on target (TweetCondTar)
• a bidirectional encoding model (BiCond)

5 Unseen Target Stance Detection

As explained earlier, the challenge is to learn a
model without any manually labelled training data
for the test target, but only using the data from the
Task A targets. In order to avoid using any la-
belled data for Donald Trump, while still having a
(labelled) development set to tune and evaluate our
models, we used the tweets labelled for Hillary Clin-
ton as a development set and the tweets for the re-
maining four targets as training. We refer to this as

Method Stance P R F1

BoWV
FAVOR 0.2444 0.0940 0.1358

AGAINST 0.5916 0.8626 0.7019
Macro 0.4188

TweetOnly
FAVOR 0.2127 0.5726 0.3102

AGAINST 0.6529 0.4020 0.4976
Macro 0.4039

Concat
FAVOR 0.1811 0.6239 0.2808

AGAINST 0.6299 0.4504 0.5252
Macro 0.4030

TarCondTweet
FAVOR 0.3293 0.3649 0.3462

AGAINST 0.4304 0.5686 0.4899
Macro 0.4180

TweetCondTar
FAVOR 0.1985 0.2308 0.2134

AGAINST 0.6332 0.7379 0.6816
Macro 0.4475

BiCond
FAVOR 0.2588 0.3761 0.3066

AGAINST 0.7081 0.5802 0.6378
Macro 0.4722

Table 2: Results for the unseen target stance detection devel-

opment setup.

the development setup, and all models are tuned us-
ing this setup. The labelled Donald Trump tweets
were only used in reporting our final results.

For the final results we train on all the data from
the development setup and evaluate on the official
Task B test set, i.e. the Donald Trump tweets. We
refer to this as our test setup.

Based on a small grid search using the develop-
ment setup, the following settings for LSTM-based
models were chosen: input layer size 100 (equal to
the word embedding dimension), hidden layer size
of 60, training for max 50 epochs with initial learn-
ing rate 1e-3 using ADAM (Kingma and Ba, 2014)
for optimisation, dropout 0.1. Models were trained
using cross-entropy loss. The use of one, relatively
small hidden layer and dropout help to avoid over-
fitting.

5.1 Results and Discussion

Results for the unseen target setting show how well
conditional encoding is suited for learning target-
dependent representations of tweets, and crucially,
how well such representations generalise to unseen
targets. The best performing method on both de-
velopment (Table 2) and test setups (Table 3) is Bi-
Cond, which achieves an F1 of 0.4722 and 0.4901
respectively. Notably, Concat, which learns an in-

880

Method Stance P R F1

BoWV
FAVOR 0.3158 0.0405 0.0719

AGAINST 0.4316 0.8963 0.5826
Macro 0.3272

TweetOnly
FAVOR 0.2767 0.3851 0.3220

AGAINST 0.4225 0.5284 0.4695
Macro 0.3958

Concat
FAVOR 0.3145 0.5270 0.3939

AGAINST 0.4452 0.4348 0.4399
Macro 0.4169

TarCondTweet
FAVOR 0.2322 0.4188 0.2988

AGAINST 0.6712 0.6234 0.6464
Macro 0.4726

TweetCondTar
FAVOR 0.3710 0.5541 0.4444

AGAINST 0.4633 0.5485 0.5023
Macro 0.4734

BiCond
FAVOR 0.3033 0.5470 0.3902

AGAINST 0.6788 0.5216 0.5899
Macro 0.4901

Table 3: Results for the unseen target stance detection test

setup.

EmbIni NumMatr Stance P R F1

Random

Sing
FAVOR 0.1982 0.3846 0.2616

AGAINST 0.6263 0.5929 0.6092
Macro 0.4354

Sep
FAVOR 0.2278 0.5043 0.3138

AGAINST 0.6706 0.4300 0.5240
Macro 0.4189

PreFixed

Sing
FAVOR 0.6000 0.0513 0.0945

AGAINST 0.5761 0.9440 0.7155
Macro 0.4050

Sep
FAVOR 0.1429 0.0342 0.0552

AGAINST 0.5707 0.9033 0.6995
Macro 0.3773

PreCont

Sing
FAVOR 0.2588 0.3761 0.3066

AGAINST 0.7081 0.5802 0.6378
Macro 0.4722

Sep
FAVOR 0.2243 0.4103 0.2900

AGAINST 0.6185 0.5445 0.5792
Macro 0.4346

Table 4: Results for the unseen target stance detection develop-

ment setup using BiCond, with single vs separate embeddings

matrices for tweet and target and different initialisations

dependent encoding of the target and the tweets,
does not achieve big F1 improvements over Twee-
tOnly, which learns a representation of the tweets
only. This shows that it is not sufficient to just take
the target into account, but is is important to learn
target-dependent encodings for the tweets. Models

Method inTwe Stance P R F1

Concat

Yes
FAVOR 0.3153 0.6214 0.4183

AGAINST 0.7438 0.4630 0.5707
Macro 0.4945

No
FAVOR 0.0450 0.6429 0.0841

AGAINST 0.4793 0.4265 0.4514
Macro 0.2677

TweetCondTar

Yes
FAVOR 0.3529 0.2330 0.2807

AGAINST 0.7254 0.8327 0.7754
Macro 0.5280

No
FAVOR 0.0441 0.2143 0.0732

AGAINST 0.4663 0.5588 0.5084
Macro 0.2908

BiCond

Yes
FAVOR 0.3585 0.3689 0.3636

AGAINST 0.7393 0.7393 0.7393
Macro 0.5515

No
FAVOR 0.0938 0.4286 0.1538

AGAINST 0.5846 0.2794 0.3781
Macro 0.2660

Table 5: Results for the unseen target stance detection devel-

opment setup for tweets containing the target vs tweets not con-

taining the target.

that learn to condition the encoding of tweets on tar-
gets outperform all baselines on the test set.

It is further worth noting that the Bag-of-Word-
Vectors baseline achieves results comparable with
TweetOnly, Concat and one of the conditional en-
coding models, TarCondTweet, on the dev set, even
though it achieves significantly lower performance
on the test set. This indicates that the pre-trained
word embeddings on their own are already very use-
ful for stance detection. This is consistent with find-
ings of other works showing the usefulness of such
a Bag-of-Word-Vectors baseline for the related tasks
of recognising textual entailment Bowman et al.
(2015) and sentiment analysis Eisner et al. (2016).

Our best result in the test setup with BiCond is the
second highest reported result on the Twitter Stance
Detection corpus, however the first, third and fourth
best approaches achieved their results by automati-
cally labelling Donald Trump training data. BiCond
for the unseen target setting outperforms the third
and fourth best approaches by a large margin (5 and
7 points in Macro F1, respectively), as can be seen
in Table 7. Results for weakly supervised stance de-
tection are discussed in Section 6.

881

Pre-Training Table 4 shows the effect of unsu-
pervised pre-training of word embeddings with a
word2vec skip-gram model, and furthermore, the re-
sults of sharing of these representations between the
tweets and targets, on the development set. The first
set of results is with a uniformly Random embed-
ding initialisation in [−0.1, 0.1]. PreFixed uses the
pre-trained skip-gram word embeddings, whereas
PreCont initialises the word embeddings with ones
from SkipGram and continues training them dur-
ing LSTM training. Our results show that, in the
absence of a large labelled training dataset, pre-
training of word embeddings is more helpful than
random initialisation of embeddings. Sing vs Sep
shows the difference between using shared vs two
separate embeddings matrices for looking up the
word embeddings. Sing means the word represen-
tations for tweet and target vocabularies are shared,
whereas Sep means they are different. Using shared
embeddings performs better, which we hypothesise
is because the tweets contain some mentions of tar-
gets that are tested.

Target in Tweet vs Not in Tweet Table 5 shows
results on the development set for BiCond, com-
pared to the best unidirectional encoding model,
TweetCondTar and the baseline model Concat,
split by tweets that contain the target and those that
do not. All three models perform well when the
target is mentioned in the tweet, but less so when
the targets are not mentioned explicitly. In the case
where the target is mentioned in the tweet, bicon-
ditional encoding outperforms unidirectional encod-
ing and unidirectional encoding outperforms Con-
cat. This shows that conditional encoding is able
to learn useful dependencies between the tweets and
the targets.

6 Weakly Supervised Stance Detection

The previous section showed the usefulness of con-
ditional encoding for unseen target stance detec-
tion and compared results against internal baselines.
The goal of experiments reported in this section
is to compare against participants in the SemEval
2016 Stance Detection Task B. While we consider
an unseen target setup, most submissions, includ-
ing the three highest ranking ones for Task B, pkud-
blab (Wei et al., 2016), LitisMind (Zarrella and

Method Stance P R F1

BoWV
FAVOR 0.5156 0.6689 0.5824

AGAINST 0.6266 0.3311 0.4333
Macro 0.5078

TweetOnly
FAVOR 0.5284 0.6284 0.5741

AGAINST 0.5774 0.4615 0.5130
Macro 0.5435

Concat
FAVOR 0.5506 0.5878 0.5686

AGAINST 0.5794 0.4883 0.5299
Macro 0.5493

TarCondTweet
FAVOR 0.5636 0.6284 0.5942

AGAINST 0.5947 0.4515 0.5133
Macro 0.5538

TweetCondTar
FAVOR 0.5868 0.6622 0.6222

AGAINST 0.5915 0.4649 0.5206
Macro 0.5714

BiCond
FAVOR 0.6268 0.6014 0.6138

AGAINST 0.6057 0.4983 0.5468
Macro 0.5803

Table 6: Stance Detection test results for weakly super-

vised setup, trained on automatically labelled pos+neg+neutral

Trump data, and reported on the official test set.

Marsh, 2016) and INF-UFRGS (Dias and Becker,
2016) considered a different experimental setup.
They automatically annotated training data for the
test target Donald Trump, thus converting the task
into weakly supervised seen target stance detection.
The pkudblab system uses a deep convolutional neu-
ral network that learns to make 2-way predictions on
automatically labelled positive and negative training
data for Donald Trump. The neutral class is pre-
dicted according to rules which are applied at test
time.

Since the best performing systems which partic-
ipated in the shared task consider a weakly super-
vised setup, we further compare our proposed ap-
proach to the state-of-the-art using such a weakly
supervised setup. Note that, even though pkudblab,
LitisMind and INF-UFRGS also use regular expres-
sions to label training data automatically, the result-
ing datasets were not available to us. Therefore, we
had to develop our own automatic labelling method
and dataset, which are publicly available from our
code repository.

Weakly Supervised Test Setup For this setup, the
unlabelled Donald Trump corpus TaskB Unlab is
annotated automatically. For this purpose we cre-

882

ated a small set of regular expressions3, based on
inspection of the TaskB Unlab corpus, expressing
positive and negative stance towards the target. The
regular expressions for the positive stance were:
• make(?)america(?)great(?)again
• trump(?)(for|4)(?)president
• votetrump
• trumpisright
• the truth
• #trumprules

The keyphrases for negative stance were:
#dumptrump, #notrump, #trumpwatch, racist,
idiot, fired

A tweet is labelled as positive if one of the posi-
tive expressions is detected, else negative if a nega-
tive expressions is detected. If neither are detected,
the tweet is annotated as neutral randomly with 2%
chance. The resulting corpus size per stance is
shown in Table 1. The same hyperparameters for
the LSTM-based models are used as for the unseen
target setup described in the previous section.

6.1 Results and Discussion

Table 6 lists our results in the weakly supervised set-
ting. Table 7 shows all our results, including those
using the unseen target setup, compared against the
state-of-the-art on the stance detection corpus. Ta-
ble 7 further lists baselines reported by Moham-
mad et al. (2016), namely a majority class base-
line (Majority baseline), and a method using 1 to
3-gram bag-of-word and character n-gram features
(SVM-ngrams-comb), which are extracted from
the tweets and used to train a 3-way SVM classifier.

Bag-of-word baselines (BoWV, SVM-ngrams-
comb) achieve results comparable to the majority
baseline (F1 of 0.2972), which shows how diffi-
cult the task is. The baselines which only extract
features from the tweets, SVM-ngrams-comb and
TweetOnly perform worse than the baselines which
also learn representations for the targets (BoWV,
Concat). By training conditional encoding models
on automatically labelled stance detection data we
achieve state-of-the-art results. The best result (F1
of 0.5803) is achieved with the bi-directional condi-
tional encoding model (BiCond). This shows that

3Note that “|” indiates “or”, (?) indicates optional space

Method Stance F1

SVM-ngrams-comb (Unseen Target)
FAVOR 0.1842

AGAINST 0.3845
Macro 0.2843

Majority baseline (Unseen Target)
FAVOR 0.0

AGAINST 0.5944
Macro 0.2972

BiCond (Unseen Target)
FAVOR 0.3902

AGAINST 0.5899
Macro 0.4901

INF-UFRGS (Weakly Supervised*)
FAVOR 0.3256

AGAINST 0.5209
Macro 0.4232

LitisMind (Weakly Supervised*)
FAVOR 0.3004

AGAINST 0.5928
Macro 0.4466

pkudblab (Weakly Supervised*)
FAVOR 0.5739

AGAINST 0.5517
Macro 0.5628

BiCond (Weakly Supervised)
FAVOR 0.6138

AGAINST 0.5468
Macro 0.5803

Table 7: Stance Detection test results, compared against the

state of the art. SVM-ngrams-comb and Majority baseline
are reported in Mohammad et al. (2016), pkudblab in Wei et al.

(2016), LitisMind in Zarrella and Marsh (2016), INF-UFRGS

in Dias and Becker (2016)

such models are suitable for unseen, as well as seen
target stance detection.

7 Related Work

Stance Detection: Previous work mostly considered
target-specific stance prediction in debates (Hasan
and Ng, 2013; Walker et al., 2012) or student
essays (Faulkner, 2014). The task considered in
this paper is more challenging than stance detec-
tion in debates because, in addition to irregular lan-
guage, the Mohammad et al. (2016) dataset is of-
fered without any context, e.g., conversational struc-
ture or tweet metadata. The targets are also not
always mentioned in the tweets, which is an addi-
tional challenge (Augenstein et al., 2016) and dis-
tinguishes this task from target-dependent (Vo and
Zhang, 2015; Zhang et al., 2016; Alghunaim et
al., 2015) and open-domain target-dependent sen-
timent analysis (Mitchell et al., 2013; Zhang et
al., 2015). Related work on rumour stance detec-
tion either requires training data from the same ru-

883

mour (Qazvinian et al., 2011), i.e., target, or is rule-
based (Liu et al., 2015) and thus potentially hard to
generalise. Finally, the target-dependent stance de-
tection task tackled in this paper is different from
that of Ferreira and Vlachos (2016), which while re-
lated concerned with the stance of a statement in nat-
ural language towards another statement.

Conditional Encoding: Conditional encoding
has been applied to the related task of recognising
textual entailment (Rocktäschel et al., 2016), using a
dataset of half a million training examples (Bowman
et al., 2015) and numerous different hypotheses. Our
experiments here show that conditional encoding is
also successful on a relatively small training set and
when applied to an unseen testing target. Moreover,
we augment conditional encoding with bidirectional
encoding and demonstrate the added benefit of un-
supervised pre-training of word embeddings on un-
labelled domain data.

8 Conclusions and Future Work

This paper showed that conditional LSTM encod-
ing is a successful approach to stance detection for
unseen targets. Our unseen target bidirectional con-
ditional encoding approach achieves the second best
results reported to date on the SemEval 2016 Twitter
Stance Detection corpus. In the weakly supervised
seen target scenario, as considered by prior work,
our approach achieves the best results to date on the
SemEval Task B dataset. We further show that in the
absence of large labelled corpora, unsupervised pre-
training can be used to learn target representations
for stance detection and improves results on the Se-
mEval corpus. Future work will investigate further
the challenge of stance detection for tweets which
do not contain explicit mentions of the target.

Acknowledgments

This work was partially supported by the European
Union under grant agreement No. 611233 PHEME4

and by Microsoft Research through its PhD Scholar-
ship Programme.

4http://www.pheme.eu

References
Abdulaziz Alghunaim, Mitra Mohtarami, Scott Cyphers,

and Jim Glass. 2015. A Vector Space Approach for
Aspect Based Sentiment Analysis. In Proceedings of
the 1st Workshop on Vector Space Modeling for Nat-
ural Language Processing, pages 116–122, Denver,
Colorado, June. Association for Computational Lin-
guistics.

Isabelle Augenstein, Andreas Vlachos, and Kalina
Bontcheva. 2016. USFD: Any-Target Stance Detec-
tion on Twitter with Autoencoders. In Proceedings of
the International Workshop on Semantic Evaluation,
SemEval ’16, San Diego, California.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large annotated
corpus for learning natural language inference. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 632–642,
Lisbon, Portugal, September. Association for Compu-
tational Linguistics.

Marcelo Dias and Karin Becker. 2016. INF-UFRGS-
OPINION-MINING at SemEval-2016 Task 6: Auto-
matic Generation of a Training Corpus for Unsuper-
vised Identification of Stance in Tweets. In Proceed-
ings of the International Workshop on Semantic Eval-
uation, SemEval ’16, San Diego, California, June.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning Emoji Representations from
their Description. In Proceedings of the International
Workshop on Natural Language Processing for Social
Media, SocialNLP ’16, Austin, Texas.

Adam Faulkner. 2014. Automated Classification of
Stance in Student Essays: An Approach Using Stance
Target Information and the Wikipedia Link-Based
Measure. In William Eberle and Chutima Boonthum-
Denecke, editors, FLAIRS Conference. AAAI Press.

William Ferreira and Andreas Vlachos. 2016. Emer-
gent: a novel data-set for stance classification. In Pro-
ceedings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 1163–
1168, San Diego, California, June. Association for
Computational Linguistics.

Alex Graves and Jürgen Schmidhuber. 2005. Framewise
phoneme classification with bidirectional LSTM and
other neural network architectures. Neural Networks,
18(5):602–610.

Kazi Saidul Hasan and Vincent Ng. 2013. Stance Clas-
sification of Ideological Debates: Data, Models, Fea-
tures, and Constraints. In IJCNLP, pages 1348–1356.
Asian Federation of Natural Language Processing /
ACL.

884

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A Method for Stochastic Optimization. CoRR,
abs/1412.6980.

Xiaomo Liu, Armineh Nourbakhsh, Quanzhi Li, Rui
Fang, and Sameena Shah. 2015. Real-time Ru-
mor Debunking on Twitter. In Proceedings of the
24th ACM International on Conference on Informa-
tion and Knowledge Management, CIKM ’15, pages
1867–1870, New York, NY, USA. ACM.

Marcelo Mendoza, Barbara Poblete, and Carlos Castillo.
2010. Twitter Under Crisis: Can We Trust What
We RT? In Proceedings of the First Workshop on
Social Media Analytics (SOMA’2010), pages 71–79,
New York, NY, USA. ACM.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Margaret Mitchell, Jacqui Aguilar, Theresa Wilson, and
Benjamin Van Durme. 2013. Open Domain Targeted
Sentiment. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1643–1654, Seattle, Washington, USA, October.
Association for Computational Linguistics.

Saif M. Mohammad, Svetlana Kiritchenko, Parinaz
Sobhani, Xiaodan Zhu, and Colin Cherry. 2016.
SemEval-2016 Task 6: Detecting stance in tweets. In
Proceedings of the International Workshop on Seman-
tic Evaluation, SemEval ’16, San Diego, California,
June.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and trends in infor-
mation retrieval, 2(1-2):1–135.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12:2825–
2830.

Vahed Qazvinian, Emily Rosengren, Dragomir R. Radev,
and Qiaozhu Mei. 2011. Rumor Has It: Identify-
ing Misinformation in Microblogs. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP ’11, pages 1589–1599.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Her-
mann, Tomáš Kočiskỳ, and Phil Blunsom. 2016. Rea-
soning about Entailment with Neural Attention. In In-
ternational Conference on Learning Representations
(ICLR).

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christo-
pher Potts. 2013. Recursive Deep Models for Se-
mantic Compositionality Over a Sentiment Treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA, October. As-
sociation for Computational Linguistics.

Duy-Tin Vo and Yue Zhang. 2015. Target-Dependent
Twitter Sentiment Classification with Rich Automatic
Features. In Qiang Yang and Michael Wooldridge, ed-
itors, IJCAI, pages 1347–1353. AAAI Press.

Marilyn Walker, Pranav Anand, Rob Abbott, and Ricky
Grant. 2012. Stance Classification using Dialogic
Properties of Persuasion. In Proceedings of the 2012
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, pages 592–596.

Wan Wei, Xiao Zhang, Xuqin Liu, Wei Chen, and
Tengjiao Wang. 2016. pkudblab at SemEval-2016
Task 6: A Specific Convolutional Neural Network Sys-
tem for Effective Stance Detection. In Proceedings of
the International Workshop on Semantic Evaluation,
SemEval ’16, San Diego, California, June.

Guido Zarrella and Amy Marsh. 2016. MITRE at
SemEval-2016 Task 6: Transfer Learning for Stance
Detection. In Proceedings of the International Work-
shop on Semantic Evaluation, SemEval ’16, San
Diego, California, June.

Meishan Zhang, Yue Zhang, and Duy Tin Vo. 2015.
Neural Networks for Open Domain Targeted Senti-
ment. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 612–621, Lisbon, Portugal, September. Associ-
ation for Computational Linguistics.

Meishan Zhang, Yue Zhang, and Duy-Tin Vo. 2016.
Gated Neural Networks for Targeted Sentiment Anal-
ysis. In Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence, Phoenix, Arizona,
USA, February. Association for the Advancement of
Artificial Intelligence.

885

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 886–891,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Modeling Skip-Grams for Event Detection
with Convolutional Neural Networks

Thien Huu Nguyen
Computer Science Department

New York University
New York, NY 10003 USA
thien@cs.nyu.edu

Ralph Grishman
Computer Science Department

New York University
New York, NY 10003 USA
grishman@cs.nyu.edu

Abstract

Convolutional neural networks (CNN) have
achieved the top performance for event de-
tection due to their capacity to induce the
underlying structures of the k-grams in the
sentences. However, the current CNN-based
event detectors only model the consecutive
k-grams and ignore the non-consecutive k-
grams that might involve important structures
for event detection. In this work, we propose
to improve the current CNN models for ED
by introducing the non-consecutive convolu-
tion. Our systematic evaluation on both the
general setting and the domain adaptation set-
ting demonstrates the effectiveness of the non-
consecutive CNN model, leading to the signif-
icant performance improvement over the cur-
rent state-of-the-art systems.

1 Introduction

The goal of event detection (ED) is to locate event
triggers of some specified types in text. Triggers
are generally single verbs or nominalizations that
evoke the events of interest. This is an important and
challenging task of information extraction in natu-
ral language processing (NLP), as the same event
might appear in various expressions, and an expres-
sion might express different events depending on
contexts.

The current state-of-the-art systems for ED have
involved the application of convolutional neural net-
works (CNN) (Nguyen and Grishman, 2015b; Chen
et al., 2015) that automatically learn effective fea-
ture representations for ED from sentences. This has

overcome the two fundamental limitations of the tra-
ditional feature-based methods for ED: (i) the com-
plicated feature engineering for rich feature sets and
(ii) the error propagation from the NLP toolkits and
resources (i.e, parsers, part of speech taggers etc)
that generate such features.

The prior CNN models for ED are characterized
by the temporal convolution operators that linearly
map the vectors for the k-grams in the sentences
into the feature space. Such k-gram vectors are ob-
tained by concatenating the vectors of the k con-
secutive words in the sentences (Nguyen and Grish-
man, 2015b; Chen et al., 2015). In other words,
the previous CNN models for ED only focus on
modeling the consecutive k-grams. Unfortunately,
such consecutive mechanism is unable to capture the
long-range and non-consecutive dependencies that
are necessary to the prediction of trigger words. For
instance, consider the following sentence with the
trigger word “leave” from the ACE 2005 corpus:

The mystery is that she took the job in the first
place or didn’t leave earlier.

The correct event type for the trigger word
“leave” in this case is “End-Org”. However, the
previous CNN models might not be able to detect
“leave” as an event trigger or incorrectly predict its
type as “Movement”. This is caused by their reliance
on the consecutive local k-grams such as “leave ear-
lier”. Consequently, we need to resort to the non-
consecutive pattern “job leave” to correctly deter-
mine the event type of “leave” in this case.

Guided by this intuition, we propose to improve
the previous CNN models for ED by operating the
convolution on all possible non-consecutive k-grams

886

in the sentences. We aggregate the resulting con-
volution scores via the max-pooling function to un-
veil the most important non-consecutive k-grams
for ED. The aggregation over all the possible non-
consecutive k-grams is made efficient with dynamic
programming.

Note that our work is related to (Lei et al., 2015)
who employ the non-consecutive convolution for
the sentence and news classification problems. Our
work is different from (Lei et al., 2015) in that we
model the relative distances of words to the trigger
candidates in the sentences via position embeddings,
while (Lei et al., 2015) use the absolute distances
between words in the k-grams to compute the decay
weights for aggregation. To the best of our knowl-
edge, this is the first work on non-consecutive CNN
for ED.

We systematically evaluate the proposed model in
the general setting as well as the domain adaptation
setting. The experiment results demonstrate that our
model significantly outperforms the current state-of-
the-art models in such settings.

2 Model

We formalize ED as a multi-class classification
problem. Given a sentence, for every token in that
sentence, we want to predict if the current token is an
event trigger of some event in the pre-defined event
set or not? The current token along with its context
in the sentence constitute an event trigger candidate.

In order to make it compatible with the pre-
vious work, we follow the procedure in (Nguyen
and Grishman, 2015b) to process the trigger candi-
dates for CNN. In particular, we limit the context
of the trigger candidates to a fixed window size by
trimming longer sentences and padding shorter sen-
tences with a special token when necessary. Let
2n + 1 be the fixed window size, and W =
[w0, w1, . . . , wn, . . . , w2n�1, w2n] be some trigger
candidate where the current token is positioned in
the middle of the window (token wn). Before enter-
ing CNN, each token wi is first transformed into a
real-valued vector xi using the concatenation of the
following vectors:

1. The word embedding vector of wi: This is ob-
tained by looking up a pre-trained word embedding
table D (Turian et al., 2010; Mikolov et al., 2013a).

2. The position embedding vector of wi: We ob-
tain this vector by looking up the position embed-
ding table for the relative distance i � n from the
token wi to the current token wn. The position em-
bedding table is initialized randomly.

3. The real-valued embedding vector for the en-
tity type of wi: This vector is generated by look-
ing up the entity type embedding table (initialized
randomly) for the entity type of wi. Note that we
employ the BIO annotation schema to assign entity
type labels to each token in the sentences using the
entity mention heads as in (Nguyen and Grishman,
2015b).

The transformation from the token wi to the vec-
tor xi (xi 2 Rd) essentially converts the input can-
didate W into a sequence of real-valued vectors
X = (x0, x1, . . . , x2n). This sequence is used as
input in the following CNN models.

2.1 The Traditional CNN

Given the window size k, the traditional CNN mod-
els for ED consider the following set of 2n + 1 con-
secutive k-gram vectors:

C = {ui : 0 i 2n} (1)

Vector ui is the concatenation of the k consecutive
vectors preceding position i in the sequence X: ui =
[xi�k+1, xi�k+2, . . . , xi] 2 Rdk where the out-of-
index vectors are simply set to all zeros.

The core of the CNN models is the convolution
operation, specified by the filter vector f 2 Rdk. In
CNN, f can be seen as a feature extractor for the
k-grams that operates via the dot product with each
element in C. This produces the following convolu-
tion score set: S(C) = {fT ui : 0 i 2n}.

In the next step, we aggregate the features in S
with the max function, resulting in the aggregation
score:

pf
k = max S(C) = max{si : 0 i 2n} (2)

Afterward, pf
k is often transformed by a non-

linear function G1 to generate the transformed score
G(pf

k), functioning as the extracted feature for the
initial trigger candidate W .

1The tanh function in this work.

887

We can then repeat this process for different win-
dow sizes k and filters f , generating multiple fea-
tures G(pf

k) to capture various aspects of the trig-
ger candidate W . Finally, such features are concate-
nated into a single representation vector for W , to be
fed into a feed-forward neural network with a soft-
max layer in the end to perform classification.

2.2 The Non-consecutive CNN

As mentioned in the introduction, the limitation of
the previous CNN models for ED is the inability to
encode the non-consecutive k-grams that might be
crucial to the trigger prediction. This limitation orig-
inates from Equation 1 in which only the consecu-
tive k-gram vectors are considered. In order to over-
come such limitation, we propose to model all pos-
sible non-consecutive k-grams in the trigger candi-
date, leading to the following set of non-consecutive
k-gram vectors:

N = {vi1i2...ik : 0 i1 < i2 < . . . < ik 2n}

where: vi1i2...ik = [xi1 , xi2 , . . . , xik] 2 Rdk and the
number of elements in N is |N | =

�
2n+1

k

�
.

The non-consecutive CNN model then follows the
procedure of the traditional CNN model in Section
2.1 to compute the representation vector for classifi-
cation. The only difference is that the computation
is done on the input set N instead of C. In partic-
ular, the convolution score set in this case would be
S(N) = {fT v : v 2 N}, while the aggregating
score would be:

pf
k = max S(N) = max{s : s 2 S(N)} (3)

2.3 Implementation

Note that the maximum operation in Equation 2 only
requires O(n) operations while the naive implemen-
tation of Equation 3 would need O(|N |) = O(nk)
operations. In this work, we employ the dynamic
programming (DP) procedure below to reduce the
computation time for Equation 3.

Assuming the filter vector f is the concatenation
of the k vectors f1, . . . , fk 2 Rd: f = [f1, . . . , fk],
Equation 3 can be re-written by:

pf
k = max{fT

1 xi1 + . . . + fT
k xik

: 0 i1 < i2 < . . . < ik 2n}

Let Dj
t be the dynamic programming table repre-

senting the maximum convolution score for the sub-
filter [f1, . . . , fj] over all possible non-consecutive j-
gram vectors in the subsequence (x0, x1, . . . , xt) of
X:

Dj
t = max{fT

1 xi1 + . . . + fT
j xij

: 0 i1 < i2 < . . . < ij t}

where 1 j k, j � 1 t 2n.
Note that pf

k = Dk
2n.

We can solve this DP problem by the following
recursive formulas2:

Dj
t = max{Dj

t�1, D
j�1
t�1 + fT

j xt}

The computation time for this procedure is O(kn)
and remains linear in the sequence length.

2.4 Training

We train the networks using stochastic gradient de-
scent with shuffled mini-batches, the AdaDelta up-
date rule, back-propagation and dropout. During
the training, we also optimize the embedding tables
(i.e, word, position and entity type embeddings) to
achieve the optimal states. Finally, we rescale the
weights whose l2-norms exceed a predefined thresh-
old (Nguyen and Grishman (2015a)).

3 Experiments

3.1 Dataset, Parameters and Resources

We apply the same parameters and resources as
(Nguyen and Grishman, 2015b) to ensure the com-
patible comparison. Specifically, we employ the
window sizes in the set {2, 3, 4, 5} for the convo-
lution operation with 150 filters for each window
size. The window size of the trigger candidate is
31 while the dimensionality of the position embed-
dings and entity type embeddings is 50. We use
word2vec from (Mikolov et al., 2013b) as the pre-
trained word embeddings. The other parameters in-
clude the dropout rate ⇢ = 0.5, the mini-batch size
= 50, the predefined threshold for the l2 norms = 3.

Following the previous studies (Li et al., 2013;
Chen et al., 2015; Nguyen and Grishman, 2015b),
we evaluate the models on the ACE 2005 corpus

2We ignore the base cases as they are trivial.

888

with 33 event subtypes. In order to make it compat-
ible, we use the same test set with 40 newswire ar-
ticles, the same development set with 30 other doc-
uments and the same training set with the remain-
ing 529 documents. All the data preprocessing and
evaluation criteria follow those in (Nguyen and Gr-
ishman, 2015b).

3.2 The General Setting

We compares the non-consecutive CNN model (NC-
CNN) with the state-of-the-art systems on the ACE
2005 dataset in Table 1. These systems include:

1) The feature-based systems with rich hand-
designed feature sets, including: the MaxEnt model
with local features in (Li et al., 2013) (MaxEnt); the
structured perceptron model for joint beam search
with local features (Joint+Local), and with both lo-
cal and global features (Joint+Local+Global) in (Li
et al., 2013); and the sentence-level and cross-entity
models in (Hong et al., 2011).

2) The neural network models, i.e, the CNN
model in (Nguyen and Grishman, 2015b) (CNN),
the dynamic multi-pooling CNN model (DM-CNN)
in (Chen et al., 2015) and the bidirectional recurrent
neural networks (B-RNN) in (Nguyen et al., 2016a).

3) The probabilistic soft logic based model to cap-
ture the event-event correlation in (Liu et al., 2016).

Methods F
Sentence-level in Hong et al (2011) 59.7
MaxEnt (Li et al., 2013) 65.9
Joint+Local (Li et al., 2013) 65.7
Joint+Local+Global (Li et al., 2013) 67.5
Cross-entity in Hong et al. (2011) † 68.3
Probabilistic soft logic (Liu et al., 2016) † 69.4
CNN (Nguyen and Grishman, 2015b) 69.0
DM-CNN (Chen et al., 2015) 69.1
B-RNN (Nguyen et al., 2016a) 69.3
NC-CNN 71.3

Table 1: Performance with Gold-Standard Entity Men-
tions and Types. † beyond sentence level.

The most important observation from the table is
that the non-consecutive CNN model significantly
outperforms all the compared models with large
margins. In particular, NC-CNN is 2% better than
B-RNN (Nguyen et al., 2016a), the state-of-the-
art system that only relies on the context informa-
tion within the sentences of the trigger candidates.
In addition, although NC-CNN only employs the

sentence-level information, it is still better than the
other models that further exploit the document-level
information for prediction (an improvement of 1.9%
over the probabilistic soft logic based model in (Liu
et al., 2016)). Finally, comparing NC-CNN and
the CNN model in (Nguyen and Grishman, 2015b),
we see that the non-consecutive mechanism signifi-
cantly improves the performance of the traditional
CNN model for ED (up to 2.3% in absolute F-
measures with p < 0.05).

3.3 The Domain Adaptation Experiments

Previous studies have shown that the NLP models
would suffer from a significant performance loss
when domains shift (Blitzer et al., 2006; Daume III,
2007; Plank and Moschitti, 2013; Nguyen et al.,
2015c). In particular, if a model is trained on some
source domain and applied to a different domain (the
target domain), its performance would degrade sig-
nificantly. The domain adaptation (DA) studies aim
to overcome this issue by developing robust tech-
niques across domains.

The best reported system in the DA setting
for ED is (Nguyen and Grishman, 2015b), which
demonstrated that the CNN model outperformed the
feature-based models in the cross-domain setting. In
this section, we compare NC-CNN with the CNN
model in (Nguyen and Grishman, 2015b) (as well as
the other models above) in the DA setting to further
investigate their effectiveness.

3.3.1 Dataset

This section also uses the ACE 2005 dataset but
focuses more on the difference between domains.
The ACE 2005 corpus includes 6 different domains:
broadcast conversation (bc), broadcast news (bn),
telephone conversation (cts), newswire (nw), usenet
(un) and webblogs (wl). Following (Nguyen and Gr-
ishman, 2015b), we use news (the union of bn and
nw) as the source domain and bc, cts, wl and un as
four different target domains3. We take half of bc as
the development set and use the remaining data for
testing. Our data split is the same as that in (Nguyen
and Grishman, 2015b).

3Note that (Nguyen and Grishman, 2015b) does not report
the performance on un but we include it here for completeness.

889

System In-domain(bn+nw) bc cts wl un
P R F P R F P R F P R F P R F

MaxEnt 74.5 59.4 66.0 70.1 54.5 61.3 66.4 49.9 56.9 59.4 34.9 43.9 - - -
Joint+Local 73.5 62.7 67.7 70.3 57.2 63.1 64.9 50.8 57.0 59.5 38.4 46.7 - - -
Joint+Local+Global 72.9 63.2 67.7 68.8 57.5 62.6 64.5 52.3 57.7 56.4 38.5 45.7 - - -
B-RNN 71.4 63.5 67.1 70.7 62.1 66.1 70.0 54.4 61.0 52.7 38.3 44.2 66.2 46.0 54.1
DM-CNN 75.9 62.7 68.7 75.3 59.3 66.4 74.8 52.3 61.5 59.2 37.4 45.8 72.2 44.5 55.0
CNN 69.2 67.0 68.0 70.2 65.2 67.6 68.3 58.2 62.8 54.8 42.0 47.5 64.6 49.9 56.2
NC-CNN 74.9 66.5 70.4† 73.6 64.7 68.8† 71.7 57.3 63.6 57.8 40.3 47.4 71.7 49.0 58.1†

Table 2: Performance on the source domain and on the target domains. Cells marked with †designates that NC-CNN
significantly outperforms (p < 0.05) all the compared methods on the specified domain.

3.3.2 Performance
Table 2 reports the performance of the systems

with 5-fold cross validation. Note that we focus on
the systems exploiting only the sentence level infor-
mation in this section. For each system, we train a
model on the training data of the source domain and
evaluate this model on the test set of the source do-
main (in-domain performance) as well as on the four
target domains bc, cts, wl and un.

We emphasize that the performance of the sys-
tems MaxEnt, Joint+Local, Joint+Local+Global,
B-RNN, and CNN is obtained from the actual sys-
tems in the original work (Li et al., 2013; Nguyen
and Grishman, 2015b; Nguyen et al., 2016a). The
performance of DM-CNN, on the other hand, is from
our re-implementation of the system in (Chen et
al., 2015) using the same hyper-parameters and re-
sources as CNN and NC-CNN for a fair comparison.

From the table, we see that NC-CNN is signifi-
cantly better than the other models on the source
domain. This is consistent with the conclusions in
Section 3.2 and further confirms the effectiveness of
NC-CNN. More importantly, NC-CNN outperforms
CNN and the other models on the target domains bc,
cts and un, and performs comparably with CNN on
wl. The performance improvement is significant on
bc and un (p < 0.05), thereby verifying the robust-
ness of NC-CNN for ED across domains.

4 Related Work

There have been three major approaches to event de-
tection in the literature. First, the pattern-based ap-
proach explores the application of patterns to iden-
tify the instances of events, in which the patterns are
formed by predicates, event triggers and constraints
on the syntactic context (Grishman et al., 2005; Cao
et al., 2015a; Cao et al., 2015b).

Second, the feature-based approach relies on lin-
guistic intuition to design effective feature sets for
statistical models for ED, ranging from the local
sentence-level representations (Ahn, 2006; Li et al.,
2013), to the higher level structures such as the
cross-sentence or cross-event information (Ji and
Grishman, 2008; Gupta and Ji, 2009; Patwardhan
and Riloff, 2009; Liao and Grishman, 2011; Hong
et al., 2011; McClosky et al., 2011; Li et al., 2015).
Some recent work on the feature-based approach has
also investigated event trigger detection in the joint
inference with event argument prediction (Riedel et
al., 2009; Poon and Vanderwende, 2010; Li et al.,
2013; Venugopal et al., 2014) to benefit from their
inter-dependencies.

Finally, neural networks have been introduced
into ED very recently with the early work on con-
volutional neural networks (Nguyen and Grishman,
2015b; Chen et al., 2015). The other work includes:
(Nguyen et al., 2016a) who employ bidirectional
recurrent neural networks to perform event trig-
ger and argument labeling jointly, (Jagannatha and
Yu, 2016) who extract event instances from health
records with recurrent neural networks and (Nguyen
et al., 2016b) who propose a two-stage training al-
gorithm for event extension with neural networks.

5 Conclusion

We present a new CNN architecture for ED that
exploits the non-consecutive convolution for sen-
tences. Our evaluation of the proposed model on
the general setting and the DA setting demonstrates
the effectiveness of the non-consecutive mechanism.
We achieve the state-of-the-art performance for ED
in both settings. In the future, we plan to investigate
the non-consecutive architecture on other problems
such as relation extraction or slot filling.

890

References
David Ahn. 2006. The stages of event extraction. In

Proceedings of the Workshop on Annotating and Rea-
soning about Time and Events.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In EMNLP.

Kai Cao, Xiang Li, and Ralph Grishman. 2015a. Im-
proving event detection with dependency regulariza-
tion. In RANLP.

Kai Cao, Xiang Li, Miao Fan, and Ralph Grishman.
2015b. Improving event detection with active learn-
ing. In RANLP.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic
multi-pooling convolutional neural networks. In ACL-
IJCNLP.

Hal Daume III. 2007. Frustratingly easy domain adapta-
tion. In ACL.

Ralph Grishman, David Westbrook, and Adam Meyers.
2005. Nyus english ace 2005 system description. In
ACE 2005 Evaluation Workshop.

Prashant Gupta and Heng Ji. 2009. Predicting unknown
time arguments based on cross-event propagation. In
ACL-IJCNLP.

Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao,
Guodong Zhou, and Qiaoming Zhu. 2011. Using
cross-entity inference to improve event extraction. In
ACL.

Abhyuday N Jagannatha and Hong Yu. 2016. Bidi-
rectional rnn for medical event detection in electronic
health records. In NAACL.

Heng Ji and Ralph Grishman. 2008. Refining event ex-
traction through cross-document inference. In ACL.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2015.
Molding cnns for text: non-linear, non-consecutive
convolutions. In EMNLP.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event ex-
traction via structured prediction with global features.
In ACL.

Xiang Li, Thien Huu Nguyen, Kai Cao, and Ralph
Grishman. 2015. Improving event detection with
abstract meaning representation. In Proceedings of
ACL-IJCNLP Workshop on Computing News Story-
lines (CNewS).

Shasha Liao and Ralph Grishman. 2011. Acquiring topic
features to improve event extraction: in pre-selected
and balanced collections. In RANLP.

Shulin Liu, Kang Liu, Shizhu He, and Jun Zhao. 2016.
A probabilistic soft logic based approach to exploiting
latent and global information in event classification. In
AAAI.

David McClosky, Mihai Surdeanu, and Christopher Man-
ning. 2011. Event extraction as dependency parsing.
In BioNLP Shared Task Workshop.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. In ICLR.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013b. Distributed representations
of words and phrases and their compositionality. In
NIPS.

Thien Huu Nguyen and Ralph Grishman. 2015a. Rela-
tion extraction: Perspective from convolutional neural
networks. In Proceedings of the 1st NAACL Workshop
on Vector Space Modeling for NLP (VSM).

Thien Huu Nguyen and Ralph Grishman. 2015b. Event
detection and domain adaptation with convolutional
neural networks. In ACL-IJCNLP.

Thien Huu Nguyen, Barbara Plank, and Ralph Grishman.
2015c. Semantic representations for domain adapta-
tion: A case study on the tree kernel-based method for
relation extraction. In ACL-IJCNLP.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grish-
man. 2016a. Joint event extraction via recurrent neu-
ral networks. In NAACL.

Thien Huu Nguyen, Lisheng Fu, Kyunghyun Cho, and
Ralph Grishman. 2016b. A two-stage approach for
extending event detection to new types via neural net-
works. In Proceedings of the 1st ACL Workshop on
Representation Learning for NLP (RepL4NLP).

Siddharth Patwardhan and Ellen Riloff. 2009. A unified
model of phrasal and sentential evidence for informa-
tion extraction. In EMNLP.

Barbara Plank and Alessandro Moschitti. 2013. Em-
bedding semantic similarity in tree kernels for domain
adaptation of relation extraction. In ACL.

Hoifung Poon and Lucy Vanderwende. 2010. Joint in-
ference for knowledge extraction from biomedical lit-
erature. In NAACL-HLT.

Sebastian Riedel, Hong-Woo Chun, Toshihisa Takagi,
and Jun’ichi Tsujii. 2009. A markov logic approach
to bio-molecular event extraction. In BioNLP 2009
Workshop.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and general
method for semi-supervised learning. In ACL.

Deepak Venugopal, Chen Chen, Vibhav Gogate, and Vin-
cent Ng. 2014. Relieving the computational bottle-
neck: Joint inference for event extraction with high-
dimensional features. In EMNLP.

891

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 892–898,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Porting an Open Information Extraction System from English to German

Tobias Falke† Gabriel Stanovsky‡ Iryna Gurevych† Ido Dagan‡

†Research Training Group AIPHES and UKP Lab
Computer Science Department, Technische Universität Darmstadt

‡Natural Language Processing Lab
Department of Computer Science, Bar-Ilan University

Abstract

Many downstream NLP tasks can benefit from
Open Information Extraction (Open IE) as a
semantic representation. While Open IE sys-
tems are available for English, many other
languages lack such tools. In this paper, we
present a straightforward approach for adapt-
ing PropS, a rule-based predicate-argument
analysis for English, to a new language, Ger-
man. With this approach, we quickly obtain an
Open IE system for German covering 89% of
the English rule set. It yields 1.6 n-ary extrac-
tions per sentence at 60% precision, making it
comparable to systems for English and readily
usable in downstream applications.1

1 Introduction

The goal of Open Information Extraction (Open IE)
is to extract coherent propositions from a sentence,
each represented as a tuple of a relation phrase and
one or more argument phrases (e.g., born in (Barack
Obama; Hawaii)). Open IE has been shown to be
useful for a wide range of semantic tasks, including
question answering (Fader et al., 2014), summariza-
tion (Christensen et al., 2013) and text comprehen-
sion (Stanovsky et al., 2015), and has consequently
drawn consistent attention over the last years (Banko
et al., 2007; Wu and Weld, 2010; Fader et al., 2011;
Akbik and Löser, 2012; Mausam et al., 2012; Del
Corro and Gemulla, 2013; Angeli et al., 2015).

Although similar applications of Open IE in other
languages are obvious, most previous work focused

1Source code and online demo available at
https://github.com/UKPLab/props-de

on English, with only a few recent exceptions (Zhila
and Gelbukh, 2013; Gamallo and Garcia, 2015). For
most languages, Open IE systems are still missing.
While one could create them from scratch, as it was
done for Spanish, this can be a very laborious pro-
cess, as state-of-the-art systems make use of hand-
crafted, linguistically motivated rules. Instead, an
alternative approach is to transfer the rule sets of
available systems for English to the new language.

In this paper, we study whether an existing set
of rules to extract Open IE tuples from English de-
pendency parses can be ported to another language.
We use German, a relatively close language, and the
PropS system (Stanovsky et al., 2016) as examples
in our analysis. Instead of creating rule sets from
scratch, such a transfer approach would simplify the
rule creation, making it possible to build Open IE
systems for other languages with relatively low ef-
fort in a short amount of time. However, challenges
we need to address are differences in syntax, dis-
similarities in the corresponding dependency rep-
resentations as well as language-specific phenom-
ena. Therefore, the existing rules cannot be directly
mapped to the German part-of-speech and depen-
dency tags in a fully automatic way, but require a
careful analysis as carried out in this work. Similar
manual approaches to transfer rule-based systems to
new languages were shown to be successful, e.g.
for temporal tagging (Moriceau and Tannier, 2014),
whereas fully automatic approaches led to less com-
petitive systems (Strötgen and Gertz, 2015).

Our analysis reveals that a large fraction of the
PropS rule set can be easily ported to German, re-
quiring only small adaptations. With roughly 10%

892

Sehenswert sind die Orte San Jose und San Andres, die an der nördlichen Küste des Petén-Itzá-Sees liegen.

Sehenswert Orte San Jose und San Andres nördlichen Küste Petén-Itzá-Sees liegen
Worth seeing towns San Jose and San Andres northern shore Lake Petén-Itzá located

prop of
mod

conj und conj und

subj
prep an

mod poss

Extraction 1: liegen (die Orte San Jose und San Andres ; an der nördlichen Küste des Petén-Itzá-Sees)

Extraction 2: sehenswert (die Orte San Jose und San Andres)

Figure 1: PropS representation for Worth seeing are the towns San Jose and San Andres, which are located on the northern shore

of Lake Petén-Itzá. Grey boxes indicate predicates. Two Open IE tuples, one unary and one binary, are extracted from this sentence.

of the effort that went into the English system, we
could build a system for German covering 89% of
the rule set. As a result, we present PropsDE, the
first Open IE system for German. In an intrinsic
evaluation, we show that its performance is compa-
rable with systems for English, yielding 1.6 extrac-
tions per sentence with an overall precision of 60%.

2 Background

Open Information Extraction Open IE was in-
troduced as an open variant of traditional Informa-
tion Extraction (Banko et al., 2007). Since its in-
ception, several extractors were developed. The
majority of them, namely ReVerb (Fader et al.,
2011), KrakeN (Akbik and Löser, 2012), Exem-
plar (Mesquita et al., 2013) and ClausIE (Del Corro
and Gemulla, 2013), successfully used rule-based
strategies to extract tuples. Alternative approaches
are variants of self-supervision, as in TextRunner
(Banko et al., 2007), WOE (Wu and Weld, 2010) and
OLLIE (Mausam et al., 2012), and semantically-
oriented approaches utilizing semantic role labeling
(Open IE-42) or natural logic (Angeli et al., 2015).
While TextRunner and ReVerb require only POS
tagging as preprocessing to allow a high extraction
speed, the other systems rely on dependency parsing
to improve the extraction precision.

For non-English Open IE, ExtrHech has been pre-
sented for Spanish (Zhila and Gelbukh, 2013). Sim-
ilar as the English systems, it uses a set of extraction
rules, specifically designed for Spanish in this case.
More recently, ArgOE (Gamallo and Garcia, 2015)
was introduced. It manages to extract tuples in sev-
eral languages with the same rule set, relying on a

2https://github.com/knowitall/openie

dependency parser that uses a common tagset for
five European languages. However, an evaluation
for English and Spanish revealed that this approach
cannot compete with the systems specifically built
for those languages. To the best of our knowledge,
no work on Open IE for German exists.

Open IE with PropS Stanovsky et al. (2016)
recently introduced PropS, a rule-based converter
turning dependency graphs for English into typed
graphs of predicates and arguments. An example is
shown in Figure 1 (in German). Compared to a de-
pendency graph, the representation masks non-core
syntactic details, such as tense or determiners, uni-
fies semantically equivalent constructions, such as
active/passive, and explicates implicit propositions,
such as indicated by possessives or appositions.

The resulting graph can be used to extract Open
IE tuples in a straightforward way. Every non-
nested predicate node pred in the graph, together
with its n argument-subgraphs argi, yields a tuple
pred(arg1; ...; argn). With this approach, PropS is
most similar to KrakeN and ClausIE, applying rules
to a dependency parse. However, due to additional
nodes for implicit predicates, it can also make ex-
tractions that go beyond the scope of other systems,
such as has (Michael; bicycle) from Michael’s bicy-
cle is red. In line with more recent Open IE systems,
this strategy extracts tuples that are not necessarily
binary, but can be unary or of higher arity.

3 Analysis of Portability

Approach For each rule of the converter that
transforms a dependency graph to the PropS graph,
we assess its applicability for German. A rule is ap-
plied to a part of the graph if certain conditions are

893

fulfilled, expressed using dependency types, POS
tags and lemmas. As we already pointed out in
the introduction, several differences between the de-
pendency and part-of-speech representations for En-
glish and German make a fully automatic translation
of these rules impossible. We therefore manually
analyzed the portability of each rule and report the
findings in the next section.

While using Universal Dependencies (Nivre et al.,
2016) could potentially simplify porting the rules,
we chose not to investigate this option due to the on-
going nature of the project and focused on the estab-
lished representations for now. In line with the En-
glish system, that works on collapsed Stanford de-
pendencies (de Marneffe and Manning, 2008), we
assume a similar input representation for German
that can be obtained with a set of collapsing and
propagation rules provided by Ruppert et al. (2015)
for TIGER dependencies (Seeker and Kuhn, 2012).

Findings Overall, we find that most rules can be
used for German, mainly because syntactic differ-
ences, such as freer word order (Kübler, 2008), are
already masked by the dependency representation
(Seeker and Kuhn, 2012). About 38% of the rule set
can be directly ported to German, solely replacing
dependency types, POS tags and lemmas with their
German equivalents. As an example, the rule remov-
ing negation tokens looks for neg dependencies in
the graph, for which a corresponding type NG ex-
ists in German. We found similar correspondences
to remove punctuation and merge proper noun and
number compounds. In addition, we can also handle
appositions and existentials with direct mappings.

For 35% of the English rules, small changes are
necessary, mainly because no direct mapping to the
German tag set is possible or the annotation style
differs. For instance, while English has a specific
type det to link determiners to their governor, a more
generic type (NK) is used in German. Instead, deter-
miners can be detected by part-of-speech:

Ich bin in die Schule gegangen
PPER VAFIN APPR ART NN VVPP

I am to the school gone

SB

OC
MO

NK
NK

Another type of difference exists with regard to the
representation of auxiliary verb constructions. In

Stanford dependencies, main verbs govern all auxil-
iaries, whereas in TIGER dependencies, an auxiliary
heads the main verb. The above example shows this
for gone and am. Therefore, all rules identifying and
removing auxiliaries and modals have to be adapted
to account for this difference.

With similar changes as discussed for determin-
ers, we can also handle possessive and copular con-
structions. The graph for Michael’s bicycle is red,
for example, features an additional predicate have to
explicate the implicit possessive relation, while red
becomes an adjectival predicate, omitting is:

haben Michael Fahrrad rot
have Michael bicycle red

prop ofsubj
obj

poss

Moreover, conditional constructions can be pro-
cessed with slight changes as well. Missing a coun-
terpart for the type mark, we instead look for sub-
ordinating conjunctions by part-of-speech. In fact,
we found conditionals to be represented more con-
sistently across different conjunctions, making their
handling in German easier than in English.

More substantial changes are necessary for the
remaining 27% of the rules. To represent active and
passive in a uniform way, in passive clauses, PropS
turns the subject into an object and a potential by-
clause into the subject. For English, these cases
are indicated by the presence of passive dependen-
cies such as nsubjpass. For German, however, no
counterparts exist. As an alternative strategy, we
instead look for past participle verbs (by POS tag)
that are governed by a form of the auxiliary werden
(Schäfer, 2015). Instances of the German static pas-
sive (Zustandspassiv) are, in contrast, handled like
copulas. Another deviation from the English system
is necessary for relative clauses. PropS heavily relies
on the Stanford dependency converter, which propa-
gates dependencies of the relative pronoun to its ref-
erent. The German collapser does not have this fea-
ture, and we therefore implement it as an additional
transformation (see subj(liegen;Orte) in Figure 1).

To abstract away from different tenses, PropS rep-
resents predicates with their lemma, indicating the
original tense as a feature, as detected with a set of
rules operating on POS tags. For German, no tense
information is contained in POS tags, but instead, a
morphological analysis can provide it. Determining

894

the overall tense of a sentence based on that requires
a new set of rules, as the grammatical construction of
tenses differs between German and English. PropS
also tries to heuristically identify raising construc-
tions, in which syntactic and semantic roles of argu-
ments differ. In German, this phenomenon occurs
in similar situations, such as in Michael scheint zu
lächeln (Michael seems to smile), in which Michael
is not the semantic subject of scheinen, though syn-
tactically it is. To determine these cases heuristi-
cally, an empirically derived list of common raising
verbs, such as done by Chrupała and van Genabith
(2007) for English, needs to be created.

An additional step that is necessary during the
lemmatization of verbs for German is to recover sep-
arated particles. For example, a verb like ankom-
men (arrive) can be split in a sentence such as Er
kam an (He arrived), moving the particle to the end
of the sentence, with a potentially large number of
other tokens in between. We can reliably reattach
these particles based on the dependency parse. An-
other addition to the rules that we consider important
is to detect subjunctive forms of verbs and indicate
the mood with a specific feature for the predicate.
A morphological analysis provides the necessary in-
put. Compared to English, the usage of the subjunc-
tive is much more common, usually to indicate ei-
ther unreality or indirect speech (Thieroff, 2004).

4 German Open IE System

Following our analysis, we implemented a German
version of PropS, named PropsDE. It uses mate-
tools for POS tagging, lemmatizing and parsing
(Bohnet et al., 2013). Dependencies are collapsed
and propagated with JoBimText (Ruppert et al.,
2015). The rule set covers 89% of the English rules,
lacking only the handling of raising-to-subject verbs
and more advanced strategies for coordination con-
structions and tense detection. To assign confidence
scores, PropsDE uses a logistic regression model
trained to predict the correctness of extractions. Fig-
ure 1 illustrates some extracted tuples. Based on
correspondence with the authors of the English sys-
tem, we conclude that we were able to implement
the German version with roughly 10% of the effort
they reported. This shows that our approach of man-
ually porting a rule-based system can overcome the

lack of a tool for another language with reasonable
effort in a short amount of time.

5 Experiments

Experimental Setup Following the common eval-
uation protocol for Open IE systems, we manu-
ally label extractions made by our system. For
this purpose, we created a new dataset consisting
of 300 German sentences, randomly sampled from
three sources of different genres: news articles from
TIGER (Brants et al., 2004), German web pages
from CommonCrawl (Habernal et al., 2016) and fea-
tured Wikipedia articles. For the treebank part, we
ran our system using both gold and parsed depen-
dencies to analyze the impact of parsing errors.

Every tuple extracted from this set of 300 sen-
tences was labeled independently by two annota-
tors as correct or incorrect. In line with previous
work, they were instructed to label an extraction as
incorrect if it has a wrong predicate or argument,
including overspecified and incomplete arguments,
or if it is well-formed but not entailed by the sen-
tence. Unresolved co-references were not marked
as incorrect. We observed an inter-annotator agree-
ment of 85% (κ = 0.63). For the evaluation, we
merged the labels, considering an extraction as cor-
rect only if both annotators labeled it as such. Re-
sults are measured in terms of precision, the fraction
of correct extractions, and yield, the total number of
extractions. A precision-yield curve is obtained by
decreasing a confidence threshold. The confidence
predictor was trained on a separate development set.

Results From the whole corpus of 300 sentences,
PropsDE extracted 487 tuples, yielding on average
1.6 per sentence with 2.9 arguments. 60% of them
were labeled as correct. Table 1 shows that most ex-
tractions are made from Wikipedia articles, whereas
the highest precision can be observed for newswire
text. According to our expectations, web pages are
most challenging, presumably due to noisier lan-
guage. These differences between the genres can
also be seen in the precision-yield curve (Figure 2).

For English, state-of-the-art systems show a sim-
ilar performance. In a direct comparison of sev-
eral systems carried out by Del Corro and Gemulla
(2013), they observed overall precisions of 58%
(Reverb), 57% (ClausIE), 43% (WOE) and 43%

895

Genre Sentences Length Yield Precision
News* 100 19.3 142 78.9
News 100 19.3 144 70.8
Wiki 100 21.4 178 61.8
Web 100 19.2 165 49.1
Total 300 20.0 487 60.2

Table 1: Corpus size (length in token) and system performance

by genre. News* used gold trees and is not included in total.

(OLLIE) on datasets of similar genre. The reported
yield per sentence is higher for ClausIE (4.2), OL-
LIE (2.6) and WOE (2.1), but smaller for Reverb
(1.4). However, we note that in their evaluation, they
configured all systems to output only two-argument-
extractions. For example, from a sentence such as

The principal opposition parties boycotted
the polls after accusations of vote-rigging.

OLLIE can either make two binary extractions

boycotted (the principal opposition parties ;
the polls)
boycotted the polls after (the principal oppo-
sition parties ; accusations of vote-rigging)

or just a single extraction with three arguments.
PropS always extracts the combined tuple

boycotted (the principal opposition parties ,
the polls , after accusations of vote-rigging),

which is in line with the default configuration of
more recent Open IE systems.

For the sake of comparability, we conjecture that
the yield of our system would increase if we broke
down higher-arity tuples in a similar fashion: As-
suming that every extraction with n arguments, n >
2, can be split into n − 1 separate extractions, our
system’s yield would increase from 1.6 to 3.0. That
is in line with the numbers reported above for the
binary configuration for English. Overall, this in-
dicates a reasonable performance of our straightfor-
ward porting of PropS to German.

Extractions were most frequently labeled as in-
correct due to false relation labels (32%), overspeci-
fied arguments (21%) and wrong word order in argu-
ments (19%). Analyzing our system’s performance
on the treebank, we can see that the usage of gold de-
pendencies increases the precision by 8 percentage

0 50 100 150 200

0.4

0.5

0.6

0.7

0.8

0.9

1

Yield

Pr
ec

is
io

n

news

wiki

web

Figure 2: Extraction precision at increasing yield by genre.

points, making parsing errors responsible for about
28% of the incorrect extractions. Since the mate-
tools parser is trained on the full TIGER treebank,
including our experimental data, its error contribu-
tion on unseen data might be even higher.

6 Conclusion

Using PropS and German as examples, we showed
that a rule-based Open IE system for English can be
ported to another language in a reasonable amount
of time. As a result, we presented the first Open
IE system for German. In the future, studies tar-
geting less similar languages could further evaluate
the portability of PropS. Directions for future work
on PropsDE are extensions of the rule set to better
cover complex coordination constructions, nested
sentences and nominal predicates.

Acknowledgments

This work has been supported by the DFG-funded
research training group “Adaptive Preparation of In-
formation from Heterogeneous Sources” (AIPHES,
GRK 1994/1), by the German Research Founda-
tion through the German-Israeli Project Cooperation
(DIP, grant DA 1600/1-1 and grant GU 798/17-1)
and by the Volkswagen Foundation as part of the
Lichtenberg-Professorship Program under grant No.
I/82806.

References

Alan Akbik and Alexander Löser. 2012. KrakeN: N-
ary Facts in Open Information Extraction. In Proceed-
ings of the Joint Workshop on Automatic Knowledge
Base Construction & Web-scale Knowledge Extrac-
tion, pages 52–56, Montreal, Canada.

896

Gabor Angeli, Melvin Johnson Premkumar, and Christo-
pher D. Manning. 2015. Leveraging Linguistic Struc-
ture For Open Domain Information Extraction. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing, pages 344–354, Beijing, China.

Michele Banko, Michael J. Cafarella, Stephen Soderland,
Matt Broadhead, and Oren Etzioni. 2007. Open In-
formation Extraction from the Web. In Proceedings
of the 20th International Joint Conference on Artifical
Intelligence, pages 2670–2676, Hyderabad, India.

Bernd Bohnet, Joakim Nivre, Igor Boguslavsky, Richárd
Farkas, Filip Ginter, and Jan Hajič. 2013. Joint Mor-
phological and Syntactic Analysis for Richly Inflected
Languages. Transactions of the Association for Com-
putational Linguistics, 1(0):415–428.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Sil-
via Hansen-Schirra, Esther König, Wolfgang Lezius,
Christian Rohrer, George Smith, and Hans Uszkor-
eit. 2004. TIGER: Linguistic Interpretation of a Ger-
man Corpus. Research on Language and Computa-
tion, 2(4):597–620.

Janara Christensen, Mausam, Stephen Soderland, and
Oren Etzioni. 2013. Towards Coherent Multi-
Document Summarization. In Proceedings of the 2013
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, pages 1163–1173, Atlanta, GA,
USA.

Grzegorz Chrupała and Josef van Genabith. 2007. Us-
ing Very Large Corpora to Detect Raising and Con-
trol Verbs. In Proceedings of the Lexical Functional
Grammar 2007 Conference, pages 597–620, Stanford,
CA, USA.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The Stanford typed dependencies repre-
sentation. In Proceedings of the 22nd International
Conference on Computational Linguistics, pages 1–8,
Manchester, United Kingdom.

Luciano Del Corro and Rainer Gemulla. 2013. ClausIE:
Clause-Based Open Information Extraction. In Pro-
ceedings of the 22nd International Conference on the
World Wide Web, pages 355–366, Rio de Janeiro,
Brazil.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying Relations for Open Information Ex-
traction. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, pages
1535–1545, Edinburgh, United Kingdom.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2014. Open question answering over curated and ex-
tracted knowledge bases. In Proceedings of the 20th

ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 1156–1165,
New York, NY, USA.

Pablo Gamallo and Marcos Garcia. 2015. Multilingual
Open Information Extraction. In Proceedings of the
17th Portuguese Conference on Artificial Intelligence,
volume 9273 of Lecture Notes in Computer Science,
pages 711–722, Coimbra, Portugal.

Ivan Habernal, Omnia Zayed, and Iryna Gurevych. 2016.
C4Corpus: Multilingual Web-size corpus with free li-
cense. In Proceedings of the 10th International Con-
ference on Language Resources and Evaluation, pages
914–922, Portorož, Slovenia.

Sandra Kübler. 2008. The PaGe 2008 shared task on
parsing German. In Proceedings of the ACL-08: HLT
Workshop on Parsing German (PaGe-08), pages 55–
63, Columbus, OH, USA.

Mausam, Michael Schmitz, Robert Bart, Stephen Soder-
land, and Oren Etzioni. 2012. Open Language Learn-
ing for Information Extraction. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning, pages 523–534, Jeju Island, Ko-
rea.

Filipe Mesquita, Jordan Schmidek, and Denilson Bar-
bosa. 2013. Effectiveness and Efficiency of Open Re-
lation Extraction. In Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 447–457, Seattle, WA, USA.

Véronique Moriceau and Xavier Tannier. 2014. French
Resources for Extraction and Normalization of Tem-
poral Expressions with HeidelTime. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC’14), pages 3239–3243,
Reykjavik, Iceland.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter,
Yoav Goldberg, Jan Hajič, Christopher D. Manning,
Ryan McDonald, Slav Petrov, Sampo Pyysalo, Na-
talia Silveira, Reut Tsarfaty, and Daniel Zeman. 2016.
Universal Dependencies v1: A Multilingual Treebank
Collection. In Proceedings of the 10th International
Conference on Language Resources and Evaluation,
pages 1659–1666, Portorož, Slovenia.

Eugen Ruppert, Jonas Klesy, Martin Riedl, and Chris
Biemann. 2015. Rule-based Dependency Parse Col-
lapsing and Propagation for German and English. In
Proceedings of the GSCL 2015, pages 58–66, Duis-
burg, Germany.

Roland Schäfer. 2015. Einführung in die grammatis-
che Beschreibung des Deutschen. Language Science
Press, Berlin, Germany.

Wolfgang Seeker and Jonas Kuhn. 2012. Making El-
lipses Explicit in Dependency Conversion for a Ger-

897

man Treebank. In Proceedings of the Eighth Interna-
tional Conference on Language Resources and Evalu-
ation, pages 3132–3139, Istanbul, Turkey.

Gabriel Stanovsky, Ido Dagan, and Mausam. 2015.
Open IE as an Intermediate Structure for Semantic
Tasks. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Lan-
guage Processing, pages 303–308, Beijing, China.

Gabriel Stanovsky, Jessica Ficler, Ido Dagan, and Yoav
Goldberg. 2016. Getting More Out Of Syntax with
PropS. arXiv:1603.01648.

Jannik Strötgen and Michael Gertz. 2015. A Baseline
Temporal Tagger for all Languages. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 541–547, Lisbon, Portu-
gal.

Rolf Thieroff. 2004. The subjunctive mood in German
and in the Germanic languages. In Focus on Germanic
Topology, pages 315–358. Akademie Verlag, Berlin,
Germany.

Fei Wu and Daniel S. Weld. 2010. Open Information Ex-
traction Using Wikipedia. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics, pages 118–127, Uppsala, Sweden.

Alisa Zhila and Alexander Gelbukh. 2013. Comparison
of open information extraction for English and Span-
ish. In Proceedings of the International Conference on
Computational Linguistics and Intellectual Technolo-
gies (Dialogue 2013), pages 714–722, Bekasovo, Rus-
sia.

898

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 899–905,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Named Entity Recognition for Novel Types by Transfer Learning

Lizhen Qu1,2, Gabriela Ferraro1,2, Liyuan Zhou1,
Weiwei Hou1, Timothy Baldwin1,3

1 DATA61, Australia
2 The Australian National University

3 The University of Melbourne
{lizhen.qu,gabriela.ferraro,joe.zhou}@data61.csiro.au

houvivid2013@gmail.com, tb@ldwin.net

Abstract

In named entity recognition, we often don’t
have a large in-domain training corpus or a
knowledge base with adequate coverage to
train a model directly. In this paper, we pro-
pose a method where, given training data in a
related domain with similar (but not identical)
named entity (NE) types and a small amount of
in-domain training data, we use transfer learn-
ing to learn a domain-specific NE model. That
is, the novelty in the task setup is that we as-
sume not just domain mismatch, but also label
mismatch.

1 Introduction

There are two main approaches to named entity recog-
nition (NER): (i) build sequence labelling models
such as conditional random fields (CRFs) (Lafferty et
al., 2001) on a large manually-labelled training cor-
pus (Finkel et al., 2005); and (ii) exploit knowledge
bases to recognise mentions of entities in text (Rizzo
and Troncy, 2012; Mendes et al., 2011). For many
social media-based or security-related applications,
however, we cannot assume that we will have ac-
cess to either of these. An alternative is to have a
small amount of in-domain training data and access
to large-scale annotated data in a second domain, and
perform transfer learning over both the features and
label set. This is the problem setting in this paper.

NER of novel named entity (NE) types poses two
key challenges. First is the issue of sourcing labelled
training data. Handcrafted features play a key role
in supervised NER models (Turian et al., 2010), but
if we have only limited training amounts of training

data, we will be hampered in our ability to reliably
learn feature weights. Second, the absence of target
NE types in the source domain makes transfer diffi-
cult, as we cannot directly apply a model trained over
the source domain to the target domain. Alvarado
et al. (2015) show that even if the NE label set is
identical across domains, large discrepancies in the
label distribution can lead to poor performance.

Despite these difficulties, it is possible to transfer
knowledge between domains, as related NE types
often share lexical and context features. For example,
the expressions give lectures and attend tutorials of-
ten occur near mentions of NE types PROFESSOR
and STUDENT. If only PROFESSOR is observed
in the source domain but we can infer that the two
classes are similar, we can leverage the training data
to learn an NER model for STUDENT. In practice,
differences between NE classes are often more sub-
tle than this, but if we can infer, for example, that
the novel NE type STUDENT aligns with NE types
PERSON and UNIVERSITY, we can compose the
context features of PERSON and UNIVERSITY to
induce a model for STUDENT.

In this paper, we propose a transfer learning-based
approach to NER in novel domains with label mis-
match over a source domain. We first train an NER
model on a large source domain training corpus, and
then learn the correlation between the source and tar-
get NE types. In the last step, we reuse the model
parameters of the second step to initialise a linear-
chain CRF and fine tune it to learn domain-specific
patterns. We show that our methods achieve up to
160% improvement in F-score over a strong baseline,
based on only 125 target-domain training sentences.

899

2 Related work

The main scenario where transfer learning has been
applied to NER is domain adaptation (Arnold et al.,
2008; Maynard et al., 2001; Chiticariu et al., 2010),
where it is assumed that the label set Y is the same
for both the source and target corpora, and only the
domain varies. In our case, however, both the domain
and the label set differ across datasets.

Similar to our work, Kim et al. (2015) use transfer
learning to deal with NER data sets with different
label distributions. They use canonical correlation
analysis (CCA) to induce label representations, and
reduce the problem to one of domain adaptation. This
supports two different label mappings: (i) to a coarse
label set by clustering vector representations of the
NE types, which are combined with mention-level
predictions over the target domain to train a target
domain model; and (ii) between labels based on the
k nearest neighbours of each label type, and from
this transferring a pre-trained model from the source
to the target domain. They showed their automatic
label mapping strategies attain better results than
a manual mapping, with the pre-training approach
achieving the best results. Similar conclusions were
reached by Yosinski et al. (2014), who investigated
the transferability of features from a deep neural net-
work trained over the ImageNet data set. Sutton and
McCallum (2005) investigated how the target task
affects the source task, and demonstrated that decod-
ing for transfer is better than no transfer, and joint
decoding is better than cascading decoding.

Another way of dealing with a lack of annotated
NER data is to use distant supervision by exploiting
knowledge bases to recognise mentions of entities
(Ling and Weld, 2012; Dong et al., 2015; Yosef et
al., 2013; Althobaiti et al., 2015; Yaghoobzadeh and
Schütze, 2015). Having a fine-grained entity typol-
ogy has been shown to improve other tasks such as re-
lation extraction (Ling and Weld, 2012) and question
answering (Lee et al., 2007). Nevertheless, for many
social media-based or security-related applications,
we don’t have access to a high-coverage knowledge
base, meaning distant supervision is not appropriate.

3 Transfer Learning for NER

Our proposed approach TransInit consists of three
steps: (1) we train a linear-chain CRF on a large

source-domain corpus; (2) we learn the correlation
between source NE types and target NE types using
a two-layer neural network; and (3) we leverage the
neural network to train a CRF for target NE types.

Given a word sequence x of length L, an NER
system assigns each word xi a label yi ∈ Y , where
the label space Y includes all observed NE types and
a special category O for words without any NE type.
Let (x,y) be a sequence of words and their labels. A
linear-chain CRF takes the form:

1

Z

L∏

l=1

exp

(
Wff(yl,x) +Wgg(yl−1, yl)

)
, (1)

where f(yl,x) is a feature function depending only
on x, and the feature function g(yl−1, yl) captures
co-occurrence between adjunct labels. The feature
functions are weighted by model parameters W, and
Z serves as the partition function for normalisation.

The source domain model is a linear-chain CRF
trained on a labelled source corpus. The co-
occurrence of target domain labels is easy to learn
due to the small number of parameters (|Y |2). Mostly
such information is domain specific so that it is un-
likely that the co-occurrence of two source types
can be matched to the co-occurrence of the two tar-
get types. However the feature functions f(yl,x)
capture valuable information about the textual pat-
terns associated with each source NE type. Without
g(yl−1, yl), the linear-chain CRF is reduced to a lo-
gistic regression (LR) model:

σ(y∗,xi;W
f) =

exp(Wf
.y∗f(y

∗
i ,xi))

∑
y∈Y exp(W

f
.yf(y,xi))

. (2)

In order to learn the correlation between source
and target types, we formulate it as a predictive task
by using the unnormalised probability of source types
to predict the target types. Due to the simplifica-
tion discussed above, we are able to extract a linear
layer from the source domain, which takes the form
ai = Wsxi, where Ws denotes the parameters of
f(yl,x) in the source domain model, and each ai
is the unnormalised probability for each source NE
type. Taking ai as input, we employ a multi-class LR
classifier to predict target types, which is essentially
p(y′|a) = σ(y′,ai;Wt), where y′ is the observed
type. From another point of view, the whole architec-
ture is a neural network with two linear layers.

900

We do not add any non-linear layers between
these two linear layers because we otherwise end
up with saturated activation functions. An activa-
tion function is saturated if its input values are its
max/min values (Glorot and Bengio, 2010). Taking
tanh(x) as an example, ∂tanh(z)

∂z = 1 − tanh2(z).
If z is, for example, larger than 2, the correspond-
ing derivative is smaller than 0.08. Assume that
we have a three-layer neural network where zi de-
notes the input of layer i, tanh(z) is the middle
layer, and L(zi−2) is the loss function. We then
have ∂L(zi−2)

∂zi−2 = ∂L
∂zi+1

∂ tanh(zi−1)
∂zi−1

∂zi−1

∂zi−2 . If the tanh
layer is saturated, the gradient propagated to the lay-
ers below will be small, and no learning based on
back propagation will occur.

If no parameter update is required for the bottom
linear layer, we will also not run into the issue of
saturated activation functions. However, in our ex-
periments, we find that parameter update is neces-
sary for the bottom linear layer because of covariate
shift (Sugiyama et al., 2007), which is caused by dis-
crepancy in the distribution between the source and
target domains. If the feature distribution differs be-
tween domains, updating parameters is a straightfor-
ward approach to adapt the model for new domains.

Although the two-layer neural network is capable
of recognising target NE types, it has still two draw-
backs. First, unlike a CRF, it doesn’t include a label
transition matrix. Second, the two-layer neural net-
work has limited capacity if the domain discrepancy
is large. If we rewrite the two-layer architecture in a
compact way, we obtain:

p(y′|x) = σ(y′,xi;W
tWs). (3)

As the equation suggests, if we minimize the negative
log likelihood, the loss function is not convex. Thus,
we could land in a non-optimal local minimum using
online learning. The pre-trained parameter matrix
Ws imposes a special constraint that the computed
scores for each target type are a weighted combina-
tion of updated source type scores. If a target type
shares nothing in common with source types, the
pre-trained Ws does more harm than good.

In the last step, we initialise the model parameters
of a linear-chain CRF for f(yl,x) using the model
parameters from the previous step. Based on the
architecture of the NN model, we can collapse the

two linear transformations into one by:

Wf = WtWs, (4)

while initialising the other parameters of the CRF
to zero. After this transformation, each initialised
parameter vector Wf

.y is a weighted linear combina-
tion of the updated parameter vectors of the source
types. Compared to the second step, the loss func-
tion we have now is convex because it is exactly a
linear-chain CRF. Our previous steps have provided
guided initialization of the parameters by incorpo-
rating source domain knowledge. The model also
has significantly more freedom to adapt itself to the
target types. In other words, collapsing the two ma-
trices simplifies the learning task and removes the
constraints imposed by the pre-trained Ws.

Because the tokens of the class O are generally
several orders of magnitude more frequent than the
tokens of the NE types, and also because of covariate
shift, we found that the predictions of the NN mod-
els are biased towards the class O (i.e. a non-NE).
As a result, the parameters of each NE type will al-
ways include or be dominated by the parameters of
O after initialisation. To ameliorate this effect, we
renormalise Wt before applying the transformation,
as in Equation (4). We do not include the parameters
of the source class O when we initialise parameters
of the NE types, while copying the parameters of the
source class O to the target class O. In particular, let
o be the index of source domain class O. For each
parameter vector Wt

i∗ of NE type, we set W t
io = 0.

For the parameter vector for the target class O, we
set only the element corresponding to the weight be-
tween source type O and target class O to 1, and
other elements to 0.

Finally, we fine-tune the model over the target do-
main by maximising log likelihood. The training
objective is convex, and thus the local optimum is
also the global optimum. If we fully train the model,
we will achieve the same model as if we trained from
scratch over only the target domain. As the knowl-
edge of the source domain is hidden in the initial
weights, we want to keep the initial weights as long
as they contribute to the predictive task. Therefore,
we apply AdaGrad (Rizzo and Troncy, 2012) with
early stopping based on development data, so that
the knowledge of the source domain is preserved as
much as possible.

901

18 54 125 268 553 1123 4543 18222
Training size

0.0

0.2

0.4

0.6

0.8

1.0

F1
-M

e
a
su

re

BOW
Embed
LabelEmbed
CCA
TransInit

(a) Target: I2B2, Source: BBN

18 54 125 268 553 1123 4543 18222
Training size

0.0

0.2

0.4

0.6

0.8

1.0

F1
-M

e
a
su

re

BOW
Embed
LabelEmbed
CCA
TransInit

(b) Target: I2B2, Source: CoNLL

18 54 125 268 553 1123 4543 18222
Training size

0.0

0.2

0.4

0.6

0.8

1.0

F1
-M

e
a
su

re

BOW
Embed
LabelEmbed
CCA
TransInit

(c) Target: CADEC, Source: CoNLL

Figure 1: Macro-averaged F1 results across all novel classes on different source/target domain combinations

4 Experimental Setup

4.1 Datasets

We use CADEC (Karimi et al., 2015) and I2B2
(Ben Abacha and Zweigenbaum, 2011) as target cor-
pora with the standard training and test splits. From
each training set, we hold out 10% as the devel-
opment set. As source corpora, we adopt CoNLL
(Tjong Kim Sang and De Meulder, 2003) and BBN
(Weischedel and Brunstein, 2005).

In order to test the impact of the target domain
training data size on results, we split the training set
of CADEC and I2B2 into 10 partitions based on a log
scale, and created 10 successively larger training sets
by merging these partitions from smallest to largest
(with the final merge resulting in the full training set).
For all methods, we report the macro-averaged F1
over only the NE classes that are novel to the target
domain.

4.2 Baselines

We compare our methods with the following two
in-domain baselines, one cross-domain data-based
method, and three cross-domain transfer-based
benchmark methods.

BOW: an in-domain linear-chain CRF with hand-
crafted features, from Qu et al. (2015).

Embed: an in-domain linear-chain CRF with hand-
crafted features and pre-trained word embeddings,
from Qu et al. (2015).

LabelEmbed: take the labels in the source and tar-
get domains, and determine the alignment based on
the similarity between the pre-trained embeddings
for each label.

CCA: the method of Kim et al. (2015), where a
one-to-one mapping is generated between source and
target NE classes using CCA and k-NN (see Sec-
tion 2).

TransDeepCRF: A three-layer deep CRF. The bot-
tom layer is a linear layer initialised with Ws from
the source domain-trained CRF. The middle layer is
a hard tanh function (Collobert et al., 2011). The
top layer is a linear-chain CRF with all parameters
initialised to zero.

TwoLayerCRF: A two-layer CRF. The bottom
layer is a linear layer initialised with Ws from
the source domain-trained CRF. The top layer is a
linear-chain CRF with all parameters initialised to
zero.

We compare our method with one variation, which
is to freeze the parameters of the bottom linear layer
and update only the parameters of the LR classifier
while learning the correlation between the source and
target types.

4.3 Experimental Results

Figure 1 shows the macro-averaged F1 of novel
types between our method TransInit and the three
baselines on all target corpora. The evaluation re-
sults on CADEC with BBN as the source corpus are
not reported here because BBN contains all types of
CADEC. From the figure we can see that TransInit
outperforms all other methods with a wide margin
on I2B2. When CoNLL is taken as the source cor-
pus, despite not sharing any NE types with I2B2,
several target types are subclasses of source types:
DOCTOR and PATIENT w.r.t. PERSON, and HOS-

902

PITAL w.r.t. ORGANIZATION.
In order to verify if TransInit is able to capture

semantic relatedness between source and target NE
types, we inspected the parameter matrix Wt of the
LR classifier in the step of learning type correlations.
The corresponding elements in Wt indeed receive
much higher values than the semantically-unrelated
NE type pairs. When less than 300 target training
sentences are used, these automatically discovered
positive correlations directly lead to 10 times higher
F1 scores for these types than the baseline Embed,
which does not have a transfer learning step. Since
TransInit is able to transfer the knowledge of multi-
ple source types to related target types, this advantage
leads to more than 10% improvement in terms of F1
score on these types compared with LabelEmbed,
given merely 268 training sentences in I2B2. We
also observe that, in case of few target training exam-
ples, LabelEmbed is more robust than CCA if the
correlation of types can be inferred from their names.

We study the effects of transferring a large num-
ber of source types to target types by using BBN,
which has 64 types. Here, the novel types of I2B2
w.r.t. BBN are DOCTOR, PATIENT, HOSPITAL,
PHONE, and ID. For these types, TransInit success-
fully recognises PERSON as the most related type
to DOCTOR, as well as CARDINAL as the most
related type to ID. In contrast, CCA often fails to
identify meaningful type alignments, especially for
small training data sizes.
CADEC is definitely the most challenging task

when trained on CoNLL, because there is no se-
mantic connection between two of the target NE
types (DRUG and DISEASE) and any of the source
NE types. In this case, the baseline LabelEmbed
achieves competitive results with TransInit. This
suggests that the class names reflect semantic corre-
lations between source and target types, and there are
not many shared textual patterns between any pair of
source and target NE types in the respective datasets.

Even with a complex model such as a neural net-
work, the transfer of knowledge from the source types
to the target types is not an easy task. Figure 2 shows
that with a three-layer neural network, the whole
model performs poorly. This is due to the fact that
the hard tanh layer suffers from saturated function
values. We inspected the values of the output hidden

18 54 125 268 553 1123 4543 18222
Training size

0.0

0.2

0.4

0.6

0.8

1.0

F1
-M

e
a
su

re

DeepCRF
TwoLayerCRF
TransInit_NonUpdate

TransInit

Figure 2: Difficulty of Transfer. The source model is
trained on BBN.

units computed by Wsx on a random sample of tar-
get training examples before training on the target
corpora. Most values are either highly positive or
negative, which is challenging for online learning
algorithms. This is due to the fact that these hid-
den units are unnormalised probabilities produced
by the source domain classifier. Therefore, remov-
ing the hidden non-linear-layer layer leads to a dra-
matic performance improvement. Moreover, Figure 2
also shows that further performance improvement is
achieved by reducing the two-layer architecture into
a linear chain CRF. And updating the hidden layers
leads to up to 27% higher F1 scores than not updating
them in the second step of TransInit, which indicates
that the neural networks need to update lower-level
features to overcome the covariate shift problem.

5 Conclusion

We have proposed TransInit, a transfer learning-
based method that supports the training of NER mod-
els across datasets where there are mismatches in
domain and also possibly the label set. Our method
was shown to achieve up to 160% improvement in
F1 over competitive baselines, based on a handful of
in-domain training instances.

Acknowledgments

This research was supported by NICTA, funded by
the Australian Government through the Department
of Communications and the Australian Research
Council through the ICT Centre of Excellence Pro-
gram.

903

References

Maha Althobaiti, Udo Kruschwitz, and Massimo Poesio.
2015. Combining minimally-supervised methods for
arabic named entity recognition. Transactions of the
Association for Computational Linguistics, 3:243–255.

Julio Cesar Salinas Alvarado, Karin Verspoor, and Timo-
thy Baldwin. 2015. Domain adaption of named entity
recognition to support credit risk assessment. In Aus-
tralasian Language Technology Association Workshop
2015.

Andrew Arnold, Ramesh Nallapati, and W. William Co-
hen. 2008. Exploiting feature hierarchy for transfer
learning in named entity recognition. In Proceedings
of ACL-08: HLT, pages 245–253.

Asma Ben Abacha and Pierre Zweigenbaum. 2011. Med-
ical entity recognition: A comparison of semantic and
statistical methods. In Proceedings of BioNLP 2011
Workshop, pages 56–64.

Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li,
Frederick Reiss, and Shivakumar Vaithyanathan. 2010.
Domain adaptation of rule-based annotators for named-
entity recognition tasks. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language
Processing, pages 1002–1012.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of Machine Learning Research, 12:2493–2537.

Li Dong, Furu Wei, Hong Tan, Sun, Ming Zhou, and
Ke Xu. 2015. A hybrid neural model for type classi-
fication of entity mentions. In Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI), pages 1243–1249.

Jenny Rose Finkel, Trond Grenager, and Christopher Man-
ning. 2005. Incorporating non-local information into
information extraction systems by Gibbs sampling. In
Proceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, pages 363–370.

Xavier Glorot and Yoshua Bengio. 2010. Understanding
the difficulty of training deep feedforward neural net-
works. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics (AIS-
TATS 2010), pages 249–256.

Sarvnaz Karimi, Alejandro Metke-Jimenez, Madonna
Kemp, and Chen Wang. 2015. Cadec: A corpus of
adverse drug event annotations. Journal of Biomedical
Informatics, 55:73–81.

Young-Bum Kim, Karl Stratos, Ruhi Sarikaya, and Min-
woo Jeong. 2015. New transfer learning techniques
for disparate label sets. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference

on Natural Language Processing of the Asian Feder-
ation of Natural Language Processing, (ACL 2015),
pages 473–482.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In Proceed-
ings of the 18th International Conference on Machine
Learning, pages 282–289.

Changki Lee, Yi-Gyu Hwang, and Myung-Gil Jang. 2007.
Fine-grained named entity recognition and relation ex-
traction for question answering. In Proceedings of the
30th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 799–800.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained entity
recognition. In Proceedings of the 26th AAAI Confer-
ence on Artificial Intelligence.

Diana Maynard, Valentin Tablan, Cristian Ursu, Hamish
Cunningham, and Yorick Wilks. 2001. Named en-
tity recognition from diverse text types. In Recent
Advances in Natural Language Processing 2001 Con-
ference.

Pablo N Mendes, Max Jakob, Andrés Garcı́a-Silva, and
Christian Bizer. 2011. DBpedia spotlight: shedding
light on the web of documents. In Proceedings of
the 7th International Conference on Semantic Systems,
pages 1–8.

Lizhen Qu, Gabriela Ferraro, Liyuan Zhou, Weiwei Hou,
Nathan Schneider, and Timothy Baldwin. 2015. Big
data small data, in domain out-of domain, known word
unknown word: The impact of word representations
on sequence labelling tasks. In Proceedings of the
19th Conference on Computational Natural Language
Learning (CoNLL 2015), pages 83–93.

Giuseppe Rizzo and Raphaël Troncy. 2012. NERD: a
framework for unifying named entity recognition and
disambiguation extraction tools. In Proceedings of the
Demonstrations at the 13th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 73–76.

Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert
Müller. 2007. Covariate shift adaptation by importance
weighted cross validation. Journal of Machine Learn-
ing Research, 8:985–1005.

Charles Sutton and Andrew McCallum. 2005. Composi-
tion of conditional random fields for transfer learning.
In Proceedings of the Conference on Human Language
Technology and Empirical Methods in Natural Lan-
guage Processing, HLT ’05, pages 748–754.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In Proceedings
of CoNLL-2003, pages 142–147.

904

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method for
semi-supervised learning. In Proceedings of the 48th
annual meeting of the association for computational
linguistics, pages 384–394.

Ralph Weischedel and Ada Brunstein. 2005. BBN pro-
noun coreference and entity type corpus. Linguistic
Data Consortium.

Yadollah Yaghoobzadeh and Hinrich Schütze. 2015.
Corpus-level fine-grained entity typing using contextual
information. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing
(EMNLP 2015), pages 715–725.

Mohamed Amir Yosef, Sandro Bauer, Johannes Hoffart,
Marc Spaniol, and Gerhard Weikum. 2013. HYENA-
live: Fine-grained online entity type classification from
natural-language text. In Proceedings of the 51st An-
nual Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 133–138.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lip-
son. 2014. How transferable are features in deep neural
networks? In Advances in Neural Information Process-
ing Systems 27, pages 3320–3328.

905

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 906–911,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Extracting Subevents via an Effective Two-phase Approach

Allison Badgett and Ruihong Huang
Texas A&M University

{allisonbadgett, huangrh}@cse.tamu.edu

Abstract

We present our pilot research on automatically
extracting subevents from a domain-specific
corpus, focusing on the type of subevents that
describe physical actions composing an event.
We decompose the challenging problem and
propose a two-phase approach that effectively
captures sentential and local cues that describe
subevents. We extracted a rich set of over 600
novel subevent phrases. Evaluation shows the
automatically learned subevents help to dis-
cover 10% additional main events (of which
the learned subevents are a part) and improve
event detection performance.

1 Introduction

General and abstract event expressions and event
keywords are often used for detecting events. To
detect civil unrest events for example, common
event expressions “took to the streets” and “staged
a protest”, and event keywords “rally” and “strike”
are usually considered as the first option. Subevents,
events that occur as a part of the main event and
therefore are useful to instantiate the main event,
widely exist in event descriptions but they are rarely
used for detecting the main event.

In this paper, we focus on learning subevent
phrases that describe physical actions composing an
event. Such subevents are the evidence that an event
is occurring. For example, if a person were to ex-
plain how he knew that the crowd gathered in the
street was rioting, he might point to the shouting of
political slogans or tires lit on fire. In this instance,
the riot would be the event. The slogan-shouting

and tire-burning would be the subevents. Because
subevent detection requires an understanding of lev-
els of abstraction, this task can even be difficult for
humans to perform. Furthermore, subevent phrases
and general event phrases often have the same gram-
matical structure and may share common words,
which makes automatically differentiating between
event phrases and subevent phrases within a docu-
ment even more difficult.

Additionally, events and subevents are not disjoint
classes. There are some subevents that are unam-
biguous. For example, “burning tires” is a concrete
phrase that would not fall into the category of more
abstract events. However, “gathered at site” is cer-
tainly more ambiguous. Even human analysts would
not necessarily agree on the appropriate class for this
phrase. In many cases, the categorization would be
context-dependent. Because of this, our research fo-
cused on identifying the less ambiguous, and there-
fore more concrete, cases.

Instead of separating subevent phrases from gen-
eral event phrases, we explicitly acquire subevent
phrases by leveraging both sentential and local cues
in describing subevents. We observed that subevents
of the type in which we are interested, as impor-
tant facts presented in news stories, are commonly
mentioned in sentences that refer to the source of in-
formation or simply in quotation sentences. These
sentences usually start or end with characteristic
phrases such as “media reports” and “witness said”.
Furthermore, we observed that subevent phrases of-
ten occur in conjunction constructions as a sequence
of subevent phrases, as shown in the following ex-
amples:

906

(1) State television broadcast the event live, offering
sweeping aerial views that showed the sea of people
waving banners, blew whistles, and shouted
slogans.

(2) They also set fires, stoned civilian vehicles,
taunted the police and hurled stones at them,
witnesses said.

where the subevents are shown in bold, and sen-
tential cues are underlined.

Inspired by these observations, we propose a
novel two-phase approach to automatically extract
subevents, which consists of a sentence classifier
that incrementally identifies sentences mentioning
subevents and a subevent extractor which looks for a
sequence of subevent phrases in a conjunction struc-
ture. Our sentence classifier is trained in a weakly
supervised manner and only requires a small set of
subevent phrases as a guide. The classifier was ini-
tially trained with sentences containing eight pro-
vided subevent seeds, then it proceeded to label
more sentences that mention new subevent phrases.

This two-phase subevent extraction approach can
successfully identify 610 diverse subevent phrases
from a domain-specific corpus. We evaluate our au-
tomatically learned subevent phrases by using them
to detect events. Experimental results show that the
learned subevent phrases can recover an additional
10% of event articles and improve event detection
F-1 score by 3%.

2 Related Work

While it is generally agreed that subevents are an
important type of information in event descriptions,
they are seldom considered in decades of event ex-
traction research (Appelt et al., 1993; Riloff, 1993;
Soderland et al., 1995; Sudo et al., 2003; Li et
al., 2005; Yu et al., 2005; Gu and Cercone, 2006;
Maslennikov and Chua, 2007; S. and E., 2009;
Liao and Grishman, 2010; Huang and Riloff, 2011;
Chambers and Jurafsky, 2011; Huang and Riloff,
2012; Huang et al., 2016). Subevents as a theme
has been discussed in the past three Event work-
shops (Eve, 2013), (Eve, 2014), (Eve, 2015). How-
ever, despite the great potential of using subevents
to improve event detection and extraction (Hakeem

and Shah, 2005), and event coreference resolution
(Araki et al., 2014), there is little existing research
on automatically learning subevent phrases, par-
tially because researchers have not agreed upon the
definition of subevents. Much recent research in
event timeline generation (Huang and Huang, 2013)
suggests the usefulness of subevents in improving
quality and completeness of automatically generated
event summaries. However, they often focus on
a different notion of subevents that broadly covers
pre-condition events and consequence events and is
temporally-based.

Subevents have been studied for event tracking
applications (Shen et al., 2013; Meladianos et al.,
2015). However, most current research is specifi-
cally related to social media applications, like Twit-
ter, in terms of both its definition of subevents and
methodologies. For example, in previous research
by (Shen et al., 2013), a subevent is defined as
a topic that is discussed intensively in the Twitter
stream for a short period of time before fading away.
Accordingly, the subevent detection method relies
on modeling the “burstiness” and “cohesiveness”
properties of tweets in the stream. We instead aim
to provide a more general definition of subevents as
well as present a method for identifying subevent at
the article level.

3 A Two-phase Approach for Subevent
Extraction

As illustrated in Figure 1, We use a two-phase algo-
rithm to identify subevent phrases from our domain-
specific corpus. For the first stage, we implemented
a bootstrapped artificial neural network in order
to identify sentences that are likely to contain a
subevent phrase. In the second stage, we identify
phrases fitting a predetermined conjunction pattern
within the sentences classified by the first-stage neu-
ral network.

3.1 Phase 1: Identifying Subevent Sentences

3.1.1 Domain-specific Corpus
Thanks to previous research on multi-faceted

event recognition by (Huang and Riloff, 2013), we
compiled our own domain-specific corpus that de-
scribes civil unrest events. Using civil unrest events
as an example, (Huang and Riloff, 2013) demon-

907

Figure 1: The Two-step Subevent Learning Paradigm

strated that we can use automatically-learned event
facet phrases (event agents and purposes) and main
event expressions to find event articles with a high
accuracy. We first obtained their learned event facet
phrases and event expressions, most of which refer
to general events. Then we followed their paper and
identified two types of news articles that are likely
to describe a civil unrest event by matching the ob-
tained phrases to the English Gigaword fifth edition
(Parker et al., 2011)

Specifically, we first consider news articles that
contain a civil unrest keyword such as “strike” and
“protest”1, then we identify an article as relevant if it
contains a sentence where either two types of facet
phrases or one facet phrase together with an event
expression are found. In addition, we consider news
articles that do not contain a civil unrest keyword;
we require an article to contain a sentence where
three types of event information are matched. Over-
all, we get a civil unrest corpus containing 232,710
news articles.

1We used the same set of keywords as used by (Huang and
Riloff, 2013)

3.1.2 Context Feature Selection

We hypothesized that the first and last noun/verb
phrases and their positions in the sentence were
likely to be good indicators that the sentence might
contain a subevent phrase. Because our document
corpus was composed of news articles, we deter-
mined that concrete subevents would require a level
of substantiation that abstract, non-specific events
would not. For example, a reporter would not usu-
ally cite a source in a sentence informing the reader
that a riot occurred but would likely choose to quote
a source when reporting that rioters burned tires in
the streets. Because of this, sentences containing
subevent phrases often begin or end with phrases
such as “he witnessed” or “she told the press.” To
represent the nouns and verbs, we used the 50-
dimention Stanford GloVe (Pennington et al., 2014)
word embeddings pre-trained on Wikipedia 2014
and Gigaword5 (Parker et al., 2011).

3.1.3 Seeds and Training Sentence Generation

To form a training set for the neural network, we
used eight seed subevent phrases (as shown in Table
1) to identify a set of positive sentences that con-

908

waved banners
shouted slogans
chanted slogans
burned flag
burned flags
blocked road
clashed with police
clashed with government

Table 1: First Stage Classifier Seed Subevent Phrases

tain one of the seed phrases. In total, we obtained
around 5000 positive sentences and bounded this to
3500 for use with the classifier. Finding a sufficient
number of negative sentences was a more challeng-
ing task. After reviewing the corpus, we determined
that the first and last sentences of an article are un-
likely to contain subevent phrases. These sentences
often function as general introductions and conclu-
sions that refer to the main event of the article. We
selected 7000 of these sentences to form the nega-
tive set. The rest of the sentences not classified as
positive or negative remain unknown, amounting to
almost 1 million.

3.1.4 Artificial Neural Networks for Sentence
Classification

We implemented an artificial neural network with
a single hidden layer composed of 500 nodes. In or-
der to facilitate faster training, we used tanh as the
activation function of the hidden layer. Softmax was
used as the output layer activation function. In or-
der to train the network, we provided an initial set of
positive and negative vectors representing sentence
data from the corpus as described in Section 3.1.3.
These input vectors were then divided into a train-
ing set, validation set and testing set. The training
set was comprised of 70% of the full dataset, the
validation set of 20% and the testing set of 10%.
The neural network was trained for 1000 epochs and
used the validation set and test set to measure per-
formance in order to avoid overfitting.

Because we began with a limited number of seed
phrases to create the positive set, we chose to use
a bootstrapping approach to expand our data set
and improve the classifier. After training, the en-
tire unknown data set would be classified, and sen-
tences determined to be positive with 0.90 certainty

Iteration Positives Negatives
1 13223 26446
2 12611 25222
3 9411 18822
4 6076 12152
5 2842 5684

Table 2: Number of Sentences Added after Each Iteration

or greater would be added to the positive set. Sen-
tences classified as negative with 0.90 certainty or
greater would be added to the negative set. How-
ever, in order to maintain the 2:1 ratio of negative
to positive vectors, the number of negative vectors
that could be added was capped at twice the num-
ber of positive additions for each iteration. After the
new sentences were added to the positive and nega-
tive sets, the neural network was retrained with this
data and classified additional previously unknown
sentences. The process repeated for five iterations,
then bootstrapping ended because not enough newly
identified positive sentences were found (<3000 in
the last iteration). Table 2 shows the number of sen-
tences that were added after each bootstrapping iter-
ation.

3.2 Phase 2: Subevent Extraction

After accumulating a large set of sentences likely
containing subevents from the first phase of the sys-
tem, the second step identifies the subevent phrases
within these sentences. We observe that subevent
phrases often occur in lists and we focus on lever-
aging such local cues to extract subevents. Specif-
ically, we identify conjunction constructions that
contain three or more verb phrases, each verb phrase
obeys one of the following two forms: verb + direct
object or verb + prepositional phrase. We extract
the sequence of verb phrases, each as a subevent
candidate. We only included subevents with fre-
quency greater than or equal to two in the final eval-
uation. Through the two-stage extraction procedure,
we identified 610 unique subevents. Table 3.2 shows
some of the learned subevents.

Clearly, this second phase suffers from low re-
call. However, because subevents are identified at
the corpus level as opposed to the document level,
per-sentence recall is not a significant concern as
long as a sufficient number of subevents are identi-

909

threw stones, hurled rocks, pounded in air
smashed through roadblocks, detained people
forced way, fired in air, threw at police
smashed windows, set fire, burned tires
threw bombs, opened fire, blocked road
pelted with stones, appeared on balcony
arrested for vandalism, threw bombs
burned cars, carried banners, lit candles
detained people, planted flag, wore masks
stoned police, converged on highway
chanted against authorities, chanted in city
broke through barricade, blocked traffic
broke windows, screamed outside palace
torched cars, ransacked office, smashed shop
shouted in unison, sang songs, planted flags
runs alongside shrines, chanted for democracy

Table 3: Subset of learned subevents

Recall Precision F1-score
(Huang and Riloff, 2013) 71 88 79
+Subevents 81 83 82

Table 4: Event Recognition Performance Before/After Incor-

porating Subevents

fied across the whole corpus. As we demonstrate in
the evaluation section, corpus-level recall was high
enough to produce noticeable results.

4 Evaluation

We show that our acquired subevent phrases are use-
ful to discover articles that describe the main event
and therefore improve event detection performance.

For direct comparisons, we tested our subevents
using the same test data and the same evaluation set-
ting as the previous multi-faceted event recognition
research by (Huang and Riloff, 2013). Specifically,
they have annotated 300 new articles that each con-
tains a civil unrest keyword and only 101 of them are
actually civil unrest stories. They have shown that
the multi-faceted event recognition approach can ac-
curately identify civil unrest documents, by identify-
ing a sentence in the documents where two types of
facet phrases or one facet phrase and a main event
expression were matched. The first row of Table 4
shows their multi-faceted event recognition perfor-
mance.

We compared our learned subevent phrases with
the event phrases learned by (Huang and Riloff,

2013) and found that 559 out of our 610 unique
phrases are not in their list. We augmented their
provided event phrase list with our newly acquired
subevent phrases and then used the exactly same
evaluation procedure. Essentially, we used a longer
event phrase dictionary which is a combination of
main event expressions resulted from the previ-
ous research by (Huang and Riloff, 2013) and our
learned subevent phrases. Row 2 shows the event
recognition performance using the extended event
phrase list. We can see that after incorporating
subevent phrases, additional 10% of civil unrest sto-
ries were discovered, with a small precision loss, the
F1-score on event detection was improved by 3%.

5 Conclusion

We have presented a two-phase approach for iden-
tifying a specific type of “subevents”, referring to
physical actions composing an event. While our ap-
proach is certainly tailored to the civil unrest do-
main, we believe that this method is applicable to
many other domains within the scope of news re-
ports, including health, economics and even poli-
tics, where reporters overwhelmingly rely on outside
opinion to present the facts of the story and provide
the summary themselves. However in more casual
domains where this is not necessarily the case, this
approach will suffer. For instance, in sports writing,
a reporter giving a play-by-play of a basketball game
will not need to call upon witnesses or field experts
to present concrete subevents.

Furthermore, we have shown the great potential of
using subevents to improve event detection perfor-
mance. In addition, distinguishing between events
and subevents develops an event hierarchy and can
benefit multiple applications such as text summa-
rization and event timeline generation.

Acknowledgments

We want to thank our anonymous reviewers for pro-
viding useful comments.

References

D. Appelt, J. Hobbs, J. Bear, D. Israel, and M. Tyson.
1993. FASTUS: a Finite-state Processor for Informa-
tion Extraction from Real-world Text. In Proceedings

910

of the Thirteenth International Joint Conference on Ar-
tificial Intelligence (IJCAI).

Jun Araki, Zhengzhong Liu, Eduard H Hovy, and Teruko
Mitamura. 2014. Detecting subevent structure for
event coreference resolution. In LREC, pages 4553–
4558.

Nathanael Chambers and Dan Jurafsky. 2011. Template-
Based Information Extraction without the Templates.
In Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies (ACL-11).

2013. The 1st Workshop on EVENTS: Definition,
Detection, Coreference, and Representation. In
https://sites.google.com/site/cfpwsevents/home.

2014. The 2nd Workshop on EVENTS: Definition,
Detection, Coreference, and Representation. In
https://sites.google.com/site/wsevents2014/home.

2015. The 3rd Workshop on EVENTS: Definition,
Detection, Coreference, and Representation. In
https://sites.google.com/site/wsevents2015/home.

Z. Gu and N. Cercone. 2006. Segment-Based Hidden
Markov Models for Information Extraction. In Pro-
ceedings of the 21st International Conference on Com-
putational Linguistics and 44th Annual Meeting of
the Association for Computational Linguistics, pages
481–488, Sydney, Australia, July.

Asaad Hakeem and Mubarak Shah. 2005. Multiple agent
event detection and representation in videos. In AAAI,
pages 89–94.

Lifu Huang and Lian’en Huang. 2013. Optimized
event storyline generation based on mixture-event-
aspect model. In EMNLP, pages 726–735.

Ruihong Huang and Ellen Riloff. 2011. Peeling Back
the Layers: Detecting Event Role Fillers in Secondary
Contexts. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Hu-
man Language Technologies (ACL-11).

Ruihong Huang and Ellen Riloff. 2012. Modeling Tex-
tual Cohesion for Event Extraction. In Proceedings of
the 26th Conference on Artificial Intelligence (AAAI-
12).

Ruihong Huang and Ellen Riloff. 2013. Multi-faceted
Event Recognition with Bootstrapped Dictionaries. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-13).

L. Huang, T. Cassidy, X. Feng, H. Ji, C. Voss, J. Han,
and A. Sil. 2016. Liberal event extraction and event
schema induction. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies (ACL-16).

Y. Li, K. Bontcheva, and H. Cunningham. 2005. Us-
ing Uneven Margins SVM and Perceptron for Infor-
mation Extraction. In Proceedings of Ninth Confer-
ence on Computational Natural Language Learning,
pages 72–79, Ann Arbor, MI, June.

Shasha Liao and Ralph Grishman. 2010. Using Doc-
ument Level Cross-Event Inference to Improve Event
Extraction. In Proceedings of the 48st Annual Meeting
on Association for Computational Linguistics (ACL-
10).

M. Maslennikov and T. Chua. 2007. A Multi-Resolution
Framework for Information Extraction from Free Text.
In Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics.

P. Meladianos, G. Nikolentzos, F. Rousseau,
Y. Stavrakas, and M. Vazirgiannis. 2015. Degeneracy-
based real-time sub-event detection in twitter stream.
In Proceedings of the 9th AAAI international con-
ference on web and social media (ICWSM), pages
248–257.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English Gigaword. In Lin-
guistic Data Consortium.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

E. Riloff. 1993. Automatically Constructing a Dictio-
nary for Information Extraction Tasks. In Proceedings
of the 11th National Conference on Artificial Intelli-
gence.

Patwardhan S. and Riloff E. 2009. A Unified Model of
Phrasal and Sentential Evidence for Information Ex-
traction. In Proceedings of 2009 the Conference on
Empirical Methods in Natural Language Processing
(EMNLP-2009).

Chao Shen, Fei Liu, Fuliang Weng, and Tao Li. 2013.
A participant-based approach for event summarization
using twitter streams. In HLT-NAACL, pages 1152–
1162.

S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert.
1995. CRYSTAL: Inducing a Conceptual Dictionary.
In Proc. of the Fourteenth International Joint Confer-
ence on Artificial Intelligence, pages 1314–1319.

K. Sudo, S. Sekine, and R. Grishman. 2003. An Im-
proved Extraction Pattern Representation Model for
Automatic IE Pattern Acquisition. In Proceedings of
the 41st Annual Meeting of the Association for Com-
putational Linguistics (ACL-03).

K. Yu, G. Guan, and M. Zhou. 2005. Resumé Infor-
mation Extraction with Cascaded Hybrid Model. In
Proceedings of the 43rd Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 499–506,
Ann Arbor, MI, June.

911

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 912–918,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Gaussian Visual-Linguistic Embedding for Zero-Shot Recognition

Tanmoy Mukherjee and Timothy Hospedales
Queen Mary University of London

School of Electronic Engineering and Computer Science
{k.m.tanmoy,t.hospedales}@qmul.ac.uk

Abstract

An exciting outcome of research at the inter-
section of language and vision is that of zero-
shot learning (ZSL). ZSL promises to scale
visual recognition by borrowing distributed
semantic models learned from linguistic cor-
pora and turning them into visual recognition
models. However the popular word-vector
DSM embeddings are relatively impoverished
in their expressivity as they model each word
as a single vector point. In this paper we ex-
plore word-distribution embeddings for ZSL.
We present a visual-linguistic mapping for
ZSL in the case where words and visual cat-
egories are both represented by distributions.
Experiments show improved results on ZSL
benchmarks due to this better exploiting of
intra-concept variability in each modality

1 Introduction

Learning vector representations of word meaning is
a topical area in computational linguistics. Based
on the distributional hypothesis (Harris, 1954) – that
words in similar context have similar meanings –
distributed semantic models (DSM)s build vector
representations based on corpus-extracted context.
DSM approaches such as topic models (Blei et al.,
2003), and more recently neural networks (Collobert
et al., 2011; Mikolov et al., 2013) have had great
success in a variety of lexical and semantic tasks
(Arora et al., 2015; Schwenk, 2007).

However despite their successes, classic DSMs
are severely impoverished compared to humans due
to learning solely from word cooccurrence without
grounding in the outside world. This has motivated a

wave of recent research into multi-modal and cross-
modal learning that aims to ground DSMs in non-
linguistic modalities (Bruni et al., 2014; Kiela and
Bottou, 2014; Silberer and Lapata, 2014; ?). Such
multi-modal DSMs are attractive because they learn
richer representations than language-only models
(e.g., that bananas are yellow fruit (Bruni et al.,
2012b)), and thus often outperform language only
models in various lexical tasks (Bruni et al., 2012a).

In this paper, we focus on a key unique and prac-
tically valuable capability enabled by cross-modal
DSMs: that of zero-shot learning (ZSL). Zero-shot
recognition aims to recognise visual categories in
the absence of any training examples by cross-modal
transfer from language. The idea is to use a lim-
ited set of training data to learn a linguistic-visual
mapping and then apply the induced function to map
images from novel visual categories (unseen during
training) to a linguistic embedding: thus enabling
recognition in the absence of visual training exam-
ples. ZSL has generated big impact (Lampert et al.,
2009; Socher et al., 2013; Lazaridou et al., 2014)
due to the potential of leveraging language to help
visual recognition scale to many categories without
labor intensive image annotation.

DSMs typically generate vector embeddings of
words, and hence ZSL is typically realised by vari-
ants of vector-valued cross-modal regression. How-
ever, such vector representations have limited ex-
pressivity – each word is represented by a point, with
no notion of intra-class variability. In this paper,
we consider ZSL in the case where both visual and
linguistic concepts are represented by Gaussian dis-
tribution embeddings. Specifically, our Gaussian-

912

embedding approach to ZSL learns concept distri-
butions in both domains: Gaussians representing in-
dividual words (as in (Vilnis and McCallum, 2015))
and Gaussians representing visual concepts. Simul-
taneously, it learns a cross-domain mapping that
warps language-domain Gaussian concept represen-
tations into alignment with visual-domain concept
Gaussians. Some existing vector DSM-based cross-
modal ZSL mappings (Akata et al., 2013; Frome et
al., 2013) can be seen as special cases of ours where
the within-domain model is pre-fixed as vector cor-
responding to the Gaussian means alone, and only
the cross-domain mapping is learned. Our results
show that modeling linguistic and visual concepts as
Gaussian distributions rather than vectors can signif-
icantly improve zero-shot recognition results.

2 Methodology

2.1 Background
Vector Word Embeddings In a typical setup for
unsupervised learning of word-vectors, we observe
a sequence of tokens {wi} and their context words
{c(w)i}. The goal is to map each word w to a d-
dimensional vector ew reflecting its distributional
properties. Popular skip-gram and CBOW models
(Mikolov et al., 2013), learn a matrix W ∈ R|V |×d
of word embeddings for each of V vocabulary words
(ew = W(w,:)) based on the objective of predicting
words given their contexts.

Another way to formalise a word vector represen-
tation learning problem is to search for a representa-
tion W so that words w have high representational
similarity with co-occuring words c(w), and low
similarity with representations of non-co-occurring
words ¬c(w). This could be expressed as optimisa-
tion of max-margin loss J ; requiring that each word
w’s representation ew is more similar to that of con-
text words ep than non-context words en.

J(W) =
∑

w,wp∈c(w),wn∈¬c(w)

max(0, δ−E(ew, ewp)+E(ew, ewn))

(1)

where similarity measure E(·, ·) is a distance in Rd
space such as cosine or euclidean.

Gaussian Word Embeddings Vector-space mod-
els are successful, but have limited expressivity in

terms of modelling the variance of a concept, or
asymmetric distances between words, etc. This has
motivated recent work into distribution-based em-
beddings (Vilnis and McCallum, 2015). Rather than
learning word-vectors ew, the goal here is now to
learn a distribution for each word, represented by a
per-word mean µw and covariance Σw.

In order to extend word representation learning
approaches such as Eq. (1) to learning Gaussians,
we need to replace vector similarity measure E(·, ·)
with a similarity measure for Gaussians. We fol-
low (Vilnis and McCallum, 2015) in using the inner
product between distributions f and g – the proba-
bility product kernel (Jebara et al., 2004).

E(f, g) =

∫

x∈Rn

f(x)g(x). (2)

The probability product kernel (PPK) has a conve-
nient closed form in the case of Gaussians:

E(f, g) =

∫

x∈Rn

N (x;µf ,Σf)N (x;µg,Σg)dx

= N (0;µf − µg,Σf + Σg) (3)

where µf , µg are the means and Σf ,Σg are the co-
variances of the probability distribution f and g.

2.2 Cross-Modal Distribution Mapping
Gaussian models of words can be learned as in the
previous section, and that Gaussian models of im-
age categories can be trivially obtained by maximum
likelihood. The central task is therefore to estab-
lish a mapping between word-and image-Gaussians,
which will be of different dimensions dw and dx.

We aim to find a projection matrix A ∈ Rdx×dw
such that a word w generates an image vector as
ex = Aew. Working with distributions, this im-
plies that we have µx = Aµw and Σx = AΣwA

T .
We can now evaluate the similarity of concept dis-
tributions across modalities. The similarity between
image-and text-domain Gaussians f and g is:

E(f, g) = N (0;µf −Aµg,Σf +AΣgA
T) (4)

Using this metric, we can train our cross-modal pro-
jection A via the cross-domain loss:

J(A) =
∑

f,g∈P, h,k∈N
max(0, δ − E(f, g) + E(h, k)) (5)

913

where P is the set of matching pairs that should
be aligned (e.g., the word Gaussian ‘plane’ and the
Gaussian of plane images) and N is the set of mis-
matching pairs that should be separated (e.g., ‘plane’
and images of dogs). This can be optimised with
SGD using the gradient:

∂E

∂A
=

1

2
((Σf +AΣgA

T)−1A(Σg + ΣT
g))

+ ((µTg (Σf +AΣgA
T)−1(µf −Aµg)

+ (µf −Aµg)T (Σf +AΣgA
T)−1µTg

+ (µf −Aµg)T (Σf +AΣgA
T)−1

AT (Σg + ΣT
j)(Σf +AΣgA

T)−1(µf −Aµg))

2.3 Joint Representation and Mapping

The cross-domain mappingA can be learned (Eq. 5)
for fixed within-domain representations (word and
image Gaussians). It is also possible to simulta-
neously learn the text and image-domain gaussians
({µi,Σi}text, {µj ,Σj}img) by optimising the sum
of three coupled losses: Eq. 1 with Eq. 3, Eq. 5 and
max-margin image-classification using Gaussians.
We found jointly learning the image-classification
Gaussians did not bring much benefit over the MLE
Gaussians, so we only jointly learn the text Gaus-
sians and cross-domain mapping.

2.4 Application to Zero-Shot Recognition

Once the text-domain Gaussians and cross-domain
mapping have been trained for a set of known
words/classes, we can use the learned model to
recognise any novel/unseen but name-able visual
category w as follows: 1. Get the word-Gaussians
of target categories w, N (µw,Σw). 2. Project those
Gaussians to image modality,N (Aµw, AΣwA

T). 3.
Classify a test image x by evaluating its likelihood
under each Gaussian, and picking the most likely
Gaussian: p(w|x) ∝ N (x|Aµw, AΣwA

T).

2.5 Contextual Query

To illustrate our approach, we also experiment with
a new variant of the ZSL setting. In conventional
ZSL, a novel word can be matched against images
by projecting it into image space, and sorting images
by their distance to the word (vector), or likelihood
under the word (Gaussian). However, results may
be unreliable when used with polysemous words,

or words with large appearance variability. In this
case we may wish to enrich the query with contex-
tual words that disambiguate the visual meaning of
the query. With regular vector-based queries, the
typical approach is to sum the word-vectors. For
example: For contextual disambiguation of poly-
semy, we may hope that vec(‘bank’)+vec(‘river’)
may retrieve a very different set of images than
vec(‘bank’)+vec(‘finance’). For specification of a
specific subcategory or variant, we may hope that
vec(‘plane’)+vec(‘military’) retrieves a different set
of images than vec(‘plane’)+vec(‘passenger’). By
using distributions rather than vectors, our frame-
work provides a richer means to make such queries
that accounts for the intra-class variability of each
concept. When each word is represented by a
Gaussian, a two-word query can be represented
by their product, which is the new Gaussian

N (
Σ−1

1 µ1+Σ−1
2 µ2

Σ−1
1 +Σ−1

2

, (Σ−1
1 + Σ−1

2)−1).

3 Experiments

3.1 Datasets and Settings
Datasets: We evaluate our method 1 using the
main Animals with Attributes (AWA) and Ima-
geNet1K benchmarks. To extract visual features we
use the VGG-16 CNN (Simonyan and Zisserman,
2015) to extract a dx = 4096 dimensional feature for
each image. To train the word Gaussian represen-
tation, we use a combination of UkWAC (Ferraresi
et al., 2008) and Wikipedia corpus of 25 million
tokens, and learn a dw = 100 dimensional Gaus-
sian representation. We set our margin parameter to
∆ = 1.

Settings: Our zero-shot setting involves training a
visual recogniser (i.e., our mapping A) on a subset
of classes, and evaluating it on a disjoint subset. For
AWA, we use the standard 40/10 class split (Lampert
et al., 2009), and for ImageNet we use a standard
800/200 class split (Mensink et al., 2012).

Competitors: We implement a set of representa-
tive alternatives for direct comparison with ours on
the same visual features and text corpus. These
include: cross-modal linear regression (LinReg,
(Dinu et al., 2015)), non-linear regression (NLin-
Reg, (Lazaridou et al., 2014; Socher et al., 2013)),

1Code and datasets kept at http://bit.ly/2cI64Zf

914

(a) Top: ‘Military’+‘Plane’ (Gaussian), Middle: ‘Passen-
ger’+‘Plane’ (Gaussian), Bottom: ‘Passenger’+’Plane’ (Vector)

(b) Top: ‘White’+‘Horse’ (Gaussian), Middle: ‘Black’+‘Horse’
(Gaussian), Bottom: ‘Black’+’Horse’ (Vector)

Figure 1: Qualitative visualisation of zero-shot query with context words.

Vector space models Ours
Dataset LinReg NLinReg CME ES-ZSL Gaussian
AWA 44.0 48.4 43.1 58.2 65.4

Table 1: Zero-shot recognition results on AWA (% accuracy).

ES-ZSL (Romera-Paredes and Torr, 2015), and a
max-margin cross-modal energy function method
(CME, (Akata et al., 2013; Frome et al., 2013)).
Note that the CME strategy is the most closely re-
lated to ours in that it also trains a dx × dw matrix
with max-margin loss, but uses it in a bilinear en-
ergy function with vectors E(x, y) = xTAy; while
our energy function operates on Gaussians.

3.2 Results

Table 1 compares our results on the AWA bench-
mark against alternatives using the same visual fea-
tures, and word vectors trained on the same corpus.
We observe that: (i) Our Gaussian-embedding ob-
tains the best performance overall. (ii) Our method
outperforms CME which shares an objective func-
tion and optimisation strategy with ours, but oper-
ates on vectors rather than Gaussians. This sug-
gests that our new distribution rather than vector-
embedding does indeed bring significant benefit.

A comparison to published results obtained by
other studies on the same ZSL splits is given in Ta-
ble 2, where we see that our results are competitive
despite exploitation of supervised embeddings such
as attributes (Fu et al., 2014), or combinations of
embeddings (Akata et al., 2013) by other methods.

We next demonstrate our approach qualitatively
by means of the contextual query idea introduced in

ImageNet
ConSE (Norouzi et al., 2014) 28.5%
DeVISE (Frome et al., 2013) 31.8%
Large Scale Metric. (Mensink et al., 2012) 35.7%
Semantic Manifold. (Fu et al., 2015) 41.0%
Gaussian Embedding 45.7%

AwA
DAP (CNN feat) (Lampert et al., 2009) 53.2%
ALE (Akata et al., 2013) 43.5%
TMV-BLP (Fu et al., 2014) 47.1%
ES-ZSL (Romera-Paredes and Torr, 2015) 49.3%
Gaussian Embedding 65.4%

Table 2: Comparison of our ZSL results with state of the art.

Sec 2.5. Fig. 1 shows examples of how the top re-
trieved images differ intuitively when querying Im-
ageNet for zero-shot categories ‘plane’ and ‘horse’
with different context words. To ease interpretation,
we constrain the retrieval to the true target class,
and focus on the effect of the context word. Our
learned Gaussian method retrieves more relevant im-
ages than the word-vector sum baseline. E.g., with
the Gaussian model all of the top-4 retrieved images
for Passenger+Plane are relevant, while only two are
relevant with the vector model. Similarly, the re-
trieved black horses are more clearly black.

3.3 Further Analysis

To provide insight into our contribution, we repeat
the analysis of the AwA dataset and evaluate several
variants of our full method. These use our features,
and train the same cross-domain max-margin loss in
Eq 5, but vary in the energy function and representa-

915

AwA
Bilinear-WordVec 43.1%
Bilinear-MeanVec 52.2%
PPK-MeanVec 52.6%
PPK-Gaussian 65.4%

Table 3: Impact of training and testing with distribution rather

than vector-based representations

tions used. Variants include: (i) Bilinear-WordVec:
Max-margin training on word vector representations
of words and images with a bilinear energy func-
tion. (ii) Bilinear-MeanVec: As before, but using
our Gaussian means as vector representations in im-
age and text domains. (iii) PPK-MeanVec: Train
the max-margin model with Gaussian representa-
tion and PPK energy function as in our full model,
but treat the resulting means as point estimates for
conventional vector-based ZSL matching at testing-
time. (v) PPK-Gaussian: Our full model with Gaus-
sian PPK training and testing by Gaussian matching.

From the results in Table 3, we make the observa-
tions: (i) Bilinear-MeanVec outperforming Bilinear-
WordVec shows that cross-modal (Sec 2.3) train-
ing of word Gaussians learns better point esti-
mates of words than conventional word-vector train-
ing, since these only differ in the choice of vector
representation of class names. (ii) PPK-Gaussian
outperforming PPK-MeanVec shows that having a
model of intra-class variability (as provided by the
word-Gaussians) allows better zero-shot recogni-
tion, since these differ only in whether covariance
is used at testing time.

3.4 Related Work and Discussion

Our approach models intra-class variability in both
images and text. For example, the variability
in visual appearance of military versus passenger
‘plane’s, and the variability in context according to
whether a the word ‘plane’ is being used in a military
or civilian sense. Given distribution-based represen-
tations in each domain, we find a cross-modal map
that warps the two distributions into alignment.

Concurrently with our work, Ren et al (2016)
present a related study on distribution-based visual-
text embeddings. Methodologically, they benefit
from end-to-end learning of deep features as well
as cross-modal mapping, but they only discrimi-

natively train word covariances, rather than jointly
training both means and covariances as we do.

With regards to efficiency, our model is fast to
train if fixing pre-trained word-Gaussians and op-
timising only the cross-modal mapping A. How-
ever, training the mapping jointly with the word-
Gaussians comes at the cost of updating the repre-
sentations of all words in the dictionary, and is thus
much slower.

In terms of future work, an immediate improve-
ment would be to generalise our of Gaussian embed-
dings to model concepts as mixtures of Gaussians
or other exponential family distributions (Rudolph et
al., 2016; Chen et al., 2015). This would for exam-
ple, allow polysemy to be represented more cleanly
as a mixture, rather than as a wide-covariance
Gaussian as happens now. We would also like
to explore distribution-based embeddings of sen-
tences/paragraphs for class description (rather than
class name) based zero-shot recognition (Reed et
al., 2016). Finally, besides end-to-end deep learning
of visual features, training non-linear cross-modal
mappings is also of interest.

4 Conclusion

In this paper, we advocate using distribution-based
embeddings of text and images when bridging the
gap between vision and text modalities. This is in
contrast to the common practice of point vector-
based embeddings. Our distribution-based approach
provides a representation of intra-class variability
that improves zero-shot recognition, allows more
meaningful retrieval by multiple keywords, and also
produces better point-estimates of word vectors.

References
[Akata et al.2013] Z. Akata, F. Perronnin, Z. Harchaoui,

and C. Schmid. 2013. Label-embedding for attribute-
based classification. In Computer Vision and Pattern
Recognition.

[Arora et al.2015] Sanjeev Arora, Yuanzhi Li, Yingyu
Liang, Tengyu Ma, and Andrej Risteski. 2015. Ran-
dom walks on context spaces: Towards an explanation
of the mysteries of semantic word embeddings. CoRR,
abs/1502.03520.

[Blei et al.2003] David M. Blei, Andrew Y. Ng, and
Michael I. Jordan. 2003. Latent dirichlet allocation.
JMLR, 3:993–1022.

916

[Bruni et al.2012a] Elia Bruni, Gemma Boleda, Marco
Baroni, and Nam-Khanh Tran. 2012a. Distributional
semantics in technicolor. In Proceedings of the 50th
Annual Meeting of the Association for Computational
Linguistics: Long Papers - Volume 1, pages 136–145.

[Bruni et al.2012b] Elia Bruni, Jasper Uijlings, Marco
Baroni, and Nicu Sebe. 2012b. Distributional seman-
tics with eyes: Using image analysis to improve com-
putational representations of word meaning. In ACM
Multimedia.

[Bruni et al.2014] Elia Bruni, Nam Khanh Tran, and
Marco Baroni. 2014. Multimodal distributional se-
mantics. J. Artif. Int. Res., 49(1):1–47, January.

[Chen et al.2015] Xinchi Chen, Xipeng Qiu, Jingxiang
Jiang, and Xuanjing Huang. 2015. Gaussian mix-
ture embeddings for multiple word prototypes. arXiv
preprint arXiv:1511.06246.

[Collobert et al.2011] Ronan Collobert, Jason Weston,
Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. 2011. Natural language processing
(almost) from scratch. J. Mach. Learn. Res., 12:2493–
2537, November.

[Dinu et al.2015] Georgiana Dinu, Angeliki Lazaridou,
and Marco Baroni. 2015. Improving zero-shot learn-
ing by mitigating the hubness problem. In ICLR Work-
shop Paper.

[Ferraresi et al.2008] Adriano Ferraresi, Eros Zanchetta,
Marco Baroni, and Silvia Bernardini. 2008. Introduc-
ing and evaluating ukwac, a very large web-derived
corpus of english. In In Proceedings of the 4th Web as
Corpus Workshop (WAC-4.

[Frome et al.2013] Andrea Frome, Greg Corrado,
Jonathon Shlens, Samy Bengio, Jeffrey Dean, Mar-
cAurelio Ranzato, and Tomas Mikolov. 2013. Devise:
A deep visual-semantic embedding model. In Neural
Information Processing Systems (NIPS).

[Fu et al.2014] Yanwei Fu, Timothy Hospedales, Tony
Xiang, Zhenyong Fu, and Shaogang Gong. 2014.
Transductive multi-view embedding for zero-shot
recognition and annotation. In European Conference
on Computer Vision.

[Fu et al.2015] Z. Fu, T. A. Xiang, E. Kodirov, and
S. Gong. 2015. Zero-shot object recognition by se-
mantic manifold distance. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 2635–2644, June.

[Harris1954] Zellig Harris. 1954. Distributional struc-
ture. Word, 10(23):146–162.

[Jebara et al.2004] T. Jebara, R. Kondor, and A. Howard.
2004. Probability product kernels. Journal of Ma-
chine Learning Research, 5:819–844.

[Kiela and Bottou2014] Douwe Kiela and Léon Bottou.
2014. Learning image embeddings using convo-
lutional neural networks for improved multi-modal

semantics. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP-14).

[Lampert et al.2009] Christoph H. Lampert, Hannes
Nickisch, and Stefan Harmeling. 2009. Learning to
detect unseen object classes by between-class attribute
transfer. In Computer Vision and Pattern Recognition.

[Lazaridou et al.2014] Angeliki Lazaridou, Elia Bruni,
and Marco Baroni. 2014. Is this a wampimuk? cross-
modal mapping between distributional semantics and
the visual world. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), June.

[Mensink et al.2012] Thomas Mensink, Jakob Verbeek,
Florent Perronnin, and Gabriela Csurka. 2012. Metric
learning for large scale image classification: General-
izing to new classes at near-zero cost. In European
Conference on Computer Vision.

[Mikolov et al.2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg S Corrado, and Jeff Dean. 2013. Dis-
tributed representations of words and phrases and their
compositionality. In Advances in Neural Information
Processing Systems 26, pages 3111–3119.

[Norouzi et al.2014] Mohammad Norouzi, Tomas
Mikolov, Samy Bengio, Yoram Singer, Jonathon
Shlens, Andrea Frome, Greg Corrado, and Jef-
frey Dean. 2014. Zero-shot learning by convex
combination of semantic embeddings. In ICLR.

[Reed et al.2016] Scott Reed, Zeynep Akata, Honglak
Lee, and Bernt Schiele. 2016. Learning deep repre-
sentations of fine-grained visual descriptions. In IEEE
Computer Vision and Pattern Recognition (CVPR).

[Ren et al.2016] Zhou Ren, Hailin Jin, Zhe Lin, Chen
Fang, and Alan Yuille. 2016. Joint image-text repre-
sentation by gaussian visual semantic embedding. In
Proceeding of ACM International Conference on Mul-
timedia (ACM MM).

[Romera-Paredes and Torr2015] Bernardino Romera-
Paredes and Philip H. S. Torr. 2015. An embar-
rassingly simple approach to zero-shot learning. In
ICML.

[Rudolph et al.2016] Maja R. Rudolph, Francisco J. R.
Ruiz, Stephan Mandt, and David M. Blei. 2016. Ex-
ponential Family Embeddings, August.

[Schwenk2007] Holger Schwenk. 2007. Continuous
space language models. Computer Speech and Lan-
guage, 21.

[Silberer and Lapata2014] Carina Silberer and Mirella
Lapata. 2014. Learning grounded meaning represen-
tations with autoencoders. In ACL.

[Simonyan and Zisserman2015] Karen Simonyan and
Andrew Zisserman. 2015. Very deep convolutional
networks for large-scale image recognition. In Inter-
national Conference on Learning Representations.

917

[Socher et al.2013] Richard Socher, Milind Ganjoo,
Christopher D. Manning, and Andrew Y. Ng. 2013.
Zero Shot Learning Through Cross-Modal Trans-
fer. In Advances in Neural Information Processing
Systems 26.

[Vilnis and McCallum2015] Luke Vilnis and Andrew
McCallum. 2015. Word representations via gaussian
embedding. In ICLR.

918

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 919–924,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Question Relevance in VQA:
Identifying Non-Visual And False-Premise Questions

Arijit Ray1, Gordon Christie1, Mohit Bansal2, Dhruv Batra3,1, Devi Parikh3,1

1Virginia Tech 2UNC Chapel Hill 3Georgia Institute of Technology
{ray93,gordonac,dbatra,parikh}@vt.edu

mbansal@cs.unc.edu

Abstract

Visual Question Answering (VQA) is the
task of answering natural-language questions
about images. We introduce the novel prob-
lem of determining the relevance of questions
to images in VQA. Current VQA models do
not reason about whether a question is even
related to the given image (e.g., What is the
capital of Argentina?) or if it requires infor-
mation from external resources to answer cor-
rectly. This can break the continuity of a dia-
logue in human-machine interaction. Our ap-
proaches for determining relevance are com-
posed of two stages. Given an image and a
question, (1) we first determine whether the
question is visual or not, (2) if visual, we de-
termine whether the question is relevant to the
given image or not. Our approaches, based on
LSTM-RNNs, VQA model uncertainty, and
caption-question similarity, are able to outper-
form strong baselines on both relevance tasks.
We also present human studies showing that
VQA models augmented with such question
relevance reasoning are perceived as more in-
telligent, reasonable, and human-like.

1 Introduction

Visual Question Answering (VQA) is the task of
predicting a suitable answer given an image and a
question about it. VQA models (e.g., (Antol et al.,
2015; Ren et al., 2015)) are typically discriminative
models that take in image and question representa-
tions and output one of a set of possible answers.

Our work is motivated by the following key ob-
servation – all current VQA systems always output
an answer regardless of whether the input question
makes any sense for the given image or not. Fig. 1

Non-Visual Visual True-Premise

Who is the president
of the USA?

What is the girl
wearing?

What is the cat
wearing?

Visual False-Premise

Figure 1: Example irrelevant (non-visual, false-premise)
and relevant (visual true-premise) questions in VQA.

shows examples of relevant and irrelevant questions.
When VQA systems are fed irrelevant questions as
input, they understandably produce nonsensical an-
swers (Q: “What is the capital of Argentina?” A:
“fire hydrant”). Humans, on the other hand, are
unlikely to provide such nonsensical answers and
will instead answer that this is irrelevant or use an-
other knowledge source to answer correctly, when
possible. We argue that this implicit assumption by
all VQA systems – that an input question is always
relevant for the input image – is simply untenable
as VQA systems move beyond standard academic
datasets to interacting with real users, who may be
unfamiliar, or malicious. The goal of this work is to
make VQA systems more human-like by providing
them the capability to identify relevant questions.

While existing work has reasoned about cross-
modal similarity, being able to identify whether a
question is relevant to a given image is a novel prob-
lem with real-world applications. In human-robot
interaction, being able to identify questions that are
dissociated from the perception data available is im-
portant. The robot must decide whether to process
the scene it perceives or query external world knowl-
edge resources to provide a response.

919

As shown in Fig. 1, we study three types of
question-image pairs: Non-Visual. These questions
are not questions about images at all – they do not
require information from any image to be answered
(e.g., “What is the capital of Argentina?”). Visual
False-Premise. While visual, these questions do not
apply to the given image. For instance, the ques-
tion “What is the girl wearing?” makes sense only
for images that contain a girl in them. Visual True-
Premise. These questions are relevant to (i.e., have
a premise which is true) the image at hand.

We introduce datasets and train models to rec-
ognize both non-visual and false-premise question-
image (QI) pairs in the context of VQA. First, we
identify whether a question is visual or non-visual;
if visual, we identify whether the question has a true-
premise for the given image. For visual vs. non-
visual question detection, we use a Long Short-Term
Memory (LSTM) recurrent neural network (RNN)
trained on part of speech (POS) tags to capture
visual-specific linguistic structure. For true vs. false-
premise question detection, we present one set of ap-
proaches that use the uncertainty of a VQA model,
and another set that use pre-trained captioning mod-
els to generate relevant captions (or questions) for
the given image and then compare them to the given
question to determine relevance.

Our proposed models achieve accuracies of 92%
for detecting non-visual, and 74% for detecting
false-premise questions, which significantly outper-
form strong baselines. We also show through human
studies that a VQA system that reasons about ques-
tion relevance is picked significantly more often as
being more intelligent, human-like and reasonable
than a baseline VQA system which does not. Our
code and datasets are publicly available on the au-
thors’ webpages.

2 Related Work

There is a large body of existing work that reasons
about cross-modal similarity: how well an image
matches a query tag (Liu et al., 2009) in text-based
image retrieval, how well an image matches a cap-
tion (Feng and Lapata, 2013; Xu et al., 2015; Or-
donez et al., 2011; Karpathy and Fei-Fei, 2015; Fang
et al., 2015), and how well a video matches a de-
scription (Donahue et al., 2015; Lin et al., 2014a).

In our work, if a question is deemed irrelevant,
the VQA model says so, as opposed to answering
the question anyway. This is related to perception
systems that do not respond to an input where the
system is likely to fail. Such failure prediction sys-
tems have been explored in vision (Zhang et al.,
2014; Devarakota et al., 2007) and speech (Zhao
et al., 2012; Sarma and Palmer, 2004; Choularton,
2009; Voll et al., 2008). Others attempt to provide
the most meaningful answer instead of suppressing
the output of a model that is expected to fail for a
given input. One idea is to avoid a highly specific
prediction if there is a chance of being wrong, and
instead make a more generic prediction that is more
likely to be right (Deng et al., 2012). Malinowski
and Fritz (2014) use semantic segmentations in their
approach to question answering, where they reason
that objects not present in the segmentations should
not be part of the answer.

To the best of our knowledge, our work is the first
to study the relevance of questions in VQA. Chen et
al. (2012) classify users’ intention of questions for
community question answering services. Most re-
lated to our work is Dodge et al. (2012). They extract
visual text from within Flickr photo captions to be
used as supervisory signals for training image cap-
tioning systems. Our motivation is to endow VQA
systems the ability to detect non-visual questions to
respond in a human-like fashion. Moreover, we also
detect a more fine-grained notion of question rele-
vance via true- and false-premise.

3 Datasets

For the task of detecting visual vs. non-visual
questions, we assume all questions in the VQA
dataset (Antol et al., 2015) are visual, since the
Amazon Mechanical Turk (AMT) workers were
specifically instructed to ask questions about a dis-
played image while creating it. We also col-
lected non-visual philosophical and general knowl-
edge questions from the internet (see supplementary
material). Combining the two, we have 121,512 vi-
sual questions from the validation set of VQA and
9,9521 generic non-visual questions collected from
the internet. We call this dataset Visual vs. Non-

1High accuracies on this task in our experiments indicate
that this suffices to learn the corresponding linguistic structure.

920

Visual Questions (VNQ).
We also collect a dataset of true- vs. false-premise

questions by showing AMT workers images paired
with random questions from the VQA dataset and
asking them to annotate whether they are applicable
or not. We had three workers annotate each QI pair.
We take the majority vote as the final ground truth
label.2 We have 10,793 QI pairs on 1,500 unique
images out of which 79% are non-applicable (false-
premise). We refer to this visual true- vs. false-
premise questions dataset as VTFQ.

Since there is a class imbalance in both of these
datasets, we report the average per-class (i.e., nor-
malized) accuracy for all approaches. All datasets
are publicly available.

4 Approach

Here we present our approaches for detecting (1) vi-
sual vs. non-visual QI pairs, and (2) true- vs. false-
premise QI pairs.

4.1 Visual vs. Non-Visual Detection

Recall that the task here is to detect visual questions
from non-visual ones. Non-visual questions, such
as “Do dogs fly?” or “Who is the president of the
USA?”, often tend to have a difference in the lin-
guistic structure from that of visual questions, such
as “Does this bird fly?” or “What is this man do-
ing?”. We compare our approach (LSTM) with a
baseline (RULE-BASED):
1. RULE-BASED. A rule-based approach to detect
non-visual questions based on the part of speech
(POS)3 tags and dependencies of the words in the
question. E.g., if a question has a plural noun with
no determiner before it and is followed by a singular
verb (“Do dogs fly?”), it is a non-visual question.4

2. LSTM. We train an LSTM with 100-dim hid-
den vectors to embed the question into a vector and
predict visual vs. not. Instead of feeding question
words ([‘what’, ‘is’, ‘the’, ‘man’, ‘doing’, ‘?’]), the
input to our LSTM is embeddings of POS tags of
the words ([‘pronoun’, ‘verb’, ‘determiner’, ‘noun’,
‘verb’]). Embeddings of the POS tags are learnt
end-to-end. This captures the structure of image-

278% of the time all three votes agree.
3We use spaCy POS tagger (Honnibal and Johnson, 2015).
4See supplement for examples of such hand-crafted rules.

grounded questions, rather than visual vs. non-
visual topics. The latter are less likely to generalize
across domains.

4.2 True- vs. False-Premise Detection
Our second task is to detect whether a question Q en-
tails a false-premise for an image I. We present two
families of approaches to measure this QI ‘compat-
ibility’: (i) using uncertainty in VQA models, and
(ii) using pre-trained captioning models.

Using VQA Uncertainty. Here we work with the
hypothesis that if a VQA model is uncertain about
the answer to a QI pair, the question may be irrele-
vant for the given image since the uncertainty may
mean it has not seen similar QI pairs in the training
data. We test two approaches:
1. ENTROPY. We compute the entropy of the soft-
max output from a state-of-the art VQA model (An-
tol et al., 2015; Lu et al., 2015) for a given QI pair
and train a three-layer multilayer perceptron (MLP)
on top with 3 nodes in the hidden layer.
2. VQA-MLP. We feed in the softmax output to a
three-layer MLP with 100 nodes in the hidden layer,
and train it as a binary classifier to predict whether
a question has a true- or false-premise for the given
image.

Using Pre-trained Captioning Models. Here we
utilize (a) an image captioning model, and (b) an
image question-generation model – to measure QI
compatibility. Note that both these models generate
natural language capturing the semantics of an im-
age – one in the form of statement, the other in the
form of a question. Our hypothesis is that a given
question is relevant to the given image if it is similar
to the language generated by these models for that
image. Specifically:
1. Question-Caption Similarity (Q-C SIM). We
use NeuralTalk2 (Karpathy and Fei-Fei, 2015) pre-
trained on the MSCOCO dataset (Lin et al., 2014b)
(images and associated captions) to generate a cap-
tion C for the given image, and then compute a
learned similarity between Q and C (details below).
2. Question-Question Similarity (Q-Q’ SIM). We
use NeuralTalk2 re-trained (from scratch) on the
questions in the VQA dataset to generate a question
Q’ for the image. Then, we compute a learned simi-
larity between Q and Q’.

921

Visual vs. Non-Visual True- vs. False-Premise

RULE-BASED LSTM ENTROPY VQA-MLP Q-GEN SCORE Q-C SIM Q-Q’ SIM

75.68 92.27 59.66 64.19 57.41 74.48 74.58

Table 1: Normalized accuracy results (averaged over 40 random train/test splits) for visual vs. non-visual detection and
true- vs. false-premise detection. RULE-BASED and Q-GEN SCORE were not averaged because they are deterministic.

We now describe our learned Q-C similarity func-
tion (the Q-Q’ similarity is analogous). Our Q-C
similarity model is a 2-channel LSTM+MLP (one
channel for Q, another for C). Each channel se-
quentially reads word2vec embeddings of the cor-
responding language via an LSTM. The last hid-
den state vectors (40-dim) from the 2 LSTMs are
concatenated and fed as inputs to the MLP, which
outputs a 2-class (relevant vs. not) softmax. The
entire model is learned end-to-end on the VTFQ
dataset. We also experimented with other represen-
tations (e.g., bag of words) for Q, Q’, C, which are
included in the supplement for completeness.

Finally, we also compare our proposed models
above to a simpler baseline (Q-GEN SCORE), where
we compute the probability of the input question Q
under the learned question-generation model. The
intuition here is that since the question generation
model has been trained only on relevant questions
(from the VQA dataset), it will assign a high proba-
bility to Q if it is relevant.

5 Experiments and Results

The results for both experiments are presented in Ta-
ble 1. We present results averaged over 40 random
train/test splits. RULE-BASED and Q-GEN SCORE
were not averaged because they are deterministic.

Visual vs. Non-Visual Detection. We use a ran-
dom set of 100,000 questions from the VNQ dataset
for training, and the remaining 31,464 for testing.
We see that LSTM performs 16.59% (21.92% rela-
tive) better than RULE-BASED.

True- vs. False-Premise Detection. We use a ran-
dom set of 7,195 (67%) QI pairs from the VTFQ
dataset to train and the remaining 3,597 (33%) to
test. While the VQA model uncertainty based ap-
proaches (ENTROPY, VQA-MLP) perform reason-
ably well (with the MLP helping over raw entropy),
the learned similarity approaches perform much bet-

ter (10.39% gain in normalized accuracy). High un-
certainty of the model may suggest that a similar QI
pair was not seen during training; however, that does
not seem to translate to detecting irrelevance. The
language generation models (Q-C SIM, Q-Q’ SIM)
seem to work significantly better at modeling the
semantic interaction between the question and the
image. The generative approach (Q-GEN SCORE)
is outperformed by the discriminative approaches
(VQA-MLP, Q-C SIM, Q-Q’ SIM) that are trained
explicitly for the task at hand. We show qualitative
examples of Q-Q’ SIM for true- vs. false-premise
detection in Fig. 2.

6 Human Qualitative Evaluation

We also perform human studies where we compare
two agents: (1) AGENT-BASELINE– always answers
every question. (2) AGENT-OURS– reasons about
question relevance before responding. If question is
classified as visual true-premise, AGENT-OURS an-
swers the question using the same VQA model as
AGENT-BASELINE (using (Lu et al., 2015)). Other-
wise, it responds with a prompt indicating that the
question does not seem meaningful for the image.

A total of 120 questions (18.33% relevant,
81.67% irrelevant, mimicking the distribution of the
VTFQ dataset) were used. Of the relevant ques-
tions, 54% were answered correctly by the VQA
model. Human subjects on AMT were shown the
response of both agents and asked to pick the agent
that sounded more intelligent, more reasonable, and
more human-like after every observed QI pair. Each
QI pair was assessed by 5 different subjects. Not all
pairs were rated by the same 5 subjects. In total, 28
unique AMT workers participated in the study.

AGENT-OURS was picked 65.8% of the time as
the winner, AGENT-BASELINE was picked only
1.6% of the time, and both considered equally
(un)reasonable in the remaining cases. We also mea-
sure the percentage of times each robot gets picked

922

Q":"Is"the"event"indoor"or"outdoor?
Q'#:#What"is"the"elephant"doing?

US GT

(a)

Q":"What"type"of"melon"is"that?
Q' :"What"color"is"the"horse?

US GT

(b)

Q:"Is"this"man"married?
Q':"What"is"the"man"holding?

US GT

(c)

Q:"Is"that"graffiti"on"the"wall?"
Q':"What"is"the"woman"holding?

US GT

(d)
Figure 2: Qualitative examples for Q-Q’ SIM. (a) and (b) show success cases, and (c) and (d) show failure cases.
Our model predicts true-premise in (a) and (c), and false-premise in (b) and (d). In all examples we show the original
question Q and the generated question Q’.

by the workers for true-premise, false-premise, and
non-visual questions. These percentages are shown
in Table 2.

True-
Premise

False-
Premise

Non-
Visual

AGENT-OURS 22.7 78.2 65.0
AGENT-BASELINE 04.7 01.4 00.0

Both 27.2 03.8 10.0
None 45.4 16.6 25.0

Table 2: Percentage of times each robot gets picked by
AMT workers as being more intelligent, more reasonable,
and more human-like for true-premise, false-premise, and
non-visual questions.

Interestingly, humans often prefer AGENT-OURS
over AGENT-BASELINE even when both models are
wrong – AGENT-BASELINE answers the question
incorrectly and AGENT-OURS incorrectly predicts
that the question is irrelevant and refuses to answer
a legitimate question. Users seem more tolerant to
mistakes in relevance prediction than VQA.

7 Conclusion

We introduced the novel problem of identifying ir-
relevant (i.e., non-visual or visual false-premise)
questions for VQA. Our proposed models signifi-
cantly outperform strong baselines on both tasks. A
VQA agent that utilizes our detector and refuses to
answer certain questions significantly outperforms a

baseline (that answers all questions) in human stud-
ies. Such an agent is perceived as more intelligent,
reasonable, and human-like.

There are several directions for future work. One
possibility includes identifying the premise entailed
in a question, as opposed to just stating true- or
false-premise. Another is determining what exter-
nal knowledge is needed to answer non-visual ques-
tions.

Our system can be further augmented to com-
municate to users what the assumed premise of the
question is that is not satisfied by the image, e.g.,
respond to “What is the woman wearing?” for an
image of a cat by saying “There is no woman.”

Acknowledgements

We thank Lucy Vanderwende for helpful sugges-
tions and discussions. We also thank the anony-
mous reviewers for their helpful comments. This
work was supported in part by the following: Na-
tional Science Foundation CAREER awards to DB
and DP, Alfred P. Sloan Fellowship, Army Research
Office YIP awards to DB and DP, ICTAS Junior Fac-
ulty awards to DB and DP, Army Research Lab grant
W911NF-15-2-0080 to DP and DB, Office of Naval
Research grant N00014-14-1- 0679 to DB, Paul G.
Allen Family Foundation Allen Distinguished Inves-
tigator award to DP, Google Faculty Research award
to DP and DB, AWS in Education Research grant to
DB, and NVIDIA GPU donation to DB.

923

References
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-

garet Mitchell, Dhruv Batra, C. Lawrence Zitnick, and
Devi Parikh. 2015. VQA: Visual Question Answer-
ing. In ICCV.

Long Chen, Dell Zhang, and Levene Mark. 2012. Un-
derstanding User Intent in Community Question An-
swering. In WWW.

Stephen Choularton. 2009. Early Stage Detection of
Speech Recognition Errors. Ph.D. thesis, Macquarie
University.

Jia Deng, Jonathan Krause, Alexander C Berg, and
Li Fei-Fei. 2012. Hedging Your Bets: Optimizing
Accuracy-Specificity Trade-offs in Large Scale Visual
Recognition. In CVPR.

Pandu R Devarakota, Bruno Mirbach, and Björn Otter-
sten. 2007. Confidence estimation in classification
decision: A method for detecting unseen patterns. In
ICAPR.

Jesse Dodge, Amit Goyal, Xufeng Han, Alyssa Men-
sch, Margaret Mitchell, Karl Stratos, Kota Yamaguchi,
Yejin Choi, Hal Daumé, III, Alexander C. Berg, and
Tamara L. Berg. 2012. Detecting Visual Text. In
NAACL HLT.

Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadar-
rama, Marcus Rohrbach, Subhashini Venugopalan,
Kate Saenko, and Trevor Darrell. 2015. Long-term
Recurrent Convolutional Networks for Visual Recog-
nition and Description. In CVPR.

Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh K.
Srivastava, Li Deng, Piotr Dollar, Jianfeng Gao,
Xiaodong He, Margaret Mitchell, John C. Platt,
C. Lawrence Zitnick, and Geoffrey Zweig. 2015.
From Captions to Visual Concepts and Back. In
CVPR.

Yansong Feng and Mirella Lapata. 2013. Automatic
Caption Generation for News Images. PAMI, 35(4).

Matthew Honnibal and Mark Johnson. 2015. An Im-
proved Non-monotonic Transition System for Depen-
dency Parsing. In EMNLP.

Andrej Karpathy and Li Fei-Fei. 2015. Deep Visual-
Semantic Alignments for Generating Image Descrip-
tions. In CVPR.

Dahua Lin, Sanja Fidler, Chen Kong, and Raquel Ur-
tasun. 2014a. Visual Semantic Search: Retrieving
Videos via Complex Textual Queries. In CVPR.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. 2014b. Microsoft COCO: Com-
mon objects in context. In ECCV.

Dong Liu, Xian-Sheng Hua, Meng Wang, and HongJiang
Zhang. 2009. Boost Search Relevance for Tag-based
Social Image Retrieval. In ICME.

Jiasen Lu, Xiao Lin, Dhruv Batra, and Devi Parikh.
2015. Deeper LSTM and normalized CNN Visual
Question Answering model. https://github.
com/VT-vision-lab/VQA_LSTM_CNN.

Mateusz Malinowski and Mario Fritz. 2014. A Multi-
World Approach to Question Answering about Real-
World Scenes based on Uncertain Input. In NIPS.

Vicente Ordonez, Girish Kulkarni, and Tamara L. Berg.
2011. Im2Text: Describing Images Using 1 Million
Captioned Photographs. In NIPS.

Mengye Ren, Ryan Kiros, and Richard Zemel. 2015. Ex-
ploring models and data for image question answering.
In NIPS.

Arup Sarma and David D Palmer. 2004. Context-based
Speech Recognition Error Detection and Correction.
In NAACL HLT.

Kimberly Voll, Stella Atkins, and Bruce Forster. 2008.
Improving the Utility of Speech Recognition Through
Error Detection. Journal of Digital Imaging, 21(4).

Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville,
Ruslan Salakhutdinov, Richard Zemel, and Yoshua
Bengio. 2015. Show, Attend and Tell: Neural Image
Caption Generation with Visual Attention. In ICML.

Peng Zhang, Jiuling Wang, Ali Farhadi, Martial Hebert,
and Devi Parikh. 2014. Predicting Failures of Vision
Systems. In CVPR.

Tongmu Zhao, Akemi Hoshino, Masayuki Suzuki,
Nobuaki Minematsu, and Keikichi Hirose. 2012. Au-
tomatic Chinese Pronunciation Error Detection Using
SVM Trained with Structural Features. In Spoken
Language Technology Workshop.

924

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 925–931,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Sort Story: Sorting Jumbled Images and Captions into Stories

Harsh Agrawal∗,1 Arjun Chandrasekaran∗,1,†
Dhruv Batra3,1 Devi Parikh3,1 Mohit Bansal4,2

1Virginia Tech 2TTI-Chicago 3Georgia Institute of Technology 4UNC Chapel Hill
{harsh92, carjun, dbatra, parikh}@vt.edu, mbansal@cs.unc.edu

Abstract

Temporal common sense has applications in
AI tasks such as QA, multi-document summa-
rization, and human-AI communication. We
propose the task of sequencing – given a jum-
bled set of aligned image-caption pairs that
belong to a story, the task is to sort them
such that the output sequence forms a coher-
ent story. We present multiple approaches,
via unary (position) and pairwise (order) pre-
dictions, and their ensemble-based combina-
tions, achieving strong results on this task. We
use both text-based and image-based features,
which depict complementary improvements.
Using qualitative examples, we demonstrate
that our models have learnt interesting aspects
of temporal common sense.

1 Introduction

Sequencing is a task for children that is aimed at im-
proving understanding of the temporal occurrence of
a sequence of events. The task is, given a jumbled
set of images (and maybe captions) that belong to
a single story, sort them into the correct order so
that they form a coherent story. Our motivation in
this work is to enable AI systems to better under-
stand and predict the temporal nature of events in
the world. To this end, we train machine learning
models to perform the task of “sequencing”.

Temporal reasoning has a number of applications
such as multi-document summarization of multiple
sources of, say, news information where the relative
order of events can be useful to accurately merge
information in a temporally consistent manner. In
question answering tasks (Richardson et al., 2013;

∗Denotes equal contribution.
†Part of this work was done during an internship at TTIC.

Figure 1: (a) The input is a jumbled set of aligned
image-caption pairs. (b) Actual output of the system
– an ordered sequence of image-caption pairs that
form a coherent story.

Fader et al., 2014; Weston et al., 2015; Ren et al.,
2015), answering questions related to when an event
occurs, or what events occurred prior to a particular
event require temporal reasoning. A good temporal
model of events in everyday life, i.e., a “temporal
common sense”, could also improve the quality of
communication between AI systems and humans.

Stories are a form of narrative sequences that have
an inherent temporal common sense structure. We
propose the use of visual stories depicting personal
events to learn temporal common sense. We use
stories from the Sequential Image Narrative Dataset
(SIND) (Ting-Hao Huang, 2016) in which a set of
5 aligned image-caption pairs together form a co-
herent story. Given an input story that is jumbled
(Fig. 1(a)), we train machine learning models to sort
them into a coherent story (Fig. 1(b)).1

1Note that ‘jumbled’ here refers to the loss of temporal or-
dering; image-caption pairs are still aligned.

925

Our contributions are as follows:
– We propose the task of visual story sequencing.
– We implement two approaches to solve the task:
one based on individual story elements to predict
position, and the other based on pairwise story ele-
ments to predict relative order of story elements. We
also combine these approaches in a voting scheme
that outperforms the individual methods.
– As features, we represent a story element as both
text-based features from the caption and image-
based features, and show that they provide comple-
mentary improvements. For text-based features, we
use both sentence context and relative order based
distributed representations.
– We show qualitative examples of our models learn-
ing temporal common sense.

2 Related Work

Temporal ordering has a rich history in NLP re-
search. Scripts (Schank and Abelson, 2013), and
more recently, narrative chains (Chambers and Ju-
rafsky, 2008) contain information about the partic-
ipants and causal relationships between events that
enable the understanding of stories. A number of
works (Mani and Schiffman, 2005; Mani et al.,
2006; Boguraev and Ando, 2005) learn temporal re-
lations and properties of news events from the dense,
expert-annotated TimeBank corpus (Pustejovsky et
al., 2003). In our work, however, we use multi-
modal story data that has no temporal annotations.

A number of works also reason about temporal
ordering by using manually defined linguistic cues
(Webber, 1988; Passonneau, 1988; Lapata and Las-
carides, 2006; Hitzeman et al., 1995; Kehler, 2000).
Our approach uses neural networks to avoid feature
design for learning temporal ordering.

Recent works (Modi and Titov, 2014; Modi,
2016) learn distributed representations for predi-
cates in a sentence for the tasks of event ordering and
cloze evaluation. Unlike their work, our approach
makes use of multi-modal data with free-form nat-
ural language text to learn event embeddings. Fur-
ther, our models are trained end-to-end while their
pipelined approach involves parsing and extracting
verb frames from each sentence, where errors may
propagate from one module to the next (as discussed
in Section 4.3).

Chen et al. (2009) use a generalized Mallows
model for modeling sequences for coherence within
single documents. Their approach may also be ap-
plicable to our task. Recently, Mostafazadeh et al.
(2016) presented the “ROCStories” dataset of 5-
sentence stories with stereotypical causal and tem-
poral relations between events. In our work though,
we make use of a multi-modal story-dataset that con-
tains both images and associated story-like captions.

Some works in vision (Pickup et al., 2014; Basha
et al., 2012) also temporally order images; typically
by finding correspondences between multiple im-
ages of the same scene using geometry-based ap-
proaches. Similarly, Choi et al. (2016) compose a
story out of multiple short video clips. They define
metrics based on scene dynamics and coherence,
and use dense optical flow and patch-matching. In
contrast, our work deals with stories containing po-
tentially visually dissimilar but semantically coher-
ent set of images and captions.

A few other recent works (Kim et al., 2015; Kim
et al., 2014; Kim and Xing, 2014; Sigurdsson et al.,
2016; Bosselut et al., 2016; Wang et al., 2016) sum-
marize hundreds of individual streams of informa-
tion (images, text, videos) from the web that deal
with a single concept or event, to learn a common
theme or storyline or for timeline summarization.
Our task, however, is to predict the correct sorting
of a given story, which is different from summa-
rization or retrieval. Ramanathan et al. (2015) at-
tempt to learn temporal embeddings of video frames
in complex events. While their motivation is similar
to ours, they deal with sampled frames from a video
while we attempt to learn temporal common sense
from multi-modal stories consisting of a sequence
of aligned image-caption pairs.

3 Approach

In this section, we first describe the two components
in our approach: unary scores that do not use con-
text, and pairwise scores that encode relative order-
ings of elements. Next, we describe how we com-
bine these scores through a voting scheme.

3.1 Unary Models
Let σ ∈ Σn denote a permutation of n elements
(image-caption pairs). We use σi to denote the posi-
tion of element i in the permutation σ. A unary score

926

Su(σ) captures the appropriateness of each story el-
ement i in position σi:

Su(σ) =
n∑

i=1

P (σi|i) (1)

where P (σi|i) denotes the probability of the ele-
ment i being present in position σi, which is the
output from an n-way softmax layer in a deep
neural network. We experiment with 2 networks –
(1) A language-alone unary model (Skip-
Thought+MLP) that uses a Gated Recurrent
Unit (GRU) proposed by Cho et al. (2014) to embed
a caption into a vector space. We use the Skip-
Thought (Kiros et al., 2015) GRU, which is trained
on the BookCorpus (Zhu et al., 2015) to predict the
context (preceding and following sentences) of a
given sentence. These embeddings are fed as input
into a Multi-Layer Perceptron (MLP).
(2) A language+vision unary model (Skip-
Thought+CNN+MLP) that embeds the caption
as above and embeds the image via a Convolutional
Neural Network (CNN). We use the activations
from the penultimate layer of the 19-layer VGG-
net (Simonyan and Zisserman, 2014), which have
been shown to generalize well. Both embeddings
are concatenated and fed as input to an MLP.

In both cases, the best ordering of
the story elements (optimal permutation)
σ∗ = arg maxσ∈Σn

Su(σ) can be found effi-
ciently in O(n3) time with the Hungarian algo-
rithm (Munkres, 1957). Since these unary scores
are not influenced by other elements in the story,
they capture the semantics and linguistic structures
associated with specific positions of stories e.g., the
beginning, the middle, and the end.

3.2 Pairwise Models

Similar to learning to rank approaches (Hang, 2011),
we develop pairwise scoring models that given a pair
of elements (i, j), learn to assign a score:
S([[σi < σj]] | i, j) indicating whether element i
should be placed before element j in the permutation
σ. Here, [[·]] indicates the Iverson bracket (which is
1 if the input argument is true and 0 otherwise). We
develop and experiment with the following 3 pair-
wise models:
(1) A language-alone pairwise model (Skip-

Thought+MLP) that takes as input a pair of Skip-
Thought embeddings and trains an MLP (with
hinge-loss) that outputs S([[σi < σj]] | i, j), the
score for placing i before j.
(2) A language+vision pairwise model (Skip-
Thought+CNN+MLP) that concatenates the Skip-
Thought and CNN embeddings for i and j and trains
a similar MLP as above.
(3) A language-alone neural position embedding
(NPE) model. Instead of using frozen Skip-Thought
embeddings, we learn a task-aware ordered dis-
tributed embedding for sentences. Specifically,
each sentence in the story is embedded X =
(x1, . . . ,xn), xi ∈ Rd+, via an LSTM (Hochreiter
and Schmidhuber, 1997) with ReLU non-linearities.
Similar to the max-margin loss that is applied to neg-
ative examples by Vendrov et al. (2016), we use an
asymmetric penalty that encourages sentences ap-
pearing early in the story to be placed closer to the
origin than sentences appearing later in the story.

Lij =
∥∥∥max(0, α− (xj − xi))

∥∥∥
2

Loss =
∑

1<=i<j=n

Lij
(2)

At train time, the parameters of the LSTM are
learned end-to-end to minimize this asymmetric or-
dered loss (as measured over the gold-standard se-
quences). At test time, we use S([[σi < σj]] | i, j) =
Lij . Thus, as we move away from the origin in the
embedding space, we traverse through the sentences
in a story. Each of these three pairwise approaches
assigns a score S(σi, σj |i, j) to an ordered pair of
elements (i,j), which is used to construct a pairwise
scoring model:

Sp(σ) =
∑

1<=i<j<=n

{
S([[σi < σj]])− S([[σj < σi]])

}
,

(3)
by summing over the scores for all possible ordered
pairs in the permutation. This pairwise score cap-
tures local contextual information in stories. Find-
ing the best permutation σ∗ = arg maxσ∈Σn

Sp(σ)
under this pairwise model is NP-hard so approxi-
mations will be required. In our experiments, we
study short sequences (n = 5), where the space of
permutations is easily enumerable (5! = 120). For
longer sequences, we can utilize integer program-
ming methods or well-studied spectral relaxations
for this problem.

927

3.3 Voting-based Ensemble

To combine the complementary information cap-
tured by the unary (Su) and pairwise models (Sp),
we use a voting-based ensemble. For each method
in the ensemble, we find the top three permuta-
tions. Each of these permutations (σk) then vote
for a particular element to be placed at a particu-
lar position. Let V be a vote matrix such that Vij
stores the number of votes for ith element to oc-
cur at jth position, i.e. Vij =

∑
k[[σ

k
i == j]]).

We use the Hungarian algorithm to find the optimal
permutation that maximizes the votes assigned, i.e.
σ∗vote = arg maxσ∈Σn

∑n
i=1

∑n
j=1 Vij · [[σi == j]].

We experimented with a number of model voting
combinations and found the combination of pairwise
Skip-Thought+CNN+MLP and neural position em-
beddings to work best (based on a validation set).

4 Experiments

4.1 Data

We train and evaluate our model on personal multi-
modal stories from the SIND (Sequential Image
Narrative Dataset) (Ting-Hao Huang, 2016), where
each story is a sequence of 5 images and correspond-
ing story-like captions. The narrative captions in this
dataset, e.g., “friends having a good time” (as op-
posed to “people sitting next to each other”) capture
a sequential, conversational language, which is char-
acteristic of stories. We use 40,155 stories for train-
ing, 4990 for validation and 5055 stories for testing.

4.2 Metrics

We evaluate the performance of our model at cor-
rectly ordering a jumbled set of story elements using
the following 3 metrics:
Spearman’s rank correlation (Sp.) (Spearman,
1904) measures if the ranking of story elements in
the predicted and ground truth orders are monotoni-
cally related (higher is better).
Pairwise accuracy (Pairw.) measures the fraction
of pairs of elements whose predicted relative order-
ing is the same as the ground truth order (higher is
better).
Average Distance (Dist.) measures the average
change in position of all elements in the predicted

Method Features Sp. Pairw. Dist.

Random Order 0.000 0.500 1.601

Unary SkipThought 0.508 0.718 1.373
SkipThought + Image 0.532 0.729 1.352

Pairwise SkipThought 0.546 0.732 0.923
SkipThought + Image 0.565 0.740 0.897

Pairwise Order NPE 0.480 0.704 1.010

Voting SkipThought + Image 0.675 0.799 0.724
(Pairwise) + NPE

Table 1: Performance of our different models and
features at the sequencing task.

story from their respective positions in the ground
truth story (lower is better).

4.3 Results

Pairwise Models vs Unary Models As shown in
Table 1, the pairwise models based on Skip-Thought
features outperform the unary models in our task.
However, the Pairwise Order Model performs worse
than the unary Skip-Thought model, suggesting that
the Skip-Thought features, which encode context of
a sentence, also provide a crucial signal for temporal
ordering of story sentences.

Contribution of Image Features Augmenting the
text features with image features results in a visible
performance improvement of both the model trained
with unary features and the model trained with pair-
wise features. While image features by themselves
result in poor performance on this task, they seem to
capture temporal information that is complementary
to the text features.

Ensemble Voting To exploit the fact that unary
and pairwise models, as well as text and image fea-
tures, capture different aspects of the story, we com-
bine them using a voting ensemble. Based on the
validation set, we found that combining the Pair-
wise Order model and the Pairwise model with both
Skip-Thought and Image (CNN) features performs
the best. This voting based method achieves the
best performance on all three metrics. This shows
that our different approaches indeed capture comple-
mentary information regarding feasible orderings of
caption-image pairs to form a coherent story.

For comparison to existing related work, we tried

928

(a) First Position (b) Second Position (c) Third Position

(d) Fourth Position (e) Fifth Position

Figure 2: Word cloud corresponding to most discriminative words for each position.

to duplicate the pipelined approach of Modi and
Titov (2014). For this, we first parse our story
sentences to extract SVO (subject, verb, object) tu-
ples (using the Stanford Parser (Chen and Manning,
2014)). However, this step succeeds for only 60%
of our test data. Now even if we consider a perfect
downstream algorithm that always makes the cor-
rect position prediction given SVO tuples, the over-
all performance is still a Spearman correlation of
just 0.473, i.e., the upper bound performance of this
pipelined approach is lower than the performance
of our text-only end-to-end model (correlation of
0.546) in Table 1.

4.4 Qualitative Analysis

Visualizations of position predictions from our
model demonstrate that it has learnt the three act
structure (Trottier, 1998) in stories – the setup, the
middle and the climax. We also present success and
failure examples of our sorting model’s predictions.
See the supplementary for more details and figures.

We visualize our model’s temporal common
sense, in Fig. 2. The word clouds show discrim-
inative words – the words that the model believes
are indicative of sentence positions in a story. The
size of a word is proportional to the ratio of its fre-
quency of occurring in that position to other po-
sitions. Some words like ‘party’, ‘wedding’, etc.,
probably because our model believes that the start
the story describes the setup – the occasion or event.
People often tend to describe meeting friends or
family members which probably results in the dis-
criminative words such as ‘people’, ‘friend’, ‘every-
one’ in the second and the third sentences. More-

over, the model believes that people tend to conclude
the stories using words like ‘finally’, ‘afterwards’,
tend to talk about ‘great day’, group ‘pictures’ with
everyone, etc.

5 Conclusion

We propose the task of “sequencing” in a set of
image-caption pairs, with the motivation of learn-
ing temporal common sense. We implement multi-
ple neural network models based on individual and
pairwise element-based predictions (and their en-
semble), and utilize both image and text features,
to achieve strong performance on the task. Our
best system, on average, predicts the ordering of
sentences to within a distance error of 0.8 (out of
5) positions. We also analyze our predictions and
show qualitative examples that demonstrate tempo-
ral common sense.

Acknowledgements

We thank Ramakrishna Vedantam and the anony-
mous reviewers for their helpful suggestions. This
work was supported by: NSF CAREER awards to
DB and DP, ARO YIP awards to DB and DP, IC-
TAS Junior Faculty awards to DB and DP, Google
Faculty Research award to DP and DB, ARL grant
W911NF-15-2-0080 to DP and DB, ONR grant
N00014-14-1-0679 to DB and N00014-16-1-2713 to
DP, ONR YIP award to DP, Paul G. Allen Family
Foundation Allen Distinguished Investigator award
to DP, Alfred P. Sloan Fellowship to DP, AWS in
Education Research grant to DB, NVIDIA GPU do-
nations to DB and MB, an IBM Faculty Award
and Bloomberg Data Science Research Grant to
MB.

929

References
[Basha et al.2012] Tali Basha, Yael Moses, and Shai Avi-

dan. 2012. Photo sequencing. In ECCV. 2
[Boguraev and Ando2005] Branimir Boguraev and

Rie Kubota Ando. 2005. Timeml-compliant text
analysis for temporal reasoning. In IJCAI. 2

[Bosselut et al.2016] Antoine Bosselut, Jianfu Chen,
David Warren, Hannaneh Hajishirzi, and Yejin Choi.
2016. Learning prototypical event structure from
photo albums. In ACL. 2

[Chambers and Jurafsky2008] Nathanael Chambers and
Daniel Jurafsky. 2008. Unsupervised learning of nar-
rative event chains. In ACL. Citeseer. 2

[Chen and Manning2014] Danqi Chen and Christopher D
Manning. 2014. A fast and accurate dependency
parser using neural networks. In EMNLP. 5

[Chen et al.2009] Harr Chen, SRK Branavan, Regina
Barzilay, David R Karger, et al. 2009. Content mod-
eling using latent permutations. Journal of Artificial
Intelligence Research.

[Cho et al.2014] Kyunghyun Cho, Bart Van Merriënboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder for
statistical machine translation. In EMNLP.

[Choi et al.2016] Jinsoo Choi, Tae-Hyun Oh, and
In So Kweon. 2016. Video-story composition via plot
analysis. In CVPR.

[Fader et al.2014] Anthony Fader, Luke Zettlemoyer, and
Oren Etzioni. 2014. Open question answering over
curated and extracted knowledge bases. In ACM
SIGKDD. 1

[Hang2011] LI Hang. 2011. A short introduction to
learning to rank. IEICE TRANSACTIONS on Infor-
mation and Systems. 3

[Hitzeman et al.1995] Janet Hitzeman, Marc Moens, and
Claire Grover. 1995. Algorithms for analysing the
temporal structure of discourse. In EACL. 2

[Hochreiter and Schmidhuber1997] Sepp Hochreiter and
Jürgen Schmidhuber. 1997. Long short-term memory.
Neural computation. 3

[Kehler2000] Andrew Kehler. 2000. Coherence and the
resolution of ellipsis. Linguistics and Philosophy. 2

[Kim and Xing2014] Gunhee Kim and Eric Xing. 2014.
Reconstructing storyline graphs for image recommen-
dation from web community photos. In CVPR. 2

[Kim et al.2014] Gunhee Kim, Leonid Sigal, and Eric
Xing. 2014. Joint summarization of large-scale col-
lections of web images and videos for storyline recon-
struction. In CVPR. 2

[Kim et al.2015] Gunhee Kim, Seungwhan Moon, and
Leonid Sigal. 2015. Joint photo stream and blog post
summarization and exploration. In CVPR. 2

[Kiros et al.2015] Ryan Kiros, Yukun Zhu, Ruslan R
Salakhutdinov, Richard Zemel, Raquel Urtasun, An-
tonio Torralba, and Sanja Fidler. 2015. Skip-thought
vectors. In NIPS. 3

[Lapata and Lascarides2006] Mirella Lapata and Alex
Lascarides. 2006. Learning sentence-internal tem-
poral relations. Journal of Artificial Intelligence Re-
search. 2

[Mani and Schiffman2005] Inderjeet Mani and Barry
Schiffman. 2005. Temporally anchoring and order-
ing events in news. Time and Event Recognition in
Natural Language. John Benjamins. 2

[Mani et al.2006] Inderjeet Mani, Marc Verhagen, Ben
Wellner, Chong Min Lee, and James Pustejovsky.
2006. Machine learning of temporal relations. In
COLING-ACL. 2

[Modi and Titov2014] Ashutosh Modi and Ivan Titov.
2014. Inducing neural models of script knowledge. In
CoNLL. 2

[Modi2016] Ashutosh Modi. 2016. Event embeddings
for semantic script modeling. In CoNLL. 2

[Mostafazadeh et al.2016] Nasrin Mostafazadeh,
Nathanael Chambers, Xiaodong He, Devi Parikh,
Dhruv Batra, Lucy Vanderwende, Pushmeet Kohli,
and James Allen. 2016. A corpus and cloze evaluation
for deeper understanding of commonsense stories. In
NAACL.

[Munkres1957] James Munkres. 1957. Algorithms for
the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics.
3

[Passonneau1988] Rebecca J Passonneau. 1988. A com-
putational model of the semantics of tense and aspect.
Computational Linguistics. 2

[Pickup et al.2014] Lyndsey Pickup, Zheng Pan, Donglai
Wei, YiChang Shih, Changshui Zhang, Andrew Zis-
serman, Bernhard Scholkopf, and William Freeman.
2014. Seeing the arrow of time. In CVPR. 2

[Pustejovsky et al.2003] James Pustejovsky, Patrick
Hanks, Roser Sauri, Andrew See, Robert Gaizauskas,
Andrea Setzer, Dragomir Radev, Beth Sundheim,
David Day, Lisa Ferro, et al. 2003. The timebank
corpus. In Corpus linguistics. 2

[Ramanathan et al.2015] Vignesh Ramanathan, Kevin
Tang, Greg Mori, and Li Fei-Fei. 2015. Learning
temporal embeddings for complex video analysis. In
CVPR.

[Ren et al.2015] Mengye Ren, Ryan Kiros, and Richard
Zemel. 2015. Exploring models and data for image
question answering. In NIPS. 1

[Richardson et al.2013] Matthew Richardson, Christo-
pher JC Burges, and Erin Renshaw. 2013. Mctest: A
challenge dataset for the open-domain machine com-
prehension of text. In EMNLP. 1

930

[Schank and Abelson2013] Roger C Schank and Robert P
Abelson. 2013. Scripts, plans, goals, and under-
standing: An inquiry into human knowledge struc-
tures. Psychology Press. 2

[Sigurdsson et al.2016] Gunnar A Sigurdsson, Xinlei
Chen, and Abhinav Gupta. 2016. Learning visual
storylines with skipping recurrent neural networks. In
ECCV. 2

[Simonyan and Zisserman2014] Karen Simonyan and
Andrew Zisserman. 2014. Very deep convolutional
networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556. 3

[Spearman1904] Charles Spearman. 1904. The proof and
measurement of association between two things. The
American journal of psychology. 4

[Ting-Hao Huang2016] Nasrin Mostafazadeh Ishan
Misra Aishwarya Agrawal Jacob Devlin Ross Gir-
shick Xiaodong He Pushmeet Kohli Dhruv Batra C.
Lawrence Zitnick Devi Parikh Lucy Vanderwende
Michel Galley Margaret Mitchell Ting-Hao Huang,
Francis Ferraro. 2016. Visual storytelling. In NAACL.
1, 4

[Trottier1998] David Trottier. 1998. The screenwriter’s
bible: A complete guide to writing, formatting, and
selling your script. Silman-James Press. 5

[Vendrov et al.2016] Ivan Vendrov, Ryan Kiros, Sanja Fi-
dler, and Raquel Urtasun. 2016. Order-embeddings of
images and language. In ICLR.

[Wang et al.2016] William Yang Wang, Yashar Mehdad,
Dragomir R Radev, and Amanda Stent. 2016. A low-
rank approximation approach to learning joint embed-
dings of news stories and images for timeline summa-
rization. In NAACL. 2

[Webber1988] Bonnie Lynn Webber. 1988. Tense as dis-
course anaphor. Computational Linguistics. 2

[Weston et al.2015] Jason Weston, Antoine Bordes, Sumit
Chopra, and Tomas Mikolov. 2015. Towards AI-
complete question answering: A set of prerequisite toy
tasks. arXiv preprint arXiv:1502.05698. 1

[Zhu et al.2015] Yukun Zhu, Ryan Kiros, Rich Zemel,
Ruslan Salakhutdinov, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. 2015. Aligning books and
movies: Towards story-like visual explanations by
watching movies and reading books. In CVPR. 3

931

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 932–937,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Human Attention in Visual Question Answering:
Do Humans and Deep Networks Look at the Same Regions?

Abhishek Das1∗ Harsh Agrawal1∗ C. Lawrence Zitnick2 Devi Parikh1,3 Dhruv Batra1,3

1Virginia Tech 2Facebook AI Research 3Georgia Institute of Technology
{abhshkdz, harsh92, parikh, dbatra}@vt.edu, zitnick@fb.com

Abstract
We conduct large-scale studies on ‘human at-
tention’ in Visual Question Answering (VQA)
to understand where humans choose to look
to answer questions about images. We de-
sign and test multiple game-inspired novel
attention-annotation interfaces that require the
subject to sharpen regions of a blurred im-
age to answer a question. Thus, we in-
troduce the VQA-HAT (Human ATtention)
dataset. We evaluate attention maps generated
by state-of-the-art VQA models against hu-
man attention both qualitatively (via visualiza-
tions) and quantitatively (via rank-order cor-
relation). Overall, our experiments show that
current VQA attention models do not seem to
be looking at the same regions as humans.

1 Introduction

It helps to pay attention. Humans have the ability
to quickly perceive a scene by selectively attending
to parts of the image instead of processing the whole
scene in its entirety (Rensink, 2000). Inspired by hu-
man attention, a recent trend in computer vision and
deep learning is to build computational models of at-
tention. Given an input signal, these models learn
to attend to parts of it for further processing and
have been successfully applied in machine transla-
tion (Bahdanau et al., 2015; Firat et al., 2016), ob-
ject recognition (Ba et al., 2015; Mnih et al., 2014;
Sermanet et al., 2014), image captioning (Xu et al.,
2015; Cho et al., 2015) and visual question answer-
ing (Yang et al., 2016; Lu et al., 2016; Xu and
Saenko, 2015; Xiong et al., 2016).
In this work, we study attention for the task of Vi-
sual Question Answering (VQA). Unlike image cap-
tioning, where a coarse understanding of an image

∗Denotes equal contribution.

Figure 1: Different human attention regions based
on question. (best viewed in color)

is often sufficient for producing generic descriptions
(Devlin et al., 2015), visual questions selectively tar-
get different areas of an image including background
details and underlying context. This suggests that a
VQA model may benefit from an explicit or implicit
attention mechanism to answer a question correctly.
In this work, we are interested in the following ques-
tions: 1) Which image regions do humans choose to
look at in order to answer questions about images?
2) Do deep VQA models with attention mechanisms
attend to the same regions as humans?
We design and conduct studies to collect “human
attention maps”. Figure 1 shows human attention
maps on the same image for two different ques-
tions. When asked ‘What type is the surface?’, hu-
mans choose to look at the floor, while attention
for ‘Which game is being played?’ is concentrated
around the player and racket.
These human attention maps can be used both for
evaluating machine-generated attention maps and
for explicitly training attention-based models.

932

(a) (b) (c)

Figure 2: (a-c): Column 1 shows deblurred image, and column 2 shows human attention map.

Contributions. First, we design game-inspired
novel interfaces for collecting human attention maps
of where humans choose to look to answer ques-
tions from the large-scale VQA dataset (Antol et al.,
2015); this VQA-HAT (Human ATtention) dataset
is publicly available at our project webpage1 Sec-
ond, we perform qualitative and quantitative com-
parison of the maps generated by state-of-the-art
attention-based VQA models (Yang et al., 2016; Lu
et al., 2016) and a task-independent saliency base-
line (Judd et al., 2009) against our human atten-
tion maps through visualizations and rank-order cor-
relation. We find that machine-generated attention
maps from the most accurate VQA model have a
mean rank-correlation of 0.26 with human atten-
tion maps, which is worse than task-independent
saliency maps that have a mean rank-correlation of
0.49. It is well understood that task-independent
saliency maps have a ‘center bias’ (Tatler, 2007;
Judd et al., 2009). After we control for this center
bias, we find that the correlation of task-independent
saliency is poor (as expected), while trends for
machine-generated VQA-attention maps remain the
same, which confirms our key finding that current
VQA attention models do not seem to be looking at
the same regions as humans.

2 Related Work

Our work draws on recent work in attention-based
VQA and human studies in saliency prediction.
We work with the free-form and open-ended VQA
dataset released by (Antol et al., 2015).

VQA Models. Attention-based models for VQA
typically use convolutional neural networks to high-

1http://computing.ece.vt.edu/˜abhshkdz/
vqa-hat

light relevant regions of image given a question.
Stacked Attention Networks (SAN) proposed in
(Yang et al., 2016) use LSTM encodings of ques-
tion words to produce a spatial attention distribution
over the convolutional layer features of the image.
Hierarchical Co-Attention Network (Lu et al., 2016)
generates multiple levels of image attention based
on words, phrases and complete questions, and is
the top entry on the VQA Challenge2 as of the time
of this submission. Another interesting approach
uses question parsing to compose the neural network
from modules, attention being one of the sub-tasks
addressed by these modules (Andreas et al., 2016).
Note that all these works are unsupervised attention
models, where “attention” is simply an intermedi-
ate variable (a spatial distribution) that is produced
by the model to optimize downstream loss (VQA
cross-entropy). The fact that some (it’s unclear how
many) of these spatial distributions end up being
interpretable is simply fortuitous. In contrast, we
study where humans choose to look to answer vi-
sual questions. These human attention maps can be
used to evaluate unsupervised maps.

Human Studies. There’s a rich history of work in
collecting eye tracking data from human subjects
to gain an understanding of image saliency and vi-
sual perception (Jiang et al., 2014; Judd et al., 2009;
Fei-Fei et al., 2007; Yarbus, 1967). Eye tracking
data to study natural visual exploration (Jiang et
al., 2014; Judd et al., 2009) is useful but difficult
and expensive to collect on a large scale. (Jiang et
al., 2015) established mouse tracking as an accu-
rate alternative to eye tracking for collecting atten-
tion maps. They collected large-scale attention an-
notations for MS COCO (Lin et al., 2014) on Ama-

2http://visualqa.org/challenge.html

933

zon Mechanical Turk (AMT). While (Jiang et al.,
2015) studies natural exploration and collects task-
independent human annotations by asking subjects
to freely move the mouse cursor to anywhere they
wanted to look on a blurred image, our approach is
task-driven. (Jia Deng and Jonathan Krause and Li
Fei-Fei, 2013; Deng et al., 2015) leverage crowd-
sourcing to help computers select discriminative fea-
tures for fine-grained recognition. They introduce a
novel gamified setting where the humans can reveal
regions with certain penalty which ensures discrim-
inative regions with assured quality. Related to this
is the work of (von Ahn and Dabbish, 2004) who ex-
plore gamification to locate objects in an image. To
the best of our knowledge, this is the first work to
collect human attention maps for VQA.
Specifically, as described in Section 3, we collect
ground truth attention annotations by instructing
subjects to sharpen parts of a blurred image that are
important for answering the questions accurately.
Section 4 covers evaluation of unsupervised atten-
tion maps generated by VQA models against our hu-
man attention maps.

3 VQA-HAT (Human ATtention) Dataset

We design and test multiple game-inspired novel in-
terfaces for conducting large-scale human studies on
AMT. Our basic interface design consists of a “de-
blurring” exercise for answering visual questions.
Specifically, we present subjects with a blurred im-
age and a question about the image, and ask subjects
to sharpen regions of the image that will help them
answer the question correctly, in a smooth, click-
and-drag, ‘coloring’ motion with the mouse. The
sharpening is gradual: successively scrubbing the
same region progressively sharpens it.
We experiment with multiple variants of the data
collection interface. Analysis of the interfaces as
well as details of the human evaluation studies con-
ducted to converge on the final interface used for re-
sults in this main document have been included in
the supplement. The human evaluation studies con-
sisted of showing these attention-sharpened images
to humans and asking them to answer the question.
Based on these human studies, we pick the “Blurred
Image with Answer” interface, where subjects were
shown the correct answer in addition to the ques-

tion and blurred image, and asked to deblur as few
regions as possible such that someone can answer
the question just by looking at the sharpened re-
gions. Since the payment structure on AMT encour-
age completing tasks as quickly as possible, this im-
plicitly incentivizes subjects to deblur as few regions
as possible. Our followup human studies on these
collected maps show that other subjects are able to
answer questions based on these collected maps (de-
tails in supplement). Thus, overall we achieve a bal-
ance between highlighting too little or too much.
Note that the “Blurred Image with Answer” inter-
face used to collect attention maps is a verification
task as opposed to actual question answering. We
show subjects an answer and ask them to sharpen
regions that will help them answer the question cor-
rectly, as opposed to showing them just the ques-
tion and asking them for the answer as well as rel-
evant sharpened regions in the image (“Blurred Im-
age without Answer” interface). Attention maps col-
lected via this verification task “Blurred Image with
Answer” are more informative (in terms of human
VQA accuracy) than those collected for “Blurred
Image without Answer” – 78.7% vs. 75.2%.
We collected human attention maps for 58475 train
(out of 248349 total) and 1374 val (out of 121512
total) question-image pairs from the VQA dataset.
This dataset is publicly available1. Overall, we con-
ducted approximately 20000 Human Intelligence
Tasks (HITs) on AMT, among 800 unique workers.
Figure 2 shows examples of collected human atten-
tion maps.

Figure 3

To visualize the collected dataset, we cluster the hu-
man attention maps and visualize the average atten-
tion map and example questions falling in each of
them for 6 selected clusters in Figure 3.

934

4 Human Attention Maps vs Unsupervised
Attention Models

Now that we have collected these human attention
maps, we can ask the following question – do unsu-
pervised attention models learn to predict attention
maps that are similar to human attention maps? To
rephrase, do neural networks look at the same re-
gions as humans to answer a visual question?
VQA Attention Models. We evaluate maps gener-
ated by the following unsupervised models:
• Stacked Attention Network (SAN) (Yang et al.,

2016) with two attention layers (SAN-2)3.
• Hierarchical Co-Attention Network

(HieCoAtt) (Lu et al., 2016) with word-level
(HieCoAtt-W), phrase-level (HieCoAtt-P) and
question-level (HieCoAtt-Q) attention maps;
we evaluate all three maps4.

Comparison Metric: Rank Correlation. We first
scale both the machine-generated and human atten-
tion maps to 14x14, rank the pixels according to
their spatial attention and then compute correlation
between these two ranked lists. We choose an order-
based metric so as to make the evaluation invariant
to absolute spatial probability values which can be
made peaky or diffuse by tweaking a ‘temperature’
parameter.
Table 1 shows rank-order correlation averaged over
all image-question pairs on the validation set. We
compare with random attention maps and task-
independent saliency maps generated by a model
trained to predict human eye fixation locations
where subjects are asked to freely view an image
for 3 seconds (Judd et al., 2009). Both SAN-2
and HieCoAtt attention maps are positively corre-
lated with human attention maps, but not as strongly
as task-independent Judd saliency maps. Our find-
ings lead to two take-away messages with signifi-
cant potential impact on future research in this ac-
tive field. First, current VQA attention models do
not seem to be ‘looking’ at the same regions as hu-
mans to produce an answer. Second, as attention-
based VQA models become more accurate (58.9%
SAN→ 62.1% HieCoAtt), they seem to be (slightly)
better correlated with humans in terms of where they

3https://github.com/zcyang/imageqa-san
4https://github.com/jiasenlu/

HieCoAttenVQA

Model Rank-correlation

SAN-2 (Yang et al., 2016) 0.249 ± 0.004

HieCoAtt-W (Lu et al., 2016) 0.246 ± 0.004
HieCoAtt-P (Lu et al., 2016) 0.256 ± 0.004
HieCoAtt-Q (Lu et al., 2016) 0.264 ± 0.004

Random 0.000 ± 0.001

Judd et al. (Judd et al., 2009) 0.497 ± 0.004

Human 0.623 ± 0.003

Table 1: Mean rank-correlation coefficients (higher
is better); error bars show standard error of means.
We can see that both SAN-2 and HieCoAtt attention
maps are positively correlated with human attention
maps, but not as strongly as task-independent Judd
saliency maps.

Model Rank-correlation

SAN-2 (Yang et al., 2016) 0.038 ± 0.011

HieCoAtt-W (Lu et al., 2016) 0.062 ± 0.012
HieCoAtt-P (Lu et al., 2016) 0.048 ± 0.010
HieCoAtt-Q (Lu et al., 2016) 0.114 ± 0.012

Judd et al. (Judd et al., 2009) -0.063 ± 0.009

Table 2: Correlation on the reduced set without cen-
ter bias goes down significantly for Judd saliency
since they have a strong center bias. Relative trends
among SAN-2 & HieCoAtt are similar to those over
the whole validation set (reported in Table 1).

look. Our dataset will allow for a more thorough val-
idation of this observation as future attention-based
VQA models are proposed. Figure 4 shows ex-
amples of human and machine-generated attention
maps with their rank-correlation coefficients.
To put these numbers in perspective, we computed
inter-human agreement on the validation set by col-
lecting 3 human attention maps per image-question
pair and computing mean rank-correlation, which
is 0.623. Lastly, all reported correlations are aver-
aged over 3 trials by adding random noise (order of
10−14) to human attention maps to account for rank-
ing variations in case of uniformly weighted regions.
Center Bias. Judd saliency maps aim to predict hu-
man eye fixations during natural visual exploration.
These tend to have a strong center bias (Tatler, 2007;
Judd et al., 2009). Although our human attention
maps dataset is not an eye tracking study, the cen-

935

Figure 4: Random example of human attention (column 2) v/s machine-generated attention (columns 3-5)

ter bias still exists albeit not as severely as in eye-
tracking. A potential source of center bias is the fact
that the VQA dataset was human-generated by sub-
jects looking at images. Thus, salient objects in the
center of the image are likely to be potential subjects
of questions. We compute rank-correlation of a syn-
thetically generated central attention map with Judd
saliency and human attention maps. Judd saliency
maps have a mean rank-correlation of 0.877 and hu-
man attention maps have a mean rank-correlation of
0.458 on the validation set.
To eliminate the effect of center bias in this evalua-
tion, we removed human attention maps that have
positive rank-correlation with the center attention
map. We compute rank-correlation of machine-
generated attention with human attention on this re-
duced set. See Table 2. Mean correlation goes down
significantly for Judd saliency maps since they have
a strong center bias. Relative trends among SAN-2
& HieCoAtt are similar to those over the whole val-
idation set (reported in Table 1). HieCoAtt-Q now
has higher correlation with human attention maps
than Judd saliency. Thus discounting the center bias,
VQA-specific machine attention maps correlate bet-
ter with VQA-specific human attention maps than
task-independent machine saliency maps.

5 Conclusion & Discussion

We introduce and release the VQA-HAT dataset1.
This dataset can be used to evaluate attention
maps generated in an unsupervised manner by
attention-based VQA models, or to explicitly train
models with attention supervision for VQA. We
quantify whether current attention-based VQA
models are ‘looking’ at the same regions of the
image as humans do to produce an answer.

Necessary vs Sufficient Maps. Are human atten-
tion maps ‘necessary’ and/or ‘sufficient’? If regions
highlighted by the human attention maps are suffi-
cient to answer the question accurately, then so is
any region that is a superset. For example, if atten-
tion mass is concentrated on a ‘cat’ for ‘What animal
is present in the picture?’, then an attention map that
assigns weights to any arbitrary-sized region that in-
cludes the ‘cat’ is sufficient as well. On the contrary,
a necessary and sufficient attention map would be
the smallest visual region sufficient for answering
the question accurately. It is an ill-posed problem to
define a necessary attention map in the space of pix-
els; random pixels can be blacked out and chances
are that humans would still be able to answer the
question given the resulting subset attention map.
Our work thus poses an interesting question for fu-
ture work – what is the right semantic space in which
it is meaningful to talk about necessary and suffi-
cient attention maps for humans?

Acknowledgements

We thank Jiasen Lu and Rama Vedantam for helpful sug-
gestions. This work was supported in part by the National
Science Foundation CAREER awards to DB & DP, Army
Research Office YIP awards to DB & DP, ICTAS Junior
Faculty awards at VT to DB & DP, Army Research Lab
grant W911NF-15-2-0080 to DP & DB, Office of Naval
Research (ONR) YIP award to DP, ONR grant N00014-
14-1-0679 to DB, Alfred P. Sloan Fellowship to DP, Paul
G. Allen Family Foundation Allen Distinguished Inves-
tigator award to DP, Google Faculty Research award to
DP & DB, AWS in Education Research grant to DB, and
NVIDIA GPU donation to DB. The views and conclu-
sions contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
the US Government or any sponsor.

936

References

[Andreas et al.2016] Jacob Andreas, Marcus Rohrbach,
Trevor Darrell, and Dan Klein. 2016. Learning to com-
pose neural networks for question answering. In NAACL
HLT. 2

[Antol et al.2015] Stanislaw Antol, Aishwarya Agrawal,
Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence
Zitnick, and Devi Parikh. 2015. VQA: Visual Question
Answering. In ICCV. 2

[Ba et al.2015] Jimmy Lei Ba, Volodymyr Mnih, and Ko-
ray Kavukcuoglu. 2015. Multiple Object Recognition
With Visual Attention. In ICLR. 1

[Bahdanau et al.2015] Dzmitry Bahdanau, Kyunghyun
Cho, and Yoshua Bengio. 2015. Neural Machine Trans-
lation by Jointly Learning to Align and Translate. In
ICLR. 1

[Cho et al.2015] KyungHyun Cho, Aaron C. Courville,
and Yoshua Bengio. 2015. Describing Multimedia Con-
tent using Attention-based Encoder-Decoder Networks.
volume abs/1507.01053. 1

[Deng et al.2015] Jia Deng, Jonathan Krause, Michael
Stark, and Li Fei-Fei. 2015. Leveraging the Wisdom
of the Crowd for Fine-Grained Recognition. PAMI. 3

[Devlin et al.2015] Jacob Devlin, Saurabh Gupta, Ross B.
Girshick, Margaret Mitchell, and C. Lawrence Zitnick.
2015. Exploring nearest neighbor approaches for image
captioning. volume abs/1505.04467. 1

[Fei-Fei et al.2007] Li Fei-Fei, Asha Iyer, Christof Koch,
and Pietro Perona. 2007. What do we perceive in a
glance of a real-world scene? Journal of Vision, 7(1):10.
2

[Firat et al.2016] Orhan Firat, KyungHyun Cho, and
Yoshua Bengio. 2016. Multi-way, multilingual neural
machine translation with a shared attention mechanism.
volume abs/1601.01073. 1

[Jia Deng and Jonathan Krause and Li Fei-Fei2013] Jia
Deng and Jonathan Krause and Li Fei-Fei. 2013. Fine-
Grained Crowdsourcing for Fine-Grained Recognition.
In CVPR. 3

[Jiang et al.2014] Ming Jiang, Juan Xu, and Qi Zhao.
2014. Saliency in Crowd. In ECCV. 2

[Jiang et al.2015] Ming Jiang, Shengsheng Huang, Juany-
ong Duan, and Qi Zhao. 2015. Salicon: Saliency in con-
text. In CVPR. 2, 3

[Judd et al.2009] Tilke Judd, Krista Ehinger, Frédo Du-
rand, and Antonio Torralba. 2009. Learning to predict
where humans look. In ICCV. 2, 4

[Lin et al.2014] Tsung-Yi Lin, Michael Maire, Serge Be-
longie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollr, and C. Lawrence Zitnick. 2014. Microsoft COCO:
Common Objects in Context. In ECCV. 2

[Lu et al.2016] Jiasen Lu, Jianwei Yang, Dhruv Batra, and
Devi Parikh. 2016. Hierarchical Question-Image Co-
Attention for Visual Question Answering. In NIPS. 1, 2,
4

[Mnih et al.2014] Volodymyr Mnih, Nicolas Heess, Alex
Graves, and Koray Kavukcuoglu. 2014. Recurrent Mod-
els of Visual Attention. In NIPS. 1

[Rensink2000] Ronald A. Rensink. 2000. The dynamic
representation of scenes. Visual Cognition, 7(1-3):17–
42. 1

[Sermanet et al.2014] Pierre Sermanet, Andrea Frome,
and Esteban Real. 2014. Attention for Fine-Grained Cat-
egorization. volume abs/1412.7054. 1

[Tatler2007] Benjamin W. Tatler. 2007. The central fixa-
tion bias in scene viewing: Selecting an optimal viewing
position independently of motor biases and image feature
distributions. Journal of Vision, 7(14):4. 2, 4

[von Ahn and Dabbish2004] Luis von Ahn and Laura
Dabbish. 2004. Labeling images with a computer game.
In CHI. 3

[Xiong et al.2016] Caiming Xiong, Stephen Merity, and
Richard Socher. 2016. Dynamic memory networks for
visual and textual question answering. In ICML. 1

[Xu and Saenko2015] Huijuan Xu and Kate Saenko.
2015. Ask, attend and answer: Exploring question-
guided spatial attention for visual question answering.
volume abs/1511.05234. 1

[Xu et al.2015] Kelvin Xu, Jimmy Ba, Ryan Kiros,
Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdi-
nov, Richard S. Zemel, and Yoshua Bengio. 2015. Show,
Attend and Tell: Neural Image Caption Generation with
Visual Attention. In ICML. 1

[Yang et al.2016] Zichao Yang, Xiaodong He, Jianfeng
Gao, Li Deng, and Alexander J. Smola. 2016. Stacked
Attention Networks for Image Question Answering. In
CVPR. 1, 2, 4

[Yarbus1967] A. L. Yarbus. 1967. Eye Movements and
Vision. Plenum. New York. 2

937

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 938–943,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Recurrent Residual Learning for Sequence Classification

Yiren Wang∗
University of Illinois at Urbana-Champaign

yiren@illinois.edu

Fei Tian
Microsoft Research

fetia@microsoft.com

Abstract

In this paper, we explore the possibility of
leveraging Residual Networks (ResNet), a
powerful structure in constructing extremely
deep neural network for image understanding,
to improve recurrent neural networks (RNN)
for modeling sequential data. We show that
for sequence classification tasks, incorporat-
ing residual connections into recurrent struc-
tures yields similar accuracy to Long Short
Term Memory (LSTM) RNN with much fewer
model parameters. In addition, we propose
two novel models which combine the best
of both residual learning and LSTM. Experi-
ments show that the new models significantly
outperform LSTM.

1 Introduction

Recurrent Neural Networks (RNNs) are powerful
tools to model sequential data. Among various
RNN models, Long Short Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) is one of the
most effective structures. In LSTM, gating mech-
anism is used to control the information flow such
that gradient vanishing problem in vanilla RNN is
better handled, and long range dependency is bet-
ter captured. However, as empirically verified by
previous works and our own experiments, to obtain
fairly good results, training LSTM RNN needs care-
fully designed optimization procedure (Hochreiter
et al., 2001; Pascanu et al., 2013; Dai and Le, 2015;
Laurent et al., 2015; He et al., 2016; Arjovsky et

∗This work was done when the author was visiting Mi-
crosoft Research Asia.

al., 2015), especially when faced with unfolded very
deep architectures for fairly long sequences (Dai
and Le, 2015).

From another perspective, for constructing very
deep neural networks, recently Residual Networks
(ResNet) (He et al., 2015) have shown their ef-
fectiveness in quite a few computer vision tasks.
By learning a residual mapping between layers with
identity skip connections (Jaeger et al., 2007),
ResNet ensures a fluent information flow, leading to
efficient optimization for very deep structures (e.g.,
with hundreds of layers). In this paper, we explore
the possibilities of leveraging residual learning to
improve the performances of recurrent structures, in
particular, LSTM RNN, in modeling fairly long se-
quences (i.e., whose lengths exceed 100). To sum-
marize, our main contributions include:

1. We introduce residual connecting mechanism
into the recurrent structure and propose recur-
rent residual networks for sequence learning.
Our model achieves similar performances to
LSTM in text classification tasks, whereas the
number of model parameters is greatly reduced.

2. We present in-depth analysis of the strengths
and limitations of LSTM and ResNet in respect
of sequence learning.

3. Based on such analysis, we further propose two
novel models that incorporate the strengths of
the mechanisms behind LSTM and ResNet. We
demonstrate that our models outperform LSTM
in many sequence classification tasks.

938

2 Background

RNN models sequences by taking sequential input
x = {x1, · · · , xT } and generating T step hidden
states h = {h1, · · · , hT }. At each time step t, RNN
takes the input vector xt ∈ Rn and the previous hid-
den state vector ht−1 ∈ Rm to produce the next hid-
den state ht.

Based on this basic structure, LSTM avoids gradi-
ent vanishing in RNN training and thus copes better
with long range dependencies, by further augment-
ing vanilla RNN with a memory cell vector ct ∈ Rm

and multiplicative gate units that regulate the infor-
mation flow. To be more specific, at each time step
t, an LSTM unit takes xt, ct−1, ht−1 as input, gen-
erates the input, output and forget gate signals (de-
noted as it, ot and ft respectively), and produces the
next cell state ct and hidden state ht:

c̃t = tanh(Wc[ht−1, xt] + bc)

it = σ(Wi[ht−1, xt] + bi)

ft = σ(Wf [ht−1, xt] + bf)

ot = σ(Wo[ht−1, xt] + bo)

ct = ft ⊗ Ct−1 + it ⊗ c̃t
ht = ot ⊗ tanh(ct)

(1)

where ⊗ refers to element-wise product. σ(x) is the
sigmoid function σ(x) = 1/(1+exp(−x)). Wj(j ∈
{i, o, f, c}) are LSTM parameters. In the following
part, such functions generating ht and ct are denoted
as ht, ct = LSTM(xt, ht−1, ct−1).

Residual Networks (ResNet) are among the pio-
neering works (Szegedy et al., 2015; Srivastava et
al., 2015) that utilize extra identity connections to
enhance information flow such that very deep neural
networks can be effectively optimized. ResNet (He
et al., 2015) is composed of several stacked resid-
ual units, in which the lth unit takes the following
transformation:

hl+1 = f(g(hl) + F(hl;Wl)) (2)

where hl and hl+1 are the input and output for the
lth unit respectively. F is the residual function with
weight parametersWl. f is typically the ReLU func-
tion (Nair and Hinton, 2010). g is set as identity
function, i.e., g(hl) = hl. Such an identity con-
nection guarantees the direct propagation of signals

among different layers, thereby avoids gradient van-
ishing. The recent paper (Liao and Poggio, 2016)
talks about the possibility of using shared weights in
ResNet, similar to what RNN does.

3 Recurrent Residual Learning

The basic idea of recurrent residual learning is to
force a direct information flow in different time steps
of RNNs by identity (skip) connections. In this sec-
tion, we introduce how to leverage residual learning
to 1) directly construct recurrent neural network in
subsection 3.1; 2) improve LSTM in subsection 3.2.

3.1 Recurrent Residual Networks (RRN)
The basic architecture of Recurrent Residual Net-
work (RRN for short) is illustrated in Figure 1, in
which orange arrows indicate the identity connec-
tions from each ht−1 to ht, and blue arrows rep-
resent the recurrent transformations taking both ht
and xt as input. Similar to equation (2), the recur-
rent transformation in RRN takes the following form
(denoted as ht = RRN(xt, ht−1) in the following
sections):

ht = f(g(ht−1) + F(ht−1, xt;W)), (3)

where g is still the identity function s.t. g(ht−1) =
ht−1, corresponding to the orange arrows in Figure
1. f is typically set as tanh. For function F with
weight parameters W (corresponding to the blue ar-
rows in Figure 1), inspired by the observation that
higher recurrent depth tends to lead to better perfor-
mances (Zhang et al., 2016), we impose K deep
transformations in F :

yt1 = σ(xtW1 + ht−1U1 + b1)

yt2 = σ(xtW2 + yt1U2 + b2)

· · ·
ytK = σ(xtWK + ytK−1UK + bK)

F(ht−1, xt) = ytK

(4)

where xt is taken at every layer such that the input
information is better captured, which works simi-
larly to the mechanism of highway network (Sri-
vastava et al., 2015). K is the recurrent depth de-
fined in (Zhang et al., 2016). The weights Wm

(m ∈ {1, · · · ,K}) are shared across different time
steps t.

939

Figure 1: The basic structure of Recurrent Residual Networks.

RRN forces the direct propagation of hidden state
signals between every two consecutive time steps
with identity connections g. In addition, the mul-
tiple non-linear transformations in F guarantees its
capability in modelling complicated recurrent rela-
tionship. In practice, we found that K = 2 yields
fairly good performances, meanwhile leads to half
of LSTM parameter size when model dimensions
are the same.

3.2 Gated Residual RNN
Identity connections in ResNet are important for
propagating the single input image information to
higher layers of CNN. However, when it comes to
sequence classification, the scenario is quite differ-
ent in that there is a new input at every time step.
Therefore, a forgetting mechanism to “forget” less
critical historical information, as is employed in
LSTM (controlled by the forget gate ft), becomes
necessary. On the other hand, while LSTM benefits
from the flexible gating mechanism, its parametric
nature brings optimization difficulties to cope with
fairly long sequences, whose long range informa-
tion dependencies could be better captured by iden-
tity connections.

Inspired by the success of the gating mechanism
of LSTM and the residual connecting mechanism
with enhanced information flow of ResNet, we fur-
ther propose two Gated Residual Recurrent models
leveraging the strengths of the two mechanisms.

3.2.1 Model 1: Skip-Connected LSTM
(SC-LSTM)

Skip-Connected LSTM (SC-LSTM for short) in-
troduces identity connections into standard LSTM to
enhance the information flow. Note that in Figure 1,
a straightforward approach is to replace F with an
LSTM unit. However, our preliminary experiments

do not achieve satisfactory results. Our conjecture is
that identity connections between consecutive mem-
ory cells, which are already sufficient to maintain
short-range memory, make the unregulated informa-
tion flow overly strong, and thus compromise the
merit of gating mechanism.

To reasonably enhance the information flow for
LSTM network while keeping the advantage of gat-
ing mechanism, starting from equation (1), we pro-
pose to add skip connections between two LSTM
hidden states with a wide range of distance L (e.g.,
L = 20), such that ∀t = {1, 1+L, 1+ 2L, · · · , 1+
bT−L−1L cL}:

ht+L = tanh(ct+L)⊗ ot+L + αht (5)

Here α is a scalar that can either be fixed as 1
(i.e., identity mapping) or be optimized during train-
ing process as a model parameter (i.e., parametric
skip connection). We refer to these two variants as
SC-LSTM-I and SC-LSTM-P respectively. Note
that in SC-LSTM, the skip connections only exist
in time steps 1, 1 + L, 1 + 2L, · · · , 1 + bT−L−1L cL.
The basic structure is shown in Figure 2.

Figure 2: The basic structure of Skip-Connected LSTM.

3.2.2 Model 2: Hybrid Residual LSTM (HRL)
Since LSTM generates sequence representations

out of flexible gating mechanism, and RRN gener-
ates representations with enhanced residual histori-
cal information, it is a natural extension to combine
the two representations to form a signal that bene-
fits from both mechanisms. We denote this model as
Hybrid Residual LSTM (HRL for short).

In HRL, two independent signals, hLSTM
t gen-

erated by LSTM (equation (1)) and hRRN
t gener-

ated by RRN (equation (3)), are propagated through
LSTM and RRN respectively:

hLSTM
t , ct = LSTM(xt, h

LSTM
t−1 , ct−1)

hRRN
t = RRN(xt, h

RRN
t−1)

(6)

940

The final representation hHRL
T is obtained by the

mean pooling of the two “sub” hidden states:

hHRL
T =

1

2
(hLSTM

T + hRRN
T) (7)

hHRL
T is then used for higher level tasks such as pre-

dicting the sequence label. Acting in this way, hHRL
T

contains both the statically forced and dynamically
adjusted historical signals, which are respectively
conveyed by hRRN

t and hLSTM
t .

4 Experiments

We conduct comprehensive empirical analysis on
sequence classification tasks. Listed in the ascend-
ing order of average sequence lengths, several public
datasets we use include:

1. AG’s news corpus1,a news article corpus with
categorized articles from more than 2, 000
news sources. We use the dataset with 4 largest
classes constructed in (Zhang et al., 2015).

2. IMDB movie review dataset2, a binary senti-
ment classification dataset consisting of movie
review comments with positive/negative senti-
ment labels (Maas et al., 2011).

3. 20 Newsgroups (20NG for short), an email
collection dataset categorized into 20 news
groups. Simiar to (Dai and Le, 2015), we use
the post-processed version3, in which attach-
ments, PGP keys and some duplicates are re-
moved.

4. Permuted-MNIST (P-MNIST for short). Fol-
lowing (Le et al., 2015; Arjovsky et al., 2015),
we shuffle pixels of each MNIST image (Le-
Cun et al., 1998) with a fixed random per-
mutation, and feed all pixels sequentially into
recurrent network to predict the image label.
Permuted-MNIST is assumed to be a good
testbed for measuring the ability of modeling
very long range dependencies (Arjovsky et al.,
2015).

1http://www.di.unipi.it/~gulli/AG corpus of news
articles.html

2http://ai.stanford.edu/~amaas/data/sentiment/
3http://ana.cachopo.org/datasets-for-single-label-text-

categorization

Detailed statistics of each dataset are listed in
Table 1. For all the text datasets, we take every
word as input and feed word embedding vectors
pre-trained by Word2Vec (Mikolov et al., 2013) on
Wikipedia into the recurrent neural network. The
top most frequent words with 95% total frequency
coverage are kept, while others are replaced by the
token “UNK”. We use the standard training/test
split along with all these datasets and randomly
pick 15% of training set as dev set, based on which
we perform early stopping and for all models
tune hyper-parameters such as dropout ratio (on
non-recurrent layers) (Zaremba et al., 2014),
gradient clipping value (Pascanu et al., 2013) and
the skip connection length L for SC-LSTM (cf.
equation (5)). The last hidden states of recurrent
networks are put into logistic regression classifiers
for label predictions. We use Adadelta (Zeiler,
2012) to perform parameter optimization. All our
implementations are based on Theano (Theano De-
velopment Team, 2016) and run on one K40 GPU.
All the source codes and datasets can be down-
loaded at https://publish.illinois.
edu/yirenwang/emnlp16source/.

We compare our proposed models mainly with
the state-of-art standard LSTM RNN. In addition, to
fully demonstrate the effects of residual learning in
our HRL model, we employ another hybrid model
as baseline, which combines LSTM and GRU (Cho
et al., 2014), another state-of-art RNN variant, in a
similar way as HRL. We use LSTM+GRU to de-
note such a baseline. The model sizes (word embed-
ding size × hidden state size) configurations used
for each dataset are listed in Table 2. In Table 2,
“Non-Hybrid” refers to LSTM, RRN and SC-LSTM
models, while “Hybrid” refers to two methods that
combines two basic models: HRL and LSTM+GRU.
The model sizes of all hybrid models are smaller
than the standard LSTM. All models have only one
recurrent layer.

4.1 Experimental Results

All the classification accuracy numbers are listed in
Table 3. From this table, we have the following ob-
servations and analysis:

1. RRN achieves similar performances to stan-
dard LSTM in all classification tasks with only

941

Dataset Ave. Len Max Len #Classes #Train : #Test
AG’s News 34 211 4 120, 000 : 7, 600

IMDB 281 2, 956 2 25, 000 : 25, 000

20NG 267 11, 924 20 11, 293 : 7, 528

P-MNIST 784 784 10 60, 000 : 10, 000

Table 1: Classification Datasets.

AG’s News IMDB 20NG P-MNIST
Non-Hybird 256× 512 256× 512 500× 768 1× 100

Hybrid 256× 384 256× 384 256× 512 1× 80

Table 2: Model Sizes on Different Dataset.

Model/Task AG’s News IMDB 20NG P-MNIST
LSTM 91.76% 88.88% 79.21% 90.64%

RRN 91.19% 89.13% 79.76% 88.63%

SC-LSTM-P 92.01% 90.74% 82.98% 94.46%

SC-LSTM-I 92.05% 90.67% 81.85% 94.80%

LSTM+GRU 91.05% 89.23% 80.12% 90.28%

HRL 91.90% 90.92% 81.73% 90.33%

Table 3: Classification Results (Test Accuracy).

half of the model parameters, indicating that
residual network structure, with connecting
mechanism to enhance the information flow, is
also an effective approach for sequence learn-
ing. However, the fact that it fails to sig-
nificantly outperform other models (as it does
in image classification) implies that forgetting
mechanism is desired in recurrent structures to
handle multiple inputs.

2. Skip-Connected LSTM performs much better
than standard LSTM. For tasks with shorter se-
quences such as AG’s News, the improvement
is limited. However, the improvements get
more significant with the growth of sequence
lengths among different datasets4, and the per-
formance is particularly good in P-MNIST with
very long sequences. This reveals the impor-
tance of skip connections in carrying on histor-
ical information through a long range of time
steps, and demonstrates the effectiveness of our
approach that adopts the residual connecting
mechanism to improve LSTM’s capability of
handling long-term dependency. Furthermore,
SC-LSTM is robust with different hyperparam-

4t-test on SC-LSTM-P and SC-LSTM-I with p value <
0.001.

eter values: we test L = 10, 20, 50, 75 in P-
MNIST and find the performance is not sensi-
tive w.r.t. these L values.

3. HRL also outperforms standard LSTM with
fewer model parameters5. In comparison, the
hybrid model of LSTM+GRU cannot achieve
such accuracy as HRL. As we expected, the ad-
ditional long range historical information prop-
agated by RRN is proved to be good assistance
to standard LSTM.

5 Conclusion

In this paper, we explore the possibility of lever-
aging residual network to improve the performance
of LSTM RNN. We show that direct adaptation of
ResNet performs well in sequence classification. In
addition, when combined with the gating mecha-
nism in LSTM, residual learning significantly im-
prove LSTM’s performance. As to future work,
we plan to apply residual learning to other se-
quence tasks such as language modeling, and RNN
based neural machine translation (Sutskever et al.,
2014) (Cho et al., 2014).

5t-test on HRL with p value < 0.001.

942

References

Martin Arjovsky, Amar Shah, and Yoshua Bengio. 2015.
Unitary evolution recurrent neural networks. arXiv
preprint arXiv:1511.06464.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In Advances in Neural Information
Processing Systems, pages 3061–3069.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recogni-
tion. arXiv preprint arXiv:1512.03385.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Identity mappings in deep residual net-
works. arXiv preprint arXiv:1603.05027.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jr-
gen Schmidhuber. 2001. Gradient flow in recurrent
nets: the difficulty of learning long-term dependen-
cies.

Herbert Jaeger, Mantas Lukoševičius, Dan Popovici, and
Udo Siewert. 2007. Optimization and applications
of echo state networks with leaky-integrator neurons.
Neural Networks, 20(3):335–352.

César Laurent, Gabriel Pereyra, Philémon Brakel, Ying
Zhang, and Yoshua Bengio. 2015. Batch nor-
malized recurrent neural networks. arXiv preprint
arXiv:1510.01378.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hin-
ton. 2015. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint
arXiv:1504.00941.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Qianli Liao and Tomaso Poggio. 2016. Bridging the gaps
between residual learning, recurrent neural networks
and visual cortex. arXiv preprint arXiv:1604.03640.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan
Huang, Andrew Y. Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 142–150, Portland, Oregon, USA,
June. Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111–3119.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified lin-
ear units improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pages 807–814.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In Proceedings of The 30th International
Conference on Machine Learning, pages 1310–1318.

Rupesh K Srivastava, Klaus Greff, and Jürgen Schmid-
huber. 2015. Training very deep networks. In
Advances in Neural Information Processing Systems,
pages 2368–2376.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing systems,
pages 3104–3112.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich.
2015. Going deeper with convolutions. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–9.

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints, abs/1605.02688, May.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329.

Matthew D Zeiler. 2012. Adadelta: an adaptive learning
rate method. arXiv preprint arXiv:1212.5701.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. In Advances in Neural Information Process-
ing Systems, pages 649–657.

Saizheng Zhang, Yuhuai Wu, Tong Che, Zhouhan Lin,
Roland Memisevic, Ruslan Salakhutdinov, and Yoshua
Bengio. 2016. Architectural complexity mea-
sures of recurrent neural networks. arXiv preprint
arXiv:1602.08210.

943

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 944–949,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Richer Interpolative Smoothing Based on Modified Kneser-Ney
Language Modeling

Ehsan Shareghi,♣ Trevor Cohn♠ and Gholamreza Haffari♣
♣ Faculty of Information Technology, Monash University

♠ Computing and Information Systems, The University of Melbourne
first.last@{monash.edu,unimelb.edu.au}

Abstract

In this work we present a generalisation of the
Modified Kneser-Ney interpolative smoothing
for richer smoothing via additional discount
parameters. We provide mathematical under-
pinning for the estimator of the new discount
parameters, and showcase the utility of our
rich MKN language models on several Euro-
pean languages. We further explore the in-
terdependency among the training data size,
language model order, and number of dis-
count parameters. Our empirical results illus-
trate that larger number of discount parame-
ters, i) allows for better allocation of mass in
the smoothing process, particularly on small
data regime where statistical sparsity is se-
vere, and ii) leads to significant reduction in
perplexity, particularly for out-of-domain test
sets which introduce higher ratio of out-of-
vocabulary words.1

1 Introduction

Probabilistic language models (LMs) are the core
of many natural language processing tasks, such as
machine translation and automatic speech recogni-
tion. m-gram models, the corner stone of language
modeling, decompose the probability of an utter-
ance into conditional probabilities of words given a
fixed-length context. Due to sparsity of the events
in natural language, smoothing techniques are criti-
cal for generalisation beyond the training text when
estimating the parameters of m-gram LMs. This
is particularly important when the training text is

1For the implementation see: https://github.com/
eehsan/cstlm

small, e.g. building language models for translation
or speech recognition in low-resource languages.

A widely used and successful smoothing method
is interpolated Modified Kneser-Ney (MKN) (Chen
and Goodman, 1999). This method uses a linear in-
terpolation of higher and lower order m-gram prob-
abilities by preserving probability mass via absolute
discounting. In this paper, we extend MKN by in-
troducing additional discount parameters, leading to
a richer smoothing scheme. This is particularly im-
portant when statistical sparsity is more severe, i.e.,
in building high-order LMs on small data, or when
out-of-domain test sets are used.

Previous research in MKN language modeling,
and more generally m-gram models, has mainly
dedicated efforts to make them faster and more com-
pact (Stolcke et al., 2011; Heafield, 2011; Shareghi
et al., 2015) using advanced data structures such as
succinct suffix trees. An exception is Hierarchical
Pitman-Yor Process LMs (Teh, 2006a; Teh, 2006b)
providing a rich Bayesian smoothing scheme, for
which Kneser-Ney smoothing corresponds to an ap-
proximate inference method. Inspired by this work,
we directly enrich MKN smoothing realising some
of the reductions while remaining more efficient in
learning and inference.

We provide estimators for our additional discount
parameters by extending the discount bounds in
MKN. We empirically analyze our enriched MKN
LMs on several European languages in in- and out-
of-domain settings. The results show that our dis-
counting mechanism significantly improves the per-
plexity compared to MKN and offers a more elegant

944

way of dealing with out-of-vocabulary (OOV) words
and domain mismatch.

2 Enriched Modified Kneser-Ney

Interpolative Modified Kneser-Ney (MKN) (Chen
and Goodman, 1999) smoothing is widely accepted
as a state-of-the-art technique and is implemented in
leading LM toolkits, e.g., SRILM (Stolcke, 2002)
and KenLM (Heafield, 2011).

MKN uses lower order k-gram probabilities to
smooth higher order probabilities. P (w|u) is de-
fined as,

c(uw)− Dm(c(uw))

c(u)
+
γ(u)

c(u)
× P̄ (w|π(u))

where c(u) is the frequency of the pattern u, γ(.) is
a constant ensuring the distribution sums to one, and
P̄ (w|π(u)) is the smoothed probability computed
recursively based on a similar formula2 conditioned
on the suffix of the pattern u denoted by π(u). Of
particular interest are the discount parameters Dm(.)
which remove some probability mass from the max-
imum likelihood estimate for each event which is
redistributed over the smoothing distribution. The
discounts are estimated as

Dm(i) =

0, if i = 0

1− 2n2[m]
n1[m]

n1[m]
n1[m]+2n2[m]

, if i = 1

2− 3n3[m]
n2[m]

n1[m]
n1[m]+2n2[m]

, if i = 2

3− 4n4[m]
n3[m]

. n1[m]
n1[m]+2n2[m]

, if i ≥ 3

where ni(m) is the number of unique m-grams3 of
frequency i. This effectively leads to three discount
parameters {Dm(1),Dm(2),Dm(3+)} for the distri-
butions on a particular context length, m.

2.1 Generalised MKN
Ney et al. (1994) characterized the data sparsity us-
ing the following empirical inequalities,

3n3[m] < 2n2[m] < n1[m] for m ≤ 3

It can be shown (see Appendix A) that these em-
pirical inequalities can be extended to higher fre-

2Note that in all but the top layer of the hierarchy, con-
tinuation counts, which count the number of unique contexts,
are used in place of the frequency counts (Chen and Goodman,
1999).

3Continuation counts are used for the lower layers.

quencies and larger contexts m > 3,

(N −m)nN−m[m] < ... < 2n2[m]

< n1[m] <
∑

i>0

ni[m]� n0[m] < σm

where σm is the possible number of m-grams over
a vocabulary of size σ, n0[m] is the number of m-
grams that never occurred, and

∑
i>0 ni[m] is the

number of m-grams observed in the training data.
We use these inequalities to extend the discount

depth of MKN, resulting in new discount parame-
ters. The additional discount parameters increase the
flexibility of the model in altering a wider range of
raw counts, resulting in a more elegant way of as-
signing the mass in the smoothing process. In our
experiments, we set the number of discounts to 10
for all the levels of the hierarchy, (compare this to
these in MKN).4 This results in the following esti-
mators for the discounts,

Dm(i) =

0, if i = 0

i− (i+ 1)
ni+1[m]

ni[m]
n1[m]

n1[m]+2n2[m]
, if i < 10

10− 11n11[m]
n10[m]

. n1[m]
n1[m]+2n2[m]

, if i ≥ 10

It can be shown that the above estimators for our dis-
count parameters are derived by maximizing a lower
bound on the leave-one-out likelihood of the training
set, following (Ney et al., 1994; Chen and Goodman,
1999) (see Appendix B for the proof sketch).

3 Experiments

We compare the effect of using different numbers of
discount parameters on perplexity using the Finnish
(FI), Spanish (ES), German (DE), English (EN) por-
tions of the Europarl v7 (Koehn, 2005) corpus. For
each language we excluded the first 10K sentences
and used it as the in-domain test set (denoted as EU),
skipped the second 10K sentences, and used the rest
as the training set. The data was tokenized, sentence
split, and the XML markup discarded. We tested
the effect of domain mismatch, under two settings
for out-of-domain test sets: i) mild using the Span-
ish section of news-test 2013, the German, English
sections of news-test 2014, and the Finnish section

4We have selected the value of 10 arbitrarily; however our
approach can be used with larger number of discount parame-
ters, with the caveat that we would need to handle sparse counts
in the higher orders.

945

Perplexity
size (M) size (K) MKN (D1...3) MKN (D[1...4]) MKN (D[1...10])

Training tokens sents Test tokens sents OOV% m = 2 m = 5 m = 10 m = 2 m = 5 m = 10 m = 2 m = 5 m = 10

NT 19.8 3 9.2 6536.6 5900.3 5897.3 6451.3 5827.6 5824.6 6154.4 5575.0 5572.5
FI 46.5 2.2 EU 197.3 10 6.1 390.7 287.4 286.8 390.7 287.3 286.6 390.4 287.3 286.8

TW 10.9 1.3 52.1 57 825.1 51 744.1 51 740.1 55 550.2 49 884.2 49 881.3 47 696.2 43 277.3 43 275.5

NT 70.7 3 9.1 565.6 431.5 429.4 560.0 425.5 423.5 541.5 409.0 407.3
ES 68.0 2.2 EU 281.5 10 2.4 92.7 51.5 51.1 92.8 51.5 51.1 92.8 51.4 51.0

TW 3141.3 293 78.5 17 804.2 14 062.7 14 027.1 17 121.4 13 487.4 13 454.1 14 915.7 11 832.1 11 807.2

NT 64.5 3 18.7 2190.7 1784.6 1781.8 2158.9 1755.8 1753.2 2065.3 1680.6 1678.3
DE 61.2 2.3 EU 244.0 10 4.6 156.9 91.7 91.2 156.9 91.6 91.2 156.4 91.7 91.2

MED 317.7 10 59.8 5135.7 4232.4 4226.7 5007.5 4123.0 4117.5 4636.0 3831.2 3826.6

NT 69.5 3 5.5 1089.2 875.0 872.2 1071.1 857.2 854.4 1011.5 806.7 804.4
EN 67.5 2.2 EU 274.9 10 1.7 90.1 48.4 48.1 90.1 48.3 48.0 90.5 48.3 48.0

MED 405.9 10 44.1 2319.7 1947.9 1942.5 2261.6 1893.3 1888.2 2071.9 1734.9 1730.8

Table 1: Perplexity for various m-gram orders m ∈ 2, 3, 10 and training languages from Europarl, using different
numbers of discount parameters for MKN. MKN (D[1...3]), MKN (D[1...4]), MKN (D[1...10]) represent vanilla MKN,
MKN with 1 more discounts, and MKN with 7 more discount parameters, respectively. Test sets sources EU, NT,
TW, MED are Europarl, news-test, Twitter, and medical patent descriptions, respectively. OOV is reported as the ratio
|{OOV ∈test-set}|
|{w∈test-set}| .

0
1
2

4

8

14

CZ FI ES DE EN FR CZ FI ES DE EN FR

[Corpus]

[%
P

er
pl

ex
ity

 R
ed

uc
tio

n]

pplD[1...10]

pplD[1...4]

Figure 1: Percentage of perplexity reduction for
pplxD[1...4]

and pplxD[1...10]
compared with pplxD[1..3]

on
different training corpora (Europarl CZ, FI, ES, DE, EN,
FR) and on news-test sets (NT) for m = 2 (left), and
m = 10 (right).

of news-test 2015 (all denoted as NT)5, and ii) ex-
treme using a 24 hour period of streamed Finnish,
and Spanish tweets6 (denoted as TW), and the Ger-
man and English sections of the patent description
of medical translation task7 (denoted as MED). See
Table 1 for statistics of the training and test sets.

3.1 Perplexity

Table 1 shows substantial reduction in perplexity on
all languages for out-of-domain test sets when ex-
panding the number of discount parameters from 3
in vanilla MKN to 4 and 10. Consider the English

5http://www.statmt.org/{wmt13,14,15}/test.tgz
6Streamed via Twitter API on 17/05/2016.
7http://www.statmt.org/wmt14/medical-task/

news-test (NT), in which even for a 2-gram language
model a single extra discount parameter (m = 2,
D[1...4]) improves the perplexity by 18 points and
this improvement quadruples to 77 points when us-
ing 10 discounts (m = 2, D[1...10]). This effect
is consistent across the Europarl corpora, and for
all LM orders. We observe a substantial improve-
ments even for m = 10-gram models (see Figure 1).
On the medical test set which has 9 times higher
OOV ratio, the perplexity reduction shows a simi-
lar trend. However, these reductions vanish when an
in-domain test set is used. Note that we use the same
treatment of OOV words for computing the perplex-
ities which is used in KenLM (Heafield, 2013).

3.2 Analysis

Out-of-domain and Out-of-vocabulary We se-
lected the Finnish language for which the number
and ratio of OOVs are close on its out-of-domain
and in-domain test sets (NT and EU), while show-
ing substantial reduction in perplexity on out-of-
domain test set, see FI bars on Figure 1. Figure 2
(left), shows the full perplexity results for Finnish
for vanilla MKN, and our extensions when tested on
in-domain (EU) and out-of-domain (NT) test sets.
The discount plot, Figure 2 (middle) illustrates the
behaviour of the various discount parameters. We
also measured the average hit length for queries by
varyingm on in-domain and out-of-domain test sets.
As illustrated in Figure 2 (right) the in-domain test
set allows for longer matches to the training data as

946

2 3 4 5 6 7 8 9 10 ∞

285

390

5500

5800
5900

6550

m

P
er

pl
ex

ity

●

●
● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ●

●

D[1...3]

D[1...4]

D[1...10]

NT
EU

1 2 3 4 5 6 7 8 9 10

1

1.5

2.5

3.5

4.5

i

D
is

co
un

t

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

● ●

● ●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●●

●

●

●

●

1−gram
2−gram
3−gram
4−gram
5−gram
6−gram
7−gram
8−gram
9−gram
10−gram

2 3 4 5 6 7 8 9 10

1

1.5

2

2.5

3

m

A
ve

ra
ge

 h
it

le
ng

th

NT
EU

Figure 2: Statistics for the Finnish section of Europarl. The left plot illustrates the perplexity when tested on an out-
of-domain (NT) and in-domain (EU) test sets varying LM order, m. The middle plot shows the discount parameters
Di∈[1...10] for different m-gram orders. The right plot correspond to average hit length on EU and NT test sets.

m Disc
ount

P
er

pl
ex

ity

2 3 4 5 6 7 8

9

10

3

4

101678

2190

m Disc
ount

P
er

pl
ex

ity

2 3 4 5 6 7 8

9

10

3

4

10180

426

Figure 3: Perplexity (z-axis) vs. m ∈ [2...10] (x-axis) vs.
number of discounts Di∈3,4,10 (y-axis) for German lan-
guage trained on Europarl (left), and CommonCrawl2014
(right) and tested on news-test. Arrows show the direc-
tion of the increase.

m grows. This indicates that having more discount
parameters is not only useful for test sets with ex-
tremely high number of OOV, but also allows for a
more elegant way of assigning mass in the smooth-
ing process when there is a domain mismatch.

Interdependency of m, data size, and discounts
To explore the correlation between these factors we
selected the German and investigated this correla-
tion on two different training data sizes: Europarl
(61M words), and CommonCrawl 2014 (984M
words). Figure 3 illustrates the correlation between
these factors using the same test set but with small
and large training sets. Considering the slopes of the
surfaces indicates that the small training data regime
(left) which has higher sparsity, and more OOV in
the test time benefits substantially from the more ac-
curate discounting compared to the large training set
(right) in which the gain from discounting is slight.8

8Nonetheless, the improvement in perplexity consistently
grows with introducing more discount parameters even under

4 Conclusions

In this work we proposed a generalisation of Modi-
fied Kneser-Ney interpolative language modeling by
introducing new discount parameters. We provide
the mathematical proof for the discount bounds used
in Modified Kneser-Ney and extend it further and il-
lustrate the impact of our extension empirically on
different Europarl languages using in-domain and
out-of-domain test sets.

The empirical results on various training and test
sets show that our proposed approach allows for a
more elegant way of treating OOVs and mass assign-
ments in interpolative smoothing. In future work,
we will integrate our language model into the Moses
machine translation pipeline to intrinsically measure
its impact on translation qualities, which is of partic-
ular use for out-of-domain scenario.

Acknowledgements

This research was supported by the National ICT
Australia (NICTA) and Australian Research Council
Future Fellowship (project number FT130101105).
This work was done when Ehsan Shareghi was an
intern at IBM Research Australia.

A. Inequalities

We prove that these inequalities hold in expectation
by making the reasonable assumption that events in

the large training data regime, which suggests that more dis-
count parameters, e.g., up to D30, may be required for larger
training corpus to reflect the fact that even an event with fre-
quency of 30 might be considered rare in a corpus of nearly 1
billion words.

947

the natural language follow the power law (Clauset
et al., 2009), p

(
C(u) = f

)
∝ f−1−

1
sm , where sm

is the parameter of the distribution, and C(u) is the
random variable denoting the frequency of the m-
grams pattern u. We now compute the expected
number of unique patterns having a specific fre-
quency E[ni[m]]. Corresponding to each m-grams
pattern u, let us define a random variable Xu which
is 1 if the frequency of u is i and zero otherwise. It
is not hard to see that ni[m] =

∑
uXu, and

E
[
ni[m]

]
= E

[∑

u

Xu

]
=
∑

u

E[Xu] = σmE[Xu]

= σm
(
p
(
C(u) = i

)
× 1 + p

(
C(u) 6= i

)
× 0
)

∝ σmi−1−
1

sm .

We can verify that

(i+ 1)E
[
ni+1[m]

]
< iE

[
ni[m]

]
⇔

(i+ 1)σm(i+ 1)−1−
1

sm < iσmi−1−
1

sm ⇔
i

1
sm < (i+ 1)

1
sm .

which completes the proof of the inequalities.

B. Discount bounds proof sketch

The leave-one-out (leaving those m-grams which
occurred only once) log-likelihood function of the
interpolative smoothing is lower bounded by back-
off model’s (Ney et al., 1994), hence the estimated
discounts for later can be considered as an approx-
imation for the discounts of the former. Consider a
backoff model with absolute discounting parameter
D, were P (wi|wi−1

i−m+1) is defined as:

c(wi
i−m+1)−D

c(wi−1
i−m+1)

if c(wi
i−m+1) > 0

Dn1+(wi−1
i−m+1 ·)

c(wi−1
i−m+1)

P̄ (wi|wi−1
i−m+2) if c(wi

i−m+1) = 0

where n1+(wi−1
i−m+1 ·) is the number of unique

right contexts for the wi−1
i−m+1 pattern. Assume that

for any choice of 0 < D < 1 we can define P̄ such
that P (wi|wi−1

im+1) sums to 1. For readability we

use the λ(wi−1
i−m+1) =

n1+(wi−1
i−m+1 ·)

c(wi−1
i−m+1)−1

replacement.

Following (Chen and Goodman, 1999), rewriting
the leave-one-out log-likelihood for KN (Ney et al.,
1994) to include more discounts (in this proof up to

D4), results in:

∑

wi
i−m+1

c(wi
i−m+1)>4

c(wi
i−m+1) log

c(wi
i−m+1)− 1−D4

c(wi−1
i−m+1)− 1

+

4∑

j=2

(∑

wi
i−m+1

c(wi
i−m+1)=j

c(wi
i−m+1) log

c(wi
i−m+1)− 1−Dj−1
c(wi−1

i−m+1)− 1

)
+

∑

wi
i−m+1

c(wi
i−m+1)=1

(
c(wi

i−m+1) log(

4∑

j=1

nj [m]Dj)λ(wi−1
i−m+1)P̄

)

which can be simplified to,
∑

wi
i−m+1

c(wi
i−m+1)>4

c(wi
i−m+1) log(c(wi

i−m+1)− 1−D4)+

4∑

j=2

(
jnj [m] log(j − 1−Dj−1)

)
+

n1[m] log(

4∑

j=1

nj [m]Dj) + const

To find the optimal D1, D2, D3, D4 we set the par-
tial derivatives to zero. For D3,

∂

∂D3
= n1[m]

n3[m]∑4
j=1 nj [m]Dj

− 4n4[m]

3−D3
= 0⇒

n1[m]n3[m](3−D3) = 4n4[m]

4∑

j=1

nj [m]Dj ⇒

3n1[m]n3[m]−D3n1[m]n3[m]− 4n4[m]n1[m]D1 > 0

⇒ 3− 4
n4[m]

n3[m]
D1 > D3 �

And after taking c(wi
i−m+1) = 5 out of the summa-

tion, for D4:

∂

∂D4
=

∑

c(wi
i−m+1)>5

−c(wi
i−m+1)

c(wi
i−m+1)− 1−D −

5n5[m]

4−D4

+ n1[m]
n4[m]∑4

j=1 nj [m]Dj

= 0⇒ −5n5[m]

4−D4

+ n1[m]
n4[m]∑4

j=1 nj [m]Dj

> 0⇒ n1[m]n4[m](4−D4)

> 5n5[m]

4∑

j=1

nj [m]Dj ⇒ 4− 5
n5[m]

n4[m]
D1 > D4 �

948

References
Stanley F. Chen and Joshua Goodman. 1999. An empir-

ical study of smoothing techniques for language mod-
eling. Computer Speech & Language, 13(4):359–393.

Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ
Newman. 2009. Power-law distributions in empirical
data. SIAM review, 51(4):661–703.

Kenneth Heafield. 2011. KenLM: Faster and smaller lan-
guage model queries. In Proceedings of the Workshop
on Statistical Machine Translation.

Kenneth Heafield. 2013. Efficient Language Modeling
Algorithms with Applications to Statistical Machine
Translation. Ph.D. thesis, Carnegie Mellon University.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of the
Machine Translation summit.

Hermann Ney, Ute Essen, and Reinhard Kneser. 1994.
On structuring probabilistic dependences in stochastic
language modelling. Computer Speech & Language,
8(1):1–38.

Ehsan Shareghi, Matthias Petri, Gholamreza Haffari, and
Trevor Cohn. 2015. Compact, efficient and unlimited
capacity: Language modeling with compressed suffix
trees. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

Andreas Stolcke, Jing Zheng, Wen Wang, and Victor
Abrash. 2011. SRILM at sixteen: Update and
outlook. In Proceedings of IEEE Automatic Speech
Recognition and Understanding Workshop.

Andreas Stolcke. 2002. SRILM–an extensible language
modeling toolkit. In Proceedings of the International
Conference of Spoken Language Processing.

Yee Whye Teh. 2006a. A Bayesian interpretation of in-
terpolated Kneser-Ney. Technical report, NUS School
of Computing.

Yee Whye Teh. 2006b. A hierarchical Bayesian language
model based on Pitman-Yor processes. In Proceedings
of the Annual Meeting of the Association for Compu-
tational Linguistics.

949

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 950–954,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

A General Regularization Framework for Domain Adaptation

Wei Lu1 and Hai Leong Chieu2 and Jonathan Löfgren3

1Singapore University of Technology and Design
2DSO National Laboratories

3Uppsala University
luwei@sutd.edu.sg, chaileon@dso.org.sg, lofgren021@gmail.com

Abstract

We propose a domain adaptation framework,
and formally prove that it generalizes the fea-
ture augmentation technique in (Daumé III,
2007) and the multi-task regularization frame-
work in (Evgeniou and Pontil, 2004). We
show that our framework is strictly more gen-
eral than these approaches and allows practi-
tioners to tune hyper-parameters to encourage
transfer between close domains and avoid neg-
ative transfer between distant ones.

1 Introduction

Domain adaptation (DA) is an important problem
that has received substantial attention in natural lan-
guage processing (Blitzer et al., 2006; Daumé III,
2007; Finkel and Manning, 2009; Daumé III et al.,
2010). In this paper, we propose a novel regular-
ization framework which allows DA practitioners
to tune hyper-parameters to encourage transfer be-
tween close domains, and avoid negative transfer
(Rosenstein et al., 2005) between distant ones. In
our framework, model parameters in multiple do-
mains are learned jointly and constrained to remain
close to one another. In the transfer learning tax-
onomy (Pan and Yang, 2010), our framework falls
under the parameter-transfer category for multi-task
inductive learning. We show that our framework
generalizes the frustratingly easy domain adapta-
tion (FEDA) in Daumé III (2007), Finkel and Man-
ning (2009), and the regularised multi-task learning
of Evgeniou and Pontil (2004). At the same time,
it provides us with hyper-parameters to control the
amount of transfer between domains.

2 Domain Adaptation Framework

Given labeled data from N domains, D1, . . . ,DN ,
traditional machine learning maximizes the follow-
ing objective function for each domain Di:

O(Di;wi) = Li(Di;wi)− λi||wi||2, (1)

and we maximize Li by tuning the parameter vector
wi. For example, Li can be the log-likelihood or the
negative hinge loss. The term λi||wi||2 is the L2-
regularization term where λi is a positive scalar. In
our framework, we propose to maximize

N∑

i=1

Li(Di;wi)−
N∑

i=1

η0,i||wi||2

−
∑

1≤j<k≤N
ηj,k||wj −wk||2, (2)

where ηj,k are parameters controlling the transfer
between domains. In the next sections, we show how
our framework generalizes existing works.

2.1 Frustratingly Easy DA
The FEDA approach was introduced by Daumé
III (2007) and later formalized by Finkel and Man-
ning (2009) within a hierarchical Bayesian DA
framework. While simple, the approach has often
been shown to be effective. In this section, we show
that our framework generalizes the FEDA approach.

The FEDA approach defines a new augmented
feature space by duplicating each feature in Di to a
“general” domain. Therefore each parameter in wi

has a corresponding parameter in w0, and:

L′i(Di;wi,w0) = Li(Di;wi + w0) (3)

This directly leads to the following remark:

950

Remark For all i, for any wi,w0,d ∈ Rm:

L′i(Di;wi + d,w0 − d) = L′i(Di;wi,w0)

The complete objective function involving N
(N ≥ 2) domains is defined as follows:

O′(D; ,w0,w1, . . . ,wN)

=

N∑

i=1

L′i(Di;wi,w0)−
N∑

i=0

λi||wi||2

We first prove the following relation:

Lemma 2.1 Assume

(w∗0, ...,w
∗
N) = arg max

w1,...,wN ,w0

[
N∑

i=1

L′i(Di;wi,w0)

−
(
λ0||w0||2 +

N∑

i=1

λi||wi||2
)]

,

where λ0, λ1, . . . , λN > 0, then:

λ0w
∗
0 =

N∑

i=1

λiw
∗
i (4)

Proof Let’s introduce the vector d as follows:

d =
1

∑N
i=0 λi

(
λ0w

∗
0 −

N∑

i=1

λiw
∗
i

)
(5)

Denote (w′0, . . . ,w
′
N) such that ∀ 0 ≤ i ≤ N ,

w′i = w∗i + d, and w′0 = w∗0 − d.

Based on the remark, L′i(Di;w′i,w
′
0) =

L′i(Di;w∗i ,w
∗
0). Let ∆ = O′(D;w′0, . . . ,w

′
N) −

O′(D;w∗0, . . . ,w
∗
N). Since (w∗0, . . . ,w

∗
N) is

optimal, ∆ ≤ 0. Moreover,

∆ =

N∑

i=1

L′i(Di;w′i,w
′
0)−

N∑

i=0

λi||w′i||2

−
N∑

i=1

L′i(Di;w∗i ,w
∗
0) +

N∑

i=0

λi||w∗i ||2

= λ0||w∗0||2 − λ0||w∗0 − d||2

+

N∑

i=1

λi||w∗i ||2 −
N∑

i=1

λi||w∗i + d||2

= −
(

N∑

i=0

λi

)
||d||2 +

2d ·
(
λ0w

∗
0 −

N∑

i=1

λiw
∗
i

)

= −
(

N∑

i=0

λi

)
||d||2 + 2d ·

(
N∑

i=0

λi

)
d

=

(
N∑

i=0

λi

)
||d||2 ≥ 0

Hence, ∆ = 0 implying ||d|| = 0 and so d = 0.
From the definition of d, Equation 4 holds.

Next we state the following lemma (see supple-
mentary material for the proof).

Lemma 2.2 For any vectors v1,v2, . . . ,vN ∈ Rm,
any scalars λ0, λ1, . . . , λN ∈ R+, let v0 =
(
∑N

i=1 λivi)/λ0, then the following always holds:

λ0||v0||2 +
N∑

i=1

λi||vi||2

=
N∑

i=1

η0,i||vi + v0||2 +
∑

1≤j<k≤N
ηj,k||vj − vk||2,

where ηi,j =
λiλj∑N
l=0 λl

, ∀ 0 ≤ i < j ≤ N.

Now we state and prove the following theorem,
which shows our framework generalizes FEDA.

Theorem 2.3 For λ0, λ1, . . . , λN ∈ R+, define

∀0 ≤ i < j ≤ N, ηi,j =
λiλj∑N
l=0 λl

,

951

the following holds:

max
w1,w2,...,wN ,w0

[
N∑

i=1

L′i(Di;wi,w0)

−
(
λ0||w0||2 +

N∑

i=1

λi||wi||2
)]

= max
w1,w2,...,wN

[
N∑

i=1

Li(Di;wi)

−

N∑

i=1

η0,i||wi||2 +
∑

1≤j<k≤N
ηj,k||wj −wk||2

Proof Let (w∗0, . . . ,w
∗
N) be a solution to the first

optimization problem. We have:

LHS =
N∑

i=1

L′i(Di;w∗i ,w
∗
0)

−
(
λ0||w∗0||2 +

N∑

i=1

λi||w∗i ||2
)

(6)

Lemma 2.1 gives w∗0 =
(∑N

i=1 λiw
∗
i

)
/λ0. In-

troduce w′i = w∗i + w∗0. Using Lemma 2.2, we
have:

LHS =
N∑

i=1

L′i(Di;w∗i ,w
∗
0)

−

N∑

i=1

η0,i||w∗i + w∗0||2 +
∑

1≤j<k≤N
ηj,k||w∗j −w∗k||2

=
N∑

i=1

Li(Di;w′i)

−

N∑

i=1

η0,i||w′i||2 +
∑

1≤j<k≤N
ηj,k||w′j −w′k||2

≤ RHS

Now, let (w∗1,w
∗
2, . . . ,w

∗
N) be an optimal so-

lution to the second problem. Given the rela-
tion between ηi,j and λ0, λ1, . . . , λN , let w′0 =(∑N

i=1 λiw
∗
i

)
/
(∑N

l=0 λl

)
, and w′i = w∗i − w′0.

We show in the supplementary material that

w′0 =
1

λ0

(
N∑

i=1

λiw
′
i

)
(7)

Based on these and Lemma 2.2, we have:

RHS =
N∑

i=1

Li(Di;w∗i)

−

N∑

i=1

η0,i||w∗i ||2 +
∑

1≤j<k≤N
ηj,k||w∗j −w∗k||2

=
N∑

i=1

Li(Di;w′i + w′0)

−

N∑

i=1

η0,i||w′i + w′0||2 +
∑

1≤j<k≤N
ηj,k||w′j −w′k||2

=
N∑

i=1

L′i(Di;w′i,w
′
0)

−
(
λ0||w′0||2 +

N∑

i=1

λi||w′i||2
)
≤ LHS

Therefore we must have LHS = RHS.

This formally shows that FEDA is equivalent to
solving the objective function given in Equation 2.
In this new optimization problem, if we drop the
terms involving ηj,k for j 6= 0, we have:

N∑

i=1

(
Li(Di;wi)− η0,i||wi||2

)
(8)

This is learning without domain adaptation. The ad-
ditional regularization terms allow us keep the pa-
rameters from different domains close to one other.
In the special case with two domains, if we use the
same λ for all regularization terms, we have the fol-
lowing corollary:

Corollary 2.4 For any λ > 0:

max
w1,w2,w0

[
L′1(D1;w1,w0) + L′2(D2;w2,w0)

−λ
(
||w1||2 + ||w2||2 + ||w0||2

)]

= max
w1,w2

[
L1(D1;w1) + L2(D2;w2)

−1

3
λ
(
||w1||2 + ||w2||2 + ||w1 −w2||2

)]

Hence, the FEDA feature augmentation tech-
nique indirectly introduces a regularization term that
pushes the source and target parameters as close

952

as possible. This is related to the technique of
Chelba and Acero (2006) where they regularize the
model parameters for the target domain using the
term λ||w − ws||, where ws is the parameter vec-
tor learned from the source domain. The difference
here is, in their work the parameters for the source
domain are learned first and then fixed. The rela-
tion between their work and the feature augmenta-
tion technique was also briefly discussed in the paper
of Daumé III (2007). We formally showed a precise
relation here in this paper.

2.2 Regularized Multi-task Learning

Evgeniou and Pontil (2004) proposed multi-task
regularized learning using support vector machines
(SVM). They decomposed the model weight vector
as a sum of domain-specific vectors and a general
vector, in much the same way as FEDA1. Hence,
both Lemma 2.1 and Theorem 2.3 of this paper ap-
ply, and our framework also generalizes multi-task
regularized learning.

3 Experimental Results

In this section we apply our framework to both struc-
tured and un-structured tasks. For structured pre-
diction, we use the named-entity recognition (NER)
ACE-2005 dataset with 7 classes and 6 domains.
We apply the linear chain CRF (Lafferty et al.,
2001), and show results using standard and softmax-
margin CRF (SM-CRF) (Gimpel and Smith, 2010),
with features consisting of word shape features,
neighboring words, previous prediction and pre-
fixes/suffixes. The second task is sentiment classi-
fication on the Amazon review data set (Blitzer et
al., 2007) from 4 domains, labeled positive or neg-
ative. We apply logistic regression (LR) and SVM
using unigram and bigram features. All the mod-
els used in this section are implemented on top of
a common framework, which was also used to im-
plement various structured prediction models previ-
ously (Lu, 2015; Lu and Roth, 2015; Muis and Lu,
2016). For each task we compare:

TGT Trained only on the specific domain data,
ALL Trained on the data from all domains,

1They proved in Lemma 2.1 in their paper a similar relation-
ship to Equation 4, but their proof assumes a SVM framework,
and that λ1=λ2=. . . =λN .

Model Dom. TGT ALL AUG RF

CRF

bc 71.85 75.56 75.30 76.48
bn 72.06 75.02 75.17 75.15
cts 85.49 85.98 86.44 86.70
nw 72.55 76.52 76.27 76.61
un 67.09 72.99 72.90 73.12
wl 64.38 69.66 69.46 69.90
avg 72.24 75.96 75.92 76.33

SM-
CRF

bc 72.33 75.54 75.04 76.50
bn 72.18 74.86 75.10 75.44
cts 85.68 85.96 86.15 86.89
nw 72.70 76.19 75.92 76.50
un 66.83 72.94 72.91 72.93
wl 64.57 69.90 69.76 70.30
avg 72.38 75.90 75.81 76.43

Table 1: F-score on the ACE NER task. The domains are
broadcast conversations (bc), broadcast news (bn), conversa-
tional telephone speech (cts), newswire (nw), usenet (un) and
weblog (wl). The macro-average (avg) over the 6 domains is
also shown in the table.

Model Dom. TGT ALL AUG RF

LR

book 75.83 79.33 79.00 80.67
dvd 82.17 82.83 83.83 83.83
elec. 84.67 84.67 84.83 84.83
kit. 83.83 86.33 86.17 87.33
avg 81.63 83.29 83.46 84.17

SVM

book 76.83 80.67 80.33 81.00
dvd 83.17 83.17 82.50 84.00
elec. 85.00 86.50 85.83 85.67
kit. 86.33 85.83 88.33 87.83
avg 82.83 84.04 84.25 84.63

Table 2: Accuracies on the sentiment classification task. The
domains are books (book), dvds (dvd), electronics (elec.) and
kitchen (kit.). The macro-average (avg) over the four domains
are also shown in the table.

AUG The FEDA approach, and
RF Our proposed regularization framework.

We use a 40/30/30 train-development-test split and
report the results on the test set. The regularization
parameters were tuned on the development set over
a logarithmic scale between 10−3 to 103. For our
framework, we used random search to tune the pa-
rameters, since an exhaustive search is too expen-
sive (21 parameters for 6 domains). We choose the
within-domain η0,i to be close to those used for the
ALL and AUG model, while choosing the other ηj,k
to be 1-2 orders of magnitude higher. A good model
could quickly be found that generally beats the base-
lines on the development set and also generalizes
well to the test set. We show the results for NER
in Table 1 and the sentiment task in Table 2.

953

4 Discussion

Our proof did not require any assumption about L,
as long as L2 regularization is used. This means
our result is applicable to a variety of models such
as SVM, LR, and CRF (where L2 regularization
is used for the latter two models). Theoretically,
we have shown the equivalence of DA optimiza-
tion problems. Empirically, for non-convex objec-
tives, different approaches may arrive at different
solutions. However, for convex loss functions, our
objective (Equation 2) is also convex, and all ap-
proaches should share the same solution.

We have shown that we can map the FEDA opti-
mization problem to our framework. The converse
is false: for any problem in this family (with arbi-
trary choices of η), we can only solve it using FEDA
if there are only 2 domains, or if all regularization
hyper-parameters are equal. Some parameter con-
figurations in this family are “unreachable” by the
feature augmentation technique. This is because in
Theorem 2.3, the values of η’s are defined based on
λ’s and therefore possess certain properties. For ex-
ample, they must at least satisfy such constraints as
ηi,kηk,j = ηi,lηl,j for any i ≤ k, l ≤ j. We have seen
that some of those unreachable problems could give
us better empirical results. Can we find an alterna-
tive simple adaptation method such that all problems
in this family are “reachable”? This is a question
that needs to be addressed in future research.

5 Conclusion

In this paper, we presented a framework for do-
main adaptation that generalizes several previous
works (Daumé III, 2007; Finkel and Manning, 2009;
Evgeniou and Pontil, 2004). Our approach allows
practitioners to specify the amount of transfer be-
tween domains via regularization hyper-parameters.
These parameters could be tuned based on intu-
ition or using held-out data. In future work we
could also seek to find methods that can auto-
matically optimize these parameters. The sup-
plementary material of this paper is available at
http://statnlp.org/research/ml/.

Acknowledgements

We would like to thank the anonymous reviewers for
their helpful comments, and Zhanming Jie for his

help on this work. The experiments of this work
were done when Jonathan Löfgren was a visiting
student at Singapore University of Technology and
Design (SUTD). This work is supported by MOE
Tier 1 grant SUTDT12015008.

References
John Blitzer, Ryan McDonald, and Fernando Pereira.

2006. Domain adaptation with structural correspon-
dence learning. In Proceedings of EMNLP.

John Blitzer, Mark Dredze, and Fernando Pereira. 2007.
Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
Proceedings of ACL.

Ciprian Chelba and Alex Acero. 2006. Adaptation of
maximum entropy capitalizer: Little data can help a
lot. Computer Speech & Language, 20(4):382–399.

Hal Daumé III, Abhishek Kumar, and Avishek Saha.
2010. Frustratingly easy semi-supervised domain
adaptation. In Proceedings of 2010 Workshop on Do-
main Adaptation for Natural Language Processing.

Hal Daumé III. 2007. Frustratingly easy domain adapta-
tion. In Proceedings of ACL.

Theodoros Evgeniou and Massimiliano Pontil. 2004.
Regularized multi–task learning. In Proceedings of
KDD.

J. R. Finkel and C.D. Manning. 2009. Hierarchical
bayesian domain adaptation. In Proceedings of ACL.

Kevin Gimpel and Noah A. Smith. 2010. Softmax-
margin crfs: Training log-linear models with cost
functions. In Proceedings of HLT-NAACL.

John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In Proceedings of ICML.

Wei Lu and Dan Roth. 2015. Joint mention extraction
and classification with mention hypergraphs. In Pro-
ceedings of EMNLP.

Wei Lu. 2015. Constrained semantic forests for im-
proved discriminative semantic parsing. In Proceed-
ings of ACL/IJCNLP.

Aldrian Obaja Muis and Wei Lu. 2016. Weak semi-
markov crfs for noun phrase chunking in informal text.
In Proceedings of NAACL.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345–1359, October.

Michael T. Rosenstein, Zvika Marx, Leslie Pack Kael-
bling, and Thomas G. Dietterich. 2005. To transfer
or not to transfer. In In NIPS’05 Workshop, Inductive
Transfer: 10 Years Later.

954

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 955–960,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Coverage Embedding Models for Neural Machine Translation
Haitao Mi Baskaran Sankaran Zhiguo Wang Abe Ittycheriah∗

T.J. Watson Research Center
IBM

1101 Kitchawan Rd, Yorktown Heights, NY 10598
{hmi, bsankara, zhigwang, abei}@us.ibm.com

Abstract

In this paper, we enhance the attention-based
neural machine translation (NMT) by adding
explicit coverage embedding models to alle-
viate issues of repeating and dropping trans-
lations in NMT. For each source word, our
model starts with a full coverage embedding
vector to track the coverage status, and then
keeps updating it with neural networks as
the translation goes. Experiments on the
large-scale Chinese-to-English task show that
our enhanced model improves the translation
quality significantly on various test sets over
the strong large vocabulary NMT system.

1 Introduction

Neural machine translation (NMT) has gained pop-
ularity in recent years (e.g. (Bahdanau et al., 2014;
Jean et al., 2015; Luong et al., 2015; Mi et al.,
2016b; Li et al., 2016)), especially for the attention-
based models of Bahdanau et al. (2014). The at-
tention at each time step shows which source word
the model should focus on to predict the next tar-
get word. However, the attention in each step only
looks at the previous hidden state and the previous
target word, there is no history or coverage infor-
mation typically for each source word. As a result,
this kind of model suffers from issues of repeating
or dropping translations.

The traditional statistical machine translation
(SMT) systems (e.g. (Koehn, 2004)) address the
above issues by employing a source side “cover-
age vector” for each sentence to indicate explicitly
which words have been translated, which parts have
not yet. A coverage vector starts with all zeros,
meaning no word has been translated. If a source
word at position j got translated, the coverage vector
sets position j as 1, and they won’t use this source

∗Work done while at IBM. To contact Abe, aitty-
cheriah@google.com.

word in future translation. This mechanism avoids
the repeating or dropping translation problems.

However, it is not easy to adapt the “coverage vec-
tor” to NMT directly, as attentions are soft probabili-
ties, not 0 or 1. And SMT approaches handle one-to-
many fertilities by using phrases or hiero rules (pre-
dict several words in one step), while NMT systems
only predict one word at each step.

In order to alleviate all those issues, we borrow
the basic idea of “coverage vector”, and introduce
a coverage embedding vector for each source word.
We keep updating those embedding vectors at each
translation step, and use those vectors to track the
coverage information.

Here is a brief description of our approach. At the
beginning of translation, we start from a full cover-
age embedding vector for each source word. This
is different from the “coverage vector” in SMT in
following two aspects:
• each source word has its own coverage embed-

ding vector, instead of 0 or 1, a scalar, in SMT,
• we start with a full embedding vector for each

word, instead of 0 in SMT.
After we predict a translation word yt at time step
t, we need to update each coverage embedding vec-
tor accordingly based on the attentions in the current
step. Our motivation is that if we observe a very high
attention over xi in this step, there is a high chance
that xi and yt are translation equivalent. So the em-
bedding vector of xi should come to empty (a zero
vector) in a one-to-one translation case, or subtract
the embedding of yt for the one-to-many translation
case. An empty coverage embedding of a word xi in-
dicates this word is translated, and we can not trans-
late xi again in future. Empirically, we model this
procedure by using neural networks (gated recurrent
unit (GRU) (Cho et al., 2014) or direct subtraction).

Large-scale experiments over Chinese-to-English
on various test sets show that our method improves
the translation quality significantly over the large vo-
cabulary NMT system (Section 5).

955

�

st�1 st…
ot

y1…

…

y|Vy|
… …Ht =

lX

i=1

(↵ti · �h i)

lX

i=1

(↵ti ·�!h i)

x1 xl

 �
h1

 �
hl

�!
hl

�!
h1

…

…

…x2

�!
h2

 �
h2

x1 xl

 �
h1

 �
hl

�!
hl

�!
h1

…

…

…

 �
hj

�!
hj

xj

…

…

…

y⇤t�1

y⇤t
st

ct�1,xj ↵t,j =
exp(et,j)Pl
i=1 exp(et,i)

At,j

et,j et,let,1

↵t,1
↵t,2

↵t,l

Figure 1: The architecture of attention-based NMT.The source sentence is x = (x1, ..., xl) with length l, the translation
is y∗ = (y∗1 , ..., y

∗
m) with lengthm.

←−
hi and

−→
hi are bi-directional encoder states. αt,j is the attention probability at time

t, position j. Ht is the weighted sum of encoding states. st is a hidden state. ot is an output state. Another one layer
neural network projects ot to the target output vocabulary, and conducts softmax to predict the probability distribution
over the output vocabulary. The attention model (in right gray box) is a two layer feedforward neural network, At,j is
an intermediate state, then another layer converts it into a real number et,j , the final attention probability at position j
is αt,j . We plug coverage embedding models into NMT model by adding an input ct−1,xj

to At,j (the red dotted line).

2 Neural Machine Translation

As shown in Figure 1, attention-based neural ma-
chine translation (Bahdanau et al., 2014) is an
encoder-decoder network. the encoder employs a bi-
directional recurrent neural network to encode the
source sentence x = (x1, ..., xl), where l is the
sentence length, into a sequence of hidden states
h = (h1, ..., hl), each hi is a concatenation of a left-
to-right

−→
hi and a right-to-left

←−
hi ,

hi =

[←−
h i−→
h i

]
=

[←−
f (xi,

←−
h i+1)−→

f (xi,
−→
h i−1)

]
,

where
←−
f and

−→
f are two GRUs.

Given the encoded h, the decoder predicts the
target translation by maximizing the conditional
log-probability of the correct translation y∗ =
(y∗1, ...y

∗
m), where m is the sentence length. At each

time t, the probability of each word yt from a target
vocabulary Vy is:

p(yt|h, y∗t−1..y∗1) = g(st, y
∗
t−1), (1)

where g is a two layer feed-forward neural network
(ot is a intermediate state) over the embedding of the
previous word y∗t−1, and the hidden state st. The st
is computed as:

st = q(st−1, y∗t−1, Ht) (2)

Ht =

[∑l
i=1 (αt,i ·

←−
h i)∑l

i=1 (αt,i ·
−→
h i)

]
, (3)

where q is a GRU, Ht is a weighted sum of h, the
weights, α, are computed with a two layer feed-
forward neural network r:

αt,i =
exp{r(st−1, hi, y∗t−1)}∑l
k=1 exp{r(st−1, hk, y∗t−1)}

(4)

3 Coverage Embedding Models

Our basic idea is to introduce a coverage embedding
for each source word, and keep updating this em-
bedding at each time step. Thus, the coverage em-
bedding for a sentence is a matrix, instead of a vec-
tor in SMT. As different words have different fertili-
ties (one-to-one, one-to-many, or one-to-zero), sim-
ilar to word embeddings, each source word has its
own coverage embedding vector. For simplicity, the
number of coverage embedding vectors is the same
as the source word vocabulary size.

At the beginning of our translation, our cover-
age embedding matrix (c0,x1 , c0,x2 , ...c0,xl) is initial-
ized with the coverage embedding vectors of all the
source words.

Then we update them with neural networks (a
GRU (Section 3.1.1) or a subtraction (Section 3.1.2))

956

ct�1,j

ct�2,j

yt�1

ct�2,l

…

……

… ct,l

ct�1,l

ct,j

yt

…

…

↵t�1,j

↵t,j

ct,1

ct�1,1

ct�2,1

yt�1

…

……

…

yt

…

…

↵t�1,j

↵t,j

ct�2,x1
ct�2,xj ct�2,xl

ct�1,xl
ct�1,xj

ct�1,x1

ct,x1
ct,xj ct,xl

Figure 2: The coverage embedding model with a GRU at
time step t − 1 and t. c0,1 to c0,l are initialized with the
word coverage embedding matrix

until we translation all the source words.
In the middle of translation, some coverage em-

beddings should be close to zero, which indicate
those words are covered or translated, and can not be
translated in future steps. Thus, in the end of transla-
tion, the embedding matrix should be close to zero,
which means all the words are covered.

In the following part, we first show two updating
methods, then we list the NMT objective that takes
into account the embedding models.

3.1 Updating Methods

3.1.1 Updating with a GRU

Figure 2 shows the updating method with a GRU.
Then, at time step t, we feed yt and αt,j to the cov-
erage model (shown in Figure 2),
zt,j = σ(W zyyt +W zααt,j + U zct−1,xj)

rt,j = σ(W ryyt +W rααt,j + U rct−1,xj)

c̃t,xj = tanh(Wyt +Wααt,j + rt,j ◦ Uct−1,xj)
ct,xj = zt,j ◦ ct−1,xj + (1− zt,j) ◦ c̃t,xj ,

where, zt is the update gate, rt is the reset gate, c̃t is
the new memory content, and ct is the final memory.
The matrix W zy, W zα, U z , W ry, W rα, U r, W y,
Wα and U are shared across different position j. ◦
is a pointwise operation.

3.1.2 Updating as Subtraction

Another updating method is to subtract the em-
bedding of yt directly from the coverage embedding
ct,xj with a weight αt,j as

ct,xj = ct−1,xj − αt,j ◦ (W y→cyt), (5)

where W y→c is a matrix that coverts word embed-
ding of yt to the same size of our coverage embed-
ding vector c.

3.2 Objectives
We integrate our coverage embedding models into
the attention NMT (Bahdanau et al., 2014) by
adding ct−1,xj to the first layer of the attention
model (shown in the red dotted line in Figure 1).

Hopefully, if yt is partial translation of xj with a
probability αt,j , we only remove partial information
of ct−1,xj . In this way, we enable coverage embed-
ding c0,xj to encode fertility information of xj .

As we have mentioned, in the end of translation,
we want all the coverage embedding vectors to be
close to zero. So we also minimize the absolute val-
ues of embedding matrixes as

θ∗ = argmax
θ

N∑

n=1

{
m∑

t=1

log p(y∗nt |xn, y∗nt−1..y∗n1)

− λ
l∑

i=1

||cm,xi ||
}
,

(6)
where λ is the coefficient of our coverage model.

As suggested by Mi et al. (2016a), we can also use
some supervised alignments in our training. Then,
we know exactly when each ct,xj should become
close to zero after step t. Thus, we redefine Equa-
tion 6 as:

θ∗ = argmax
θ

N∑

n=1

{
m∑

t=1

log p(y∗nt |xn, y∗nt−1..y∗n1)

− λ
l∑

i=1

(

m∑

j=axi

||cj,xi ||)
}
,

(7)
where axi is the maximum index on the target sen-
tence xi can be aligned to.

4 Related Work

There are several parallel and independent related
work (Tu et al., 2016; Feng et al., 2016; Cohn et
al., 2016). Tu et al. (2016) is the most relevant one.
In their paper, they also employ a GRU to model
the coverage vector. One main difference is that
our model introduces a specific coverage embedding
vector for each source word, in contrast, their work
initializes the word coverage vector with a scalar
with a uniform distribution. Another difference lays
in the fertility part, Tu et al. (2016) add an accu-
mulate operation and a fertility function to simulate

957

the process of one-to-many alignments. In our ap-
proach, we add fertility information directly to cov-
erage embeddings, as each source word has its own
embedding. The last difference is that our baseline
system (Mi et al., 2016b) is an extension of the large
vocabulary NMT of Jean et al. (2015) with candi-
date list decoding and UNK replacement, a much
stronger baseline system.

Cohn et al. (2016) augment the attention model
with well-known features in traditional SMT, in-
cluding positional bias, Markov conditioning, fertil-
ity and agreement over translation directions. This
work is orthogonal to our work.

5 Experiments

5.1 Data Preparation

We run our experiments on Chinese to English task.
We train our machine translation systems on two
training sets. The first training corpus consists of
approximately 5 million sentences available within
the DARPA BOLT Chinese-English task. The sec-
ond training corpus adds HK Law, HK Hansard and
UN data, the total number of training sentence pairs
is 11 million. The Chinese text is segmented with
a segmenter trained on CTB data using conditional
random fields (CRF).

Our development set is the concatenation of sev-
eral tuning sets (GALE Dev, P1R6 Dev, and Dev 12)
released under the DARPA GALE program. The de-
velopment set is 4491 sentences in total. Our test
sets are NIST MT06, MT08 news, and MT08 web.

For all NMT systems, the full vocabulary sizes for
thr two training sets are 300k and 500k respectively.
The coverage embedding vector size is 100. In the
training procedure, we use AdaDelta (Zeiler, 2012)
to update model parameters with a mini-batch size
80. Following Mi et al. (2016b), the output vocab-
ulary for each mini-batch or sentence is a sub-set of
the full vocabulary. For each source sentence, the
sentence-level target vocabularies are union of top
2k most frequent target words and the top 10 candi-
dates of the word-to-word/phrase translation tables
learned from ‘fast align’ (Dyer et al., 2013). The
maximum length of a source phrase is 4. In the train-
ing time, we add the reference in order to make the
translation reachable.

Following Jean et al. (2015), We dump the align-

ments, attentions, for each sentence, and replace
UNKs with the word-to-word translation model or
the aligned source word.

Our traditional SMT system is a hybrid syntax-
based tree-to-string model (Zhao and Al-onaizan,
2008), a simplified version of Liu et al. (2009) and
Cmejrek et al. (2013). We parse the Chinese side
with Berkeley parser, and align the bilingual sen-
tences with GIZA++. Then we extract Hiero and
tree-to-string rules on the training set. Our two 5-
gram language models are trained on the English
side of the parallel corpus, and on monolingual
corpora (around 10 billion words from Gigaword
(LDC2011T07)), respectively. As suggestion by
Zhang (2016), NMT systems can achieve better re-
sults with the help of those monolingual corpora. We
tune our system with PRO (Hopkins and May, 2011)
to minimize (TER- BLEU)/2 on the development set.

5.2 Translation Results

Table 1 shows the results of all systems on 5 million
training set. The traditional syntax-based system
achieves 9.45, 12.90, and 17.72 on MT06, MT08
News, and MT08 Web sets respectively, and 13.36
on average in terms of (TER- BLEU)/2. The large-
vocabulary NMT (LVNMT), our baseline, achieves
an average (TER- BLEU)/2 score of 15.74, which is
about 2 points worse than the hybrid system.

We test four different settings for our coverage
embedding models:
• UGRU : updating with a GRU;
• USub: updating as a subtraction;
• UGRU + USub: combination of two methods

(do not share coverage embedding vectors);
• +Obj.: UGRU + USub plus an additional objec-

tive in Equation 61.
UGRU improves the translation quality by 1.3

points on average over LVNMT. And UGRU + USub

achieves the best average score of 13.14, which is
about 2.6 points better than LVNMT. All the im-
provements of our coverage embedding models over
LVNMT are statistically significant with the sign-
test of Collins et al. (2005). We believe that we need
to explore more hyper-parameters of +Obj. in order
to get even better results over UGRU + USub.

1We use two λs for UGRU and USub separately, and we test
λGRU = 1× 10−4 and λSub = 1× 10−2 in our experiments.

958

single system
MT06

MT08
avg.

News Web
BP BLEU T-B BP BLEU T-B BP BLEU T-B T-B

Tree-to-string 0.95 34.93 9.45 0.94 31.12 12.90 0.90 23.45 17.72 13.36
LVNMT 0.96 34.53 12.25 0.93 28.86 17.40 0.97 26.78 17.57 15.74

O
ur

s

UGRU 0.92 35.59 10.71 0.89 30.18 15.33 0.97 27.48 16.67 14.24
USub 0.91 35.90 10.29 0.88 30.49 15.23 0.96 27.63 16.12 13.88

UGRU+USub 0.92 36.60 9.36 0.89 31.86 13.69 0.95 27.12 16.37 13.14
+Obj. 0.93 36.80 9.78 0.90 31.83 14.20 0.95 28.28 15.73 13.24

Table 1: Single system results in terms of (TER-BLEU)/2 (the lower the better) on 5 million Chinese to English
training set. NMT results are on a large vocabulary (300k) and with UNK replaced. UGRU : updating with a GRU;
USub: updating as a subtraction; UGRU + USub: combination of two methods (do not share coverage embedding
vectors); +Obj.: UGRU + USub with an additional objective in Equation 6, we have two λs for UGRU and USub

separately, and we test λGRU = 1× 10−4 and λSub = 1× 10−2.

single system MT06 MT08 avg.News Web
BP T-B BP T-B BP T-B T-B

Tree-to-string 0.90 8.70 0.84 12.65 0.84 17.00 12.78
LVNMT 0.96 9.78 0.94 14.15 0.97 15.89 13.27

UGRU 0.97 8.62 0.95 12.79 0.97 15.34 12.31

Table 2: Single system results in terms of (TER-BLEU)/2
on 11 million set. NMT results are on a large vocabulary
(500k) and with UNK replaced. Due to the time limita-
tion, we only have the results of UGRU system.

Table 2 shows the results of 11 million sys-
tems, LVNMT achieves an average (TER-BLEU)/2
of 13.27, which is about 2.5 points better than 5
million LVNMT. The result of our UGRU cover-
age model gives almost 1 point gain over LVNMT.
Those results suggest that the more training data we
use, the stronger the baseline system becomes, and
the harder to get improvements. In order to get a rea-
sonable or strong NMT system, we have to conduct
experiments over a large-scale training set.

5.3 Alignment Results

Table 3 shows the F1 scores on the alignment test set
(447 hand aligned sentences). The MaxEnt model
is trained on 67k hand-aligned data, and achieves
an F1 score of 75.96. For NMT systems, we dump
alignment matrixes, then, for each target word we
only add the highest probability link if it is higher
than 0.2. Results show that our best coverage model,
UGRU + USub, improves the F1 score by 2.2 points
over the sorce of LVNMT.

We also check the repetition statistics of NMT
outputs. We simply compute the number of repeated

system pre. rec. F1
MaxEnt 74.86 77.10 75.96
LVNMT 47.88 41.06 44.21

O
ur

s

UGRU 51.11 41.42 45.76
USub 49.07 42.49 45.55

UGRU+USub 49.46 43.83 46.47
+Obj. 49.78 41.73 45.40

Table 3: Alignment F1 scores of different models.

phrases (length longer or equal than 4 words) for
each sentence. On MT06 test set, the 5 million
LVNMT has 209 repeated phrases, our UGRU sys-
tem reduces it significantly to 79, UGRU+USub and
+Obj. only have 50 and 47 repeated phrases, re-
spectively. The 11 million LVNMT gets 115 re-
peated phrases, and UGRU reduces it further down to
16. Those trends hold across other test sets. Those
statistics show that a larger training set or coverage
embedding models alleviate the repeating problem
in NMT.

6 Conclusion

In this paper, we propose simple, yet effective, cov-
erage embedding models for attention-based NMT.
Our model learns a special coverage embedding vec-
tor for each source word to start with, and keeps up-
dating those coverage embeddings with neural net-
works as the translation goes. Experiments on the
large-scale Chinese-to-English task show significant
improvements over the strong LVNMT system.

Acknowledgment

We thank reviewers for their useful comments.

959

References
D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural

Machine Translation by Jointly Learning to Align and
Translate. ArXiv e-prints, September.

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. CoRR, abs/1409.1259.

Martin Cmejrek, Haitao Mi, and Bowen Zhou. 2013.
Flexible and efficient hypergraph interactions for joint
hierarchical and forest-to-string decoding. In Proceed-
ings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 545–555, Seat-
tle, Washington, USA, October. Association for Com-
putational Linguistics.

T. Cohn, C. D. V. Hoang, E. Vymolova, K. Yao, C. Dyer,
and G. Haffari. 2016. Incorporating Structural Align-
ment Biases into an Attentional Neural Translation
Model. ArXiv e-prints, January.

Michael Collins, Philipp Koehn, and Ivona Kucerova.
2005. Clause restructuring for statistical machine
translation. In Proceedings of ACL, pages 531–540,
Ann Arbor, Michigan, June.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameterization
of ibm model 2. In Proceedings of the 2013 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 644–648, Atlanta, Georgia, June.
Association for Computational Linguistics.

S. Feng, S. Liu, M. Li, and M. Zhou. 2016. Implicit
Distortion and Fertility Models for Attention-based
Encoder-Decoder NMT Model. ArXiv e-prints, Jan-
uary.

Mark Hopkins and Jonathan May. 2011. Tuning as rank-
ing. In Proceedings of EMNLP.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and
Yoshua Bengio. 2015. On using very large target vo-
cabulary for neural machine translation. In Proceed-
ings of ACL, pages 1–10, Beijing, China, July.

Philipp Koehn. 2004. Pharaoh: a beam search decoder
for phrase-based statistical machine translation mod-
els. In Proceedings of AMTA, pages 115–124.

Xiaoqing Li, Jiajun Zhang, and Chengqing Zong. 2016.
Towards zero unknown word in neural machine trans-
lation. In Proceedings of IJCAI 2016, pages 2852–
2858, New York, NY, USA, July.

Yang Liu, Haitao Mi, Yang Feng, and Qun Liu. 2009.
Joint decoding with multiple translation models. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP: Volume 2 - Volume 2, ACL ’09,
pages 576–584, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neu-
ral machine translation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1412–1421, Lisbon, Portu-
gal, September. Association for Computational Lin-
guistics.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016a.
Supervised attentions for neural machine translation.
In Proceedings of EMNLP, Austin, USA, November.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016b.
Vocabulary manipulation for neural machine transla-
tion. In Proceedings of ACL, Berlin, Germany, Au-
gust.

Z. Tu, Z. Lu, Y. Liu, X. Liu, and H. Li. 2016. Coverage-
based Neural Machine Translation. ArXiv e-prints,
January.

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR.

Jiajun Zhang. 2016. Exploiting source-side monolingual
data in neural machine translation. In Proceedings of
EMNLP 2016, Austin, Texas, USA, November.

Bing Zhao and Yaser Al-onaizan. 2008. Generalizing lo-
cal and non-local word-reordering patterns for syntax-
based machine translation. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP ’08, pages 572–581, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

960

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 961–967,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Neural Morphological Analysis: Encoding-Decoding Canonical Segments

Katharina Kann
Center for Information and Language Processing

LMU Munich, Germany
kann@cis.lmu.de

Ryan Cotterell
Department of Computer Science
Johns Hopkins University, USA

ryan.cotterell@jhu.edu

Hinrich Schütze
Center for Information and Language Processing

LMU Munich, Germany
inquiries@cislmu.org

Abstract

Canonical morphological segmentation aims
to divide words into a sequence of stan-
dardized segments. In this work, we
propose a character-based neural encoder-
decoder model for this task. Additionally,
we extend our model to include morpheme-
level and lexical information through a neural
reranker. We set the new state of the art for
the task improving previous results by up to
21% accuracy. Our experiments cover three
languages: English, German and Indonesian.

1 Introduction

Morphological segmentation aims to divide words
into morphemes, meaning-bearing sub-word units.
Indeed, segmentations have found use in a diverse
set of NLP applications, e.g., automatic speech
recognition (Afify et al., 2006), keyword spot-
ting (Narasimhan et al., 2014), machine transla-
tion (Clifton and Sarkar, 2011) and parsing (Seeker
and Çetinoğlu, 2015). In the literature, most re-
search has traditionally focused on surface segmen-
tation, whereby a word w is segmented into a se-
quence of substrings whose concatenation is the en-
tire word; see Ruokolainen et al. (2016) for a sur-
vey. In contrast, we consider canonical segmenta-
tion: w is divided into a sequence of standardized
segments. To make the difference concrete, con-
sider the following example: the surface segmen-
tation of the complex English word achievability is
achiev+abil+ity, whereas its canonical segmenta-
tion is achieve+able+ity, i.e., we restore the alter-
ations made during word formation.

Canonical versions of morphological segmenta-
tion have been introduced multiple times in the lit-
erature (Kay, 1977; Naradowsky and Goldwater,
2009; Cotterell et al., 2016). Canonical segmen-
tation has several representational advantages over
surface segmentation, e.g., whether two words share
a morpheme is no longer obfuscated by orthogra-
phy. However, it also introduces a hard algorith-
mic challenge: in addition to segmenting a word,
we must reverse orthographic changes, e.g., map-
ping achievability7→achieveableity.

Computationally, canonical segmentation can be
seen as a sequence-to-sequence problem: we must
map a word form to a canonicalized version with
segmentation boundaries. Inspired by the re-
cent success of neural encoder-decoder models
(Sutskever et al., 2014) for sequence-to-sequence
problems in NLP, we design a neural architecture
for the task. However, a naı̈ve application of the
encoder-decoder model ignores much of the linguis-
tic structure of canonical segmentation—it cannot
directly model the individual canonical segments,
e.g., it cannot easily produce segment-level embed-
dings. To solve this, we use a neural reranker on
top of the encoder-decoder, allowing us to embed
both characters and entire segments. The combined
approach outperforms the state of the art by a wide
margin (up to 21% accuracy) in three languages: En-
glish, German and Indonesian.

2 Neural Canonical Segmentation

We begin by formally describing the canonical
segmentation task. Given a discrete alphabet
Σ (e.g., the 26 letters of the English alphabet),

961

Figure 1: Detailed view of the attention mechanism of the neu-

ral encoder-decoder.

our goal is to map a word w ∈ Σ∗ (e.g.,
w=achievability), to a canonical segmentation c ∈
Ω∗ (e.g., c=achieve+able+ity). We define Ω =
Σ∪{+}, where + is a distinguished separation sym-
bol. Additionally, we will write the segmented form
as c=σ1+σ2+. . .+σn, where each segment σi ∈ Σ∗

and n is the number of canonical segments.
We take a probabilistic approach and, thus, at-

tempt to learn a distribution p(c | w). Our model
consists of two parts. First, we apply an encoder-
decoder recurrent neural network (RNN) (Bahdanau
et al., 2014) to the sequence of characters of the
input word to obtain candidate canonical segmen-
tations. Second, we define a neural reranker that
allows us to embed individual morphemes and
chooses the final answer from within a set of can-
didates generated by the encoder-decoder.

2.1 Neural Encoder-Decoder
Our encoder-decoder is based on Bahdanau et al.
(2014)’s neural machine translation model.1 The en-
coder is a bidirectional gated RNN (GRU) (Cho et
al., 2014b). Given a word w ∈ Σ∗, the input to

1
github.com/mila-udem/blocks-examples/tree/master/machine_

translation

the encoder is the sequence of characters of w, rep-
resented as one-hot vectors. The decoder defines
a conditional probability distribution over c ∈ Ω∗

given w:

pED(c |w) =

|c|∏

t=1

p(ct|c1, . . . , ct−1, w)

=

|c|∏

t=1

g(ct−1, st, at)

where g is a nonlinear activation function, st is the
state of the decoder at t and at is a weighted sum of
the |w| states of the encoder. The state of the encoder
for wi is the concatenation of forward and backward
hidden states

−→
hi and

←−
hi for wi. An overview of how

the attention weight and the weighted sum at are
included in the architecture can be seen in Figure
1. The attention weights αt,i at each timestep t are
computed based on the respective encoder state and
the decoder state st. See Bahdanau et al. (2014) for
further details.

2.2 Neural Reranker
The encoder-decoder, while effective, predicts each
output character in Ω sequentially. It does not use
explicit representations for entire segments and is in-
capable of incorporating simple lexical information,
e.g., does this canonical segment occur as an inde-
pendent word in the lexicon? Therefore, we extend
our model with a reranker.

The reranker rescores canonical segmentations
from a candidate set, which in our setting is sampled
from pED. Let the sample set be Sw = {k(i)}Ni=1

where k(i) ∼ pED(c | w). We define the neural
reranker as

pθ(c |w)=
exp

(
u> tanh(Wvc) + τ log pED(c |w)

)

Zθ

where vc=
∑n

i=1 vσi (recall c = σ1+σ2+. . .+σn)
and vσi is a one-hot morpheme embedding of σi
with an additional binary dimension marking if σi
occurs independently as a word in the language.2

The partition function is Zθ(w) and the parame-
ters are θ = {u,W, τ}. The parameters W and u

2To determine if a canonical segment is in the lexicon, we
check its occurrence in ASPELL. Alternatively, one could ask
whether it occurs in a large corpus, e.g., Wikipedia.

962

are projection and hidden layers, respectively, of a
multi-layered perceptron and τ can be seen as a tem-
perature parameter that anneals the encoder-decoder
model pED (Kirkpatrick, 1984). We define the parti-
tion function over the sample set Sw:

Zθ =
∑

k∈Sw
exp

(
u>tanh(Wvk)+τ log pED(k |w)

)
.

The reranking model’s ability to embed mor-
phemes is important for morphological segmenta-
tion since we often have strong corpus-level signals.
The reranker also takes into account the character-
level information through the score of the encoder-
decoder model. Due to this combination we expect
stronger performance.

3 Related Work

Various approaches to morphological segmentation
have been proposed in the literature. In the un-
supervised realm, most work has been based on
the principle of minimum description length (Cover
and Thomas, 2012), e.g., LINGUISTICA (Goldsmith,
2001; Lee and Goldsmith, 2016) or MORFESSOR

(Creutz and Lagus, 2002; Creutz et al., 2007; Poon
et al., 2009). MORFESSOR was later extended to a
semi-supervised version by Kohonen et al. (2010).
Supervised approaches have also been considered.
Most notably, Ruokolainen et al. (2013) developed
a supervised approach for morphological segmen-
tation based on conditional random fields (CRFs)
which they later extended to work also in a semi-
supervised way (Ruokolainen et al., 2014) using
letter successor variety features (Hafer and Weiss,
1974). Similarly, Cotterell et al. (2015) improved
performance with a semi-Markov CRF.

More recently, Wang et al. (2016) achieved state-
of-the-art results on surface morphological segmen-
tation using a window LSTM. Even though Wang et
al. (2016) also employ a recurrent neural network,
we distinguish our approach, in that we focus on
canonical morphological segmentation, rather than
surface morphological segmentation.

Naturally, our approach is also relevant to other
applications of recurrent neural network transduc-
tion models (Sutskever et al., 2014; Cho et al.,
2014a). In addition to machine translation (Bah-
danau et al., 2014), these models have been success-

fully applied to many areas of NLP, including pars-
ing (Vinyals et al., 2015), morphological reinflec-
tion (Kann and Schütze, 2016) and automatic speech
recognition (Graves and Schmidhuber, 2005; Graves
et al., 2013).

4 Experiments

To enable comparison to earlier work, we use a
dataset that was prepared by Cotterell et al. (2016)
for canonical segmentation.3

4.1 Languages

The dataset we work on covers 3 languages: En-
glish, German and Indonesian. English and German
are West Germanic Languages, with the former be-
ing an official languages in nearly 60 different states
and the latter being mainly spoken in Western Eu-
rope. Indonesian — or Bahasa Indonesia— is the
official language of Indonesia.

Cotterell et al. (2016) report the best experimental
results for Indonesian, followed by English and fi-
nally German. The high error rate for German might
be caused by it being rich in orthografic changes. In
contrast, Indonesian morphology is comparatively
simple.

4.2 Corpora

The data for the English language was extracted
from segmentations derived from the CELEX
database (Baayen et al., 1993). The German data
was extracted from DerivBase (Zeller et al., 2013),
which provides a collection of derived forms to-
gether with the transformation rules, which were
used to create the canonical segmentations. Finally,
the data for Bahasa Indonesia was collected by us-
ing the output of the MORPHIND analyzer (Larasati
et al., 2011), together with an open-source corpus of
Indonesian. For each language we used the 10,000
forms that were selected at random by Cotterell et
al. (2016) from a uniform distribution over types to
form the corpus. Following them, we perform our
experiments on 5 splits of the data into 8000 train-
ing forms, 1000 development forms and 1000 test
forms and report averages.

3
ryancotterell.github.io/canonical-segmentation

963

4.3 Training

We train an ensemble of five encoder-decoder mod-
els. The encoder and decoder RNNs each have
100 hidden units. Embedding size is 300. We use
ADADELTA (Zeiler, 2012) with a minibatch size of
20. We initialize all weights (encoder, decoder, em-
beddings) to the identity matrix and the biases to
zero (Le et al., 2015). All models are trained for 20
epochs. The hyperparameter values are taken from
Kann and Schütze (2016) and kept unchanged for
the application to canonical segmentation described
here.

To train the reranking model, we first gather the
sample set Sw on the training data. We take 500
individual samples, but (as we often sample the
same form multiple times) |Sw| ≈ 5. We op-
timize the log-likelihood of the training data using
ADADELTA. For generalization, we employ L2 reg-
ularization and we perform grid search to determine
the coefficient λ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}. To
decode the model, we again take 500 samples to
populate Sw and select the best segmentation.
Baselines. Our first baseline is the joint transduction
and segmentation model (JOINT) of Cotterell et al.
(2016). It is the current state of the art on the datasets
we use and the task of canonical segmentation in
general. This model uses a jointly trained, separate
transduction and segmentation component. Impor-
tantly, the joint model of Cotterell et al. (2016) al-
ready contains segment-level features. Thus, rerank-
ing this baseline would not provide a similar boost.

Our second baseline is a weighted finite-state
transducer (WFST) (Mohri et al., 2002) with a log-
linear parameterization (Dreyer et al., 2008), again,
taken from Cotterell et al. (2016). The WFST
baseline is particularly relevant because, like our
encoder-decoder, it formulates the problem directly
as a string-to-string transduction.
Evaluation Metrics. We follow Cotterell et al.
(2016) and use the following evaluation measures:
error rate, edit distance and morpheme F1. Error
rate is defined as 1 minus the proportion of guesses
that are completely correct. Edit distance is the Lev-
enshtein distance between guess and gold standard.
For this, guess and gold are each represented as one
string with a distinguished character denoting the
segment boundaries. Morpheme F1 compares the

RR ED Joint WFST UB

er
ro

r en .19 (.01) .25 (.01) 0.27 (.02) 0.63 (.01) .06 (.01)
de .20 (.01) .26 (.02) 0.41 (.03) 0.74 (.01) .04 (.01)
id .05 (.01) .09 (.01) 0.10 (.01) 0.71 (.01) .02 (.01)

ed
it

en .21 (.02) .47 (.02) 0.98 (.34) 1.35 (.01) .10 (.02)
de .29 (.02) .51 (.03) 1.01 (.07) 4.24 (.20) .06 (.01)
id .05 (.00) .12 (.01) 0.15 (.02) 2.13 (.01) .02 (.01)

F
1

en .82 (.01) .78 (.01) 0.76 (.02) 0.53 (.02) .96 (.01)
de .87 (.01) .86 (.01) 0.76 (.02) 0.59 (.02) .98 (.00)
id .96 (.01) .93 (.01) 0.80 (.01) 0.62 (.02) .99 (.00)

Table 1: Error rate (top), edit distance (middle), F1 (bottom)

for canonical segmentation. Each double column gives the mea-

sure and its standard deviation. Best result on each line (exclud-

ing UB) in bold. RR: encoder-decoder+reranker. ED: encoder-

decoder. JOINT, WFST: baselines (see text). UB: upper bound,

the maximum score our reranker could obtain, i.e., considering

the best sample in the predictions of ED.

morphemes in guess and gold. Precision (resp. re-
call) is the proportion of morphemes in guess (resp.
gold) that occur in gold (resp. guess).

5 Results

The results of the canonical segmentation experi-
ment in Table 1 show that both of our models im-
prove over all baselines. The encoder-decoder alone
has a .02 (English), .15 (German) and .01 (Indone-
sion) lower error rate than the best baseline. The
encoder-decoder improves most for the language for
which the baselines did worst. This suggests that, for
more complex languages, a neural network model
might be a good choice.

The reranker achieves an additional improvement
of .04 to .06. for the error rate. This is likely due
to the additional information the reranker has access
to: morpheme embeddings and existing words.

Important is also the upper bound we report. It
shows the maximum performance the reranker could
achieve, i.e., evaluates the best solution that appears
in the set of candidate answers for the reranker. The
right answer is contained in≥ 94% of samples. Note
that, even though the upper bound goes up with the
number of samples we take, there is no guarantee
for any finite number of samples that they will con-
tain the true answer. Thus, we would need to take
an infinite number of samples to get a perfect upper
bound. However, as the current upper bound is quite
high, the encoder-decoder proves to be an appropri-

964

ate model for the task. Due to the large gap between
the performance of the encoder-decoder and the up-
per bound, a better reranker could further increase
performance. We will investigate ways to improve
the reranker in future work.
Error analysis. We give for representative samples
the error (E for the segmentation produced by our
method) and the correct analysis (G for gold).

We first analyze cases in which the right an-
swer does not appear at all in the samples
drawn from the encoder-decoder. Those in-
clude problems with umlauts in German (G:
verflüchtigen7→ ver+flüchten+ig, E: verflucht+ig)
and orthographic changes at morpheme boundaries
(G:cutter7→cut+er, E: cutter or cutt+er, sampled
with similar frequency). There are also errors that
are due to problems with the annotation, e.g., the fol-
lowing two gold segmentations are arguably incor-
rect: tec7→detective and syrerin7→syr+er+in (syr is
neither a word nor an affix in German).

In other cases, the encoder-decoder does find the
right solution (G), but gives a higher probability
to an incorrect analysis (E). Examples are a wrong
split into adjectives or nouns instead of verbs (G:
fügsamkeit7→fügen+sam+keit, E: fügsam+keit),
the other way around (G: zähler7→zahl+er, E:
zählen+er), cases where the wrong morphemes
are chosen (G: precognition7→pre+cognition, E:
precognit+ion), difficult cases where letters have
to be inserted (G: redolence7→redolent+ence, E:
re+dolence) or words the model does not split
up, even though they should be (G: additive7→
addition+ive, E: additive).

Based on its access to lexical information and
morpheme embeddings, the reranker is able to
correct some of the errors made by the encoder-
decoder. Samples are G: geschwisterpärchen7→
geschwisterpaar+chen, E: geschwisterpar+chen
(geschwisterpaar is a word in German but geschwis-
terpar is not) or G: zickig 7→ zicken+ig, E: zick+ig
(with zicken, but not zick, being a German word).

Finally, we want to know if segments that appear
in the test set without being present in the training
set are a source of errors. In order to investigate
that, we split the test samples into two groups: The
first group contains the samples for which our sys-
tem finds the right answer. The second one contains
all other samples. We compare the percentage of

wrong samples right samples
27.33 (.02) 36.60 (.01)

Table 2: Percentage of segments in the solutions for the test

data that do not appear in the training set - split by samples that

our system does or does not get right. We use the German data

and average over the 5 splits. Standard deviation in parenthesis.

samples that do not appear in the training data for
both groups. We exemplarily use the German data
and the results results are shown in Table 2. First,
it can be seen that very roughly about a third of all
segments does not appear in the training data. This
is mainly due to unseen lemmas as their stems are
naturally unknown to the system. However, the cor-
rectly solved samples contain nearly 10% more un-
seen segments. As the average number of segments
per word for wrong and right solutions — 2.44 and
2.11, respectively — does not differ by much, it
seems unlikely that many errors are caused by un-
known segments.

6 Conclusion and Future Work

We developed a model consisting of an encoder-
decoder and a neural reranker for the task of canoni-
cal morphological segmentation. Our model com-
bines character-level information with features on
the morpheme level and external information about
words. It defines a new state of the art, improv-
ing over baseline models by up to .21 accuracy, 16
points F1 and .77 Levenshtein distance.

We found that ≥ 94% of correct segmentations
are in the sample set drawn from the encoder-
decoder model, demonstrating the upper bound on
the performance of our reranker is quite high; in fu-
ture work, we hope to develop models to exploit this.

Acknowledgments

We gratefully acknowledge the financial support of
Siemens for this research.

References
Mohamed Afify, Ruhi Sarikaya, Hong-Kwang Jeff Kuo,

Laurent Besacier, and Yuqing Gao. 2006. On the use
of morphological analysis for dialectal Arabic speech
recognition. In Proc. of INTERSPEECH.

R. H. Baayen, R. Piepenbrock, and H. Van Rijn. 1993.
The CELEX lexical data base on CD-ROM.

965

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259.

Kyunghyun Cho, Bart Van Merriënboer, Çalar Gülçehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014b. Learning phrase repre-
sentations using RNN encoder–decoder for statistical
machine translation. In Proc. of EMNLP.

Ann Clifton and Anoop Sarkar. 2011. Combin-
ing morpheme-based machine translation with post-
processing morpheme prediction. In Proc. of ACL.

Ryan Cotterell, Thomas Müller, Alexander Fraser, and
Hinrich Schütze. 2015. Labeled morphological seg-
mentation with semi-markov models. In Proc. of
CoNLL.

Ryan Cotterell, Tim Vieira, and Hinrich Schütze. 2016.
A joint model of orthography and morphological seg-
mentation. In Proc. of NAACL.

Thomas M Cover and Joy A Thomas. 2012. Elements of
Information Theory. John Wiley & Sons.

Mathias Creutz and Krista Lagus. 2002. Unsupervised
discovery of morphemes. In Proc. of the ACL-02
Workshop on Morphological and Phonological Learn-
ing.

Mathias Creutz, Teemu Hirsimäki, Mikko Kurimo, Antti
Puurula, Janne Pylkkönen, Vesa Siivola, Matti Var-
jokallio, Ebru Arisoy, Murat Saraçlar, and Andreas
Stolcke. 2007. Morph-based speech recognition
and modeling of out-of-vocabulary words across lan-
guages. ACM Transactions on Speech and Language
Processing, 5(1):3:1–3:29.

Markus Dreyer, Jason R. Smith, and Jason Eisner. 2008.
Latent-variable modeling of string transductions with
finite-state methods. In Proc. of EMNLP.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Computational
Linguistics, 27(2):153–198.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5):602–610.

Alan Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recurrent
neural networks. In Proc of. ICASSP.

Margaret A. Hafer and Stephen F. Weiss. 1974. Word
segmentation by letter successor varieties. Informa-
tion storage and retrieval, 10(11):371–385.

Katharina Kann and Hinrich Schütze. 2016. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In Proc. of ACL.

Martin Kay. 1977. Morphological and syntactic analysis.
Linguistic Structures Processing, 5:131–234.

Scott Kirkpatrick. 1984. Optimization by simulated an-
nealing: Quantitative studies. Journal of Statistical
Physics, 34(5-6):975–986.

Oskar Kohonen, Sami Virpioja, and Krista Lagus. 2010.
Semi-supervised learning of concatenative morphol-
ogy. In Proc. of the 11th Meeting of the ACL Spe-
cial Interest Group on Computational Morphology and
Phonology.

Septina Dian Larasati, Vladislav Kuboň, and Daniel Ze-
man. 2011. Indonesian morphology tool (morphind):
Towards an indonesian corpus. In Proc. of SFCM.
Springer.

Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hin-
ton. 2015. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint
arXiv:1504.00941.

Jackson L. Lee and John A. Goldsmith. 2016. Linguis-
tica 5: Unsupervised learning of linguistic structure.
In Proc. of NAACL.

Mehryar Mohri, Fernando Pereira, and Michael Ri-
ley. 2002. Weighted finite-state transducers in
speech recognition. Computer Speech & Language,
16(1):69–88.

Jason Naradowsky and Sharon Goldwater. 2009. Im-
proving morphology induction by learning spelling
rules. In Proc. of IJCAI.

Karthik Narasimhan, Damianos Karakos, Richard
Schwartz, Stavros Tsakalidis, and Regina Barzilay.
2014. Morphological segmentation for keyword spot-
ting. In Proc. of EMNLP.

Hoifung Poon, Colin Cherry, and Kristina Toutanova.
2009. Unsupervised morphological segmentation with
log-linear models. In Proc. of NAACL.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja, and
Mikko Kurimo. 2013. Supervised morphological seg-
mentation in a low-resource learning setting using con-
ditional random fields. In Proc. of CoNLL.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja,
and mikko kurimo. 2014. Painless semi-supervised
morphological segmentation using conditional random
fields. In Proc. of EACL.

Teemu Ruokolainen, Oskar Kohonen, Kairit Sirts, Stig-
Arne Grönroos, Mikko Kurimo, and Sami Virpioja.
2016. Comparative study of minimally supervised
morphological segmentation. Computational Linguis-
tics, 42(1):91–120.

966

Wolfgang Seeker and Özlem Çetinoğlu. 2015. A graph-
based lattice dependency parser for joint morphologi-
cal segmentation and syntactic analysis. TACL, 3:359–
373.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proc. of NIPS.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar
as a foreign language. In Proc. of NIPS.

Linlin Wang, Zhu Cao, Yu Xia, and Gerard de Melo.
2016. Morphological segmentation with window
LSTM neural networks. In Proc. of AAAI.

Matthew D Zeiler. 2012. Adadelta: an adaptive learning
rate method. arXiv preprint arXiv:1212.5701.

Britta Zeller, Jan Šnajder, and Sebastian Padó. 2013. De-
rivbase: Inducing and evaluating a derivational mor-
phology resource for german. In Proc. of ACL.

967

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 968–974,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Exploiting Mutual Benefits between Syntax and Semantic Roles using
Neural Network

Peng Shi‡∗ Zhiyang Teng† Yue Zhang†
†Singapore University of Technology and Design (SUTD)

‡Zhejiang University, China
impavidity@zju.edu.cn

zhiyang teng@mymail.sutd.edu.sg, yue zhang@sutd.edu.sg

Abstract

We investigate mutual benefits between syn-
tax and semantic roles using neural network
models, by studying a parsing→SRL pipeline,
a SRL→parsing pipeline, and a simple joint
model by embedding sharing. The integra-
tion of syntactic and semantic features gives
promising results in a Chinese Semantic Tree-
bank, demonstrating large potentials of neural
models for joint parsing and semantic role la-
beling.

1 Introduction

The correlation between syntax and semantics has
been a fundamental problem in natural language
processing (Steedman, 2000). As a shallow seman-
tic task, semantic role labeling (SRL) models have
traditionally been built upon syntactic parsing re-
sults (Gildea and Jurafsky, 2002; Gildea and Palmer,
2002; Punyakanok et al., 2005). It has been shown
that parser output features play a crucial role for ac-
curate SRL (Pradhan et al., 2005; Surdeanu et al.,
2007).

On the reverse direction, semantic role features
have been used to improve parsing (Boxwell et al.,
2010). Existing methods typically use semantic fea-
tures to rerank n-best lists of syntactic parsing mod-
els (Surdeanu et al., 2008; Hajič et al., 2009). There
has also been attempts to learn syntactic parsing and
semantic role labeling models jointly, but most such
efforts have led to negative results (Sutton and Mc-
Callum, 2005; Van Den Bosch et al., 2012; Boxwell
et al., 2010).

∗Work done while the first author was visiting SUTD.

With the rise of deep learning, neural network
models have been used for semantic role label-
ing (Collobert et al., 2011). Recently, it has been
shown that a neural semantic role labeler can give
state-of-the-art accuracies without using parser out-
put features, thanks to the use of recurrent neural
network structures that automatically capture syn-
tactic information (Zhou and Xu, 2015; Wang et al.,
2015). In the parsing domain, neural network mod-
els have also been shown to give state-of-the-art re-
sults recently (Dyer et al., 2015; Weiss et al., 2015;
Zhou et al., 2015).

The availability of parser-independent neural SRL
models allows parsing and SRL to be performed
by both parsing→SRL and SRL→parsing pipelines,
and gives rise to the interesting research question
whether mutual benefits between syntax and seman-
tic roles can be better exploited under the neural
setting. Different from traditional models that rely
on manual feature combinations for joint learning
tasks (Sutton and McCallum, 2005; Zhang and
Clark, 2008a; Finkel and Manning, 2009; Lewis et
al., 2015), neural network models induce non-linear
feature combinations automatically from input word
and Part-of-Speech (POS) embeddings. This al-
lows more complex feature sharing between multi-
ple tasks to be achieved effectively (Collobert et al.,
2011).

We take a first step1 in such investigation by cou-

1Recently, Swayamdipta et al. (2016) independently pro-
posed a similar idea to perform joint syntactic and semantic
dependency parsing. Their work mainly focuses on extending
actions of a greedy transition-based parser to support the joint
task, achieving good performance on an English shared task,
while we use a neural network for multi-task learning and we

968

pling a state-of-the-art neural semantic role labeler
(Wang et al., 2015) and a state-of-the-art neural
parser (Dyer et al., 2015). First, we propose a novel
parsing→SRL pipeline using a tree Long Short-
Term Memory (LSTM) model (Tai et al., 2015) to
represent parser outputs, before feeding them to the
neural SRL model as inputs. Second, we investigate
a SRL→parsing pipeline, using semantic role label
embeddings to enrich parser features. Third, we
build a joint training model by embedding sharing,
which is the most shallow level of parameter sharing
between deep neural networks. This simple strat-
egy is immune to significant differences between the
network structures of the two models, which pre-
vent direct sharing of deeper network parameters.
We choose a Chinese semantic role treebank (Qiu et
al., 2016) for preliminary experiments, which offers
consistent dependency between syntax and seman-
tic role representations, thereby facilitates the ap-
plication of standard LSTM models. Results show
that the methods give improvements to both parsing
and SRL accuracies, demonstrating large potentials
of neural networks for the joint task.

Our contributions can be summarized as:
•We show that the state-of-the-art LSTM seman-

tic role labeler of Zhou and Xu (2015), which has
been shown to be able to induce syntactic features
automatically, can still be improved using parser
output features via tree LSTM (Tai et al., 2015);
•We show that state-of-the-art neural parsing can

be improved by using semantic role features;
•We show that parameter sharing between neural

parsing and SRL improves both sub tasks, which is
in line with the observation of Collobert et al. (2011)
between POS tagging, chunking and SRL.
• Our code and all models are released at

https://github.com/ShiPeng95/ShallowJoint.

2 Models

2.1 Semantic Role Labeler

We employ the SRL model of Wang et al. (2015),
which uses a bidirectional Long Short-term Mem-
ory (Hochreiter and Schmidhuber, 1997; Graves
and Schmidhuber, 2005; Graves et al., 2013) for se-
quential labeling.

work on a Chinese dataset.

Figure 1: Bi-LSTM Semantic Role Labeler

Given the sentence “人类(human) 的(de) 发
展(development) 面临(face) 挑战(challenge)”, the
structure of the model is shown in Figure 1. For
each word wt, the LSTM model uses a set of vec-
tors to control information flow: an input gate it, a
forget gate ft, a memory cell ct, an output gate ot,
and a hidden state ht. The computation of each vec-
tor is as follows:

it = σ(W (i)xt + U (i)ht−1 + V (i)ct−1 + b(i))

ft = 1.0− it
ct = ft � ct−1 + it � tanh(W (u)xt + U (u)ht−1 + b(u))

ot = σ(W (o)xt + U (o)ht−1 + V (o)ct + b(o))

ht = ot � tanh(ct)

Here σ denotes component-wise sigmoid function
and � is component-wise multiplication.

The representation of xt is from four sources: an
embedding for the word wt, two hidden states of
the last LSTM cells in a character-level bidirectional
LSTM (Ballesteros et al., 2015) (denoted as

−→
cht

and
←−
cht, respectively), and a learned vector Part-of-

Speech (POS) representation (post). A linear trans-
formation is applied to the vector representations
before feeding them into a component-wise ReLU
(Nair and Hinton, 2010) function.

xt = max{0, V (x)[wt;
−→
cht;
←−
cht; post] + b(x)}

The hidden state vectors at the t-th word from both
directions (denote as

−→
ht and

←−
ht , respectively) are

passed through the ReLU function, before a softmax
layer for semantic role detection.

2.2 Stack-LSTM Dependency Parser
We employ the Stack-LSTM model of Dyer et al.
(2015) for dependency parsing. As shown in Figure
2, it uses a buffer (B) to order input words, a stack
(S) to store partially constructed syntactic trees, and

969

Figure 2: Stack-LSTM Parser

takes the following types of actions to build trees
from input.
• SHIFT, which pops the top element off the

buffer, pushing it into stack.
• REDUCE-LEFT/REDUCE-RIGHT, which

pop the top two elements off the stack, pushing back
the composition of the two elements with a depen-
dent relation.

The parser is initialized by pushing input embed-
dings into the buffer in the reverse order. The repre-
sentation of the token is same as the previous bidi-
rectional LSTM (Bi-LSTM) model. The buffer (B),
stack (S) and action history sequence (A) are all rep-
resented by LSTMs, with S being represented by a
novel stack LSTM. At a time step t, the parser pre-
dicts an action according to current parser state pt:

pt = max{0,W (parser)[st; bt; at] + dp},
y

(parser)
t = softmax(V (parser)pt + dy)

W , V and d are model parameters.

2.3 DEP→SRL Pipeline

In this pipeline model, we apply Stack-LSTM pars-
ing first and feed the results as additional features
for SRL. For each word wt to the SRL system, the
corresponding input becomes,

x
(dep)
t = max{0, V (dep)[wt;

−→
cht;
←−
cht; post;dept]}

where dept is the t-th word’s dependency informa-
tion from parser output and V (dep) is a weight ma-
trix. There are multiple ways to define dept. A sim-
ple method is to use embeddings of the dependency
label at wt. However, this input does not embody
full arc information.

We propose a novel way of defining dept̄, by us-
ing hidden vector ht̄ of a dependency tree LSTM

(Tai et al., 2015) at wt̄ as dept̄. Given a depen-
dency tree output, we define tree LSTM inputs xt̄
in the same way as Section 2.1. The tree LSTM is
a bottom-up generalization of the sequence LSTM,
with a node ht̄ having multiple predecessors hkt̄−1,
which corresponding to the syntactic dependents of
the word wt̄. The computation of ht̄ for each wt̄ is
(unlike t, which is a left-to-right index, t̄ is a bottom-
up index, still with one ht̄ being computed for each
wt̄):

h̃t̄−1 =
∑

k

hkt̄−1

it̄ = σ(W (i)xt̄ + U (i)h̃t̄−1 + b(i))

ft̄k=σ(W (f)xt̄+U
(f)hk

t̄−1
+b(f))

c
t̄=

∑
k f

k
t̄
�ck

t̄−1
+it̄�tanh(W (u)xt̄+U

(u)h̃t̄−1+b(u))

o
t̄=σ(W (o)xt̄+U

(o)h̃t̄−1+b(o))

ht̄=ot̄�tanh(ct̄)

For training, we construct a corpus with all words
being associated with automatic dependency labels
by applying 10-fold jackknifing.

2.4 SRL→DEP Pipeline
In this pipeline model, we conduct SRL first, and
feed the output semantic roles to the Stack-LSTM
parser in the token level. The representation of a
token becomes:

x
(srl)
t = max{0, V (srl)[wt;

−→
cht;
←−
cht; post; srlt]}

where srlt is the t-th word’s predicted semantic role
embedding and V (srl) is a weight matrix.

For training, we construct a training corpus with
automatically tagged semantic role labels by using
10-fold jackknifing.

2.5 Joint Model by Parameter Sharing
The structure of the joint system is shown in Fig-
ure 3. Here the parser and semantic role labeler are
coupled in the embedding layer, sharing the vector
lookup tables for characters, words and POS. More
specifically, the Bi-LSTM model of Section 2.1 and
the Stack-LSTM model of Section 2.2 are used for
the SRL task and the parsing task, respectively. The
Bi-LSTM labeler and Stack-LSTM parser share the
embedding layer. During training, we maximize the

970

Figure 3: Joint Multi-task Model

sum of log-likelihood for the two different tasks.
The loss from the semantic role labeler and the
parser both propagate to the embedding layer, re-
sulting in a better vector representation of each to-
ken, which benefits both tasks at the same time. On
the other hand, due to different neural structures,
there is no sharing of other parameters. The joint
model offers the simplest version of shared training
(Collobert et al., 2011), but does not employ shared
decoding (Sutton and McCallum, 2005; Zhang and
Clark, 2008b). Syntax and semantic roles are as-
signed separately, avoiding error propagation.

3 Experiments

3.1 Experimental Settings

Datasets We choose Chinese Semantic Tree-
bank (Qiu et al., 2016) for our experiments. Similar
to the CoNLL corpora (Surdeanu et al., 2008; Hajič
et al., 2009) and different from PropBank (Kings-
bury and Palmer, 2002; Xue and Palmer, 2005),
it is a dependency-based corpus rather than a
constituent-based corpus. The corpus contains syn-
tactic dependency arc and semantic role annotations
in a consistent form, hence facilitating the joint task.
We follow the standard split for the training, devel-
opment and test sets, as shown in Table 1.

Training Details. There is a large number of sin-
gletons in the training set and a large number of
out-of-vocabulary (OOV) words in the development
set. We use the mechanism of Dyer et al. (2015) to
stochastically set singletons as UNK token in each
training iteration with a probability punk. The hyper-
parameter punk is set to 0.2.

For parameters used in Stack-LSTM, we follow
Dyer et al. (2015). We set the number of embed-
dings by intuition, and decide to have the size of
word embedding twice as large as that of charac-

Dataset Words Types Singletons OOV
Train 280,043 24,866 12,012 -
Dev 23,724 5,492 - 1,505
Test 32,326 6,989 - 1,893

Table 1: Statistics of Chinese Semantic Treebank.

ter embedding, and the size of character embedding
larger than the size of POS embedding. More specif-
ically, we fix the size of word embeddings nw to 64,
character embeddings nchar to 32, POS embeddings
npos to 30, action embeddings ndep to 30, and se-
mantic role embeddings nsrl to 30. The LSTM input
size is set to 128 and the LSTM hidden size to 128.

We randomly initialize each parameter to a real

value in [−
√

6
r+c ,

√
6
r+c], where r is the number of

input unit and c is the number of output unit (Glo-
rot and Bengio, 2010). To minimize the influence
of external information, we did not pretrain the em-
bedding values. In addition, we apply a Gaussian
noise N(0, 0.2) to word embeddings during training
to prevent overfitting.

We optimize model parameters using stochastic
gradient descent with momentum. The same learn-
ing rate decay mechanism of Dyer et al. (2015) is
used. The best model parameters are selected ac-
cording to a score metric on the development set.
For different tasks, we use different score metrics to
evaluate the parameters. Since there are there met-
rics, F1, UAS and LAS, possibly reported at the
same time, we use the weighted average to con-
sider the effect of all metrics when choosing the best
model on the dev set. In particular, we use F1 for
SRL, 0.5 × LAS + 0.5 × UAS for parsing, and
0.5×F1 + 0.25×UAS+ 0.25×LAS for the joint
task.

3.2 Results

The final results are shown in Table 2, where F1 rep-
resents the F1-score of semantic roles, and UAS and
LAS represent parsing accuracies. The Bi-LSTM
row represents the bi-directional semantic role la-
beler, the S-LSTM row represents the Stack-LSTM
parser, the DEP→SRL row represents the depen-
dency parsing→ SRL pipeline, the SRL→DEP row
represents the SRL→ dependency parsing pipeline,
and the Joint row represents the parameter-shared
model. For the DEP→SRL pipeline, lab and lstm

971

Model F1 UAS LAS
Bi-LSTM 72.71 - -
S-LSTM - 84.33 82.10
DEP→SRL(lab/lstm) 73.00/74.18 84.33 82.10
SRL→DEP 72.71 84.75 82.62
Joint 73.84 85.15 82.91

Table 2: Results. Bi-LSTM and S-LSTM are two baseline

models for SRL and parsing, respectively. DEP→SRL and

SRL→DEP are two pipeline models. ‘Joint’ denotes the pro-

posed model for joint parsing and semantic role labeling. lab

uses only the dependency label as features, while lstm applies

features extracted from dependency trees using tree LSTMs.

represents the use of dependency label embeddings
and tree LSTM hidden vectors for the additional
SRL features dept, respectively.

Comparison between Bi-LSTM and DEP→SRL
shows that slight improvement is brought by intro-
ducing dependency label features to the semantic
role labeler (72.71→73.00). By introducing full
tree information, the lstm integration leads to much
higher improvements (72.71→74.18). This demon-
strates that the LSTM SRL model of Zhou and Xu
(2015) can still benefit from parser outputs, despite
that it can learn syntactic information independently.

In the reverse direction, comparison between
S-LSTM and SRL→DEP shows improvement to
UAS/LAS by integrating semantic role features
(82.10→82.62). This demonstrates the usefulness
of semantic roles to parsing and is consistent with
observations on discrete models (Boxwell et al.,
2010). To our knowledge, we are the first to report
results using a SRL → Parsing pipeline, which is
enabled by the neural SRL model.

Using shared embeddings, the joint model gives
improvements on both SRL and parsing. The most
salient difference between the joint model and the
two pipelines is the shared parameter space.

These results are consistent with the finds of Col-
lobert et al. (2011) who show that POS, chunking
and semantic role information can bring benefit to
each other in joint neural training. In contrast to their
results (SRL 74.15→74.29, POS 97.12→97.22,
CHUNK 93.37→93.75), we find that parsing and
SRL benefit relatively more from each other (SRL
72.72→73.84, DEP 84.33→85.15). This is intuitive
because parsing offers deeper syntactic information
compared to POS and shallow syntactic chunking.

4 Conclusion

We investigated the mutual benefits between depen-
dency syntax and semantic roles using two state-of-
the-art LSTM models, finding that both can be fur-
ther improved. In addition, simple multitask learn-
ing is also effective. These results demonstrate po-
tentials for deeper joint neural models between these
tasks.

Acknowledgments

Yue Zhang is the corresponding author. This
research is supported by NSFC61572245 and
T2MOE201301 from Singapore Ministry of Educa-
tion. We appreciate anonymous reviewers for their
insightful comments.

References
Miguel Ballesteros, Chris Dyer, and Noah A Smith.

2015. Improved transition-based parsing by modeling
characters instead of words with lstms. arXiv preprint
arXiv:1508.00657.

Stephen A Boxwell, Dennis N Mehay, and Chris Brew.
2010. What a parser can learn from a semantic role la-
beler and vice versa. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 736–744. Association for Compu-
tational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proc. ACL.

Jenny Rose Finkel and Christopher D Manning. 2009.
Joint parsing and named entity recognition. In Pro-
ceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
326–334. Association for Computational Linguistics.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling of semantic roles. Computational linguistics,
28(3):245–288.

Daniel Gildea and Martha Palmer. 2002. The necessity
of parsing for predicate argument recognition. In Pro-
ceedings of the 40th Annual Meeting on Association
for Computational Linguistics, pages 239–246. Asso-
ciation for Computational Linguistics.

972

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In International conference on artificial in-
telligence and statistics, pages 249–256.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5):602–610.

A. Graves, A. Mohamed, and G. Hinton. 2013. Speech
recognition with deep recurrent neural networks.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
Padó, Jan Štěpánek, et al. 2009. The conll-2009
shared task: Syntactic and semantic dependencies
in multiple languages. In Proceedings of the Thir-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task, pages 1–18. Associa-
tion for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Paul Kingsbury and Martha Palmer. 2002. From tree-
bank to propbank. In LREC. Citeseer.

Mike Lewis, Luheng He, and Luke Zettlemoyer. 2015.
Joint a* ccg parsing and semantic role labelling.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1444–1454, Lisbon, Portugal, September. Association
for Computational Linguistics.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified lin-
ear units improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pages 807–814.

Sameer Pradhan, Kadri Hacioglu, Wayne Ward, James H
Martin, and Daniel Jurafsky. 2005. Semantic role
chunking combining complementary syntactic views.
In Proceedings of the Ninth Conference on Compu-
tational Natural Language Learning, pages 217–220.
Association for Computational Linguistics.

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. 2005.
The necessity of syntactic parsing for semantic role la-
beling. In IJCAI, volume 5, pages 1117–1123.

Likun Qiu, Yue Zhang, and Meishan Zhang. 2016. De-
pendency tree representations of predicate-argument
structures. In Proc. AAAI.

Mark Steedman. 2000. The syntactic process, vol-
ume 24. MIT Press.

Mihai Surdeanu, Lluı́s Màrquez, Xavier Carreras, and
Pere R Comas. 2007. Combination strategies for se-
mantic role labeling. Journal of Artificial Intelligence
Research, pages 105–151.

Mihai Surdeanu, Richard Johansson, Adam Meyers,
Lluı́s Màrquez, and Joakim Nivre. 2008. The
conll-2008 shared task on joint parsing of syntac-
tic and semantic dependencies. In Proceedings of
the Twelfth Conference on Computational Natural
Language Learning, pages 159–177. Association for
Computational Linguistics.

Charles Sutton and Andrew McCallum. 2005. Joint
parsing and semantic role labeling. In Proceedings
of the Ninth Conference on Computational Natural
Language Learning, pages 225–228. Association for
Computational Linguistics.

Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer,
and Noah A Smith. 2016. Greedy, joint syntactic-
semantic parsing with stack lstms. arXiv preprint
arXiv:1606.08954.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1556–1566,
Beijing, China, July. Association for Computational
Linguistics.

Antal Van Den Bosch, Roser Morante, and Sander Cani-
sius. 2012. Joint learning of dependency parsing and
semantic role labeling. Computational Linguistics in
the Netherlands Journal, 2:97–117.

Zhen Wang, Tingsong Jiang, Baobao Chang, and Zhi-
fang Sui. 2015. Chinese semantic role labeling with
bidirectional recurrent neural networks. In Proc. of
the 2015 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1626–1631.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Pa-
pers), pages 323–333, Beijing, China, July. Associa-
tion for Computational Linguistics.

Nianwen Xue and Martha Palmer. 2005. Automatic se-
mantic role labeling for chinese verbs. In IJCAI, vol-
ume 5, pages 1160–1165. Citeseer.

Yue Zhang and Stephen Clark. 2008a. Joint word seg-
mentation and pos tagging using a single perceptron.
In ACL, pages 888–896.

Yue Zhang and Stephen Clark. 2008b. A tale of
two parsers: investigating and combining graph-based
and transition-based dependency parsing using beam-
search. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, pages
562–571. Association for Computational Linguistics.

973

Jie Zhou and Wei Xu. 2015. End-to-end learning of se-
mantic role labeling using recurrent neural networks.
In Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics.

Hao Zhou, Yue Zhang, and Jiajun Chen. 2015. A
neural probabilistic structured-prediction model for
transition-based dependency parsing. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics, pages 1213–1222.

974

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 975–980,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

The Effects of Data Size and Frequency Range
on Distributional Semantic Models

Magnus Sahlgren
Gavagai and SICS

Slussplan 9, Box 1263
111 30 Stockholm, 164 29 Kista

Sweden
mange@[gavagai|sics].se

Alessandro Lenci
University of Pisa
via Santa Maria 36

56126 Pisa
Italy

alessandro.lenci@unipi.it

Abstract

This paper investigates the effects of data size
and frequency range on distributional seman-
tic models. We compare the performance of
a number of representative models for several
test settings over data of varying sizes, and
over test items of various frequency. Our re-
sults show that neural network-based models
underperform when the data is small, and that
the most reliable model over data of varying
sizes and frequency ranges is the inverted fac-
torized model.

1 Introduction

Distributional Semantic Models (DSMs) have be-
come a staple in natural language processing. The
various parameters of DSMs — e.g. size of con-
text windows, weighting schemes, dimensionality
reduction techniques, and similarity measures —
have been thoroughly studied (Weeds et al., 2004;
Sahlgren, 2006; Riordan and Jones, 2011; Bulli-
naria and Levy, 2012; Levy et al., 2015), and are
now well understood. The impact of various pro-
cessing models — matrix-based models, neural net-
works, and hashing methods — have also enjoyed
considerable attention lately, with at times conflict-
ing conclusions (Baroni et al., 2014; Levy et al.,
2015; Schnabel et al., 2015; Österlund et al., 2015;
Sahlgren et al., 2016). The consensus interpretation
of such experiments seems to be that the choice of
processing model is less important than the parame-
terization of the models, since the various processing
models all result in more or less equivalent DSMs
(provided that the parameterization is comparable).

One of the least researched aspects of DSMs is
the effect on the various models of data size and
frequency range of the target items. The only pre-
vious work in this direction that we are aware of
is Asr et al. (2016), who report that on small data
(the CHILDES corpus), simple matrix-based mod-
els outperform neural network-based ones. Unfor-
tunately, Asr et al. do not include any experiments
using the same models applied to bigger data, mak-
ing it difficult to compare their results with previous
studies, since implementational details and parame-
terization will be different.

There is thus still a need for a consistent and fair
comparison of the performance of various DSMs
when applied to data of varying sizes. In this pa-
per, we seek an answer to the question: which DSM
should we opt for if we only have access to lim-
ited amounts of data? We are also interested in the
related question: which DSM should we opt for if
our target items are infrequent? The latter ques-
tion is particularly crucial, since one of the major as-
sets of DSMs is their applicability to create seman-
tic representations for ever-expanding vocabularies
from text feeds, in which new words may continu-
ously appear in the low-frequency ranges.

In the next section, we introduce the contend-
ing DSMs and the general experiment setup, before
turning to the experiments and our interpretation of
the results. We conclude with some general advice.

2 Distributional Semantic Models

One could classify DSMs in many different ways,
such as the type of context and the method to build
distributional vectors. Since our main goal here is

975

to gain an understanding of the effect of data size
and frequency range on the various models, we fo-
cus primarily on the differences in processing mod-
els, hence the following typology of DSMs.

Explicit matrix models
We here include what could be referred to as ex-
plicit models, in which each vector dimension cor-
responds to a specific context (Levy and Goldberg,
2014). The baseline model is a simple co-occurrence
matrix F (in the following referred to as CO for Co-
Occurrence). We also include the model that results
from applying Positive Pointwise Mutual Informa-
tion (PPMI) to the co-occurrence matrix. PPMI is de-
fined as simply discarding any negative values of the
PMI, computed as:

PMI(a, b) = log
fab × T
fafb

(1)

where fab is the co-occurrence count of word a and
word b, fa and fb are the individual frequencies of
the words, and T is the number of tokens in the
data.1

Factorized matrix models
This type of model applies an additional factor-
ization of the weighted co-occurrence counts. We
here include two variants of applying Singular Value
Decomposition (SVD) to the PPMI-weighting co-
occurrence matrix; one version that discards all but
the first couple of hundred latent dimensions (TSVD

for truncated SVD), and one version that instead re-
moves the first couple of hundred latent dimensions
(ISVD for inverted SVD). SVD is defined in the stan-
dard way:

F = UΣV T (2)

where U holds the eigenvectors of F , Σ holds the
eigenvalues, and V ∈ U(w) is a unitary matrix map-
ping the original basis of F into its eigenbasis. Since
V is redundant due to invariance under unitary trans-
formations, we can represent the factorization of F̂
in its most compact form F̂ ≡ UΣ.

1We also experimented with smoothed PPMI, which raises
the context counts to the power of α and normalizes them (Levy
et al., 2015), thereby countering the tendency of mutual infor-
mation to favor infrequent events: f(b) = #(b)α∑

b#(b)α
, but it did

not lead to any consistent improvements compared to PPMI.

Hashing models
A different approach to reduce the dimensionality of
DSMs is to use a hashing method such as Random
Indexing (RI) (Kanerva et al., 2000), which accumu-
lates distributional vectors ~d(a) in an online fashion:

~d(a)← ~d(ai)+
c∑

j=−c,j 6=0

w(x(i+j))πj~r(x(i+j)) (3)

where c is the extension of the context window, w(b)
is a weight that quantifies the importance of context
term b,2 ~rd(b) is a sparse random index vector that
acts as a fingerprint of context term b, and πj is a per-
mutation that rotates the random index vectors one
step to the left or right, depending on the position of
the context items within the context windows, thus
enabling the model to take word order into account
(Sahlgren et al., 2008).

Neural network models
There are many variations of DSMs that use neural
networks as processing model, ranging from simple
recurrent networks (Elman, 1990) to more complex
deep architectures (Collobert and Weston, 2008).
The incomparably most popular neural network
model is the one implemented in the word2vec li-
brary, which uses the softmax for predicting b given
a (Mikolov et al., 2013):

p(b|a) =
exp(~b · ~a)

∑
b′∈C exp(~b′ · ~a)

(4)

where C is the set of context words, and~b and ~a are
the vector representations for the context and target
words, respectively. We include two versions of this
general model; Continuous Bag of Words (CBOW)
that predicts a word based on the context, and Skip-
Gram Negative Sampling (SGNS) that predicts the
context based on the current word.

3 Experiment setup

Since our main focus in this paper is the perfor-
mance of the above-mentioned DSMs on data of

2We use w(b) = e−λ·
f(b)
V where f(b) is the frequency of

context item b, V is the total number of unique context items
seen thus far (i.e. the current size of the growing vocabulary),
and λ is a constant that we set to 60 (Sahlgren et al., 2016).

976

varying sizes, we use one big corpus as starting
point, and split the data into bins of varying sizes.
We opt for the ukWaC corpus (Ferraresi et al., 2008),
which comprises some 1.6 billion words after to-
kenization and lemmatization. We produce sub-
corpora by taking the first 1 million, 10 million, 100
million, and 1 billion words.

Since the co-occurrence matrix built from the
1 billion-word ukWaC sample is very big (more
than 4,000,000 × 4,000,000), we prune the co-
occurrence matrix to 50,000 dimensions before the
factorization step by simply removing infrequent
context items.3 As comparison, we use 200 di-
mensions for TSVD, 2,800 (3,000-200) dimensions
for ISVD, 2,000 dimensions for RI, and 200 dimen-
sions for CBOW and SGNS. These dimensionalities
have been reported to perform well for the respec-
tive models (Landauer and Dumais, 1997; Sahlgren
et al., 2008; Mikolov et al., 2013; Österlund et al.,
2015). All DSMs use the same parameters as far as
possible with a narrow context window of±2 words,
which has been shown to produce good results in se-
mantic tasks (Sahlgren, 2006; Bullinaria and Levy,
2012).

We use five standard benchmark tests in these
experiments; two multiple-choice vocabulary tests
(the TOEFL synonyms and the ESL synonyms),
and three similarity/relatedness rating benchmarks
(SimLex-999 (SL) (Hill et al., 2015), MEN (Bruni
et al., 2014), and Stanford Rare Words (RW) (Luong
et al., 2013)). The vocabulary tests measure the syn-
onym relation, while the similarity rating tests mea-
sure a broader notion of semantic similarity (SL and
RW) or relatedness (MEN).4 The results for the vo-
cabulary tests are given in accuracy (i.e., percentage
of correct answers), while the results for the similar-
ity tests are given in Spearman rank correlation.

4 Comparison by data size

Table 1 summarizes the results over the different test
settings. The most notable aspect of these results

3Such drastic reduction has a negative effect on the perfor-
mance of the factorized methods for the 1 billion word data, but
unfortunately is necessary for computational reasons.

4It is likely that the results on the similarity tests could be
improved by using a wider context window, but such improve-
ment would probably be consistent across all models, and is
thus outside the scope of this paper.

DSM TOEFL ESL SL MEN RW
1 million words

CO 17.50 20.00 −1.64 10.72 −3.96
PPMI 26.25 18.00 8.28 21.49 −2.57
TSVD 27.50 20.00 4.43 22.15 −1.56
ISVD 22.50 14.00 14.33 19.74 5.31
RI 20.00 16.00 5.65 17.94 1.92
SGNS 15.00 8.00 3.64 12.34 1.46
CBOW 15.00 10.00 −0.16 11.59 1.39

10 million words
CO 40.00 22.00 4.77 15.20 0.95
PPMI 52.50 38.00 26.44 39.83 4.00
TSVD 38.75 30.00 19.27 34.33 5.53
ISVD 45.00 44.00 30.19 44.21 9.88
RI 47.50 24.00 20.44 34.56 3.32
SGNS 43.75 42.00 28.30 26.59 2.38
CBOW 40.00 30.00 22.22 28.33 3.04

100 million words
CO 45.00 30.00 10.00 19.36 3.12
PPMI 66.25 54.00 33.75 46.74 15.05
TSVD 46.25 34.00 25.11 42.49 13.00
ISVD 66.25 66.00 40.98 54.55 21.27
RI 55.00 48.00 32.31 45.71 10.15
SGNS 65.00 58.00 40.75 52.83 11.73
CBOW 61.25 46.00 36.15 48.30 15.62

1 billion words
CO 55.00 40.00 11.85 21.83 6.82
PPMI 71.25 54.00 35.69 52.95 24.29
TSVD 56.25 46.00 31.36 52.05 13.35
ISVD 71.25 66.00 44.77 60.11 28.46
RI 61.25 50.00 35.35 50.51 18.58
SGNS 76.25 66.00 41.94 67.03 24.50
CBOW 75.00 56.00 38.31 59.84 22.80
Table 1: Results for DSMs trained on data of varying sizes.

is that the neural networks models do not produce
competitive results for the smaller data, which cor-
roborates the results by Asr et al. (2016). The best
results for the smallest data are produced by the fac-
torized models, with both TSVD and ISVD produc-
ing top scores in different test settings. It should
be noted, however, that even the top scores for the
smallest data set are substandard; only two models
(PPMI and TSVD) manage to beat the random base-
line of 25% for the TOEFL tests, and none of the
models manage to beat the random baseline for the
ESL test.

The ISVD model produces consistently good re-
sults; it yields the best overall results for the 10 mil-

977

0

20

40

60

80

100

1M 10M 100M 1G
,

CO
PMI

TSVD
ISVD

RI
SGNS

CBOW

Figure 1: Average results and standard deviation over all tests.

lion and 100 million-word data, and is competitive
with SGNS on the 1 billion word data. Figure 1
shows the average results and their standard devi-
ations over all test settings.5 It is obvious that there
are no huge differences between the various models,
with the exception of the baseline CO model, which
consistently underperforms. The TSVD and RI mod-
els have comparable performance across the differ-
ent data sizes, which is systematically lower than the
PPMI model. The ISVD model is the most consis-
tently good model, with the neural network-based
models steadily improving as data becomes bigger.

Looking at the different datasets, SL and RW are
the hardest ones for all the models. In the case of
SL, this confirms the results in (Hill et al., 2015),
and might be due to the general bias of DSMs to-
wards semantic relatedness, rather than genuine se-
mantic similarity, as represented in SL. The substan-
dard performance on RW might instead be due to the
low frequency of the target items. It is interesting to
note that these are benchmark tests in which neural
models perform the worst even when trained on the
largest data.

5 Comparison by frequency range

In order to investigate how each model handles dif-
ferent frequency ranges, we split the test items into
three different classes that contain about a third of
the frequency mass of the test items each. This

5Although rank correlation is not directly comparable with
accuracy, they are both bounded between zero and one, which
means we can take the average to get an idea about overall per-
formance.

split was produced by collecting all test items into
a common vocabulary, and then sorting this vo-
cabulary by its frequency in the ukWaC 1 billion-
word corpus. We split the vocabulary into 3 equally
large parts; the HIGH range with frequencies rang-
ing from 3,515,086 (“do”) to 16,830 (“organism”),
the MEDIUM range with frequencies ranging be-
tween 16,795 (“desirable”) and 729 (“prickly”), and
the LOW range with frequencies ranging between
728 (“boardwalk”) to hapax legomenon. We then
split each individual test into these three ranges, de-
pending on the frequencies of the test items. Test
pairs were included in a given frequency class if and
only if both the target and its relatum occur in the
frequency range for that class. For the constituent
words in the test item that belong to different fre-
quency ranges, which is the most common case, we
use a separate MIXED class. The resulting four
classes contain 1,387 items for the HIGH range,
656 items for the MEDIUM range, 350 items for
the LOW range, and 3,458 items for the MIXED
range.6

Table 2 (next side) shows the average results over
the different frequency ranges for the various DSMs
trained on the 1 billion-word ukWaC data. We also
include the highest and lowest individual test scores
(signified by ↑ and ↓), in order to get an idea about
the consistency of the results. As can be seen in
the table, the most consistent model is ISVD, which
produces the best results in both the MEDIUM
and MIXED frequency ranges. The neural net-
work models SGNS and CBOW produce the best re-
sults in the HIGH and LOW range, respectively,
with CBOW clearly outperforming SGNS in the lat-
ter case. The major difference between these mod-
els is that CBOW predicts a word based on a con-
text, while SGNS predicts a context based on a word.
Clearly, the former approach is more beneficial for
low-frequent items.

The PPMI, TSVD and RI models perform simi-
larly across the frequency ranges, with RI produc-
ing somewhat lower results in the MEDIUM range,
and TSVD producing somewhat lower results in the
LOW range. The CO model underperforms in all
frequency ranges. Worth noting is the fact that all
models that are based on an explicit matrix (i.e. CO,

6233 test terms did not occur in the 1 billion-word corpus.

978

DSM HIGH MEDIUM LOW MIXED
CO 32.61 (↑62.5,↓04.6) 35.77 (↑66.6,↓21.2) 12.57 (↑35.7,↓00.0) 27.14 (↑56.6,↓07.9)
PPMI 55.51 (↑75.3,↓28.0) 57.83 (↑88.8,↓18.7) 25.84 (↑50.0,↓00.0) 47.73 (↑83.3,↓27.1)
TSVD 50.52 (↑70.9,↓23.2) 54.75 (↑77.9,↓24.1) 17.85 (↑50.0,↓00.0) 41.08 (↑56.6,↓19.6)
ISVD 63.31 (↑87.5,↓36.5) 69.25 (↑88.8,↓46.3) 10.94 (↑16.0,↓00.0) 57.24 (↑83.3,↓33.0)
RI 53.11 (↑62.5,↓30.1) 48.02 (↑72.2,↓20.4) 23.29 (↑39.0,↓00.0) 46.39 (↑66.6,↓21.0)
SGNS 68.81 (↑87.5,↓36.4) 62.00 (↑83.3,↓27.4) 18.76 (↑42.8,↓00.0) 56.93 (↑83.3,↓30.2)
CBOW 62.73 (↑81.2,↓31.9) 59.50 (↑83.3,↓32.4) 27.13 (↑78.5,↓00.0) 52.21 (↑76.6,↓25.9)

Table 2: Average results for DSMs over four different frequency ranges for the items in the TOEFL, ESL, SL, MEN, and RW tests.

All DSMs are trained on the 1 billion words data.

PPMI, TSVD and ISVD) produce better results in the
MEDIUM range than in the HIGH range.

The arguably most interesting results are in the
LOW range. Unsurprisingly, there is a gen-
eral and significant drop in performance for low
frequency items, but with interesting differences
among the various models. As already mentioned,
the CBOW model produces the best results, closely
followed by PPMI and RI. It is noteworthy that the
low-dimensional embeddings of the CBOW model
only gives a modest improvement over the high-
dimensional explicit vectors of PPMI. The worst re-
sults are produced by the ISVD model, which scores
even lower than the baseline CO model. This might
be explained by the fact that ISVD removes the la-
tent dimensions with largest variance, which are ar-
guably the most important dimensions for very low-
frequent items. Increasing the number of latent di-
mensions with high variance in the ISVD model im-
proves the results in the LOW range (16.59 when
removing only the top 100 dimensions).

6 Conclusion

Our experiments confirm the results of Asr et
al. (2016), who show that neural network-based
models are suboptimal to use for smaller amounts of
data. On the other hand, our results also show that
none of the standard DSMs work well in situations
with small data. It might be an interesting novel re-
search direction to investigate how to design DSMs
that are applicable to small-data scenarios.

Our results demonstrate that the inverted factor-
ized model (ISVD) produces the most robust results
over data of varying sizes, and across several dif-
ferent test settings. We interpret this finding as fur-

ther corroborating the results of Bullinaria and Levy
(2012), and Österlund et al. (2015), with the con-
clusion that the inverted factorized model is a robust
competitive alternative to the widely used SGNS and
CBOW neural network-based models.

We have also investigated the performance of the
various models on test items in different frequency
ranges, and our results in these experiments demon-
strate that all tested models perform optimally in the
medium-to-high frequency ranges. Interestingly, all
models based on explicit count matrices (CO, PPMI,
TSVD and ISVD) produce somewhat better results for
items of medium frequency than for items of high
frequency. The neural network-based models and
ISVD, on the other hand, produce the best results for
high-frequent items.

None of the tested models perform optimally
for low-frequent items. The best results for low-
frequent test items in our experiments were pro-
duced using the CBOW model, the PPMI model and
the RI model, all of which uses weighted context
items without any explicit factorization. By contrast,
the ISVD model underperforms significantly for the
low-frequent items, which we suggest is an effect of
removing latent dimensions with high variance.

This interpretation suggests that it might be inter-
esting to investigate hybrid models that use different
processing models — or at least different parame-
terizations — for different frequency ranges, and for
different data sizes. We leave this as a suggestion for
future research.

7 Acknowledgements

This research was supported by the Swedish Re-
search Council under contract 2014-28199.

979

References

Fatemeh Asr, Jon Willits, and Michael Jones. 2016.
Comparing predictive and co-occurrence based mod-
els of lexical semantics trained on child-directed
speech. In Proceedings of CogSci.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski.
2014. Don’t count, predict! a systematic compari-
son of context-counting vs. context-predicting seman-
tic vectors. In Proceedings of ACL, pages 238–247.

Elia Bruni, Nam Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of Arti-
ficial Intelligence Research, 49(1):1–47, January.

John Bullinaria and Joseph P. Levy. 2012. Extract-
ing semantic representations from word co-occurrence
statistics: stop-lists, stemming, and svd. Behavior Re-
search Methods, 44:890–907.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of ICML, pages 160–167.

Jeffrey L. Elman. 1990. Finding structure in time. Cog-
nitive Science, 14:179–211.

Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and
Silvia Bernardini. 2008. Introducing and evaluating
ukwac, a very large web-derived corpus of english.
Proceedings of WAC-4, pages 47–54.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Pentti Kanerva, Jan Kristofersson, and Anders Holst.
2000. Random indexing of text samples for latent se-
mantic analysis. In Proceedings of CogSci, page 1036.

Thomas K Landauer and Susan T. Dumais. 1997. A so-
lution to platos problem: The latent semantic analysis
theory of acquisition, induction, and representation of
knowledge. Psychological Review, 104(2):211–240.

Omer Levy and Yoav Goldberg. 2014. Linguistic regu-
larities in sparse and explicit word representations. In
Proceedings of CoNLL, pages 171–180.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associa-
tion for Computational Linguistics, 3:211–225.

Minh-Thang Luong, Richard Socher, and Christopher D.
Manning. 2013. Better word representations with re-
cursive neural networks for morphology. In Proceed-
ings of CoNLL, pages 104–113.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
Proceedings of NIPS, pages 3111–3119.

Arvid Österlund, David Ödling, and Magnus Sahlgren.
2015. Factorization of latent variables in distributional
semantic models. In Proceedings of EMNLP, pages
227–231.

Brian Riordan and Michael N. Jones. 2011. Redun-
dancy in perceptual and linguistic experience: Com-
paring feature-based and distributional models of se-
mantic representation. Topics in Cognitive Science,
3(2):303–345.

Magnus Sahlgren, Anders Holst, and Pentti Kanerva.
2008. Permutations as a means to encode order in
word space. In Proceedings of CogSci, pages 1300–
1305.

Magnus Sahlgren, Amaru Cuba Gyllensten, Fredrik
Espinoza, Ola Hamfors, Anders Holst, Jussi Karl-
gren, Fredrik Olsson, Per Persson, and Akshay
Viswanathan. 2016. The Gavagai Living Lexicon. In
Proceedings of LREC.

Magnus Sahlgren. 2006. The Word-Space Model. Phd
thesis, Stockholm University.

Tobias Schnabel, Igor Labutov, David Mimno, and
Thorsten Joachims. 2015. Evaluation methods for
unsupervised word embeddings. In Proceedings of
EMNLP, pages 298–307.

Julie Weeds, David Weir, and Diana McCarthy. 2004.
Characterising measures of lexical distributional simi-
larity. In Proceedings of COLING, pages 1015–1021.

980

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 981–986,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Multi-Granularity Chinese Word Embedding

Rongchao Yin†‡, Quan Wang†‡ , Rui Li†‡, Peng Li†‡∗, Bin Wang†‡
†Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

‡University of Chinese Academy of Sciences, Beijing 100049, China
{yinrongchao,wangquan,lirui,lipeng,wangbin}@iie.ac.cn

Abstract

This paper considers the problem of learning
Chinese word embeddings. In contrast to En-
glish, a Chinese word is usually composed of
characters, and most of the characters them-
selves can be further divided into components
such as radicals. While characters and radical-
s contain rich information and are capable of
indicating semantic meanings of words, they
have not been fully exploited by existing word
embedding methods. In this work, we propose
multi-granularity embedding (MGE) for Chi-
nese words. The key idea is to make full use of
such word-character-radical composition, and
enrich word embeddings by further incorpo-
rating finer-grained semantics from characters
and radicals. Quantitative evaluation demon-
strates the superiority of MGE in word sim-
ilarity computation and analogical reasoning.
Qualitative analysis further shows its capabili-
ty to identify finer-grained semantic meanings
of words.

1 Introduction

Word embedding, also known as distributed word
representation, is to represent each word as a real-
valued low-dimensional vector, through which the
semantic meaning of the word can be encoded. Re-
cent years have witnessed tremendous success of
word embedding in various NLP tasks (Bengio et al.,
2006; Mnih and Hinton, 2009; Collobert et al., 2011;
Zou et al., 2013; Kim, 2014; Liu et al., 2015; Iyyer
et al., 2015). The basic idea behind is to learn the
distributed representation of a word using its con-
text. Among existing approaches, the continuous
bag-of-words model (CBOW) and Skip-Gram mod-
el are simple and effective, capable of learning word
embeddings efficiently from large-scale text corpo-
ra (Mikolov et al., 2013a; Mikolov et al., 2013b).

∗Corresponding author: Peng Li.

Besides the success in English, word embedding
has also been demonstrated to be extremely useful
for Chinese language processing (Xu et al., 2015;
Yu et al., 2015; Zhou et al., 2015; Zou et al., 2013).
The work on Chinese generally follows the same
idea as on English, i.e., to learn the embedding of
a word on the basis of its context. However, in
contrast to English where words are usually taken
as basic semantic units, Chinese words may have a
complicated composition structure of their seman-
tic meanings. More specifically, a Chinese word is
often composed of several characters, and most of
the characters themselves can be further divided in-
to components such as radicals (部首).1 Both char-
acters and radicals may suggest the semantic mean-
ing of a word, regardless of its context. For exam-
ple, the Chinese word “吃饭 (have a meal)” con-
sists of two characters “ 吃 (eat)” and “饭 (meal)”,
where “ 吃 (eat)” has the radical of “口 (mouth)”,
and “饭 (meal)” the radical of “饣 (food)”. The se-
mantic meaning of “吃饭” can be revealed by the
constituent characters as well as their radicals.

Despite being the linguistic nature of Chinese and
containing rich semantic information, such word-
character-radical composition has not been fully ex-
ploited by existing approaches. Chen et al. (2015)
introduced a character-enhanced word embedding
model (CWE), which learns embeddings jointly for
words and characters but ignores radicals. Sun et al.
(2014) and Li et al. (2015) utilized radical informa-
tion to learn better character embeddings. Similarly,
Shi et al. (2015) split characters into small compo-
nents based on the Wubi method,2 and took into ac-
count those components during the learning process.
In their work, however, embeddings are learned on-
ly for characters. For a word, the embedding is gen-
erated by simply combining the embeddings of the
constituent characters. Since not all Chinese word-

1https://en.wikipedia.org/wiki/Radical (Chinese characters)
2 https://en.wikipedia.org/wiki/Wubi method

981

回家
(go back home)

会友
(meet friends)

口(eat) 饣(food)

回(go back)

家(home)

会(meet)

友(friends)

吃饭
(have a meal)

hidden layer

Word embeddings

Character embeddings

Radical embeddings

Hidden layer

Figure 1: A simple illustration of MGE, where embeddings

are learned jointly for words, characters, and radicals. Given

a sequence of words {“回家 (go back home)”, “吃饭 (have a

meal)”, “会友 (meet friends)”}, MGE predicts the central word

“吃饭” by using 1) the embedding composed by each context

word and its constituent characters, and 2) the embedding asso-

ciated with each radical detected in the target word.

s are semantically compositional (e.g., transliterated
words such as “苏打 (soda)”), embeddings obtained
in this way may be of low quality for these words.

In this paper, aiming at making full use of the se-
mantic composition in Chinese, we propose multi-
granularity embedding (MGE) which learns embed-
dings jointly for words, characters, and radicals. The
framework of MGE is sketched in Figure 1. Given a
word, we learn its embedding on the basis of 1) the
context words (blue bars in the figure), 2) their con-
stituent characters (green bars), and 3) the radicals
found in the target word (orange bars). Compared
to utilizing context words alone, MGE enriches the
embeddings by further incorporating finer-grained
semantics from characters and radicals. Similar
ideas of adaptively using multiple levels of embed-
dings have also been investigated in English recent-
ly (Kazuma and Yoshimasa, 2016; Miyamoto and
Cho, 2016).

We evaluate MGE with the benchmark tasks of
word similarity computation and analogical reason-
ing, and demonstrate its superiority over state-of-
the-art metods. A qualitative analysis further shows
the capability of MGE to identify finer-grained se-
mantic meanings of words.

2 Multi-Granularity Word Embedding

This section introduces MGE based on the contin-
uous bag-of-words model (CBOW) (Mikolov et al.,
2013b) and the character-enhanced word embedding

model (CWE) (Chen et al., 2015).
MGE aims at improving word embedding by

leveraging both characters and radicals. We denote
the Chinese word vocabulary as W , the character vo-
cabulary as C, and the radical vocabulary as R. Each
word wi ∈ W is associated with a vector embedding
wi, each character ci ∈ C a vector embedding ci,
and each radical ri ∈ R a vector embedding ri. Giv-
en a sequence of words D = {w1, · · · , wN}, MGE
predicts each word wi ∈ D conditioned on 1) con-
text words in a sliding window with size ℓ, denoted
as Wi = {wi−ℓ, ...wi−1, wi+1, ..., wi+ℓ}, 2) charac-
ters in each context word wj ∈ Wi, denoted as Cj ,
and 3) radicals in the target word wi, denoted as Ri.
See Figure 1 for a simple illustration.

More specifically, given the corpus D, MGE max-
imizes the overall log likelihood as follows:

L(D) =
∑

wi∈D
log p(wi|hi). (1)

Here hi is a hidden vector composed by the embed-
dings of context words, constituent characters, and
radicals, defined as:

hi=
1

2

[1

|Wi|
∑

wj∈Wi

(
wj⊕

1

|Cj |
∑

ck∈Cj

ck

)
+

1

|Ri|
∑

rk∈Ri

rk

]
. (2)

For each context word wj ∈ Wi, a word-character
composition (wj ⊕ 1

|Cj |
∑

c∈Cj
c) is first generated

by the embeddings of wj and its constituent charac-
ters Cj . These word-character compositions are then
combined with the radical embeddings in Ri to pre-
dict the target word. |Wi|/|Ri|/|Cj | is the cardinality
of Wi/Ri/Cj , and ⊕ is the composition operation.3

Given hi, the conditional probability p(wi|hi) is de-
fined by a softmax function:

p(wi|hi) =
exp(h⊤

i wi)∑
wi′∈W exp(h⊤

i wi′)
. (3)

We use negative sampling and stochastic gradient
descent to solve the optimization problem.

Note that 1) Not all Chinese words are semantical-
ly compositional, e.g., transliterated words and enti-
ty names. For such words we use neither characters
nor radicals. 2) A Chinese character usually plays

3There are a variety of options for ⊕, e.g., addition and con-
catenation. This paper follows (Chen et al., 2015) and uses the
addition operation.

982

different roles when it appears at different positions
within a word. We follow (Chen et al., 2015) and
design a position-based MGE model (MGE+P). The
key idea of MGE+P is to keep three embeddings for
each character, corresponding to its appearance at
the positions of “begin”, “middle”, and “end”. For
details, please refer to (Chen et al., 2015).

3 Experiments

We evaluate MGE with the tasks of word similarity
computation and analogical reasoning.

3.1 Experimental Setups

We select the Chinese Wikipedia Dump4 for embed-
ding learning. In preprocessing, we use the THU-
LAC tool5 to segment the corpus. Pure digit word-
s, non-Chinese words, and words whose frequencies
are less than 5 in the corpus are removed. We further
crawl from an online Chinese dictionary6 and build
a character-radical index with 20,847 characters and
269 radicals. We use this index to detect the radical
of each character in the corpus. As such, we get a
training set with 72,602,549 words, 277,200 unique
words, 8,410 unique characters, and 256 unique rad-
icals. Finally, we use THULAC to perform Chinese
POS tagging on the training set and identify all enti-
ty names. For these entity names, neither characters
nor radicals are considered during learning. Actual-
ly, Chen et al. (2015) categorized non-compositional
Chinese words into three groups, i.e., transliterat-
ed words, single-morpheme multi-character words,
and entity names. In their work, they used a human-
annotated corpus, manually determining each word
to be split or not. Since human annotation could be
time-consuming and labor intensive, we just consid-
er automatically identified entity names.

We compare MGE with CBOW (Mikolov et al.,
2013b)7 and CWE (Chen et al., 2015)8. Both CWE
and MGE are extensions of CBOW, with the for-
mer taking into account characters and the latter fur-
ther incorporating radical information. We further
consider position-based CWE and MGE, denoted as
CWE+P and MGE+P, respectively.We follow (Chen

4http://download.wikipedia.com/zhwiki
5http://thulac.thunlp.org/
6http://zd.diyifanwen.com/zidian/bs/
7https://code.google.com/p/word2vec/
8https://github.com/Leonard-Xu/CWE

Method WordSim-239 WordSim-293
k=100 k=200 k=100 k=200

CBOW 0.4917 0.4971 0.5667 0.5723
CWE 0.5121 0.5197 0.5511 0.5655
CWE+P 0.4989 0.5026 0.5427 0.5545
MGE 0.5670 0.5769 0.5555 0.5659
MGE+P 0.5511 0.5572 0.5530 0.5692

Table 1: Results on word similarity computation.

et al., 2015) and use the same hyperparameter set-
ting. For all the methods, we set the context window
size to 3, and select the embedding dimension k in
{100, 200}. During optimization, we use 10-word
negative sampling and fix the initial learning rate to
0.025.

3.2 Word Similarity Computation
This task is to evaluate the effectiveness of embed-
dings in preserving semantic relatedness between t-
wo words. We use the WordSim-240 and WordSim-
296 datasets9 provided by Chen et al. (2015) for e-
valuation, both containing Chinese word pairs with
human-labeled similarity scores. On WordSim-240
there is a pair containing new words (i.e., words
that have not appeared in the training set), and on
WordSim-296 there are 3 such pairs. We remove
these pairs from both datasets, and accordingly get
WordSim-239 and WordSim-293.

We compute the Spearman correlation coefficient
(Myers et al., 2010) between the similarity scores
given by the embedding models and those given by
human annotators. For the embedding models, the
similarity score between two words is calculated as
the cosine similarity between their embeddings. The
Spearman correlation coefficient is a nonparametric
measure of rank correlation, assessing how well the
relationship between two variables can be described.
The results are shown in Table 1.

From the results, we can see that 1) On WordSim-
239, MGE(+P) performs significantly better than
CWE(+P), which in turn outperforms CBOW. This
observation demonstrates the superiority of incor-
porating finer-grained semantics, particularly from
radicals. For example, MGE performs much better
on word pairs such as “银行 (bank)” and “钱 (mon-
ey)”, in which the two words share the same radi-
cal of “钅(gold)”. 2) On WordSim-293, MGE(+P)

9https://github.com/Leonard-Xu/CWE/tree/master/data

983

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

3 4 5 6 7S
p

ea
rm

an
 c

o
rr

el
at

io
n
 c

o
ef

fi
ci

en
t

context window size

CBOW CWE MGE

Figure 2: Word similarity computation results with different

context window sizes on WordSim-239 (k = 200).

performs equally well as CWE(+P), but both are s-
lightly worse than CBOW. The reason may be that
WordSim-293 contains a great many of word pairs in
which the two words belonging to different domain-
s, e.g., “公鸡 (rooster)” and “航程 (flying range)”.
These pairs usually get low human-labeled similari-
ty scores. However, splitting the words in such pairs
into characters, and further the characters into radi-
cals will not help to effectively identify the dissimi-
larity between them.10

We further investigate the influence of the context
window size in word similarity computation. Fig-
ure 2 gives the results of CBOW, CWE, and MGE
on WordSim-239, with the context window size set
in {3, 4, 5, 6, 7}. The results indicate that MGE per-
forms consistently better than CBOW and CWE on
this dataset, unaffected by varying the context win-
dow size.

3.3 Word Analogical Reasoning
This task evaluates the effectiveness of embeddings
in capturing linguistic regularities between pairs of
words, in the form of “伦敦 (London) :英国 (Eng-
land) ≈ 巴黎 (Paris) : 法国 (France)”. We use the
dataset provided by Chen et al. (2015) for evalua-
tion. It contains 1,124 analogies categorized into 3
types: 1) capitals of countries (677 groups); 2) s-
tates/provinces of cities (175 groups); and 3) family
relations (272 groups). All the words in this dataset

10This observation is inconsistent with that reported in (Chen
et al., 2015), which shows that CWE outperforms CBOW on
WordSim-296. The reason may be that Chen et al. (2015) used a
human-annotated corpus for embedding learning, and manually
determined each word to be split or not. In contrast, we use the
publicly available Chinese Wikipedia data, and automatically
segment the corpus and identify entity names (words that are
not to be split), without human annotation.

Method Total Capital State Family
CBOW 0.7498 0.8109 0.8400 0.5294
CWE 0.7248 0.8375 0.8541 0.3566
CWE+P 0.7391 0.8065 0.8114 0.5147
MGE 0.7524 0.8804 0.8686 0.3529
MGE+P 0.7720 0.8685 0.8857 0.4485

Table 2: Results on word analogical reasoning (k = 200).

are covered by the training set.
For each analogy “a : b ≈ c : d ”, we create a

question “a : b ≈ c : ? ”, and predict the answer as:
d∗ = arg maxw∈W cos (b−a+c,w). Here a, b, c,
w are the word embeddings, and cos(·, ·) the cosine
similarity. The question is considered to be correctly
answered if d∗ = d. We use accuracy as the evalua-
tion metric, and report the results in Table 2.

The results indicate that 1) MGE(+P) substantial-
ly outperforms the baseline methods on almost all
types of analogies (except for the Family type). This
again demonstrates the superiority of incorporating
radical information. 2) For the Capital and State
types, all the words are entity names for which nei-
ther characters nor radicals are used. MGE(+P) still
outperforms the baselines on these two types, show-
ing its capability to learn better embeddings even for
non-compositional words. 3) On the Family type,
both MGE(+P) and CWE(+P) perform worse than
CBOW. This may be caused by the inappropriate de-
composition of family words into characters. Con-
sider, for example, the question “叔叔 (uncle) : 阿
姨 (aunt) ≈王子 (prince) : ? ”. If we split “王子”
into “王 (king)” and “子 (son)”, we will more likely
to predict “ 女王 (queen)” rather than the correc-
t answer “公主 (princess)”, since “女王” contains
the character “ 女 (daughter)” which is usually the
antonym of “子 (son)”.

3.4 Case Study

Besides quantitative evaluation, this section further
provides qualitative analysis to show in what man-
ner the semantic meaning of a radical, character and
word can be captured by their embeddings.

Take the word “游泳 (swimming)” as an example.
Table 3 presents the words that are most similar to it
(with the highest cosine similarity between their em-
beddings), discovered by MGE, CWE, and CBOW.
The results show that 1) By incorporating the char-
acter information, MGE and CWE are capable of

984

MGE

潜泳(underwater swimming),畅泳(swimming happily)
爬泳(front crawl swimming),泳手(swimmer)
泳术(swimming skill),冬泳(winter swimming)
裸泳(swimming skill),田径(track and field)

CWE

潜泳(underwater swimming),畅泳(swimming happily)
爬泳(front crawl swimming),田径(track and field)
泳手(swimmer),习泳(learn to swim)
冬泳(winter swimming),泳术(swimming skill)

CBOW

田径(track and field),跳高(high jump)
跳水(diving),跳绳(rope skipping)
划船(boating),撑竿跳(pole vaulting)
皮划艇(canoeing),体操(gymnastics)

Table 3: The most similar words to “游泳 (swimming)”.

Radical 疒(illness)
佝(rickets)痼(chronic disease)

Closest 偻(bending one’s back)疠(epidemic disease)
characters 痨(tuberculosis)淬(quenching)

疥(scabies)痔(hemorrhoids)
佝偻(rickets)癣疥(ringworm scabies)

Closest 痘疤(pock)瘴疠(communicable subtropical disease)
words 疮痍(traumata)疮疤(scar)

痲疹(measles)疱疮(pemphigus)

Table 4: The most similar characters/words to “疒 (illness)”.

capturing finer-grained semantics that are more spe-
cific to the word. The top words discovered by them
are semantically related to “游泳 (swimming)” it-
self, e.g., “潜泳 (underwater swimming)” and “爬
泳 (front crawl swimming)”. But the top words dis-
covered by CBOW are just other types of sports in
parallel with “游泳 (swimming)”, e.g., “跳高 (high
jump)” and “跳水 (diving)”. 2) MGE performs even
better than CWE by further incorporating the radical
information. The less relevant word “ 田径 (track
and field)” is ranked 4th by CWE. But after introduc-
ing the radical “氵(water)”, MGE can successfully
rank “泳手 (swimmer)”, “泳术 (swimming skill)”,
and “冬泳 (winter swimming)” before it. All these
words contain the radical “氵(water)” and are more
relevant to “游泳 (swimming)”.

We further take the radical “疒 (illness)” as an ex-
ample, and list the most similar characters and words
discovered by MGE in Table 4. The similarity be-
tween a radical and a character/word is also defined
as the cosine similarity between their embeddings.
From the results, we can see that almost all the char-
acters and words are disease-related, e.g., “佝 (rick-
ets)”, “痨 (tuberculosis)”, and “癣疥 (ringworm s-
cabies)”, and most of them share the same radical
“疒 (illness)”. This observation demonstrates the ra-

tionality of embedding Chinese words, characters,
and radicals into the same vector space, and measur-
ing their similarities directly in that space. Note that
this operation might be problematic for English. For
example, it could be hard to figure out what kind of
similarity there is between the character “i” and the
word “ill”. But for Chinese, this problem might be
alleviated since characters and radicals themselves
contain rich semantic information.

4 Conclusion and Future Work

In this paper we propose a new approach to Chinese
word embedding, referred to as multi-granularity
embedding (MGE). MGE improves word embed-
ding by further leveraging both characters and radi-
cals, and hence makes full use of the word-character-
radical semantic composition. Experimental results
on word similarity computation and analogical rea-
soning demonstrate the superiority of MGE over
state-of-the-art methods. A qualitative analysis fur-
ther shows that by incorporating radical information
MGE can identify finer-grained semantic meanings
of words.

As future work, we would like to 1) Investigate
more complicate composition manners among radi-
cals, characters, and words, e.g., a hierarchical struc-
ture of them. 2) Explore the semantic composition
of higher level language units such as phrases, sen-
tences, and even documents.

5 Acknowledgement

We would like to thank the anonymous reviewers
for their insightful comments and suggestions. This
research is supported by the National Natural Sci-
ence Foundation of China (grant No. 61402465 and
No. 61402466) and the Strategic Priority Research
Program of the Chinese Academy of Sciences (grant
No. XDA06030200).

References

Yoshua Bengio, Holger Schwenk, Jean-Sébastien
Senécal, Fréderic Morin, and Jean-Luc Gauvain.
2006. Neural probabilistic language models. In
Innovations in Machine Learning, pages 137–186.

Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun, and
Huanbo Luan. 2015. Joint learning of character and

985

word embeddings. In Proceedings of the 24th Inter-
national Conference on Artificial Intelligence, pages
1236–1242.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing, pages 1681–1691.

Hashimoto Kazuma and Tsuruoka Yoshimasa. 2016.
Adaptive joint learning of compositional and non-
compositional phrase embeddings. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1746–1751.

Yanran Li, Wenjie Li, Fei Sun, and Sujian Li. 2015.
Component-enhanced chinese character embeddings.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 829–
834.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng,
Kevin Duh, and Ye-Yi Wang. 2015. Representation
learning using multi-task deep neural networks for se-
mantic classification and information retrieval. In Pro-
ceedings of the 2015 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 912–
921.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corra-
do, and Jeff Dean. 2013a. Distributed representations
of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems
26, pages 3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 746–751.

Yasumasa Miyamoto and Kyunghyun Cho. 2016. Gat-
ed word-character recurrent language model. arXiv
preprint arXiv:1606.01700.

Andriy Mnih and Geoffrey E. Hinton. 2009. A scalable
hierarchical distributed language model. In Advances

in Neural Information Processing Systems 21, pages
1081–1088.

Jerome L Myers, Arnold Well, and Robert Frederick
Lorch. 2010. Research design and statistical analy-
sis. Routledge.

Xinlei Shi, Junjie Zhai, Xudong Yang, Zehua Xie, and
Chao Liu. 2015. Radical embedding: Delving deeper
to chinese radicals. In Proceedings of the 53rd Annu-
al Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on
Natural Language Processing, pages 594–598.

Yaming Sun, Lei Lin, Nan Yang, Zhenzhou Ji, and Xiao-
long Wang, 2014. Radical-Enhanced Chinese Char-
acter Embedding, chapter Proceedings of the 21st In-
ternational Conference on Neural Information Pro-
cessing, pages 279–286.

Ruifeng Xu, Tao Chen, Yunqing Xia, Qin Lu, Bin Liu,
and Xuan Wang. 2015. Word embedding composition
for data imbalances in sentiment and emotion classifi-
cation. Cognitive Computation, 7(2):226–240.

Mo Yu, Matthew R. Gormley, and Mark Dredze. 2015.
Combining word embeddings and feature embeddings
for fine-grained relation extraction. In Proceedings of
the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1374–1379.

Guangyou Zhou, Tingting He, Jun Zhao, and Po Hu.
2015. Learning continuous word embedding with
metadata for question retrieval in community question
answering. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing, pages 250–259.

Will Y. Zou, Richard Socher, Daniel Cer, and Christo-
pher D. Manning. 2013. Bilingual word embeddings
for phrase-based machine translation. In Proceedings
of the 2013 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1393–1398.

986

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 987–992,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Numerically Grounded Language Models for Semantic Error Correction

Georgios P. Spithourakis and Isabelle Augenstein and Sebastian Riedel
Department of Computer Science

University College London
{g.spithourakis, i.augenstein, s.riedel}@cs.ucl.ac.uk

Abstract

Semantic error detection and correction is an
important task for applications such as fact
checking, speech-to-text or grammatical er-
ror correction. Current approaches gener-
ally focus on relatively shallow semantics and
do not account for numeric quantities. Our
approach uses language models grounded in
numbers within the text. Such groundings
are easily achieved for recurrent neural lan-
guage model architectures, which can be fur-
ther conditioned on incomplete background
knowledge bases. Our evaluation on clinical
reports shows that numerical grounding im-
proves perplexity by 33% and F1 for semantic
error correction by 5 points when compared
to ungrounded approaches. Conditioning on a
knowledge base yields further improvements.

1 Introduction

In many real world scenarios it is important to de-
tect and potentially correct semantic errors and in-
consistencies in text. For example, when clinicians
compose reports, some statements in the text may
be inconsistent with measurements taken from the
patient (Bowman, 2013). Error rates in clinical
data range from 2.3% to 26.9% (Goldberg et al.,
2008) and many of them are number-based errors
(Arts et al., 2002). Likewise, a blog writer may
make statistical claims that contradict facts recorded
in databases (Munger, 2008). Numerical concepts
constitute 29% of contradictions in Wikipedia and
GoogleNews (De Marneffe et al., 2008) and 8.8%
of contradictory pairs in entailment datasets (Dagan
et al., 2006).

Figure 1: Semantic error correction using language models.

“EF” is a clinical term and stands for “ejection fraction”.

These inconsistencies may stem from oversight,
lack of reporting guidelines or negligence. In fact
they may not even be errors at all, but point to inter-
esting outliers or to errors in a reference database. In
all cases, it is important to spot and possibly correct
such inconsistencies. This task is known as semantic
error correction (SEC) (Dahlmeier and Ng, 2011).

In this paper, we propose a SEC approach to sup-
port clinicians with writing patient reports. A SEC
system reads a patient’s structured background in-
formation from a knowledge base (KB) and their
clinical report. Then it recommends improvements
to the text of the report for semantic consistency. An
example of an inconsistency is shown in Figure 1.

987

The SEC system has been trained on a dataset of
records and learnt that the phrases “non dilated” and
“severely dilated” correspond to high and low val-
ues for “EF” (abbreviation for “ejection fraction”, a
clinical measurement), respectively. If the system
is then presented with the phrase “non dilated” in
the context of a low value, it will detect a seman-
tic inconsistency and correct the text to “severely di-
lated”.

Our contributions are: 1) a straightforward ex-
tension to recurrent neural network (RNN) language
models for grounding them in numbers available in
the text; 2) a simple method for modelling text con-
ditioned on an incomplete KB by lexicalising it; 3)
our evaluation on a semantic error correction task
for clinical records shows that our method achieves
F1 improvements of 5 and 6 percentage points with
grounding and KB conditioning, respectively, over
an ungrounded approach (F1 of 49%).

2 Methodology

Our approach to semantic error correction (Figure 1)
starts with training a language model (LM), which
can be grounded in numeric quantities mentioned in-
line with text (Subsection 2.1) and/or conditioned
on a potentially incomplete KB (Subsection 2.2).
Given a document for semantic checking, a hypoth-
esis generator proposes corrections, which are then
scored using the trained language model (Subsec-
tion 2.3). A final decision step involves accepting
the best scoring hypothesis.

2.1 Numerically grounded language modelling

Let {w1, ..., wT } denote a document, where wt is
the one-hot representation of the t-th token and V
is the vocabulary size. A neural LM uses a ma-
trix, Ein ∈ RD×V , to derive word embeddings,
ewt = Einwt. A hidden state from the previous time
step, ht−1, and the current word embedding, ewt , are
sequentially fed to an RNN’s recurrence function to
produce the current hidden state, ht ∈ RD. The con-
ditional probability of the next word is estimated as
softmax(Eoutht), where Eout ∈ RV×D is an output
embeddings matrix.

We propose concatenating a representation, ent , of
the numeric value of wt to the inputs of the RNN’s
recurrence function at each time step. Through this

Figure 2: A language model that is numerically grounded and

conditioned on a lexicalised KB. Examples of data in rounded

rectangles.

numeric representation, the model can generalise
to out-of-vocabulary numbers. A straightforward
representation is defining ent = float(wt), where
float(.) is a numeric conversion function that returns
a floating point number constructed from the string
of its input. If conversion fails, it returns zero.

The proposed mechanism for numerical ground-
ing is shown in Figure 2. Now the probability of
each next word depends on numbers that have ap-
peared earlier in the text. We treat numbers as a
separate modality that happens to share the same
medium as natural language (text), but can convey
exact measurements of properties of the real world.
At training time, the numeric representations medi-
ate to ground the language model in the real world.

2.2 Conditioning on incomplete KBs

The proposed extension can also be used in con-
ditional language modelling of documents given a
knowledge base. Consider a set of KB tuples accom-
panying each document and describing its attributes
in the form < attribute, value >, where attributes
are defined by a KB schema. We can lexicalise the
KB by converting its tuples into textual statements
of the form ”attribute : value”. An example of
how we lexicalise the KB is shown in Figure 2. The
generated tokens can then be interpreted for their
word embeddings and numeric representations. This

988

train dev test
#documents 11,158 1,625 3,220

#t
ok

en
s/

do
c

all 204.9 204.4 202.2
words 95.7% 95.7% 95.7%

numeric 4.3% 4.3% 4.3%

#u
ni

qu
e

to
ke

ns all 18,916 6,572 9,515
words 47.8% 58.25% 54.1%

numeric 52.24% 41.9% 45.81%

O
O

V

ra
te

all 5.0% 5.1% 5.2%
words 3.4% 3.5% 3.5%

numeric 40.4% 40.8% 41.8%
Table 1: Statistics for clinical dataset. Counts for non-numeric

(words) and numeric tokens reported as percentage of counts for

all tokens. Out-of-vocabulary (OOV) rates are for vocabulary of

1000 most frequent words in the train data.

approach can incorporate KB tuples flexibly, even
when values of some attributes are missing.

2.3 Semantic error correction
A statistical model chooses the most likely correc-
tion from a set of possible correction choices. If the
model scores a corrected hypothesis higher than the
original document, the correction is accepted.

A hypothesis generator function, G, takes the
original document, H0, as input and generates a
set of candidate corrected documents G(H0) =
{H1, ...,HM}. A simple hypothesis generator uses
confusion sets of semantically related words to pro-
duce all possible substitutions.

A scorer model, s, assigns a score s(Hi) ∈ R
to a hypothesis Hi. The scorer is based on a likeli-
hood ratio test between the original document (null
hypothesis, H0) and each candidate correction (al-
ternative hypotheses, Hi), i.e. s(Hi) = p(Hi)

p(H0)
. The

assigned score represents how much more probable
a correction is than the original document.

The probability of observing a document, p(Hi),
can be estimated using language models, or
grounded and conditional variants thereof.

3 Data

Our dataset comprises 16,003 clinical records from
the London Chest Hospital (Table 1). Each patient
record consists of a text report and accompanying
structured KB tuples. The latter describe 20 possible
numeric attributes (age, gender, etc.), which are also

description confusion set
intensifiers (adv): non, mildly, severely
intensifiers (adj): mild, moderate, severe

units: cm, mm, ml, kg, bpm
viability: viable, non-viable
quartiles: 25, 50, 75, 100

inequalities: <, >
Table 2: Confusion sets.

partly contained in the report. On average, 7.7 tuples
are completed per record. Numeric tokens constitute
only a small proportion of each sentence (4.3%), but
account for a large part of the unique tokens vocab-
ulary (>40%) and suffer from high OOV rates.

To evaluate SEC, we generate a “corrupted”
dataset of semantic errors from the test part of the
“trusted” dataset (Table 1, last column). We manu-
ally build confusion sets (Table 2) by searching the
development set for words related to numeric quanti-
ties and grouping them if they appear in similar con-
texts. Then, for each document in the trusted test
set we generate an erroneous document by sampling
a substitution from the confusion sets. Documents
with no possible substitution are excluded. The re-
sulting “corrupted” dataset is balanced, containing
2,926 correct and 2,926 incorrect documents.

4 Results and discussion

Our base LM is a single-layer long short-term mem-
ory network (LSTM, Hochreiter and Schmidhuber
(1997) with all latent dimensions (internal matrices,
input and output embeddings) set to D = 50. We
extend this baseline to a conditional variant by con-
ditioning on the lexicalised KB (see Section 2.2).
We also derive a numerically grounded model by
concatenating the numerical representation of each
token to the inputs of the base LM model (see Sec-
tion 2.1). Finally, we consider a model that is both
grounded and conditional (g-conditional).

The vocabulary contains the V = 1000 most fre-
quent tokens in the training set. Out-of-vocabulary
tokens are substituted with <num unk>, if nu-
meric, and <unk>, otherwise. We extract the
numerical representations before masking, so that
the grounded models can generalise to out-of-
vocabulary numbers. Models are trained to min-
imise token cross-entropy, with 20 epochs of back-

989

model tokens PP APP

base LM
all 14.96 22.11

words 13.93 17.94
numeric 72.38 2289.47

conditional
all 14.52 21.47

words 13.49 17.38
numeric 74.48 2355.77

grounded
all 9.91 14.66

words 9.28 11.96
numeric 42.67 1349.59

g-conditional
all 9.39 13.88

words 8.80 11.33
numeric 39.84 1260.28

Table 3: Language modelling evaluation results on the test set.

We report perplexity (PP) and adjusted perplexity (APP). Best

results in bold.

propagation and adaptive mini-batch gradient de-
scent (AdaDelta) (Zeiler, 2012).

For SEC, we use an oracle hypothesis generator
that has access to the groundtruth confusion sets (Ta-
ble 2). We estimate the scorer (Section 2.3) using the
trained base, conditional, grounded or g-conditional
LMs. As additional baselines we consider a scorer
that assigns random scores from a uniform distribu-
tion and always (never) scorers that assign the low-
est (highest) score to the original document and uni-
formly random scores to the corrections.

4.1 Experiment 1: Numerically grounded LM

We report perplexity and adjusted perplexity (Ue-
berla, 1994) of our LMs on the test set for all tokens
and token classes (Table 3). Adjusted perplexity is
not sensitive to OOV-rates and thus allows for mean-
ingful comparisons across token classes. Perplexi-
ties are high for numeric tokens because they form a
large proportion of the vocabulary. The grounded
and g-conditional models achieved a 33.3% and
36.9% improvement in perplexity, respectively, over
the base LM model. Conditioning without ground-
ing yields only slight improvements, because most
of the numerical values from the lexicalised KB are
out-of-vocabulary.

The qualitative example in Figure 3 demonstrates
how numeric values influence the probability of to-
kens given their history. We select a document from
the development set and substitute its numeric val-

Figure 3: Qualitative example. Template document and docu-

ment probabilities for<WORD>={‘non’, ‘mildly’, ‘severely’}
and varying numbers. Probabilities are renormalised over the

set of possible choices.

ues as we vary EF (the rest are set by solving
a known system of equations). The selected ex-
act values were unseen in the training data. We
calculate the probabilities for observing the docu-
ment with different word choices {“non”, “mildly”,
“severely”} under the grounded LM and find that
“non dilated” is associated with higher EF values.
This shows that it has captured semantic dependen-
cies on numbers.

4.2 Experiment 2: Semantic error correction

We evaluate SEC systems on the corrupted dataset
(Section 3) for detection and correction.

For detection, we report precision, recall and F1
scores in Table 4. Our g-conditional model achieves
the best results, a total F1 improvement of 2 points
over the base LM model and 7 points over the best
baseline. The conditional model without ground-
ing performs slightly worse in the F1 metric than
the base LM. Note that with more hypotheses the
random baseline behaves more similarly to always.
Our hypothesis generator generated on average 12
hypotheses per document. The results of never are
zero as it fails to detect any error.

For correction, we report mean average precision
(MAP) in addition to the same metrics as for detec-
tion (Table 5). The former measures the position
of the ranking of the correct hypothesis. The al-
ways (never) baseline ranks the correct hypothesis
at the top (bottom). Again, the g-conditional model

990

model P R F1
random 50.27 90.29 64.58
always 50.00 100.0 66.67

never 0.0 0.0 0.0
base LM 57.51 94.05 71.38

conditional 56.86 94.43 70.98
grounded 58.87 94.70 72.61

g-conditional 60.48 95.25 73.98
Table 4: Error detection results on the test set. We report preci-

sion (P), recall (R) and F1. Best results in bold.

yields the best results, achieving an improvement of
6 points in F1 and 5 points in MAP over the base
LM model and an improvement of 47 points in F1
and 9 points in MAP over the best baseline. The
conditional model without grounding has the worst
performance among the LM-based models.

5 Related Work

Grounded language models represent the relation-
ship between words and the non-linguistic con-
text they refer to. Previous work grounds lan-
guage on vision (Bruni et al., 2014; Socher et al.,
2014; Silberer and Lapata, 2014), audio (Kiela and
Clark, 2015), video (Fleischman and Roy, 2008),
colour (McMahan and Stone, 2015), and olfactory
perception (Kiela et al., 2015). However, no pre-
vious approach has explored in-line numbers as a
source of grounding.

Our language modelling approach to SEC is in-
spired by LM approaches to grammatical error de-
tection (GEC) (Ng et al., 2013; Felice et al., 2014).
They similarly derive confusion sets of semantically
related words, substitute the target words with al-
ternatives and score them with an LM. Existing se-
mantic error correction approaches aim at correct-
ing word error choices (Dahlmeier and Ng, 2011),
collocation errors (Kochmar, 2016), and semantic
anomalies in adjective-noun combinations (Vecchi
et al., 2011). So far, SEC approaches focus on
short distance semantic agreement, whereas our ap-
proach can detect errors which require to resolve
long-range dependencies. Work on GEC and SEC
shows that language models are useful for error cor-
rection, however they neither ground in numeric
quantities nor incorporate background KBs.

model MAP P R F1
random 27.75 5.73 10.29 7.36
always 20.39 6.13 12.26 8.18

never 60.06 0.0 0.0 0.0
base LM 64.37 39.54 64.66 49.07

conditional 62.76 37.46 62.20 46.76
grounded 68.21 44.25 71.19 54.58

g-conditional 69.14 45.36 71.43 55.48
Table 5: Error correction results on the test set. We report mean

average precision (MAP), precision (P), recall (R) and F1. Best

results in bold.

6 Conclusion

In this paper, we proposed a simple technique to
model language in relation to numbers it refers to,
as well as conditionally on incomplete knowledge
bases. We found that the proposed techniques lead to
performance improvements in the tasks of language
modelling, and semantic error detection and correc-
tion. Numerically grounded models make it possible
to capture semantic dependencies of content words
on numbers.

In future work, we will plan to apply numeri-
cally grounded models to other tasks, such as nu-
meric error correction. We will explore alternative
ways for deriving the numeric representations, such
as accounting for verbal descriptions of numbers.
For SEC, a trainable hypothesis generator can po-
tentially improve the coverage of the system.

Acknowledgments

The authors would like to thank the anonymous
reviewers for their insightful comments. We also
thank Steffen Petersen for providing the dataset and
advising us on the clinical aspects of this work.
This research was supported by the Farr Institute
of Health Informatics Research, an Allen Distin-
guished Investigator award and Elsevier.

References

Danielle GT Arts, Nicolette F De Keizer, and Gert-Jan
Scheffer. 2002. Defining and improving data quality
in medical registries: a literature review, case study,
and generic framework. Journal of the American Med-
ical Informatics Association, 9(6):600–611.

991

Sue Bowman. 2013. Impact of Electronic Health
Record Systems on Information Integrity: Quality and
Safety Implications. Perspectives in Health Informa-
tion Management, page 1.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Intell.
Res.(JAIR), 49(1-47).

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment
challenge. In Machine learning challenges. evaluat-
ing predictive uncertainty, visual object classification,
and recognising tectual entailment, pages 177–190.
Springer.

Daniel Dahlmeier and Hwee Tou Ng. 2011. Correcting
Semantic Collocation Errors with L1-induced Para-
phrases. In Proceedings of EMNLP, pages 107–117.

Marie-Catherine De Marneffe, Anna N Rafferty, and
Christopher D Manning. 2008. Finding Contradic-
tions in Text. In ACL, volume 8, pages 1039–1047.

Mariano Felice, Zheng Yuan, Øistein E Andersen, He-
len Yannakoudakis, and Ekaterina Kochmar. 2014.
Grammatical error correction using hybrid systems
and type filtering. In CoNLL Shared Task, pages 15–
24.

Michael Fleischman and Deb Roy. 2008. Grounded Lan-
guage Modeling for Automatic Speech Recognition of
Sports Video. In Proceedings of ACL, pages 121–129.

Saveli Goldberg, Andrzej Niemierko, and Alexander
Turchin. 2008. Analysis of data errors in clinical re-
search databases. In AMIA. Citeseer.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Douwe Kiela and Stephen Clark. 2015. Multi- and
Cross-Modal Semantics Beyond Vision: Grounding
in Auditory Perception. In Proceedings of EMNLP,
pages 2461–2470.

Douwe Kiela, Luana Bulat, and Stephen Clark. 2015.
Grounding Semantics in Olfactory Perception. In Pro-
ceedings of ACL, pages 231–236.

Ekaterina Kochmar. 2016. Error Detection in Content
Word Combinations. Ph.D. thesis, University of Cam-
bridge, Computer Laboratory.

Brian McMahan and Matthew Stone. 2015. A bayesian
model of grounded color semantics. Transactions of
the Association for Computational Linguistics, 3:103–
115.

Michael C Munger. 2008. Blogging and political infor-
mation: truth or truthiness? Public Choice, 134(1-
2):125–138.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 Shared Task on Grammatical Error Correction.

In Hwee Tou Ng, Joel Tetreault, Siew Mei Wu, Yuan-
bin Wu, and Christian Hadiwinoto, editors, Proceed-
ings of the CoNLL: Shared Task, pages 1–12.

Carina Silberer and Mirella Lapata. 2014. Learn-
ing Grounded Meaning Representations with Autoen-
coders. In Proceedings of ACL, pages 721–732.

Richard Socher, Andrej Karpathy, Quoc V. Le, Christo-
pher D. Manning, and Andrew Y. Ng. 2014.
Grounded Compositional Semantics for Finding and
Describing Images with Sentences. TACL, 2:207–218.

Joerg Ueberla. 1994. Analysing a simple language
model· some general conclusions for language mod-
els for speech recognition. Computer Speech & Lan-
guage, 8(2):153–176.

Eva Maria Vecchi, Marco Baroni, and Roberto Zampar-
elli. 2011. (Linear) Maps of the Impossible: Captur-
ing semantic anomalies in distributional space. In Pro-
ceedings of the Workshop on Distributional Semantics
and Compositionality, pages 1–9.

Matthew D. Zeiler. 2012. ADADELTA: An Adaptive
Learning Rate Method. CoRR, abs/1212.5701.

992

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 993–998,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Towards Semi-Automatic Generation of Proposition Banks for
Low-Resource Languages

Alan Akbik
IBM Research

Almaden Research Center
San Jose, CA 95120

Vishwajeet Kumar
IIT Bombay

CS and Engineeering
Mumbai, India

{akbika,yunyaoli}@us.ibm.com vishwajeetkumar86@gmail.com

Yunyao Li
IBM Research

Almaden Research Center
San Jose, CA 95120

Abstract

Annotation projection based on parallel cor-
pora has shown great promise in inexpensively
creating Proposition Banks for languages for
which high-quality parallel corpora and syn-
tactic parsers are available. In this paper, we
present an experimental study where we ap-
ply this approach to three languages that lack
such resources: Tamil, Bengali and Malay-
alam. We find an average quality difference
of 6 to 20 absolute F-measure points vis-a-
vis high-resource languages, which indicates
that annotation projection alone is insufficient
in low-resource scenarios. Based on these re-
sults, we explore the possibility of using an-
notation projection as a starting point for in-
expensive data curation involving both experts
and non-experts. We give an outline of what
such a process may look like and present an
initial study to discuss its potential and chal-
lenges.

1 Introduction

Creating syntactically and semantically annotated
NLP resources for low-resource languages is known
to be immensely costly. For instance, the Proposi-
tion Bank (Palmer et al., 2005) was created by an-
notating predicate-argument structures in the Penn
Treebank (Marcus et al., 1993) with shallow seman-
tic labels: frame labels for verbal predicates and role
labels for arguments. Similarly, the SALSA (Bur-
chardt et al., 2006) resource added FrameNet-style
annotations to the TIGER Treebank (Brants et al.,
2002), the Chinese Propbank (Xue, 2008) is built
on the Chinese Treebank (Xue et al., 2005), and

My father bought a house

my father a house bought

எ� த�ைத ஒ� ��ைட வா��னா�

A0

A0

buy.01 A1

A1 buy.01

Figure 1: Annotation projection on a pair of very simple sen-
tences. English Propbank frame (buy.01) and role (A0, A1)
labels are projected onto aligned Tamil words. Furthermore,
the typed dependencies between the words “my father” and “a
house” (dotted lines) are projected onto their Tamil equivalents.

so forth. Since each such layer of annotation typ-
ically requires years of manual work, the accumu-
lated costs can be prohibitive for low-resource lan-
guages.

Recent work on annotation projection offers a
way to inexpensively label a target language corpus
with linguistic annotation (Padó and Lapata, 2009).
This only requires a word-aligned parallel corpus of
labeled English sentences and their translations in
the target language. English labels are then auto-
matically projected onto the aligned target language
words. Refer to Figure 1 for an example.

Low-resource languages. However, previous work
that investigated Propbank annotation projection has
focused only on languages for which treebanks - and
therefore syntactic parsers - already exist. Since syn-
tactic information is typically used to increase pro-
jection accuracy (Padó and Lapata, 2009; Akbik et
al., 2015), we must expect this approach to work
less well for low-resource languages. In addition,
low-resource languages have fewer sources of high-

993

semantic labels
(predicates + roles)

EN

unlabeled corpus
TL

Parallel corpus

semantic labels
(projected, noisy)

Annotation
projection

TL

Annotation projection Crowdsourced and expert data curation

Crowd
agrees?

Input

Crowdsourced
data curation

semantic labels
(crowd cannot curate)

semantic labels
(curated, final)

TL

TL

Expert data
curation

yes

no

Figure 2: Proposed process of using annotation projection in a parallel corpus from English (EN) to a target language (TL) as basis
for crowdsourced data curation. Experts are only involved in cases where the crowd cannot agree on a label.

quality parallel data available, further complicating
annotation projection.
Contributions. In this paper, we present a study in
which we apply annotation projection to three low-
resource languages in order to quantify the differ-
ence in precision and recall vis-a-vis high-resource
languages. Our study finds overall F1-measure of
generated Proposition Banks to be significantly be-
low state-of-the-art results, leading us to conclude
that annotation projection may at best be a starting
point for the generation of semantic resources for
low-resource languages. To explore this idea, we
outline a potential semi-automatic process in which
we use crowdsourced data curation and limited ex-
pert involvement to confirm and correct automati-
cally projected labels. Based on this initial study, we
discuss the potential and challenges of the proposed
approach.

2 Annotation Projection

Annotation projection takes as input a word-aligned
parallel corpus of sentences in a source language
(usually English) and their target language trans-
lations. A syntactic parser and a semantic role
labeler produce labels for the English sentences,
which are then projected onto aligned target lan-
guage words. The underlying theory is that paral-
lel sentences share a degree of syntactic and, in par-
ticular, semantic similarity, making such projection
possible (Padó and Lapata, 2009).
State-of-the-art. Previous work analyzed errors in
annotation projection and found that they are of-
ten caused by non-literal translations (Akbik et al.,
2015). For this reason, previous work defined lexical
and syntactic constraints to increase projection qual-

ity. These include verb filters to allow only verbs
to be labeled as frames (Van der Plas et al., 2011),
heuristics to ensure that only heads of syntactic con-
stituents are labeled as arguments (Padó and Lap-
ata, 2009) and the use of verb translation dictionar-
ies (Akbik et al., 2015) to constrain frame mappings.
Adaptation to low-resource languages. Low-
resource languages, however, lack syntactic parsers
to identify target language predicate-argument struc-
tures. This requires us to make the following modi-
fications to the approach:

Target language predicates We define lexical con-
straints using verb translation dictionaries. This
ensures that only target language verbs that are
aligned to literal source language translations
are labeled as frames.

Target language arguments To identify argu-
ments, we project not only the role label of
source language arguments heads, but the
entire argument dependency structure. This is
illustrated in Figure 1: Two dependency arcs
are projected from English onto Tamil, giving
evidence that arguments A0 and A1 in the
Tamil sentence each consist of two words.

This step produces a target language corpus with se-
mantically annotated predicate-argument structure.

3 Outline of a Data Curation Process

As confirmed in the experiments section of this pa-
per, the quality of the Proposition Banks generated
using annotation projection is significantly lower for
low-resource languages. We therefore propose to
use this approach only as a starting point for an in-
expensive curation process as illustrated in Figure 2:

994

 எ� த�ைத �ைற�� ேவைல
AM-LOCA0 work.01

 எ� த�ைத �ைற�� ேவைல
Q1: Is ேவைல meant as in "work"?

Q2: Is எ� த�ைத the "worker"?

Q3: Is a "co-worker" mentioned
 somewhere in this sentence?

Tamil sentence with projected labels:

Question form:

Figure 3: Example of how data curation questions may be for-
mulated for the labels projected onto Tamil in Figure 1.

Step 1: Crowdsourced data curation. Previous
work has experimented with different approaches in
crowdsourcing to generate frame-semantic annota-
tions over text (Hong and Baker, 2011), including
selection tasks (selecting one answer from a list of
options) (Fossati et al., 2013) and marking tasks
(marking text passages that evoke a certain semantic
role) (Feizabadi and Padó, 2014). While these stud-
ies only report moderate results on annotator cor-
rectness and agreement, our goal is different from
these works in that we only wish to curate projected
labels, not generate SRL annotations from scratch.
A related project in extending FrameNet with para-
phrases (Pavlick et al., 2015) has shown that the
crowd can effectively curate wrong paraphrases by
answering a series of confirm-or-reject questions.

For our initial study, we generate human readable
question-answer pairs (He et al., 2015) using the la-
bel descriptions of the English Propbank (see Fig-
ure 3). We generate two types of questions:

Label confirmation questions are confirm-or-
reject questions on whether projected labels
are correct (e.g. Q1 and Q2 in Figure 3).
Workers further qualify their answers to
indicate whether a sequence of words marked
as an argument is incomplete.

Missing label questions are marking tasks which
ask whether any core role labels of a frame are
missing. For example, the BUY.01 frame has
5 core roles (labeled A0 to A4), one of which
is the ”price” (A3). Since no ”price” is labeled
in the Tamil sentence in Figure 3, question Q3

DATA SET Bengali Malayalam Tamil

OPENSUBTITLES2016 75K 224K 21K
SPOKENTUTORIALS 31K 17K 32K

Total # sentences 106K 241K 53K

Table 1: Parallel data sets and number of parallel sentences
used for each language.

asks users to add this label if a ”price” is men-
tioned.

Our goal is to effectively distribute a large part
of the curation workload. In cases where the crowd
unanimously agrees, we remove labels judged to be
incorrect and add labels judged to be missing.
Step 2: Expert data curation. We also expect a
percentage of questions for which non-experts will
give conflicting answers1. As Figure 2 shows, such
cases will be passed to experts for further curation.
However, for the purpose of scalability, we aim to
keep expert involvement to a minimum.

4 Experimental Study

We report our initial investigations over the follow-
ing questions: (1) What are the differences in an-
notation projection quality between low- and high-
resource languages?; and (2) Can non-experts be
leveraged to at least partially curate projected labels?

4.1 Experimental Setup

Languages. We evaluate three low-resource lan-
guages, namely Bengali, an Indo-Aryan language,
as well as Tamil and Malayalam, two South Dravid-
ian languages. Between them, they are estimated to
have more than 300 million first language speakers,
yet there are few NLP resources available.
Data sets. We use two parallel corpora (see Table 1):
OPENSUBTITLES2016 (Tiedemann, 2012), a cor-
pus automatically generated from movie subtitles,
and SPOKENTUTORIALS, a corpus of technical-
domain tutorial translations.
Evaluation. For the purpose of comparison to pre-
vious work on high-resource languages, we replicate

1Common problems for non-experts that we observe in our
initial experiments involve ambiguities caused by implicit or
causal role-predicate relationships, as well as figurative usage
and hypotheticals.

995

PRED. ARGUMENT

LANG. Match P P R F1 %Agree

Bengali partial 1.0 0.84 0.68 0.75

0.67
PROJECTED exact 1.0 0.83 0.68 0.75

Bengali partial 1.0 0.88 0.69 0.78
CURATED exact 1.0 0.87 0.69 0.77

Malayalam partial 0.99 0.87 0.65 0.75

0.65PROJECTED exact 0.99 0.79 0.63 0.7

Malayalam partial 0.99 0.92 0.69 0.78
CURATED exact 0.99 0.84 0.67 0.74

Tamil partial 0.77 0.49 0.59 0.53

0.75
PROJECTED exact 0.77 0.45 0.58 0.5

Tamil partial 0.77 0.62 0.67 0.64
CURATED exact 0.77 0.58 0.65 0.61

Chinese partial 0.97 0.93 0.83 0.88 0.92
(Akbik et al., 2015) exact 0.97 0.83 0.81 0.82

German partial 0.96 0.95 0.73 0.83 0.92
(Akbik et al., 2015) exact 0.96 0.91 0.73 0.81

Hindi partial 0.91 0.93 0.66 0.77
0.81

(Akbik et al., 2015) exact 0.91 0.58 0.54 0.56

Table 2: Estimated precision and recall for Tamil, Bengali and
Malayalam before and after non-expert curation. We list state-
of-the-art results for German and Hindi for comparison.

earlier evaluation practice and English preprocess-
ing steps (Akbik et al., 2015). After projection, we
randomly select 100 sentences for each target lan-
guage and pass them to a curation step by 2 non-
experts. We then measure the inter-annotator agree-
ment and the quality of the generated Proposition
Banks in terms of predicate precision2 and argument
F1-score before and after crowdsourced curation3.

4.2 Results

The evaluation results are listed in Table 2. For
comparison, we include evaluation results reported
for three high-resource languages: German and Chi-
nese, representing average high-resource results, as
well as Hindi, a below-average outlier. We make the
following observations:
Lower annotation projection quality. We find that
the F1-scores of Bengali, Malayalam and Tamil are

2Since we do not ask missing label questions for predicates,
we cannot estimate predicate recall.

3Following (Akbik et al., 2015), in the exact evaluation
scheme, labels marked as correct and complete count as true
positives. In partial, incomplete correct labels also count as
true positives.

আর একটু িহং� , �যমনটা আজ আিব�ার করলাম

A0

A0

discover.01A1

A1 discover.01
 and a bit wild as today discover did

a wild one , as I discovered today .
A0A0

Figure 4: Example of a projection error. The verb discover in
Bengali is a light verb construction. In addition, the pronoun I
is not explicitly mentioned in the Bengali target sentence. This
causes the pronoun I to be mistakenly aligned to the auxiliary
of the light verb, causing it to be falsely labeled as A0.

6, 11 and 31 pp below that of an average high-
resource language (as exemplified by German in Ta-
ble 2). Bengali and Malayalam, however, do surpass
Hindi, for which only a relatively poor dependency
parser was used. This suggests that syntactic annota-
tion projection may be a better method for identify-
ing predicate-argument structures in languages that
lack fully developed dependency parsers.
Impact of parallel data. We note a significant im-
pact of the size and quality of available parallel data
on overall quality. For instance, the lowest-scoring
language in our experiments, Tamil, use the smallest
amount parallel data (see Table 1), most of which
was from the SPOKENTUTORIALS corpus. This
data is specific to the technical domain and seems
less suited for annotation projection than the more
general OPENSUBTITLES2016 corpus.

A qualitative inspection of projection errors
points to a large portion of errors stemming from
translation shifts. For instance, refer to Figure 4
for an English-Bengali example of the impact of
even slight differences in translation: The English
verb discover is expressed in Bengali as a light verb,
while the pronoun I is dropped in the Bengali sen-
tence (it is still implicitly evoked through the verb
being in first person form). This causes the word
alignment to align the English I to the Bengali auxil-
iary, onto which the role label A0 is then incorrectly
projected.

5 Discussion

In all three languages, we note improvements
through curation. Argument F1-score improves to
77% (↑2 pp) for Bengali, to 74% (↑4 pp) for Malay-

996

alam, and to 61% (↑11 pp) for Tamil on exact
matches. Especially Tamil improves drastically, al-
beit from a much lower initial score than the other
languages. This supports our general observation
that crowd workers are good at spotting obvious er-
rors, while they often disagree about more subtle
differences in semantics. These results indicate that
a curation process can at least be partially crowd-
sourced. An interesting question for further investi-
gation is to what degree this is possible. As Table 2
shows, non-expert agreement in our initial study was
far below reported expert agreement, with 25% to
35% of all questions problematic for non-experts.

A particular focus of our future work is therefore
to quantify to which extent crowd-feedback can be
valuable and how far the involvement of experts can
be minimized for cost-effective resource generation.
However, a Proposition Bank generated through this
process would be peculiar in several ways:
Crowd semantics. First, generated Proposition
Banks would be created in a drastically different
way than current approaches that rely on experts to
create and annotate frames. Effectively, the non-
expert crowd would, to a large degree, shape the
selection and annotation of English frame and role
annotation for new target languages. An impor-
tant question therefore is to what degree an auto-
generated Propbank would differ from an expertly
created one. In a related line of work (Akbik et
al., 2016), we have conducted a preliminary com-
parison of an auto-generated Proposition Bank for
Chinese and the manually created Chinese Proposi-
tion Bank (Xue and Palmer, 2005). Encouragingly,
we find a significant overlap between both versions.
Future work will further explore the usefulness of
auto-generated Propbanks to train a semantic role la-
beler (Akbik and Li, 2016) and their usefulness for
downstream applications in low-resource languages.
Partial syntactic annotation. Second, while cu-
ration of semantically labeled predicate-argument
structure can be formulated as human intelligence
tasks, this will not in all likelihood be possible for
full parse trees. These Propbanks would therefore
lack a treebank-style syntactic layer of annotation.
Would an existing Propbank facilitate the future task
of creating treebanks for low-resource languages? In
other words, could the traditional order of first cre-
ating treebanks and then Propbanks be reversed?

PROPBANK #SENTENCES #LABELS #FRAMES

Bengali 5,757 17,899 88
Malayalam 10,579 26,831 95
Tamil 3,486 11,765 68

Table 3: Number of labeled sentences, semantic labels and
distinct frames of each auto-generated Propbank (before non-
expert curation).

6 Conclusion and Outlook

We applied annotation projection to low-resource
languages and found a significant drop in quality
vis-a-vis high-resource languages. We then pro-
posed and outlined a curation process for semi-
automatically generating Proposition Banks and
noted encouraging results in an initial study. To
encourage discussion within the research commu-
nity, we make our generated Proposition Banks for
Bengali, Malayalam and Tamil (see Table 3 for an
overview) publicly available4.

References

[Akbik and Li2016] Alan Akbik and Yunyao Li. 2016.
Polyglot: Multilingual semantic role labeling with uni-
fied labels. In ACL 2016, 54th Annual Meeting of the
Association for Computational Linguistics: Demostra-
tion Session, page to appear.

[Akbik et al.2015] Alan Akbik, Laura Chiticariu, Marina
Danilevsky, Yunyao Li, Shivakumar Vaithyanathan,
and Huaiyu Zhu. 2015. Generating high quality
proposition banks for multilingual semantic role label-
ing. In ACL 2015, 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics Beijing, China,
pages 397–407.

[Akbik et al.2016] Alan Akbik, Xinyu Guan, and Yunyao
Li. 2016. Multilingual aliasing for auto-generating
proposition banks. In COLING 2016, the 26th Inter-
national Conference on Computational Linguistics (to
appear).

[Brants et al.2002] Sabine Brants, Stefanie Dipper, Silvia
Hansen, Wolfgang Lezius, and George Smith. 2002.
The tiger treebank. In Proceedings of the Workshop
on Treebanks and Linguistic Theories, volume 168.

[Burchardt et al.2006] Aljoscha Burchardt, Katrin Erk,
Anette Frank, Andrea Kowalski, Sebastian Padó, and
Manfred Pinkal. 2006. The salsa corpus: a german

4Datasets will be made available at this page: http:
//researcher.watson.ibm.com/researcher/
view_group_subpage.php?id=7454

997

corpus resource for lexical semantics. In Proceedings
of LREC 2006, Fifth International Conference on Lan-
guage Resources and Evaluation, volume 6.

[Feizabadi and Padó2014] Parvin Sadat Feizabadi and Se-
bastian Padó. 2014. Crowdsourcing annotation of
non-local semantic roles. In EACL, pages 226–230.

[Fossati et al.2013] Marco Fossati, Claudio Giuliano, and
Sara Tonelli. 2013. Outsourcing framenet to the
crowd. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 742–747, Sofia, Bulgaria,
August. Association for Computational Linguistics.

[He et al.2015] Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2015. Question-answer driven semantic role
labeling: Using natural language to annotate natural
language. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 643–653, Lisbon, Portugal, September. Associ-
ation for Computational Linguistics.

[Hong and Baker2011] Jisup Hong and Collin F Baker.
2011. How good is the crowd at real wsd? In Proceed-
ings of the 5th linguistic annotation workshop, pages
30–37. Association for Computational Linguistics.

[Marcus et al.1993] Mitchell P Marcus, Mary Ann
Marcinkiewicz, and Beatrice Santorini. 1993. Build-
ing a large annotated corpus of english: The penn
treebank. Computational Linguistics, 19(2):313–330.

[Padó and Lapata2009] Sebastian Padó and Mirella Lap-
ata. 2009. Cross-lingual annotation projection for
semantic roles. Journal of Artificial Intelligence Re-
search, 36(1):307–340.

[Palmer et al.2005] Martha Palmer, Daniel Gildea, and
Paul Kingsbury. 2005. The proposition bank: An an-
notated corpus of semantic roles. Computational lin-
guistics, 31(1):71–106.

[Pavlick et al.2015] Ellie Pavlick, Travis Wolfe, Pushpen-
dre Rastogi, Chris Callison-Burch, Mark Dredze, and
Benjamin Van Durme. 2015. Framenet+: Fast para-
phrastic tripling of framenet. In ACL (2), pages 408–
413. The Association for Computer Linguistics.

[Tiedemann2012] Jörg Tiedemann. 2012. Parallel data,
tools and interfaces in opus. In Proceedings of LREC
2012, Eighth International Conference on Language
Resources and Evaluation, pages 2214–2218.

[Van der Plas et al.2011] Lonneke Van der Plas, Paola
Merlo, and James Henderson. 2011. Scaling up auto-
matic cross-lingual semantic role annotation. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies: short papers-Volume 2, pages 299–304.
Association for Computational Linguistics.

[Xue and Palmer2005] Nianwen Xue and Martha Palmer.
2005. Automatic semantic role labeling for chinese
verbs. In IJCAI, volume 5, pages 1160–1165. Citeseer.

[Xue et al.2005] Naiwen Xue, Fei Xia, Fu-Dong Chiou,
and Marta Palmer. 2005. The penn chinese treebank:
Phrase structure annotation of a large corpus. Natural
language engineering, 11(02):207–238.

[Xue2008] Nianwen Xue. 2008. Labeling chinese pred-
icates with semantic roles. Computational linguistics,
34(2):225–255.

998

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 999–1005,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

A Hierarchical Model of Reviews for Aspect-based Sentiment Analysis

Sebastian Ruder1,2, Parsa Ghaffari2, and John G. Breslin1

1Insight Centre for Data Analytics
National University of Ireland, Galway

{sebastian.ruder,john.breslin}@insight-centre.org
2Aylien Ltd.

Dublin, Ireland
{sebastian,parsa}@aylien.com

Abstract

Opinion mining from customer reviews has
become pervasive in recent years. Sentences
in reviews, however, are usually classified in-
dependently, even though they form part of a
review’s argumentative structure. Intuitively,
sentences in a review build and elaborate upon
each other; knowledge of the review struc-
ture and sentential context should thus in-
form the classification of each sentence. We
demonstrate this hypothesis for the task of
aspect-based sentiment analysis by modeling
the interdependencies of sentences in a review
with a hierarchical bidirectional LSTM. We
show that the hierarchical model outperforms
two non-hierarchical baselines, obtains results
competitive with the state-of-the-art, and out-
performs the state-of-the-art on five multilin-
gual, multi-domain datasets without any hand-
engineered features or external resources.

1 Introduction

Sentiment analysis (Pang and Lee, 2008) is used to
gauge public opinion towards products, to analyze
customer satisfaction, and to detect trends. With the
proliferation of customer reviews, more fine-grained
aspect-based sentiment analysis (ABSA) has gained
in popularity, as it allows aspects of a product or ser-
vice to be examined in more detail.

Reviews – just with any coherent text – have an
underlying structure. A visualization of the dis-
course structure according to Rhetorical Structure
Theory (RST) (Mann and Thompson, 1988) for the
example review in Figure 1 reveals that sentences

Elaboration
Background

that they cook
with only sim-
ple ingredients.

I am amazed at
the quality of
the food

I love this
restaurant.

Figure 1: RST structure of an example review.

and clauses are connected via different rhetorical re-
lations, such as Elaboration and Background.

Intuitively, knowledge about the relations and the
sentiment of surrounding sentences should inform
the sentiment of the current sentence. If a reviewer
of a restaurant has shown a positive sentiment to-
wards the quality of the food, it is likely that his
opinion will not change drastically over the course
of the review. Additionally, overwhelmingly posi-
tive or negative sentences in the review help to dis-
ambiguate sentences whose sentiment is equivocal.

Neural network-based architectures that have re-
cently become popular for sentiment analysis and
ABSA, such as convolutional neural networks (Sev-
eryn and Moschitti, 2015), LSTMs (Vo and Zhang,
2015), and recursive neural networks (Nguyen and
Shirai, 2015), however, are only able to consider
intra-sentence relations such as Background in Fig-
ure 1 and fail to capture inter-sentence relations, e.g.
Elaboration that rely on discourse structure and pro-
vide valuable clues for sentiment prediction.

We introduce a hierarchical bidirectional long
short-term memory (H-LSTM) that is able to lever-
age both intra- and inter-sentence relations. The
sole dependence on sentences and their structure

999

within a review renders our model fully language-
independent. We show that the hierarchical model
outperforms strong sentence-level baselines for
aspect-based sentiment analysis, while achieving re-
sults competitive with the state-of-the-art and out-
performing it on several datasets without relying on
any hand-engineered features or sentiment lexica.

2 Related Work

Aspect-based sentiment analysis. Past approaches
use classifiers with expensive hand-crafted features
based on n-grams, parts-of-speech, negation words,
and sentiment lexica (Pontiki et al., 2014; Pontiki
et al., 2015). The model by Zhang and Lan (2015)
is the only approach we are aware of that considers
more than one sentence. However, it is less expres-
sive than ours, as it only extracts features from the
preceding and subsequent sentence without any no-
tion of structure. Neural network-based approaches
include an LSTM that determines sentiment towards
a target word based on its position (Tang et al., 2015)
as well as a recursive neural network that requires
parse trees (Nguyen and Shirai, 2015). In contrast,
our model requires no feature engineering, no posi-
tional information, and no parser outputs, which are
often unavailable for low-resource languages. We
are also the first – to our knowledge – to frame sen-
timent analysis as a sequence tagging task.

Hierarchical models. Hierarchical models have
been used predominantly for representation learn-
ing and generation of paragraphs and documents:
Li et al. (2015) use a hierarchical LSTM-based au-
toencoder to reconstruct reviews and paragraphs of
Wikipedia articles. Serban et al. (2016) use a hier-
archical recurrent encoder-decoder with latent vari-
ables for dialogue generation. Denil et al. (2014) use
a hierarchical ConvNet to extract salient sentences
from reviews, while Kotzias et al. (2015) use the
same architecture to learn sentence-level labels from
review-level labels using a novel cost function. The
model of Lee and Dernoncourt (2016) is perhaps the
most similar to ours. While they also use a sentence-
level LSTM, their class-level feed-forward neural
network is only able to consider a limited number of
preceding texts, while our review-level bidirectional
LSTM is (theoretically) able to consider an unlim-
ited number of preceding and successive sentences.

3 Model

In the following, we will introduce the different
components of our hierarchical bidirectional LSTM
architecture displayed in Figure 2.

3.1 Sentence and Aspect Representation

Each review consists of sentences, which are padded
to length l by inserting padding tokens. Each review
in turn is padded to length h by inserting sentences
containing only padding tokens. We represent each
sentence as a concatentation of its word embeddings
x1:l where xt ∈ Rk is the k-dimensional vector of
the t-th word in the sentence.

Every sentence is associated with an aspect. As-
pects consist of an entity and an attribute, e.g.
FOOD#QUALITY. Similarly to the entity represen-
tation of Socher et al. (2013), we represent every
aspect a as the average of its entity and attribute em-
beddings 1

2(xe + xa) where xe, xa ∈ Rm are the
m-dimensional entity and attribute embeddings re-
spectively1.

3.2 LSTM

We use a Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997), which adds
input, output, and forget gates to a recurrent cell,
which allow it to model long-range dependencies
that are essential for capturing sentiment.

For the t-th word in a sentence, the LSTM takes
as input the word embedding xt, the previous output
ht−1 and cell state ct−1 and computes the next out-
put ht and cell state ct. Both h and c are initialized
with zeros.

3.3 Bidirectional LSTM

Both on the review and on the sentence level, senti-
ment is dependent not only on preceding but also
successive words and sentences. A Bidirectional
LSTM (Bi-LSTM) (Graves et al., 2013) allows us to
look ahead by employing a forward LSTM, which
processes the sequence in chronological order, and
a backward LSTM, which processes the sequence in
reverse order. The output ht at a given time step is
then the concatenation of the corresponding states of
the forward and backward LSTM.

1Averaging embeddings produced slightly better results than
using a separate embedding for every aspect.

1000

Food is great. Service is top notch.FOOD#
QUALITY

SERVICE#
GENERAL

LSTM LSTM LSTM

LSTM LSTM LSTM 0

0 LSTM LSTM LSTM

LSTM LSTM LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

OUT OUT

0

0

Output

Output
layer

Review-level
backward LSTM

Review-level
forward LSTM

Sentence-level
backward LSTM
Sentence-level
forward LSTM

Aspect/word
embeddings

Figure 2: The hierarchical bidirectional LSTM (H-LSTM) for aspect-based sentiment analysis. Word embeddings are fed into

a sentence-level bidirectional LSTM. Final states of forward and backward LSTM are concatenated together with the aspect em-

bedding and fed into a bidirectional review-level LSTM. At every time step, the output of the forward and backward LSTM is

concatenated and fed into a final layer, which outputs a probability distribution over sentiments.

3.4 Hierarchical Bidirectional LSTM
Stacking a Bi-LSTM on the review level on top
of sentence-level Bi-LSTMs yields the hierarchical
bidirectional LSTM (H-LSTM) in Figure 2.

The sentence-level forward and backward LSTMs
receive the sentence starting with the first and last
word embedding x1 and xl respectively. The final
output hl of both LSTMs is then concatenated with
the aspect vector a2 and fed as input into the review-
level forward and backward LSTMs. The outputs of
both LSTMs are concatenated and fed into a final
softmax layer, which outputs a probability distribu-
tion over sentiments3 for each sentence.

4 Experiments

4.1 Datasets
For our experiments, we consider datasets in five
domains (restaurants, hotels, laptops, phones, cam-

2We experimented with other interactions, e.g. rescaling the
word embeddings by their aspect similarity, an attention-like
mechanism, as well as summing and multiplication, but found
that simple concatenation produced the best results.

3The sentiment classes are positive, negative, and neutral.

eras) and eight languages (English, Spanish, French,
Russian, Dutch, Turkish, Arabic, Chinese) from
the recent SemEval-2016 Aspect-based Sentiment
Analysis task (Pontiki et al., 2016), using the pro-
vided train/test splits. In total, there are 11 domain-
language datasets containing 300-400 reviews with
1250-6000 sentences4. Each sentence is annotated
with none, one, or multiple domain-specific aspects
and a sentiment value for each aspect.

4.2 Training Details

Our LSTMs have one layer and an output size of 200
dimensions. We use 300-dimensional word embed-
dings. We use pre-trained GloVe (Pennington et al.,
2014) embeddings for English, while we train em-
beddings on frWaC5 for French and on the Leipzig
Corpora Collection6 for all other languages.7 Entity

4Exact dataset statistics can be seen in (Pontiki et al., 2016).
5http://wacky.sslmit.unibo.it/doku.php?

id=corpora
6http://corpora2.informatik.uni-leipzig.

de/download.html
7Using 64-dimensional Polyglot embeddings (Al-Rfou et

al., 2013) yielded generally worse performance.

1001

Language Domain Best XRCE IIT-TUDA CNN LSTM H-LSTM HP-LSTM
English Restaurants 88.1 88.1 86.7 82.1 81.4 83.0 85.3
Spanish Restaurants 83.6 - 83.6 79.6 75.7 79.5 81.8
French Restaurants 78.8 78.8 72.2 73.2 69.8 73.6 75.4
Russian Restaurants 77.9 - 73.6 75.1 73.9 78.1 77.4
Dutch Restaurants 77.8 - 77.0 75.0 73.6 82.2 84.8
Turkish Restaurants 84.3 - 84.3 74.2 73.6 76.7 79.2
Arabic Hotels 82.7 - 81.7 82.7 80.5 82.8 82.9
English Laptops 82.8 - 82.8 78.4 76.0 77.4 80.1
Dutch Phones 83.3 - 82.6 83.3 81.8 81.3 83.6
Chinese Cameras 80.5 - - 78.2 77.6 78.6 78.8
Chinese Phones 73.3 - - 72.4 70.3 74.1 73.3

Table 1: Results of our system with randomly initialized word embeddings (H-LSTM) and with pre-trained embeddings

(HP-LSTM) for ABSA for each language and domain in comparison to the best system for each pair (Best), the best two sin-

gle systems (XRCE, IIT-TUDA), a sentence-level CNN (CNN), and our sentence-level LSTM (LSTM).

and attribute embeddings of aspects have 15 dimen-
sions and are initialized randomly. We use dropout
of 0.5 after the embedding layer and after LSTM
cells, a gradient clipping norm of 5, and no l2 regu-
larization.

We unroll the aspects of every sentence in the re-
view, e.g. a sentence with two aspects occurs twice
in succession, once with each aspect. We remove
sentences with no aspect8 and ignore predictions for
all sentences that have been added as padding to a re-
view so as not to force our model to learn meaning-
less predictions, as is commonly done in sequence-
to-sequence learning (Sutskever et al., 2014). We
segment Chinese data before tokenization.

We train our model to minimize the cross-entropy
loss, using stochastic gradient descent, the Adam
update rule (Kingma and Ba, 2015), mini-batches of
size 10, and early stopping with a patience of 10.

4.3 Comparison models

We compare our model using random (H-LSTM)
and pre-trained word embeddings (HP-LSTM)
against the best model of the SemEval-2016 Aspect-
based Sentiment Analysis task (Pontiki et al., 2016)
for each domain-language pair (Best) as well as
against the two best single models of the competi-
tion: IIT-TUDA (Kumar et al., 2016), which uses
large sentiment lexicons for every language, and
XRCE (Brun et al., 2016), which uses a parser aug-

8Labeling them with a NONE aspect and predicting neutral
slightly decreased performance.

mented with hand-crafted, domain-specific rules. In
order to ascertain that the hierarchical nature of our
model is the deciding factor, we additionally com-
pare against the sentence-level convolutional neural
network of Ruder et al. (2016) (CNN) and against a
sentence-level Bi-LSTM (LSTM), which is identical
to the first layer of our model.9

5 Results and Discussion

We present our results in Table 1. Our hierarchi-
cal model achieves results superior to the sentence-
level CNN and the sentence-level Bi-LSTM base-
lines for almost all domain-language pairs by taking
the structure of the review into account. We high-
light examples where this improves predictions in
Table 2.

In addition, our model shows results competi-
tive with the best single models of the competi-
tion, while requiring no expensive hand-crafted fea-
tures or external resources, thereby demonstrating
its language and domain independence. Overall,
our model compares favorably to the state-of-the-art,
particularly for low-resource languages, where few
hand-engineered features are available. It outper-
forms the state-of-the-art on four and five datasets
using randomly initialized and pre-trained embed-
dings respectively.

9To ensure that the additional parameters do not account for
the difference, we increase the number of layers and dimensions
of LSTM, which does not impact the results.

1002

Id Sentence LSTM H-LSTM
1.1 No Comparison negative positive

1.2
It has great sushi and

positive positive
even better service.

2.1
Green Tea creme

positive positive
brulee is a must!

2.2
Don’t leave the

negative positive
restaurant without it.

Table 2: Example sentences where knowledge of other sen-

tences in the review (not necessarily neighbors) helps to dis-

ambiguate the sentiment of the sentence in question. For the

aspect in 1.1, the sentence-level LSTM predicts negative, while

the context of the service and food quality in 1.2 allows the

H-LSTM to predict positive. Similarly, for the aspect in 2.2,

knowledge of the quality of the green tea crème brulée helps

the H-LSTM to predict the correct sentiment.

5.1 Pre-trained embeddings
In line with past research (Collobert et al., 2011), we
observe significant gains when initializing our word
vectors with pre-trained embeddings across almost
all languages. Pre-trained embeddings improve our
model’s performance for all languages except Rus-
sian, Arabic, and Chinese and help it achieve state-
of-the-art in the Dutch phones domain. We release
our pre-trained multilingual embeddings so that they
may facilitate future research in multilingual senti-
ment analysis and text classification10.

5.2 Leveraging additional information
As annotation is expensive in many real-world appli-
cations, learning from only few examples is impor-
tant. Our model was designed with this goal in mind
and is able to extract additional information inherent
in the training data. By leveraging the structure of
the review, our model is able to inform and improve
its sentiment predictions as evidenced in Table 2.

The large performance differential to the state-of-
the-art for the Turkish dataset where only 1104 sen-
tences are available for training and the performance
gaps for high-resource languages such as English,
Spanish, and French, however, indicate the limits of
an approach such as ours that only uses data avail-
able at training time.

While using pre-trained word embeddings is an
10https://s3.amazonaws.com/aylien-main/

data/multilingual-embeddings/index.html

effective way to mitigate this deficit, for high-
resource languages, solely leveraging unsupervised
language information is not enough to perform on-
par with approaches that make use of large exter-
nal resources (Kumar et al., 2016) and meticulously
hand-crafted features (Brun et al., 2016).

Sentiment lexicons are a popular way to inject ad-
ditional information into models for sentiment anal-
ysis. We experimented with using sentiment lexi-
cons by Kumar et al. (2016) but were not able to sig-
nificantly improve upon our results with pre-trained
embeddings11. In light of the diversity of domains in
the context of aspect-based sentiment analysis and
many other applications, domain-specific lexicons
(Hamilton et al., 2016) are often preferred. Find-
ing better ways to incorporate such domain-specific
resources into models as well as methods to inject
other forms of domain information, e.g. by con-
straining them with rules (Hu et al., 2016) is thus
an important research avenue, which we leave for
future work.

6 Conclusion

In this paper, we have presented a hierarchical model
of reviews for aspect-based sentiment analysis. We
demonstrate that by allowing the model to take into
account the structure of the review and the senten-
tial context for its predictions, it is able to outper-
form models that only rely on sentence information
and achieves performance competitive with mod-
els that leverage large external resources and hand-
engineered features. Our model achieves state-of-
the-art results on 5 out of 11 datasets for aspect-
based sentiment analysis.

Acknowledgments

We thank the anonymous reviewers, Nicolas
Pécheux, and Hugo Larochelle for their constructive
feedback. This publication has emanated from re-
search conducted with the financial support of the
Irish Research Council (IRC) under Grant Number
EBPPG/2014/30 and with Aylien Ltd. as Enterprise
Partner as well as from research supported by a re-
search grant from Science Foundation Ireland (SFI)
under Grant Number SFI/12/RC/2289.

11We tried bucketing and embedding of sentiment scores as
well as filtering and pooling as in (Vo and Zhang, 2015)

1003

References
Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. 2013.

Polyglot: Distributed Word Representations for Multi-
lingual NLP. Proceedings of the Seventeenth Confer-
ence on Computational Natural Language Learning,
pages 183–192.

Caroline Brun, Julien Perez, and Claude Roux. 2016.
XRCE at SemEval-2016 Task 5: Feedbacked Ensem-
ble Modelling on Syntactico-Semantic Knowledge for
Aspect Based Sentiment Analysis. Proceedings of the
10th International Workshop on Semantic Evaluation
(SemEval 2016), pages 282–286.

Ronan Collobert, Jason Weston, Leon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural Language Processing (almost) from
Scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Misha Denil, Alban Demiraj, and Nando de Freitas.
2014. Extraction of Salient Sentences from Labelled
Documents. arXiv preprint arXiv:1412.6815, pages
1–9.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech Recognition with Deep Recur-
rent Neural Networks. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
(3):6645–6649.

William L. Hamilton, Kevin Clark, Jure Leskovec, and
Dan Jurafsky. 2016. Inducing Domain-Specific Sen-
timent Lexicons from Unlabeled Corpora. Proceed-
ings of the 54th Annual Meeting of the Association for
Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy,
and Eric Xing. 2016. Harnessing Deep Neural Net-
works with Logic Rules. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics, pages 1–18.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam:
a Method for Stochastic Optimization. International
Conference on Learning Representations, pages 1–13.

Dimitrios Kotzias, Misha Denil, Nando de Freitas, and
Padhraic Smyth. 2015. From Group to Individual La-
bels using Deep Features. Proceedings of the 21th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 597—-606.

Ayush Kumar, Sarah Kohail, Amit Kumar, Asif Ekbal,
and Chris Biemann. 2016. IIT-TUDA at SemEval-
2016 Task 5: Beyond Sentiment Lexicon: Combin-
ing Domain Dependency and Distributional Semantics
Features for Aspect Based Sentiment Analysis. Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval 2016).

Ji Young Lee and Franck Dernoncourt. 2016. Sequential
Short-Text Classification with Recurrent and Convolu-
tional Neural Networks. Proceedings of NAACL-HLT
2016.

Jiwei Li, Minh-Thang Luong, and Daniel Jurafsky. 2015.
A Hierarchical Neural Autoencoder for Paragraphs
and Documents. Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics, pages 1106–1115.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical Structure Theory: Toward a functional the-
ory of text organization.

Thien Hai Nguyen and Kiyoaki Shirai. 2015.
PhraseRNN: Phrase Recursive Neural Network for
Aspect-based Sentiment Analysis. Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, (September):2509–2514.

Bo Pang and Lillian Lee. 2008. Opinion Mining and
Sentiment Analysis. Foundations and trends in infor-
mation retrieval, 2(1-2):1–135.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global Vectors for Word Rep-
resentation. Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing,
pages 1532–1543.

Maria Pontiki, Dimitrios Galanis, John Pavlopoulos,
Haris Papageorgiou, Ion Androutsopoulos, and Suresh
Manandhar. 2014. SemEval-2014 Task 4: Aspect
Based Sentiment Analysis. Proceedings of the 8th
International Workshop on Semantic Evaluation (Se-
mEval 2014), pages 27–35.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Suresh Manandhar, and Ion Androutsopoulos. 2015.
SemEval-2015 Task 12: Aspect Based Sentiment
Analysis. Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages
486–495.

Maria Pontiki, Dimitrios Galanis, Haris Papageorgiou,
Ion Androutsopoulos, Suresh Manandhar, Mohammad
AL-Smadi, Mahmoud Al-Ayyoub, Yanyan Zhao, Bing
Qin, Orphée De Clercq, Véronique Hoste, Marianna
Apidianaki, Xavier Tannier, Natalia Loukachevitch,
Evgeny Kotelnikov, Nuria Bel, Salud María Jiménez-
Zafra, and Gülşen Eryiğit. 2016. SemEval-2016 Task
5: Aspect-Based Sentiment Analysis. In Proceedings
of the 10th International Workshop on Semantic Eval-
uation, San Diego, California. Association for Com-
putational Linguistics.

Sebastian Ruder, Parsa Ghaffari, and John G. Bres-
lin. 2016. INSIGHT-1 at SemEval-2016 Task 5:
Deep Learning for Multilingual Aspect-based Senti-
ment Analysis. Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval 2016).

1004

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron Courville, and
Yoshua Bengio. 2016. A Hierarchical Latent Variable
Encoder-Decoder Model for Generating Dialogues.
Proceedings of the Advances in Neural Information
Processing Systems 29 (NIPS 2016), pages 1–14.

Aliaksei Severyn and Alessandro Moschitti. 2015.
UNITN: Training Deep Convolutional Neural Net-
work for Twitter Sentiment Classification. Proceed-
ings of the 9th International Workshop on Semantic
Evaluation (SemEval 2015), pages 464–469.

Richard Socher, Danqi Chen, Christopher D. Manning,
and Andrew Y. Ng. 2013. Reasoning With Neu-
ral Tensor Networks for Knowledge Base Completion.
Proceedings of the Advances in Neural Information
Processing Systems 26 (NIPS 2013), pages 1–10.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
Advances in Neural Information Processing Systems,
page 9.

Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting
Liu. 2015. Target-Dependent Sentiment Classifica-
tion with Long Short Term Memory. arXiv preprint
arXiv:1512.01100.

Duy-tin Vo and Yue Zhang. 2015. Target-Dependent
Twitter Sentiment Classification with Rich Automatic
Features. IJCAI International Joint Conference on Ar-
tificial Intelligence, pages 1347–1353.

Zhihua Zhang and Man Lan. 2015. ECNU: Extracting
Effective Features from Multiple Sequential Sentences
for Target-dependent Sentiment Analysis in Reviews.
Proceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015), pages 736–741.

1005

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1006–1011,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Are Word Embedding-based Features Useful for Sarcasm Detection?

Aditya Joshi1,2,3 Vaibhav Tripathi1 Kevin Patel1
Pushpak Bhattacharyya1 Mark Carman2

1Indian Institute of Technology Bombay, India
2Monash University, Australia

3IITB-Monash Research Academy, India
{adityaj,kevin.patel,pb}@cse.iitb.ac.in, mark.carman@monash.edu

Abstract

This paper makes a simple increment to state-of-
the-art in sarcasm detection research. Existing ap-
proaches are unable to capture subtle forms of con-
text incongruity which lies at the heart of sarcasm.
We explore if prior work can be enhanced using se-
mantic similarity/discordance between word embed-
dings. We augment word embedding-based features
to four feature sets reported in the past. We also ex-
periment with four types of word embeddings. We
observe an improvement in sarcasm detection, irre-
spective of the word embedding used or the original
feature set to which our features are augmented. For
example, this augmentation results in an improve-
ment in F-score of around 4% for three out of these
four feature sets, and a minor degradation in case
of the fourth, when Word2Vec embeddings are used.
Finally, a comparison of the four embeddings shows
that Word2Vec and dependency weight-based fea-
tures outperform LSA and GloVe, in terms of their
benefit to sarcasm detection.

1 Introduction

Sarcasm is a form of verbal irony that is intended to ex-
press contempt or ridicule. Linguistic studies show that
the notion of context incongruity is at the heart of sar-
casm (Ivanko and Pexman, 2003). A popular trend in
automatic sarcasm detection is semi-supervised extrac-
tion of patterns that capture the underlying context in-
congruity (Davidov et al., 2010; Joshi et al., 2015; Riloff
et al., 2013). However, techniques to extract these pat-
terns rely on sentiment-bearing words and may not cap-
ture nuanced forms of sarcasm. Consider the sentence
‘With a sense of humor like that, you could make a liv-
ing as a garbage man anywhere in the country.1’ The
speaker makes a subtle, contemptuous remark about the

1All examples in this paper are actual instances from our dataset.

sense of humor of the listener. However, absence of sen-
timent words makes the sarcasm in this sentence difficult
to capture as features for a classifier.

In this paper, we explore use of word embeddings to
capture context incongruity in the absence of sentiment
words. The intuition is that word vector-based sim-
ilarity/discordance is indicative of semantic similar-
ity which in turn is a handle for context incongruity.
In the case of the ‘sense of humor’ example above, the
words ‘sense of humor’ and ‘garbage man’ are seman-
tically dissimilar and their presence together in the sen-
tence provides a clue to sarcasm. Hence, our set of fea-
tures based on word embeddings aim to capture such se-
mantic similarity/discordance. Since such semantic simi-
larity is but one of the components of context incongruity
and since existing feature sets rely on sentiment-based
features to capture context incongruity, it is imperative
that the two be combined for sarcasm detection. Thus,
our paper deals with the question:

Can word embedding-based features when augmented to
features reported in prior work improve the performance

of sarcasm detection?

To the best of our knowledge, this is the first attempt
that uses word embedding-based features to detect sar-
casm. In this respect, the paper makes a simple increment
to state-of-the-art but opens up a new direction in sarcasm
detection research. We establish our hypothesis in case
of four past works and four types of word embeddings,
to show that the benefit of using word embedding-based
features holds across multiple feature sets and word em-
beddings.

2 Motivation
In our literature survey of sarcasm detection (Joshi et al.,
2016), we observe that a popular trend is semi-supervised
extraction of patterns with implicit sentiment. One such
work is by Riloff et al. (2013) who give a bootstrap-
ping algorithm that discovers a set of positive verbs and

1006

negative/undesirable situations. However, this simplifi-
cation (of representing sarcasm merely as positive verbs
followed by negative situation) may not capture difficult
forms of context incongruity. Consider the sarcastic sen-
tence ‘A woman needs a man like a fish needs bicycle’2.
The sarcasm in this sentence is understood from the fact
that a fish does not need bicycle - and hence, the sentence
ridicules the target ‘a man’. However, this sentence does
not contain any sentiment-bearing word. Existing sar-
casm detection systems relying on sentiment incongruity
(as in the case of our past work reported as Joshi et al.
(2015)) may not work well in such cases of sarcasm.

To address this, we use semantic similarity as a han-
dle to context incongruity. To do so, we use word vector
similarity scores. Consider similarity scores (as given by
Word2Vec) between two pairs of words in the sentence
above:

similarity(man,woman) = 0.766
similarity(fish,bicycle) = 0.131

Words in one part of this sentence (‘man’ and ‘woman’)
are lot more similar than words in another part of the sen-
tence (‘fish’ and ‘bicycle’). This semantic discordance
can be a clue to presence of context incongruity. Hence,
we propose features based on similarity scores between
word embeddings of words in a sentence. In general, we
wish to capture the most similar and most dissimilar word
pairs in the sentence, and use their scores as features for
sarcasm detection.

3 Background: Features from prior work
We augment our word embedding-based features to the
following four feature sets that have been reported:

1. Liebrecht et al. (2013): They consider unigrams,
bigrams and trigrams as features.

2. González-Ibánez et al. (2011a): They propose two
sets of features: unigrams and dictionary-based.
The latter are words from a lexical resource called
LIWC. We use words from LIWC that have been
annotated as emotion and psychological process
words, as described in the original paper.

3. Buschmeier et al. (2014): In addition to uni-
grams, they propose features such as: (a) Hy-
perbole (captured by three positive or negative
words in a row), (b) Quotation marks and ellipsis,
(c) Positive/Negative Sentiment words followed by
an exclamation mark or question mark, (d) Posi-
tive/Negative Sentiment Scores followed by ellipsis
(represented by a ‘...’), (e) Punctuation, (f) Interjec-
tions, and (g) Laughter expressions.

2This quote is attributed to Irina Dunn, an Australian writer
(https://en.wikipedia.org/wiki/Irina_Dunn

4. Joshi et al. (2015): In addition to unigrams, they use
features based on implicit and explicit incongruity.
Implicit incongruity features are patterns with im-
plicit sentiment as extracted in a pre-processing step.
Explicit incongruity features consist of number of
sentiment flips, length of positive and negative sub-
sequences and lexical polarity.

4 Word Embedding-based Features
In this section, we now describe our word embedding-
based features. We reiterate that these features will be
augmented to features from prior works (described in
Section 3).

As stated in Section 2, our word embedding-based fea-
tures are based on similarity scores between word em-
beddings. The similarity score is the cosine similarity
between vectors of two words. To illustrate our features,
we use our example ‘A woman needs a man like a fish
needs a bicycle’. The scores for all pairs of words in this
sentence are given in Table 1.

man woman fish needs bicycle

man - 0.766 0.151 0.078 0.229
woman 0.766 - 0.084 0.060 0.229
fish 0.151 0.084 - 0.022 0.130
needs 0.078 0.060 0.022 - 0.060
bicycle 0.229 0.229 0.130 0.060 -

Table 1: Similarity scores for all pairs of content words in ‘A woman
needs a man like a fish needs bicycle’

Using these similarity scores, we compute two sets of
features:

1. Unweighted similarity features (S): We first com-
pute similarity scores for all pairs of words (except
stop words). We then return four feature values per
sentence.3:

• Maximum score of most similar word pair
• Minimum score of most similar word pair
• Maximum score of most dissimilar word pair
• Minimum score of most dissimilar word pair

For example, in case of the first feature, we consider
the most similar word to every word in the sentence,
and the corresponding similarity scores. These most
similar word scores for each word are indicated in
bold in Table 1. Thus, the first feature in case of our
example would have the value 0.766 derived from
the man-woman pair and the second feature would
take the value 0.078 due to the needs-man pair. The
other features are computed in a similar manner.

3These feature values consider all words in the sentence, i.e., the
‘maximum’ is computed over all words

1007

2. Distance-weighted similarity features (WS): Like
in the previous case, we first compute similarity
scores for all pairs of words (excluding stop-words).
For all similarity scores, we divide them by square
of distance between the two words. Thus, the simi-
larity between terms that are close in the sentence is
weighted higher than terms which are distant from
one another. Thus, for all possible word pairs, we
compute four features:

• Maximum distance-weighted score of most
similar word pair

• Minimum distance-weighted score of most
similar word pair

• Maximum distance-weighted score of most
dissimilar word pair

• Minimum distance-weighted score of most dis-
similar word pair

These are computed similar to unweighted similarity
features.

5 Experiment Setup

We create a dataset consisting of quotes on GoodReads 4.
GoodReads describes itself as ‘the world’s largest site for
readers and book recommendations.’ The website also
allows users to post quotes from books. These quotes are
snippets from books labeled by the user with tags of their
choice. We download quotes with the tag ‘sarcastic’ as
sarcastic quotes, and the ones with ‘philosophy’ as non-
sarcastic quotes. Our labels are based on these tags given
by users. We ensure that no quote has both these tags.
This results in a dataset of 3629 quotes out of which 759
are labeled as sarcastic. This skew is similar to skews
observed in datasets on which sarcasm detection experi-
ments have been reported in the past (Riloff et al., 2013).

We report five-fold cross-validation results on the
above dataset. We use SVMperf by Joachims (2006)
with c as 20, w as 3, and loss function as F-score opti-
mization. This allows SVM to be learned while optimiz-
ing the F-score.

As described above, we compare features given in prior
work alongside the augmented versions. This means that
for each of the four papers, we experiment with four con-
figurations:

1. Features given in paper X

2. Features given in paper X + unweighted similarity
features (S)

3. Features given in paper X + weighted similarity fea-
tures (WS)

4. Features given in paper X + S+WS (i.e., weighted
and unweighted similarity features)

Features P R F

Baseline

Unigrams 67.2 78.8 72.53
S 64.6 75.2 69.49
WS 67.6 51.2 58.26
Both 67 52.8 59.05

Table 2: Performance of unigrams versus our similarity-based features
using embeddings from Word2Vec

We experiment with four types of word embeddings:

1. LSA: This approach was reported in Landauer and
Dumais (1997). We use pre-trained word em-
beddings based on LSA5. The vocabulary size is
100,000.

2. GloVe: We use pre-trained vectors avaiable from the
GloVe project6. The vocabulary size in this case is
2,195,904.

3. Dependency Weights: We use pre-trained vectors7

weighted using dependency distance, as given in
Levy and Goldberg (2014). The vocabulary size is
174,015.

4. Word2Vec: use pre-trained Google word vectors.
These were trained using Word2Vec tool 8 on the
Google News corpus. The vocabulary size for
Word2Vec is 3,000,000. To interact with these pre-
trained vectors, as well as compute various features,
we use gensim library (Řehůřek and Sojka, 2010).

To interact with the first three pre-trained vectors, we use
scikit library (Pedregosa et al., 2011).

6 Results
Table 2 shows performance of sarcasm detection when
our word embedding-based features are used on their own
i.e, not as augmented features. The embedding in this
case is Word2Vec. The four rows show baseline sets
of features: unigrams, unweighted similarity using word
embeddings (S), weighted similarity using word embed-
dings (WS) and both (i.e., unweighted plus weighted sim-
ilarities using word embeddings). Using only unigrams
as features gives a F-score of 72.53%, while only un-
weighted and weighted features gives F-score of 69.49%
and 58.26% respectively. This validates our intuition

4www.goodreads.com
5http://www.lingexp.uni-tuebingen.de/z2/

LSAspaces/
6http://nlp.stanford.edu/projects/glove/
7 https://levyomer.wordpress.com/2014/04/25/

dependency-based-word-embeddings/
8https://code.google.com/archive/p/Word2Vec/

1008

LSA GloVe Dependency Weights Word2Vec

P R F P R F P R F P R F

L 73 79 75.8 73 79 75.8 73 79 75.8 73 79 75.8
+S 81.8 78.2 79.95 81.8 79.2 80.47 81.8 78.8 80.27 80.4 80 80.2
+WS 76.2 79.8 77.9 76.2 79.6 77.86 81.4 80.8 81.09 80.8 78.6 79.68
+S+WS 77.6 79.8 78.68 74 79.4 76.60 82 80.4 81.19 81.6 78.2 79.86

G 84.8 73.8 78.91 84.8 73.8 78.91 84.8 73.8 78.91 84.8 73.8 78.91
+S 84.2 74.4 79 84 72.6 77.8 84.4 72 77.7 84 72.8 78
+WS 84.4 73.6 78.63 84 75.2 79.35 84.4 72.6 78.05 83.8 70.2 76.4
+S+WS 84.2 73.6 78.54 84 74 78.68 84.2 72.2 77.73 84 72.8 78

B 81.6 72.2 76.61 81.6 72.2 76.61 81.6 72.2 76.61 81.6 72.2 76.61
+S 78.2 75.6 76.87 80.4 76.2 78.24 81.2 74.6 77.76 81.4 72.6 76.74
+WS 75.8 77.2 76.49 76.6 77 76.79 76.2 76.4 76.29 81.6 73.4 77.28
+S+WS 74.8 77.4 76.07 76.2 78.2 77.18 75.6 78.8 77.16 81 75.4 78.09

J 85.2 74.4 79.43 85.2 74.4 79.43 85.2 74.4 79.43 85.2 74.4 79.43
+S 84.8 73.8 78.91 85.6 74.8 79.83 85.4 74.4 79.52 85.4 74.6 79.63
+WS 85.6 75.2 80.06 85.4 72.6 78.48 85.4 73.4 78.94 85.6 73.4 79.03
+S+WS 84.8 73.6 78.8 85.8 75.4 80.26 85.6 74.4 79.6 85.2 73.2 78.74

Table 3: Performance obtained on augmenting word embedding features to features from four prior works, for four word embeddings; L: Liebrecht
et al. (2013), G: González-Ibánez et al. (2011a), B: Buschmeier et al. (2014) , J: Joshi et al. (2015)

that word embedding-based features alone are not
sufficient, and should be augmented with other fea-
tures.

Following this, we show performance using features
presented in four prior works: Buschmeier et al. (2014),
Liebrecht et al. (2013), Joshi et al. (2015) and González-
Ibánez et al. (2011a), and compare them with augmented
versions in Table 3.

Table 3 shows results for four kinds of word embed-
dings. All entries in the tables are higher than the sim-
ple unigrams baseline, i.e., F-score for each of the four
is higher than unigrams - highlighting that these are bet-
ter features for sarcasm detection than simple unigrams.
Values in bold indicate the best F-score for a given prior
work-embedding type combination. In case of Liebrecht
et al. (2013) for Word2Vec, the overall improvement in
F-score is 4%. Precision increases by 8% while recall re-
mains nearly unchanged. For features given in González-
Ibánez et al. (2011a), there is a negligible degradation of
0.91% when word embedding-based features based on
Word2Vec are used. For Buschmeier et al. (2014) for
Word2Vec, we observe an improvement in F-score from
76.61% to 78.09%. Precision remains nearly unchanged
while recall increases. In case of Joshi et al. (2015) and
Word2Vec, we observe a slight improvement of 0.20%
when unweighted (S) features are used. This shows that
word embedding-based features are useful, across four
past works for Word2Vec.

Table 3 also shows that the improvement holds across
the four word embedding types as well. The maxi-

mum improvement is observed in case of Liebrecht et
al. (2013). It is around 4% in case of LSA, 5% in case
of GloVe, 6% in case of Dependency weight-based and
4% in case of Word2Vec. These improvements are not
directly comparable because the four embeddings have
different vocabularies (since they are trained on different
datasets) and vocabulary sizes, their results cannot be di-
rectly compared.

Therefore, we take an intersection of the vocabulary
(i.e., the subset of words present in all four embeddings)
and repeat all our experiments using these intersection
files. The vocabulary size of these intersection files (for
all four embeddings) is 60,252. Table 4 shows the av-
erage increase in F-score when a given word embed-
ding and a word embedding-based feature is used, with
the intersection file as described above. These gain val-
ues are lower than in the previous case. This is be-
cause these are the values in case of the intersection
versions - which are subsets of the complete embed-
dings. Each gain value is averaged over the four prior
works. Thus, when unweighted similarity (+S) based
features computed using LSA are augmented to fea-
tures from prior work, an average increment of 0.835%
is obtained over the four prior works. The values al-
low us to compare the benefit of using these four kinds
of embeddings. In case of unweighted similarity-based
features, dependency-based weights give the maximum
gain (0.978%). In case of weighted similarity-based
features and ‘+S+WS’, Word2Vec gives the maximum
gain (1.411%). Table 5 averages these values over the

1009

Word2Vec LSA GloVe Dep.
Wt.

+S 0.835 0.86 0.918 0.978
+WS 1.411 0.255 0.192 1.372
+S+WS 1.182 0.24 0.845 0.795

Table 4: Average gain in F-Scores obtained by using intersection of the
four word embeddings, for three word embedding feature-types, aug-
mented to four prior works; Dep. Wt. indicates vectors learned from
dependency-based weights

Word Embedding Average F-score Gain

LSA 0.452
Glove 0.651

Dependency 1.048
Word2Vec 1.143

Table 5: Average gain in F-scores for the four types of word embed-
dings; These values are computed for a subset of these embeddings
consisting of words common to all four

three types of word embedding-based features. Using
Dependency-based and Word2Vec embeddings results in
a higher improvement in F-score (1.048% and 1.143%
respectively) as compared to others.

7 Error Analysis
Some categories of errors made by our system are:

1. Embedding issues due to incorrect senses: Be-
cause words may have multiple senses, some em-
beddings lead to error, as in ‘Great. Relationship
advice from one of America’s most wanted.’.

2. Contextual sarcasm: Consider the sarcastic quote
‘Oh, and I suppose the apple ate the cheese’. The
similarity score between ‘apple’ and ‘cheese’ is
0.4119. This comes up as the maximum similar pair.
The most dissimilar pair is ‘suppose’ and ‘apple’
with similarity score of 0.1414. The sarcasm in this
sentence can be understood only in context of the
complete conversation that it is a part of.

3. Metaphors in non-sarcastic text: Figurative lan-
guage may compare concepts that are not directly re-
lated but still have low similarity. Consider the non-
sarcastic quote ‘Oh my love, I like to vanish in you
like a ripple vanishes in an ocean - slowly, silently
and endlessly’. Our system incorrectly predicts this
as sarcastic.

8 Related Work
Early sarcasm detection research focused on speech (Tep-
perman et al., 2006) and lexical features (Kreuz and
Caucci, 2007). Several other features have been proposed

(Kreuz and Caucci, 2007; Joshi et al., 2015; Khattri et
al., 2015; Liebrecht et al., 2013; González-Ibánez et al.,
2011a; Rakov and Rosenberg, 2013; Wallace, 2015; Wal-
lace et al., 2014; Veale and Hao, 2010; González-Ibánez
et al., 2011b; Reyes et al., 2012). Of particular relevance
to our work are papers that aim to first extract patterns
relevant to sarcasm detection. Davidov et al. (2010) use a
semi-supervised approach that extracts sentiment-bearing
patterns for sarcasm detection. Joshi et al. (2015) extract
phrases corresponding to implicit incongruity i.e. the sit-
uation where sentiment is expressed without use of sen-
timent words. Riloff et al. (2013) describe a bootstrap-
ping algorithm that iteratively discovers a set of positive
verbs and negative situation phrases, which are later used
in a sarcasm detection algorithm. Tsur et al. (2010) also
perform semi-supervised extraction of patterns for sar-
casm detection. The only prior work which uses word
embeddings for a related task of sarcasm detection is by
Ghosh et al. (2015). They model sarcasm detection as a
word sense disambiguation task, and use embeddings to
identify whether a word is used in the sarcastic or non-
sarcastic sense. Two sense vectors for every word are
created: one for literal sense and one for sarcastic sense.
The final sense is determined based on the similarity of
these sense vectors with the sentence vector.

9 Conclusion
This paper shows the benefit of features based on word
embedding for sarcasm detection. We experiment with
four past works in sarcasm detection, where we augment
our word embedding-based features to their sets of fea-
tures. Our features use the similarity score values re-
turned by word embeddings, and are of two categories:
similarity-based (where we consider maximum/minimum
similarity score of most similar/dissimilar word pair re-
spectively), and weighted similarity-based (where we
weight the maximum/minimum similarity scores of most
similar/dissimilar word pairs with the linear distance
between the two words in the sentence). We experi-
ment with four kinds of word embeddings: LSA, GloVe,
Dependency-based and Word2Vec. In case of Word2Vec,
for three of these past feature sets to which our features
were augmented, we observe an improvement in F-score
of at most 5%. Similar improvements are observed in
case of other word embeddings. A comparison of the
four embeddings shows that Word2Vec and dependency
weight-based features outperform LSA and GloVe.

This work opens up avenues for use of word embed-
dings for sarcasm classification. Our word embedding-
based features may work better if the similarity scores are
computed for a subset of words in the sentence, or using
weighting based on syntactic distance instead of linear
distance as in the case of our weighted similarity-based
features.

1010

References
Konstantin Buschmeier, Philipp Cimiano, and Roman Klinger.

2014. An impact analysis of features in a classification ap-
proach to irony detection in product reviews. In Proceedings
of the 5th Workshop on Computational Approaches to Sub-
jectivity, Sentiment and Social Media Analysis, pages 42–49.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010. Semi-
supervised recognition of sarcastic sentences in twitter and
amazon. In Proceedings of the Fourteenth Conference on
Computational Natural Language Learning, pages 107–116.
Association for Computational Linguistics.

Debanjan Ghosh, Weiwei Guo, and Smaranda Muresan. 2015.
Sarcastic or not: Word embeddings to predict the literal or
sarcastic meaning of words. In EMNLP.

Roberto González-Ibánez, Smaranda Muresan, and Nina Wa-
cholder. 2011a. Identifying sarcasm in twitter: a closer look.
In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technolo-
gies: short papers-Volume 2, pages 581–586. Association for
Computational Linguistics.

Roberto González-Ibánez, Smaranda Muresan, and Nina Wa-
cholder. 2011b. Identifying sarcasm in twitter: a closer look.
In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technolo-
gies: short papers-Volume 2, pages 581–586. Association for
Computational Linguistics.

Stacey L Ivanko and Penny M Pexman. 2003. Context
incongruity and irony processing. Discourse Processes,
35(3):241–279.

Thorsten Joachims. 2006. Training linear svms in linear time.
In Proceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
217–226. ACM.

Aditya Joshi, Vinita Sharma, and Pushpak Bhattacharyya.
2015. Harnessing context incongruity for sarcasm detec-
tion. In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Processing,
volume 2, pages 757–762.

Aditya Joshi, Pushpak Bhattacharyya, and Mark James Car-
man. 2016. Automatic sarcasm detection: A survey. arXiv
preprint arXiv:1602.03426.

Anupam Khattri, Aditya Joshi, Pushpak Bhattacharyya, and
Mark James Carman. 2015. Your sentiment precedes you:
Using an authors historical tweets to predict sarcasm. In
6th Workshop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis (WASSA), page 25.

Roger J Kreuz and Gina M Caucci. 2007. Lexical influences on
the perception of sarcasm. In Proceedings of the Workshop
on computational approaches to Figurative Language, pages
1–4. Association for Computational Linguistics.

Thomas K Landauer and Susan T. Dumais. 1997. A solution
to platos problem: The latent semantic analysis theory of ac-
quisition, induction, and representation of knowledge. PSY-
CHOLOGICAL REVIEW, 104(2):211–240.

Omer Levy and Yoav Goldberg. 2014. Dependency-based
word embeddings. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics, ACL

2014, June 22-27, 2014, Baltimore, MD, USA, Volume 2:
Short Papers, pages 302–308.

CC Liebrecht, FA Kunneman, and APJ van den Bosch. 2013.
The perfect solution for detecting sarcasm in tweets# not.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blon-
del, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.
2011. Scikit-learn: Machine learning in python. The Journal
of Machine Learning Research, 12:2825–2830.

Rachel Rakov and Andrew Rosenberg. 2013. ” sure, i did the
right thing”: a system for sarcasm detection in speech. In
INTERSPEECH, pages 842–846.

Radim Řehůřek and Petr Sojka. 2010. Software Framework
for Topic Modelling with Large Corpora. In Proceedings
of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50, Valletta, Malta, May. ELRA.
http://is.muni.cz/publication/884893/en.

Antonio Reyes, Paolo Rosso, and Davide Buscaldi. 2012.
From humor recognition to irony detection: The figurative
language of social media. Data & Knowledge Engineering,
74:1–12.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalindra De Silva,
Nathan Gilbert, and Ruihong Huang. 2013. Sarcasm as con-
trast between a positive sentiment and negative situation. In
EMNLP, pages 704–714.

Joseph Tepperman, David R Traum, and Shrikanth Narayanan.
2006. ” yeah right”: sarcasm recognition for spoken dia-
logue systems. In INTERSPEECH. Citeseer.

Oren Tsur, Dmitry Davidov, and Ari Rappoport. 2010. Icwsm-
a great catchy name: Semi-supervised recognition of sarcas-
tic sentences in online product reviews. In ICWSM.

Tony Veale and Yanfen Hao. 2010. Detecting ironic intent in
creative comparisons. In ECAI, volume 215, pages 765–770.

Byron C Wallace, Laura Kertz Do Kook Choe, and Eugene
Charniak. 2014. Humans require context to infer ironic in-
tent (so computers probably do, too). In Proceedings of the
Annual Meeting of the Association for Computational Lin-
guistics (ACL), pages 512–516.

Byron C Wallace. 2015. Sparse, contextually informed models
for irony detection: Exploiting user communities,entities and
sentiment. In ACL.

1011

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1012–1017,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Weakly Supervised Tweet Stance Classification by Relational Bootstrapping

Javid Ebrahimi and Dejing Dou and Daniel Lowd
Department of Computer and Information Science, University of Oregon

Eugene, Oregon 97403, USA
{javid,dou,lowd}@cs.uoregon.edu

Abstract

Supervised stance classification, in such do-
mains as Congressional debates and online
forums, has been a topic of interest in the
past decade. Approaches have evolved from
text classification to structured output predic-
tion, including collective classification and se-
quence labeling. In this work, we investigate
collective classification of stances on Twitter,
using hinge-loss Markov random fields (HL-
MRFs). Given the graph of all posts, users,
and their relationships, we constrain the pre-
dicted post labels and latent user labels to cor-
respond with the network structure. We focus
on a weakly supervised setting, in which only
a small set of hashtags or phrases is labeled.
Using our relational approach, we are able to
go beyond the stance-indicative patterns and
harvest more stance-indicative tweets, which
can also be used to train any linear text classi-
fier when the network structure is not available
or is costly.

1 Introduction

Stance classification is the task of determining from
text whether the author of the text is in favor of,
against, or neutral towards a target of interest. This
is an interesting task to study on social networks
due to the abundance of personalized and opinion-
ated language. Studying stance classification can be
beneficial in identifying electoral issues and under-
standing how public stance is shaped (Mohammad
et al., 2015).

Twitter provides a wealth of information: pub-
lic tweets by individuals, their profile information,

whom they follow, and more. Exploiting all these
pieces of information, in addition to the text, could
help build better NLP systems. Examples of this
approach include user preference modeling (Li et
al., 2014), stance classification (Rajadesingan and
Liu, 2014), and geolocation identification (Jurgens,
2013; Rahimi et al., 2015). For stance classification,
knowing the author’s past posting behavior, or her
friends’ stances on issues, could improve the stance
classifier. These are inherently structured problems,
and they demand structured solutions, such as Statis-
tical Relational Learning (SRL) (Getoor, 2007). In
this paper, we use hinge-loss Markov random fields
(HL-MRFs) (Bach et al., 2015), a recent develop-
ment in the SRL community.

SemEval 2016 Task 6 organizers (Mohammad et
al., 2016) released a dataset with Donald Trump as
the target, without stance annotation. The goal of
the task was to evaluate stance classification sys-
tems, which used minimal labeling on phrases. This
scenario is becoming more and more relevant due to
the vast amount of data and ever-changing nature of
the language on social media. This is critical in ap-
plications in which a timely detection is highly de-
sired, such as violence detection (Cano Basave et al.,
2013) and disaster situations.

Our work is the first to use SRL for stance classi-
fication on Twitter. We formulate the weakly super-
vised stance classification problem as a bi-type col-
lective classification problem: We start from a small
set of stance-indicative patterns and label the tweets
as positive and negative, accordingly. Then, our re-
lational learner uses these noisy-labeled tweets, as
well as the network structure, to classify the stance

1012

of other tweets and authors. Our goal will be to
constrain pairs of similar tweets, pairs of tweets and
their authors, and pairs of neighboring users to have
similar labels. We do this through hinge-loss feature
functions that encode our background knowledge
about the domain: (1) A person is pro/against Trump
if she writes a tweet with such stance; (2) Friends in
a social network often agree on their stance toward
Trump; (3) similar tweets express similar stances.

2 Related Work

Stance classification is related to sentiment classifi-
cation with a major difference that the target of inter-
est may not be explicitly mentioned in the text and
it may not be the target of opinion in the text (Mo-
hammad et al., 2016). Previous work has focused on
Congressional debates (Thomas et al., 2006; Yesse-
nalina et al., 2010), company-internal discussions
(Agrawal et al., 2003), and debates in online fo-
rums (Anand et al., 2011; Somasundaran and Wiebe,
2010). Stance classification has newly been posed
as structured output prediction. For example, cita-
tion structure (Burfoot et al., 2011) or rebuttal links
(Walker et al., 2012) are used as extra information to
model agreements or disagreements in debate posts
and to infer their labels. Arguments and counter-
arguments occur in sequences; Hasan and Ng (2014)
used this observation and posed stance classification
in debate forums as a sequence labeling task, and
used a global inference method to classify the posts.

Sridhar et al. (2015) use HL-MRFs to collec-
tively classify stance in online debate forums. We
address a weakly supervised problem, which makes
our approach different as we do not rely on local
text classifiers. Rajadesingan et al. (2014) propose a
retweet-based label propagation method which starts
from a set of known opinionated users and labels the
tweets posted by the people who were in the retweet
network.

3 Stance Classification on Twitter

3.1 Markov Random Fields
Markov random fields (MRFs) are widely used
in machine learning and statistics. Discriminative
Markov random fields such as conditional random
fields (Lafferty et al., 2001) are defined by a joint
distribution over random variables Y1, ..., Ym con-

ditioned on X1, ..., Xn that is specified by a vec-
tor of d real-valued potential functions φl(y, x) for
l = 1, ..., d, and a parameter (weight) vector θ ∈ Rd:

P(y|x;θ) = 1

Z(θ, x)
exp
(
〈θ, φ(y, x)〉

)

where 〈θ, φ(y, x)〉 denotes the dot product of the
parameters and the potential functions, and Z(θ, x)
is the partition function.

3.2 HL-MRFs for Tweet Stance Classification
Finding the maximum a posteriori (MAP) state is a
difficult discrete optimization problem and, in gen-
eral, is NP-hard. One particular class of MRFs that
allows for convex inference is hinge-loss Markov
random fields (HL-MRFs) (Bach et al., 2015). In
this graphical model, each potential function is a
hinge-loss function, and instead of discrete vari-
ables, MAP inference is performed over relaxed
continuous variables with domain [0, 1]n. These
hinge-loss functions, multiplied by the correspond-
ing model parameters (weights), act as penalizers for
soft linear constraints in the graphical model.

Consider ti, uj as the random variables denoting
the ith tweet and the jth user. The potential function,
φ(ti, uj), relating a user and her tweet is as follows,

max(0, tik − ujk) (1)

where tik and ujk denote the respective assertions
that ti has label k, and uj has label k . The function
captures the distance between the label for a user and
her tweet. In other words, this function measures the
penalty for dissimilar labels for a user and her tweet.

For users who are “friends” (i.e., who “follow”
each other on Twitter), we add this potential func-
tion,

max(0, uik − ujk) (2)

and for the tweet-tweet relations,

sijmax(0, tik − tjk) (3)

where sij measures the similarity between two
tweets. This scalar helps penalize violations in pro-
portion to the similarity between the tweets. For the
similarity measure, we simply used the cosine simi-
larity between the n-gram (1-4-gram) representation
of the tweets and set 0.7 as the cutoff threshold.

1013

Finally, two hard linear constraints are added, to
ensure that ti, and uj are each assigned a single la-
bel, or in other words, are fractionally assigned la-
bels with weights that sum to one.

∑

k

tik = 1 ,
∑

k

uik = 1 (4)

Weight learning is performed by an improved struc-
tured voted perceptron (Lowd and Domingos, 2007),
at every iteration of which we estimate the labels of
the users by hard EM. This formulation can work in
weakly supervised settings, because the constraints
simply dictate similar/neighboring nodes to have
similar labels.

In the language of Probabilistic Soft Logic (PSL)
(Bach et al., 2015), the constraints can be defined by
the following rules:

PSL Rules:
tweet-label(T , L) ∧ tweet-user(T , U)⇒ user-label(U , L)
user-label(U1, L) ∧ friend(U1, U2) ⇒ user-label(U2, L)
tweet-label(T1, L) ∧ similar(T1, T2) ⇒ tweet-label(T2, L)
PredicateConstraint.Functional , on : user-label
PredicateConstraint.Functional , on : tweet-label

Our post-similarity constraint implementation is
different from the original PSL implementation due
to the multiplicative similarity scalar1.

This work is a first step toward relational stance
classification on Twitter. Incorporating other re-
lational features, such as mention networks and
retweet networks can potentially improve our re-
sults. Similarly, employing textual entailment tech-
niques for tweet similarity will most probably im-
prove our results.

4 Experiments and Results

4.1 Data
SemEval-2016 Task 6.b (Mohammad et al., 2016)
provided 78,000+ tweets associated with “Donald
Trump”. The protocol of the task only allowed min-
imal manual labeling, i.e. “tweets or sentences that
are manually labeled for stance” were not allowed,
but “manually labeling a handful of hashtags” was
permitted. Additionally, using Twitter’s API, we
collected each user’s follower list and their profile
information. This often requires a few queries per

1The original implementation would result in the function,
max(0, tik + sij − tjk − 1), which is less intuitive than ours.

Algorithm Relational Bootstrapping
Input:
Unlabeled pairs of tweets and authors (ti, ui).
Friendship pairs (ui, uj) between users.
Similarity triplets (ti, tj , sij) between tweets.
Stance-indicative regexes R.
// Create an initial dataset.
Training set X = {}.
Harvest positive and negative tweets based on R.
Add the harvested tweets to X.
// Augment the dataset by the relational classifier.
Learning & inference over P (U,T|X) by our HL-MRF.
Add some classified tweets to training set: X = X + T.
Output: X.

Favor. make(?)america(?)great(?)again, #trumpfor-
president, I{’m, am} voting trump, #illegal(.*), patriot,
#boycottmacy
Against. racist, bigot, idiot, hair, narcissis(.+)

Table 1: Patterns to collect pro-Trump and anti-Trump tweets.

user. We only considered the tweets which contain
no URL, are not retweets, and have at most three
hashtags and three mentions.

This task’s goal was to test stance towards the tar-
get in 707 tweets. The authors in the test set are not
identified, which prevents us from pursuing a fully
relational approach. Thus, we adopt a two-phase ap-
proach: First, we predict the stance of the training
tweets using our HL-MRF. Second, we use the la-
beled instances as training for a linear text classifier.
This dataset-augmenting procedure is summarized
in the Algorithm Relational Bootstrapping.

4.2 Experimental Setup

We pick the pro-Trump and anti-Trump indicative
regular expressions and hashtags, which are shown
in Table 1. Tweets that have at least one positive
or one negative pattern, and do not have both posi-
tive and negative patterns, are considered as our ini-
tial positive and negative instances. This gives us
a dataset with noisy labels; for example, the tweet
“his #MakeAmericaGreatAgain #Tag is a bummer.”
is against Donald Trump, incorrectly labeled favor-
able. A quantitative analysis of the impact of noise,
and the goodness of initial patterns, can be pursued
in the future through a supervised approach.

Tweets in the “neither” class range from news
about the target of interest, to tweets totally irrele-

1014

Figure 1: An example of the output of our relational bootstrapper. A small excerpt of the network, consisting of three users, four

tweets and two friendship links. The tweet in regular type face is labeled as anti-Trump in the first phase, because of the word

“racist” in the tweet. The other tweets, which are in boldface, are found through SRL harvesting, and are automatically labeled as

anti-Trump tweets correctly.

vant to him. This makes it difficult to collect neutral
tweets, and we will classify tweets to be in that class
based on a heuristic described in the next subsection.

Given the limited number of seeds, we need to
collect more training instances to build a stance clas-
sifier. Because of the original noise in the labels and
the imposed fragmentary view of data, self-learning
would perform poorly. Instead, we augment the
dataset with tweets that our relational model clas-
sifies as positive or negative with a minimum con-
fidence (class value 0.52 for pro-Trump and 0.56
for anti-Trump). The hyper-parameters were found
through experimenting on a development set, which
was the stance-annotated dataset of SemEval Task
6.a. The targets of that dataset include Hillary Clin-
ton, Abortion, Climate Change, and Athesim. Since
there are more anti-Trump tweets than pro-Trump
(Mohammad et al., 2016), for our grid search we
prefer a higher confidence threshold for the anti-
Trump class, making it harder for the class bias to
adversely impact the quality of harvested tweets. We
also exclude the tweets that were sent by a user with
no friends in the network. An example which show-
cases relational harvesting of tweets can be seen in
Figure 1, wherein given the evidence, some of which
is shown, three new tweets are found.

4.3 Classification

We convert the tweets to lowercase, and we remove
stopwords and punctuation marks. For tweet clas-
sification, we use a linear-kernel SVM, which has
proven to be effective for text classification and ro-
bust in high-dimensional spaces. We use the imple-

No. total tweets 21,000
No. initial pro tweets 1,100
No. initial anti tweets 1,490
No. relational-harvested pro tweets 960
No. relational-harvested anti tweets 780
No. edges in tweet similarity network 7,400
No. edges in friend network 131,000

Table 2: Statistics of the data

mentation of Pedregosa et al. (2011), and we em-
ploy the features below, which are normalized to unit
length after conjoinment.
N-grams: tf-idf of binary representation of word
n-grams (1–4 gram) and character n-grams (2–6
gram). After normalization, we only pick the top
5% most frequent grams.
Lexicon: Binary indicators of positive-emotion and
negative-emotion words in LIWC2007 categories
(Tausczik and Pennebaker, 2010).
Sentiment: Sentiment distribution, based on a sen-
timent analyzer for tweets, VADER (Hutto and
Gilbert, 2014).

Table 3 demonstrates the results of stance classi-
fication. The metrics used are the macro-average of
the F1-score for favor, against, and average of these
two. The best competing system for the task used
a deep convolutional neural network to train on pro
and against instances, which were collected through
linguistic patterns. At test time, they randomly as-
signed the instances, about which the classifier was
less confident, to the “neither” class. Another base-

1015

Method Ffavor Fagainst Favg

SVM-ngrams-comb 18.42 38.45 28.43
best-system 57.39 55.17 56.28
SVM-IN 30.43 59.52 44.97
SVM-NB 47.67 57.53 52.60
SVM-RB 52.14 59.26 55.70
SVM-RB-N 54.27 60.77 57.52

Table 3: Evaluation on SemEval-2016 Task 6.b.

line is an SVM, trained on another stance classifi-
cation dataset (Task 6.a), using a combination of n-
gram features (SVM-ngrams-comb).

SVM-IN is trained on the initial dataset created
by linguistic patterns, SVM-RB is trained on the
relational-augmented dataset, and SVM-NB is a
naive bootstrapping method that simply adds more
instances, from the users in the initial dataset, with
the same label as their tweets in the initial dataset,
and for those who have both positive and negative
tweets, does not add more of their tweets.

At test time, we could predict an instance to be
of the “neither” class if it contains none of our
stance-indicative patterns, nor any of the top 100
word grams that have the highest tf-idf weight
in the training set. SVM-RB-N follows this heuris-
tic for the “neither” class, while SVM-RB ignores
this class altogether.

4.4 Demographics of the Users

As an application of stance classification, we ana-
lyze the demographics of the users based on their
profile information. Due to the demographics of
Twitter users, one has to be cautious about drawing
generalizing conclusions from the analysis of Twit-
ter data. We pick a balanced set of 1000 users with
the highest degree of membership to any of the two
groups. In Figure 2, we plot states represented by
at least 50 users in the dataset. We can see that the
figure correlates with US presidential electoral poli-
tics; supporters of Trump dominate Texas, and they
are in the clear minority in California.

5 Conclusions and Future Work

In this paper, we propose a weakly supervised stance
classifier that leverages the power of relational learn-
ing to incorporate extra features that are generally
present on Twitter and other social media, i.e., au-

Figure 2: Distribution of Twitter users in a number of states.

thorship and friendship information. HL-MRFs en-
ables us to use a set of hard and soft linear con-
straints to employ both the noisy-labeled instances
and background knowledge in the form of soft con-
straints for stance classification on Twitter.

While the relational learner tends to smooth out
the incorrectly labeled instances, this model still suf-
fers from noise in the labels. Labeling features and
enforcing model expectation can be used to alleviate
the impact of noise; currently, the initial linguistic
patterns act as hard constraints for the label of the
tweets, which can be relaxed by techniques such as
generalized expectation (Druck et al., 2008).

The SemEval dataset has only one target of in-
terest, Donald Trump. But the target of the opin-
ion in the tweet may not necessarily be him, but re-
lated targets, such as Hillary Clinton and Ted Cruz.
Thus, automatic detection of targets and inferring
the stance towards all of the targets is the next
step toward creating a practical weakly-supervised
stance classifier.

6 Acknowledgments

This work was supported by NIH grant
R01GM103309 and ARO grant W911NF-15-
1-0265. We would like to thank anonymous
reviewers for their helpful comments, Saed Rezayi
for helping with Twitter API, and Ellen Klowden
for discussions.

1016

References
Rakesh Agrawal, Sridhar Rajagopalan, Ramakrishnan

Srikant, and Yirong Xu. 2003. Mining newsgroups
using networks arising from social behavior. In Pro-
ceedings of WWW, pages 529–535.

Pranav Anand, Marilyn Walker, Rob Abbott, Jean E Fox
Tree, Robeson Bowmani, and Michael Minor. 2011.
Cats rule and dogs drool!: Classifying stance in online
debate. In Proceedings of the Workshop on Computa-
tional Approaches to Subjectivity and Sentiment Anal-
ysis, pages 1–9.

Stephen H. Bach, Matthias Broecheler, Bert Huang, and
Lise Getoor. 2015. Hinge-loss Markov random
fields and probabilistic soft logic. arXiv:1505.04406
[cs.LG].

Clinton Burfoot, Steven Bird, and Timothy Baldwin.
2011. Collective classification of congressional floor-
debate transcripts. In Proceedings of ACL, pages
1506–1515.

Amparo Elizabeth Cano Basave, Yulan He, Kang Liu,
and Jun Zhao. 2013. A weakly supervised Bayesian
model for violence detection in social media. In Pro-
ceedings of IJCNLP, pages 109–117.

Gregory Druck, Gideon Mann, and Andrew McCallum.
2008. Learning from labeled features using general-
ized expectation criteria. In Proceedings of SIGIR,
pages 595–602.

Lise Getoor. 2007. Introduction to statistical relational
learning. MIT press.

Kazi Saidul Hasan and Vincent Ng. 2014. Why are you
taking this stance? Identifying and classifying reasons
in ideological debates. In Proceedings of EMNLP,
pages 751–762.

Clayton J Hutto and Eric Gilbert. 2014. Vader: A par-
simonious rule-based model for sentiment analysis of
social media text. In Proceedings of ICWSM, pages
216–225.

David Jurgens. 2013. That’s what friends are for: Infer-
ring location in online social media platforms based on
social relationships. In Proceedings of ICWSM, pages
273–282.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. In Pro-
ceedings of ICML, pages 282–289.

Jiwei Li, Alan Ritter, and Dan Jurafsky. 2014. Infer-
ring user preferences by probabilistic logical reasoning
over social networks. arXiv:1411.2679 [cs.SI].

Daniel Lowd and Pedro Domingos. 2007. Efficient
weight learning for Markov logic networks. In Pro-
ceedings of PKDD, pages 200–211.

Saif M Mohammad, Xiaodan Zhu, Svetlana Kiritchenko,
and Joel Martin. 2015. Sentiment, emotion, purpose,

and style in electoral tweets. Information Processing
& Management, 51(4):480–499.

Saif M. Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016. Semeval-
2016 task 6: Detecting stance in tweets. In Proceed-
ings of SemEval, pages 31–41.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–
2830.

Afshin Rahimi, Trevor Cohn, and Timothy Baldwin.
2015. Twitter user geolocation using a unified text
and network prediction model. In Proceedings of ACL,
pages 630–636.

Ashwin Rajadesingan and Huan Liu. 2014. Identifying
users with opposing opinions in Twitter debates. In
Proceedings of SBP, pages 153–160.

Swapna Somasundaran and Janyce Wiebe. 2010. Rec-
ognizing stances in ideological on-line debates. In
Proceedings of the Workshop on Computational Ap-
proaches to Analysis and Generation of Emotion in
Text, pages 116–124.

Dhanya Sridhar, James Foulds, Bert Huang, Lise Getoor,
and Marilyn Walker. 2015. Joint models of disagree-
ment and stance in online debate. In Proceedings of
ACL, pages 116–125.

Yla R Tausczik and James W Pennebaker. 2010. The
psychological meaning of words: LIWC and comput-
erized text analysis methods. Journal of Language and
Social Psychology, 29(1):24–54.

Matt Thomas, Bo Pang, and Lillian Lee. 2006. Get out
the vote: Determining support or opposition from con-
gressional floor-debate transcripts. In Proceedings of
EMNLP, pages 327–335.

Marilyn A Walker, Pranav Anand, Robert Abbott, and
Ricky Grant. 2012. Stance classification using di-
alogic properties of persuasion. In Proceedings of
NAACL-HLT, pages 592–596.

Ainur Yessenalina, Yisong Yue, and Claire Cardie. 2010.
Multi-level structured models for document-level sen-
timent classification. In Proceedings of EMNLP,
pages 1046–1056.

1017

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1018–1024,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

The Gun Violence Database: A new task and data set for NLP

Ellie Pavlick1 Heng Ji2 Xiaoman Pan2 Chris Callison-Burch1

1Computer and Information Science Department, University of Pennsylvania
2Computer Science Department, Rensselaer Polytechnic Institute

Abstract
We argue that NLP researchers are especially
well-positioned to contribute to the national
discussion about gun violence. Reasoning
about the causes and outcomes of gun violence
is typically dominated by politics and emo-
tion, and data-driven research on the topic is
stymied by a shortage of data and a lack of
federal funding. However, data abounds in the
form of unstructured text from news articles
across the country. This is an ideal application
of NLP technologies, such as relation extrac-
tion, coreference resolution, and event detec-
tion. We introduce a new and growing dataset,
the Gun Violence Database, in order to facil-
itate the adaptation of current NLP technolo-
gies to the domain of gun violence, thus en-
abling better social science research on this
important and under-resourced problem.

1 Introduction

The field of natural language processing often touts
its mission as harnessing the information contained
in human language: taking unstructured data in the
form of speech and text, and transforming it into
information that can be searched, categorized, and
reasoned about. This is an ambitious goal, and
the current state-of-the-art of language technology
has made impressive strides towards understanding
“who did what to whom, when, where, how, and
why” (Kao and Poteet, 2007). Advances in NLP
have enabled us to read news in real time (Petrović et
al., 2010), identify the key players (Ruppenhofer et
al., 2009), recognize the relationships between them
(Riedel et al., 2013), summarize the new informa-
tion (Wang et al., 2016), update central databases

(Singhal, 2012), and use those databases to answer
questions about the world (Berant et al., 2013).

Although these technological achievements are
profound, often times we as researchers apply them
to somewhat trivial settings like learning about the
latest Hollywood divorces (Wijaya et al., 2015) or
learning silly facts about the world, like that 〈white
suites, will never go out of, style〉 (Fader et al.,
2011). In this paper, we call the attention of the NLP
community to one particularly good use case of our
current technology, which could have profound pol-
icy implications: gun violence research.

Gun violence is an undeniable problem in the
United States, but its causes are poorly understood,
and attempts to reason about solutions are often
marred by emotions and political bias. Research into
the factors that cause and prevent gun violence is
limited by the fact that data collection is expensive,
and political agendas have all but eliminated fund-
ing on the topic. However, in the form of unstruc-
tured natural language published daily by newspa-
pers across the country, data abounds. We argue that
this is the exact type of information that NLP is de-
signed to organize, and the positive social impact of
doing so would be substantial. We introduce the Gun
Violence Database (GVDB), a new dataset of gun
violence articles paired with NLP annotations. Our
hope is that the GVDB will facilitate the adaptation
of core NLP technologies to the domain of gun vi-
olence. In turn, we believe these NLP technologies
can help overcome the data vacuum that is currently
preventing productive discussion about gun violence
and its possible solutions.

1018

What we have: Daily reports of gun violence, published as free text by local newspapers and TV stations.
What we need: Structured, queryable database with one record per incident.

Information Retrieval: Find articles about gun violence.
Event Detection: Identify precise incident being reported.
Temporal Annotation: Pinpoint precise time of the event.
NER: Extract key locations and participants from the event.
Semantic Role Labeling: Relate participants to their role
in the incident (e.g. shooter, victim).
With-document Coref: Resolve mentions to consistently
model each participant throughout the event.
Semantic Parsing: Extract precise, detailed information
about participants, e.g. race, age, and gender.
Cross-document Coref: Recognize mentions of the same
shooter or victim appearing in different articles.
Event Coref: Identify articles reporting the same event,
and resolve to a single database entry.

Three seconds. On a dashcam video
clock, that's the amount of time
between the moment when two officers
have their guns drawn and the point
when Laquan McDonald falls to the
ground. The video, released to the
public for the first time late Tuesday, is
a key piece of evidence in a case
that's sparked protests in Chicago and
has landed an officer behind bars. The
17-year-old McDonald was shot 16
times on that day the video shows in
October 2014. Chicago police Officer
Jason Van Dyke was charged
Tuesday with first-degree murder….

Chicago Police release Laquan
McDonald shooting video | National
News

Protesters took to the streets of Chicago
late Tuesday after police released a
video showing an officer shooting 17-
year-old Laquan McDonald. McDonald
was killed last October. The city's
mayor has called for peace. "I believe
this is a moment that can build bridges
of understanding rather than become a
barrier of misunderstanding." Mayor
Rahm Emanuel said. Chicago has been
preparing for protests in advance of the
video's release. McDonald was a black
teenager. The officer who shot him,
Jason Van Dyke, is white. He was
charged Tuesday with first-degree
murder in McDonald's death…

Police release video of officer shooting
teen | Oklahoma City

Event
Co-Ref

Cross doc
Co-Ref

Within doc
Co-Ref

Incident #1053
City Chicago
Date October 2014
Shooter Jason Van Dyke
Victim Laquan McDonald

Shooter #1009
Name Jason Van Dyke
Gender Male
Age Unk
Race White

Victim #1014
Name Laquan McDonald
Gender Male
Age 17
Race Black
Killed TRUE

Event Detection

Semantic Roles

Semantic
Parsing

Temporal
Resolution

Figure 1: Turning daily news reports into usable data for public health and social science researchers is a textbook application of

NLP technologies, and one that can have meaningful social impact.

2 Gun Violence’s Data Problem

It is not difficult to motivate why gun violence is
an important problem for research. Gun violence
causes approximately 34,000 deaths in the US every
year and more than twice as many injuries (FICAP,
2006), with violence especially high among young
people and racial minorities (CDC, 2013).

The magnitude of the gun violence problem, the
inherent gravity of the topic, and that fact that
it inevitably leads to discussion of race, personal
safety, and constitutional rights, makes the topic
highly emotional and politically charged. Research
into such hot-blooded topics stands to benefit im-
mensely from data. In the past decade, machine
learning researchers have championed data-driven
decision making in place of oft-fallible human in-
tuition. This approach has revolutionized the way
we design and evaluate the effectiveness of busi-
ness practices (Brynjolfsson et al., 2011; Kohavi
et al., 2009), advertisements (Breese et al., 1998),
and political campaigns (Issenberg, 2013). Gun vi-
olence policy should be no different. The problem
is that researchers lack the data they need to an-
swer the questions they want to ask. There is no
single database1 of gun violence incidents in the

1There are 13 national data systems in the U.S., managed by

US, and the data that is available is mostly aggre-
gated at the state level. Without locally-aggregated
data, it is impossible to conduct meaningful studies
of how firearm injury varies by community, a key
step toward designing good policies for prevention
(FICAP, 2006). However, for the past 25 years, re-
search in this area has been, in the best case, mas-
sively underfunded (Roth et al., 1993) and in the
worst case, actively blocked by federal legislation
(Kassirer, 1995; Frankel, 2015; Bertrand, 2015).
As a result, federal resources for gun violence re-
search are orders of magnitude lower than is war-
ranted (Branas et al., 2005), and there is no near-
term likelihood of a federally-funded effort to collect
detailed datasets to facilitate gun violence research.

Why NLP? Local newspapers and television sta-
tions report daily on gun injuries and fatalities.
Many of these stories never make national news, but
they represent precisely the kind of high-resolution
data that epidemiologists need. The details of these
reports could transform gun violence research if they
were in a structured database, rather than spread

separate federal agencies. The National Violent Death Registry
System, arguably the most organized effort, receives data from
only 16 states. Most large-scale epidemiological studies sample
information from only 100 Emergency Departments.

1019

across the text of thousands of web pages.
Replacing expensive, manual data entry with au-

tomated processing is exactly the type of problem
that NLP is made to solve. In fact, the recent
application of NLP tools to social science prob-
lems has generated a flurry of exciting and en-
couraging results. NLP has made novel contribu-
tions to the way scientists measure everything from
income (Preoctiuc-Pietro et al., 2015b) to mental
health (Preoctiuc-Pietro et al., 2015a; Schwartz et
al., 2016; Choudhury et al., 2016), disease (Santil-
lana et al., 2015; Ireland et al., 2015; Eichstaedt et
al., 2015), and the quality of patient care (Nakhasi et
al., 2016; Ranard et al., 2016).

Text mining has promise for the study of gun
violence, too (Bushman et al., 2016). However,
most questions about gun violence are not easily
answered using shallow analyses like topic models
or word clusters. Epidemiologists want to know,
for example, does gun ownership lead to increases
in gun violence? Or, is there evidence of conta-
gion in suicides, and if so, does the style of report-
ing on suicides affect the likelihood that others will
commit suicide after the initial event? Answering
these questions requires extracting precise informa-
tion from text: identifying entities, their actions, and
their attributes specifically and reliably.

We believe this level of depth is well within the
reach of current NLP technology. The state-of-the-
art tools that NLP researchers have been building
and fine-tuning for decades are an ideal fit for the
problem described. Nearly every step of this pro-
cess, from retrieving articles about gun violence to
correctly determining whether the phrase 14 year
old girl describes the victim or the shooter, has been
studied as a core NLP problem in its own right (Fig-
ure 1). These NLP tools have the potential to make
a marked difference for gun violence researchers.

3 The Gun Violence Database

In order to facilitate the adaptation of NLP tools for
use in gun violence research, we introduce the Gun
Violence Database2 (GVDB), a dataset for training
and evaluating the performance of NLP systems in
the domain of gun violence. The GVDB is the result
of a large crowdsourced annotation effort. This an-

2http://gun-violence.org/

notation is ongoing, and the GVDB will be regularly
updated with new data and new layers of annotation,
making it an interesting and challenging data set on
which to evaluate state-of-the-art NLP tools.

Crowdsourced Annotation The GVDB is built
and updated through a continuously running crowd-
sourced annotation pipeline. The pipeline consists
of daily crawls of local newspapers and television
websites from across the US. The crawled articles
are automatically classified using a high-recall text
classifier, and then manually vetted by humans to
filter out false positives. So far, the GVDB contains
60K articles (∼49M words) describing incidents of
gun violence, and is (sadly) growing at a rate of
nearly 1,000 per day.

Crowdsourced annotators then mark up the text
of the articles with the key information we expect
automated NLP systems to extract. In addition to
classifying articles according to multiple binary di-
mensions (e.g. whether or not the shooting was in-
tentional), annotators mark specific spans of the text
which populate the database schema. For exam-
ple, workers highlight the shooters, the victims, and
the location.3 These precise spans are stored in the
database so that automated systems can be trained to
reproduce the extracted information. Our annotation
interface is shown in Figure 2.

At the time of writing, the GVDB contains 7,366
fully annotated articles (Table 1) coming from 1,512
US cities, and the database is continuing to grow.
The latest version of the database will be main-
tained and available for download at http://
gun-violence.org/.

60,443 Articles reporting incidents of gun violence
7,366 Articles fully-annotated for IE
6,804 w/ location information
5,394 w/ shooter/victim information
4,143 w/ temporal information
1,666 w/ weapon information

Table 1: Current contents of the GVDB. Size and level of an-

notation is continually growing. See Forthcoming Extensions.

Current Baselines To establish a baseline level
of performance, we run an off-the-shelf information

3See supplementary material for all extracted information
and screenshots.

1020

Figure 2: Annotation interface associates structured information (e.g. the time of day when the shooting occurred) with a specific

span of text in the article.

extraction system on the 7,366 articles and measure
precision and recall for identifying key information
about the incidents. We use the Li et al. (2013) sys-
tems, which identifies a range of entities and events.
We focus on the those events identified by the sys-
tem which are relevant to the main fields in the
GVDB schema.4 We map the arguments of these
events onto the corresponding database fields, e.g.
the agent of the event corresponds to the GVDB’s
shooter name. Since the system identifies multiple
such events per article, we count it as correct as long
as one argument correctly matches the correspond-
ing value in the GVDB (e.g. the system is correct
as long as one extracted event has an agent which
matches the GVDB’s shooter name for that article).
In addition, we run the Stanford CoreNLP TimeEx
system (Chang and Manning, 2012) over the articles
in order to identify the time of the reported incident.

We report the system’s performance using both
exact match against the gold annotation (“strict”) as
well as an approximate match, in which the system
is correct if it is either a substring or a superstring
of the gold annotation. E.g. if the victim name is
Sean Bolton, the approximate metric will count both
Bolton and Officer Sean Bolton as correct.

While performance is high for certain structured
types of information, like dates and times, fields like
victim and shooter name are much less reliably iden-
tified. Furthermore, many key pieces of information
in the GVDB, such as age and race, are not sup-

4Specifically, we focus on Attack, Injure, and Die events

Strict Approx.
Prec. Rec. Prec. Rec.

Date/Time 69.3% 66.9% 70.5% 68.1%
Location 19.9% 8.8% 30.8% 13.6%
Victim 10.2% 8.5% 59.5% 49.6%
Shooter 5.8% 3.9% 30.2% 20.1%
Weapon 2.1% 0.7% 36.8% 11.8%

Table 2: Performance of an off-the-shelf IE system on identi-

fying key information about gun violence incidents from news

articles. For “strict” vs. “approximate”, see text.

ported by the off-the-shelf system. These baselines
are evidence that NLP systems have potential, but
require some effort to make their output usable for
downstream research. Our hope is that the GVDB
will serve as the impetus for undertaking this effort.

Forthcoming Extensions The building of the
GVDB is an ongoing effort, with new articles and
deeper annotation being continuously added. We
are currently adding approximately 300 new fully-
annotated articles per day, while simultaneously en-
riching the annotation pipeline. The GVDB is soon
to include annotation for event coreference, which
will link articles describing the same incident, and
cross-document coreference, which will link men-
tions of the same shooter/victim appearing in sep-
arate documents. In the future, the database will
also include full within-document coreference anno-
tation, with all mentions of a shooter/victim being
flagged as such, and will incorporate visual data, so
that within-article images are tagged with relevant

1021

information which may not be communicated by the
text alone (e.g. race/approximate age).

4 Related Efforts

Several projects collect data about gun violence via
newspaper teams (Boyle, 2013; Swaine et al., 2015)
or volunteer crowds (Burghart, 2014; Wagner, 2014;
Kirk and Kois, 2013). Perhaps the largest such ef-
fort is the Gun Violence Archive5. However, none
are aimed at the eventual automation of the process.
We believe that automating this data collection is
key to keeping it scalable, consistent, and unbiased.
Our focus is therefore on collecting data that is well-
suited for training and evaluating NLP systems.

5 Conclusion

We believe that NLP researchers have the potential
to significantly advance gun violence research. The
shortage of data and funding for studying gun vi-
olence in America has severely limited the ability
of scientists to have productive conversations about
practical solutions. Applying core NLP technolo-
gies to local news reports of gun violence could
transform raw text into structured, queryable data
that public health researchers can use. We have in-
troduced the Gun Violence Database, a new dataset
of gun violence articles with rich NLP annotations
which will support efforts on this new NLP task.

Acknowledgments

We would like to thank Douglas Wiebe for his ad-
vice and insight on building a useful resource for
public health researchers. We also thank the students
of the University of Pennsylvania’s crowdsourcing
class (NETS 213) for their involvement in building
and testing a useful crowdsourcing pipeline for in-
formation extraction. Finally, we thank the devel-
opers at 10clouds for the excellent engineering and
design of http://gun-violence.org/.

References

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013

5http://www.gunviolencearchive.org

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544, Seattle, Wash-
ington, USA, October. Association for Computational
Linguistics.

Natasha Bertrand. 2015. Congress quietly renewed a ban
on gun-violence research. Business Insider (July 7).

Andy Boyle. 2013. Mapping Chicago’s shooting victims
(Chicago Tribune), July.

Charles C Branas, Douglas J Wiebe, CW Schwab, and
TS Richmond. 2005. Getting past the f word in feder-
ally funded public health research. Injury prevention,
11(3):191–191.

John S Breese, David Heckerman, and Carl Kadie. 1998.
Empirical analysis of predictive algorithms for collab-
orative filtering. In Proceedings of the Fourteenth con-
ference on Uncertainty in artificial intelligence, pages
43–52.

Erik Brynjolfsson, Lorin M Hitt, and Heekyung Hellen
Kim. 2011. Strength in numbers: How does
data-driven decisionmaking affect firm performance?
Available at SSRN 1819486.

Brian D. Burghart. 2014. What I’ve learned from two
years collecting data on police killings, August.

Brad J. Bushman, Katherine Newman, Sandra L. Calvert,
Geraldine Downey, Mark Dredze, Michael Gottfred-
son, Nina G. Jablonski, Ann S. Masten, Calvin Morrill,
Daniel B. Neill, Daniel Romer, and Daniel W. Webster.
2016. Youth violence: What we know and what we
need to know. American Psychologist, 71(1):17–39,
Jan.

CDC. 2013. Deaths: Final data for 2013. National vital
statistics reports: from the Centers for Disease Con-
trol and Prevention, National Center for Health Statis-
tics, National Vital Statistics System, 64(2).

Angel X Chang and Christopher D Manning. 2012. Su-
time: A library for recognizing and normalizing time
expressions. In LREC, pages 3735–3740.

Munmun De Choudhury, Emre Kiciman, Mark Dredze,
Glen Coppersmith, and Mrinal Kumar. 2016. Dis-
covering shifts to suicidal ideation from mental health
content in social media. In Conference on Human Fac-
tors in Computing Systems (CHI).

Johannes C Eichstaedt, Hansen Andrew Schwartz, Mar-
garet L Kern, Gregory Park, Darwin R Labarthe,
Raina M Merchant, Sneha Jha, Megha Agrawal,
Lukasz A Dziurzynski, Maarten Sap, et al. 2015.
Psychological language on Twitter predicts county-
level heart disease mortality. Psychological science,
26(2):159–169.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,

1022

pages 1535–1545, Edinburgh, Scotland, UK., July. As-
sociation for Computational Linguistics.

FICAP. 2006. Firearm injury in the US. Online Re-
source Book from The Firearm and Injury Center at
Penn.

Todd C Frankel. 2015. Why the CDC still isn’t research-
ing gun violence, despite the ban being lifted two years
ago. The Washington Post (January 14).

Molly E Ireland, Qijia Chen, H Andrew Schwartz, Lyle H
Ungar, and Dolores Albarracin. 2015. Action tweets
linked to reduced county-level HIV prevalence in the
United States: Online messages and structural deter-
minants. AIDS and Behavior, pages 1–9.

Sasha Issenberg. 2013. How president Obama’s cam-
paign used big data to rally individual voters. Technol-
ogy Review, 116(1):38–49.

Anne Kao and Steve R Poteet. 2007. Natural language
processing and text mining. Springer Science & Busi-
ness Media.

Jerome P Kassirer. 1995. A partisan assault on science–
the threat to the CDC. New England journal of
medicine, 333(12):793–794.

Chris Kirk and Dan Kois. 2013. How many people have
been killed by guns since Newtown?, December.

Ron Kohavi, Roger Longbotham, Dan Sommerfield, and
Randal M Henne. 2009. Controlled experiments on
the web: survey and practical guide. Data mining and
knowledge discovery, 18(1):140–181.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event ex-
traction via structured prediction with global features.
In Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 73–82, Sofia, Bulgaria, August.
Association for Computational Linguistics.

Atul Nakhasi, Sarah G Bell, Ralph J Passarella, Michael J
Paul, Mark Dredze, and Peter J Pronovost. 2016. The
potential of Twitter as a data source for patient safety.
Journal of Patient Safety, Jan.

Saša Petrović, Miles Osborne, and Victor Lavrenko.
2010. Streaming first story detection with application
to Twitter. In Human Language Technologies: The
2010 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 181–189, Los Angeles, California, June. Asso-
ciation for Computational Linguistics.

Daniel Preoctiuc-Pietro, Maarten Sap, H Andrew
Schwartz, and Lyle H Ungar. 2015a. Mental ill-
ness detection at the World Well-Being Project for the
CLPsych 2015 Shared Task. In Proceedings of the
Workshop on Computational Linguistics and Clinical
Psychology: From Linguistic Signal to Clinical Real-
ity, NAACL.

Daniel Preoctiuc-Pietro, Svitlana Volkova, Vasileios
Lampos, Yoram Bachrach, and Nikolaos Aletras.
2015b. Studying User Income through Language, Be-
haviour and Affect in Social Media. PLoS ONE, 10(9),
09.

Benjamin L Ranard, Rachel M Werner, Tadas Antanavi-
cius, H Andrew Schwartz, Robert J Smith, Zachary F
Meisel, David A Asch, Lyle H Ungar, and Raina M
Merchant. 2016. Yelp reviews of hospital care can
supplement and inform traditional surveys of the pa-
tient experience of care. Health Affairs, 35(4):697–
705.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M. Marlin. 2013. Relation extraction with
matrix factorization and universal schemas. In Pro-
ceedings of the 2013 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 74–
84, Atlanta, Georgia, June. Association for Computa-
tional Linguistics.

Jeffrey A Roth, Albert J Reiss Jr, et al. 1993. Under-
standing and preventing violence, volume 1. National
Academies Press.

Josef Ruppenhofer, Caroline Sporleder, Roser Morante,
Collin Baker, and Martha Palmer. 2009. Semeval-
2010 task 10: Linking events and their participants in
discourse. In Proceedings of the Workshop on Seman-
tic Evaluations: Recent Achievements and Future Di-
rections (SEW-2009), pages 106–111, Boulder, Col-
orado, June. Association for Computational Linguis-
tics.

Mauricio Santillana, Andre T. Nguyen, Mark Dredze,
Michael J. Paul, Elaine Nsoesie, and John S. Brown-
stein. 2015. Combining search, social media, and
traditional data sources to improve influenza surveil-
lance. PLOS Computational Biology.

H Andrew Schwartz, Maarten Sap, Margaret L Kern,
Johannes C Eichstaedt, Adam Kapelner, Megha
Agrawal, Eduardo Blanco, Lukasz Dziurzynski, Gre-
gory Park, David Stillwell, Michal Kosinski, Mar-
tin EP Seligman, and Lyle H. Ungar. 2016. Predict-
ing Individual Well-Being Through the Language of
Social Media. Pacific Symposium on Biocomputing,
21:516–527.

Amit Singhal. 2012. Introducing the knowledge graph:
things, not strings. Official Google Blog, May.

Jon Swaine, Oliver Laughland, Jamiles Lartey, and Ciara
McCarthy. 2015. The counted: People killed by po-
lice in the US (The Guardian), June.

Kyle Wagner. 2014. We’re compiling every police-
involved shooting in America. Help us., August.

William Yang Wang, Yashar Medhad, Dragomir Radev,
and Amanda Stent. 2016. A low-rank approximation

1023

approach to learning joint embeddings of news stories
and images for timeline summarization. In Proceed-
ings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, San Diego, CA,
USA. ACL.

Derry Tanti Wijaya, Ndapandula Nakashole, and Tom
Mitchell. 2015. A spousal relation begins with a dele-
tion of engage and ends with an addition of divorce:
Learning state changing verbs from Wikipedia revi-
sion history. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 518–523, Lisbon, Portugal, September. As-
sociation for Computational Linguistics.

1024

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1025–1029,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Fluency detection on communication networks

Tom Lippincott and Benjamin Van Durme
Human Language Technology Center of Excellence

Johns Hopkins University
tom@cs.jhu.edu, vandurme@cs.jhu.edu

Abstract

When considering a social media corpus, we
often have access to structural information
about how messages are flowing between peo-
ple or organizations. This information is par-
ticularly useful when the linguistic evidence
is sparse, incomplete, or of dubious quality.
In this paper we construct a simple model to
leverage the structure of Twitter data to help
determine the set of languages each user is flu-
ent in. Our results demonstrate that imposing
several intuitive constraints leads to improve-
ments in performance and stability. We re-
lease the first annotated data set for exploring
this task, and discuss how our approach may
be extended to other applications.

1 Introduction

Language identification (LID) is an important first
step in many NLP pipelines since most downstream
tasks need to employ language-specific resources.
In many situations, LID is a trivial task that can be
addressed e.g. by a simple Naive Bayes classifier
trained on word and character n-gram data (Lui and
Baldwin, 2012): a document of significant length
will be quickly disambiguated based on its vocab-
ulary (King et al., 2014). However, social media
platforms like Twitter produce data sets in which
individual documents are extremely short, and lan-
guage use is idiosyncratic: LID performance on
such data is dramatically lower than on traditional
corpora (Bergsma et al., 2012; Carter et al., 2013).
The widespread adoption of social media throughout
the world amplifies the problem as less-studied lan-
guages lack the annotated resources needed to train

the most effective NLP models (e.g. treebanks for
statistical parsing, tagged corpora for part-of-speech
tagging, etc). All of this motivates the research com-
munity’s continued interest in LID (Zampieri et al.,
2014).

Tweet #1 Êîç ýâåðèñèíã þ äó èñ ìýäæèê

Tweet #2 omg favourite day of the week!
Table 1: Multilingual social media users often communicate in

different languages depending on their intended audience, such

as with these Russian and English tweets posted by the same

Twitter account

In this paper, we consider the closely-related task
of determining an actor’s fluencies, the set of lan-
guages they are capable of speaking and understand-
ing. The observed language data will be the same as
for LID, but is now considered to indicate a latent
property of the actor. This information has a num-
ber of downstream uses, such as providing a strong
prior on the language of the actor’s future communi-
cations, constructing monolingual data sets, and rec-
ommending appropriate content for display or fur-
ther processing.

This paper also focuses on the situation where
a very small amount of content has been observed
from the particular user. While this may seem
strange considering the volume of data generated by
social media, this is dominated by particularly active
users: for example, 30% of Twitter users post only
once per month (Leetaru et al., 2013). This content-
starved situation is exacerbated by certain use-cases,
such as responding to emergency events where sud-
den focus is directed at a particular location, or fo-
cusing on new users with shallow histories.

1025

2 Previous Work

Twitter and other social media platforms are a ma-
jor area of ongoing NLP research, including dedi-
cated workshops(NAA, 2015; ACL, 2014). Previ-
ous work has considered macroscopic properties of
the entire Twitter network (Gabielkov et al., 2014),
and pondered whether it is an “information” or “so-
cial” network (Myers et al., 2014). Studies have fo-
cused on determining user attributes such as gender
(Li et al., 2015), political allegiance (Volkova et al.,
2014), brand affinity (Pennacchiotti and Popescu,
2011a), sentiment analysis (West et al., 2014), and
more abstract roles (Beller et al., 2014). Such demo-
graphic information is known to help downstream
tasks (Hovy, 2015). Research involving social media
communication networks has typically focused on
homophily, the tendency of users to connect to oth-
ers with similar properties (Barberá, 2014). A num-
ber of papers have employed features drawn from
both the content and structure of network entities in
pursuit of latent user attributes (Pennacchiotti and
Popescu, 2011b; Campbell et al., 2014; Suwan et
al., 2015).

3 Definitions

We refer to the entities that produce and consume
communications as Actors, and the communications
(packets of language data) as Messages. Each mes-
sage occurs in a particular Language, and each actor
has a set of Fluencies, representing the ability to pro-
duce and consume a message in a given language.
We refer to a connected graph of such entities as
a Communication Network. For Twitter data, mes-
sages are simply associated with a single actor, who
is in turn associated with other actors via the “fol-
lowing” relationship, the actor’s “friends” in Twit-
ter’s terminology.1 We assume each message (tweet)
is written in a single language, and actors are either
fluent or not in each possible language.

1Note that, confusingly, Twitter’s “friend” relationship is not
symmetric: Mary’s friends are users she has decided to follow,
and not necessarily vise-versa.

4 Twitter Data Set

To build a suitable data set2 for fluency detection,
we first identified 1000 Twitter users who, accord-
ing to the Twitter LID system, have tweeted in Rus-
sian and at least one additional language. For each
of these “seed” users, we gather a local context
(a “snowflake”) as follows: we choose 20 of their
friends at random. For each of these friends, we
choose 15 of their friends (again, at random). Fi-
nally, we randomly pull 200 tweets for each identi-
fied user. The data set consists of 989 seed users,
165,042 friends, and 55,019,811 tweets. We pre-
serve all Twitter meta-data for the users and tweets,
such as location, follower count, hashtags, etc,
though for the purposes of this paper we are only
interested in the friendship structure and message
text. We then had an annotator determine the set
of languages each of the 1000 seed users is fluent
in. For each seed user, the annotator was presented
with their 200 tweets, grouped by Twitter language
ID, and was asked to 1) flag users that appear to be
bots and 2) list the languages they believe the user
is fluent in. These steps are reflected in Figure 4.
Over 50% (507) of the users were flagged as pos-
sible bots and not used in this study. The remaining
482 were observed employing 7 different languages:
Russian, Ukrainian, German, Polish, Bulgarian, Lat-
vian, and English. At most, a single user was found
to be fluent in three languages.

Figure 1: Structure of one snowflake in the Twitter Fluency

data set.

5 Structure-Aware Fluency Model

Our goal was to explicitly model each actor’s flu-
ency in different languages, using a model with sim-

2The full data set is available at www.university.edu/
link

1026

ple, interpretable parameters that can be used to en-
code well-motivated assumptions about the data. In
particular, we want to bias the model towards the
belief that actors typically speak a small number of
languages, and encode the belief that all actors par-
ticipating in a message are highly likely to be fluent
in its language. Our basic hypothesis is that, in ad-
dition to scores from traditional LID modules, such
a model will benefit from considering the behavior
of an actor’s interlocutors. To test this, we designed
a model that employs scores from an existing LID
system, and compare performance with and without
awareness of the communication network structure.
To demonstrate the effectiveness of the model in sit-
uations with sparse or unreliable linguistic content,
we perform experiments where the number of mes-
sages associated with each actor has been randomly
down-sampled.

Linear Programming Linear Programming (LP)
is a method for specifying constraints and cost func-
tions in terms of linear relationships between vari-
ables, and then finding the optimal solution that re-
spects the constraints. The restriction to linear equa-
tions ensures that the objective function is itself lin-
ear, and can be efficiently solved. If some or all
variables are restricted to take discrete values, re-
ferred to as (Mixed) Integer Linear Programming
(ILP), finding a solution becomes NP-hard, though
common special cases remain efficiently solvable.
We specify our model as an ILP with the hope
that it provides sufficient expressiveness for the
task, while remaining intuitive and tractable. Infer-
ence is performed using the Gurobi modeling toolkit
(Gurobi Optimization, 2015).

Model definition Given a communication net-
work with no LID information, ideally we would
like to determine the language of each message, and
the set of languages each actor is fluent in. Ini-
tially, we assume access to a probablistic LID sys-
tem that maps unicode text to a distribution over
possible languages. We use the following notation:
A1:T and M1:U are the actors and messages, respec-
tively. F (ai) is a binary vector indicating which lan-
guages we believe actor ai is fluent in. L(mi) is a
one-on binary vector indicating which language we
believe messagemi is written in. P (mi) is the set of
actors participating in message mi: for Twitter data,

where messages are (usually) not directed at specific
users, we treat a user and the users’ friends as par-
ticipants. LID(mi) is a real vector representing the
probability of message mi being in each language,
according to the LID system.

To build our ILP model, we iterate over actors
and messages, defining constraints and the objective
function as we go. There are two types of structural
constraints: first, we restrict each message to have a
single language assignment:

∑
L(mi) = 1 (1)

Second, we ensure that all actors participating in
a given message are fluent in its language:

∀a ∈ P (mi), L(mi)× F (a) = 1 (2)

The objective function also has two components:
first, the language fit encourages the model to assign
each message a language that has high probability
according the the LID system:

LF =
∑

m∈M
L(m)× LID(m) (3)

Second, the structure fit minimizes the cardinal-
ity of the actors’ fluency sets (subject to the struc-
tural constraints), and thus avoids the trivial solution
where each actor is fluent in all languages:

SF = −
∑

a∈A

∑
F (a) (4)

Finally, the two components of the objective func-
tion are combined with an empirically-determined
language weight to get the complete objective func-
tion:

LW× LF + (1.0− LW)× SF (5)

Note that these are not all linear relationships:
in particular, the multiplication operator cannot be
used in ILP when the operands are both variables,
as in equation 2. There are however techniques that
can represent these situations in a linear program by
introducing helper variables and constraints (Biss-
chop, 2015).

1027

Language Identification Scores and Fluency
Baseline To get LID scores, we ran the VaLID sys-
tem (Bergsma et al., 2012) on each message, and
normalize the output into distributions over 261 pos-
sible languages. VaLID is trained on Wikipedia data
(i.e. out-of-domain relative to Twitter), although
it does employ hand-specified rules for sanitizing
tweet text, such as normalizing whitespace and re-
moving URLs and user tags. VaLID uses a data-
compression approach that is competitive with Twit-
ter’s in-house LID, despite no consideration of geo-
graphic or user priors. These language scores are
used in the structure-aware model to compute the
language fit.

Because VaLID makes no use of the communi-
cation network structure, we also use its scores to
create a baseline structure-unaware fluency model.
To get structure-unaware baseline scores for the flu-
ency identification task, we average the LID distri-
butions for each actor’s messages and consider them
fluent in a language if its probability is above an
empirically-determined threshold.

Tuning parameters We empirically determine the
thresholds for the baseline model and the language
weights for the structure-aware model via a simple
grid search, repeated 100 times. We randomly split
the data into 20%/80% tune/test sets, and evaluate
filter thresholds and language weights from 0 to 1
in .01 increments, with messages per actor ranging
between 1 and 10. We expected the baseline model
to have a consistent optimal threshold (though with
higher performance variance with fewer messages),
and this was borne out with optimal performance at
a threshold of 0.06, independent of the number of
messages per actor. For the structure-aware model,
the optimal language weight was 0.9, although the
entire range from 0.1–0.9 showed similar perfor-
mance. This result was surprising, as we expect the
structure-aware model to rely heavily on the struc-
tural fit when the number of messages is small, and
on the language fit when the number is large. This
trend doesn’t emerge because the structural fit actu-
ally relies on the language fit to make assignments
for the seed actor’s friends and their messages.

Figure 2: Performance of baseline and structure-aware models

as a function of the number of messages per actor used as ev-

idence. Each bar represents the average over 100 random tun-

ing/testing splits, with whiskers showing the standard deviation.

6 Results and discussion

Figure 2 compares the performance3 of the
structure-aware ILP model with the baseline model
as a function of the number of messages per ac-
tor, using the empirically-determined threshold and
language weight. At the left extreme, the models
only have a single, randomly-selected message from
each actor. As this number increases, the baseline
model improves as it becomes more likely to have
seen enough messages to reflect the actor’s full spec-
trum of language use. The structure-aware model is
able to make immediate use of the actor’s friends,
immediately reaching high performance even when
the language data is very sparse. Its most frequent
type of error is over-hypothesizing fluency in both
Ukrainian and Russian, when the user is in fact
monolingual, followed by incorrectly hypothesizing
fluency in English. This is understandable given the
similarity of the languages in the former case, and
the popularity of English expressions, titles, and the
like in the latter.

7 Conclusion

We have presented promising results from lever-
aging structural information from a communica-
tion network to improve performance on fluency
detection in situations where direct linguistic data
is sparse. In addition to defining the task itself,

3F-score calculated based on correct and hypothesized
fluency-assignments for each actor.

1028

we release an annotated data set for training and
evaluating future models. Planned future work in-
cludes a more flexible decoupling of the language
and structure fits (in light of Section 5), and mov-
ing from pre-existing LID systems to joint models
where LID scores are directly informed by structural
information.

References
2014. ACL Joint Workshop on Social Dynamics and Per-

sonal Attributes in Social Media.
Pablo Barberá. 2014. Birds of the same feather tweet

together: Bayesian ideal point estimation using twitter
data. Political Analysis, 23:76–91.

Charley Beller, Rebecca Knowles, Craig Harman, Shane
Bergsma, Margaret Mitchell, and Benjamin Van
Durme. 2014. I’m a belieber: Social roles via self-
identification and conceptual attributes. In Proceed-
ings of the 52rd Annual Meeting of the Association
for Computational Linguistics, pages 181–186, Balti-
more, Maryland, USA.

Shane Bergsma, Paul McNamee, Mossaab Bagdouri,
Clayton Fink, and Theresa Wilson. 2012. Language
identification for creating language-specific Twitter
collections. In Proc. Second Workshop on Language
in Social Media, pages 65–74.

Johannes Bisschop. 2015. Aimms optimization model-
ing.

W.M. Campbell, E. Baseman, and K. Greenfield. 2014.
langid.py: An off-the-shelf language identification
tool. In Proceedings of the Second Workshop on Natu-
ral Language Processing for Social Media, pages 59–
65, Dublin, Ireland.

Simon Carter, Wouter Weerkamp, and Manos Tsagkias.
2013. Microblog language identification: Overcoming
the limitations of short, unedited and idiomatic text.
Lang. Resour. Eval., 47(1):195–215, March.

Maksym Gabielkov, Ashwin Rao, and Arnaud Legout.
2014. Studying social networks at scale: Macroscopic
anatomy of the twitter social graph. In SIGMETRICS
’14, Austin, Texas, USA.

Inc. Gurobi Optimization. 2015. Gurobi optimizer refer-
ence manual.

Dirk Hovy. 2015. Demographic factors improve clas-
sification performance. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics, pages 752–762, Beijing, China.

Ben King, Dragomir Radev, and Steven Abney. 2014.
Experiments in sentence language identification with
groups of similar languages. In Proceedings of the
First Workshop on Applying NLP Tools to Similar

Languages, Varieties and Dialects, pages 146–154,
Dublin, Ireland.

Kalev Leetaru, Shaowen Wang, Guofeng Cao, Anand
Padmanabhan, and Eric Shook. 2013. Mapping the
global twitter heartbeat: The geography of twitter.
First Monday, 18(5).

Shoushan Li, Jingjing Wang, Guodong Zhou, and Hanx-
iao Shi. 2015. Interactive gender inference with in-
teger linear programming. In Proceedings of the 24th
International Conference on Artificial Intelligence, IJ-
CAI’15, pages 2341–2347. AAAI Press.

Marco Lui and Timothy Baldwin. 2012. langid.py: An
off-the-shelf language identification tool. In Proceed-
ings of the 50th Annual Meeting of the Association for
Computational Linguistics, pages 25–30, Jeju, Repub-
lic of Korea.

Seth A. Myers, Aneesh Sharma, Pankaj Gupta, and
Jimmy Lin. 2014. Information network or social net-
work? the structure of the twitter follow graph. In
WWW ’14 Companion, Seoul, Korea.

2015. NAACL International Workshop on Natural Lan-
guage Processing for Social Media.

Marco Pennacchiotti and Ana-Maria Popescu. 2011a.
Democrats, republicans and starbucks afficionados:
User classification in twitter. In KDD ’11, San Diego,
California, USA.

Marco Pennacchiotti and Ana-Maria Popescu. 2011b. A
machine learning approach to twitter user classifica-
tion. In Proceedings of the Fifth International AAAI
Conference on Weblogs and Social Media, pages 281–
288.

Shakira Suwan, Dominic Lee, and Carey Priebe. 2015.
Bayesian vertex nomination using content and context.
WIREs Comput Stat, 7:400–416.

Svitlana Volkova, Glen Coppersmith, and Benjamin Van
Durme. 2014. Inferring user political preferences
from streaming communications. In Proceedings of
the 52rd Annual Meeting of the Association for Com-
putational Linguistics, pages 186–196, Baltimore,
Maryland, USA.

Robert West, Hristo Paskov, Jure Leskovec, and Christo-
pher Potts. 2014. Exploiting social network struc-
ture for person-to-person sentiment analysis. Transac-
tions of the Association for Computational Linguistics,
2:297–310.

Marcos Zampieri, Liling Tang, Nikola Ljubešić, and Jörg
Tiedemann. 2014. Discriminating similar languages
shared task at coling 2014.

1029

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1030–1035,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Characterizing the Language of Online Communities and
its Relation to Community Reception

Trang Tran and Mari Ostendorf
Electrical Engineering, University of Washington, Seattle, WA

{ttmt001,ostendor}@uw.edu

Abstract

This work investigates style and topic aspects
of language in online communities: looking
at both utility as an identifier of the commu-
nity and correlation with community reception
of content. Style is characterized using a hy-
brid word and part-of-speech tag n-gram lan-
guage model, while topic is represented using
Latent Dirichlet Allocation. Experiments with
several Reddit forums show that style is a bet-
ter indicator of community identity than topic,
even for communities organized around spe-
cific topics. Further, there is a positive cor-
relation between the community reception to
a contribution and the style similarity to that
community, but not so for topic similarity.

1 Introduction

Online discussion forums provide a rich source of
data for studying people’s language usage patterns.
Discussion platforms take on various forms: arti-
cles on many news sites have a comment section,
many websites are dedicated to question answer-
ing (www.quora.com), and other platforms let
users share personal stories, news, and random dis-
coveries (www.reddit.com). Like their offline
counterparts, online communities are often com-
prised of people with similar interests and opinions.
Online communication, however, differs from in-
person communication in an interesting aspect: ex-
plicit and quantifiable feedback. Many discussion
forums give their users the ability to upvote and/or
downvote content posted by another user. These ex-
plicit reward/penalty labels provide valuable infor-
mation on the reaction of users in a community. In

this work, we take advantage of the available user
response to explore the relationship between com-
munity reception and the degree of stylistic/topical
coherence to such communities. Using hybrid n-
grams and Latent Dirichlet Allocation (LDA) topic
models to represent style and topic for a series of
classification tasks, we confirm that there exists a
community language style, which is not simply char-
acterized by the topics that online communities are
organized around. Moreover, we show that language
style is better at discriminating communities, espe-
cially between different communities that happen to
discuss similar issues. In addition, we found a posi-
tive, statistically significant, correlation between the
community feedback to comments and their style,
but interestingly not with their topic. Finally, we
analyze community language on the user level and
show that more successful users (in terms of positive
community reception) tend to be more specialized;
in other words, analogous to offline communities, it
is rare for a person to be an expert in multiple areas.

2 Related Work

It is well known that conversation partners become
more linguistically similar to each other as their dia-
logue evolves, via many aspects such as lexical, syn-
tactic, as well as acoustic characteristics (Niederhof-
fer and Pennebaker, 2002; Levitan et al., 2011). This
pattern is observed even when the conversation is
fictional (Danescu-Niculescu-Mizil and Lee, 2011),
or happening on social media (Danescu-Niculescu-
Mizil et al., 2011). Regarding the language of on-
line discussions in particular, it has been shown that
individual users’ linguistic patterns evolve to match

1030

those of the community they participate in, reaching
“linguistic maturity” over time (Nguyen and Rosé,
2011; Danescu-Niculescu-Mizil et al., 2013). In a
multi-community setting, Tan and Lee (2015) found
that users tend to explore more in different commu-
nities as they mature, adopting the language of these
new communities. These works have mainly fo-
cused on the temporal evolution of users’ language.
Our work differs in that we use different language
models to explore the role of topic and style, while
also considering users in multiple communities. In
addition, we look at community language in terms
of its correlation with reception of posted content.

Other researchers have looked at the role of lan-
guage in combination with other factors in Reddit
community reception. Lakkaraju et al. (2013) pro-
posed a community model to predict the popularity
of a resubmitted content, revealing that its title plays
a substantial role. Jaech et al. (2015) considered
timing and a variety of language features in ranking
comments for popularity, finding significant differ-
ences across different communities. In our work, we
focus on community language, but explore different
models to account for it.

3 Data

Reddit is a popular forum with thousands of sub-
communities known as subreddits, each of which
has a specific theme. We will refer to subreddits and
communities interchangeably. Redditors can submit
content to initiate a discussion thread whose root text
we will refer to as a post. Under each post, users can
discuss the post by contributing a comment. Both
posts and comments can be upvoted and downvoted,
and the net feedback is referred to as karma points.

We use eight subreddits that reflect Reddit’s di-
verse topics, while limiting the amount of data to
a reasonable size. In addition, we create an artificial
distractor merged others that serves as an open class
in our classification tasks and for normalizing scores
in correlation analysis. Statistics are listed in Ta-
ble 1. The merged others set includes 9 other sub-
reddits that are similar in size and content diversity
to the previous ones: books, chicago, nyc, seattle,
explainlikeimfive, science, running, nfl, and today-
ilearned. Among these extra subreddits, the small-
est in size is nyc (1.5M tokens, 76K comments), and

subreddit # posts # cmts % k ≤ 0

askmen 4.5K 1.1M 10.6
askscience 0.9K 0.3M 9.1
askwomen 3.6K 0.8M 7.5
atheism 3.1K 1.0M 15.2
changemyview 2.3K 0.5M 16.7
fitness 2.4K 0.9M 8.6
politics 4.9K 2.2M 20.8
worldnews 9.9K 6.0M 23.6
merged others 28.0K 14.2M 13.2

Table 1: Reddit dataset statistics

the largest is todayilearned (88M tokens, 5M com-
ments). All data is from the period between January
1, 2014 and January 31, 2015. In each subreddit,
20% of the threads are held out for testing.

We use discussion threads with at least 100 com-
ments, hypothesizing that smaller threads will not
elicit enough community personality for our study.
(Virtually all threads kept had only upvotes.) For
training our models, we also exclude individual
comments with non-positive karma (k ≤ 0) in or-
der to learn only from content that is less likely to
be downvoted by the Reddit communities; percent-
ages are noted in Table 1.

4 Models

We wish to characterize community language via
style and topic. For modeling style, a popular ap-
proach has been combining the selected words with
part-of-speech (POS) tags to construct models for
genre detection (Stamatatos et al., 2000; Feldman
et al., 2009; Bergsma et al., 2012) and data selec-
tion (Iyer and Ostendorf, 1999; Axelrod, 2014). For
topic, a common approach is Latent Dirichlet Allo-
cation (LDA) (Blei et al., 2003). We follow such
approaches in our work, acknowledging the chal-
lenge of completely separating style/genre and topic
factors raised previously (Iyer and Ostendorf, 1999;
Sarawgi et al., 2011; Petrenz and Webber, 2011; Ax-
elrod, 2014), which also comes out in our analysis.
Generative language models are used for character-
izing both style and topic, since they are well suited
to handling texts of widely varying lengths.

4.1 Representing Style

Replacing words with POS tags reduces the possi-
bility that the style model is learning topic, but re-

1031

placing too many words loses useful community jar-
gon. To explore this tradeoff, we compared four tri-
gram language models representing different uses of
words vs. POS tags in the vocabulary:
• word_only: a regular token-based language

model (vocabulary: 156K words)
• hyb-15k: a hybrid word-POS language model

over a vocabulary of 15K most frequent words
across all communities in our data; all other words
are converted to POS tags (vocabulary: 15K
words + 38 tags)
• hyb-500.30: a hybrid word-POS language

model over a vocabulary of 500 most frequent
words in a subset of data balanced across com-
munities, combined with the union of the 30 next
most common words from each of the 17 subred-
dits; all other words are converted to POS tags
(vocabulary: 854 words + 38 tags)
• tag_only: a language model using only POS

tags as its vocabulary (vocabulary: 38 tags)
The hybrid models represent two intermediate sam-
ple points between the extremes of word-only and
tag-only n-grams. For the hyb-500.30 model,
the mix of general and community-specific words
was designed to capture distinctive community jar-
gon. The general words include punctuation, func-
tion words, and words that are common in many
subreddits (e.g., sex, culture, see, dumb, simply).
The subreddit-specific words seem to reflect both
broad topical themes and jargon or style words, as
in (themes vs. style/jargon):
askmen: wife, single vs. whatever, interested
askwomen: mom, husband vs. especially, totally
askscience: particle, planet vs. basically, x
fitness: exercises, muscles vs. cardio, reps, rack

Tokenization and tagging are done using Stan-
ford coreNLP (Manning et al., 2014). Punctuation
is separated from the words and treated as a word.
All language models are trigrams trained using the
SRILM toolkit (Stolcke, 2002); modified Kneser-
Ney smoothing is applied to the word_only lan-
guage model, while Witten-Bell smoothing is ap-
plied to the tag_only and both hybrid models.

4.2 Representing Topic
We train 100- and 200-dimensional LDA topic mod-
els (Blei et al., 2003) using gensim (Řehůřek
and Sojka, 2010). We remove all stopwords (250

ID Frequent words

19
-lsb-, -rsb-, -rrb-, -lrb-, **, reddit,
comment, confirmed, spanish, fair

29
sex, pilots, child, women, abortion,
mail, birth, want, episodes, children

32
tax, government, taxes, iraq, pay, cia,
land, money, income, people

34
africa, war, nation, global, germans,
rebels, corruption, nations, fuel, world

Table 2: Examples of broadly used topics.

words) and use tf-idf normalized word counts in
each comment (as documents). The vocabulary con-
sists of 156K words, similar to the vocabulary of
the word_only language model. The topic mod-
els were trained on a subset of the training data, us-
ing all collected subreddits but randomly excluding
roughly 15% of the training data of larger subreddits
worldnews, todayilearned, and nfl.

The topics learned exhibit a combination of ones
that reflect general characteristics of online discus-
sions or topics that arise in many forums, some that
have more specific topics, and others that do not
seem particularly coherent. Topics (from LDA-100)
that consistently have high probability in all subred-
dits are shown in Table 2 with their top 10 words by
frequency (normalized by the topic average). Topic
19 is likely capturing Reddit’s writing conventions
and formatting rules. Broadly used topics reflect
women’s issues (29) and news events (32, 34).

Online communities are typically organized
around a common theme, but multiple topics might
fall under that theme, particularly since some of
the “topics” actually reflect style. A subreddit as
a whole is characterized by a distribution of topics
as learned via LDA, but any particular discussion
thread would not necessarily reflect the full distri-
bution. Therefore, we characterize each subreddit
with multiple topic vectors. Specifically, we com-
pute LDA topic vectors for each discussion thread
in a subreddit, and learn 50 representative topic vec-
tors for each subreddit via k-means clustering.

5 Community Classification

One method for exploring the relative importance of
topic vs. style in online communication is through
community classification experiments: given a dis-
cussion thread (or a user’s comments), can we iden-

1032

tify the community that it comes from more easily
using style characteristics or topic characteristics?
We formulate this task as a multi-class classification
problem (8 communities and “other”), where sam-
ples are either at the discussion thread level or the
user level. At the thread level, all comments (from
multiple people) and the post in a discussion thread
are aggregated and treated as a document to be clas-
sified. At the user level, we aggregate all comments
made by a user in a certain subreddit and treat the
collection (which may reflect multiple topics) as a
document to be classified.

We classify document di to a subreddit according
to ĵ = argmaxj si,j , where si,j is a score of the sim-
ilarity of di to community j. For the style models,
si,j is the log-probability under the respective tri-
gram language model of community j. For the topic
model, si,j is computed using di’s topic vector vi as
follows. For a subreddit j, we compute the cosine
similarities simj,k between vi and the subreddit’s
topic vectors wj,k for k = 1, . . . , 50. The final topic
similarity score si,j is the mean of the top 3 highest
similarities: si,j = (simj,[1]+simj,[2]+simj,[3])/3,
where [·] denotes the sorted cosine similarities’ in-
dices. The top-3 average captures the most promi-
nent subreddit topics (as in a nearest-neighbor clas-
sifier). Averaging over all 50 simj,k is ill suited to
subreddits with broad topic coverage, and leads to
poor classification results.

Table 3 summarizes the community classification
results (as average accuracy across all subreddits)
for each model described in Section 4. While all
models beat the random baseline of 11%, the poor
performance of the tag_only model confirms that
POS tags alone are insufficient to characterize the
community. Both for classifying threads and au-
thors, hyb-500.30 yields the best average classi-
fication accuracy, due to its ability to generalize POS
structure while covering sufficient lexical content
to capture the community’s jargon and key topical
themes. Neither topic model beats hyb-500.30,
indicating that topic alone is not discriminative
enough for community identification, even though
specific communities coalesce around certain com-
mon topics. The word_only and hyb-15k mod-
els have performance on the threads that is similar to
the topic models, since word features are sensitive to
topic, as shown in (Petrenz and Webber, 2011).

Model by thread by author
random 11.1% 11.1%
word only 68.9% 46.8%
tags only 27.6% 18.8%
hyb-15k 69.4% 46.6%
hyb-500.30 86.5% 51.0%
topic-100 71.1% 27.5%
topic-200 69.6% 27.7%

Table 3: Average accuracy for classifying by posts and authors

Classifying authors is harder than classifying
threads. Two factors are likely to contribute. First,
treating a whole discussion thread as a document
yields more data to base the decision on than a col-
lection of author comments, since there are many
authors who only post a few comments. Second, au-
thors that have multi-community involvement may
be less adapted to a specific community. The fact
that word-based style models outperform topic mod-
els may be because the comments are from different
threads so not matching typical topic distributions.

Subreddit confusion statistics indicate that cer-
tain communities are easier to identify than others.
Both style and topic models do well in recognizing
askscience: classification accuracy for threads is as
much as 97%. Communities that were most confus-
able are intuitively similar: politics and worldnews,
askmen and askwomen.

6 Community Feedback Correlation

In this section, we investigate whether the style
and/or topic scores of a discussion or user are cor-
related with community response. For thread-level
feedback, we use karma points of the discussion
thread itself; for the user-level feedback, we com-
pute each user’s subreddit-dependent k-index (Jaech
et al., 2015), defined similarly to the well-known h-
index (Hirsch, 2005). Specifically, a user’s k-index
kj in subreddit j is the maximum integer k such that
the user has at least k comments with karma greater
than k in that subreddit. User k-index scores have
Zipfian distribution, as illustrated in Figure 1 for the
worldnews subreddit.

We compute a normalized community similarity
score s̃i,j = si,j − si,m, where si,m is the corre-
sponding score from the subreddit merged others.
The correlation between s̃i,j and community feed-
back is reported for three models in Table 4 for the

1033

Figure 1: Distribution (log base 10 counts) of user k-index

scores for the worldnews subreddit.

subreddit hyb-500.30 word only topic-100

askmen 0.392* 0.222* 0.055
askscience 0.321* -0.110 -0.166*
askwomen 0.501* 0.388* 0.005
atheism 0.137* -0.229* -0.251
chgmyvw 0.167* -0.121* -0.306*
fitness 0.130* 0.017 -0.313*
politics 0.533* 0.341* 0.011
worldnews 0.374* 0.148* -0.277*

Table 4: Spearman rank correlation of thread s̃i,j with karma

scores. (*) indicates statistical significance (p < 0.05).

thread level, and in Table 5 for the user level. On the
thread level, the hyb-500.30 style model consis-
tently finds positive, statistically significant, correla-
tion between the post’s stylistic similarity score and
its karma. This result suggests that language style
adaptation does contribute to being well-received
by the community. None of the other models ex-
plored in the previous section had this property, and
for the topic models the correlation is mostly neg-
ative. On the user level, all correlations between a
user’s k-index and their style/topic match are statis-
tically significant, though the hyb-500.30 style
model shows more positive correlation than other
models. In both cases, the word_onlymodel gives
results between the style and topic models. The
hyb-15k model has results that are similar to the
word_only model, and the tag_only model has
mostly negative correlation.

Examining users’ multi-community involvement,
we also find that users with high k-indices tend to
participate in fewer subreddits. Among relatively

subreddit hyb-500.30 word only topic-100

askmen 0.402 0.215 0.167
askscience 0.343 0.106 0.042
askwomen 0.451 0.260 0.165
atheism 0.296 0.024 0.107
chgmyvw 0.446 0.020 0.091
fitness 0.309 0.286 0.127
politics 0.453 0.317 0.177
worldnews 0.421 0.330 0.166

Table 5: Spearman rank correlation of authors’ s̃i,j with their

k-indices. All values are statistically significant (p < 0.05).

active users (having at least 100 comments), those
with a max k-index of at least 100 participated in a
median of 3 communities, while those with a max
k-index of at most 5 participated in a median of 6
subreddits. Of the 42 users with max k-index of at
least 100, only 4 achieve a k-index of at least 50 in
one other community, and only 6 achieve a k-index
of at least 20 in one other community.

7 Conclusion

In this work, we use hybrid n-grams and topic mod-
els to characterize style and topic of language in on-
line communities. Since communities center on a
common theme, topic characteristics are reflected
in language style, but we find that the best model
for determining community identity uses very few
words and mostly relies on POS patterns. Using
Reddit’s community response system (karma), we
also show that discussions and users with higher
community endorsement are more likely to match
the language style of the community, where the lan-
guage model that best classifies the community is
also most correlated with community response. In
addition, online users tend to have more positive
community response when they specialize in fewer
subreddits. These results have implications for de-
tecting newcomers in a community and the popular-
ity of posts, as well as for language generation.

Acknowledgments

This paper is based on work supported by the
DARPA DEFT Program. Views expressed are those
of the authors and do not reflect the official policy
or position of the Department of Defense or the U.S.
Government. We thank the reviewers for their help-
ful feedback.

1034

References

Amittai Axelrod. 2014. Data Selection for Statisti-
cal Machine Translation. Ph.D. thesis, University of
Washington, Seattle.

Shane Bergsma, Matt Post, and David Yarowsky. 2012.
Stylometric analysis of scientific articles. In Proc.
Conf. North American Chapter Assoc. for Compu-
tational Linguistics: Human Language Technologies
(NAACL-HLT), pages 327–337. Association for Com-
putational Linguistics.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022, March.

Cristian Danescu-Niculescu-Mizil and Lillian Lee. 2011.
Chameleons in imagined conversations: A new ap-
proach to understanding coordination of linguistic
style in dialog. In Proceedings of the ACL Workshop
on Cognitive Modeling and Computational Linguis-
tics, pages 76–87.

Cristian Danescu-Niculescu-Mizil, Michael Gamon, and
Susan Dumais. 2011. Mark my words! Linguistic
style accommodation in social media. In Proceedings
of WWW.

Cristian Danescu-Niculescu-Mizil, Robert West, Dan Ju-
rafsky, Jure Leskovec, and Christopher Potts. 2013.
No country for old members: User lifecycle and lin-
guistic change in online communities. In Proceedings
of WWW.

Sergey Feldman, Alex Marin, Mari Ostendorf, and Maya
Gupta. 2009. Part-of-speech histogram features for
genre classification of text. In Proc. ICASSP, pages
4781–4784.

Jorge E. Hirsch. 2005. An index to quantify an indi-
vidual’s scientific research output. Proceedings of the
National Academy of Sciences of the United States of
America, 102(46):16569–16572.

Rukmini Iyer and Mari Ostendorf. 1999. Relevance
weighting for combining multi-domain data for n-
gram language modeling. Comput. Speech Lang.,
13(3):267–282, July.

Aaron Jaech, Victoria Zayats, Hao Fang, Mari Osten-
dorf, and Hannaneh Hajishirzi. 2015. Talking to the
crowd: What do people react to in online discussions?
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2026–2031, Lisbon, Portugal, September. Association
for Computational Linguistics.

Himabindu Lakkaraju, Julian McAuley, and Jure
Leskovec. 2013. What’s in a name? Understanding
the interplay between titles, content, and communities
in social media. In International AAAI Conference on
Web and Social Media.

Rivka Levitan, Agustı́n Gravano, and Julia Hirschberg.
2011. Entrainment in speech preceding backchan-
nels. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, HLT ’11, pages 113–
117, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Association for Computational Lin-
guistics (ACL) System Demonstrations, pages 55–60.

Dong Nguyen and Carolyn P. Rosé. 2011. Language
use as a reflection of socialization in online communi-
ties. In Proceedings of the Workshop on Languages in
Social Media, LSM ’11, pages 76–85. Association for
Computational Linguistics.

Kate Niederhoffer and James Pennebaker. 2002. Lin-
guistic style matching in social interaction. Journal of
Language and Social Psychology, 21:337–360.

Philipp Petrenz and Bonnie Webber. 2011. Stable clas-
sification of text genres. Computational Linguistics,
37(2):385–393.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta, May. ELRA. http://is.muni.cz/
publication/884893/en.

Ruchita Sarawgi, Kailash Gajulapalli, and Yejin Choi.
2011. Gender attribution: Tracing stylometric evi-
dence beyond topic and genre. In Proceedings of the
Fifteenth Conference on Computational Natural Lan-
guage Learning, CoNLL ’11, pages 78–86. Associa-
tion for Computational Linguistics.

Efstathios Stamatatos, Nikos Fakotakis, and George
Kokkinakis. 2000. Text genre detection using com-
mon word frequencies. In Proceedings of the 18th
Conference on Computational Linguistics - Volume 2,
COLING ’00, pages 808–814. Association for Com-
putational Linguistics.

Andreas Stolcke. 2002. SRILM-an extensible language
modeling toolkit. In Proceedings International Con-
ference on Spoken Language Processing, pages 257–
286.

Chenhao Tan and Lillian Lee. 2015. All who wander: On
the prevalence and characteristics of multi-community
engagement. In Proceedings of WWW.

1035

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1036–1041,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Joint Transition-based Dependency Parsing and Disfluency Detection for
Automatic Speech Recognition Texts

Masashi Yoshikawa and Hiroyuki Shindo and Yuji Matsumoto
Graduate School of Information and Science

Nara Institute of Science and Technology
8916-5, Takayama, Ikoma, Nara, 630-0192, Japan

{ masashi.yoshikawa.yh8, shindo, matsu }@is.naist.jp

Abstract

Joint dependency parsing with disfluency de-
tection is an important task in speech lan-
guage processing. Recent methods show high
performance for this task, although most au-
thors make the unrealistic assumption that in-
put texts are transcribed by human annota-
tors. In real-world applications, the input text
is typically the output of an automatic speech
recognition (ASR) system, which implies that
the text contains not only disfluency noises but
also recognition errors from the ASR system.
In this work, we propose a parsing method that
handles both disfluency and ASR errors us-
ing an incremental shift-reduce algorithm with
several novel features suited to ASR output
texts. Because the gold dependency informa-
tion is usually annotated only on transcribed
texts, we also introduce an alignment-based
method for transferring the gold dependency
annotation to the ASR output texts to con-
struct training data for our parser. We con-
ducted an experiment on the Switchboard cor-
pus and show that our method outperforms
conventional methods in terms of dependency
parsing and disfluency detection.

1 Introduction

Spontaneous speech is different from written text in
many ways, one of which is that it contains disfluen-
cies, that is, parts of the utterance that are corrected
by the speaker during the utterance. NLP system
performance is reported to deteriorate when there
are disfluencies, for example, with SMT (Cho et al.,
2014). Therefore, it is desirable to preprocess the
speech before passing it to other NLP tasks.

There are a number of studies that address the
problem of detecting disfluencies. Some of these
studies include dependency parsing (Honnibal and
Johnson, 2014; Wu et al., 2015; Rasooli and
Tetreault, 2014), whereas others are dedicated sys-
tems (Qian and Liu, 2013; Ferguson et al., 2015;
Hough and Purver, 2014; Hough and Schlangen,
2015; Liu et al., 2003). Among these studies, Hon-
nibal (2014) and Wu (2015) address this problem by
adding a new action to transition-based dependency
parsing that removes the disfluent parts of the in-
put sentence from the stack. Using this approach,
they achieved high performance in terms of both de-
pendency parsing and disfluency detection on the
Switchboard corpus.

However, the authors assume that the input texts
to parse are transcribed by human annotators, which,
in practice, is unrealistic. In real-world applications,
in addition to disfluencies, the input texts contain
ASR errors; these issues might degrade the parsing
performance. For example, proper nouns that are not
contained in the ASR system vocabulary may break
up into smaller pieces, yielding a difficult problem
for the parsing unit (Cheng et al., 2015):

REF: what can we get at Litanfeeth
HYP: what can we get it leaks on feet

In this work, we propose a method for joint de-
pendency parsing and disfluency detection that can
robustly parse ASR output texts. Our parser handles
both disfluencies and ASR errors using an incremen-
tal shift-reduce algorithm, with novel features that
consider recognition errors of the ASR system.

Furthermore, to evaluate dependency parsing per-

1036

they may flip flop when they get to be uh N N older

they made slipped flop when they get to be uh old way older

ROOT

Trans:

error error
error

ASR:

ROOT

error

ASR-to-NULL:
ASR output
token aligns to
NULL in gold
transcription.

NOT MATCH:
Aligned tokens
does not match
on character.

what age are your children

what age N your children

error error

ROOTROOT

ROOT
Trans-to-NULL:
Transcription
token aligns to
NULL in ASR
output text.

(a) (b)

Figure 1: Examples of three problematic cases. Above shows the gold transcription and its tree, below shows the aligned ASR

output and its newly transferred tree, where the dotted edges are ASR error edges.

formance on real human utterances, we create a tree-
annotated corpus that contains ASR errors. 1

2 Data Creation

To evaluate dependency parsing performance on real
speech texts, we must create a tree-annotated corpus
of ASR output texts.

Given a corpus that consists of speech data, tran-
scription text and its syntactic annotation (e.g., the
Switchboard corpus), we first apply the ASR sys-
tem to the speech data. Next, we perform alignment
between the ASR output texts and the transcription.
Then, we transfer the gold syntactic annotation to
the ASR output texts based on this alignment (Fig-
ure 1). The alignment is performed by minimizing
the edit distance between the two sentences. We in-
clude “NULL” tokens in this alignment to allow for
some tokens not having an aligned conterpart (“N”
tokens in the Figure 1).

In the constructed trees, there are three problem-
atic cases based on how an ASR output text and its
transcription are aligned with each other: (1) a word
in the ASR output text aligns with a NULL token
in the transcription (ASR-to-NULL), (2) a word in
the gold transcription aligns with a NULL in the
ASR output (Trans-to-NULL), and (3) two words
align, but do not match exactly in terms of characters
(NOT MATCH). To create a consistent dependency
tree that spans the entire sentence, we must address
each of these cases.

1There are also studies that tackle the problem of disfluency
detection in the context of speech recognition such as (Liu et al.,
2003). Our work is novel in that our aim is to extend the joint
method of disfluency detection with dependency parsing so that
it can be applicable to the output of ASR system.

2.1 ASR-to-NULL
In the case of ASR-to-NULL, a token from the ASR
system has no corresponding token in the gold tran-
scription. In this case, we automatically annotate a
dependency relation with an “error” label such that
the token’s head becomes the previous word token.

Figure 1(a) shows an example of this case. In
the figure, the words “old” and “way” have no cor-
responding words in the gold transcription. Thus,
we automatically annotate the dependency relations
between (“old”, “uh”) and (“way”, “old”), respec-
tively, with the “error” label.

2.2 Trans-to-NULL
Although NULL tokens are introduced to facilitate
alignment, as these tokens in the ASR output are not
actual words, we must remove them in the final tree.
Without any treatment, the gold transcription tokens
aligned to these tokens are also deleted along with
them. This causes the child tokens in the sentence
not to have heads; consequently, these child tokens
are not included in the syntactic tree. To avoid this
problem, we instead attach them to the head of the
deleted token.

For example, in Figure 1(b), the word “are” is
missing in the ASR hypothesis. Then, this token’s
children lose their head in the transfer process. Thus,
we rescue these children by attaching them to the
head of “are”, which, in this case, is ROOT token.

If the head of the removed token is also of the
Trans-to-NULL type, then we look for an alternative
head by climbing the tree in a recursive manner, un-
til reaching ROOT. We also label the newly created
edges in this process as “error”.

1037

2.3 NOT MATCH

In cases in which two aligned tokens do not match
exactly on the character level, the mismatch is re-
garded as an instance of a substitution type of ASR
error. Therefore, we encode this fact in the label of
the arc from the token to its head.

In Figure 1(a), the words “made” and “slipped” in
the ASR hypothesis do not match the gold transcrip-
tion tokens, “may” and “flip”, respectively. There-
fore, we automatically re-label the arc from each to-
ken to its head as “error”.

3 Transition-based Dependency Parsing

To parse texts that contain disfluencies and ASR er-
rors, we extend the ArcEager shift-reduce depen-
dency parser of (Zhang and Nivre, 2011). Our pro-
posed parser adopts the same Shift, Reduce, LeftArc,
and RightArc actions as ArcEager. To this parser we
add three new actions, i.e., Edit, LeftArcError, and
RightArcError, to handle disfluencies and ASR er-
rors.

Edit action removes a disfluent token when it is
the first element of the stack. This is different from
Honnibal (2014)’s Edit action: theirs accumulates
consecutive disfluent tokens on the top of the stack
and removes them all at once, whereas our method
removes this kind of token one-by-one. Use of this
Edit action guarantees that the length of the action
sequence is always 2n−1. This property is advanta-
geous because the parser can use the standard beam
search and does not require normalization, such as
those adopted in (Honnibal and Johnson, 2014) and
(Zhu et al., 2013).

LeftArcError and RightArcError act in the same
way as LeftArc and RightArc, except that these act
only on ASR error tokens, whereas the original Left-
Arc and RightArc are reserved for non ASR error to-
kens. Using two different kinds of Arc actions for
the two types of tokens (ASR error or not) allows
for the weights not to be shared between them, and
is expected to yield improved performance.

In the experiment below, we train all of the mod-
els using structured perceptron with max violation
(Huang et al., 2012). The feature set is mainly based
on (Honnibal and Johnson, 2014), such as the dis-
fluency capturing features to inquire whether the to-
ken sequence inside the two specific spans match on

word forms or POS tags. We adjusted these features
to inspect the content of the buffer more carefully,
because our parser decides if the word token is dis-
fluent or not every time new token is shifted and
hints for the decision lies much more in the buffer.

3.1 Backoff Action Feature
With the newly proposed LeftArcError and
RightArcError actions, we fear that the relatively
low frequency of “error” tokens may cause the
weights for these actions to be updated too infre-
quently to be accurately generalized. We resort
to using the “backoff action feature” to avoid
this situation. This means that, for each action
a ∈ {LeftArc, LeftArcError}, the score of
performing it in a state s is calculated as follow:

SCORE(a, s) = w · f(a, s) + w · f(a′, s) (1)

where a′ = LeftArcBackoff, w is the weight vec-
tor and f(·, ·) is the feature representation, respec-
tively. LeftArcBackoff is not actual action per-
formed by our parser, rather it is used to provide the
common feature representation which both LeftArc
and LeftArcError can “back off” to. RightArc and
RightArcError actions also calculate their scores as
in Eq.(1), with a′ = RightArcBackoff. The scores
for all the other actions are calculated in the normal
way: SCORE(a, s) = w · f(a, s).

3.2 WCN Feature
To better capture which parts of the texts are likely
to be ASR errors, we use additional features ex-
tracted from a word confusion network (WCN) gen-
erated by ASR models. Marin (2015) reports his
observation that WCN slots with more arcs tend to
correspond to erroneous region. Following (Marin,
2015), we use mean and standard deviation of arc
posteriors and the highest arc posterior in each WCN
slot corresponding to each word token. We include
in the feature vector these real-valued features for to-
kens on top of the stack and the first three elements
of the buffer.

4 Experiment

We conducted experiments using both the proposed
parsing method and the tree-annotated corpus based
on the ASR output texts. Our experiments were per-
formed using the Switchboard corpus (Godfrey et

1038

al., 1992). This corpus consists of speech data and
its transcription texts, and subset of which is anno-
tated with POS tags, syntactic trees and disfluency
information (repair, discourse marker and interjec-
tion) based on (Shriberg, 1994). 2

4.1 ASR Settings

To obtain the ASR output texts of the corpus,
we used the off-the-shelf NeuralNet recipe (Zhang
et al., 2014) presented by Kaldi.3 We used the
jackknife method to obtain the ASR output texts
throughout the syntactically annotated part of the
corpus. 4

From these ASR output texts, we created the
tree-annotated corpus by applying the data creation
method introduced in §2. Out of all 857,493 word
tokens, there are 32,606 ASR-to-NULL, 34,952
Trans-to-NULL, and 93,138 NOT MATCH cases,
meaning 15.6% of all word tokens had “error” la-
beled arcs.

4.2 Parsing Settings

We assigned POS tags to the created corpus using
the Stanford POS tagger (Toutanova et al., 2003)
trained on a part of the gold Switchboard corpus. 5

We adopt the same train/dev/test split as in (Hon-
nibal and Johnson, 2014), although the data size re-
duces slightly during the process of data creation.
We report the unlabeled attachment score (UAS),
which indicates how many heads of fluent tokens are
correctly predicted. As for disfluency detection, we
report precision/recall/F1-score values following the
previous work in the literature.

As a baseline (To which we refer as Base in the
following), we use an ArcEager parser with our pro-
posed Edit action and the disfluency capturing fea-
tures, trained on the train part of the gold Switch-
board corpus. Using this parser on ASR output test
data can be seen as reproducing the typical situation,

2We converted the phrase structure trees to dependency ones
using the Stanford converter (de Marneffe et al., 2006).

3http://kaldi-asr.org/
4The average Word Error Rate of resulting models were

13.9 % on the Switchboard part of HUB5 evaluation dataset:
https://catalog.ldc.upenn.edu/LDC2002S09

5We used a part of the corpus that is annotated with POS in-
formation but not syntactic one. The performance of the tagger
is evaluated on the syntactically annotated part of the corpus;
the tagger has an accuracy score of 95.0%.

Model
Dep Disfl
UAS Prec. Rec. F1

Base 72.7 58.6 62.2 60.3
+ ErrorAct 76.3 66.0 57.6 61.5
+ Backoff 76.4 65.6 57.3 61.1
+ WCN 76.2 67.9 57.9 62.5

Table 1: Dependency parsing and disfluency detection results

of the proposed methods. We used our created corpus as both

train and test data.

Train Test Model
Dep Disfl
UAS Prec. Rec. F1

Trans Trans Base 89.7 90.4 76.8 83.1
Trans ASR Base 74.7 58.5 65.6 61.8
ASR ASR Base 72.7 58.6 62.2 60.3
ASR ASR Ours 76.2 67.9 57.9 62.5

Table 2: Parsing result on different train-test settings. Trans

refers to original Switchboard transcription text, ASR the text

created through the data creation in §4.1. Ours is our proposed

parser: Base + ErrorAct + Backoff + WCN.

in which a parser is trained on ASR-error-free texts,
but nevertheless needs to parse the ASR output texts.

4.3 Results and Analysis
In Table 1, based on the baseline Base parser, we
report scores with the additional (and additive) use
of Left/RightArcError actions (ErrorAct), the WCN
feature (WCN), and the backoff action feature (Back-
off), on our created corpus. Using ErrorAct resulted
in 3.6% and 1.2% improvement in UAS and disflu-
ency detection F1, respectively. Backoff contributes
to further improved UAS, whereas WCN cause an
increase in disfluency detection accuracy.

Table 2 reports performance on various train and
test data settings. In Table 2, the Train and Test
columns represent which data to use in training
and testing; Trans refers to the gold transcription
text of the Switchboard corpus, and ASR the text
created through the data creation in §4.1. When
evaluated on the ASR texts, the parser trained on
the ASR texts showed degraded performance com-
pared to the parser trained on the gold transcription
((Train, Test) = (ASR, ASR)). Although both the
train and test data are ASR texts and share character-
istics, we did not observe domain adaptation effect.
We hypothesized that the drop in the performance is
due to the noisy nature of our corpus, which is cre-
ated from the texts with ASR errors. Having ASR-

1039

error-specific actions, Left/RightArcError mitigates
this problem by separately treating the ASR error
tokens and non ASR error tokens. Finally, with the
newly proposed features, the parser trained on ASR
texts outperforms the parser trained on the transcrip-
tion texts with the improvement of 1.5% and 0.7%
for UAS and disfluency detection, respectively.

However, when compared with the case of
(Train, Test) = (Trans, Trans), we observe sig-
nificant decreases in performance in both of the
tasks conducted on ASR texts. This result clearly
poses a new challenge for the disfluency detection
community.

5 Conclusion

In this work, we have proposed a novel joint
transition-based dependency parsing method with
disfluency detection. Using new actions, and new
feature set, the proposed parser can parse ASR out-
put texts robustly. We have also introduced a data
construction method to evaluate dependency parsing
and disfluency detection performance for real speech
data. As the experimental results for ASR texts is
significantly lower than that achieved for the gold
transcription texts, we have clarified the need to de-
velop a method that is robust to recognition errors in
the ASR system.

6 Acknowledgements

We thank the three anonymous reviewers for their
detailed and insightful comments on an earlier draft
of this paper. This work was supported by JSPS
KAKENHI Grant Number 15K16053, 26240035.

References
Hao Cheng, Hao Fang, and Mari Ostendorf. 2015. Open-

domain name error detection using a multi-task rnn.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 737–
746. Association for Computational Linguistics.

Eunah Cho, Jan Niehues, and Alex Waibel. 2014. Tight
integration of speech disfluency removal into smt. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Linguis-
tics, volume 2: Short Papers (EACL), pages 43–47.
Association for Computational Linguistics.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed

dependency parses from phrase structure parses. In
In Proceedings of the 5th International Conference on
Language Resources and Evaluation (LREC).

James Ferguson, Greg Durrett, and Dan Klein. 2015.
Disfluency detection with a semi-markov model and
prosodic features. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (NAACL), pages 257–262. Asso-
ciation for Computational Linguistics.

J. J. Godfrey, E. C. Holliman, and J. McDaniel. 1992.
“ switchboard: Telephone speech corpus for research
and development”. In Acoustics, Speech, and Sig-
nal Processing, 1992. ICASSP-92., 1992 IEEE Inter-
national Conference on (Volume:1). Proc. IEEE Int.
Conf. Acoust. Speech Sig. Proc.

Matthew Honnibal and Mark Johnson. 2014. Joint incre-
mental disfluency detection and dependency parsing.
In Transactions of the Association of Computational
Linguistics Volume 2, Issue 1 (TACL), pages 131–142.
Association for Computational Linguistics.

Julian Hough and Matthew Purver. 2014. Strongly in-
cremental repair detection. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 78–89. Associa-
tion for Computational Linguistics.

Julian Hough and David Schlangen. 2015. Recurrent
neural networks for incremental disfluency detection.
Interspeech 2015.

Liang Huang, Suphan Fayong, and Yang Guo. 2012.
Structured perceptron with inexact search. In Proceed-
ings of the 2012 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies. Association for
Computational Linguistics.

Yang Liu, Elizabeth Shriberg, and Andreas Stolcke.
2003. Automatic disfluency identification in coversa-
tional speech using multiple knowledge sources. In In
Proceedings of the 8th Eurospeech Conference.

Marius Alexandru Marin. 2015. In Effective Use of
Cross-Domain Parsing in Automatic Speech Recogni-
tion and Error Detection. Ph.D. thesis. University of
Washington.

Xian Qian and Yang Liu. 2013. Disfluency detection
using multi-step stacked learning. In Proceedings of
the 2013 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies. Association for Compu-
tational Linguistics.

Mohammad Sadegh Rasooli and Joel Tetreault. 2014.
Non-monotonic parsing of fluent umm i mean disfluent
sentences. In Proceedings of the 14th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, volume 2: Short Papers (EACL),

1040

pages 48–53. Association for Computational Linguis-
tics.

Elizabeth Shriberg. 1994. In Preliminaries to a The-
ory of Speech Disfluencies. Ph.D. thesis. University of
California, Berkeley.

Kristina Toutanova, Dan Klein, Christopher Manning,
and Singer Yoram. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In In Pro-
ceedings of the 2003 Human Language Technology
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 173–
180. Association for Computational Linguistics.

Shuangzhi Wu, Dongdong Zhang, Ming Zhou, and
Tiejun Zhao. 2015. Efficient disfluency detection with
transition-based parsing. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Pa-
pers) (ACL), pages 495–503. Association for Compu-
tational Linguistics.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (ACL), pages 188–193. Associa-
tion for Computational Linguistics.

Xiaohui Zhang, Jan Trmal, Daniel Povey, and San-
jeev Khudanpur. 2014. Improving deep neural net-
work acoustic models using generalized maxout net-
works. In IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP).

Muhua Zhu, Yue Zhang, Wenliang Chen, Miu Zhang, and
Jingbo Zhu. 2013. Fast and accurate shift-reduce con-
stituent parsing. In In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguis-
tics (ACL), pages 434–443. Association for Computa-
tional Linguistics.

1041

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1042–1047,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Real-Time Speech Emotion and Sentiment Recognition for Interactive
Dialogue Systems

Dario Bertero, Farhad Bin Siddique, Chien-Sheng Wu,
Yan Wan, Ricky Ho Yin Chan and Pascale Fung

Human Language Technology Center
Department of Electronic and Computer Engineering

The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
[dbertero, fsiddique]@connect.ust.hk, b01901045@ntu.edu.tw,
ywanad@connect.ust.hk, eehychan@ust.hk, pascale@ece.ust.hk

Abstract

In this paper, we describe our approach of en-
abling an interactive dialogue system to rec-
ognize user emotion and sentiment in real-
time. These modules allow otherwise con-
ventional dialogue systems to have “empathy”
and answer to the user while being aware of
their emotion and intent. Emotion recognition
from speech previously consists of feature en-
gineering and machine learning where the first
stage causes delay in decoding time. We de-
scribe a CNN model to extract emotion from
raw speech input without feature engineer-
ing. This approach even achieves an impres-
sive average of 65.7% accuracy on six emotion
categories, a 4.5% improvement when com-
pared to the conventional feature based SVM
classification. A separate, CNN-based senti-
ment analysis module recognizes sentiments
from speech recognition results, with 82.5 F-
measure on human-machine dialogues when
trained with out-of-domain data.

1 Introduction

Interactive dialogue systems and chatbots have been
around for a while. Some, though not all, systems
have statistical and machine learning modules to en-
able them to improve overtime. With the pervasive-
ness of such systems on mobile devices, expecta-
tions of user experience have also increased. We
expect human-machine dialogues to get closer to
human-human dialogues. One important factor is
that we expect machines to understand our emotions
and intent and respond with empathy.

We propose a module of emotion and sentiment
recognition for an interactive dialogue system. This

module enables the system to assess the user’s
current emotional state and sentiment, and thereby
decide the appropriate response at every dialogue
state. The dialogue management system handles the
mixed-initiative dialogues while taking into account
user emotion and sentiment, in addition to query
content. Emotion and sentiment recognition enables
our system to handle user queries previously unseen
in training data. Positive user queries containing
positive emotion and sentiment label would have
a positive response, and similarly a negatively
labeled statement would have a negative response.
Examples are shown below:

User: I lost my job.
Response: Sorry to hear that. Success is in never
giving up.
User: I just graduated from college!
Response: Congratulations! I am happy for you.
User: I went on a vacation last month and it was
pretty bad, I lost all my luggage
Response: That doesn’t sound so good. Hope your
next vacation will be a good one.
User: My last vacation was amazing, I loved it!
Response: That sounds great. I would like to travel
with you.

Meanwhile, dialogue systems like this need to
have real-time recognition of user emotion and sen-
timent. Previous approaches of emotion recognition
from speech involve feature engineering (Schuller et
al., 2009; Schuller et al., 2010) as a first step which
invariably causes delay in decoding. So we are in-
terested in investigating a method to avoid feature
engineering and instead use a Convolutional Neural

1042

Network to extract emotion from raw audio input di-
rectly.

2 Speech Recognition

Our acoustic data is obtained from various public
domain corpora and LDC corpora, comprised of
1385hrs of speech. We use Kaldi speech recogni-
tion toolkit (Povey et al., 2011) to train our acous-
tic models. We train deep neural network hidden
Markov models (DNN-HMMs) using the raw audio
together with encode-decode parallel audio. We ap-
ply layer-wise training of restricted Boltzmann ma-
chines (RBM) (Hinton, 2010), frame cross-entropy
training with mini-batch stochastic gradient descent
(SGD) and sequence discriminative training using
state Minimum Bayes Risk (sMBR) criterion.

The text data, of approximately 90 million sen-
tences, includes acoustic training transcriptions, fil-
tered sentences of Google 1 billion word LM bench-
mark (Chelba et al., 2013), and other multiple do-
mains (web news, music, weather). Our decoder al-
lows streaming of raw audio or CELP encoded data
through TCP/IP or HTTP protocol, and performs de-
coding in real time. The ASR system achieves 7.6%
word error rate on our clean speech test data1.

3 Real-Time Emotion Recognition from
Time-Domain Raw Audio Input

In recent years, we have seen successful systems
that gave high classification accuracies on bench-
mark datasets of emotional speech (Mairesse et al.,
2007) or music genres and moods (Schermerhorn
and Scheutz, 2011).

Most of such work consists of two main steps,
namely feature extraction and classifier learning,
which is tedious and time-consuming. Extracting
high and low level features (Schuller et al., 2009),
and computing over windows of audio signals typi-
cally takes a few dozen seconds to do for each ut-
terance, making the response time less than real-
time instantaneous, which users have come to ex-
pect from interactive systems. It also requires a lot
of hand tuning. In order to bypass feature engineer-
ing, the current direction is to explore methods that
can recognize emotion or mood directly from time-
domain audio signals. One approach that has shown

1https://catalog.ldc.upenn.edu/LDC94S13A

great potential is using Convolutional Neural Net-
works. In the following sections, we compare an ap-
proach of using CNN without feature engineering to
a method that uses audio features with a SVM clas-
sifier.

3.1 Dataset

For our experiments on emotion recognition with
raw audio, we built a dataset from the TED-LIUM
corpus release 2 (Rousseau et al., 2014). It includes
207 hours of speech extracted from 1495 TED talks.
We annotated the data with an existing commercial
API followed by manual correction. We use these 6
categories: criticism, anxiety, anger, loneliness, hap-
piness, and sadness. We obtained a total of 2389
segments for the criticism category, 3855 for anxi-
ety, 12708 for anger, 3618 for loneliness, 8070 for
happy and 1824 for sadness. The segments have an
average length slightly above 13 seconds.

3.2 Convolutional Neural Network model

The Convolutional Neural Network (CNN) model
using raw audio as input is shown in Figure 1. The
raw audio samples are first down-sampled at 8 kHz,
in order to optimize between the sampling rate and
representation memory efficiency in case of longer
segments. The CNN is designed with a single fil-
ter for real-time processing. We set a convolution
window of size 200, which corresponds to 25 ms,
and an overlapping step size of 50, equal to around
6 ms. The convolution layer performs the feature
extraction, and models the variations among neigh-
boring, overlapping frames. The subsequent max-
pooling combines the contributions of all the frames,
and gives as output a segment-based vector. This is
then fed into a fully connected layer before the final
softmax layer. These last layers perform a similar
function as those of a fully connected Deep Neu-
ral Network (DNN), mapping the max-pooling out-
put into a probabilistic distribution over the desired
emotional output categories.

During decoding the processing time increases
linearly with the length of the audio input segment.
Thus the largest time contribution is due to the com-
putations inside the network (He and Sun, 2015),
which with a single convolution layer can be per-
formed in negligible time for single utterances.

1043

Figure 1: Convolutional Neural Network model for emotion

classification from raw audio samples.

Figure 2: Convolutional neural network model for sentiment

classification

4 Sentiment Inference from Speech and
Text

Convolutional Neural Networks (CNNs) have re-
cently achieved remarkably strong performance also
on the practically important task of sentence classi-
fication (Johnson and Zhang, 2014; Kalchbrenner et
al., 2014; Kim, 2014). In our approach, we use a
CNN-based classifier with Word2Vec to analyze the
sentiment of recognized speech.

We train a CNN with one layer of convolution and
max pooling (Collobert et al., 2011) on top of word
embedding vectors trained on the Google News cor-
pus (Mikolov et al., 2013) of size 300. We apply
on top of the word vectors a convolutional sliding
window of size 3, 4 and 5 to represent multiple fea-
tures. We then apply a max-pooling operation over
the output vectors of the convolutional layer, that al-
lows the model to pick up the most valuable infor-
mation wherever it happens in the input sentence,
and give as output a fixed-length sentence encoding

Emotion class SVM CNN
Criticism/Cynicism 55.0 61.2
Defensiveness/Anxiety 56.3 62.0
Hostility/Anger 72.8 72.9
Loneliness/Unfulfillment 61.1 66.6
Love/Happiness 50.9 60.1
Sadness/Sorrow 71.1 71.4
Average 61.2 65.7

Table 1: Accuracy obtained, percentage, in the Convolutional

Neural Network model for emotion classification from raw au-

dio samples.

vector.
We employ two distinct CNN channels: the first

uses word embedding vectors directly as input,
while the second fine-tunes them via back propaga-
tion (Kim, 2014). All the hidden layer dimensions
are set to 100. The final softmax layer takes as input
the concatenated sentence encoding vectors of the
two channels, and gives as output is the probabil-
ity distribution over a binary classification for senti-
ment analysis of text transcribed from speech by our
speech recognizer.

To improve the performance of sentiment classi-
fication in real time conversation, we compare the
performance on the Movie Review dataset used in
Kim (2014) with the Twitter sentiment 1402 dataset.
This twitter dataset contains a total of 1.6M sen-
tences with positive and negative sentiment labels.
Before training the CNN model we apply some pre-
processing as mentioned in Go et al. (2009).

5 Experiments

5.1 Experimental setup

For the speech emotion detection module we setup
our experiments as binary classification tasks, in
which each segment is classified as either part of
a particular emotion category or not. For each cat-
egory the negative samples were chosen randomly
from the clips that did not belong to the positive
category. We took 80% of the data as training set,
and 10% each as development and test set. The de-
velopment set was used to tune the hyperparameters
and determine the early stopping condition. We im-
plemented our CNN with the THEANO framework

2www.sentiment140.com

1044

Corpus Average Length Size Vocabulary Size Words in Word2vec
Movie Review 20 10662 18765 16448

Twitter 12.97 1600000 273761 79663
Table 2: Corpus statistics for text sentiment experiments with CNN.

Model Accuracy Precision Recall F-score
CNN model (trained on Movie Review dataset) 67.8% 91.2% 63.5% 74.8

LIWC (keyword based) 73.5% 80.3% 77.3% 77.7
CNN model (trained on Twitter dataset) 72.17% 78.64% 86.69% 82.5

Table 3: Sentiment analysis result on human-machine dialogue when trained from Twitter and Movie Review dataset

(Bergstra et al., 2010). We chose rectified linear
as the non-linear function for the hidden layers, as
it generally provided better performance over other
functions. We used standard backpropagation train-
ing, with momentum set to 0.9 and initial learning
rate to 10−5. As a baseline we used a linear-kernel
SVM model from the LibSVM (Chang and Lin,
2011) library with the INTERSPEECH 2009 emo-
tion feature set (Schuller et al., 2009), extracted with
openSMILE (Eyben et al., 2010). These features are
computed from a series of input frames and output a
single static summary vector, e.g, the smooth meth-
ods, maximum and minimum value, mean value of
the features from the frames (Liscombe et al., 2003).

A similar one-layer CNN setup was used also
for the sentiment module, again with rectified lin-
ear as the activation function. As our dataset con-
tains many neutral samples, we trained two distinct
CNNs: one for positive sentiment and one for nega-
tive, and showed the average results among the two
categories. For each of the two training corpora we
took 10% as development set. We used as baseline
a method that uses positive and emotion keywords
from the Linguistic Inquiry and Word Count (LIWC
2015) dictionary (Pennebaker et al., 2015).

5.2 Results and discussion

5.2.1 Speech emotion recognition

Results obtained by this module are shown in Ta-
ble 1. In all the emotion classes considered our CNN
model outperformed the SVM baseline, sometimes
marginally (in the angry and sad classes), sometimes
more significantly (happy and criticism classes). It
is particularly important to point out that our CNN
does not use any kind of preprocessed features. The
lower results for some categories, even on the SVM

baseline, may be a sign of inaccuracy in manual la-
beling. We plan to work to improve both the dataset,
with hand-labeled samples, and periodically retrain
the model as ongoing work.

Processing time is another key factor of our sys-
tem. We ran an evaluation of the time needed to
perform all the operations required by our system
(down-sampling, audio samples extraction and clas-
sification) on a commercial laptop. The system we
used is a Lenovo x250 laptop with a Intel i5 CPU,
8 Gb RAM, an SSD hard disk and running Linux
Ubuntu 16.04. Our classifier took an average of
162ms over 10 segments randomly chosen from
our corpus of length greater than 13 s, which corre-
sponds to 13ms per second of speech, hence achiev-
ing real-time performance on typical utterances. The
key of the low processing time is the lightweight
structure of the CNN, which uses only one filter. We
replicated the evaluations with the same 10 segments
on a two-filter CNN, where the second filter spans
over 250ms windows. Although we obtained higher
performance with this structure in our preliminary
experiments, the processing time raised to 6.067 s,
which corresponds to around 500ms per second of
speech. This is over one order of magnitude higher
than the one filter configuration, making it less suit-
able for time constrained applications such as dia-
logue systems.

5.2.2 Sentiment inference from ASR
Results obtained by this module are shown in Ta-

ble 3. Our CNN model got a 6.1% relative im-
provement on F-score over the baseline when trained
with the larger Twitter dataset. The keyword based
method got a slightly better accuracy and precision
and a much lower recall on our relatively small
human-machine dialogue dataset (821 short utter-

1045

ances). However, we noticed that the keyword based
method accuracy fell sharply when tested on the
larger Twitter dataset we used to train the CNN,
yielding only 45% accuracy. We also expect to im-
prove our CNN model in the future training it with
more domain specific data, something not possible
with a thesaurus based method.

6 Conclusion

In this paper, we have introduced the emotion and
sentiment recognition module for an interactive di-
alog system. We described in detail the two parts
involved, namely speech emotion and sentiment
recognition, and discussed the results achieved. We
have shown how deep learning can be used for
such modules in this architecture, ranging from
speech recognition, emotion recognition to senti-
ment recognition from dialogue. More importantly,
we have shown that by using a CNN with a single
filter, it is possible to obtain real-time performance
on speech emotion recognition at 65.7% accuracy,
directly from time-domain audio input, bypassing
feature engineering. Sentiment analysis with CNN
also leads to a 82.5 F-measure when trained from
out-of-domain data. This approach of creating emo-
tionally intelligent systems will help future robots to
acquire empathy, and therefore rather than commit-
ting harm, they can act as friends and caregivers to
humans.

Acknowledgments

This work was partially funded by the Hong Kong
Phd Fellowship Scheme, and partially by grant
#16214415 of the Hong Kong Research Grants
Council.

References
James Bergstra, Olivier Breuleux, Frédéric Bastien, Pas-

cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio. 2010. Theano: a cpu and gpu math expression
compiler. In Proceedings of the Python for scien-
tific computing conference (SciPy), volume 4, page 3.
Austin, TX.

Chih-Chung Chang and Chih-Jen Lin. 2011. Libsvm:
a library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology (TIST),
2(3):27.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. arXiv
preprint arXiv:1312.3005.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Florian Eyben, Martin Wöllmer, and Björn Schuller.
2010. Opensmile: the munich versatile and fast open-
source audio feature extractor. In Proceedings of the
18th ACM international conference on Multimedia,
pages 1459–1462. ACM.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1:12.

Kaiming He and Jian Sun. 2015. Convolutional neural
networks at constrained time cost. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5353–5360.

Geoffrey Hinton. 2010. A practical guide to training
restricted boltzmann machines. Momentum, 9(1):926.

Rie Johnson and Tong Zhang. 2014. Effective use of
word order for text categorization with convolutional
neural networks. arXiv preprint arXiv:1412.1058.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. arXiv preprint arXiv:1404.2188.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. arXiv preprint arXiv:1408.5882.

Jackson Liscombe, Jennifer Venditti, and Julia Bell
Hirschberg. 2003. Classifying subject ratings of emo-
tional speech using acoustic features. In Proceedings
of Eurospeech, pages 725–728. ISCA.

François Mairesse, Marilyn A Walker, Matthias R Mehl,
and Roger K Moore. 2007. Using linguistic cues
for the automatic recognition of personality in conver-
sation and text. Journal of artificial intelligence re-
search, pages 457–500.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111–3119.

J.W. Pennebaker, R.J. Booth, R.L. Boyd, and M.E.
Francis. 2015. Linguistic inquiry and word count:
Liwc2015. Austin, TX: Pennebaker Conglomerates.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko Han-
nemann, Petr Motlicek, Yanmin Qian, Petr Schwarz,
et al. 2011. The kaldi speech recognition toolkit. In

1046

IEEE 2011 workshop on automatic speech recognition
and understanding, number EPFL-CONF-192584.
IEEE Signal Processing Society.

Anthony Rousseau, Paul Deléglise, and Yannick Estève.
2014. Enhancing the ted-lium corpus with selected
data for language modeling and more ted talks. In
LREC, pages 3935–3939.

Paul Schermerhorn and Matthias Scheutz. 2011. Dis-
entangling the effects of robot affect, embodiment,
and autonomy on human team members in a mixed-
initiative task. In Proceedings from the International
Conference on Advances in Computer-Human Interac-
tions, pages 236–241.

Björn Schuller, Stefan Steidl, and Anton Batliner. 2009.
The interspeech 2009 emotion challenge. In INTER-
SPEECH, volume 2009, pages 312–315. Citeseer.

Björn Schuller, Stefan Steidl, Anton Batliner, Felix
Burkhardt, Laurence Devillers, Christian A Müller,
and Shrikanth S Narayanan. 2010. The interspeech
2010 paralinguistic challenge. In INTERSPEECH,
volume 2010, pages 2795–2798.

1047

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1048–1053,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

A Neural Network Architecture for Multilingual Punctuation Generation

Miguel Ballesteros1 Leo Wanner1,2
1NLP Group, Universitat Pompeu Fabra, Barcelona, Spain

2 Catalan Institute for Research and Advanced Studies (ICREA)
miguel.ballesteros@upf.edu leo.wanner@upf.edu

Abstract

Even syntactically correct sentences are per-
ceived as awkward if they do not contain cor-
rect punctuation. Still, the problem of au-
tomatic generation of punctuation marks has
been largely neglected for a long time. We
present a novel model that introduces punc-
tuation marks into raw text material with
transition-based algorithm using LSTMs. Un-
like the state-of-the-art approaches, our model
is language-independent and also neutral with
respect to the intended use of the punctuation.
Multilingual experiments show that it achieves
high accuracy on the full range of punctuation
marks across languages.

1 Introduction

Although omnipresent in (language learner) gram-
mar books, punctuation received much less atten-
tion in linguistics and natural language processing
(Krahn, 2014). In linguistics, punctuation is gener-
ally acknowledged to possess different functions. Its
traditionally most studied function is that to encode
prosody of oral speech, i.e., the prosodic rhetori-
cal function; see, e.g., (Kirchhoff and Primus, 2014)
and the references therein. In particular the comma
is assumed to possess a strong rhetorical function
(Nunberg et al., 2002). Its other functions are the
grammatical function, which leads it to form a sep-
arate (along with semantics, syntax, and phonology)
grammatical submodule (Nunberg, 1990), and the
syntactic function (Quirk et al., 1972), which makes
it reflect the syntactic structure of a sentence.

The different functions of punctuation are also re-
flected in different tasks in natural language process-

ing (NLP): introduction of punctuation marks into a
generated sentence that is to be read aloud, restora-
tion of punctuation in speech transcripts, parsing un-
der consideration of punctuation, or generation of
punctuation in written discourse. Our work is cen-
tered in the last task. We present a novel punctuation
generation algorithm that is based on the transition-
based algorithm with long short-term memories
(LSTMs) by Dyer et al. (2015) and character-based
continuous-space vector embeddings of words using
bidirectional LSTMs (Ling et al., 2015b; Ballesteros
et al., 2015). The algorithm takes as input raw ma-
terial without punctuation and effectively introduces
the full range of punctuation symbols. Although in-
tended, first of all, for use in sentence generation, the
algorithm is function- and language-neutral, which
makes it different, compared to most of the state-
of-the-art approaches, which use function- and/or
language-specific features.

2 Related Work

The most prominent punctuation-related NLP task
has been so far introduction (or restoration) of punc-
tuation in speech transcripts. Most often, classifier
models are used that are trained on n-gram mod-
els (Gravano et al., 2009), on n-gram models en-
riched by syntactic and lexical features (Ueffing et
al., 2013) and/or by acoustic features (Baron et al.,
2002; Kolář and Lamel, 2012). Tilk and Alumäe
(2015) use a lexical and acoustic (pause duration)
feature-based LSTM model for the restoration of pe-
riods and commas in Estonian speech transcripts.
The grammatical and syntactic functions of punctu-
ation have been addressed in the context of written

1048

language. Some of the proposals focus on the gram-
matical function (Doran, 1998; White and Rajku-
mar, 2008), while others bring the grammatical and
syntactic functions together and design rule-based
grammatical resources for parsing (Briscoe, 1994)
and surface realization (White, 1995; Guo et al.,
2010). Guo et al. (2010) is one of the few works
that is based on a statistical model for the genera-
tion of punctuation in the context of Chinese sen-
tence generation, trained on a variety of syntactic
features from LFG f-structures, preceding punctu-
ation bigrams and cue words.

Our proposal is most similar to Tilk and Alumäe
(2015), but our task is more complex since we gen-
erate the full range of punctuation marks. Further-
more, we do not use any acoustic features. Com-
pared to Guo et al. (2010), we do not use any syn-
tactic features either since our input is just raw text
material.

3 Model

Our model is inspired by a number of recent works
on neural architectures for structure prediction:
Dyer et al. (2015)’s transition-based parsing model,
Dyer et al. (2016)’s generative language model and
phrase-structure parser, Ballesteros et al. (2015)’s
character-based word representation for parsing, and
Ling et al. (2015b)’s part-of-speech tagging .

3.1 Algorithm

We define a transition-based algorithm that intro-
duces punctuation marks into sentences that do not
contain any punctuation. In the context of NLG, the
input sentence would be the result of the surface re-
alization task (Belz et al., 2011). As in transition-
based parsing (Nivre, 2004), we use two data struc-
tures: Nivre’s queue is in our case the input buffer
and his stack is in our case the output buffer. The al-
gorithm starts with an input buffer full of words and
an empty output buffer. The two basic actions of
the algorithm are SHIFT, which moves the first word
from the input buffer to the output buffer, and GEN-
ERATE, which introduces a punctuation mark after
the first word in the output buffer. Figure 1 shows an
example of the application of the two actions.

At each stage t of the application of the algorithm,
the state, which is defined by the contents of the out-

Transition Output Input
[] [No it was not]

SHIFT [No] [it was not]
GENERATE(“,”) [No ,] [it was not]
SHIFT [No , it] [was not]
SHIFT [No , it was] [not]
SHIFT [No , it was not] []
GENERATE(“.”) [No, it was not .] []

Figure 1: Transition sequence for the input sequence No it was

not – with the output No, it was not.

put and input buffers, is encoded in terms of a vector
st; see Section 3.3 for different alternatives of state
representation. As Dyer et al. (2015), we use st to
compute the probability of the action at time t as:

p(zt | st) =
exp

(
g>ztst + qzt

)
∑

z′∈A exp
(
g>z′st + qz′

) (1)

where gz is a vector representing the embedding
of the action z, and qz is a bias term for action
z. The set A represents the actions (either SHIFT

or GENERATE(p)).1 st encodes information about
previous actions (since it may include the history
with the actions taken and the generated punctua-
tion symbols are introduced in the output buffer, see
Section 3.3), thus the probability of a sequence of
actions z given the input sequence is:

p(z | w) =

|z|∏

t=1

p(zt | st). (2)

As in (Dyer et al., 2015), the model greedily
chooses the best action to take given the state with
no backtracking.2

3.2 Word Embeddings
Following the tagging model of Ling et al. (2015b)
and the parsing model of Ballesteros et al. (2015),
we compute character-based continuous-space vec-
tor embeddings of words using bidirectional LSTMs
(Graves and Schmidhuber, 2005) to learn similar
representation for words that are similar from an or-
thographic/morphological point of view.

1Note that GENERATE(p) includes all possible punctuations
that the language in question has, and thus the number of classes
the classifier predicts in each time step is #punctuations + 1.

2For further optimization, the model could be extended, for
instance, by beam-search.

1049

The character-based representations may be also
concatenated with a fixed vector representation from
a neural language model. The resulting vector is
passed through a component-wise rectifier linear
unit (ReLU). We experiment with and without pre-
trained word embeddings. To pretrain the fixed vec-
tor representations, we use the skip n-gram model
introduced by Ling et al. (2015a).

3.3 Representing the State

We work with two possible representations of the
input and output buffers (i.e, the state st): (i) a look-
ahead model that takes into account the immediate
context (two embeddings for the input and two em-
beddings for the output), which we use as a base-
line, and (ii) the LSTM model, which encodes the
entire input sequence and the output sentence with
LSTMs.

3.3.1 Baseline: Look-ahead Model
The look-ahead model can be interpreted as a 4-

gram model in which two words belong to the input
and two belong to the output. The representation
takes the average of the two first embeddings of the
output and the two first embeddings at the front of
the input. The word embeddings contain all the rich-
ness provided by the character-based LSTMs and the
pretrained skip n-gram model embeddings (if used).
The resulting vector is passed through a component-
wise ReLU and a softmax transformation to obtain
the probability distribution over the possible actions
given the state st; see Section 3.1.

3.3.2 LSTM Model
The baseline look-ahead model considers only

the immediate context for the input and output se-
quences. In the proposed model, we apply recur-
rent neural networks (RNNs) that encode the entire
input and output sequences in the form of LSTMs.
LSTMs are a variant of RNNs designed to deal with
the vanishing gradient problem inherent in RNNs
(Hochreiter and Schmidhuber, 1997; Graves, 2013).
RNNs read a vector xt at each time step and com-
pute a new (hidden) state ht by applying a linear
map to the concatenation of the previous time step’s
state ht−1 and the input, passing then the outcome
through a logistic sigmoid non-linearity.

We use a simplified version of the stack LSTM

model of Dyer et al. (2015). The input buffer is en-
coded as a stack LSTM, into which we PUSH the en-
tire sequence at the beginning and POP words from
it at each time step. The output buffer is a sequence,
encoded by an LSTM, into which we PUSH the fi-
nal output sequence. As in (Dyer et al., 2015), we
include a third sequence with the history of actions
taken, which is encoded by another LSTM. As al-
ready mentioned above, the three resulting vectors
are passed through a component-wise ReLU and a
softmax transformation to obtain the probability dis-
tribution over the possible actions that can be taken
(either to shift or to generate a punctuation mark),
given the current state st; see Section 3.1.

4 Experiments

To test our models, we carried experiments on
five languages: Czech, English, French, German,
and Spanish. English, French and Spanish are
generally assumed to be characterized by prosodic
punctuation, while for German the syntactic punc-
tuation is more dominant (Kirchhoff and Primus,
2014). Czech punctuation also leans towards syn-
tactic punctuation (Kolář et al., 2004), but due to its
rather free word order we expect it to reflect prosodic
punctuation as well.

The punctuation marks that the models attempt to
predict (and that also occur in the training sets) for
each language are listed in Table 1.3 Commas rep-
resent around 55% and periods around 30% of the
total number of marks in the datasets.

Czech ‘.’, ‘,’, ‘–’, ‘(’, ‘)’, ‘:’, ‘/’, ‘?’, ‘%’, ‘*’, ‘=’, ‘|’, ‘”, ‘+’,
‘;’, ‘!’, ‘o’, ‘”’, ‘&’, ‘[’, ‘]’, ‘§’

English ‘–’, ‘(’, ‘)’, ‘,’, ‘ ” ’, ‘.’, ‘. . . ’, ‘:’, ‘;’, ‘?’, ‘ “ ’, ‘}’, ‘{’
French ‘ ” ’, ‘,’, ‘–’, ‘:’, ‘?’, ‘(’, ‘)’, ‘.’, ‘!’, ‘. . . ’
German ‘ ” ’, ‘(’, ‘)’, ‘,’, ‘.’, ‘/’, ‘:’, ‘–’, ‘. . . ’, ‘?’, ‘ “ ’
Spanish ‘ ” ’, ‘(’, ‘)’, ‘,’, ‘–’, ‘.’, ‘:’, ‘?’, ‘¿’, ‘!’, ‘¡’

Table 1: Punctuation marks covered in our experiments.

4.1 Setup

The stack LSTM model uses two layers, each of di-
mension 100 for each input sequence. For both the

3The consideration of some of the symbols listed in Table 1
as punctuation marks may be questioned (see, e.g., ‘+’ or ‘§’ for
Czech). However, all of them are labeled as punctuation marks
in the corresponding tag sets, such that we include them.

1050

Commas
Czech English French German Spanish

P R F P R F P R F P R F P R F
LookAhead 78.79 43.54 56.09 75.60 38.52 51.04 54.00 22.76 32.02 68.87 32.89 44.52 63.17 19.15 29.39
LookAhead + Pre – – – 75.94 40.81 53.09 – – – 71.30 39.62 50.94 58.03 26.67 36.54
LSTM 80.79 68.30 74.02 78.88 70.02 74.19 61.73 44.52 51.73 73.78 65.45 69.37 64.01 42.73 51.25
LSTM + Pre – – – 80.83 74.81 77.70 – – – 76.56 69.19 72.69 65.65 45.33 53.63

Periods
Czech English French German Spanish

P R F P R F P R F P R F P R F
LookAhead 82.62 95.64 88.65 88.51 97.76 92.91 71.34 94.61 81.34 77.10 97.76 86.21 73.13 99.13 84.17
LookAhead + Pre – – – 87.44 97.71 92.29 – – – 78.26 95.93 86.20 73.16 99.29 84.25
LSTM 89.39 93.66 91.48 93.07 98.31 95.62 76.38 95.47 84.86 84.75 98.18 90.97 74.70 98.65 85.02
LSTM + Pre – – – 94.44 98.06 96.22 – – – 85.65 98.39 91.58 74.24 98.57 84.69

Average
Czech English French German Spanish

P R F P R F P R F P R F P R F
LookAhead 80.90 58.57 67.95 82.72 52.72 64.40 60.67 32.33 42.18 75.82 52.58 62.10 67.50 33.88 45.12
LookAhead + Pre – – – 81.83 53.90 64.99 – – – 75.75 54.57 63.65 64.80 38.58 48.36
LSTM 82.42 69.11 75.18 84.89 71.23 77.46 65.34 45.52 53.66 80.03 65.90 72.28 67.78 47.80 56.06
LSTM + Pre – – – 83.72 74.56 78.87 – – – 81.60 67.47 73.87 68.09 49.21 57.13

Table 2: Results of the LSTM model and the Baseline (Look-ahead model) for precision, recall and F score for commas, periods

and micro average for all punctuation symbols (including commas and periods) listed in Table 1. +Pre refers to models that include

pretrained word embeddings.

look-ahead and the stack LSTM models, character-
based embeddings, punctuation embeddings and
pretrained embeddings (if used) also have 100 di-
mensions. Both models are trained to maximize
the conditional log-likelihood (Eq. 2) of output sen-
tences, given the input sequences.

For Czech, English, German, and Spanish, we use
the wordforms from the treebanks of the CoNLL
2009 Shared Task (Hajič et al., 2009); the French
dataset is by Candito et al. (2010). Development
sets are used to optimize the model parameters; the
results are reported for the held-out test sets.

4.2 Results and Discussion
Table 2 displays the outcome of the experiments for
periods and commas in all five languages and sum-
marizes the overall performance of our algorithm
in terms of the micro-average figures. In order to
test whether pretrained word embeddings provide
further improvements, we incorporate them for En-
glish, Spanish and German.4

The figures show that the LSTMs that encode
the entire context of a punctuation mark are better
than a strong baseline that takes into account a 4-

4Word embeddings for English, Spanish and German are
trained using the AFP portion of the English Gigaword cor-
pus (version 5), the German monolingual training data from the
2010 Machine Translation Workshop, and the Spanish Giga-
word version 3 respectively.

gram sliding window of tokens. They also show
that character-based representations are already use-
ful for the punctuation generation task on their own,
but when concatenated with pretrained vectors, they
are even more useful.

The model is capable of providing good results
for all languages, being more consistent for En-
glish, Czech and German. Average sentence length
may indicate why the model seems to be worse for
Spanish and French, since sentences are longer in
the Spanish (29.8) and French (27.0) datasets, com-
pared to German (18.0), Czech (16.8) or English
(24.0). The training set is also smaller in Spanish
and French compared to the other languages. It is
worth noting that the results across languages are
not directly comparable since the datasets are differ-
ent, and as shown in Table 1, the sets of punctuation
marks that are to be predicted diverge significantly.

The figures in Table 2 cannot be directly com-
pared with the figures reported by Tilk and Alumäe
(2015) for their LSTM-model on period and comma
restoration in speech transcripts: the tasks and
datasets are different.

Our results prove that the state representation
(through LSTMs, which have already been shown to
be effective for syntax (Dyer et al., 2015; Dyer et al.,
2016)) and character-based representations (which
allow similar embeddings for words that are mor-

1051

phologically similar (Ling et al., 2015b; Ballesteros
et al., 2015)) are capturing strong linguistic clues to
predict punctuation.

5 Conclusions

We presented an LSTM-based architectured that is
capable of adding punctuation marks to sequences of
tokens as produced in the context of surface realiza-
tion without punctuation with high quality and lin-
ear time.5 Compared to other proposals in the field,
the architecture has the advantage to operate on se-
quences of word forms, without any additional syn-
tactic or acoustic features. This tool could be used
for ASR (Tilk and Alumäe, 2015) and grammatical
error correction (Ng et al., 2014). In the future, we
plan to create cross-lingual models by applying mul-
tilingual word embeddings (Ammar et al., 2016).

Acknowledgments

This work was supported by the European Com-
mission under the contract numbers FP7-ICT-
610411 (MULTISENSOR) and H2020-RIA-645012
(KRISTINA).

References
Waleed Ammar, George Mulcaire, Yulia Tsvetkov, Guil-

laume Lample, Chris Dyer, and Noah A. Smith. 2016.
Massively multilingual word embeddings. CoRR,
abs/1602.01925.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by model-
ing characters instead of words with lstms. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 349–359,
Lisbon, Portugal, September. Association for Compu-
tational Linguistics.

Don Baron, Elizabeth Shriberg, and Andreas Stolcke.
2002. Automatic punctuation and disfluency detec-
tion in multi-party meetings using prosodic and lexi-
cal cues. In Proceedings of the International Confer-
ence on Spoken Language Processing, pages 949–952,
Denver, CO.

Anja Belz, Mike White, Dominic Espinosa, Eric Kow,
Deirdre Hogan, and Amanda Stent. 2011. The first
surface realisation shared task: Overview and evalu-
ation results. In Proceedings of the Generation Chal-

5The code is available at https://github.com/
miguelballesteros/LSTM-punctuation

lenges Session at the 13th European Workshop on Nat-
ural Language Generation, pages 217–226.

Ted Briscoe. 1994. Parsing (with) punctuation. Tech-
nical report, Rank Xerox Research Centre, Grenoble,
France.

Marie Candito, Benoı̂t Crabbé, and Pascal Denis. 2010.
Statistical French dependency parsing: treebank con-
version and first results. In Proceedings of the LREC.

Christine D. Doran. 1998. Incorporating Punctuation
into the Sentence Grammar. Ph.D. thesis, University
of Pennsylvania.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proceedings of ACL.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and
Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of NAACL-HLT.

Agustı́n Gravano, Martin Jansche, and Michiel Bacchi-
ani. 2009. Restoring punctuation and capitalization
in transcribed speech. In Proceedings of the ICASSP
2009, pages 4741–4744.

Alex Graves and Jürgen Schmidhuber. 2005. Framewise
phoneme classification with bidirectional LSTM net-
works. In Proceedings of the International Joint Con-
ference on Neural Networks (IJCNN).

Alex Graves. 2013. Generating sequences with recurrent
neural networks. CoRR, abs/1308.0850.

Yuqing Guo, Haifeng Wang, and Josef van Genabith.
2010. A linguistically inspired statistical model for
chinese punctuation generation. ACM Transactions on
Asian Language Information Processing, 9(2).

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 Shared Task: Syntactic and Semantic Depen-
dencies in Multiple Languages. In Proceedings of
the Thirteenth Conference on Computational Natu-
ral Language Learning (CoNLL 2009): Shared Task,
pages 1–18, Boulder, Colorado, June. Association for
Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Frank Kirchhoff and Beatrice Primus. 2014. The archi-
tecture of punctuation systems. A historical case study
of the comma in German. Written Language and Lit-
eracy, 17(2):195–224.

Jáchym Kolář and Lori Lamel. 2012. Development and
Evaluation of Automatic Punctuation for French and
English Speech-to-Text. In Proceedings of the 13th
Interspeech Conference, Portland, OR.

1052

Jáchym Kolář, Jan Švec, and Josef Psutka. 2004. Au-
tomatic Punctuation Annotation in Czech Broadcast
News Speech. In Proceedings of the 9th Conference
Speech and Computer, St. Petersburg, Russia.

Albert Edward Krahn. 2014. A New Paradigm for
Punctuation. Ph.D. thesis, University of Wisconsin-
Milwaukee.

Wang Ling, Chris Dyer, Alan Black, and Isabel Trancoso.
2015a. Two/too simple adaptations of word2vec for
syntax problems. In Proceedings of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics (NAACL).

Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernandez
Astudillo, Silvio Amir, Chris Dyer, Alan W Black, and
Isabel Trancoso. 2015b. Finding function in form:
Compositional character models for open vocabulary
word representation. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP).

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 Shared Task
on Grammatical Error Correction. In Proceedings of
the Eighteenth Conference on Computational Natural
Language Learning: Shared Task, pages 1–14, Balti-
more, Maryland, June. Association for Computational
Linguistics.

Joakim Nivre. 2004. Incrementality in deterministic de-
pendency parsing. In Proceedings of the Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together.

Geoffrey Nunberg, Ted Briscoe, and Rodney Huddleston.
2002. Punctuation. In The Cambridge Grammar of
the English Language, pages 1723–1764. Cambridge
University Press, Cambridge.

Geoffrey Nunberg. 1990. The Linguistics of Punctua-
tion. CSLI Publications, Stanford, CA.

Randolph Quirk, Sidney Greenbaum, Geoffrey Leech,
and Jan Svartvik. 1972. A Grammar of Contemporary
English. Longman, London.

Ottokar Tilk and Tanel Alumäe. 2015. LSTM for Punc-
tuation Restoration in Speech Transcripts. In Proceed-
ings of the 16th Interspeech Conference, Dresden, Ger-
many.

Nicola Ueffing, Maximilian Bisani, and Paul Vozila.
2013. Improved models for automatic punctuation
prediction for spoken and written text. In Proceedings
of the 14th Interspeech Conference, Lyon, France.

Michael White and Rajakrishnan Rajkumar. 2008. A
More Precise Analysis of Punctuation for Broad-
Coverage Surface-Realization with CCG. In Proceed-
ings of the Workshop on Grammar Engineering Across
Frameworks, pages 17–24, Manchester, UK.

Michael White. 1995. Presenting punctuation. In Pro-
ceedings of the 5th European Workshop on Natural
Language Generation, pages 107–125, Lyon, France.

1053

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1054–1059,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Neural Headline Generation on Abstract Meaning Representation

Sho Takase† Jun Suzuki‡ Naoaki Okazaki† Tsutomu Hirao‡ Masaaki Nagata‡

Graduate School of Information Sciences, Tohoku University†

NTT Communication Science Laboratories, NTT Corporation‡

{takase, okazaki}@ecei.tohoku.ac.jp
{suzuki.jun, hirao.tsutomu, nagata.masaaki}@lab.ntt.co.jp

Abstract

Neural network-based encoder-decoder mod-
els are among recent attractive methodologies
for tackling natural language generation tasks.
This paper investigates the usefulness of struc-
tural syntactic and semantic information ad-
ditionally incorporated in a baseline neural
attention-based model. We encode results ob-
tained from an abstract meaning representa-
tion (AMR) parser using a modified version
of Tree-LSTM. Our proposed attention-based
AMR encoder-decoder model improves head-
line generation benchmarks compared with
the baseline neural attention-based model.

1 Introduction

Neural network-based encoder-decoder models are
cutting-edge methodologies for tackling natural lan-
guage generation (NLG) tasks, i.e., machine trans-
lation (Cho et al., 2014), image captioning (Vinyals
et al., 2015), video description (Venugopalan et al.,
2015), and headline generation (Rush et al., 2015).

This paper also shares a similar goal and moti-
vation to previous work: improving the encoder-
decoder models for natural language generation.
There are several directions for enhancement. This
paper respects the fact that NLP researchers have
expended an enormous amount of effort to develop
fundamental NLP techniques such as POS tagging,
dependency parsing, named entity recognition, and
semantic role labeling. Intuitively, this structural,
syntactic, and semantic information underlying in-
put text has the potential for improving the quality of
NLG tasks. However, to the best of our knowledge,

there is no clear evidence that syntactic and seman-
tic information can enhance the recently developed
encoder-decoder models in NLG tasks.

To answer this research question, this paper pro-
poses and evaluates a headline generation method
based on an encoder-decoder architecture on Ab-
stract Meaning Representation (AMR). The method
is essentially an extension of attention-based sum-
marization (ABS) (Rush et al., 2015). Our pro-
posed method encodes results obtained from an
AMR parser by using a modified version of Tree-
LSTM encoder (Tai et al., 2015) as additional in-
formation of the baseline ABS model. Conceptu-
ally, the reason for using AMR for headline gen-
eration is that information presented in AMR, such
as predicate-argument structures and named entities,
can be effective clues when producing shorter sum-
maries (headlines) from original longer sentences.
We expect that the quality of headlines will improve
with this reasonable combination (ABS and AMR).

2 Attention-based summarization (ABS)

ABS proposed in Rush et al. (2015) has achieved
state-of-the-art performance on the benchmark data
of headline generation including the DUC-2004
dataset (Over et al., 2007). Figure 1 illustrates the
model structure of ABS. The model predicts a word
sequence (summary) based on the combination of
the neural network language model and an input sen-
tence encoder.

Let V be a vocabulary. xi is the i-th indicator
vector corresponding to the i-th word in the input
sentence. Suppose we have M words of an input
sentence. X represents an input sentence, which

1054

<s> canadian prime … year <s> canada … nato

Fx1 Fx3Fx2 FxM
Eyi�C+1 Eyi

E0yiE0yi�C+1

nnlmenc

yi+1

input sentence headline

Figure 1: Model structure of ‘attention-based sum-
marization (ABS)’.

is represented as a sequence of indicator vectors,
whose length is M . That is, xi ∈ {0, 1}|V |, and
X = (x1, . . . , xM). Similarly, let Y represent a
sequence of indicator vectors Y = (y1, . . . , yL),
whose length is L. Here, we assume L < M . YC,i is
a short notation of the list of vectors, which consists
of the sub-sequence in Y from yi−C+1 to yi. We
assume a one-hot vector for a special start symbol,
such as “⟨S⟩”, when i < 1. Then, ABS outputs a
summary Ŷ given an input sentence X as follows:

Ŷ = arg max
Y

{
log p(Y |X)

}
, (1)

log p(Y |X) ≈
L−1∑

i=0

log p(yi+1|X, YC,i), (2)

p(yi+1|X, YC,i)

∝ exp
(
nnlm(YC,i) + enc(X, YC,i)

)
, (3)

where nnlm(YC,i) is a feed-forward neural network
language model proposed in (Bengio et al., 2003),
and enc(X, YC,i) is an input sentence encoder with
attention mechanism.

This paper uses D and H as denoting sizes (di-
mensions) of vectors for word embedding and hid-
den layer, respectively. Let E ∈ RD×|V | be an
embedding matrix of output words. Moreover, let
U ∈ RH×(CD) and O ∈ R|V |×H be weight matri-
ces of hidden and output layers, respectively1. Using
the above notations, nnlm(YC,i) in Equation 3 can
be written as follows:

nnlm(YC,i) = Oh, h = tanh(Uỹc), (4)
1Following Rush et al. (2015), we omit bias terms through-

out the paper for readability, though each weight matrix also has
a bias term.

where ỹc is a concatenation of output embed-
ding vectors from i − C + 1 to i, that is, ỹc =
(Eyi−C+1 · · ·Eyi). Therefore, ỹc is a (CD) di-
mensional vector.

Next, F ∈ RD×|V | and E′ ∈ RD×|V | denote
embedding matrices of input and output words, re-
spectively. O′ ∈ R|V |×D is a weight matrix for the
output layer. P ∈ RD×(CD) is a weight matrix for
mapping embedding of C output words onto embed-
ding of input words. X̃ is a matrix form of a list
of input embeddings, namely, X̃ =

[
x̃1, . . . , x̃M

]
,

where x̃i = Fxi. Then, enc(X, YC,i) is defined as
the following equations:

enc(X,YC,i) = O′X̄p, (5)

p ∝ exp(X̃TP ỹ′
c), (6)

where ỹ′
c is a concatenation of output embedding

vectors from i − C + 1 to i similar to ỹc, that is,
ỹ′

c = (E′yi−C+1 · · ·E′yi). Moreover, X̄ is a
matrix form of a list of averaged input word em-
beddings within window size Q, namely, X̄ =
[x̄1, . . . , x̄M], where x̄i =

∑i+Q
q=i−Q

1
Q x̃q.

Equation 6 is generally referred to as the atten-
tion model, which is introduced to encode a rela-
tionship between input words and the previous C
output words. For example, if the previous C output
words are assumed to align to xi, then the surround-
ing Q words (xi−Q, . . . , xi+Q) are highly weighted
by Equation 5.

3 Proposed Method

Our assumption here is that syntactic and semantic
features of an input sentence can greatly help for
generating a headline. For example, the meanings
of subjects, predicates, and objects in a generated
headline should correspond to the ones appearing in
an input sentence. Thus, we incorporate syntactic
and semantic features into the framework of head-
line generation. This paper uses an AMR as a case
study of the additional features.

3.1 AMR

An AMR is a rooted, directed, acyclic graph that
encodes the meaning of a sentence. Nodes in an
AMR graph represent ‘concepts’, and directed edges
represent a relationship between nodes. Concepts

1055

“canadian”

name prime

country

announce

…

<s> canada … nato

E0yiE0yi�C+1

tree

op
1

na
me mod

a1

a2 a3

aj

…

…

Rush’s Model

yi+1

AMR of
the input sentence

summary

“canadian”

name prime

country

announce

…

<s> canada … nato

E0yiE0yi�C+1

op
1

na
me mod

a1

a2 a3

aj

…

…

ABS

yi+1

AMR of
the input sentence

headline

encAMR

Figure 2: Model structure of our proposed attention-
based AMR encoder; it outputs a headline using
ABS and encoded AMR with attention.

consist of English words, PropBank event predi-
cates, and special labels such as “person”. For
edges, AMR has approximately 100 relations (Ba-
narescu et al., 2013) including semantic roles based
on the PropBank annotations in OntoNotes (Hovy et
al., 2006). To acquire AMRs for input sentences,
we use the state-of-the-art transition-based AMR
parser (Wang et al., 2015).

3.2 Attention-Based AMR Encoder
Figure 2 shows a brief sketch of the model struc-
ture of our attention-based AMR encoder model. We
utilize a variant of child-sum Tree-LSTM originally
proposed in (Tai et al., 2015) to encode syntactic
and semantic information obtained from output of
the AMR parser into certain fixed-length embedding
vectors. To simplify the computation, we transform
a DAG structure of AMR parser output to a tree
structure, which we refer to as “tree-converted AMR
structure”. This transformation can be performed by
separating multiple head nodes, which often appear
for representing coreferential concepts, to a corre-
sponding number of out-edges to head nodes. Then,
we straightforwardly modify Tree-LSTM to also en-
code edge labels since AMR provides both node and
edge labels, and original Tree-LSTM only encodes
node labels.

Let nj and ej be N and E dimensional em-
beddings for labels assigned to the j-th node, and
the out-edge directed to its parent node2. Win,
Wfn, Won, Wun ∈ RD×N are weight matrices

2We prepare a special edge embedding for a root node.

for node embeddings nj
3. Similarly, Wie, Wfe,

Woe, Wue ∈ RD×E are weight matrices for edge
embeddings ej . Wih, Wfh, Woh, Wuh ∈ RD×D

are weight matrices for output vectors connected
from child nodes. B(j) represents a set of nodes,
which have a direct edge to the j-th node in our tree-
converted AMR structure. Then, we define embed-
ding aj obtained at node j in tree-converted AMR
structure via Tree-LSTM as follows:

h̃j =
∑

k∈B(j)

ak, (7)

ij = σ
(
Winnj + Wieej + Wihh̃j

)
, (8)

fjk = σ
(
Wfnnj + Wfeej + Wfhak

)
, (9)

oj = σ
(
Wonnj + Woeej + Wohh̃j

)
, (10)

uj = tanh
(
Wunnj + Wueej + Wuhh̃j

)
, (11)

cj = ij ⊙ uj

∑

k∈B(j)

fjk ⊙ ck, (12)

aj = oj ⊙ tanh(cj). (13)

Let J represent the number of nodes in tree-
converted AMR structure obtained from a given in-
put sentence. We introduce A ∈ RD×J as a matrix
form of a list of hidden states aj for all j, namely,
A = [a1, . . . , aJ]. Let O′′ ∈ R|V |×D be a weight
matrix for the output layer. Let S ∈ RD×(CD) be
a weight matrix for mapping the context embedding
of C output words onto embeddings obtained from
nodes. Then, we define the attention-based AMR
encoder ‘encAMR(A, YC,i)’ as follows:

encAMR(A, YC,i) = O′′As, (14)

s ∝ exp(ATSỹ′
c). (15)

Finally, we combine our attention-based AMR en-
coder shown in Equation 14 as an additional term of
Equation 3 to build our headline generation system.

4 Experiments

To demonstrate the effectiveness of our proposed
method, we conducted experiments on benchmark
data of the abstractive headline generation task de-
scribed in Rush et al. (2015).

3As with Equation 4, all the bias terms are omitted, though
each weight matrix has one.

1056

DUC-2004 Gigaword test data used Gigaword
in (Rush et al., 2015) Our sampled test data

Method R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
ABS (Rush et al., 2015) 26.55 7.06 22.05 30.88 12.22 27.77 – – –
ABS (re-run) 28.05 7.38 23.15 31.26 12.46 28.25 32.93 13.43 29.80
ABS+AMR ∗28.80 ∗7.83 ∗23.62 31.64 ∗12.94 28.54 ∗33.43 ∗13.93 30.20
ABS+AMR(w/o attn) 28.28 7.21 23.12 30.89 12.40 27.94 31.32 12.83 28.46

Table 1: Results of methods on each dataset. We marked ∗ on the ABS+AMR results if we observed
statistical difference (p < 0.05) between ABS (re-run) and ABS+AMR on the t-test. (R-1: ROUGE-1, R-2:
ROUGE-2, R-L: ROUGE-L)

For a fair comparison, we followed their evalu-
ation setting. The training data was obtained from
the first sentence and the headline of a document
in the annotated Gigaword corpus (Napoles et al.,
2012)4. The development data is DUC-2003 data,
and test data are both DUC-2004 (Over et al., 2007)
and sentence-headline pairs obtained from the an-
notated Gigaword corpus as well as training data5.
All of the generated headlines were evaluated by
ROUGE (Lin, 2004)6. For evaluation on DUC-
2004, we removed strings after 75-characters for
each generated headline as described in the DUC-
2004 evaluation. For evaluation on Gigaword, we
forced the system outputs to be at most 8 words as
in Rush et al. (2015) since the average length of
headline in Gigaword is 8.3 words. For the pre-
processing for all data, all letters were converted to
lower case, all digits were replaced with ‘#’, and
words appearing less than five times with ‘UNK’.
Note that, for further evaluation, we prepared 2,000
sentence-headline pairs randomly sampled from the
test data section of the Gigaword corpus as our ad-
ditional test data.

In our experiments, we refer to the baseline neural
attention-based abstractive summarization method
described in Rush et al. (2015) as “ABS”, and our
proposed method of incorporating AMR structural
information by a neural encoder to the baseline
method described in Section 3 as “ABS+AMR”.
Additionally, we also evaluated the performance of

4Training data can be obtained by using the script distributed
by the authors of Rush et al. (2015).

5Gigaword test data can be obtained from https://
github.com/harvardnlp/sent-summary

6We used the ROUGE-1.5.5 script with option “−n2 −m
−b75 −d”, and computed the average of each ROUGE score.

the AMR encoder without the attention mechanism,
which we refer to as “ABS+AMR(w/o attn)”, to
investigate the contribution of the attention mech-
anism on the AMR encoder. For the parameter es-
timation (training), we used stochastic gradient de-
scent to learn parameters. We tried several val-
ues for the initial learning rate, and selected the
value that achieved the best performance for each
method. We decayed the learning rate by half if the
log-likelihood on the validation set did not improve
for an epoch. Hyper-parameters we selected were
D = 200, H = 400, N = 200, E = 50, C = 5, and
Q = 2. We re-normalized the embedding after each
epoch (Hinton et al., 2012).

For ABS+AMR, we used the two-step training
scheme to accelerate the training speed. The first
phase learns the parameters of the ABS. The second
phase trains the parameters of the AMR encoder by
using 1 million training pairs while the parameters
of the baseline ABS were fixed and unchanged to
prevent overfitting.

Table 1 shows the recall of ROUGE (Lin, 2004)
on each dataset. ABS (re-run) represents the perfor-
mance of ABS re-trained by the distributed scripts7.
We can see that the proposed method, ABS+AMR,
outperforms the baseline ABS on all datasets. In
particular, ABS+AMR achieved statistically signif-
icant gain from ABS (re-run) for ROUGE-1 and
ROUGE-2 on DUC-2004. However in contrast, we
observed that the improvements on Gigaword (the
same test data as Rush et al. (2015)) seem to be lim-
ited compared with the DUC-2004 dataset. We as-
sume that this limited gain is caused largely by the
quality of AMR parsing results. This means that the

7https://github.com/facebook/NAMAS

1057

•  a"
I(1): crown prince abdallah ibn abdel aziz left saturday at the head of
saudi arabia 's delegation to the islamic summit in islamabad , the
official news agency spa reported .
G: saudi crown prince leaves for islamic summit
A: crown prince leaves for islamic summit in saudi arabia
P: saudi crown prince leaves for islamic summit in riyadh

I(2): a massive gothic revival building once christened the lunatic
asylum west of the <unk> was auctioned off for $ #.# million -lrb-
euro# .# million -rrb- .
G: massive ##th century us mental hospital fetches $ #.# million at
auction
A: west african art sells for $ #.# million in
P: west african art auctioned off for $ #.# million

I(3): brooklyn , the new bastion of cool for many new yorkers , is
poised to go mainstream chic .
G: high-end retailers are scouting sites in brooklyn
A: new yorkers are poised to go mainstream with chic
P: new york city is poised to go mainstream chic

Figure 3: Examples of generated headlines on Giga-
word. I: input, G: true headline, A: ABS (re-run),
and P: ABS+AMR.

Gigaword test data provided by Rush et al. (2015)
is already pre-processed. Therefore, the quality of
the AMR parsing results seems relatively worse on
this pre-processed data since, for example, many
low-occurrence words in the data were already re-
placed with “UNK”. To provide evidence of this as-
sumption, we also evaluated the performance on our
randomly selected 2,000 sentence-headline test data
also taken from the test data section of the annotated
Gigaword corpus. “Gigaword (randomly sampled)”
in Table 1 shows the results of this setting. We found
the statistical difference between ABS(re-run) and
ABS+AMR on ROUGE-1 and ROUGE-2.

We can also observe that ABS+AMR achieved the
best ROUGE-1 scores on all of the test data. Ac-
cording to this fact, ABS+AMR tends to success-
fully yield semantically important words. In other
words, embeddings encoded through the AMR en-
coder are useful for capturing important concepts
in input sentences. Figure 3 supports this observa-
tion. For example, ABS+AMR successfully added
the correct modifier ‘saudi’ to “crown prince” in the
first example. Moreover, ABS+AMR generated a
consistent subject in the third example.

The comparison between ABS+AMR(w/o attn)
and ABS+AMR (with attention) suggests that the
attention mechanism is necessary for AMR encod-
ing. In other words, the encoder without the atten-
tion mechanism tends to be overfitting.

5 Related Work

Recently, the Recurrent Neural Network (RNN) and
its variant have been applied successfully to various
NLP tasks. For headline generation tasks, Chopra
et al. (2016) exploited the RNN decoder (and its
variant) with the attention mechanism instead of the
method of Rush et al. (2015): the combination of the
feed-forward neural network language model and
attention-based sentence encoder. Nallapati et al.
(2016) also adapted the RNN encoder-decoder with
attention for headline generation tasks. Moreover,
they made some efforts such as hierarchical atten-
tion to improve the performance. In addition to us-
ing a variant of RNN, Gulcehre et al. (2016) pro-
posed a method to handle infrequent words in nat-
ural language generation. Note that these recent
developments do not conflict with our method us-
ing the AMR encoder. This is because the AMR
encoder can be straightforwardly incorporated into
their methods as we have done in this paper, incor-
porating the AMR encoder into the baseline. We be-
lieve that our AMR encoder can possibly further im-
prove the performance of their methods. We will test
that hypothesis in future study.

6 Conclusion

This paper mainly discussed the usefulness of in-
corporating structural syntactic and semantic infor-
mation into novel attention-based encoder-decoder
models on headline generation tasks. We selected
abstract meaning representation (AMR) as syntac-
tic and semantic information, and proposed an
attention-based AMR encoder-decoder model. The
experimental results of headline generation bench-
mark data showed that our attention-based AMR
encoder-decoder model successfully improved stan-
dard automatic evaluation measures of headline gen-
eration tasks, ROUGE-1, ROUGE-2, and ROUGE-
L. We believe that our results provide empirical ev-
idence that syntactic and semantic information ob-
tained from an automatic parser can help to improve
the neural encoder-decoder approach in NLG tasks.

Acknowledgments

We thank the anonymous reviewers for their insight-
ful comments and suggestions.

1058

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for Sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A Neural Probabilistic Lan-
guage Model. The Journal of Machine Learning Re-
search, 3:1137–1155.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning Phrase Repre-
sentations using RNN Encoder–Decoder for Statistical
Machine Translation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP 2014), pages 1724–1734.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive Sentence Summarization with At-
tentive Recurrent Neural Networks. In Proceedings
of the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT 2016),
pages 93–98.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing the
Unknown Words. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguis-
tics (ACL 2016), pages 140–149.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2012. Im-
proving Neural Networks by Preventing Co-adaptation
of Feature Detectors. CoRR, abs/1207.0580.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
The 90% Solution. In Proceedings of the Human Lan-
guage Technology Conference of the North American
Chapter of the Association for Computational Linguis-
tics (HLT-NAACL 2006), pages 57–60.

Chin-Yew Lin. 2004. ROUGE: A Package for Auto-
matic Evaluation of Summaries. In Text Summariza-
tion Branches Out: Proceedings of the Association for
Computational Linguistics Workshop, pages 74–81.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Caglar Gulcehre, and Bing Xiang. 2016. Abstrac-
tive Text Summarization using Sequence-to-sequence
RNNs and Beyond. In Proceedings of the 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning (CoNLL 2016), pages 280–290.

Courtney Napoles, Matthew Gormley, and Benjamin
Van Durme. 2012. Annotated Gigaword. In Proceed-

ings of the Joint Workshop on Automatic Knowledge
Base Construction and Web-scale Knowledge Extrac-
tion (AKBC-WEKEX), pages 95–100.

Paul Over, Hoa Dang, and Donna Harman. 2007. DUC
in Context. Information Processing and Management,
43(6):1506–1520.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A Neural Attention Model for Abstractive Sen-
tence Summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2015), pages 379–389.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved Semantic Representations
From Tree-Structured Long Short-Term Memory Net-
works. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Lan-
guage Processing (ACL-IJCNLP 2015), pages 1556–
1566.

Subhashini Venugopalan, Huijuan Xu, Jeff Donahue,
Marcus Rohrbach, Raymond Mooney, and Kate
Saenko. 2015. Translating Videos to Natural Lan-
guage Using Deep Recurrent Neural Networks. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT 2015), pages 1494–1504.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. 2015. Show and Tell: A Neural Image
Caption Generator. In Proceedings of the Computer
Vision and Pattern Recognition (CVPR 2015), pages
3156–3164.

Chuan Wang, Nianwen Xue, and Sameer Pradhan. 2015.
A Transition-based Algorithm for AMR Parsing. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT 2015), pages 366–375.

1059

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1060–1065,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Robust Gram Embeddings

Taygun Kekeç and D.M.J. Tax
Pattern Recognition and Bioinformatics Laboratory

Delft University of Technology
Delft, 2628CD, The Netherlands

taygunkekec@gmail.com,D.M.J.Tax@tudelft.nl

Abstract

Word embedding models learn vectorial word
representations that can be used in a variety
of NLP applications. When training data is
scarce, these models risk losing their gener-
alization abilities due to the complexity of
the models and the overfitting to finite data.
We propose a regularized embedding formu-
lation, called Robust Gram (RG), which pe-
nalizes overfitting by suppressing the dispar-
ity between target and context embeddings.
Our experimental analysis shows that the RG
model trained on small datasets generalizes
better compared to alternatives, is more robust
to variations in the training set, and correlates
well to human similarities in a set of word sim-
ilarity tasks.

1 Introduction

Word embeddings represent each word as a unique
vector in a linear vector space, encoding particular
semantic and syntactic structure of the natural lan-
guage (Arora et al., 2016). In various lingual tasks,
these sequence prediction models shown superior re-
sults over the traditional count-based models (Ba-
roni et al., 2014). Tasks such as sentiment analysis
(Maas et al., 2011) and sarcasm detection (Ghosh et
al., 2015) enjoys the merits of these features.

These word embeddings optimize features and
predictors simultaneously, which can be interpreted
as a factorization of the word cooccurence matrix
C. In most realistic scenarios these models have to
be learned from a small training set. Furthermore,
word distributions are often skewed, and optimiz-
ing the reconstruction of Ĉ puts too much empha-

sis on the high frequency pairs (Levy and Goldberg,
2014). On the other hand, by having an unlucky and
scarce data sample, the estimated Ĉ rapidly deviates
from the underlying true cooccurence, in particu-
lar for low-frequency pairs (Lemaire and Denhire,
2008). Finally, noise (caused by stemming, removal
of high frequency pairs, typographical errors, etc.)
can increase the estimation error heavily (Arora et
al., 2015).

It is challenging to derive a computationally
tractable algorithm that solves all these problems.
Spectral factorization approaches usually employ
Laplace smoothing or a type of SVD weighting to
alleviate the effect of the noise (Turney and Pantel,
2010). Alternatively, iteratively optimized embed-
dings such as Skip Gram (SG) model (Mikolov et
al., 2013b) developed various mechanisms such as
undersampling of highly frequent hub words apriori,
and throwing rare words out of the training.

Here we propose a fast, effective and general-
izable embedding approach, called Robust Gram,
that penalizes complexity arising from the factorized
embedding spaces. This design alleviates the need
from tuning the aforementioned pseudo-priors and
the preprocessing procedures. Experimental results
show that our regularized model 1) generalizes bet-
ter given a small set of samples while other methods
yield insufficient generalization 2) is more robust to
arbitrary perturbations in the sample set and alterna-
tions in the preprocessing specifications 3) achieves
much better performance on word similarity task,
especially when similarity pairs contains unique and
hardly observed words in the vocabulary.

1060

2 Robust Gram Embeddings

Let |y| = V the vocabulary size and N be the total
number of training samples. Denote x, y to be V ×1
discrete word indicators for the context and target:
corresponding to the context and word indicators
c, w in word embedding literature. Define Ψd×V
and Φd×V as word and context embedding matri-
ces. The projection on the matrix column space, Φx,
gives us the embedding ~x ∈ Rd. We use Φx and Φx

interchangeably. Using a very general formulation
for the regularized optimization of a (embedding)
model, the following objective is minimized:

J =
N∑

i

L(Ψ,Φ, xi, yi) + g(Ψ,Φ) (1)

where L(Ψ,Φ, xi, yi) is the loss incurred by embed-
ding example target yi using context xi and embed-
ding parameters Ψ, Φ, and where g(Ψ,Φ) is a reg-
ularization of the embedding parameters. Different
embedding methods differ in the form of specified
loss function and regularization. For instance, the
Skip Gram likelihood aims to maximize the follow-
ing conditional:

L(Ψ,Φ, x, y) = − log p(y|x,Φ,Ψ)

= − log
exp(ΨT

y Φx)∑
y′ exp(ΨT

y′Φx)
(2)

This can be interpreted as a generalization of
Multinomial Logistic Regression (MLR). Rewriting
(Ψy)T (Φx) = (yTΨTΦx) = yTWx = Wyx shows
that the combination of Φ and Ψ become the weights
in the MLR. In the regression the input x is trans-
formed to directly predict y. The Skip Gram model,
however, transforms both the context x and the tar-
get y, and can therefore be seen as a generalization
of the MLR.

It is also possible to penalize the quadratic loss
between embeddings (Globerson et al., 2007):

L(.) = − log
exp(−||Ψy − Φx||2)∑
y′ exp(−||Ψy′ − Φx||2)

(3)

Since these formulations predefine a particular
embedding dimensionality d, they impose a low
rank constraint on the factorization W = ΨTΦ.
This means that g(Ψ,Φ) contains λrank(ΦTΨ)

with a sufficiently large λ. The optimization with
an explicit rank constraint is NP hard. Instead,
approximate rank constraints are utilized with a
Trace Norm (Fazel et al., 2001) or Max Norm (Sre-
bro and Shraibman, 2005). However, adding such
constraints usually requires semidefinite programs
which quickly becomes computationally prohibitive
even with a moderate vocabulary size.

Do these formulations penalize the complexity?
Embeddings under quadratic loss are already reg-
ularized and avoids trivial solutions thanks to the
second term. They also incorporate a bit weighted
data-dependent `2 norm. Nevertheless, choosing a
log-sigmoid loss for Equation 1 brings us to the Skip
Gram model and in that case, `p regularization is not
stated. Without such regularization, unbounded op-
timization of 2V d parameters has potential to con-
verge to solutions that does not generalize well.

To avoid this overfitting, in our formulation we
choose g1 as follows:

g1 =

V∑

v

λ1
(
||Ψv||22 + ||Φv||22

)
(4)

where Ψv is the row vector of words.
Moreover, an appropriate regularization can also

penalize the deviance between low rank matrices Ψ
and Φ. Although there are words in the language
that may have different context and target represen-
tations, such as the 1, it is natural to expect that a
large proportion of the words have a shared repre-
sentation in their context and target mappings. To
this end, we introduce the following regularization:

g2 = λ2||Ψ− Φ||2F (5)

where F is the Frobenius matrix norm. This as-
sumption reduces learning complexity significantly
while a good representation is still retained, opti-
mization under this constraint for large vocabular-
ies is going to be much easier because we limit the
degrees of freedom.

The Robust Gram objective therefore becomes:

LL+λ1

V∑

v

(
||Ψv||22 + ||Φv||22

)
+λ2||Ψ−Φ||2F

(6)
1Consider prediction of Suleiman from the, and the from oa-

sis. We expect the to have different vectorial representations.

1061

where LL =
∑N

i L(p(yi|xi,Ψ,Φ)) is the data log-
likelihood, p(yi|xi,Ψ,Φ) is the loglinear prediction
model, and L the cross entropy loss. Since we are in
the pursuit of preserving/restoring low masses in Ĉ,
norms such as `2 allow each element to still possess
a small probability mass and encourage smoothness
in the factorized ΨTΦ matrix. As L is picked as
the cross entropy, Robust Gram can be interpreted
as a more principled and robust counterpart of Skip
Gram objective.

One may ask what particular factorization Equa-
tion 6 induces. The objective searches for Ψ,Φ ma-
trices that have similar eigenvectors in the vector
space. A spectral PCA embedding obtains an asym-
metric decomposition W = UΣV T with Ψ = U
and Φ = ΣV , albeit a convincing reason for embed-
ding matrices to be orthonormal lacks. In the Skip
Gram model, this decomposition is more symmet-
ric since neither Ψ nor Φ are orthonormal and di-
agonal weights are distributed across the factorized
embeddings. A symmetric factorization would be:
Ψ = UΣ0.5,Φ = Σ0.5V T as in (Levy and Goldberg,
2014). The objective in Eq. 6 converges to a more
symmetric decomposition since ||Ψ − Φ|| is penal-
ized. Still some eigenvectors across context and tar-
get maps are allowed to differ if they pay the cost.
In this sense our work is related to power SVD ap-
proaches (Caron, 2000) in which one searches an a
to minimize ||W − UΣaΣ1−aV T ||. In our formula-
tion, if we enforce a solution by applying a strong
constraint on ||Ψ − Φ||2F , then our objective will
gradually converge to a symmetric powered decom-
position such that U ≈ V .

3 Experiments

The experiments are performed on a subset of the
Wikipedia corpus containing approximately 15M
words. For a systematic comparison, we use the
same symmetric window size adopted in (Penning-
ton et al., 2014), 10. Stochastic gradient learning
rate is set to 0.05. Embedding dimensionality is
set to 100 for model selection and sensitivity anal-
ysis. Unless otherwise is stated, we discard the most
frequent 20 hub words to yield a final vocabulary
of 26k words. To understand the relative merit of

0 2 4 6 8 10

λ2

0

2

4

6

8

10

λ
1

LL

Figure 1: The LL objective for varying λ1, λ2.

our approach 2 , Skip Gram model is picked as the
baseline. To retain the learning speed, and avoid
inctractability of maximum likelihood learning, we
learn our embeddings with Noise Contrastive Es-
timation using a negative sample (Gutmann and
Hyvärinen, 2012).

3.1 Model Selection
For model selection, we are going to illustrate the
log likelihood of different model instances. How-
ever, exact computation of the LL is computation-
ally difficult since a full pass over the validation
likelihood is time-consuming with millions of sam-
ples. Hence, we compute a stochastic likelihood
with a few approximation steps. We first subsam-
ple a million samples rather than a full evaluation
set, and then sample few words to predict in the
window context similar to the approach followed in
(Levy and Goldberg, 2014). Lastly, we approximate
the normalization factor with one negative sample
for each prediction score (Mnih and Kavukcuoglu,
2013)(Gutmann and Hyvärinen, 2012). Such an
approximation works fine and gives smooth error
curves. The reported likelihoods are computed by
averaging over 5-fold cross validation sets.

Results. Figure 1 shows the likelihood LL ob-
tained by varying {λ1, λ2}. The plot shows that
there exits a unique minimum and both constraints
contribute to achieve a better likelihood compared
to their unregularized counterparts (for which λ1 =
λ2 = 0). In particular, the regularization imposed by
the differential of context and target embeddings g2
contributes more than the regularization on the em-

2Our implementation can be downloaded from
github.com/taygunk/robust gram embeddings

1062

beddings Ψ and Φ separately. This is to be expected
as g2 also incorporates an amount of norm bound
on the vectors. The region where both constraints
are employed gives the best results. Observe that
we can simply enhance the effect of g2 by adding
a small amount of bounded norm g1 constraint in a
stable manner. Doing this with pure g2 is risky be-
cause it is much more sensitive to the selection of
λ2. These results suggest that the convex combina-
tion of stable nature of g1 with potent regularizer of
g2, finally yields comparably better regularization.

3.2 Sensitivity Analysis
In order to test the sensitivity of our model and base-
line Skip Gram to variations in the training set, we
perform two sensitivity analyses. First, we simu-
late a missing data effect by randomly dropping out
γ ∈ [0, 20] percent of the training set. Under such
a setting, robust models are expected to be effected
less from the inherent variation. As an addition,
we inspect the effect of varying the minimum cut-
off parameter to measure the sensitivity. In this ex-
periment, from a classification problem perspective,
each instance is a sub-task with different number
of classes (words) to predict. Instances with small
cut-off introduces classification tasks with very few
training samples. This cut-off choice varies in differ-
ent studies (Pennington et al., 2014; Mikolov et al.,
2013b), and it is usually chosen based on heuristic
and storage considerations.

0 5 10 15 20

γ

0.2

0.3

0.4

0.5

0.6

L
L

RG
SG

Figure 2: Training dropouts effect on LL.

Results. Figure 2 illustrates the likelihood of the
Robust and Skip Gram model by varying the dropout
ratio on the training set. As the training set shrinks,
both models get lower LL. Nevertheless, likelihood
decay of Skip Gram is relatively faster. When 20%

10 15 20 25 30 35 40 45 50

cut-off

0.20

0.25

0.30

0.35

0.40

0.45

0.50

L
L

RG
SG

Figure 3: LL w.r.t the cut-off parameter.

drop is applied, the LL drops to 74% in the SG
model. On the other hand the RG model not only
starts with a much higher LL, the drop is also to
75.5%, suggesting that RG objective is more resis-
tant to random variations in the training data.

Figure 3 shows the results of varying the rare-
words cut-off threshold. We observe that the like-
lihood obtained by the Skip Gram is consistently
lower than that of the Robust Gram. The graph
shows that throwing out these rare words helps the
objective of SG slightly. But for the Robust Gram re-
moving the rare words actually means a significant
decrease in useful information, and the performance
starts to degrade towards the SG performance. RG
avoids the overfitting occurring in SG, but still ex-
tracts useful information to improve the generaliza-
tion.

3.3 Word Similarity Performance

The work of (Schnabel et al., 2015) demonstrates
that intrinsic tasks are a better proxy for measuring
the generic quality than extrinsic evaluations. Mo-
tivated by this observation, we follow the experi-
mental setup of (Schnabel et al., 2015; Agirre et
al., 2009), and compare word correlation estimates
of each model to human estimated similarities with
Spearman’s correlation coefficient. The evaluation
is performed on several publicly available word sim-
ilarity datasets having different sizes. For datasets
having multiple subjects annotating the word simi-
larity, we compute the average similarity score from
all subjects.

We compare our approach to set of techniques on
the horizon of spectral to window based approaches.
A fully spectral approach, HPCA, (Lebret and Le-

1063

bret, 2013) extracts word embeddings by running a
Hellinger PCA on the cooccurrence matrix. For this
method, context vocabulary upper and lower bound
parameters are set to {1, 10−5}, as promoted by its
author. GLoVe (Pennington et al., 2014) approach
formulates a weighted least squares problem to com-
bine global statistics of cooccurence and efficiency
of window-based approaches. Its objective can be
interpreted as an alternative to the cross-entropy loss
of Robust Gram. The xmax, α values of the GLoVe
objective is by default set to 100, 3/4. Finally, we
also compare to shallow representation learning net-
works such as Skip Gram and Continuous Bag of
Words (CBoW) (Mikolov et al., 2013a), competitive
state of the art window based baselines.

We set equal window size for all these models,
and iterate three epochs over the training set. To
yield more generality, all results obtained with 300
dimensional embeddings and subsampling parame-
ters are set to 0. For Robust Gram approach, we have
set λ1, λ2 = {0.3, 0.3}. To obtain the similarity re-
sults, we use the final Φ context embeddings.

Results. Table 1 depicts the results. The first ob-
servation is that in this setting, obtaining word sim-
ilarity using HPCA and GLoVe methods are subop-
timal. Frankly, we can conjecture that this scarce
data regime is not in the favor of the spectral meth-
ods such as HPCA. Its poor performance can be at-
tributed to its pure geometric reconstruction formu-
lation, which runs into difficulties by the amount of
inherent noise. Compared to these, CBoW’s perfor-
mance is moderate except in the RW dataset where
it performs the worst. Secondly, the performance
of the SG is relatively better compared to these ap-
proaches. Surprisingly, under this small data setting,
RG outperforms all of its competitors in all datasets
except for RG65, a tiny dataset of 63 words con-
taining very common words. It is admissible that
RG sacrifices a bit in order to generalize to a large
variety of words. Note that it especially wins by
a margin in MEN and Rare Words (RW) datasets,
having the largest number of similarity query sam-
ples. As the number of query samples increases,
RG embeddings’ similarity modeling accuracy be-
comes clearly perceptible. The promising result Ro-
bust Gram achieves in RW dataset also sheds light
on why CBoW performed worst on RW: CBOW
overfits rapidly confirming the recent studies on the

RG65 WS WSS WSR MEN RW
Size 63 353 203 252 3000 2034
CBoW 48.5 59.7 71.8 61.3 56.5 26.4
GloVe 48.9 56.2 61.5 59.1 53.0 30.0
SG 59.2 71.7 74.6 66.5 64.7 33.5
HPCA 32.1 48.6 52.9 51.5 49.9 30.7
RG 59.0 71.7 74.8 66.7 65.8 34.0

Table 1: Spearman’s ρ coefficient. Higher is better.

stability of CBoW (Luo et al., 2014). Finally, these
word similarity results suggest that RG embeddings
can yield much more generality under data scarcity.

4 Conclusion

This paper presents a regularized word embedding
approach, called Robust Gram. In this approach, the
model complexity is penalized by suppressing de-
viations between the embedding spaces of the tar-
get and context words. Various experimental results
show that RG maintains a robust behaviour under
small sample size situations, sample perturbations
and it reaches a higher word similarity performance
compared to its competitors. The gain from Robust
Gram increases notably as diverse test sets are used
to measure the word similarity performance.

In future work, by taking advantage of the promis-
ing results of Robust Gram, we intend to explore the
model’s behaviour in various settings. In particu-
lar, we plan to model various corpora, i.e. predictive
modeling of sequentially arriving network packages.
Another future direction might be encoding avail-
able domain knowledge by additional regularization
terms, for instance, knowledge on synonyms can be
used to reduce the degrees of freedom of the opti-
mization. We also plan to enhance the underlying
optimization by designing Elastic constraints (Zou
and Hastie, 2005) specialized for word embeddings.

Acknowledgments

The authors acknowledge funding by the Dutch
Organization for Scientific Research (NWO; grant
612.001.301). We also would like to thank Hamdi
Dibeklioglu and Mustafa Unel for their kind support
during this work.

1064

References

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
Kravalova, Marius Paşca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distributional
and wordnet-based approaches. In Proceedings of Hu-
man Language Technologies: The 2009 Annual Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics, NAACL ’09,
pages 19–27.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,
and Andrej Risteski. 2015. Random walks on context
spaces: Towards an explanation of the mysteries of se-
mantic word embeddings. CoRR, abs/1502.03520.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,
and Andrej Risteski. 2016. Linear algebraic structure
of word senses, with applications to polysemy. CoRR,
abs/1601.03764.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski.
2014. Don’t count, predict! A systematic compari-
son of context-counting vs. context-predicting seman-
tic vectors. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics,
pages 238–247, June.

John Caron. 2000. Experiments with lsa scoring: Opti-
mal rank and basis. In Proc. of SIAM Computational
Information Retrieval Workshop.

Maryam Fazel, Haitham Hindi, and Stephen P. Boyd.
2001. A rank minimization heuristic with application
to minimum order system approximation. In In Pro-
ceedings of the 2001 American Control Conference,
pages 4734–4739.

Debanjan Ghosh, Weiwei Guo, and Smaranda Muresan.
2015. Sarcastic or not: Word embeddings to predict
the literal or sarcastic meaning of words. In EMNLP,
pages 1003–1012. The Association for Computational
Linguistics.

Amir Globerson, Gal Chechik, Fernando Pereira, and
Naftali Tishby. 2007. Euclidean embedding of co-
occurrence data. J. Mach. Learn. Res., 8:2265–2295.

Michael U. Gutmann and Aapo Hyvärinen. 2012.
Noise-contrastive estimation of unnormalized statisti-
cal models, with applications to natural image statis-
tics. J. Mach. Learn. Res., 13(1):307–361, February.

Rémi Lebret and Ronan Lebret. 2013. Word emdeddings
through hellinger PCA. CoRR, abs/1312.5542.

Benot Lemaire and Guy Denhire. 2008. Effects of high-
order co-occurrences on word semantic similarities.
CoRR, abs/0804.0143.

Omer Levy and Yoav Goldberg. 2014. Neural word em-
bedding as implicit matrix factorization. In Advances
in Neural Information Processing Systems 27, pages
2177–2185.

Qun Luo, Weiran Xu, and Jun Guo. 2014. A study on
the cbow model’s overfitting and stability. In Proceed-
ings of the 5th International Workshop on Web-scale
Knowledge Representation Retrieval & Reason-
ing, Web-KR ’14, pages 9–12. ACM.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan
Huang, Andrew Y. Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies - Volume 1, HLT ’11, pages 142–150.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed represen-
tations of words and phrases and their compositional-
ity. CoRR, abs/1310.4546.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive es-
timation. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 26,
pages 2265–2273.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.

Tobias Schnabel, Igor Labutov, David M. Mimno, and
Thorsten Joachims. 2015. Evaluation methods for un-
supervised word embeddings. In EMNLP, pages 298–
307.

Nathan Srebro and Adi Shraibman. 2005. Rank, trace-
norm and max-norm. In COLT, volume 3559 of
Lecture Notes in Computer Science, pages 545–560.
Springer.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of semantics.
J. Artif. Int. Res., 37(1):141–188, January.

Hui Zou and Trevor Hastie. 2005. Regularization and
variable selection via the elastic net. Journal of the
Royal Statistical Society, Series B, 67:301–320.

1065

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1066–1071,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

SimpleScience: Lexical Simplification of Scientific Terminology

Yea-Seul Kim and Jessica Hullman
University Washington

Information School
yeaseul1, jhullman@uw.edu

Matthew Burgess
University of Michigan

Computer Science Department
mattburg@umich.edu

Eytan Adar
University of Michigan
School of Information

eadar@umich.edu

Abstract

Lexical simplification of scientific terms rep-
resents a unique challenge due to the lack of a
standard parallel corpora and fast rate at which
vocabulary shift along with research. We in-
troduce SimpleScience, a lexical simplifica-
tion approach for scientific terminology. We
use word embeddings to extract simplification
rules from a parallel corpora containing sci-
entific publications and Wikipedia. To eval-
uate our system we construct SimpleSciGold,
a novel gold standard set for science-related
simplifications. We find that our approach out-
performs prior context-aware approaches at
generating simplifications for scientific terms.

1 Introduction

Lexical simplification, the process of reducing the
complexity of words by replacing them with sim-
pler substitutes (e.g., sodium in place of Na; insects
in place of lepidopterans) can make scientific texts
more accessible to general audiences. Human-in-
the-loop interfaces present multiple possible simpli-
fications to a reader (on demand) in place of jargon
and give the reader familiar access points to under-
standing jargon (Kim et al., 2015). Unfortunately,
simplification techniques are not yet of high enough
quality for fully automated scenarios.

Currently lexical simplification pipelines for sci-
entific texts are rare. The vast majority of prior
methods assume a domain independent context, and
rely on Wikipedia and Simple English Wikipedia, a
subset of Wikipedia using simplified grammar and
terminology, to learn simplifications (Biran et al.,

2011; Paetzold and Specia, 2015), with translation-
based approaches using an aligned version (Coster
and Kauchak, 2011; Horn et al., 2014; Yatskar
et al., 2010). However, learning simplifications
from Wikipedia is not well suited to lexical sim-
plification of scientific terms. Though generic or
established terms may appear in Wikipedia, novel
terms associated with new advances may not be re-
flected. Wikipedia’s editing rules also favor gener-
ality over specificity and eliminate redundancy, both
of which are problematic in providing a rich train-
ing set that matches simple and complex terms. Fur-
ther, some approaches work by detecting all pairs of
words in a corpus and filtering to isolate synonym or
hypernym-relationship pairs using WordNet (Biran
et al., 2011). Like Wikipedia, WordNet is a general
purpose semantic database (Miller, 1995), and does
not cover all branches of science nor integrate new
terminology quickly.

Word embeddings do not require the use of pre-
built ontologies to identify associated terms like
simplifications. Recent work indicates that they may
improve results for simplification selection: deter-
mining which simplifications for a given complex
word can be used without altering the meaning of
the text (Paetzold and Specia, 2015). Embeddings
have also been explored to extract hypernym rela-
tions from general corpora (Rei and Briscoe, 2014).
However, word embeddings have not been used for
generating lexical simplifications. We provide a
novel demonstration of how using embeddings on
a scientific corpus is better suited to learning scien-
tific term simplifications than prior approaches that
use WordNet as a filter and Wikipedia as a corpus.

1066

INPUT: Finally we show that the transient immune activation
that renders mosquitoes resistant to the human malaria parasite
has little to no effect on mosquito fitness as a measure of sur-
vival or fecundity under laboratory conditions.
CANDIDATE RULES:
{fecundity→fertility} {fecundity→productivity}
OUTPUT:
Finally we show that the transient immune activation that ren-
ders mosquitoes resistant to the human malaria parasite has lit-
tle to no effect on mosquito fitness as a measure of survival or
(fertility; productivity) under laboratory conditions.

Table 1: Input sentence, candidate rules and output sentence.

(Further examples provided as supplementary material.)

We introduce SimpleScience, a novel lexical sim-
plification pipeline for scientific terms, which we
apply to a scientific corpus of nearly 500k publi-
cations in Public Library of Science (PLOS) and
PubMed Central (PMC) paired with a general cor-
pus from Wikipedia. We validate our approach us-
ing SimpleSciGold, a gold standard set that we cre-
ate using crowdsourcing that contains 293 sentences
containing scientific terms with an average of 21
simplifications per term. We show how the Sim-
pleScience pipeline achieves better performance (F-
measure: 0.285) than the prior approach to simplifi-
cation generation applied to our corpus (F-measure:
0.136). We further find that the simplification se-
lection techniques used in prior work to determine
which simplifications are a good fit for a sentence
do not improve performance when our generation
pipeline is used. 1

2 Parallel corpora: Scientific and General

We assembled a scientific corpus of papers from the
entire catalog of PLOS articles and the National Li-
brary of Medicine’s Pubmed Central (PMC) archive
(359,324 fulltext articles). The PLOS corpus of
125,378 articles includes articles from PLOS One
and each speciality PLOS journal (e.g., Pathogens,
Computational Biology). Our general corpus in-
cludes all 4,776,093 articles from the Feb. 2015 En-
glish Wikipedia snapshot. We chose Wikipedia as
it covers many scientific concepts and usually con-
tains descriptions of those concepts using simpler
language than the research literature. We obtained
all datasets from DeepDive (Ré and Zhang, 2015).

1Data and source code are available at:
https://github.com/yeaseulkim/SimpleScience

3 SimpleScience Design

3.1 Generating Simplifications

Our goal is to learn simplification rules in the form
complex word→simple word. One approach identi-
fies all pairwise permutations of ‘content’ terms and
then applies semantic (i.e., WordNet) and simplic-
ity filters to eliminate pairs that are not simplifica-
tions(Biran et al., 2011). We adopt a similar pipeline
but leverage distance metrics on word embeddings
and a simpler frequency filter in place of WordNet.
Embeddings identify words that share context in an
unsupervised, scalable way and are more efficient
than constructing co-occurrence matrices (Biran et
al., 2011). As our experiments demonstrate, our ap-
proach improves performance on a scientific test set
over prior work.

3.1.1 Step 1: Generating Word Embeddings
We used the Word2Vec system (Mikolov et al.,

2013) to learn word vectors for each content word in
the union of vocabulary of the scientific and general
corpus. While other approaches exist (Pennington
et al., 2014; Levy and Goldberg, 2014), Word2Vec
has been shown to produce both fast and accurate
results (Mikolov et al., 2013). We set the embed-
ding dimension to 300, the context-window to 10,
and use the skip-gram architecture with negative-
sampling,which is known to produce quality results
for rare entities (Mikolov et al., 2013).

3.1.2 Step 2: Filtering Pairs
Given the set of all pairwise permutations of

words, we retain a simplification rule of two words
w1, w2 if the cosine similarity cos(w1, w2) between
the word vectors is greater than a threshold a. We
use grid search, described below, to parameterize a.

We then apply additional filtering rules. To avoid
rules comprised of words with the same stem (e.g.,
permutable, permutation) we stem all words (us-
ing the Porter stemmer in the Python NLTK li-
brary (Bird et al., 2009)). The POS of each word
is determined by Morphadorner (Burns, 2013) and
pairs that differ in POS are omitted (e.g., permu-
tation (noun), change(d) (verb)); Finally, we omit
rules where one word is a prefix of the other and the
suffix is one of s, es, ed, ly, er, or ing.

To retain only rules of the form complex word→

1067

simple word we calculate the corpus complexity, C
(Biran et al., 2011) of each word w as the ratio be-
tween the frequency (f) in the scientific versus gen-
eral corpus: Cw = fw,scientific/fw,general. The lex-
ical complexity, L, of a word is calculated as the
word’s character length, and the final complexity of
the word as Cw×Lw. We require that the final com-
plexity score of the first word in the rule be greater
than the second.

While this simplicity filter has been shown to
work well in general corpora (Biran et al., 2011), it
is sensitive to very small differences in the frequen-
cies with which both words appear in the corpora.
This is problematic given the distribution of terms in
our corpora, where many rarer scientific terms may
appear in small numbers in both corpora.

We introduce an additional constraint that re-
quires that the second (simple) word in the rule oc-
cur in the general corpus at least k times. This helps
ensure that we do not label words that are at a simi-
lar complexity level as simplifications. We note that
this filter aligns with prior work that suggests that
features of the hypernym in hypernym-hyponym re-
lations influence performance more than features of
the hyponym (Rei and Briscoe, 2014).

Parameterization: We use a grid search anal-
ysis to identify which measures of the set in-
cluding cos(w1, w2), fw1,scientific, fw2,scientific,
fw1,general, and fw2,general most impact the F-
measure when we evaluate our generation approach
against our scientific gold standard set (Sec. 4), and
to set the specific parameter values. Using this
method we identify a=0.4 for cosine similarity and
k=3,000 for the frequency of the simple term in the
general corpus. Full results are available in supple-
mentary material.

3.2 Applying Simplifications
In prior context-aware simplification systems, the
decision of whether to apply a simplification rule
in an input sentence is complex, involving several
similarity operations on word co-occurrence matri-
ces (Biran et al., 2011) or using embeddings to
incorporate co-occurrence context for pairs gener-
ated using other means (Paetzold and Specia, 2015).
However, the SimpleScience pipline already consid-
ers the context of appearance for each word in de-
riving simplifications via word embeddings learned

from a large corpus. We see no additional improve-
ments in F-measure when we apply two variants of
context similarity thresholds to decide whether to
apply a rule to an input sentence. The first is the
cosine similarity between the distributed represen-
tation of the simple word and the sum of the dis-
tributed representations of all words within a win-
dow l surrounding the complex word in the input
sentence (Paetzold and Specia, 2015). The second is
the cosine similarity of a minimum shared frequency
co-occurrence matrix for the words in the pair and
the co-occurrence matrix for the input sentence (Bi-
ran et al., 2011).

In fully automated applications, the top rule from
the ranked candidate rules is used. We find that rank-
ing by the cosine similarity between the word em-
beddings for the complex and simple word in the
rule leads to the best performance at the top slot (full
results in supplementary material).

4 Evaluation

4.1 SimpleSciGold Test Set

To evaluate our pipeline, we develop Sim-
pleSciGold, a scientific gold standard set of sen-
tences containing complex scientific terms which is
modeled after the general purpose gold standard set
created by Horn et al. (2014).

To create SimpleSciGold, we start with scientific
terms from two sources: we utilized all 304 com-
plex terms from unigram rules by (Vydiswaran et
al., 2014), and added another 34,987 child terms
from rules found by mining direct parent-child rela-
tions for unigrams in the Medical Subject Headings
(MeSH) ontology (United States National Library of
Medicine, 2015). We chose complex terms with pre-
existing simplifications as it provided a means by
which we could informally check the crowd gener-
ated simplifications for consistency.

To obtain words in context, we extracted 293
sentences containing unique words in this set from
PLOS abstracts from PLOS Biology, Pathology, Ge-
netics, and several other journals. We present 10
MTurk crowdworkers with a task (“HIT”) show-
ing one of these sentences with the complex word
bolded. Workers are told to read the sentence, con-
sult online materials (we provide direct links to a
Wikipedia search, a standard Google search, and

1068

SimpleSciGold

Method Corpus
(Complex, Simple)

Number of
Simplifications Pot. Prec. F

Biran et al. 2011 Wikipedia, SEW 17 0.059 0.036 0.044
PLOS/PMC, Wikip. 588 0.352 0.084 0.136

SimpleScience
(cos ≥ .4, fw,simple ≥ 3000) PLOS/PMC, Wikip. 2,322 0.526 0.196 0.285

SimpleScience
(cos ≥ .4, fw,simple ≥ 0) PLOS/PMC, Wikip. 10,910,536 0.720 0.032 0.061

Table 2: Simplification Generation Results. SimpleScience achieves the highest F-measure with a cosine threshold of 0.4 and a

frequency of the simple word in the general corpus of 3000.

a Google “define” search on the target term), and
add their simplification suggestions. Crowdworkers
first passed a multiple choice practice qualification
in which they were presented with sentences con-
taining three complex words in need of simplifica-
tion along with screenshots of Wikipedia and dictio-
nary pages for the terms. The workers were asked
to identify which of 5 possible simplifications listed
for each complex word would preserve the mean-
ing while simplifying. 108 workers took part in the
gold standard set creation task, completing an aver-
age of 27 HITs each. The resulting SimpleSciGold
standard set consists of an average of 20.7 simplifi-
cations for each of the 293 complex words in corre-
sponding sentences.

4.2 Simplification Generation

We compare our word embedding generation pro-
cess (applied to our corpora) to Biran et al.’s (2011)
approach (applied to the Wikipedia and Simple En-
glish Wikipedia corpus as well as our scientific cor-
pora). Following the evaluation method used in
Paetzold and Specia (2015), we calculate potential
as the proportion of instances for which at least one
of the substitutions generated is present in the gold
standard set, precision as the proportion of generated
instances which are present in the gold standard set,
and F-measure as their harmonic mean.

Our SimpleScience approach outperforms the
original approach by Biran et al. (2011) applied to
the Wikipedia and SEW corpus as well as to the sci-
entific corpus (Table 1).

4.3 Applying Simplifications

We find that neither prior selection approaches yield
performance improvements over our generation pro-

cess. We evaluate the performance of ranking can-
didate rules by cosine similarity (to find the top rule
for a fully automated application), and achieve pre-
cision of 0.389 at the top slot. In our supplementary
materials, we provide additional results for poten-
tial, precision and F-measure at varying numbers of
slots (up to 5), where we test ranking by cosine sim-
ilarity of embeddings as well as by the second filter
used in our pair generation step: the frequency of the
simple word in the simple corpus.

4.4 Antonym Prevalence Analysis

A risk of using Word2Vec in place of WordNet
is that the simpler terms generated by our ap-
proach may represent terms with opposite mean-
ings (antonyms). While a detailed analysis is be-
yond the scope of this paper, we compared the like-
lihood of seeing antonyms in our results using a
gold standard set of antonyms for biology, chem-
istry, and physics terms from WordNik (Wordnik,
2009). Specifically, we created an antonym set con-
sisting of the 304 terms from the biology, chemistry,
and physics categories in Wictionary for which at
least one antonym is listed in WordNik. We com-
pared antonym pairs with rules that produced by
the SimpleScience pipeline (Fig. 1). We observed
that 14.5% of the time (44 out of 304 instances),
an antonym appeared at the top slot among results.
51.3% of the time (156 out of 304 instances), no
antonyms in the list appeared within the top 100
ranked results. These results suggest that further
filters are necessary to ensure high enough quality
results for fully automated applications of scientific
term simplification.

1069

Figure 1: Probability of an antonym in our test set occurring

as a suggested simpler term in the top 100 slots in the Simple-

Science pipeline.

5 Limitations and Future Work

A risk of using Word2Vec to find related terms,
rather than querying a lexical database like Word-
Net, is that generated rules may include antonyms.
Adding techniques to filter antonym rules, such as
using co-reference chains (Adel and Schütze, 2014),
is important in future work.

We achieve a precision of 0.389 at the top slot
on our SimpleSciGold standard set when we ap-
ply our generation method and rank candidates by
cosine similarity. This level of precision is higher
than that achieved by various prior ranking meth-
ods used in Lexenstein (Paetzold and Specia, 2015),
with the exception of using machine learning tech-
niques like SVM (Paetzold and Specia, 2015). Fu-
ture work should explore how much the precision
of our SimpleScience pipeline can be improved by
adopting more sophisticated ranking methods. How-
ever, we suspect that even the highest precision ob-
tained on general corpora and gold standard sets in
prior work is not sufficient for fully automated sim-
plification. An exciting area for future work is in
applying the SimpleScience pipeline in interactive
simplification suggestion interfaces for those read-
ing or writing about science (Kim et al., 2015).

6 Conclusion

In this work, we introduce SimpleScience, a lexical
simplification approach to address the unique chal-
lenges of simplifying scientific terminology, includ-
ing a lack of parallel corpora, shifting vocabulary,
and mismatch with using general purpose databases
for filtering. We use word embeddings to extract
simplification rules from a novel parallel corpora
that contains scientific publications and Wikipedia.

Using SimpleSciGold, a gold standard set that we
created using crowdsourcing, we show that using
embeddings and simple frequency filters on a sci-
entific corpus outperforms prior approaches to sim-
plification generation, and renders the best prior ap-
proach to simplification selection unnecessary.

References
[Adel and Schütze2014] Heike Adel and Hinrich Schütze.

2014. Using mined coreference chains as a resource
for a semantic task. In EMNLP, pages 1447–1452.

[Biran et al.2011] Or Biran, Samuel Brody, and Noémie
Elhadad. 2011. Putting it simply: A context-aware
approach to lexical simplification. In ACL ’11. Asso-
ciation for Computational Linguistics.

[Bird et al.2009] Steven Bird, Ewan Klein, and Edward
Loper. 2009. Natural language processing with
Python. O’Reilly Media, Inc.

[Burns2013] Philip R Burns. 2013. Morphadorner
v2: a java library for the morphological adornment
of english language texts. Northwestern University,
Evanston, IL.

[Coster and Kauchak2011] William Coster and David
Kauchak. 2011. Learning to simplify sentences using
wikipedia. In Proceedings of the workshop on mono-
lingual text-to-text generation, pages 1–9. Association
for Computational Linguistics.

[Horn et al.2014] Colby Horn, Cathryn Manduca, and
David Kauchak. 2014. Learning a lexical simplifier
using wikipedia. In ACL (2), pages 458–463.

[Kim et al.2015] Yea-Seul Kim, Jessica Hullman, and Ey-
tan Adar. 2015. Descipher: A text simplification tool
for science journalism. In Computation+Journalism
Symposium.

[Levy and Goldberg2014] Omer Levy and Yoav Gold-
berg. 2014. Neural word embedding as implicit ma-
trix factorization. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, ed-
itors, Advances in Neural Information Processing Sys-
tems 27, pages 2177–2185. Curran Associates, Inc.

[Mikolov et al.2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg S Corrado, and Jeff Dean. 2013. Dis-
tributed representations of words and phrases and their
compositionality. In Advances in neural information
processing systems, pages 3111–3119.

[Miller1995] George A. Miller. 1995. Wordnet: A lexical
database for english. Commun. ACM, 38(11):39–41,
November.

[Paetzold and Specia2015] Gustavo Henrique Paetzold
and Lucia Specia. 2015. Lexenstein: A framework for
lexical simplification. ACL-IJCNLP 2015, 1(1):85.

1070

[Pennington et al.2014] Jeffrey Pennington, Richard
Socher, and Christopher D. Manning. 2014. Glove:
Global vectors for word representation. In Empirical
Methods in Natural Language Processing (EMNLP),
pages 1532–1543.

[Ré and Zhang2015] Christopher Ré and Ce Zhang.
2015. Deepdive open datasets. http://
deepdive.stanford.edu/opendata.

[Rei and Briscoe2014] Marek Rei and Ted Briscoe. 2014.
Looking for hyponyms in vector space. In CoNLL,
pages 68–77.

[United States National Library of Medicine2015]
United States National Library of Medicine. 2015.
Medical subject headings.

[Vydiswaran et al.2014] V.G.Vinod Vydiswaran,
Qiaozhu Mei, David A. Hanauer, and Kai Zheng.
2014. Mining consumer health vocabulary from
community-generated text. In AMIA ’14.

[Wordnik2009] Wordnik. 2009. Wordnik online english
dictionary. https://www.wordnik.com/.

[Yatskar et al.2010] Mark Yatskar, Bo Pang, Cristian
Danescu-Niculescu-Mizil, and Lillian Lee. 2010. For
the sake of simplicity: Unsupervised extraction of lex-
ical simplifications from wikipedia. In NAACL ’10.
Association for Computational Linguistics.

1071

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1072–1077,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Automatic Features for Essay Scoring – An Empirical Study

Fei Dong and Yue Zhang
Singapore University of Technology and Design

fei dong@mymail.sutd.edu.sg and yue zhang@sutd.edu.sg

Abstract

Essay scoring is a complicated processing re-
quiring analyzing, summarizing and judging
expertise. Traditional work on essay scoring
focused on automatic handcrafted features,
which are expensive yet sparse. Neural mod-
els offer a way to learn syntactic and semantic
features automatically, which can potentially
improve upon discrete features. In this pa-
per, we employ convolutional neural network
(CNN) for the effect of automatically learn-
ing features, and compare the result with the
state-of-art discrete baselines. For in-domain
and domain-adaptation essay scoring tasks,
our neural model empirically outperforms dis-
crete models.

1 Introduction

Automatic essay scoring (AES) is the task of build-
ing a computer-based grading system, with the aim
of reducing the involvement of human raters as far
as possible. AES is challenging since it relies not
only on grammars, but also on semantics, discourse
and pragmatics. Traditional approaches treat AES
as a classification (Larkey, 1998; Rudner and Liang,
2002), regression (Attali and Burstein, 2004; Phandi
et al., 2015), or ranking classification problem (Yan-
nakoudakis et al., 2011; Chen and He, 2013), ad-
dressing AES by supervised learning. Features are
typically bag-of-words, spelling errors and lengths,
such word length, sentence length and essay length,
etc. Some grammatical features are considered to
assess the quality of essays (Yannakoudakis et al.,
2011). A drawback is feature engineering, which
can be time-consuming, since features need to be

carefully handcrafted and selected to fit the appro-
riate model. A further drawback of manual feature
templates is that they are sparse, instantiated by dis-
crete pattern-matching. As a result, parsers and se-
mantic analyzers are necessary as a preprocessing
step to offer syntactic and semantic patterns for fea-
ture extraction. Given variable qualities of student
essays, such analyzers can be highly unreliable.

Neural network approaches have been shown to
be capable of inducing dense syntactic and semantic
features automatcially, giving competitive results to
manually designed features for several tasks (Kalch-
brenner et al., 2014; Johnson and Zhang, 2014; dos
Santos and Gatti, 2014). In this paper, we empir-
ically investigate a neural network method to learn
features automatically for AES, without the need of
external pre-processing. In particular, we build a hi-
erarchical CNN model, with one lower layer repre-
senting sentence structures and one upper layer rep-
resenting essay structure based on sentence repre-
sentations. We compare automatically-induced fea-
tures by the model with state-of-art baseline hand-
crafted features. Empirical results show that neural
features learned by CNN are very effective in essay
scoring task, covering more high-level and abstract
information compared to manual feature templates.

2 Related Work

Following the first AES system Project Essay Grade
(PEG) been developed in 1966 (Page, 1994), a num-
ber of commercial systems have come out, such
as IntelliMetric 2, Intelligent Essay Assessor (IEA)
(Foltz et al., 1999) and e-rater system (Attali and
Burstein, 2004). The e-rater system now plays a

1072

second human rater’s role in the Test of English as
a Foreign Language (TOEFL) and Graduate Record
Examination (GRE). The e-rater extracts a number
of complex features, such as grammatical error and
lexical complexity, and uses stepwise linear regres-
sion. IEA uses Latent Semantic Analysis (LSA)
(Landauer et al., 1998) to create semantic vectors for
essays and measure the semantic similarity between
the vectors.

In the research literature, Larkey (1998) and Rud-
ner and Liang (2002) treat AES as classification us-
ing bag-of-words features. Other recent work for-
mulates the task as a preference ranking problem
(Yannakoudakis et al., 2011; Chen and He, 2013).
Yannakoudakis et al. (2011) formulated AES as a
pairwise ranking problem by ranking the order of
pair essays based on their quality. Features consist
of word, POS n-grams features, complex grammati-
cal features and so on. Chen and He (2013) formu-
lated AES into a listwise ranking problem by con-
sidering the order relation among the whole essays
and features contain syntactical features, grammar
and fluency features as well as content and prompt-
specific features. Phandi et al. (2015) use correlated
Bayesian Linear Ridge Regression (cBLRR) focus-
ing on domain-adaptation tasks. All these previous
methods use discrete handcrafted features.

Recently, Alikaniotis et al. (2016) also employ
a neural model to learn features for essay scor-
ing automatically, which leverages a score-specific
word embedding (SSWE) for word representations
and a two-layer bidirectional long-short term mem-
ory network (LSTM) to learn essay representations.
Alikaniotis et al. (2016) show that by combining
SSWE, LSTM outperforms traditional SVM model.
On the other hand, using LSTM alone does not give
significantly more accuracies compared to SVM.
This conforms to our preliminary experiments with
the LSTM structure. Here, we use CNN without
any specific embeddings and show that our neural
models could outperform baseline discrete models
on both in-domain and cross-domain senarios.

CNN has been used in many NLP applications,
such as sequence labeling (Collobert et al., 2011) ,
sentences modeling (Kalchbrenner et al., 2014), sen-
tences classification (Kim, 2014), text categorization
(Johnson and Zhang, 2014; Zhang et al., 2015) and
sentimental analysis (dos Santos and Gatti, 2014),

Feature Type Feature Description
Length Number of characters, words,

sentences, etc.
POS Relative and absolute number of

bad POS n-grams
Prompt Relative and absolute number of

words and their synonyms in the
essay appearing in the prompt

Bag-of-words Count of useful unigrams and
bigrams (unstemmed, stemmed
and spell corrected)

Table 1: Feature description used by EASE.

etc. In this paper, we explore CNN representa-
tion ability for AES tasks on both in-domain and
domain-adaptation settings.

3 Baseline

Bayesian Linear Ridge Regression (BLRR) and
Support Vector Regression (SVR) (Smola and Vap-
nik, 1997) are chosen as state-of-art baselines. Fea-
ture templates follow (Phandi et al., 2015), extracted
by EASE1, which are briefly listed in Table 1. “Use-
ful n-grams” are determined using the Fisher test to
separate the good scoring essays and bad scoring es-
says. Good essays are essays with a score greater
than or equal to the average score, and the remainder
are considered as bad scoring essays. The top 201 n-
grams with the highest Fisher values are chosen as
the bag of features and these top 201 n-grams consti-
tute useful n-grams. Correct POS tags are generated
using grammatically correct texts, which is done by
EASE. The POS tags that are not included in the
correct POS tags are treated as bad POS tags, and
these bad POS tags make up the “bad POS n-grams”
features.

The features tend to be highly useful for the
in-domain task since the discrete features of same
prompt data share the similar statistics. However,
for different prompts, features statistics vary signif-
icantly. This raises challenges for discrete feature
patterns.

ML-ρ (Phandi et al., 2015) was proposed to ad-
dress this issue. It is based on feature augmentation,
incorporating explicit correlation into augmented
feature spaces. In particular, it expands baseline fea-
ture vector x to be Φs(x) = (ρx, (1− ρ2)1/2x) and
Φt(x) = (x,0p) for source and target domain data

1https://github.com/edx/ease

1073

Figure 1: Hierarchical CNN structure

in R2p respectively, with ρ being the correlation be-
tween source and target domain data. Then BLRR
and maximum likelihood estimation are used to the
optimize correlation. All the baseline models re-
quire POS-tagging as a pre-processing step, extract-
ing syntactic features based on POS-tags.

4 Model

Word Representations We use word embedding
with an embedding matrix Ew ∈ Rdw×Vw where
dw is the embedding dimension, and Vw represents
words vocabulary size. A word vector zi is repre-
sented by zi = Ewwi where wi is the i-th word in
a sentence. In contrast to the baseline models, our
CNN model does not rely on POS-tagging or other
pre-processing.

CNN Model We take essay scoring as a regression
task and employ a two-layer CNN model, in which
one convolutional layer is used to extract sentences
representations, and the other is stacked on sentence
vectors to learn essays representations. The archi-
tecture is depicted in Figure 1. Given an input sen-
tence z1, z2, ..., zn, a convolution layer with a filter
w ∈ Rh×k is applied to a window of h words to
produce n-grams features. For instance, a feature ci
is generated from a window of words zi:i+h−1 by
ci = f(w · zi:i+h−1 + b) , b ∈ R is the bias term
and f is the non-linear activation function rectified
linear unit (ReLU).

The filter is applied to the all possible win-
dows in a sentence to produce a feature map c =
[c1, c2, ..., cm−h+1]. For cj of the j-th sentence in
an essay, max-pooling and average pooling func-
tion are used to produce the sentence vector sj =

Set #Essays Genre Avg Len. Range Med.
1 1783 ARG 350 2-12 8
2 1800 ARG 350 1-6 3
3 1726 RES 150 0-3 1
4 1772 RES 150 0-3 1
5 1805 RES 150 0-4 2
6 1800 RES 150 0-4 2
7 1569 NAR 250 0-30 16
8 723 NAR 650 0-60 36

Table 2: Details of the ASAP data; the last two columns
are score range and median scores. For genre, ARG spec-
ifies argumentative essays, RES means response essays
and NAR denotes narrative essays.

max{cj} ⊕ avg{cj}. The second convolutional
layer takes s1, s2,..., sn as inputs, followed by pool-
ing layer (max-pooling and average-pooling) and a
fully-connected hidden layer. The hidden layer di-
rectly connects to output layer which generates a
score.

5 Experiments

5.1 Setup

Data We use the Automated Student Assessment
Prize (ASAP)2 dataset as evaluation data for our
task, which contains 8 prompts of different genres
as listed in Table 2. The essay scores are scaled into
the range from 0 to 1. The settings of data prepara-
tion follow (Phandi et al., 2015). We use quadratic
weighted kappa (QWK) as the metric. For domain-
adaptation (cross-domain) experiments, we follow
(Phandi et al., 2015), picking four pairs of essay
prompts, namely, 1→2, 3→4, 5→6 and 7→8, where
1→2 denotes prompt 1 as source domain and prompt

2https://www.kaggle.com/c/asap-aes/data

1074

Parameter Parameter Name Value
dw Word embedding dimension 100
hwrd Word context window size 5
hsent Sentence context window size 3
kwrd Word convolution units 50
ksent Sentence convolution units 50
p Hidden size 50
drop rate Dropout rate 0.5
batch size Batch size 4
λ Learning rate 0.01

Table 3: Neural Model Hyper-parameters

Figure 2: In-domain results

2 as target domain. All source domain essays are
used as training data. Target domain data are ran-
domly divided into 5 folds, where one fold is used
as test data, and other 4 folds are collected together
to sub-sample target domain train data. The sub-
sampled sizes are 10, 25, 50, 100, with the larger
sampled sets containing the smaller ones. And we
repeated sub-sampling 5 times for each target train-
ing number to alleviate bias.

Hyper-parameters We use Adagrad for optimiza-
tion. Word embeddings are randomly initialized and
the hyper-parameter settings are listed in Table 3.

5.2 Results
In-domain The in-domain results are shown in
Figure 2. The average values of all 8 prompt sets
are listed in Table 4. For the in-domain task, CNN
outperforms the baseline model SVR on all prompts
of essay sets, and is competitive to BLRR. For the
statistical significance, neural model is significantly
better than baseline models with the p-value less
than 10−5 at the confidence level of 95%. The av-
erage kappa value over 8 prompts is close to that of
human raters.

Cross-domain The domain-adaptation results are
shown in Table 5. It can be seen that our CNN

Model BLRR SVR CNN Human
Avg 0.725 0.682 0.734 0.754
Std dev 0.0025 0.0033 0.0029 —

Table 4: Indomain average kappa value and standard de-
viation over all 8 prompts.

Pairs Method nt = 10 25 50 100
1→2 ML-ρ 0.365 0.437 0.521 0.559

CNN 0.546 0.569 0.563 0.559
3→4 ML-ρ 0.435 0.540 0.590 0.619

CNN 0.628 0.656 0.659 0.662
5→6 ML-ρ 0.415 0.600 0.678 0.718

CNN 0.647 0.700 0.714 0.750
7→8 ML-ρ 0.328 0.438 0.496 0.551

CNN 0.570 0.590 0.568 0.587
Table 5: Cross-domain results.

model outperforms ML-ρ on almost all pairs of
adaptation experiments. ML-ρ domain-adaptation
method’s performance improves as the size of tar-
get domain training data increases. However, com-
pared to ML-ρ, target training data size has less im-
pact on our neural model. Even if the target train-
ing size is small, the neural model still gives strong
performance. This results from the fact that neu-
ral model could learn more high-level and abstract
features compared to traditional models with hand-
crafted discrete features. We plot the confusion ma-
trix between truth and model prediction on test data
in Figure 4, which shows that prediction scores of
neural model tend to be closer to true values, which
is very important in our task.

5.3 Feature Analysis

To visualize the features learned by our model, we
use t-distributed stochastic neighbor embedding (t-
SNE) (Van der Maaten and Hinton, 2008), pro-
jecting 50-dimensional features into 2-dimensional
space. We take two domain pairs 3→4 and 5→6
as examples on the cross-domain task, extracting
fully-connected hidden-layer features for target do-
main data using model trained on source domain
data. The results are showed in Figure 3. The base-
line discrete features are more concentrated, which
shows that patterns on source prompt are weak in
differentiating target prompt essays. By using ML-ρ
and leveraging 100 target prompt training examples,
the discrete features patterns are more scattered, in-
creasing the differentiating power. In contrast, CNN

1075

(a) (b) (c)

(d) (e) (f)
Figure 3: Visualization of discrete and neural features using t-SNE (each value represents an essay of the correspond-
ing score). Top: Set 4 (3→4), Bottom: Set 6 (5→6). (a) discrete features; (b) ML-ρ features, nt = 100; (c) neural
features; (d) discrete features; (e) ML-ρ features, nt = 100; (f) neural features.

(a) (b)

(c) (d)
Figure 4: Confusion matrix of true and prediction scores
by two different models on test data when target training
size nt = 10. (a) ML-ρ on 1→2; (b) CNN model on
1→2; (c) ML-ρ on 5→6; (d) CNN model on 5→6.

features trained on source prompt are sparse when
used directly on the target prompt. This shows that
neural features learned by the CNN model can better
differentiate essays of different qualities. Without
manual templates, such features automatically cap-
ture subtle and complex information that is relevant
to the task.

6 Conclusion

We empirically investigated a hierarchical CNN
model for automatic essay scoring, showing au-
tomatically learned features competitive to dis-
crete handcrafted features for both in-domain and
domain-adaptation tasks. The results demonstrate
large potential for deep learning in AES.

Acknowledgments

We thank the anonymous reviewers for their con-
structive comments, which helped to improve the
paper. This work is supported by NSFC61572245
and T2MOE201301 from Singapore Ministry of Ed-
ucation.

1076

References
Dimitrios Alikaniotis, Helen Yannakoudakis, and Marek

Rei. 2016. Automatic text scoring using neural net-
works. arXiv preprint arXiv:1606.04289.

Yigal Attali and Jill Burstein. 2004. Automated essay
scoring with e-rater R© v. 2.0. ETS Research Report
Series, 2004(2):i–21.

Hongbo Chen and Ben He. 2013. Automated essay
scoring by maximizing human-machine agreement. In
EMNLP, pages 1741–1752.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Cı́cero Nogueira dos Santos and Maira Gatti. 2014. Deep
convolutional neural networks for sentiment analysis
of short texts. In COLING, pages 69–78.

Peter W Foltz, Darrell Laham, and Thomas K Landauer.
1999. Automated essay scoring: Applications to edu-
cational technology. In proceedings of EdMedia, vol-
ume 99, pages 40–64.

Rie Johnson and Tong Zhang. 2014. Effective use of
word order for text categorization with convolutional
neural networks. arXiv preprint arXiv:1412.1058.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. arXiv preprint arXiv:1404.2188.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. arXiv preprint arXiv:1408.5882.

Thomas K Landauer, Peter W Foltz, and Darrell Laham.
1998. An introduction to latent semantic analysis.
Discourse processes, 25(2-3):259–284.

Leah S Larkey. 1998. Automatic essay grading us-
ing text categorization techniques. In Proceedings of
the 21st annual international ACM SIGIR conference
on Research and development in information retrieval,
pages 90–95. ACM.

Ellis Batten Page. 1994. Computer grading of student
prose, using modern concepts and software. The Jour-
nal of experimental education, 62(2):127–142.

Peter Phandi, Kian Ming A Chai, and Hwee Tou Ng.
2015. Flexible domain adaptation for automated es-
say scoring using correlated linear regression.

Lawrence M Rudner and Tahung Liang. 2002. Auto-
mated essay scoring using bayes’ theorem. The Jour-
nal of Technology, Learning and Assessment, 1(2).

Alex Smola and Vladimir Vapnik. 1997. Support vector
regression machines. Advances in neural information
processing systems, 9:155–161.

Laurens Van der Maaten and Geoffrey Hinton. 2008. Vi-
sualizing data using t-sne. Journal of Machine Learn-
ing Research, 9(2579-2605):85.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies-Volume 1, pages
180–189. Association for Computational Linguistics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. In Advances in Neural Information Process-
ing Systems, pages 649–657.

1077

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1078–1087,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Semantic Parsing with Semi-Supervised Sequential Autoencoders

Tomáš Kočiský†‡ Gábor Melis† Edward Grefenstette†
Chris Dyer† Wang Ling† Phil Blunsom†‡ Karl Moritz Hermann†

†Google DeepMind ‡University of Oxford
{tkocisky,melisgl,etg,cdyer,lingwang,pblunsom,kmh}@google.com

Abstract

We present a novel semi-supervised approach
for sequence transduction and apply it to se-
mantic parsing. The unsupervised component
is based on a generative model in which latent
sentences generate the unpaired logical forms.
We apply this method to a number of semantic
parsing tasks focusing on domains with lim-
ited access to labelled training data and ex-
tend those datasets with synthetically gener-
ated logical forms.

1 Introduction

Neural approaches, in particular attention-based
sequence-to-sequence models, have shown great
promise and obtained state-of-the-art performance
for sequence transduction tasks including machine
translation (Bahdanau et al., 2015), syntactic con-
stituency parsing (Vinyals et al., 2015), and seman-
tic role labelling (Zhou and Xu, 2015). A key re-
quirement for effectively training such models is an
abundance of supervised data.

In this paper we focus on learning mappings from
input sequences x to output sequences y in domains
where the latter are easily obtained, but annotation
in the form of (x, y) pairs is sparse or expensive to
produce, and propose a novel architecture that ac-
commodates semi-supervised training on sequence
transduction tasks. To this end, we augment the
transduction objective (x 7→ y) with an autoencod-
ing objective where the input sequence is treated as a
latent variable (y 7→ x 7→ y), enabling training from
both labelled pairs and unpaired output sequences.

This is common in situations where we encode nat-
ural language into a logical form governed by some
grammar or database.

While such an autoencoder could in principle
be constructed by stacking two sequence transduc-
ers, modelling the latent variable as a series of dis-
crete symbols drawn from multinomial distributions
creates serious computational challenges, as it re-
quires marginalising over the space of latent se-
quences Σ∗x. To avoid this intractable marginalisa-
tion, we introduce a novel differentiable alternative
for draws from a softmax which can be used with
the reparametrisation trick of Kingma and Welling
(2014). Rather than drawing a discrete symbol in
Σx from a softmax, we draw a distribution over sym-
bols from a logistic-normal distribution at each time
step. These serve as continuous relaxations of dis-
crete samples, providing a differentiable estimator
of the expected reconstruction log likelihood.

We demonstrate the effectiveness of our proposed
model on three semantic parsing tasks: the GEO-
QUERY benchmark (Zelle and Mooney, 1996; Wong
and Mooney, 2006), the SAIL maze navigation task
(MacMahon et al., 2006) and the Natural Language
Querying corpus (Haas and Riezler, 2016) on Open-
StreetMap. As part of our evaluation, we introduce
simple mechanisms for generating large amounts of
unsupervised training data for two of these tasks.

In most settings, the semi-supervised model out-
performs the supervised model, both when trained
on additional generated data as well as on subsets of
the existing data.

1078

Dataset Example

GEO
what are the high points of states surrounding mississippi
answer(high point 1(state(next to 2(stateid(’mississippi’)))))

NLMAPS
Where are kindergartens in Hamburg?
query(area(keyval(‘name’,‘Hamburg’)),nwr(keyval(‘amenity’,‘kindergarten’)),qtype(latlong))

SAIL
turn right at the bench into the yellow tiled hall
(1, 6, 90) FORWARD - FORWARD - RIGHT - STOP (3, 6, 180)

Table 1: Examples of natural language x and logical form y from the three corpora and tasks used in this paper. Note that the

SAIL corpus requires additional information in order to map from the instruction to the action sequence.

y1 y2 y3 y4 < s >

< s >

x̃1 x̃2 x̃3

hy
1 hy

2 hy
3 hy

4 hx̃
1 hx̃

2 hx̃
3

hx
1 hx

2 hx
3 hŷ

1 hŷ
2 hŷ

3 hŷ
4

ŷ1 ŷ2 ŷ3 ŷ4

ŷ1 ŷ2 ŷ3

Figure 1: SEQ4 model with attention-sequence-to-sequence encoder and decoder. Circle nodes represent random variables.

2 Model

Our sequential autoencoder is shown in Figure 1.
At a high level, it can be seen as two sequence-
to-sequence models with attention (Bahdanau et al.,
2015) chained together. More precisely, the model
consists of four LSTMs (Hochreiter and Schmid-
huber, 1997), hence the name SEQ4. The first, a
bidirectional LSTM, encodes the sequence y; next,
an LSTM with stochastic output, described below,
draws a sequence of distributions x̃ over words in
vocabulary Σx. The third LSTM encodes these dis-
tributions for the last one to attend over and recon-
struct y as ŷ. We now give the details of these parts.

2.1 Encoding y

The first LSTM of the encoder half of the model
reads the sequence y, represented as a sequence of
one-hot vectors over the vocabulary Σy, using a
bidirectional RNN into a sequence of vectors hy1:Ly

where Ly is the sequence length of y,

hyt =
(
f→y (yt, h

y,→
t−1); f←y (yt, h

y,←
t+1)

)
, (1)

where f→y , f←y are non-linear functions applied at
each time step to the current token yt and their re-
current states hy,→t−1 , hy,←t+1 , respectively.

Both the forward and backward functions project
the one-hot vector into a dense vector via an embed-
ding matrix, which serves as input to an LSTM.

2.2 Predicting a Latent Sequence x̃

Subsequently, we wish to predict x. Predicting a
discrete sequence of symbols through draws from
multinomial distributions over a vocabulary is not
an option, as we would not be able to backpropa-
gate through this discrete choice. Marginalising over
the possible latent strings or estimating the gradient
through naı̈ve Monte Carlo methods would be a pro-
hibitively high variance process because the num-
ber of strings is exponential in the maximum length
(which we would have to manually specify) with
the vocabulary size as base. To allow backpropaga-
tion, we instead predict a sequence of distributions x̃
over the symbols of Σx with an RNN attending over

1079

y1 y2 y3 y4 < s >

x̃1 x̃2

µ2, log(�
2
)2µ1, log(�

2
)1

x̃3

µ3, log(�2)3

✏1 ✏2 ✏3

hx
1 hx

2 hx
3

hx̃
1 hx̃

2 hx̃
3hy

1 hy
2 hy

3 hy
4

hŷ
1 hŷ

2 hŷ
3 hŷ

4

< s >

ŷ1 ŷ2 ŷ3 ŷ4

ŷ1 ŷ2 ŷ3

Figure 2: Unsupervised case of the SEQ4 model.

hy = hy1:Ly
, which will later serve to reconstruct y:

x̃ = q(x|y) =

Lx∏

t=1

q(x̃t|{x̃1, · · · , x̃t−1}, hy) (2)

where q(x|y) models the mapping y 7→ x. We define
q(x̃t|{x̃1, · · · , x̃t−1}, hy) in the following way:

Let the vector x̃t be a distribution over the vocabu-
lary Σx drawn from a logistic-normal distribution1,
the parameters of which, µt, log(σ2)t ∈ R|Σx|, are
predicted by attending by an LSTM attending over
the outputs of the encoder (Equation 2), where |Σx|
is the size of the vocabulary Σx. The use of a logis-
tic normal distribution serves to regularise the model
in the semi-supervised learning regime, which is de-
scribed at the end of this section. Formally, this pro-
cess, depicted in Figure 2, is as follows:

hx̃t = fx̃(x̃t−1, h
x̃
t−1, h

y) (3)

µt, log(σ2
t) = l(hx̃t) (4)

ε ∼ N (0, I) (5)

γt = µt + σtε (6)

x̃t = softmax(γt) (7)

where the fx̃ function is an LSTM and l a linear
transformation to R2|Σx|. We use the reparametrisa-
tion trick from Kingma and Welling (2014) to draw
from the logistic normal, allowing us to backpropa-
gate through the sampling process.

1The logistic-normal distribution is the exponentiated and
normalised (i.e. taking softmax) normal distribution.

2.3 Encoding x

Moving on to the decoder part of our model, in the
third LSTM, we embed2 and encode x̃:

hxt =
(
f→x (x̃t, h

x,→
t−1); f←x (x̃t, h

x,←
t+1)

)
(8)

When x is observed, during supervised training and
also when making predictions, instead of the distri-
bution x̃ we feed the one-hot encoded x to this part
of the model.

2.4 Reconstructing y

In the final LSTM, we decode into y:

p(ŷ|x̃) =

Ly∏

t=1

p(ŷt|{ŷ1, · · · , ŷt−1}, hx̃) (9)

Equation 9 is implemented as an LSTM attending
over hx̃ producing a sequence of symbols ŷ based
on recurrent states hŷ, aiming to reproduce input y:

hŷt = fŷ(ŷt−1, h
ŷ
t−1, h

x̃) (10)

ŷt ∼ softmax(l′(hŷt)) (11)

where fŷ is the non-linear function, and the actual
probabilities are given by a softmax function after
a linear transformation l′ of hŷ. At training time,
rather than ŷt−1 we feed the ground truth yt−1.

2.5 Loss function

The complete model described in this section gives a
reconstruction function y 7→ ŷ. We define a loss on
this reconstruction which accommodates the unsu-
pervised case, where x is not observed in the train-
ing data, and the supervised case, where (x, y) pairs
are available. Together, these allow us to train the
SEQ4 model in a semi-supervised setting, which ex-
periments will show provides some benefits over a
purely supervised training regime.

Unsupervised case When x isn’t observed, the
loss we minimise during training is the recon-
struction loss on y, expressed as the negative log-
likelihood NLL(ŷ, y) of the true labels y relative to
the predictions ŷ. To this, we add as a regularising

2Multiplying the distribution over words and an embedding
matrix averages the word embedding of the entire vocabulary
weighted by their probabilities.

1080

term the KL divergence KL[q(γ|y)‖p(γ)] which ef-
fectively penalises the mean and variance of q(γ|y)
from diverging from those of a prior p(γ), which
we model as a diagonal Gaussian N (0, I). This has
the effect of smoothing the logistic normal distribu-
tion from which we draw the distributions over sym-
bols of x, guarding against overfitting of the latent
distributions over x to symbols seen in the super-
vised case discussed below. The unsupervised loss
is therefore formalised as

Lunsup = NLL(ŷ, y) + αKL[q(γ|y)‖p(γ)] (12)

with regularising factor α is tuned on validation, and

KL[q(γ|y)‖p(γ)] =

Lx∑

i=1

KL[q(γi|y)‖p(γ)] (13)

We use a closed form of these individual KL diver-
gences, described by Kingma and Welling (2014).

Supervised case When x is observed, we addi-
tionally minimise the prediction loss on x, expressed
as the negative log-likelihoodNLL(x̃, x) of the true
labels x relative to the predictions x̃, and do not im-
pose the KL loss. The supervised loss is thus

Lsup = NLL(x̃, x) +NLL(ŷ, y) (14)

In both the supervised and unsupervised case, be-
cause of the continuous relaxation on generating x̃
and the reparameterisation trick, the gradient of the
losses with regard to the model parameters is well
defined throughout SEQ4.

Semi-supervised training and inference We
train with a weighted combination of the supervised
and unsupervised losses described above. Once
trained, we simply use the x 7→ y decoder segment
of the model to predict y from sequences of sym-
bols x represented as one-hot vectors. When the de-
coder is trained without the encoder in a fully super-
vised manner, it serves as our supervised sequence-
to-sequence baseline model under the name S2S.

3 Tasks and Data Generation

We apply our model to three tasks outlined in this
section. Moreover, we explain how we generated ad-
ditional unsupervised training data for two of these
tasks. Examples from all datasets are in Table 1.

3.1 GeoQuery
The first task we consider is the prediction of a query
on the GEO corpus which is a frequently used bench-
mark for semantic parsing. The corpus contains 880
questions about US geography together with exe-
cutable queries representing those questions. We
follow the approach established by Zettlemoyer and
Collins (2005) and split the corpus into 600 training
and 280 test cases. Following common practice, we
augment the dataset by referring to the database dur-
ing training and test time. In particular, we use the
database to identify and anonymise variables (cities,
states, countries and rivers) following the method
described in Dong and Lapata (2016).

Most prior work on the GEO corpus relies on stan-
dard semantic parsing methods together with custom
heuristics or pipelines for this corpus. The recent pa-
per by Dong and Lapata (2016) is of note, as it uses
a sequence-to-sequence model for training which is
the unidirectional equivalent to S2S, and also to the
decoder part of our SEQ4 network.

3.2 Open Street Maps
The second task we tackle with our model is the
NLMAPS dataset by Haas and Riezler (2016). The
dataset contains 1,500 training and 880 testing in-
stances of natural language questions with corre-
sponding machine readable queries over the geo-
graphical OpenStreetMap database. The dataset
contains natural language question in both English
and German but we focus only on single language
semantic parsing, similar to the first task in Haas
and Riezler (2016). We use the data as it is, with
the only pre-processing step being the tokenization
of both natural language and query form3.

3.3 Navigational Instructions to Actions
The SAIL corpus and task were developed to train
agents to follow free-form navigational route in-
structions in a maze environment (MacMahon et al.,
2006; Chen and Mooney, 2011). It consists of a
small number of mazes containing features such as
objects, wall and floor types. These mazes come to-
gether with a large number of human instructions
paired with the required actions4 to reach the goal

3We removed quotes, added spaces around (), and sepa-
rated the question mark from the last word in each question.

4There are four actions: LEFT, RIGHT, GO, STOP.

1081

state described in those instructions.
We use the sentence-aligned version of the SAIL

route instruction dataset containing 3,236 sentences
(Chen and Mooney, 2011). Following previous
work, we accept an action sequence as correct if
and only if the final position and orientation exactly
match those of the gold data. We do not perform any
pre-processing on this dataset.

3.4 Data Generation

As argued earlier, we are focusing on tasks where
aligned data is sparse and expensive to obtain, while
it should be cheap to get unsupervised, monomodal
data. Albeit that is a reasonable assumption for real
world data, the datasets considered have no such
component, thus the approach taken here is to gen-
erate random database queries or maze paths, i.e.
the machine readable side of the data, and train
a semi-supervised model. The alternative not ex-
plored here would be to generate natural language
questions or instructions instead, but that is more
difficult to achieve without human intervention. For
this reason, we generate the machine readable side
of the data for GEOQUERY and SAIL tasks5.

For GEOQUERY, we fit a 3-gram Kneser-Ney
(Chen and Goodman, 1999) model to the queries in
the training set and sample about 7 million queries
from it. We ensure that the sampled queries are dif-
ferent from the training queries, but do not enforce
validity. This intentionally simplistic approach is to
demonstrate the applicability of our model.

The SAIL dataset has only three mazes. We
added a fourth one and over 150k random paths, in-
cluding duplicates. The new maze is larger (21× 21
grid) than the existing ones, and seeks to approxi-
mately replicate the key statistics of the other three
mazes (maximum corridor length, distribution of ob-
jects, etc). Paths within that maze are created by
randomly sampling start and end positions.

4 Experiments

We evaluate our model on the three tasks in multiple
settings. First, we establish a supervised baseline to
compare the S2S model with prior work. Next, we

5Our randomly generated unsupervised datasets
can be downloaded from http://deepmind.com/
publications

Model Accuracy

Zettlemoyer and Collins (2005) 79.3
Zettlemoyer and Collins (2007) 86.1
Liang et al. (2013) 87.9
Kwiatkowski et al. (2011) 88.6
Zhao and Huang (2014) 88.9
Kwiatkowski et al. (2013) 89.0

Dong and Lapata (2016) 84.6
Jia and Liang (2016)6 89.3

S2S 86.5
SEQ4 87.3

Table 2: Non-neural and neural model results on GEOQUERY

using the train/test split from (Zettlemoyer and Collins, 2005).

train our SEQ4 model in a semi-supervised setting
on the entire dataset with the additional monomodal
training data described in the previous section.

Finally, we perform an “ablation” study where we
discard some of the training data and compare S2S
to SEQ4. S2S is trained solely on the reduced data
in a supervised manner, while SEQ4 is once again
trained semi-supervised on the same reduced data
plus the machine readable part of the discarded data
(SEQ4-) or on the extra generated data (SEQ4+).

Training We train the model using standard gra-
dient descent methods. As none of the datasets used
here contain development sets, we tune hyperparam-
eters by cross-validating on the training data. In the
case of the SAIL corpus we train on three folds (two
mazes for training and validation, one for test each)
and report weighted results across the folds follow-
ing prior work (Mei et al., 2016).

4.1 GeoQuery

The evaluation metric for GEOQUERY is the ac-
curacy of exactly predicting the machine readable
query. As results in Table 2 show, our supervised
S2S baseline model performs slightly better than
the comparable model by Dong and Lapata (2016).
The semi-supervised SEQ4 model with the addi-
tional generated queries improves on it further.

The ablation study in Table 3 demonstrates
a widening gap between supervised and semi-

6Jia and Liang (2016) used hand crafted grammars to gener-
ate additional supervised training data.

1082

Sup. data S2S SEQ4- SEQ4+

5% 21.9 30.1 26.2
10% 39.7 42.1 42.1
25% 62.4 70.4 67.1
50% 80.3 81.2 80.4
75% 85.3 84.1 85.1
100% 86.5 86.5 87.3

Table 3: Results of the GEOQUERY ablation study.

Model Accuracy

Haas and Riezler (2016) 68.30
S2S 78.03

Table 4: Results on the NLMAPS corpus.

supervised as the amount of labelled training data
gets smaller. This suggests that our model can lever-
age unlabelled data even when only small amount of
labelled data is available.

4.2 Open Street Maps

We report results for the NLMAPS corpus in Table 4,
comparing the supervised S2S model to the results
posted by Haas and Riezler (2016). While their
model used a semantic parsing pipeline including
alignment, stemming, language modelling and CFG
inference, the strong performance of the S2S model
demonstrates the strength of fairly vanilla attention-
based sequence-to-sequence models. It should be
pointed out that the previous work reports the num-
ber of correct answers when queries were executed
against the dataset, while we evaluate on the strict
accuracy of the generated queries. While we expect
these numbers to be nearly equivalent, our evalua-
tion is strictly harder as it does not allow for reorder-
ing of query arguments and similar relaxations.

We investigate the SEQ4 model only via the abla-
tion study in Table 5 and find little gain through the
semi-supervised objective. Our attempt at cheaply
generating unsupervised data for this task was not
successful, likely due to the complexity of the un-
derlying database.

4.3 Navigational Instructions to Actions

Model extension The experiments for the SAIL
task differ slightly from the other two tasks in that
the language input does not suffice for choosing an

Sup. data S2S SEQ4-

5% 3.22 3.74
10% 17.61 17.12
25% 33.74 33.50
50% 49.52 53.72
75% 66.93 66.45
100% 78.03 78.03

Table 5: Results of the NLMAPS ablation study.

action. While a simple instruction such as ‘turn
left’ can easily be translated into the action sequence
LEFT-STOP, more complex instructions such as
‘Walk forward until you see a lamp’ require knowl-
edge of the agent’s position in the maze.

To accomplish this we modify the model as fol-
lows. First, when encoding action sequences, we
concatenate each action with a representation of the
maze at the given position, representing the maze-
state akin to Mei et al. (2016) with a bag-of-features
vector. Second, when decoding action sequences,
the RNN outputs an action which is used to update
the agent’s position and the representation of that
new position is fed into the RNN as its next input.

Training regime We cross-validate over the three
mazes in the dataset and report overall results
weighted by test size (cf. Mei et al. (2016)). Both
our supervised and semi-supervised model perform
worse than the state-of-the-art (see Table 6), but the
latter enjoys a comfortable margin over the former.
As the S2S model broadly reimplements the work
of Mei et al. (2016), we put the discrepancy in per-
formance down to the particular design choices that
we did not follow in order to keep the model here as
general as possible and comparable across tasks.

The ablation studies (Table 7) show little gain for
the semi-supervised approach when only using data
from the original training set, but substantial im-
provement with the additional unsupervised data.

5 Discussion

Supervised training The prediction accuracies of
our supervised baseline S2S model are mixed with
respect to prior results on their respective tasks. For
GEOQUERY, S2S performs significantly better than
the most similar model from the literature (Dong and
Lapata, 2016), mostly due to the fact that y and x are

1083

Input from unsupervised data (y) Generated latent representation (x)

answer smallest city loc 2 state stateid STATE what is the smallest city in the state of STATE </S>
answer city loc 2 state next to 2 stateid STATE what are the cities in states which border STATE </S>

answer mountain loc 2 countryid COUNTRY what is the lakes in COUNTRY </S>
answer state next to 2 state all which states longer states show peak states to </S>

Table 8: Positive and negative examples of latent language together with the randomly generated logical form from the unsupervised

part of the GEOQUERY training. Note that the natural language (x) does not occur anywhere in the training data in this form.

Model Accuracy

Chen and Mooney (2011) 54.40
Kim and Mooney (2012) 57.22
Andreas and Klein (2015) 59.60
Kim and Mooney (2013) 62.81
Artzi et al. (2014) 64.36
Artzi and Zettlemoyer (2013) 65.28

Mei et al. (2016) 69.98

S2S 58.60
SEQ4 63.25

Table 6: Results on the SAIL corpus.

Sup. data S2S SEQ4- SEQ4+

5% 37.79 41.48 43.44
10% 40.77 41.26 48.67
25% 43.76 43.95 51.19
50% 48.01 49.42 55.97
75% 48.99 49.20 57.40
100% 49.49 49.49 58.28

Table 7: Results of the SAIL ablation study. Results are from

models trained on L and Jelly maps, tested on Grid only, hence

the discrepancy between the 100% result and S2S in Table 6.

encoded with bidirectional LSTMs. With a unidirec-
tional LSTM we get similar results to theirs.

On the SAIL corpus, S2S performs worse than
the state of the art. As the models are broadly equiv-
alent we attribute this difference to a number of task-
specific choices and optimisations7 made in Mei et
al. (2016) which we did not reimplement for the sake
of using a common model across all three tasks.

For NLMAPS, S2S performs much better than the
state-of-the-art, exceeding the previous best result
by 11% despite a very simple tokenization method

7In particular we don’t use beam search and ensembling.

and a lack of any form of entity anonymisation.

Semi-supervised training In both the case of
GEOQUERY and the SAIL task we found the semi-
supervised model to convincingly outperform the
fully supervised model. The effect was particu-
larly notable in the case of the SAIL corpus, where
performance increased from 58.60% accuracy to
63.25% (see Table 6). It is worth remembering that
the supervised training regime consists of three folds
of tuning on two maps with subsequent testing on
the third map, which carries a risk of overfitting to
the training maps. The introduction of the fourth
unsupervised map clearly mitigates this effect. Ta-
ble 8 shows some examples of unsupervised logi-
cal forms being transformed into natural language,
which demonstrate how the model can learn to sen-
sibly ground unsupervised data.

Ablation performance The experiments with ad-
ditional unsupervised data prove the feasibility of
our approach and clearly demonstrate the useful-
ness of the SEQ4 model for the general class of
sequence-to-sequence tasks where supervised data
is hard to come by. To analyse the model fur-
ther, we also look at the performance of both S2S
and SEQ4 when reducing the amount of supervised
training data available to the model. We compare
three settings: the supervised S2S model with re-
duced training data, SEQ4- which uses the removed
training data in an unsupervised fashion (throwing
away the natural language) and SEQ4+ which uses
the randomly generated unsupervised data described
in Section 3. The S2S model behaves as expected
on all three tasks, its performance dropping with the
size of the training data. The performance of SEQ4-
and SEQ4+ requires more analysis.

In the case of GEOQUERY, having unlabelled data
from the true distribution (SEQ4-) is a good thing

1084

when there is enough of it, as clearly seen when
only 5% of the original dataset is used for supervised
training and the remaining 95% is used for unsuper-
vised training. The gap shrinks as the amount of
supervised data is increased, which is as expected.
On the other hand, using a large amount of extra,
generated data from an approximating distribution
(SEQ4+) does not help as much initially when com-
pared with the unsupervised data from the true dis-
tribution. However, as the size of the unsupervised
dataset in SEQ4- becomes the bottleneck this gap
closes and eventually the model trained on the ex-
tra data achieves higher accuracy.

For the SAIL task the semi-supervised models do
better than the supervised results throughout, with
the model trained on randomly generated additional
data consistently outperforming the model trained
only on the original data. This gives further credence
to the risk of overfitting to the training mazes already
mentioned above.

Finally, in the case of the NLMAPS corpus, the
semi-supervised approach does not appear to help
much at any point during the ablation. These indis-
tinguishable results are likely due to the task’s com-
plexity, causing the ablation experiments to either
have to little supervised data to sufficiently ground
the latent space to make use of the unsupervised
data, or in the higher percentages then too little un-
supervised data to meaningfully improve the model.

6 Related Work

Semantic parsing The tasks in this paper all
broadly belong to the domain of semantic parsing,
which describes the process of mapping natural lan-
guage to a formal representation of its meaning.
This is extended in the SAIL navigation task, where
the formal representation is a function of both the
language instruction and a given environment.

Semantic parsing is a well-studied problem with
numerous approaches including inductive logic
programming (Zelle and Mooney, 1996), string-
to-tree (Galley et al., 2004) and string-to-graph
(Jones et al., 2012) transducers, grammar induction
(Kwiatkowski et al., 2011; Artzi and Zettlemoyer,
2013; Reddy et al., 2014) or machine translation
(Wong and Mooney, 2006; Andreas et al., 2013).

While a large number of relevant literature fo-

cuses on defining the grammar of the logical forms
(Zettlemoyer and Collins, 2005), other models learn
purely from aligned pairs of text and logical form
(Berant and Liang, 2014), or from more weakly su-
pervised signals such as question-answer pairs to-
gether with a database (Liang et al., 2011). Recent
work of Jia and Liang (2016) induces a synchronous
context-free grammar and generates additional train-
ing examples (x, y), which is one way to address
data scarcity issues. The semi-supervised setup pro-
posed here offers an alternative solution to this issue.

Discrete autoencoders Very recently there has
been some related work on discrete autoencoders
for natural language processing (Suster et al., 2016;
Marcheggiani and Titov, 2016, i.a.) This work
presents a first approach to using effectively dis-
cretised sequential information as the latent rep-
resentation without resorting to draconian assump-
tions (Ammar et al., 2014) to make marginalisation
tractable. While our model is not exactly marginalis-
able either, the continuous relaxation makes training
far more tractable. A related idea was recently pre-
sented in Gülçehre et al. (2015), who use monolin-
gual data to improve machine translation by fusing a
sequence-to-sequence model and a language model.

7 Conclusion

We described a method for augmenting a supervised
sequence transduction objective with an autoen-
coding objective, thereby enabling semi-supervised
training where previously a scarcity of aligned data
might have held back model performance. Across
multiple semantic parsing tasks we demonstrated the
effectiveness of this approach, improving model per-
formance by training on randomly generated unsu-
pervised data in addition to the original data.

Going forward it would be interesting to fur-
ther analyse the effects of sampling from a logistic-
normal distribution as opposed to a softmax in or-
der to better understand how this impacts the dis-
tribution in the latent space. While we focused on
tasks with little supervised data and additional un-
supervised data in y, it would be straightforward to
reverse the model to train it with additional labelled
data in x, i.e. on the natural language side. A natural
extension would also be a formulation where semi-
supervised training was performed in both x and y.

1085

For instance, machine translation lends itself to such
a formulation where for many language pairs paral-
lel data may be scarce while there is an abundance
of monolingual data.

References
Waleed Ammar, Chris Dyer, and Noah A. Smith. 2014.

Conditional Random Field Autoencoders for Unsuper-
vised Structured Prediction. In Proceedings of NIPS.

Jacob Andreas and Dan Klein. 2015. Alignment-based
Compositional Semantics for Instruction Following.
In Proceedings of EMNLP, September.

Jacob Andreas, Andreas Vlachos, and Stephen Clark.
2013. Semantic Parsing as Machine Translation. In
Proceedings of ACL, August.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly Super-
vised Learning of Semantic Parsers for Mapping In-
structions to Actions. Transactions of the Association
for Computational Linguistics, 1(1):49–62.

Yoav Artzi, Dipanjan Das, and Slav Petrov. 2014. Learn-
ing Compact Lexicons for CCG Semantic Parsing. In
Proceedings of EMNLP, October.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In Proceedings of
ICLR.

Jonathan Berant and Percy Liang. 2014. Semantic Pars-
ing via Paraphrasing. In Proceedings of ACL, June.

Stanley F Chen and Joshua Goodman. 1999. An empir-
ical study of smoothing techniques for language mod-
eling. Computer Speech & Language, 13(4):359–393.

David L. Chen and Raymond J. Mooney. 2011. Learning
to Interpret Natural Language Navigation Instructions
from Observations. In Proceedings of AAAI, August.

Li Dong and Mirella Lapata. 2016. Language to
Logical Form with Neural Attention. arXiv preprint
arXiv:1601.01280.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? In Pro-
ceedings of HLT-NAACL, May.

Çaglar Gülçehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loı̈c Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On Us-
ing Monolingual Corpora in Neural Machine Transla-
tion. arXiv preprint arXiv:1503.03535.

Carolin Haas and Stefan Riezler. 2016. A corpus and se-
mantic parser for multilingual natural language query-
ing of openstreetmap. In Proceedings of NAACL, June.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780, November.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Association for Com-
putational Linguistics (ACL).

Bevan Jones, Jacob Andreas, Daniel Bauer, Karl Moritz
Hermann, and Kevin Knight. 2012. Semantics-
Based Machine Translation with Hyperedge Replace-
ment Grammars. In Proceedings of COLING 2012,
December.

Joohyun Kim and Raymond J. Mooney. 2012. Unsuper-
vised PCFG Induction for Grounded Language Learn-
ing with Highly Ambiguous Supervision. In Proceed-
ings of EMNLP-CoNLL, July.

Joohyun Kim and Raymond Mooney. 2013. Adapt-
ing Discriminative Reranking to Grounded Language
Learning. In Proceedings of ACL, August.

Diederik P. Kingma and Max Welling. 2014. Auto-
Encoding Variational Bayes. In Proceedings of ICLR.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater,
and Mark Steedman. 2011. Lexical Generalization
in CCG Grammar Induction for Semantic Parsing. In
Proceedings of EMNLP.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with
on-the-fly ontology matching. In In Proceedings of
EMNLP. Citeseer.

Percy Liang, Michael I. Jordan, and Dan Klein. 2011.
Learning Dependency-based Compositional Seman-
tics. In Proceedings of the ACL-HLT.

Percy Liang, Michael I Jordan, and Dan Klein. 2013.
Learning dependency-based compositional semantics.
Computational Linguistics, 39(2):389–446.

Matt MacMahon, Brian Stankiewicz, and Benjamin
Kuipers. 2006. Walk the Talk: Connecting Language,
Knowledge, and Action in Route Instructions. In Pro-
ceedings of AAAI.

Diego Marcheggiani and Ivan Titov. 2016. Discrete-state
variational autoencoders for joint discovery and factor-
ization of relations. Transactions of ACL.

Hongyuan Mei, Mohit Bansal, and Matthew R. Walter.
2016. Listen, Attend, and Walk: Neural Mapping
of Navigational Instructions to Action Sequences. In
Proceedings of AAAI.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale Semantic Parsing without Question-
Answer Pairs. Transactions of the Association for
Computational Linguistics, 2:377–392.

Simon Suster, Ivan Titov, and Gertjan van Noord. 2016.
Bilingual Learning of Multi-sense Embeddings with
Discrete Autoencoders. CoRR, abs/1603.09128.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar
as a Foreign Language. In Proceedings of NIPS.

1086

Yuk Wah Wong and Raymond J. Mooney. 2006. Learn-
ing for Semantic Parsing with Statistical Machine
Translation. In Proceedings of NAACL.

John M. Zelle and Raymond J. Mooney. 1996. Learning
to Parse Database Queries using Inductive Logic Pro-
gramming. In Proceedings of AAAI/IAAI, pages 1050–
1055, August.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to Map Sentences to Logical Form: Structured
Classification with Probabilistic Categorial Grammars.
In UAI, pages 658–666. AUAI Press.

Luke Zettlemoyer and Michael Collins. 2007. Online
Learning of Relaxed CCG Grammars for Parsing to
Logical Form. In Proceedings of EMNLP-CoNLL,
June.

Kai Zhao and Liang Huang. 2014. Type-driven incre-
mental semantic parsing with polymorphism. arXiv
preprint arXiv:1411.5379.

Jie Zhou and Wei Xu. 2015. End-to-end Learning of
Semantic Role Labeling Using Recurrent Neural Net-
works. In Proceedings of ACL.

1087

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1088–1097,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

EQUATION PARSING : Mapping Sentences to Grounded Equations

Subhro Roy Shyam Upadhyay Dan Roth
University of Illinois, Urbana Champaign

{sroy9, upadhya3, danr}@illinois.edu

Abstract

Identifying mathematical relations expressed
in text is essential to understanding a broad
range of natural language text from election
reports, to financial news, to sport commen-
taries to mathematical word problems. This
paper focuses on identifying and understand-
ing mathematical relations described within a
single sentence. We introduce the problem
of Equation Parsing – given a sentence, iden-
tify noun phrases which represent variables,
and generate the mathematical equation ex-
pressing the relation described in the sentence.
We introduce the notion of projective equation
parsing and provide an efficient algorithm to
parse text to projective equations. Our system
makes use of a high precision lexicon of math-
ematical expressions and a pipeline of struc-
tured predictors, and generates correct equa-
tions in 70% of the cases. In 60% of the time,
it also identifies the correct noun phrase →
variables mapping, significantly outperform-
ing baselines. We also release a new annotated
dataset for task evaluation.

1 Introduction

Understanding text often involves reasoning with re-
spect to quantities mentioned in it. Understanding
the news article statement in Example 1 requires
identifying relevant entities and the mathematical re-
lations expressed among them in text, and determin-
ing how to compose them. Similarly, solving a math
word problem with a sentence like Example 2, re-
quires realizing that it deals with a single number,
knowing the meaning of “difference” and compos-

Example 1 Emanuel’s campaign contribu-
tions total three times those of his opponents
put together.
Example 2 Twice a number equals 25 less
than triple the same number.
Example 3 Flying with the wind , a bird was
able to make 150 kilometers per hour.
Example 4 The sum of two numbers is 80.
Example 5 There are 54 5-dollar and 10-
dollar notes.

ing the right equation – “25” needs to be subtracted
from a number only after it is multiplied by 3.

As a first step towards understanding such rela-
tions, we introduce the Equation Parsing task - given
a sentence expressing a mathematical relation, the
goal is to generate an equation representing the rela-
tion, and to map the variables in the equation to their
corresponding noun phrases. To keep the problem
tractable, in this paper we restrict the final output
equation form to have at most two (possibly coref-
erent) variables, and assume that each quantity men-
tioned in the sentence can be used at most once in
the final equation.1 In example 1, the gold out-
put of an equation parse should be V1 = 3 × V2,
with V1 = “Emanuel’s campaign contributions” and
V2 = “those of his opponents put together”.

The task can be seen as a form of semantic parsing
(Goldwasser and Roth, 2011; Kwiatkowski et al.,
2013) where instead of mapping a sentence to a logi-
cal form, we want to map it to an equation. However,

1We empirically found that around 97% of sentences de-
scribing a relation have this property.

1088

there are some key differences that make this prob-
lem very challenging in ways that differ from the
“standard” semantic parsing. In Equation Parsing,
not all the components of the sentence are mapped
to the final equation. There is a need to identify
noun phrases that correspond to variables in the rela-
tions and determine that some are irrelevant and can
be dropped. Moreover, in difference from seman-
tic parsing into logical forms, in Equation Parsing
multiple phrases in the text could correspond to the
same variable, and identical phrases in the text could
correspond to multiple variables.

We call the problem of mapping noun phrases
to variables the problem of grounding variables.
Grounding is challenging for various reasons, key
among them are that: (i) The text often does not
mention “variables” explicitly, e.g., the sentence
in example 3 describes a mathematical relation be-
tween the speed of bird and the speed of wind, with-
out mentioning “speed” explicitly. (ii) Sometimes,
multiple noun phrases could refer to the same vari-
able. For instance, in example 2, both “a number”
and “the same number” refer to the same variable.
On the other hand, the same noun phrase might re-
fer to multiple variables, as in example 4, where the
noun phrase “two numbers” refer to two variables.

In addition, the task involves deciding which of
the quantities identified in the sentence are relevant
to the final equation generation. In example 5, both
“5” and “10” are not relevant for the final equation
“V1 + V2 = 54”. Finally, the equation needs to
be constructed from a list of relevant quantities and
grounded variables. Overall, the output space be-
comes exponential in the number of quantities men-
tioned in the sentence.

Determining the final equation that corresponds
to the text is an inference step over a very large
space. To address this, we define the concept of
“projectivity” - a condition where the final equation
can be generated by combining adjacent numbers or
variables, and show that most sentences expressing
mathematical relations exhibit the projectivity prop-
erty. Finally, we restrict our inference procedure to
only search over equations which have this property.

Our approach builds on a pipeline of structured
predictors that identify irrelevant quantities, recog-
nize coreferent variables, and, finally, generate equa-
tions. We also leverage a high precision lexicon of

mathematical expressions and develop a greedy lex-
icon matching strategy to guide inference. We dis-
cuss and exemplify the advantages of this approach
and, in particular, explain where the “standard” NLP
pipeline fails to support equation parsing, and ne-
cessitates the new approach proposed here. Another
contribution of this work is the development of a
new annotated data set for the task of equation pars-
ing. We evaluate our method on this dataset and
show that our method predicts the correct equation
in 70% of the cases and that in 60% of the time we
also ground all variables correctly.

The next section presents a discussion of related
work. Next we formally describe the task of equa-
tion parsing. The following sections describe our
equation representation and the concept of projectiv-
ity, followed by the description of our algorithm to
generate the equations and variable groundings from
text. We conclude with experimental results.

2 Related Work

The work most related to this paper is (Madaan et al.,
2016), which focuses on extracting relation triples
where one of the arguments is a number. In contrast,
our work deals with multiple variables and complex
equations involving them. There has been a lot of re-
cent work in automatic math word problem solving
(Kushman et al., 2014; Roy et al., 2015; Hosseini
et al., 2014; Roy and Roth, 2015). These solvers
cannot handle sentences individually. They require
the input to be a complete math word problem, and
even then, they only focus on retrieving a set of an-
swer values without mentioning what each answer
value corresponds to. Our work is also conceptually
related to work on semantic parsing – mapping natu-
ral language text to a formal meaning representation
(Wong and Mooney, 2007; Clarke et al., 2010; Cai
and Yates, 2013; Kwiatkowski et al., 2013; Gold-
wasser and Roth, 2011). However, as mentioned
earlier, there are some significant differences in the
task definition that necessitate the development of a
new approach.

3 The Equation Parsing Task

Equation parsing takes as input a sentence x describ-
ing a single mathematical equation, comprising one
or two variables and other quantities mentioned in x.

1089

Let N be the set of noun phrases in the sentence x.
The output of the task is the mathematical equation
described in x, along with a mapping of each vari-
able in the equation to its corresponding noun phrase
in N . We refer to this mapping as the “grounding”
of the variable; the noun phrase represents what the
variable stands for in the equation. Table 1 gives
an example of an input and output for the equation
parsing of the text in example 2. Since an equation
can be written in various forms, we use the form
which most agrees with text, as our target output.
So, for example 1, we will choose V1 = 3× V2 and
not V2 = V1 ÷ 3. In cases where several equation
forms seem to be equally likely to be the target equa-
tion, we randomly choose one of them, and keep this
choice consistent across the dataset.

The Equation Parsing Task
Input Twice a number equals 25 less than

triple the same number.
Output 2× V1 = (3× V1)− 25 (Equation)

V1 = “a number” (Grounding)
Table 1: Input and output for Equation Parsing

3.1 Equation Parse Representation

In this section, we introduce an equation parse for
a sentence. An equation parse of a sentence x is
a pair (T,E), where T represents a set of triggers
extracted from x, and E represents an equation tree
formed with the set T as leaves. We now describe
these terms in detail.
Trigger Given a sentence xmentioning a mathemat-
ical relation, a trigger can either be a quantity trigger
expressed in x, or variable trigger which is a noun
phrase in x corresponding to a variable. A quantity
trigger is a tuple (q, s), where q is the numeric value
of the quantity mentioned in text, and s is the span
of text from the sentence x which refers to the quan-
tity. A variable trigger is a tuple (l, s), where l rep-
resents the label of the variable, and s represents the
noun phrase representing the variable. For example,
for the sentence in Fig 1, the spans “Twice”, “25”,
and “triple” generate quantity triggers, whereas “a
number” and “the same number” generate variable
triggers, with label V1.
Trigger List The trigger list T for a sentence x con-
tains one trigger for each variable mention and each
numeric value used in the final equation expressed

Notation Definition

Quantity Trigger Mention of a quantity in text
Variable Trigger Noun phrase coupled with variable

label
Trigger Quantity or variable trigger
Quantity Trigger
List

List of quantity triggers, one for each
number mention in equation

Variable Trigger
List

List of variable triggers, one for each
variable mention in equation

Trigger List Union of quantity and variable trig-
ger list

Equation Tree Binary tree representation of equa-
tion

lc(n), rc(n) Left and right child of node n
EXPR(n) Expression represented by node n
�(n) Operation at node n
ORDER(n) Order of operation at node n
Location(n) Character offset of trigger represent-

ing leaf node n
Span-Start(n),
Span-End(n)

Start and end character offsets of
span covered by node n

Table 2: Summary of notations used in the paper

by the sentence x. The trigger list might consist of
multiple triggers having the same label, or extracted
from the same span of text. In the example sentence
in Fig 1, the trigger list comprises two triggers hav-
ing the same label V1. The final trigger list for the
example in Fig 1 is {(2, “2”), (V1, “a number”), (25,
“25”), (3, “triple”), (V1, “the same number”)}. Note
that there can be multiple valid trigger lists. In our
example, we could have chosen both variable trig-
gers to point to the same mention “a number”. Quan-
tity triggers in the trigger list form the quantity trig-
ger list, and the variable triggers in trigger list form
the variable trigger list.
Equation Tree An equation tree of a sentence x is
a binary tree whose leaves constitute the trigger list
of x, and internal nodes (except the root) are labeled
with one of the following operations – addition, sub-
traction, multiplication, division. In addition, for
nodes which are labeled with subtraction or division,
we maintain a separate variable to determine order
of its children. The root of the tree is always labeled
with the operation equal.

An equation tree is a natural representation for an
equation. Each node n in an equation tree repre-
sents an expression EXPR(n), and the label of the
parent node determines how the expressions of its
children are to be composed to construct its own ex-
pression. Let us denote the label for a non-leaf node

1090

Twice a number equals 25 less than triple the same number.Sentence

Trigger List

Equation Tree

2 V1 25 3 V1

×

=
−r

×

Figure 1: A sentence with its trigger list and equation tree. −r indicates subtraction with order rl.

n to be �(n), where �(n) ∈ {+,−,×,÷,=} and
the order of a node n’s children by ORDER(n) (de-
fined only for subtraction and division nodes), which
takes values lr (Left-Right) or rl (Right-Left). For a
leaf node n, the expression EXPR(n) represents the
variable label, if n is a variable trigger, and the nu-
meric value of the quantity, if it is a quantity trigger.
Finally, we use lc(n) and rc(n) to represent the left
and right child of node n, respectively. The equation
represented by the tree can be generated as follows.
For all non-leaf nodes n, we have

EXPR(n) =

EXPR(lc(n))�(n) EXPR(rc(n))

if �(n) ∈ {+,×,=}
EXPR(lc(n))�(n) EXPR(rc(n))

if �(n) ∈ {−,÷} ∧ ORDER(n) = lr

EXPR(rc(n))�(n) EXPR(lc(n))

if �(n) ∈ {−,÷} ∧ ORDER(n) = rl

(1)

Given an equation tree T of a sentence, the equation
represented by it is the expression generated by the
root of T (following Equation 1). Referring to the
equation tree in Fig 1, the node marked “−r” repre-
sents (3× V1)− 25, and the root represents the full
equation 2× V1 = (3× V1)− 25.

4 Projectivity

For each leaf n of an equation tree T , we de-
fine a function Location(·), to indicate the posi-
tion of the corresponding trigger in text. We also
define for each node n of equation tree T , func-
tions Span-Start(n) and Span-End(n) to denote
the minimum span of text containing the leaves of
the subtree rooted at n. We define them as follows:

Span-Start(n) =

Location(n) if n is a leaf
min(Span-Start(lc(n)), Span-Start(rc(n)))

otherwise

Span-End(n) =

Location(n) if n is a leaf
max(Span-End(lc(n)), Span-End(rc(n)))

otherwise

An equation tree T is called projec-
tive iff for every node n of T , either
Span-End(lc(n)) ≤ Span-Start(rc(n)) or
Span-End(rc(n)) ≤ Span-Start(lc(n)). In other
words, the span of the left child and the right child
cannot intersect in a projective equation tree2.

The key observation, as our corpus analysis indi-
cates, is that for most sentences, there exists a trig-
ger list, such that the equation tree representing the
relation in the sentence is projective. However this
might involve mapping two mentions of the same
variable to different noun phrases. Figure 1 shows
an example of a projective equation tree, which re-
quires different mentions of V1 to be mapped to dif-
ferent noun phrases. If we had mapped both men-
tions of V1 to same noun phrase “a number”, the
resulting equation tree would not have been projec-
tive. We collected 385 sentences which represent
an equation with one or two mentions of variables,
and each number in the sentence used at most once
in the equation. We found that only one sentence
among these could not generate a projective equa-
tion tree. (See Section 6.1 for details on dataset

2This is more general than the definition of projective trees
used in dependency parsing (McDonald et al., 2005).

1091

creation). Therefore, we develop an algorithmic ap-
proach for predicting projective equation trees, and
show empirically that it compares favourably with
ones which do not make the projective assumption.

5 Predicting Equation Parse

Equation parsing of a sentence involves predicting
three components – Quantity Trigger List, Variable
Trigger List and Equation Tree. We develop three
structured prediction modules to predict each of the
above components.

All our prediction modules take a similar form:
given input x and output y, we learn a scoring func-
tion fw(x, y), which scores how likely is the output
y given input x. The scoring function fw(x, y) is
linear, fw(y) = wTφ(x, y), where φ(x, y) is a fea-
ture vector extracted from x and y. The inference
problem, that is, the prediction y∗ for an input x is
then: y∗ = argmaxy∈Y fw(y), where Y is the set of
all allowed values of y.

5.1 Predicting Quantity Trigger List
Given input text and the quantities mentioned in it,
the role of this step is to identify , for each quan-
tity in the text, whether it should be part of the fi-
nal equation. For instance, in example 5 in Section
1, both “5” and “10” are not relevant for the final
equation “V1 + V2 = 54”. Similarly, in example
4, the number “two” is irrelevant for the equation
“V1 + V2 = 80”.

We define for each quantity q in the sentence, a
boolean value Relevance(q), which is set to true
if q is relevant for the final equation, and to false
otherwise. For the structured classification, the in-
put x is the sentence along with a set of recognized
quantities mentioned in it, and the output y is the
relevance values for all quantities in the sentence.
We empirically found that predicting all relevance
values jointly performs better than having a binary
classifier predict each one separately. The feature
function φ(x, y) used for the classification gener-
ates neighborhood features (from neighborhood of
q) and quantity features (properties of the quantity
mention). Details added to the appendix.

5.2 Predicting Variable Trigger List
The goal of this step is to predict the variable trigger
list for the equation. Our structured classifier takes

as input the sentence x, and the output y is either
one or two noun-phrases, representing variables in
the final equation. As we pointed out earlier, mul-
tiple groundings might be valid for any given vari-
able, hence there can be multiple valid variable trig-
ger lists. For every sentence x, we construct a set Y
of valid outputs. Each element in Y corresponds to
a valid variable trigger list. Finally, we aim to output
only one of the elements of Y .

We modified the standard structured prediction al-
gorithm to consider “superset supervision” and take
into account multiple gold structures for an input x.
We assume access to N training examples of the
form : (x1, Y1), (x2, Y2), . . . , (xN , YN), where each
Yi is a set of valid outputs for the sentence xi. Since
we want to output only one variable trigger list, we
want to score at least one y from Yi higher than all
other possible outputs, for each xi. We use a modi-
fied latent structured SVM to learn the weight vector
w. The algorithm treats the best choice among all of
Yi as a latent variable. At each iteration, for all xi,
the algorithm chooses the best choice y∗i from the
set Yi, according to the weight vector w. Then, w
is updated by learning on all (xi, y∗i) by a standard
structured SVM algorithm. The details of the algo-
rithm are in Algorithm 1. The distinction from stan-

Algorithm 1 Structural SVM with Superset Super-
vision
Input: Training data T =
{(x1, Y1), (x2, Y2), . . . , (xN , YN)}

Output: Trained weight vector w
1: w ← w0

2: repeat
3: T ′ ← ∅
4: for all (xi, Yi) ∈ T do
5: y∗i ← argmaxy∈Yi w

Tφ(xi, y)
6: T ′ ← T ′ ∪ {(xi, y∗i)}
7: end for
8: Update w by running standard Structural

SVM algorithm on T ′

9: until convergence
10: return w

dard latent structural SVM is in line 5 of Algorithm
1. In order to get the best choice y∗i for input xi, we
search only inside Yi, instead of all of Y . A similar
formulation can be found in Björkelund and Kuhn

1092

(2014). The features φ(x, y) used for variable trig-
ger prediction include variable features (properties
of noun phrase indicating variable) and neighbor-
hood features (lexical features from neighborhood
of variable mention). Details added to the appendix.

If the output of the classifier is a pair of noun
phrases, we use a rule based variable coreference
detector, to determine whether both noun phrases
should have the same variable label or not. The rules
for variable coreference are as follows :

1. If both noun phrases are the same, and they do
not have the token “two” or “2”, they have the
same label.

2. If the noun phrases are different, and the noun
phrase appearing later in the sentence contains
tokens “itself”, “the same number”, they have
the same label.

3. In all other cases, they have different labels.

Finally, each noun phrase contributes one variable
trigger to the variable trigger list.

5.3 Predicting Equation Tree

It is natural to assume that the syntactic parse of the
sentence could be very useful in addressing all the
predictions we are making in the equation parsing
tasks. However, it turns out that this is not the case
– large portions of the syntactic parse will not be
part of the equation parse, hence we need the afore-
mentioned modules to address this. Nevertheless,
in the next task of predicting the equation tree, we
attempted to constraint the output space using guid-
ance from the syntactic tree; we found, though, that
even enforcing this weak level of output expectation
is not productive. This was due to the poor perfor-
mance of current syntactic parsers on the equation
data (eg., in 32% of sentences, the Stanford parser
made a mistake which does not allow recovering the
correct equation).

The tree prediction module receives the trigger list
predicted by the previous two modules, and the goal
is to create an equation tree using the trigger list as
the leaves of that tree. The input x is the sentence
and the trigger list, and the output y is the equation
tree representing the relation described in the sen-
tence. We assume that the output will be a projective

equation tree. For features φ(x, y), we extract for
each non-leaf node n of the equation tree y, neigh-
borhood features (from neighborhood of node spans
of n’s children), connecting text features (from text
between the spans of n’s children) and number fea-
tures (properties of number in case of leaf nodes).
Details are included in the appendix.

The projectivity assumption implies that the final
equation tree can be generated by combining only
adjacent nodes, once the set of leaves is sorted based
on Span-Start(·) values. This allows us to use CKY
algorithm for inference. A natural approach to fur-
ther reduce the output space is to conform to the
projective structure of the syntactic parse of the sen-
tence. However, we found this to adversely affect
performance, due to the poor performance of syn-
tactic parser on equation data.
Lexicon To bootstrap the equation parsing process,
we developed a high precision lexicon to translate
mathematical expressions to operations and orders,
like “sum of A and B” translates to “A+B”, “A minus
B” translates to “A-B”, etc. (where A and B denote
placeholder numbers or expressions). At each step
of CKY, while constructing a node n of the equation
tree, we check for a lexicon text expression corre-
sponding to node n. If found, we allow only the
corresponding operation (and order) for node n, and
do not explore other operations or orders. We show
empirically that reducing the space using this greedy
lexicon matching help improve performance. We
found that using the lexicon rules as features instead
of hard constraints do not help as much. Note that
our lexicon comprises only generic math concepts,
and around 50% of the sentences in our dataset do
not contain any pattern from the lexicon.

Finally, given input sentence, we first predict the
quantity trigger and the variable trigger lists. Given
the complete trigger list, we predict the equation tree
relating the components of the trigger list.

5.4 Alternatives
A natural approach could be to jointly learn to pre-
dict all three components, to capture the dependen-
cies among them. To investigate this, we developed
a structured SVM which predicts all components
jointly, using the union of the features of each com-
ponent. We use approximate inference, first enumer-
ating possible trigger lists, and then equation trees,

1093

and find the best scoring structure. However, this
method did not outperform the pipeline method. The
worse performance of joint learning is due to: (1)
search space being too large for the joint model to do
well given our dataset size of 385, and (2) our inde-
pendent classifiers being good enough, thus support-
ing better joint inference. This tradeoff is strongly
supported in the literature (Punyakanok et al., 2005;
Sutton and McCallum, 2007).

Another option is to enforce constraints between
trigger list predictions, such as, variable triggers
should not overlap with the quantity triggers. How-
ever, we noticed that often noun phrases returned
by the Stanford parser were noisy, and would in-
clude neighboring numbers within the extracted
noun phrases. This prevented us from enforcing
such constraints.

6 Experimental Results

We now describe the data set, and the annotation
procedure used. We then evaluate the system’s per-
formance on predicting trigger list, equation tree,
and the complete equation parse.

6.1 Dataset

We created a new dataset consisting of 385 sen-
tences extracted from algebra word problems and fi-
nancial news headlines. For algebra word problems,
we used the MIT dataset (Kushman et al., 2014),
and two high school mathematics textbooks, Ele-
mentary Algebra (College of Redwoods) and Begin-
ning and Intermediate Algebra (Tyler Wallace). Fi-
nancial news headlines were extracted from The Lat-
est News feed of MarketWatch, over the month of
February, 2015. All sentences with information de-
scribing a mathematical relation among at most two
(possibly coreferent) variables, were chosen. Next,
we pruned sentences which require multiple uses of
a number to create the equation. This only removed
a few time related sentences like “In 10 years, John
will be twice as old as his son.”. We empirically
found that around 97% of sentences describing a re-
lation fall under the scope of our dataset.

The annotators were shown each sentence paired
with the normalized equation representing the rela-
tion in the sentence. For each variable in the equa-
tion, the annotators were asked to mark spans of

text which best describe what the variable repre-
sents. The annotation guidelines are provided in
the appendix. We wanted to consider only noun
phrase constituents for variable grounding. There-
fore, for each annotated span, we extracted the noun
phrase with maximum overlap with the span, and
used it to represent the variables. Finally, a tu-
ple with each variable being mapped to one of the
noun phrases representing it, forms a valid output
grounding (variable trigger list). We computed inter-
annotator agreement on the final annotations where
only noun phrases represent variables. The agree-
ment (kappa) was 0.668, indicating good agreement.
The average number of mention annotations per sen-
tence was 1.74.

6.2 Equation Parsing Modules

In this section, we evaluate the performance of the
individual modules of the equation parsing process.
We report Accuracy - the fraction of correct predic-
tions. Table 3 shows the 5-fold cross validation ac-
curacy of the various modules. In each case, we also
report accuracy by removing each feature group, one
at a time. In addition, for equation tree prediction,
we also show the effect of lexicon, projectivity, con-
forming to syntactic parse constraints, and using lex-
icon as features instead of hard constraints. For all
our experiments, we use the Stanford Parser (Socher
et al., 2013), the Illinois POS tagger (Roth and Ze-
lenko, 1998) and the Illinois-SL structured predic-
tion package (Chang et al., 2015).

6.3 Equation Parsing Results

In this section, we evaluate the performance of our
system on the overall equation parsing task. We re-
port Equation Accuracy - the fraction of sentences
for which the system got the equation correct, and
Equation+Grounding Accuracy - the fraction of sen-
tences for which the system got both the equation
and the grounding of variables correct. Table 4
shows the overall performance of our system, on a
5-fold cross validation. We compare against Joint
Learning - a system which jointly learns to predict
all relevant components of an equation parse (Sec-
tion 5.4). We also compare with SPF (Artzi and
Zettlemoyer, 2013), a publicly available semantic
parser, which can learn from sentence-logical form
pairs. We train SPF with sentence-equation pairs

1094

Quantity Trigger List Prediction Accuracy

All features 95.3
No Neighborhood features 42.5
No Quantity features 93.2

Variable Trigger List Prediction Accuracy

All features 75.5
No Variable features 58.6
No Neighborhood features 70.3

Equation Tree Prediction Accuracy

All features 78.9
No Neighborhood features 64.3
No Connecting Text features 70.2
No Number features 77.6
No Lexicon 72.7
No Projectivity 72.8
Conform with Syntactic Parse 70.2
Lexicon as Features 74.5

Table 3: Performance of system components

Source
Equation
Accuracy

Equation +
Grounding
Accuracy

Our System 71.3 61.2
Joint Learning 60.9 50.0
SPF 3.1 N/A

Table 4: Performance on equation parsing

and a seed lexicon for mathematical terms (similar to
ours), and report equation accuracy. Our structured
predictors pipeline approach is shown to be superior
to both Joint Learning and SPF.

SPF gets only a few sentences correct. We at-
tribute this to the inability of SPF to handle over-
lapping mentions (like in Example 4), as well as its
approach of parsing the whole sentence to the fi-
nal output form. The developers of SPF also con-
firmed 3 that it is not suitable for equation parsing
and that these results are expected. Since equation
parsing is a more involved process, a slight adapta-
tion of SPF does not seem possible, necessitating a
more involved process , of the type we propose. Our
approach, in contrast to SPF, can handle overlapping
mentions, selects triggers from text, and parses the
trigger list to form equations.

3Private communication

6.4 Error Analysis

For variable trigger list prediction, around 25% of
the errors were due to the predictor choosing a span
which is contained within the correct span, e.g.,
when the target noun phrase is “The cost of a child’s
ticket”, our predictor chose only “child’s ticket”.
Although this choice might be sufficient for down-
stream tasks, we consider it to be incorrect in our
current evaluation. Another 25% of the errors were
due to selection of entities which do not participate
in the relation. For example, in “A rancher raises 5
times as many cows as horses.”, our predictor chose
“A rancher” and “cows” as variables, whereas the
relation exists between “cows” and “horses”. For
the prediction of the equation tree, we found that
35% of the errors were due to rare math concepts
expressed in text. For example, “7 dollars short of
the price” represents 7 dollars should be subtracted
from the price. These errors can be handled by care-
fully augmenting the lexicon. Another 15% of the
errors were due to lack of world knowledge, requir-
ing understanding of time, speed, and distance.

7 Conclusion

This paper investigates methods that identify and
understand mathematical relations expressed in
text. We introduce the equation parsing task, which
involves generating an equation from a sentence
and identifying what the variables represent. We
define the notion of projectivity, and construct a
high precision lexicon, and use these to reduce the
equation search space. Our experimental results are
quite satisfying and raise a few interesting issues. In
particular, it suggests that predicting equation parses
using a pipeline of structured predictors performs
better than jointly trained alternatives. As discussed,
it also points out the limitation of the current NLP
tools in supporting these tasks. Our current formu-
lation has one key limitation; we only deal with
expressions that are described within a sentence.
Our future work will focus on lifting this restriction,
in order to allow relations expressed across multiple
sentences and multiple relations expressed in the
same sentence. Code and dataset are available
at http://cogcomp.cs.illinois.edu/
page/publication_view/800.

1095

Acknowledgements

This work is funded by DARPA under agree-
ment number FA8750-13-2-0008, and a grant from
the Allen Institute for Artificial Intelligence (al-
lenai.org).

A Features

A.1 Quantity Trigger List Prediction
The feature function φ(x, y) used for the classifica-
tion generates the following features :

1. Neighborhood features : For each quantity q
in the input sentence, we add unigrams and bi-
grams generated from a window around q, part
of speech tags of neighborhood tokens of q. We
conjoin these features with Relevance(q).

2. Quantity Features : For each quantity q, we
add unigrams and bigrams of the phrase repre-
senting the quantity. Also, we add a feature in-
dicating whether the number is associated with
number one or two, and whether it is the only
number present in the sentence. These features
are also conjoined with Relevance(q).

A.2 Variable Trigger List Prediction
The features φ(x, y) used for variable trigger predic-
tion are as follows:

1. Variable features : Unigrams and bigrams
generated from the noun phrase representing
variables, part of speech tags of tokens in noun
phrase representing variables.

2. Neighborhood Features : Unigrams and POS
tags from neighborhood of variables.

All the above features are conjoined with two labels,
one denoting whether y has two variables or one,
and the second denoting whether y has two variables
represented by the same noun phrase.

A.3 Equation Tree Prediction
For features φ(x, y), we extract for each non-leaf
node n of the equation tree y, the following:

1. Neighborhood Features : Unigrams, bi-
grams and POS tags from neighborhood
of Span-Start(lc(n)), Span-Start(rc(n)),

Span-End(lc(n)) and Span-End(rc(n)),
conjoined with �(n) and ORDER(n).

2. Connecting Text Features : Unigrams,
bigrams and part of speech tags between
min(Span-End(lc(n)),Span-End(rc(n)))
and max(Span-Start(lc(n)),
Span-Start(rc(n))), conjoined with �(n) and
ORDER(n).

3. Number Features : In case we are combining
two leaf nodes representing quantity triggers,
we add a feature signifying whether one num-
ber is larger than the other.

B Annotation Guidelines

The annotators were shown each sentence paired
with the normalized equation representing the rela-
tion in the sentence. For each variable in the equa-
tion, the annotators were asked to mark spans of text
which best describe what the variable represents.
They were asked to annotate associated entities if
exact variable description was not present. For in-
stance, in example 3 (Section 1), the relation holds
between the speed of bird and the speed of wind.
However, “speed” is not explicitly mentioned in the
sentence. In such cases, the annotators were asked
to annotate the associated entities “the wind” and “a
bird” as representing variables.

The guidelines also directed annotators to choose
the longest possible mention, in case they feel the
mention boundary is ambiguous. As a result, in
the sentence, “City Rentals rent an intermediate-size
car for 18.95 dollars plus 0.21 per mile.”, the phrase
“City Rentals rent an intermediate-size car” was an-
notated as representing variable. We allow multiple
mentions to be annotated for the same variable. In
example 2 (Section 1), both “a number” and “the
same number” were annotated as representing the
same variable.

References
[Artzi and Zettlemoyer2013] Yoav Artzi and Luke Zettle-

moyer. 2013. UW SPF: The University of Washington
Semantic Parsing Framework.

[Björkelund and Kuhn2014] Anders Björkelund and
Jonas Kuhn. 2014. Learning structured perceptrons
for coreference resolution with latent antecedents

1096

and non-local features. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

[Cai and Yates2013] Qingqing Cai and Alexander Yates.
2013. Semantic Parsing Freebase: Towards Open-
domain Semantic Parsing. In Proceedings of the Sec-
ond Joint Conference on Lexical and Computational
Semantics (*SEM).

[Chang et al.2015] Kai-Wei Chang, Shyam Upadhyay,
Ming-Wei Chang, Vivek Srikumar, and Dan Roth.
2015. Illinoissl: A JAVA library for structured pre-
diction. In Arxiv Preprint, volume abs/1509.07179.

[Clarke et al.2010] J. Clarke, D. Goldwasser, M. Chang,
and D. Roth. 2010. Driving semantic parsing from
the world’s response. In Proc. of the Conference on
Computational Natural Language Learning (CoNLL),
7.

[Goldwasser and Roth2011] D. Goldwasser and D. Roth.
2011. Learning from natural instructions. In Proc. of
the International Joint Conference on Artificial Intelli-
gence (IJCAI).

[Hosseini et al.2014] Mohammad Javad Hosseini, Han-
naneh Hajishirzi, Oren Etzioni, and Nate Kushman.
2014. Learning to solve arithmetic word problems
with verb categorization. In Proc. of the Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP) 2014.

[Kushman et al.2014] N. Kushman, L. Zettlemoyer,
R. Barzilay, and Y. Artzi. 2014. Learning to
automatically solve algebra word problems. In ACL.

[Kwiatkowski et al.2013] Tom Kwiatkowski, Eunsol
Choi, Yoav Artzi, and Luke Zettlemoyer. 2013.
Scaling semantic parsers with on-the-fly ontology
matching. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing.

[Madaan et al.2016] A. Madaan, A. Mittal, Mausam,
G. Ramakrishnan, and S. Sarawagi. 2016. Numerical
relation extraction with minimal supervision. In Proc.
of the Conference on Artificial Intelligence (AAAI).

[McDonald et al.2005] Ryan McDonald, Fernando
Pereira, Kiril Ribarov, and Jan Hajič. 2005. Non-
projective dependency parsing using spanning tree
algorithms. In Proceedings of the Conference on
Human Language Technology and Empirical Methods
in Natural Language Processing.

[Punyakanok et al.2005] V. Punyakanok, D. Roth, W. Yih,
and D. Zimak. 2005. Learning and inference over
constrained output. In Proc. of the International Joint
Conference on Artificial Intelligence (IJCAI), pages
1124–1129.

[Roth and Zelenko1998] D. Roth and D. Zelenko. 1998.
Part of speech tagging using a network of linear sepa-
rators. In Coling-Acl, The 17th International Confer-
ence on Computational Linguistics, pages 1136–1142.

[Roy and Roth2015] S. Roy and D. Roth. 2015. Solv-
ing general arithmetic word problems. In Proc. of
the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

[Roy et al.2015] S. Roy, T. Vieira, and D. Roth. 2015.
Reasoning about quantities in natural language. Trans-
actions of the Association for Computational Linguis-
tics, 3.

[Socher et al.2013] Richard Socher, John Bauer, Christo-
pher D. Manning, and Andrew Y. Ng. 2013. Parsing
With Compositional Vector Grammars. In ACL.

[Sutton and McCallum2007] C. Sutton and A. McCallum.
2007. Piecewise pseudolikelihood for efficient train-
ing of conditional random fields. In Zoubin Ghahra-
mani, editor, Proceedings of the International Confer-
ence on Machine Learning (ICML), pages 863–870.
Omnipress.

[Wong and Mooney2007] Y.-W. Wong and R. Mooney.
2007. Learning synchronous grammars for semantic
parsing with lambda calculus. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 960–967, Prague, Czech Re-
public, June. Association for Computational Linguis-
tics.

1097

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1098–1107,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Automatic Extraction of Implicit Interpretations from Modal Constructions

Jordan Sanders and Eduardo Blanco
Human Intelligence and Language Technologies Lab

University of North Texas
Denton, TX, 76203

jordansanders3@my.unt.edu, eduardo.blanco@unt.edu

Abstract

This paper presents an approach to extract
implicit interpretations from modal construc-
tions. Importantly, our approach uses a de-
terministic procedure to normalize eventuali-
ties and generate potential interpretations. An
annotation effort demonstrates that these in-
terpretations are intuitive to humans and most
modal constructions convey at least one inter-
pretation. Experimental results show that the
task is challenging but can be automated.

1 Introduction

People use language to communicate not only facts,
but also intentions, uncertain information and points
of view. Modality can be broadly defined as a gram-
matical phenomenon used to express the speaker’s
opinion or attitude towards a proposition (Lyons,
1977). Modality has also been defined as “the cate-
gory of meaning used to talk about possibilities and
necessities, essentially, states of affairs beyond the
actual.” (Hacquard, 2011). Within computational
linguistics, processing modality has proven useful
for, among others, recognizing textual entailment
(Snow et al., 2006; MacCartney et al., 2006), ma-
chine translation (Murata et al., 2005; Baker et al.,
2012), and sentiment analysis (Wiebe et al., 2005).

In the absence of modality markers, it is un-
derstood that the author of a proposition agrees
with it (Hengeveld and Mackenzie, 2008). Adding
a modality marker—also referred to as cue—casts
doubt on the truth of the proposition, e.g., Mary got
a new job last week vs. Mary likely got a new job last
week. Modality is surprisingly common (Morante

and Sporleder, 2012), and notoriously difficult to an-
notate and process automatically (Rubinstein et al.,
2013; Vincze et al., 2011). In MEDLINE, 11% of
sentences contain speculative language (Light et al.,
2004) and in biomedical abstracts, 18% (Vincze et
al., 2008). Rubin (2006) reports that 59% of state-
ments in 80 New York Times articles include epis-
temic modality. Despite modality being ubiquitous,
there is not an agreed upon annotation schema.

In this paper, we extract implicit interpretations
intuitively understood by humans when reading
modal constructions. We do not follow any specific
theory of modality. Instead, we manipulate modal
constructions to automatically generate potential in-
terpretations, and then assign factuality scores to
them. Consider statement (1) below:

1. John likely contracted the disease when a
mouse bit him in the Adirondacks.

Even though likely syntactically attaches to con-
tracted, a natural reading suggests that John con-
tracted the disease is factual; the only bit of un-
certain information is how (or when) he contracted
the disease. In other words, assuming that the au-
thor of statement (1) is truthful, event contracted
occurred with AGENT John and THEME the disease,
but the MANNER (or TIME) may not have been when
a mouse bit him in the Adirondacks.

A key feature of the work presented in this paper
is that the interpretations extracted from modal con-
structions are not tied to any syntactic or semantic
representation. Given modal constructions in plain
text, we extract implicit interpretations in plain text,
and these interpretations can be processed with any
existing NLP pipeline. The main contributions of

1098

this paper are: (1) procedure to automatically gen-
erate potential interpretations from modal construc-
tions; (2) annotations assessing the factuality of po-
tential interpretations generated from OntoNotes;1

and (3) experimental results using several features.

2 Previous Work

Theoretical works in philosophy and linguistics have
studied modality for decades (Palmer, 2001; Jes-
persen, 1992). Morante and Sporleder (2012) sum-
marize some of these works and related phenom-
ena, e.g., evidentiality, certainty, factuality, subjec-
tivity. There are several expressions that have modal
meanings (Fintel, 2006), including auxiliaries (must,
should, etc.), adverbs (perhaps, possibly, etc.) nouns
(possibility, chance, etc.) adjectives (necessary, pos-
sible, etc.) and conditionals (e.g., If the light is on,
Sandy is home). Most previous works in computa-
tional linguistics target modal adverbs (Rubinstein et
al., 2013; Carretero and Zamorano-Mansilla, 2013;
de Waard and Maat, 2012), and some also target
other modal triggers such as reporting verbs (e.g.,
The evidence suggests that he caused the fire), ref-
erences, or all verbs (Diab et al., 2009). Following
these previous works, we focus on modal adverbs.

Beyond theoretical works, there are many propos-
als to annotate modality. Doing so has proven chal-
lenging: following different annotations schemas on
the same source text yields little overlap (Vincze
et al., 2011), and Carretero and Zamorano-Mansilla
(2013) present an analysis of disagreements when
targeting modal adverbs. Annotation schemas typi-
cally include 3 tasks: identifying modality triggers,
their scopes, and sources (Quaresma et al., 2014;
Sánchez and Vogel, 2015). Many also classify the
modality into several types (epistemic, circumstan-
tial, ability, deontic, etc.) or a fine-grained taxonomy
(Rubinstein et al., 2013; Nissim et al., 2013). In this
paper, we are not concerned with modeling modal-
ity per se, or classifying instances of modality into
predefined classes or hierarchies. Instead, we extract
implicit interpretations from modal constructions in
order to mirror intuitive readings.

FactBank is probably the best-known corpus for
event factuality (Saurı́ and Pustejovsky, 2009). It
was created following carefully crafted annotation

1Available at www.sanders.tech

guidelines and examples comprising 34 pages.2 The
guidelines detail a manual normalization step to
“identify the full event that needs to be assessed
in terms of its factuality” (p. 12), and the anno-
tation process includes identifying the sources that
are assessing factuality (p. 15). de Marneffe et al.
(2012) reannotate a subset of FactBank with factual-
ity values from the reader’s perspective—they call it
veridicality—using crowdsourcing. Both FactBank
and de Marneffe et al. (2012), rely on manual nor-
malization to identify the eventuality whose factual-
ity is being annotated. Instead, we present an auto-
mated approach: we manipulate semantic roles and
syntactic dependencies deterministically to generate
several potential interpretations per modal construc-
tion, and then assess their factuality.

Many other efforts expand on FactBank us-
ing crowdsourced annotations, different annotation
schemas (usually simpler) or other domains. Prab-
hakaran et al. (2012) use crowdsourcing to classify
propositions into 5 modalities: ability, effort, inten-
tion, success and want. Soni et al. (2014) target
the factuality of quotes (direct and indirect) in Twit-
ter. Lee et al. (2015) detect events and assess fac-
tuality using easy-to-understand short instructions
to crowdsource annotations. Unlike us, they anno-
tate factuality at the individual token level, where
annotated tokens are deemed events by annotators.
Prabhakaran et al. (2015) define and annotate propo-
sitional heads with four categories: (1) non-belief
propositions, or (2) committed, non-committed or
reported belief. Instead of assessing factuality only
for propositional heads (usually verbs, one assess-
ment per proposition), we do so for potential inter-
pretations automatically generated by manipulating
verbs and their arguments deterministically.

All works cited in the previous two paragraphs
either manually normalize text prior to assess-
ing factuality—making automation from plain text
impossible—or assess factuality for tokens deemed
events (ordered, delay, agreed, etc.) or full propo-
sitions (a verb and all its arguments). Unlike them,
we automatically generate potential interpretations
from a single modal construction—or, equivalently,
automatically generate several normalizations—and
then assess their factuality.

2https://catalog.ldc.upenn.edu/docs/
LDC2009T23/annotationGuidelines.pdf

1099

3 Terminology and Background

We use the term modal construction to refer to verb-
argument structures modified by a modal adverb
(possibly, probably, etc.). We use the term implicit
interpretation, or interpretation to save space, to
refer to meaning intuitively understood by humans
when reading a modal construction. Potential in-
terpretations are interpretations automatically gen-
erated whose factuality has yet to be determined.
The factuality of an interpretation is a score indi-
cating its likelihood—whether it is true, false or un-
known given the modal construction.

We work on top of OntoNotes (Hovy et al., 2006)
because it includes text from several genres (news,
broadcast and telephone conversations, weblogs,
etc.) and includes part-of-speech tags, parse trees,
PropBank-style semantic roles and other linguistic
information.3 Very briefly, PropBank (Palmer et
al., 2005) has two kinds of semantic roles: num-
bered roles (ARG0, ARG1, etc.), which are defined
in verb-specific framesets, and argument modifiers
(ARGM-TMP, ARGM-LOC, etc.), we refer the reader
to the aforementioned reference, and the guidelines
and framesets4 for more details. We transformed the
parse trees in OntoNotes into syntactic dependencies
using Stanford CoreNLP (Manning et al., 2014).

4 Corpus Creation

We define a two-step procedure to create a corpus
of modal constructions and the implicit interpreta-
tions intuitively understood by humans when read-
ing them. First, we automatically generate potential
interpretations from modal constructions by manip-
ulating syntactic dependencies and semantic roles.
Second, we manually score potential interpretations
according to their likelihood. These interpretations
and scores are later used to learn how to score po-
tential interpretations automatically (Section 6).

4.1 Generating Potential Interpretations
Selecting Modal Constructions. OntoNotes is a
large corpus containing 63,918 sentences. Creating
a corpus of interpretations for all modal construc-
tions is outside the scope of this paper. In order

3We use the CoNLL-2011 Shared Task distribution (Pradhan
et al., 2011), http://conll.cemantix.org/2011/

4http://propbank.github.io/

to alleviate the annotation effort, we focus on se-
lected modal constructions. Specifically, we select
verb-argument structures that have one ARGM-ADV

or ARGM-MNR role, and that role is one of the fol-
lowing modal adverbs: certainly, clearly, definitely,
likely, obviously, possibly, probably, surely, or un-
likely. These adverbs are the most frequent that sat-
isfy the above filter. Additionally, we discard verb-
argument structures with to be as the main verb.
These rules retrieve 324 modal constructions.
Automatic Normalization. Modal constructions
often occur in long multi-clause sentences. In order
to identify the eventuality from which potential in-
terpretations should be generated, we automatically
normalize the original sentence. Normalizing con-
sists of a battery of deterministic steps implemented
using syntactic dependencies and semantic roles. In
contrast with previous work (Section 2), our normal-
ization is fully automated. Hereafter, we use verb
to refer to the main verb in the modal construction,
adverb to the modal adverb, and sem roles to all se-
mantic roles in the modal construction.

1. Remove adverb.
2. Convert negated verb-argument structures into

their positive counterparts. We follow 3 steps
inspired by the rules to form negation proposed
by (Huddleston and Pullum, 2002):
(a) Remove the negation mark by deleting the

token whose syntactic dependency is neg.
(b) Remove auxiliaries, expand contractions,

and fix third-person singular and past
tense. For example (before: after), doesn’t
go: goes, didn’t go: went, won’t go: will
go. To implement this step, we loop
through tokens whose head is the negated
verb with dependency aux, and use a list
of irregular verbs5 and grammar rules to
convert to third-person singular and past
tense based on orthographic patterns.

(c) Rewrite negatively-oriented polarity-
sensitive items. For example (before:
after), anyone: someone, any longer:
still, yet: already. at all: somewhat.
We use the correspondences between
negatively-oriented and positively-

5https://en.wikipedia.org/wiki/English_
irregular_verbs

1100

Sent. 1: The danger is [probably]ARGM-ADV [he]ARG0 [can]ARGM-MOD [not]ARGM-NEG [deliver]verb [the promises that he
made during the campaign.]ARG1

N
or

m
al

iz
at

io
n Step Output

1 The danger is he cannot deliver the promises that he made during the campaign.
2 The danger is he can deliver the promises that he made during the campaign.
3 The danger is he will deliver the promises that he made during the campaign.
4 He will deliver the promises that he made during the campaign.
5 He will deliver the promises that he made during the campaign.

Sent. 2: [...] I wouldn’t define victory as simply not raising taxes—although [I]ARG0 , v1, v2 [definitely]ARGM-ADV, v1

[would]ARGM-MOD, v1 [like]v1 [to [defer]v2 [raising taxes]ARG1 , v2 [as long as prudently possible.]ARG2, v2]ARG1 , v1

N
or

m
al

iz
at

io
n Step Output

1 I wouldn’t define [...] although I would like to defer raising taxes as long as prudently possible.
2, 3 I would define [...] although I will like to defer raising taxes as long as prudently possible.

4 I will like to defer raising taxes as long as prudently possible.

5 Normalization 1: I will like to defer raising taxes as long as prudently possible.
Normalization 2: I will defer raising taxes as long as prudently possible.

In
te

rp
re

ta
tio

ns

From Potential Interpretation

norm. 1 {ARG0} will like to defer raising taxes as long as prudently possible.
I will like {to ARG1}.

norm. 2

{ARG0} will defer raising taxes as long as prudently possible.
I will defer {ARG1} as long as prudently possible.
I will defer raising taxes {ARG2}.
I will defer {ARG1} {ARG2}.

Table 1: Step-by-step execution of the procedure to automatically normalize modal constructions (Sentences 1 and 2) and generate

potential interpretations (Sentence 2).

oriented polarity-sensitive items by
(Huddleston and Pullum, 2002, pp. 831).

3. Fix modal verbs and tense. If a modal verb
(can, could, may, would, should, must, etc.)
has as syntactic head verb, we transform the
modal construction into past or future depend-
ing on the modal and tense of verb. For exam-
ple: could go: went, can go: will go, should
have gone: went. We use the same grammar
rules and list of irregular verbs as in Step (2b).

4. Select relevant tokens. We remove all tokens
in the original sentence except verb and tokens
belonging to the roles in sem roles. Addition-
ally, we fix phrasal verbs by adding tokens with
the part-of-speech tag RP whose syntactic head
is verb and dependency type prt (semantic roles
in OntoNotes are annotated for verb tokens,
missing the preposition when verb is a phrasal
verb would inadvertently change meaning). We
also add all tokens to the left of verb until we
find the first token whose part-of-speech tag
does not start with VB, MD, RB or EX (verbs,
modals, adverbs and existential there).

5. Generate additional normalizations. If verb is

followed by TO + verb2 (e.g., want to go, like
to play, intend to pass), we generate an addi-
tional normalization for verb2 after merging the
semantic roles of verb and verb2.

Table 1 exemplifies the automatic normalization
step by step with 2 modal constructions.
Generating Potential Interpretations in Plain
Text. Inspired by the rules Blanco and Sarabi (2016)
used to generate interpretations from negation, we
generate potential interpretations from modal con-
structions by toggling off combinations of roles in
sem roles. We consider numbered roles (ARG0–
ARG5), and argument modifiers (ARGM-) ending in
LOC, TMP, MNR, PRP, CAU, EXT, PRD or DIR.

Table 1 lists some potential interpretations gener-
ated from a sample modal construction. The total
number of potential interpretations for the 324 se-
lected modal construction is 1,756 (average: 5.4).

We recognize that our procedure to generate im-
plicit interpretations is unable to generate some use-
ful interpretations. For example, from This is [a
person who]ARG1 [likely]ARGM-ADV [died]verb [on im-
pact versus perhaps freezing to death]ARGM-MNR , we

1101

generate This is a person who died {ARGM-MNR},
which is factual: the only uncertain information is
the manner in which the person died. Since we tog-
gle off semantic roles of verb, our procedure is un-
able to generate A person died on impact and A per-
son died freezing to death; the former interpretation
would receive a higher factuality score than the lat-
ter. We argue that automation is preferable, and re-
serve for future work generating interpretations that
require splitting semantic roles.

4.2 Scoring Potential Interpretations
After automatically generating potential interpreta-
tions, we collected manual annotations to determine
their factuality. The annotation interface showed the
original sentence containing the modal construction,
the previous and next sentences as context, and no
additional information. Following previous work
(Saurı́ and Pustejovsky, 2009; de Marneffe et al.,
2012), we found it useful not to restrict answers
to yes or no, but to allow for degrees of certainty.
Specifically, we asked “Given the 3 sentences above,
do you believe that the statement [potential interpre-
tation] below is true?”. Answers are a score ranging
from −5 to 5, where −5 indicates Certainly no, 5 in-
dicates Certainly yes, and the scores in between indi-
cate a continuum of certainty (0 indicates unknown).

After pilot annotations, we examined disagree-
ments and defined the following simple guidelines:

1. Context (previous sentence, target sentence,
and next sentence) is taken into account.

2. World knowledge available at the time the orig-
inal sentence was authored—not new knowl-
edge available after—is taken into account.

3. Semantic roles toggled off are replaced with
a semantically related substitute (Turney and
Pantel, 2010) for the original role, e.g., give:
take, customer: sales associate.

5 Corpus Analysis

The total number of modal constructions selected is
324 and the number of potential interpretations au-
tomatically generated in 1,756 (average: 5.4 inter-
pretation per modal construction). 39.4% of inter-
pretations are scored with a high degree of certainty.
We define high certainty as a score below −3 (inter-
pretation is false) or larger than 3 (interpretation is

roles toggled off # % 6= 0
Mean score
> 0 < 0

0 345 87.25 3.96 -3.94
1 800 48.50 3.67 -3.90
2 479 20.46 3.55 -4.03
3 120 5.83 3.50 -3.00

Table 2: Number of interpretations generated by toggling off 0,

1, 2 or 3 roles (#), percentage of interpretations not scored zero

(% 6= 0), and mean scores of interpretations with positive and

negative scores.

Role # % 6= 0
Mean score
> 0 < 0

None 345 87.25 3.96 -3.94
ARG1 671 30.40 3.60 -3.92
ARG0 604 25.50 3.72 -3.94
ARG2 140 28.57 3.85 -3.84
ARGM-MNR 271 32.84 3.40 -3.85
ARGM-TMP 231 28.57 3.71 -3.84
ARGM-LOC 82 23.17 3.43 -4.60
Other 290 20.00 3.38 -3.87

Table 3: Number of interpretations generated by toggling off

each semantic role (#), percentage of interpretations not scored

zero (% 6= 0), and mean score of interpretations with positive

and negative scores.

true). Importantly, on overage, modal constructions
have 2.13 interpretations scored with high certainty,
and 1.23 scored 3 or higher. In other words, on av-
erage, our procedure generates over 2 interpretation
that are either true or false, and over 1 interpretation
that is true per modal construction.

Tables 2 and 3 present basic corpus statistics. The
percentage of interpretations annotated with a score
different than 0 depends greatly on the number of
roles toggled off (Table 2): 0: 87.25%, 1: 48.50%,
2: 20.46%, 3: 5.83%. Note that the number of roles
toggled off does not significantly affect the mean
score of interpretations not scored 0 (Table 2, last
2 columns). Most interpretations have either ARG0

or ARG1 toggled off (Table 3), and the percentages
of interpretations not scored zero range from 20%
to 32.84% depending on the semantic role. Note
that the average score of interpretations scored pos-
itively and negatively, however, does not depend on
whether a semantic role is toggled off.

1102

Original sentence and sample of automatically generated potential interpretations Score

1

Context, previous sentence: The last thing we want to do is react to every wild statement that they make.
Original sentence: [But]ARGM-DIS [they]ARG0 [certainly]ARGM-ADV [chose]verb [that]ARG1 [to get our attention
and that of the international community.]ARGM-PRP

Context, next sentence: Uh but what they’ve got to realize is there is no magic bullet here.
- Interpretation 1.1: But they chose that to get our attention and that of the international community. 5
- Interpretation 1.2: But they chose {ARG1} to get our attention and that of the international community. -5

2

Context, previous sentence: Saddam Hussein (interrupting): Before you offer me your rotten goods, I ask you
did you find weapons of mass destruction in Iraq or not?
Original sentence: Rumsfeld (disconcerted): We haven’t found them yet, but [we]ARG0 [will]ARGM-MOD

[surely]ARGM-ADV [find]verb [them]ARG1 [one day]ARGM-TMP .
Context, next sentence: Do you deny that you had intentions to manufacture a nuclear bomb?
- Interpretation 2.1: We will find them one day. 4
- Interpretation 2.2: We will find them {ARGM-TMP}. -3

3

“This is a rare case of [a company with a big majority holder which]ARG0 [will]ARGM-MOD [probably]ARGM-ADV

[act]verb [in the interests of the minority holders]ARG1”, one investor says.
- Interpretation 3.1: {ARG0} will act in the interests of the minority holders. 4
- Interpretation 3.2: A company with a big majority holder will act {ARG1}. 4

4

I wouldn’t define victory as simply not raising taxes—although [I]ARG0 , v1, v2 [definitely]ARGM-ADV, v1

[would]ARGM-MOD, v1 [like]v1 [to [defer]v2 [raising taxes]ARG1 , v2 [as long as prudently possible.]ARG2 , v2]ARG1 , v1

- Interpretation 4.1: I will like to defer raising taxes as long as prudently possible. 5
- Interpretation 4.2: I will defer raising taxes as long as prudently possible. 1

Table 4: Annotation Examples. For each example, we show the original sentence containing the modal construction, context if

helpful to determine scores, and 2 selected interpretations and their scores. Square brackets indicate semantic roles.

5.1 Annotation Quality
The annotation guidelines (Section 4.2) to score po-
tential interpretations were defined after examin-
ing disagreements in pilot annotations. After defin-
ing the guidelines, inter-annotator agreement was
0.92 on 18% of randomly selected interpretations.6

Agreement measures designed for categorical labels
are unsuitable, as not all disagreements are equal,
e.g., 4 vs. 5, -2 vs. 5. Because of the high agreement
and following previous work (Agirre et al., 2012),
the rest of interpretations were annotated once.

5.2 Annotation Examples
Table 4 presents annotation examples. For each ex-
ample, we include the original sentence containing
a selected modal construction, its context (previous
and next sentence) if helpful for scoring, and 2 au-
tomatically generated potential interpretations with
their annotated scores.

Example (1) shows that context helps in determin-
ing the factuality of potential interpretations (item
(1) in the guidelines). After reading the three sen-

6We set an internal deadline of 3 days after agreeing on the
guidelines, and we could annotate 18% of instances in that time.

tences, it is clear that they are making wild state-
ments, and are hoping to get attention for it. Inter-
pretation 1.1 removes adverb certainly and receives
the highest score, 5. Interpretation 1.2 is obtained af-
ter toggling off ARG1, and receives the lowest score,
−5. This low score is justified by item (3) in our an-
notation guidelines: replacing wild statements with
a semantically (different but) related substitute, e.g.,
But they chose reasonable statements / good man-
ners to get our attention and that of the international
community, yields an unlikely interpretation.

The interpretations in Example (2) show again the
importance of context, and also exemplify item (2)
in the annotation guidelines. Interpretation 2.1, We
will find them one day receives a high score (4/5),
as given the context (and assuming that Rumsfeld
is truthful), it is very likely that they will find the
weapons of mass destruction, but it is not guaran-
teed. Note that annotators are not allowed to use the
fact that the weapons were never found (item (2) in
the guidelines). In Interpretation 2.2, one day could
be replaced with never / at no time or similar con-
structions, and doing so yields the opposite of the
intended meaning (score: −3). A possible descrip-

1103

Type Feature Description

baseline

adverb Word form of adverb
adverb pos Part-of-speech of adverb
verb Word form of verb
verb pos Part-of-speech of verb
distance Number of tokens between adverb and verb
direction Whether adverb occurs before or after verb

adverb and
verb

adverb rel pos Part-of-speech tags of the parent, and left and right siblings of adverb
adverb subcat Concatenation of part-of-speech tags of all siblings of adverb
verb rel pos Part-of-speech tags of the parent, and left and right siblings of verb
adverb subcat Concatenation of part-of-speech tags of all siblings of verb
path, path l Syntactic path between adverb and verb, and length of the path
ancestor POS tag of the lowest common ancestor between verb and adverb
has sem role Flags indicating whether a semantic role is in the modal construction

interpretation

num roles int Number of roles toggled off in the potential interpretation
sem roles int Flags indicating which roles are toggled off in the interpretation
roles distance Number of tokens between each semantic role and verb
roles direction Whether each semantic role occurs before or after verb
roles path Syntactic path between each role and verb
roles path l Length of syntactic path between each role and verb

Table 5: Features used to predict factuality scores to automatically generated potential interpretations. Features extracted from

semantic role are extracted for ARG0–ARG5 and modifiers (ARGM-) ending in LOC, TMP, MNR, PRP, CAU, EXT and PRD.

tion of these scores could be “almost certainly true”
(4 out of 5), and “most probably false” (-3 out of -5).
We see scores as a continuum of certainty, but tex-
tual description may help understand the examples.

Example (3) demonstrates the usefulness of the
normalization process—specifically, Step 4, select-
ing relevant tokens—and the importance of replac-
ing roles with semantically related substitutes (item
(3) in the guidelines). In interpretation 3.1, {ARG0}
will act in the interests of the minority holders, ARG0

can be replaced with a company with several minor-
ity holders, yielding a valid interpretation scored 4
(out of 5). Similarly, in interpretation 3.2, A com-
pany with a big majority holder will act {ARG1},
ARG1 can be replaced with in the interests of the
big majority holder, yielding another valid interpre-
tation also scored 4 (out of 5).

Finally, Example (4) shows Step 5 in the auto-
matic normalization procedure (Section 4). By cre-
ating an additional verb-argument structure, we are
able to differentiate between liking to do something
(Interpretation 4.1, score 5/5) and actually doing that
something (Interpretation 4.2, score 1/5).

6 Learning to Score Potential
Interpretations

In order to automatically score potential interpre-
tations, we follow a standard supervised machine
learning approach. Each potential interpretation be-
comes an instance, and we split modal construc-
tions (and their potential interpretations) into train-
ing (80%) and test (20%). When splitting, we make
sure that the amount of modal constructions for each
adverb in each split is proportional, i.e., 80% of
modal constructions with each adverb are in the
train split and the rest in the test split. Splitting in-
stances randomly would assign interpretations gen-
erated from the same modal construction to the train
and test splits, and bias the results.

We trained a Support Vector Machine (SVM) for
regression with RBF kernel using scikit-learn (Pe-
dregosa et al., 2011), which uses LIBSVM (Chang
and Lin, 2011). The SVM parameters (C and γ)
were tuned using 10-fold cross-validation with the
training set, and we report results using the test split.

1104

Features Pearson
baseline -0.029
adverb and verb 0.025
interpretation 0.494
baseline + adverb and verb -0.013
baseline + interpretation 0.463
adverb and verb + interpretation 0.465
baseline + adverb and verb + interpretation 0.468

Table 6: Pearson correlations obtained with test instances and

several feature combinations.

6.1 Feature Selection
The full set of features is detailed in Table 5. Base-
line features are simple features characterizing ad-
verb and verb and we do not elaborate on them.
Adverb and verb features are extracted from the
modal construction (constituent tree and semantic
roles) and provide additional information about the
modal construction. Interpretation features charac-
terize the potential interpretation whose factuality
is being scored, and are also derived from the con-
stituent tree and semantic roles.

Most adverb and verb features are standard in se-
mantic role labeling (Gildea and Jurafsky, 2002).
We include the part-of-speech tags of the parent, and
left and right siblings of adverb and verb, as well as
their subcategorization, i.e., the concatenation of the
sibling’s part-of-speech tags. We also include syn-
tactic path between adverb and verb, and its length.
Additionally, we include the common ancestor, i.e.,
the syntactic node of the lowest common node that
is an ancestor of both adverb and verb, and use bi-
nary features to indicate whether each semantic role
is present in the modal construction.

Finally, interpretation features characterize the
semantic roles toggled off to generate the potential
interpretation. We include the number of roles tog-
gled off to generate the potential interpretation, and
binary flags indicating which roles. Additionally, for
each role toggled off, we include the distance from
the verb (number of tokens), whether it occurs be-
fore or after the verb, the syntactic path to the verb
and the length of the path.

7 Experimental Results

Table 6 details results obtained with test instances
using several feature combinations derived from

gold linguistic information (POS tags, parse trees,
semantic roles, etc.). Baseline and adverb and verb
features, which characterize the modal construction
from which potential interpretation are extracted, are
virtually useless. They yield Pearson correlations of
−0.029 and 0.025 individually, and −0.013 com-
bined. These results suggest that the verb and ad-
verb in the modal construction (word forms, syntac-
tic paths, etc.) are insufficient to rank potential inter-
pretations generated from the modal construction.

Interpretation features, which capture differ-
ences between potential interpretations being scored
(number of roles toggled off, roles toggled off,
etc.), obtain a modest Pearson correlation of 0.494.
Combining interpretation features with other fea-
tures proved detrimental, Pearson correlations are
between 0.463 and 0.468.

8 Conclusions

Modality is a pervasive phenomenon used to talk
about what is not factual. In this paper, we have pre-
sented a methodology to extract implicit interpreta-
tions from modal constructions. First, we automati-
cally generate potential interpretations using syntac-
tic dependencies and semantic roles, and then assign
to them a factuality score.

The most important conclusion of the work pre-
sented here is that several interpretations automati-
cally generated from a single modal construction of-
ten receive scores indicating high certainty. Indeed,
on average, modal constructions have 2.13 interpre-
tations scored lower or equal than −3, or higher
or equal than 3. This contrast with previous work,
which only assess factuality of one normalization
per proposition.

Experimental results using supervised machine
learning and relatively simple features show that the
task is challenging but can be automated. We be-
lieve better results could be obtained by incorporat-
ing features capturing knowledge in the context of
the modal construction, including other clauses in
the same sentence, and the previous and next sen-
tences. Another extension of the current work is
to investigate a similar approach for other modality
markers such as nouns (e.g., possibility, chance), ad-
jectives (e.g.necessary, probable,) and certain verbs
(e.g., claim, suggests).

1105

References
Eneko Agirre, Daniel Cer, Mona Diab, and Aitor

Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pilot
on semantic textual similarity. In Proceedings of the
Sixth International Workshop on Semantic Evaluation
(SemEval 2012), pages 385–393, Montréal, Canada,
7-8 June.

Kathryn Baker, Michael Bloodgood, Bonnie J. Dorr,
Chris Callison-Burch, Nathaniel W. Filardo, Christine
Piatko, Lori Levin, and Scott Miller. 2012. Use of
Modality and Negation in Semantically-Informed Syn-
tactic MT. Comput. Linguist., 38(2):411–438, June.

Eduardo Blanco and Zahra Sarabi. 2016. Automatic
generation and scoring of positive interpretations from
negated statements. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 1431–1441, San Diego, Califor-
nia, June. Association for Computational Linguistics.

Marta Carretero and Juan Rafael Zamorano-Mansilla.
2013. An analysis of disagreement-provoking factors
in the analysis of epistemic modality and evidentiality:
the case of english adverbials. In Proceedings of IWCS
2013 Workshop on Annotation of Modal Meanings in
Natural Language (WAMM), pages 16–23, Potsdam,
Germany, March.

Chih-Chung Chang and Chih-Jen Lin. 2011. Libsvm:
A library for support vector machines. ACM Trans.
Intell. Syst. Technol., 2(3):27:1–27:27, May.

Marie-Catherine de Marneffe, Christopher D. Manning,
and Christopher Potts. 2012. Did it happen? the prag-
matic complexity of veridicality assessment. Comput.
Linguist., 38(2):301–333, June.

Anita de Waard and Henk Pander Maat. 2012. Epis-
temic modality and knowledge attribution in scientific
discourse: A taxonomy of types and overview of fea-
tures. In Proceedings of the Workshop on Detecting
Structure in Scholarly Discourse, ACL ’12, pages 47–
55, Stroudsburg, PA, USA.

Mona Diab, Lori Levin, Teruko Mitamura, Owen Ram-
bow, Vinodkumar Prabhakaran, and Weiwei Guo.
2009. Committed belief annotation and tagging. In
Proceedings of the Third Linguistic Annotation Work-
shop, pages 68–73, Suntec, Singapore, August.

Kai Von Fintel. 2006. Modality and language. In
D. Borchert, editor, Encyclopedia of Philosophy,
pages 20–27. Macmillan Reference.

Daniel Gildea and Daniel Jurafsky. 2002. Auto-
matic labeling of semantic roles. Comput. Linguist.,
28(3):245–288, September.

Valentine Hacquard. 2011. Modality. In C. Maienborn,
K. von Heusinger, and P. Portner, editors, Seman-
tics: An International Handbook of Natural Language
Meaning, pages 1484–1515. Mouton de Gruyter.

Kees Hengeveld and J. Lachlan Mackenzie. 2008. Func-
tional Discourse Grammar: A Typologically-Based
Theory of Language Structure. Oxford University
Press.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
the 90% Solution. In NAACL ’06: Proceedings of
the Human Language Technology Conference of the
NAACL, Companion Volume: Short Papers on XX,
pages 57–60, Morristown, NJ, USA.

Rodney D. Huddleston and Geoffrey K. Pullum. 2002.
The Cambridge Grammar of the English Language.
Cambridge University Press, April.

Otto Jespersen. 1992. The philosophy of grammar. Uni-
versity of Chicago Press, Chicago.

Kenton Lee, Yoav Artzi, Yejin Choi, and Luke Zettle-
moyer. 2015. Event detection and factuality assess-
ment with non-expert supervision. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1643–1648, Lisbon,
Portugal, September.

Marc Light, Xin Ying Qiu, and Padmini Srinivasan.
2004. The language of bioscience: Facts, spec-
ulations, and statements in between. In Lynette
Hirschman and James Pustejovsky, editors, HLT-
NAACL 2004 Workshop: BioLINK 2004, Linking Bi-
ological Literature, Ontologies and Databases, pages
17–24, Boston, Massachusetts, USA, May 6.

John Lyons. 1977. Semantics. Cambridge University
Press. Cambridge Books Online.

Bill MacCartney, Trond Grenager, Marie-Catherine
de Marneffe, Daniel Cer, and Christopher D. Man-
ning. 2006. Learning to recognize features of valid
textual entailments. In Proceedings of the Main Con-
ference on Human Language Technology Conference
of the North American Chapter of the Association of
Computational Linguistics, HLT-NAACL ’06, pages
41–48, Stroudsburg, PA, USA.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J Bethard, and David McClosky.
2014. The stanford corenlp natural language process-
ing toolkit. In Proceedings of 52nd Annual Meeting of
the Association for Computational Linguistics: System
Demonstrations, pages 55–60.

Roser Morante and Caroline Sporleder. 2012. Modal-
ity and negation: An introduction to the special issue.
Comput. Linguist., 38(2):223–260, June.

Masaki Murata, Masao Utiyama, Kiyotaka Uchimoto,
Hitoshi Isahara, and Qing Ma. 2005. Correction of er-
rors in a verb modality corpus for machine translation
with a machine-learning method. 4(1):18–37, March.

Malvina Nissim, Paola Pietrandrea, Andrea Sanso, and
Caterina Mauri. 2013. Cross-linguistic annotation of

1106

modality: a data-driven hierarchical model. In Pro-
ceedings of the 9th Joint ISO - ACL SIGSEM Work-
shop on Interoperable Semantic Annotation, pages 7–
14, Potsdam, Germany, March.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An Annotated Cor-
pus of Semantic Roles. Computational Linguistics,
31(1):71–106.

F. R. Palmer. 2001. Mood and Modality. Cambridge
University Press, second edition. Cambridge Books
Online.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–
2830.

Vinodkumar Prabhakaran, Michael Bloodgood, Mona
Diab, Bonnie Dorr, Lori Levin, Christine D. Piatko,
Owen Rambow, and Benjamin Van Durme. 2012. Sta-
tistical modality tagging from rule-based annotations
and crowdsourcing. In Proceedings of the Workshop
on Extra-Propositional Aspects of Meaning in Com-
putational Linguistics, pages 57–64, Jeju, Republic of
Korea, July.

Vinodkumar Prabhakaran, Tomas By, Julia Hirschberg,
Owen Rambow, Samira Shaikh, Tomek Strzalkowski,
Jennifer Tracey, Michael Arrigo, Rupayan Basu,
Micah Clark, Adam Dalton, Mona Diab, Louise
Guthrie, Anna Prokofieva, Stephanie Strassel, Gregory
Werner, Yorick Wilks, and Janyce Wiebe. 2015. A
new dataset and evaluation for belief/factuality. In
Proceedings of the Fourth Joint Conference on Lexical
and Computational Semantics, pages 82–91, Denver,
Colorado, June.

Sameer Pradhan, Lance Ramshaw, Mitchell Marcus,
Martha Palmer, Ralph Weischedel, and Nianwen Xue.
2011. Conll-2011 shared task: Modeling unrestricted
coreference in ontonotes. In Proceedings of the Fif-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task, pages 1–27, Portland,
Oregon, USA, June.

P. Quaresma, A. Mendes, I. Hendrickx, and T. Gon?alves.
2014. Automatic tagging of modality: identifying trig-
gers and modal value. In Proceedings of the 10th Joint
ACL SIGSEM - ISO Workshop on Interoperable Se-
mantic Annotation.

Victoria L. Rubin. 2006. Identifying certainty in texts.
Ph.D. thesis, Syracuse University, Syracuse, NY.

Aynat Rubinstein, Hillary Harner, Elizabeth Krawczyk,
Daniel Simonson, Graham Katz, and Paul Portner.
2013. Toward fine-grained annotation of modality
in text. In Proceedings of IWCS 2013 Workshop on

Annotation of Modal Meanings in Natural Language
(WAMM), pages 38–46, Potsdam, Germany, March.

Liliana Mamani Sánchez and Carl Vogel. 2015. A hedg-
ing annotation scheme focused on epistemic phrases
for informal language. In Proceedings of the Work-
shop on Models for Modality Annotation.

Roser Saurı́ and James Pustejovsky. 2009. Factbank:
a corpus annotated with event factuality. Language
Resources and Evaluation, 43(3):227–268.

Rion Snow, Lucy Vanderwende, and Arul Menezes.
2006. Effectively using syntax for recognizing false
entailment. In Proceedings of the Main Conference
on Human Language Technology Conference of the
North American Chapter of the Association of Compu-
tational Linguistics, HLT-NAACL ’06, pages 33–40,
Stroudsburg, PA, USA.

Sandeep Soni, Tanushree Mitra, Eric Gilbert, and Jacob
Eisenstein. 2014. Modeling factuality judgments in
social media text. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 415–420, Balti-
more, Maryland, June.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of semantics.
J. Artif. Int. Res., 37(1):141–188, January.

Veronika Vincze, György Szarvas, Richard Farkas,
György Móra, and János Csirik. 2008. The Bio-
Scope corpus: biomedical texts annotated for uncer-
tainty, negation and their scopes. BMC Bioinformat-
ics, 9((Suppl 11)):S9.

Veronika Vincze, György Szarvas, György Móra,
Tomoko Ohta, and Richárd Farkas. 2011. Linguis-
tic scope-based and biological event-based specula-
tion and negation annotations in the bioscope and ge-
nia event corpora. Journal of Biomedical Semantics,
2(5):1–11.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating expressions of opinions and emotions
in language. Language Resources and Evaluation,
39(2):165–210.

1107

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1108–1118,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Understanding Negation in Positive Terms Using Syntactic Dependencies

Zahra Sarabi and Eduardo Blanco
Human Intelligence and Language Technologies Lab

University of North Texas
Denton, TX, 76203

zahrasarabi@my.unt.edu, eduardo.blanco@unt.edu

Abstract

This paper presents a two-step procedure to
extract positive meaning from verbal negation.
We first generate potential positive interpre-
tations manipulating syntactic dependencies.
Then, we score them according to their like-
lihood. Manual annotations show that posi-
tive interpretations are ubiquitous and intuitive
to humans. Experimental results show that
dependencies are better suited than semantic
roles for this task, and automation is possible.

1 Introduction

Negation is a complex phenomenon present in all
human languages, allowing for the uniquely human
capacities of denial, contradiction, misrepresenta-
tion, lying, and irony (Horn and Wansing, 2015).
Despite negation always being marked—in the ab-
sence of a negation cue, statements are positive—
acquiring and understanding sentences that contain
negation is more challenging than those that do not.
Children acquire negation after learning to commu-
nicate (Nordmeyer and Frank, 2013), and adults take
longer to process negated statements than positive
ones (Clark and Chase, 1972).

In any given language, humans communicate in
positive terms most of the time, and use negation to
express something unusual or an exception (Horn,
1989). Albeit most sentences are affirmative, nega-
tion is ubiquitous (Morante and Sporleder, 2012):
In scientific papers, 13.76% of statements contain
a negation (Szarvas et al., 2008); in product reviews,
19% (Councill et al., 2010); and in Conan Doyle sto-
ries, 22.23% (Morante and Daelemans, 2012). In

OntoNotes (Hovy et al., 2006), 10.15% of state-
ments contain a verb negated with not, n’t or never.

From a theoretical point of view, it is accepted that
negation conveys positive meaning (Rooth, 1992;
Huddleston and Pullum, 2002). For example, when
reading (1) John didn’t order the right parts, hu-
mans intuitively understand that (1a) John ordered
something, or more specifically, (1b) John ordered
the wrong parts. Interpretation (1a) can be obtained
after determining that n’t does not negate verb order,
but its THEME, i.e., the right parts. Interpretation
(1b) can be obtained after determining that n’t is ac-
tually negating right, an adjective modifying parts.

Determining which words are intended to be
negated—identifying the foci of negation, thereby
revealing positive interpretations—is challenging.
First, as exemplified in (1a, 1b), there is a granu-
larity continuum yielding interpretations that entail
each other, e.g., (1b) entails (1a). Second, a single
negation often yields several positive interpretations,
e.g., from (2) John doesn’t eat meat, we can extract
that (2a) John eats something other than meat and
(2b) Some people eat meat, but not John.

This paper presents a methodology to extract pos-
itive interpretations from verbal negation. The main
contributions are: (1) deterministic procedure to
generate potential interpretations by manipulating
syntactic dependencies; (2) analysis showing that
dependencies yield finer-grained interpretations and
better results than previous work using semantic
roles; (3) a corpus of negations and their positive
interpretations;1 and (4) experimental results with
gold-standard and predicted linguistic information.

1Available at http://www.cse.unt.edu/˜blanco/

1108

2 Terminology, Scope and Focus

Negation is well-understood in grammars, which de-
tail the valid ways to form a negation (Quirk et al.,
2000; van der Wouden, 1997). Negation can be ex-
pressed by verbs (e.g., avoid running), nouns (e.g.,
the absence of evidence), adjectives (e.g., it is point-
less), adverbs (e.g., I never tried Persian food be-
fore), prepositions (e.g., you can exchange it with-
out a problem), determiners (e.g., the new law has
no direct implications), pronouns (e.g., nobody will
keep election promises), and others. In this paper,
we focus on verbal negation, i.e., when the negation
mark—usually an adverb such as never and not—is
grammatically associated with a verb.
Positive Interpretations. In philosophy and lin-
guistics, it is generally accepted that negation con-
veys positive meaning (Horn, 1989). This positive
meaning ranges from implicatures, i.e., what is sug-
gested in an utterance even though neither expressed
nor strictly implied (Blackburn, 2008), to entail-
ments. Other terms used in the literature include im-
plied meanings (Mitkov, 2005), implied alternatives
(Rooth, 1985) and semantically similars (Agirre et
al., 2013). We do not strictly fit into any of this ter-
minology, we reveal positive interpretations as intu-
itively done by humans when reading text.

2.1 Scope and Focus

From a theoretical perspective, it is accepted that
negation has scope and focus, and that the focus—
not just the scope—yields positive interpretations
(Horn, 1989; Rooth, 1992; Taglicht, 1984). Scope
is “the part of the meaning that is negated” and fo-
cus “the part of the scope that is most prominently or
explicitly negated” (Huddleston and Pullum, 2002).

Consider the following statement in the context
of the recent refugee crisis: (2) Mr. Haile was
not looking for heaven in Europe. By definition,
scope refers to “all elements whose individual falsity
would make the negated statement strictly true”, and
focus is “the element of the scope that is intended to
be interpreted as false to make the overall negative
true” (Huddleston and Pullum, 2002). The falsity of
any of the truth conditions below makes statement
(2) true, thus the scope of the negation is (2a–2d):
2a. Somebody was looking for something some-

where. [verb looking]

2b. Mr. Haile was looking for something some-
where. [AGENT of looking, Mr. Haile]

2c. Somebody was looking for heaven somewhere.
[THEME of looking, heaven]

2d. Somebody was looking for something in Eu-
rope. [LOCATION of looking, in Europe]

Determining the focus is almost always more
challenging than the scope. The challenge relies on
determining which of the truth conditions (2a–2d)
is intended to be interpreted as false to make the
negated statement true: all of them qualify, but some
are more likely. A natural reading of statement (2)
suggests that Mr. Haile was looking for something
(a regular life, a job, etc.) in Europe, but not heaven.
Determining that the focus is heaven, i.e., that every-
thing in statement (2) is positive except the THEME

of looking, is the key to reveal the intended positive
interpretation. Note that scope on its own does not
identify positive interpretations, and other foci yield
unlikely positive interpretations, e.g., Mr. Haile was
looking for heaven somewhere, but not in Europe.

It is worth noting that while scope is defined
from a logical standpoint, in most negations there
are several possible foci and corresponding posi-
tive interpretations. For example, given (3) Most
jobs now don’t last for decades, the following are
valid positive interpretations: (3a) Few jobs now last
for decades, (3b) Most jobs in the past lasted for
decades, and (3c) Most jobs now last for a few years.
Granularity of Focus. The definition of focus does
not provide guidelines about identifying the element
of the scope that is the focus. The larger the focus,
the more generic the corresponding positive inter-
pretation; and the smaller the focus, the more spe-
cific the corresponding positive interpretation. Let
us consider statement (3) again. A possible focus is
Most jobs, yielding the positive interpretation Some-
thing now lasts for decades, but not most jobs. An-
other possible focus is Most, yielding the interpreta-
tion Few (not most) jobs now last for decades. We
argue that the latter is preferable, as it yields a more
specific interpretation and it entails the former: if
some jobs last for decades, then something lasts for
decades, but not the other way around.

We use the term coarse-grained focus to refer to
foci that include all tokens belonging to an argument
of a verb (e.g., Most Jobs above), and fine-grained
focus to refer to foci that do not (e.g., Most above).

1109

3 Previous Work

Within computational linguistics, approaches to pro-
cess negation are shallow, or target scope and focus
detection. Popular semantic representations such as
semantic roles (Palmer et al., 2005; Baker et al.,
1998) or AMR (Banarescu et al., 2013) do not reveal
the positive interpretations we target in this paper.
Shallow approaches are usually application-specific.
In sentiment and opinion analysis, negation has been
reduced to marking as negated all words between a
negation cue and the first punctuation mark (Pang et
al., 2002), or within a five-word window of a nega-
tion cue (Hu and Liu, 2004). The examples through-
out this paper show that these techniques are insuffi-
cient to reveal implicit positive interpretations.

3.1 Scope Annotations and Detection

Scope of negation detection has received a lot of
attention, mostly using two corpora: BioScope in
the medical domain (Szarvas et al., 2008) and CD-
SCO (Morante and Daelemans, 2012). BioScope
annotates negation cues and linguistic scopes exclu-
sively in biomedical texts. CD-SCO annotates nega-
tion cues, scopes, and negated events or properties
in selected Conan Doyle stories.

There have been several supervised proposals to
detect the scope of negation using BioScope and
CD-SCO (Özgür and Radev, 2009; Øvrelid et al.,
2010). Automatic approaches are mature (Abu-
Jbara and Radev, 2012): F-scores are 0.96 for nega-
tion cue detection, and 0.89 for negation cue and
scope detection (Velldal et al., 2012; Li et al., 2010).
Fancellu et al. (2016) present the best results to date
using CD-SCO, and analyze the main sources of er-
rors. Outside BioScope and CD-SCO, Reitan et al.
(2015) present a negation scope detector for tweets,
and show that it improves sentiment analysis. As
shown in Section 2, scope detection is insufficient to
reveal positive interpretations from negation.

3.2 Focus Annotation and Detection

While focus of negation has been studied for
decades in philosophy and linguistics (Section 2),
corpora and automated tools are scarce. Blanco and
Moldovan (2011) annotate focus of negation in the
3,993 negations marked with ARGM-NEG semantic
role in PropBank (Palmer et al., 2005). Their an-

notations, PB-FOC, were used in the *SEM-2012
Shared Task (Morante and Blanco, 2012). Their
guidelines require annotators to choose as focus the
semantic role that “is most prominently negated” or
the verb. If several roles may be the focus, they
prioritize “the one that yields the most meaningful
implicit [positive] information”, but do not specify
what most meaningful means. Their approach has
2 limitations. First, because they select one focus
per negation, they only extract one positive inter-
pretation per negation. Second, because they select
as focus a semantic role, they only consider coarse-
grained foci. Consider again statement (3) from Sec-
tion 2.1. By design, their approach is limited to ex-
tract a single interpretation even though interpreta-
tions (3a–3c) are valid. Similarly, their approach is
limited to select as focus Most jobs—all tokens be-
longing to a semantic role—although Most yields a
“more meaningful” interpretation: Something now
lasts for decades (generic, worse) vs. Few jobs now
last for decades (specific, better).

Blanco and Sarabi (2016) present a complimen-
tary approach to extract and score several posi-
tive interpretations from a single verbal negation.
Their methodology is grounded on semantic roles
and does not consider fine-grained foci. In this pa-
per, we improve upon their work: we extract both
coarse- and fine-grained interpretations, and also ex-
tract several interpretations from one negation.

Anand and Martell (2012) reannotate PB-FOC
and argue that positive interpretations arising
from scalar implicatures and neg-raising predicates
should be separated from those arising from focus
detection. They argue that 27.4% of negations with
a focus annotated in PB-FOC do not have one. In
this paper, we are not concerned about annotating
foci per se, but about extracting positive interpreta-
tions from negation, as intuitively done by humans.

Automatic systems to detect the focus of negation
yield modest results. Blanco and Moldovan (2011)
obtain an accuracy of 65.5 using supervised learn-
ing and features derived from gold-standard linguis-
tic information. With predicted linguistic informa-
tion, Rosenberg and Bergler (2012) report an F-
measure of 58.4 using 4 linguistically sound heuris-
tics, and Zou et al. (2014) an F-measure of 65.62
using contextual discourse information. Blanco and
Sarabi (2016) obtain Pearson correlation of 0.642

1110

ranking coarse-grained interpretations. Unlike the
work presented here, none of these systems extract
fine-grained interpretations from a single negation.

4 Corpus Creation

Our goal is to create a corpus of negations and their
positive interpretations. We put a strong emphasis
on automation and simplicity. First, we determin-
istically generate potential positive interpretations
from verbal negations by manipulating syntactic de-
pendencies (Section 4.1). Second, we ask annota-
tors to score potential positive interpretations (Sec-
tion 4.2). Positive interpretations and their scores
are later used to learn models to rank potential inter-
pretations automatically (Section 6). Generating po-
tential interpretations deterministically prior to scor-
ing them proved very beneficial. After pilot experi-
ments, it became clear that asking annotators to pro-
pose positive interpretations complicates the annota-
tion effort (lower agreements) as well as learning.

We decided to work on top of OntoNotes (Hovy
et al., 2006)2 instead of plain text or other cor-
pora for several reasons. First, OntoNotes includes
gold linguistic annotations such as part-of-speech
tags, parse trees and semantic roles. Second, un-
like BioScope, CD-SCO and PB-FOC (Section 3.2),
OntoNotes includes sentences from several genres,
e.g., newswire, broadcast news and conversations,
magazines, the web. We transformed the parse
trees in OntoNotes into syntactic dependencies us-
ing Stanford CoreNLP (Manning et al., 2014).

4.1 Manipulating Syntactic Dependencies to
Generate Potential Positive Interpretations

OntoNotes contains 63,918 sentences. Annotating
all positive interpretations from all negations is out-
side the scope of this paper. Instead, we target se-
lected representative negations.
Selecting Negations. We first select all verbal nega-
tions by retrieving all tokens whose syntactic head is
a verb and dependency type neg.3 Then, we discard
negations from sentences that contain two negations,
conditionals, commas or questions. Finally, we dis-

2We use the CoNLL-2011 Shared Task distribution (Pradhan
et al., 2011), http://conll.cemantix.org/2011/

3The Stanford manual describes and exemplifies all syntac-
tic dependencies (de Marneffe and Manning, 2008).

card negations if the negated verb is to be or it does
not have a subject (dependency nsubj or nsubjpass).
Converting Negated Statements into their posi-
tive counterparts. We apply 3 steps inspired after
the grammatical rules to form negation detailed by
Huddleston and Pullum (2002, Ch. 9):

1. Remove the negation mark by deleting the to-
ken with syntactic dependency neg.

2. Remove auxiliaries, expand contractions, and
fix third-person singular and past tense. For ex-
ample (before: after), doesn’t go: goes, didn’t
go: went, won’t go: will go. We loop through
the tokens whose head is the negated verb with
dependency aux, and use a list of irregular
verbs and grammar rules to convert to third-
person singular and past tense.

3. Rewrite negatively-oriented polarity-sensitive
items. For example (before: after), any-
one: someone, any longer: still, yet: al-
ready. at all: somewhat. We use the cor-
respondences between negatively-oriented and
positively-oriented polarity-sensitive items by
(Huddleston and Pullum, 2002, pp. 831).

Selecting Relevant tokens. Verbal negation often
occurs in multi-clause sentences. In order to iden-
tify the relevant (syntactically negated) eventuality,
we simplify the original statement by including only
the negated verb and all tokens that are dependents
of the verb, i.e., tokens reachable from the negated
verb traversing dependencies. For example, from
Individuals familiar with the Justice Department’s
policy said that Justice officials hadn’t any knowl-
edge of the IRS’s actions in the last week, after get-
ting the positive counterpart and selecting relevant
tokens, we obtain Justice officials had some knowl-
edge of the IRS’s actions in the last week.
Generating Interpretations. Given the simplified
positive counterpart, generating all combinations of
tokens as potential foci would result in 2t poten-
tial positive interpretations for t tokens. To avoid
a brute-force approach that generates many nonsen-
sical potential interpretations, we define a procedure
grounded on syntactic dependencies.

The main idea is to run a modified breadth-first
traversal of the dependency tree to select subtrees
that are potential foci. We start the traversal from
the negated verb and stop it at depth 3, selecting as
potential foci the subtrees rooted at all tokens except

1111

The report claims that underclass youth do n’t have those opportunities .
det nsubj

mark

amod

nsubj
aux neg

ccomp

det

dobj

punct

Negated statement: The report claims that underclass youth don’t have those opportunities.

Positive
counterpart

Step 1 The report claims that underclass youth do have those opportunities.
Step 2 The report claims that underclass youth have those opportunities.
Step 3 The report claims that underclass youth have those opportunities. (idem)

Relevant tokens Underclass youth have those opportunities.

Potential
positive
interpretations

none coarse Underclass youth [some verb] those opportunities, but not have.
nsubj coarse [Some people] have those opportunities, but not Underclass youth.
amod fine [Some adjective] youth have those opportunities, but not Underclass youth.
nsubj fine Underclass [some people] have those opportunities, but not Underclass youth.
dobj coarse Underclass youth have [something], but not those opportunities.
det fine Underclass youth have [some] opportunities, but not those opportunities.
dobj fine Underclass youth have those [something], but not those opportunities.

Table 1: Negated statement and syntactic dependencies (top), and automatically generated positive counterpart and potential posi-

tive interpretations (bottom). For potential interpretations, we include the dependency from the focus to the rest of the interpretation.

those whose syntactic dependency is aux, auxpass
or punct (auxiliary, passive auxiliary and punctua-
tion). Additionally, we discard potential foci that
consist only of (1) the determiners the, a and an,
or (2) a single token with part-of-speech tag TO,
CC, UH, POS, XX, IN, WP or dependency relation
prt. These rules were defined after manually observ-
ing several examples and concluding that the cor-
responding positive interpretation was useless. For
example, from the negated statement And our credit
standards haven’t changed one iota, we avoid gener-
ating the useless potential interpretation Our credit
standards X changed one iota, but not have changed.
(focus would be have, with dependency aux). Sim-
ilarly, from It is not supported by the text or his-
tory of the Constitution, we avoid generating poten-
tial interpretation It is supported by X text or his-
tory of the Constitution, but not by the text or his-
tory of the Constitution (focus would be the); and
from You don’t want to get yourself too upset about
these things, potential interpretation You want X get
yourself too upset about these things, but not to get
(focus would be to, with part-of-speech tag TO).

Once potential foci are selected, we generate pos-
itive interpretations by rewriting each focus with
“someone/some people/something/etc.” and ap-
pending “but not text of focus” at the end. Addi-
tionally, if the first token of the focus is a preposi-
tion, we include it to improve readability, e.g., didn’t

leave [by noon]: left by sometime, but not by noon.
Note that potential interpretations obtained from

foci that are direct syntactic dependents of the
negated verb are coarse-grained interpretations, and
the rest are fine-grained interpretations. Table 1 ex-
emplifies the procedure step by step.

4.2 Scoring Potential Positive Interpretations
After generating potential positive interpretations
automatically, we asked annotators to score them.
Annotators had access to the original negated sen-
tence, the previous and next sentence as context,
and one potential positive interpretation at a time.
The interface asked Given the three sentences [pre-
vious sentence, negated sentence and next sentence]
above, do you think the statement [positive interpre-
tation] below is true? Annotators were forced to an-
swer with a score from 0 to 5, where 0 means ab-
solutely disagree and 5 means absolutely agree. We
did not provide descriptions for intermediate scores
or use categorical labels. This simple guidelines
were sufficient to reliably score plausible positive in-
terpretations automatically generated (Section 5).

5 Corpus Analysis

The procedure described in Section 4.1 generates
9729 potential positive interpretations (5865 coarse-
grained and 3864 fine-grained) from 1671 verbal
negations. Out of all these potential positive inter-
pretations, we annotate 1700 (1008 coarse- and 692

1112

Negated statement, context if relevant to determining scores, and all positive interpretations Score

1

Context, previous statement:You’re not giving me enough benefits.
Negated Statement: You’re not paying me for my overtime work.
Context, next statement: Well I think the Walton family does take it personally.
- Int. 1.1 [coarse, root]: You’re [some verb] me for my overtime work, but not paying. 4
- Int. 1.2 [coarse, nsubj]: [Some people]’re paying me for my overtime work, but not you. 0
- Int. 1.3 [coarse, dobj]: You’re paying [somebody] for my overtime work, but not me. 1
- Int. 1.4 [coarse, prep]: You’re paying me for [something], but not for my overtime work. 5
- Int. 1.5 [fine, poss]: You’re paying me for [somebody’s] overtime work, but not for my overtime work. 0
- Int. 1.6 [fine, nn]: You’re paying me for my [some adjective] work, but not for my overtime work. 5
- Int. 1.7 [fine, pobj]: You’re paying me for my overtime [something] but not for my overtime work. 0

2

Negated Statement: Those concerns aren’t expressed in public.
- Int. 2.1 [coarse, root]: Those concerns are [some verb] in public, but not expressed. 5
- Int. 2.2 [coarse, nsubjpass]: [Some things] are expressed in public, but not Those concerns. 5
- Int. 2.3 [fine, nsubjpass]: Those [some noun] are expressed in public, but not Those concerns. 2
- Int. 2.4 [fine, det]: [Some] concerns are expressed in public but, not Those concerns. 4
- Int. 2.5 [coarse, prep]: Those concerns are expressed in [somewhere], but not in public. 5

Table 3: Negated statements, all potential positive interpretations automatically generated and their manually assigned scores.

Dependency # % Mean SD
nsubj 358 21.13% 3.36 1.47
dobj 237 14.05% 3.73 1.57
pobj 178 10.51% 3.48 1.59
ccomp 125 7.29% 3.29 1.77
advmod 108 6.39% 3.33 1.59
xcomp 90 5.28% 3.92 1.50
amod 67 3.96% 4.08 1.29
conj 40 2.38% 2.80 1.60
advcl 40 2.32% 2.84 1.80
nsubjpass 35 2.17% 3.63 1.51
other 209 13.34% 2.9 1.7
verb 213 12.5% 2.01 1.46
All 1,700 100.00% 3.20 1.66

Table 2: Basic corpus analysis. For each dependency, we show

the number of potential interpretations generated (#) and per-

centage (%), mean score and standard deviation.

fine-grained). Overall, the mean score is 3.20, and
the standard deviation is 1.66. Table 2 shows basic
statistics for potential foci, where dependency in-
dicates the dependency from the potential focus to
a token outside the potential focus. Most foci are
nsubj, dobj and pobj, and the mean scores and stan-
dard deviation are similar for most dependencies.

Annotation Quality. In order to ensure annotation
quality, we calculated Pearson correlation. Kappa
and other measures designed for categorical labels
are ill-suited for our annotations, since not all dis-
agreements between numeric scores are the same,
e.g., 4 vs. 5 should be counted as higher agreement,
than 1 vs. 5. Overall Pearson correlation was 0.75.

5.1 Annotation Examples

Table 3 presents 2 statements that contain verbal
negation, the list of positive interpretations automat-
ically generated and the annotated scores.

Example (1) is a simple negated clause, yet we
generate 7 potential positive interpretations and 3 of
them receive high scores (4 or 5). Given You’re not
paying me for my overtime work and the previous
statement, it is reasonable to believe that the author
is in an employee-employer relationship, and the
employer is not fair to the employee. Interpretations
1.1, 1.4 and 1.6 are implicit positive interpretations
intuitively understood by humans when reading the
original negated statement. Namely, Interpretation
1.1: You (the employer) are nickel-and-diming me
for my overtime work (focus is paying), Interpreta-
tion 1.4: You (the employer) are paying me for some-
thing (focus is my overtime work), and Interpretation
1.6: You (the employer) are paying me for my regu-
lar work (focus is overtime). These interpretations
show the benefits of fine-grained interpretations: In-
terpretation 1.6 is a refinement of Interpretation 1.4,
and the former is more desirable than the latter as
it reveals more specific positive knowledge. The re-
maining interpretations are legible, but do not make
sense given the negated statement, e.g., interpreta-
tion 1.2: Somebody (but not the employer) pays me
for my overtime (focus is You).

Example (2) is also a simple negated clause, and
4 out of 5 interpretations receive high scores, captur-
ing valid positive meaning. Specifically, Interpreta-

1113

Type Name Description

Basic
neg mark word form of negation mark
verb word form and part-of-speech tag of verb
coarse or fine flag indicating whether interpretation is coarse- or fine-grained

Path

syn path dep syntactic path from focus to verb (concatenation of dependencies)
syn path pos syntactic path from focus to verb (concatenation of part-of-speech tags)
syn path last dep last syntactic dependency in syn path dep (direct dependent of verb)
syn path last pos last part-of-speech tag in syn path pos (direct dependent of verb)

Focus

focus length number of words in subgraph chosen as focus
focus first word word form and part-of-speech tag of first word in focus
focus last word word form and part-of-speech tag of last word in focus
focus direction flag indicating whether focus occurs before or after verb
focus head word word form of head of focus
focus head pos part-of-speech tag of head of focus
focus head rel syntactic dependency of head of focus

Table 4: Features used to score potential positive interpretations automatically generated.

tion 2.1: Those concerns are avoided in public (fo-
cus is expressed), Interpretation 2.2: Something is
expressed in public (focus is Those concerns), Inter-
pretation 2.4: Some concerns (but not problematic
or secret concerns) are expressed in public (focus is
Those), and Interpretation 2.5: Those concerns are
expressed in private (focus is in public).

5.2 Syntactic Dependencies vs. Semantic Roles

The procedure presented in Section 4.1 is not the
first to generate potential positive interpretations
from negation (Section 3.2). Our approach has 2 ad-
vantages with respect to those grounded on seman-
tic roles (Blanco and Sarabi, 2016): (1) it generates
both coarse- and fine-grained interpretations, and (2)
learning to score interpretations is easier because
state-of-the-art tools extract dependencies more re-
liably than semantic roles.

To support claim (1), we compare the interpre-
tations generated with our procedure and previous
work using semantic roles. 96.12% of interpreta-
tions generated using roles are also generated us-
ing syntactic dependencies. Also, using dependen-
cies allow us to generate 67.9% of additional (fine-
grained) interpretations not obtainable with roles.

To support claim (2), we compare interpretations
generated with gold and predicted linguistic infor-
mation (roles or dependencies). The overlap with se-
mantic roles is 70.1%, and with syntactic dependen-
cies, 92.8%. Syntactic dependencies are thus better
in a realistic scenario because they allow us to auto-
matically generate (and score) most interpretations.

6 Supervised Learning to Score Potential
Positive Interpretations

We follow a standard supervised machine learning
approach. The 1,700 potential positive interpreta-
tions along with their scores become instances, and
we divide them into training (80%) and test splits
(20%) making sure that all interpretations generated
from a sentence are assigned to either the training
or test splits. Note that splitting instances randomly
would not be sound: training with some interpreta-
tions generated from a negation, and testing with the
rest of interpretations generated from the same nega-
tion would be an unfair evaluation.

We train a Support Vector Machine for regression
with RBF kernel using scikit-learn (Pedregosa et al.,
2011), which in turn uses LIBSVM (Chang and Lin,
2011). SVM parameters (C and γ) were tuned using
10-fold cross-validation with the training set, and re-
sults are calculated using the test set.

6.1 Feature Selection

Table 4 presents the full feature set. Features are rel-
atively simple and characterize the verbal negation
from which a potential interpretation was generated,
as well as the interpretation per se, i.e., the depen-
dency subgraph chosen as potential focus.

Basic features account for the negation mark, the
negation verb (word form and part-of-speech tag)
and a binary flag indicating whether we are scoring
a coarse- or fine-grained interpretation.

Path features are derived from the syntactic path

1114

Features Gold Predicted
neg mark -0.109 -0.077
basic 0.033 0.026
basic + path 0.474 0.482
basic + path + focus 0.530 0.560

Table 5: Pearson correlations obtained with the test split. Re-

sults are provided using gold-standard and predicted linguistic

information (part-of-speech tags and syntactic dependencies).

between the subgraph selected as focus and the verb.
We include the actual path (concatenation of de-
pendencies and up/down symbols), and the modi-
fied path using part-of-speech tags. Additionally, we
also include the last dependency and part-of-speech
tag, i.e., the ones closest to the verb in the path.

Focus features characterize the dependency sub-
graph chosen as focus to generate the potential inter-
pretation. Specifically, we include the number of to-
kens, word form and part-of-speech tags of the first
and last tokens, and whether the focus occurs before
or after the verb. We also include features derived
form the head of the focus, which we define as the
token whose syntactic head is outside the focus. We
include the word form and part-of-speech of the fo-
cus head, as well as its the dependency.

7 Experiments and Results

We report results obtained with several combina-
tions of features in Table 5. We detail results ob-
tained with features extracted from gold-standard
and predicted linguistic annotations (part-of-speech
tags and syntactic dependencies) as annotated in the
gold and auto files from the CoNLL-2011 Shared
Task release of OntoNotes (Pradhan et al., 2011).
All models are trained with gold-standard linguis-
tic annotations, and tested with either gold-standard
or predicted linguistic annotations.
Testing with gold-standard POS tags and syn-
tactic dependencies. Training with the word form
of the negation mark is virtually useless, it yields
a Pearson correlation of −0.109. Basic features
(negation mark, verb and flag indicating coarse-
or fine-grained interpretation) are also ineffective
to score potential interpretations (Pearson: 0.033).
Including features derived from the syntactic path
yields higher correlation, 0.474, even though these
features only capture the syntactic relationship be-

tween the focus from which the interpretation was
generated and the verb. Finally, adding focus
features yields the best results (Pearson: 0.53,
+11.8%).
Testing with predicted POS tags and syntactic de-
pendencies. We selected 20% of positive interpre-
tations in our corpus as test instances, totalling 379
interpretations (Section 6). When executing the pro-
cedure to generate potential interpretations (Section
4.1) with predicted linguistic information, however,
we are unable to generate all of them due to incorrect
and missing syntactic dependencies. Specifically,
352 of the 379 interpretations are generated (92.8%).
While we do not generate 7.2% of instances, this
percentage is substantially lower than previous work
grounded on semantic roles (Section 5.2).

Pearson correlations with predicted linguistic in-
formation are calculated using the 352 instances that
were also generated with gold dependencies (and
thus assigned a score during the manual annota-
tions). Correlations are slightly higher and follow
a similar trend than the correlations obtained with
gold-standard linguistic information. These results
should be taken with a grain of salt: the test in-
stances are not exactly the same, and the 352 test
instances in this scenario are presumably easier to
score than the remainder 27, as dependencies were
predicted correctly.

8 Conclusions

Humans intuitively extract positive meaning from
negation when reading text. This paper presents
an automated procedure to generate potential posi-
tive interpretations from verbal negation, and score
them according to their likelihood. Our procedure is
grounded on syntactic dependencies, allowing us to
extract fine-grained interpretations beyond semantic
roles (67.9% additional interpretations). Addition-
ally, because dependencies are extracted automati-
cally more reliably than semantic roles, we gener-
ate 92.8% of all potential interpretations when us-
ing predicted linguistic information, as opposed to
70.1% with semantic roles.

On average, we generate 6.4 potential interpreta-
tions per verbal negation (coarse-grained: 3.8, fine-
grained: 2.6). Manual annotations show that po-
tential interpretations are deemed likely. The mean

1115

score is 3.20 (out of 5.0), thus we extract a substan-
tial amount of positive meaning.

The work presented in this paper is not tied to
any existing semantic representation. While we rely
heavily on syntactic dependencies, positive interpre-
tations are generated in plain text, and they could
be processed, along with the original negated state-
ment, with any NLP pipeline.

References
Amjad Abu-Jbara and Dragomir Radev. 2012. Umichi-

gan: A conditional random field model for resolving
the scope of negation. In Proceedings of the First Joint
Conference on Lexical and Computational Semantics-
Volume 1: Proceedings of the main conference and
the shared task, and Volume 2: Proceedings of the
Sixth International Workshop on Semantic Evaluation,
pages 328–334. Association for Computational Lin-
guistics.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *sem 2013 shared
task: Semantic textual similarity. In Second Joint
Conference on Lexical and Computational Semantics
(*SEM), Volume 1: Proceedings of the Main Confer-
ence and the Shared Task: Semantic Textual Similarity,
pages 32–43, Atlanta, Georgia, USA, June. Associa-
tion for Computational Linguistics.

Pranav Anand and Craig Martell. 2012. Annotating
the focus of negation in terms of questions under dis-
cussion. In Proceedings of the Workshop on Extra-
Propositional Aspects of Meaning in Computational
Linguistics, ExProM ’12, pages 65–69, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet Project. In Proceed-
ings of the 17th international conference on Computa-
tional Linguistics, Montreal, Canada.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria, August. As-
sociation for Computational Linguistics.

Simon Blackburn. 2008. The Oxford Dictionary of Phi-
losophy. Oxford University Press.

Eduardo Blanco and Dan Moldovan. 2011. Semantic
representation of negation using focus detection. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 581–589,

Portland, Oregon, USA, June. Association for Compu-
tational Linguistics.

Eduardo Blanco and Zahra Sarabi. 2016. Automatic
generation and scoring of positive interpretations from
negated statements. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 1431–1441, San Diego, Califor-
nia, June. Association for Computational Linguistics.

Chih-Chung Chang and Chih-Jen Lin. 2011. Libsvm:
A library for support vector machines. ACM Trans.
Intell. Syst. Technol., 2(3):27:1–27:27, May.

H. H. Clark and W. G. Chase. 1972. On the process of
comparing sentences against pictures. Cognitive Psy-
chology, 3(3):472–517, July.

Isaac Councill, Ryan McDonald, and Leonid Velikovich.
2010. What’s great and what’s not: learning to clas-
sify the scope of negation for improved sentiment anal-
ysis. In Proceedings of the Workshop on Negation and
Speculation in Natural Language Processing, pages
51–59, Uppsala, Sweden, July. University of Antwerp.

Marie-Catherine de Marneffe and Christopher D Man-
ning. 2008. Stanford typed dependencies manual.
Technical report, Technical report, Stanford Univer-
sity.

Federico Fancellu, Adam Lopez, and Bonnie Webber.
2016. Neural networks for negation scope detection.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 495–504, Berlin, Germany, Au-
gust. Association for Computational Linguistics.

Laurence R. Horn and Heinrich Wansing. 2015. Nega-
tion. In Edward N. Zalta, editor, The Stanford Ency-
clopedia of Philosophy. Summer 2015 edition.

Laurence R. Horn. 1989. A natural history of negation.
Chicago University Press, Chicago.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
the 90% Solution. In NAACL ’06: Proceedings of
the Human Language Technology Conference of the
NAACL, Companion Volume: Short Papers on XX,
pages 57–60, Morristown, NJ, USA. Association for
Computational Linguistics.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In KDD ’04: Proceedings
of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 168–
177, New York, NY, USA. ACM.

Rodney D. Huddleston and Geoffrey K. Pullum. 2002.
The Cambridge Grammar of the English Language.
Cambridge University Press, April.

Junhui Li, Guodong Zhou, Hongling Wang, and Qiaom-
ing Zhu. 2010. Learning the Scope of Negation via

1116

Shallow Semantic Parsing. In Proceedings of the 23rd
International Conference on Computational Linguis-
tics (Coling 2010), pages 671–679, Beijing, China,
August. Coling 2010 Organizing Committee.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Association for Computational Lin-
guistics (ACL) System Demonstrations, pages 55–60.

Ruslan Mitkov. 2005. The Oxford handbook of compu-
tational linguistics. Oxford University Press.

Roser Morante and Eduardo Blanco. 2012. *SEM 2012
Shared Task: Resolving the Scope and Focus of Nega-
tion. In Proceedings of the First Joint Conference on
Lexical and Computational Semantics (*SEM 2012),
pages 265–274, Montréal, Canada, June.

Roser Morante and Walter Daelemans. 2012.
Conandoyle-neg: Annotation of negation in conan
doyle stories. In Proceedings of the Eighth Interna-
tional Conference on Language Resources and Evalu-
ation, Istanbul.

Roser Morante and Caroline Sporleder. 2012. Modal-
ity and negation: An introduction to the special issue.
Comput. Linguist., 38(2):223–260, June.

Ann E Nordmeyer and Michael C Frank. 2013. Measur-
ing the comprehension of negation in 2-to 4-year-old
children. Proceedings of the 35th Annual Conference
of the Cognitive Science Society. Austin, TX: Cognitive
Science Society.

Lilja Øvrelid, Erik Velldal, and Stephan Oepen. 2010.
Syntactic Scope Resolution in Uncertainty Analysis.
In Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010), pages
1379–1387, Beijing, China, August. Coling 2010 Or-
ganizing Committee.

Arzucan Özgür and Dragomir R. Radev. 2009. Detect-
ing Speculations and their Scopes in Scientific Text.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1398–1407, Singapore, August. Association for Com-
putational Linguistics.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An Annotated Cor-
pus of Semantic Roles. Computational Linguistics,
31(1):71–106.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? sentiment classification using ma-
chine learning techniques. In Proceedings of the 2002
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 79–86. Association for Com-
putational Linguistics, July.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–
2830.

Sameer Pradhan, Lance Ramshaw, Mitchell Marcus,
Martha Palmer, Ralph Weischedel, and Nianwen Xue.
2011. Conll-2011 shared task: Modeling unrestricted
coreference in ontonotes. In Proceedings of the Fif-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task, pages 1–27, Portland,
Oregon, USA, June. Association for Computational
Linguistics.

Randolph Quirk, Sidney Greenbaum, and Geoffrey
Leech. 2000. A comprehensive grammar of the En-
glish language. Longman, London.

Johan Reitan, Jørgen Faret, Björn Gambäck, and Lars
Bungum. 2015. Negation scope detection for twitter
sentiment analysis. In Proceedings of the 6th Work-
shop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis, pages 99–108,
Lisboa, Portugal, September. Association for Compu-
tational Linguistics.

Mats Rooth. 1985. Association with focus.
Mats Rooth. 1992. A theory of focus interpretation. Nat-

ural language semantics, 1(1):75–116.
Sabine Rosenberg and Sabine Bergler. 2012. Ucon-

cordia: Clac negation focus detection at *sem 2012.
In *SEM 2012: The First Joint Conference on Lexi-
cal and Computational Semantics – Volume 1: Pro-
ceedings of the main conference and the shared task,
and Volume 2: Proceedings of the Sixth International
Workshop on Semantic Evaluation (SemEval 2012),
pages 294–300, Montréal, Canada, 7-8 June. Associa-
tion for Computational Linguistics.

György Szarvas, Veronika Vincze, Richárd Farkas, and
János Csirik. 2008. The BioScope corpus: annotation
for negation, uncertainty and their scopein biomedical
texts. In Proceedings of BioNLP 2008, pages 38–45,
Columbus, Ohio, USA. ACL.

Josef Taglicht. 1984. Message and emphasis: On fo-
cus and scope in English, volume 15. Addison-Wesley
Longman Limited.

Ton van der Wouden. 1997. Negative contexts: colloca-
tion, polarity, and multiple negation. Routledge, Lon-
don.

Erik Velldal, Lilja Ovrelid, Jonathon Read, and Stephan
Oepen. 2012. Speculation and negation: Rules,
rankers, and the role of syntax. Comput. Linguist.,
38(2):369–410, June.

Bowei Zou, Guodong Zhou, and Qiaoming Zhu. 2014.
Negation focus identification with contextual dis-
course information. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational

1117

Linguistics (Volume 1: Long Papers), pages 522–530,
Baltimore, Maryland, June. Association for Computa-
tional Linguistics.

1118

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1119–1130,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Demographic Dialectal Variation in Social Media: A Case Study of
African-American English

Su Lin Blodgett† Lisa Green∗ Brendan O’Connor†
†College of Information and Computer Sciences ∗Department of Linguistics

University of Massachusetts Amherst

Abstract

Though dialectal language is increasingly
abundant on social media, few resources exist
for developing NLP tools to handle such lan-
guage. We conduct a case study of dialectal
language in online conversational text by in-
vestigating African-American English (AAE)
on Twitter. We propose a distantly supervised
model to identify AAE-like language from de-
mographics associated with geo-located mes-
sages, and we verify that this language fol-
lows well-known AAE linguistic phenomena.
In addition, we analyze the quality of existing
language identification and dependency pars-
ing tools on AAE-like text, demonstrating that
they perform poorly on such text compared to
text associated with white speakers. We also
provide an ensemble classifier for language
identification which eliminates this disparity
and release a new corpus of tweets containing
AAE-like language.

Data and software resources are available at:
http://slanglab.cs.umass.edu/TwitterAAE

1 Introduction

Owing to variation within a standard language, re-
gional and social dialects exist within languages
across the world. These varieties or dialects differ
from the standard variety in syntax (sentence struc-
ture), phonology (sound structure), and the inven-
tory of words and phrases (lexicon). Dialect com-
munities often align with geographic and sociolog-
ical factors, as language variation emerges within
distinct social networks, or is affirmed as a marker
of social identity.

As many of these dialects have traditionally ex-
isted primarily in oral contexts, they have histor-
ically been underrepresented in written sources.
Consequently, NLP tools have been developed from
text which aligns with mainstream languages. With
the rise of social media, however, dialectal language
is playing an increasingly prominent role in online
conversational text, for which traditional NLP tools
may be insufficient. This impacts many applica-
tions: for example, dialect speakers’ opinions may
be mischaracterized under social media sentiment
analysis or omitted altogether (Hovy and Spruit,
2016). Since this data is now available, we seek to
analyze current NLP challenges and extract dialectal
language from online data.

Specifically, we investigate dialectal language in
publicly available Twitter data, focusing on African-
American English (AAE), a dialect of Standard
American English (SAE) spoken by millions of peo-
ple across the United States. AAE is a linguistic
variety with defined syntactic-semantic, phonolog-
ical, and lexical features, which have been the sub-
ject of a rich body of sociolinguistic literature. In
addition to the linguistic characterization, reference
to its speakers and their geographical location or
speech communities is important, especially in light
of the historical development of the dialect. Not all
African-Americans speak AAE, and not all speakers
of AAE are African-American; nevertheless, speak-
ers of this variety have close ties with specific com-
munities of African-Americans (Green, 2002). Due
to its widespread use, established history in the soci-
olinguistic literature, and demographic associations,
AAE provides an ideal starting point for the devel-
opment of a statistical model that uncovers dialectal

1119

language. In fact, its presence in social media is at-
tracting increasing interest for natural language pro-
cessing (Jørgensen et al., 2016) and sociolinguistic
(Stewart, 2014; Eisenstein, 2015; Jones, 2015) re-
search.1 In this work we:

• Develop a method to identify
demographically-aligned text and lan-
guage from geo-located messages (§2), based
on distant supervision of geographic census
demographics through a statistical model
that assumes a soft correlation between
demographics and language.

• Validate our approach by verifying that text
aligned with African-American demographics
follows well-known phonological and syntac-
tic properties of AAE, and document the pre-
viously unattested ways in which such text di-
verges from SAE (§3).

• Demonstrate racial disparity in the efficacy
of NLP tools for language identification and
dependency parsing—they perform poorly on
this text, compared to text associated with
white speakers (§4, §5).

• Improve language identification for U.S. on-
line conversational text with a simple en-
semble classifier using our demographically-
based distant supervision method, aiming to
eliminate racial disparity in accuracy rates
(§4.2).

• Provide a corpus of 830,000 tweets aligned
with African-American demographics.

2 Identifying AAE from Demographics

The presence of AAE in social media and the
generation of resources of AAE-like text for NLP
tasks has attracted recent interest in sociolinguis-
tic and natural language processing research; Jones
(2015) shows that nonstandard AAE orthography on
Twitter aligns with historical patterns of African-
American migration in the U.S., while Jørgensen
et al. (2015) investigate to what extent it supports
well-known sociolinguistics hypotheses about AAE.

1Including a recent linguistics work-
shop: http://linguistlaura.blogspot.co.uk/2016/06/
using-twitter-for-linguistic-research.html

Both, however, find AAE-like language on Twit-
ter through keyword searches, which may not yield
broad corpora reflective of general AAE use. More
recently, Jørgensen et al. (2016) generated a large
unlabeled corpus of text from hip-hop lyrics, subti-
tles from The Wire and The Boondocks, and tweets
from a region of the southeast U.S. While this cor-
pus does indeed capture a wide variety of language,
we aim to discover AAE-like language by utiliz-
ing finer-grained, neighborhood-level demographics
from across the country.

Our approach to identifying AAE-like text is
to first harvest a set of messages from Twitter,
cross-referenced against U.S. Census demographics
(§2.1), then to analyze words against demograph-
ics with two alternative methods, a seedlist approach
(§2.2) and a mixed-membership probabilistic model
(§2.3).

2.1 Twitter and Census data
In order to create a corpus of demographically-
associated dialectal language, we turn to Twitter,
whose public messages contain large amounts of ca-
sual conversation and dialectal speech (Eisenstein,
2015). It is well-established that Twitter can be used
to study both geographic dialectal varieties2 and mi-
nority languages.3

Some methods exist to associate messages with
authors’ races; one possibility is to use birth record
statistics to identify African-American-associated
names, which has been used in (non-social media)
social science studies (Sweeney, 2013; Bertrand and
Mullainathan, 2003). However, metadata about au-
thors is fairly limited on Twitter and most other so-
cial media services, and many supplied names are
obviously not real.

Instead, we turn to geo-location and induce a
distantly supervised mapping between authors and
the demographics of the neighborhoods they live
in (O’Connor et al., 2010; Eisenstein et al., 2011b;
Stewart, 2014). We draw on a set of geo-located
Twitter messages, most of which are sent on mo-
bile phones, by authors in the U.S. in 2013. (These
are selected from a general archive of the “Gar-
denhose/Decahose” sample stream of public Twit-

2For example, of American English (Huang et al., 2015;
Doyle, 2014).

3For example, Lynn et al. (2015) develop POS corpora and
taggers for Irish tweets; see also related work in §4.1.

1120

ter messages (Morstatter et al., 2013)). Geo-
located users are a particular sample of the userbase
(Pavalanathan and Eisenstein, 2015), but we expect
it is reasonable to compare users of different races
within this group.

We look up the U.S. Census blockgroup geo-
graphic area that the message was sent in; block-
groups are one of the smallest geographic areas de-
fined by the Census, typically containing a popula-
tion of 600–3000 people. We use race and ethnic-
ity information for each blockgroup from the Cen-
sus’ 2013 American Community Survey, defining
four covariates: percentages of the population that
are non-Hispanic whites, non-Hispanic blacks, His-
panics (of any race), and Asian.4 Finally, for each
user u, we average the demographic values of all
their messages in our dataset into a length-four vec-
tor π(census)u . Under strong assumptions, this could
be interpreted as the probability of which race the
user is; we prefer to think of it as a rough proxy for
likely demographics of the author and the neighbor-
hood they live in.

Messages were filtered in order to focus on ca-
sual conversational text; we exclude tweets whose
authors had 1000 or more followers, or that (a) con-
tained 3 or more hashtags, (b) contained the strings
“http”, “follow”, or “mention” (messages designed
to generate followers), or (c) were retweeted (ei-
ther containing the string “rt” or marked by Twitter’s
metadata as re-tweeted).

Our initial Gardenhose/Decahose stream archive
had 16 billion messages in 2013; 90 million were
geo-located with coordinates that matched a U.S.
Census blockgroup. 59.2 million tweets from 2.8
million users remained after pre-processing; each
user is associated with a set of messages and aver-
aged demographics π(census)u .

2.2 Direct Word-Demographic Analysis
Given a set of messages and demographics associ-
ated with their authors, a number of methods could
be used to infer statistical associations between lan-
guage and demographics.

Direct word-demographic analysis methods use
the π(census)u quantities to calculate statistics at the
word level in a single pass. An intuitive approach
is to calculate the average demographics per word.

4See appendix for additional details.

For a token in the corpus indexed by t (across the
whole corpus), let u(t) be the author of the message
containing that token, andwt be the word token. The
average demographics of word type w is:5

π(softcount)w ≡
∑

t 1{wt = w}π(census)u(t)∑
t 1{wt = w}

We find that terms with the highest πw,AA values (de-
noting high average African-American demograph-
ics of their authors’ locations) are very non-standard,
while Stewart (2014) and Eisenstein (2013) find
large πw,AA associated with certain AAE linguistic
features.

One way to use the πw,k values to construct a cor-
pus is through a seedlist approach. In early experi-
ments, we constructed a corpus of 41,774 users (2.3
million messages) by first selecting the n = 100
highest-πw,AA terms occurring at least m = 3000
times across the data set, then collecting all tweets
from frequent authors who have at least 10 tweets
and frequently use these terms, defined as the case
when at least p = 20% of their messages contain
at least one of the seedlist terms. Unfortunately, the
n,m, p thresholds are ad-hoc.

2.3 Mixed-Membership
Demographic-Language Model

The direct word-demographics analysis gives use-
ful validation that the demographic information may
yield dialectal corpora, and the seedlist approach
can assemble a set of users with heavy dialectal
usage. However, the approach requires a number
of ad-hoc thresholds, cannot capture authors who
only occasionally use demographically-aligned lan-
guage, and cannot differentiate language use at the
message-level. To address these concerns, we de-
velop a mixed-membership model for demographics
and language use in social media.

The model directly associates each of the four de-
mographic variables with a topic; i.e. a unigram lan-
guage model over the vocabulary.6 The model as-
sumes an author’s mixture over the topics tends to

5 πw,k has the flavor of “soft counts” in multinomial EM.
By changing the denominator to

∑
t π

(census)

u(t) , it calculates a
unigram language model that sums to one across the vocabulary.
This hints at a more complete modeling approach (§2.3).

6To build the vocabulary, we select all words used by at least
20 different users, resulting in 191,873 unique words; other
words are mapped to an out-of-vocabulary symbol.

1121

u

θ z w ɸπ

α

m
t

β

θm ∼ Dir(απu), φ ∼ Dir(β/V)

zt ∼ θm, wz ∼ φzt
Figure 1: Mixed-membership model for users (u), messages
(m) and tokens (t). Observed variables have a double lined bor-
der.

be similar to their Census-associated demographic
weights, and that every message has its own topic
distribution. This allows for a single author to use
different types of language in different messages, ac-
commodating multidialectal authors. The message-
level topic probabilities θm are drawn from an asym-
metric Dirichlet centered on π(census)u , whose scalar
concentration parameter α controls whether authors’
language is very similar to the demographic prior, or
can have some deviation. A token t’s latent topic zt
is drawn from θm, and the word itself is drawn from
φzt , the language model for the topic (Figure 1).

Thus the model learns demographically-aligned
language models for each demographic category.
The model is much more tightly constrained than a
topic model—for example, if α → ∞, θ becomes
fixed and the likelihood is concave as a function of
φ—but it still has more joint learning than a direct
calculation approach, since the inference of a mes-
sages’ topic memberships θm is affected not just by
the Census priors, but also by the language used. A
tweet written by an author in a highly AA neigh-
borhood may be inferred to be non-AAE-aligned if
it uses non-AAE-associated terms; as inference pro-
ceeeds, this information is used to learn sharper lan-
guage models.

We fit the model with collapsed Gibbs sampling
(Griffiths and Steyvers, 2004) with repeated sample
updates for each token t in the corpus,

p(zt = k | w, z−t) ∝
Nwk + β/V

Nk + β

Nmk + απuk
Nm + α

where Nwk is the number of tokens where word w
occurs under topic z = k, Nmk is the number of
tokens in the current message with topic k, etc.; all
counts exclude the current t position. We observed

convergence of the log-likelihood within 100 to 200
iterations, and ran for 300 total.7 We average to-
gether count tables from the last 50 Gibbs samples
for analysis of posterior topic memberships at the
word, message, and user level; for example, the pos-
terior probability a particular user u uses topic k,
P (z = k | u), can be calculated as the fraction of
tokens with topic k within messages authored by u.

We considered α to be a fixed control parameter;
setting it higher increases the correlations between
P (z = k | u) and π(census)u,k . We view the selec-
tion of α as an inherently difficult problem, since
the correlation between race and AAE usage is al-
ready complicated and imperfect at the author-level,
and census demographics allow only for rough as-
sociations. We set α = 10 which yields posterior
user-level correlations of P (z = AA | u) against
πu,AA to be approximately 0.8.

This model has broadly similar goals as non-
latent, log-linear generative models of text that con-
dition on document-level covariates (Monroe et al.,
2008; Eisenstein et al., 2011a; Taddy, 2013). The
formulation here has the advantage of fast inference
with large vocabularies (since the partition function
never has to be computed), and gives probabilistic
admixture semantics at arbitrary levels of the data.
This model is also related to topic models where
the selection of θ conditions on covariates (Mimno
and McCallum, 2008; Ramage et al., 2011; Roberts
et al., 2013), though it is much simpler without full
latent topic learning.

In early experiments, we used only two classes
(AA and not AA), and found Spanish terms being
included in the AA topic. Thus we turned to four
race categories in order to better draw out non-AAE
language. This removed Spanish terms from the
AA topic; interestingly, they did not go to the His-
panic topic, but instead to Asian, along with other
foreign languages. In fact, the correlation between
users’ Census-derived proportions of Asian popu-
lations, versus this posterior topic’s proportions, is
only 0.29, while the other three topics correlate
to their respective Census priors in the range 0.83
to 0.87. This indicates the “Asian” topic actually
functions as a background topic (at least in part).
Better modeling of demographics and non-English

7Our straightforward single core implementation (in Julia)
spends 80 seconds for each iteration over 586 million tokens.

1122

language interactions is interesting potential future
work.

By fitting the model to data, we can directly ana-
lyze unigram probabilities within the model param-
eters φ, but for other analyses, such as analyzing
larger syntactic constructions and testing NLP tools,
we require an explicit corpus of messages.

To generate a user-based AA-aligned corpus, we
collected all tweets from users whose posterior
probability of using AA-associated terms under the
model was at least 80%, and generated a correspond-
ing white-aligned corpus as well. In order to remove
the effects of non-English languages, and given un-
certainty about what the model learned in the His-
panic and Asian-aligned demographic topics, we fo-
cused only on AA- and white-aligned language by
imposing the additional constraint that each user’s
combined posterior proportion of Hispanic or Asian
language was less than 5%. Our two resulting user
corpora contain 830,000 and 7.3 million tweets, for
which we are making their message IDs available
for further research (in conformance with the Twit-
ter API’s Terms of Service). In the rest of the work,
we refer to these as the AA- and white-aligned cor-
pora, respectively.

3 Linguistic Validation

Because validation by manual inspection of our AA-
aligned text is impractical, we turn to the well-
studied phonological and syntactic phenomena that
traditionally distinguish AAE from SAE. We val-
idate our model by reproducing these phenomena,
and document a variety of other ways in which our
AA-aligned text diverges from SAE.

3.1 Lexical-Level Variation
We begin by examining how much AA- and white-
aligned lexical items diverge from a standard dictio-
nary. We used SCOWL’s largest wordlist with level
1 variants as our dictionary, totaling 627,685 words.8

We calculated, for each word w in the model’s
vocabulary, the ratio

rk(w) =
p(w|z = k)

p(w|z 6= k)

where the p(.|.) probabilities are posterior infer-
ences, derived from averaged Gibbs samples of the

8http://wordlist.aspell.net/

sufficient statistic count tables Nwk.
We selected heavily AA- and white-aligned words

as those where rAA(w) ≥ 2 and rwhite(w) ≥ 2,
respectively. We find that while 58.2% of heav-
ily white-aligned words were not in our dictionary,
fully 79.1% of heavily AA-aligned words were not.
While a high number of out-of-dictionary lexical
items is expected for Twitter data, this disparity
suggests that the AA-aligned lexicon diverges from
SAE more strongly than the white-aligned lexicon.

3.2 Internet-Specific Orthographic Variation
We performed an “open vocabulary” unigram anal-
ysis by ranking all words in the vocabulary by
rAA(w) and browsed them and samples of their us-
age. Among the words with high rAA, we observe a
number of Internet-specific orthographic variations,
which we separate into three types: abbreviations
(e.g. llh, kmsl), shortenings (e.g. dwn, dnt), and
spelling variations which do not correlate to the
word’s pronunciation (e.g. axx, bxtch). These varia-
tions do not reflect features attested in the literature;
rather, they appear to be purely orthographic vari-
ations highly specific to AAE-speaking communi-
ties online. They may highlight previously unknown
linguistic phenomena; for example, we observe that
thoe (SAE though) frequently appears in the role of
a discourse marker instead of its standard SAE us-
age (e.g. Girl Madison outfit THOE). This new use
of though as a discourse marker, which is difficult
to observe using the SAE spelling amidst many in-
stances of the SAE usage, is readily identifiable in
examples containing the thoe variant. Thus, non-
standard spellings provide valuable windows into a
variety of linguistic phenomena.

In the next section, we turn to variations which do
appear to arise from known phonological processes.

3.3 Phonological Variation
Many phonological features are closely associated
with AAE (Green, 2002). While there is not a per-
fect correlation between orthographic variations and
people’s pronunciations, Eisenstein (2013) shows
that some genuine phonological phenomena, includ-
ing a number of AAE features, are accurately re-
flected in orthographic variation on social media.
We therefore validate our model by verifying that
spellings reflecting known AAE phonological fea-
tures align closely with the AA topic.

1123

AAE Ratio SAE
sholl 1802.49 sure
iont 930.98 I don’t
wea 870.45 where

talmbout 809.79 talking about
sumn 520.96 something

Table 1: Of 31 phonological variant words, top five by ratio
rAA(w). SAE translations are shown for reference.

We selected 31 variants of SAE words from
previous studies of AAE phonology on Twitter
(Jørgensen et al., 2015; Jones, 2015). These varia-
tions display a range of attested AAE phonological
features, such as derhotacization (e.g. brotha), dele-
tion of initial g and d (e.g. iont), and realization of
voiced th as d (e.g. dey) (Rickford, 1999).

Table 1 shows the top five of these words by their
rAA(w) ratio. For 30 of the 31 words, r ≥ 1, and
for 13 words, r ≥ 100, suggesting that our model
strongly identifies words displaying AAE phonolog-
ical features with the AA topic. The sole excep-
tion is the word brotha, which appears to have been
adopted into general usage as its own lexical item.

3.4 Syntactic Variation

We further validate our model by verifying that it re-
produces well-known AAE syntactic constructions,
investigating three well-attested AAE aspectual or
preverbal markers: habitual be, future gone, and
completive done (Green, 2002). Table 2 shows ex-
amples of each construction.

To search for the constructions, we tagged the cor-
pora using the ARK Twitter POS tagger (Gimpel
et al., 2011; Owoputi et al., 2013),9 which Jørgensen
et al. (2015) show has similar accuracy rates on both
AAE and non-AAE tweets, unlike other POS tag-
gers. We searched for each construction by search-
ing for sequences of unigrams and POS tags char-
acterizing the construction; e.g. for habitual be we
searched for the sequences O-be-V and O-b-V. Non-
standard spellings for the unigrams in the patterns
were identified from the ranked analysis of §3.2.

We examined how a message’s likelihood of us-
ing each construction varies with the message’s pos-
terior probability of AA. We split all messages into
deciles based on the messages’ posterior probabil-

9Version 0.3.2: http://www.cs.cmu.edu/∼ark/TweetNLP/

Construction Example Ratio
O-be/b-V I be tripping bruh 11.94
gone/gne/gon-V Then she gon be

single Af
14.26

done/dne-V I done laughed so
hard that I’m weak

8.68

Table 2: AAE syntactic constructions and the ratios of their
occurrences in the AA- vs. white-aligned corpora (§2.3).

●

●

●

●

●

●

●

●

●

●

0.
00

0
0.

00
2

0.
00

4

Posterior Probability of AA

P
ro

po
rt

io
n

of
 T

w
ee

ts
 w

ith
 C

on
st

ru
ct

io
n

0.
00

0
0.

00
2

0.
00

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

● O−be−V
gone−V
done−V

Figure 2: Proportion of tweets containing AAE syntactic con-
structions by messages’ posterior probability of AA. On the x-
axis, 0.1 refers to the decile [0, 0.1).

ity of AA. From each decile, we sampled 200,000
messages and calculated the proportion of messages
containing the three syntactic constructions.

For all three constructions, we observed the clear
pattern that as messages’ posterior probabilities of
AA increase, so does their likelihood of contain-
ing the construction. Interestingly, for all three
constructions, frequency of usage peaks at approx-
imately the [0.7, 0.8) decile. One possible reason
for the decline in higher deciles might be tendency
of high-AA messages to be shorter; while the mean
number of tokens per message across all deciles in
our samples is 9.4, the means for the last two deciles
are 8.6 and 7.1, respectively.

Given the important linguistic differences be-
tween our demographically-aligned subcorpora, we
hypothesize that current NLP tools may behave dif-
ferently. We investigate this hypothesis in §4 and §5.

4 Lang ID Tools on AAE

4.1 Evaluation of Existing Classifiers

Language identification, the task of classifying the
major world language in which a message is writ-
ten, is a crucial first step in almost any web or social

1124

AAE White-Aligned
langid.py 13.2% 7.6%
Twitter-1 8.4% 5.9%
Twitter-2 24.4% 17.6%

Table 3: Proportion of tweets in AA- and white-aligned corpora
classified as non-English by different classifiers. (§4.1)

media text processing pipeline. For example, in or-
der to analyze the opinions of U.S. Twitter users, one
might throw away all non-English messages before
running an English sentiment analyzer.

Hughes et al. (2006) review language identifica-
tion methods; social media language identification
is challenging since messages are short, and also
use non-standard and multiple (often related) lan-
guages (Baldwin et al., 2013). Researchers have
sought to model code-switching in social media lan-
guage (Rosner and Farrugia, 2007; Solorio and Liu,
2008; Maharjan et al., 2015; Zampieri et al., 2013;
King and Abney, 2013), and recent workshops have
focused on code-switching (Solorio et al., 2014)
and general language identification (Zubiaga et al.,
2014). For Arabic dialect classification, work has
developed corpora in both traditional and Roman-
ized script (Cotterell et al., 2014; Malmasi et al.,
2015) and tools that use n-gram and morphological
analysis to identify code-switching between dialects
and with English (Elfardy et al., 2014).

We take the perspective that since AAE is a di-
alect of American English, it ought to be classi-
fied as English for the task of major world language
identification. Lui and Baldwin (2012) develop
langid.py, one of the most popular open source lan-
guage identification tools, training it on over 97 lan-
guages from texts including Wikipedia, and evalu-
ating on both traditional corpora and Twitter mes-
sages. We hypothesize that if a language identifica-
tion tool is trained on standard English data, it may
exhibit disparate performance on AA- versus white-
aligned tweets. Since language identifiers are typi-
cally based on character n-gram features, they may
get confused by the types of lexical/orthographic di-
vergences seen in §3. To evaluate this hypothesis,
we compare the behavior of existing language iden-
tifiers on our subcorpora.

We test langid.py as well as the output of Twitter’s
in-house identifier, whose predictions are included
in a tweet’s metadata (from 2013, the time of data

collection); the latter may give a language code or
a missing value (unk or an empty/null value). We
record the proportion of non-English predictions by
these systems; Twitter-1 does not consider missing
values to be a non-English prediction, and Twitter-2
does.

We noticed emojis had seemingly unintended
consequences on langid.py’s classifications, so re-
moved all emojis by characters from the relevant
Unicode ranges. We also removed @-mentions.

User-level analysis We begin by comparing the
classifiers’ behavior on the AA- and white-aligned
corpora. Of the AA-aligned tweets, 13.2% were
classified by langid.py as non-English; in contrast,
7.6% of white-aligned tweets were classified as
such. We observed similar disparities for Twitter-1
and Twitter-2, illustrated in Table 3.

It turns out these “non-English” tweets are, for the
most part, actually English. We sampled and anno-
tated 50 tweets from the tweets classified as non-
English by each run. Of these 300 tweets, only 3
could be unambiguously identified as written in a
language other than English.

Message-level analysis We examine how a mes-
sage’s likelihood of being classified as non-English
varies with its posterior probability of AA. As in
§3.4, we split all messages into deciles based on
the messages’ posterior probability of AA, and pre-
dicted language identifications on 200,000 sampled
messages from each decile.

For all three systems, the proportion of messages
classified as non-English increases steadily as the
messages’ posterior probabilities of AA increase.
As before, we sampled and annotated from the
tweets classified as non-English, sampling 50 tweets
from each decile for each of the three systems. Of
the 1500 sampled tweets, only 13 (∼0.87%) could
be unambiguously identified as being in a language
other than English.

4.2 Adapting Language Identification for AAE

Natural language processing tools can be improved
to better support dialects; for example, Jørgensen
et al. (2016) use domain adaptation methods to im-
prove POS tagging on AAE corpora. In this sec-
tion, we contribute a fix to language identification to
correctly identify AAE and other social media mes-
sages as English.

1125

●
●

●
●

●

●
● ●

●

●

0.
00

0.
10

0.
20

0.
30

Posterior Probability of AA

%
 o

f T
w

ee
ts

 P
re

di
ct

ed
 to

 b
e

N
on

−
E

ng
lis

h
● langid.py

Twitter−1
Twitter−2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
00

0.
10

0.
20

0.
30

Figure 3: Proportion of tweets classified as non-English by
messages’ posterior probability of AA. On the x-axis, 0.1 refers
to the decile [0, 0.1).

4.2.1 Ensemble Classifier
We observed that messages where our model in-
fers a high probability of AAE, white-aligned,
or “Hispanic”-aligned language almost always are
written in English; therefore we construct a simple
ensemble classifier by combining it with langid.py.

For a new message ~w, we predict its
demographic-language proportions θ̂ via poste-
rior inference with our trained model, given a
symmetric α prior over demographic-topic pro-
portions (see appendix for details). The ensemble
classifier, given a message, is as follows:

• Calculate langid.py’s prediction ŷ.

• If ŷ is English, accept it as English.

• If ŷ is non-English, and at least one of the
message’s tokens are in demographic model’s
vocabulary: Infer θ̂ and return English only if
the combined AA, Hispanic, and white poste-
rior probabilities are at least 0.9. Otherwise
return the non-English ŷ decision.

Another way to view this method is that we are ef-
fectively training a system on an extended Twitter-
specific English language corpus softly labeled by
our system’s posterior inference; in this respect, it
is related to efforts to collect new language-specific
Twitter corpora (Bergsma et al., 2012) or minority
language data from the web (Ghani et al., 2001).

4.2.2 Evaluation
Our analysis from §4.1 indicates that this method
would correct erroneous false negatives for AAE

Message set langid.py Ensemble
High AA 80.1% 99.5%

High White 96.8% 99.9%
General 88.0% 93.4%

Table 4: Imputed recall of English messages in 2014 messages.
For the General set these are an approximation; see text.

messages in the training set for the model. We fur-
ther confirm this by testing the classifier on a sample
of 2.2 million geolocated tweets sent in the U.S. in
2014, which are not in the training set.

In addition to performance on the entire sample,
we examine our classifier’s performance on mes-
sages whose posterior probability of using AA- or
white-associated terms was greater than 0.8 within
the sample, which in this section we will call high
AA and high white messages, respectively. Our clas-
sifier’s precision is high across the board, at 100%
across manually annotated samples of 200 messages
from each sample.10 Since we are concerned about
the system’s overall recall, we impute recall (Ta-
ble 4) by assuming that all high AA and high white
messages are indeed English. Recall for langid.py
alone is calculated by n

N , where n is the number
of messages predicted to be English by langid.py,
and N is the total number of messages in the set.
(This is the complement of Table 3, except evalu-
ated on the test set.) We estimate the ensemble’s re-
call as n+m

N , where m = (nflip)P (English | flip)
is the expected number of correctly changed classifi-
cations (from non-English to English) by the ensem-
ble and the second term is the precision (estimated
as 1.0). We observe the baseline system has consid-
erable difference in recall between the groups which
is solved by the ensemble.

We also apply the same calculation to the general
set of all 2.2 million messages; the baseline classifies
88% as English. This is a less accurate approxima-
tion of recall since we have observed a substantial
presence of non-English messages. The ensemble
classifies an additional 5.4% of the messages as En-
glish; since these are all (or nearly all) correct, this

10We annotated 600 messages as English, not English, or not
applicable, from 200 sampled each from general, high AA, and
high white messages. Ambiguous tweets which were too short
(e.g. ”Gm”) or contained only named entities (e.g. ”Tennessee”)
were excluded from the final calculations. The resulting sam-
ples have 197/197, 198/198, and 200/200 correct English clas-
sifications, respectively.

1126

reflects at least a 5.4% gain to recall.

5 Dependency Parser Evaluation

Given the lexical and syntactic variation of AAE
compared to SAE, we hypothesize that syntac-
tic analysis tools also have differential accuracy.
Jørgensen et al. (2015) demonstrate this for part-of-
speech tagging, finding that SAE-trained taggers had
disparate accuracy on AAE versus non-AAE tweets.

We assess a publicly available syntactic depen-
dency parser on our AAE and white-aligned corpora.
Syntactic parsing for tweets has received some re-
search attention; Foster et al. (2011) create a cor-
pus of constituent trees for English tweets, and Kong
et al. (2014)’s Tweeboparser is trained on a Twitter
corpus annotated with a customized unlabeled de-
pendency formalism; since its data was uniformly
sampled from tweets, we expect it may have low dis-
parity between demographic groups.

We focus on widely used syntactic representa-
tions, testing the SyntaxNet neural network-based
dependency parser (Andor et al., 2016),11 which re-
ports state-of-the-art results, including for web cor-
pora. We evaluate it against a new manual an-
notation of 200 messages, 100 randomly sampled
from each of the AA- and white-aligned corpora de-
scribed in §2.3.

SyntaxNet outputs grammatical relations con-
forming to the Stanford Dependencies (SD) system
(de Marneffe and Manning, 2008), which we used to
annotate messages using Brat,12 comparing to pre-
dicted parses for reference. Message order was ran-
domized and demographic inferences were hidden
from the annotator. To increase statistical power rel-
ative to annotation effort, we developed a partial an-
notation approach to only annotate edges for the root
word of the first major sentence in a message. Gen-
erally, we found that that SD worked well as a de-
scriptive formalism for tweets’ syntax; we describe
handling of AAE and Internet-specific non-standard
issues in the appendix. We evaluate labeled recall
of the annotated edges for each message set:

Parser AA Wh. Difference
SyntaxNet 64.0 (2.5) 80.4 (2.2) 16.3 (3.4)
CoreNLP 50.0 (2.7) 71.0 (2.5) 21.0 (3.7)

11Using the publicly available mcparseface model: https://
github.com/tensorflow/models/tree/master/syntaxnet

12http://brat.nlplab.org/

Bootstrapped standard errors (from 10,000 message
resamplings) are in parentheses; differences are sta-
tistically significant (p < 10−6 in both cases).

The white-aligned accuracy rate of 80.4% is
broadly in line with previous work (compare to the
parser’s unlabeled accuracy of 89% on English Web
Treebank full annotations), but parse quality is much
worse on AAE tweets at 64.0%. We test the Stanford
CoreNLP neural network dependency parser (Chen
and Manning, 2014) using the english SD model
that outputs this formalism;13 its disparity is worse.
Soni et al. (2014) used a similar parser14 on Twitter
text; our analysis suggests this approach may suffer
from errors caused by the parser.

6 Discussion and Conclusion

We have presented a distantly supervised probabilis-
tic model that employs demographic correlations of
a dialect and its speaker communities to uncover di-
alectal language on Twitter. Our model can also
close the gap between NLP tools’ performance on
dialectal and standard text.

This represents a case study in dialect identifica-
tion, characterization, and ultimately language tech-
nology adaptation for the dialect. In the case of
AAE, dialect identification is greatly assisted since
AAE speakers are strongly associated with a demo-
graphic group for which highly accurate governmen-
tal records (the U.S. Census) exist, which we lever-
age to help identify speaker communities. The no-
tion of non-standard dialectal language implies that
the dialect is underrepresented or underrecognized
in some way, and thus should be inherently diffi-
cult to collect data on; and of course, many other
language communities and groups are not necessar-
ily officially recognized. An interesting direction
for future research would be to combine distant su-
pervision with unsupervised linguistic models to au-
tomatically uncover such underrecognized dialectal
language.

Acknowledgments: We thank Jacob Eisenstein, Taylor Jones,
Anna Jørgensen, Dirk Hovy, and the anonymous reviewers for
discussion and feedback.

13pos,depparse options in version 2015-04-20, using tok-
enizations output by SyntaxNet.

14The older Stanford englishPCFG model with dependency
transform (via pers. comm.).

1127

References

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev,
Slav Petrov, and Michael Collins. Globally nor-
malized transition-based neural networks. arXiv
preprint arXiv:1603.06042, 2016.

Timothy Baldwin, Paul Cook, Marco Lui, Andrew
MacKinlay, and Li Wang. How noisy social me-
dia text, how diffrnt social media sources? In
International Joint Conference on Natural Lan-
guage Processing, pages 356–364, 2013.

Shane Bergsma, Paul McNamee, Mossaab Bag-
douri, Clayton Fink, and Theresa Wilson.
Language identification for creating language-
specific Twitter collections. In Proceedings of the
Second Workshop on Language in Social Media,
pages 65–74. Association for Computational Lin-
guistics, 2012.

Marianne Bertrand and Sendhil Mullainathan. Are
Emily and Greg more employable than Lakisha
and Jamal? A field experiment on labor market
discrimination. Technical report, National Bureau
of Economic Research, 2003.

Danqi Chen and Christopher Manning. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 740–750, Doha, Qatar, Oc-
tober 2014. Association for Computational Lin-
guistics. URL http://www.aclweb.org/anthology/
D14-1082.

Ryan Cotterell, Adithya Renduchintala, Naomi
Saphra, and Chris Callison-Burch. An Algerian
Arabic-French code-switched corpus. In Work-
shop on Free/Open-Source Arabic Corpora and
Corpora Processing Tools Workshop Programme,
page 34, 2014.

M. C. de Marneffe and C. D. Manning. Stanford
typed dependencies manual. Technical report, last
revised April 2015 edition, 2008.

Gabriel Doyle. Mapping dialectal variation by
querying social media. In Proceedings of EACL,
pages 98–106, 2014.

Jacob Eisenstein. Phonological factors in social me-
dia writing. In Proc. of the Workshop on Lan-

guage Analysis in Social Media, pages 11–19,
2013.

Jacob Eisenstein. Identifying regional dialects in on-
line social media. In C. Boberg, J. Nerbonne, and
D. Watt, editors, Handbook of Dialectology. Wi-
ley, 2015.

Jacob Eisenstein, Amr Ahmed, and Eric P. Xing.
Sparse additive generative models of text. In Pro-
ceedings of ICML, pages 1041–1048, 2011a.

Jacob Eisenstein, Noah A. Smith, and Eric P.
Xing. Discovering sociolinguistic associations
with structured sparsity. In Proceedings of
the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language
Technologies-Volume 1, pages 1365–1374. Asso-
ciation for Computational Linguistics, 2011b.

Heba Elfardy, Mohamed Al-Badrashiny, and Mona
Diab. Aida: Identifying code switching in infor-
mal Arabic text. Proceedings of EMNLP 2014,
page 94, 2014.

Jennifer Foster, Ozlem Cetinoglu, Joachim Wag-
ner, Joseph Le Roux, Stephen Hogan, Joakim
Nivre, Deirdre Hogan, and Josef van Genabith.
#hardtoparse: POS tagging and parsing the Twit-
terverse. In Proc. of AAAI-11 Workshop on
Analysing Microtext, 2011.

Rayid Ghani, Rosie Jones, and Dunja Mladenić.
Mining the web to create minority language cor-
pora. In Proceedings of the Tenth International
Conference on Information and Knowledge Man-
agement, pages 279–286. ACM, 2001.

Kevin Gimpel, Nathan Schneider, Brendan
O’Connor, Dipanjan Das, Daniel Mills, Jacob
Eisenstein, Michael Heilman, Dani Yogatama,
Jeff Flanigan, and Noah A. Smith. Part-of-speech
tagging for Twitter: Annotation, features, and
experiments. In Proceedings of the 49th Annual
Meeting of the Association for Computational
Linguistics: Human Language Technologies,
pages 42–47. Association for Computational
Linguistics, 2011.

Lisa J. Green. African American English: A Lin-
guistic Introduction. Cambridge University Press,
2002.

T.L. Griffiths and M. Steyvers. Finding scientific
topics. Proceedings of the National Academy of

1128

Sciences of the United States of America, 101
(Suppl 1):5228, 2004.

Dirk Hovy and L. Shannon Spruit. The social im-
pact of natural language processing. In Proceed-
ings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 2:
Short Papers), pages 591–598. Association for
Computational Linguistics, 2016. doi: 10.18653/
v1/P16-2096. URL http://aclweb.org/anthology/
P16-2096.

Yuan Huang, Diansheng Guo, Alice Kasakoff, and
Jack Grieve. Understanding US regional linguis-
tic variation with Twitter data analysis. Comput-
ers, Environment and Urban Systems, 2015.

Baden Hughes, Timothy Baldwin, Steven Bird,
Jeremy Nicholson, and Andrew MacKinlay. Re-
considering language identification for written
language resources. In Proceedings of the Fifth
International Conference on Language Resources
and Evaluation (LREC’06). European Language
Resources Association (ELRA), 2006. URL http:
//aclweb.org/anthology/L06-1274.

Taylor Jones. Toward a description of African
American Vernacular English dialect regions us-
ing “Black Twitter”. American Speech, 90(4):
403–440, 2015.

Anna Jørgensen, Dirk Hovy, and Anders Søgaard.
Learning a POS tagger for AAVE-like language.
In Proceedings of NAACL. Association for Com-
putational Linguistics, 2016.

Anna Katrine Jørgensen, Dirk Hovy, and Anders
Søgaard. Challenges of studying and processing
dialects in social media. In Proceedings of the
Workshop on Noisy User-generated Text, pages 9–
18, 2015.

Ben King and Steven P Abney. Labeling the lan-
guages of words in mixed-language documents
using weakly supervised methods. In Proceed-
ings of HLT-NAACL, pages 1110–1119, 2013.

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer,
and Noah A. Smith. A dependency parser
for tweets. In Proceedings of the 2014
Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages
1001–1012, Doha, Qatar, October 2014. As-

sociation for Computational Linguistics. URL
http://www.aclweb.org/anthology/D14-1108.

M. Lui and T. Baldwin. langid. py: An
off-the-shelf language identification tool. In
Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics
(ACL 2012), Demo Session, Jeju, Republic
of Korea, 2012. URL http://www.aclweb.org/
anthology-new/P/P12/P12-3005.pdf.

Teresa Lynn, Kevin Scannell, and Eimear Maguire.
Minority language Twitter: Part-of-speech tag-
ging and analysis of Irish tweets. Proceedings of
ACL-IJCNLP 2015, page 1, 2015.

Suraj Maharjan, Elizabeth Blair, Steven Bethard,
and Thamar Solorio. Developing language-tagged
corpora for code-switching tweets. In The 9th Lin-
guistic Annotation Workshop held in conjuncion
with NAACL 2015, page 72, 2015.

Shervin Malmasi, Eshrag Refaee, and Mark Dras.
Arabic dialect identification using a parallel mul-
tidialectal corpus. In International Conference
of the Pacific Association for Computational Lin-
guistics, pages 35–53. Springer, 2015.

David Mimno and Andrew McCallum. Topic
models conditioned on arbitrary features with
Dirichlet-Multinomial regression. In Uncertainty
in Artificial Intelligence, pages 411–418, 2008.

B. L. Monroe, M. P. Colaresi, and K. M. Quinn.
Fightin’ Words: Lexical feature selection and
evaluation for identifying the content of political
conflict. Political Analysis, 16(4):372, 2008.

Fred Morstatter, Jrgen Pfeffer, Huan Liu, and
Kathleen Carley. Is the sample good enough?
Comparing data from twitter’s streaming api
with Twitter’s Firehose. In International AAAI
Conference on Weblogs and Social Media,
2013. URL http://www.aaai.org/ocs/index.php/
ICWSM/ICWSM13/paper/view/6071.

Brendan O’Connor, Jacob Eisenstein, Eric P. Xing,
and Noah A. Smith. A mixture model of demo-
graphic lexical variation. In NIPS Workshop on
Machine Learning for Social Computing, 2010.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A.
Smith. Improved part-of-speech tagging for on-

1129

line conversational text with word clusters. In
Proceedings of NAACL, 2013.

Umashanthi Pavalanathan and Jacob Eisenstein.
Confounds and consequences in geotagged Twit-
ter data. In Proceedings of Empirical Methods
for Natural Language Processing (EMNLP), Lis-
bon, September 2015. URL http://www.aclweb.
org/anthology/D/D15/D15-1256.pdf.

Daniel Ramage, Christopher D. Manning, and Su-
san Dumais. Partially labeled topic models for
interpretable text mining. In Proceedings of the
17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
457–465, 2011.

John Russell Rickford. African American Vernacu-
lar English: Features, Evolution, Educational Im-
plications. Wiley-Blackwell, 1999.

Margaret E Roberts, Brandon M Stewart, Dustin
Tingley, and Edoardo M Airoldi. The structural
topic model and applied social science. In Ad-
vances in Neural Information Processing Systems
Workshop on Topic Models: Computation, Appli-
cation, and Evaluation, 2013.

Mike Rosner and Paulseph-John Farrugia. A tag-
ging algorithm for mixed language identification
in a noisy domain. In Eighth Annual Conference
of the International Speech Communication Asso-
ciation, 2007.

Thamar Solorio and Yang Liu. Learning to pre-
dict code-switching points. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing, pages 973–981. Associa-
tion for Computational Linguistics, 2008.

Thamar Solorio, Elizabeth Blair, Suraj Mahar-
jan, Steven Bethard, Mona Diab, Mahmoud
Ghoneim, Abdelati Hawwari, Fahad AlGhamdi,
Julia Hirschberg, Alison Chang, and Pascale
Fung. Overview for the first shared task on lan-
guage identification in code-switched data. In
Proceedings of the First Workshop on Compu-
tational Approaches to Code Switching, pages
62–72, Doha, Qatar, October 2014. Association
for Computational Linguistics. URL http://www.
aclweb.org/anthology/W14-3907.

Sandeep Soni, Tanushree Mitra, Eric Gilbert, and
Jacob Eisenstein. Modeling factuality judgments

in social media text. In Proceedings of the 52nd
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers),
pages 415–420, Baltimore, Maryland, June 2014.
Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P14-2068.

Ian Stewart. Now we stronger than ever: African-
American syntax in Twitter. Proceedings of
EACL, page 31, 2014.

Latanya Sweeney. Discrimination in online ad de-
livery. ACM Queue, 11(3):10, 2013.

Matt Taddy. Multinomial inverse regression for text
analysis. Journal of the American Statistical As-
sociation, 108(503):755–770, 2013.

Marcos Zampieri, Binyam Gebrekidan Gebre, and
Sascha Diwersy. N-gram language models and
pos distribution for the identification of Spanish
varieties. Proceedings of TALN2013, pages 580–
587, 2013.

Arkaitz Zubiaga, Inaki San Vincente, Pablo
Gamallo, Jose Ramom Pichel, Inaki Algeria,
Nora Aranberri, Aitzol Ezeiza, and Victor Fresno.
Overview of TweetLID: Tweet language identi-
fication at SEPLN 2014. In Proceedings of the
Tweet Language Identification Workshop, Girona,
Spain, September 2014. Spanish Society for Nat-
ural Language Processing. URL http://ceur-ws.
org/Vol-1228/.

1130

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1131–1141,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Understanding Language Preference for Expression of Opinion and
Sentiment: What do Hindi-English Speakers do on Twitter?

Koustav Rudra
IIT Kharagpur, India

koustav.rudra@cse.iitkgp.ernet.in

Shruti Rijhwani∗
Carnegie Mellon University,

Pittsburgh, Pennsylvania
srijhwan@cs.cmu.edu

Rafiya Begum
Microsoft Research Labs,

Bangalore, India
t-rafbeg@microsoft.com

Kalika Bali
Microsoft Research Labs,

Bangalore, India
kalikab@microsoft.com

Monojit Choudhury
Microsoft Research Labs,

Bangalore, India
monojitc@microsoft.com

Niloy Ganguly
IIT Kharagpur, India

niloy@cse.iitkgp.ernet.in

Abstract

Linguistic research on multilingual societies
has indicated that there is usually a preferred
language for expression of emotion and sen-
timent (Dewaele, 2010). Paucity of data has
limited such studies to participant interviews
and speech transcriptions from small groups
of speakers. In this paper, we report a study
on 430,000 unique tweets from Indian users,
specifically Hindi-English bilinguals, to un-
derstand the language of preference, if any,
for expressing opinion and sentiment. To this
end, we develop classifiers for opinion detec-
tion in these languages, and further classifying
opinionated tweets into positive, negative and
neutral sentiments. Our study indicates that
Hindi (i.e., the native language) is preferred
over English for expression of negative opin-
ion and swearing. As an aside, we explore
some common pragmatic functions of code-
switching through sentiment detection.

1 Introduction

The pattern of language use in a multilingual soci-
ety is a complex interplay of socio-linguistic, dis-
cursive and pragmatic factors. Sometimes speakers
have a preference for a particular language for cer-
tain conversational and discourse settings; on other
occasions, there is fluid alteration between two or
more languages in a single conversation, also known
as Code-switching (CS) or Code-mixing1. Under-

∗* This work was done when the author was a Research Fel-
low at Microsoft Research Lab India.

1Although some linguists differentiate between Code-
switching and Code-mixing, this paper will use the two terms
interchangeably.

standing and characterizing language preference in
multilingual societies has been the subject matter of
linguistic inquiry for over half a century (see Milroy
and Muysken (1995) for an overview).

Conversational phenomena such as CS were ob-
served only in speech and therefore, all previous
studies are based on data collected from a small
set of speakers or from interviews. With the grow-
ing popularity of social media, we now have an
abundance of conversation-like data that exhibit CS
and other speech phenomena, hitherto unseen in
text (Bali et al., 2014). Leveraging such data from
Twitter, we conduct a large-scale study on language
preference, if any, for the expression of opinion and
sentiment by Hindi-English (Hi-En) bilinguals.

We first build a corpus of 430,000 unique India-
specific tweets across four domains (sports, enter-
tainment, politics and current events) and automati-
cally classify the tweets by their language: English,
Hindi and Hi-En CS. We then develop an opinion de-
tector for each language class to further categorize
them into opinionated and non-opinionated tweets.
Sentiment detectors further classify the opinionated
tweets as positive, negative or neutral. Our study
shows that there is a strong preference towards Hindi
(i.e. the native language or L1) over English (L2) for
expression of negative opinion. The effect is clearly
visible in CS tweets, where a switch from English to
Hindi is often correlated with a switch from a pos-
itive to negative sentiment. This is referred to as
the polarity–switch function of CS (Sanchez, 1983).
Using the same experimental technique, we also ex-
plore other pragmatic functions of CS, such as rein-
forcement and narrative–evaluative.

1131

Apart from being the first large-scale quantita-
tive study of language preference in multilingual
societies, this work also has several other contri-
butions: (a) We develop one of the first opin-
ion and sentiment classifiers for Romanized Hindi
and CS Hi-En tweets with higher accuracy than
the only known previous attempt (Sharma et al.,
2015b). (b) We present a novel methodology for au-
tomatically detecting pragmatic functions of code-
switching through opinion and sentiment detection.

The rest of the paper is organized as follows:
Sec. 2 introduces language preference, functions of
CS and Hindi-English bilingualism on the web. Sec.
3 formulates the problem and presents the funda-
mental questions that this paper seeks to answer.
Sec. 4 and 5 discuss dataset creation and opinion and
sentiment detection techniques respectively. Sec. 6
evaluates the hypotheses in light of the observations
on the tweet corpus. We conclude in Sec. 7, and
raise some interesting sociolinguistic questions for
future studies.

2 Background and Related Work
In order to situate the questions addressed in our
work in existing literature, we present a brief
overview of the past research in pragmatic and dis-
cursive analysis of code-switching, and specifically,
on language preference for emotional expression. A
primer to Hi-En bilingualism and its presence in so-
cial media shall follow.

2.1 CS Functions and Language Preference
In multilingual communities, where there are more
than one linguistic channels for information ex-
change, the choice of the channel depends on a vari-
ety of factors, and is usually unpredictable (Auer,
1995). Nevertheless, linguistic studies point out
certain frequently-observed patterns. For instance,
certain speech activities might be exclusively or
more commonly related to a certain language choice
(e.g. Fishman (1971) reports use of English for pro-
fessional purposes and Spanish for informal chat
for English-Spanish bilinguals from Puerto Rico).
Apart from association between such conversational
contexts and language preference, language alter-
ation is often found to be used as a signaling de-
vice to imply certain pragmatic functions (Barredo,
1997; Sanchez, 1983; Nishimura, 1995; Maschler,

1991; Maschler, 1994) such as: (a) reported speech
(b) narrative to evaluative switch (c) reiterations or
emphasis (d) topic shift (e) puns and language play
(f) topic/comment structuring etc. Attempts of pre-
dicting the preferred language, or even exhaustively
listing such functions, have failed. However, lin-
guists agree that language alteration in multilingual
communities is not a random process.

Of specific interest to us are the studies on
language preference for expression of emotions.
Through large-scale interviews and two decades of
research, Dewaele (2004; 2010) argued that for most
multilinguals, L1 (the dominant language, which is
often, but not always, the native or mother tongue)
is the language preference for emotions, which in-
clude emotional inner speech, swearing and even
emotional conversations. Dewaele argues that emo-
tionally charged words in L1 elicit stronger emo-
tions than those in other languages, and hence L1
is preferred for emotion expression.

2.2 Hindi-English Bilingualism

Around 125 million people in India speak English,
half of whom have Hindi as their mother-tongue.
The large proportion of the remaining half, espe-
cially those residing in the metropolitan cities, also
know at least some Hindi. This makes Hi-En code-
switching, commonly called Hinglish, extremely
widespread in India. There is historical attesta-
tion, as well as recent studies on the growing use of
Hinglish in general conversation, and in entertain-
ment and media (see Parshad et al. (2016) and ref-
erences therein). Several recent studies (Bali et al.,
2014; Barman et al., 2014; Solorio et al., 2014; Se-
quiera et al., 2015) also provide evidence of Hinglish
and other instances of CS on online social media
such as Twitter and Facebook. In a Facebook dataset
analyzed by Bali et al. (2014), almost all sufficiently
long conversation threads were found to be multi-
lingual, and as much as 17% of the comments had
CS. This study also indicates that on online social
media, Hindi is seldom written in the Devanagari
script. Instead, loose Roman transliteration, or Ro-
manized Hindi, is common, especially when users
code-switch between Hindi and English.

While there has been some effort towards com-
putational processing of CS text (Solorio and Liu,
2008; Solorio and Liu, 2010; Vyas et al., 2014; Peng

1132

et al., 2014), to the best of our knowledge, there has
been no study on automatic identification of func-
tional aspects of CS or any large-scale, data-driven
study of language preference. The current study
adds to the growing repertoire of work on quantita-
tive analysis of social media data for understanding
socio-linguistic and pragmatic issues, such as de-
tection of depression (De Choudhury et al., 2013),
politeness (Danescu-Niculescu-Mizil et al., 2013),
speech acts (Vosoughi and Roy, 2016), and social
status (Tchokni et al., 2014).

3 Problem Formulation

Along the lines of (Dewaele, 2010), we ask the fol-
lowing question: Is there a preferred language for
expression of opinion and sentiment by the Hi-En
bilinguals on Twitter?

3.1 Definitions
More formally, let Λ = {h, e,m} be the set of
languages: Hindi (h), English (e) and Mixed (m),
i.e., code-switched. Let Σ = {d, r}, be the set
of scripts:2 Devanagari (d) and Roman (r). Let
us further introduce a set of sentiments, 3 =
{+,−, 0,⊗}, where +, − and 0 respectively denote
utterances with positive, negative and neutral opin-
ions. ⊗ denote non-opinionated (like factual) texts.

Let T = {t1, t2, . . . t|T |} be a set of tweets (or any
text) generated by Hi-En bilinguals. We define:

• λ(T), σ(T) and �(T) as the subsets of T that
respectively contain all tweets in language λ,
script σ and sentiment �.

• λσ� (T) = λ(T)∩ σ(T)∩ �(T). Likewise, we
also define λ� (T) = λ(T) ∩ �(T), λσ(T) =
λ(T) ∩ σ(T) and σ� (T) = σ(T) ∩ �(T).

The preference towards a language-script pair λσ for
expressing a type of sentiment � is given by the prob-
ability

pr(λσ|�;T) = pr(�|λσ;T)pr(λσ|T)
pr(�|T) (1)

However, pr(λσ), which defines the prior probability
of choosing λσ for a tweet is dependent on a large

2Tweets in mixed script are rare and hence we do not include
a symbol for it, though the framework does not preclude such
possibilities.

number of socio-linguistic parameters beyond sen-
timent. For instance, on social media, English is
overwhelmingly more common than any Indic lan-
guage (Bali et al., 2014). This is because (a) En-
glish tweets come from a large number of users apart
from Hi-En bilinguals and (b) English is the pre-
ferred language for tweeting even for Hi-En bilin-
guals because it expands the target audience of the
tweet by manifolds. The preference of λσ for ex-
pressing �, therefore, can be quantified as:

pr(�|λσ;T) = |λσ� (T)||λσ(T)| (2)

We say λσ is the preferred language-script choice
over λ′σ′ for expressing sentiment � if and only if

pr(�|λσ;T) > pr(�|λ′σ′;T) (3)

The strength of the preference is directly
proportionate the ratio of the probabilities:
pr(�|λσ;T)/pr(�|λ′σ′;T). An alternative but
related way of characterizing the preference is
through comparing the odds of choosing a senti-
ment type � to its polar opposite - �′. We say, λσ is
the preferred language-script pair for expressing �,
if

pr(�|λσ;T)
pr(�′|λσ;T) >

pr(�|λ′σ′;T)
pr(�′|λ′σ′;T) (4)

3.2 Hypotheses

Now we can formally define the two hypotheses, we
intend to test here.
Hypothesis I: For Hi-En bilinguals, Hindi is the pre-
ferred language for expression of opinion on Twitter.
Therefore, we expect

pr({+,−, 0}|hd;T) > pr({+,−, 0}|er;T) (5)

i.e., pr(⊗|hd;T) < pr(⊗|er;T) (6)

And similarly,

pr(⊗|hr;T) < pr(⊗|er;T) (7)

Hypothesis II: For Hi-En bilinguals, Hindi is the
preferred language for expression of negative senti-
ment. Therefore,

pr(−|hd;T) ≈ pr(−|hr;T) > pr(−|er;T) (8)

1133

In particular, we would like to hypothesize that the
odds of choosing Hindi for negative over positive is
really high compared to the odds for English. I.e.,

pr(−|hd;T)
pr(+|hd;T) ≈

pr(−|hr;T)
pr(+|hr;T) >

pr(−|er;T)
pr(+|er;T) (9)

A special case of the above hypotheses arise in
the context of code-mixing, i.e., for the set mr(T).
Since the mixed tweets certainly come from profi-
cient bilinguals and have both Hi and En fragments,
we can reformulate our hypotheses at a tweet level.
Let mhr(T) and mer(T) respectively denote the set
of Hi and En fragments in mr(T).
Hypothesis Ia: Hindi is the preferred language for
expression of opinion in Hi-En code-mixed tweets.
Therefore, we expect

i.e., pr(⊗|mhr;T) < pr(⊗|mer;T) (10)

Hypothesis IIa: Hindi is the preferred language
for expression of negative sentiment in Hi-En code-
switched tweets. Therefore,

pr(−|mhr;T) > pr(−|mer;T) (11)

pr(−|mhr;T)

pr(+|mhr;T)
>
pr(−|mer;T)

pr(+|mer;T)
(12)

Likewise, the above hypotheses also apply for the
Devanagari script, though for technical reasons, we
do not test them here.

Besides comparing aggregate statistics onmr(T),
it is also interesting to look at the sentiment of
mhr(ti) andmer(ti) for each tweet ti. In particular,
for every pair of � 6=�′, we want to study the fraction
of tweets in mr(T) where mhr(ti) has sentiment �
and mer(ti) has �′. Let this fraction be pr(h� ↔
e�′;mr(T)). Under “no-preference for language”
(i.e., the null) hypothesis, we would expect pr(h� ↔
e�′;mr(T)) ≈ pr(h�′ ↔ e�;mr(T)). However,
if pr(h� ↔ �′;mr(T)) is significantly higher than
pr(h�′ ↔ e�;mr(T)), it means that speakers prefer
to switch from English to Hindi when they want to
express a sentiment � and vice versa.
Pragmatic Functions of Code-Switching: When
native speakers tend to switch from Hindi to English
when they switch from an expression with sentiment
� to one with �′, or in other words � ↔ �′, we

Topic (# tweets): Hashtags
Sports (188K): #IndvsPak, #IndvsUae, #IndvsSa
Movies (82K): #MSG3successfulweeks, #MS-
Gincinemas, #BlockbusterMSG, #Shamitabh, #PK
Politics (92K): #DelhiDecides, #RahulonlLeave,
#AAPStorm, #AAPSweep
Current Events (68K): #RailBudget2015, #Beef-
ban, #LandAcquisitionBill, #UnionBudget2015

Table 1: Hashtags used and number of tweets collected

say this is an observed pragmatic function of code-
switching between Hindi and English (note that the
order of the languages is important), if and only if

pr(h� ↔ e�′;mr(T))
pr(h�′ ↔ e�;mr(T)) > 1 (13)

3.3 A Note on Statistical Significance

All the statistics defined here are likelihoods; Equa-
tions 9, 12 and 13, in particular, state our hypothesis
in the form of the Likelihood Ratio Test. However,
the true classes λ and � are unknown; we predict
the class labels using automatic language and senti-
ment detection techniques that have non-negligible
errors. Under such a situation, the likelihoods can-
not be considered as true test statistics, and conse-
quently, hypothesis testing cannot be done per se.
Nevertheless, we can use these as descriptive statis-
tics and investigate the status of the aforementioned
hypotheses.

4 Datasets
We collected tweets with certain India-specific hash-
tags (Table 1) using the Twitter Search API (Twi,
2015b) over three months (December 2014 – Febru-
ary 2015). In this paper, we use tweets in De-
vanagari script Hindi (hd), and Roman script En-
glish (er), Hindi (hr) and Hi-En Mixed (mr). En-
glish and mixed tweets written in Devanagari are ex-
tremely rare (Bali et al., 2014) and we do not study
them here. We filter out tweets labeled by the Twit-
ter API (Twi, 2015a) as German, Spanish, French,
Portuguese, Turkish, and all non-Roman script lan-
guages (except Hindi).

We experiment on the following different corpora:
TAll: All tweets after filtering. This corpus

contains 430,000 unique tweets posted by 1,25,396
unique users.

1134

TBL: Tweets from users who are certainly Hi-En
bilinguals, which are approximately 55% (240,000)
of the tweets in TAll. We define a user to be a Hi-En
bilingual if there is at least one mr tweet from the
user, or if the user has tweeted at least once in Hindi
(hd or hr) and once in English (er).
Tspo,Tmov,Tpol,Teve: Topic-wise corpora for

sports, movies, politics and events (Table 1).
TCS: Tweets with inter-sentential CS. We define

these as tweets containing at least one sequence of 5
contiguous Hindi words and one sequence of 5 con-
tiguous English words. The corpus has 3,357 tweets.

SAC: 1000 monolingual tweets (er, hr, hd) and
260 mixed (mr) tweets manually annotated with
sentiment and opinion labels. These were annotated
by two linguists, both fluent Hi-En speakers. The an-
notators first checked whether the tweet is opinion-
ated or⊗ and then identified polarity of the opinion-
ated tweets (+, − or 0). Thus, the tweets are classi-
fied into the four classes in the set 3. If a tweet con-
tains both opinion and ⊗, each fragment was indi-
vidually annotated. The inter-annotator agreement is
77.5% (κ = 0.59) for opinion annotation and 68.4%
(κ = 0.64) over all four classes. A third linguist
independently corrected the disagreements.
LLCTest: 141 er, 137 hr, and 241 mr tweets

annotated by a Hi-En bilingual form the test set for
the Language Labeling system (Sec. 5.1).
SAC and LLCTest can be downloaded and used

for research purposes3.
Note that apart from SAC and LLCTest, all cor-

pora are subsets of TAll. For generalizability of
our observations, it is important to ensure that the
tweets in TAll come from a large number of users
and the datasets do not over-represent a small set of
users. In Figure 1, we plot the minimum fraction of
users required (x-axis) to cover a certain percentage
of the tweets in TAll (y-axis). Tweets from at least
10%, i.e., 12.5K users are needed to cover 50% of
the corpus. As expected, we do observe a power-
law-like distribution, where a few users contribute a
large number of tweets, and a large number of users
contribute a few tweets each. We believe that 12.5K
users is sufficient to ensure an unbiased study.

Further, we classify the users into three specific
groups (i) news channels, (ii) general users (having

3http://www.cnergres.iitkgp.ac.in/codemixing

0 20 40 60 80 100
50

60

70

80

90

100

% of top users

%
 o

f
tw

e
e

ts
 c

o
v

e
re

d

Figure 1: Distribution of cumulative % of tweets and # of
users (sorted in descending order by number of tweets).

≤ 10,000 followers), (iii) popular users or celebrities
(having > 10,000 followers). Interestingly, for both
TAll, and TBL corpora, we observe that around
98% of all users are general, and 96% of all tweets
come from such users. Hence, most observations
from these corpora are expected to be representative
of the average online linguistic behavior of a Hi-En
bilingual.

5 Method
Fig. 2 diagrammatically summarizes our experimen-
tal method. We identify the language used in each
tweet before detecting opinion and sentiment.

5.1 Language Labeling
Tweets in Devanagari script are accurately detected
by the Twitter API as Hindi tweets – we label these
as hd, though a small fraction of them could also be
md. To classify Roman script tweets as er, hr or
mr, we use the system that performed best in the
FIRE 2013 shared task for word-level language de-
tection of Hi-En text (Gella et al., 2013). This sys-
tem uses character n-gram features with a Maximum
Entropy model for labeling each input word with a
language label (either English or Hindi). We design
minor modifications to the system to improve its per-
formance on Twitter data, which are omitted here
due to paucity of space.

5.2 Opinion and Sentiment Detection
Most of the existing research in opinion detec-
tion (Qadir, 2009; Brun, 2012; Rajkumar et al.,

1135

Figure 2: Overview of the experimental method.

2014) and sentiment analysis (Mohammad, 2012;
Mohammad et al., 2013; Mittal et al., 2013; Rosen-
thal et al., 2015) focus on monolingual tweets and
sentences. Recently, there has been a couple of
studies on sentiment detection of code-switched
tweets (Vilares et al., 2015; Sharma et al., 2015b).
Sharma et al. (2015b) use Hindi SentiWordNet and
normalization techniques to detect sentiment in Hi-
En CS tweets.

We propose a two-step classification model. We
first identify whether a tweet is opinionated or non-
opinionated (⊗). If the tweet is opinionated, we fur-
ther classify it according to its sentiment (+,− or 0).
Fig. 2 shows the architecture of the proposed model.
Two-step classification was empirically found to be
better than a single four-class classifier.

We develop individual classifiers for each lan-
guage class (er, hr, hd, mr) using an SVM with
RBF kernel from Scikit-learn (Pedregosa et al.,

2011). We use the SAC dataset (Sec. 4) as train-
ing data and features as described in Sec. 5.3.

5.3 Classifier Features

For opinion classification (opinion or ⊗), we pro-
pose a set of event-independent lexical features and
Twitter-specific features. (i) Subjective words: Ex-
pected to be present in opinion tweets. We use lexi-
cons from Volkova et al. (2013) for er and Bakliwal
et al. (2012) for hd. We Romanize the hd lexicon
for the hr classifiers (ii) Elongated words: Words
with one character repeated more than two times,
e.g. sooo, naaahhhhi (iii) Exclamations: Presence
of contiguous exclamation marks (iv) Emoticons4

(v) Question marks: Queries are generally non-
opinionated. (vi) Wh-words: These are used to
form questions (vii) Modal verbs: e.g. should,
could, would, cud, shud (viii) Excess hashtags:
Presence of more than two hashtags (ix) Intensi-
fiers: Generally used to emphasize sentiment, e.g.,
we shouldn’t get too comfortable (x) Swear words5:
Prevalent in opinionated tweets, e.g. that was a
f ing no ball!!!! #indvssa (xi) Hashtags: Hash-
tags might convey user sentiment (Barbosa et al.,
2012). We manually identify hashtags in our corpus
that represent explicit opinion. (xii) Domain lexi-
con: For hr, & hd category tweets, we construct
sentiment lexicons from 1000 manually annotated
tweets. Each word or phrase in this lexicon repre-
sents +, or −, or 0 sentiment. (xiii) Twitter user
mentions (xiv) Pronouns: Opinion is often in first
person using pronouns like I and we.

For sentiment classification, we use emoticons,
swear words, exclamation marks and elongated
words as described above. We also use subjec-
tive words from various lexicons (Mohammad and
Turney, 2013; Volkova et al., 2013; Bakliwal et
al., 2012; Sharma et al., 2015a). Additionally, we
use – (i) Sentiment words: From Hashtag Senti-
ment and Sentiment140 lexicons (Mohammad et al.,
2013). We also manually annotate hashtags from our
dataset that represent sentiment. (ii) Negation: A
negated context is tweet segment that begins with
a negation word and ends with a punctuation mark
(Pang et al., 2002). The list of negation words are

4The list of emoticons was extracted from Wikipedia
5Swear word lexicons from noswearing.com, youswear.com

1136

Classifier er hd hr mr

Opinion 72.6 72.0 79.9 73.5
Sentiment 64.4 61.5 62.7 63.4

Table 2: Accuracy of the opinion and sentiment classi-
fiers. All values are in %.

taken from Christopher Potts’ sentiment tutorial6.
Themr opinion classifier uses the output from the

er and hr classifiers as features (Fig. 2), along with
an additional feature that represents whether the ma-
jority of the words in the tweet are Hindi or not. A
similar strategy is used for mr sentiment detection.

5.4 Evaluation

We evaluated the language labeling system on the
LLCTest corpus, on which the precision (recall)
values were 0.93(0.91), 0.90(0.85) and 0.88(0.92)
for er, hr and mr classes respectively. The tweet-
level classification accuracy was 89.8%.

The opinion and sentiment classifiers were eval-
uated using 10-fold cross validation on the SAC
dataset. Table 2 details the class-wise accuracy. For
comparison, we also reimplemented the dictionary
and dependency-based method by Qadir (2009).
The accuracy of the opinion classifier on the er
tweets was found to be 65.7%, 7% lower than our
system. We also compared our mr sentiment clas-
sifier with that of Sharma et al. (2015b). As their
method performs two class sentiment detection (+
and −), we select such tweets from SAC. Their
system achieves an accuracy of 68.2%, which is 4%
lower than the accuracy of our system.

An analysis of the errors showed more false nega-
tives (i.e., opinions labeled⊗) than false positives in
opinion classification. Sentiment misclassification is
uniformly distributed.

Table 3 reports the accuracy of the opinion clas-
sifier for feature ablation experiments. For all three
language-script pairs, lexicon and non-word (emoti-
cons, elongated words, hashtags, exclamation) fea-
tures are the most effective, though all features have
some positive contribution towards the final accu-
racy of opinion detection. For hr and hd tweets, do-
main knowledge is significant, as shown by the 4%
accuracy drop with removing the domain lexicon.

6http://sentiment.christopherpotts.net/lingstruc.html

Ablated Feature(s) er hr hd

NONE 72.6 79.9 72.0
mention 70.1 79.3 70.8
lexicon 68.1 75.9 66.6
subjective 69.7 79.8 70.3
wh-words 71.0 79.3 70.1
modal verb 71.1 79.3 71.3
intensifier 71.3 76.6 69.6
slang 70.0 79.2 70.6
pronoun 71.6 79.7 70.3
domain lex. N.A. 77.0 67.7
non-word 67.7 75.6 68.9

Table 3: Feature ablation experiments for the opinion
classifiers. NONE represents the case when all features
were used. The two smallest values (pertaining to the
two most effective features) are shown in bold.

Corpus TBL TAll Tpol Tmov

|er(T)|/|T | 0.65 0.79 0.76 0.70
|hd(T)|/|T | 0.12 0.08 0.13 0.04
|hr(T)|/|T | 0.08 0.05 0.05 0.09
|mr(T)|/|T | 0.15 0.08 0.06 0.17

Table 4: Distribution across classes in Λ

6 Experiments and Observations

In this section, we report our experiments on
430,000 unique tweets (TAll), and its various sub-
sets as defined in Sec 4. First, we run the language
detection system on the corpora. Table 4 shows the
language-wise distribution. We see that language
preference varies by topic, which is not surprising.
Due to paucity of space, the correlation between lan-
guage usage and topic will not be discussed at length
here, but we will highlight cases where the differ-
ences are striking.

We apply the language-specific opinion and senti-
ment classifiers to tweets detected as the correspond-
ing language class. In the following subsections, we
empirically investigate the hypotheses.

6.1 Status of Hypotheses I and II

Table 5 shows pr(⊗|λσ;T), pr(−|λσ;T) and
pr(−|λσ;T)/pr(+|λσ;T) for TAll, TBL and two
randomly selected topics – Movie and Politics. The
statistics are fairly consistent over the corpora, with
slight differences but similar trends in Tmov.

1137

Statistic λσ TBL TAll Tpol Tmov

er 0.34 0.35 0.37 0.29
pr(⊗|λσ;T) hd 0.45 0.47 0.48 0.49

hr 0.38 0.39 0.37 0.49

er 0.16 0.17 0.22 0.07
pr(−|λσ;T) hd 0.18 0.17 0.19 0.16

hr 0.24 0.25 0.27 0.13

pr(−|λσ;T)
pr(+|λσ;T)

er 0.35 0.38 0.59 0.11
hd 3.00 3.27 5.67 1.90
hr 1.46 1.60 1.96 0.55

Table 5: Sentiment across languages: Statistics concern-
ing hypotheses I and II.

We need the first statistic in order to investigate
Hypothesis I (Eqs. 6 and 7), and the two latter ones
for verifying Hypothesis II (Eqs. 8 and 9).

Contrary to Eqs. 6 and 7, for all corpora except
Tmov, we observe the following trend:

pr(⊗|hd;T) > pr(⊗|hr;T) ≥ pr(⊗|er;T)

In other words, hd is more commonly preferred for
expressing non-opinions than hr and er. Hypothe-
sis I is clearly untrue for these corpora, though due to
the small differences between hr and er, we cannot
claim that English is the preferred language for ex-
pressing opinions. A closer scrutiny of the corpora
revealed that hd tweets mostly come from official
sources (news channels, political parties, production
houses) and celebrities, which are mostly factual.
hr tweets are from general users and show similar
trends as English. Thus, in general, there seems to
be no preferred language for expressing opinion by
the Hi-En bilinguals on Twitter.

In the context of Hypothesis II, we see the gen-
eral pattern (with some topic specific variations):

pr(−|hr;T) > pr(−|hd;T) ≥ pr(−|er;T)

The pattern emerges even more strongly, when we
look at pr(−|λσ;T)/pr(+|λσ;T). The odds of ex-
pressing a negative opinion over positive opinion in
Hindi is between 1.5 and 6 (Tmov exhibits a slightly
different pattern but similar preference, Tpol shows a
stronger preference towards Hindi for negative senti-
ment), whereas the same for English is between 0.1
and 0.6. In other words, English is more preferred

Statistic mhr mer

pr(⊗|λσ;TCS) 0.39 0.45
pr(−|λσ;TCS) 0.22 0.14

pr(−|λσ;TCS)/pr(+|λσ;TCS) 2.2 0.34

Table 6: TCS statistics for testing hypotheses Ia and IIa

for expressing positive opinion, and Hindi for nega-
tive opinion. These observations provide very strong
evidence in favor of Hypothesis II.

6.2 Status of Hypotheses Ia and IIa
Recall that Hypothesis Ia and Hypothesis IIa are
essentially same as Hypotheses I and II, but applied
on mhr and mer fragments from the TCS corpus.

Table 6 reports the three statistics necessary
for testing these hypotheses. pr(⊗|mer;TCS) is
slightly greater than pr(⊗|mhr;TCS), which is
what we would expect if Hypothesis Ia was true.
However, since the difference is small, we view it
as a trend rather than a proof of Hypothesis Ia.

The statistics clearly show that Hypothesis IIa
holds true for TCS . The fraction of negative senti-
ment in mhr is over 1.5 times higher than that of
mer. Further, the odds of expressing a negative sen-
timent in Hindi over positive sentiment in Hindi in
a code-switched tweet is 6.5 times higher than the
same odds for English.

6.3 Switching Functions
Recall that using Eq. 13 (Sec. 3), we can estimate
the preference, if any, for switching to a particular
language while changing the sentiment. In particu-
lar, research in socio-linguistics has shown that users
often switch between languages when they switch
from non-opinion (⊗) to opinion ({+,−, 0}). This
is called the Narrative-Evaluative function of CS
(Sanchez, 1983). This function appears in 46.1%
of the tweets in TCS . We find that

pr(h{+,−, 0} ↔ e⊗;TCS)

pr(h⊗ ↔ e{+,−, 0};TCS)
= 0.86

which indicates that there is no preference for
switching to Hindi (or English) while switching be-
tween opinion and non-opinion. This is also con-
firmed above in the context of hypotheses I and Ia.
While switching between opinion and non-opinion
in a tweet, users do switch language. However, we

1138

Sports Movies Politics Events
0

5

10

15

20

25

30

P
e

rc
e

n
ta

g
e

 o
f

tw
e

e
ts

 c
o

n
ta

in
in

g
s

la
n

g
 t

e
rm

s

er hd hr mr

(a) Abusive tweets

Sports Movies Politics Events
0

1

2

3

4

5

6

7

8

P
e

rc
e

n
ta

g
e

 o
f

c
o

d
e

−
s

w
it

c
h

e
d

 t
w

e
e

ts
c

o
n

ta
in

in
g

 s
la

n
g

 t
e

rm
s

er hr

(b) Swearing pref. in TCS

Figure 3: Distribution of swear words by language

observe no particular preference for the languages
chosen for each part.

We also report two other pragmatic functions:

pr(h− ↔ e{+, 0,⊗};TCS)

pr(h{+, 0,⊗} ↔ e−;TCS)
= 1.98

pr(h− ↔ e+;TCS)

pr(h+↔ e−;TCS)
= 10.27

The latter function is called polarity switch. The ex-
tremely high value for these ratios is an evidence
for a strong preference towards switching language
from English to Hindi while switching to negative
sentiment (and switching to English when sentiment
changes from negative to positive).

We also observe cases where there is a language
switch, but no sentiment switch and hence, we can-
not evaluate language preference using Eq. 13 (be-
cause � = �′). In TCS , 15.3% of the tweets show
Positive Reinforcement, where both fragments are of
positive sentiment. Negative Reinforcement is de-
fined similarly and is seen in 8.7% of the tweets.
Other tweets in TCS likely have pragmatic functions
that cannot be identified based on sentiment.

6.4 Language Preference for Swearing
Since there is evidence that the native language
(Hindi, in this case) is preferred for swearing (De-

waele, 2004), we computed the fraction of tweets
that contain swear words in each language class.
Fig. 3a shows the distribution across topics. The
languages hr and mr have a much higher fraction
of abusive tweets than er and hd. Fig. 3b shows the
distribution of abusive mhr and mer fragments for
tweets in TCS . Interestingly, over 90% of the swear
words occur in mhr. Both distributions strongly
suggest a preference for swearing in Hindi.

7 Conclusion

In this paper, through a large scale empirical study
of nearly half a million tweets, we tried to answer
a fundamental question regarding multilingualism,
namely, is there a preferred language for expression
of sentiment. We also looked at some of the prag-
matic functions of code-switching. Our results indi-
cate a strong preference for using Hindi, L1 for the
users from whom these tweets come, for expressing
negative sentiment, including swearing. However,
we do not observe any particular preference towards
Hindi for expressing opinions.

Previous linguistic studies (Dewaele, 2004; De-
waele, 2010) have already shown a preference for
L1 for expressing emotion and swearing. However,
we observe that for expressing positive emotion, En-
glish (which would be L2) is the language of pref-
erence. This raises some intriguing socio-linguistic
questions. Is it the case that English being the lan-
guage of aspiration in India, it is preferred for posi-
tive expression? Or is it because Hindi is specifically
preferred for swearing and therefore, is the language
of preference for negative emotion? How do such
preferences vary across topics, users and other mul-
tilingual communities? How representative of the
society is this kind of social media study? We plan
to explore some of these questions in the future.

Our study also indicates that inferences drawn
on multilingual societies by analyzing data in just
one language (usually English), which has been the
norm so far, are likely to be incorrect.

Acknowledgement

Koustav Rudra was supported by a fellowship from
Tata Consultancy Services.

1139

References

Peter Auer. 1995. The pragmatics of code-switching:
a sequential approach. In Lesley Milroy and Pieter
Muysken, editors, One speaker, two languages, pages
115–135. Cambridge University Press.

Akshat Bakliwal, Piyush Arora, and Vasudeva Varma.
2012. Hindi subjective lexicon : A lexical resource for
hindi polarity classification. In Proc. LREC, Austin,
Texas, USA, May.

Kalika Bali, Yogarshi Vyas, Jatin Sharma, and Mono-
jit Choudhury. 2014. ”i am borrowing ya mixing?”
an analysis of English-Hindi code mixing in Face-
book. In Proc. First Workshop on Computational Ap-
proaches to Code Switching, EMNLP.

Glivia A. R. Barbosa, Wagner Meira Jr, Ismael S. Silva,
Raquel O. Prates, Mohammed J. Zaki, and Adriano
Veloso. 2012. Characterizing the effectiveness of
twitter hashtags to detect and track online population
sentiment. In Proc. ACM CHI, Austin, Texas, USA,
May.

Utsab Barman, Amitava Das, Joachim Wagner, and Jen-
nifer Foster. 2014. Code mixing: A challenge for lan-
guage identification in the language of social media.
In The 1st Workshop on Computational Approaches to
Code Switching, EMNLP 2014.

Inma Muñoa Barredo. 1997. Pragmatic functions
of code-switching among Basque-Spanish bilinguals.
Retrieved on October, 26:528–541.

Caroline Brun. 2012. Learning opinionated patterns for
contextual opinion detection. In COLING (Posters),
pages 165–174. Citeseer.

Cristian Danescu-Niculescu-Mizil, Moritz Sudhof, Dan
Jurafsky, Jure Leskovec, and Christopher Potts. 2013.
A computational approach to politeness with applica-
tion to social factors. Proceedings of ACL.

Munmun De Choudhury, Michael Gamon, Scott Counts,
and Eric Horvitz. 2013. Predicting depression via so-
cial media. In ICWSM.

Jean-Marc Dewaele. 2004. Blistering barnacles! What
language do multilinguals swear in?! Estudios de So-
ciolinguistica, 5:83–105.

Jean-Marc Dewaele. 2010. Emotions in multiple lan-
guages. Palgrave Macmillan, Basingstoke, UK.

J. A. Fishman. 1971. Sociolinguistics. Rowley, New-
bury, MA.

Spandana Gella, Jatin Sharma, and Kalika Bali. 2013.
Query word labeling and back transliteration for indian
languages: Shared task system description.

Yael Maschler. 1991. The language games bilinguals
play: language alternation at language boundaries.
Language and communication, 11(2):263–289.

Yael Maschler. 1994. Appreciation ha’araxa ’o
ha’arasta? [valuing or admiration]. Negotiating con-
trast in bilingual disagreement talk, 14(2):207–238.

Lesley Milroy and Pieter Muysken, editors. 1995. One
speaker, two languages: Cross-disciplinary perspec-
tives on code-switching. Cambridge University Press.

Namita Mittal, Basant Agarwal, Garvit Chouhan, Nitin
Bania, and Prateek Pareek. 2013. Sentiment analysis
of hindi review based on negation and discourse rela-
tion. In proceedings of International Joint Conference
on Natural Language Processing, pages 45–50.

Saif M. Mohammad and Peter D. Turney. 2013.
Crowdsourcing a Word-Emotion Association Lexicon.
29(3):436–465.

Saif Mohammad, Svetlana Kiritchenko, and Xiaodan
Zhu. 2013. Nrc-canada: Building the state-of-the-
art in sentiment analysis of tweets. In Proceedings of
the seventh international workshop on Semantic Eval-
uation Exercises (SemEval-2013), Atlanta, Georgia,
USA, June.

Saif M Mohammad. 2012. # emotional tweets. In Pro-
ceedings of the First Joint Conference on Lexical and
Computational Semantics-Volume 1: Proceedings of
the main conference and the shared task, and Volume
2: Proceedings of the Sixth International Workshop on
Semantic Evaluation, pages 246–255. Association for
Computational Linguistics.

Miwa Nishimura. 1995. A functional analysis of
Japanese/English code-switching. Journal of Prag-
matics, 23(2):157–181.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: Sentiment classification using
machine learning techniques. In Proc. EMNLP, pages
79–86.

Rana D. Parshad, Suman Bhowmick, Vineeta Chand,
Nitu Kumari, and Neha Sinha. 2016. What is India
speaking? Exploring the “Hinglish” invasion. Physica
A, 449:375–389.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–
2830.

Nanyun Peng, Yiming Wang, and Mark Dredze.
2014. Learning polylingual topic models from code-
switched social media documents. In ACL (2), pages
674–679.

Ashequl Qadir. 2009. Detecting opinion sentences spe-
cific to product features in customer reviews using
typed dependency relations. In Proceedings of the
Workshop on Events in Emerging Text Types, pages
38–43. Association for Computational Linguistics.

1140

Pujari Rajkumar, Swara Desai, Niloy Ganguly, and
Pawan Goyal. 2014. A novel two-stage framework
for extracting opinionated sentences from news arti-
cles. TextGraphs-9, page 25.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif M Mohammad, Alan Ritter, and Veselin Stoy-
anov. 2015. Semeval-2015 task 10: Sentiment analy-
sis in twitter. Proceedings of SemEval-2015.

Rosaura Sanchez. 1983. Chicano discourse. Rowley,
Newbury House.

Royal Sequiera, Monojit Choudhury, Parth Gupta,
Paolo Rosso, Shubham Kumar, Somnath Banerjee,
Sudip Kumar Naskar, Sivaji Bandyopadhyay, Gokul
Chittaranjan, Amitava Das, and Kunal Chakma. 2015.
Overview of fire-2015 shared task on mixed script in-
formation retrieval. In Working Notes of FIRE, pages
21–27.

Raksha Sharma, Pushpak Bhattacharyya, Ultimate Goal,
and Hindi Senti Lexicon Statistics. 2015a. A senti-
ment analyzer for hindi using hindi senti lexicon.

Shashank Sharma, Pykl Srinivas, and Rakesh Chandra
Balabantaray. 2015b. Text normalization of code mix
and sentiment analysis. In Advances in Computing,
Communications and Informatics (ICACCI), 2015 In-
ternational Conference on, pages 1468–1473. IEEE.

Thamar Solorio and Yang Liu. 2008. Part-of-speech tag-
ging for english-spanish code-switched text. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 1051–1060. As-
sociation for Computational Linguistics.

Thamar Solorio and Yang Liu. 2010. Learning to Predict
Code-Switching Points. In Proc. EMNLP.

Thamar Solorio, Elizabeth Blair, Suraj Maharjan, Steven
Bethard, Mona Diab, Mahmoud Gohneim, Abdelati
Hawwari, Fahad AlGhamdi, Julia Hirschberg, Alison
Chang, et al. 2014. Overview for the first shared task
on language identification in code-switched data. Pro-
ceedings of The First Workshop on Computational Ap-
proaches to Code Switching, EMNLP, pages 62–72.

Simo Tchokni, D.O. Séaghdha, and Daniele Quercia.
2014. Emoticons and phrases: Status symbols in so-
cial media. In Eighth International AAAI Conference
on Weblogs and Social Media.

2015a. GET help/languages — Twitter Developers, 8.
2015b. GET search/tweets — Twitter Developers, 8.
David Vilares, Miguel A Alonso, and Carlos Gómez-

Rodrıguez. 2015. Sentiment analysis on monolingual,
multilingual and code-switching twitter corpora. In
6th Workshop on Computational Approaches to Sub-
jectivity, Sentiment and Social Media Analysis.

Svitlana Volkova, Theresa Wilson, and David Yarowsky.
2013. Exploring Sentiment in Social Media: Boot-
strapping Subjectivity Clues from Multilingual Twitter
Streams. In Proc. ACL (Vol2: Short Papers).

Soroush Vosoughi and Deb Roy. 2016. Tweet acts: A
speech act classifier for twitter. In Tenth International
AAAI Conference on Web and Social Media.

Yogarshi Vyas, Spandana Gella, Jatin Sharma, Kalika
Bali, and Monojit Choudhury. 2014. POS Tagging
of English-Hindi Code-Mixed Social Media Content.
In Proc. EMNLP, pages 974–979.

1141

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1142–1152,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Detecting and Characterizing Events

Allison J. B. Chaney
Princeton University

achaney@cs.princeton.edu

Hanna Wallach
Microsoft Research

wallach@microsoft.com

Matthew Connelly
Columbia University

mjc96@columbia.edu

David M. Blei
Columbia University

david.blei@columbia.edu

Abstract

Significant events are characterized by interac-
tions between entities (such as countries, or-
ganizations, or individuals) that deviate from
typical interaction patterns. Analysts, includ-
ing historians, political scientists, and journal-
ists, commonly read large quantities of text
to construct an accurate picture of when and
where an event happened, who was involved,
and in what ways. In this paper, we present
the Capsule model for analyzing documents
to detect and characterize events of potential
significance. Specifically, we develop a model
based on topic modeling that distinguishes be-
tween topics that describe “business as usual”
and topics that deviate from these patterns. To
demonstrate this model, we analyze a corpus of
over two million U.S. State Department cables
from the 1970s. We provide an open-source im-
plementation of an inference algorithm for the
model and a pipeline for exploring its results.

1 Introduction

Foreign embassies of the United States government
communicate with one another and with the U.S.
State Department through diplomatic cables. The
National Archive collects these cables in a corpus,
which traces the (declassified) diplomatic history of
the United States.1 The corpus contains, for example,
over two million cables sent between 1973 and 1978.

Most of these cables describe diplomatic “business
as usual,” such as arrangements for visiting officials,

1 The National Archives’ corpus also includes messages sent
by diplomatic pouch; however, for brevity, and at the risk of
being imprecise, we also refer to these messages as “cables.”

recovery of lost or stolen passports, or obtaining lists
of names for meetings and conferences. For example,
the embassies sent 8,635 cables during the week of
April 21, 1975. Here is one, selected at random:

Hoffman, UNESCO Secretariat, requested
info from PermDel concerning an official in-
vitation from the USG RE subject meeting
scheduled 10–13 JUNE 1975, Madison, Wis-
consin. Would appreciate info RE status of
action to be taken in order to inform Secre-
tariat. Hoffman communicating with Dr. John
P. Klus RE list of persons to be invited.

But, hidden in the corpus are also cables about im-
portant diplomatic events—the cables and events that
are most interesting to historians, political scientists,
and journalists. For example, during that same week,
the U.S. was in the last moments of the Vietnam War
and, on April 30, 1975, lost its hold on Saigon. This
marked the end of the war and induced a mass exodus
of refugees. Here is one cable about this event:

GOA program to move Vietnamese
Refugees to Australia is making little progress
and probably will not cover more than
100-200 persons. Press comment on smallness
of program has recognized difficulty of getting
Vietnamese out of Saigon, but “Canberra
Times” Apr 25 sharply critical of government’s
performance. [...] Labor government clearly
hopes whole matter will somehow disappear.

Our goal in this paper is to develop a tool to help
historians, political scientists, and journalists wade

1142

Figure 1: Capsule’s analysis (described in detail in section 5) of two million cables from the National Archives’ corpus. The y-axis

represents a loose measure of “eventness” (equation (5)). The gray background depicts the number of cables sent over time.

through corpora of documents to find potentially sig-
nificant events and the primary sources around them.
We present Capsule, a probabilistic model for detect-
ing and characterizing important events, such as the
fall of Saigon, in large corpora of historical commu-
nication, such as diplomatic cables from the 1970s.

Figure 1 illustrates Capsule’s analysis of two mil-
lion cables from the National Archives’ corpus. The
y-axis represents “eventness,” a loose measure of
how strongly a week’s cables deviate from typical
diplomatic “business as usual” to discuss some mat-
ter that is common to many embassies. (We describe
this measure of “eventness” in detail in section 3.)

This figure shows that Capsule detects many well-
known events between 1973 and 1978, including the
fall of Saigon (April 30, 1975) and the death of Mao
Tse-tung (September 9, 1976). Capsule also uncovers
obscure, but significant, events that have largely es-
caped the attention of scholars, such as when the U.S.
defended its control of the Panama Canal before the
United Nations Security Council (March 19, 1973).
Capsule therefore provides a new way to detect and
characterize historical moments that may be of inter-
est to historians, political scientists, and journalists.

The intuition behind Capsule is this: Embassies
write cables throughout the year, usually describing
typical diplomatic business, such as visits from gov-
ernment officials. Sometimes, however, important
events occur, such as the fall of Saigon, that pull em-
bassies away from their typical activities and lead
them to write cables that discuss these events and

their consequences. Capsule therefore operational-
izes an “event” as a moment in history when multiple
embassies deviate from their usual topics of discus-
sion and each embassy deviates in a similar way.

Capsule embeds this intuition into a Bayesian
model that uses latent variables to encode what “busi-
ness as usual” means for each embassy, to character-
ize the events of each week, and to identify the cables
that discuss those events. Given a corpus of cables,
the corresponding posterior distribution of the latent
variables provides a filter for the cables that isolates
important moments in diplomatic history. Figure 1
depicts the mean of this posterior distribution.

We present the Capsule model in section 3, provid-
ing both a formal model specification and guidance
on how to use the model to detect and characterize
real-world events. In section 4, we validate Capsule
using simulated data, and in section 5, we use it to
analyze over two million U.S. State Department ca-
bles. Although we describe Capsule in the context
of diplomatic cables, it is suitable for exploring any
corpus with the same underlying structure: text (or
other discrete multivariate data) generated over time
by known entities. This includes email, consumer
behavior, social media posts, and opinion articles.

2 Related Work

We first review previous work on automatic event
detection and other related concepts, to contextualize
our approach in general and Capsule in particular.

In both univariate and multivariate settings, ana-

1143

lysts often want to predict whether or not rare events
will occur (Weiss and Hirsh, 1998; Das et al., 2008).
In contrast, Capsule is intended to help analysts ex-
plore and understand their data; our goal is human
interpretability rather than prediction or forecasting.

Events can be construed as either anomalies—
temporary deviations from usual behavior—or
“changepoints” that mark persistent shifts in usual
behavior (Guralnik and Srivastava, 1999; Adams and
MacKay, 2007). We focus on events as anomalies.

Event detection in the context of news arti-
cles (Zhao et al., 2012; Zhao et al., 2007; Zhang
et al., 2002; Li et al., 2005; Wang et al., 2007; Allan
et al., 1998) and social media posts (Atefeh and Khre-
ich, 2015; VanDam, 2012; Lau et al., 2012; Jackoway
et al., 2011; Sakaki et al., 2010; Reuter and Cimi-
ano, 2012; Becker et al., 2010; Sayyadi et al., 2009)
usually means identifying clusters of documents. For
news, the goal is to create new clusters as novel sto-
ries appear; each article is assumed to be associated
with one event, which does not allow for distinctions
between typical content and rare events. For social
media, the goal is to identify rare events, but the re-
sultant methods are intended for short documents,
and are not appropriate for longer documents that
may contain information about a variety of subjects.

Many existing methods for detecting events from
text focus on individual vocabulary terms, often
weighted by tf-idf values (Fung et al., 2005; Kumaran
and Allan, 2004; Brants et al., 2003; Das Sarma et
al., 2011; Zhao et al., 2007; Zhao et al., 2012). We
characterize events by bursts in groups of terms.

Although groups of terms can be summarized di-
rectly (Peng et al., 2007; Chakrabarti and Punera,
2011; Gao et al., 2012), topic models (Blei, 2012)
provide a way to automatically identify groups of
related terms and reduce the dimensionality of text
data. Researchers have previously used topic models
to detect events mentioned in social media posts (Lau
et al., 2012; Dou et al., 2012) and to find posts rele-
vant to particular, monitored events (VanDam, 2012).
Capsule uses topics to characterize both typical diplo-
matic content and potentially significant events.

In addition to modeling text over time, researchers
have also used spatial information (Neill et al., 2005;
Mathioudakis et al., 2010; Liu et al., 2011) and infor-
mation about authors (Zhao et al., 2007) and news
outlets (Wang et al., 2007) to enhance event detec-

Figure 2: Cartoon intuition. The y-axis represents the stacked

proportions of cables about various topics, while the x-axis

represents time. The Bangkok embassy, Hong Kong embassy,

and U.S. State Department all have typical diplomatic business,

about which they usually send cables. When an event occurs

during time interval t , the cables alter to cover the event before

returning to “business as usual.” Capsule discovers the entities’

typical concerns, as well as the timing and content of events.

tion. We rely on author information to characterize
diplomatic “business as usual” for each embassy.

Event detection is closely related to detecting and
characterizing relationships between entities (Schein
et al., 2015; Linderman and Adams, 2014; Das Sarma
et al., 2011). Capsule can trivially use sender–
receiver pairs instead of authors, and the model spec-
ification can be tailored to reflect network structure.

Finally, there are connections between Capsule
and recent work on Poisson processes. In particular,
we can interpret Capsule as a collection of related
discrete-time Poisson processes with random inten-
sity measures. Further, marginalizing out the event
strengths (described in section 3.1) reveals that the
use of a vocabulary term by one embassy can “excite”
the use of that term by another. This suggests a close
relationship to Hawkes processes (Hawkes, 1971).

3 The Capsule Model

In this section, we present the Capsule model for
detecting and characterizing significant diplomatic
events. We first provide the intuition behind Capsule,
and then formally specify the model. We also explain
how to use Capsule to explore a corpus and how to
learn the posterior distribution of the latent variables.

Consider an entity like the Bangkok embassy, as

1144

illustrated in figure 2. We can imagine that this en-
tity sends a stream of diplomatic cables over time—
some to the U.S. State Department, others to other
American embassies, such as the one in Hong Kong.
Embassies usually write cables that describe typical
diplomatic business. For example, the Bangkok em-
bassy might write about topics regarding southeast
Asia more generally. We can think of a topic as being
a probability distribution over vocabulary terms.

Now imagine that an event, such as the capture
of Saigon during the Vietnam War, occurs during
a particular time interval t . We cannot directly ob-
serve the occurrence of this event, but we can ob-
serve the stream of cables and the event’s impact on
it. When the event occurs, multiple entities deviate
from their usual topics of discussion simultaneously,
before returning to their usual behavior, as depicted
in figure 2. For example, the day after the capture of
Saigon, the majority of the diplomatic cables written
by the Bangkok embassy and several other entities
were about Vietnam War refugees. If we think of the
event as another probability distribution over vocabu-
lary terms, then each entity’s stream of cables reflects
its typical concerns, as well as any significant events.

3.1 Model Specification
We now define the Capsule model. Our data come
from entities (e.g., embassies) who send messages
(e.g., diplomatic cables) over time; specifically, we
observe the number of times ndv that each vocabulary
term v occurs in each message d . Each message
is associated with an author entity ad and a time
interval td within which that message was sent.

We model each message with a bank of Poisson
distributions2—one for each vocabulary term:

ndv � Poisson .�dv/ : (1)

The rate �dv blends the different influences on mes-
sage content. Specifically, it blends three types of
topics, intended to capture “business-as-usual” dis-
cussion and content related to significant events.

We operationalize each topic as a specialized prob-
ability distribution over vocabulary terms (the set of
unique words in the corpus of messages), as is com-
mon in topic models (Blei et al., 2003; Canny, 2004;

2Readers familiar with topic modeling may expect a multino-
mial model of term occurrences, but Poisson models of counts
better capture messages with different lengths (Canny, 2004).

Topic Type Top Terms

General visit, hotel, schedule, arrival
Entity soviet, moscow, ussr, agreement
Event saigon, evacuation, vietnam, help

Table 1: The highest-probability vocabulary terms for examples

of the three types of topics (general, entity, and event). These

examples come from the analysis that we describe section 5.

Gopalan et al., 2014)—i.e., each term is associated
with each topic, but with a different probability.

Each message blends 1) general topics ˇ1; : : : ;ˇK
about diplomacy (e.g., terms about diplomats, terms
about communication), 2) an entity topic �ad

specific
to the author of that message (e.g., terms about Hong
Kong),3 and 3) event topics 1; : : : ;T that are spe-
cific to the events in recent time intervals (e.g., terms
about a coup, terms about the death of a dignitary).

Examples of these three types of topics are in ta-
ble 1. The general topic relates to planning travel, the
entity topic captures words related to the U.S.S.R.,
and the event topic captures words related to the evac-
uation of Saigon toward the end of the Vietnam War.

The messages share the three types of topics in
different ways: all messages share the general topics,
messages written by a single entity share an entity
topic, and messages in the same time interval use the
event topics in similar ways. Each message blends its
corresponding topics with a set of message-specific
strengths. As a result, each message captures a dif-
ferent mix of general diplomacy discussion, entity-
specific terms, and recent events. Specifically, the
Poisson rate for vocabulary term v in message d is

�dv D

KX
kD1

�dkˇkv C �d�adv C

TX
tD1

f .td ; t / �dttv; (2)

where �dk is message d ’s strength for general topic
k, �d is message d ’s strength for ad ’s entity topic,
and �dt is message d ’s strength for event topic t . The
function f .�/ ensures that the events influences de-
cay over time. As we describe in appendix B, we

3The entity-specific topics play a similar role to the back-
ground topics introduced by Paul and Dredze (2012).

1145

Figure 3: Graphical model for Capsule. Observed term

counts depend on general topics ˇ1; : : : ;ˇK , entity topics

�1; : : : ;�A, and event topics 1; : : : ;T , as well as message-

specific strengths �d , �d , and �d . Variables �1; : : : ;�A and

�1; : : : ; �A represent entity-specific strengths, while 1; : : : ; T
allow time intervals to be more or less “eventful.” Black squares

denote hyperparameters (unlabeled for visual simplicity).

compared several different decay functions (exponen-
tial, linear, and step) and found that the following
exponential decay function works well in practice:

f .td ; t / D

(
0 t � td < t C �

exp
�
�.td�t/
� = 5

�
otherwise.

(3)

Dividing � by five means that we can interpret it as
the number of time intervals after which an event will
have little impact on the content of the messages.

We place hierarchical gamma priors over the
message-specific strengths, introducing entity-
specific strengths �1; : : : ;�A and �1; : : : ; �A that al-
low different entities to focus on different topics and
event strengths 1; : : : ; T that allow different time
intervals to be more or less “eventful.” We place
Dirichlet priors over the topics. The graphical model
is in figure 3 and the generative process is in figure 4.

Given a corpus of messages, learning the poste-
rior distribution of the latent variables uncovers the
three types of topics, the message- and entity-specific
strengths, and the event strengths. In section 3.3, we
explain how an analyst can use the event strengths as
a filter that isolates potentially significant messages.

3.2 Learning the Posterior Distribution

In order to use Capsule to to explore a corpus of mes-
sages, we must first learn the posterior distribution of

� for k D 1; : : : ; K,

� draw general topic
ˇk � DirichletV .˛; : : : ; ˛/
� for each entity a D 1; : : : ; A,

I draw entity-specific strength
�ak � Gamma .s; r/

� for each entity a D 1; : : : ; A,

� draw entity topic
�a � DirichletV .˛; : : : ; ˛/
� draw entity-specific strength
�a � Gamma .s; r/

� for each time interval t D 1; : : : ; T ,

� draw event topic
t � DirichletV .˛; : : : ; ˛/
� draw event strength
 t � Gamma .s; r/

� for each message d D 1; : : : ;D, sent during
time interval td by author entity ad ,

� for each general topic k D 1; : : : ; K,
I draw message-specific strength
�dk � Gamma .s; �adk/

� draw message-specific strength
�d � Gamma .s; �ad

/

� for each time interval t D 1; : : : ; T ,
I draw message-specific strength
�dt � Gamma .s; t /

� for each vocabulary term v D 1; : : : ; V ,
I set �dv D

PK
kD1 �dkˇkv C �d�adv CPT

tD1 f .td ; t / �dttv
I draw term counts
nd;v � Poisson .�dv/

Figure 4: Generative process for Capsule. We use s and r to

denote top-level (i.e., fixed) shape and rate hyperparameters;

they can be set to different values for different variables.

the latent variables—the general topics, the entity top-
ics, the event topics, the message- and entity-specific
strengths, and the event strengths—conditioned on
the observed term counts. As for many Bayesian
models, this posterior distribution is not tractable to
compute; approximating it is therefore our central sta-
tistical and computational problem. We introduce an
approximate inference algorithm for Capsule, based
on variational methods (Jordan et al., 1999),4, which

4Source code: https://github.com/ajbc/capsule.

1146

we outline in appendix A.5 This algorithm produces
a fitted variational distribution which be can then be
used as a proxy for the true posterior distribution.

3.3 Detecting and Characterizing Events
We can use the mean of the fitted variational dis-
tribution to explore the data. Specifically, we can
explore “business-as-usual” content using the poste-
rior expected values of the general topics ˇ1; : : : ;ˇK
and the entity topics �1; : : : ;�A, and we can detect
and characterize events using the posterior expected
values of the event strengths and the event topics.

To detect events, we define an measure that quanti-
fies the “eventness” of time interval t . Specifically,
we first compute how relevant each message d is
to that time interval: mdt D f .td ; t /EŒ�dt �. Using
these relevancy values, we then compute the propor-
tion of each message’s term counts that are associated
with the event topic specific to time interval t :

pdt D
mdtP

k EŒ�dk�C EŒ�d �C
P
t 0 mdt 0

: (4)

Finally, we aggregate these values over messages:

1P
d f .td ; t /

DX
dD1

pdt ; (5)

where the multiplicative fraction ensures that mes-
sages that were sent during time intervals that are
further from t contribute less than than messages that
were sent during time intervals that are closer to t .

We can characterize an event t by selecting the
highest-probability vocabulary terms from EŒt �.
By ordering the messages according to mdt D

f .td ; t /EŒ�dt �, we can also identify the messages
that are most strongly associated with event t .

In section 5, we explore the cables associated with
significant events in the National Archives’ corpus of
diplomatic cables. To make Capsule more accessible
for historians, political scientists, and journalists, we
have released an open-source tool for visualizing its
results.6 This tool allows analysts to browse a cor-
pus of messages and the mean of the corresponding
posterior distribution, including general topics, entity
topics, and event topics. Figure 5 contains several
screenshots of the tool’s browsing interface.

5Appendices are in the supplemental material.
6Source code: https://github.com/ajbc/capsule-viz;

demo: http://www.princeton.edu/~achaney/capsule/.

Figure 5: Screenshots of the Capsule visualization tool used

to explore U.S. State Department cables. Top left: events over

time (similar to figure 1). Top right: entities located on a map.

Bottom: summary of the week of May 12, 1975, including top

vocabulary terms, relevant cables, and text from Wikipedia.

4 Model Validation with Simulated Data

Before using Capsule to explore a corpus of real
messages (described in section 5), we provide a quan-
titative validation of the model using simulated data.

We used the generative process in figure 4 to create
ten data sets, each with 100 time intervals, ten general
topics, ten entities, and roughly 20,000 messages.
We then used these data sets to compare Capsule’s
event detection performance to that of four baseline
methods. We also compared the methods’ abilities to
identify the most relevant messages for each event.

4.1 Detecting Events

For each data set, we ordered the time intervals from
most to least eventful, using the “eventness” measure
described in section 3.3 and the simulated values of
the latent variables. We then treated these ranked
lists of time intervals as “ground truth” and assessed
how well each method was able to recover them.

For Capsule itself, we used our approximate infer-
ence algorithm to obtain a fitted variational distribu-
tion for each simulated data set. We then ordered the
time intervals using our “eventness” measure and the
posterior expected values of the latent variables.

For our first baseline, we constructed an “event-
only” version of Capsule by dropping the first and

1147

second terms in equation (2). We used this baseline to
test whether modeling “business as usual” discussion
makes it easier to detect significant events. We ob-
tained a fitted variational distribution for this model
using a variant of our approximate inference algo-
rithm, and then ordered the time intervals using our
“eventness” measure, modified appropriately, and the
posterior expected values of the latent variables.

For our second baseline, we drew inspiration from
previous work on event detection in the context of
news articles, and focused on each time interval’s
deviation in term counts from the average. Specifi-
cally, we ordered the time intervals 1; : : : ; T for each
simulated data set according to this measure:

VX
vD1

DX
dD1
tdDt

ˇ̌̌̌
ˇndv � 1

D

DX
dD1

ndv

ˇ̌̌̌
ˇ : (6)

We added tf-idf term weights for our third baseline:

VX
vD1

tf-idf .v/
DX
dD1
tdDt

ˇ̌̌̌
ˇndv � 1

D

DX
dD1

ndv

ˇ̌̌̌
ˇ : (7)

Finally, we randomly ordered the time intervals
for each data set to serve as a straw-man baseline.

We also experimented with baselines that involved
term-count deviations on the entity level and topic-
usage deviations on the message level (Dou et al.,
2012), but found that they were not competitive.

For each data set, we compared each method’s
ranked list of time intervals to the corresponding
“ground-truth” list of time intervals, by dividing the
sum of the lists’ actual set overlap at each rank by
the sum of their maximum set overlap at each rank:PT

rD1 jS
truth
r \ Smethod

r jPT
rD1 r

; (8)

where S truth
r is a set of the top r time intervals accord-

ing to the “ground-truth” list and Smethod
r is a set of

the top r time intervals according to the method.
Figure 6 shows that Capsule outperforms all four

baseline methods. These results serve as a sanity
check for both the model and its implementation.

4.2 Identifying Relevant Messages
For each data set, we created a list of the most rele-
vant messages for each time interval t by computing

Figure 6: Event detection performance using ten simulated data

sets. Each dot represents the performance (equation (8); higher

is better) of a single method on a single data set; each shaded

green area summarizes the distribution of performance for a

single method. Capsule outperforms all four baseline methods.

f .td ; t / �dt for each message d (using the simulated
values of �dt) and ordering the messages accordingly.
We then treated these ranked lists of messages as
“ground truth” and assessed how well Capsule and
the baseline methods were able to recover them.

For Capsule, we used our approximate inference
algorithm to obtain a fitted variational distribution for
each data set, and then, for each time interval, ordered
the messages according to mdt D f .td ; t /EŒ�dt �.
For our second and third baselines, we ordered the
messages sent during each time interval according
message-specific versions of equations (6) and (7).

For each data set, we compared each method’s
ranked list of messages for each time interval to the
corresponding “ground-truth” list, by computing pre-
cision at ten messages. The average precision for
Capsule was was 0.44, while the average precision for
the “event-only” version of the model was 0.09. The
other baselines recovered zero relevant messages.

5 Exploratory Analysis

Capsule is intended to help analysts explore and un-
derstand their data. In this section, we demonstrate
its capabilities by analyzing a corpus of over two mil-
lion U.S. State Department cables from the 1970s.

5.1 Data

The National Archive collects diplomatic cables sent
between the U.S. State Department and its foreign
embassies. We obtained a subset of this corpus
from the Central Foreign Policy Files at the National
Archives, via the History Lab at Columbia Univer-

1148

sity;7 the subset contains cables sent between 1973
and 1978. In addition to the text of the cables, each
message is labeled with its author (e.g., the U.S. State
Department, a particular embassy, or an individual),
the date the cable was sent, and other metadata. We
used a vocabulary of 6,293 terms and omitted cables
with fewer than three terms, resulting in 2,021,852
cables sent by 22,961 entities. We used weekly time
intervals, as few cables were sent on weekends.

5.2 Model Settings
We ran our approximate inference algorithm for Cap-
sule to obtain a fitted variational distribution. We
used K D 100 general topics, the exponential decay
function in equation (3) with � D 4, and top-level
hyperparameters s D r D 0:3. With these settings, a
single iteration of the algorithm took about an hour.8

5.3 Detecting Well-Known Events
To evaluate Capsule’s ability to detect well-known
events, we used a list, provided to us by the History
Lab, of thirty-nine well-known events that took place
between 1973 and 1978. Each event is present in
at least one of six reputable collections of historic
events, such as the Office of the Historian’s Mile-
stones in the History of U.S. Foreign Relations.9 We
treated this list of events as “ground truth” and as-
sessed how well Capsule and each of the baselines de-
scribed in section 4.1 were able to recover them—or,
in other words, how well the methods identify these
eventful weeks, compared to more typical weeks.

Specifically, we used each method to construct a
ranked list of time intervals. Then, for each method,
we computed the discounted cumulative gain (DCG),
which, in this context, is equivalent to computing

39X
eD1

1

log
�
rank

�
e; Lmethod

T

�� ; (9)

where Lmethod
T is the method’s ranked list of time

intervals and rank
�
e; Lmethod

T

�
is the rank of the eth

well-known event in Lmethod
T . Finally, we divided

the DCG by the ideal DCG—i.e.,
P39
eD1

1
log .e/—to

7http://history-lab.org
8Each iteration of our algorithm considers all messages. Mod-

ifying it to stochastically sample the data would reduce the time
required to obtain an equivalent fitted variational distribution.

9https://history.state.gov/milestones/1969-1976

Method nDCG

Capsule (this paper) 0.693
term-count deviation + tf-idf (equation (7)) 0.652

term-count deviation (equation (6)) 0.642
random 0.557

“event-only” Capsule (this paper) 0.426

Table 2: Event detection performance (nDCG; higher is better)

using thirty-nine well-known events that took place between

1973 and 1978. Capsule outperforms all four baseline methods.

obtain the normalized DCG (nDCG). Table 2 shows
that Capsule outperforms all four baseline methods.

5.4 Exploration
We now turn to our primary goal—using Capsule to
explore and understand a corpus of messages. Fig-
ure 1 shows our “eventness” measure (equation (5))
over time. One of the tallest peaks occurs during the
week of December 1, 1975, when the United Nations
General Assembly discussed omnibus decolonization.
As described in section 3.3, we can characterize this
event by computing mdt D f .td ; t /EŒ�dt � for each
message d and then ordering the messages accord-
ingly. Table 3 lists the highest-ranked messages.

Another notable event was the seizure of the
S.S. Mayaguez, an American merchant vessel, during
May, 1975, at the end of the Vietnam War. Table 4
lists the highest-ranked messages for this event. We
can examine these messages to confirm their rele-
vancy and learn more about the event. For example,
here is the content of the most relevant message:

In absence of MFA Chief of Eighth Depart-
ment Avramov, I informed American desk
officer Yankov of circumstances surround-
ing seizure and recovery of merchant ship
Mayaguez and its crew. Yankov promised to
inform the Foreign Minister of US statement
today (May 15). Batjer

A third week of interest occurs in early July, 1976.
On July 4, the U.S. celebrated its Bicentennial, but
on the same day, Israeli forces completed a hostage
rescue mission because an Air France flight from
Tel Aviv had been hijacked and taken to Entebbe,
Uganda.10 This event was mostly discussed the week

10Capsule assumes that only one event occurs during each

1149

f .td ; t /EŒ�dt � Date Author Entity Subject

4.60 1975-12-05 Canberra 30th UNGA: Item 23, Guam, Obmibus Decolonization and ...
4.26 1975-12-05 Mexico 30th UNGA-Item 23: Guam, Omnibus Decolonization and ...
4.21 1975-12-06 State 30th UNGA-Item 23: Guam, Omnibus Decolonization and ...
4.11 1975-12-03 Dakar 30th UNGA: Resolutions on American Samoa, Guam and ...
4.08 1975-12-04 Monrovia 30th UNGA: Item 23: Resolutions on decolonization and A...

Table 3: Highest-ranked messages for the week of December 1, 1975, when the United Nations General Assembly discussed

decolonization. Capsule accurately recovers messages related to this real-world event. Typos are intentionally copied from the data.

f .td ; t /EŒ�dt � Date Author Entity Subject

5.06 1975-05-15 Sofia Seizure of US merchant vessel by Cambodian forces
5.05 1975-05-15 Dar es Salaam Seizure of U.S. merchant vessel by Cambodian forces
4.92 1975-05-16 Lusaka Seizure of US merchant vessel by Cambodian forces
4.61 1975-05-13 Zagreb Waiver request for INS Vienna visas Eagle name check...
4.59 1975-05-15 State eizure of US merchant Vessel by Cambodian forces

Table 4: Highest-ranked messages for the week of May 12, 1975, when the S.S. Mayaguez, an American merchant vessel, was

captured. Capsule accurately recovers messages related to this real-world event. Typos are intentionally copied from the data.

after the event took place; the most relevant mes-
sages are listed in appendix B (table 5). The cable
from Stockholm describing the “Ugandan role in Air
France hijacking” begins with the following content,
which reveals further information about this event:

1. We provided MFA Director of Political
Affairs Leifland with Evidence of Ugandan as-
sistance to hijackers contained in Ref A. After
reading material, Leifland described it a “quite
good”, and said it would be helpful for meet-
ing MFA has scheduled for early this morning
to determine position GOS will take at July 8
UNSC consideration of Israeli Rescue Opera-
tion. ...

In addition to detecting and characterizing well-
known events, such the S.S. Mayaguez incident and
Operation Entebbe, Capsule can detect and character-
ize obscure, but significant, events, such as when Er-
itrean rebels kidnapped Tenneco oil employees (April
8, 1974) and when the U.S. Navy evacuated citizens
from Lebanon (“Operation Fluid Drive,” June 20,
1976). Both events appear in figure 1. Capsule uncov-
ers events where analysts might not otherwise look.

Capsule also provides a way to explore “business-

time interval. This example is a clear violation of this assump-
tion, but also serves to demonstrate that Capsule can successfully
detect and characterize multiple events, even when they overlap.

as-usual” discussion using the posterior expected val-
ues of the general topics ˇ1; : : : ;ˇK and the entity
topics �1; : : : ;�A. Examples of each of these types
of topics are in appendix B (tables 6 and 7, respec-
tively); these examples illustrate that, as desired, the
entity topics absorb location-specific terms, prevent-
ing them from overwhelming the general topics.

6 Conclusion

We presented Capsule, a Bayesian model for detect-
ing and characterizing potentially significant events.
We evaluated Capsule’s ability to detect events and
identify relevant messages; it outperformed four base-
line methods. We used Capsule to analyze a large cor-
pus of U.S. State Department cables from the 1970s,
demonstrating that it can discover both well-known
and obscure (but significant) events, as well as rele-
vant documents. We anticipate that Capsule, and our
visualization tool, will be useful for historians, po-
litical scientists, and journalists who wish to explore
and understand large corpora of documents. This is
increasingly important—the U.S. State Department
alone produces around two billion e-mails annually.

Acknowledgments

This work was supported by NSF IIS-1247664; ONR
N00014-11-1-0651; DARPA FA8750-14-2-0009 and
N66001-15-C-4032; Adobe; the Alfred P. Sloan
Foundation; the Columbia Global Policy Initiative.

1150

References
Ryan Prescott Adams and David JC MacKay. 2007.

Bayesian online changepoint detection. arXiv preprint
arXiv:0710.3742.

James Allan, Ron Papka, and Victor Lavrenko. 1998.
On-line new event detection and tracking. In Proceed-
ings of the ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 37–45.

Farzindar Atefeh and Wael Khreich. 2015. A survey
of techniques for event detection in twitter. Computa-
tional Intelligence, 31(1):132–164.

Hila Becker, Mor Naaman, and Luis Gravano. 2010.
Learning similarity metrics for event identification in
social media. In Proceedings of the ACM International
Conference on Web Search and Data Mining (WSDM),
pages 291–300.

D. Blei, A. Ng, and M. Jordan. 2003. Latent Dirichlet
allocation. The Journal of Machine Learning Research,
3:993–1022, January.

David M Blei. 2012. Probabilistic topic models. Commu-
nications of the ACM, 55(4):77–84.

Thorsten Brants, Francine Chen, and Ayman Farahat.
2003. A system for new event detection. In Proceed-
ings of the ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 330–337.

John Canny. 2004. Gap: a factor model for discrete
data. In Proceedings of the ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 122–129.

Deepayan Chakrabarti and Kunal Punera. 2011. Event
summarization using tweets. Proceedings of the Inter-
national AAAI Conference on Web and Social Media
(ICWSM), 11:66–73.

Kaustav Das, Jeff Schneider, and Daniel B Neill. 2008.
Anomaly pattern detection in categorical datasets. In
Proceedings of the ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD),
pages 169–176.

Anish Das Sarma, Alpa Jain, and Cong Yu. 2011. Dy-
namic relationship and event discovery. In Proceedings
of the ACM International Conference on Web Search
and Data Mining (WSDM), pages 207–216.

Wenwen Dou, Xiaoyu Wang, Drew Skau, William Rib-
arsky, and Michelle X Zhou. 2012. Leadline: Interac-
tive visual analysis of text data through event identifi-
cation and exploration. In Visual Analytics Science and
Technology (VAST), 2012 IEEE Conference on, pages
93–102. IEEE.

Gabriel Pui Cheong Fung, Jeffrey Xu Yu, Philip S Yu, and
Hongjun Lu. 2005. Parameter free bursty events detec-
tion in text streams. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages
181–192. VLDB Endowment.

Wei Gao, Peng Li, and Kareem Darwish. 2012. Joint
topic modeling for event summarization across news
and social media streams. In Proceedings of the Inter-
national Conference on Information and Knowledge
Management (CIKM), pages 1173–1182.

Prem K Gopalan, Laurent Charlin, and David Blei. 2014.
Content-based recommendations with Poisson factor-
ization. In Z. Ghahramani, M. Welling, C. Cortes, N.D.
Lawrence, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems (NIPS), pages
3176–3184. Curran Associates, Inc.

Valery Guralnik and Jaideep Srivastava. 1999. Event
detection from time series data. In Proceedings of the
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 33–42.

Alan G Hawkes. 1971. Spectra of some self-exciting
and mutually exciting point processes. Biometrika,
58(1):83–90.

Alan Jackoway, Hanan Samet, and Jagan Sankara-
narayanan. 2011. Identification of live news events
using twitter. In Proceedings of the 3rd ACM SIGSPA-
TIAL International Workshop on Location-Based Social
Networks, pages 25–32. ACM.

Michael I. Jordan, Zoubin Ghahramani, Tommi S.
Jaakkola, and Lawrence K. Saul. 1999. An intro-
duction to variational methods for graphical models.
Machine Learning, 37(2):183–233, November.

Giridhar Kumaran and James Allan. 2004. Text classifi-
cation and named entities for new event detection. In
Proceedings of the ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 297–
304.

Jey Han Lau, Nigel Collier, and Timothy Baldwin. 2012.
On-line trend analysis with topic models:n# twitter
trends detection topic model online. In Proceedings
of the International Conference on Computational Lin-
guistics (COLING), pages 1519–1534.

Zhiwei Li, Bin Wang, Mingjing Li, and Wei-Ying Ma.
2005. A probabilistic model for retrospective news
event detection. In Proceedings of the ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, pages 106–113.

Scott W Linderman and Ryan P Adams. 2014. Discover-
ing latent network structure in point process data. arXiv
preprint arXiv:1402.0914.

Xueliang Liu, Raphaël Troncy, and Benoit Huet. 2011.
Using social media to identify events. In Proceedings
of the ACM SIGMM International Workshop on Social
Media (WSM), pages 3–8.

Michael Mathioudakis, Nilesh Bansal, and Nick Koudas.
2010. Identifying, attributing and describing spatial
bursts. Proceedings of the International Conference on
Very Large Data Bases (VLDB), 3(1-2):1091–1102.

1151

Daniel B Neill, Andrew W Moore, Maheshkumar Sabh-
nani, and Kenny Daniel. 2005. Detection of emerg-
ing space-time clusters. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD), pages 218–227.

Michael J Paul and Mark Dredze. 2012. A model for
mining public health topics from twitter. Health, 11:16–
6.

Wei Peng, Charles Perng, Tao Li, and Haixun Wang. 2007.
Event summarization for system management. In Pro-
ceedings of the ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD),
pages 1028–1032.

Timo Reuter and Philipp Cimiano. 2012. Event-based
classification of social media streams. In Proceedings
of the 2nd ACM International Conference on Multime-
dia Retrieval, page 22. ACM.

Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo.
2010. Earthquake shakes twitter users: real-time event
detection by social sensors. In Proceedings of the Inter-
national World Wide Web Conference (WWW), pages
851–860.

Hassan Sayyadi, Matthew Hurst, and Alexey Maykov.
2009. Event detection and tracking in social streams.
In Proceedings of the International AAAI Conference
on Web and Social Media (ICWSM).

Aaron Schein, John Paisley, David M Blei, and Hanna
Wallach. 2015. Bayesian Poisson tensor factorization
for inferring multilateral relations from sparse dyadic
event counts. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD), pages 1045–1054.

Courtland VanDam. 2012. A probabilistic topic modeling
approach for event detection in social media. Master’s
thesis, Michigan State University.

Xuanhui Wang, ChengXiang Zhai, Xiao Hu, and Richard
Sproat. 2007. Mining correlated bursty topic patterns
from coordinated text streams. In Proceedings of the
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 784–793.
ACM.

Gary M Weiss and Haym Hirsh. 1998. Learning to predict
rare events in event sequences. In Proceedings of the
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 359–363.

Yi Zhang, Jamie Callan, and Thomas Minka. 2002. Nov-
elty and redundancy detection in adaptive filtering. In
Proceedings of the ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 81–
88.

Qiankun Zhao, Prasenjit Mitra, and Bi Chen. 2007. Tem-
poral and information flow based event detection from

social text streams. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 7, pages 1501–
1506.

Wayne Xin Zhao, Rishan Chen, Kai Fan, Hongfei Yan,
and Xiaoming Li. 2012. A novel burst-based text
representation model for scalable event detection. In
Proceedings of the 50th Annual Meeting of the Asso-
ciation for Computational Linguistics: Short Papers-
Volume 2, pages 43–47. Association for Computational
Linguistics.

1152

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1153–1162,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Convolutional Neural Network Language Models

Ngoc-Quan Pham and German Kruszewski and Gemma Boleda
Center for Mind/Brain Sciences

University of Trento
{firstname.lastname}@unitn.it

Abstract

Convolutional Neural Networks (CNNs) have
shown to yield very strong results in several
Computer Vision tasks. Their application to
language has received much less attention,
and it has mainly focused on static classifica-
tion tasks, such as sentence classification for
Sentiment Analysis or relation extraction. In
this work, we study the application of CNNs
to language modeling, a dynamic, sequential
prediction task that needs models to capture
local as well as long-range dependency infor-
mation. Our contribution is twofold. First,
we show that CNNs achieve 11-26% better
absolute performance than feed-forward neu-
ral language models, demonstrating their po-
tential for language representation even in se-
quential tasks. As for recurrent models, our
model outperforms RNNs but is below state of
the art LSTM models. Second, we gain some
understanding of the behavior of the model,
showing that CNNs in language act as feature
detectors at a high level of abstraction, like in
Computer Vision, and that the model can prof-
itably use information from as far as 16 words
before the target.

1 Introduction

Convolutional Neural Networks (CNNs) are the
family of neural network models that feature a type
of layer known as the convolutional layer. This layer
can extract features by convolving a learnable filter
(or kernel) along different positions of a vectorial in-
put.

CNNs have been successfully applied in Com-
puter Vision in many different tasks, including ob-

ject recognition, scene parsing, and action recogni-
tion (Gu et al., 2015), but they have received less
attention in NLP. They have been somewhat ex-
plored in static classification tasks where the model
is provided with a full linguistic unit as input (e.g. a
sentence) and classes are treated as independent of
each other. Examples of this are sentence or docu-
ment classification for tasks such as Sentiment Anal-
ysis or Topic Categorization (Kalchbrenner et al.,
2014; Kim, 2014), sentence matching (Hu et al.,
2014), and relation extraction (Nguyen and Grish-
man, 2015). However, their application to sequen-
tial prediction tasks, where the input is construed to
be part of a sequence (for example, language model-
ing or POS tagging), has been rather limited (with
exceptions, such as Collobert et al. (2011)). The
main contribution of this paper is a systematic evalu-
ation of CNNs in the context of a prominent sequen-
tial prediction task, namely, language modeling.

Statistical language models are a crucial compo-
nent in many NLP applications, such as Automatic
Speech Recognition, Machine Translation, and In-
formation Retrieval. Here, we study the problem
under the standard formulation of learning to predict
the upcoming token given its previous context. One
successful approach to this problem relies on count-
ing the number of occurrences of n-grams while
using smoothing and back-off techniques to esti-
mate the probability of an upcoming word (Kneser
and Ney, 1995). However, since each individual
word is treated independently of the others, n-gram
models fail to capture semantic relations between
words. In contrast, neural network language mod-
els (Bengio et al., 2006) learn to predict the up-

1153

coming word given the previous context while em-
bedding the vocabulary in a continuous space that
can represent the similarity structure between words.
Both feed-forward (Schwenk, 2007) and recurrent
neural networks (Mikolov et al., 2010) have been
shown to outperform n-gram models in various se-
tups (Mikolov et al., 2010; Hai Son et al., 2011).
These two types of neural networks make different
architectural decisions. Recurrent networks take one
token at a time together with a hidden “memory”
vector as input and produce a prediction and an up-
dated hidden vector for the next time step. In con-
trast, feed-forward language models take as input the
last n tokens, where n is a fixed window size, and
use them jointly to predict the upcoming word.

In this paper we define and explore CNN-based
language models and compare them with both feed-
forward and recurrent neural networks. Our results
show a 11-26% perplexity reduction of the CNN
with respect to the feed-forward language model,
comparable or higher performance compared to
similarly-sized recurrent models, and lower perfor-
mance with respect to larger, state-of-the-art recur-
rent language models (LSTMs as trained in Zaremba
et al. (2014)).

Our second contribution is an analysis of the kind
of information learned by the CNN, showing that the
network learns to extract a combination of grammat-
ical, semantic, and topical information from tokens
of all across the input window, even those that are
the farthest from the target.

2 Related Work

Convolutional Neural Networks (CNNs) were orig-
inally designed to deal with hierarchical representa-
tion in Computer Vision (LeCun and Bengio, 1995).
Deep convolutional networks have been success-
fully applied in image classification and understand-
ing (Simonyan and Zisserman, 2014; He et al.,
2015). In such systems the convolutional kernels
learn to detect visual features at both local and more
abstract levels.

In NLP, CNNs have been mainly applied to static
classification tasks for discovering latent structures
in text. Kim (2014) uses a CNN to tackle sentence
classification, with competitive results. The same
work also introduces kernels with varying window

sizes to learn complementary features at different
aggregation levels. Kalchbrenner et al. (2014) pro-
pose a convolutional architecture for sentence repre-
sentation that vertically stacks multiple convolution
layers, each of which can learn independent convo-
lution kernels. CNNs with similar structures have
also been applied to other classification tasks, such
as semantic matching (Hu et al., 2014), relation ex-
traction (Nguyen and Grishman, 2015), and infor-
mation retrieval (Shen et al., 2014). In contrast, Col-
lobert et al. (2011) explore a CNN architecture to
solve various sequential and non-sequential NLP
tasks such as part-of-speech tagging, named entity
recognition and also language modeling. This is per-
haps the work that is closest to ours in the existing
literature. However, their model differs from ours in
that it uses a max-pooling layer that picks the most
activated feature across time, thus ignoring tempo-
ral information, whereas we explicitly avoid doing
so. More importantly, the language models trained
in that work are only evaluated through downstream
tasks and through the quality of the learned word
embeddings, but not on the sequence prediction task
itself, as we do here.

Besides being applied to word-based sequences,
the convolutional layers have also been used to
model sequences at the character level. Kim et al.
(2015) propose a recurrent language model that re-
places the word-indexed projection matrix with a
convolution layer fed with the character sequence
that constitutes each word to find morphological pat-
terns. The main difference between that work and
ours is that we consider words as the smallest lin-
guistic unit, and thus apply the convolutional layer
at the word level.

Statistical language modeling, the task we tackle,
differs from most of the tasks where CNNs have
been applied before in multiple ways. First, the input
typically consists of incomplete sequences of words
rather than complete sentences. Second, as a classi-
fication problem, it features an extremely large num-
ber of classes (the words in a large vocabulary). Fi-
nally, temporal information, which can be safely dis-
carded in many settings with little impact in perfor-
mance, is critical here: An n-gram appearing close
to the predicted word may be more informative, or
yield different information, than the same n-gram
appearing several tokens earlier.

1154

3 Models

Our model is constructed by extending a feed-
forward language model (FFLM) with convolutional
layers. In what follows, we first explain the imple-
mentation of the base FFLM and then describe the
CNN model that we study.

3.1 Baseline FFLM

Our baseline feed-forward language model (FFLM)
is almost identical to the original model proposed
by Bengio et al. (2006), with only slight changes to
push its performance as high as we can, producing
a very strong baseline. In particular, we extend it
with highway layers and use Dropout as regulariza-
tion. The model is illustrated in Figure 1 and works
as follows. First, each word in the input n-gram is
mapped to a low-dimensional vector (viz. embed-
ding) though a shared lookup table. Next, these
word vectors are concatenated and fed to a highway
layer (Srivastava et al., 2015). Highway layers im-
prove the gradient flow of the network by computing
as output a convex combination between its input
(called the carry) and a traditional non-linear trans-
formation of it (called the transform). As a result, if
there is a neuron whose gradient cannot flow through
the transform component (e.g., because the activa-
tion is zero), it can still receive the back-propagation
update signal through the carry gate. We empiri-
cally observed the usage of a single highway layer to
significantly improve the performance of the model.
Even though a systematic evaluation of this aspect is
beyond the scope of the current paper, our empirical
results demonstrate that the resulting model is a very
competitive one (see Section 4).

Finally, a softmax layer computes the model pre-
diction for the upcoming word. We use ReLU for all
non-linear activations, and Dropout (Hinton et al.,
2012) is applied between each hidden layer.

3.2 CNN and variants

The proposed CNN network is produced by inject-
ing a convolutional layer right after the words in the
input are projected to their embeddings (Figure 2).
Rather than being concatenated into a long vector,
the embeddings xi ∈ Rk are concatenated transver-
sally producing a matrix x1:n ∈ Rn×k, where n is

 1

.

.

.

.

.

.

.

.

.

shared
word
space Softmax

P(w
j
 = i|h

j
)

w
j-1

w
j-n+1

w
j-2

w
j-3

Highway
layer

dropout dropout

H
I

H
O

tr
an

sf
or

m

carry

tr
an

sf
or

m

Figure 1: Overview of baseline FFLM.

the size of the input and k is the embedding size.
This matrix is fed to a time-delayed layer, which
convolves a sliding window of w input vectors cen-
tered on each word vector using a parameter matrix
W ∈ Rw×k. Convolution is performed by taking
the dot-product between the kernel matrix W and
each sub-matrix xi−w/2:i+w/2 resulting in a scalar
value for each position i in input context. This value
represents how much the words encompassed by the
window match the feature represented by the filter
W . A ReLU activation function is applied subse-
quently so negative activations are discarded. This
operation is repeated multiple times using various
kernel matrices W , learning different features in-
dependently. We tie the number of learned kernels
to be the same as the embedding dimensionality k,
such that the output of this stage will be another ma-
trix of dimensions n × k containing the activations
for each kernel at each time step. The number of
kernels was tied to the embedding size for two rea-
sons, one practical, namely, to limit the hyper pa-
rameter search, one methodological, namely, to keep
the network structure identical to that of the baseline
feed-forward model.

Next, we add a batch normalization stage imme-
diately after the convolutional output, which facil-
itates learning by addressing the internal covariate

1155

shift problem and regularizing the learned represen-
tations (Ioffe and Szegedy, 2015).

Finally, this feature matrix is directly fed into
a fully connected layer that can project the ex-
tracted features into a lower-dimensional represen-
tation. This is different from previous work, where
a max-over-time pooling operation was used to find
the most activated feature in the time series. Our
choice is motivated by the fact that the max pooling
operator loses the specific position where the feature
was detected, which is important for word predic-
tion.

After this initial convolutional layer, the network
proceeds identically to the FFNN by feeding the pro-
duced features into a highway layer, and then, to a
softmax output.

This is our basic CNN architecture. We also ex-
periment with three expansions to the basic model,
as follows. First, we generalize the CNN by ex-
tending the shallow linear kernels with deeper multi-
layer perceptrons, in what is called a MLP Convolu-
tion (MLPConv) structure (Lin et al., 2013). This
allows the network to produce non-linear filters, and
it has achieved state-of-the-art performance in object
recognition while reducing the number of total lay-
ers compared to other mainstream networks. Con-
cretely, we implement MLPConv networks by using
another convolutional layer with a 1 × 1 kernel on
top of the convolutional layer output. This results in
an architecture that is exactly equivalent to sliding a
one-hidden-layer MLP over the input. Notably, we
do not include the global pooling layer in the origi-
nal Network-in-Network structure (Lin et al., 2013).

Second, we explore stacking convolutional lay-
ers on top of each other (Multi-layer CNN or ML-
CNN) to connect the local features into broader re-
gional representations, as commonly done in com-
puter vision. While this proved to be useful for
sentence representation (Kalchbrenner et al., 2014),
here we have found it to be rather harmful for lan-
guage modeling, as shown in Section 4. It is impor-
tant to note that, in ML-CNN experiments, we stack
convolutions with the same kernel size and number
of kernels on top of each other, which is to be distin-
guished from the MLPConv that refers to the deeper
structure in each CNN layer mentioned above.

Finally, we consider combining features learned
through different kernel sizes (COM), as depicted in

 1

Hidden layers
+

Softmax

context
matrix

Convolution
+ ReLU

Mapping

Figure 2: Convolutional layer on top of the context matrix.

Context
matrix

convolution +
ReLU

Conv
block-5

Conv
block-3

Mapping-5

Mapping-3

Hidden layers
+

Softmax

Figure 3: Combining kernels with different sizes. We concate-

nate the outputs of 2 convolutional blocks with kernel size of 5

and 3 respectively.

Figure 3. For example, we can have a combination
of kernels that learn filters over 3-grams with oth-
ers that learn over 5-grams. This is achieved simply
by applying in parallel two or more sets of kernels
to the input and concatenating their respective out-
puts (Kim, 2014).

4 Experiments

We evaluate our model on three English corpora of
different sizes and genres, the first two of which
have been used for language modeling evaluation
before. The Penn Treebank contains one mil-
lion words of newspaper text with 10K words in
the vocabulary. We reuse the preprocessing and
training/test/validation division from Mikolov et

1156

al. (2014). Europarl-NC is a 64-million word cor-
pus that was developed for a Machine Translation
shared task (Bojar et al., 2015), combining Europarl
data (from parliamentary debates in the European
Union) and News Commentary data. We prepro-
cessed the corpus with tokenization and true-casing
tools from the Moses toolkit (Koehn et al., 2007).
The vocabulary is composed of words that occur at
least 3 times in the training set and contains approx-
imately 60K words. We use the validation and test
set of the MT shared task. Finally, we took a sub-
set of the ukWaC corpus, which was constructed
by crawling UK websites (Baroni et al., 2009). The
training subset contains 200 million words and the
vocabulary consists of the 200K words that appear
more than 5 times in the training subset. The val-
idation and test sets are different subsets of the
ukWaC corpus, both containing 120K words. We
preprocessed the data similarly to what we did for
Europarl-NC.

We train our models using Stochastic Gradient
Descent (SGD), which is relatively simple to tune
compared to other optimization methods that involve
additional hyper parameters (such as alpha in RM-
Sprop) while being still fast and effective. SGD is
commonly used in similar work (Devlin et al., 2014;
Zaremba et al., 2014; Sukhbaatar et al., 2015). The
learning rate is kept fixed during a single epoch, but
we reduce it by a fixed proportion every time the val-
idation perplexity increases by the end of the epoch.
The values for learning rate, learning rate shrinking
and mini-batch sizes as well as context size are fixed
once and for all based on insights drawn from pre-
vious work (Hai Son et al., 2011; Sukhbaatar et al.,
2015; Devlin et al., 2014) as well as experimentation
with the Penn Treebank validation set.

Specifically, the learning rate is set to 0.05, with
mini-batch size of 128 (we do not take the average of
loss over the batch, and the training set is shuffled).
We multiply the learning rate by 0.5 every time we
shrink it and clip the gradients if their norm is larger
than 12. The network parameters are initialized ran-
domly on a range from -0.01 to 0.01 and the context
size is set to 16. In Section 6 we show that this large
context window is fully exploited.

For the base FFNN and CNN we varied em-
bedding sizes (and thus, number of kernels) k =
128, 256. For k = 128 we explore the simple CNN,

incrementally adding MLPConv and COM varia-
tions (in that order) and, alternatively, using a ML-
CNN. For k = 256, we only explore the former
three alternatives (i.e. all but the ML-CNN). For the
kernel size, we set it to w = 3 words for the sim-
ple CNN (out of options 3, 5, 7, 9), whereas for the
COM variant we use w = 3 and 5, based on experi-
mentation on PTB. However, we observed the mod-
els to be generally robust to this parameter. Dropout
rates are tuned specifically for each combination of
model and dataset based on the validation perplex-
ity. We also add small dropout (p = 0.05–0.15)
when we train the networks on the smaller corpus
(Penn Treebank).

The experimental results for recurrent neural net-
work language models, such as Recurrent Neural
Networks (RNN) and Long-Short Term Memory
models (LSTM), on the Penn Treebank are quoted
from previous work; for Europarl-NC, we train our
own models (we also report the performance of these
in-house trained RNN and LSTM models on the
Penn Treebank for reference). Specifically, we train
LSTMs with embedding size k = 256 and number
of layers L = 2 as well as k = 512 with L = 1, 2.
We train one RNN with k = 512 andL = 2. To train
these models, we use the published source code from
Zaremba et al. (2014). Our own models are also
implemented in Torch7 for easier comparison.1 Fi-
nally, we selected the best performing convolutional
and recurrent language models on Europarl-NC and
the Baseline FFLM to be evaluated on the ukWaC
corpus.

For all models trained on Europarl-NC and
ukWaC, we speed up training by approximating
the softmax with Noise Contrastive Estimation
(NCE) (Gutmann and Hyvärinen, 2010), with the
parameters being set following previous work (Chen
et al., 2015). Concretely, for each predicted word,
we sample 10 words from the unigram distribution,
and the normalization factor is such that lnZ = 9. 2

For comparison, we also implemented a simpler
version of the FFNN without dropout and highway
layers (Bengio et al., 2006). These networks have
two hidden layers (Arisoy et al., 2012) with the size

1Available at https://github.com/quanpn90/NCE CNNLM.
2We also experimented with Hierarchical Softmax (Mikolov

et al., 2011) and found out that the NCE gave better perfor-
mance in terms of speed and perplexity.

1157

of 2 times the embedding size (k), thus having the
same number of parameters as our baseline.

5 Results

Our experimental results are summarized in Table 1.
First of all, we can see that, even though the

FFNN gives a very competitive performance,3 the
addition of convolutional layers clearly improves
it even further. Concretely, we observe a solid
11-26% reduction of perplexity compared to the
feed-forward network after using MLP Convolution,
depending on the setup and corpus. CNN alone
yields a sizable improvement (5-24%), while MLP-
Conv, in line with our expectations, adds another
approximately 2-5% reduction in perplexity. A fi-
nal (smaller) improvement comes from combining
kernels of size 3 and 5, which can be attributed to
a more expressive model that can learn patterns of
n-grams of different sizes. In contrast to the suc-
cessful two variants above, the multi-layer CNN did
not help in better capturing the regularities of text,
but rather the opposite: the more convolutional lay-
ers were stacked, the worse the performance. This
also stands in contrast to the tradition of convolu-
tional networks in Computer Vision, where using
very deep convolutional neural networks is key to
having better models. Deep convolution for text
representation is in contrast rather rare, and to our
knowledge it has only been successfuly applied to
sentence representation (Kalchbrenner et al., 2014).
We conjecture that the reason why deep CNNs may
not be so effective for language could be the effect of
the convolution on the data: The convolution output
for an image is akin to a new, more abstract image,
which yet again can be subject to new convolution
operations, whereas the textual counterpart may no
longer have the same properties, in the relevant as-
pects, as the original linguistic input.

Regarding the comparison with a stronger LSTM,
our models can perform competitively under the
same embedding dimension (e.g. see k = 256 of
k = 512) on the first two datasets. However, the
LSTM can be easily scaled using larger models, as
shown in Zaremba et al. (2014), which gives the

3In our experiments, increasing the number of fully con-
nected layers of the FFNN is harmful. Two hidden layers with
highway connections is the best setting we could find.

best known results to date. This is not an option for
our model, which heavily overfits with large hidden
layers (around 1000) even with very large dropout
values. Furthermore, the experiments on the larger
ukWaC corpus show an even clearer advantage for
the LSTM, which seems to be more efficient at har-
nessing this volume of data, than in the case of the
two smaller corpora.

To sum up, we have established that the results
of our CNN model are well above those of sim-
ple feed forward networks and recurrent neural net-
works. While they are below state of the art LSTMs,
they are able to perform competitively with them for
small and moderate-size models. Scaling to larger
sizes may be today the main roadblock for CNNs
to reach the same performances as large LSTMs in
language modeling.

6 Model Analysis

In what follows, we obtain insights into the inner
workings of the CNN by looking into the linguis-
tic patterns that the kernels learn to extract and also
studying the temporal information extracted by the
network in relation to its prediction capacity.

Learned patterns To get some insight into the
kind of patterns that each kernel is learning to de-
tect, we fed trigrams from the validation set of the
Penn Treebank to each of the kernels, and extracted
the ones that most highly activated the kernel, simi-
larly to what was done in Kalchbrenner et al. (2014).
Some examples are shown in Figure 4. Since the
word windows are made of embeddings, we can ex-
pect patterns with similar embeddings to have close
activation outputs. This is borne out in the analysis:
The kernels specialize in distinct features of the data,
including more syntactic-semantic constructions (cf.
the “comparative kernel” including as . . . as pat-
terns, but also of more than) and more lexical or top-
ical features (cf. the “ending-in-month-name” ker-
nel). Even in the more lexicalized features, how-
ever, we see linguistic regularities at different lev-
els being condensed in a single kernel: For instance,
the “spokesman” kernel detects phrases consisting
of an indefinite determiner, a company name (or the
word company itself) and the word “spokesman”.
We hypothesize that the convolutional layer adds an
“I identify one specific feature, but at a high level of

1158

Model k w Penn Treebank Europarl-NC ukWaC
val test #p val test #p val test #p

FFNN (Bengio et al., 2006) 128 - 156 147 4.5 - - - - - -
Baseline FFNN 128 - 114 109 4.5 - - - - - -

+CNN 128 3 108 102 4.5 - - - - - -
+MLPConv 128 3 102 97 4.5 - - - - - -

+MLPConv+COM 128 3+5 96 92 8 - - - - - -
+ML-CNN (2 layers) 128 3 113 108 8 - - - - - -
+ML-CNN (4 layers) 128 3 130 124 8 - - - - - -

FFNN (Bengio et al., 2006) 256 - 161 152 8.2 - - - - - -
Baseline FFNN 256 - 110 105 8.2 133 174 48 136 147 156

+CNN 256 3 104 98 8.3 112 133 48 - - -
+MLPConv 256 3 97 93 8.3 107 128 48 108 116 156

+MLPConv+COM 256 3+5 95 91 18 108 128 83 - - -
+MLPConv+COM 512 3+5 96 92 52 - - - - - -

Model k L Penn Treebank Europarl-NC ukWaC
val test #p val test #p val test #p

RNN (Mikolov et al., 2014) 300 1 133 129 6 - - - - - -
LSTM (Mikolov et al., 2014) 300 1 120 115 6.3 - - - - - -
LSTM (Zaremba et al., 2014) 1500 2 82 78 48 - - - - - -

LSTM (trained in-house) 256 2 108 103 5.1 137 155 31 - - -
LSTM (trained in-house) 512 1 123 118 12 133 149 62 - - -
LSTM (trained in-house) 512 2 94 90 11 114 124 63 79 83 205
RNN (trained in-house) 512 2 129 121 10 152 173 61 - - -

Table 1: Results on Penn Treebank and Europarl-NC. Figure of merit is perplexity (lower is better). Legend: k: embedding size

(also number of kernels for the convolutional models and hidden layer size for the recurrent models); w: kernel size; val: results on

validation data; test: results on test data; #p: number of parameters in millions; L: number of layers.

no matter how
are afraid how

question is how
remaining are how

to say how

as little as
of more than
as high as

as much as
as low as

a merc spokesman
a company spokesman
a boeing spokesman
a fidelity spokesman

a quotron spokeswoman

amr chairman robert
chief economist john

chicago investor william
 exchange chairman john

texas billionaire robert

would allow the
does allow the
still expect ford

warrant allows the
funds allow investors

more evident among
a dispute among

bargain-hunting among
growing fear among

paintings listed among

facilities will substantially
which would substantially

dean witter actually
we 'll probably

you should really

have until nov.
operation since aug.
quarter ended sept.
terrible tuesday oct.
even before june

Figure 4: Some example phrases that have highest activations for 8 example kernels (each box), extracted from the validation set

of the Penn Treebank. Model trained with 256 kernels for 256-dimensional word vectors.

abstraction” dimension to a feed-forward neural net-
work, similarly to what has been observed in image
classification (Krizhevsky et al., 2012).

Temporal information To the best of our knowl-
edge, the longest context used in feed-forward lan-
guage models is 10 tokens (Hai Son et al., 2012),

1159

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

 0 2 4 6 8 10 12 14 16

S
um

 o
f p

os
iti

ve
 w

ei
gh

ts

Positions

Figure 5: The distribution of positive weights over context po-

sitions, where 1 is the position closest to the predicted word.

where no significant change in terms of perplexity
was observed for bigger context sizes, even though
in that work only same-sentence contexts were con-
sidered. In our experiments, we use a larger context
size of 16 while removing the sentence boundary
limit (as commonly done in n-gram language mod-
els) such that the network can take into account the
words in the previous sentences.

To analyze whether all this information was
effectively used, we took our best model, the
CNN+MLPConv+COM model with embedding size
of 256 (fifth line of second block in Table 1), and
we identified the weights in the model that map the
convolutional output (of size n × k) to a lower di-
mensional vector (the “mapping” layer in Figure 2).
Recall that the output of the convolutional layer is a
matrix indexed by time step and kernel index con-
taining the activation of the kernel when convolved
with a window of text centered around the word
at the given time step. Thus, output units of the
above mentioned mapping predicate over an ensem-
ble of kernel activations for each time step. We
can identify the patterns that they learn to detect by
extracting the time-kernel combinations for which
they have positive weights (since we have ReLU ac-
tivations, negative weights are equivalent to ignor-
ing a feature). First, we asked ourselves whether
these units tend to be more focused on the time steps
closer to the target or not. To test this, we calculated
the sum of the positive weights for each position in
time using an average of the mappings that corre-
spond to each output unit. The results are shown in

 4.5

 5

 5.5

 6

 6.5

 7

 0 2 4 6 8 10 12 14 16

C
ro

ss
 E

nt
ro

py

Number of positions revealed

Figure 6: Perplexity change over position, by incrementally re-

vealing the Mapping’s weights corresponding to each position.

Figure 5. As could be expected, positions that are
close to the token to be predicted have many active
units (local context is very informative; see positions
2-4). However, surprisingly, positions that are actu-
ally far from the target are also quite active. It seems
like the CNN is putting quite a lot of effort on char-
acterizing long-range dependencies.

Next, we checked that the information extracted
from the positions that are far in the past are actu-
ally used for prediction. To measure this, we arti-
ficially lesioned the network so it would only read
the features from a given range of time steps (words
in the context). To lesion the network we manually
masked the weights of the mapping that focus on
times outside of the target range by setting them to
zero. We started using only the word closest to the
final position and sequentially unmasked earlier po-
sitions until the full context was used again. The re-
sult of this experiment is presented in Figure 6, and
it confirms our previous observation that positions
that are the farthest away contribute to the predic-
tions of the model. The perplexity drops dramati-
cally as the first positions are unmasked, and then
decreases more slowly, approximately in the form
of a power law (f(x) ∝ x−0.9). Even though the ef-
fect is smaller, the last few positions still contribute
to the final perplexity.

7 Conclusion

In this work, we have investigated the potential of
Convolutional Neural Networks for one prominent
NLP task, language modeling, a sequential predic-

1160

tion task. We incorporate a CNN layer on top of
a strong feed-forward model enhanced with modern
techniques like Highway Layers and Dropout. Our
results show a solid 11-26% reduction in perplexity
with respect to the feed-forward model across three
corpora of different sizes and genres when the model
uses MLP Convolution and combines kernels of dif-
ferent window sizes. However, even without these
additions we show CNNs to effectively learn lan-
guage patterns that allow it to significantly decrease
the model perplexity.

In our view, this improvement responds to two
key properties of CNNs, highlighted in the analysis.
First, as we have shown, they are able to integrate
information from larger context windows, using in-
formation from words that are as far as 16 positions
away from the predicted word. Second, as we have
qualitatively shown, the kernels learn to detect spe-
cific patterns at a high level of abstraction. This is
analogous to the role of convolutions in Computer
Vision. The analogy, however, has limits; for in-
stance, a deeper model stacking convolution layers
harms performance in language modeling, while it
greatly helps in Computer Vision. We conjecture
that this is due to the differences in the nature of vi-
sual vs. linguistic data. The convolution creates sort
of abstract images that still retain significant proper-
ties of images. When applied to language, it detects
important textual features but distorts the input, such
that it is not text anymore.

As for recurrent models, even if our model out-
performs RNNs, it is well below state-of-the-art
LSTMs. Since CNNs are quite different in nature,
we believe that a fruitful line of future research could
focus on integrating the convolutional layer into a
recurrent structure for language modeling, as well
as other sequential problems, perhaps capturing the
best of both worlds.

Acknowledgments

We thank Marco Baroni and three anonymous re-
viewers for fruitful feedback. This project has re-
ceived funding from the European Union’s Hori-
zon 2020 research and innovation programme un-
der the Marie Sklodowska-Curie grant agreement
No 655577 (LOVe); ERC 2011 Starting Independent
Research Grant n. 283554 (COMPOSES) and the

Erasmus Mundus Scholarship for Joint Master Pro-
grams. We gratefully acknowledge the support of
NVIDIA Corporation with the donation of the GPUs
used in our research.

References

Ebru Arisoy, Tara N Sainath, Brian Kingsbury, and Bhu-
vana Ramabhadran. 2012. Deep neural network lan-
guage models. In Proceedings of the NAACL-HLT
2012 Workshop: Will We Ever Really Replace the N-
gram Model? On the Future of Language Modeling
for HLT, pages 20–28. Association for Computational
Linguistics.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and
Eros Zanchetta. 2009. The WaCky wide web: A
collection of very large linguistically processed web-
crawled corpora. Language Resources and Evalua-
tion, 43(3):209–226.

Yoshua Bengio, Holger Schwenk, Jean-Sébastien
Senécal, Fréderic Morin, and Jean-Luc Gauvain.
2006. Neural probabilistic language models. In
Innovations in Machine Learning, pages 137–186.
Springer.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Barry Haddow, Matthias Huck, Chris Hokamp, Philipp
Koehn, Varvara Logacheva, Christof Monz, Matteo
Negri, Matt Post, Carolina Scarton, Lucia Specia, and
Marco Turchi. 2015. Findings of the 2015 workshop
on statistical machine translation. In Proceedings of
the Tenth Workshop on Statistical Machine Transla-
tion, pages 1–46, Lisbon, Portugal, September. Asso-
ciation for Computational Linguistics.

Xie Chen, Xunying Liu, Mark JF Gales, and Philip C
Woodland. 2015. Recurrent neural network language
model training with noise contrastive estimation for
speech recognition. In 2015 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5411–5415. IEEE.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas
Lamar, Richard M Schwartz, and John Makhoul.
2014. Fast and robust neural network joint models
for statistical machine translation. In ACL (1), pages
1370–1380. Citeseer.

Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang
Ma, Amir Shahroudy, Bing Shuai, Ting Liu, Xingx-
ing Wang, and Gang Wang. 2015. Recent ad-

1161

vances in convolutional neural networks. CoRR,
abs/1512.07108.

Michael Gutmann and Aapo Hyvärinen. 2010. Noise-
contrastive estimation: A new estimation principle for
unnormalized statistical models. In AISTATS, vol-
ume 1, page 6.

Le Hai Son, Ilya Oparin, Alexandre Allauzen, Jean-Luc
Gauvain, and François Yvon. 2011. Structured output
layer neural network language model. In Acoustics,
Speech and Signal Processing (ICASSP), 2011 IEEE
International Conference on, pages 5524–5527. IEEE.

Le Hai Son, Alexandre Allauzen, and François Yvon.
2012. Measuring the influence of long range depen-
dencies with neural network language models. In Pro-
ceedings of the NAACL-HLT 2012 Workshop: Will We
Ever Really Replace the N-gram Model? On the Fu-
ture of Language Modeling for HLT, pages 1–10. As-
sociation for Computational Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recogni-
tion. arXiv preprint arXiv:1512.03385.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2012. Im-
proving neural networks by preventing co-adaptation
of feature detectors. CoRR, abs/1207.0580.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen.
2014. Convolutional neural network architectures for
matching natural language sentences. In Advances in
Neural Information Processing Systems, pages 2042–
2050.

Sergey Ioffe and Christian Szegedy. 2015. Batch
normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics, ACL 2014, June 22-27, 2014, Baltimore, MD,
USA, Volume 1: Long Papers, pages 655–665.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2015. Character-aware neural language
models. CoRR.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. arXiv preprint arXiv:1408.5882.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Acous-
tics, Speech, and Signal Processing, 1995. ICASSP-
95., 1995 International Conference on, volume 1,
pages 181–184. IEEE.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard

Zens, et al. 2007. Moses: Open source toolkit for
statistical machine translation. In Proceedings of the
45th annual meeting of the ACL on interactive poster
and demonstration sessions, pages 177–180. Associa-
tion for Computational Linguistics.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
2012. Imagenet classification with deep convolutional
neural networks. In Advances in neural information
processing systems, pages 1097–1105.

Yann LeCun and Yoshua Bengio. 1995. Convolu-
tional networks for images, speech, and time series.
The handbook of brain theory and neural networks,
3361(10):1995.

Min Lin, Qiang Chen, and Shuicheng Yan. 2013. Net-
work in network. arXiv preprint arXiv:1312.4400.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In INTER-
SPEECH, volume 2, page 3.

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget,
Jan Honza Černockỳ, and Sanjeev Khudanpur. 2011.
Extensions of recurrent neural network language
model. In Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on,
pages 5528–5531. IEEE.

Tomas Mikolov, Armand Joulin, Sumit Chopra, Michael
Mathieu, and Marc’Aurelio Ranzato. 2014. Learning
longer memory in recurrent neural networks. arXiv
preprint arXiv:1412.7753.

Thien Huu Nguyen and Ralph Grishman. 2015. Relation
extraction: Perspective from convolutional neural net-
works. In Proceedings of NAACL-HLT, pages 39–48.

Holger Schwenk. 2007. Continuous space language
models. Computer Speech & Language, 21(3):492–
518.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and
Grégoire Mesnil. 2014. A latent semantic model
with convolutional-pooling structure for information
retrieval. In Proceedings of the 23rd ACM Interna-
tional Conference on Conference on Information and
Knowledge Management, pages 101–110. ACM.

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Highway networks. CoRR,
abs/1505.00387.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances in
Neural Information Processing Systems, pages 2431–
2439.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329.

1162

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1163–1172,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Generalizing and Hybridizing Count-based and Neural Language Models

Graham Neubig† and Chris Dyer‡
†Carnegie Mellon University, USA
‡Google DeepMind, United Kingdom

Abstract

Language models (LMs) are statistical mod-
els that calculate probabilities over sequences
of words or other discrete symbols. Currently
two major paradigms for language model-
ing exist: count-based n-gram models, which
have advantages of scalability and test-time
speed, and neural LMs, which often achieve
superior modeling performance. We demon-
strate how both varieties of models can be uni-
fied in a single modeling framework that de-
fines a set of probability distributions over the
vocabulary of words, and then dynamically
calculates mixture weights over these distri-
butions. This formulation allows us to create
novel hybrid models that combine the desir-
able features of count-based and neural LMs,
and experiments demonstrate the advantages
of these approaches.1

1 Introduction

Language models (LMs) are statistical models that,
given a sentence wI

1 := w1, . . . , wI , calculate its
probability P (wI

1). LMs are widely used in applica-
tions such as machine translation and speech recog-
nition, and because of their broad applicability they
have also been widely studied in the literature. The
most traditional and broadly used language model-
ing paradigm is that of count-based LMs, usually
smoothed n-grams (Witten and Bell, 1991; Chen

1Work was performed while GN was at the Nara Institute of
Science and Technology and CD was at Carnegie Mellon Uni-
versity. Code and data to reproduce experiments is available at
http://github.com/neubig/modlm

and Goodman, 1996). Recently, there has been a fo-
cus on LMs based on neural networks (Nakamura
et al., 1990; Bengio et al., 2006; Mikolov et al.,
2010), which have shown impressive improvements
in performance over count-based LMs. On the other
hand, these neural LMs also come at the cost of in-
creased computational complexity at both training
and test time, and even the largest reported neural
LMs (Chen et al., 2015; Williams et al., 2015) are
trained on a fraction of the data of their count-based
counterparts (Brants et al., 2007).

In this paper we focus on a class of LMs,
which we will call mixture of distributions LMs
(MODLMs; §2). Specifically, we define MODLMs
as all LMs that take the following form, calculat-
ing the probabilities of the next word in a sentence
wi given preceding context c according to a mix-
ture of several component probability distributions
Pk(wi|c):

P (wi|c) =
K∑

k=1

λk(c)Pk(wi|c). (1)

Here, λk(c) is a function that defines the mixture
weights, with the constraint that

∑K
k=1 λk(c) = 1

for all c. This form is not new in itself, and widely
used both in the calculation of smoothing coeffi-
cients for n-gram LMs (Chen and Goodman, 1996),
and interpolation of LMs of various varieties (Je-
linek and Mercer, 1980).

The main contribution of this paper is to demon-
strate that depending on our definition of c, λk(c),
and Pk(wi|c), Eq. 1 can be used to describe not only
n-gram models, but also feed-forward (Nakamura et
al., 1990; Bengio et al., 2006; Schwenk, 2007) and

1163

recurrent (Mikolov et al., 2010; Sundermeyer et al.,
2012) neural network LMs (§3). This observation
is useful theoretically, as it provides a single mathe-
matical framework that encompasses several widely
used classes of LMs. It is also useful practically, in
that this new view of these traditional models allows
us to create new models that combine the desirable
features of n-gram and neural models, such as:

neurally interpolated n-gram LMs (§4.1), which
learn the interpolation weights of n-gram
models using neural networks, and

neural/n-gram hybrid LMs (§4.2), which add a
count-based n-gram component to neural mod-
els, allowing for flexibility to add large-scale
external data sources to neural LMs.

We discuss learning methods for these models (§5)
including a novel method of randomly dropping out
more easy-to-learn distributions to prevent the pa-
rameters from falling into sub-optimal local minima.

Experiments on language modeling benchmarks
(§6) find that these models outperform baselines in
terms of performance and convergence speed.

2 Mixture of Distributions LMs

As mentioned above, MODLMs are LMs that take
the form of Eq. 1. This can be re-framed as the fol-
lowing matrix-vector multiplication:

pᵀc = Dcλ
ᵀ
c,

where pc is a vector with length equal to vocabulary
size, in which the jth element pc,j corresponds to
P (wi = j|c), λc is a size K vector that contains the
mixture weights for the distributions, and Dc is a J-
by-K matrix, where element dc,j,k is equivalent to
the probability Pk(wi = j|c).2 An example of this
formulation is shown in Fig. 1.

Note that all columns in D represent probability
distributions, and thus must sum to one over the J
words in the vocabulary, and that all λ must sum
to 1 over the K distributions. Under this condition,
the vector pwill represent a well-formed probability
distribution as well. This conveniently allows us to

2We omit the subscript c when appropriate.

Probabilities pᵀ Coefficients λᵀ
︷︸︸︷ ︷︸︸︷

p1

=

d1,1 d1,2 · · · d1,K λ1
p2 d2,1 d2,2 · · · d2,K λ2
...

...
...

. . .
...

...
pJ dJ,1 dJ,2 · · · dJ,K λK

︸ ︷︷ ︸
Distribution matrix D

Figure 1: MODLMs as linear equations

calculate the probability of a single word wi = j by
calculating the product of the jth row of Dc and λᵀ

c

Pk(wi = j|c) = dc,jλᵀ
c.

In the sequel we show how this formulation can be
used to describe several existing LMs (§3) as well as
several novel model structures that are more power-
ful and general than these existing models (§4).

3 Existing LMs as Linear Mixtures

3.1 n-gram LMs as Mixtures of Distributions

First, we discuss how count-based interpolated n-
gram LMs fit within the MODLM framework.

Maximum likelihood estimation: n-gram mod-
els predict the next word based on the previous N -1
words. In other words, we set c = wi−1

i−N+1 and
calculate P (wi|wi−1

i−N+1). The maximum-likelihood
(ML) estimate for this probability is

PML(wi|wi−1
i−N+1) = c(wi

i−N+1)/c(w
i−1
i−N+1),

where c(·) counts frequency in the training corpus.
Interpolation: Because ML estimation as-

signs zero probability to word sequences where
c(wi

i−N+1) = 0, n-gram models often interpolate
the ML distributions for sequences of length 1 to N .
The simplest form is static interpolation

P (wi|wi−1
i−n+1) =

N∑

n=1

λS,nPML(wi|wi−1
i−n+1). (2)

λS is a vector where λS,n represents the weight
put on the distribution PML(wi|wi−1

i−n+1). This can
be expressed as linear equations (Fig. 2a) by set-
ting the nth column of D to the ML distribution
PML(wi|wi−1

i−n+1), and λ(c) equal to λS .

1164

Probabilities pᵀ Heuristic interp. coefficients λᵀ
︷︸︸︷ ︷︸︸︷

p1

=

d1,1 d1,2 · · · d1,N λ1
p2 d2,1 d2,2 · · · d2,N λ2
...

...
...

. . .
...

...
pJ dJ,1 dJ,2 · · · dJ,N λN

︸ ︷︷ ︸
Count-based probabilities PC(wi = j|wi−1

i−n+1)

(a) Interpolated n-grams as MODLMs

Probabilities pᵀ Result of softmax(NN(c))
︷︸︸︷ ︷︸︸︷

p1

=

1 0 · · · 0 λ1
p2 0 1 · · · 0 λ2
...

...
...

. . .
...

...
pJ 0 0 · · · 1 λJ

︸ ︷︷ ︸
J-by-J identity matrix I

(b) Neural LMs as MODLMs

Figure 2: Interpretations of existing models as mixtures of distributions

Static interpolation can be improved by calcu-
lating λ(c) dynamically, using heuristics based on
the frequency counts of the context (Good, 1953;
Katz, 1987; Witten and Bell, 1991). These meth-
ods define a context-sensitive fallback probability
α(wi−1

i−n+1) for order n models, and recursively cal-
culate the probability of the higher order models
from the lower order models:

P (wi|wi−1
i−n+1) = α(wi−1

i−n+1)P (wi|wi−1
i−n+2)+

(1− α(wi−1
i−n+1))PML(wi|wi−1

i−n+1). (3)

To express this as a linear mixture, we con-
vert α(wi−1

i−n+1) into the appropriate value for
λn(w

i−1
i−N+1). Specifically, the probability assigned

to each PML(wi|wi−1
i−n+1) is set to the product of the

fallbacks α for all higher orders and the probability
of not falling back (1− α) at the current level:

λn(w
i−1
i−N+1) = (1−α(wi−1

i−n+1))
N∏

ñ=n+1

α(wi−1
i−ñ+1).

Discounting: The widely used technique of dis-
counting (Ney et al., 1994) defines a fixed discount
d and subtracts it from the count of each word before
calculating probabilities:

PD(wi|wi−1
i−n+1) = (c(wi

i−n+1)− d)/c(wi−1
i−n+1).

Discounted LMs then assign the remaining probabil-
ity mass after discounting as the fallback probability

βD(w
i−1
i−n+1) =1−

J∑

j=1

PD(wi = j|wi−1
i−n+1),

P (wi|wi−1
i−n+1) =βD(w

i−1
i−n+1)P (wi|wi−1

i−n+2)+

PD(wi|wi−1
i−n+1). (4)

In this case, PD(·) does not add to one, and thus vi-
olates the conditions for MODLMs stated in §2, but
it is easy to turn discounted LMs into interpolated
LMs by normalizing the discounted distribution:

PND(wi|wi−1
i−n+1) =

PD(wi|wi−1
i−n+1)∑J

j=1 PD(wi = j|wi−1
i−n+1)

,

which allows us to replace β(·) for α(·) and PND(·)
for PML(·) in Eq. 3, and proceed as normal.

Kneser–Ney (KN; Kneser and Ney (1995)) and
Modified KN (Chen and Goodman, 1996) smooth-
ing further improve discounted LMs by adjusting the
counts of lower-order distributions to more closely
match their expectations as fallbacks for higher or-
der distributions. Modified KN is currently the de-
facto standard in n-gram LMs despite occasional
improvements (Teh, 2006; Durrett and Klein, 2011),
and we will express it as PKN (·).

3.2 Neural LMs as Mixtures of Distributions

In this section we demonstrate how neural network
LMs can also be viewed as an instantiation of the
MODLM framework.

Feed-forward neural network LMs: Feed-
forward LMs (Bengio et al., 2006; Schwenk, 2007)
are LMs that, like n-grams, calculate the prob-
ability of the next word based on the previous
words. Given context wi−1

i−N+1, these words are
converted into real-valued word representation vec-
tors ri−1i−N+1, which are concatenated into an over-
all representation vector q = ⊕(ri−1i−N+1), where
⊕(·) is the vector concatenation function. q is then
run through a series of affine transforms and non-
linearities defined as function NN(q) to obtain a
vector h. For example, for a one-layer neural net-

1165

Probabilities pᵀ Result of softmax(NN(c))
︷︸︸︷ ︷︸︸︷

p1

=

d1,1 d1,2 · · · d1,N λ1
p2 d1,2 d2,2 · · · d2,N λ2
...

...
...

. . .
...

...
pJ dJ,1 dJ,2 · · · dJ,N λN

︸ ︷︷ ︸
Count-based probabilities PC(wi = j|wi−1

i−n+1)

(a) Neurally interpolated n-gram LMs

Probabilities pᵀ Result of softmax(NN(c))
︷︸︸︷ ︷︸︸︷

p1

=

d1,1 · · · d1,N 1 · · · 0 λ1
p2 d2,1 · · · d2,N 0 · · · 0 λ2
...

...
. . .

...
...

. . .
...

...
pJ dJ,1 · · · dJ,N 0 · · · 1 λJ+N

︸ ︷︷ ︸
Count-based probabilities and J-by-J identity matrix

(b) Neural/n-gram hybrid LMs

Figure 3: Two new expansions to n-gram and neural LMs made possible in the MODLM framework

work with a tanh non-linearity we can define

NN(q) := tanh(qWq + bq), (5)

where Wq and bq are weight matrix and bias vec-
tor parameters respectively. Finally, the probabil-
ity vector p is calculated using the softmax function
p = softmax(hWs + bs), similarly parameterized.

As these models are directly predicting p with no
concept of mixture weights λ, they cannot be inter-
preted as MODLMs as-is. However, we can per-
form a trick shown in Fig. 2b, not calculating p di-
rectly, but instead calculating mixture weights λ =
softmax(hWs + bs), and defining the MODLM’s
distribution matrix D as a J-by-J identity matrix.
This is equivalent to defining a linear mixture of J
Kronecker δj distributions, the jth of which assigns
a probability of 1 to word j and zero to everything
else, and estimating the mixture weights with a neu-
ral network. While it may not be clear why it is use-
ful to define neural LMs in this somewhat round-
about way, we describe in §4 how this opens up pos-
sibilities for novel expansions to standard models.

Recurrent neural network LMs: LMs using
recurrent neural networks (RNNs) (Mikolov et al.,
2010) consider not the previous few words, but also
maintain a hidden state summarizing the sentence up
until this point by re-defining the net in Eq. 5 as

RNN(qi) := tanh(qiWq + hi−1Wh + bq),

where qi is the current input vector and hi−1 is the
hidden vector at the previous time step. This allows
for consideration of long-distance dependencies be-
yond the scope of standard n-grams, and LMs using
RNNs or long short-term memory (LSTM) networks
(Sundermeyer et al., 2012) have posted large im-
provements over standard n-grams and feed-forward

models. Like feed-forward LMs, LMs using RNNs
can be expressed as MODLMs by predicting λ in-
stead of predicting p directly.

4 Novel Applications of MODLMs

This section describes how we can use this frame-
work of MODLMs to design new varieties of LMs
that combine the advantages of both n-gram and
neural network LMs.

4.1 Neurally Interpolated n-gram Models

The first novel instantiation of MODLMs that we
propose is neurally interpolated n-gram models,
shown in Fig. 3a. In these models, we setD to be the
same matrix used in n-gram LMs, but calculateλ(c)
using a neural network model. As λ(c) is learned
from data, this framework has the potential to allow
us to learn more intelligent interpolation functions
than the heuristics described in §3.1. In addition,
because the neural network only has to calculate a
softmax over N distributions instead of J vocabu-
lary words, training and test efficiency of these mod-
els can be expected to be much greater than that of
standard neural network LMs.

Within this framework, there are several design
decisions. First, how we decide D: do we use the
maximum likelihood estimate PML or KN estimated
distributions PKN? Second, what do we provide as
input to the neural network to calculate the mixture
weights? To provide the neural net with the same
information used by interpolation heuristics used in
traditional LMs, we first calculate three features for
each of the N contexts wi−1

i−n+1: a binary feature in-
dicating whether the context has been observed in
the training corpus (c(wi−1

i−n+1) > 0), the log fre-
quency of the context counts (log(c(wi−1

i−n+1)) or

1166

zero for unobserved contexts), and the log frequency
of the number of unique words following the context
(log(u(wi−1

i−n+1)) or likewise zero). When using dis-
counted distributions, we also use the log of the sum
of the discounted counts as a feature. We can also
optionally use the word representation vector q used
in neural LMs, allowing for richer representation of
the input, but this may or may not be necessary in the
face of the already informative count-based features.

4.2 Neural/n-gram Hybrid Models

Our second novel model enabled by MODLMs is
neural/n-gram hybrid models, shown in Fig. 3b.
These models are similar to neurally interpolated
n-grams, but D is augmented with J additional
columns representing the Kronecker δj distributions
used in the standard neural LMs. In this construc-
tion, λ is still a stochastic vector, but its contents
are both the mixture coefficients for the count-based
models and direct predictions of the probabilities of
words. Thus, the learned LM can use count-based
models when they are deemed accurate, and deviate
from them when deemed necessary.

This model is attractive conceptually for several
reasons. First, it has access to all information used
by both neural and n-gram LMs, and should be able
to perform as well or better than both models. Sec-
ond, the efficiently calculated n-gram counts are
likely sufficient to capture many phenomena nec-
essary for language modeling, allowing the neural
component to focus on learning only the phenom-
ena that are not well modeled by n-grams, requiring
fewer parameters and less training time. Third, it is
possible to train n-grams from much larger amounts
of data, and use these massive models to bootstrap
learning of neural nets on smaller datasets.

5 Learning Mixtures of Distributions

While the MODLM formulations of standard heuris-
tic n-gram LMs do not require learning, the remain-
ing models are parameterized. This section dis-
cusses the details of learning these parameters.

5.1 Learning MODLMs

The first step in learning parameters is defining our
training objective. Like most previous work on
LMs (Bengio et al., 2006), we use a negative log-

likelihood loss summed over words wi in every sen-
tence w in corpusW

L(W) = −
∑

w∈W

∑

wi∈w
logP (wi|c),

where c represents all words preceding wi inw that
are used in the probability calculation. As noted in
Eq. 2, P (wi = j|c) can be calculated efficiently
from the distribution matrix Dc and mixture func-
tion output λc.

Given that we can calculate the log likelihood, the
remaining parts of training are similar to training for
standard neural network LMs. As usual, we per-
form forward propagation to calculate the probabili-
ties of all the words in the sentence, back-propagate
the gradients through the computation graph, and
perform some variant of stochastic gradient descent
(SGD) to update the parameters.

5.2 Block Dropout for Hybrid Models
While the training method described in the previ-
ous section is similar to that of other neural network
models, we make one important modification to the
training process specifically tailored to the hybrid
models of §4.2.

This is motivated by our observation (detailed in
§6.3) that the hybrid models, despite being strictly
more expressive than the corresponding neural net-
work LMs, were falling into poor local minima with
higher training error than neural network LMs. This
is because at the very beginning of training, the
count-based elements of the distribution matrix in
Fig. 3b are already good approximations of the tar-
get distribution, while the weights of the single-word
δj distributions are not yet able to provide accurate
probabilities. Thus, the model learns to set the mix-
ture proportions of the δ elements to near zero and
rely mainly on the count-based n-gram distributions.

To encourage the model to use the δ mixture com-
ponents, we adopt a method called block dropout
(Ammar et al., 2016). In contrast to standard
dropout (Srivastava et al., 2014), which drops out
single nodes or connections, block dropout ran-
domly drops out entire subsets of network nodes. In
our case, we want to prevent the network from over-
using the count-based n-gram distributions, so for a
randomly selected portion of the training examples
(here, 50%) we disable all n-gram distributions and

1167

force the model to rely on only the δ distributions.
To do so, we zero out all elements in λ(c) that cor-
respond to n-gram distributions, and re-normalize
over the rest of the elements so they sum to one.

5.3 Network and Training Details

Finally, we note design details that were determined
based on preliminary experiments.

Network structures: We used both feed-forward
networks with tanh non-linearities and LSTM
(Hochreiter and Schmidhuber, 1997) networks.
Most experiments used single-layer 200-node net-
works, and 400-node networks were used for ex-
periments with larger training data. Word repre-
sentations were the same size as the hidden layer.
Larger and multi-layer networks did not yield im-
provements.

Training: We used ADAM (Kingma and Ba,
2015) with a learning rate of 0.001, and minibatch
sizes of 512 words. This led to faster convergence
than standard SGD, and more stable optimization
than other update rules. Models were evaluated ev-
ery 500k-3M words, and the model with the best de-
velopment likelihood was used. In addition to the
block dropout of §5.2, we used standard dropout
with a rate of 0.5 for both feed-forward (Srivastava
et al., 2014) and LSTM (Pham et al., 2014) nets in
the neural LMs and neural/n-gram hybrids, but not
in the neurally interpolated n-grams, where it re-
sulted in slightly worse perplexities.

Features: If parameters are learned on the data
used to train count-based models, they will heav-
ily over-fit and learn to trust the count-based distri-
butions too much. To prevent this, we performed
10-fold cross validation, calculating count-based el-
ements of D for each fold with counts trained on the
other 9/10. In addition, the count-based contextual
features in §4.1 were normalized by subtracting the
training set mean, which improved performance.

6 Experiments

6.1 Experimental Setup

In this section, we perform experiments to eval-
uate the neurally interpolated n-grams (§6.2) and
neural/n-gram hybrids (§6.3), the ability of our mod-
els to take advantage of information from large data
sets (§6.4), and the relative performance compared

PTB Sent Word ASP Sent Word
train 42k 890k train 100k 2.1M
valid 3.4k 70k valid 1.8k 45k
test 3.8k 79k test 1.8k 46k

Table 1: Data sizes for the PTB and ASPEC corpora.

Dst./Ft. HEUR FF LSTM
ML/C 220.5/265.9 146.6/164.5 144.4/162.7
ML/CR - 145.7/163.9 142.6/158.4
KN/C 140.8/156.5 138.9/152.5 136.8/151.1
KN/CR - 136.9/153.0 135.2/149.1

Table 2: PTB/ASPEC perplexities for traditional
heuristic (HEUR) and proposed neural net (FF or
LSTM) interpolation methods using ML or KN dis-
tributions, and count (C) or count+word representa-
tion (CR) features.

to post-facto static interpolation of already-trained
models (§6.5). For the main experiments, we evalu-
ate on two corpora: the Penn Treebank (PTB) data
set prepared by Mikolov et al. (2010),3 and the first
100k sentences in the English side of the ASPEC
corpus (Nakazawa et al., 2015)4 (details in Tab. 1).
The PTB corpus uses the standard vocabulary of 10k
words, and for the ASPEC corpus we use a vocabu-
lary of the 20k most frequent words. Our implemen-
tation is included as supplementary material.

6.2 Results for Neurally Interpolated n-grams

First, we investigate the utility of neurally interpo-
lated n-grams. In all cases, we use a history of
N = 5 and test several different settings for the
models:

Estimation type: λ(c) is calculated with heuris-
tics (HEUR) or by the proposed method using feed-
forward (FF), or LSTM nets.

Distributions: We compare PML(·) and PKN (·).
For heuristics, we use Witten-Bell for ML and the
appropriate discounted probabilities for KN.

Input features: As input features for the neural
network, we either use only the count-based features
(C) or count-based features together with the word
representation for the single previous word (CR).

From the results shown in Tab. 2, we can first see
that when comparing models using the same set of

3http://rnnlm.org/simple-examples.tgz
4http://lotus.kuee.kyoto-u.ac.jp/ASPEC/

1168

input distributions, the neurally interpolated model
outperforms corresponding heuristic methods. We
can also see that LSTMs have a slight advantage
over FF nets, and models using word representa-
tions have a slight advantage over those that use
only the count-based features. Overall, the best
model achieves a relative perplexity reduction of 4-
5% over KN models. Interestingly, even when using
simple ML distributions, the best neurally interpo-
lated n-gram model nearly matches the heuristic KN
method, demonstrating that the proposed model can
automatically learn interpolation functions that are
nearly as effective as carefully designed heuristics.5

6.3 Results for Neural/n-gram Hybrids

In experiments with hybrid models, we test a
neural/n-gram hybrid LM using LSTM networks
with both Kronecker δ and KN smoothed 5-gram
distributions, trained either with or without block
dropout. As our main baseline, we compare to
LSTMs with only δ distributions, which have re-
ported competitive numbers on the PTB data set
(Zaremba et al., 2014).6 We also report results for
heuristically smoothed KN 5-gram models, and the
best neurally interpolated n-grams from the previous
section for reference.

The results, shown in Tab. 3, demonstrate that
similarly to previous research, LSTM LMs (2)
achieve a large improvement in perplexity over n-
gram models, and that the proposed neural/n-gram
hybrid method (5) further reduces perplexity by 10-
11% relative over this strong baseline.

Comparing models without (4) and with (5) the
proposed block dropout, we can see that this method
contributes significantly to these gains. To examine
this more closely, we show the test perplexity for the

5Neurally interpolated n-grams are also more efficient than
standard neural LMs, as mentioned in §4.1. While a standard
LSTM LM calculated 1.4kw/s on the PTB data, the neurally in-
terpolated models using LSTMs and FF nets calculated 11kw/s
and 58kw/s respectively, only slightly inferior to 140kw/s of
heuristic KN.

6Note that unlike this work, we opt to condition only on in-
sentence context, not inter-sentential dependencies, as training
through gradient calculations over sentences is more straight-
forward and because examining the effect of cross-boundary
information is not central to the proposed method. Thus our
baseline numbers are not directly comparable (i.e. have higher
perplexity) to previous reported results on this data, but we still
feel that the comparison is appropriate.

Dist. Interp. PPL
(1) KN HEUR 140.8/156.5
(2) δ LSTM 105.9/116.9
(3) KN LSTM 135.2/149.1
(4) KN,δ LSTM -BlDO 108.4/130.4
(5) KN,δ LSTM +BlDO 95.3 /104.5

Table 3: PTB/ASPEC perplexities for traditional
KN (1) and LSTM LMs (2), neurally interpolated n-
grams (3), and neural/n-gram hybrid models without
(4) and with (5) block dropout.

10 100 1000 Infty
Frequency Cutoff

102

103

104

105

P
e
rp

le
x
it

y

(1) KN/heur
(2) d/LSTM
(3) KN/LSTM
(4) KN+d/LSTM

Figure 4: Perplexities of (1) standard n-grams, (2)
standard LSTMs, (3) neurally interpolated n-grams,
and (4) neural/n-gram hybrids on lower frequency
words.

three models using δ distributions in Fig. 5, and the
amount of the probability mass in λ(c) assigned to
the non-δ distributions in the hybrid models. From
this, we can see that the model with block dropout
quickly converges to a better result than the LSTM
LM, but the model without converges to a worse
result, assigning too much probability mass to the
dense count-based distributions, demonstrating the
learning problems mentioned in §5.2.

It is also of interest to examine exactly why the
proposed model is doing better than the more stan-
dard methods. One reason can be found in the be-
havior with regards to low-frequency words. In Fig.
4, we show perplexities for words that appear n
times or less in the training corpus, for n = 10,
n = 100, n = 1000 and n = ∞ (all words).
From the results, we can first see that if we com-
pare the baselines, LSTM language models achieve
better perplexities overall but n-gram language mod-
els tend to perform better on low-frequency words,
corroborating the observations of Chen et al. (2015).

1169

0 1 2 3 4 5 6
1e7

100

120

140

160

P
e
rp

le
x
it

y
(1) d/LSTM
(2) KN+d/LSTM -BlDO
(3) KN+d/LSTM +BlDO

0 1 2 3 4 5 6
Training Words Processed 1e7

0.0

0.5

1.0

D
e
n
se

 R
a
ti

o

Figure 5: Perplexity and dense distribution ratio of
the baseline LSTM LM (1), and the hybrid method
without (2) and with (3) block dropout.

The neurally interpolated n-gram models consis-
tently outperform standard KN-smoothed n-grams,
demonstrating their superiority within this model
class. In contrast, the neural/n-gram hybrid mod-
els tend to follow a pattern more similar to that of
LSTM language models, similarly with consistently
higher performance.

6.4 Results for Larger Data Sets

To examine the ability of the hybrid models to use
counts trained over larger amounts of data, we per-
form experiments using two larger data sets:

WSJ: The PTB uses data from the 1989 Wall
Street Journal, so we add the remaining years be-
tween 1987 and 1994 (1.81M sents., 38.6M words).

GW: News data from the English Gigaword 5th
Edition (LDC2011T07, 59M sents., 1.76G words).

We incorporate this data either by training net pa-
rameters over the whole large data, or by separately
training count-based n-grams on each of PTB, WSJ,
and GW, and learning net parameters on only PTB
data. The former has the advantage of training the
net on much larger data. The latter has two main ad-
vantages: 1) when the smaller data is of a particular
domain the mixture weights can be learned to match
this in-domain data; 2) distributions can be trained
on data such as Google n-grams (LDC2006T13),
which contain n-gram counts but not full sentences.

In the results of Fig. 6, we can first see that the
neural/n-gram hybrids significantly outperform the
traditional neural LMs in the scenario with larger
data as well. Comparing the two methods for in-
corporating larger data, we can see that the results
are mixed depending on the type and size of the data

0 1 2 3 4 5 6
Training Words Processed 1e7

60

80

100

120

140

160

P
e
rp

le
x
it

y

(1) d/p
(2) KN+d/p
(3) d/w
(4) KN+d/w
(5) KN+d/p +wLM
(6) d/g
(7) KN+d/g
(8) KN+d/p +gLM

Figure 6: Models trained on PTB (1,2), PTB+WSJ
(3,4,5) or PTB+WSJ+GW (6,7,8) using standard
neural LMs (1,3,6), neural/n-gram hybrids trained
all data (2,4,7), or hybrids trained on PTB with ad-
ditional n-gram distributions (5,8).

being used. For the WSJ data, training on all data
slightly outperforms the method of adding distribu-
tions, but when the GW data is added this trend re-
verses. This can be explained by the fact that the
GW data differs from the PTB test data, and thus
the effect of choosing domain-specific interpolation
coefficients was more prominent.

6.5 Comparison with Static Interpolation

Finally, because the proposed neural/n-gram hybrid
models combine the advantages of neural and n-
gram models, we compare with the more standard
method of training models independently and com-
bining them with static interpolation weights tuned
on the validation set using the EM algorithm. Tab. 4
shows perplexities for combinations of a standard
neural model (or δ distributions) trained on PTB, and
count based distributions trained on PTB, WSJ, and
GW are added one-by-one using the standard static
and proposed LSTM interpolation methods. From
the results, we can see that when only PTB data is
used, the methods have similar results, but with the
more diverse data sets the proposed method edges
out its static counterpart.7

7In addition to better perplexities, neural/n-gram hybrids are
trained in a single pass instead of performing post-facto inter-
polation, which may give advantages when training for other
objectives (Auli and Gao, 2014; Li et al., 2015).

1170

Interp δ+PTB +WSJ +GW
Lin. 95.1 70.5 65.8
LSTM 95.3 68.3 63.5

Table 4: PTB perplexity for interpolation between
neural (δ) LMs and count-based models.

7 Related Work

A number of alternative methods focus on interpo-
lating LMs of multiple varieties such as in-domain
and out-of-domain LMs (Bulyko et al., 2003; Bac-
chiani et al., 2006; Gülçehre et al., 2015). Perhaps
most relevant is Hsu (2007)’s work on learning to
interpolate multiple LMs using log-linear models.
This differs from our work in that it learns functions
to estimate the fallback probabilities αn(c) in Eq. 3
instead of λ(c), and does not cover interpolation of
n-gram components, non-linearities, or the connec-
tion with neural network LMs. Also conceptually
similar is work on adaptation of n-gram LMs, which
start with n-gram probabilities (Della Pietra et al.,
1992; Kneser and Steinbiss, 1993; Rosenfeld, 1996;
Iyer and Ostendorf, 1999) and adapt them based on
the distribution of the current document, albeit in a
linear model. There has also been work incorpo-
rating binary n-gram features into neural language
models, which allows for more direct learning of n-
gram weights (Mikolov et al., 2011), but does not af-
ford many of the advantages of the proposed model
such as the incorporation of count-based probability
estimates. Finally, recent works have compared n-
gram and neural models, finding that neural models
often perform better in perplexity, but n-grams have
their own advantages such as effectiveness in extrin-
sic tasks (Baltescu and Blunsom, 2015) and better
modeling of rare words (Chen et al., 2015).

8 Conclusion and Future Work

In this paper, we proposed a framework for lan-
guage modeling that generalizes both neural net-
work and count-based n-gram LMs. This allowed
us to learn more effective interpolation functions for
count-based n-grams, and to create neural LMs that
incorporate information from count-based models.

As the framework discussed here is general, it is
also possible that they could be used in other tasks
that perform sequential prediction of words such as

neural machine translation (Sutskever et al., 2014)
or dialog response generation (Sordoni et al., 2015).
In addition, given the positive results using block
dropout for hybrid models, we plan to develop more
effective learning methods for mixtures of sparse
and dense distributions.

Acknowledgements

We thank Kevin Duh, Austin Matthews, Shinji
Watanabe, and anonymous reviewers for valuable
comments on earlier drafts. This work was sup-
ported in part by JSPS KAKENHI Grant Number
16H05873, and the Program for Advancing Strate-
gic International Networks to Accelerate the Circu-
lation of Talented Researchers.

References
Waleed Ammar, George Mulcaire, Miguel Ballesteros,

Chris Dyer, and Noah A. Smith. 2016. One parser,
many languages. CoRR, abs/1602.01595.

Michael Auli and Jianfeng Gao. 2014. Decoder inte-
gration and expected bleu training for recurrent neural
network language models. In Proc. ACL, pages 136–
142.

Michiel Bacchiani, Michael Riley, Brian Roark, and
Richard Sproat. 2006. Map adaptation of stochas-
tic grammars. Computer Speech and Language,
20(1):41–68.

Paul Baltescu and Phil Blunsom. 2015. Pragmatic neural
language modelling in machine translation. In Proc.
NAACL, pages 820–829.

Yoshua Bengio, Holger Schwenk, Jean-Sébastien
Senécal, Fréderic Morin, and Jean-Luc Gauvain.
2006. Neural probabilistic language models. In
Innovations in Machine Learning, volume 194, pages
137–186.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och,
and Jeffrey Dean. 2007. Large language models in
machine translation. In Proc. EMNLP, pages 858–
867.

Ivan Bulyko, Mari Ostendorf, and Andreas Stolcke.
2003. Getting more mileage from web text sources for
conversational speech language modeling using class-
dependent mixtures. In Proc. HLT, pages 7–9.

Stanley F. Chen and Joshua Goodman. 1996. An empir-
ical study of smoothing techniques for language mod-
eling. In Proc. ACL, pages 310–318.

W. Chen, D. Grangier, and M. Auli. 2015. Strategies for
Training Large Vocabulary Neural Language Models.
ArXiv e-prints, December.

1171

Stephen Della Pietra, Vincent Della Pietra, Robert L Mer-
cer, and Salim Roukos. 1992. Adaptive language
modeling using minimum discriminant estimation. In
Proc. ACL, pages 103–106.

Greg Durrett and Dan Klein. 2011. An empirical investi-
gation of discounting in cross-domain language mod-
els. In Proc. ACL.

Irving J Good. 1953. The population frequencies of
species and the estimation of population parameters.
Biometrika, 40(3-4):237–264.

Çaglar Gülçehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loı̈c Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On us-
ing monolingual corpora in neural machine translation.
CoRR, abs/1503.03535.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Bo-June Hsu. 2007. Generalized linear interpolation of
language models. In Proc. ASRU, pages 136–140.

Rukmini M Iyer and Mari Ostendorf. 1999. Modeling
long distance dependence in language: Topic mixtures
versus dynamic cache models. Speech and Audio Pro-
cessing, IEEE Transactions on, 7(1):30–39.

Frederick Jelinek and Robert Mercer. 1980. Interpolated
estimation of markov source parameters from sparse
data. In Workshop on pattern recognition in practice.

Slava M Katz. 1987. Estimation of probabilities from
sparse data for the language model component of a
speech recognizer. IEEE Transactions on Acoustics,
Speech and Signal Processing, 35(3):400–401.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. Proc. ICLR.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Proc.
ICASSP, volume 1, pages 181–184. IEEE.

Reinhard Kneser and Volker Steinbiss. 1993. On the
dynamic adaptation of stochastic language models. In
Proc. ICASSP, pages 586–589.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting objec-
tive function for neural conversation models. CoRR,
abs/1510.03055.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. In Proc. Inter-
Speech, pages 1045–1048.

Tomáš Mikolov, Anoop Deoras, Daniel Povey, Lukáš
Burget, and Jan Černockỳ. 2011. Strategies for train-
ing large scale neural network language models. In
Proc. ASRU, pages 196–201. IEEE.

Masami Nakamura, Katsuteru Maruyama, Takeshi
Kawabata, and Kiyohiro Shikano. 1990. Neural net-
work approach to word category prediction for English
texts. In Proc. COLING.

Toshiaki Nakazawa, Hideya Mino, Isao Goto, Graham
Neubig, Sadao Kurohashi, and Eiichiro Sumita. 2015.
Overview of the 2nd Workshop on Asian Translation.
In Proc. WAT.

Hermann Ney, Ute Essen, and Reinhard Kneser. 1994.
On structuring probabilistic dependences in stochastic
language modelling. Computer Speech and Language,
8(1):1–38.

Vu Pham, Théodore Bluche, Christopher Kermorvant,
and Jérôme Louradour. 2014. Dropout improves re-
current neural networks for handwriting recognition.
In Proc. ICFHR, pages 285–290.

Ronald Rosenfeld. 1996. A maximum entropy approach
to adaptive statistical language modelling. Computer
Speech and Language, 10(3):187–228.

Holger Schwenk. 2007. Continuous space language
models. Computer Speech and Language, 21(3):492–
518.

Alessandro Sordoni, Michel Galley, Michael Auli, Chris
Brockett, Yangfeng Ji, Margaret Mitchell, Jian-Yun
Nie, Jianfeng Gao, and Bill Dolan. 2015. A neu-
ral network approach to context-sensitive generation
of conversational responses. In Proc. NAACL, pages
196–205.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. LSTM neural networks for language modeling.
In Proc. InterSpeech.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
In Proc. NIPS, pages 3104–3112.

Yee Whye Teh. 2006. A Bayesian interpretation of in-
terpolated Kneser-Ney. Technical report, School of
Computing, National Univ. of Singapore.

Will Williams, Niranjani Prasad, David Mrva, Tom Ash,
and Tony Robinson. 2015. Scaling recurrent neural
network language models. In Proc. ICASSP.

Ian H. Witten and Timothy C. Bell. 1991. The zero-
frequency problem: Estimating the probabilities of
novel events in adaptive text compression. IEEE
Transactions on Information Theory, 37(4):1085–
1094.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
CoRR, abs/1409.2329.

1172

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1173–1182,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Reasoning about Pragmatics with Neural Listeners and Speakers

Jacob Andreas and Dan Klein
Computer Science Division

University of California, Berkeley
{jda,klein}@cs.berkeley.edu

Abstract
We present a model for contrastively describ-
ing scenes, in which context-specific behav-
ior results from a combination of inference-
driven pragmatics and learned semantics. Like
previous learned approaches to language gen-
eration, our model uses a simple feature-
driven architecture (here a pair of neural “lis-
tener” and “speaker” models) to ground lan-
guage in the world. Like inference-driven ap-
proaches to pragmatics, our model actively
reasons about listener behavior when select-
ing utterances. For training, our approach re-
quires only ordinary captions, annotated with-
out demonstration of the pragmatic behavior
the model ultimately exhibits. In human eval-
uations on a referring expression game, our
approach succeeds 81% of the time, compared
to 69% using existing techniques.

1 Introduction

We present a model for describing scenes and ob-
jects by reasoning about context and listener behav-
ior. By incorporating standard neural modules for
image retrieval and language modeling into a prob-
abilistic framework for pragmatics, our model gen-
erates rich, contextually appropriate descriptions of
structured world representations.

This paper focuses on a reference game RG
played between a listener L and a speaker S.

1. Reference candidates r1 and r2 are re-
vealed to both players.

2. S is secretly assigned a random target t ∈
{1, 2}.

3. S produces a description d = S(t, r1, r2),
which is shown to L.

4. L chooses c = L(d, r1, r2).

5. Both players win if c = t.

(RG)

(a) target (b) distractor

the owl is sitting in the tree

(c) description

Figure 1: Sample output from our model. When presented with
a target image (a) in contrast with a distractor image (b), the
model generates a description (c). This description mentions a
tree, the distinguishing object present in (a) but not in (b), and
situates it with respect to other objects and events in the scene.

Figure 1 shows an example drawn from a standard
captioning dataset (Zitnick et al., 2014).

In order for the players to win, S’s description d
must be pragmatic: it must be informative, fluent,
concise, and must ultimately encode an understand-
ing of L’s behavior. In Figure 1, for example, the
owl is wearing a hat and the owl is sitting in the tree
are both accurate descriptions of the target image,
but only the second allows a human listener to suc-
ceed with high probability. RG is the focus of many
papers in the computational pragmatics literature: it
provides a concrete generation task while eliciting a
broad range of pragmatic behaviors, including con-
versational implicature (Benotti and Traum, 2009)
and context dependence (Smith et al., 2013). Exist-
ing computational models of pragmatics can be di-
vided into two broad lines of work, which we term
the direct and derived approaches.

Direct models (see Section 2 for examples) are
based on a representation of S. They learn prag-
matic behavior by example. Beginning with datasets
annotated for the specific task they are trying to

1173

solve (e.g. examples of humans playing RG), direct
models use feature-based architectures to predict ap-
propriate behavior without a listener representation.
While quite general in principle, such models re-
quire training data annotated specifically with prag-
matics in mind; such data is scarce in practice.

Derived models, by contrast, are based on a repre-
sentation of L. They first instantiate a base listener
L0 (intended to simulate a naı̈ve, non-pragmatic
listener). They then form a reasoning speaker
S1, which chooses a description that causes L0
to behave correctly. Existing derived models cou-
ple hand-written grammars and hand-engineered lis-
tener models with sophisticated inference proce-
dures. They exhibit complex behavior, but are re-
stricted to small domains where grammar engineer-
ing is practical.

The approach we present in this paper aims to
capture the best aspects of both lines of work. Like
direct approaches, we use machine learning to ac-
quire a complete grounded generation model from
data, without domain knowledge in the form of a
hand-written grammar or hand-engineered listener
model. But like derived approaches, we use this
learning to construct a base model, and embed it
within a higher-order model that reasons about lis-
tener responses. As will be seen, this reasoning step
allows the model to make use of weaker supervision
than previous data-driven approaches, while exhibit-
ing robust behavior in a variety of contexts.

Our goal is to build a derived model that scales to
real-world datasets without domain engineering. In-
dependent of the application to RG, our model also
belongs to the family of neural image captioning
models that have been a popular subject of recent
study (Xu et al., 2015). Nevertheless, our approach
appears to be:

• the first such captioning model to reason
explicitly about listeners

• the first learned approach to pragmatics that re-
quires only non-pragmatic training data

Following previous work, we evaluate our model
on RG, though the general architecture could be ap-
plied to other tasks where pragmatics plays a core
role. Using a large dataset of abstract scenes like
the one shown in Figure 1, we run a series of games

with humans in the role of L and our system in the
role of S. We find that the descriptions generated by
our model result in correct interpretation 17% more
often than a recent learned baseline system. We use
these experiments to explore various other aspects
of computational pragmatics, including tradeoffs be-
tween adequacy and fluency, and between computa-
tional efficiency and expressive power.1

2 Related Work

Direct pragmatics As an example of the direct
approach mentioned in the introduction, FitzGerald
et al. (2013) collect a set of human-generated re-
ferring expressions about abstract representations of
sets of colored blocks. Given a set of blocks to
describe, their model directly learns a maximum-
entropy distribution over the set of logical expres-
sions whose denotation is the target set. Other re-
search, focused on referring expression generation
from a computer vision perspective, includes that of
Mao et al. (2015) and Kazemzadeh et al. (2014).

Derived pragmatics Derived approaches, some-
times referred to as “rational speech acts” models,
include those of Smith et al. (2013), Vogel et al.
(2013), Golland et al. (2010), and Monroe and Potts
(2015). These couple template-driven language gen-
eration with probabilistic or game-theoretic reason-
ing frameworks to produce contextually appropriate
language: intelligent listeners reason about the be-
havior of reflexive speakers, and even higher-order
speakers reason about these listeners. Experiments
(Frank et al., 2009) show that derived approaches ex-
plain human behavior well, but both computational
and representational issues restrict their application
to simple reference games. They require domain-
specific engineering, controlled world representa-
tions, and pragmatically annotated training data.

An extensive literature on computational prag-
matics considers its application to tasks other than
RG, including instruction following (Anderson et
al., 1991) and discourse analysis (Jurafsky et al.,
1997).

1Models, human annotations, and code to generate all tables
and figures in this paper can be found at http://github.
com/jacobandreas/pragma.

1174

Representing language and the world In addi-
tion to the pragmatics literature, the approach pro-
posed in this paper relies extensively on recently de-
veloped tools for multimodal processing of language
and unstructured representations like images. These
includes both image retrieval models, which select
an image from a collection given a textual descrip-
tion (Socher et al., 2014), and neural conditional lan-
guage models, which take a content representation
and emit a string (Donahue et al., 2015).

3 Approach

Our goal is to produce a model that can play the
role of the speaker S in RG. Specifically, given a
target referent (e.g. scene or object) r and a dis-
tractor r′, the model must produce a description d
that uniquely identifies r. For training, we have ac-
cess to a set of non-contrastively captioned referents
{(ri, di)}: each training description di is generated
for its associated referent ri in isolation. There is
no guarantee that di would actually serve as a good
referring expression for ri in any particular context.
We must thus use the training data to ground lan-
guage in referent representations, but rely on reason-
ing to produce pragmatics.

Our model architecture is compositional and hi-
erarchical. We begin in Section 3.2 by describing a
collection of “modules”: basic computational prim-
itives for mapping between referents, descriptions,
and reference judgments, here implemented as lin-
ear operators or small neural networks. While these
modules appear as substructures in neural architec-
tures for a variety of tasks, we put them to novel use
in constructing a reasoning pragmatic speaker.

Section 3.3 describes how to assemble two base
models: a literal speaker, which maps from refer-
ents to strings, and a literal listener, which maps
from strings to reference judgments. Section 3.4 de-
scribes how these base models are used to imple-
ment a top-level reasoning speaker: a learned, prob-
abilistic, derived model of pragmatics.

3.1 Preliminaries

Formally, we take a description d to consist of a se-
quence of words d1, d2, . . . , dn, drawn from a vo-
cabulary of known size. For encoding, we also as-
sume access to a feature representation f(d) of the

sentence

FCFC

ReLUSum FC Softmax

ReLUFC SoftmaxFC

ngram	
features descref	

features referent

referent

wordn

word<n wordn+1

choice

referent

desc

(d) referent describer D

(a) referent encoder Er (b) description encoder Ed

(c) choice ranker R

Figure 2: Diagrams of modules used to construct speaker and
listener models. “FC” is a fully-connected layer (a matrix multi-
ply) and “ReLU” is a rectified linear unit. The encoder modules
(a,b) map from feature representations (in gray) to embeddings
(in black), while the ranker (c) and describer modules (d) re-
spectively map from embeddings to decisions and strings.

sentence (for purposes of this paper, a vector of in-
dicator features on n-grams). These two views—as
a sequence of words di and a feature vector f(d)—
form the basis of module interactions with language.

Referent representations are similarly simple. Be-
cause the model never generates referents—only
conditions on them and scores them—a vector-
valued feature representation of referents suffices.
Our approach is completely indifferent to the na-
ture of this representation. While the experiments
in this paper use a vector of indicator features on
objects and actions present in abstract scenes (Fig-
ure 1), it would be easy to instead use pre-trained
convolutional representations for referring to natural
images. As with descriptions, we denote this feature
representation f(r) for referents.

3.2 Modules

All listener and speaker models are built from a kit
of simple building blocks for working with multi-
modal representations of images and text:

1. a referent encoder Er
2. a description encoder Ed
3. a choice ranker R
4. a referent describer D

1175

These are depicted in Figure 2, and specified more
formally below. All modules are parameterized by
weight matrices, written with capital lettersW1,W2,
etc.; we refer to the collection of weights for all
modules together as W .

Encoders The referent and description encoders
produce a linear embedding of referents and descrip-
tions in a common vector space.

Referent encoder: Er(r) =W1f(r) (1)

Description encoder: Ed(d) =W2f(d) (2)

Choice ranker The choice ranker takes a string
encoding and a collection of referent encodings, as-
signs a score to each (string, referent) pair, and then
transforms these scores into a distribution over ref-
erents. We write R(ei|e−i, ed) for the probability of
choosing i in contrast to the alternative; for exam-
ple, R(e2|e1, ed) is the probability of answering “2”
when presented with encodings e1 and e2.

s1 = w>3 ρ(W4e1 +W5ed)

s2 = w>3 ρ(W4e2 +W5ed)

R(ei|e−i, ed) =
esi

es1 + es2
(3)

(Here ρ is a rectified linear activation function.)

Referent describer The referent describer takes
an image encoding and outputs a description us-
ing a (feedforward) conditional neural language
model. We express this model as a distribution
p(dn+1|dn, d<n, er), where dn is an indicator fea-
ture on the last description word generated, d<n is a
vector of indicator features on all other words pre-
viously generated, and er is a referent embedding.
This is a “2-plus-skip-gram” model, with local posi-
tional history features, global position-independent
history features, and features on the referent being
described. To implement this probability distribu-
tion, we first use a multilayer perceptron to com-
pute a vector of scores s (one si for each vocabulary
item): s = W6ρ(W7[dn, d<n, ei]). We then normal-
ize these to obtain probabilities: pi = esi/

∑
j e

sj .
Finally, p(dn+1|dn, d<n, er) = pdn+1 .

3.3 Base models
From these building blocks, we construct a pair of
base models. The first of these is a literal listener

Desc.	
encoder

Ref.	
encoder

Ref.	
encoder

Ranker

Ref.	
decoder

Ref.	
encoder

Literal listener (L0) Literal speaker (S0)

Reasoning speaker (S1)

S0

L0

Sampler

Figure 3: Schematic depictions of models. The literal listener
L0 maps from descriptions and reference candidates to ref-
erence decisions. The literal speaker S0 maps directly from
scenes to descriptions, ignoring context, while the reasoning
speaker uses samples from S0 and scores from both L0 and S0
to produce contextually-appropriate captions.

L0, which takes a description and a set of referents,
and chooses the referent most likely to be described.
This serves the same purpose as the base listener in
the general derived approach described in the intro-
duction. We additionally construct a literal speaker
S0, which takes a referent in isolation and outputs a
description. The literal speaker is used for efficient
inference over the space of possible descriptions, as
described in Section 3.4. L0 is, in essence, a retrieval
model, and S0 is neural captioning model.

Both of the base models are probabilistic: L0 pro-
duces a distribution over referent choices, and S0
produces a distribution over strings. They are de-
picted with shaded backgrounds in Figure 3.

Literal listener Given a description d and a pair of
candidate referents r1 and r2, the literal listener em-
beds both referents and passes them to the ranking
module, producing a distribution over choices i.

ed = Ed(d)

e1 = Er(r1)

e2 = Er(r2)

pL0(i|d, r1, r2) = R(ei|e−i, ed) (4)

That is, pL0(1|d, r1, r2) = R(e1|e2, ed) and vice-
versa. This model is trained contrastively, by solving
the following optimization problem:

max
W

∑

j

log pL0(1|dj , rj , r′) (5)

1176

Here r′ is a random distractor chosen uniformly
from the training set. For each training exam-
ple (ri, di), this objective attempts to maximize the
probability that the model chooses ri as the referent
of di over a random distractor.

This contrastive objective ensures that our ap-
proach is applicable even when there is not a
naturally-occurring source of target–distractor pairs,
as previous work (Golland et al., 2010; Monroe and
Potts, 2015) has required. Note that this can also be
viewed as a version of the loss described by Smith
and Eisner (2005), where it approximates a likeli-
hood objective that encourages L0 to prefer ri to ev-
ery other possible referent simultaneously.

Literal speaker As in the figure, the literal
speaker is obtained by composing a referent encoder
with a describer, as follows:

e = Er(f(r))

pS0(d|r) = Dd(d|e)

As with the listener, the literal speaker should be un-
derstood as producing a distribution over strings. It
is trained by maximizing the conditional likelihood
of captions in the training data:

max
W

∑

i

log pS0(di|ri) (6)

These base models are intended to be the minimal
learned equivalents of the hand-engineered speak-
ers and hand-written grammars employed in previ-
ous derived approaches (Golland et al., 2010). The
neural encoding/decoding framework implemented
by the modules in the previous subsection provides
a simple way to map from referents to descriptions
and descriptions to judgments without worrying too
much about the details of syntax or semantics. Past
work amply demonstrates that neural conditional
language models are powerful enough to generate
fluent and accurate (though not necessarily prag-
matic) descriptions of images or structured represen-
tations (Donahue et al., 2015).

3.4 Reasoning model

As described in the introduction, the general derived
approach to pragmatics constructs a base listener
and then selects a description that makes it behave

correctly. Since the assumption that listeners will
behave deterministically is often a poor one, it is
common for such derived approaches to implement
probabilistic base listeners, and maximize the prob-
ability of correct behavior.

The neural literal listener L0 described in the pre-
ceding section is such a probabilistic listener. Given
a target i and a pair of candidate referents r1 and r2,
it is natural to specify the behavior of a reasoning
speaker as simply:

max
d
pL0(i|d, r1, r2) (7)

At a first glance, the only thing necessary to im-
plement this model is the representation of the literal
listener itself. When the set of possible utterances
comes from a fixed vocabulary (Vogel et al., 2013)
or a grammar small enough to exhaustively enumer-
ate (Smith et al., 2013) the operation maxd in Equa-
tion 7 is practical.

For our purposes, however, we would like the
model to be capable of producing arbitrary utter-
ances. Because the score pL0 is produced by a
discriminative listener model, and does not factor
along the words of the description, there is no dy-
namic program that enables efficient inference over
the space of all strings.

We instead use a sampling-based optimization
procedure. The key ingredient here is a good pro-
posal distribution from which to sample sentences
likely to be assigned high weight by the model lis-
tener. For this we turn to the literal speaker S0
described in the previous section. Recall that this
speaker produces a distribution over plausible de-
scriptions of isolated images, while ignoring prag-
matic context. We can use it as a source of candi-
date descriptions, to be reweighted according to the
expected behavior of L0. The full specification of a
sampling neural reasoning speaker is as follows:

1. Draw samples d1, . . . dn ∼ pS0(·|ri).
2. Score samples: pk = pL0(i|dk, r1, r2).
3. Select dk with k = argmax pk.

While primarily to enable efficient inference, we
can also use the literal speaker to serve a differ-
ent purpose: “regularizing” model behavior towards
choices that are adequate and fluent, rather than ex-
ploiting strange model behavior. Past work has re-

1177

stricted the set of utterances in a way that guaran-
tees fluency. But with an imperfect learned listener
model, and a procedure that optimizes this listener’s
judgments directly, the speaker model might acci-
dentally discover the kinds of pathological optima
that neural classification models are known to ex-
hibit (Goodfellow et al., 2014)—in this case, sen-
tences that cause exactly the right response from L0,
but no longer bear any resemblance to human lan-
guage use. To correct this, we allow the model to
consider two questions: as before, “how likely is
it that a listener would interpret this sentence cor-
rectly?”, but additionally “how likely is it that a
speaker would produce it?”

Formally, we introduce a parameter λ that trades
off between L0 and S0, and take the reasoning model
score in step 2 above to be:

pk = pS0(dk|ri)λ · pL0(i|dk, r1, r2)1−λ (8)

This can be viewed as a weighted joint probability
that a sentence is both uttered by the literal speaker
and correctly interpreted by the literal listener, or al-
ternatively in terms of Grice’s conversational max-
ims (Grice, 1970): L0 encodes the maxims of qual-
ity and relation, ensuring that the description con-
tains enough information for L to make the right
choice, while S0 encodes the maxim of manner, en-
suring that the description conforms with patterns of
human language use. Responsibility for the maxim
of quantity is shared: L0 ensures that the model
doesn’t say too little, and S0 ensures that the model
doesn’t say too much.

4 Evaluation

We evaluate our model on the reference game RG
described in the introduction. In particular, we con-
struct instances of RG using the Abstract Scenes
Dataset introduced by Zitnick and Parikh (2013).
Example scenes are shown in Figure 1 and Figure
4. The dataset contains pictures constructed by hu-
mans and described in natural language. Scene rep-
resentations are available both as rendered images
and as feature representations containing the identity
and location of each object; as noted in Section 3.1,
we use this feature set to produce our referent rep-
resentation f(r). This dataset was previously used
for a variety of language and vision tasks (e.g. Or-

tiz et al. (2015), Zitnick et al. (2014)). It consists of
10,020 scenes, each annotated with up to 6 captions.

The abstract scenes dataset provides a more chal-
lenging version of RG than anything we are aware of
in the existing computational pragmatics literature,
which has largely used the TUNA corpus of isolated
object descriptions (Gatt et al., 2007) or small syn-
thetic datasets (Smith et al., 2013). By contrast, the
abstract scenes data was generated by humans look-
ing at complex images with numerous objects, and
features grammatical errors, misspellings, and a vo-
cabulary an order of magnitude larger than TUNA.
Unlike previous work, we have no prespecified in-
domain grammar, and no direct supervision of the
relationship between scene features and lexemes.

We perform a human evaluation using Amazon
Mechanical Turk. We begin by holding out a de-
velopment set and a test set; each held-out set con-
tains 1000 scenes and their accompanying descrip-
tions. For each held-out set, we construct two sets of
200 paired (target, distractor) scenes: All, with up to
four differences between paired scenes, and Hard,
with exactly one difference between paired scenes.
(We take the number of differences between scenes
to be the number of objects that appear in one scene
but not the other.)

We report two evaluation metrics. Fluency is
determined by showing human raters isolated sen-
tences, and asking them to rate linguistic quality on
a scale from 1–5. Accuracy is success rate at RG:
as in Figure 1, humans are shown two images and a
model-generated description, and asked to select the
image matching the description.

In the remainder of this section, we measure the
tradeoff between fluency and accuracy that results
from different mixtures of the base models (Sec-
tion 4.1), measure the number of samples needed
to obtain good performance from the reasoning lis-
tener (Section 4.2), and attempt to approximate the
reasoning listener with a monolithic “compiled” lis-
tener (Section 4.3). In Section 4.4 we report final
accuracies for our approach and baselines.

samples 1 10 100 1000
Accuracy (%) 66 75 83 85

Table 1: S1 accuracy vs. number of samples.

1178

Figure 5: Tradeoff between speaker and listener models, con-
trolled by the parameter λ in Equation 8. With λ = 0, all weight
is placed on the literal listener, and the model produces highly
discriminative but somewhat disfluent captions. With λ = 1, all
weight is placed on the literal speaker, and the model produces
fluent but generic captions.

4.1 How good are the base models?

To measure the performance of the base models,
we draw 10 samples djk for a subset of 100 pairs
(r1,j , r2,j) in the Dev-All set. We collect human flu-
ency and accuracy judgments for each of the 1000
total samples. This allows us to conduct a post-hoc
search over values of λ: for a range of λ, we com-
pute the average accuracy and fluency of the high-
est scoring sample. By varying λ, we can view the
tradeoff between accuracy and fluency that results
from interpolating between the listener and speaker
model—setting λ = 0 gives samples from pL0, and
λ = 1 gives samples from pS0.

Figure 5 shows the resulting accuracy and fluency
for various values of λ. It can be seen that relying
entirely on the listener gives the highest accuracy
but degraded fluency. However, by adding only a
very small weight to the speaker model, it is possible
to achieve near-perfect fluency without a substantial
decrease in accuracy. Example sentences for an in-
dividual reference game are shown in Figure 5; in-
creasing λ causes captions to become more generic.
For the remaining experiments in this paper, we take
λ = 0.02, finding that this gives excellent perfor-
mance on both metrics.

On the development set, λ = 0.02 results in an
average fluency of 4.8 (compared to 4.8 for the lit-
eral speaker λ = 1). This high fluency can be con-
firmed by inspection of model samples (Figure 4).

We thus focus on accuracy or the remainder of the
evaluation.

4.2 How many samples are needed?

Next we turn to the computational efficiency of the
reasoning model. As in all sampling-based infer-
ence, the number of samples that must be drawn
from the proposal is of critical interest—if too many
samples are needed, the model will be too slow to
use in practice. Having fixed λ = 0.02 in the pre-
ceding section, we measure accuracy for versions of
the reasoning model that draw 1, 10, 100, and 1000
samples. Results are shown in Table 1. We find that
gains continue up to 100 samples.

4.3 Is reasoning necessary?

Because they do not require complicated inference
procedures, direct approaches to pragmatics typi-
cally enjoy better computational efficiency than de-
rived ones. Having built an accurate derived speaker,
can we bootstrap a more efficient direct speaker?

To explore this, we constructed a “compiled”
speaker model as follows: Given reference candi-
dates r1 and r2 and target t, this model produces
embeddings e1 and e2, concatenates them together
into a “contrast embedding” [et, e−t], and then feeds
this whole embedding into a string decoder mod-
ule. Like S0, this model generates captions without
the need for discriminative rescoring; unlike S0, the
contrast embedding means this model can in prin-
ciple learn to produce pragmatic captions, if given
access to pragmatic training data. Since no such
training data exists, we train the compiled model on

(a) target (b) distractor

(prefer L0) 0.0 a hamburger on the ground
0.1 mike is holding the burger

(prefer S0) 0.2 the airplane is in the sky

Figure 5: Captions for the same pair with varying λ. Changing
λ alters both the naturalness and specificity of the output.

1179

(a) the sun is in the sky (d) the plane is flying in the sky
[contrastive] [contrastive]

(c) the dog is standing beside jenny (b) mike is wearing a chef’s hat
[contrastive] [non-contrastive]

Figure 4: Figure 4: Four randomly-chosen samples from our model. For each, the target image is shown on the left, the distractor
image is shown on the right, and description generated by the model is shown below. All descriptions are fluent, and generally
succeed in uniquely identifying the target scene, even when they do not perfectly describe it (e.g. (c)). These samples are broadly
representative of the model’s performance (Table 2).

Dev acc. (%) Test acc. (%)

Model All Hard All Hard

Literal (S0) 66 54 64 53
Contrastive 71 54 69 58
Reasoning (S1) 83 73 81 68

Table 2: Success rates at RG on abstract scenes. “Literal” is
a captioning baseline corresponding to the base speaker S0.
“Contrastive” is a reimplementation of the approach of Mao
et al. (2015). “Reasoning” is the model from this paper. All
differences between our model and baselines are significant
(p < 0.05, Binomial).

captions sampled from the reasoning speaker itself.

This model is evaluated in Table 3. While the
distribution of scores is quite different from that
of the base model (it improves noticeably over S0
on scenes with 2–3 differences), the overall gain is
negligible (the difference in mean scores is not sig-
nificant). The compiled model significantly under-
performs the reasoning model. These results sug-
gest either that the reasoning procedure is not easily
approximated by a shallow neural network, or that
example descriptions of randomly-sampled training
pairs (which are usually easy to discriminate) do not
provide a strong enough signal for a reflex learner to
recover pragmatic behavior.

of differences
1 2 3 4 Mean

Literal (S0) 50 66 70 78 66 (%)
Reasoning 64 86 88 94 83
Compiled (S1) 44 72 80 80 69

Table 3: Comparison of the “compiled” pragmatic speaker
model with literal and explicitly reasoning speakers. The mod-
els are evaluated on subsets of the development set, arranged by
difficulty: column headings indicate the number of differences
between the target and distractor scenes.

4.4 Final evaluation

Based on the following sections, we keep λ = 0.02
and use 100 samples to generate predictions. We
evaluate on the test set, comparing this Reason-
ing model S1 to two baselines: Literal, an image
captioning model trained normally on the abstract
scene captions (corresponding to our L0), and Con-
trastive, a model trained with a soft contrastive ob-
jective, and previously used for visual referring ex-
pression generation (Mao et al., 2015).

Results are shown in Table 2. Our reasoning
model outperforms both the literal baseline and pre-
vious work by a substantial margin, achieving an im-
provement of 17% on all pairs set and 15% on hard

1180

(a) (b) (c)

(b vs. a) mike is holding a baseball bat
(b vs. c) the snake is slithering away from mike and jenny

Figure 6: Descriptions of the same image in different contexts.
When the target scene (b) is contrasted with the left (a), the
system describes a bat; when the target scene is contrasted with
the right (c), the system describes a snake.

pairs.2 Figures 4 and 6 show various representative
descriptions from the model.

5 Conclusion

We have presented an approach for learning to gen-
erate pragmatic descriptions about general referents,
even without training data collected in a pragmatic
context. Our approach is built from a pair of sim-
ple neural base models, a listener and a speaker, and
a high-level model that reasons about their outputs
in order to produce pragmatic descriptions. In an
evaluation on a standard referring expression game,
our model’s descriptions produced correct behavior
in human listeners significantly more often than ex-
isting baselines.

It is generally true of existing derived approaches
to pragmatics that much of the system’s behavior re-
quires hand-engineering, and generally true of di-
rect approaches (and neural networks in particular)
that training is only possible when supervision is
available for the precise target task. By synthesiz-
ing these two approaches, we address both prob-
lems, obtaining pragmatic behavior without domain
knowledge and without targeted training data. We
believe that this general strategy of using reasoning
to obtain novel contextual behavior from neural de-
coding models might be more broadly applied.

2 For comparison, a model with hand-engineered pragmatic
behavior—trained using a feature representation with indicators
on only those objects that appear in the target image but not the
distractor—produces an accuracy of 78% and 69% on all and
hard development pairs respectively. In addition to perform-
ing slightly worse than our reasoning model, this alternative
approach relies on the structure of scene representations and
cannot be applied to more general pragmatics tasks.

References
Anne H. Anderson, Miles Bader, Ellen Gurman Bard,

Elizabeth Boyle, Gwyneth Doherty, Simon Garrod,
Stephen Isard, Jacqueline Kowtko, Jan McAllister, Jim
Miller, et al. 1991. The HCRC map task corpus. Lan-
guage and speech, 34(4):351–366.

Luciana Benotti and David Traum. 2009. A computa-
tional account of comparative implicatures for a spo-
ken dialogue agent. In Proceedings of the Eighth In-
ternational Conference on Computational Semantics,
pages 4–17. Proceedings of the Annual Meeting of the
Association for Computational Linguistics.

Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadar-
rama, Marcus Rohrbach, Subhashini Venugopalan,
Kate Saenko, and Trevor Darrell. 2015. Long-term
recurrent convolutional networks for visual recogni-
tion and description. In Proceedings of the Conference
on Computer Vision and Pattern Recognition, pages
2625–2634.

Nicholas FitzGerald, Yoav Artzi, and Luke Zettlemoyer.
2013. Learning distributions over logical forms for
referring expression generation. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing.

Michael C Frank, Noah D Goodman, Peter Lai, and
Joshua B Tenenbaum. 2009. Informative communi-
cation in word production and word learning. In Pro-
ceedings of the 31st annual conference of the cognitive
science society, pages 1228–1233.

Albert Gatt, Ielka Van Der Sluis, and Kees Van Deemter.
2007. Evaluating algorithms for the generation of re-
ferring expressions using a balanced corpus. In Pro-
ceedings of the Eleventh European Workshop on Nat-
ural Language Generation, pages 49–56. Proceedings
of the Annual Meeting of the Association for Compu-
tational Linguistics.

Dave Golland, Percy Liang, and Dan Klein. 2010. A
game-theoretic approach to generating spatial descrip-
tions. In Proceedings of the 2010 conference on
Empirical Methods in Natural Language Processing,
pages 410–419. Association for Computational Lin-
guistics.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
2014. Explaining and harnessing adversarial exam-
ples. arXiv preprint arXiv:1412.6572.

Herbert P Grice. 1970. Logic and conversation.
Daniel Jurafsky, Rebecca Bates, Noah Coccaro, Rachel

Martin, Marie Meteer, Klaus Ries, Elizabeth Shriberg,
Audreas Stolcke, Paul Taylor, Van Ess-Dykema, et al.
1997. Automatic detection of discourse structure for
speech recognition and understanding. In IEEE Work-
shop on Automatic Speech Recognition and Under-
standing, pages 88–95. IEEE.

1181

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and
Tamara L Berg. 2014. Referitgame: Referring to ob-
jects in photographs of natural scenes. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 787–798.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana
Camburu, Alan Yuille, and Kevin Murphy. 2015.
Generation and comprehension of unambiguous object
descriptions. arXiv preprint arXiv:1511.02283.

Will Monroe and Christopher Potts. 2015. Learning in
the Rational Speech Acts model. In Proceedings of
20th Amsterdam Colloquium, Amsterdam, December.
ILLC.

Luis Gilberto Mateos Ortiz, Clemens Wolff, and Mirella
Lapata. 2015. Learning to interpret and describe ab-
stract scenes. In Proceedings of the Human Language
Technology Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 1505–1515.

Noah A. Smith and Jason Eisner. 2005. Contrastive esti-
mation: Training log-linear models on unlabeled data.
In Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics.

Nathaniel J Smith, Noah Goodman, and Michael Frank.
2013. Learning and using language via recursive prag-
matic reasoning about other agents. In Advances in
Neural Information Processing Systems, pages 3039–
3047.

Richard Socher, Andrej Karpathy, Quoc V Le, Christo-
pher D Manning, and Andrew Y Ng. 2014. Grounded
compositional semantics for finding and describing
images with sentences. Transactions of the Associa-
tion for Computational Linguistics, 2:207–218.

Adam Vogel, Max Bodoia, Christopher Potts, and Daniel
Jurafsky. 2013. Emergence of Gricean maxims from
multi-agent decision theory. In Proceedings of the Hu-
man Language Technology Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 1072–1081.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville,
Ruslan Salakhutdinov, Richard Zemel, and Yoshua
Bengio. 2015. Show, attend and tell: neural im-
age caption generation with visual attention. arXiv
preprint arXiv:1502.03044.

C Zitnick and Devi Parikh. 2013. Bringing semantics
into focus using visual abstraction. In Proceedings
of the Conference on Computer Vision and Pattern
Recognition, pages 3009–3016.

C Lawrence Zitnick, Ramakrishna Vedantam, and Devi
Parikh. 2014. Adopting abstract images for semantic
scene understanding.

1182

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1183–1191,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Generating Topical Poetry

Marjan Ghazvininejad†, Xing Shi†, Yejin Choi‡, and Kevin Knight†
†Information Sciences Institute & Computer Science Department

University of Southern California
{ghazvini,xingshi,knight}@isi.edu

‡Computer Science & Engineering, University of Washington
yejin@cs.washington.edu

Abstract

We describe Hafez, a program that gener-
ates any number of distinct poems on a user-
supplied topic. Poems obey rhythmic and
rhyme constraints. We describe the poetry-
generation algorithm, give experimental data
concerning its parameters, and show its gener-
ality with respect to language and poetic form.

1 Introduction
Automatic algorithms are starting to generate in-
teresting, creative text, as evidenced by recent dis-
tinguishability tests that ask whether a given story,
poem, or song was written by a human or a com-
puter.1 In this paper, we describe Hafez, a program
that generates any number of distinct poems on a
user-supplied topic. Figure 1 shows an overview of
the system, which sets out these tasks:
• Vocabulary. We select a specific, large vocabu-

lary of words for use in our generator, and we
compute stress patterns for each word.
• Related words. Given a user-supplied topic, we

compute a large set of related words.
• Rhyme words. From the set of related words,

we select pairs of rhyming words to end lines.
• Finite-state acceptor (FSA). We build an FSA

with a path for every conceivable sequence
of vocabulary words that obeys formal rhythm
constraints, with chosen rhyme words in place.
• Path extraction. We select a fluent path through

the FSA, using a recurrent neural network
(RNN) for scoring.

1For example, in the 2016 Dartmouth test bit.ly/20WGLF3,
no automatic sonnet-writing system passed indistinguishability,
though ours was selected as the best of the submitted systems.

Figure 1: Overview of Hafez converting a user-supplied topic

word (wedding) into a four-line iambic pentameter stanza.

1183

Sections 3-7 describe how we address these tasks.
After this, we show results of Hafez generating 14-
line classical sonnets with rhyme scheme ABAB
CDCD EFEF GG, written in iambic pentameter (ten
syllables per line with alternating stress: “da-DUM
da-DUM da-DUM . . . ”). We then show experiments
on Hafez’s parameters and conclude by showing the
generality of the approach with respect to language
and poetic form.

2 Prior Work

Automated poem generation has been a popular but
challenging research topic (Manurung et al., 2000;
Gervas, 2001; Diaz-Agudo et al., 2002; Manurung,
2003; Wong and Chun, 2008; Jiang and Zhou, 2008;
Netzer et al., 2009). Recent work attempts to solve
this problem by applying grammatical and seman-
tic templates (Oliveira, 2009; Oliveira, 2012), or
by modeling the task as statistical machine trans-
lation, in which each line is a “translation” of the
previous line (Zhou et al., 2009; He et al., 2012).
Yan et al. (2013) proposes a method based on sum-
marization techniques for poem generation, retriev-
ing candidate sentences from a large corpus of po-
ems based on a user’s query and clustering the con-
stituent terms, summarizing each cluster into a line
of a poem. Greene et al. (2010) use unsupervised
learning to estimate the stress patterns of words in
a poetry corpus, then use these in a finite-state net-
work to generate short English love poems.

Several deep learning methods have recently been
proposed for generating poems. Zhang and Lapata
(2014) use an RNN model to generate 4-line Chi-
nese poems. They force the decoder to rhyme the
second and fourth lines, trusting the RNN to control
rhythm. Yi et al. (2016) also propose an attention-
based bidirectional RNN model for generating 4-
line Chinese poems. The only such work which tries
to generate longer poems is from Wang et al. (2016),
who use an attention-based LSTM model for gener-
ation iambic poems. They train on a small dataset
and do not use an explicit system for constraining
rhythm and rhyme in the poem.

Novel contributions of our work are:
• We combine finite-state machinery with deep

learning, guaranteeing formal correctness of
our poems, while gaining coherence of long-

distance RNNs.
• By using words related to the user’s topic as

rhyme words, we design a system that can gen-
erate poems with topical coherence. This al-
lows us to generate longer topical poems.
• We extend our method to other poetry formats

and languages.

3 Vocabulary

To generate a line of iambic pentameter poetry, we
arrange words to form a sequence of ten syllables
alternating between stressed and unstressed. For ex-
ample:

010 1 0 10 101
Attending on his golden pilgramage

Following Ghazvininejad and Knight (2015), we
refer to unstressed syllables with 0 and stressed syl-
lables with 1, so that the form of a Shakespearean
sonnet is ((01)5)14. To get stress patterns for in-
dividual words, we use CMU pronunciation dictio-
nary,2 collapsing primary and secondary stresses.
For example:

CAFETERIA K AE2 F AH0 T IH1 R IY0 AH0

becomes

CAFETERIA 10100

The first two columns of Table 1 show other ex-
amples. From the 125,074 CMU dictionary word
types, we can actually only use words whose stress
pattern matches the iambic pattern (alternating 1s
and 0s). However, we make an exception for words
that end in ...100 (such as spatula). To mimic how
human poets employ such words, we convert all
“...100” patterns to “...101”. This leaves us with a
106,019 word types.

Words with multiple syllable-stress patterns
present a challenge. For example, our program
may use the word record in a “...10...” context,
but if it is a verb in that context, a human reader
will pronounce it as “01”, breaking the intended
rhythm. To guarantee that our poems scan properly,
we eject all ambiguous words from our vocabulary.
This problem is especially acute with monosyllabic
words, as most have a stress that depends on context.
Greene et al. (2010) apply the EM algorithm to align

2http://www.speech.cs.cmu.edu/cgi-bin/cmudict

1184

word stress pattern strict rhyme class slant rhyme class (coarse version)
needing 10 IY1 D IH0 NG IY1 * IH0 NG
ordinary 1010 EH1 R IY0 EH1 * IY0
obligate 101 EY1 T last syllable stressed, no slant rhyme

Table 1: Sample word analyses.

human-written sonnets with assumed meter, extract-
ing P(0|word) and P(1|word) probabilities. Using
their method, we eject all monosyllabic words ex-
cept those with P(0|word)> 0.9 or P(1|word)> 0.9.
A consequence is that our poetry generator avoids
the words to, it, in, and is, which actually forces
the system into novel territory. This yields 16,139
monosyllabic and 87,282 multisyllabic words.

Because our fluency module (Section 7) is re-
stricted to 20,000 word types, we further pare down
our vocabulary by removing words that are not
found in the 20k-most-frequent list derived from the
song lyrics corpus we use for fluency. After this step,
our final vocabulary contains 14,368 words (4833
monosyllabic and 9535 multisyllabic).

4 Topically Related Words and Phrases

After we receive a user-supplied topic, the first step
in our poem generation algorithm is to build a scored
list of 1000 words/phrases that are related to that
topic. For example:
• User-supplied input topic: colonel
• Output: colonel (1.00), lieutenant colonel

(0.77), brigadier general (0.73), commander
(0.67) ... army (0.55) ...

This problem is different from finding synonyms
or hypernyms in WordNet (Miller, 1995). For exam-
ple, while Banerjee and Pedersen (2003) use Word-
Net to assign a 1.0 similarity score between car and
automobile, they only give a 0.3 similarity between
car and gasoline.

A second method is to use pointwise mutual in-
formation (PMI). Let t be the topic/phrase, and let
w be a candidate related word. We collect a set of
sentences S that contain t, and sort candidates by

Proportion of sentences in S containing w
P(w) in general text

Table 2 shows that PMI has a tendency to assign a
high score to low frequency words (Bouma, 2009;
Role and Nadif, 2011; Damani, 2013).

A third method is word2vec (Mikolov et al.,
2013a), which provides distributed word represen-
tations. We train a continuous-bag-of-words model3

with window size 8 and 40 and word vector dimen-
sion 200. We score candidate related words/phrases
with cosine to topic-word vector. We find that a
larger window size works best (Pennington et al.,
2014; Levy and Goldberg, 2014).

Table 2 shows examples. The training corpus for
word2vec has a crucial effect on the quality of the re-
lated words. We train word2vec models on the En-
glish Gigaword corpus,4 a song lyrics corpus, and
the first billion characters from Wikipedia.5 The Gi-
gaword corpus produces related words that are too
newsy, while the song lyrics corpus does not cover
enough topics. Hence, we train on Wikipedia. To
obtain related phrases as well as words, we apply the
method of Mikolov et al. (2013b) to the Wikipedia
corpus, which replaces collocations like Los Ange-
les with single tokens like Los Angeles. Word2vec
then builds vectors for phrases as well as words.
When the user supplies a multi-word topic, we use
its phrase vector if available. Otherwise, we cre-
ate the vector topic by element wise addition of its
words’ vectors.

5 Choosing Rhyme Words

We next fill in the right-hand edge of our poem by
selecting pairs of rhyming words/phrases and as-
signing them to lines. In a Shakespearean sonnet
with rhyme scheme ABAB CDCD EFEF GG, there
are seven pairs of rhyme words to decide on.

5.1 Strict Rhyme

The strict definition of English rhyme is that the
sounds of two words must match from the last
stressed vowel onwards. In a masculine rhyme,

3https://code.google.com/archive/p/word2vec/
4https://catalog.ldc.upenn.edu/LDC2011T07
5http://mattmahoney.net/dc/enwik9.zip

1185

Method Window Corpus Phrases? Related words
PMI n/a Gigaword no croquet, Romai, Carisbo, NTTF, showcourts ...
CBOW 8 Gigaword no squash, badminton, golf, soccer, racquetball ...
CBOW 40 Gigaword no singles, badminton, squash, ATP, WTA ...
CBOW 40 Song Lyrics no high-heel, Reebok, steel-toed, basketball, Polos ...
CBOW 40 Wikipedia no volleyball, racquet, Wimbledon, athletics, doubles ...
CBOW 40 Wikipedia yes singles titles, grass courts, tennis club, hardcourt ...

Table 2: Different methods for extracting words related to the topic tennis.

the last syllable is stressed; in a feminine rhyme,
the penultimate syllable is stressed. We collect
phoneme and stress information from the CMU pro-
nunciation dictionary. We pre-compute strict rhyme
classes for words (see Table 1) and hash the vocab-
ulary into those classes.

5.2 Slant Rhyme

In practice, human poets do not always use strict
rhymes. To give ourselves more flexibility in choos-
ing rhyme pairs, we allow for slant (or half) rhymes.
By inspecting human rhyming data, we develop this
operational definition of slant rhyme:

1. Let s1 and s2 be two potentially-rhyming
phoneme sequences.

2. Replace ER with UH R in both sequences.
3. Let v1 and v2 be the last stressed vowels in s1

and s2.
4. Let w1 and w2 be last vowels in s1 and s2.
5. Let s1 = a1 v1 x1 w1 c1. Likewise, let s2 = a2

v2 x2 w2 c2.
6. Output NO under any of these circumstances:

(a) v1 6= v2, (b) w1 6= w2, (c) c1 6= c2, (d) a1
6= NULL and a2 6= NULL and a1 = a2.

7. If x1 and x2 are single phonemes:
(a) If x1 ∼ x2, then output YES.6

(b) Otherwise, output NO.
8. If x1 and x2 contain different numbers of vow-

els, output NO.
9. Let p1 and q1 be the first and last phonemes of

x1. Let p2 and q2 be the same for x2.
10. If (p1 = p2) and (q1 ∼ q2), output YES.
11. If (p1 ∼ p2) and (q1 = q1), output YES.
12. Otherwise, output NO.

6x ∼ y if phonemes x and y are similar. Two phonemes are
similar if their pairwise score according to (Hirjee and Brown,
2010) is greater than -0.6. This includes 98 pairs, such as L/R,
S/SH, and OY/UH.

Words whose last syllable is stressed do not partici-
pate in slant rhymes.

Example slant rhymes taken from our gener-
ated poems include Viking/fighting, snoopy/spooky,
baby/crazy and comic/ironic. We pre-compute a
coarse version of slant rhyme classes (Table 1) with
the pattern “vi * wi ci”. If two words hash to the
same coarse class, then we subsequently accept or
reject depending on the similarity of the intermedi-
ate phonemes.

5.3 Non-Topical Rhyming Words

For rare topics, we may not have enough related
words to locate seven rhyming pairs. For exam-
ple, we generate 1000 related words for the topic
Viking, but only 32 of them are found in our 14,368-
word vocabulary. To give a chance for all topical
words/phrases to be used as rhyme words, for each
strict rhyme class, we add the most common word in
our song lyric corpus to the list of related words. In
addition, we add words from popular rhyme pairs7

(like do/you and go/know) to the list of related words
with a low topic similarity score.

5.4 Rhyme word selection

We first hash all related words/phrases into rhyme
classes. Each collision generates a candidate rhyme
pair (s1, s2), which we score with the maximum
of cosine(s1, topic) and cosine(s2, topic). So that
we can generate many different sonnets on the same
topic, we choose rhyme pairs randomly with prob-
ability proportional to their score. After choosing a
pair (s1, s2), we remove it, along with any other can-
didate pair that contains s1 or s2. Because a poem’s
beginning and ending are more important, we assign
the first rhyme pair to the last two lines of the sonnet,

7http://slate.me/OhTKCA

1186

Figure 2: An FSA compactly encoding all word sequences that obey formal sonnet constraints, and dictating the right-hand edge

of the poem via rhyming, topical words delight, chance, ... and joy.

then assign other pairs from beginning of the sonnet
towards the end.

6 Constructing FSA of Possible Poems

After choosing rhyme words, we create a large
finite-state acceptor (FSA) that compactly encodes
all word sequences that use these rhyme words and
also obey formal sonnet constraints:
• Each sonnet contains 14 lines.
• Lines are in iambic pentameter, with stress pat-

tern (01)5. Following poetic convention, we
also use (01)50, allowing feminine rhyming.
• Each line ends with the chosen rhyme

word/phrase for that line.
• Each line is punctuated with comma or period,

except for the 4th, 8th, 12th, and 14th lines,
which are punctuated with period.

To implement these constraints, we create FSA
states that record line number and syllable count.
For example, FSA state L2-S3 (Figure 2) signifies
“I am in line 2, and I have seen 3 syllables so far”.
From each state, we create arcs for each feasible
word in the vocabulary. For example, we can move
from state L1-S1 to state L1-S3 by consuming any
word with stress pattern 10 (such as table or active).
When moving between lines (e.g., from L1-S10 to
L2-S1), we employ arcs labeled with punctuation
marks.

To fix the rhyme words at the end of each line,
we delete all arcs pointing to the line-final state, ex-
cept for the arc labeled with the chosen rhyme word.
For speed, we pre-compute the entire FSA; once we
receive the topic and choose rhyme words, we only
need to carry out the deletion step.

In the resulting FSA, each path is formally a son-
net. However, most of the paths through the FSA are
meaningless. One FSA generated from the topic nat-
ural language contains 10229 paths, including this
randomly-selected one:

Of pocket solace ammunition grammar.
An tile pretenders spreading logical.
An stories Jackie gallon posing banner.
An corpses Kato biological ...

Hence, we need a way to search and rank this large
space.

7 Path extraction through FSA with RNN

To locate fluent paths, we need a scoring function
and a search procedure. For example, we can build a
n-gram word language model (LM)—itself a large
weighted FSA. Then we can take a weighted in-
tersection of our two FSAs and return the highest-
scoring path. While this can be done efficiently with
dynamic programming, we find that n-gram models
have a limited attention span, yielding poor poetry.

Instead, we use an RNN language model (LM).
We collect 94,882 English songs (32m word tokens)
as our training corpus,8 and train9 a two-layer recur-
rent network with long short-term memory (LSTM)
units (Hochreiter and Schmidhuber, 1997).10

When decoding with the LM, we employ a beam

8http://www.mldb.org/
9We use the toolkit: https://github.com/isi-nlp/Zoph RNN

10We use a minibatch of 128, a hidden state size of 1000, and
a dropout rate of 0.2. The output vocabulary size is 20,000. The
learning rate is initially set as 0.7 and starts to decay by 0.83
once the perplexity on a development set starts to increase. All
parameters are initialized within range [−0.08,+0.08], and the
gradients are re-scaled when the global norm is larger than 5.

1187

search that is further guided by the FSA. Each beam
stateCt,i is a tuple of (h, s, word, score), where h is
the hidden states of LSTM at step t in ith state, and
s is the FSA state at step t in ith state. The model
generates one word at each step.

At the beginning, h0,0 is the initial hidden state
of LSTM, s0,0 is the start state of FSA, word0,0 =
<START> and score0,0 = 0. To expand a beam
state Ct,i, we first feed ht,i and word into the LM
and get an updated hidden state hnext. The LM
also returns a probability distribution P (V) over
the entire vocabulary V for next word. Then, for
each succeeding state ssuc of st,i in the FSA and
the word wnext over each edge from st,i to ssuc,
we form a new state (hnext, ssuc, wnext, scoret,i +
log(P (wnext))) and push it into next beam.

Because we fix the rhyme word at the end of
each line, when we expand the beam states immedi-
ately before the rhyme word, the FSA states in those
beam states have only one succeeding state—LN-
S10, where N = [1, 14], and only one succeeding
word, the fixed rhyme word. For our beam size b
= 50, the chance is quite low that in those b words
there exists any suitable word to precede that rhyme
word. We solve this by generating the whole sonnet
in reverse, starting from the final rhyme word. Thus,
when we expand the state L1-S8, we can choose
from almost every word in vocabulary instead of just
b possible words. The price to pay is that at the
beginning of each line, we need to hope in those b
words there exists some that are suitable to succeed
comma or period.

Because we train on song lyrics, our LM tends to
generate repeating words, like never ever ever ever
ever. To solve this problem, we apply a penalty to
those words that already generated in previous steps
during the beam search.

To create a poem that fits well with the pre-
determined rhyme words at the end of each line, the
LM model tends to choose “safe” words that are fre-
quent and suitable for any topic, such as pronouns,
adverbs, and articles. During decoding, we apply a
reward on all topically related words (generated in
Section 4) in the non-rhyming portion of the poem.

Finally, to further encourage the system to follow
the topic, we train an encoder-decoder sequence-to-
sequence model (Sutskever et al., 2014). For train-
ing, we select song lyric rhyme words and assemble

Bipolar Disorder

Existence enters your entire nation.
A twisted mind reveals becoming manic,
An endless modern ending medication,
Another rotten soul becomes dynamic.

Or under pressure on genetic tests.
Surrounded by controlling my depression,
And only human torture never rests,
Or maybe you expect an easy lesson.

Or something from the cancer heart disease,
And I consider you a friend of mine.
Without a little sign of judgement please,
Deliver me across the borderline.

An altered state of manic episodes,
A journey through the long and winding roads.

Figure 3: Sample sonnet generated from the topic phrase bipo-

lar disorder.

them in reverse order (encoder side), and we pair this
with the entire reversed lyric (decoder side). At gen-
eration time, we put all the selected rhyme words on
the source side, and let the model to generate the
poem conditioned on those rhyme words. In this
way, when the model tries to generate the last line
of the poem, it already knows all fourteen rhyme
words, thus possessing better knowledge of the re-
quested topic. We refer to generating poems using
the RNN LM as the “generation model” and to this
model as the “translation model”.

8 Results and Analysis

Sample outputs produced by our best system are
shown in Figures 3 and 4. We find that they gen-
erally stay on topic and are fairly creative. If we re-
quest a poem on the topic Vietnam, we may see the
phrase Honky Tonkin Resolution; a different topic
leads the system to rhyme Dirty Harry with Bloody
Mary. In this section, we present experiments we
used to select among different versions of our poem
generator.

The first experiment tests the effect of encourag-
ing topical words in the body of the poem, via a
direct per-word bonus. For 40 different topics, we
generate 2 sonnets with and without encouragement,
using the same set of rhyme words. Then we ask
23 human judges to choose the better sonnet. Each
judge compares sonnets for 10 different topics. Ta-
ble 3 shows that using topical words increases the

1188

Love at First Sight

An early morning on a rainy night,
Relax and make the other people happy,
Or maybe get a little out of sight,
And wander down the streets of Cincinnati.

Girlfriend

Another party started getting heavy.
And never had a little bit of Bobby,
Or something going by the name of Eddie,
And got a finger on the trigger sloppy.

Noodles

The people wanna drink spaghetti alla,
And maybe eat a lot of other crackers,
Or sit around and talk about the salsa,
A little bit of nothing really matters.

Civil War

Creating new entire revolution,
An endless nation on eternal war,
United as a peaceful resolution,
Or not exist together any more.

Figure 4: Sample stanzas generated from different topic

phrases.

Preference Encourages Does Not Cannot
Encourage Decide

Sonnets 54% 18% 28%
Table 3: Users prefer the system that encourages the use of

related words in the body (non-rhyme) portion of the poem. 40

poems are tested with 23 judges.

quality of the sonnets.
Next, we compare the translation model with gen-

eration model. For each of 40 topics, we gener-
ate one poem with generation model and one poem
with translation model, using the same set of rhyme
words. We ask 25 human judges to chose the bet-
ter poem. Each judge compares sonnets for 10 dif-
ferent topics. This experiment is run separately for
sonnets and stanzas. Table 4 shows how the trans-
lation model generates better poems, and Figure 5
compares two stanzas.

We check for plagiarism, as it is common for
optimal-searching RNNs to repeat large sections of
the training data. We hypothesize that strong condi-
tions on rhyme, meter, repetition, and ambiguously-
stressed words will all mitigate against plagiarism.

Gen Another tiny thousand ashes scattered.
And never hardly ever really own,
Or many others have already gathered,
The only human being left alone.

Trans Being buried under ashes scattered,
Many faces we forgotten own,
About a hundred thousand soldiers gathered,
And I remember standing all alone.

Figure 5: Stanzas generated with and without a encoder-

decoder translation model for topic death.

Preference Generation Translation Cannot
Model Model Decide

Stanzas 26% 43% 31%
Sonnets 21% 57% 22%

Table 4: Users prefer poems created with the encoder-decoder

translation model over those that use only the RNN language

model in generation mode. 40 poems are tested with 25 judges.

We find that on average, each sonnet copies only
1.2 5-grams from the training data. If we relax
the repeated-word penalty and the iambic meter,
this number increases to 7.9 and 10.6 copied 5-
grams, respectively. Considering the lack of copy-
ing, we find the RNN-generated grammar to be
quite good. The most serious—and surprisingly
common—grammatical error is the wrong use of a
and an, which we fix in a post-processing step.

9 Other Languages and Formats

To show the generality of our approach, we mod-
ify our system to generate Spanish-language poetry
from a Spanish topic. We use these resources:
• A song lyric corpus for training our RNN.

We download 97,775 Spanish song lyrics from
LyricWikia,11 which amounts to 20m word to-
kens and 219k word types.
• A Spanish Wikipedia dump12 consisting of

885m word tokens, on which we run word2vec
to find words and phrases related to the topic.

Our vocabulary consists of the 20k most frequent
lyric words. For each word, we compute its syllable-
stress pattern and its rhyme class (see Figure 6). Be-
cause Spanish writing is quite phonetic, we can re-
trieve this from the letter strings of the vocabulary.

11http://lyrics.wikia.com/wiki/Category:Language/Spanish
12https://dumps.wikimedia.org/eswiki/20160305/eswiki-

20160305-pages-meta-current.xml.bz2

1189

word stress rhyme v- -v
consultado 0010 -ado yes
aduciendo 0010 -endo yes yes
régimen 100 -egimen
hospital 001 -al yes

Figure 6: Sample word analyses needed to construct Spanish

Hafez. v- and -v indicate whether the word starts and/or ends

with a vowel sound.

For any given vocabulary word:13

1. We remove silent h, and convert y into i.
2. We count the number of syllables by isolat-

ing vowel groups. In such groups, weak vow-
els (i, u) attached to strong vowels (a, e, o) do
not form separate syllables, unless they are ac-
cented (dı́-as versus dios). Strong clusters are
broken into separate syllables (eg, ca-er).

3. We determine which vowel (and therefore syl-
lable) is stressed. If any vowel is accented, it is
stressed. If the word is accent-free, then the
second-to-last syllable is stressed, unless the
word ends in a consonant other than n or s, in
which case the last syllable is stressed.

4. We form the word’s rhyme class by breaking
off a letter suffix starting at the last stressed
vowel (as in English). Weak vowels do not par-
ticipate (e.g., tienda→ -enda, not -ienda). We
remove h from the rhyme, so búho rhymes with
continúo. Because rhyming is easier in Spanish
than English, we do not need slant rhyme.

Most Spanish poetic formats enforce some num-
ber of syllables per line, without meter. However,
there are two caveats when counting syllables:

1. Sinalefa merges vowels across word bound-
aries. Thus, la obra is counted as two syllables
instead of three, and va a hacer is counted as
two syllables instead of four. A line may there-
fore have more words than syllables.

2. For the last word of a line (only), we count up
to its last stressed syllable, then add one. This
means that even though iambic meter is not em-
ployed, we still need stress patterns to correctly
count syllables.

We implement these constraints in the FSA
framework, now with separate states for “I have seen
M syllables, and the last word ended in a vowel
sound” and “I have seen M syllables, and the last

13http://community.dur.ac.uk/m.p.thompson/verse.htm

Mariposa

Quieres saber dónde está el escorpión,
Ni ayer ni antes vos sos corona dorada.
Ya os ves más tal cual tortuga pintada,
A él nos gusta andar con cola marrón.

Ella es quién son las alas de algún gorrión.
Si al fin podés ver tu imagen manchada,
O hoy vas bajo un cielo azul plateada,
Por qué estás tan lejos del aguijón.

No hay luz que al sol se enreda en tus palmera.
Ay por qué eres vı́bora venenosa,
Sin querer igual a un enredadera.

Y si aún sueñas con ser mariposa,
En vez de abrir los ojos y espera,
Sabes muy bien que el amor no es gran cosa.

Figure 7: Sample Spanish poem generated in classical soneta

form, on the topic mariposa (butterfly).

word ended in a consonant sound.” Technically
speaking, the FSA includes single-state cycles for
the Spanish word a, due to sinalefa. Line-ending
states can only be reached by words that have their
syllable count adjusted as in point 2 above.

Figure 7 shows a sample Spanish output. The for-
mat is the classical Spanish soneta, which consists
of 14 eleven-syllable lines under the rhyme scheme
ABBA ABBA CDC DCD. This scheme requires us
to choose up to four words with the same rhyme.

Overall, we also find Spanish outputs to be flu-
ent, fairly creative, and on topic. Grammatical prob-
lems are a bit more common than in our English
generator—for example, adjacent words sometimes
disagree in number or gender. The RNN generaliza-
tions that permit these errors no doubt also permit
creative phrasings.

10 Conclusion

We have described Hafez, a poetry generation sys-
tem that combines hard format constraints with a
deep-learning recurrent network. The system uses
special techniques, such as rhyme-word choice and
encoder-decoder modeling, to keep the poem on
topic. We hope that future work will provide more
discourse structure and function to automatic poetry,
while maintaining the syntax, semantics, and cre-
ative phrasing we observe.

1190

Acknowledgments

We would like to thank the anonymous reviewers
for their helpful comments. This work was sup-
ported by DARPA (W911NF-15-1-0543) and NSF
(IIS-1524371).

References
Satanjeev Banerjee and Ted Pedersen. 2003. Extended

gloss overlaps as a measure of semantic relatedness.
In Proc. IJCAI.

Gerlof Bouma. 2009. Normalized (pointwise) mutual in-
formation in collocation extraction. In Proc. Biennial
GSCL Conference.

Om P. Damani. 2013. Improving pointwise mutual
information (PMI) by incorporating significant co-
occurrence. In Proc. ACL.

Belen Diaz-Agudo, Pablo Gervas, and Pedro Gonzalez-
Calero. 2002. Poetry generation in COLIBRI. In
Proc. ECCBR.

Pablo Gervas. 2001. An expert system for the composi-
tion of formal Spanish poetry. Knowledge-Based Sys-
tems, 14(3).

Marjan Ghazvininejad and Kevin Knight. 2015. How to
memorize a random 60-bit string. In Proc. NAACL.

Erica Greene, Tugba Bodrumlu, and Kevin Knight. 2010.
Automatic analysis of rhythmic poetry with applica-
tions to generation and translation. In Proc. EMNLP.

Jing He, Ming Zhou, and Long Jiang. 2012. Generat-
ing Chinese classical poems with statistical machine
translation models. In Proc. AAAI.

Hussein Hirjee and Daniel Brown. 2010. Using auto-
mated rhyme detection to characterize rhyming style
in rap music. In Empirical Musicology Review.

Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8).

Long Jiang and Ming Zhou. 2008. Generating Chinese
couplets using a statistical MT approach. In Proc.
COLING.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proc. ACL.

Hisar Manurung, Graeme Ritchie, and Henry Thompson.
2000. Towards a computational model of poetry gen-
eration. In Proc. AISB Symposium on Creative and
Cultural Aspects and Applications of AI and Cognitive
Science.

Hisar Manurung. 2003. An evolutionary algorithm ap-
proach to poetry generation. Ph.D. thesis, University
of Edinburgh.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. In Proc. NIPS.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeff Dean. 2013b. Distributed representations of
words and phrases and their compositionality. In Proc.
NIPS.

George Miller. 1995. WordNet: A lexical database for
English. Communications of the ACM.

Yael Netzer, David Gabay, Yoav Goldberg, and Michael
Elhadad. 2009. Gaiku: Generating haiku with word
associations norms. In Proc. NAACL Workshop on
Computational Approaches to Linguistic Creativity.

Hugo Oliveira. 2009. Automatic generation of poetry:
an overview. In Proc. 1st Seminar of Art, Music, Cre-
ativity and Artificial Intelligence.

Hugo Oliveira. 2012. PoeTryMe: a versatile platform for
poetry generation. Computational Creativity, Concept
Invention, and General Intelligence, 1.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proc. EMNLP.

Franois Role and Mohamed Nadif. 2011. Handling
the impact of low frequency events on co-occurrence
based measures of word similarity—a case study of
pointwise mutual information. In Knowledge Discov-
ery and Information Retrieval.

I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence
to sequence learning with neural networks. In Proc.
NIPS.

Qixin Wang, Tianyi Luo, Dong Wang, and Chao Xing.
2016. Chinese song iambics generation with neural
attention-based model. arXiv:1604.06274.

Martin Wong and Andy Chun. 2008. Automatic haiku
generation using VSM. In Proc. ACACOS.

Rui Yan, Han Jiang, Mirella Lapata, Shou-De Lin, Xue-
qiang Lv, and Xiaoming Li. 2013. I, Poet: Automatic
Chinese poetry composition through a generative sum-
marization framework under constrained optimization.
In Proc. IJCAI.

Xiaoyuan Yi, Ruoyu Li, and Maosong Sun. 2016. Gen-
erating chinese classical poems with RNN encoder-
decoder. arXiv:1604.01537.

Xingxing Zhang and Mirella Lapata. 2014. Chinese
poetry generation with recurrent neural networks. In
Proc. EMNLP.

Ming Zhou, Long Jiang, and Jing He. 2009. Generat-
ing Chinese couplets and quatrain using a statistical
approach. In Proc. Pacific Asia Conference on Lan-
guage, Information and Computation.

1191

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1192–1202,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Deep Reinforcement Learning for Dialogue Generation

Jiwei Li1, Will Monroe1, Alan Ritter2, Michel Galley3, Jianfeng Gao3 and Dan Jurafsky1

1Stanford University, Stanford, CA, USA
2Ohio State University, OH, USA

3Microsoft Research, Redmond, WA, USA
{jiweil,wmonroe4,jurafsky}@stanford.edu, ritter.1492@osu.edu

{mgalley,jfgao}@microsoft.com

Abstract

Recent neural models of dialogue generation
offer great promise for generating responses
for conversational agents, but tend to be short-
sighted, predicting utterances one at a time
while ignoring their influence on future out-
comes. Modeling the future direction of a di-
alogue is crucial to generating coherent, inter-
esting dialogues, a need which led traditional
NLP models of dialogue to draw on reinforce-
ment learning. In this paper, we show how to
integrate these goals, applying deep reinforce-
ment learning to model future reward in chat-
bot dialogue. The model simulates dialogues
between two virtual agents, using policy gradi-
ent methods to reward sequences that display
three useful conversational properties: infor-
mativity, coherence, and ease of answering (re-
lated to forward-looking function). We evalu-
ate our model on diversity, length as well as
with human judges, showing that the proposed
algorithm generates more interactive responses
and manages to foster a more sustained conver-
sation in dialogue simulation. This work marks
a first step towards learning a neural conversa-
tional model based on the long-term success of
dialogues.

1 Introduction

Neural response generation (Sordoni et al., 2015;
Shang et al., 2015; Vinyals and Le, 2015; Li et al.,
2016a; Wen et al., 2015; Yao et al., 2015; Luan
et al., 2016; Xu et al., 2016; Wen et al., 2016; Li
et al., 2016b; Su et al., 2016) is of growing inter-
est. The LSTM sequence-to-sequence (SEQ2SEQ)
model (Sutskever et al., 2014) is one type of neural
generation model that maximizes the probability of
generating a response given the previous dialogue
turn. This approach enables the incorporation of rich

context when mapping between consecutive dialogue
turns (Sordoni et al., 2015) in a way not possible, for
example, with MT-based dialogue models (Ritter et
al., 2011).

Despite the success of SEQ2SEQ models in di-
alogue generation, two problems emerge: First,
SEQ2SEQ models are trained by predicting the next
dialogue turn in a given conversational context using
the maximum-likelihood estimation (MLE) objective
function. However, it is not clear how well MLE
approximates the real-world goal of chatbot develop-
ment: teaching a machine to converse with humans,
while providing interesting, diverse, and informative
feedback that keeps users engaged. One concrete
example is that SEQ2SEQ models tend to generate
highly generic responses such as “I don’t know” re-
gardless of the input (Sordoni et al., 2015; Serban
et al., 2016; Li et al., 2016a). This can be ascribed
to the high frequency of generic responses found in
the training set and their compatibility with a diverse
range of conversational contexts. Yet “I don’t know”
is apparently not a good action to take, since it closes
the conversation down.

Another common problem, illustrated in the two
sample conversations on the left of Table 1, is that
the system becomes stuck in an infinite loop of repet-
itive responses. This is due to MLE-based SEQ2SEQ

models’ inability to account for repetition. In exam-
ple 2 (bottom left), the dialogue falls into an infinite
loop after three turns, with both agents generating
dull, generic utterances like i don’t know what you
are talking about and you don’t know what you are
saying. Looking at the entire conversation, utterance
(4) turns out to be a bad action to take because it
offers no way of continuing the conversation.1

1A similar rule is often suggested in improvisational comedy:
https://en.wikipedia.org/wiki/Yes,_and...

1192

Baseline mutual information model (Li et al. 2015) Proposed reinforcement learning model
A: Where are you going? (1) A: Where are you going? (1)
B: I’m going to the restroom. (2) B: I’m going to the police station. (2)
A: See you later. (3) A: I’ll come with you. (3)
B: See you later. (4) B: No, no, no, no, you’re not going anywhere. (4)
A: See you later. (5) A: Why? (5)
B: See you later. (6) B: I need you to stay here. (6)
... A: I don’t know what you are talking about. (7)
... ...
A: how old are you? (1) A: How old are you? (1)
B: I’m 16. (2) B: I’m 16. Why are you asking? (2)
A: 16? (3) A I thought you were 12. (3)
B: I don’t know what you are talking about. (4) B: What made you think so? (4)
A: You don’t know what you are saying. (5) A: I don’t know what you are talking about. (5)
B: I don’t know what you are talking about . (6) B: You don’t know what you are saying. (6)
A: You don’t know what you are saying. (7) ...
... ...

Table 1: Left Column: Dialogue simulation between two agents using a 4-layer LSTM encoder-decoder
trained on the OpenSubtitles dataset. The first turn (index 1) is input by the authors. Then the two agents
take turns conversing, taking as input the other agent’s prior generated turn. The output is generated using
the mutual information model (Li et al., 2015) in which an N-best list is first obtained using beam search
based on p(t|s) and reranked by linearly combining the backward probability p(s|t), where t and s respectively
denote targets and sources. Right Column: Dialogue simulated using the proposed reinforcement learning
model. The new model has more forward-looking utterances (questions like “Why are you asking?” and
offers like “I’ll come with you”) and lasts longer before it falls into conversational black holes.

These challenges suggest we need a conversa-
tion framework that has the ability to (1) integrate
developer-defined rewards that better mimic the true
goal of chatbot development and (2) model the long-
term influence of a generated response in an ongoing
dialogue.

To achieve these goals, we draw on the insights of
reinforcement learning, which have been widely ap-
plied in MDP and POMDP dialogue systems (see Re-
lated Work section for details). We introduce a neu-
ral reinforcement learning (RL) generation method,
which can optimize long-term rewards designed by
system developers. Our model uses the encoder-
decoder architecture as its backbone, and simulates
conversation between two virtual agents to explore
the space of possible actions while learning to maxi-
mize expected reward. We define simple heuristic ap-
proximations to rewards that characterize good con-
versations: good conversations are forward-looking
(Allwood et al., 1992) or interactive (a turn suggests
a following turn), informative, and coherent. The pa-
rameters of an encoder-decoder RNN define a policy
over an infinite action space consisting of all possible

utterances. The agent learns a policy by optimizing
the long-term developer-defined reward from ongo-
ing dialogue simulations using policy gradient meth-
ods (Williams, 1992), rather than the MLE objective
defined in standard SEQ2SEQ models.

Our model thus integrates the power of SEQ2SEQ

systems to learn compositional semantic meanings of
utterances with the strengths of reinforcement learn-
ing in optimizing for long-term goals across a conver-
sation. Experimental results (sampled results at the
right panel of Table 1) demonstrate that our approach
fosters a more sustained dialogue and manages to
produce more interactive responses than standard
SEQ2SEQ models trained using the MLE objective.

2 Related Work

Efforts to build statistical dialog systems fall into two
major categories.

The first treats dialogue generation as a source-
to-target transduction problem and learns mapping
rules between input messages and responses from a
massive amount of training data. Ritter et al. (2011)
frames the response generation problem as a statisti-

1193

cal machine translation (SMT) problem. Sordoni et
al. (2015) improved Ritter et al.’s system by rescor-
ing the outputs of a phrasal SMT-based conversation
system with a neural model that incorporates prior
context. Recent progress in SEQ2SEQ models inspire
several efforts (Vinyals and Le, 2015) to build end-
to-end conversational systems which first apply an
encoder to map a message to a distributed vector rep-
resenting its semantics and generate a response from
the message vector. Serban et al. (2016) propose
a hierarchical neural model that captures dependen-
cies over an extended conversation history. Li et al.
(2016a) propose mutual information between mes-
sage and response as an alternative objective function
in order to reduce the proportion of generic responses
produced by SEQ2SEQ systems.

The other line of statistical research focuses on
building task-oriented dialogue systems to solve
domain-specific tasks. Efforts include statistical
models such as Markov Decision Processes (MDPs)
(Levin et al., 1997; Levin et al., 2000; Walker et al.,
2003; Pieraccini et al., 2009), POMDP (Young et
al., 2010; Young et al., 2013; Gašic et al., 2013a;
Gašic et al., 2014) models, and models that statisti-
cally learn generation rules (Oh and Rudnicky, 2000;
Ratnaparkhi, 2002; Banchs and Li, 2012; Nio et al.,
2014). This dialogue literature thus widely applies
reinforcement learning (Walker, 2000; Schatzmann
et al., 2006; Gasic et al., 2013b; Singh et al., 1999;
Singh et al., 2000; Singh et al., 2002) to train dialogue
policies. But task-oriented RL dialogue systems of-
ten rely on carefully limited dialogue parameters, or
hand-built templates with state, action and reward sig-
nals designed by humans for each new domain, mak-
ing the paradigm difficult to extend to open-domain
scenarios.

Also relevant is prior work on reinforcement learn-
ing for language understanding - including learning
from delayed reward signals by playing text-based
games (Narasimhan et al., 2015; He et al., 2016),
executing instructions for Windows help (Branavan
et al., 2011), or understanding dialogues that give
navigation directions (Vogel and Jurafsky, 2010).

Our goal is to integrate the SEQ2SEQ and rein-
forcement learning paradigms, drawing on the advan-
tages of both. We are thus particularly inspired by
recent work that attempts to merge these paradigms,
including Wen et al. (2016)— training an end-to-end

task-oriented dialogue system that links input repre-
sentations to slot-value pairs in a database— or Su
et al. (2016), who combine reinforcement learning
with neural generation on tasks with real users, show-
ing that reinforcement learning improves dialogue
performance.

3 Reinforcement Learning for
Open-Domain Dialogue

In this section, we describe in detail the components
of the proposed RL model.

The learning system consists of two agents. We
use p to denote sentences generated from the first
agent and q to denote sentences from the second.
The two agents take turns talking with each other.
A dialogue can be represented as an alternating se-
quence of sentences generated by the two agents:
p1, q1, p2, q2, ..., pi, qi. We view the generated sen-
tences as actions that are taken according to a policy
defined by an encoder-decoder recurrent neural net-
work language model.

The parameters of the network are optimized to
maximize the expected future reward using policy
search, as described in Section 4.3. Policy gradi-
ent methods are more appropriate for our scenario
than Q-learning (Mnih et al., 2013), because we can
initialize the encoder-decoder RNN using MLE pa-
rameters that already produce plausible responses,
before changing the objective and tuning towards a
policy that maximizes long-term reward. Q-learning,
on the other hand, directly estimates the future ex-
pected reward of each action, which can differ from
the MLE objective by orders of magnitude, thus mak-
ing MLE parameters inappropriate for initialization.
The components (states, actions, reward, etc.) of our
sequential decision problem are summarized in the
following sub-sections.

3.1 Action
An action a is the dialogue utterance to generate.
The action space is infinite since arbitrary-length se-
quences can be generated.

3.2 State
A state is denoted by the previous two dialogue turns
[pi, qi]. The dialogue history is further transformed
to a vector representation by feeding the concatena-
tion of pi and qi into an LSTM encoder model as

1194

described in Li et al. (2016a).

3.3 Policy

A policy takes the form of an LSTM encoder-decoder
(i.e., pRL(pi+1|pi, qi)) and is defined by its param-
eters. Note that we use a stochastic representation
of the policy (a probability distribution over actions
given states). A deterministic policy would result in
a discontinuous objective that is difficult to optimize
using gradient-based methods.

3.4 Reward

r denotes the reward obtained for each action. In this
subsection, we discuss major factors that contribute
to the success of a dialogue and describe how approx-
imations to these factors can be operationalized in
computable reward functions.

Ease of answering A turn generated by a machine
should be easy to respond to. This aspect of a turn
is related to its forward-looking function: the con-
straints a turn places on the next turn (Schegloff and
Sacks, 1973; Allwood et al., 1992). We propose to
measure the ease of answering a generated turn by
using the negative log likelihood of responding to
that utterance with a dull response. We manually con-
structed a list of dull responses S consisting 8 turns
such as “I don’t know what you are talking about”,
“I have no idea”, etc., that we and others have found
occur very frequently in SEQ2SEQ models of con-
versations. The reward function is given as follows:

r1 = −
1

NS

∑

s∈S

1

Ns
log pseq2seq(s|a) (1)

where NS denotes the cardinality of NS and Ns de-
notes the number of tokens in the dull response s.
Although of course there are more ways to generate
dull responses than the list can cover, many of these
responses are likely to fall into similar regions in the
vector space computed by the model. A system less
likely to generate utterances in the list is thus also
less likely to generate other dull responses.
pseq2seq represents the likelihood output by

SEQ2SEQ models. It is worth noting that pseq2seq
is different from the stochastic policy function
pRL(pi+1|pi, qi), since the former is learned based
on the MLE objective of the SEQ2SEQ model while
the latter is the policy optimized for long-term future

reward in the RL setting. r1 is further scaled by the
length of target S.

Information Flow We want each agent to con-
tribute new information at each turn to keep the di-
alogue moving and avoid repetitive sequences. We
therefore propose penalizing semantic similarity be-
tween consecutive turns from the same agent. Let
hpi and hpi+1 denote representations obtained from
the encoder for two consecutive turns pi and pi+1.
The reward is given by the negative log of the cosine
similarity between them:

r2 = − log cos(hpi , hpi+1) = − log
hpi · hpi+1

‖hpi‖‖hpi+1‖
(2)

Semantic Coherence We also need to measure the
adequacy of responses to avoid situations in which
the generated replies are highly rewarded but are un-
grammatical or not coherent. We therefore consider
the mutual information between the action a and pre-
vious turns in the history to ensure the generated
responses are coherent and appropriate:

r3 =
1

Na
log pseq2seq(a|qi, pi)+

1

Nqi

log pbackward
seq2seq (qi|a)

(3)
pseq2seq(a|pi, qi) denotes the probability of generat-
ing response a given the previous dialogue utterances
[pi, qi]. pbackward

seq2seq (qi|a) denotes the backward proba-
bility of generating the previous dialogue utterance
qi based on response a. pbackward

seq2seq is trained in a simi-
lar way as standard SEQ2SEQ models with sources
and targets swapped. Again, to control the influ-
ence of target length, both log pseq2seq(a|qi, pi) and
log pbackward

seq2seq (qi|a) are scaled by the length of targets.
The final reward for action a is a weighted sum of

the rewards discussed above:

r(a, [pi, qi]) = λ1r1 + λ2r2 + λ3r3 (4)

where λ1 + λ2 + λ3 = 1. We set λ1 = 0.25, λ2 =
0.25 and λ3 = 0.5. A reward is observed after the
agent reaches the end of each sentence.

4 Simulation

The central idea behind our approach is to simulate
the process of two virtual agents taking turns talking
with each other, through which we can explore the

1195

state-action space and learn a policy pRL(pi+1|pi, qi)
that leads to the optimal expected reward. We adopt
an AlphaGo-style strategy (Silver et al., 2016) by
initializing the RL system using a general response
generation policy which is learned from a fully su-
pervised setting.

4.1 Supervised Learning

For the first stage of training, we build on prior work
of predicting a generated target sequence given dia-
logue history using the supervised SEQ2SEQ model
(Vinyals and Le, 2015). Results from supervised
models will be later used for initialization.

We trained a SEQ2SEQ model with attention (Bah-
danau et al., 2015) on the OpenSubtitles dataset,
which consists of roughly 80 million source-target
pairs. We treated each turn in the dataset as a target
and the concatenation of two previous sentences as
source inputs.

4.2 Mutual Information

Samples from SEQ2SEQ models are often times dull
and generic, e.g., “i don’t know” (Li et al., 2016a)
We thus do not want to initialize the policy model
using the pre-trained SEQ2SEQ models because this
will lead to a lack of diversity in the RL models’ ex-
periences. Li et al. (2016a) showed that modeling
mutual information between sources and targets will
significantly decrease the chance of generating dull
responses and improve general response quality. We
now show how we can obtain an encoder-decoder
model which generates maximum mutual informa-
tion responses.

As illustrated in Li et al. (2016a), direct decoding
from Eq 3 is infeasible since the second term requires
the target sentence to be completely generated. In-
spired by recent work on sequence level learning
(Ranzato et al., 2015), we treat the problem of gen-
erating maximum mutual information response as a
reinforcement learning problem in which a reward
of mutual information value is observed when the
model arrives at the end of a sequence.

Similar to Ranzato et al. (2015), we use policy gra-
dient methods (Sutton et al., 1999; Williams, 1992)
for optimization. We initialize the policy model pRL

using a pre-trained pSEQ2SEQ(a|pi, qi) model. Given
an input source [pi, qi], we generate a candidate list
A = {â|â ∼ pRL}. For each generated candi-

date â, we will obtain the mutual information score
m(â, [pi, qi]) from the pre-trained pSEQ2SEQ(a|pi, qi)
and pbackward

SEQ2SEQ(qi|a). This mutual information score
will be used as a reward and back-propagated to the
encoder-decoder model, tailoring it to generate se-
quences with higher rewards. We refer the readers to
Zaremba and Sutskever (2015) and Williams (1992)
for details. The expected reward for a sequence is
given by:

J(θ) = E[m(â, [pi, qi])] (5)

The gradient is estimated using the likelihood ratio
trick:

∇J(θ) = m(â, [pi, qi])∇ log pRL(â|[pi, qi]) (6)

We update the parameters in the encoder-decoder
model using stochastic gradient descent. A curricu-
lum learning strategy is adopted (Bengio et al., 2009)
as in Ranzato et al. (2015) such that, for every se-
quence of length T we use the MLE loss for the first
L tokens and the reinforcement algorithm for the
remaining T − L tokens. We gradually anneal the
value of L to zero. A baseline strategy is employed to
decrease the learning variance: an additional neural
model takes as inputs the generated target and the
initial source and outputs a baseline value, similar
to the strategy adopted by Zaremba and Sutskever
(2015). The final gradient is thus:

∇J(θ) = ∇ log pRL(â|[pi, qi])[m(â, [pi, qi])− b]
(7)

4.3 Dialogue Simulation between Two Agents

We simulate conversations between the two virtual
agents and have them take turns talking with each
other. The simulation proceeds as follows: at the
initial step, a message from the training set is fed to
the first agent. The agent encodes the input message
to a vector representation and starts decoding to gen-
erate a response output. Combining the immediate
output from the first agent with the dialogue history,
the second agent updates the state by encoding the
dialogue history into a representation and uses the
decoder RNN to generate responses, which are sub-
sequently fed back to the first agent, and the process
is repeated.

1196

...

...

...

...

m

How old are
you?

I’m 16, why are
you asking?

… …
…

…

I’m 16

Input Message

. . .

16?

I thought you
were 12.

. . .
. . .

. . .

Turn 1

p1,2

p1,3

Turn 2

q11,1

q11,2

q21,1
q21,2

q31,1

q31,2

...

...

...

…
…

…

Turn n

p1n,1

p1n,2

p1,1

p2n,1

p2n,2

p3n,1
p3n,2

encode decode encode decode encode decode

Figure 1: Dialogue simulation between the two agents.

Optimization We initialize the policy model pRL

with parameters from the mutual information model
described in the previous subsection. We then use
policy gradient methods to find parameters that lead
to a larger expected reward. The objective to maxi-
mize is the expected future reward:

JRL(θ) = EpRL(a1:T)[

i=T∑

i=1

R(ai, [pi, qi])] (8)

where R(ai, [pi, qi]) denotes the reward resulting
from action ai. We use the likelihood ratio trick
(Williams, 1992; Glynn, 1990; Aleksandrov et al.,
1968) for gradient updates:

∇JRL(θ) ≈
∑

i

∇ log p(ai|pi, qi)
i=T∑

i=1

R(ai, [pi, qi])

(9)
We refer readers to Williams (1992) and Glynn

(1990) for more details.

4.4 Curriculum Learning
A curriculum Learning strategy is again employed
in which we begin by simulating the dialogue for 2
turns, and gradually increase the number of simulated
turns. We generate 5 turns at most, as the number
of candidates to examine grows exponentially in the
size of candidate list. Five candidate responses are
generated at each step of the simulation.

5 Experimental Results

In this section, we describe experimental results
along with qualitative analysis. We evaluate dialogue

generation systems using both human judgments and
two automatic metrics: conversation length (number
of turns in the entire session) and diversity.

5.1 Dataset

The dialogue simulation requires high-quality initial
inputs fed to the agent. For example, an initial input
of “why ?” is undesirable since it is unclear how
the dialogue could proceed. We take a subset of
10 million messages from the OpenSubtitles dataset
and extract 0.8 million sequences with the lowest
likelihood of generating the response “i don’t know
what you are taking about” to ensure initial inputs
are easy to respond to.

5.2 Automatic Evaluation

Evaluating dialogue systems is difficult. Metrics such
as BLEU (Papineni et al., 2002) and perplexity have
been widely used for dialogue quality evaluation (Li
et al., 2016a; Vinyals and Le, 2015; Sordoni et al.,
2015), but it is widely debated how well these auto-
matic metrics are correlated with true response qual-
ity (Liu et al., 2016; Galley et al., 2015). Since the
goal of the proposed system is not to predict the
highest probability response, but rather the long-term
success of the dialogue, we do not employ BLEU or
perplexity for evaluation2.

2We found the RL model performs worse on BLEU score. On
a random sample of 2,500 conversational pairs, single reference
BLEU scores for RL models, mutual information models and
vanilla SEQ2SEQ models are respectively 1.28, 1.44 and 1.17.
BLEU is highly correlated with perplexity in generation tasks.

1197

Model # of simulated turns
SEQ2SEQ 2.68

mutual information 3.40
RL 4.48

Table 2: The average number of simulated turns
from standard SEQ2SEQ models, mutual informa-
tion model and the proposed RL model.

Length of the dialogue The first metric we pro-
pose is the length of the simulated dialogue. We say
a dialogue ends when one of the agents starts gener-
ating dull responses such as “i don’t know” 3 or two
consecutive utterances from the same user are highly
overlapping4.

The test set consists of 1,000 input messages. To
reduce the risk of circular dialogues, we limit the
number of simulated turns to be less than 8. Results
are shown in Table 2. As can be seen, using mutual
information leads to more sustained conversations
between the two agents. The proposed RL model is
first trained based on the mutual information objec-
tive and thus benefits from it in addition to the RL
model. We observe that the RL model with dialogue
simulation achieves the best evaluation score.

Diversity We report degree of diversity by calculat-
ing the number of distinct unigrams and bigrams in
generated responses. The value is scaled by the total
number of generated tokens to avoid favoring long
sentences as described in Li et al. (2016a). The re-
sulting metric is thus a type-token ratio for unigrams
and bigrams.

For both the standard SEQ2SEQ model and the pro-
posed RL model, we use beam search with a beam
size 10 to generate a response to a given input mes-
sage. For the mutual information model, we first
generate n-best lists using pSEQ2SEQ(t|s) and then
linearly re-rank them using pSEQ2SEQ(s|t). Results
are presented in Table 4. We find that the proposed
RL model generates more diverse outputs when com-

Since the RL model is trained based on future reward rather than
MLE, it is not surprising that the RL based models achieve lower
BLEU score.

3We use a simple rule matching method, with a list of 8
phrases that count as dull responses. Although this can lead
to both false-positives and -negatives, it works pretty well in
practice.

4Two utterances are considered to be repetitive if they share
more than 80 percent of their words.

pared against both the vanilla SEQ2SEQ model and
the mutual information model.

Human Evaluation We explore three settings for
human evaluation: the first setting is similar to what
was described in Li et al. (2016a), where we employ
crowdsourced judges to evaluate a random sample of
500 items. We present both an input message and the
generated outputs to 3 judges and ask them to decide
which of the two outputs is better (denoted as single-
turn general quality). Ties are permitted. Identical
strings are assigned the same score. We measure
the improvement achieved by the RL model over the
mutual information model by the mean difference in
scores between the models.

For the second setting, judges are again presented
with input messages and system outputs, but are
asked to decide which of the two outputs is easier to
respond to (denoted as single-turn ease to answer).
Again we evaluate a random sample of 500 items,
each being assigned to 3 judges.

For the third setting, judges are presented with sim-
ulated conversations between the two agents (denoted
as multi-turn general quality). Each conversation
consists of 5 turns. We evaluate 200 simulated con-
versations, each being assigned to 3 judges, who are
asked to decide which of the simulated conversations
is of higher quality.

Results for human evaluation are shown in Table 5.
The proposed RL system does not introduce a signifi-
cant boost in single-turn response quality (winning
40 percent of time and losing 36 percent of time).
This is in line with our expectations, as the RL model
is not optimized to predict the next utterance, but
rather to increase long-term reward. The RL sys-
tem produces responses that are significantly easier
to answer than does the mutual information system,
as demonstrated by the single-turn ease to answer
setting (winning 52 percent of time and losing 23
percent of time), and also significantly higher quality
multi-turn dialogues, as demonstrated by the multi-
turn general quality setting (winning 72 percent of
time).

Qualitative Analysis and Discussion We show a
random sample of generated responses in Table 3 and
simulated conversations in Table 1 at the beginning
of the paper. From Table 3, we can see that the
RL based agent indeed generates more interactive

1198

Input Message Mutual Information Model RL
How old are you? I’m 16. I’m 16, why are you asking?
What’s your full name? I have no idea. What’s yours?
I don’t want to go home tonight. Really? Why?
Do you have any feelings for me? I don’t know what you are talking about. I don’t want to hurt your feelings.
How much time do you have here? Not long enough. Sorry, sir. Ten seconds.
Shall we get started? Of course! Yes. We’ve got a lot of work to do here.
Do you play football? No, i don’t Yes. I love football!
We’d have to talk to him. I mean, he’s a good guy About what ?
How come you never say it? Because I don’t want to hurt you. I don’t think it’s a good idea to say it.

Table 3: Sampled responses generated from the mutual information models and the proposed RL model.

Model Unigram Bigram
SEQ2SEQ 0.0062 0.015

mutual information 0.011 0.031
RL 0.017 0.041

Table 4: Diversity scores (type-token ratios) for the
standard SEQ2SEQ model, mutual information model
and the proposed RL model.

Setting RL-win RL-lose Tie
single-turn general quality 0.40 0.36 0.24
single-turn ease to answer 0.52 0.23 0.25
multi-turn general quality 0.72 0.12 0.16

Table 5: RL gains over the mutual information sys-
tem based on pairwise human judgments.

responses than the other baselines. We also find that
the RL model has a tendency to end a sentence with
another question and hand the conversation over to
the user. From Table 1, we observe that the RL model
manages to produce more interactive and sustained
conversations than the mutual information model.

During error analysis, we found that although we
penalize repetitive utterances in consecutive turns,
the dialogue sometimes enters a cycle with length
greater than one, as shown in Table 6. This can be
ascribed to the limited amount of conversational his-
tory we consider. Another issue observed is that the
model sometimes starts a less relevant topic during
the conversation. There is a tradeoff between rele-
vance and less repetitiveness, as manifested in the
reward function we define in Eq 4.

The fundamental problem, of course, is that the
manually defined reward function can’t possibly
cover the crucial aspects that define an ideal conversa-
tion. While the heuristic rewards that we defined are
amenable to automatic calculation, and do capture

A: What’s your name ?
B: Daniel.
A: How old are you ?
B. Twelve. What’s your name ?
A. Daniel.
B: How old are you ?
A: Twelve. What’s your name ?
B: Daniel.
A: How old are you ?
B ...

Table 6: An simulated dialogue with a cycle longer
than one.

some aspects of what makes a good conversation,
ideally the system would instead receive real rewards
from humans. Another problem with the current
model is that we can only afford to explore a very
small number of candidates and simulated turns since
the number of cases to consider grow exponentially.

6 Conclusion

We introduce a reinforcement learning framework for
neural response generation by simulating dialogues
between two agents, integrating the strengths of neu-
ral SEQ2SEQ systems and reinforcement learning
for dialogue. Like earlier neural SEQ2SEQ models,
our framework captures the compositional models
of the meaning of a dialogue turn and generates se-
mantically appropriate responses. Like reinforce-
ment learning dialogue systems, our framework is
able to generate utterances that optimize future re-
ward, successfully capturing global properties of a
good conversation. Despite the fact that our model
uses very simple, operationable heuristics for captur-
ing these global properties, the framework generates
more diverse, interactive responses that foster a more
sustained conversation.

1199

Acknowledgement

We would like to thank Chris Brockett, Bill Dolan
and other members of the NLP group at Microsoft Re-
search for insightful comments and suggestions. We
also want to thank Kelvin Guu, Percy Liang, Chris
Manning, Sida Wang, Ziang Xie and other members
of the Stanford NLP groups for useful discussions.
Jiwei Li is supported by the Facebook Fellowship, to
which we gratefully acknowledge. This work is par-
tially supported by the NSF via Awards IIS-1514268,
IIS-1464128, and by the DARPA Communicating
with Computers (CwC) program under ARO prime
contract no. W911NF- 15-1-0462. Any opinions,
findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and
do not necessarily reflect the views of NSF, DARPA,
or Facebook.

References
V. M. Aleksandrov, V. I. Sysoyev, and V. V. Shemeneva.

1968. Stochastic optimization. Engineering Cybernet-
ics, 5:11–16.

Jens Allwood, Joakim Nivre, and Elisabeth Ahlsén. 1992.
On the semantics and pragmatics of linguistic feedback.
Journal of Semantics, 9:1–26.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
2015. Neural machine translation by jointly learning to
align and translate. In Proc. of ICLR.

Rafael E Banchs and Haizhou Li. 2012. IRIS: a chat-
oriented dialogue system based on the vector space
model. In Proceedings of the ACL 2012 System Demon-
strations, pages 37–42.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and
Jason Weston. 2009. Curriculum learning. In Pro-
ceedings of the 26th annual international conference
on machine learning, pages 41–48. ACM.

SRK Branavan, David Silver, and Regina Barzilay. 2011.
Learning to win by reading manuals in a monte-carlo
framework. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Hu-
man Language Technologies-Volume 1, pages 268–277.

Michel Galley, Chris Brockett, Alessandro Sordoni,
Yangfeng Ji, Michael Auli, Chris Quirk, Margaret
Mitchell, Jianfeng Gao, and Bill Dolan. 2015.
deltaBLEU: A discriminative metric for generation
tasks with intrinsically diverse targets. In Proc. of ACL-
IJCNLP, pages 445–450, Beijing, China, July.

Milica Gašic, Catherine Breslin, Matthew Henderson,
Dongho Kim, Martin Szummer, Blaise Thomson, Pir-
ros Tsiakoulis, and Steve Young. 2013a. Pomdp-based

dialogue manager adaptation to extended domains. In
Proceedings of SIGDIAL.

Milica Gasic, Catherine Breslin, Mike Henderson,
Dongkyu Kim, Martin Szummer, Blaise Thomson, Pir-
ros Tsiakoulis, and Steve Young. 2013b. On-line policy
optimisation of bayesian spoken dialogue systems via
human interaction. In Proceedings of ICASSP 2013,
pages 8367–8371. IEEE.

Milica Gašic, Dongho Kim, Pirros Tsiakoulis, Catherine
Breslin, Matthew Henderson, Martin Szummer, Blaise
Thomson, and Steve Young. 2014. Incremental on-
line adaptation of pomdp-based dialogue managers to
extended domains. In Proceedings on InterSpeech.

Peter W Glynn. 1990. Likelihood ratio gradient estima-
tion for stochastic systems. Communications of the
ACM, 33(10):75–84.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong
Li, Li Deng, and Mari Ostendorf. 2016. Deep rein-
forcement learning with a natural language action space.
In Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pages 1621–1630, Berlin, Germany, August.

Esther Levin, Roberto Pieraccini, and Wieland Eckert.
1997. Learning dialogue strategies within the markov
decision process framework. In Automatic Speech
Recognition and Understanding, 1997. Proceedings.,
1997 IEEE Workshop on, pages 72–79. IEEE.

Esther Levin, Roberto Pieraccini, and Wieland Eckert.
2000. A stochastic model of human-machine interac-
tion for learning dialog strategies. IEEE Transactions
on Speech and Audio Processing, 8(1):11–23.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and
Bill Dolan. 2016a. A diversity-promoting objective
function for neural conversation models. In Proc. of
NAACL-HLT.

Jiwei Li, Michel Galley, Chris Brockett, Georgios Sp-
ithourakis, Jianfeng Gao, and Bill Dolan. 2016b. A
persona-based neural conversation model. In Proceed-
ings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 994–1003, Berlin, Germany, August.

Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael Nose-
worthy, Laurent Charlin, and Joelle Pineau. 2016. How
not to evaluate your dialogue system: An empirical
study of unsupervised evaluation metrics for dialogue
response generation. arXiv preprint arXiv:1603.08023.

Yi Luan, Yangfeng Ji, and Mari Ostendorf. 2016.
LSTM based conversation models. arXiv preprint
arXiv:1603.09457.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Mar-
tin Riedmiller. 2013. Playing Atari with deep rein-
forcement learning. NIPS Deep Learning Workshop.

1200

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay.
2015. Language understanding for text-based games
using deep reinforcement learning. arXiv preprint
arXiv:1506.08941.

Lasguido Nio, Sakriani Sakti, Graham Neubig, Tomoki
Toda, Mirna Adriani, and Satoshi Nakamura. 2014.
Developing non-goal dialog system based on examples
of drama television. In Natural Interaction with Robots,
Knowbots and Smartphones, pages 355–361. Springer.

Alice H Oh and Alexander I Rudnicky. 2000. Stochastic
language generation for spoken dialogue systems. In
Proceedings of the 2000 ANLP/NAACL Workshop on
Conversational systems-Volume 3, pages 27–32.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting on association for computational
linguistics, pages 311–318.

Roberto Pieraccini, David Suendermann, Krishna
Dayanidhi, and Jackson Liscombe. 2009. Are we there
yet? Research in commercial spoken dialog systems.
In Text, Speech and Dialogue, pages 3–13. Springer.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level train-
ing with recurrent neural networks. arXiv preprint
arXiv:1511.06732.

Adwait Ratnaparkhi. 2002. Trainable approaches to sur-
face natural language generation and their application
to conversational dialog systems. Computer Speech &
Language, 16(3):435–455.

Alan Ritter, Colin Cherry, and William B Dolan. 2011.
Data-driven response generation in social media. In
Proceedings of EMNLP 2011, pages 583–593.

Jost Schatzmann, Karl Weilhammer, Matt Stuttle, and
Steve Young. 2006. A survey of statistical user simula-
tion techniques for reinforcement-learning of dialogue
management strategies. The knowledge engineering
review, 21(02):97–126.

Emanuel A. Schegloff and Harvey Sacks. 1973. Opening
up closings. Semiotica, 8(4):289–327.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016. Building
end-to-end dialogue systems using generative hierar-
chical neural network models. In Proceedings of AAAI,
February.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural
responding machine for short-text conversation. In
Proceedings of ACL-IJCNLP, pages 1577–1586.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche, Julian Schrit-
twieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. 2016. Mastering the game of go
with deep neural networks and tree search. Nature,
529(7587):484–489.

Satinder P Singh, Michael J Kearns, Diane J Litman, and
Marilyn A Walker. 1999. Reinforcement learning for
spoken dialogue systems. In Nips, pages 956–962.

Satinder Singh, Michael Kearns, Diane J Litman, Mar-
ilyn A Walker, et al. 2000. Empirical evaluation of
a reinforcement learning spoken dialogue system. In
AAAI/IAAI, pages 645–651.

Satinder Singh, Diane Litman, Michael Kearns, and Mari-
lyn Walker. 2002. Optimizing dialogue management
with reinforcement learning: Experiments with the nj-
fun system. Journal of Artificial Intelligence Research,
pages 105–133.

Alessandro Sordoni, Michel Galley, Michael Auli, Chris
Brockett, Yangfeng Ji, Meg Mitchell, Jian-Yun Nie,
Jianfeng Gao, and Bill Dolan. 2015. A neural network
approach to context-sensitive generation of conversa-
tional responses. In Proceedings of NAACL-HLT.

Pei-Hao Su, Milica Gasic, Nikola Mrksic, Lina Rojas-
Barahona, Stefan Ultes, David Vandyke, Tsung-Hsien
Wen, and Steve Young. 2016. Continuously learning
neural dialogue management. arxiv.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing systems,
pages 3104–3112.

Richard S Sutton, David A McAllester, Satinder P Singh,
Yishay Mansour, et al. 1999. Policy gradient methods
for reinforcement learning with function approximation.
In NIPS, volume 99, pages 1057–1063.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. In Proceedings of ICML Deep Learning
Workshop.

Adam Vogel and Dan Jurafsky. 2010. Learning to follow
navigational directions. In Proceedings of ACL 2010,
pages 806–814.

Marilyn A Walker, Rashmi Prasad, and Amanda Stent.
2003. A trainable generator for recommendations in
multimodal dialog. In Proceeedings of INTERSPEECH
2003.

Marilyn A. Walker. 2000. An application of reinforce-
ment learning to dialogue strategy selection in a spoken
dialogue system for email. Journal of Artificial Intelli-
gence Research, pages 387–416.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-Hao
Su, David Vandyke, and Steve Young. 2015. Semanti-
cally conditioned LSTM-based natural language gener-
ation for spoken dialogue systems. In Proceedings of
EMNLP, pages 1711–1721, Lisbon, Portugal.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Lina M
Rojas-Barahona, Pei-Hao Su, Stefan Ultes, David
Vandyke, and Steve Young. 2016. A network-based
end-to-end trainable task-oriented dialogue system.
arXiv preprint arXiv:1604.04562.

1201

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256.

Zhen Xu, Bingquan Liu, Baoxun Wang, Chengjie Sun, and
Xiaolong Wang. 2016. Incorporating loose-structured
knowledge into LSTM with recall gate for conversation
modeling. arXiv preprint arXiv:1605.05110.

Kaisheng Yao, Geoffrey Zweig, and Baolin Peng. 2015.
Attention with intention for a neural network conversa-
tion model. In NIPS workshop on Machine Learning
for Spoken Language Understanding and Interaction.

Steve Young, Milica Gašić, Simon Keizer, François
Mairesse, Jost Schatzmann, Blaise Thomson, and Kai
Yu. 2010. The hidden information state model: A prac-
tical framework for pomdp-based spoken dialogue man-
agement. Computer Speech & Language, 24(2):150–
174.

Steve Young, Milica Gasic, Blaise Thomson, and Jason D
Williams. 2013. Pomdp-based statistical spoken di-
alog systems: A review. Proceedings of the IEEE,
101(5):1160–1179.

Wojciech Zaremba and Ilya Sutskever. 2015. Reinforce-
ment learning neural Turing machines. arXiv preprint
arXiv:1505.00521.

1202

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1203–1213,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Neural Text Generation from Structured Data
with Application to the Biography Domain

Rémi Lebret∗
EPFL, Switzerland

David Grangier
Facebook AI Research

Michael Auli
Facebook AI Research

Abstract

This paper introduces a neural model for
concept-to-text generation that scales to large,
rich domains. It generates biographical sen-
tences from fact tables on a new dataset of
biographies from Wikipedia. This set is an
order of magnitude larger than existing re-
sources with over 700k samples and a 400k
vocabulary. Our model builds on conditional
neural language models for text generation.
To deal with the large vocabulary, we ex-
tend these models to mix a fixed vocabulary
with copy actions that transfer sample-specific
words from the input database to the gener-
ated output sentence. To deal with structured
data, we allow the model to embed words
differently depending on the data fields in
which they occur. Our neural model signif-
icantly outperforms a Templated Kneser-Ney
language model by nearly 15 BLEU.

1 Introduction

Concept-to-text generation renders structured
records into natural language (Reiter et al., 2000). A
typical application is to generate a weather forecast
based on a set of structured meteorological mea-
surements. In contrast to previous work, we scale
to the large and very diverse problem of generating
biographies based on Wikipedia infoboxes. An
infobox is a fact table describing a person, similar to
a person subgraph in a knowledge base (Bollacker
et al., 2008; Ferrucci, 2012). Similar generation
applications include the generation of product
descriptions based on a catalog of millions of items
with dozens of attributes each.

Previous work experimented with datasets that
contain only a few tens of thousands of records such
as WEATHERGOV or the ROBOCUP dataset, while
our dataset contains over 700k biographies from

∗Rémi performed this work while interning at Facebook.

Wikipedia. Furthermore, these datasets have a lim-
ited vocabulary of only about 350 words each, com-
pared to over 400k words in our dataset.

To tackle this problem we introduce a statistical
generation model conditioned on a Wikipedia in-
fobox. We focus on the generation of the first sen-
tence of a biography which requires the model to
select among a large number of possible fields to
generate an adequate output. Such diversity makes
it difficult for classical count-based models to esti-
mate probabilities of rare events due to data sparsity.
We address this issue by parameterizing words and
fields as embeddings, along with a neural language
model operating on them (Bengio et al., 2003). This
factorization allows us to scale to a larger number of
words and fields than Liang et al. (2009), or Kim
and Mooney (2010) where the number of parame-
ters grows as the product of the number of words
and fields.

Moreover, our approach does not restrict the re-
lations between the field contents and the gener-
ated text. This contrasts with less flexible strategies
that assume the generation to follow either a hybrid
alignment tree (Kim and Mooney, 2010), a proba-
bilistic context-free grammar (Konstas and Lapata,
2013), or a tree adjoining grammar (Gyawali and
Gardent, 2014).

Our model exploits structured data both globally
and locally. Global conditioning summarizes all in-
formation about a personality to understand high-
level themes such as that the biography is about a
scientist or an artist, while as local conditioning de-
scribes the previously generated tokens in terms of
the their relationship to the infobox. We analyze the
effectiveness of each and demonstrate their comple-
mentarity.

2 Related Work

Traditionally, generation systems relied on rules and
hand-crafted specifications (Dale et al., 2003; Re-
iter et al., 2005; Green, 2006; Galanis and Androut-

1

1203

sopoulos, 2007; Turner et al., 2010). Generation is
divided into modular, yet highly interdependent, de-
cisions: (1) content planning defines which parts of
the input fields or meaning representations should
be selected; (2) sentence planning determines which
selected fields are to be dealt with in each output
sentence; and (3) surface realization generates those
sentences.

Data-driven approaches have been proposed to
automatically learn the individual modules. One ap-
proach first aligns records and sentences and then
learns a content selection model (Duboue and McK-
eown, 2002; Barzilay and Lapata, 2005). Hierar-
chical hidden semi-Markov generative models have
also been used to first determine which facts to dis-
cuss and then to generate words from the predi-
cates and arguments of the chosen facts (Liang et al.,
2009). Sentence planning has been formulated as a
supervised set partitioning problem over facts where
each partition corresponds to a sentence (Barzilay
and Lapata, 2006). End-to-end approaches have
combined sentence planning and surface realiza-
tion by using explicitly aligned sentence/meaning
pairs as training data (Ratnaparkhi, 2002; Wong and
Mooney, 2007; Belz, 2008; Lu and Ng, 2011). More
recently, content selection and surface realization
have been combined (Angeli et al., 2010; Kim and
Mooney, 2010; Konstas and Lapata, 2013).

At the intersection of rule-based and statisti-
cal methods, hybrid systems aim at leveraging hu-
man contributed rules and corpus statistics (Langk-
ilde and Knight, 1998; Soricut and Marcu, 2006;
Mairesse and Walker, 2011).

Our approach is inspired by the recent success of
neural language models for image captioning (Kiros
et al., 2014; Karpathy and Fei-Fei, 2015; Vinyals et
al., 2015; Fang et al., 2015; Xu et al., 2015), ma-
chine translation (Devlin et al., 2014; Bahdanau et
al., 2015; Luong et al., 2015), and modeling conver-
sations and dialogues (Shang et al., 2015; Wen et al.,
2015; Yao et al., 2015).

Our model is most similar to Mei et al. (2016)
who use an encoder-decoder style neural network
model to tackle the WEATHERGOV and ROBOCUP
tasks. Their architecture relies on LSTM units and
an attention mechanism which reduces scalability
compared to our simpler design.

Figure 1: Wikipedia infobox of Frederick Parker-Rhodes. The
introduction of his article reads: “Frederick Parker-Rhodes (21
March 1914 – 21 November 1987) was an English linguist,
plant pathologist, computer scientist, mathematician, mystic,
and mycologist.”.

3 Language Modeling for Constrained
Sentence generation

Conditional language models are a popular choice
to generate sentences. We introduce a table-
conditioned language model for constraining text
generation to include elements from fact tables.

3.1 Language model
Given a sentence s = w1, . . . , wT with T words
from vocabularyW , a language model estimates:

P (s) =

T∏

t=1

P (wt|w1, . . . , wt−1) . (1)

Let ct = wt−(n−1), . . . , wt−1 be the sequence of
n − 1 context words preceding wt. An n-gram lan-
guage model makes an order n Markov assumption,

P (s) ≈
T∏

t=1

P (wt|ct) . (2)

3.2 Language model conditioned on tables
A table is a set of field/value pairs, where values are
sequences of words. We therefore propose language
models that are conditioned on these pairs.

Local conditioning refers to the information
from the table that is applied to the description of the
words which have already generated, i.e. the previ-
ous words that constitute the context of the language

2

1204

Table (gf , gw)

name John Doe
birthdate 18 April 1352
birthplace Oxford UK
occupation placeholder
spouse Jane Doe
children Johnnie Doe

input text (ct, zct)

John Doe (18 April 1352) is a

ct 13944 unk 17 37 92 25 18 12 4

zct

(name,1,2) (name,2,1) ∅ (birthd.,1,3) (birthd.,2,2) (birthd.,3,1) ∅ ∅ ∅
(spouse,2,1)

(children,2,1)

output candidates (w ∈ W ∪Q)
the . . . april . . . placeholder . . . john . . . doe

w 1 . . . 92 . . . 5302 . . . 13944 . . . unk

zw

∅ (birthd.,2,2) (occupation,1,1) (name,1,2) (name,2,1)
(spouse,2,1)

(children,2,1)

Figure 2: Table features (right) for an example table (left);W ∪Q is the set of all output words as defined in Section 3.3.

model. The table allows us to describe each word
not only by its string (or index in the vocabulary)
but also by a descriptor of its occurrence in the ta-
ble. Let F define the set of all possible fields f . The
occurrence of a word w in the table is described by
a set of (field, position) pairs.

zw =
{
(fi, pi)

}m
i=1

, (3)

where m is the number of occurrences of w. Each
pair (f, p) indicates that w occurs in field f at posi-
tion p. In this scheme, most words are described by
the empty set as they do not occur in the table. For
example, the word linguistics in the table of Figure 1
is described as follows:

zlinguistics = {(fields, 8); (known for, 4)}, (4)

assuming words are lower-cased and commas are
treated as separate tokens.

Conditioning both on the field type and the po-
sition within the field allows the model to encode
field-specific regularities, e.g., a number token in a
date field is likely followed by a month token; know-
ing that the number is the first token in the date field
makes this even more likely.

The (field, position) description scheme of the ta-
ble does not allow to express that a token terminates
a field which can be useful to capture field transi-
tions. For biographies, the last token of the name
field is often followed by an introduction of the birth
date like ‘(’ or ‘was born’. We hence extend our de-
scriptor to a triplet that includes the position of the

token counted from the end of the field:

zw =
{
(fi, p

+
i , p

−
i)
}m
i=1

, (5)

where our example becomes:

zlinguistics = {(fields, 8, 4); (known for, 4, 13)}.

We extend Equation 2 to use the above informa-
tion as additional conditioning context when gener-
ating a sentence s:

P (s|z) =
T∏

t=1

P (wt|ct, zct) , (6)

where zct = zwt−(n−1)
, . . . , zwt−1 are referred to as

the local conditioning variables since they describe
the local context (previous word) relations with the
table.

Global conditioning refers to information from
all tokens and fields of the table, regardless whether
they appear in the previous generated words or not.
The set of fields available in a table often impacts
the structure of the generation. For biographies, the
fields used to describe a politician are different from
the ones for an actor or an athlete. We introduce
global conditioning on the available fields gf as

P (s|z, gf) =
T∏

t=1

P (wt|ct, zct , gf). (7)

Similarly, global conditioning gw on the available

3

1205

words occurring in the table is introduced:

P (s|z, gf , gw) =
T∏

t=1

P (wt|ct, zct , gf , gw). (8)

Tokens provide information complementary to
fields. For example, it may be hard to distinguish a
basketball player from a hockey player by looking
only at the field names, e.g. teams, league, position,
weight and height, etc. However the actual field
tokens such as team names, league name, player’s
position can help the model to give a better pre-
diction. Here, gf ∈ {0, 1}F and gw ∈ {0, 1}W
are binary indicators over fixed field and word
vocabularies.

Figure 2 illustrates the model with a schematic ex-
ample. For predicting the next word wt after a given
context ct, the language model is conditioned on sets
of triplets for each word occurring in the table zct ,
along with all fields and words from this table.

3.3 Copy actions

So far we extended the model conditioning with fea-
tures derived from the fact table. We now turn to
using table information when scoring output words.
In particular, sentences which express facts from a
given table often copy words from the table. We
therefore extend our model to also score special field
tokens such as name 1 or name 2 which are sub-
sequently added to the score of the corresponding
words from the field value.

Our model reads a table and defines an output do-
mainW∪Q. Q defines all tokens in the table, which
might include out of vocabulary words (/∈ W). For
instance Park-Rhodes in Figure 1 is not inW . How-
ever, Park-Rhodes will be included in Q as name 2

(since it is the second token of the name field) which
allows our model to generate it. This mechanism
is inspired by recent work on attention based word
copying for neural machine translation (Luong et al.,
2015) as well as delexicalization for neural dialog
systems (Wen et al., 2015). It also builds upon older
work such as class-based language models for dialog
systems (Oh and Rudnicky, 2000).

4 A Neural Language Model Approach

A feed-forward neural language model (NLM) es-
timates P (wt|ct) with a parametric function φθ

(Equation 1), where θ refers to all learnable param-
eters of the network. This function is a composition
of simple differentiable functions or layers.

4.1 Mathematical notations and layers

We denote matrices as bold upper case letters (X,
Y, Z), and vectors as bold lower-case letters (a, b,
c). Ai represents the ith row of matrix A. When
A is a 3-d matrix, then Ai,j represents the vector
of the ith first dimension and jth second dimension.
Unless otherwise stated, vectors are assumed to be
column vectors. We use [v1;v2] to denote vector
concatenation. Next, we introduce the notation for
the different layers used in our approach.

Embedding layer. Given a parameter matrix
X ∈ RN×d, the embedding layer is a lookup table
that performs an array indexing operation:

ψX(xi) = Xi ∈ Rd , (9)

where Xi corresponds to the embedding of the ele-
ment xi at row i. When X is a 3-d matrix, the lookup
table takes two arguments:

ψX(xi, xj) = Xi,j ∈ Rd , (10)

where Xi,j corresponds to the embedding of the
pair (xi, xj) at index (i, j). The lookup table op-
eration can be applied for a sequence of elements
s = x1, . . . , xT . A common approach is to concate-
nate all resulting embeddings:

ψX(s) =
[
ψX(x1); . . . ;ψX(xT)

]
∈ RT×d . (11)

Linear layer. This layer applies a linear trans-
formation to its inputs x ∈ Rn:

γθ(x) = Wx+ b (12)

where θ = {W,b} are the trainable parameters
with W ∈ Rm×n being the weight matrix, and
b ∈ Rm is the bias term.

Softmax layer. Given a context input ct, the
final layer outputs a score for each word wt ∈ W ,
φθ(ct) ∈ R|W|. The probability distribution is ob-
tained by applying the softmax activation function:

P (wt = w|ct) =
exp(φθ(ct, w))∑|W|
i=1 exp(φθ(ct, wi))

(13)

4

1206

4.2 Embeddings as inputs

A key aspect of neural language models is the use
of word embeddings. Similar words tend to have
similar embeddings and thus share latent features.
The probability estimates of those models are
smooth functions of these embeddings, and a small
change in the features results in a small change
in the probability estimates (Bengio et al., 2003).
Therefore, neural language models can achieve
better generalization for unseen n-grams. Next, we
show how we map fact tables to continuous space in
similar spirit.

Word embeddings. Formally, the embedding
layer maps each context word index to a continuous
d-dimensional vector. It relies on a parameter ma-
trix E ∈ R|W|×d to convert the input ct into n − 1
vectors of dimension d:

ψE(ct) =
[
ψE(wt−(n−1)); . . . ;ψE(wt−1)

]
. (14)

E can be initialized randomly or with pre-trained
word embeddings.

Table embeddings. As described in Section 3.2,
the language model is conditioned on elements from
the table. Embedding matrices are therefore defined
to model both local and global conditioning infor-
mation. For local conditioning, we denote the maxi-
mum length of a sequence of words as l. Each field
fj ∈ F is associated with 2 × l vectors of d di-
mensions, the first l of those vectors embed all pos-
sible starting positions 1, . . . , l, and the remaining l
vectors embed ending positions. This results in two
parameter matrices Z = {Z+,Z−} ∈ R|F|×l×d.
For a given triplet (fj , p

+
i , p

−
i), ψZ+(fj , p

+
i) and

ψZ−(fj , p
−
i) refer to the embedding vectors of the

start and end position for field fj , respectively.
Finally, global conditioning uses two parame-

ter matrices Gf ∈ R|F|×g and Gw ∈ R|W|×g.
ψGf (fj) maps a table field fj into a vector of
dimension g, while ψGw(wt) maps a word wt into
a vector of the same dimension. In general, Gw

shares its parameters with E, provided d = g.

Aggregating embeddings. We represent each oc-
curence of a word w as a triplet (field, start, end)
where we have embeddings for the start and end po-
sition as described above. Often times a particular
word w occurs multiple times in a table, e.g., ‘lin-

guistics’ has two instances in Figure 1. In this case,
we perform a component-wise max over the start
embeddings of all instances of w to obtain the best
features across all occurrences ofw. We do the same
for end position embeddings:

ψZ(zwt) =[
max

{
ψZ+(fj , p

+
i), ∀(fj , p+i , p−i) ∈ zwt

}
;

max
{
ψZ−(fj , p

−
i), ∀(fj , p+i , p−i) ∈ zwt

}]
(15)

A special no-field embedding is assigned towt when
the word is not associated to any fields. An embed-
ding ψZ(zct) for encoding the local conditioning of
the input ct is obtained by concatenation.

For global conditioning, we define Fq ⊂ F as the
set of all the fields in a given table q, andQ as the set
of all words in q. We also perform max aggregation.
This yields the vectors

ψGf (gf) = max
{
ψGf (fj), ∀fj ∈ Fq

}
, (16)

and

ψGw(gw) = max
{
ψGw(wt),∀wt ∈ Q

}
. (17)

The final embedding which encodes the context in-
put with conditioning is then the concatenation of
these vectors:

ψα1
(ct, zct , gf , gw) =

[
ψE(ct); ψZ(zct);

ψGf (gf); ψGw(gw)
]
∈ Rd

1
, (18)

with α1 = {E,Z+,Z−,Gf ,Gw} and d1 = (n −
1)× (3× d) + (2× g). For simplification purpose,
we define the context input x = {ct, zct , gf , gw} in
the following equations. This context embedding is
mapped to a latent context representation using a lin-
ear operation followed by a hyperbolic tangent:

h(x) = tanh
(
γα2

(
ψα1

(x)
))
∈ Rnhu , (19)

where α2 = {W2,b2}, with W2 ∈ Rnhu×d1 and
b2 ∈ Rnhu.

4.3 In-vocabulary outputs

The hidden representation of the context then goes
to another linear layer to produce a real value score
for each word in the vocabulary:

φWα (x) = γα3

(
h(x)

)
∈ R|W| , (20)

5

1207

where α3 = {W3,b3}, with W3 ∈ R|W|×nhu and
b3 ∈ R|W|, and α = {α1, α2, α3}.

4.4 Mixing outputs for better copying
Section 3.3 explains that each word w from the table
is also associated with zw, the set of fields in which
it occurs, along with the position in that field. Simi-
lar to local conditioning, we represent each field and
position pair (fj , pi) with an embeddingψF(fj , pi),
where F ∈ R|F|×l×d. These embeddings are then
projected into the same space as the latent represen-
tation of context input h(x) ∈ Rnhu. Using the max
operation over the embedding dimension, each word
is finally embedded into a unique vector:

q(w) = max
{

tanh
(
γβ
(
ψF(fj , pi)

))
, ∀(fj , pi) ∈ zw

}
, (21)

where β = {W4,b4} with W4 ∈ Rnhu×d, and
b4 ∈ Rnhu. A dot product with the context vector
produces a score for each word w in the table,

φQβ (x,w) = h(x) · q(w) . (22)

Each word w ∈ W ∪ Q receives a final score by
summing the vocabulary score and the field score:

φθ(x,w) = φWα (x,w) + φQβ (x,w) , (23)

with θ = {α, β}, and where φQβ (x,w) = 0 when
w /∈ Q. The softmax function then maps the scores
to a distribution overW ∪Q,

logP (w|x) = φθ(x,w)−log
∑

w′∈W∪Q
expφθ(x,w

′) .

4.5 Training
The neural language model is trained to minimize
the negative log-likelihood of a training sentence s
with stochastic gradient descent (SGD; LeCun et al.
2012) :

Lθ(s) = −
T∑

t=1

logP (wt|ct, zct , gf , gw) . (24)

5 Experiments

Our neural network model (Section 4) is designed to
generate sentences from tables for large-scale prob-
lems, where a diverse set of sentence types need
to be generated. Biographies are therefore a good

framework to evaluate our model, with Wikipedia
offering a large and diverse dataset.

5.1 Biography dataset
We introduce a new dataset for text generation,
WIKIBIO, a corpus of 728,321 articles from En-
glish Wikipedia (Sep 2015). It comprises all biogra-
phy articles listed by WikiProject Biography1 which
also have a table (infobox). We extract and tok-
enize the first sentence of each article with Stanford
CoreNLP (Manning et al., 2014). All numbers are
mapped to a special token, except for years which
are mapped to different special token. Field values
from tables are similarly tokenized. All tokens are
lower-cased. Table 2 summarizes the dataset statis-
tics: on average, the first sentence is twice as short as
the table (26.1 vs 53.1 tokens), about a third of the
sentence tokens (9.5) also occur in the table. The
final corpus has been divided into three sub-parts
to provide training (80%), validation (10%) and test
sets (10%). The dataset is available for download2.

5.2 Baseline
Our baseline is an interpolated Kneser-Ney (KN)
language model and we use the KenLM toolkit
to train 5-gram models without pruning (Heafield
et al., 2013). We also learn a KN language
model over templates. For that purpose, we re-
place the words occurring in both the table and
the training sentences with a special token reflect-
ing its table descriptor zw (Equation 3). The in-
troduction section of the table in Figure 1 looks
as follows under this scheme: “name 1 name 2

(birthdate 1 birthdate 2 birthdate 3 –
deathdate 1 deathdate 2 deathdate 3) was
an english linguist , fields 3 pathologist ,
fields 10 scientist , mathematician , mystic and
mycologist .” During inference, the decoder is con-
strained to emit words from the regular vocabulary
or special tokens occurring in the input table. When
picking a special token we copy the corresponding
word from the table.

5.3 Training setup
For our neural models, we train 11-gram language
models (n = 11) with a learning rate set to 0.0025.

1https://en.wikipedia.org/wiki/
Wikipedia:WikiProject_Biography

2https://github.com/DavidGrangier/
wikipedia-biography-dataset

6

1208

Model Perplexity BLEU ROUGE NIST

KN 10.51 2.21 0.38 0.93
NLM 9.40 +− 0.01 2.41 +− 0.33 0.52 +− 0.08 1.27 +− 0.26
+ Local (field, start, end) 8.61 +− 0.01 4.17 +− 0.54 1.48 +− 0.23 1.41 +− 0.11

Template KN 7.46? 19.8 10.7 5.19
Table NLM w/ Local (field, start) 4.60 +− 0.01† 26.0 +− 0.39 19.2 +− 0.23 6.08 +− 0.08
+ Local (field, start, end) 4.60 +− 0.01† 26.6 +− 0.42 19.7 +− 0.25 6.20 +− 0.09
+ Global (field) 4.30+− 0.01† 33.4 +− 0.18 23.9 +− 0.12 7.52 +− 0.03
+ Global (field & word) 4.40 +− 0.02† 34.7+− 0.36 25.8+− 0.36 7.98+− 0.07

Table 1: BLEU, ROUGE, NIST and perplexity without copy actions (first three rows) and with copy actions (last five rows). For
neural models we report “mean +− standard deviation” for five training runs with different initialization. Decoding beam width is 5.
Perplexities marked with ? and † are not directly comparable as the output vocabularies differ slightly.

Mean Percentile
5% 95%

tokens per sentence 26.1 13 46
tokens per table 53.1 20 108
table tokens per sent. 9.5 3 19
fields per table 19.7 9 36

Table 2: Dataset statistics

Parameter Value

word types |W| = 20, 000
field types |F| = 1, 740
Max. # tokens in a field l = 10
word/field embedding size d = 64
global embedding size g = 128
hidden units nhu = 256

Table 3: Model Hyperparameters

Table 3 describes the other hyper-parameters. We
include all fields occurring at least 100 times in the
training data in F , the set of fields. We include
the 20, 000 most frequent words in the vocabulary.
The other hyperparameters are set through valida-
tion, maximizing BLEU over a validation subset of
1, 000 sentences. Similarly, early stopping is ap-
plied: training ends when BLEU stops improving
on the same validation subset. One should note that
the maximum number of tokens in a field l = 10
means that we encode only 10 positions: for longer
field values the final tokens are not dropped but their
position is capped to 10. We initialize the word em-
beddingsW from Hellinger PCA computed over the
set of training biographies. This representation has

shown to be helpful for various applications (Lebret
and Collobert, 2014).

5.4 Evaluation metrics
We use different metrics to evaluate our models.
Performance is first evaluated in terms of perplex-
ity which is the standard metric for language mod-
eling. Generation quality is assessed automatically
with BLEU-4, ROUGE-4 (F-measure) and NIST-
43 (Belz and Reiter, 2006).

6 Results

This section describes our results and discusses the
impact of the different conditioning variables.

6.1 The more, the better
The results (Table 1) show that more conditioning
information helps to improve the performance of our
models. The generation metrics BLEU, ROUGE
and NIST all gives the same performance ordering
over models. We first discuss models without copy
actions (the first three results) and then discuss mod-
els with copy actions (the remaining results). Note
that the factorization of our models results in three
different output domains which makes perplexity
comparisons less straightforward: models without
copy actions operate over a fixed vocabulary. Tem-
plate KN adds a fixed set of field/position pairs to
this vocabulary while Table NLM models a variable
set Q depending on the input table, see Section 3.3.

Without copy actions. In terms of perplexity the
(i) neural language model (NLM) is slightly better

3We rely on standard software, NIST mteval-v13a.pl (for
NIST, BLEU), and MSR rouge-1.5.5 (for ROUGE).

7

1209

than an interpolated KN language model, and (ii)
adding local conditioning on the field start and end
position further improves accuracy. Generation met-
rics are generally very low but there is a clear im-
provement when using local conditioning since it al-
lows to learn transitions between fields by linking
previous predictions to the table unlike KN or plain
NLM.

With copy actions. For experiments with copy
actions we use the full local conditioning (Equa-
tion 4) in the neural language models. BLEU,
ROUGE and NIST all improves when moving from
Template KN to Table NLM and more features suc-
cessively improve accuracy. Global conditioning on
the fields improves the model by over 7 BLEU and
adding words gives an additional 1.3 BLEU. This
is a total improvement of nearly 15 BLEU over the
Template Kneser-Ney baseline. Similar observa-
tions are made for ROUGE +15 and NIST +2.8.

●

●
●

●

●

●
● ●

● ● ●
● ●

100 200 500 1000 2000

15
20

25
30

35
40

45

time in ms

B
LE

U

●

●
●

● ● ●
● ●● ●

●
●

●

1
2 3

4
5

6 8 10 15 2025

1

345 67 810
15 20 25

●

Template KN
Table NLM
beam size

Figure 3: Comparison between our best model (Table NLM)
and the baseline (Template KN) for different beam sizes. The
x-axis is the average timing (in milliseconds) for generating one
sentence. The y-axis is the BLEU score. All results are mea-
sured on a subset of 1,000 samples of the validation set.

6.2 Attention mechanism

Our model implements attention over input table
fields. For each word w in the table, Equation (23)
takes the language model score φWct and adds a bias
φQct . The bias is the dot-product between a represen-
tation of the table field in which w occurs and a rep-
resentation of the context, Equation (22) that sum-
marizes the previously generated fields and words.

na
m

e

bi
rth

da
te

bi
rth

pl
ac

e

na
tio

na
lit

y
oc

cu
pa

tio
n

1 2 1 2 3 1 2 1 1 2
< s >
nellie
wong

(

born
september

12
,

1934
)

is
an

american
poet
and

activist
.

Figure 4: Visualization of attention scores for Nellie Wong’s
Wikipedia infobox. Each row represents the probability distri-
bution over (field, position) pairs given the previous words (i.e.
the words heading the preceding rows as well as the current
row). Darker colors depict higher probabilities.

Figure 4 shows that this mechanism adds a large
bias to continue a field if it has not generated all
tokens from the table, e.g., it emits the word oc-
curring in name 2 after generating name 1. It also
nicely handles transitions between field types, e.g.,
the model adds a large bias to the words occurring
in the occupation field after emitting the birthdate.

6.3 Sentence decoding
We use a standard beam search to explore a larger
set of sentences compared to simple greedy search.
This allows us to explore K times more paths which
comes at a linear increase in the number of forward
computation steps for our language model. We com-
pare various beam settings for the baseline Template
KN and our Table NLM (Figure 3). The best vali-
dation BLEU can be obtained with a beam size of
K = 5. Our model is also several times faster than
the baseline, requiring only about 200 ms per sen-
tence with K = 5. Beam search generates many n-
gram lookups for Kneser-Ney which requires many

8

1210

Model Generated Sentence

Reference frederick parker-rhodes (21 march 1914 – 21 november 1987) was an english linguist, plant
pathologist, computer scientist, mathematician, mystic, and mycologist.

Baseline
(Template KN)

frederick parker-rhodes (born november 21 , 1914 – march 2 , 1987) was an english cricketer
.

Table NLM
+Local (field, start)

frederick parker-rhodes (21 november 1914 – 2 march 1987) was an australian rules foot-
baller who played with carlton in the victorian football league (vfl) during the XXXXs and
XXXXs .

+ Global (field) frederick parker-rhodes (21 november 1914 – 2 march 1987) was an english mycology and
plant pathology , mathematics at the university of uk .

+ Global
(field, word)

frederick parker-rhodes (21 november 1914 – 2 march 1987) was a british computer scientist
, best known for his contributions to computational linguistics .

Table 4: First sentence from the current Wikipedia article about Frederick Parker-Rhodes and the sentences generated from the
three versions of our table-conditioned neural language model (Table NLM) using the Wikipedia infobox seen in Figure 1.

random memory accesses; while neural models per-
form scoring through matrix-matrix products, an op-
eration which is more local and can be performed in
a block parallel manner where modern graphic pro-
cessors shine (Kindratenko, 2014).

6.4 Qualitative analysis

Table 4 shows generations for different variants of
our model based on the Wikipedia table in Figure 1.
First of all, comparing the reference to the fact table
reveals that our training data is not perfect. The birth
month mentioned in the fact table and the first sen-
tence of the Wikipedia article are different; this may
have been introduced by one contributor editing the
article and not keeping the information consistent.

All three versions of our model correctly generate
the beginning of the sentence by copying the name,
the birth date and the death date from the table. The
model correctly uses the past tense since the death
date in the table indicates that the person has passed
away. Frederick Parker-Rhodes was a scientist, but
this occupation is not directly mentioned in the table.
The model without global conditioning can there-
fore not predict the right occupation, and it contin-
ues the generation with the most common occupa-
tion (in Wikipedia) for a person who has died. In
contrast, the global conditioning over the fields helps
the model to understand that this person was indeed
a scientist. However, it is only with the global con-
ditioning on the words that the model can infer the
correct occupation, i.e., computer scientist.

7 Conclusions

We have shown that our model can generate flu-
ent descriptions of arbitrary people based on struc-
tured data. Local and global conditioning improves
our model by a large margin and we outperform a
Kneser-Ney language model by nearly 15 BLEU.
Our task uses an order of magnitude more data than
previous work and has a vocabulary that is three or-
ders of magnitude larger.

In this paper, we have only focused on generating
the first sentence and we will tackle the generation of
longer biographies in future work. Also, the encod-
ing of field values can be improved. Currently, we
only attach the field type and token position to each
word type and perform a max-pooling for local con-
ditioning. One could leverage a richer representation
by learning an encoder conditioned on the field type,
e.g. a recurrent encoder or a convolutional encoder
with different pooling strategies.

Furthermore, the current training loss function
does not explicitly penalize the model for generating
incorrect facts, e.g. predicting an incorrect national-
ity or occupation is currently not considered worse
than choosing an incorrect determiner. A loss func-
tion that could assess factual accuracy would cer-
tainly improve sentence generation by avoiding such
mistakes. Also it will be important to define a strat-
egy for evaluating the factual accuracy of a genera-
tion, beyond BLEU, ROUGE or NIST.

9

1211

References
G. Angeli, P. Liang, and D. Klein. 2010. A simple

domain-independent probabilistic approach to genera-
tion. In Proceedings of the 2010 Conference on Empir-
ical Methods in Natural Language Processing, pages
502–512. Association for Computational Linguistics.

D. Bahdanau, K. Cho, and Y. Bengio. 2015. Neural ma-
chine translation by jointly learning to align and trans-
late. In International Conference on Learning Repre-
sentations.

R. Barzilay and M. Lapata. 2005. Collective content se-
lection for concept-to-text generation. In Proceedings
of the conference on Human Language Technology and
Empirical Methods in Natural Language Processing,
pages 331–338.

R. Barzilay and M. Lapata. 2006. Aggregation via set
partitioning for natural language generation. In Pro-
ceedings of the main conference on Human Language
Technology Conference of the North American Chapter
of the Association of Computational Linguistics, pages
359–366. Association for Computational Linguistics.

A. Belz and E. Reiter. 2006. Comparing automatic and
human evaluation of nlg systems. In In Proc. EACL06,
pages 313–320.

A. Belz. 2008. Automatic generation of weather forecast
texts using comprehensive probabilistic generation-
space models. Natural Language Engineering,
14(04):431–455.

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. 2003.
A neural probabilistic language model. Journal of Ma-
chine Learning Research, 3:1137–1155.

K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Tay-
lor. 2008. Freebase: a collaboratively created graph
database for structuring human knowledge. In Inter-
national Conference on Management of Data, pages
1247–1250. ACM.

R. Dale, S. Geldof, and J.-P. Prost. 2003. Coral: Us-
ing natural language generation for navigational as-
sistance. In Proceedings of the 26th Australasian
computer science conference-Volume 16, pages 35–44.
Australian Computer Society, Inc.

J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz, and
J. Makhoul. 2014. Fast and robust neural network
joint models for statistical machine translation. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics, volume 1, pages
1370–1380.

P. A. Duboue and K. R. McKeown. 2002. Content
planner construction via evolutionary algorithms and a
corpus-based fitness function. In Proceedings of INLG
2002, pages 89–96.

H. Fang, S. Gupta, F. Iandola, R. K. Srivastava, L. Deng,
P. Dollar, J. Gao, X. He, M. Mitchell, J. C. Platt, L. C.

Zitnick, and G. Zweig. 2015. From captions to visual
concepts and back. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June.

D. Ferrucci. 2012. Introduction to this is watson. IBM
Journal of Research and Development, 56(3.4):1–1.

D. Galanis and I. Androutsopoulos. 2007. Generating
multilingual descriptions from linguistically annotated
owl ontologies: the naturalowl system. In Proceed-
ings of the Eleventh European Workshop on Natural
Language Generation, pages 143–146. Association for
Computational Linguistics.

N. Green. 2006. Generation of biomedical arguments for
lay readers. In Proceedings of the Fourth International
Natural Language Generation Conference, pages 114–
121. Association for Computational Linguistics.

B. Gyawali and C. Gardent. 2014. Surface realisation
from knowledge-bases. In Proc. of ACL.

K. Heafield, I. Pouzyrevsky, J. H. Clark, and P. Koehn.
2013. Scalable modified Kneser-Ney language model
estimation. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics,
pages 690–696, Sofia, Bulgaria, August.

A. Karpathy and L. Fei-Fei. 2015. Deep visual-semantic
alignments for generating image descriptions. In The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June.

J. Kim and R. J. Mooney. 2010. Generative alignment
and semantic parsing for learning from ambiguous su-
pervision. In Proceedings of the 23rd International
Conference on Computational Linguistics: Posters,
pages 543–551. Association for Computational Lin-
guistics.

V. Kindratenko. 2014. Numerical Computations with
GPUs. Springer.

R. Kiros, R. Salakhutdinov, and R. S. Zemel. 2014.
Unifying visual-semantic embeddings with multi-
modal neural language models. arXiv preprint
arXiv:1411.2539.

I. Konstas and M. Lapata. 2013. A global model
for concept-to-text generation. J. Artif. Int. Res.,
48(1):305–346, October.

I. Langkilde and K. Knight. 1998. Generation that ex-
ploits corpus-based statistical knowledge. In Proc.
ACL, pages 704–710.

R. Lebret and R. Collobert. 2014. Word embeddings
through hellinger pca. In Proceedings of the 14th Con-
ference of the European Chapter of the Association for
Computational Linguistics, pages 482–490, Gothen-
burg, Sweden, April. Association for Computational
Linguistics.

Y. A LeCun, L. Bottou, G. B. Orr, and K.-R. Müller.
2012. Efficient backprop. In Neural networks: Tricks
of the trade, pages 9–48. Springer.

10

1212

P. Liang, M. I. Jordan, and D. Klein. 2009. Learning
semantic correspondences with less supervision. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of
the AFNLP: Volume 1-Volume 1, pages 91–99. Associ-
ation for Computational Linguistics.

W. Lu and H. T. Ng. 2011. A probabilistic forest-
to-string model for language generation from typed
lambda calculus expressions. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1611–1622. Association for
Computational Linguistics.

M.-T. Luong, I. Sutskever, Q. V Le, O. Vinyals, and
W. Zaremba. 2015. Addressing the rare word prob-
lem in neural machine translation. In Proc. ACL, pages
11–19.

F. Mairesse and M. Walker. 2011. Controlling user per-
ceptions of linguistic style: Trainable generation of
personality traits. Comput. Linguist., 37(3):455–488.

C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J.
Bethard, and D. McClosky. 2014. The Stanford
CoreNLP natural language processing toolkit. In As-
sociation for Computational Linguistics (ACL) System
Demonstrations, pages 55–60.

H. Mei, M. Bansal, and M. R. Walter. 2016. What to
talk about and how? selective generation using lstms
with coarse-to-fine alignment. In Proceedings of Hu-
man Language Technologies: The 2016 Annual Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics.

A. Oh and A. Rudnicky. 2000. Stochastic language gen-
eration for spoken dialogue systems. In ANLP/NAACL
Workshop on Conversational Systems, pages 27–32.

A. Ratnaparkhi. 2002. Trainable approaches to sur-
face natural language generation and their application
to conversational dialog systems. Computer Speech &
Language, 16(3):435–455.

E. Reiter, R. Dale, and Z. Feng. 2000. Building natural
language generation systems, volume 33. MIT Press.

E. Reiter, S. Sripada, J. Hunter, J. Yu, and I. Davy. 2005.
Choosing words in computer-generated weather fore-
casts. Artificial Intelligence, 167(1):137–169.

L. Shang, Z. Lu, and H. Li. 2015. Neural responding
machine for short-text conversation. arXiv preprint
arXiv:1503.02364.

Radu Soricut and Daniel Marcu. 2006. Stochastic lan-
guage generation using widl-expressions and its appli-
cation in machine translation and summarization. In
Proc. ACL, pages 1105–1112.

R. Turner, S. Sripada, and E. Reiter. 2010. Generating
approximate geographic descriptions. In Empirical
methods in natural language generation, pages 121–
140. Springer.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. 2015.
Show and tell: A neural image caption generator. In
The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June.

T. Wen, M. Gasic, N. Mrkšić, P. Su, D. Vandyke, and
S. Young. 2015. Semantically conditioned lstm-
based natural language generation for spoken dialogue
systems. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 1711–1721, Lisbon, Portugal, September. Asso-
ciation for Computational Linguistics.

Y. W. Wong and R. J. Mooney. 2007. Generation by
inverting a semantic parser that uses statistical machine
translation. In HLT-NAACL, pages 172–179.

K. Xu, J. Ba, R. Kiros, A. Courville, R. Salakhutdinov,
R. Zemel, and Y. Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual attention.
In Proceedings of The 32nd International Conference
on Machine Learning, volume 37, July.

K. Yao, G. Zweig, and B. Peng. 2015. Attention with in-
tention for a neural network conversation model. arXiv
preprint arXiv:1510.08565.

11

1213

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1214–1223,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

What makes a convincing argument? Empirical analysis and detecting
attributes of convincingness in Web argumentation

Ivan Habernal† and Iryna Gurevych†‡
†Ubiquitous Knowledge Processing Lab (UKP)

Department of Computer Science, Technische Universität Darmstadt
‡Ubiquitous Knowledge Processing Lab (UKP-DIPF)

German Institute for Educational Research
www.ukp.tu-darmstadt.de

Abstract

This article tackles a new challenging task in
computational argumentation. Given a pair of
two arguments to a certain controversial topic,
we aim to directly assess qualitative properties
of the arguments in order to explain why one
argument is more convincing than the other
one. We approach this task in a fully empirical
manner by annotating 26k explanations writ-
ten in natural language. These explanations
describe convincingness of arguments in the
given argument pair, such as their strengths or
flaws. We create a new crowd-sourced cor-
pus containing 9,111 argument pairs, multi-
labeled with 17 classes, which was cleaned
and curated by employing several strict quality
measures. We propose two tasks on this data
set, namely (1) predicting the full label dis-
tribution and (2) classifying types of flaws in
less convincing arguments. Our experiments
with feature-rich SVM learners and Bidirec-
tional LSTM neural networks with convolu-
tion and attention mechanism reveal that such
a novel fine-grained analysis of Web argument
convincingness is a very challenging task. We
release the new corpus UKPConvArg2 and the
accompanying software under permissive li-
censes to the research community.

1 Introduction

People engage in argumentation in various contexts,
both online and in the real life. Existing definitions
of argumentation do not solely focus on giving rea-
sons and laying out a logical framework of premises
and conclusions, but also highlight its social pur-
pose which is to convince or to persuade (O’Keefe,

2011; van Eemeren et al., 2014; Blair, 2011). As-
sessing the quality and strength of perceived argu-
ments therefore plays an inherent role in argumen-
tative discourse. Despite strong theoretical foun-
dations and plethora of normative theories, such as
Walton’s schemes and their critical questions (Wal-
ton, 1989), an ideal model of critical discussion in
the pragma-dialectic view (Van Eemeren and Groo-
tendorst, 1987), or research into fallacies (Boudry et
al., 2015), assessing qualitative criteria of everyday
argumentation represents a challenge for argumenta-
tion scholars and practitioners (Weltzer-Ward et al.,
2009; Swanson et al., 2015; Rosenfeld and Kraus,
2015).

Addressing qualitative aspects of arguments has
recently started gaining attention in the field of com-
putational argumentation. Scoring strength of per-
suasive essays (Farra et al., 2015; Persing and Ng,
2015), exploring interaction in persuasive dialogues
on Reddit (Tan et al., 2016), or detecting convinc-
ing arguments (Habernal and Gurevych, 2016) are
among recent attempts to tackle the quality of argu-
mentation. However, these approaches are holistic
and do not necessarily explain why a given argument
is strong or convincing.

We asked the following research questions. First,
can we assess what makes an argument convincing
in a purely empirical fashion as opposite to theo-
retical normative approaches? Second, to what ex-
tent can the problem be tackled by computational
models? To address these questions, we exploit our
recently introduced UKPConvArg1 corpus (Haber-
nal and Gurevych, 2016). This data set consists of
11,650 argument pairs – two arguments with the

1214

Prompt: Should physical education be mandatory in
schools? Stance: Yes!

Argument 1 Argument 2
PE should be compulsory be-
cause it keeps us constantly fit
and healthy. If you really dis-
like sports, then you can quit
it when you’re an adult. But
when you’re a kid, the best
thing for you to do is study,
play and exercise. If you prefer
to be lazy and lie on the couch
all day then you are most likely
to get sick and unfit. Besides,
PE helps kids be better at team-
work.

physical education
should be manda-
tory cuhz 112,000
people have died
in the year 2011
so far and it’s
because of the
lack of physical
activity and peo-
ple are becoming
obese!!!!

A1 is more convincing than A2, because:
• “A1 is more intelligently written and makes

some good points (teamwork, for example). A2
used ‘cuhz’ and I was done reading because
that sounds stupid.”
• “A1 gives more reasons and goes into detail, A2

only has one fact”
• “A1 makes several compelling points. A2 uses

poor spelling and grammar.”

Figure 1: An annotated argument pair from the UKPConvArg

corpus with three reasons explaining the decision about con-

vincingness (ID arg54258 arg202285).

same standpoint to the given topic, annotated with
a binary relation describing which argument from
the pair is more convincing. Each pair also contains
several reasons written in natural language explain-
ing which properties of the arguments influence their
convincingness. An example of such an argument
pair is shown in Figure 1.

We use these natural language reasons as a proxy
to assess qualitative properties of the arguments in
each argument pair. Our main contributions are:
(1) We propose empirically inspired labels of qual-
ity properties of Web arguments and design a hier-
archical annotation scheme. (2) We create a new
large crowd-sourced benchmark data set containing
9,111 argument pairs multi-labeled with 17 cate-
gories which is improved by local and global fil-
tering techniques. (3) We experiment with sev-
eral computational models, both traditional and neu-

ral network-based, and evaluate their performance
quantitatively and qualitatively.

The newly created data set UKPConvArg2 is
available under CC-BY-SA license along with the
experimental software for full reproducibility at
GitHub.1

2 Related Work

The growing field of computational argumentation
has been traditionally devoted to structural tasks,
such as argument component detection and classifi-
cation (Habernal and Gurevych, 2017; Habernal and
Gurevych, 2015), argument structure parsing (Peld-
szus and Stede, 2015; Stab and Gurevych, 2014),
or argument schema classification (Lawrence and
Reed, 2015), leaving the issues of argument evalu-
ation or quality assessment as an open future work.

There are only few attempts to tackle the quali-
tative aspects of arguments, especially in the Web
discourse. Park and Cardie (2014) classified propo-
sitions in Web arguments into four classes with re-
spect to their level of verifiability. Focusing on
convincingness of Web arguments, Habernal and
Gurevych (2016) annotated 16k pairs of arguments
with a binary relation “is more convincing” and also
elicited explanation for the annotators’ decisions.

Recently, research in persuasive essay scoring
has started combining holistic approaches based on
rubrics for several dimensions typical to this genre
with explicit argument detection. Persing and Ng
(2015) manually labeled 1,000 student persuasive
essays with a single score on the 1–4 scale and
trained a regression predictor with a rich feature set
using LIBSVM. Among traditional features (such
as POS or semantic frames), an argument structure
parser by Stab and Gurevych (2014) was employed.
Farra et al. (2015) also deal with essay scoring but
rather then tackling the argument structure, they fo-
cus on methods for detecting opinion expressions.
Persuasive essays however represent a genre with a
rather strict qualitative and formal requirements (as
taught in curricula) and substantially differ from on-
line argumentation.

Argument evaluation belongs to the central re-
search topics among argumentation scholars (Toul-

1https://github.com/UKPLab/
emnlp2016-empirical-convincingness

1215

min, 2003; Walton et al., 2008; Van Eemeren and
Grootendorst, 1987). Yet treatment of assessing ar-
gumentation quality, persuasiveness, or convincing-
ness is traditionally based on evaluating relevance,
sufficiency or acceptability of premises (Govier,
2010; Johnson and Blair, 2006) or categorizing fal-
lacies (Hamblin, 1970; Tindale, 2007). However,
the nature of these normative approaches causes a
gap between the ‘ideal’ models and empirically en-
countered real-world arguments, such as those on
the Web (van Eemeren et al., 2014; Walton, 2012).

Regarding the methodology utilized later in this
paper, deep (recursive) neural networks have gained
extreme popularity in NLP in recent years. Long
Short-Term Memory networks (LSTM) with At-
tention mechanism have been applied on textual
entailment (Rocktäschel et al., 2016), Question-
Answering (Golub and He, 2016), or source-code
summarization (Allamanis et al., 2016).

3 Data

As our source data set, we took the publicly
available UKPConvArg1 corpus.2 It is based
on arguments originated from 16 debates from
Web debate platforms createdebate.com and
convinceme.net, each debate has two sides
(usually pro and con). Arguments from each of the
32 debate sides are connected into a set of argument
pairs, and each argument pair is annotated with a
binary relation (argument A is more/less convincing
than argument B), resulting in total into 11,650 argu-
ment pairs. Annotations performed by Habernal and
Gurevych (2016) also contain several reasons writ-
ten by crowd-workers that explain why a particular
argument is more or less convincing; see an example
in Figure 1.

As these reasons were written in an uncontrolled
setting, they naturally reflect the main properties of
argument quality in a downstream task, which is to
decide which argument from a pair is more con-
vincing. It differs from scoring arguments in iso-
lation, which is inherently harder not only due to
subjectivity in argument “strength” decision but also
because of possible annotator’s prior bias (Haber-
nal and Gurevych, 2016). Assessing an argument

2https://github.com/UKPLab/
acl2016-convincing-arguments

in context helps to emphasize its main flaws or
strengths. This approach is also known as knowl-
edge elicitation – acquiring appropriate information
from experts by asking ”why?” (Reed and Rowe,
2004).

We therefore used the reasons as a proxy for de-
veloping a scheme for labeling argument quality at-
tributes. This was done in a purely bottom-up em-
pirical manner, as opposed to using ‘standard’ eval-
uation criteria known from argumentation literature
(Johnson and Blair, 2006; Schiappa and Nordin,
2013). In particular, we split all reasons into several
reason units by simple preprocessing (splitting us-
ing Stanford CoreNLP (Manning et al., 2014), seg-
mentation into Elementary Discourse Units by RST
tools (Surdeanu et al., 2015)) and identified the ref-
erenced arguments (A1 or A2) by pattern matching
and dependency parsing. For example, each reason
from Figure 1 would be transformed into two reason
units.3 Overall, we obtained about 70k reason units
from the entire UKPConvArg1 corpus.

3.1 Annotation scheme

In order to develop a code book for assigning a la-
bel to each reason unit, we ran several pilot ex-
pert annotation studies (each with 200-300 reason
units). Having a set of ≈ 25 distinct labels, we
ran two larger studies on Amazon Mechanical Turk
(AMT), each with 500 reason units and 10 workers.
The workers were split into two groups; we then
estimated gold labels for each group using MACE
(Hovy et al., 2013) and compared both groups’ re-
sults in order to find systematic discrepancies. Fi-
nally, we ended up with a set of 19 distinct labels
(classes). As the number of classes is too big for
non-expert crowd workers, we developed a hierar-
chical annotation process guided by questions that
narrow down the final class decision. The scheme is
depicted in Figure 2.4 Workers were shown only the
reason units without seeing the original arguments.

3We picked this example for its simplicity, in reality the texts
are much more fuzzy.

4It might seem that some labels are missing, such as C8-2
and C8-3; these belong to those removed during the pilot stud-
ies.

1216

Figure 2: Decision tree-based annotation schema for labeling reason units using Mechanical Turk. CX-Y represent the final labels.

3.2 Annotation

We sampled 26,000 unique reason units ordered by
the original author competence provided as part of
the UKPConvArg corpus. We expected that work-
ers with higher competence tend to write better rea-
sons for their explanations. Using the previously in-
troduced scheme, 776 AMT workers annotated the
batch during two weeks; we required assignments
from 5 workers for a single item. We employed
MACE (Hovy et al., 2013) for gold label and worker
competence estimation with 95% threshold to ignore
the less confident labels. Several workers were re-
jected based on their low computed competence and
other criteria, such as too short submission times.

3.3 Data cleaning

We performed several cleaning procedures to in-
crease quality and consistency of the annotated data
(apart from initial MACE filtering already explained
above).

Local cleaning First, we removed 3,859 reason
units annotated either with C1-2 (”not an explana-
tion”) and C8-6 (”too topic-specific”, which usually
paraphrases some details from the related argument
and is not general enough). In the next step, we
removed reason units with wrong polarity. In par-
ticular, all reason units labeled with C8-* or C9-*
should refer to the more convincing argument in
the argument pair (as they describe positive prop-
erties), whereas all reasons with labels C5-*, C6-*,
and C7-* should refer to the less convincing argu-
ment. The target arguments for reason units were
known from the heuristic preprocessing (see above);
in this step 2,455 units were removed.

Global cleaning Since the argument pairs from
one debate can be projected into an argument graph
(Habernal and Gurevych, 2016), we utilized this
‘global’ context for further consistency cleaning.

Suppose we have two argument pairs, P1(A →
B) and P2(B → C) (where→ means “is more con-
vincing than”). Let P1(RB) be reason unit targeting

1217

B in argument pair P1 and similarly P2(RB) rea-
son unit targeting B in argument pair P2. In other
words, two reason units target the same argument in
two different argument pairs (in one of them the ar-
gument is more convincing while in the other pair
it is less convincing). There might then exist con-
tradicting combination of classes for P1(RB) and
P2(RB). For example classes C9-2 and C7-3 are
contradicting, as the same argument cannot be both
”on the topic” and ”off-topic” at the same time.

When such a conflict between two reason units
occurred, we selected the reason with a higher score
using the following formula:

wW ∗ σ

∑

A=G

wA − λ
∑

A 6=G

wA

 (1)

where wW is the competence of the original au-
thor of the reason unit (originated from the UKP-
ConvArg corpus), A = G are crowdsourced as-
signments for a single reason unit that match the
final predicted gold label, A 6= G are assignments
that differ from the final predicted gold label, wA

is the competence of worker for assignment A, λ is
a penalty for non-gold labels, and σ is the sigmoid
function to squeeze the score between 0 and 1.

We found 25 types of global contradictions be-
tween labels for reason units and used them for
cleaning the data; in total 3,790 reason units were
removed in this step. After all cleaning procedures,
annotations from reason units were mapped back to
argument pairs, resulting into a multi-label annota-
tion of one or both arguments from the given pair. In
total 9,111 pairs from the UKPConvArg corpus were
annotated.

For example, the final annotations of argument
pair shown in Figure 1 contain four labels – C8-1 (as
the more convincing argument “has more details, in-
formation, facts, or examples / more reasons / better
reasoning / goes deeper / is more specific”), C9-3
(as the more convincing argument “has provoking
question / makes you think”), C5-2 (as the less con-
vincing argument “has language issues / bad gram-
mar /...”), and C6-1 (as the less convincing argument
“provides not enough support / ...”). Only four of
six reason units for this argument pair were anno-
tated because of the competence score of their au-
thors.

of labels/pair # of pairs
1 4,584
2 2,959
3 1,162
4 330
5 68
6 8
Total 9,111

Table 1: Number of annotated labels per argument pairs.

Figure 3: Distribution of labels in the annotated argument pairs.

Consult Figure 2 for label descriptions.

Table 1 shows number of labels per argument
pairs; about a half of the argument pairs have only
one label. Figure 3 shows distribution of label in
the entire data set which is heavily skewed towards
C8-1 label. This is not surprising, as this label was
used for reason units pointing out that the more con-
vincing argument provided more reasons, details, in-
formation or better reasoning – a feature inherent to
argumentation seen as giving reasons (Freeley and
Steinberg, 2008).

3.4 Data validation

Since the qualitative attributes of arguments were
annotated indirectly by labeling their corresponding
reason units without seeing the original arguments,
we wanted to validate correctness of this approach.
We designed a validation study, in which workers
were shown the original argument pair and two sets
of labels. The first set contained the true labels as an-
notated previously, while we randomly replaced few
labels in the second set. The goal was then to decide
which set of labels better explains that argument A is

1218

more convincing than argument B. For example, for
the argument pair from Figure 1, one set of shown
labels would be {C8-1, C9-3, C5-2, C6-1} (the cor-
rect set) while the other ‘distracting’ set would be
{C8-1, C9-3, C5-1, C7-3} .

We randomly sampled 500 argument pairs and
collected 9 assignments per pair on AMT; we again
used MACE with 95% threshold. Accuracy of work-
ers on 235 argument pairs achieved 82%. We can
thus conclude that workers tend to prefer explana-
tions based on labels from the reason units and us-
ing the annotation process presented in this section
is reliable. Total costs of the annotations including
pilot studies, bonuses, and data validation were USD
3,300.

4 Experiments

We propose two experiments, both performed in 16-
fold cross-domain validation. In each fold, argument
pairs from 15 debates are used and the remaining
one is used for testing. In both experiments, it is as-
sumed that the more convincing argument in a pair is
known and we concatenate (using a particular delim-
iter) both arguments such that the more convincing
argument comes first.

4.1 Predicting full multi-label distribution

This experiment is a multi-label classification.
Given an argument pair annotated with several la-
bels, the goal is to predict all these labels.

We use two deep learning models. Our first
model, Bidirectional Long Short-Term Memory
(BLSTM) network contains two LSTM blocks (for-
ward and backward), each with 64 hidden units on
the output. The output is concatenated into a sin-
gle vector and pushed through sigmoid layer with
17 output units (corresponding to 17 labels). We use
cross entropy loss function in order to minimize dis-
tance of label distributions in training and test data
(Nam et al., 2014). In the input layer, we rely on
pre-trained word embeddings from Glove (Penning-
ton et al., 2014) whose weights are updated during
training the network.

The second models is BLSTM extended with
an attention mechanism (Rocktäschel et al., 2016;
Golub and He, 2016) combined with convolution
layers over the input. In particular, the input em-

BLSTM BLSTM/CNN/ATT
Debate H-loss one-E H-loss one-E
Ban plastic water bot-
tles?

0.092 0.283 0.090 0.305

Christianity or Atheism 0.105 0.212 0.105 0.218
Evolution vs. Creation 0.093 0.196 0.094 0.234
Firefox vs. Internet Ex-
plorer

0.080 0.312 0.078 0.345

Gay marriage: right or
wrong?

0.095 0.243 0.094 0.270

Should parents use
spanking?

0.082 0.312 0.083 0.344

If your spouse commit-
ted murder...

0.094 0.297 0.094 0.272

India has the potential to
lead the world

0.088 0.294 0.086 0.322

Is it better to have a lousy
father or to be fatherless?

0.086 0.367 0.085 0.381

Is porn wrong? 0.098 0.278 0.100 0.270
Is the school uniform a
good or bad idea?

0.081 0.279 0.077 0.406

Pro-choice vs. Pro-life 0.095 0.218 0.098 0.218
Should Physical Educa-
tion be mandatory?

0.095 0.273 0.095 0.277

TV is better than books 0.091 0.265 0.087 0.300
Personal pursuit or com-
mon good?

0.095 0.328 0.094 0.343

W. Farquhar ought to be
honored...

0.054 0.528 0.052 0.570

Average 0.089 0.293 0.088 0.317

Table 2: Results of multi-label classification from Experiment

1. Hamming-loss and One-Error are shown for two systems –

Bidirectional LSTM and Bidirectional LSTM with Convolution

and Attention.

bedding layer is convoluted using 4 different convo-
lution sizes (2, 3, 5, 7), each with 1,000 randomly
initialized weight vectors. Then we perform max-
over-time pooling and concatenate the output into a
single vector. This vector is used as the attention
module in BLSTM.

We evaluate the system using two widely used
metrics in multi-label classification. First, Hamming
loss is the average per-item per-class total error; the
smaller the better (Zhang and Zhou, 2007). Second,
we report One-error (Sokolova and Lapalme, 2009)
which corresponds to the error of the predicted la-
bel with highest probability; the smaller the better.
We do not report other metrics (such as Area Under
PRC-curves, MAP, or cover) as they require tuning
a threshold parameter, see a survey by Zhang and
Zhou (2014).

Results from Table 2 do not show significant dif-
ferences between the two models. Putting the one-
error numbers into human performance context can
be done only indirectly, as the data validation pre-

1219

sented in Section 3.4 had a different set-up. Here
we can see that the error rate of the most confi-
dent predicted label is about 30%, while human per-
formed similarly by choosing from a two different
label sets in a binary settings, so their task was in-
herently harder.

Error analysis and discussion We examined
outputs from the label distribution prediction for
BLSTM/ATT/CNN. It turns out that the output layer
leans toward predicting the dominant label C8-1,
while prediction of other labels is seldom. We sus-
pect two causes, first, the highly skewed distribu-
tion of labels (see Figure 3) and, second, insufficient
training data sizes where 13 classes have less than 1k
training examples (while Goodfellow et al. (2016)
recommend at least 5k instances per class).

Although multi-label classification may be
viewed as a set of binary classification tasks that
decides for each label independently (and thus al-
lows for employing other ‘standard’ classifiers such
as SVM), this so-called binary relevance approach
ignores dependencies between the labels. That is
why we focused directly on deep-learning methods,
as they are capable of learning and predicting a full
label distribution (Nam et al., 2014).

4.2 Predicting flaws in less convincing
arguments

In the second experiment, we focus on predict-
ing flaws in arguments using coarse-grained labels.
While this task makes several simplifications in the
labeling, it still provides meaningful insights into ar-
gument quality assessment. For this purpose, we use
only argument pairs where the less convincing argu-
ment is labeled with a single label (no multi-label
classification). Second, we merged all labels from
categories C5-* C6-* C7-* into three classes cor-
responding to their parent nodes in the annotation
decision schema from Figure 2. Table 3 shows dis-
tribution of the gold data for this task with explana-
tion of the labels. It is worth noting that predicting
flaws in the less convincing argument is still context-
dependent and requires the entire argument pair be-
cause some of the quality labels are relative to the
more convincing argument (such as “less reasoning”
or “not enough support”).

For this experiment, we modified the output layer

Label Instances Description
C5 856 Language and presentation issues
C6 1,203 Reasoning and factuality issues
C7 1,651 Off-topic, non-argument, nonsense
Total 3,710

Table 3: Gold data distribution for the second experiment. Ar-

gument pairs with a single label for the less convincing argu-

ment.

of the neural models from the previous experiment.
The non-linear output function is softmax and we
train the networks using categorical cross-entropy
loss. We also add another baseline model that em-
ploys SVM with RBF kernel5 and a rich set of lin-
guistically motivated features, similarly to (Haber-
nal and Gurevych, 2016). The feature set includes
uni- and bi-gram presence, ratio of adjective and
adverb endings that may signalize neuroticism (Cor-
ney et al., 2002), contextuality measure (Heylighen
and Dewaele, 2002), dependency tree depth, ratio
of exclamation or quotation marks, ratio of modal
verbs, counts of several named entity types, ratio
of past vs. future tense verbs, POS n-grams, pres-
ence of dependency tree production rules, seven dif-
ferent readability measures (e.g., Ari (Senter and
Smith, 1967), Coleman-Liau (Coleman and Liau,
1975), Flesch (Flesch, 1948), and others), five sen-
timent scores (from very negative to very positive)
(Socher et al., 2013), spell-checking using standard
Unix words, ratio of superlatives, and some sur-
face features such as sentence lengths, longer words
count, etc.6 It results into a sparse 60k-dimensional
feature vector space.

Results in Table 4 suggest that the SVM-RBF
baseline system performs poorly and its results are
on par with a majority class baseline (not reported in
detail). Both deep learning models significantly out-
perform the baseline, yielding Macro-F1 score about
0.35. The attention-based model performs better
than simple BLSTM in two classes (C5 and C6), but
the overall Macro-F1 score is not significantly bet-
ter.

5We used LISBVM (Chang and Lin, 2011) with the default
hyper-parameters. As Fernández-Delgado et al. (2014) show,
SVM with gaussian kernels is a reasonable best choice on aver-
age.

6Detailed explanation of the features can be found directly
in the attached source codes.

1220

Class C5 Class C6 Class C7
Model P R F1 P R F1 P R F1 M-F1 C.I.
SVM-RBF 0.351 0.023 0.044 0.394 0.083 0.137 0.446 0.918 0.600 0.260 0.014
BLSTM 0.265 0.600 0.368 0.376 0.229 0.285 0.479 0.301 0.370 0.341 0.015
BLSTM/ATT/CNN 0.270 0.625 0.378 0.421 0.247 0.311 0.484 0.301 0.371 0.353 0.015

Table 4: Results for experiment 2. P = precision, R = recall, M-F1 = macro F1, C.I. = confidence interval at 0.95. Both BLSTM

and BLSTM/ATT/CNN are significantly better than SVM-RBF (p < 0.05, exact Liddell’s test).

Error analysis We manually examined several
dozens of predictions where the BLSTM model
failed but the BLSTM/ATT/CNN model was correct
in order to reveal some phenomena that the system is
capable to cope with. First, the BLSTM/ATT/CNN
model started catching some purely abusive, sar-
castic, and attacking arguments. Also, the lan-
guage/grammar issues were revealed in many cases,
as well as using slang in arguments.

Examining predictions in which both systems
failed reveal some fundamental limitations of the
current purely data-driven computational approach.
While the problem of not catching off-topic argu-
ments can be probably modeled by incorporating
the debate description or some sort of debate topic
model into the attention vector, the more common
issue of non-sense arguments or fallacious argu-
ments (which seem like actual arguments on the
first view) needs much deeper understanding of real-
world knowledge, logic, and reasoning.

5 Conclusion

This paper presented a novel task in the field of com-
putational argumentation, namely empirical assess-
ment of reasons for argument convincingness. We
created a new large benchmark data set by utilizing
a new annotation scheme and several filtering strate-
gies for crowdsourced data. Then we tackled two
challenging tasks, namely multi-label classification
of argument pairs in order to reveal qualitative prop-
erties of the arguments, and predicting flaws in the
less convincing argument from the given argument
pair. We performed all evaluations in a cross-domain
scenario and experimented with feature-rich SVM
and two state-of-the-art neural network models. The
results are promising but show that the task is inher-
ently complex as it requires deep reasoning about the
presented arguments that goes beyond capabilities of
the current computational models. By releasing the

UKPConvArg2 data and code to the community, we
believe more progress can be made in this direction
in the near future.

Acknowledgments

This work has been supported by the Volkswagen
Foundation as part of the Lichtenberg-Professorship
Program under grant No I/82806, by the German In-
stitute for Educational Research (DIPF), by the Ger-
man Research Foundation (DFG) via the German-
Israeli Project Cooperation (DIP, grant DA 1600/1-
1), by the GRK 1994/1 AIPHES (DFG), by the Ar-
guAna Project GU 798/20-1 (DFG), and by Ama-
zon Web Services in Education Grant award. Lastly,
we would like to thank the anonymous reviewers for
their valuable feedback.

References

Miltiadis Allamanis, Hao Peng, and Charles Sutton.
2016. A convolutional attention network for extreme
summarization of source code. In Maria Florina Bal-
can and Kilian Q. Weinberger, editors, Proceedings of
The 33rd International Conference on Machine Learn-
ing, pages 2091–2100, New York City, NY, June.

J. Anthony Blair. 2011. Argumentation as rational per-
suasion. Argumentation, 26(1):71–81.

Maarten Boudry, Fabio Paglieri, and Massimo Pigliucci.
2015. The Fake, the Flimsy, and the Fallacious: De-
marcating Arguments in Real Life. Argumentation,
29(4):431–456.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: A Library for Support Vector Machines. ACM
Transactions on Intelligent Systems and Technology,
2(3):27:1–27:27.

Meri Coleman and T. L. Liau. 1975. A computer read-
ability formula designed for machine scoring. Journal
of Applied Psychology, 60:283–284.

Malcolm Corney, Olivier de Vel, Alison Anderson, and
George Mohay. 2002. Gender-preferential text min-
ing of e-mail discourse. In Proceedings of the 18th An-

1221

nual Computer Security Applications Conference (AC-
SAC02), pages 282–289.

Noura Farra, Swapna Somasundaran, and Jill Burstein.
2015. Scoring persuasive essays using opinions and
their targets. In Proceedings of the Tenth Workshop on
Innovative Use of NLP for Building Educational Ap-
plications, pages 64–74, Denver, Colorado, June. As-
sociation for Computational Linguistics.

Manuel Fernández-Delgado, Eva Cernadas, Senén Barro,
and Dinani Amorim. 2014. Do we Need Hun-
dreds of Classifiers to Solve Real World Classification
Problems? Journal of Machine Learning Research,
15:3133–3181.

Rudolf Flesch. 1948. A new readability yardstick. Jour-
nal of Applied Psychology, 32:221–233.

Austin J. Freeley and David L. Steinberg. 2008. Argu-
mentation and Debate. Cengage Learning, Stamford,
CT, USA, 12th edition.

David Golub and Xiaodong He. 2016. Character-
Level Question Answering with Attention. In arXiv
preprint. http://arxiv.org/abs/1604.00727.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep learning. Book in preparation for MIT
Press.

Trudy Govier. 2010. A Practical Study of Argument.
Wadsworth, Cengage Learning, 7th edition.

Ivan Habernal and Iryna Gurevych. 2015. Exploiting de-
bate portals for semi-supervised argumentation mining
in user-generated web discourse. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 2127–2137, Lisbon, Por-
tugal, September. Association for Computational Lin-
guistics.

Ivan Habernal and Iryna Gurevych. 2016. Which argu-
ment is more convincing? Analyzing and predicting
convincingness of Web arguments using bidirectional
LSTM. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1589–1599, Berlin, Ger-
many. Association for Computational Linguistics.

Ivan Habernal and Iryna Gurevych. 2017. Argu-
mentation Mining in User-Generated Web Discourse.
Computational Linguistics, 43(1). In press. Preprint:
http://arxiv.org/abs/1601.02403.

Charles L. Hamblin. 1970. Fallacies. Methuen, London,
UK.

Francis Heylighen and Jean-Marc Dewaele. 2002. Vari-
ation in the contextuality of language: An empirical
measure. Foundations of Science, 7(3):293–340.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard Hovy. 2013. Learning Whom to Trust
with MACE. In Proceedings of NAACL-HLT 2013,
pages 1120–1130, Atlanta, Georgia. Association for
Computational Linguistics.

Ralph H. Johnson and Anthony J. Blair. 2006. Logical
Self-Defense. International Debate Education Associ-
ation.

John Lawrence and Chris Reed. 2015. Combining ar-
gument mining techniques. In Proceedings of the 2nd
Workshop on Argumentation Mining, pages 127–136,
Denver, CO, June. Association for Computational Lin-
guistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Association for Computational Lin-
guistics (ACL) System Demonstrations, pages 55–60.

Jinseok Nam, Jungi Kim, Eneldo Loza Mencı́a, Iryna
Gurevych, and Johannes Fürnkranz. 2014. Large-
Scale Multi-label Text Classification – Revisiting Neu-
ral Networks. In Toon Calders, Floriana Esposito,
Eyke Hüllermeier, and Rosa Meo, editors, Proceed-
ings of the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery
in Databases (ECML PKDD), volume 8725 LNCS,
pages 437–452, Nancy, France. Springer Berlin / Hei-
delberg.

Daniel J. O’Keefe. 2011. Conviction, persuasion, and
argumentation: Untangling the ends and means of in-
fluence. Argumentation, 26(1):19–32.

Joonsuk Park and Claire Cardie. 2014. Identifying ap-
propriate support for propositions in online user com-
ments. In Proceedings of the First Workshop on Argu-
mentation Mining, pages 29–38, Baltimore, Maryland,
June. Association for Computational Linguistics.

Andreas Peldszus and Manfred Stede. 2015. Joint pre-
diction in mst-style discourse parsing for argumenta-
tion mining. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 938–948, Lisbon, Portugal, September. As-
sociation for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar, Octo-
ber. Association for Computational Linguistics.

Isaac Persing and Vincent Ng. 2015. Modeling argument
strength in student essays. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Pa-
pers), pages 543–552, Beijing, China. Association for
Computational Linguistics.

Chris Reed and Glenn Rowe. 2004. Araucaria: software
for argument analysis, diagramming and representa-
tion. International Journal on Artificial Intelligence
Tools, 13(04):961–979, dec.

1222

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomás Kociský, and Phil Blunsom.
2016. Reasoning about entailment with neural at-
tention. In Proceedings of the 2016 International
Conference on Learning Representations (ICLR).
http://arxiv.org/abs/1509.06664.

Ariel Rosenfeld and Sarit Kraus. 2015. Providing ar-
guments in discussions based on the prediction of hu-
man argumentative behavior. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelli-
gence, pages 1320–1327.

Edward Schiappa and John P. Nordin. 2013. Argumen-
tation: Keeping Faith with Reason. Pearson UK, 1st
edition.

J. R. Senter and E. A. Smith. 1967. Automated read-
ability index. Technical report AMRL-TR-66-220,
Aerospace Medical Research Laboratories, Ohio.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher
Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1631–
1642, Seattle, Washington, USA, October. Association
for Computational Linguistics.

Marina Sokolova and Guy Lapalme. 2009. A system-
atic analysis of performance measures for classifica-
tion tasks. Information Processing & Management,
45(4):427–437.

Christian Stab and Iryna Gurevych. 2014. Identifying ar-
gumentative discourse structures in persuasive essays.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 46–56, Doha, Qatar, October. Association for
Computational Linguistics.

Mihai Surdeanu, Tom Hicks, and Marco Antonio
Valenzuela-Escarcega. 2015. Two practical rhetorical
structure theory parsers. In Proceedings of the 2015
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Demonstra-
tions, pages 1–5, Denver, Colorado, June. Association
for Computational Linguistics.

Reid Swanson, Brian Ecker, and Marilyn Walker. 2015.
Argument Mining: Extracting Arguments from Online
Dialogue. In Proceedings of the 16th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, pages 217–226, Prague, Czech Republic. Asso-
ciation for Computational Linguistics.

Chenhao Tan, Vlad Niculae, Cristian Danescu-
Niculescu-Mizil, and Lillian Lee. 2016. Winning
Arguments: Interaction Dynamics and Persuasion
Strategies in Good-faith Online Discussions. In
Proceedings of the 25th International Conference
on World Wide Web, pages 613–624, Montreal, CA,

Februar. International World Wide Web Conferences
Steering Committee.

Christopher W. Tindale. 2007. Fallacies and Argument
Appraisal. Cambridge University Press, New York,
NY, USA, critical reasoning and argumentation edi-
tion.

Stephen E. Toulmin. 2003. The Uses of Argument,
Updated Edition. Cambridge University Press, New
York.

Frans H. Van Eemeren and Rob Grootendorst. 1987. Fal-
lacies in pragma-dialectical perspective. Argumenta-
tion, 1(3):283–301.

Frans H. van Eemeren, Bart Garssen, Erik C. W. Krabbe,
A. Francisca Snoeck Henkemans, Bart Verheij, and
Jean H. M. Wagemans. 2014. Handbook of Argumen-
tation Theory. Springer, Berlin/Heidelberg.

Douglas Walton, Christopher Reed, and Fabrizio
Macagno. 2008. Argumentation Schemes. Cambridge
University Press.

Douglas N. Walton. 1989. Informal Logic: A Handbook
for Critical Argument. Cambridge University Press.

Douglas Walton. 2012. Using argumentation schemes
for argument extraction: A bottom-up method. Inter-
national Journal of Cognitive Informatics and Natural
Intelligence, 6(3):33–61.

Lisa Weltzer-Ward, Beate Baltes, and Laura Knight Lynn.
2009. Assessing quality of critical thought in on-
line discussion. Campus-Wide Information Systems,
26(3):168–177.

Min Ling Zhang and Zhi Hua Zhou. 2007. ML-KNN: A
lazy learning approach to multi-label learning. Pattern
Recognition, 40(7):2038–2048.

Min-Ling Zhang and Zhi-Hua Zhou. 2014. A Review on
Multi-Label Learning Algorithms. IEEE Transactions
on Knowledge and Data Engineering, 26(8):1819–
1837.

1223

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1224–1233,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Recognizing Implicit Discourse Relations via Repeated Reading:
Neural Networks with Multi-Level Attention

Yang Liu1,2, Sujian Li1
1 Key Laboratory of Computational Linguistics, Peking University, MOE, China

2 ILCC, School of Informatics, University of Edinburgh, United Kingdom
{cs-ly, lisujian}@pku.edu.cn

Abstract

Recognizing implicit discourse relations is a
challenging but important task in the field
of Natural Language Processing. For such
a complex text processing task, different
from previous studies, we argue that it is
necessary to repeatedly read the arguments
and dynamically exploit the efficient features
useful for recognizing discourse relations.
To mimic the repeated reading strategy, we
propose the neural networks with multi-level
attention (NNMA), combining the attention
mechanism and external memories to gradu-
ally fix the attention on some specific words
helpful to judging the discourse relations.
Experiments on the PDTB dataset show that
our proposed method achieves the state-of-
art results. The visualization of the attention
weights also illustrates the progress that our
model observes the arguments on each level
and progressively locates the important words.

1 Introduction

Discourse relations (e.g., contrast and causality)
support a set of sentences to form a coherent
text. Automatically recognizing discourse relations
can help many downstream tasks such as question
answering and automatic summarization. Despite
great progress in classifying explicit discourse
relations where the discourse connectives (e.g.,
“because”, “but”) explicitly exist in the text,
implicit discourse relation recognition remains a
challenge due to the absence of discourse connec-
tives. Previous research mainly focus on exploring
various kinds of efficient features and machine
learning models to classify the implicit discourse

relations (Soricut and Marcu, 2003; Baldridge and
Lascarides, 2005; Subba and Di Eugenio, 2009;
Hernault et al., 2010; Pitler et al., 2009; Joty et
al., 2012). To some extent, these methods simulate
the single-pass reading process that a person quickly
skim the text through one-pass reading and directly
collect important clues for understanding the text.
Although single-pass reading plays a crucial role
when we just want the general meaning and do
not necessarily need to understand every single
point of the text, it is not enough for tackling
tasks that need a deep analysis of the text. In
contrast with single-pass reading, repeated reading
involves the process where learners repeatedly read
the text in detail with specific learning aims, and
has the potential to improve readers’ reading fluency
and comprehension of the text (National Institute
of Child Health and Human Development, 2000;
LaBerge and Samuels, 1974). Therefore, for the task
of discourse parsing, repeated reading is necessary,
as it is difficult to generalize which words are really
useful on the first try and efficient features should
be dynamically exploited through several passes of
reading .

Now, let us check one real example to elaborate
the necessity of using repeated reading in discourse
parsing.
Arg-1 : the use of 900 toll numbers has been

expanding rapidly in recent years

Arg-2 : for a while, high-cost pornography lines
and services that tempt children to dial (and
redial) movie or music information earned the
service a somewhat sleazy image

(Comparison - wsj 2100)

To identify the “Comparison” relation between

1224

the two arguments Arg-1 and Arg-2, the most crucial
clues mainly lie in some content, like “expanding
rapidly” in Arg-1 and “earned the service a
somewhat sleazy image” in Arg-2, since there exists
a contrast between the semantic meanings of these
two text spans. However, it is difficult to obtain
sufficient information for pinpointing these words
through scanning the argument pair left to right in
one pass. In such case, we follow the repeated
reading strategy, where we obtain the general
meaning through reading the arguments for the first
time, re-read them later and gradually pay close
attention to the key content.

Recently, some approaches simulating repeated
reading have witnessed their success in different
tasks. These models mostly combine the attention
mechanism that has been originally designed to
solve the alignment problem in machine trans-
lation (Bahdanau et al., 2014) and the external
memory which can be read and written when
processing the objects (Sukhbaatar et al., 2015).
For example, Kumar et al. (2015) drew attention to
specific facts of the input sequence and processed
the sequence via multiple hops to generate an
answer. In computation vision, Yang et al. (2015)
pointed out that repeatedly giving attention to
different regions of an image could gradually lead
to more precise image representations.

Inspired by these recent work, for discourse
parsing, we propose a model that aims to repeatedly
read an argument pair and gradually focus on
more fine-grained parts after grasping the global
information. Specifically, we design the Neural
Networks with Multi-Level Attention (NNMA)
consisting of one general level and several attention
levels. In the general level, we capture the
general representations of each argument based on
two bidirectional long short-term memory (LSTM)
models. For each attention level, NNMA generates
a weight vector over the argument pair to locate
the important parts related to the discourse relation.
And an external short-term memory is designed to
store the information exploited in previous levels
and help update the argument representations. We
stack this structure in a recurrent manner, mimicking
the process of reading the arguments multiple times.
Finally, we use the representation output from the
highest attention level to identify the discourse

relation. Experiments on the PDTB dataset show
that our proposed model achieves the state-of-art
results.

2 Repeated Reading Neural Network with
Multi-Level Attention

In this section, we describe how we use the neural
networks with multi-level attention to repeatedly
read the argument pairs and recognize implicit
discourse relations.

First, we get the general understanding of the
arguments through skimming them. To implement
this, we adopt the bidirectional Long-Short Term
Memory Neural Network (bi-LSTM) to model each
argument, as bi-LSTM is good at modeling over a
sequence of words and can represent each word with
consideration of more contextual information. Then,
several attention levels are designed to simulate the
subsequent multiple passes of reading. On each
attention level, an external short-term memory is
used to store what has been learned from previous
passes and guide which words should be focused on.
To pinpoint the useful parts of the arguments, the
attention mechanism is used to predict a probability
distribution over each word, indicating to what
degree each word should be concerned. The overall
architecture of our model is shown in Figure 1. For
clarity, we only illustrate two attention levels in the
figure. It is noted that we can easily extend our
model to more attention levels.

2.1 Representing Arguments with LSTM

The Long-Short Term Memory (LSTM) Neural
Network is a variant of the Recurrent Neural
Network which is usually used for modeling a
sequence. In our model, we adopt two LSTM neural
networks to respectively model the two arguments:
the left argument Arg-1 and the right argument Arg-
2.

First of all, we associate each word w in our
vocabulary with a vector representation xw ∈ RDe .
Here we adopt the pre-trained vectors provided by
GloVe (Pennington et al., 2014). Since an argument
can be viewed as a sequence of word vectors, let x1

i

(x2
i) be the i-th word vector in argument Arg-1 (Arg-

1225

Arg-1 Arg-2

Attention Attention

Attention Attention

General
Level

Attention
Level 1

Attention
Level 2

Mean
Pooling

12R

11R 21R

22R

1M

2M

softmax

11a

12a

21a

22a

Weighted
Pooling

10h

20R10R

1
1Lh11h 1ih10h

11h 1ih 1
1Lh

20h 2ih21h 2
2Lh

2
2Lh2ih21h20h

Discourse
Relation

Figure 1: Neural Network with Multi-Level
Attention. (Two attention levels are given here.)

2) and the two arguments can be represented as,

Arg-1 : [x1
1,x

1
2, · · · ,x1

L1
]

Arg-2 : [x2
1,x

2
2, · · · ,x2

L2
]

where Arg-1 has L1 words and Arg-2 has L2 words.
To model the two arguments, we briefly introduce

the working process how the LSTM neural networks
model a sequence of words. For the i-th time step,
the model reads the i-th word xi as the input and
updates the output vector hi as follows (Zaremba
and Sutskever, 2014).

ii = sigmoid(Wi[xi,hi−1] + bi) (1)

fi = sigmoid(Wf [xi,hi−1] + bf) (2)

oi = sigmoid(Wo[xi,hi−1] + bo) (3)

c̃i = tanh(Wc[xi,hi−1] + bc) (4)

ci = ii ∗ c̃i + fi ∗ ci−1 (5)

hi = oi ∗ tanh(ci) (6)

where [] means the concatenation operation of
several vectors. i,f ,o and c denote the input
gate, forget gate, output gate and memory cell

respectively in the LSTM architecture. The input
gate i determines how much the input xi updates the
memory cell. The output gate o controls how much
the memory cell influences the output. The forget
gate f controls how the past memory ci−1 affects
the current state. Wi,Wf ,Wo,Wc, bi, bf , bo, bc
are the network parameters.

Referring to the work of Wang and Nyberg
(2015), we implement the bidirectional version
of LSTM neural network to model the argument
sequence. Besides processing the sequence in
the forward direction, the bidirectional LSTM (bi-
LSTM) neural network also processes it in the
reverse direction. As shown in Figure 1, using two
bi-LSTM neural networks, we can obtain h1

i =

[~h1
i ,

~h1
i] for the i-th word in Arg-1 andh2

i = [~h2
i ,

~h2
i]

for the i-th word in Arg-2, where ~h1
i ,
~h2
i ∈ Rd

and ~h1
i ,

~h2
i ∈ Rd are the output vectors from two

directions.
Next, to get the general-level representations of

the arguments, we apply a mean pooling operation
over the bi-LSTM outputs, and obtain two vectors
R1

0 andR2
0, which can reflect the global information

of the argument pair.

R1
0 =

1

L1

L1∑

i=0

h1
i (7)

R2
0 =

1

L2

L2∑

i=0

h2
i (8)

2.2 Tuning Attention via Repeated Reading
After obtaining the general-level representations
by treating each word equally, we simulate the
repeated reading and design multiple attention
levels to gradually pinpoint those words particularly
useful for discourse relation recognition. In each
attention level, we adopt the attention mechanism
to determine which words should be focused on.
An external short-term memory is designed to
remember what has seen in the prior levels and guide
the attention tuning process in current level.

Specifically, in the first attention level, we
concatenate R1

0, R2
0 and R1

0−R2
0 and apply a

non-linear transformation over the concatenation to
catch the general understanding of the argument
pair. The use of R1

0−R2
0 takes a cue from the

difference between two vector representations which

1226

has been found explainable and meaningful in many
applications (Mikolov et al., 2013). Then, we get
the memory vector M1 ∈ Rdm of the first attention
level as

M1 = tanh(Wm,1[R
1
0,R

2
0,R

1
0−R2

0]) (9)

whereWm,1 ∈ Rdm×6d is the weight matrix.
With M1 recording the general meaning of

the argument pair, our model re-calculates the
importance of each word. We assign each word a
weight measuring to what degree our model should
pay attention to it. The weights are so-called
“attention” in our paper. This process is designed to
simulate the process that we re-read the arguments
and pay more attention to some specific words with
an overall understanding derived from the first-pass
reading. Formally, for Arg-1, we use the memory
vector M1 to update the representation of each
word with a non-linear transformation. According
to the updated word representations o11, we get the
attention vector a11.

h1 = [h1
0,h

1
1, · · · ,h1

L1
] (10)

o11 = tanh(W 1
a,1h

1 +W 1
b,1(M1 ⊗ e)) (11)

a11 = softmax(W 1
s,1o

1
1) (12)

where h1 ∈ R2d×L1 is the concatenation of all
LSTM output vectors of Arg-1. e ∈ RL1 is a
vector of 1s and the M1 ⊗ e operation denotes that
we repeat the vector M1 L1 times and generate a
dm × L1 matrix. The attention vector a11 ∈ RL1

is obtained through applying a softmax operation
over o11. Wa,1

1 ∈ R2d×2d,Wb,1
1 ∈ R2d×dm and

Ws,1
1 ∈ R1×2d are the transformation weights. It is

noted that the subscripts denote the current attention
level and the superscripts denote the corresponding
argument. In the same way, we can get the attention
vector a21 for Arg-2.

Then, according to a11 and a21, our model re-reads
the arguments and get the new representations R1

1

andR2
1 for the first attention level.

R1
1 = h1(a11)

T (13)

R2
1 = h2(a21)

T (14)

Next, we iterate the “memory-attention-
representation” process and design more attention

levels, giving NNMA the ability to gradually infer
more precise attention vectors. The processing
of the second or above attention levels is slightly
different from that of the first level, as we update
the memory vector in a recurrent way. To formalize,
for the k-th attention level (k ≥ 2), we use the
following formulae for Arg-1.

Mk = tanh(Wm,k[R1
k−1,R2

k−1,R1
k−1−R2

k−1,Mk−1])
(15)

o1k = tanh(W 1
a,kh

1 +W 1
b,k(Mk ⊗ e)) (16)

a1k = softmax(W 1
s,ko

1
k) (17)

R1
k = h1(a1k)T (18)

In the same way, we can computer o2k,a
2
k and R2

k

for Arg-2.
Finally, we use the newest representation derived

from the top attention level to recognize the
discourse relations. Suppose there are totally K
attention levels and n relation types, the predicted
discourse relation distribution P ∈ Rn is calculated
as

P = softmax(Wp[R
1
K ,R

2
K ,R

1
K−R2

K] + bp)
(19)

where Wp ∈ Rn×6d and bp ∈ Rn are the
transformation weights.

2.3 Model Training
To train our model, the training objective is defined
as the cross-entropy loss between the outputs of
the softmax layer and the ground-truth class labels.
We use stochastic gradient descent (SGD) with
momentum to train the neural networks.

To avoid over-fitting, dropout operation is applied
on the top feature vector before the softmax layer.
Also, we use different learning rates λ and λe
to train the neural network parameters Θ and the
word embeddings Θe referring to (Ji and Eisenstein,
2015). λe is set to a small value for preventing over-
fitting on this task. In the experimental part, we will
introduce the setting of the hyper-parameters.

3 Experiments

3.1 Preparation
We evaluate our model on the Penn Discourse
Treebank (PDTB) (Prasad et al., 2008). In our work,

1227

we experiment on the four top-level classes in this
corpus as in previous work (Rutherford and Xue,
2015). We extract all the implicit relations of PDTB,
and follow the setup of (Rutherford and Xue, 2015).
We split the data into a training set (Sections 2-
20), development set (Sections 0-1), and test set
(Section 21-22). Table 1 summarizes the statistics of
the four PDTB discourse relations, i.e., Comparison,
Contingency, Expansion and Temporal.

Relation Train Dev Test
Comparison 1855 189 145
Contingency 3235 281 273
Expansion 6673 638 538
Temporal 582 48 55
Total 12345 1156 1011

Table 1: Statistics of Implicit Discourse Relations in
PDTB.

We first convert the tokens in PDTB to lowercase.
The word embeddings used for initializing the word
representations are provided by GloVe (Pennington
et al., 2014), and the dimension of the embeddings
De is 50. The hyper-parameters, including the
momentum δ, the two learning rates λ and λe,
the dropout rate q, the dimension of LSTM output
vector d, the dimension of memory vector dm are all
set according to the performance on the development
set Due to space limitation, we do not present the
details of tuning the hyper-parameters and only give
their final settings as shown in Table 2.

δ λ λe q d dm
0.9 0.01 0.002 0.1 50 200

Table 2: Hyper-parameters for Neural Network with
Multi-Level Attention.

To evaluate our model, we adopt two kinds of
experiment settings. The first one is the four-
way classification task, and the second one is the
binary classification task, where we build a one-
vs-other classifier for each class. For the second
setting, to solve the problem of unbalanced classes
in the training data, we follow the reweighting
method of (Rutherford and Xue, 2015) to reweigh
the training instances according to the size of each
relation class. We also use visualization methods to
analyze how multi-level attention helps our model.

3.2 Results

First, we design experiments to evaluate the effec-
tiveness of attention levels and how many attention
levels are appropriate. To this end, we implement
a baseline model (LSTM with no attention) which
directly applies the mean pooling operation over
LSTM output vectors of two arguments without
any attention mechanism. Then we consider
different attention levels including one-level, two-
level and three-level. The detailed results are shown
in Table 3. For four-way classification, macro-
averaged F1 and Accuracy are used as evaluation
metrics. For binary classification, F1 is adopted to
evaluate the performance on each class.

System
Four-way Binary
F1 Acc. Comp. Cont. Expa. Temp.

LSTM 39.40 54.50 33.72 44.79 68.74 33.14
NNMA

(one-level)
43.48 55.59 34.72 49.47 68.52 36.70

NNMA
(two-level)

46.29 57.17 36.70 54.48 70.43 38.84

NNMA
(three-level)

44.95 57.57 39.86 53.69 69.71 37.61

Table 3: Performances of NNMA with Different
Attention Levels.

From Table 3, we can see that the basic LSTM
model performs the worst. With attention levels
added, our NNMA model performs much better.
This confirms the observation above that one-pass
reading is not enough for identifying the discourse
relations. With respect to the four-way F1 measure,
using NNMA with one-level attention produces a
4% improvement over the baseline system with
no attention. Adding the second attention level
gives another 2.8% improvement. We perform
significance test for these two improvements, and
they are both significant under one-tailed t-test (p <
0.05). However, when adding the third attention
level, the performance does not promote much and
almost reaches its plateau. We can see that three-
level NNMA experiences a decease in F1 and a
slight increase in Accuracy compared to two-level
NNMA. The results imply that with more attention
levels considered, our model may perform slightly
better, but it may incur the over-fitting problem
due to adding more parameters. With respect to
the binary classification F1 measures, we can see

1228

System
Four-way Binary
F1 Acc. Comp. Cont. Expa. Expa.+EntRel Temp.

P&C2012 - - 31.32 49.82 - 79.22 26.57
J&E2015 - - 35.93 52.78 - 80.02 27.63

Zhang2015 38.80 55.39 32.03 47.08 68.96 80.22 20.29
R&X2014 38.40 55.50 39.70 54.40 70.20 80.44 28.70
R&X2015 40.50 57.10 41.00 53.80 69.40 - 33.30
B&D2015 - - 36.36 55.76 61.76 - 27.30
Liu2016 44.98 57.27 37.91 55.88 69.97 - 37.17
Ji2016 42.30 59.50 - - - - -

NNMA(two-level) 46.29 57.17 36.70 54.48 70.43 80.73 38.84
NNMA(three-level) 44.95 57.57 39.86 53.69 69.71 80.86 37.61

Table 4: Comparison with the State-of-the-art Approaches.

that the “Comparison” relation needs more passes
of reading compared to the other three relations.
The reason may be that the identification of the
“Comparison” depends more on some deep analysis
such as semantic parsing, according to (Zhou et al.,
2010).

Next, we compare our models with six state-of-
the-art baseline approaches, as shown in Table 4.
The six baselines are introduced as follows.

• P&C2012: Park and Cardie (2012) designed
a feature-based method and promoted the
performance through optimizing the feature
set.
• J&E2015: Ji and Eisenstein (2015) used two

recursive neural networks on the syntactic
parse tree to induce the representation of the
arguments and the entity spans.
• Zhang2015: Zhang et al. (2015) proposed

to use shallow convolutional neural networks
to model two arguments respectively. We
replicated their model since they used a
different setting in preprocessing PDTB.
• R&X2014, R&X2015: Rutherford and Xue

(2014) selected lexical features, production
rules, and Brown cluster pairs, and fed them
into a maximum entropy classifier. Rutherford
and Xue (2015) further proposed to gather extra
weakly labeled data based on the discourse
connectives for the classifier.
• B&D2015: Braud and Denis (2015) combined

several hand-crafted lexical features and word
embeddings to train a max-entropy classifier.

• Liu2016: Liu et al. (2016) proposed to better
classify the discourse relations by learning
from other discourse-related tasks with a multi-
task neural network.

• Ji2016: Ji et al. (2016) proposed a neural
language model over sequences of words and
used the discourse relations as latent variables
to connect the adjacent sequences.

It is noted that P&C2012 and J&E2015 merged
the “EntRel” relation into the “Expansion” rela-
tion1. For a comprehensive comparison, we also
experiment our model by adding a Expa.+EntRel vs
Other classification. Our NNMA model with two
attention levels exhibits obvious advantages over the
six baseline methods on the whole. It is worth
noting that NNMA is even better than the R&X2015
approach which employs extra data.

As for the performance on each discourse
relation, with respect to the F1 measure, we can
see that our NNMA model can achieve the best
results on the “Expansion”, “Expansion+EntRel”
and “Temporal” relations and competitive results on
the “Contingency” relation . The performance of
recognizing the “Comparison” relation is only worse
than R&X2014 and R&X2015. As (Rutherford and
Xue, 2014) stated, the “Comparison” relation is
closely related to the constituent parse feature of the
text, like production rules. How to represent and

1EntRel is the entity-based coherence relation which is
independent of implicit and explicit relations in PDTB.
However some research merges it into the implicit Expansion
relation.

1229

exploit these information in our model will be our
next research focus.

3.3 Analysis of Attention Levels
The multiple attention levels in our model greatly
boost the performance of classifying implicit dis-
course relations. In this subsection, we perform both
qualitative and quantitative analysis on the attention
levels.

First, we take a three-level NNMA model for
example and analyze its attention distributions on
different attention levels by calculating the mean
Kullback-Leibler (KL) Divergence between any two
levels on the training set. In Figure 3, we use
klij to denote the KL Divergence between the ith

and the jthattention level and use klui to denote
the KL Divergence between the uniform distribution
and the ith attention level. We can see that each
attention level forms different attention distributions
and the difference increases in the higher levels.
It can be inferred that the 2nd and 3rd levels in
NNMA gradually neglect some words and pay more
attention to some other words in the arguments. One
point worth mentioning is that Arg-2 tends to have
more non-uniform attention weights, since klu2 and
klu3 of Arg-2 are much larger than those of Arg-
1. And also, the changes between attention levels
are more obvious for Arg-2 through observing the
values of kl12, kl13 and kl23. The reason may be
that Arg-2 contains more information related with
discourse relation and some words in it tend to
require focused attention, as Arg-2 is syntactically
bound to the implicit connective.

At the same time, we visualize the attention levels
of some example argument pairs which are analyzed
by the three-level NNMA. To illustrate the kth

attention level, we get its attention weights a1k and
a2k which reflect the contribution of each word and
then depict them by a row of color-shaded grids in
Figure 2.

We can see that the NNMA model focuses
on different words on different attention levels.
Interestingly, from Figure 2, we find that the 1st and
3rd attention levels focus on some similar words,
while the 2nd level is relatively different from them.
It seems that NNMA tries to find some clues (e.g.
“moscow could be suspended” in Arg-2a; “won
the business” in Arg-1b; “with great aplomb he

considers not only” in Arg-2c) for recognizing the
discourse relation on the 1st level, looking closely
at other words (e.g. “misuse of psychiatry against
dissenters” in Arg-2a; “a third party that” in Arg-1b;
“and support of hitler” in Arg-2c) on the 2nd level,
and then reconsider the arguments, focus on some
specific words (e.g. “moscow could be suspended”
in Arg-2a; “has not only hurt” in Arg-2b) and make
the final decision on the last level.

4 Related Work

4.1 Implicit Discourse Relation Classification

The Penn Discourse Treebank (PDTB) (Prasad et
al., 2008), known as the largest discourse corpus, is
composed of 2159 Wall Street Journal articles. Each
document is annotated with the predicate-argument
structure, where the predicate is the discourse
connective (e.g. while) and the arguments are two
text spans around the connective. The discourse
connective can be either explicit or implicit. In
PDTB, a hierarchy of relation tags is provided for
annotation. In our study, we use the four top-level
tags, including Temporal, Contingency, Comparison
and Expansion. These four core relations allow us
to be theory-neutral, since they are almost included
in all discourse theories, sometimes with different
names (Wang et al., 2012).

Implicit discourse relation recognition is often
treated as a classification problem. The first work to
tackle this task on PDTB is (Pitler et al., 2009). They
selected several surface features to train four binary
classifiers, each for one of the top-level PDTB
relation classes. Extending from this work, Lin et
al. (2009) further identified four different feature
types representing the context, the constituent parse
trees, the dependency parse trees and the raw text
respectively. Rutherford and Xue (2014) used brown
cluster to replace the word pair features for solving
the sparsity problem. Ji and Eisenstein (2015)
adopted two recursive neural networks to exploit
the representation of arguments and entity spans.
Very recently, Liu et al. (2016) proposed a two-
dimensional convolutional neural network (CNN) to
model the argument pairs and employed a multi-
task learning framework to boost the performance
by learning from other discourse-related tasks. Ji
et al. (2016) considered discourse relations as

1230

Arg-1a

th
e

w
or

ld
ps

yc
hi

at
ric

as
so

ci
at

io
n

vo
te

d
at an at

he
ns

pa
rle

y
to co

nd
iti

on
al

ly
re

ad
m

it
th

e

so
vi

et
un

io
n

1
2
3

Attention
Level

Arg-2a

m
os

co
w

co
ul

d
be su

sp
en

de
d

if th
e

m
isu

se
of ps

yc
hi

at
ry

ag
ai

ns
t

di
ss

en
te

rs
is di

sc
ov

er
ed

du
rin

g
a re

vi
ew

w
ith

in
a ye

ar

1
2
3

Attention
Level

(a) Example with Comparison relation

Arg-1b

bu
t

ib
m

w
ou

ld
ha

ve
w

on
th

e

bu
si

ne
ss

an
yw

ay
as a sa

le

to a th
ird

pa
rt

y
th

at
w

ou
ld

ha
ve

th
en

le
as

ed
th

e

eq
ui

pm
en

t
to th

e

cu
st

om
er

1
2
3

Attention
Level

Arg-2b

ib
m

ha
s

no
t

on
ly

hu
rt

its sh
or

t-
te

rm
re

ve
nu

e
ou

tlo
ok

bu
t

ha
s

al
so

be
en

lo
sin

g
m

on
ey

on its le
as

es

1
2
3

Attention
Level

(b) Example with Contingency relation

Arg-1c

no
w

sh
ift

in
g

hi
s

sc
en

e
fr

om
th

e

co
un

tr
y

he le
ft

at fiv
e

to th
e

en
gl

an
d

he ha
s

liv
ed

in fo
r

ne
ar

ly
30 ye

ar
s

, he ha
s

fa
sh

io
ne

d
a no

ve
l

in th
e

m
od

e
of he

nr
y

ja
m

es
an

d

e.
m

.
fo

rs
te

r

1
2
3

Attention
Level

Arg-2c

w
ith

gr
ea

t
ap

lo
m

b
he co

ns
id

er
s

no
t

on
ly

fil
ia

l
de

vo
tio

n
an

d

(ut
te

rly
re

pr
es

se
d

) se
xu

al
lo

ve
, bu

t

br
iti

sh
an

ti-
se

m
iti

sm
, th

e

ge
nt

ry
's im

pa
tie

nc
e

w
ith

de
m

oc
ra

cy
an

d

su
pp

or
t

of hi
tle

r
, an

d

th
e

m
or

al
pr

ob
le

m
at

ic
s

of lo
ya

lty

1
2
3

Attention
Level

(c) Example with Expansion relation

Figure 2: Visualization Examples: Illustrating Attentions Learned by NNMA. (The blue grid means the
the attention on this word is lower than the value of a uniform distribution and the red red grid means the
attention is higher than that.)

Arg-1 Arg-2
kl_12 0.00749 0.04177
kl_23 0.099784 0.502146
kl_13 0.085394 0.35212
kl_u1 0.123413 0.136228
kl_u2 0.156619 0.254844
kl_u3 0.162379 0.467976

0

0.1

0.2

0.3

0.4

0.5

0.6
Arg-1 Arg-2

݇lଵଶ ݈݇ଶଷ ݈݇ଵଷ ݈݇௨ଵ ݈݇௨ଶ ݈݇௨ଷ

Figure 3: KL-divergences between attention levels

latent variables connecting two token sequences and
trained a discourse informed language model.

4.2 Neural Networks and Attention
Mechanism

Recently, neural network-based methods have
gained prominence in the field of natural language
processing (Kim, 2014). Such methods are primar-
ily based on learning a distributed representation
for each word, which is also called a word
embedding (Collobert et al., 2011).

Attention mechanism was first introduced into
neural models to solve the alignment problem

between different modalities. Graves (2013)
designed a neural network to generate handwriting
based on a text. It assigned a window on the input
text at each step and generate characters based on the
content within the window. Bahdanau et al. (2014)
introduced this idea into machine translation, where
their model computed a probabilistic distribution
over the input sequence when generating each target
word. Tan et al. (2015) proposed an attention-
based neural network to model both questions and
sentences for selecting the appropriate non-factoid
answers.

In parallel, the idea of equipping the neural model
with an external memory has gained increasing
attention recently. A memory can remember what
the model has learned and guide its subsequent
actions. Weston et al. (2015) presented a neural
network to read and update the external memory in
a recurrent manner with the guidance of a question
embedding. Kumar et al. (2015) proposed a similar
model where a memory was designed to change the
gate of the gated recurrent unit for each iteration.

5 Conclusion

As a complex text processing task, implicit dis-
course relation recognition needs a deep analysis

1231

of the arguments. To this end, we for the first
time propose to imitate the repeated reading strategy
and dynamically exploit efficient features through
several passes of reading. Following this idea,
we design neural networks with multiple levels of
attention (NNMA), where the general level and the
attention levels represent the first and subsequent
passes of reading. With the help of external
short-term memories, NNMA can gradually update
the arguments representations on each attention
level and fix attention on some specific words
which provide effective clues to discourse relation
recognition. We conducted experiments on PDTB
and the evaluation results show that our model
can achieve the state-of-the-art performance on
recognizing the implicit discourse relations.

Acknowledgments

We thank all the anonymous reviewers for their
insightful comments on this paper. This work was
partially supported by National Key Basic Research
Program of China (2014CB340504), and National
Natural Science Foundation of China (61273278 and
61572049). The correspondence author of this paper
is Sujian Li.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. arXiv preprint
arXiv:1409.0473.

Jason Baldridge and Alex Lascarides. 2005. Proba-
bilistic head-driven parsing for discourse structure. In
Proceedings of CoNLL.

Chloé Braud and Pascal Denis. 2015. Comparing
word representations for implicit discourse relation
classification. In Proceedings of EMNLP.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Alex Graves. 2013. Generating sequences with recurrent
neural networks. arXiv preprint arXiv:1308.0850.

Hugo Hernault, Helmut Prendinger, David A duVerle,
Mitsuru Ishizuka, et al. 2010. Hilda: a discourse
parser using support vector machine classification.
Dialogue and Discourse, 1(3):1–33.

Yangfeng Ji and Jacob Eisenstein. 2015. One
vector is not enough: Entity-augmented distributed
semantics for discourse relations. Transactions of
the Association for Computational Linguistics, 3:329–
344.

Yangfeng Ji, Gholamreza Haffari, and Jacob Eisenstein.
2016. A latent variable recurrent neural network for
discourse relation language models. arXiv preprint
arXiv:1603.01913.

Shafiq Joty, Giuseppe Carenini, and Raymond T Ng.
2012. A novel discriminative framework for sentence-
level discourse analysis. In Proceedings of EMNLP.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of EMNLP.

Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury,
Robert English, Brian Pierce, Peter Ondruska, Ishaan
Gulrajani, and Richard Socher. 2015. Ask me
anything: Dynamic memory networks for natural lan-
guage processing. arXiv preprint arXiv:1506.07285.

Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. 2009.
Recognizing implicit discourse relations in the penn
discourse treebank. In Proceedings of EMNLP.

Yang Liu, Sujian Li, Xiaodong Zhang, and Zhifang Sui.
2016. Implicit discourse relation classification via
multi-task neural network. In Proceedings of AAAI.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space word
representations. In Proceedings of NAACL.

Joonsuk Park and Claire Cardie. 2012. Improving
implicit discourse relation recognition through feature
set optimization. In Proceedings of SigDial.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of EMNLP 2014.

Emily Pitler, Annie Louis, and Ani Nenkova. 2009.
Automatic sense prediction for implicit discourse
relations in text. In Proceedings of ACL.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni
Miltsakaki, Livio Robaldo, Aravind K. Joshi, and
Bonnie L. Webber. 2008. The Penn Discourse
TreeBank 2.0. In Proceedings of LREC.

Attapol Rutherford and Nianwen Xue. 2014. Dis-
covering implicit discourse relations through brown
cluster pair representation and coreference patterns. In
Proceedings of EACL.

Attapol T Rutherford and Nianwen Xue. 2015.
Improving the inference of implicit discourse relations
via classifying explicit discourse connectives. In
Proceedings of NAACL.

Radu Soricut and Daniel Marcu. 2003. Sentence
level discourse parsing using syntactic and lexical
information. In Proceedings of NAACL.

1232

Rajen Subba and Barbara Di Eugenio. 2009. An
effective discourse parser that uses rich linguistic
information. In Proceedings of NAACL.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Proceedings
of NIPS.

Ming Tan, Bing Xiang, and Bowen Zhou. 2015. Lstm-
based deep learning models for non-factoid answer
selection. arXiv preprint arXiv:1511.04108.

Di Wang and Eric Nyberg. 2015. A long short-
term memory model for answer sentence selection in
question answering. In Proceedings of EMNLP.

Xun Wang, Sujian Li, Jiwei Li, and Wenjie Li. 2012.
Implicit Discourse Relation Recognition by Selecting
Typical Training Examples. In Proceedings of
COLING.

Jason Weston, Sumit Chopra, and Antoine Bordes. 2015.
Memory networks. Proceedings of ICLR.

Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng,
and Alexander J. Smola. 2015. Stacked attention
networks for image question answering. arXiv
preprint arXiv:1511.02274.

Wojciech Zaremba and Ilya Sutskever. 2014. Learning
to execute. arXiv preprint arXiv:1410.4615.

Biao Zhang, Jinsong Su, Deyi Xiong, Yaojie Lu,
Hong Duan, and Junfeng Yao. 2015. Shallow
convolutional neural network for implicit discourse
relation recognition. In Proceedings of EMNLP.

Zhi-Min Zhou, Yu Xu, Zheng-Yu Niu, Man Lan, Jian
Su, and Chew Lim Tan. 2010. Predicting discourse
connectives for implicit discourse relation recognition.
In Proceedings of the ICCL, pages 1507–1514.

1233

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1234–1243,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Antecedent Selection for Sluicing: Structure and Content

Pranav Anand
Linguistics

UC Santa Cruz
panand@ucsc.edu

Daniel Hardt
IT Management

Copenhagen Business School
dh.itm@cbs.dk

Abstract

Sluicing is an elliptical process where the ma-
jority of a question can go unpronounced as
long as there is a salient antecedent in previ-
ous discourse. This paper considers the task
of antecedent selection: finding the correct
antecedent for a given case of sluicing. We
argue that both syntactic and discourse rela-
tionships are important in antecedent selec-
tion, and we construct linguistically sophis-
ticated features that describe the relevant re-
lationships. We also define features that de-
scribe the relation of the content of the an-
tecedent and the sluice type. We develop a lin-
ear model which achieves accuracy of 72.4%,
a substantial improvement over a strong man-
ually constructed baseline. Feature analysis
confirms that both syntactic and discourse fea-
tures are important in antecedent selection.

1 Introduction

Ellipsis involves sentences with missing subparts,
where those subparts must be interpretatively filled
in by the hearer. How this is possible has been a ma-
jor topic in linguistic theory for decades (Sag, 1976;
Chung et al., 1995; Merchant, 2001). One widely
studied example is verb phrase ellipsis (VPE), ex-
emplified by (1).

(1) Harry traveled to southern Denmark to study
botany . Tom did too .

In the second sentence (Tom did too) the verb phrase
is entirely missing, yet the hearer effortlessly ‘re-
solves’ (understands) its content to be traveled to
southern Denmark to study botany.

Another widely studied case of ellipsis is sluicing,
in which the majority of a question is unpronounced,
as in (2).

(2) Harry traveled to southern Denmark to study
botany . I want to know why .

Here the content of the question, introduced by the
WH-phrase why, is missing, yet it is understood by
the hearer to be why did Harry travel to southern
Denmark to study botany?. In both of these cases,
ellipsis resolution is made possible by the presence
of an antecedent, material in prior discourse that, in-
formally speaking, is equivalent to what is missing.

Ellipsis poses an important challenge for many
applications in language technology, as various
forms of ellipsis are known to be frequent in a va-
riety of languages and text types. This is perhaps
most evident in the case of question-answering sys-
tems, since elliptical questions and elliptical answers
are both very common in discourse. A computa-
tional system that can effectively deal with ellipsis
involves three subtasks (Nielsen, 2005): ellipsis de-
tection, in which a case of ellipsis is identified, an-
tecedent selection, in which the antecedent for a case
of ellipsis is found, and ellipsis resolution, where the
content of the ellipsis is filled in with reference to
the antecedent and the context of the ellipsis. Here,
we focus on antecedent selection for sluicing. In
addressing this problem of antecedent selection, we
make use of a newly available annotated corpus of
sluice occurrences (Anand and McCloskey, 2015).
This corpus consists of 4100 automatically parsed
and annotated examples from the New York Times
subset of the Gigaword Corpus, of which 2185 are

1234

publicly available.
Sluicing antecedent selection might appear simple

– after all, it typically involves a sentential expres-
sion in the nearby context. However, analysis of the
annotated corpus data reveals surprising ambiguity
in the identification of the antecedent for sluicing.

In what follows, we describe a series of algo-
rithms and models for antecedent selection in sluic-
ing. Following section 2 on background, we de-
scribe our dataset in section 3. Then in section 4,
we describe the structural factors that we have iden-
tified as relevant for antecedent selection. In sec-
tion 5, we look at ways in which the content of the
sluice and the content of the antecedent tend to be
related to each other: we address lexical overlap,
as well as the probabilistic relation of head verbs to
WH-phrase types, and the relation of correlate ex-
pressions to sluice types. In section 6 we present
two manually constructed baseline classifiers, and
then we describe an approach to automatically tun-
ing weights for the complete set of features. In sec-
tion 7 we present the results of these algorithms and
models, including results involving various subsets
of features, to better understand their contributions
to the overall results. Finally in section 8 we discuss
the results in light of plans for future work.

2 Background

2.1 Sluicing and ellipsis

Sluicing is formally defined in theoretical linguis-
tics as ellipsis of a question, leaving only a WH-
phrase remnant. While VPE is licensed only by
a small series of auxiliaries (e.g., modals, do, see
Lobeck (1995)), sluicing can occur wherever ques-
tions can, both in unembedded ‘root’ environments
(e.g., Why?) or governed by the range of expres-
sions that embed questions, like know in (2). Sluic-
ing is argued to be possible principally in contexts
where there is uncertainty or vagueness about an is-
sue (Ginzburg and Sag, 2000). In some cases, this
manifests as a correlate, an overt indefinite expres-
sion whose value is not further specified, like one of
the candidates in (3). But in many others, like that in
(2) or (4), there is no correlate, and the uncertainty
is implicit.

(3) They ’ve made an offer to [cor one of the can-

didates] , but I ’m not sure which one

(4) They were firing , but at what was unclear

The existence of correlate-sluices suggests an obvi-
ous potential feature type for antecedent detection.
However, the annotated sluices in (Anand and Mc-
Closkey, 2015) have correlates only 22% of the time,
making this process considerably harder. We return
to the question of correlates in section 5.1.

2.2 Related Work

The first large-scale study of ellipsis is due to Hardt
(1997), which addresses VPE. Examining 644 cases
of VPE in the Penn Treebank, Hardt presents a
manually constructed algorithm for locating the an-
tecedent for VPE, and reports accuracy of 75% to
94.8%, depending on whether the metric used re-
quires exact match or more liberal overlap or con-
tainment. Several preference factors for choosing
VPE antecedents are identified (Recency, Clausal
Relations, Parallelism, and Quotation). One of the
central components of the analysis is the identifi-
cation of structural constraints which rule out an-
tecedents that improperly contain the ellipsis site,
an issue we also address here for sluicing. Draw-
ing on 1510 instances of VPE in both the British
National Corpus (BNC) and the Penn Treebank,
Nielsen (2005) shows that a maxent classifier using
refinements of Hardt’s features can achieve roughly
similar results to Hardt’s, but that additional lexical
features do not help appreciably.

Nielsen chooses to optimize for Hardt’s Head
Overlap metric, which assigns success to any candi-
date containing/contained in the correct antecedent.
There are thus many “correct” antecedents for a
given instance of VPE, which mitigates the class im-
balance problem. However, the approach does not
provide a way to discriminate between these con-
taining candidates, an important step in the eventual
goal of resolving the ellipsis.

There is no similar work on antecedent selec-
tion for sluicing, though there have been small-
scale corpora gathered for sluices (Nykiel, 2010;
Beecher, 2008). In addition, Fernandez et al. (2005)
build rule-based and memory-based classifiers for
the pragmatic import of root (unembedded) sluices
in the BNC, based on the typology of Ginzburg and
Sag (2000). Using features for the type of WH-

1235

phrase, markers of mood (declarative/interrogative)
and polarity (positive/negative) as well as the pres-
ence of correlate-like material (e.g., quantifiers, defi-
nites, etc.), they can diagnose the purpose of a sluice
in a dataset of 300 root sluices with 79% average
F-score, a 5% improvement over the MLE. Fernan-
dez et al. (2007) address the problem of identify-
ing sluices and other non-sentential utterances. We
don’t address that problem in the current work. Fur-
thermore, Fernandez et al. (2007) and Fernandez
et al. (2008) address the general problem of non-
sentential utterances or fragments in dialogue, in-
cluding sluices. Sluicing in dialogue differs from
sluicing in written text in various ways: there is a
high proportion of root sluices, and antecedent se-
lection is likely mitigated by the length of utterances
and the order of conversation. As we discuss, many
of our newswire sluices evince difficult patterns of
containment inside the antecedent (particularly what
we call interpolated and cataphoric sluices), and it
does not appear from inspection that root sluices
ever participate in such processes.

Looking more generally, there is an obvious po-
tential connection between antecedent selection for
ellipsis and the problem of coreference resolution
(see Hardt (1999) for an explicit theoretical link be-
tween the two). However, entity coreference reso-
lution is a problem with two major differences from
ellipsis antecedent detection: a) the antecedent and
anaphor often share a variety of syntactic, semantic,
and morphological characteristics that can be featu-
rally exploited; b) entity expressions in a text are of-
ten densely coreferent, which can help provide prox-
ies for discourse salience of an entity.

In contrast, abstract anaphora, particularly dis-
course anaphora (this/that anaphora to something
sentential), may offer a more parallel case to ours.
Here, Kolhatkar et al. (2013) use a combination
of syntactic type, syntactic/word context, length,
and lexical features to identify the antecedents of
anaphoric shell nouns (this fact) with precision
from 0.35-0.72. Because of the sparsity of these
cases, Kolhatkar et al. use Denis and Baldridge’s
(2008) candidate ranking model (versus a standard
mention-pair model (Soon et al., 2001)), in which
all potential candidates for an anaphor receive a rela-
tive rank in the overall candidate pool. In this paper,
we will pursue a hillclimbing approach to antecedent

selection, inspired by the candidate ranking scheme.

3 Data

3.1 The Annotated Dataset

Our dataset, described in Anand and McCloskey
(2015), consists of 4100 sluicing examples from the
New York Times subset of the Gigaword Corpus,
2nd edition. This dataset is the first systematic, ex-
haustive corpus of sluicing.1 Each example is an-
notated with four main tags, given in terms of token
sequence offsets: the sluice remnant, the antecedent,
and then inside the antecedent the main predicate
and the correlate, if any. The annotations also pro-
vide a free-text resolution. Of the 4100 annotated,
2185 sluices have been made publicly available; we
use that smaller dataset here. We make use of the
annotation of the antecedent and remnant tags. See
Anand and McCloskey (2015) for additional infor-
mation on the dataset and the annotation scheme.
For the feature extraction in section 4, we rely on
the the token, parsetree, and dependency parse in-
formation in Annotated Gigaword (extracted from
Stanford CoreNLP).

3.2 Defining the Correct Antecedent

Because of disagreements with the automatic parses
of their data, Anand and McCloskey (2015) had
annotators tag token sequences, not parsetree con-
stituents. As a result, 10% of the annotations are not
sentence-level (i.e., S, SBAR, SBARQ) constituents,
such as the VP antecedent in (5), and 15% are not
constituents at all, such as the case of (6), where the
parse lacks an S node excluding the initial tempo-
ral clause. We describe two different ways to define
what will count as the correct antecedent in building
and assessing our models.

3.2.1 Constituent-Based Accuracy
Linguists generally agree that the antecedent for

sluicing is a sentential constituent (see Merchant
(2001) and references therein). Thus, it is straight-
forward to define the antecedent as the minimal

14100 sluices works out to roughly 0.14% of WH-phrases
in the NYT portion of Gigaword. However, note that this in-
cludes all uses of WH-phrases (e.g., clefts and relative clauses),
whereas sluicing is only possible for WH-questions. It’s not
clear how many questions there are in the dataset (distinguish-
ing questions and other WH-phrases is non-trivial).

1236

sentence-level constituent containing the token se-
quence marked as the antecedent. Then we define
CONACCURACY as the percentage of cases in which
the system selects the correct antecedent, as defined
here.

While it is linguistically appealing to uniformly
define candidates as sentential constituents, the an-
notator choices are sometimes not parsed that way,
as in the following examples:

(5) “ I do n’t know how , ” said Mrs. Kitayeva ,
“ but [S we want [V P to bring Lydia home
] , in any condition] . ”

(6) [S [SBAR When Brown , an all-America
tight end , was selected in the first round in
1992] he was one of the highest rated play-
ers on the Giants ’ draft board]

In such cases, there is a risk that we will not accu-
rately assess the performance of our systems, since
the system choice and annotator choice will only
partially overlap.

3.2.2 Token-Based Precision and Recall
Here we define a metric which calculates the pre-

cision and recall of individual token occurrences,
following Bos and Spenader (2011) (see also Kol-
hatkar and Hirst (2012)). This will accurately re-
flect the discrepancy in examples like (5) – accord-
ing to ConAccuracy, a system choice of we want to
bring Lydia home in any condition is simply con-
sidered correct, as it is the smallest sentential con-
situent containing the annotator choice. According
to the Token-Based metric, we see that the system
achieves recall of 1; however, since the system in-
cludes six extraneous tokens, precision is .4. We de-
fine TOKF as the harmonic mean of Token-Based
Precision and Recall; for (5), TokF is .57.

3.3 Development and Test Data

The dataset consists of 2185 sluices extracted from
the New York Times between July 1994 and De-
cember 2000. For feature development, we seg-
mented the data into a development set (DS) of the
453 sluices from July 1994 to December 1995. The
experiments in section 6 were carried out on a test
set (TS) of the 1732 sluices in the remainder of the
dataset, January 1996 to December 2000.

4 Structure

Under our assumptions, the candidate antecedent
set for a given sluice is the set of all sentence-
level parsetree constituents within a n-sentence ra-
dius around the sluice sentence (based on DS, we
set n = 2). Because sentence-level constituents em-
bed, in DS there are on average 6.4 candidate an-
tecedents per sluice. However, because ellipsis res-
olution involves identification of an antecedent, we
assume that it, like anaphora resolution, should be
sensitive to the overall salience of the antecedent.
This means that there should be, in principle, proxies
for salience that we can exploit to diagnose the plau-
sibility of a candidate for sluicing in general. We
consider four principle kinds of proxies: measures
of candidate-sluice distance, measures of candidate-
sluice containment, measures of candidate ‘main
point’, and candidate-sluice discourse relation mark-
ers.

4.1 Distance

Within DS, 63% of antecedents are within the same
sentence as the sluice site, and 33% are in the im-
mediately preceding sentence. In terms of candi-
dates, the antecedent is on average the 5th candidate
from the end of the n-sentence window. The pos-
itive integer-valued feature DISTANCE tracks these
notions of recency, where DISTANCE is 1 if the can-
didate is the candidate immediately preceding or fol-
lowing the sluice site (DISTANCE is defined to be 0
only for infinitival Ss like S0 in (7) below). The fea-
ture FOLLOWS marks whether a candidate follows
the sluice.

4.2 Containment

As two-thirds of the antecedents are in the same
sentence as the sluice, we need measures to distin-
guish the candidates internal to the sentence con-
taining the sluice. In general, we want to exclude
any candidate that ‘contains’ (i.e., dominates) the
sluice, such as S0 and S-1 in (7). One might have
thought that we want to always exclude the entire
sentence (here, S-4) as well, but there are several
cases where the smallest sentence-level constituent
containing the annotated antecedent dominates the
sluice, including: parenthetical sluices inside the an-
tecedent (8), sluices in subordinating clauses (9), or

1237

sluice VPs coordinated with the antecedent VP (10).
We thus need features to mark when such candidates
are ‘non-containers’.

(7) [S−4 [S−3 I have concluded that [S−2 I can
not support the nomination] , and [S−1 I
need [S0 to explain why]].]

(8) [S−2 A major part of the increase in coverage
, [S−1 though Mitchell ’s aides could not say
just how much ,] would come from a pro-
vision providing insurance for children and
pregnant women .]

(9) [S−3 Weltlich still plans [S−2 to go , [S−1
although he does n’t know where]]]

(10) [S−2 State regulators have ordered 20th
Century Industries Inc. [S−1 to begin pay-
ing $ 119 million in Proposition 103 rebates
or explain why not by Nov. 14 .]]

Conceptually, what renders S-3 in (9), S-2 in (8),
and S-1 in (10) non-containers is that in all three
cases the sluice is semantically dissociable from the
rest of the sentence. We provide three features to
mark this. First, the boolean feature SLUICEINPAR-
ENTHETICAL marks when the sluice is dominated
by a parenthetical (a PRN node in the parse or an
(al)though SBAR delimited by punctuation). Sec-
ond, SLUICEINCOORDVP marks the configuration
exemplified (10).

We also compute a less structure-specific mea-
sure of whether the candidate is meaningful once
the sluice (and material dependent on it) is removed.
This means determining, for example, that S-4 in (7)
is meaningful once to explain why . is removed but
S-1 is not. But the latter result follows from the
fact that the main predicate of S-1, need takes the
sluice govering verb explain as an argument, and
hence removing that argument renders it semanti-
cally incomplete. We operationalize this in terms
of complement dependency relations. We first lo-
cate the largest subgraph containing the sluice in a
chain of ccomp and xcomp relations. This gives us
govmax, the highest such governor (i.e., explain) in
Fig. 1. The subgraph dependent on govmax is then
removed, as indicated by the grayed boxes in Fig 1.
If the resulting subgraph contains a verbal governor,
the candidate is meaningful and CONTAINSSLUICE

is false. By this logic, S-4 in (7) is meaningful be-
cause it contains concluded, but S-1 is not, because
there is no verbal material remaining.

4.3 Discourse Structure

It has often been suggested (Asher, 1993; Hardt,
1997; Hardt and Romero, 2004) that the antecedent
selection process is very closely tied to discourse re-
lations, in the sense that there is a strong preference
or even a requirement for a discourse relation be-
tween the antecedent and ellipsis.

Here we define several features that indicate either
that a discourse relation is present or is not present.

We begin with features indicating that a dis-
course relation is not present: the theoretical lin-
guistics literature on sluicing has noted that an-
tecedents not in the ‘main point’ of an assertion (e.g.,
ones in appositives (AnderBois, 2014) or relative
clauses (Cantor, 2013)) are very poor antecedents
for sluices, presumably because their content is not
very salient. The boolean features CANDINPAREN-
THETICAL (determined as for the sluice above) and
CANDINRELCLAUSE mark these patterns.2

We also define features that would tend to indicate
the presence of a discourse relation. These have to
do with antecedents that occur after the sluice. Al-
though antecedents overwhelmingly occur prior to
sluices, we observe one prominent cataphoric pat-
tern in DS, where the sentence containing the sluice
is coordinated with a contrastive discourse relation;
this is exemplified in (11).

(11) “ I do n’t know why , but I like Jimmy
Carter . ”

Three features are designed to capture this pattern:
COORDWITHSLUICE indicates whether the sluice
and candidate are connected by a coordination de-
pendency, AFTERINITIALSLUICE marks the con-
junctive condition where the candidate follows a
sluice initial in its sentence, and IMMEDAFTERINI-
TIALSLUICE marks a candidate that is the closest
following candidate to an initial sluice.

2This feature might be seen as an analog to the apposition
features used in nominal coreference resolution (Bengtson and
Roth, 2008), but there it is used to link appositives, whereas
here it is to exclude candidates.

1238

I have concluded that ... the nomination , and I need to explain why
VBN govmax

nsubj

aux

nsubj
conj:and

cc

nsubj

xcomp

mark ccomp

I need to explain why
govmax

nsubj

xcomp

mark ccomp

Figure 1: Sluice containment for S-4 and S-1 in (7). Starting at the governor of the sluice, explain, find govmax need and delete its

transitive dependents. The candidate does not contain the sluice if the remaining graph contains verbal governors.

5 Content

In addition to the structural features above, we also
compute several features relating the content of the
sluice site and the antecedent. The intuition be-
hind these relational features is the following: each
sluice type (why, who, how much, etc.) represents
a certain type of question, and each candidate rep-
resents a particular type of predication. For a given
a sluice type, some predications might fit more nat-
urally than others. More generally, it is a common
view that an elliptical expression and its antecedent
contain matching “parallel elements”.3

Below we describe three approaches to this: one
simply looks for lexical overlap – words that occur
both in the sluice expression and in the candidate.
The second involves a more general notion of how a
predication fits with a sluice type. To capture this,
we gather co-occurrence counts of main verb and
sluice types. The third approach compares potential
correlates in candidates with the type of sluice.

5.1 Overlap

One potential candidate for overlap information is
the presence of a correlate in the antecedent. How-
ever, 75% of of sluices involve WH-phrases that typ-
ically involve no correlate (e.g., how, when, why).
The pertinent exception to this are extent sluices (
ones where the remnant is how (much|many|JJ)),
which have been argued to heavily favor a correlate
(Merchant, 2001), such as (12) below (though see
(13) for a counterexample).

3This term is from Dalrymple et al. (1991); a similar gen-
eral view about parallelism in ellipsis arises in many different
theories, such as Prüst et al. (1994) and Asher (1993).

(12) The 49ers are [corr very good] .
It ’s hard to know how good because the
Cowboys were the only team in the league
who could test them .

We thus compute the number of tokens of OVER-
LAP between the content terms in the WH-phrase
sluice (non-WH, non prepositional) and the entire
antecedent.

5.2 Wh-Predicate

Even for correlate-less sluices, the WH-phrase must
semantically cohere with the main predicate of the
antecedent. Thus, in (13), S-3 is a more likely an-
tecedent than S-2 because increase is more likely to
take an implicit extent than predict. Although we
could have consulted a lexically rich resource (e.g,
VerbNet, FrameNet), our hope was that this general
approach could carry over to less argument-specific
combinations such as how with complete and raise
in (14).

(13) [S−3 Deliveries would increase as a result
of the acquisition] , [S−2 he predicted] ,
but [S−1 he would not say by how much]

(14) [S−4 [S−3 Once the city and team complete
a contract] , the Firebirds will begin to raise
$ 9 million] , [S−2 team president Yount
said] , [S−1 but he would not say how] .

Our assumption is that some main predicates are
more likely than others for a given sluice type, and
we wish to gather data that reveals these probabil-
ities. This is somewhat similar to the approach of
Hindle and Rooth (1993), who gather probabilities

1239

that reflect the association of verbal and nominal
heads with prepositions to disambiguiate preposi-
tional phrase attachment.

One way to collect these would be to use our
sluicing data, which consists of a total of 2185 an-
notated examples. However, the probabilities of in-
terest are not about sluicing per se. Rather, they are
about how well a given predication fits with a given
type of question. Thus instead of using our com-
paratively small set of annotated sluicing examples,
we used overt WH-constructions in Gigaword to
observe cooccurrences between question types and
main predicates. To find overt WH-constructions,
we extracted all instances where a WH-phrase is:
a) a dependent (to exclude cases like Who?) and
b) not at the right edge of a VP (to exclude sluices
like know who, per Anand and McCloskey (2015)).
To further ensure that we were not overlapping with
our dataset, we did this only for the non=NYT sub-
sets of Gigaword (i.e., AFP, APW, CNA, and LTW).
This procedure generated 687,000 WH-phrase in-
stances, and 79,753 WH-phrase-governor bigram
types. From these bigrams, we calculated WH-
PREDICATE, the normalized pmi of WH-phrase type
and governor lemma in Annotated Gigaword.

5.3 Correlate Overlap

Twenty-two percent of our data has correlates, and
these correlates should be discriminative for partic-
ular sluice types. For example, temporal (when)
sluices have timespan correlates (e.g., tomorrow,
later), while entity (who/what) sluices have individ-
uals as correlates (e.g., someone, a book). We ex-
tracted four potential integer-valued correlate fea-
tures from each candidate: LOCATIVECORR is the
number of primarily locative prepositions (those
with a locative MLE in The Preposition Project
(Litowski and Hargraves, 2005)). ENTITYCORR is
the number of nominals in the candidate that are in-
definite (bare nominals or ones with a determiner re-
lation to a, an and weak quantifiers (some, many,
much, few, several).TEMPORALCORR is the num-
ber of lexical patterns in the candidate for TIMEX3
annotations in Timebank 1.2 (Pustejovesky et al.,
2016). WHICHCORR is the pattern for entities plus
or.

distance DISTANCE, FOLLOWS
containment CONTAINSSLUICE

ISDOMINATED-
BYSLUICE

discourse structure COORDWITHSLUICE,
AFTERINITIALSLUICE,
IMMEDAFTERINI-
TIALSLUICE, CAND-
INPARENTHETICAL,
CANDINRELCLAUSE

content OVERLAP, WH-
PREDICATE

correlate LOCATIVECORR,
ENTITYCORR, TEM-
PORALCORR, WHICH-
CORR

Table 1: Summary of features used in experiments.

6 Algorithms

Mention-pair coreference models reduce corefer-
ence resolution to two steps: a local binary clas-
sification, and a global resolution of coreference
chains. We may see antecedent selection as a sim-
ilar two-stage process: classification on the proba-
bility a given candidate is an antecedent, and then
selection of the most likely candidate for a given
sluice. As Denis and Baldridge (2008) note, one
limitation of this approach is that the overall rank
of the candidates is never directly learned. They
instead propose to learn the rank of a candidate c
for antecedent a, modeled as the log-linear score
of a candidate across a set of coreference models
m, (exp

∑
j wjmj(c, a)), normalized by the sum of

candidate scores. We apply the same approach to
our problem, viewing each feature in Table 1 as a
model, and estimating weights for the features by
hill-climbing. We begin by defining constructed
baselines which are implemented by manually as-
signing weights. We then consider the results of a
maxent classifier over the features. Finally, we de-
termine the weights directly by hill-climbing with
random restarts.

6.1 Manual Baselines

Random simply selects candidates at random. Clst
chooses the closest candidate that starts before the
sluice. This is done by assigning a weight of -1
to DISTANCE and -10 to FOLLOWING (to exclude

1240

the following candidate), and 0 to all other fea-
tures. ClstBef chooses the closest candidate that en-
tirely precedes the sluice (i.e., starts before and does
not contain the sluice site). To construct ClstBef,
we change the weight of CONTAINSSLUICE to -10,
which means that candidates containing the sluice
will never be chosen.

6.2 A maxent model
We trained a maxent classifier on the features in Ta-
ble 1 for the binary antecedent-not antecedent task.
With 10-fold cross-validation on the test set, the
maxent model achieved an average accuracy on the
binary antecedent task of 87.1 and an F-score of
53.8 (P=63.9, R=46.5). We then constructed an an-
tecedent selector that chose the candidate with the
highest classifier score.

6.3 Hill-Climbing
We define a procedure to hill-climb over weights
in order to maximize ConAccuracy over the entire
training set (maximizing TokF yielded similar re-
sults, and is not reported here). Weights are initial-
ized with random values in the interval [-10,10]. At
iteration i, the current weight vector is compared to
alternatives differing from it by the current step size
on one weight, and the best new vector is selected.
For the results reported here, we performed 13 ran-
dom restarts and exponential step size 10∗i.5 (values
that maximized performance on the DS).

7 Results

We performed 10-fold cross-validation over TS on
the hill-climbed and maxent models above, produc-
ing average ConAccuracy and TokF as shown in Ta-
ble 2, which also gives results of the three base-
lines on the entire dataset. The hill-climbed ap-
proach with all features substantially outperformed
the baselines, achieving a ConAccuracy of 72.4%.

We investigated the performance of our hill-
climbing procedure with ablation of several feature
subsets. We ablated features by group, as in Table 1.
Table 2 shows the results for using four groups and
only one group, as well as the top two three group
and two group combinations.

Features fall in three tiers. Distance features are
the most predictive: all the top systems use them,
and they alone perform reasonably well (like Clst).

A:Tr F:Tr A:Tes F:Tes
HC-DCSNR 73.8 72.4 72.4 71.5
HC-CSNR 41.8 51.8 40.3 51.6
HC-DCSR 72.9 71.6 72.1 71.0
HC-DSNR 53.5 59.1 52.7 58.3
HC-DCNR 65.8 67.1 64.6 65.9
HC-DCSN 73.3 72.1 72.7 71.8
HC-DCS 72.7 71.5 72.5 71.3
HC-DCN 65.6 67.8 64.3 66.8
HC-DC 63.3 65.4 63.0 65.4
HC-DS 51.2 57.2 50.9 57.1
HC-D 41.6 51.6 41.5 51.6
HC-C 30.6 45.1 28.9 45.3
HC-S 30.7 43.0 27.0 42.0
HC-N 30.5 38.6 30.7 38.2
HC-R 23.6 35.9 22.2 33.1
Maxent 65.3 70.2 64.2 68.0
Random 19.4 44.1 19.5 46.3
Clst 41.2 52.1 na na
ClstBef 56.5 67.9 na na

Table 2: Average (Con)A(ccuracy) and (Tok)F(-Score) for

Tr(ain) and Tes(t) splits on 10-fold cross-validation of data.

Feature groups: Distance, Containment, Discourse Structure,

coNtent, coRrelate. (Red marks results not significantly differ-

ent (via paired t-test) from HC-DCSNR.)

Containment and then Discourse Structure features
are the next most helpful. The full system has a
ConAccuracy of 72.4 on the TS, not reliably dif-
ferent from several systems without Content and/or
Correlate features. At the same time, the scores for
these feature types on their own show that they are
predictive of the antecedent: The Correlate feature
R has a score of 22.2, which is a rather modest, but
statistically significant, improvement over Random.
The Content feature N improves quite substantially,
up to 30.7. This suggests that there is some redun-
dancy with the other features, so that the contribu-
tions of Content and Correlate are not observed in
combination with them. (HC-N and HC-R’s lower
than Random TokF is a result of precision: Random
more often selects very small candidates inside the
correct antecedent, leading to a higher precision.)

The Content and Correlate features concern re-
lations between the type of sluice and the content
of the antecedent; since other features do not cap-
ture this, it is puzzling that these provide no fur-
ther improvement. To better understand why this
is, we investigated the performance of our feature

1241

sets by sluice type. For the top performing systems,
we found that antecedent selection for sluices over
extents (e.g, how much, how tall) performed 11%
better than average and those over reasons (why)
and manner (how) performed 13% worse than aver-
age; no other WH-phrase types differed significantly
from average. Importantly, this finding was consis-
tent even for the systems without Content or Cor-
relate features, which we extracted in large part to
help highlight possible correlate material for extent
sluices as well as entity (who/what) and temporal
(when) sluices.

We also examined systems knocking out our best
performing features, Distance, Containment, and
Discourse Structure. When Distance features were
omitted, we saw a bimodal distribution: reason and
manner sluice antecedent selection was 31% better
than expected (based on the full system differences
discussed above), and the other sluices performed
22% worse. When Containment features were omit-
ted, reason sluices performed 10% better than ex-
pected, while extent ones were 10% worse. Finally,
when Discourse Structure features were removed,
entity and temporal sluices had half the error rate
we would expect. While it is hard to provide a clear
takeaway from these differences, they do point to
the relative difficulty in locating sluice antecedents
based on WH-phrase type, and they also suggest that
different sluice types present quite different chal-
lenges. This suggests that one promising line might
be to learn different featural weights for each sluice
type.

8 Conclusion

We have addressed the problem of sluicing an-
tecedent selection by defining linguistically sophis-
ticated features describing the structure and content
of candidates. We described a hill-climbed model
which achieves accuracy of 72.4%, a substantial im-
provement over a strong manually constructed base-
line. We have shown that both syntactic and dis-
course relationships are important in antecedent se-
lection. In future work, we hope to improve the per-
formance of several of our features. Notable among
these are the discourse structural proxies we found
to make a contribution to the model. These features
constitute a quite limited view of discourse struc-

ture, and we suspect that a better representation of
discourse structure might well lead to further im-
provements. One potential path would be to lever-
age data where discourse relations are explicitly an-
notated, such as that in the Penn Discourse Treebank
(Prasad et al., 2008). In addition, although our Con-
tent and Correlate features were not useful alongside
the others, we hope that more refined versions of
those could provide some assistance. We also noted
that our performance was impacted by WH-types,
and therefore it might be helpful to learn different
featural weights per type.

In closing, we would like to return to the larger
question of effectively handling ellipsis. The solu-
tion to antecedent selection that we have presented
here provides a starting point for addressing the
problem of resolution, in which the content of the
sluice is filled in. However, even if the correct an-
tecedent is selected, the missing content is not al-
ways an exact copy of the antecedent – often sub-
stantial modifications will be required – and an ef-
fective resolution system will have to negotiate such
mismatches. As it turns out, many incorrect an-
tecedents differ from the correct antecedent in ways
highly reminiscent of these mismatches. Thus, some
of the errors of our selection algorithm may be most
naturally addressed by the resolution system, and it
may be that the relative priority of the specific chal-
lenges we identified here will become clearer as we
address the next step down in the overall pipeline.

Acknowledgments

We gratefully acknowledge the work of Jim Mc-
Closkey in helping to create the dataset investi-
gated here, as well as the principal annotators on
the project. We thank Jordan Boyd-Graber, Ellen
Riloff, and three incisive reviewers for helpful com-
ments. This research has been sponsored by NSF
grant number 1451819.

References
Pranav Anand and Jim McCloskey. 2015. Annotating

the implicit content of sluices. In The 9th Linguistic
Annotation Workshop held in conjuncion with NAACL
2015, page 178.

Scott AnderBois. 2014. The semantics of sluicing: Be-
yond truth conditions. Language, 90(4):887–926.

1242

Nicholas Asher. 1993. Reference to Abstract Objects in
English. Dordrecht.

Henry Beecher. 2008. Pramatic inference in the interpre-
tation of sluiced Prepositional Phrases. In San Diego
Linguistic Papers, volume 3, pages 2–10. Department
of Linguistics, UCSD, La Jolla, California.

Eric Bengtson and Dan Roth. 2008. Understanding the
value of features for coreference resolution. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 294–303. Asso-
ciation for Computational Linguistics.

Johan Bos and Jennifer Spenader. 2011. An annotated
corpus for the analysis of vp ellipsis. Language Re-
sources and Evaluation, 45(4):463–494.

Sara Cantor. 2013. Ungrammatical double-island sluic-
ing as a diagnostic of left-branch positioning.

S. Chung, W. Ladusaw, and J. McCloskey. 1995. Sluic-
ing and logical form. Natural Language Semantics,
3:1–44.

Mary Dalrymple, Stuart Shieber, and Fernando Pereira.
1991. Ellipsis and higher-order unification. Linguis-
tics and Philosophy, 14(4), August.

Pascal Denis and Jason Baldridge. 2008. Specialized
models and ranking for coreference resolution. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 660–669.

Raquel Fernández, Jonathan Ginzburg, and Shalom
Lappin. 2005. Automatic bare sluice disambiguation
in dialogue. In Proceedings of the IWCS-6 (Sixth In-
ternational Workshop on Computational Semantics),
pages 115–127, Tilburg, the Netherlands, January.
Available at:
http://www.dcs.kcl.ac.uk/staff/
lappin/recent_papers_index.html.

Raquel Fernández, Jonathan Ginzburg, and Shalom Lap-
pin. 2007. Classifying non-sentential utterances in di-
alogue: A machine learning approach. Computational
Linguistics, 33(3):397–427.

Raquel Fernández, Jonathan Ginzburg, Howard Gregory,
and Shalom Lappin. 2008. Shards: Fragment resolu-
tion in dialogue. In Computing Meaning, pages 125–
144. Springer.

Jonathan Ginzburg and Ivan Sag. 2000. Interrogative
Investigations: The Form, Meaning and Use of English
Interrogatives. CSLI Publications, Stanford, Calif.

Daniel Hardt and Maribel Romero. 2004. Ellipsis
and the structure of discourse. Journal of Semantics,
24(5):375–414.

Daniel Hardt. 1997. An empirical approach to vp ellip-
sis. Computational Lingusitics, 23(4):525–541.

Daniel Hardt. 1999. Dynamic interpretation of verb
phrase ellipsis. Linguistics & Philosophy, 22(2):187–
221.

Donald Hindle and Mats Rooth. 1993. Structural ambi-
guity and lexical relations. Computational linguistics,
19(1):103–120.

Varada Kolhatkar and Graeme Hirst. 2012. Resolv-
ing “this-issue” anaphora. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning, pages 1255–65.

Varada Kolhatkar, Heike Zinmeister, and Graeme Hirst.
2013. Interpreting anaphoric shell nouns using an-
tecedents of ctaphoric shell nouns as training data.
In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing.

Ken Litowski and Orin Hargraves. 2005. The prepo-
sition project. In ACL-SIGSEM Workshop on ”The
Linguistic Dimension of Prepositions and Their Use
in Computational Linguistic Formalisms and Applica-
tions, pages 171–179.

Anne Lobeck. 1995. Ellipsis: Functional heads, licens-
ing and identification. Oxford University Press.

Jason Merchant. 2001. The syntax of silence: Sluicing,
islands, and identity in ellipsis. Oxford.

Leif Nielsen. 2005. A Corpus-Based Study of Verb
Phrase Ellipsis Identification and Resolution. Ph.D.
thesis, King’s College London.

Johanna Nykiel. 2010. Whatever happened to Old En-
glish sluicing. In Robert A. Cloutier, Anne Marie
Hamilton-Brehm, and Jr. William A. Kretzschmar, ed-
itors, Studies in the History of the English Language V:
Variation and Change in English Grammar and Lexi-
con: Contemporary Approaches, pages 37–59. Walter
de Gruyter.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind K Joshi, and Bonnie L
Webber. 2008. The penn discourse treebank 2.0. In
LREC. Citeseer.

Hub Prüst, Remko Scha, and Martin van den Berg. 1994.
A discourse perspective on verb phrase anaphora. Lin-
guistics and Philosophy, 17(3):261–327.

James Pustejovesky, Marc Verhagen, Roser Sauri, Jes-
sica Littman, Robert Gaizauskas, Graham Katz, Inder-
jeet Mani, Robert Knippen, and Andrea Setzer. 2016.
Timebank 1.2. LDC2006T08, April.

Ivan A. Sag. 1976. Deletion and Logical Form. Ph.D.
thesis, Massachusetts Institute of Technology. (Pub-
lished 1980 by Garland Publishing, New York).

W. M. Soon, H.T. Ng, and D. C. Y Lim. 2001. A ma-
chine learning approach to coreference resolution of
noun phrases. Computational Linguistics, 27(4):521–
44.

1243

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1244–1254,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Intra-Sentential Subject Zero Anaphora Resolution using
Multi-Column Convolutional Neural Network

Ryu Iida Kentaro Torisawa Jong-Hoon Oh
Canasai Kruengkrai Julien Kloetzer

National Institute of Information and Communications Technology
Kyoto 619-0289, Japan

{ryu.iida,torisawa,rovellia,canasai,julien}@nict.go.jp

Abstract

This paper proposes a method for intra-
sentential subject zero anaphora resolution in
Japanese. Our proposed method utilizes a
Multi-column Convolutional Neural Network
(MCNN) for predicting zero anaphoric rela-
tions. Motivated by Centering Theory and
other previous works, we exploit as clues both
the surface word sequence and the dependency
tree of a target sentence in our MCNN. Even
though the F-score of our method was lower
than that of the state-of-the-art method, which
achieved relatively high recall and low preci-
sion, our method achieved much higher pre-
cision (>0.8) in a wide range of recall lev-
els. We believe such high precision is cru-
cial for real-world NLP applications and thus
our method is preferable to the state-of-the-art
method.

1 Introduction

In such pro-drop languages as Japanese, Chinese
and Italian, pronouns are frequently omitted in text.
For example, the subject of uketa (suffered) is unre-
alized in the following Japanese example (1):

(1) sono-houkokusho-wa seifui-ga
the report-TOP governmenti-SUBJ

jouyaku-o teiketsushi (ϕi-ga) keizaitekini
treaty-OBJ make iti-SUBJ economically

higai-o uke-ta koto-o shitekishi-ta
damage-OBJ suffer-PAST COMP point out-PAST

The report pointed out that the governmenti
agreed to a treaty and (iti) suffered economically.

The omitted argument is called a zero anaphor,
which is represented using ϕ. In example (1), zero

anaphor ϕi refers to its antecedent, seifui (govern-
ment). Such a reference phenomenon is called zero
anaphora. Identifying zero anaphoric relations is
an essential task in developing such accurate NLP
applications as information extraction and machine
translation for pro-drop languages. For example, in
Japanese, 60% of subjects in newspaper articles are
unrealized as zero anaphors (Iida et al., 2007).

This paper proposes a method for intra-sentential
subject zero anaphora resolution, in which a zero
anaphor and its antecedent appear in the same sen-
tence and the zero anaphor must be a subject of
a predicate, for Japanese. We target subject zero
anaphors because they represent 85% of the intra-
sentential zero anaphora in our data set (example
(1) is such a case). Furthermore, this work focuses
on intra-sentential zero anaphora because inter-
sentential cases, in which a zero anaphor and its an-
tecedent do not appear in the same sentence, are ex-
tremely difficult. The accuracy of the state-of-the-
art method for resolving inter-sentential anaphora is
low (Sasano and Kurohashi, 2011), and we believe
the current technologies are not mature enough to
deal with inter-sentential cases.

Our method locally predicts the likelihood of a
zero anaphoric relation between every possible com-
bination of potential zero anaphor and potential an-
tecedent without considering the other (potential)
zero anaphoric relations in the same sentence. The
final determination of zero anaphoric relations for
each zero anaphor in a given sentence is done in
a greedy way; only the most likely candidate an-
tecedent for each zero anaphor is selected as its an-
tecedent as far as the likelihood score exceeds a

1244

given threshold. This approach contrasts with global
optimization methods (Yoshikawa et al., 2011; Iida
and Poesio, 2011; Ouchi et al., 2015), which have
recently become popular. These methods use the
constraints among possible zero anaphoric relations,
such as “if a candidate antecedent is identified as
the antecedent of a subject zero anaphor of a predi-
cate, the candidate cannot be referred to by the ob-
ject zero anaphor of the same predicate”, and deter-
mine an optimal set of zero anaphoric relations in
an entire sentence while satisfying such constraints,
using such optimization techniques as sentence-wise
global learning (Ouchi et al., 2015) and integer lin-
ear programming (Iida and Poesio, 2011).

Although the global optimization methods have
outperformed the previous greedy-style methods,
our contention is that greedy-style methods can still,
in a certain sense, outperform the state-of-the-art
global optimization methods. Ouchi et al. (2015)’s
global optimization method achieved the state-of-
the-art F-score for Japanese intra-sentential subject
zero anaphora resolution, but its performance has
not yet reached a level of practical use. In our set-
ting, for example, it actually obtained a precision of
only 0.61, and even after attempting to obtain more
reliable zero anaphoric relations by several modi-
fications, we could only achieve 0.80 precision at
extremely low recall levels (<0.01). On the other
hand, while our proposed greedy-style method ob-
tained a lower F-score than Ouchi et al.’s method,
it achieved much higher precision in a wide range
of recall levels (e.g., around 0.8 precision at 0.25
in recall and around 0.7 precision at 0.4 in recall).
We believe such high precision is crucial to real-
world applications, even though the recall remains
low, and thus our method is preferable to Ouchi et
al.’s method in that sense.

In our proposed method, we use a Multi-column
Convolutional Neural Network (MCNN) (Cireşan et
al., 2012), which is a variant of a Convolutional Neu-
ral Network (CNN) (LeCun et al., 1998). An MCNN
has several independent columns, each of which has
its own convolutional and pooling layers. The out-
puts of all the columns are combined in the final
layer to provide a final prediction. In this work, mo-
tivated by Centering Theory (Grosz et al., 1995) and
other previous works, we exploit as distinct columns
the word sequences obtained from the surface word

sequence and the dependency tree of a target sen-
tence in our MCNN. Although the existing works
also exploited such word sequences, they used only
particular types of information from them as features
based on the researchers’ linguistic insights. In con-
trast, we minimized such feature engineering due to
using an MCNN.

The rest of this paper is organized as follows.
In Section 2, we briefly overview previous work
on zero anaphora resolution. In Section 3, we
present the procedure of our zero anaphora resolu-
tion method and explain the column sets used in our
MCNN architecture. We evaluate how effectively
our method recognizes intra-sentential subject zero
anaphora in Section 4 and summarize this work and
discuss future directions in Section 5.

2 Related work

The typical zero anaphora resolution algorithms pro-
posed so far have exploited the information of a
predicate that potentially has a zero anaphor and its
candidate antecedent in a supervised manner (Seki
et al., 2002; Iida et al., 2003; Isozaki and Hirao,
2003; Iida et al., 2006; Taira et al., 2008; Sasano
et al., 2008; Imamura et al., 2009; Hayashibe et al.,
2011; Iida and Poesio, 2011; Sasano and Kurohashi,
2011; Yoshikawa et al., 2011). In addition, existing
works have exploited the dependency path between
a predicate and a candidate antecedent either by en-
coding such paths to the set of binary features of the
words that appear in the path (Iida and Poesio, 2011)
or by mining from the paths the sub-trees that effec-
tively discriminate zero anaphoric relations (Iida et
al., 2006). However, both methods just focus on the
dependency paths between a predicate and a candi-
date antecedent without exploiting other structural
fragments in the dependency tree representing a tar-
get sentence, whereas our method uses the text frag-
ments that cover the entire dependency tree.

Another important clue was derived from dis-
course theories, such as Centering Theory (Grosz
et al., 1995). In this theory, (zero) anaphoric phe-
nomenon is explained based on the rules and prin-
ciples regarding the recency and saliency of candi-
date antecedents. Okumura and Tamura (1996) de-
veloped a rule-based method based on the idea of
Centering Theory. Iida et al. (2003) and Imamura et

1245

al. (2009) used as features for machine learning the
results of rule-based antecedent identification based
on a variant of Centering Theory (Nariyama, 2002).
However, we observed that actual anaphoric phe-
nomena often do not obey Centering Theory. To
robustly resolve zero anaphora, we need to explore
additional clues that are represented in a target sen-
tence (or text).

Recent work by Iida et al. (2015) newly intro-
duced a sub-problem of zero anaphora resolution,
subject sharing recognition, which is the task that
judges whether two predicates have the same sub-
ject. In their method, a network of subject sharing
predicates is created by their subject sharing rec-
ognizer, and then zero anaphora resolution is per-
formed by propagating a subject to the unrealized
subject positions through the path in the network.
Even though the accuracy of subject sharing recog-
nition exceeds that of zero anaphora resolution, the
zero anaphoric relations identified using the results
of subject sharing recognition are limited to those
that can be reached by subject sharing relations. The
recall of this method is not high.

Although most zero anaphora resolution methods
independently identify a zero anaphoric relation for
each predicate, some previous works optimized the
global assignment of zero anaphoric relations in an
entire sentence (or an entire text) while satisfying
several constraints among zero anaphoric relations.
For example, Iida and Poesio (2011) found the best
assignment of subject zero anaphoric relations using
integer linear programming. As mentioned in the In-
troduction, Ouchi et al. (2015) estimated the global
score of all of the predicate-argument assignments in
a sentence, which include the assignments of intra-
sentential zero anaphoric relations, to find the best
assignment using a hill-climbing technique. Their
method has an advantage: it can exploit complicated
relations (e.g., the combination of two potential zero
anaphoric relations) as features to directly decide
more than one predicate-argument relation simulta-
neously. We adopted Ouchi et al. (2015)’s method
as a baseline in Section 4 because it achieved the
state-of-the-art performance for intra-sentential zero
anaphora resolution.

Collobert et al. (2011) proposed CNN architec-
ture that can be applied to various NLP tasks, such
as PoS tagging, chunking, named entity recognition

and semantic role labeling. Following this work,
CNNs have been utilized in such NLP tasks as docu-
ment classification (Kalchbrenner et al., 2014; Kim,
2014; Johnson and Zhang, 2015), paraphrase (Hu
et al., 2014; Yin and Schütze, 2015) and relation
extraction (Liu et al., 2013; Zeng et al., 2014; dos
Santos et al., 2015; Nguyen and Grishman, 2015).
MCNNs were first introduced for image classifica-
tion (Cireşan et al., 2012). In NLP tasks, they have
been utilized for question-answering (Dong et al.,
2015) and relation extraction (Zeng et al., 2015).
Our MCNN architecture was inspired by a Siamese
architecture (Chopra et al., 2005), which we extend
to a multi-column network and replace its similarity
measure with a softmax function at its top.

3 Proposed method

Our proposed method consists of the following four
steps:

Step 1 Extract every pair of a predicate and a can-
didate antecedent, ⟨predi, candi⟩, that appears
in a target sentence.

Step 2 Predict the probability of each pair using our
MCNN.

Step 3 Rank in descending order all the pairs by
their probabilities obtained in Step 2.

Step 4 Choose the top pair ⟨predi, candi⟩ in the
ranked list and fill the zero anaphor position of
predicate predi by candi if the position has not
already been filled by another candidate. Re-
move ⟨predi, candi⟩ from the list and repeat
this step as long as the score of the chosen pair
exceeds a given threshold.

In Step 1, we extract set of pairs ⟨predi, candi⟩
in which candidate antecedent candi is paired with
predicate predi. Note that we extracted predicate
predi, instead of a zero anaphor that is an unreal-
ized subject of predi, because the (potential) zero
anaphor of predi is omitted in the text and cannot
be extracted directly.

In Step 2, our MCNN gives a probability that in-
dicates the likelihood of a zero anaphoric relation
to judge for each pair whether candi fills the blank
subject position of predi through zero anaphora and
ranks all of the pairs by the probabilities in Step 3.

1246

!"#$%&'

((((((
SURFSEQ

!"#$#%&'()*%+*%,*

(((

!"#$%&% !&'($)*" +,$-"#$), .&'#&.!$!/' 01/'*"'),1$#&." #,.,),1!/'.&#'!/'."

)""*+,-

.",/"*0$+",

)""*+,-

.",/"*0$+",

."*0%,12 ."*0%,13

((()""*+,-

.",/"*0$+",

)""*+,-

.",/"*0$+",

."*0%,14 ."*0%,15

(((
)""*+,-

.",/"*0$+",

."*0%,16

PREDCONTEXT

.&,7+7&$81&,$8.878,$ 9.&,7+:);87+.&$819);87+:

DEPTREE

.&,7+

);87+

(((

(((

(((

.&,7+);87+);87+

.&,7+);87+

)&;!8

8'$;&.$1<";7
!8=08,.8

8'$;&.$1<";7
!8=08,.8

)""*+,-

.",/"*0$+",

."*0%,1>

BASE

Figure 1: Our multi-column CNN architecture

Finally, in Step 4 we actually fill candi in the
blank subject positions of predi in a greedy style
in the order of the ranked list in Step 3, i.e., the
zero anaphora resolution with a higher probability is
done before that with a lower probability. If the sub-
ject position is already occupied by another candi-
date antecedent, candidate antecedents are no longer
filled at that position.

3.1 Design of columns used in MCNN

In Step 2 of our method, we use a Multi-column
Convolutional Neural Network (MCNN). Note that
zero anaphoric phenomena can be divided into two
different referential phenomena: anaphoric (i.e.,
an antecedent precedes its zero anaphor) and cat-
aphoric (i.e., a zero anaphor precedes its antecedent)
cases. To capture this difference, we divided the set
of training instances into two subsets by the relative
occurrence positions of a predicate and a candidate
antecedent and respectively trained two independent
MCNNs using each set.

Our MCNN simultaneously uses four column
sets, as illustrated in Figure 1. In the following ex-
planation for each column set, we assume that can-
didate antecedent candi precedes predicate predi in
the surface order (for the opposite case, i.e., the cat-
aphoric case, the positions of candi and predi are
switched).

BASE The first column set consists of one col-
umn, which stores the word vectors of the bunsetsu

!"#$%
&&&

&&&

&&&

'()$%

*(+

*,+

*'+

*$+

Figure 2: Columns (a, b, c, d) in DEPTREE column set

phrases1 including either candi or predi. We call
this column set the BASE column set.

SURFSEQ The second column set consists of three
columns, which store the word vectors of (a) the
surface word sequence spanning from the beginning
of the sentence to candi, (b) the sequence between
candi and predi, and (c) the remainder, i.e., from
predi to the end of the sentence. Note that candi

and predi are not included in any column of this
column set. We call this column set the SURFSEQ

column set.

DEPTREE The third set consists of four columns.
We extracted four partial dependency trees from the
entire dependency tree of a target sentence: (a) the
dependency path between predi and candi, (b) the
sub-trees that depend on predi, (c) the sub-trees on
which candi depends and (d) the remaining sub-
trees, which are illustrated in Figure 2. Note that
candi and predi are not included in the partial trees.
Each column stores the word vectors of the word se-
quence in which the words in (the set of) the partial
trees are ordered by their surface order. We call this
set the DEPTREE column set.

PREDCONTEXT The fourth set consists of three
columns, which store the word vectors of (a) the
bunsetsu phrase including predi, (b) the surface
word sequence that appears before (a) (from the be-
ginning of the sentence) and (c) the sequence that
appears after (a) (until the end of the sentence). We
call this column set the PREDCONTEXT column set.

Among the four column sets, the SURFSEQ col-
umn set was designed to introduce the clues based

1A bunsetsu phrase is a Japanese base phrase that consists
of at least one content word optionally followed by function
words.

1247

!"#$%&'(")%

%*&(+&!"+%

,)--&+

. /0&+"(1$1!*"+2 '1314&315&

4"6&+$3&$% %+&1%7 &8"$"3#81997

1'6:";<,);<

,);< ";<

";<,);<(/%"!#819#0&'2

8"$<

&3;&''&'(891),&

8"3!:

!"#$%&'&()$#*+%

Figure 3: Dependency tree of example (1)

on Centering Theory, in which the antecedent for
a given zero anaphor can basically be identified by
the recency and saliency properties of a candidate
antecedent. More precisely, in the set of the most
salient candidate antecedents, the most recent one
is preferred. For example, suppose example (2)
in which the predicate increase has a subject zero
anaphor and its antecedent is France:

(2) nihon-wa shoshikataisaku-ni
Japan-TOP countermeasures to falling birth rate-IOBJ

shippaishi-taga, furansu-wa sore-ni seikoushi
fail-PAST/BUT France-TOP it-IOBJ succeed

(ϕi-ga) shusseiritsu-o fuyashiteiru
(iti-SUBJ) birth rate-OBJ increase
Japan failed to develop countermeasures to its
falling birth rate, but Francei succeeded and (ϕi)
increased its birth rate.

In this situation, there are two most salient candi-
date antecedents, Japan and France, because they
are marked with topic marker wa, which basically
indicates the highest degree of candidate saliency.
In this case, France is selected as the antecedent be-
cause it appears more recently than Japan, and such
recency can be estimated by consulting the surface
word sequence between France and increase: no
other salient candidates are included in the word se-
quence. Also, the other two types of word sequences
(i.e., the sequence that spans from the beginning of
the sentence to candi and that spans from predi to
its end) are important for confirming whether a more
salient candidate than candi appears in each word
sequence. If such a more salient candidate is found,
it should be a stronger candidate of the antecedent.

The DEPTREE column set is introduced for cap-
turing a different aspect of intra-sentential zero
anaphora. In the explanation based on Centering
Theory, the most salient candidate (e.g., the candi-
date marked with wa (topic marker)) is selected as

!"#$%&'

((((((

)"*+,-./$"*!

'0 '1 ((('2$2

#34&5,5&6.*

#.&$7*.8%&9!, #"*,!8:*&%

"#

"$

"%

/"4/&$.4&$3"4

((((((

;&'89""534:

/"4-"57$3"4

!8:*&%

"7$97$!,#*"%

%&'89""534:, "#

"$<.*,/"57%4!

"7$97$!,#*"%

%&'89""534:, "#

"$<.*,/"57%4!

3497$,)"*+

!.=7.4/.

Figure 4: Column of our MCNN

an antecedent, but example (1) in Section 1 cannot
be interpreted based on saliency and recency. In ex-
ample (1), the report is the most salient candidate in
the sentence because it is marked with topic marker
wa, but the less salient candidate government be-
comes the antecedent of zero anaphor ϕ. Such a
problem is often solved by introducing the depen-
dency tree of a sentence. Figure 3 represents the
dependency tree of example (1) in which the an-
tecedent of ϕi appears in the embedded clause. In
such a case, an antecedent probably exists among
the most salient candidates in the embedded clause.
To introduce such structural clues, we used the par-
tial dependency trees as columns in the DEPTREE

column set.
Anaphoricity determination, which is the task of

judging whether a candidate anaphor has an an-
tecedent, was established as a subtask of coreference
resolution. This problem was basically solved by
exploring the possible candidate antecedents for a
given anaphor candidate in its search space, and the
results were used for improving the overall perfor-
mance of coreference resolution, especially in En-
glish (Ng, 2004; Wiseman et al., 2015). Inspired
by such previous works, we designed the PRED-
CONTEXT set to determine the anaphoricity of zero
anaphors, i.e., to judge whether a zero anaphor can-
didate has its antecedent in a sentence, by consulting
the surface word sequences before and after predi.

3.2 MCNN architecture
In our MCNN (Figure 4), we represent each word
in text fragment t by d-dimensional embedding vec-

1248

tor xi and t by matrix T = [x1, . . . , x|t|].2 T is
then wired to a set of M feature maps where each
feature map is a vector. Each element O in the
feature map is computed by a filter denoted by fj

(1 ≤ j ≤ M) from the N -gram word sequences
in t for a fixed integer N , as O = ReLU(Wfj

•
xi:i+N−1 +bfj

), where • denotes element-wise mul-
tiplication followed by the summation of the result-
ing elements (i.e., a Frobenious inner product of
Wfj

and xi:i+N−1) and ReLU(x) = max(0, x). In
other words, we construct a feature map by convolv-
ing a text fragment with a filter, which is parameter-
ized by weight Wfj

∈ Rd×N and bias bfj
∈ R. Note

that there can be several sets of feature maps where
each set covers N -grams for different N . Note that
the weight of the feature maps for each N -gram in
each column set is shared.

As a whole, these feature maps are referred to as
a convolution layer. The next layer is called a pool-
ing layer. Here we use max-pooling (Scherer et al.,
2010; Collobert et al., 2011), which simply selects
the maximum value among the elements in the same
feature map. Our assumption is that the maximum
value indicates the existence of a strong clue, i.e.,
N -gram, for our final judgment. The selected maxi-
mum values from all the M feature maps are simply
concatenated, and the resulting M -dimensional vec-
tor is given to our final layer.

The final layer has vectors coming from multiple
feature maps in multiple columns. They are again
simply concatenated and constitute a high dimen-
sional feature vector. The final layer applies a linear
softmax function to produce the class probabilities
of the zero anaphoric labels: true and false. We use
a mini-batch stochastic gradient descent (SGD) with
the Adadelta update rule (Zeiler, 2012), apply ran-
dom initialization within (-0.01, 0.01) for Wfj

, and
initialize the remaining parameters at zero.

4 Experiments

4.1 Revising annotation results

In our preliminary investigation of the intra-
sentential zero anaphoric relations in the NAIST
Text Corpus (Iida et al., 2007), since we found more
annotation errors than we expected, we decided to

2We use zero padding for dealing with text fragments of
variable length (Kim, 2014).

revise the annotation results. In this revision, we
additionally annotated the subject sharing relations,
where two predicates have the same subject regard-
less whether the subject is realized or omitted, be-
tween pairs of predicates in our data set. Note that
two predicates can have a subject sharing relation
even if neither has a realized subject as far as a sub-
ject exists that can naturally fill the subject position
of the two predicates. We used the annotated results
of subject sharing relations to efficiently detect the
annotation errors of intra-sentential zero anaphoric
relations, as shown below.

Twenty-six human annotators directly annotated
the subject sharing relations for pairs of predicates
in a sentence. For this annotation, we automatically
extracted from the NAIST Text Corpus all the pairs
of predicates that appear in the same sentence and
obtained 227,517 predicate pairs. For making the
annotation results more reliable, each subject shar-
ing relation was individually judged by three anno-
tators, and the final label was decided by a majority
vote. After that, further revisions of the subject shar-
ing relations and the zero anaphoric relations were
performed by focusing on the inconsistent annota-
tions between the newly annotated subject sharing
relations and the original predicate-argument rela-
tions in the NAIST Text Corpus. More precisely,
we scrutinized the suspicious annotations such that
a subject, which was determined through the anno-
tated subject sharing relations, is not the same as
a subject that was directly annotated in the NAIST
Text Corpus. In this revision phase, both the subject
sharing and zero anaphora relations for such suspi-
cious instances were independently re-annotated by
three annotators, and their final labels of both rela-
tions were determined by a majority of the their de-
cisions.3 As a result, 2,120 zero anaphoric instances
were newly added to the corpus and 1,184 instances
were removed from it for a total of 19,049 instances
of intra-sentential subject zero anaphoric relations.4

3We are planning to release the annotated results and in-
formation on the data separation used in our evaluation from
https://alaginrc.nict.go.jp/.

4After this revision, a small number of inconsistent anno-
tated results have both a syntactically dependent subject and a
subject zero anaphor because the revision was performed lo-
cally. There were 30 inconsistent instances in the testing set
and 100 in the training and development sets. We only removed
such instances from the testing set without changing the other

1249

Type #docs #sentences #zero anaphors
(intra-sentential)

train 1,757 23,152 11,453
dev 586 7,526 3,691
test 586 7,705 3,875

Table 1: Statistics of our data set

4.2 Experimental settings

The documents in the corpus were divided into five
subsets, three of which were used as a training data
set, one as a development data set, and one as a test-
ing data set. The statistics of our data set are sum-
marized in Table 1. We evaluated the performance
of our intra-sentential subject zero anaphora resolu-
tion method and three baseline methods described
below using the revised annotated results in our data
set.

We implemented our MCNN using Theano
(Bastien et al., 2012). We pre-trained 300-
dimensional word embedding vectors for 1,658,487
words5 using Skip-gram with a negative-sampling
algorithm (Mikolov et al., 2013)6 on a set of all
the sentences extracted from Wikipedia articles7

(35,975,219 sentences). We removed from the train-
ing data all the words that only appeared once be-
fore training. In training, we treated them as un-
known words and assigned them a random vector.
To avoid overfitting, we applied early-stopping and
dropout (Hinton et al., 2012) of 0.5 to the final layer.
We used an SGD with mini-batches of 100 and a
learning rate decay of 0.95. We ran ten epochs
through all of the training data, where each epoch
consisted of many mini-batch updates. We utilized
3-, 4- and 5-grams with 100 filters each and used the
F-score of positive instances as our evaluation met-
ric. The total number of the nodes in the final layers
of our MCNN was 3,300: 11 columns × 3 N -gram
× 100 filters.

Word segmentation, PoS tagging and dependency
parsing of the sentences in the NAIST Text Corpus
were performed by a Japanese morphological ana-
lyzer, MeCab8 (Kudo et al., 2004), and a depen-

two sets.
5Words occurring less than five times in all the sentences

were ignored to train the word embedding vectors.
6We set the skip distance to 5 and the number of negative

samples to 10.
7https://archive.org/details/jawiki-20150118
8http://taku910.github.io/mecab/

dency parser, J.DepP9 (Yoshinaga and Kitsuregawa,
2009).

4.3 Baselines

We compared our method with three baseline meth-
ods. The first baseline is a single-column convolu-
tional neural network in which the column includes
the entire surface word sequence of a sentence. To
give the positions of predi and candi to the network,
we concatenated to each word vector an additional
2-dimensional vector, where the first element is set
to one if the corresponding word is predi, the sec-
ond element is set to 1 if the corresponding word is
candi, and otherwise they are set to 0. This baseline
was adopted for estimating the impact of a multi-
column network compared to a single-column one.

The remaining two baselines are Ouchi et al.
(2015)’s global optimization method and Iida et al.
(2015)’s method based on subject sharing recogni-
tion. Note that Ouchi’s method outputs predicate-
argument relations for three grammatical roles (subj,
obj, iobj), but for this evaluation we used only
the outputs related to intra-sentential subject zero
anaphora resolution. As done in Ouchi et al. (2015),
we averaged their performances across ten indepen-
dent runs because the initial random assignment of
the predicate-argument relations that was employed
in their method changes the performance. Ouchi’s
method does not require any development data set,
so we used both the development and training data
sets for training their joint model. For training the
subject sharing recognizer used in Iida’s method, we
used the annotated subject sharing relations in the
training and development data sets. In these two
baselines, we used the same morphological analyzer
and dependency analyzer as for our method.

4.4 Results

Table 2 shows the results for each method. Their
performances were evaluated by measuring recall,
precision, F-score and average precision (Avg.P).
To assess the effectiveness of each column set intro-
duced in Section 3.1, we evaluated the performance
of our method using every possible combination
of column sets that includes at least the BASE

column set. We also gave the precision-recall (PR)
9http://www.tkl.iis.u-tokyo.ac.jp/˜ynaga/jdepp/

1250

Method #cols. Recall Precision F-score Avg.P
Ouchi et al. (ACL2015) — 0.539 0.612 0.573 0.670
Iida et al. (EMNLP2015) — 0.484 0.357 0.411 —
single column CNN (w/ position vec.) 1 0.365 0.524 0.430 0.540
MCNN BASE 1 0.446 0.394 0.419 0.448

BASE+SURFSEQ 4 0.458 0.597 0.518 0.679
BASE+DEPTREE 5 0.339 0.688 0.454 0.690
BASE+SURFSEQ+DEPTREE 8 0.417 0.695 0.521 0.730
BASE+SURFSEQ+PREDCONTEXT 7 0.459 0.631 0.531 0.702
BASE+DEPTREE+PREDCONTEXT 8 0.298 0.728 0.422 0.702
BASE+SURFSEQ+DEPTREE+PREDCONTEXT (Proposed) 11 0.418 0.704 0.525 0.732

#cols. stands for the number of columns used in each MCNN.

Table 2: Results of intra-sentential subject zero anaphora resolution

curves of our method using the four column sets
(BASE+SURFSEQ+DEPTREE+PREDCONTEXT),
the single column baseline, and Ouchi’s method
in Figure 5 to investigate the behavior of each
method at a high precision level.10 The PR-curves
of our method and the single-column baseline were
plotted just by altering the threshold parameters in
Step 4 of our method (See Section 3). In contrast,
the PR-curve of Ouchi’s method cannot be easily
plotted because it gives a score to each sentence,
not to each zero anaphoric relation. For plotting
the PR-curve, we used the normalized global score
of a sentence as the score of any zero anaphoric
relations in the sentence.11 Note that the recall of
their PR-curve reached just 0.539, shown in Table 2,
because we could not estimate the scores of the
zero anaphoric relations that were not outputted by
their method. The PR-curves of the other methods
also fail to reach 1.0 in recall. This is because
the zero anaphoric relations are exclusive; a zero
anaphor does not refer to more than one antecedent.
If a method provides an incorrect zero anaphoric
relation, a correct relation for the same zero anaphor
will never be provided in its output. Also, note that
the average precision of each method was calculated
by averaging the precisions at the available recall

10The PR-curve of Iida et al. (2015)’s method was not plotted
because it does not provide the score of each zero anaphoric
relation.

11The global score provided by Ouchi’s method becomes
greater based on the number of predicate-argument pairs in a
sentence. To control this, we normalized the original global
score by the sum of the frequencies of the single or double
predicate-argument pairs because the feature functions were ap-
plied to such pairs in their method. This achieved the best per-
formance among the normalization schemes we have tried so
far.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

pr
ec

is
io

n

recall

MCNN: Proposed
Ouchi (ACL2015)

Ouchi (ACL2015) PR
single-column CNN
Iida (EMNLP2015)

Figure 5: PR-curves of each method

levels for each method.
The results in Table 2 show that our method using

all the column sets achieved the best average pre-
cision among the combination of column sets that
include at least the BASE column set. This sug-
gests that all of the clues introduced by our four
column sets are effective for performance improve-
ment. Table 2 also demonstrates that our method us-
ing all the column sets obtained better average pre-
cision than the strongest baseline, Ouchi’s method,
in spite of an unfavorable condition for it.12 The
results also show that our method with all of the
column sets achieved a better F-score than Iida’s
method and the single-column baseline. However,
it achieved a lower F-score than Ouchi’s method.
This was caused by the choice of different recall lev-
els for computing the F-score. In contrast, the PR-

12When calculating the average precision of each method,
the relatively low values in precision at high recall levels (i.e.,
from 0.54 to 0.67) were used in our method but not in Ouchi’s
method, as seen in Figure 5.

1251

Set Method Recall Precision F-score Avg.P
Anaphoric single-column CNN (w/ position vec.) 0.445 0.525 0.481 0.341

MCNN (BASE) 0.591 0.330 0.424 0.367
MCNN (BASE+SURFSEQ) 0.555 0.566 0.560 0.565
MCNN (BASE+DEPTREE) 0.389 0.615 0.476 0.518
MCNN (BASE+SURFSEQ+DEPTREE) 0.503 0.660 0.571 0.599
MCNN (BASE+SURFSEQ+PREDCONTEXT) 0.535 0.611 0.570 0.581
MCNN (BASE+DEPTREE+PREDCONTEXT) 0.330 0.699 0.449 0.528
MCNN (Proposed) 0.492 0.673 0.569 0.602

Cataphoric single-column CNN (w/ position vec.) 0.163 0.293 0.209 0.163
MCNN (BASE) 0.171 0.130 0.148 0.099
MCNN (BASE+SURFSEQ) 0.202 0.417 0.272 0.257
MCNN (BASE+DEPTREE) 0.268 0.438 0.332 0.329
MCNN (BASE+SURFSEQ+DEPTREE) 0.195 0.525 0.285 0.330
MCNN (BASE+SURFSEQ+PREDCONTEXT) 0.258 0.406 0.316 0.276
MCNN (BASE+DEPTREE+PREDCONTEXT) 0.240 0.488 0.322 0.341
MCNN (Proposed) 0.251 0.522 0.339 0.337

Table 3: Results of instance-wise evaluation for anaphoric and cataphoric sets

curves for these two methods in Figure 5 show that
our method obtained higher precision than Ouchi’s
method at all recall levels. Particularly, it got high
precision in a wide range of recall levels (e.g.,
around 0.8 in precision at 0.25 in recall and around
0.7 in precision at 0.4 in recall), while the precision
obtained by Ouchi’s method at 0.25 in recall was just
around 0.65. We believe this difference becomes
crucial when using the outputs of each method for
developing accurate real-world NLP applications.

In addition to an evaluation that used all of the
test instances, we also investigated how our method
performed differently for anaphoric and cataphoric
cases. In this evaluation, we first divided our data set
into anaphoric and cataphoric sets by the relative po-
sition of the candidate antecedent and evaluated the
performance by measuring the recall, precision, F-
score and average precision for each set. This eval-
uation was done instance-wise, where we took into
account each pair of a predicate and its candidate an-
tecedent as a classification target, while in the pre-
vious evaluation the performance was measured for
the set of zero anaphors in the test set. Thus, the
figures in Table 2 and Table 3 are not comparable.
Note that we only compared our method with the
baseline using a single-column convolutional neural
network because the other baselines are not able to
output the score of each instance for measuring their
average precision.

The results in Table 3 show that our MCNN-based
method achieved better average precision than the

single-column CNN baseline except the method that
uses only the BASE column set for the cataphoric
case. The results also demonstrate that each column
set consistently contributes to improving the aver-
age precision for both the anaphoric and cataphoric
cases. However, Table 3 shows that the average pre-
cision for the cataphoric set remains low. As one
future direction for further improvement, we need
to explore clues for identifying cataphoric relations
more accurately.

5 Conclusion

This paper proposed an accurate method for intra-
sentential subject zero anaphora resolution us-
ing a Multi-column Convolutional Neural Network
(MCNN). As clues, our MCNN exploits both the
surface word sequence and the dependency tree of a
target sentence. Our experimental results show that
the proposed method achieved better precision than
the strong baselines in a wide range of recall levels.

As future work, we plan to use our MCNN archi-
tecture for inter-sentential zero anaphora resolution
and develop highly accurate NLP applications using
our intra-sentential subject zero anaphora resolution
method.

Acknowledgement

We thank Hiroki Ouchi for providing his predicate-
argument analyzer that was proposed in Ouchi et al.
(2015).

1252

References
Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,

James Bergstra, Ian J. Goodfellow, Arnaud Berg-
eron, Nicolas Bouchard, and Yoshua Bengio. 2012.
Theano: new features and speed improvements. In
Proceedings of the NIPS 2012 Workshop: Deep Learn-
ing and Unsupervised Feature Learning.

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with
application to face verification. In Proceedings of
Computer Vision and Pattern Recognition Conference,
pages 539–546.

Dan Claudiu Cireşan, Ueli Meier, and Jürgen Schmidhu-
ber. 2012. Multi-column deep neural networks for
image classification. In Computer Vision and Pattern
Recognition, pages 3642–3649.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of Machine Learning Research, 12:2493–
2537.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015. Ques-
tion answering over freebase with multi-column con-
volutional neural networks. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing, pages 260–269.

Cicero dos Santos, Bing Xiang, and Bowen Zhou. 2015.
Classifying relations by ranking with convolutional
neural networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing, pages 626–634.

Barbara J. Grosz, Scott Weinstein, and Aravind K. Joshi.
1995. Centering: A framework for modeling the lo-
cal coherence of discourse. Computational Linguis-
tics, 21(2):203–225.

Yuta Hayashibe, Mamoru Komachi, and Yuji Matsumoto.
2011. Japanese predicate argument structure analysis
exploiting argument position and type. In Proceedings
of 5th International Joint Conference on Natural Lan-
guage Processing, pages 201–209.

Geoffrey E . Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2012. Im-
proving neural networks by preventing co-adaptation
of feature detectors. CoRR, abs /1207.0580.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen.
2014. Convolutional neural network architectures for
matching natural language sentences. In Processings
of Advances in Neural Information Processing Systems
27 (NIPS 2014), pages 2042–2050.

Ryu Iida and Massimo Poesio. 2011. A cross-lingual
ILP solution to zero anaphora resolution. In Proceed-
ings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Tech-
nologies, pages 804–813.

Ryu Iida, Kentaro Inui, Hiroya Takamura, and Yuji Mat-
sumoto. 2003. Incorporating contextual cues in train-
able models for coreference resolution. In Proceed-
ings of the 2003 EACL Workshop on The Computa-
tional Treatment of Anaphora, pages 23–30.

Ryu Iida, Kentaro Inui, and Yuji Matsumoto. 2006. Ex-
ploiting syntactic patterns as clues in zero-anaphora
resolution. In Processings of the 21st International
Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational
Linguistics, pages 625–632.

Ryu Iida, Mamoru Komachi, Kentaro Inui, and Yuji Mat-
sumoto. 2007. Annotating a Japanese text corpus with
predicate-argument and coreference relations. In Pro-
ceedings of the ACL Workshop: ‘Linguistic Annotation
Workshop’, pages 132–139.

Ryu Iida, Kentaro Torisawa, Chikara Hashimoto, Jong-
Hoon Oh, and Julien Kloetzer. 2015. Intra-sentential
zero anaphora resolution using subject sharing recog-
nition. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 2179–2189.

Kenji Imamura, Kuniko Saito, and Tomoko Izumi. 2009.
Discriminative approach to predicate-argument struc-
ture analysis with zero-anaphora resolution. In Pro-
ceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing, pages
85–88.

Hideki Isozaki and Tsutomu Hirao. 2003. Japanese zero
pronoun resolution based on ranking rules and ma-
chine learning. In Proceedings of the 2003 Conference
on Empirical Methods in Natural Language Process-
ing, pages 184–191.

Rie Johnson and Tong Zhang. 2015. Effective use of
word order for text categorization with convolutional
neural networks. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 103–112.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics, pages 655–665.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1746–1751.

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto.
2004. Applying conditional random fields to Japanese

1253

morphological analysis. In Proceedings of the 2004
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 230–237.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE,
pages 2278–2324.

Chunyang Liu, Wenbo Sun, Wenhan Chao, and Wanxi-
ang Che. 2013. Convolution neural network for re-
lation extraction. In Proceedings of the 9th Interna-
tional Conference of Advanced Data Mining and Ap-
plications, pages 231–242.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
Proceedings of Advances in Neural Information Pro-
cessing Systems 26 (NIPS 2013), pages 3111–3119.

Shigeko Nariyama. 2002. Grammar for ellipsis resolu-
tion in Japanese. In Proceedings of the 9th Interna-
tional Conference on Theoretical and Methodological
Issues in Machine Translation, pages 135–145.

Vincent Ng. 2004. Learning noun phrase anaphoricity
to improve conference resolution: Issues in represen-
tation and optimization. In Proceedings of the 42nd
Meeting of the Association for Computational Linguis-
tics, pages 151–158.

Thien Huu Nguyen and Ralph Grishman. 2015. Rela-
tion extraction: Perspective from convolutional neural
networks. In Proceedings of the 1st Workshop on Vec-
tor Space Modeling for Natural Language Processing,
pages 39–48.

Manabu Okumura and Kouji Tamura. 1996. Zero pro-
noun resolution in Japanese discourse based on center-
ing theory. In Proceedings of The 16th International
Conference on Computational Linguistics, pages 871–
876.

Hiroki Ouchi, Hiroyuki Shindo, Kevin Duh, and Yuji
Matsumoto. 2015. Joint case argument identification
for Japanese predicate argument structure analysis. In
Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing, pages 961–970.

Ryohei Sasano and Sadao Kurohashi. 2011. A discrim-
inative approach to Japanese zero anaphora resolution
with large-scale lexicalized case frames. In Proceed-
ings of 5th International Joint Conference on Natural
Language Processing, pages 758–766.

Ryohei Sasano, Daisuke Kawahara, and Sadao Kuro-
hashi. 2008. A fully-lexicalized probabilistic model
for Japanese zero anaphora resolution. In Proceed-
ings of the 22nd International Conference on Compu-
tational Linguistics, pages 769–776.

Dominik Scherer, Andreas Müller, and Sven Behnke.
2010. Evaluation of pooling operations in convolu-
tional architectures for object recognition. In Proceed-
ings of the 20th International Conference on Artificial
Neural Networks, pages 92–101.

Kazuhiro Seki, Atsushi Fujii, and Tetsuya Ishikawa.
2002. A probabilistic method for analyzing Japanese
anaphora integrating zero pronoun detection and reso-
lution. In Processings of the 19th International Con-
ference on Computational Linguistics, pages 1–7.

Hirotoshi Taira, Sanae Fujita, and Masaaki Nagata. 2008.
A Japanese predicate argument structure analysis us-
ing decision lists. In Proceedings of the 2008 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 523–532.

Sam Wiseman, Alexander M. Rush, Stuart Shieber, and
Jason Weston. 2015. Learning anaphoricity and an-
tecedent ranking features for coreference resolution.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing, pages 1416–1426.

Wenpeng Yin and Hinrich Schütze. 2015. Convolutional
neural network for paraphrase identification. In Pro-
ceedings of the 2015 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 901–
911.

Katsumasa Yoshikawa, Masayuki Asahara, and Yuji Mat-
sumoto. 2011. Jointly extracting Japanese predicate-
argument relation with Markov Logic. In Proceedings
of 5th International Joint Conference on Natural Lan-
guage Processing, pages 1125–1133.

Naoki Yoshinaga and Masaru Kitsuregawa. 2009. Poly-
nomial to linear: Efficient classification with conjunc-
tive features. In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1542–1551.

Matthew D. Zeiler. 2012. ADADELTA: An adaptive
learning rate method. In arXiv:1212.5701 (Dec 27,
2012).

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and
Jun Zhao. 2014. Relation classification via convolu-
tional deep neural network. In Proceedings of the 25th
International Conference on Computational Linguis-
tics, pages 2335–2344.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.
2015. Distant supervision for relation extraction via
piecewise convolutional neural networks. In Proceed-
ings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 1753–1762.

1254

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1255–1263,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

An Unsupervised Probability Model for Speech-to-Translation Alignment of
Low-Resource Languages

Antonios Anastasopoulos and David Chiang
University of Notre Dame

{aanastas, dchiang}@nd.edu

Long Duong
University of Melbourne

lduong@student.unimelb.edu.au

Abstract

For many low-resource languages, spoken lan-
guage resources are more likely to be an-
notated with translations than with transcrip-
tions. Translated speech data is potentially
valuable for documenting endangered lan-
guages or for training speech translation sys-
tems. A first step towards making use of such
data would be to automatically align spoken
words with their translations. We present a
model that combines Dyer et al.’s reparam-
eterization of IBM Model 2 (fast_align)
and k-means clustering using Dynamic Time
Warping as a distance measure. The two com-
ponents are trained jointly using expectation-
maximization. In an extremely low-resource
scenario, our model performs significantly
better than both a neural model and a strong
baseline.

1 Introduction

For many low-resource languages, speech data is
easier to obtain than textual data. And because
speech transcription is a costly and slow process,
speech is more likely to be annotated with transla-
tions than with transcriptions. This translated speech
is a potentially valuable source of information – for
example, for documenting endangered languages or
for training speech translation systems.

In language documentation, data is usable only if
it is interpretable. To make a collection of speech
data usable for future studies of the language, some-
thing resembling interlinear glossed text (transcrip-
tion, morphological analysis, word glosses, free
translation) would be needed at minimum. New

technologies are being developed to facilitate col-
lection of translations (Bird et al., 2014), and there
already exist recent examples of parallel speech
collection efforts focused on endangered languages
(Blachon et al., 2016; Adda et al., 2016). As for the
other annotation layers, one might hope that a first
pass could be done automatically. A first step to-
wards this goal would be to automatically align spo-
ken words with their translations, capturing informa-
tion similar to that captured by word glosses.

In machine translation, statistical models have tra-
ditionally required alignments between the source
and target languages as the first step of training.
Therefore, producing alignments between speech
and text would be a natural first step towards MT
systems operating directly on speech.

We present a model that, in order to learn such
alignments, adapts and combines two components:
Dyer et al.’s reparameterization of IBM Model 2
(Dyer et al., 2013), more commonly known as
fast_align, and k-means clustering using Dy-
namic Time Warping (Berndt and Clifford, 1994) as
a distance measure. The two components are trained
jointly using expectation-maximization.

We experiment on two language pairs. One is
Spanish-English, using the CALLHOME and Fisher
corpora. The other is Griko-Italian; Griko is an
endangered language for which we created (and
make freely available)1 gold-standard translations
and word alignments (Lekakou et al., 2013). In all
cases, our model outperforms both a naive but strong
baseline and a neural model (Duong et al., 2016).

1https://www3.nd.edu/∼aanastas/griko/griko-data.tar.gz

1255

2 Background

In this section, we briefly describe the existing mod-
els that the two components of our model are based
on. In the next section, we will describe how we
adapt and combine them to the present task.

2.1 IBM Model 2 and fast_align

The IBM translation models (Brown et al., 1993)
aim to model the distribution p(e | f) for an En-
glish sentence e = e1 · · · el, given a French sentence
f = f1 · · · em. They all introduce a hidden variable
a = a1 · · · al that gives the position of the French
word to which each English word is aligned.

The general form of IBM Models 1, 2 and
fast_align is

p(e, a | f) = p(l)
l∏

i=1

t(ei | fai) δ(ai | i, l,m)

where t(e | f) is the probability of translating French
word f to English word e, and δ(ai = j | i, l,m) is
the probability of aligning the i-th English word with
the j-th French word.

In Model 1, δ is uniform; in Model 2, it is
a categorical distribution. Dyer et al. (2013) pro-
pose a reparameterization of Model 2, known as
fast_align:

h(i, j, l,m) = −
∣∣∣∣∣
i
l
− j

m

∣∣∣∣∣

δ(ai | i, l,m) =

p0 ai = 0
(1 − p0) exp λh(i,ai,l,m)

Zλ(i,l,m) ai > 0

where the null alignment probability p0 and preci-
sion λ ≥ 0 are hyperparameters optimized by grid
search. As λ → 0, the distribution gets closer to the
distribution of IBM Model 1, and as λ gets larger,
the model prefers monotone word alignments more
strongly.

2.2 DTW and DBA

Dynamic Time Warping (DTW) (Berndt and Clif-
ford, 1994) is a dynamic programming method
for measuring distance between two temporal se-
quences of variable length, as well as computing
an alignment based on this distance. Given two se-
quences φ, φ′ of length m and m′ respectively, DTW

constructs an m×m′ matrix w. The warping path can
be found by evaluating the following recurrence:

wi, j = d(φi, φ
′
j) + min{wi−1, j,wi−1, j−1,wi, j−1}

where d is a distance measure. In this paper, we nor-
malize the cost of the warping path:

DTW(φ, φ′) =
wm,m′

m + m′

which lies between zero and one.
DTW Barycenter Averaging (DBA) (Petitjean et

al., 2011) is an iterative approximate method that at-
tempts to find a centroid of a set of sequences, min-
imizing the sum of squared DTW distances.

In the original definition, given a set of sequences,
DBA chooses one sequence randomly to be a “skele-
ton.” Then, at each iteration, DBA computes the
DTW between the skeleton and every sequence in
the set, aligning each of the skeleton’s points with
points in all the sequences. The skeleton is then re-
fined using the found alignments, by updating each
frame in the skeleton to the mean of all the frames
aligned to it. In our implementation, in order to avoid
picking a skeleton that is too short or too long, we
randomly choose one of the sequences with median
length.

3 Model

We use a generative model from a source-language
speech segment consisting of feature frames φ =

φ1 · · · φm to a target-language segment consisting of
words e = e1 . . . el. We chose to model p(e | φ)
rather than p(φ | e) because it makes it easier to in-
corporate DTW. The other direction is also possible,
and we plan to explore it in future work.

In addition to the target-language sentence e,
our model hypothesizes a sequence f = f1 · · · fl
of source-language clusters (intuitively, source-
language words), and spans (ai, bi) of the source sig-
nal that each target word ei is aligned to. Thus, the
clusters f = f1 · · · fl and the spans a = a1, . . . , al and
b = b1, . . . , bl are the hidden variables of the model:

p(e | φ) =
∑

a,b,f
p(e, a,b, f | φ).

The model generates e, a,b, and f from φ as fol-
lows.

1256

1. Choose l, the number of target words, with uni-
form probability. (Technically, this assumes a
maximum target sentence length, which we can
just set to be very high.)

2. For each target word position i = 1, . . . , l:

(a) Choose a cluster fi.
(b) Choose a span of source frames (ai, bi) for

ei to be aligned to.
(c) Generate a target word ei from fi.

Accordingly, we decompose p(e, a,b, f | φ) into sev-
eral submodels:

p(e, a,b, f | φ) = p(l)
l∏

i=1

u(fi) ×

s(ai, bi | fi,φ) ×
δ(ai, bi | i, l, |φ|) ×
t(ei | fi).

Note that submodels δ and s both generate spans
(corresponding to step 2b), making the model de-
ficient. We could make the model sum to one by
replacing u(fi)s(ai, bi | fi,φ) with s(fi | ai, bi,φ),
and this was in fact our original idea, but the model
as defined above works much better, as discussed in
Section 7.4. We describe both δ and s in detail be-
low.

Clustering model The probability over clusters,
u(f), is just a categorical distribution. The submodel
s assumes that, for each cluster f , there is a “pro-
totype” signal φ f (cf. Ristad and Yianilos, 1998).
Technically, the φ f are parameters of the model, and
will be recomputed during the M step. Then we can
define:

s(a, b | f ,φ) =
exp(−DTW(φ f , φa · · · φb)2)

∑m
a,b=1 exp(−DTW(φ f , φa · · · φb)2)

where DTW is the distance between the prototype
and the segment computed using Dynamic Time
Warping. Thus s assigns highest probability to spans
of φ that are most similar to the prototype φ f .

Distortion model The submodel δ controls the re-
ordering of the target words relative to the source
frames. It is an adaptation of fast_align to our

Figure 1: Sample distributions for the alignment variables a

and b for m = 100, l = 5, p0 = 0, λ = 0.5, and µ = 20.

setting, where there is not a single source word po-
sition ai, but a span (ai, bi). We want the model to
prefer the middle of the word to be close to the di-
agonal, so we need the variable a to be somewhat to
the left and b to be somewhat to the right. Therefore,
we introduce an additional hyperparameter µ which
is intuitively the number of frames in a word. Then
we define

ha(i, j, l,m, µ) = −
∣∣∣∣∣
i
l
− j

m − µ
∣∣∣∣∣

hb(i, j, l,m, µ) = −
∣∣∣∣∣
i
l
− j − µ

m − µ
∣∣∣∣∣

δa(ai | i, l,m) =

p0 ai = 0
(1 − p0) exp λha(i,ai,l,m)

Zλ(i,l,m) ai > 0

δb(bi | i, l,m) =

p0 bi = 0
(1 − p0) exp λhb(i,bi,l,m)

Zλ(i,l,m) bi > 0

δ(ai, bi | i, l,m) = δa(ai | i, l,m) δb(bi | i, l,m)

where the Zλ(i, l,m) are set so that all distributions
sum to one. Figure 1 shows an example visualisation
of the the resulting distributions for the two variables
of our model.

We set µ differently for each word. For each i, we
set µi to be proportional to the number of characters
in ei, such that

∑
i µi = m.

Translation model The translation model t(e | f)
is just a categorical distribution, in principle allow-
ing a many-to-many relation between source clusters
and target words. To speed up training (with nearly
no change in accuracy, in our experiments), we re-
strict this relation so that there are k source clusters
for each target word, and a source cluster uniquely
determines its target word. Thus, t(e | f) is fixed to

1257

either zero or one, and does not need to be reesti-
mated. In our experiments, we set k = 2, allowing
each target word to have up to two source-language
translations/pronunciations. (If a source word has
more than one target translation, they are treated as
distinct clusters with distinct prototypes.)

4 Training

We use the hard (Viterbi) version of the Expectation-
Maximization (EM) algorithm to estimate the pa-
rameters of our model, because calculating expected
counts in full EM would be prohibitively expensive,
requiring summations over all possible alignments.

Recall that the hidden variables of the model are
the alignments (ai, bi) and the source words (fi). The
parameters are the translation probabilities t(ei | f)
and the prototypes (φ f). The (hard) E step uses the
current model and prototypes to find, for each target
word, the best source segment to align it to and the
best source word. The M step reestimates the prob-
abilities t(e | f) and the prototypes φ f . We describe
each of these steps in more detail below.

Initialization Initialization is especially important
since we are using hard EM.

To initialize the parameters, we initialize the hid-
den variables and then perform an M step. We as-
sociate each target word type e with k = 2 source
clusters, and for each occurrence of e, we randomly
assign it one of the k source clusters.

The alignment variables ai, bi are initialized to

ai, bi = arg max
a,b

δ(a, b | i, l,m).

M step The M step reestimates the probabilities
t(e | f) using relative-frequency estimation.

The prototypes φ f are more complicated. Theo-
retically, the M step should recompute each φ f so
as to maximize that part of the log-likelihood that
depends on φ f :

Lφ f =
∑

φ

∑

i| fi= f

log s(ai, bi | f ,φ)

=
∑

φ

∑

i| fi= f

log
exp(−DTW(φ f , φai · · · φbi)

2)
Z(f ,φ)

=
∑

φ

∑

i| fi= f

−DTW(φ f , φai · · · φbi)
2 − log Z(f ,φ)

where the summation over φ is over all source sig-
nals in the training data. This is a hard problem, but
note that the first term is just the sum-of-squares of
the DTW distance between φ f and all source seg-
ments that are classified as f . This is what DBA is
supposed to approximately minimize, so we simply
set φ f using DBA, ignoring the denominator.

E step The (hard) E step uses the current model
and prototypes to find, for each target word, the best
source segment to align it to and the best source clus-
ter.

In order to reduce the search space for a and b,
we use the unsupervised phonetic boundary detec-
tion method of Khanagha et al. (2014). This method
operates directly on the speech signal and provides
us with candidate phone boundaries, on which we
restrict the possible values for a and b, creating a
list of candidate utterance spans.

Furthermore, we use a simple silence detection
method. We pass the envelope of the signal through
a low-pass filter, and then mark as “silence” time
spans of 50ms or longer in which the magnitude is
below a threshold of 5% relative to the maximum
of the whole signal. This method is able to detect
about 80% of the total pauses, with a 90% precision
in a 50ms window around the correct silence bound-
ary. We can then remove from the candidate list the
utterance spans that include silence, on the assump-
tion that a word should not include silences. Finally,
in case one of the span’s boundaries happens to be
within a silence span, we also move it so as to not
include the silence.

Hyperparameter tuning The hyperparameters
p0, λ, and µ are not learned. We simply set p0 to
zero (disallowing unaligned target words) and set µ
as described above.

For λwe perform a grid search over candidate val-
ues to maximize the alignment F-score on the devel-
opment set. We obtain the best scores with λ = 0.5.

5 Related Work

A first step towards modelling parallel speech can be
performed by modelling phone-to-word alignment,
instead of directly working on continuous speech.
For example, Stahlberg et al. (2012) extend IBM
Model 3 to align phones to words in order to build

1258

cross-lingual pronunciation lexicons. Pialign (Neu-
big et al., 2012) aligns characters and can be ap-
plied equally well to phones. Duong et al. (2016)
use an extension of the neural attentional model of
Bahdanau et al. (2015) for aligning phones to words
and speech to words; we discuss this model below in
Section 6.2.

There exist several supervised approaches that at-
tempt to integrate speech recognition and machine
translation. However, they rely heavily on the abun-
dance of training data, pronunciation lexicons, or
language models, and therefore cannot be applied in
a low- or zero-resource setting.

A task somewhat similar to ours, which operates
at a monolingual level, is the task of zero-resource
spoken term discovery, which aims to discover re-
peated words or phrases in continuous speech. Vari-
ous approaches (Ten Bosch and Cranen, 2007; Park
and Glass, 2008; Muscariello et al., 2009; Zhang and
Glass, 2010; Jansen et al., 2010) have been tried,
in order to spot keywords, using segmental DTW to
identify repeated trajectories in the speech signal.

Kamper et al. (2016) try to discover word segmen-
tation and a pronunciation lexicon in a zero-resource
setting, combining DTW with acoustic embeddings;
their methods operate in a very low-vocabulary set-
ting. Bansal (2015) attempts to build a speech trans-
lation system in a low-resource setting, by using as
source input the simulated output of an unsupervised
term discovery system.

6 Experiments

We evaluate our method on two language pairs,
Spanish-English and Griko-Italian, against two
baseline methods, a naive baseline, and the model
of Duong et al. (2016).

6.1 Data

For each language pair, we require a sentence-
aligned parallel corpus of source-language speech
and target-language text. A subset of these sentences
should be annotated with span-to-word alignments
for use as a gold standard.

6.1.1 Spanish-English
For Spanish-English, we use the Spanish CALL-

HOME corpus (LDC96S35) and the Fisher corpus

(LDC2010T04), which consist of telephone conver-
sations between Spanish native speakers based in the
US and their relatives abroad, together with English
translations produced by Post et al. (2013). Span-
ish is obviously not a low-resource language, but we
pretend that it is low-resource by not making use
of any Spanish ASR or resources like transcribed
speech or pronunciation lexicons.

Since there do not exist gold standard alignments
between the Spanish speech and English words, we
use the “silver” standard alignments produced by
Duong et al. (2016) for the CALLHOME corpus,
and followed the same procedure for the Fisher cor-
pus as well. In order to obtain them, they first used a
forced aligner to align the speech to its transcription,
and GIZA++ with the gdfa symmetrization heuris-
tic to align the Spanish transcription to the English
translation. They then combined the two alignments
to produce “silver” standard alignments between the
Spanish speech and the English words.

The CALLHOME dataset consists of 17532
Spanish utterances, based on the dialogue turns. We
first use a sample of 2000 sentences, out of which
we use 200 as a development set and the rest as a
test set. We also run our experiments on the whole
dataset, selecting 500 utterances for a development
set, using the rest as a test set. The Fisher dataset
consists of 143355 Spanish utterances. We use 1000
of them as a development set and the rest as a test
set.

6.1.2 Griko-Italian
We also run our model on a corpus that consists of

about 20 minutes of speech in Griko, an endangered
minority dialect of Greek spoken in south Italy,
along with text translations into Italian (Lekakou
et al., 2013).2 The corpus consists of 330 mostly
prompted utterances by nine native speakers. Al-
though the corpus is very small, we use it to show-
case the effectiveness of our method in a hard setting
with extremely low resources.

All utterances were manually annotated and tran-
scribed by a trained linguist and bilingual speaker
of both languages, who produced the Griko tran-
scriptions and Italian glosses. We created full trans-
lations into Italian and manually aligned the transla-
tions with the Griko transcriptions. We then com-

2http://griko.project.uoi.gr

1259

bined the two alignments (speech-to-transcription
and transcription-to-translation) to produce speech-
to-translation alignments. Therefore, our compar-
ison is done against an accurate “gold” standard
alignment. We split the data into a development set
of just 30 instances, and a test set of the remain-
ing 300 instances.

6.1.3 Preprocessing
In both data settings, we treat the speech data as a

sequence of 39-dimensional Perceptual Linear Pre-
diction (PLP) vectors encoding the power spectrum
of the speech signal (Hermansky, 1990), computed
at 10ms intervals. We also normalize the features at
the utterance level, shifting and scaling them to have
zero mean and unit variance.

6.2 Baselines

Our naive baseline assumes that there is no reorder-
ing between the source and target language, and
aligns each target word ei to a source span whose
length in frames is proportional to the length of ei in
characters. This actually performs very well on lan-
guage pairs that show minimal or no reordering, and
language pairs that have shared or related vocabular-
ies.

The other baseline that we compare against is
the neural network attentional model of Duong et
al. (2016), which extends the attentional model of
Bahdanau et al. (2015) to be used for aligning and
translating speech, and, along with several modifi-
cations, achieve good results on the phone-to-word
alignment task, and almost match the baseline per-
formance on the speech-to-word alignment task.

7 Results

To evaluate an automatic alignment between the
speech and its translation against the gold/silver
standard alignment, we compute alignment preci-
sion, recall, and F-score as usual, but on links be-
tween source-language frames and target-language
words.

7.1 Overview

Table 1 shows the precision, recall, and balanced F-
score of the three models on the Spanish-English
CALLHOME corpus (both the 2000-sentence subset

method precision recall F-score

C
A

L
L

H
O

M
E

sp
a-

en
g

2k
sents

ours 38.8 38.9 38.8
naive 31.9 40.8 35.8
neural 23.8 29.8 26.4

17k
sents

ours 38.4 38.8 38.6
naive 31.8 40.7 35.7
neural 26.1 32.9 29.1

Fi
sh

er
sp

a-
en

g

143k
sents

ours 33.3 28.7 30.8
naive 24.0 33.2 27.8

gr
i-

ita 300
sents

ours 56.6 51.2 53.8
naive 42.2 52.2 46.7
neural 24.6 30.0 27.0

Table 1: Our model achieves higher precision and F-score than

both the naive baseline and the neural model on all datasets.

and the full set), the Spanish-English Fisher corpus,
and the Griko-Italian corpus.

In all cases, our model outperforms both the
naive baseline and the neural attentional model. Our
model, when compared to the baselines, improves
greatly on precision, while slightly underperforming
the naive baseline on recall. In certain applications,
higher precision may be desirable: for example, in
language documentation, it’s probably better to err
on the side of precision; in phrase-based translation,
higher-precision alignments lead to more extracted
phrases.

The rest of the section provides a further anal-
ysis of the results, focusing on the extremely low-
resource Griko-Italian dataset.

7.2 Speaker robustness

Figure 2 shows the alignments produced by our
model for three utterances of the same sentence from
the Griko-Italian dataset by three different speak-
ers. Our model’s performance is roughly consistent
across these utterances. In general, the model does
not seem significantly affected by speaker-specific
variations, as shown in Table 2.

We do find, however, that the performance on
male speakers is slightly higher compared to the
female speakers. This might be because the fe-
male speakers’ utterances are, on average, longer by
about 2 words than the ones uttered by males.

1260

Male 1: F-score
devo comprare il pane ogni giorno

Model: 54.3
devo comprare il pane

ogni
giorno

Woman 2: F-score
devo comprare il pane ogni giorno

Model: 62.1
devo

comprare
il pane ogni giorno

Male 4: F-score
devo comprare il pane ogni ogni giorno

Model: 70.9
devo comprare il pane ogni

ogni
giorno

Figure 2: Alignments produced for the Italian sentence devo comprare il pane ogni giorno as uttered by three different

Griko speakers.

speaker utt len F-score

female 1 55 9.0 49.4
female 2 61 8.1 55.0
female 3 41 9.6 51.0
female 4 23 7.3 54.4
female 5 21 6.1 56.6

male 1 35 5.9 59.5
male 2 32 6.0 61.9
male 3 34 6.7 60.2
male 4 23 6.4 64.0

Table 2: Model performance (F-score) is generally consistent

across speakers. The second column (utt) shows the number of

utterances per speaker; the third (len), their average length in

words.

7.3 Word level analysis

We also compute F-scores for each Italian word
type. As shown in Figure 3, the longer the word’s
utterance, the easier it is for our model to correctly
align it. Longer utterances seem to carry enough in-
formation for our DTW-based measure to function
properly. On the other hand, shorter utterances are
harder to align. The vast majority of Griko utter-
ances that have less than 20 frames and are less ac-
curately aligned correspond to monosyllabic deter-
miners (o, i,a, to, ta) or conjunctions and preposi-
tions (ka, ce, en, na, an). For such short utterances,
there could be several parts of the signal that possi-
bly match the prototype, leading the clustering com-
ponent to prefer to align to wrong spans.

Furthermore, we note that rare word types tend to
be correctly aligned. The average F-score for hapax
legomena (on the Italian side) is 63.2, with 53% of
them being aligned with an F-score higher than 70.0.

7.4 Comparison with proper model

As mentioned in Section 3, our model is deficient,
but it performs much better than the model that
sums to one (henceforth, the “proper” model): In
the Spanish-English dataset (2000 sentences sam-
ple) the proper model yields an F-score of 32.1, per-
forming worse than the naive baseline; in the Griko-

1261

Griko: ı̀cha na aforàso to tsomı̀

Gold: F-score
dovevo comprare il pane

Ours: 82.3
dovevo comprare il pane

Proper: 61.7
dovevo comprare il pane

Attention: 38.3dovevo
comprare

il
pane

Figure 4: The deficient model performs very well, whereas

the proper and the attentional model prefer extreme alignment

spans. For example, the proper model’s alignment for the words

dovevo and pane are much too short.

Griko: è Valèria meletà ò giornàli

Gold: F-score
Valeria legge il giornale

Ours: 67.8
Valeria legge il giornale

Proper: 75.2Valeria
legge

ilgiornale

Attention: 6.0il
legge

il
giornale

Valeria
giornale

Figure 5: One of the rare examples where the proper model

performs better than the deficient one. The hapax legomena

Valeria and giornali are not properly handled by the at-

tentional model.

0 20 40 60 80 100 120

0.2

0.4

0.6

0.8

word length (frames)

av
er

ag
e

F-
sc

or
e

Figure 3: There is a positive correlation between average word-

level F-score and average word utterance length (in frames).

Italian dataset, it achieves an F-score of 44.3, which
is better than the baselines, but still worse than our
model.

In order to further examine why this happens, we
performed three EM iterations on the Griko-Italian
dataset with our model (in our experience, three it-
erations are usually enough for convergence), and
then computed one more E step with both our model
and the proper model, so as to ensure that the two
models would align the dataset using the exact same
prototypes and that their outputs will be comparable.

In this case, the proper model achieved an over-
all F-score of 44.0, whereas our model achieved an
F-score of 53.6. Figures 4 and 5 show the resulting
alignments for two sentences. In both of these exam-
ples, it is clear that the proper model prefers extreme
spans: the selected spans are either much too short or

(less frequently) much too long. This is further ver-
ified by examining the statistics of the alignments:
the average span selected by the proper model has
a length of about 30 ± 39 frames whereas the aver-
age span of the alignments produced by our deficient
model is 37 ± 24 frames. This means that the align-
ments of the deficient model are much closer to the
gold ones, whose average span is 42 ± 26 frames.

We think that this is analogous to the “garbage
collection” problem in word alignment. In the IBM
word alignment models, if a source word f occurs
in only one sentence, then EM can align many tar-
get words to f and learn a very peaked distribution
t(e | f). This can happen in our model and the proper
model as well, of course, since IBM Model 2 is
embedded in them. But in the proper model, some-
thing similar can also happen with s(f | a, b): EM
can make the span (a, b) large or small, and evi-
dently making the span small allows it to learn a
very peaked distribution s(f | a, b). By contrast, our
model has s(a, b | f), which seems less susceptible
to this kind of effect.

8 Conclusion

Alignment of speech to text translations is a rela-
tively new task, one with particular relevance for
low-resource or endangered languages. The model
we propose here, which combines fast_align and
k-means clustering using DTW and DBA, outper-
forms both a very strong naive baseline and a neural
attentional model, on three tasks of various sizes.

The language pairs used here do not have very
much word reordering, and more divergent language

1262

pairs should prove more challenging. In that case,
the naive baseline should be much less competitive.
Similarly, the fast_align-based distortion model
may become less appopriate; we plan to try incorpo-
rating IBM Model 3 or the HMM alignment model
(Vogel et al., 1996) instead. Finally, we will in-
vestigate downstream applications of our alignment
methods, in the areas of both language documenta-
tion and speech translation.

Acknowledgements

We would like to thank Steven Bird, Eamonn Keogh,
and the anonymous reviewers for their helpful feed-
back. This research was supported in part by NSF
Award 1464553.

References
Gilles Adda, Sebastian Stüker, Martine Adda-Decker,

Odette Ambouroue, Laurent Besacier, David Bla-
chon, Hélène Bonneau-Maynard, Pierre Godard, Fa-
tima Hamlaoui, Dmitry Idiatov, et al. 2016. Break-
ing the unwritten language barrier: The BULB project.
Procedia Computer Science, 81:8–14.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. ICLR.

Sameer Bansal. 2015. Speech translation without speech
recognition. Master’s thesis, University of Edinburgh.

Donald J. Berndt and James Clifford. 1994. Using dy-
namic time warping to find patterns in time series. In
Proc. KDD, pages 359–370.

Steven Bird, Lauren Gawne, Katie Gelbart, and Isaac
McAlister. 2014. Collecting bilingual audio in remote
indigenous communities. In Proc. COLING.

David Blachon, Elodie Gauthier, Laurent Besacier, Guy-
Noël Kouarata, Martine Adda-Decker, and Annie Ri-
alland. 2016. Parallel speech collection for under-
resourced language studies using the Lig-Aikuma mo-
bile device app. Procedia Computer Science, 81:61–
66.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathemat-
ics of statistical machine translation: Parameter esti-
mation. Computational Linguistics, 19(2):263–311.

Long Duong, Antonios Anastasopoulos, David Chiang,
Steven Bird, and Trevor Cohn. 2016. An attentional
model for speech translation without transcription. In
Proc. NAACL HLT, pages 949–959, June.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameterization
of IBM Model 2. In Proc. NAACL HLT.

Hynek Hermansky. 1990. Perceptual linear predictive
(PLP) analysis of speech. J. Acoustical Society of
America, 87(4):1738–1752.

Aren Jansen, Kenneth Church, and Hynek Hermansky.
2010. Towards spoken term discovery at scale with
zero resources. In Proc. INTERSPEECH, pages 1676–
1679.

Herman Kamper, Aren Jansen, and Sharon Goldwater.
2016. Unsupervised word segmentation and lexicon
discovery using acoustic word embeddings. IEEE
Trans. Audio, Speech, and Language Processing.

Vahid Khanagha, Khalid Daoudi, Oriol Pont, and Hus-
sein Yahia. 2014. Phonetic segmentation of speech
signal using local singularity analysis. Digital Signal
Processing.

Marika Lekakou, Valeria Baldiserra, and Antonis Anasta-
sopoulos. 2013. Documentation and analysis of an en-
dangered language: aspects of the grammar of Griko.

Armando Muscariello, Guillaume Gravier, and Frédéric
Bimbot. 2009. Audio keyword extraction by unsuper-
vised word discovery. In Proc. INTERSPEECH.

Graham Neubig, Taro Watanabe, Shinsuke Mori, and Tat-
suya Kawahara. 2012. Machine translation without
words through substring alignment. In Proc. ACL.

Alex S. Park and James R. Glass. 2008. Unsuper-
vised pattern discovery in speech. IEEE Trans. Audio,
Speech, and Language Processing, 16(1):186–197.

François Petitjean, Alain Ketterlin, and Pierre Gançarski.
2011. A global averaging method for dynamic time
warping, with applications to clustering. Pattern
Recognition, 44(3):678–693.

Matt Post, Gaurav Kumar, Adam Lopez, Damianos
Karakos, Chris Callison-Burch, and Sanjeev Khu-
danpur. 2013. Improved speech-to-text translation
with the Fisher and Callhome Spanish–English speech
translation corpus. In Proc. IWSLT.

Eric Sven Ristad and Peter N Yianilos. 1998. Learn-
ing string-edit distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(5):522–532.

Felix Stahlberg, Tim Schlippe, Sue Vogel, and Tanja
Schultz. 2012. Word segmentation through cross-
lingual word-to-phoneme alignment. In Proc. IEEE
Spoken Language Technology Workshop (SLT).

Louis Ten Bosch and Bert Cranen. 2007. A compu-
tational model for unsupervised word discovery. In
Proc. INTERSPEECH, pages 1481–1484.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
1996. HMM-based word alignment in statistical trans-
lation. In Proc. COLING, pages 836–841.

Yaodong Zhang and James R Glass. 2010. Towards
multi-speaker unsupervised speech pattern discovery.
In Proc. ICASSP, pages 4366–4369.

1263

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1264–1274,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

HUME: Human UCCA-Based Evaluation of Machine Translation

Alexandra Birch1∗, Omri Abend2*, Ondřej Bojar3*, Barry Haddow1*

1School of Informatics, University of Edinburgh
2School of Computer Science and Engineering, Hebrew University of Jerusalem

3 Charles University in Prague, Faculty of Mathematics and Physics
a.birch@ed.ac.uk, oabend@cs.huji.ac.il

bojar@ufal.mff.cuni.cz, bhaddow@inf.ed.ac.uk

Abstract

Human evaluation of machine translation nor-
mally uses sentence-level measures such as
relative ranking or adequacy scales. However,
these provide no insight into possible errors,
and do not scale well with sentence length.
We argue for a semantics-based evaluation,
which captures what meaning components are
retained in the MT output, thus providing a
more fine-grained analysis of translation qual-
ity, and enabling the construction and tuning
of semantics-based MT. We present a novel
human semantic evaluation measure, Human
UCCA-based MT Evaluation (HUME), build-
ing on the UCCA semantic representation
scheme. HUME covers a wider range of se-
mantic phenomena than previous methods and
does not rely on semantic annotation of the
potentially garbled MT output. We experi-
ment with four language pairs, demonstrating
HUME’s broad applicability, and report good
inter-annotator agreement rates and correla-
tion with human adequacy scores.

1 Introduction

Human judgement should be the ultimate test of the
quality of an MT system. Nevertheless, common
measures for human MT evaluation, such as ade-
quacy and fluency judgements or the relative rank-
ing of possible translations, are problematic in two
ways. First, as the quality of translation is multi-
faceted, it is difficult to quantify the quality of the
entire sentence in a single number. This is indeed

∗∗ All authors contributed equally to this work.

reflected in the diminishing inter-annotator agree-
ment (IAA) rates of human ranking measures with
the sentence length (Bojar et al., 2011). Second, a
sentence-level quality score does not indicate what
parts of the sentence are badly translated, and so
cannot inform developers in repairing these errors.

These problems are partially addressed by mea-
sures that decompose over parts of the evaluated
translation, often words or n-grams (see §2 for a
brief survey of previous work). A promising line
of research decomposes metrics over semantically
defined units, quantifying the similarity of the out-
put and the reference in terms of their verb argu-
ment structure; the most notable of these measures
is HMEANT (Lo and Wu, 2011).

We propose the HUME metric, a human evalua-
tion measure that decomposes over UCCA semantic
units. UCCA (Abend and Rappoport, 2013) is an
appealing candidate for semantic analysis, due to its
cross-linguistic applicability, support for rapid anno-
tation, and coverage of many fundamental semantic
phenomena, such as verbal, nominal and adjectival
argument structures and their inter-relations.

HUME operates by aggregating human assess-
ments of the translation quality of individual seman-
tic units in the source sentence. We are thus avoiding
the semantic annotation of machine-generated text,
which is often garbled or semantically unclear. This
also allows the re-use of the source semantic anno-
tation for measuring the quality of different transla-
tions of the same source sentence and avoids relying
on reference translations, which have been shown to
bias annotators (Fomicheva and Specia, 2016).

After a brief review (§2), we describe HUME in

1264

detail (§3). Our experiments with four language
pairs: English to Czech, German, Polish and Roma-
nian (§4) document HUME’s inter-annotator agree-
ment and efficiency (time of annotation). We further
empirically compare HUME with direct assessment
of human adequacy ratings (§5), and conclude by
discussing the differences with HMEANT (§6).

2 Background

MT Evaluation. Human evaluation is generally
done by ranking the outputs of multiple systems
e.g., in the WMT tasks (Bojar et al., 2015), or by
assigning adequacy/fluency scores to each transla-
tion, a procedure recently improved by Graham et
al. (2015b) under the title Direct Assessment. We
use this latter method to compare and contrast with
HUME later in the paper. HTER (Snover et al.,
2006) is another widely used human evaluation met-
ric which uses edit distance metrics to compare a
translation and its human post-edition. HTER suf-
fers from the problem that small edits in the transla-
tion could in fact be serious flaws in accuracy, e.g.,
deleting a negation. Some manual measures ask an-
notators to explicitly mark errors, but this has been
found to have even lower agreement than ranking
(Lommel et al., 2014).

However, while providing the gold standard for
MT evaluation, human evaluation is not a scalable
solution. Scalability is addressed by employing au-
tomatic and semi-automatic approximations of hu-
man judgements. Commonly, such scores decom-
pose over the sub-parts of the translation, and quan-
tify how many of these sub-parts appear in a manu-
ally created reference translation. This decomposi-
tion allows system developers to localize the errors.
The most commonly used measures decompose over
n-grams or individual words, e.g., BLEU (Papineni
et al., 2002), NIST (Doddington, 2002) and ME-
TEOR (Banerjee and Lavie, 2005). Another com-
mon approach is to determine the similarity between
the reference and translation in terms of string edits
(Snover et al., 2006). While these measures stimu-
lated much progress in MT research by allowing the
evaluation of massive-scale experiments, the focus
on words and n-grams does not provide a good esti-
mate of semantic correctness, and may favour shal-
low string-based MT models.

L Linker A Participant
H Parallel Scene R Relater
P Process C Centre

Figure 1: Sample UCCA annotation. Leaves correspond
to words and nodes to units. The dashed edge indicates
that “Tom” is also a participant in the “moved to Amer-
ica” Scene. Edge labels mark UCCA categories.

In order to address this shortcoming, more recent
work quantified the similarity of the reference and
translation in terms of their structure. Liu and Gildea
(2005) took a syntactic approach, using dependency
grammar, and Owczarzak et al. (2007) took a sim-
ilar approach using Lexical Functional Grammar
structures. Giménez and Màrquez (2007) proposed
to combine multiple types of information, captur-
ing the overlap between the translation and refer-
ence in terms of their semantic (predicate-argument
structures), lexical and morphosyntactic features.
Macháček and Bojar (2015) divided the source sen-
tences into shorter segments, defined using a phrase
structure parse, and applied human ranking to the
resulting segments.

Perhaps the most notable attempt at semantic
MT evaluation is MEANT and its human variant
HMEANT (Lo and Wu, 2011), which quantifies the
similarity between the reference and translation in
terms of the overlap in their verbal argument struc-
tures and associated semantic roles. We discuss the
differences between HMEANT and HUME in §6.

Semantic Representation. UCCA (Universal
Conceptual Cognitive Annotation) (Abend and
Rappoport, 2013) is a cross-linguistically applicable
scheme for semantic annotation. Formally, an
UCCA structure is a directed acyclic graph (DAG),
whose leaves correspond to the words of the text.
The graph’s nodes, called units, are either terminals
or several elements jointly viewed as a single entity
according to some semantic or cognitive considera-
tion. Edges bear a category, indicating the role of
the sub-unit in the structure the unit represents.

UCCA’s basic inventory of distinctions (its foun-
dational layer) focuses on argument structures (ad-

1265

jectival, nominal, verbal and others) and relations
between them. The most basic notion is the Scene,
which describes a movement, an action or a state
which persists in time. Each Scene contains one
main relation and zero or more participants. For ex-
ample, the sentence “After graduation, Tom moved
to America” contains two Scenes, whose main rela-
tions are “graduation” and “moved”. The participant
“Tom” is a part of both Scenes, while “America”
only of the latter (Figure 1). Further categories ac-
count for inter-scene relations and the sub-structures
of participants and relations.

The use of UCCA for semantic MT evaluation
has several motivations. First, UCCA’s foundational
layer can be annotated by non-experts after a short
training (Abend and Rappoport, 2013; Marinotti,
2014). Second, UCCA is cross-linguistically appli-
cable, seeking to represent what is shared between
languages by building on linguistic typological the-
ory (Dixon, 2010b; Dixon, 2010a; Dixon, 2012). Its
cross-linguistic applicability has so far been tested in
annotations of English, French, German and Czech.
Third, the scheme has been shown to be stable across
translations: UCCA annotations of translated text
usually contain the same set of relations (Sulem et
al., 2015), indicating that UCCA reflects a layer of
representation that in a correct translation is mostly
shared between the translation and the source.

The Abstract Meaning Representation (AMR)
(Banarescu et al., 2013) shares UCCA’s motivation
for defining a more complete semantic annotation.
However, using AMR is not optimal for defining a
decomposition of a sentence into semantic units as
it does not anchor its semantic symbols in the text,
and thus does not provide clear decomposition of the
sentence into sub-spans. Also, AMR is more fine-
grained than UCCA and consequently harder to an-
notate. Other approaches represent semantic struc-
tures as bi-lexical dependencies (Sgall et al., 1986;
Hajič et al., 2012; Oepen and Lønning, 2006), which
are indeed anchored in the text, but are less suitable
for MT evaluation as they require linguistic exper-
tise for their annotation.

3 The HUME Measure

3.1 Annotation Procedure
This section summarises the manual annotation

procedure used to compute the HUME measure. We
denote the source sentence as s and the translation
as t. The procedure involves two manual steps: (1)
UCCA-annotating s, (2) HUME-annotation: human
judgements as to the translation quality of each se-
mantic unit of s relative to t, where units are defined
according to the UCCA annotation. UCCA annota-
tion is performed once for every source sentence, ir-
respective of the number of its translations we wish
to evaluate, and requires proficiency in the source
language only. HUME annotation requires the em-
ployment of bilingual annotators.1

UCCA Annotation. We begin by creating UCCA
annotations for the source sentence, following the
UCCA guidelines.2 A UCCA annotation for a sen-
tence s is a labeled DAG G, whose leaves are the
words of s. For every node in G, we define its yield
to be its leaf descendants. The semantic units for s
according to G are the yields of nodes in G.

Translation Evaluation. HUME annotation is
done by traversing the semantic units of the source
sentence, which correspond to the arguments and re-
lations expressed in the text, and marking the ex-
tent to which they have been correctly translated.
HUME aggregates the judgements of the users into
a composite score, which reflects the overall extent
to which the semantic content of s is preserved in t.

Annotation of the semantic units requires first de-
ciding whether a unit is structural, i.e., has meaning-
bearing sub-units in the target language, or atomic.
In most cases, atomic units correspond to individual
words, but they may also correspond to multi-word
expressions that translate as one unit. For instance,
the expression “took a shower” is translated into the
German “duschte”, while its individual words do not
correspond to any sub-part of the German transla-
tion, motivating the labeling the entire expression as
an atomic node. When a multi-word unit is labeled

1Where bilingual annotators are not available, the evaluation
could be based on the UCCA structure for the reference trans-
lation. See discussion in §6.

2All UCCA-related resources can be found here: http:
//www.cs.huji.ac.il/~oabend/ucca.html

1266

Figure 2: HUME annotation of an UCCA tree with a
word-aligned example translation shown below. Atomic
units are labelled using traffic lights (Red, Orange,
Green) and structural units are marked A or B.

as atomic, its sub-units’ annotations are ignored in
the evaluation.

Atomic units can be labelled as “Green” (G, cor-
rect), “Orange” (O, partially correct) and “Red” (R,
incorrect). Green means that the meaning of the
word or phrase has been largely preserved. Orange
means that the essential meaning of the unit has been
preserved, but some part of the translation is wrong.
This is often be due to the translated word having the
wrong inflection, in a way that impacts little on the
understandability of the sentence. Red means that
the essential meaning of the unit has not been cap-
tured.

Structural units have sub-units (children in the
UCCA graph), which are themselves atomic or
structural. Structural units are labeled as “Adequate”
(A) or “Bad” (B), meaning that the relation between
the sub-units went wrong3. We will use the exam-
ple “man bites dog” to illustrate typical examples of
why a structural node should be labelled as “Bad”:
incorrect ordering (“dog bites man”), deletion (“man
bites”) and insertion (“man bites biscuit dog”).

HUME labels reflect adequacy, rather than flu-
ency judgements. Specifically, annotators are in-
structed to label a unit as Adequate if its translation
is understandable and preserves the meaning of the
source unit, even if its fluency is impaired.

Figure 2 presents an example of a HUME annota-
tion, where the translation is in English for ease of
comprehension. When evaluating “to America” the
annotator looks at the translation and sees the word
“stateside”. This word captures the whole phrase

3Three labels are used with atomic units, as opposed to two
labels with structural units, as atomic units are more susceptible
to slight errors.

and so we mark this non-leaf node with an atomic la-
bel. Here we choose Orange since it approximately
captures the meaning in this context. The ability to
mark non-leaves with atomic labels allows the an-
notator to account for translations which only cor-
respond at the phrase level. Another feature high-
lighted in this example is that by separating struc-
tural and atomic units, we are able to define where
an error occurs, and localise the error to its point of
origin. The linker “After” is translated incorrectly as
“by” which changes the meaning of the entire sen-
tence. This error is captured at the atomic level, and
it is labelled Red. The sentence still contains two
Scenes and a Linker and therefore we mark the root
node as structurally correct, Adequate.
3.2 Composite Score

We proceed to detailing how judgements on the
semantic units of the source are aggregated into a
composite score. We start by taking a very sim-
ple approach and compute an accuracy score. Let
Green(s, t), Adequate(s, t) and Orange(s, t) be the
number of Green, Adequate and Orange units, re-
spectively. Let Units(s) be the number of units
marked with any of the labels. Then HUME’s com-
posite score is:

HUME(s, t) =
Green(s, t) + Adequate(s, t) + 0.5 · Orange(s, t)

Units(s)

3.3 Annotation Interface
Figure 3 shows the HUME annotation interface4.

One source sentence and one translation are pre-
sented at a time. The user is asked to select a label
for each source semantic unit, by clicking the “A”,
“B”, Green, Orange, or Red buttons to the right of
the unit’s box. Units with multiple parents (as with
“Tom” in Figure 2) are displayed twice, once under
each of their parents, but are only annotatable in one
of their instances, to avoid double counting.

The interface presents, for each unit, the transla-
tion segment aligned with it. This allows the user,
especially in long sentences, to focus her attention
on the parts that are most likely to be relevant for her
judgement. As the alignments are automatically de-
rived, and therefore noisy, the annotator is instructed
to treat the aligned text is a cue, but to ignore the
alignment if it is misleading, and instead make a

4A demo of HUME can be found in www.cs.huji.ac.
il/~oabend/hume_demo.html

1267

Figure 3: The HUME annotation tool. The top orange box contains the translation. The source sentence is directly
below it, followed by the tree of the source semantic units. Alignments between the source and translation are in italics
and unaligned intervening words are in red (see text).

judgement according to the full translation. Con-
cretely, let s be a source sentence, t a translation, and
A ⊂ 2s×2t a many-to-many word alignment. If u is
a semantic unit in s, whose yield is yld(u), we define
the aligned text in t to be

⋃
(xs,xt)∈A∧xs∩yld(u)6=∅ xt.

Where the aligned text is discontinuous in t,
words between the left and right boundaries which
are not contained in it (intervening words) are pre-
sented in a smaller red font. Intervening words are
likely to change the meaning of the translation of
u, and thus should be attended to when considering
whether the translation is correct or not.

For example, in Figure 3, “ongoing pregnancy”
is translated to “Schwangerschaft ... laufenden” (lit.
“pregnancy ... ongoing”). This alone seems accept-
able but the interleaving words in red notify the an-
notator to check the whole translation, in which the
meaning of the expression is not preserved5. The
annotator should thus mark this structural node as
Bad.

4 Experiments

In order to validate the HUME metric, we ran an an-
notation experiment with one source language (En-
glish), and four target languages (Czech, German,
Polish and Romanian), using text from the public
health domain. Semantically accurate translation is
paramount in this domain, which makes it particu-
larly suitable for semantic MT evaluation. HUME is
evaluated in terms of its consistency (inter-annotator

5The interleaving words are “... und beide berichtet
berichteten ...” (lit. “... and both report reported ...”), which
doesn’t form any coherent relation with the rest of the sentence.

agreement), efficiency (time of annotation) and va-
lidity (by comparing it with crowd-sourced ade-
quacy judgements).
4.1 Datasets and Translation Systems

For each of the four language pairs under con-
sideration we built phrase-based MT systems using
Moses (Koehn et al., 2007). These were trained
on large parallel data sets extracted from OPUS
(Tiedemann, 2009), and the data sets released for
the WMT14 medical translation task (Bojar et al.,
2014), giving between 45 and 85 million sentences
of training data, depending on the language pair.
These translation systems were used to translate
texts derived from both NHS 246 and Cochrane7 into
the four languages. NHS 24 is a public body provid-
ing healthcare and health-service related informa-
tion in Scotland; Cochrane is an international NGO
which provides independent systematic reviews on
health-related research. NHS 24 texts come from the
“Health A-Z” section in the NHS Inform website,
and Cochrane texts come from their plain language
summaries and abstracts.
4.2 HUME Annotation Statistics

The source sentences are all in English, and their
UCCA annotation was performed by four computa-
tional linguists and one linguist. For the annotation
of the MT output, we recruited two annotators for
each of German, Romanian and Polish and one main
annotator for Czech. For computing Czech IAA,
several further annotators worked on a small number
of sentences each. We treat these further annotators

6http://www.nhs24.com/
7http://www.cochrane.org/

1268

cs de pl ro
#Sentences Annot. 1 324 339 351 230

Annot. 2 205 104 340 337
#Units Annot. 1 8794 9253 9557 6152

Annot. 2 5553 2906 9303 9228
Table 1: HUME-annotated #sentences and #units.

cs de pl ro
Annot. 1 255 140 138 96
Annot. 2 ∗ 162 229 207

Table 2: Median annotation times per sentence, in sec-
onds. ∗: no timing information is available, as this was a
collection of annotators, working in parallel.

as one annotator, resulting in two annotators for each
language pair. The annotators were all native speak-
ers of the respective target languages and fluent in
English. They completed a three hour on-line train-
ing session which included a description of UCCA
and the HUME task, followed by walking through a
few examples.

Table 1 shows the total number of sentences and
units annotated by each annotator. Not all units in all
sentences were annotated, often due to the annotator
accidentally missing a node.

Efficiency. We estimate the annotation time us-
ing the timestamps provided by the annotation tool,
which are recorded whenever an annotated sentence
is submitted. Annotators are not able to re-open a
sentence once submitted. To estimate the annota-
tion time, we compute the time difference between
successive sentences, and discard outlying times,
assuming annotation was not continuous in these
cases. From inspection of histograms of annotation
times, we set the upper threshold at 500 seconds.
Median annotation times are presented in Table 2,
indicating that the annotation of a sentence takes
around 2–4 minutes, with some variation between
annotators.

Inter-Annotator Agreement. In order to assess
the consistency of the annotation, we measure the
Inter-Annotator Agreement (IAA) using Cohen’s
Kappa on the multiply-annotated units. Table 3 re-
ports the number of units which have two annota-
tions from different annotators and the correspond-
ing Kappas. We report the overall Kappa, as well as
separate Kappas on atomic units (annotated as Red,
Orange or Green) and structural units (annotated as

cs de pl ro
Sentences 181 102 334 217
All units 4686 2793 8384 5604
Kappa 0.64 0.61 0.58 0.69
Atomic units 2982 1724 5386 3570
Kappa 0.54 0.29 0.54 0.50
Structural units 1602 1040 2655 1989
Kappa 0.31 0.44 0.33 0.58

Table 3: IAA for the multiply-annotated units, measured
by Cohen’s Kappa.

(a) English-Czech (b) English-German

(c) English-Polish (d) English-Romanian

Figure 4: Confusion matrices for each language pair.

Adequate or Bad). As expected and confirmed by
confusion matrices in Figure 4, there is generally lit-
tle confusion between the two types of units. This
results in the Kappa for all units being considerably
higher than the Kappa over the atomic units or struc-
tural units, where there is more internal confusion.

To assess HUME reliability for long sentences,
we binned the sentences according to length and
measured Kappa on each bin (Figure 5). We see no
discernible reduction of IAA with sentence length.
Table 3 also shows that the overall IAA is similar
for all languages, presenting good agreement (0.6–
0.7). However, there are differences observed when
we break down by node type. Specifically, we see a
contrast between Czech and Polish, where the IAA
is higher for atomic than for structural units, and
German and Romanian, where the reverse is true.
We also observe low IAA (around 0.3) in the cases
of German atomic units, and Polish and Czech struc-
tural units.

Looking more closely at the areas of disagree-

1269

(a) English-Czech (b) English-German

(c) English-Polish (d) English-Romanian

Figure 5: Kappa versus sentence length for structural and
atomic units. (Node counts in bins on top of each bar.)

ment, we see that for the Polish structural units, the
proportion of As was quite different between the two
annotators (53% vs. 71%), whereas for other lan-
guages the annotators agree in the proportions. We
believe that this was because one of the Polish an-
notators did not fully understand the guidelines for
structural units, and percolated errors up the tree,
creating more Bs. For German atomic and Czech
structural units, where Kappa is also around 0.3, the
proportion of such units being marked as “correct” is
relatively high, meaning that the class distribution is
more skewed, so the expected agreement used in the
Kappa calculation is high, lowering Kappa. Finally
we note some evidence of domain-specific disagree-
ments, for instance the German MT system normally
translated “review” (as in “systematic review” – a
frequent term in the Cochrane texts) as “Überprü-
fung”, which one annotator marked correct, and the
other (a Cochrane employee) as incorrect.

5 Comparison with Direct Assessment

Recent research (Graham et al., 2015b; Graham et
al., 2015a; Graham, 2015) has proposed a new ap-
proach for collecting accuracy ratings, direct assess-
ment (DA). Statistical interpretation of a large num-
ber of crowd-sourced adequacy judgements for each
candidate translation on a fine-grained scale of 0 to
100 results in reliable aggregate scores, that corre-
late very strongly with one another.

0.0 0.2 0.4 0.6 0.8 1.0
HUME scores

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

D
A

 s
co

re
s

(a) English-German

0.0 0.2 0.4 0.6 0.8 1.0
HUME scores

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

D
A

 s
co

re
s

(b) English-Romanian

Figure 6: HUME vs DA scores. DA score have been stan-
dardised for each crowdsourcing annotator and averaged
across exactly 10 annotators. HUME scores are averaged
where there were two annotations.

We attempted to follow Graham et al. (2015b) but
struggled to get enough crowd-sourced judgements
for our target languages. We ended up with 10 ade-
quacy judgements on most of the HUME annotated
translations for German and Romanian but insuffi-
cient data for Czech and Polish. We see this as a
severe practical limitation of DA.

Figure 6 plots the HUME score for each sentence
against its DA score. HUME and Direct Assessment
scores correlate reasonably well. The Pearson corre-
lation for en-ro (en-de) is 0.70 (0.58), or 0.78 (0.74)
if only doubly HUME-annotated points are consid-
ered. This confirms that HUME is consistent with
an accepted human evaluation method, despite their
conceptual differences. While DA is a valuable tool,
HUME has two advantages: it returns fine-grained

1270

a
ll

a
to

m
ic

st
ru

ct

P
 a

n
d
 S

H

A

C

E

L 0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
o
rr

e
la

ti
o
n

German

Romanian

Figure 7: Pearson correlation of HUME vs. DA scores
for en-ro and en-de. Each bar represents a correlation
between DA and an aggregate HUME score based on
a sub-set of the units (#nodes for the en-de/en-ro set-
ting in brackets): all units (“all”, 8624/10885), atomic
(“atomic”, 5417/6888) and structural units (“struct”,
3207/3997), and units by UCCA categories: Scene
main relations (i.e, Process and State units; “P and S”,
954/1178), Parallel Scenes (“H”, 656/784), Participants
(“A”, 1348/1746), Centres (“C”, 1904/2474), elaborators
(“E”, 1608/2031) and linkers (“L”, 261/315).

semantic information about the quality of transla-
tions and it only requires very few annotators. Di-
rect assessment returns a single opaque score, and
(as also noted by Graham et al.) requires a large
crowd which may not be available or reliable.

Figure 7 presents an analysis of HUME’s corre-
lations with DA by HUME unit type, an analysis
enabled by HUME’s semantic decomposition. For
both target languages, correlation is highest in the
’all’ case, supporting our claim for the value of ag-
gregating over a wide range of semantic phenom-
ena. Some types of nodes predict the DA scores bet-
ter than others. HUME scores on As correlate more
strongly with DA than scores on Scene Main Rela-
tions (P+S). Center nodes (C) are also more corre-
lated than elaborator nodes (E), which is expected
given that Centers are defined to be more semanti-
cally dominant. Future work will construct an aggre-
gate HUME score which weights the different node
types according to their semantic prominence.

HUME and DA are conceputally very different
metrics: while DA standardises and averages scores
across annotators to denoise the crowd-sourced raw
data, thus obtaining a single aggregate score, HUME
decomposes over a combinatorial structure, thus al-

lowing to localize the translation errors. We now
turn to comparing HUME to a more conceptually-
related measure, namely HMEANT.

6 Comparison with HMEANT

HMEANT is a human MT evaluation metric that
measures the overlap between the translation a ref-
erence in terms of their SRL annotations. In this
section we present a qualitative comparison between
HUME and HMEANT, using examples from our ex-
perimental data.

Verbal Structures Only? HMEANT focuses on
verbal argument structures, ignoring other pervasive
phenomena such as non-verbal predicates and inter-
clausal relations. Consider the following example:

Source a coronary angioplasty may not be
technically possible

Transl. eine koronare Angioplastie kann nicht
technisch möglich

Gloss a coronary angioplasty can not techni-
cally possible

The German translation is largely correct, except
that the main verb “sein” (“be”) is omitted. While
this may be interpreted as a minor error, HMEANT
will assign the sentence a very low score, as it failed
to translate the main verb.

It is also relatively common that verbal construc-
tions are translated as non-verbal ones or vice versa.
Consider the following example:

Source ... tend to be higher in saturated fats
Transl. ... in der Regel höher in gesättigte

Fette
Gloss ... as a rule higher in saturated fats

The German translation is largely correct, despite
the grammatical divergence, namely that the English
verb “tend” is translated into the German preposi-
tional phrase “in der Regel” (“as a rule”). HMEANT
will consider the translation to be of poor quality as
there is no German verb to align with the English
one.

We conducted an analysis of the English UCCA
Wikipedia corpus (5324 sentences) in order to assess
the pervasiveness of three phenomena that are not
well supported by HMEANT.8 First, copula clauses

8Argument structures and linkers are explicitly marked in
UCCA. Non-auxiliary instances of “be” and nouns are identi-

1271

are treated in HMEANT simply as instances of the
main verb “be”, which generally does not convey the
meaning of these clauses. They appear in 21.7% of
the sentences, according to conservative estimates
that only consider non-auxiliary instances of “be”.
Second, nominal argument structures, ignored by
HMEANT, are in fact highly pervasive, appearing
in 48.7% of the sentences. Third, linkers that ex-
press inter-relations between clauses (mainly dis-
course markers and conjunctions) appear in 56% of
the sentences, but are again ignored by HMEANT.
For instance, linkers are sometimes omitted in trans-
lation, but these omissions are not penalized by
HMEANT. The following is such an example from
our experimental dataset:

Source However, this review was restricted to
...

Transl. Diese Überprüfung bescränkte sich
auf ...

Gloss This review was restricted to ...

We note that some of these issues were already
observed in previous applications of HMEANT to
languages other than English. See Birch et al. (2013)
for German, Bojar and Wu (2012) for Czech and
Chuchunkov et al. (2014) for Russian.

One Structure or Two. HUME only annotates
the source, while HMEANT relies on two indepen-
dently constructed structural annotations, one for the
reference and one for the translation. Not annotat-
ing the translation is appealing as it is often impos-
sible to assign a semantic structure to a low quality
translation. On the other hand, HUME may be ar-
tificially boosting the perceived understandability of
the translation by allowing access to the source.

Alignment. In HMEANT, the alignment between
the reference and translation structures is a key part
of the manual annotation. If the alignment cannot
be created, the translation is heavily penalized. Bo-
jar and Wu (2012) and Chuchunkov et al. (2014)
argue that the structures of the reference and of an
accurate translation may still diverge, for instance
due to a different interpretation of a PP-attachment,
or the verb having an additional modifier in one of
the structures. It would be desirable to allow mod-
ifications to the SRL annotations at the alignment
fied using the NLTK standard tagger. Nominal argument struc-
tures are here Scenes whose Main Relation is headed by a noun.

stage, to avoid unduly penalizing such spurious di-
vergences.

The same issue is noted by Lo and Wu (2014): the
IAA on SRL dropped from 90% to 61% when the
two aligned structures were from two different an-
notators. HUME uses automatic (word-level) align-
ment, which only serves as a cue for directing the
attention of the annotators. The user is expected to
mentally correct the alignment as needed, thus cir-
cumventing this difficulty.

Monolingual vs. Bilingual Evaluation. HUME
diverges from HMEANT and from shallower mea-
sures like BLEU, in not requiring a reference. In-
stead, it directly compares the source and the trans-
lation. This requires the employment of bilingual
annotators, but has the benefit of avoiding using a
reference, which is never uniquely defined, and may
thus lead to unjustly low scores where the transla-
tion is a paraphrase of the reference. If only mono-
lingual annotators are available, the HUME evalua-
tion could be performed with a reference sentence
instead of with the source. This, however, would
risk inaccurate judgements due to the naturally oc-
curring differences between the source and its refer-
ence translations.

7 Conclusion

We have introduced HUME, a human semantic MT
evaluation measure which addresses a wide range
of semantic phenomena. We have shown that it
can be reliably and efficiently annotated in multi-
ple languages, and that annotation quality is robust
to sentence length. Comparison to direct assess-
ments further support HUME’s validity. We be-
lieve that HUME, and a future automated version of
HUME, allows for a finer-grained analysis of trans-
lation quality, and will be useful in informing the de-
velopment of a more semantically aware approach to
MT.

All annotation data gathered in this project, to-
gether with analysis scripts, is available online9.

Acknowledgments

This project has received funding from the European
Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement 644402 (HimL).

9https://github.com/bhaddow/hume-emnlp16

1272

References

Omri Abend and Ari Rappoport. 2013. Universal con-
ceptual cognitive annotation (ucca). In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 228–238, Sofia, Bulgaria, August. Association
for Computational Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of Linguistic Anno-
tation Workshop and Interoperability with Discourse,
pages 178–186.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with improved
correlation with human judgments. In Proceedings of
the ACL Workshop on Intrinsic and Extrinsic Evalu-
ation Measures for Machine Translation and/or Sum-
marization, pages 65–72, Ann Arbor, MI, USA. Asso-
ciation for Computational Linguistics.

Alexandra Birch, Barry Haddow, Ulrich Germann, Maria
Nadejde, Christian Buck, and Philipp Koehn. 2013.
The feasibility of HMEANT as a human MT evalua-
tion metric. In Proceedings of the Eighth Workshop on
Statistical Machine Translation, pages 52–61, Sofia,
Bulgaria, August. Association for Computational Lin-
guistics.

Ondřej Bojar and Dekai Wu. 2012. Towards a Predicate-
Argument Evaluation for MT. In Proceedings of the
Sixth Workshop on Syntax, Semantics and Structure in
Statistical Translation, pages 30–38, Jeju, Republic of
Korea, July. Association for Computational Linguis-
tics.

Ondřej Bojar, Miloš Ercegovčević, Martin Popel, and
Omar F. Zaidan. 2011. A grain of salt for the WMT
manual evaluation. In Proceedings of the Sixth Work-
shop on Statistical Machine Translation, pages 1–11,
Edinburgh, Scotland.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and Aleš Tam-
chyna. 2014. Findings of the 2014 workshop on statis-
tical machine translation. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
12–58, Baltimore, Maryland, USA, June. Association
for Computational Linguistics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Barry Haddow, Matthias Huck, Chris Hokamp, Philipp
Koehn, Varvara Logacheva, Christof Monz, Matteo
Negri, Matt Post, Carolina Scarton, Lucia Specia, and
Marco Turchi. 2015. Findings of the 2015 workshop

on statistical machine translation. In Proceedings of
the Tenth Workshop on Statistical Machine Transla-
tion, pages 1–46, Lisbon, Portugal, September. Asso-
ciation for Computational Linguistics.

Alexander Chuchunkov, Alexander Tarelkin, and Irina
Galinskaya. 2014. Applying HMEANT to English-
Russian Translations. In Proceedings of SSST-8,
Eighth Workshop on Syntax, Semantics and Structure
in Statistical Translation, pages 43–50, Doha, Qatar,
October. Association for Computational Linguistics.

Robert M.W. Dixon. 2010a. Basic Linguistic Theory:
Grammatical Topics, volume 2. Oxford University
Press.

Robert M.W. Dixon. 2010b. Basic Linguistic Theory:
Methodology, volume 1. Oxford University Press.

Robert M.W. Dixon. 2012. Basic Linguistic Theory:
Further Grammatical Topics, volume 3. Oxford Uni-
versity Press.

George Doddington. 2002. Automatic evaluation of ma-
chine translation quality using n-gram co-occurrence
statistics. In Proceedings of the second interna-
tional conference on Human Language Technology
Research, pages 138–145, San Diego, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Marina Fomicheva and Lucia Specia. 2016. Reference
bias in monolingual machine translation evaluation. In
54th Annual Meeting of the Association for Computa-
tional Linguistics, ACL, Berlin, Germany.

Jesús Giménez and Lluís Màrquez. 2007. Linguistic
features for automatic evaluation of heterogenous mt
systems. In Proceedings of the Second Workshop on
Statistical Machine Translation, pages 256–264.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2015a. Can machine translation systems
be evaluated by the crowd alone? Natural Language
Engineering, pages 1–28.

Yvette Graham, Nitika Mathur, and Timothy Baldwin.
2015b. Accurate evaluation of segment-level machine
translation metrics. In Proc. of NAACL-HLT, pages
1183–1191.

Yvette Graham. 2015. Improving evaluation of machine
translation quality estimation. In Proceedings of the
53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers), pages 1804–1813, Beijing, China, July.
Association for Computational Linguistics.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr Sgall,
Ondřej Bojar, Silvie Cinková, Eva Fučíková, Marie
Mikulová, Petr Pajas, Jan Popelka, Jiří Semecký, Jana
Šindlerová, Jan Štěpánek, Josef Toman, Zdeňka Ure-
šová, and Zdeněk Žabokrtský. 2012. Announcing
Prague Czech-English Dependency Treebank 2.0. In

1273

Proceedings of the Eighth International Language Re-
sources and Evaluation Conference (LREC’12), pages
3153–3160, Istanbul, Turkey, May. ELRA, European
Language Resources Association.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
et al. 2007. Moses: Open source toolkit for statis-
tical machine translation. In Proceedings of the 45th
Annual Meeting of the Association for Computational
Linguistics, Companion Volume Proceedings of the
Demo and Poster Sessions, pages 177–180, Prague,
Czech Republic. Association for Computational Lin-
guistics.

Ding Liu and Daniel Gildea. 2005. Syntactic features for
evaluation of machine translation. In ACL 2005 Work-
shop on Intrinsic and Extrinsic Evaluation Measures
for Machine Translation and/or Summarization, pages
25–32.

Chi-kiu Lo and Dekai Wu. 2011. Structured vs. flat
semantic role representations for machine translation
evaluation. In Proceedings of the Fifth Workshop on
Syntax, Semantics and Structure in Statistical Transla-
tion, pages 10–20. Association for Computational Lin-
guistics.

Chi-Kiu Lo and Dekai Wu. 2014. On the Reliabil-
ity and Inter-Annotator Agreement of Human Seman-
tic MT Evaluation via HMEANT. In Nicoletta Cal-
zolari (Conference Chair), Khalid Choukri, Thierry
Declerck, Hrafn Loftsson, Bente Maegaard, Joseph
Mariani, Asuncion Moreno, Jan Odijk, and Stelios
Piperidis, editors, Proceedings of the Ninth Interna-
tional Conference on Language Resources and Evalu-
ation (LREC’14), Reykjavik, Iceland. European Lan-
guage Resources Association (ELRA).

Arle Richard Lommel, Maja Popovic, and Aljoscha Bur-
chardt. 2014. Assessing Inter-Annotator Agreement
for Translation Error Annotation. In MTE: Workshop
on Automatic and Manual Metrics for Operational
Translation Evaluation. LREC.

Matouš Macháček and Ondřej Bojar. 2015. Evaluating
Machine Translation Quality Using Short Segments
Annotations. The Prague Bulletin of Mathematical
Linguistics, 103:85–110, April.

Pedro Marinotti. 2014. Measuring semantic preservation
in machine translation with HCOMET: human cogni-
tive metric for evaluating translation. Master’s thesis,
University of Edinburgh.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based MRS banking. In Proceedings of
LREC, pages 1250–1255.

Karolina Owczarzak, Josef van Genabith, and Andy Way.
2007. Evaluating machine translation with LFG de-
pendencies. Machine Translation, 21(2):95–119.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Computa-
tional Linguistics, pages 311–318, Philadelphia, PA,
USA. Association for Computational Linguistics.

Petr Sgall, Eva Hajičová, and Jarmila Panevová. 1986.
The Meaning of the Sentence and Its Semantic and
Pragmatic Aspects. Academia/Reidel Publishing
Company, Prague, Czech Republic/Dordrecht, Nether-
lands.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of association for machine translation
in the Americas, pages 223–231.

Elior Sulem, Omri Abend, and Ari Rappoport. 2015.
Conceptual annotations preserve structure across
translations: A French-English case study. In ACL
2015 Workshop on Semantics-Driven Statistical Ma-
chine Translation (S2MT), pages 11–22.

Jörg Tiedemann. 2009. News from OPUS – a collection
of multilingual parallel corpora with tools and inter-
faces. In Recent Advances in Natural Language Pro-
cessing, volume 5, pages 237–248, Borovets, Bulgaria.
John Benjamins.

1274

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1275–1284,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Improving Multilingual Named Entity Recognition
with Wikipedia Entity Type Mapping

Jian Ni and Radu Florian
IBM T. J. Watson Research Center

1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
{nij, raduf}@us.ibm.com

Abstract

The state-of-the-art named entity recognition
(NER) systems are statistical machine learn-
ing models that have strong generalization ca-
pability (i.e., can recognize unseen entities
that do not appear in training data) based
on lexical and contextual information. How-
ever, such a model could still make mis-
takes if its features favor a wrong entity type.
In this paper, we utilize Wikipedia as an
open knowledge base to improve multilin-
gual NER systems. Central to our approach
is the construction of high-accuracy, high-
coverage multilingual Wikipedia entity type
mappings. These mappings are built from
weakly annotated data and can be extended
to new languages with no human annotation
or language-dependent knowledge involved.
Based on these mappings, we develop several
approaches to improve an NER system. We
evaluate the performance of the approaches
via experiments on NER systems trained for 6
languages. Experimental results show that the
proposed approaches are effective in improv-
ing the accuracy of such systems on unseen
entities, especially when a system is applied to
a new domain or it is trained with little train-
ing data (up to 18.3 F1 score improvement).

1 Introduction

Named entity recognition (NER) is an important
NLP task that automatically detects entities in text
and classifies them into pre-defined entity types such
as persons, organizations, geopolitical entities, lo-
cations, events, etc. NER is a fundamental compo-
nent of many information extraction and knowledge

discovery applications, including relation extraction,
entity linking, question answering and data mining.

The state-of-the-art NER systems are usually sta-
tistical machine learning models that are trained
with human-annotated data. Popular models in-
clude maximum entropy Markov models (MEMM)
(McCallum et al., 2000), conditional random fields
(CRF) (Lafferty et al., 2001) and neural networks
(Collobert et al., 2011; Lample et al., 2016). Such
models have strong generalization capability to rec-
ognize unseen entities1 based on lexical and contex-
tual information (features). However, a model could
still make mistakes if its features favor a wrong en-
tity type, which happens more frequently for unseen
entities as we have observed in our experiments.

Wikipedia is an open-access, free-content Inter-
net encyclopedia, which has become the de facto
on-line source for general reference. A Wikipedia
page about an entity normally includes both struc-
tured information and unstructured text information,
and such information can be used to help determine
the entity type of the referred entity.

So far there are two classes of approaches that
exploit Wikipedia to improve NER. The first class
of approaches use Wikipedia to generate features
for NER systems, e.g., (Kazama and Torisawa,
2007; Ratinov and Roth, 2009; Radford et al.,
2015). Kazama and Torisawa (2007) try to find the
Wikipedia entity for each candidate word sequence
and then extract a category label from the first sen-
tence of the Wikipedia entity page. A part-of-speech
(POS) tagger is used to extract the category label

1An entity is an unseen entity if it does not appear in the
training data used to train the NER model.

1275

features in the training and decoding phase. Ratinov
and Roth (2009) aggregate several Wikipedia cate-
gories into higher-level concept and build a gazetteer
on top of it. The two approaches were shown to
be able to improve an English NER system. Both
approaches, however, are language-dependent be-
cause (Kazama and Torisawa, 2007) requires a POS
tagger and (Ratinov and Roth, 2009) requires man-
ual category aggregation by inspection of the anno-
tation guidelines and the training set. Radford et
al. (2015) assume that document-specific knowledge
base (e.g., Wikipedia) tags for each document are
provided, and they use those tags to build gazetteer
type features for improving an English NER system.

The second class of approaches use Wikipedia to
generate weakly annotated data for training multi-
lingual NER systems, e.g., (Richman and Schone,
2008; Nothman et al., 2013). The motivation is
that annotating multilingual NER data by human
is both expensive and time-consuming. Richman
and Schone (2008) utilize the category informa-
tion of Wikipedia to determine the entity type of
an entity based on manually constructed rules (e.g.,
category phrase “Living People” is mapped to en-
tity type PERSON). Such a rule-based entity type
mapping is limited both in accuracy and cover-
age, e.g., (Toral and Muoz, 2006). Nothman et
al. (2013) train a Wikipedia entity type classifier
using human-annotated Wikipedia pages. Such a
supervised-learning based approach has better ac-
curacy and coverage, e.g., (Dakka and Cucerzan,
2008). A number of heuristic rules are developed
in both works to label the Wikipedia text to create
weakly annotated NER training data. The NER sys-
tems trained with the weakly annotated data may
achieve similar accuracy compared with systems
trained with little human-annotated data (e.g., up to
40K tokens as in (Richman and Schone, 2008)), but
they are still significantly worse than well-trained
systems (e.g., a drop of 23.9 F1 score on the CoNLL
data and a drop of 19.6 F1 score on the BBN data as
in (Nothman et al., 2013)).

In this paper, we propose a new class of ap-
proaches that utilize Wikipedia to improve multilin-
gual NER systems. Central to our approaches is the
construction of high-accuracy, high-coverage mul-
tilingual Wikipedia entity type mappings. We use
weakly annotated data to train an English Wikipedia

entity type classifier, as opposed to using human-
annotated data as in (Dakka and Cucerzan, 2008;
Nothman et al., 2013). The accuracy of the classi-
fier is further improved via self-training. We apply
the classifier on all the English Wikipedia pages and
construct an English Wikipedia entity type mapping
that includes entities with high classification confi-
dence scores. To build multilingual Wikipedia en-
tity type mappings, we generate weakly annotated
classifier training data for another language via pro-
jection using the inter-language links of Wikipedia.
This approach requires no human annotation or
language-dependent knowledge, and thus can be
easily applied to new languages.

Our goal is to utilize the Wikipedia entity type
mappings to improve NER systems. A natural ap-
proach is to use a mapping to create dictionary type
features for training an NER system. In addition,
we develop several other approaches. The first ap-
proach applies an entity type mapping as a decod-
ing constraint for an NER system. The second ap-
proach uses a mapping to post-process the output
of an NER system. We also design a robust joint
approach that combines the decoding constraint ap-
proach and the post-processing approach in a smart
way. We evaluate the performance of the Wikipedia-
based approaches on NER systems trained for 6 lan-
guages. We find that when a system is well trained
(e.g., with 200K to 300K tokens of human-annotated
data), the dictionary feature approach achieves the
best improvement over the baseline system; while
when a system is trained with little human-annotated
training data (e.g., 20K to 30K tokens), a more ag-
gressive decoding constraint approach achieves the
best improvement. In both scenarios, the Wikipedia-
based approaches are effective in improving the ac-
curacy on unseen entities, especially when a system
is applied to a new domain (3.6 F1 score improve-
ment on political party articles/English NER) or it
is trained with little training data (18.3 F1 score im-
provement on Japanese NER).

We organize the paper as follows. We describe
how to build English Wikipedia entity type mapping
in Section 2 and extend it to multilingual mappings
in Section 3. We present several Wikipedia-based
approaches for improving NER systems in Section
4 and evaluate their performance in Section 5. We
conclude the paper in Section 6.

1276

2 English Wikipedia Entity Type Mapping

In this section, we focus on English Wikipedia. We
divide Wikipedia pages into two types:

• Entity pages that describe an entity or object,
either a named entity such as “Michael Jordan”
or a common entity such as “Basketball.”

• Non-entity pages that do not describe a certain
entity, including disambiguation pages, redi-
rection pages, list pages, etc.

We have developed an in-house English NER sys-
tem (Florian et al., 2004). The system has 51 en-
tity types, and the main motivation of deploying
such a fine-grained entity type set is to build cog-
nitive question answering applications on top of the
NER system. An important check for a question an-
swering system is the capability to detect whether
a particular answer matches the expected type de-
rived from the question. The entity type system used
in this paper has been engineered to cover many
of the frequent types that are targeted by naturally-
phrased questions (such as PERSON, ORGANIZA-
TION, GPE, TITLEWORK, FACILITY, EVENT,
DATE, TIME, LOCATION, etc), and it was created
over a long period of time, being updated as more
types were found to be useful for question answer-
ing, and to improve inter-annotator consistency.

We want to classify Wikipedia pages into one of
the entity types used in the NER system. For non-
entity pages and entity pages describing common
entities, we assign them with a new type OTHER.

2.1 Wikipedia Entity Type Classification
2.1.1 Features

We build maximum entropy classifiers (Nigam et
al., 1999) for Wikipedia entity type classification.
We use both structured information and unstructured
information of a Wikipedia page as features.

Each Wikipedia page has a unique title. The title
of an entity page is usually the name of the entity,
and may include auxiliary information in a bracket
to distinguish entities with the same name. We use
both the entity name and auxiliary information in a
bracket (if any) of a Wikipedia title as features be-
cause each could provide useful information for en-
tity type classification. For example, based on the

word “Prize” in the title “Nobel Prize” or the word
“Awards” in the title “Academy Awards”, one can
infer that the entity type is AWARD. Likewise, the
auxiliary information “company” in the title “Jordan
(company)” indicates that the entity is an ORGA-
NIZATION, and the auxiliary information “film” in
the title “Alien (film)” indicates that the entity is a
TITLEWORK.

The text in a Wikipedia page of an entity pro-
vides rich information about the entity. A person
can usually correctly infer the entity type by read-
ing the first few sentences of the text in a Wikipedia
page. Using more sentences provides additional in-
formation about the entity which might be helpful,
but it is also more likely to introduce noisy informa-
tion which could affect the classification accuracy
adversely. Therefore, we use the first 200 tokens of
the text in a Wikipedia page and create n-gram word
features out of them. We have also found that in-
cluding additional n-gram word features of the first
sentence in a Wikipedia page results in a better clas-
sification accuracy.

Most Wikipedia pages also have a structured table
called infobox, which is placed on the right top of a
page. An infobox contains attribute-value pairs, of-
ten providing summary information about an entity.
The attributes in an infobox could be particularly
useful for entity type classification. For example, the
attribute “Born” in an infobox provides strong ev-
idence that the corresponding entity is a PERSON;
and the attribute “Headquarters” implies that the cor-
responding entity is an ORGANIZATION. We in-
clude the infobox attributes as classifier features.

2.1.2 Training and Test Data
Entity linking (EL) or entity disambiguation is the

task of determining the identities of entities men-
tioned in text, by linking each entity to an entry (if
exists) in an open knowledge base such as Wikipedia
(Han et al., 2011; Hoffart et al., 2011). We apply an
EL system (Sil and Florian, 2014) to generate train-
ing data for Wikipedia entity type classification as
follows: if a named entity in our NER training data
with entity type T is linked to a Wikipedia page, that
page will be labeled with entity type T . Similarly,
we apply the EL system to generate a set of test data
by linking named entities in our NER test data to
Wikipedia pages. The English Wikipedia snapshot

1277

Features ALL PER ORG GPE TITL FAC
Title 62.4 73.4 67.2 59.0 57.1 47.1

Infobox 77.3 92.6 87.8 92.0 95.4 50.0
Text 87.2 97.5 87.3 95.1 88.5 40.0
All 90.1 96.1 92.5 95.1 96.9 75.0

Table 1: F1 score of English Wikipedia entity type classifiers.

was dumped in April 2014 which contains around
4.6M pages. Using this method we generate a train-
ing data set with 4,699 English Wikipedia pages and
a test set of 415 English Wikipedia pages.

Notice that the automatically generated classifier
training and test data are weakly labeled since the
EL system may link an entity to a wrong Wikipedia
page and thus the entity type assigned to that page
could be wrong. Since the test data is crucial for
evaluating the classification accuracy, we manually
corrected the output.

2.1.3 Classifier Performance
To evaluate the prediction power of different types

of features, we train a number of classifiers using
only title features, only infobox features, only text
features, and all features respectively. We show the
F1 score of the classifiers on different entity types in
Table 1. ALL is the overall performance, and PER
(PERSON), ORG (ORGANIZATION), GPE, TITL
(TITLEWORK), FAC (FACILITY) are the top five
most frequently entity types in the test data.

From Table 1, we can see that text features are the
most important features for classifying Wikipedia
pages, since the classifier trained with only text fea-
tures achieves an overall F1 score of 87.2, which is
better than the classifier trained with either title or
infobox features alone. Nevertheless, both infobox
and title features provide additional useful informa-
tion for entity type classification, and the classifier
trained with all the features achieves an overall F1

score of 90.1.

2.1.4 Improvement via Self-Training
Self-training is a semi-supervised learning tech-

nique that can be used in applications where there
is only a small number of labeled training examples
but a large number of unlabeled examples. Since our
weakly annotated classifier training data only cov-
ers around 1% of all the Wikipedia pages, we are
motivated to use self-training to further improve the

Classifier Train Size F1

Original Classifier 4,699 90.1
Self-Training (Standard) +2,352,836 91.1
Self-Training (Sampling) +26,518 91.8

Table 2: Improving classifier accuracy via self-training.

classification accuracy.
We first apply a standard self-training approach.

The classifier trained with the initial training data
is used to decode (i.e., classify) all the unla-
beled Wikipedia pages to predict their entity types
with confidence scores. We add the self-decoded
Wikipedia pages with high confidence scores to the
training data and train a new classifier. Via exper-
iments a threshold of 0.9 is used to sort out high-
confident self-decoded examples. The F1 score of
the new classifier is improved to 91.1, as shown in
Table 2.

Under the standard approach, about 2.3M self-
decoded examples are added, the size of which is
about 500 times of the size of the original training
data. The errors of the original classifier could be
amplified with such a big increase of the training
size with so many self-decoded examples.

To address this issue, we have developed a
sampling-based self-training approach. Instead of
adding all the self-decoded examples with confi-
dence scores greater than or equal to 0.9, we do a
random sampling of those high-confident examples.
We use a sampling probability p(e) = q ·c(e), where
q is a sampling ratio parameter and c(e) is the con-
fidence score of example e. Under this approach,
examples with higher confidence scores are more
likely to be selected, while the total number of se-
lected examples is controlled by the sampling ratio
q. Via experiments we found that a small sampling
ratio like q = 0.01 yields good improvement (al-
though the improvement is not sensitive to q). As
shown in Table 2, the classification accuracy under
the sampling-based approach is further improved to
91.8 F1 score (the improvement is calculated by av-
eraging over 5 random samples with q = 0.01).

2.2 Wikipedia Entity Type Mapping

We construct an English Wikipedia entity type
mapping by applying the English Wikipedia entity
type classifier on all the English Wikipedia pages

1278

(∼4.6M). Each entry of the mapping includes an
entity name (which is extracted from the title of a
Wikipedia page) and the associated entity type with
confidence score (which is determined by the clas-
sifier). We denote the English Wikipedia entity type
mapping that includes all the pages by English-Wiki-
Mapping.

To build a high-accuracy mapping, one may
want to include only entities with confidence scores
greater than or equal to a threshold t in the mapping,
and we denote such a mapping by English-Wiki-
Mapping(t). Notice that a mapping with a higher
t will have more accurate entity types for its enti-
ties, but it will include fewer entities. Therefore,
there is a trade-off between accuracy and coverage
of the mapping, which can be tuned by the confi-
dence threshold t. There are about 2.9M entities
in English-Wiki-Mapping(0.9), which covers about
63% of all the English Wikipedia pages.

We have also found that the length of an entity
name (i.e., number of words in an entity name) also
plays an important role for determining which enti-
ties should be included in the mapping for improv-
ing an NER system. Therefore, we use English-
Wiki-Mapping(t, i) to denote the English Wikipedia
entity type mapping that includes all the entities
with confidence scores greater than or equal to t
and at least i words in their names. English-Wiki-
Mapping(0.9,2) covers about 55% of all the English
Wikipedia pages, and English-Wiki-Mapping(0.9,3)
covers about 25% of all the English Wikipedia
pages.

3 Multilingual Wikipedia Entity Type
Mapping

Based on the English Wikipedia entity type map-
ping, we want to build high-accuracy, high-coverage
Wikipedia entity type mappings for other languages
with minimum human annotation and language-
dependent knowledge involved. We utilize the inter-
language links of Wikipedia, which are the links
between one entity’s pages in different languages.
The inter-language links between English Wikipedia
pages and Wikipedia pages of another language pro-
vide useful information for this task.

Suppose we want to build a Wikipedia entity type
mapping for a new language, and we use Portuguese

as an example. A direct approach is projection us-
ing the inter-language links between English and
Portuguese Wikipedia pages: for each Portuguese
Wikipedia page that has an inter-language link to
an English Wikipedia page, we project the entity
type of the English Wikipedia page (determined by
the English entity type mapping) to the Portuguese
Wikipedia page. The rationale is that both the En-
glish and Portuguese pages are describing the same
entity, even probably with different spelling (e.g.,
United States in English vs. Estados Unidos in
Portuguese), the entity type of that entity does not
change from one language to another.

However, the main limitation of the direct pro-
jection approach is coverage. Only a fraction of all
the Portuguese Wikipedia pages have inter-language
links to English Wikipedia pages, and among those
pages only a subset of them have classified en-
tity types with confidence scores high enough (e.g.,
at least 0.9). For example, projecting English-
Wiki-Mapping(0.9) to Portuguese Wikipedia returns
143K pages, which covers only 15% of all the Por-
tuguese Wikipedia pages (around 920K in total).

We apply an alternative approach, which uses
the 143K Portuguese Wikipedia pages (acquired
by projection from English-Wiki-Mapping(0.9)) as
weakly annotated training data to train a Portuguese
Wikipedia entity type classifier. For feature en-
gineering purpose, we also project the English
Wikipedia entity type classifier training and test
data (as described in Section 2.1.2) to Portuguese
Wikipedia pages via inter-language links, and this
produces 1,190 Portuguese Wikipedia pages which
are used as the test data. Pages in the test data set
are excluded from the 143K training data set.

We use similar features (title, infobox and text)
as for the English classifiers to train the Portuguese
classifiers. Again we find that the classifier trained
with all the features achieves the best accuracy of
86.3 F1 score. Notice that this is an approximated
evaluation because the pages in the test data set are
labeled via projection and not by human.

We build Portuguese Wikipedia entity type map-
pings by applying the Portuguese Wikipedia en-
tity type classifier on all the Portuguese Wikipedia
pages. We use Portuguese-Wiki-Mapping(t) to de-
note the mapping that includes entities with con-
fidence scores greater than or equal to a thresh-

1279

old t. There are 525K entities in Portuguese-Wiki-
Mapping(0.9), which covers about 57% of all the
Portuguese Wikipedia pages, a significant improve-
ment of coverage compared to the direct projection
approach (15%).

The main advantage of our approach is that no hu-
man annotation or language-dependent knowledge
is required, so it can be easily applied to a new
language. We have applied this approach to build
high-accuracy, high-coverage Wikipedia entity type
mappings for several new languages including Por-
tuguese, Japanese, Spanish, Dutch and German.

4 Improving NER Systems

We have developed several approaches that utilize
the Wikipedia entity type mappings to improve NER
systems. Let M be a Wikipedia entity type map-
ping. For an entity name x, let M(x) denote the
set of possible entity types for x determined by the
mapping. If an entity name x is in the mapping,
then M(x) includes at least one entity type, i.e.,
|M(x)| ≥ 1, where |M(x)| is the cardinality of
M(x). Otherwise if an entity name x is not in
the mapping, then M(x) = ∅ is the empty set and
|M(x)| = 0.

The first approach is to use a Wikipedia entity
type mapping M as a decoding constraint for an
NER system. Under this approach, the mapping is
applied as a constraint during the decoding proce-
dure: if a sequence of words in the text form an
entity name x that is included in the mapping, i.e.,
|M(x)| ≥ 1, then the sequence of words will be
identified as an entity, and its entity type is deter-
mined by the decoding algorithm while being con-
strained to one of the entity types inM(x).

The second approach is to use a Wikipedia entity
type mapping M to post-process the output of an
NER system. Under this approach, the mapping is
applied after the decoding procedure: if the name
of a system entity x is in the mapping and the en-
tity type for that entity name is unique based on the
mapping, i.e., |M(x)| = 1, then its entity type will
be determined by the unique entity type inM(x).

The decoding constraint approach is more aggres-
sive than the post-processing approach, because it
may create new entities and change entity bound-
aries. This approach is more reliable for entities

with longer names. Via experiments we find that
using Wiki-Mapping(0.9,2) or Wiki-Mapping(0.9,3)
achieves the best improvement under the decoding
constraint approach. Remember Wiki-Mapping(t, i)
includes all the entities with confidence scores at
least t and at least i words in their names.

In contrast, the post-processing approach is a
more conservative approach since it relies on the
system entity boundaries and only changes their en-
tity types if determined by the mapping, so it will not
create new entities. Via experiments we find that us-
ing Wiki-Mapping(0.9,2) achieves the best improve-
ment under the post-processing approach.

Based on the observation that the decoding con-
straint approach is more reliable for longer enti-
ties while the post-processing approach can better
handle short entities, we have designed a joint ap-
proach that combines the two approaches as fol-
lows: it first applies Wiki-Mapping(0.9,3) as a de-
coding constraint for an NER system to produce sys-
tem entities, and then applies Wiki-Mapping(0.9,2)
to post-process the system output. The joint ap-
proach combines the advantages of both approaches
and achieves robust performance in our experiments.

Finally, we can use a Wikipedia entity type map-
ping to create dictionary features for training an
NER system. The idea of using Wikipedia to create
training features was explored before, e.g., (Kazama
and Torisawa, 2007; Ratinov and Roth, 2009; Rad-
ford et al., 2015). The difference between our
approach and the previous approaches is how the
features are created: we first build high-accuracy,
high-coverage multilingual Wikipedia entity type
mappings and then use the mappings to generate
dictionary features. Via experiments we find that
using Wiki-Mapping(0.9,1) or Wiki-Mapping(0.9,2)
achieves the best improvement under the dictionary
feature approach.

5 Experiments

In this section, we evaluate the effectiveness of the
proposed Wikipedia-based approaches via experi-
ments on NER systems trained for 6 languages:
English, Portuguese, Japanese, Spanish, Dutch and
German. For each language, we compare the base-
line NER system with the following approaches:

• DC(i): the decoding constraint approach with

1280

mapping Language-Wiki-Mapping(0.9,i).

• PP(i): the post-processing approach with map-
ping Language-Wiki-Mapping(0.9,i).

• Joint: the joint approach that combines DC(3)
and PP(2).

• DF(i): the dictionary feature approach with
mapping Language-Wiki-Mapping(0.9,i).

To evaluate the generalization capability of an
NER system, we compute the F1 score on the un-
seen entities (Unseen) as well as on all the entities
(All) in a test data set.

5.1 English
The baseline English NER system is a CRF model
trained with 328K tokens of human-annotated news
articles. It uses standard NER features in the litera-
ture including n-gram word features, word type fea-
tures, prefix and suffix features, Brown cluster type
features, gazetteer features, document-level cache
features, etc.

We have two human-annotated test data sets: the
first set, Test (News), consists of 40K tokens of
human-annotated news articles; and the second set,
Test (Political), consists of 77K tokens of human-
annotated political party articles from Wikipedia.
The results are shown in Table 3.

For Test (News) which is in the same domain as
the training data, the baseline system achieves 88.2
F1 score on all the entities, and a relatively low
F1 score of 78.7 on the unseen entities (38% of all
the entities are unseen entities). The dictionary fea-
ture approach DF(2) achieves the highest F1 scores
among the Wikipedia-based approaches. It improves
the baseline system by 1.2 F1 score on all the entities
and by 3.1 F1 score on the unseen entities. The joint
approach achieves the second highest F1 scores. It
improves the baseline by 0.7 F1 score on all the en-
tities and by 2.0 F1 score on the unseen entities.

For Test (Political) which is in a different domain
from the training data, the fraction of unseen entities
increases to 84%. In this case, the F1 score of the
baseline system drops to 64.1, and the Wikipedia-
based approaches demonstrate larger improvements.
For example, DF(2) improves the baseline system by
2.7 F1 score on all the entities and by 3.6 F1 score
on the unseen entities.

NER Test (News) Test (Political)
System All Unseen All Unseen

100% 38% 100% 84%
Baseline 88.2 78.7 64.1 60.9
DC(2) 88.1 79.4 66.3 63.5
DC(3) 88.7 80.2 65.8 62.9
PP(2) 88.6 79.8 64.7 61.7
Joint 88.9 80.7 66.3 63.6
DF(1) 88.5 80.0 66.3 64.2
DF(2) 89.4 81.8 66.8 64.5

Table 3: Experimental results for English NER (the highest F1

score among all approaches in a column is shown in bold).

5.2 Portuguese

For Portuguese, we have applied a semi-supervised
learning approach to build the baseline NER system.
The training data set includes 31K tokens of human-
annotated news articles, and 2M tokens of weakly
annotated data. The weakly annotated data is gen-
erated as follows. We have a large number of paral-
lel sentences between English and Portuguese news
articles. We apply the English NER system on the
English sentences and project the entity type tags
to the Portuguese sentences via alignments between
the English and Portuguese sentences.

The baseline NER system is an MEMM model
(CRF cannot handle such a big size of training data,
since our NER system has 51 entity types, and the
number of features and training time of CRF grow
at least quadratically in the number of entity types).
The test data set consists of 34K tokens of human-
annotated Portuguese news articles.

The results are shown in Table 4. Because the
system is trained with little human-annotated train-
ing data, the performance of the baseline system
achieves only 60.1 F1 score on all the entities and
50.2 F1 score on the unseen entities (80% of all the
entities). In this case, the more aggressive decod-
ing constraint approach DC(2) achieves the best im-
provement among the Wikipedia-based approaches,
which improves the baseline by 5.9 F1 score on all
the entities and by 8.6 F1 score on the unseen en-
tities. The joint approach improves the baseline by
3.0 F1 score on all the entities and by 4.3 F1 score
on the unseen entities.

1281

NER Test (News)
System All Unseen

100% 80%
Baseline 60.1 50.2
DC(2) 66.0 58.8
DC(3) 62.2 53.4
PP(2) 60.9 51.4
Joint 63.1 54.5
DF(1) 62.4 52.7
DF(2) 61.3 51.9

Table 4: Experimental results for Portuguese NER.

NER Test (News)
System All Unseen

100% 59%
Baseline 50.8 27.3
DC(2) 59.8 45.6
DC(3) 55.6 36.9
PP(2) 50.8 27.3
Joint 55.6 36.9
DF(1) 52.9 29.0
DF(2) 51.8 28.0

Table 5: Experimental results for Japanese NER.

5.3 Japanese

For Japanese, the baseline NER system is an
MEMM model trained with 20K tokens of human-
annotated news articles and 2.1M tokens of weakly
annotated data. The weakly annotated data was gen-
erated using similar steps as for the Portuguese NER
system. The test data set consists of 22K tokens of
human-annotated Japanese news articles.

The results are shown in Table 5. Again, in this
low-resource case, DC(2) achieves the best improve-
ment among the Wikipedia-based approaches. It im-
proves the baseline by 9.0 F1 score on all the entities
and by 18.3 F1 score on the unseen entities (59% of
all the entities). The joint approach improves the
baseline by 4.8 F1 score on all the entities and by
9.6 F1 score on the unseen entities.

5.4 Spanish, Dutch and German

We also evaluate the Wikipedia-based approaches
on Spanish, Dutch and German NER systems
trained with the CoNLL data sets (Tjong Kim Sang,
2002; Tjong Kim Sang and De Meulder, 2003).

There are only 4 entity types in the CoNLL data:
PER (person), ORG (organization), LOC (location),
MISC (miscellaneous names). Accordingly, we
have trained a CoNLL-style Wikipedia entity type
classifier that produces the CoNLL entity types. The
training data for the classifier is generated by using
the CoNLL English training data set and the AIDA-
YAGO2 data set that provides the Wikipedia titles
for the named entities in the CoNLL English data
set (Hoffart et al., 2011). Applying the classifier
on all the English Wikipedia pages, we construct
a CoNLL-style English Wikipedia entity type map-
ping. We then build CoNLL-style Wikipedia entity
type mappings for Spanish, Dutch and German us-
ing steps as described in Section 3.

For each of the three languages, the baseline
NER system is a CRF model trained with human-
annotated news data (∼200K tokens), and there are
two test data sets, TestA and TestB, that are also
human-annotated news data (ranging from 40K to
70K tokens). The results are shown in Table 6.
For Dutch and German, DF(1) achieves the best im-
provement among the Wikipedia-based approaches.
For Spanish, the joint approach achieves the best im-
provement among the Wikipedia-based approaches.
Again, in all cases, the Wikipedia-based approaches
demonstrate larger improvements (ranging from 1.0
to 3.4 F1 score) on the unseen entities.

5.5 Discussion
From the experimental results, we have the follow-
ing observations:

• NER systems are more likely to make mistakes
on unseen entities. In all cases, the F1 score
of an NER system on all the entities is always
higher than the F1 score on the unseen entities.

• The Wikipedia-based approaches are effective
in improving the generalization capability of
NER systems (i.e., improving the accuracy on
unseen entities), especially when a system is
applied to a new domain (3.6 F1 score improve-
ment on political party articles/English NER)
or it is trained with little human-annotated
training data (18.3 F1 score improvement on
Japanese NER).

• In the low-resource scenario where an NER

1282

NER TestA TestB
System All Unseen All Unseen
Spanish 100% 47% 100% 38%
Baseline 77.9 69.4 81.5 71.0
DC(2) 77.9 69.7 81.4 71.0
DC(3) 78.4 70.1 81.6 71.2
PP(2) 78.2 70.1 82.0 72.1
Joint 78.5 70.4 82.0 72.1
DF(1) 77.7 69.6 82.0 71.6
DF(2) 78.5 70.4 81.4 70.9
Dutch 100% 60% 100% 54%

Baseline 80.7 70.8 82.3 70.9
DC(2) 80.8 71.3 82.8 71.9
DC(3) 80.8 71.2 82.4 71.1
PP(2) 81.2 71.6 83.2 72.5
Joint 81.3 71.9 83.1 72.3
DF(1) 82.3 73.2 84.5 74.3
DF(2) 81.1 71.1 83.3 72.5

German 100% 72% 100% 70%
Baseline 69.6 63.0 70.3 63.0
DC(2) 70.1 63.8 70.1 62.8
DC(3) 69.9 63.5 70.4 63.1
PP(2) 70.5 64.4 70.6 63.4
Joint 70.8 64.8 70.6 63.4
DF(1) 71.8 65.8 71.8 65.3
DF(2) 71.2 65.4 70.5 63.6

Table 6: Experimental results for Spanish, Dutch, and German

NER.

system is trained with little human-annotated
data (e.g., 20K-30K tokens of training data for
the Portuguese and Japanese systems), the de-
coding constraint approach, which uses a high-
accuracy, high-coverage Wikipedia entity type
mapping to create constraints during the decod-
ing phase, achieves the best improvement.

• In the rich-resource scenario where an NER
system is well trained (e.g., 200K-300K tokens
of training data for the English, Dutch and Ger-
man systems), the dictionary feature approach,
which uses a Wikipedia entity type mapping
to create dictionary type features, achieves the
best improvement.

• In both scenarios, the joint approach, which
combines the decoding constraint approach and
the post-processing approach in a smart way,
achieves relatively robust performance among
the Wikipedia-based approaches.

6 Conclusion

In this paper, we proposed and evaluated several ap-
proaches that utilize high-accuracy, high-coverage
Wikipedia entity type mappings to improve multi-
lingual NER systems. These mappings are built
from weakly annotated data, and can be easily ex-
tended to new languages with no human annotation
or language-dependent knowledge involved.

Experimental results show that the Wikipedia-
based approaches are effective in improving the gen-
eralization capability of NER systems. When a sys-
tem is well trained, the dictionary feature approach
achieves the best improvement over the baseline
system; while when a system is trained with lit-
tle human-annotated training data, a more aggres-
sive decoding constraint approach achieves the best
improvement. The improvements are larger on un-
seen entities, and the approaches are especially use-
ful when a system is applied to a new domain or it is
trained with little training data.

Acknowledgments

We would like to thank Avirup Sil for helpful com-
ments, and for collecting the Wikipedia data. We
also thank the anonymous reviewers for their sug-
gestions.

1283

References
Ronan Collobert, Jason Weston, Léon Bottou, Michael

Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of Machine Learning Research, 12:2493–
2537, November.

Wisam Dakka and Silviu Cucerzan. 2008. Augment-
ing Wikipedia with named entity tags. In Proceedings
of the 3rd International Joint Conference on Natural
Language Processing, pages 545–552, Hyderabad, In-
dia.

Radu Florian, Hany Hassan, Abe Ittycheriah, Hongyan
Jing, Nanda Kambhatla, Xiaqiang Luo, Nicolas Ni-
colov, and Salim Roukos. 2004. A statistical model
for multilingual entity detection and tracking. In Pro-
ceedings of the Human Language Technologies Con-
ference 2004 (HLT-NAACL’04), pages 1–8, Boston,
Massachusetts, USA, May. Association for Computa-
tional Linguistics.

Xianpei Han, Le Sun, and Jun Zhao. 2011. Collec-
tive entity linking in web text: A graph-based method.
In Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’11, pages 765–774, New York,
NY, USA. ACM.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino,
Hagen Fürstenau, Manfred Pinkal, Marc Spaniol,
Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
2011. Robust disambiguation of named entities in text.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP ’11,
pages 782–792, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Jun’ichi Kazama and Kentaro Torisawa. 2007. Exploit-
ing Wikipedia as external knowledge for named entity
recognition. In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learn-
ing (EMNLP-CoNLL), pages 698–707, Prague, Czech
Republic, June. Association for Computational Lin-
guistics.

John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data. In Proceedings of the Eighteenth International
Conference on Machine Learning, ICML ’01, pages
282–289, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Guillaume Lample, Miguel Ballesteros, Sandeep Subra-
manian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of NAACL-HLT (NAACL 2016), San
Diego, US.

Andrew McCallum, Dayne Freitag, and Fernando C. N.
Pereira. 2000. Maximum entropy Markov models for
information extraction and segmentation. In Proceed-
ings of the Seventeenth International Conference on
Machine Learning, ICML ’00, pages 591–598, San
Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Kamal Nigam, John Lafferty, and Andrew McCallum.
1999. Using maximum entropy for text classification.
In In IJCAI-99 Workshop on Machine Learning for In-
formation Filtering, pages 61–67.

Joel Nothman, Nicky Ringland, Will Radford, Tara Mur-
phy, and James R. Curran. 2013. Learning multilin-
gual named entity recognition from Wikipedia. Jour-
nal of Artificial Intelligence, 194:151–175, January.

Will Radford, Xavier Carreras, and James Henderson.
2015. Named entity recognition with document-
specific KB tag gazetteers. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 512–517, Lisbon, Por-
tugal, September. Association for Computational Lin-
guistics.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of the Thirteenth Conference on Compu-
tational Natural Language Learning (CoNLL-2009),
pages 147–155, Boulder, Colorado, June. Association
for Computational Linguistics.

Alexander E. Richman and Patrick Schone. 2008. Min-
ing Wiki resources for multilingual named entity
recognition. In Proceedings of ACL-08: HLT, pages
1–9, Columbus, Ohio, June. Association for Computa-
tional Linguistics.

Avirup Sil and Radu Florian. 2014. The IBM systems
for English entity discovery and linking and Spanish
entity linking at TAC 2014. In Text Analysis Confer-
ence (TAC), Gaithersburg, Maryland, USA.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CONLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003 - Volume 4,
CONLL ’03, pages 142–147, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Erik F. Tjong Kim Sang. 2002. Introduction to
the CONLL-2002 shared task: Language-independent
named entity recognition. In Proceedings of the Sixth
Conference on Natural Language Learning - Volume
20, CONLL ’02, pages 1–4, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Antonio Toral and Rafael Muoz. 2006. A proposal to
automatically build and maintain gazetteers for named
entity recognition by using Wikipedia. In EACL 2006.

1284

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1285–1295,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning Crosslingual Word Embeddings without Bilingual Corpora

Long Duong,12 Hiroshi Kanayama,3 Tengfei Ma,3 Steven Bird14 and Trevor Cohn1

1Department of Computing and Information Systems, University of Melbourne
2National ICT Australia, Victoria Research Laboratory

3IBM Research – Tokyo
4International Computer Science Institute, University of California Berkeley

Abstract

Crosslingual word embeddings represent lexi-
cal items from different languages in the same
vector space, enabling transfer of NLP tools.
However, previous attempts had expensive re-
source requirements, difficulty incorporating
monolingual data or were unable to handle
polysemy. We address these drawbacks in
our method which takes advantage of a high
coverage dictionary in an EM style training
algorithm over monolingual corpora in two
languages. Our model achieves state-of-the-
art performance on bilingual lexicon induction
task exceeding models using large bilingual
corpora, and competitive results on the mono-
lingual word similarity and cross-lingual doc-
ument classification task.

1 Introduction

Monolingual word embeddings have had
widespread success in many NLP tasks includ-
ing sentiment analysis (Socher et al., 2013),
dependency parsing (Dyer et al., 2015), machine
translation (Bahdanau et al., 2014). Crosslingual
word embeddings are a natural extension facilitating
various crosslingual tasks, e.g. through transfer
learning. A model built in a source resource-rich
language can then applied to the target resource
poor languages (Yarowsky and Ngai, 2001; Das
and Petrov, 2011; Täckström et al., 2012; Duong et
al., 2015). A key barrier for crosslingual transfer
is lexical matching between the source and the
target language. Crosslingual word embeddings
are a natural remedy where both source and target
language lexicon are presented as dense vectors in
the same vector space (Klementiev et al., 2012).

Most previous work has focused on down-stream
crosslingual applications such as document classi-
fication and dependency parsing. We argue that
good crosslingual embeddings should preserve both
monolingual and crosslingual quality which we will
use as the main evaluation criterion through mono-
lingual word similarity and bilingual lexicon induc-
tion tasks. Moreover, many prior work (Chandar A P
et al., 2014; Kočiský et al., 2014) used bilingual or
comparable corpus which is also expensive for many
low-resource languages. Søgaard et al. (2015) im-
pose a less onerous data condition in the form of
linked Wikipedia entries across several languages,
however this approach tends to underperform other
methods. To capture the monolingual distributional
properties of words it is crucial to train on large
monolingual corpora (Luong et al., 2015). How-
ever, many previous approaches are not capable of
scaling up either because of the complicated objec-
tive functions or the nature of the algorithm. Other
methods use a dictionary as the bridge between lan-
guages (Mikolov et al., 2013a; Xiao and Guo, 2014),
however they do not adequately handle translation
ambiguity.

Our model uses a bilingual dictionary from Pan-
lex (Kamholz et al., 2014) as the source of bilin-
gual signal. Panlex covers more than a thousand lan-
guages and therefore our approach applies to many
languages, including low-resource languages. Our
method selects the translation based on the context
in an Expectation-Maximization style training algo-
rithm which explicitly handles polysemy through in-
corporating multiple dictionary translations (word
sense and translation are closely linked (Resnik and
Yarowsky, 1999)). In addition to the dictionary,

1285

our method only requires monolingual data. Our
approach is an extension of the continuous bag-of-
words (CBOW) model (Mikolov et al., 2013b) to
inject multilingual training signal based on dictio-
nary translations. We experiment with several vari-
ations of our model, whereby we predict only the
translation or both word and its translation and con-
sider different ways of using the different learned
center-word versus context embeddings in applica-
tion tasks. We also propose a regularisation method
to combine the two embedding matrices during
training. Together, these modifications substantially
improve the performance across several tasks. Our
final model achieves state-of-the-art performance on
bilingual lexicon induction task, large improvement
over word similarity task compared with previous
published crosslingual word embeddings, and com-
petitive result on cross-lingual document classifica-
tion task. Notably, our embedding combining tech-
niques are general, yielding improvements also for
monolingual word embedding.

This paper makes the following contributions:

• Proposing a new crosslingual training method
for learning vector embeddings, based only on
monolingual corpora and a bilingual dictio-
nary;

• Evaluating several methods for combining em-
beddings, which are shown to help in both
crosslingual and monolingual evaluations; and

• Achieving consistent results which are compet-
itive in monolingual, bilingual and crosslingual
transfer settings.

2 Related work

There is a wealth of prior work on crosslingual
word embeddings, which all exploit some kind of
bilingual resource. This is often in the form of a
parallel bilingual text, using word alignments as a
bridge between tokens in the source and target lan-
guages, such that translations are assigned similar
embedding vectors (Luong et al., 2015; Klemen-
tiev et al., 2012). These approaches are affected
by errors from automatic word alignments, motivat-
ing other approaches which operate at the sentence
level (Chandar A P et al., 2014; Hermann and Blun-
som, 2014; Gouws et al., 2015) through learning
compositional vector representations of sentences,

in order that sentences and their translations rep-
resentations closely match. The word embeddings
learned this way capture translational equivalence,
despite not using explicit word alignments. Nev-
ertheless, these approaches demand large parallel
corpora, which are not available for many language
pairs.

Vulić and Moens (2015) use bilingual compara-
ble text, sourced from Wikipedia. Their approach
creates a psuedo-document by forming a bag-of-
words from the lemmatized nouns in each compa-
rable document concatenated over both languages.
These pseudo-documents are then used for learning
vector representations using Word2Vec. Their sys-
tem, despite its simplicity, performed surprisingly
well on a bilingual lexicon induction task (we com-
pare our method with theirs on this task.) Their ap-
proach is compelling due to its lesser resource re-
quirements, although comparable bilingual data is
scarce for many languages. Related, Søgaard et al.
(2015) exploit the comparable part of Wikipedia.
They represent word using Wikipedia entries which
are shared for many languages.

A bilingual dictionary is an alternative source of
bilingual information. Gouws and Søgaard (2015)
randomly replace the text in a monolingual cor-
pus with a random translation, using this corpus for
learning word embeddings. Their approach doesn’t
handle polysemy, as very few of the translations for
each word will be valid in context. For this reason a
high coverage or noisy dictionary with many trans-
lations might lead to poor outcomes. Mikolov et al.
(2013a), Xiao and Guo (2014) and Faruqui and Dyer
(2014) filter a bilingual dictionary for one-to-one
translations, thus side-stepping the problem, how-
ever discarding much of the information in the dic-
tionary. Our approach also uses a dictionary, how-
ever we use all the translations and explicitly disam-
biguate translations during training.

Another distinguishing feature on the above-cited
research is the method for training embeddings.
Mikolov et al. (2013a) and Faruqui and Dyer (2014)
use a cascade style of training where the word em-
beddings in both source and target language are
trained separately and then combined later using the
dictionary. Most of the other works train multlingual
models jointly, which appears to have better perfor-
mance over cascade training (Gouws et al., 2015).

1286

For this reason we also use a form of joint training
in our work.

3 Word2Vec

Our model is an extension of the contextual bag of
words (CBOW) model of Mikolov et al. (2013b), a
method for learning vector representations of words
based on their distributional contexts. Specifically,
their model describes the probability of a token wi
at position i using logistic regression with a factored
parameterisation,

p(wi|wi±k\i) =
exp(u>wi

hi)∑
w∈W exp(u>whi)

, (1)

where hi = 1
2k

∑k
j=−k;j 6=0 vwi+j is a vector en-

coding the context over a window of size k centred
around position i, W is the vocabulary and the pa-
rameters V and U ∈ R|W |×d are matrices referred
to as the context and word embeddings. The model
is trained to maximise the log-pseudo likelihood of
a training corpus, however due to the high complex-
ity of computing the denominator of equation (1),
Mikolov et al. (2013b) propose negative sampling as
an approximation, by instead learning to differenti-
ate data from noise (negative examples). This gives
rise to the following optimisation objective

∑

i∈D

(
log σ(u>wi

hi)+

p∑

j=1

Ewj∼Pn(w) log σ(−u>wj
hi)

)
,

(2)
where D is the training data and p is the number
of negative examples randomly drawn from a noise
distribution Pn(w).

4 Our Approach

Our approach extends CBOW to model bilingual
text, using two monolingual corpora and a bilin-
gual dictionary. We believe this data condition to
be less stringent than requiring parallel or compa-
rable texts as the source of the bilingual signal. It
is common for field linguists to construct a bilin-
gual dictionary when studying a new language, as
one of the first steps in the language documentation
process. Translation dictionaries are a rich informa-
tion source, capturing much of the lexical ambigu-
ity in a language through translation. For example,
the word bank in English might mean the river bank

Algorithm 1 EM algorithm for selecting translation
during training, where θ = (U,V) are the model
parameters and η is the learning rate.

1: randomly initialize V, U
2: for i < Iter do
3: for i ∈ De ∪Df do
4: s← vwi + hi
5: w̄i = argmaxw∈dict(wi) cos(s,vw)

6: θ ← θ + η ∂O(w̄i,wi,hi)
∂θ {see (3) or (5)}

7: end for
8: end for

or financial bank which corresponds to two differ-
ent translations sponda and banca in Italian. If we
are able to learn to select good translations, then this
implicitly resolves much of the semantic ambiguity
in the language, and accordingly we seek to use this
idea to learn better semantic vector representations
of words.

4.1 Dictionary replacement

To learn bilingual relations, we use the context in
one language to predict the translation of the centre
word in another language. This is motivated by the
fact that the context is an excellent means of disam-
biguating the translation for a word. Our method is
closely related to Gouws and Søgaard (2015), how-
ever we only replace the middle word wi with a
translation w̄i while keeping the context fixed. We
replace each centre word with a translation on the
fly during training, predicting instead p(w̄i|wi±k\i)
but using the same formulation as equation (1) albeit
with an augmented U matrix to cover word types in
both languages.

The translation w̄i is selected from the possible
translations of wi listed in the dictionary. The prob-
lem of selecting the correct translation from the
many options is reminiscent of the problem faced
in expectation maximisation (EM), in that cross-
lingual word embeddings will allow for accurate
translation, however to learn these embeddings we
need to know the translations. We propose an EM-
inspired algorithm, as shown in Algorithm 1, which
operates over both monolingual corpora, De and
Df . The vector s is the semantic representation
combining both the centre word, wi, and the con-

1287

text,1 which is used to choose the best translation
into the other language from the bilingual dictionary
dict(wi).2 After selecting the translation, we use w̄i
together with the context vector h to make a stochas-
tic gradient update of the CBOW log-likelihood.

4.2 Joint Training
Words and their translations should appear in very
similar contexts. One way to enforce this is to jointly
learn to predict both the word and its translation
from its monolingual context. This gives rise to the
following joint objective function,

O =
∑

i∈De∪Df

(
α log σ(u>wi

hi)+(1−α) log σ(u>w̄i
hi)

+

p∑

j=1

Ewj∼Pn(w) log σ(−u>wj
hi)

)
, (3)

where α controls the contribution of the two terms.
For our experiments, we set α = 0.5. The nega-
tive examples are drawn from combined vocabulary
unigram distribution calculated from combined data
De ∪Df .

4.3 Combining Embeddings
Many vector learning methods learn two embedding
spaces V and U. Usually only V is used in appli-
cation. The use of U, on the other hand, is under-
studied (Levy and Goldberg, 2014) with the excep-
tion of Pennington et al. (2014) who use a linear
combination U + V, with minor improvement over
V alone.

We argue that with our model, V is better at cap-
turing the monolingual regularities and U is better at
capturing bilingual signal. The intuition for this is as
follows. Assuming that we are predicting the word
finance and its Italian translation finanze from the
context (money, loan, bank, debt, credit) as shown
in figure 1. In V only the context word representa-
tions are updated and in U only the representations
of finance, finanze and negative samples such as tree
and dog are updated. CBOW learns good embed-
dings because each time it updates the parameters,
the words in the contexts are pushed closer to each

1Using both embeddings gives a small improvement com-
pared to just using context vector h alone.

2We also experimented with using expectations over trans-
lations, as per standard EM, with slight degredation in results.

money

loan

credit

debt
bank

finance

finanze

tree

dog

V U

Figure 1: Example of V and U space during train-
ing.

other in the V space. Similarly, the target word wi
and the translation w̄i are also pushed closer in the
U space. This is directly related to poitwise mutual
information values of each pair of word and context
explained in Levy and Goldberg (2014). Thus, U
is bound to better at bilingual lexicon induction task
and V is better at monolingual word similarity task.

The simple question is, how to combine both V
and U to produce a better representation. We exper-
iment with several ways to combine V and U. First,
we can follow Pennington et al. (2014) to interpolate
V and U in the post-processing step. i.e.

γV + (1− γ)U (4)

where γ controls the contribution of each embed-
ding space. Second, we can also concatenate V and
U instead of interpolation such that C = [V : U]
where C ∈ R|W |×2d and W is the combined vocab-
ulary from De ∪Df .

Moreover, we can also fuse V and U during
training. For each word in the combined dictionary
Ve ∪ Vf , we encourage the model to learn similar
representation in both V and U by adding a regular-
ization term to the objective function in equation (3)
during training.

O′ = O + δ
∑

w∈Ve∪Vf
‖uw − vw‖22 (5)

where δ controls to what degree we should bind two
spaces together.3

5 Experimental Setup

Our experimental evaluation seeks to determine how
well lexical distances in the learned embedding

3In the stochastic gradient update for a given word in con-
text, we only compute the gradient of the regularisation term in
(5) with respect to the words in the set of positive and negative
examples.

1288

spaces match with known lexical similarity judge-
ments from bilingual and monolingual lexical re-
sources. To this end, in §6 we test crosslingual
distances using a bilingual lexicon induction task
in which we evaluate the embeddings in terms of
how well nearby pairs of words from two lan-
guages in the embedding space match with human
judgements. Next, to evaluate the monolingual em-
beddings we evaluate word similarities in a single
language against standard similarity datasets (§7).
Lastly, to demonstrate the usefulness of our em-
beddings in a task-based setting, we evaluate on
crosslingual document classification (§9).

Monolingual Data The monolingual data is taken
from the pre-processed Wikipedia dump from Al-
Rfou et al. (2013). The data is already cleaned and
tokenized. We additionally lower-case all words.
Normally monolingual word embeddings are trained
on billions of words. However, obtaining that much
monolingual data for a low-resource language is in-
feasible. Therefore, we only select the first 5 million
sentences (around 100 million words) for each lan-
guage.

Dictionary A bilingual dictionary is the only
source of bilingual correspondence in our tech-
nique. We prefer a dictionary that covers many
languages, such that our approach can be applied
widely to many low-resource languages. We use
Panlex, a dictionary which currently covers around
1300 language varieties with about 12 million ex-
pressions. The translations in PanLex come from
various sources such as glossaries, dictionaries, au-
tomatic inference from other languages, etc. Ac-
cordingly, Panlex has high language coverage but
often noisy translations.4 Table 1 summarizes the
sizes of monolingual corpora and dictionaries for
each pair of language in our experiments.

4We also experimented with a crowd-sourced dictionary
from Wiktionary. Our initial observation was that the transla-
tion quality was better but with a lower-coverage. For example,
for en-it dictionary, Panlex and Wiktionary have a coverage
of 42.1% and 16.8% respectively for the top 100k most frequent
English words from Wikipedia. The average number of trans-
lations are 5.2 and 1.9 respectively. We observed similar trend
using Panlex and Wiktionary dictionary in our model. How-
ever, using Panlex results in much better performance. We can
run the model on the combined dictionary from both Panlex and
Wiktionary but we leave it for future work.

Source (M) Target (M) Dict (k)

en-es 120.1 (73.9%) 126.8 (74.4%) 712.0
en-it 120.1 (74.7%) 114.6 (67.4%) 560.1
en-nl 120.1 (69.1%) 80.2 (63.4%) 406.6
en-de 120.1 (77.8%) 90.8 (68.3%) 964.4
en-sr 120.1 (28.0%) 7.5 (17.5%) 35.1

Table 1: Number of tokens in millions for the source
and target languages in each language pair. Also
shown is the number of entries in the bilingual dic-
tionary in thousands. The number in the parenthesis
shows the token coverage in the dictionary on each
monolingual corpus.

6 Bilingual Lexicon Induction

Given a word in a source language, the bilingual
lexicon induction (BLI) task is to predict its transla-
tion in the target language. Vulić and Moens (2015)
proposed this task to test crosslingual word embed-
dings. The difficulty of this is that it is evaluated
using the recall of the top ranked word. The model
must be very discriminative in order to score well.

We build the CLWE for 3 language pairs: it-en,
es-en and nl-en, using similar parameters set-
ting with Vulić and Moens (2015).5 The remaining
tunable parameters in our system are δ from Equa-
tion (5), and the choice of algorithm for combining
embeddings. We use the regularization technique
from §4.3 for combining context and word embed-
dings with δ = 0.01, and word embeddings U are
used as the output for all experiments (but see com-
parative experiments in §8.)

Qualitative evaluation We jointly train the model
to predict both wi and the translation w̄i, combine
V and U during training for each language pair. Ta-
ble 2 shows the top 10 closest words in both source
and target languages according to cosine similarity.
Note that the model correctly identifies the transla-
tion in en as the top candidate, and the top 10 words
in both source and target languages are highly re-
lated. This qualitative evaluation initially demon-
strates the ability of our CLWE to capture both the
bilingual and monolingual relationship.

Quantitative evaluation Table 3 shows our re-
sults compared with prior work. We reimple-

5Default learning rate of 0.025, negative sampling with 25
samples, subsampling rate of value 1e−4, embedding dimen-
sion d = 200, window size cs = 48 and run for 15 epochs.

1289

gravedades tassazioneit
es en it en

gravitacional gravity∗ tasse taxation∗
gravitatoria gravitation∗ fiscale taxes
aceleracin acceleration tassa tax∗

gravitacin non-gravitational imposte levied
inercia inertia imposta fiscal
gravity centrifugal fiscali low-tax
msugra free-falling l’imposta revenue
centrı́fuga gravitational tonnage levy
curvatura free-fall tax annates
masa newton accise evasion

Table 2: Top 10 closest words in both source and
target language corresponding to es word gravedad
(left) and it word tassazione (right). They have 15
and 4 dictionary translations respectively. The en
words in the dictionary translations are marked with
(∗). The correct translation is in bold.

ment Gouws and Søgaard (2015) using Panlex and
Wiktionary dictionaries. The result with Panlex is
substantially worse than with Wiktionary. This con-
firms our hypothesis in §2. That is the context might
be corrupted if we just randomly replace the training
data with the translation from noisy dictionary such
as Panlex.

Our model when randomly picking the translation
is similar to Gouws and Søgaard (2015), using the
Panlex dictionary. The biggest difference is that they
replace the training data (both context and middle
word) while we fix the context and only replace the
middle word. For a high coverage yet noisy dictio-
nary such as Panlex, our approach gives better av-
erage score. Comparing our two most basic mod-
els (EM selection and random selection), it is clear
that the model using EM to select the translation out-
performs random selection by a significant margin.

Our joint model, as described in equation (3)
which predicts both target word and the transla-
tion, further improves the performance, especially
for nl-en. We use equation (5) to combine both
context embeddings V and word embeddings U
for all three language pairs. This modification dur-
ing training substantially improves the performance.
More importantly, all our improvements are consis-
tent for all three language pairs and both evaluation
metrics, showing the robustness of our models.

Our combined model out-performed previous ap-
proaches by a large margin. Vulić and Moens (2015)

used bilingual comparable data, but this might be
hard to obtain for some language pairs. Their perfor-
mance on nl-en is poor because their comparable
data between en and nl is small. Besides, they also
use POS tagger and lemmatizer to filter only Noun
and reduce the morphology complexity during train-
ing. These tools might not be available for many
languages. For a fairer comparison to their work,
we also use the same Treetagger (Schmid, 1995) to
lemmatize the output of our combined model before
evaluation. Table 3 (+lemmatization) shows some
improvements but minor. It demonstrates that our
model is already good at disambiguating morphol-
ogy. For example, the top 2 translations for es word
lenguas in en are languages and language which
correctly prefer the plural translation.

7 Monolingual Word Similarity

Now we consider the efficacy of our CLWE on
monolingual word similarity. We evaluate on En-
glish monolingual similarity on WordSim353 (WS-
en), RareWord (RW-en) and German version of
WordSim353 (WS-de) (Finkelstein et al., 2001; Lu-
ong et al., 2013; Luong et al., 2015). Each of those
datasets contain many tuples (w1, w2,s) where s
is a scalar denoting the semantic similarity between
w1 and w2 given by human annotators. Good sys-
tem should produce the score correlated with human
judgement.

We train the model as described in §4, which is
the combine embeddings setting from Table 3. Since
the evaluation involves de and en word similar-
ity, we train the CLWE for en-de pair. Table 4
shows the performance of our combined model com-
pared with several baselines. Our combined model
out-performed both Luong et al. (2015) and Gouws
and Søgaard (2015)6 which represent the best pub-
lished crosslingual embeddings trained on bitext and
monolingual data respectively.

We also compare our system with the monolin-
gual CBOW model trained on the monolingual data
for each language, using the same parameter settings
from earlier (§6). Surprisingly, our combined model
performs better than the monolingual CBOW base-
line which makes our result close to the monolin-
gual state-of-the-art on each different dataset. How-
ever, the best monolingual methods use much larger

6trained using the Panlex dictionary

1290

Model es-en it-en nl-en Average
rec1 rec5 rec1 rec5 rec1 rec5 rec1 rec5

Gouws and Søgaard (2015) + Panlex 37.6 63.6 26.6 56.3 49.8 76.0 38.0 65.3
Gouws and Søgaard (2015) + Wikt 61.6 78.9 62.6 81.1 65.6 79.7 63.3 79.9
BilBOWA: Gouws et al. (2015) 51.6 - 55.7 - 57.5 - 54.9 -
Vulić and Moens (2015) 68.9 - 68.3 - 39.2 - 58.8 -

Our model (random selection) 41.1 62.0 57.4 75.4 34.3 55.5 44.3 64.3
Our model (EM selection) 67.3 79.5 66.8 82.3 64.7 82.4 66.3 81.4
+ Joint model 68.0 80.5 70.5 83.3 68.8 84.0 69.1 82.6
+ combine embeddings (δ = 0.01) 74.7 85.4 80.8 90.4 79.1 90.5 78.2 88.8
+ lemmatization 74.9 86.0 81.3 91.3 79.8 91.3 78.7 89.5

Table 3: Bilingual Lexicon Induction performance from es, it, nl to en. Gouws and Søgaard (2015)
+ Panlex/Wikt is our reimplementation using Panlex/Wiktionary dictionary. All our models use Panlex as
the dictionary. We reported the recall at 1 and 5. The best performance is bold.

Model WS-de WS-en RW-en

B
as

el
in

es

Klementiev et al. (2012) 23.8 13.2 7.3
Chandar A P et al. (2014) 34.6 39.8 20.5
Hermann and Blunsom (2014) 28.3 19.8 13.6
Luong et al. (2015) 47.4 49.3 25.3
Gouws and Søgaard (2015) 67.4 71.8 31.0

M
on

o CBOW 62.2 70.3 42.7
+ combine 65.8 74.1 43.1
Yih and Qazvinian (2012) - 81.0 -
Shazeer et al. (2016) - 74.8 48.3

O
ur

s Our joint-model 59.3 68.6 38.1
+ combine 71.1 76.2 44.0

Table 4: Spearman’s rank correlation for monolin-
gual similarity measurement on 3 datasets WS-de
(353 pairs), WS-en (353 pairs) and RW-en (2034
pairs). We compare against 5 baseline crosslingual
word embeddings. The best CLWE performance is
bold. For reference, we add the monolingual CBOW
with and without embeddings combination, Yih and
Qazvinian (2012) and Shazeer et al. (2016) which
represents the monolingual state-of-the-art results
for WS-en and RW-en.

monolingual corpora (Shazeer et al., 2016), Word-
Net or the output of commercial search engines (Yih
and Qazvinian, 2012).

Next we explain the gain of our combined model
compared with the monolingual CBOW model.
First, we compare the combined model with the
joint-model with respect to monolingual CBOW
model (Table 4). It shows that the improvement
seems mostly come from combining V and U. If
we apply the combining algorithm to the monolin-
gual CBOW model (CBOW + combine), we also ob-

serve an improvement. Clearly most of the improve-
ment is from combining V and U, however our V
and U are more complementary as the gain is more
marked. Other improvements can be explained by
the observation that a dictionary can improve mono-
lingual accuracy through linking synonyms (Faruqui
and Dyer, 2014). For example, since plane, airplane
and aircraft have the same Italian translation aereo,
the model will encourage those words to be closer in
the embedding space.

8 Model selection

Combining context embeddings and word embed-
dings results in an improvement in both monolin-
gual similarity and bilingual lexicon induction. In
§4.3, we introduce several combination methods in-
cluding post-processing (interpolation and concate-
nation) and during training (regularization). In this
section, we justify our parameter and model choices.

We use en-it pair for tuning purposes, consid-
ering the value of γ in equation 4. Figure 2 shows
the performances using different values of γ. The
two extremes where γ = 0 and γ = 1 corresponds
to no interpolation where we just use U or V re-
spectively. As γ increases, the performance on WS-
en increases yet BLI decreases. These results con-
firm our hypothesis in §4.3 that U is better at cap-
turing bilingual relations and V is better at captur-
ing monolingual relations. As a compromise, we
choose γ = 0.5 in our experiments. Similarly, we
tune the regularization sensitivity δ in equation (5)
which combines embeddings space during training.
We test δ = 10−n with n = {0, 1, 2, 3, 4} and us-

1291

0

0.
3

0.
5

0.
7 1

Gamma

40
50

60
70

80
S

co
re

BLI (recall@1)
BLI (recall@5)

Mono (WS−En)

Figure 2: Performance of word embeddings inter-
polated using different values of γ evaluated using
BLI (Recall@1, Recall@5) and English monolin-
gual WordSim353 (WS-en).

Model BLI Mono
rec1 rec5 WS-en

A
lo

ne Joint-model + V 67.6 82.8 70.5
Joint-model + U 76.2 84.7 48.4

C
om

bi
ne Interpolation

[
V+U

2

]
75.0 85.9 72.7

Concatenation 72.7 85.2 71.2
Regularization + V 80.3 89.8 45.9
Regularization + U 80.8 90.4 74.8
Regularization + V+U

2
80.9 91.1 72.3

Table 5: Performance on en-it BLI and en mono-
lingual similarity WordSim353 (WS-en) for various
combining algorithms mentioned in §4.3 w.r.t just
using U or V alone (after joint-training). We use
γ = 0.5 for interpolation and δ = 0.01 for regular-
ization with the choice of V, U or interpolation of
bothV+U

2 for the output. The best scores are bold.

ing V, U or the interpolation of both V+U
2 as the

learned embeddings, evaluated on the same BLI and
WS-en. We select δ = 0.01.

Table 5 shows the performance with and with-
out using combining algorithms mentioned in §4.3.
As the compromise between both monolingual and
crosslingual tasks, we choose regularization + U as
the combination algorithm. All in all, we apply the
regularization algorithm for combining V and U
with δ = 0.01 and U as the output for all language
pairs without further tuning.

9 Crosslingual Document Classification

In this section, we evaluate our CLWE on a down-
stream crosslingual document classification (CLDC)

Model en→ de de→ en

MT baseline 68.1 67.4
Klementiev et al. (2012) 77.6 71.1
Gouws et al. (2015) 86.5 75.0
Kočiský et al. (2014) 83.1 75.4
Chandar A P et al. (2014) 91.8 74.2
Hermann and Blunsom (2014) 86.4 74.7
Luong et al. (2015) 88.4 80.3
Our model 86.3 76.8

Table 6: CLDC performance for both en→ de and
de→ en direction for many CLWE. The MT base-
line uses phrase-based statistical machine translation
to translate the source language to target language
(Klementiev et al., 2012). The best scores are bold.

task. In this task, the document classifier is trained
on a source language and then applied directly to
classify a document in the target language. This is
convenient for a target low-resource language where
we do not have document annotations. The experi-
mental setup is the same as Klementiev et al. (2012)7

with the training and testing data sourced from
Reuter RCV1/RCV2 corpus (Lewis et al., 2004).

The documents are represented as the bag of word
embeddings weighted by tf.idf. A multi-class
classifier is trained using the average perceptron al-
gorithm on 1000 documents in the source language
and tested on 5000 documents in the target language.
We use the CLWE, such that the document repre-
sentation in the target language embeddings is in the
same space with the source language.

We build the en-de CLWE using combined
models as described in section §4. Following
prior work, we also use monolingual data8 from
the RCV1/RCV2 corpus (Klementiev et al., 2012;
Gouws et al., 2015; Chandar A P et al., 2014).

Table 6 shows the CLDC results for various
CLWE. Despite its simplicity, our model achieves
competitive performance. Note that aside from our
model, all other models in Table 6 use a large bi-
text (Europarl) which may not exist for many low-
resource languages, limiting their applicability.

7The data split and code are kindly provided by the authors.
8We randomly sample documents in RCV1 and RCV2 cor-

pora and selected around 85k documents to form 400k mono-
lingual sentences for both en and de. For each document, we
perform basic pre-processing including: lower-casing, remove
html tags and tokenization. These monolingual data are then
concatenated with the monolingual data from Wikipedia to form
the final training data.

1292

10 20 40 80 16
0

32
0 A
ll

Dict Size (k)

20
40

60
80

S
co

re

rec @ 1
rec @ 5

(a) BLI

10 20 40 80 16
0

32
0

64
0 A
ll

Dict Size (k)

20
40

60
80

S
co

re

WS − En RW − En WS − De

(b) Mono Similarity

10 20 40 80 16
0

32
0

64
0 A
ll

Dict Size (k)

20
40

60
80

S
co

re

En −> De
De −> En

(c) CLDC
Figure 3: Learning curve showing how task scores increase with increasing dictionary size; showing bilin-
gual lexicon induction (BLI) task (left), monolingual similarity (center) and crosslingual document classifi-
cation (right). BLI is trained on en-it, and monolingual similarity and CLDC are trained on en-de.

10 Low-resource languages

Our model exploits dictionaries, which are more
widely available than parallel corpora. However the
question remains as to how well this performs of a
real low-resource language, rather than a simulated
condition like above, whereupon the quality of the
dictionary is likely to be worse. To test this, we eval-
uation on Serbian, a language with few annotated
language resources. Table 1 shows the relative size
of monolingual data and dictionary for en-sr com-
pared with other language pairs. Both the Serbian
monolingual data and the dictionary size is more
than 10 times smaller than other language pairs. We
build the en-sr CLWE using our best model (joint
+ combine) and evaluate on the bilingual word in-
duction task using 939 gold translation pairs.9 We
achieved recall score of 35.8% and 45.5% at 1 and 5
respectively. Although worse than the earlier results,
these numbers are still well above chance.

We can also simulate low-resource setting using
our earlier datasets. For estimating the performance
loss on all three tasks, we down sample the dictio-
nary for en-it and en-de based on en word fre-
quency. Figure 3 shows the performance with dif-
ferent dictionary sizes for all three tasks. The mono-
lingual similarity performance is very similar across
various sizes. For BLI and CLDC, dictionary size is
more important, although performance levels off at
around 80k dictionary pairs. We conclude that this
size is sufficient for decent performance.

9The sr→en translations are sourced from Google Trans-
late by translating one word at a time, followed by manually
verification, after which 61 translation pairs were ruled out as
being bad or questionable.

11 Conclusion

Previous CLWE methods often impose high re-
source requirements yet have low accuracy. We in-
troduce a simple framework based on a large noisy
dictionary. We model polysemy using EM transla-
tion selection during training to learn bilingual cor-
respondences from monolingual corpora. Our algo-
rithm allows to train on massive amount of mono-
lingual data efficiently, representing monolingual
and bilingual properties of language. This allows
us to achieve state-of-the-art performance on bilin-
gual lexicon induction task, competitive result on
monolingual word similarity and crosslingual doc-
ument classification task. Our combination tech-
niques during training, especially using regulariza-
tion, are highly effective and could be used to im-
prove monolingual word embeddings.

Acknowledgments

This work was conducted during Duong’s internship
at IBM Research – Tokyo and partially supported
by the University of Melbourne and National ICT
Australia (NICTA). We are grateful for support from
NSF Award 1464553 and the DARPA/I2O, Contract
No. HR0011-15-C-0114. We thank Yuta Tsuboi
and Alvin Grissom II for helpful discussions, Jan
Šnajder for helping with sr-en evaluation.

References
Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. 2013.

Polyglot: Distributed word representations for multi-
lingual nlp. In Proceedings of the Seventeenth Confer-
ence on Computational Natural Language Learning,
pages 183–192, Sofia, Bulgaria, August. Association
for Computational Linguistics.

1293

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473.

Sarath Chandar A P, Stanislas Lauly, Hugo Larochelle,
Mitesh Khapra, Balaraman Ravindran, Vikas C
Raykar, and Amrita Saha. 2014. An autoencoder
approach to learning bilingual word representations.
In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
1853–1861. Curran Associates, Inc.

Dipanjan Das and Slav Petrov. 2011. Unsupervised part-
of-speech tagging with bilingual graph-based projec-
tions. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies - Volume 1, pages 600–
609.

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook.
2015. Low resource dependency parsing: Cross-
lingual parameter sharing in a neural network parser.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 845–850,
Beijing, China. Association for Computational Lin-
guistics.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages
334–343, Beijing, China, July. Association for Com-
putational Linguistics.

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual cor-
relation. In Proceedings of the 14th Conference of
the European Chapter of the Association for Computa-
tional Linguistics, pages 462–471, Gothenburg, Swe-
den, April. Association for Computational Linguistics.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2001. Placing search in context: The con-
cept revisited. In Proceedings of the 10th Interna-
tional Conference on World Wide Web, WWW ’01,
pages 406–414, New York, NY, USA. ACM.

Stephan Gouws and Anders Søgaard. 2015. Simple task-
specific bilingual word embeddings. In Proceedings of
the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1386–1390, Den-
ver, Colorado, May–June. Association for Computa-
tional Linguistics.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2015. Bilbowa: Fast bilingual distributed represen-
tations without word alignments. In David Blei and
Francis Bach, editors, Proceedings of the 32nd Inter-
national Conference on Machine Learning (ICML-15),
pages 748–756. JMLR Workshop and Conference Pro-
ceedings.

Karl Moritz Hermann and Phil Blunsom. 2014. Mul-
tilingual models for compositional distributed seman-
tics. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 58–68, Baltimore, Mary-
land, June. Association for Computational Linguistics.

David Kamholz, Jonathan Pool, and Susan Colowick.
2014. Panlex: Building a resource for panlingual lex-
ical translation. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Evalu-
ation (LREC’14), pages 3145–50, Reykjavik, Iceland.
European Language Resources Association (ELRA).

Alexandre Klementiev, Ivan Titov, and Binod Bhattarai.
2012. Inducing crosslingual distributed representa-
tions of words. In Proceedings of COLING 2012,
pages 1459–1474, Mumbai, India, December. The
COLING 2012 Organizing Committee.

Tomáš Kočiský, Karl Moritz Hermann, and Phil Blun-
som. 2014. Learning bilingual word representations
by marginalizing alignments. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
224–229, Baltimore, Maryland, June. Association for
Computational Linguistics.

Omer Levy and Yoav Goldberg. 2014. Neural word em-
bedding as a factorization. In Advances in Neural In-
formation Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014, De-
cember 8-13 2014, Montreal, Quebec, Canada, pages
2177–2185.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan
Li. 2004. Rcv1: A new benchmark collection for text
categorization research. J. Mach. Learn. Res., 5:361–
397, December.

Thang Luong, Richard Socher, and Christopher D. Man-
ning. 2013. Better word representations with recur-
sive neural networks for morphology. In Proceed-
ings of the Seventeenth Conference on Computational
Natural Language Learning, CoNLL 2013, Sofia, Bul-
garia, August 8-9, 2013, pages 104–113.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Bilingual word representations with
monolingual quality in mind. In NAACL Workshop
on Vector Space Modeling for NLP, Denver, United
States.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013a.

1294

Exploiting similarities among languages for machine
translation. CoRR, abs/1309.4168.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 746–751, Atlanta, Georgia. Asso-
ciation for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Philip Resnik and David Yarowsky. 1999. Distinguish-
ing systems and distinguishing senses: New evaluation
methods for word sense disambiguation. Nat. Lang.
Eng., 5(2):113–133, June.

Helmut Schmid. 1995. Improvements in part-of-speech
tagging with an application to german. In In Proceed-
ings of the ACL SIGDAT-Workshop, pages 47–50.

Noam Shazeer, Ryan Doherty, Colin Evans, and Chris
Waterson. 2016. Swivel: Improving embeddings by
noticing what’s missing. CoRR, abs/1602.02215.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher
Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1631–
1642, Seattle, Washington, USA, October. Association
for Computational Linguistics.

Anders Søgaard, Željko Agić, Héctor Martı́nez Alonso,
Barbara Plank, Bernd Bohnet, and Anders Johannsen.
2015. Inverted indexing for cross-lingual nlp. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1713–1722,
Beijing, China, July. Association for Computational
Linguistics.

Oscar Täckström, Ryan McDonald, and Jakob Uszkoreit.
2012. Cross-lingual word clusters for direct transfer of
linguistic structure. In Proceedings of the 2012 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, NAACL HLT ’12, pages 477–487. As-
sociation for Computational Linguistics.

Ivan Vulić and Marie-Francine Moens. 2015. Bilin-
gual word embeddings from non-parallel document-
aligned data applied to bilingual lexicon induction. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 719–725,

Beijing, China, July. Association for Computational
Linguistics.

Min Xiao and Yuhong Guo, 2014. Proceedings of
the Eighteenth Conference on Computational Natural
Language Learning, chapter Distributed Word Rep-
resentation Learning for Cross-Lingual Dependency
Parsing, pages 119–129. Association for Computa-
tional Linguistics.

David Yarowsky and Grace Ngai. 2001. Inducing mul-
tilingual POS taggers and NP bracketers via robust
projection across aligned corpora. In Proceedings of
the Second Meeting of the North American Chapter
of the Association for Computational Linguistics on
Language technologies, NAACL ’01, pages 1–8, Pitts-
burgh, Pennsylvania.

Wen-tau Yih and Vahed Qazvinian. 2012. Measur-
ing word relatedness using heterogeneous vector space
models. In Proceedings of the 2012 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, NAACL HLT ’12, pages 616–620, Stroudsburg,
PA, USA. Association for Computational Linguistics.

1295

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1296–1306,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Sequence-to-Sequence Learning
as Beam-Search Optimization

Sam Wiseman and Alexander M. Rush
School of Engineering and Applied Sciences

Harvard University
Cambridge, MA, USA

{swiseman,srush}@seas.harvard.edu

Abstract

Sequence-to-Sequence (seq2seq) modeling
has rapidly become an important general-
purpose NLP tool that has proven effective for
many text-generation and sequence-labeling
tasks. Seq2seq builds on deep neural language
modeling and inherits its remarkable accuracy
in estimating local, next-word distributions. In
this work, we introduce a model and beam-
search training scheme, based on the work
of Daumé III and Marcu (2005), that extends
seq2seq to learn global sequence scores. This
structured approach avoids classical biases as-
sociated with local training and unifies the
training loss with the test-time usage, while
preserving the proven model architecture of
seq2seq and its efficient training approach. We
show that our system outperforms a highly-
optimized attention-based seq2seq system and
other baselines on three different sequence to
sequence tasks: word ordering, parsing, and
machine translation.

1 Introduction

Sequence-to-Sequence learning with deep neural
networks (herein, seq2seq) (Sutskever et al., 2011;
Sutskever et al., 2014) has rapidly become a very
useful and surprisingly general-purpose tool for nat-
ural language processing. In addition to demon-
strating impressive results for machine translation
(Bahdanau et al., 2015), roughly the same model
and training have also proven to be useful for sen-
tence compression (Filippova et al., 2015), parsing
(Vinyals et al., 2015), and dialogue systems (Ser-
ban et al., 2016), and they additionally underlie other

text generation applications, such as image or video
captioning (Venugopalan et al., 2015; Xu et al.,
2015).

The dominant approach to training a seq2seq sys-
tem is as a conditional language model, with training
maximizing the likelihood of each successive tar-
get word conditioned on the input sequence and the
gold history of target words. Thus, training uses a
strictly word-level loss, usually cross-entropy over
the target vocabulary. This approach has proven to
be very effective and efficient for training neural lan-
guage models, and seq2seq models similarly obtain
impressive perplexities for word-generation tasks.

Notably, however, seq2seq models are not used as
conditional language models at test-time; they must
instead generate fully-formed word sequences. In
practice, generation is accomplished by searching
over output sequences greedily or with beam search.
In this context, Ranzato et al. (2016) note that the
combination of the training and generation scheme
just described leads to at least two major issues:

1. Exposure Bias: the model is never exposed to
its own errors during training, and so the in-
ferred histories at test-time do not resemble the
gold training histories.

2. Loss-Evaluation Mismatch: training uses a
word-level loss, while at test-time we target
improving sequence-level evaluation metrics,
such as BLEU (Papineni et al., 2002).

We might additionally add the concern of label
bias (Lafferty et al., 2001) to the list, since word-
probabilities at each time-step are locally normal-
ized, guaranteeing that successors of incorrect his-

1296

tories receive the same mass as do the successors of
the true history.

In this work we develop a non-probabilistic vari-
ant of the seq2seq model that can assign a score
to any possible target sequence, and we propose
a training procedure, inspired by the learning as
search optimization (LaSO) framework of Daumé
III and Marcu (2005), that defines a loss function
in terms of errors made during beam search. Fur-
thermore, we provide an efficient algorithm to back-
propagate through the beam-search procedure dur-
ing seq2seq training.

This approach offers a possible solution to each
of the three aforementioned issues, while largely
maintaining the model architecture and training ef-
ficiency of standard seq2seq learning. Moreover,
by scoring sequences rather than words, our ap-
proach also allows for enforcing hard-constraints on
sequence generation at training time. To test out the
effectiveness of the proposed approach, we develop
a general-purpose seq2seq system with beam search
optimization. We run experiments on three very dif-
ferent problems: word ordering, syntactic parsing,
and machine translation, and compare to a highly-
tuned seq2seq system with attention (Luong et al.,
2015). The version with beam search optimization
shows significant improvements on all three tasks,
and particular improvements on tasks that require
difficult search.

2 Related Work

The issues of exposure bias and label bias have re-
ceived much attention from authors in the structured
prediction community, and we briefly review some
of this work here. One prominent approach to com-
bating exposure bias is that of SEARN (Daumé III
et al., 2009), a meta-training algorithm that learns a
search policy in the form of a cost-sensitive classifier
trained on examples generated from an interpolation
of an oracle policy and the model’s current (learned)
policy. Thus, SEARN explicitly targets the mis-
match between oracular training and non-oracular
(often greedy) test-time inference by training on the
output of the model’s own policy. DAgger (Ross
et al., 2011) is a similar approach, which differs in
terms of how training examples are generated and
aggregated, and there have additionally been impor-

tant refinements to this style of training over the past
several years (Chang et al., 2015). When it comes
to training RNNs, SEARN/DAgger has been applied
under the name “scheduled sampling” (Bengio et al.,
2015), which involves training an RNN to generate
the t+ 1’st token in a target sequence after consum-
ing either the true t’th token, or, with probability that
increases throughout training, the predicted t’th to-
ken.

Though technically possible, it is uncom-
mon to use beam search when training with
SEARN/DAgger. The early-update (Collins and
Roark, 2004) and LaSO (Daumé III and Marcu,
2005) training strategies, however, explicitly ac-
count for beam search, and describe strategies for
updating parameters when the gold structure be-
comes unreachable during search. Early update and
LaSO differ primarily in that the former discards a
training example after the first search error, whereas
LaSO resumes searching after an error from a state
that includes the gold partial structure. In the con-
text of feed-forward neural network training, early
update training has been recently explored in a feed-
forward setting by Zhou et al. (2015) and Andor
et al. (2016). Our work differs in that we adopt
a LaSO-like paradigm (with some minor modifica-
tions), and apply it to the training of seq2seq RNNs
(rather than feed-forward networks). We also note
that Watanabe and Sumita (2015) apply maximum-
violation training (Huang et al., 2012), which is sim-
ilar to early-update, to a parsing model with recur-
rent components, and that Yazdani and Henderson
(2015) use beam-search in training a discriminative,
locally normalized dependency parser with recurrent
components.

Recently authors have also proposed alleviating
exposure bias using techniques from reinforcement
learning. Ranzato et al. (2016) follow this ap-
proach to train RNN decoders in a seq2seq model,
and they obtain consistent improvements in perfor-
mance, even over models trained with scheduled
sampling. As Daumé III and Marcu (2005) note,
LaSO is similar to reinforcement learning, except
it does not require “exploration” in the same way.
Such exploration may be unnecessary in supervised
text-generation, since we typically know the gold
partial sequences at each time-step. Shen et al.
(2016) use minimum risk training (approximated by

1297

sampling) to address the issues of exposure bias and
loss-evaluation mismatch for seq2seq MT, and show
impressive performance gains.

Whereas exposure bias results from training in
a certain way, label bias results from properties of
the model itself. In particular, label bias is likely
to affect structured models that make sub-structure
predictions using locally-normalized scores. Be-
cause the neural and non-neural literature on this
point has recently been reviewed by Andor et al.
(2016), we simply note here that RNN models are
typically locally normalized, and we are unaware of
any specifically seq2seq work with RNNs that does
not use locally-normalized scores. The model we
introduce here, however, is not locally normalized,
and so should not suffer from label bias. We also
note that there are some (non-seq2seq) exceptions
to the trend of locally normalized RNNs, such as
the work of Sak et al. (2014) and Voigtlaender et al.
(2015), who train LSTMs in the context of HMMs
for speech recognition using sequence-level objec-
tives; their work does not consider search, however.

3 Background and Notation

In the simplest seq2seq scenario, we are given a col-
lection of source-target sequence pairs and tasked
with learning to generate target sequences from
source sequences. For instance, we might view ma-
chine translation in this way, where in particular we
attempt to generate English sentences from (corre-
sponding) French sentences. Seq2seq models are
part of the broader class of “encoder-decoder” mod-
els (Cho et al., 2014), which first use an encoding
model to transform a source object into an encoded
representation x. Many different sequential (and
non-sequential) encoders have proven to be effec-
tive for different source domains. In this work we
are agnostic to the form of the encoding model, and
simply assume an abstract source representation x.

Once the input sequence is encoded, seq2seq
models generate a target sequence using a decoder.
The decoder is tasked with generating a target se-
quence of words from a target vocabulary V . In
particular, words are generated sequentially by con-
ditioning on the input representation x and on the
previously generated words or history. We use the
notation w1:T to refer to an arbitrary word sequence

of length T , and the notation y1:T to refer to the gold
(i.e., correct) target word sequence for an input x.

Most seq2seq systems utilize a recurrent neural
network (RNN) for the decoder model. Formally,
a recurrent neural network is a parameterized non-
linear function RNN that recursively maps a se-
quence of vectors to a sequence of hidden states. Let
m1, . . . ,mT be a sequence of T vectors, and let h0

be some initial state vector. Applying an RNN to
any such sequence yields hidden states ht at each
time-step t, as follows:

ht ← RNN(mt,ht−1;θ),

where θ is the set of model parameters, which are
shared over time. In this work, the vectors mt

will always correspond to the embeddings of a tar-
get word sequence w1:T , and so we will also write
ht ← RNN(wt,ht−1;θ), with wt standing in for
its embedding.

RNN decoders are typically trained to act as con-
ditional language models. That is, one attempts to
model the probability of the t’th target word con-
ditioned on x and the target history by stipulating
that p(wt|w1:t−1,x) = g(wt,ht−1,x), for some pa-
rameterized function g typically computed with an
affine layer followed by a softmax. In computing
these probabilities, the state ht−1 represents the tar-
get history, and h0 is typically set to be some func-
tion of x. The complete model (including encoder)
is trained, analogously to a neural language model,
to minimize the cross-entropy loss at each time-step
while conditioning on the gold history in the train-
ing data. That is, the model is trained to minimize
− ln

∏T
t=1 p(yt|y1:t−1,x).

Once the decoder is trained, discrete se-
quence generation can be performed by approx-
imately maximizing the probability of the tar-
get sequence under the conditional distribution,
ŷ1:T = argbeamw1:T

∏T
t=1 p(wt|w1:t−1,x), where

we use the notation argbeam to emphasize that the
decoding process requires heuristic search, since the
RNN model is non-Markovian. In practice, a simple
beam search procedure that explores K prospective
histories at each time-step has proven to be an effec-
tive decoding approach. However, as noted above,
decoding in this manner after conditional language-
model style training potentially suffers from the is-

1298

sues of exposure bias and label bias, which moti-
vates the work of this paper.

4 Beam Search Optimization

We begin by making one small change to the
seq2seq modeling framework. Instead of predicting
the probability of the next word, we instead learn
to produce (non-probabilistic) scores for ranking se-
quences. Define the score of a sequence consisting
of history w1:t−1 followed by a single word wt as
f(wt,ht−1,x), where f is a parameterized function
examining the current hidden-state of the relevant
RNN at time t− 1 as well as the input representa-
tion x. In experiments, our f will have an identi-
cal form to g but without the final softmax transfor-
mation (which transforms unnormalized scores into
probabilities), thereby allowing the model to avoid
issues associated with the label bias problem.

More importantly, we also modify how this model
is trained. Ideally we would train by comparing
the gold sequence to the highest-scoring complete
sequence. However, because finding the argmax
sequence according to this model is intractable,
we propose to adopt a LaSO-like (Daumé III and
Marcu, 2005) scheme to train, which we will re-
fer to as beam search optimization (BSO). In par-
ticular, we define a loss that penalizes the gold se-
quence falling off the beam during training.1 The
proposed training approach is a simple way to ex-
pose the model to incorrect histories and to match
the training procedure to test generation. Further-
more we show that it can be implemented efficiently
without changing the asymptotic run-time of train-
ing, beyond a factor of the beam size K.

4.1 Search-Based Loss
We now formalize this notion of a search-based loss
for RNN training. Assume we have a set St of K
candidate sequences of length t. We can calculate a
score for each sequence in St using a scoring func-
tion f parameterized with an RNN, as above, and we
define the sequence ŷ(K)

1:t ∈St to be the K’th ranked

1Using a non-probabilistic model further allows us to incur
no loss (and thus require no update to parameters) when the gold
sequence is on the beam; this contrasts with models based on a
CRF loss, such as those of Andor et al. (2016) and Zhou et al.
(2015), though in training those models are simply not updated
when the gold sequence remains on the beam.

sequence in St according to f . That is, assuming
distinct scores,

|{ŷ(k)1:t ∈St | f(ŷ
(k)
t , ĥ

(k)

t−1) > f(ŷ
(K)
t , ĥ

(K)

t−1)}| = K − 1,

where ŷ(k)t is the t’th token in ŷ(k)1:t , ĥ
(k)

t−1 is the RNN
state corresponding to its t− 1’st step, and where we
have omitted the x argument to f for brevity.

We now define a loss function that gives loss each
time the score of the gold prefix y1:t does not exceed
that of ŷ(K)

1:t by a margin:

L(f) =

T∑

t=1

∆(ŷ
(K)
1:t)

[
1− f(yt,ht−1) + f(ŷ

(K)
t , ĥ

(K)

t−1)
]
.

Above, the ∆(ŷ
(K)
1:t) term denotes a mistake-specific

cost-function, which allows us to scale the loss de-
pending on the severity of erroneously predicting
ŷ
(K)
1:t ; it is assumed to return 0 when the margin re-

quirement is satisfied, and a positive number other-
wise. It is this term that allows us to use sequence-
rather than word-level costs in training (addressing
the 2nd issue in the introduction). For instance,
when training a seq2seq model for machine trans-
lation, it may be desirable to have ∆(ŷ

(K)
1:t) be in-

versely related to the partial sentence-level BLEU
score of ŷ(K)

1:t with y1:t; we experiment along these
lines in Section 5.3.

Finally, because we want the full gold sequence to
be at the top of the beam at the end of search, when
t=T we modify the loss to require the score of y1:T
to exceed the score of the highest ranked incorrect
prediction by a margin.

We can optimize the loss L using a two-step pro-
cess: (1) in a forward pass, we compute candidate
sets St and record margin violations (sequences with
non-zero loss); (2) in a backward pass, we back-
propagate the errors through the seq2seq RNNs. Un-
like standard seq2seq training, the first-step requires
running search (in our case beam search) to find
margin violations. The second step can be done
by adapting back-propagation through time (BPTT).
We next discuss the details of this process.

4.2 Forward: Find Violations
In order to minimize this loss, we need to specify a
procedure for constructing candidate sequences ŷ(k)1:t

1299

at each time step t so that we find margin viola-
tions. We follow LaSO (rather than early-update 2;
see Section 2) and build candidates in a recursive
manner. If there was no margin violation at t−1,
then St is constructed using a standard beam search
update. If there was a margin violation, St is con-
structed as the K best sequences assuming the gold
history y1:t−1 through time-step t−1.

Formally, assume the function succ maps a se-
quence w1:t−1 ∈Vt−1 to the set of all valid se-
quences of length t that can be formed by appending
to it a valid word w∈V . In the simplest, uncon-
strained case, we will have

succ(w1:t−1) = {w1:t−1, w | w ∈ V}.

As an important aside, note that for some prob-
lems it may be preferable to define a succ func-
tion which imposes hard constraints on successor
sequences. For instance, if we would like to use
seq2seq models for parsing (by emitting a con-
stituency or dependency structure encoded into a se-
quence in some way), we will have hard constraints
on the sequences the model can output, namely, that
they represent valid parses. While hard constraints
such as these would be difficult to add to standard
seq2seq at training time, in our framework they can
naturally be added to the succ function, allowing us
to train with hard constraints; we experiment along
these lines in Section 5.3, where we refer to a model
trained with constrained beam search as ConBSO.

Having defined an appropriate succ function, we
specify the candidate set as:

St = topK

{
succ(y1:t−1) violation at t−1
⋃K

k=1 succ(ŷ
(k)
1:t−1) otherwise,

where we have a margin violation at t−1 iff

f(yt−1,ht−2) < f(ŷ
(K)
t−1 , ĥ

(K)

t−2) + 1, and where
topK considers the scores given by f . This search
procedure is illustrated in the top portion of Figure 1.

In the forward pass of our training algorithm,
shown as the first part of Algorithm 1, we run this
version of beam search and collect all sequences and
their hidden states that lead to losses.

2We found that training with early-update rather than (de-
layed) LaSO did not work well, even after pre-training. Given
the success of early-update in many NLP tasks this was some-
what surprising. We leave this question to future work.

a red dog smells home today

the dog dog barks quickly Friday

red blue cat barks straight now

runs today

a red dog runs quickly today

blue dog barks home today

Figure 1: Top: possible ŷ(k)1:t formed in training with a
beam of size K = 3 and with gold sequence y1:6 = “a
red dog runs quickly today”. The gold sequence is high-
lighted in yellow, and the predicted prefixes involved in
margin violations (at t= 4 and t= 6) are in gray. Note
that time-step T = 6 uses a different loss criterion. Bot-
tom: prefixes that actually participate in the loss, ar-
ranged to illustrate the back-propagation process.

4.3 Backward: Merge Sequences
Once we have collected margin violations we can
run backpropagation to compute parameter updates.
Assume a margin violation occurs at time-step t be-
tween the predicted history ŷ(K)

1:t and the gold his-
tory y1:t. As in standard seq2seq training we must
back-propagate this error through the gold history;
however, unlike seq2seq we also have a gradient for
the wrongly predicted history.

Recall that to back-propagate errors through an
RNN we run a recursive backward procedure —
denoted below by BRNN — at each time-step t,
which accumulates the gradients of next-step and fu-
ture losses with respect to ht. We have:

∇htL ← BRNN(∇htLt+1,∇ht+1L),

where Lt+1 is the loss at step t+ 1, deriving, for
instance, from the score f(yt+1,ht). Running this
BRNN procedure from t=T − 1 to t= 0 is known
as back-propagation through time (BPTT).

In determining the total computational cost of
back-propagation here, first note that in the worst
case there is one violation at each time-step, which
leads to T independent, incorrect sequences. Since
we need to call BRNN O(T) times for each se-
quence, a naive strategy of running BPTT for each
incorrect sequence would lead to an O(T 2) back-
ward pass, rather than the O(T) time required for
the standard seq2seq approach.

Fortunately, our combination of search-strategy
and loss make it possible to efficiently share
BRNN operations. This shared structure comes

1300

naturally from the LaSO update, which resets the
beam in a convenient way.

We informally illustrate the process in Figure 1.
The top of the diagram shows a possible sequence
of ŷ(k)1:t formed during search with a beam of size 3
for the target sequence y = “a red dog runs quickly
today.” When the gold sequence falls off the beam
at t= 4, search resumes with S5 = succ(y1:4), and
so all subsequent predicted sequences have y1:4 as a
prefix and are thus functions of h4. Moreover, be-
cause our loss function only involves the scores of
the gold prefix and the violating prefix, we end up
with the relatively simple computation tree shown
at the bottom of Figure 1. It is evident that we can
backpropagate in a single pass, accumulating gradi-
ents from sequences that diverge from the gold at the
time-step that precedes their divergence. The second
half of Algorithm 1 shows this explicitly for a single
sequence, though it is straightforward to extend the
algorithm to operate in batch.3

5 Data and Methods

We run experiments on three different tasks, com-
paring our approach to the seq2seq baseline, and to
other relevant baselines.

5.1 Model

While the method we describe applies to seq2seq
RNNs in general, for all experiments we use the
global attention model of Luong et al. (2015)
— which consists of an LSTM (Hochreiter and
Schmidhuber, 1997) encoder and an LSTM decoder
with a global attention model — as both the base-
line seq2seq model (i.e., as the model that computes
the g in Section 3) and as the model that computes
our sequence-scores f(wt,ht−1,x). As in Luong
et al. (2015), we also use “input feeding,” which
involves feeding the attention distribution from the
previous time-step into the decoder at the current
step. This model architecture has been found to
be highly performant for neural machine translation
and other seq2seq tasks.

3We also note that because we do not update the parameters
until after the T ’th search step, our training procedure differs
slightly from LaSO (which is online), and in this aspect is essen-
tially equivalent to the “delayed LaSO update” of Björkelund
and Kuhn (2014).

Algorithm 1 Seq2seq Beam-Search Optimization
1: procedure BSO(x,Ktr, succ)
2: /*FORWARD*/
3: Init empty storage ŷ1:T and ĥ1:T ; init S1

4: r ← 0; violations← {0}
5: for t = 1, . . . , T do
6: K =Ktr if t 6=T else argmax

k:ŷ
(k)
1:t 6=y1:t

f(ŷ
(k)
t , ĥ

(k)

t−1)

7: if f(yt,ht−1) < f(ŷ
(K)
t , ĥ

(K)

t−1) + 1 then

8: ĥr:t−1 ← ĥ
(K)

r:t−1
9: ŷr+1:t ← ŷ

(K)
r+1:t

10: Add t to violations
11: r ← t
12: St+1 ← topK(succ(y1:t))
13: else
14: St+1 ← topK(

⋃K
k=1 succ(ŷ

(k)
1:t))

15: /*BACKWARD*/
16: grad hT ← 0; grad ĥT ← 0
17: for t = T − 1, . . . , 1 do
18: grad ht←BRNN(∇htLt+1, grad ht+1)

19: grad ĥt←BRNN(∇ĥt
Lt+1, grad ĥt+1)

20: if t− 1 ∈ violations then
21: grad ht ← grad ht + grad ĥt

22: grad ĥt ← 0

To distinguish the models we refer to our system
as BSO (beam search optimization) and to the base-
line as seq2seq. When we apply constrained training
(as discussed in Section 4.2), we refer to the model
as ConBSO. In providing results we also distinguish
between the beam size Ktr with which the model
is trained, and the beam size Kte which is used at
test-time. In general, if we plan on evaluating with a
beam of sizeKte it makes sense to train with a beam
of size Ktr = Kte + 1, since our objective requires
the gold sequence to be scored higher than the last
sequence on the beam.

5.2 Methodology

Here we detail additional techniques we found nec-
essary to ensure the model learned effectively. First,
we found that the model failed to learn when trained
from a random initialization.4 We therefore found
it necessary to pre-train the model using a standard,
word-level cross-entropy loss as described in Sec-

4This may be because there is relatively little signal in the
sparse, sequence-level gradient, but this point requires further
investigation.

1301

tion 3. The necessity of pre-training in this instance
is consistent with the findings of other authors who
train non-local neural models (Kingsbury, 2009; Sak
et al., 2014; Andor et al., 2016; Ranzato et al.,
2016).5

Similarly, it is clear that the smaller the beam used
in training is, the less room the model has to make
erroneous predictions without running afoul of the
margin loss. Accordingly, we also found it use-
ful to use a “curriculum beam” strategy in training,
whereby the size of the beam is increased gradually
during training. In particular, given a desired train-
ing beam size Ktr, we began training with a beam
of size 2, and increased it by 1 every 2 epochs until
reaching Ktr.

Finally, it has been established that dropout (Sri-
vastava et al., 2014) regularization improves the per-
formance of LSTMs (Pham et al., 2014; Zaremba
et al., 2014), and in our experiments we run beam
search under dropout.6

For all experiments, we trained both seq2seq and
BSO models with mini-batch Adagrad (Duchi et al.,
2011) (using batches of size 64), and we renormal-
ized all gradients so they did not exceed 5 before
updating parameters. We did not extensively tune
learning-rates, but we found initial rates of 0.02
for the encoder and decoder LSTMs, and a rate of
0.1 or 0.2 for the final linear layer (i.e., the layer
tasked with making word-predictions at each time-
step) to work well across all the tasks we consid-
ered. Code implementing the experiments described
below can be found at https://github.com/
harvardnlp/BSO.7

5.3 Tasks and Results

Our experiments are primarily intended to evaluate
the effectiveness of beam search optimization over
standard seq2seq training. As such, we run exper-
iments with the same model across three very dif-

5Andor et al. (2016) found, however, that pre-training only
increased convergence-speed, but was not necessary for obtain-
ing good results.

6However, it is important to ensure that the same mask ap-
plied at each time-step of the forward search is also applied at
the corresponding step of the backward pass. We accomplish
this by pre-computing masks for each time-step, and sharing
them between the partial sequence LSTMs.

7Our code is based on Yoon Kim’s seq2seq code, https:
//github.com/harvardnlp/seq2seq-attn.

ferent problems: word ordering, dependency pars-
ing, and machine translation. While we do not in-
clude all the features and extensions necessary to
reach state-of-the-art performance, even the baseline
seq2seq model is generally quite performant.

Word Ordering The task of correctly ordering the
words in a shuffled sentence has recently gained
some attention as a way to test the (syntactic) capa-
bilities of text-generation systems (Zhang and Clark,
2011; Zhang and Clark, 2015; Liu et al., 2015;
Schmaltz et al., 2016). We cast this task as seq2seq
problem by viewing a shuffled sentence as a source
sentence, and the correctly ordered sentence as the
target. While word ordering is a somewhat synthetic
task, it has two interesting properties for our pur-
poses. First, it is a task which plausibly requires
search (due to the exponentially many possible or-
derings), and, second, there is a clear hard constraint
on output sequences, namely, that they be a permu-
tation of the source sequence. For both the baseline
and BSO models we enforce this constraint at test-
time. However, we also experiment with constrain-
ing the BSO model during training, as described in
Section 4.2, by defining the succ function to only al-
low successor sequences containing un-used words
in the source sentence.

For experiments, we use the same PTB dataset
(with the standard training, development, and test
splits) and evaluation procedure as in Zhang and
Clark (2015) and later work, with performance re-
ported in terms of BLEU score with the correctly or-
dered sentences. For all word-ordering experiments
we use 2-layer encoder and decoder LSTMs, each
with 256 hidden units, and dropout with a rate of 0.2
between LSTM layers. We use simple 0/1 costs in
defining the ∆ function.

We show our test-set results in Table 1. We see
that on this task there is a large improvement at each
beam size from switching to BSO, and a further im-
provement from using the constrained model.

Inspired by a similar analysis in Daumé III and
Marcu (2005), we further examine the relationship
between Ktr and Kte when training with ConBSO
in Table 2. We see that larger Ktr hurt greedy in-
ference, but that results continue to improve, at least
initially, when using aKte that is (somewhat) bigger
than Ktr − 1.

1302

Word Ordering (BLEU)
Kte = 1 Kte = 5 Kte = 10

seq2seq 25.2 29.8 31.0
BSO 28.0 33.2 34.3
ConBSO 28.6 34.3 34.5

LSTM-LM 15.4 - 26.8

Table 1: Word ordering. BLEU Scores of seq2seq, BSO,
constrained BSO, and a vanilla LSTM language model
(from Schmaltz et al, 2016). All experiments above have
Ktr = 6.

Word Ordering Beam Size (BLEU)
Kte = 1 Kte = 5 Kte = 10

Ktr = 2 30.59 31.23 30.26
Ktr = 6 28.20 34.22 34.67
Ktr = 11 26.88 34.42 34.88

seq2seq 26.11 30.20 31.04

Table 2: Beam-size experiments on word ordering devel-
opment set. All numbers reflect training with constraints
(ConBSO).

Dependency Parsing We next apply our model
to dependency parsing, which also has hard con-
straints and plausibly benefits from search. We
treat dependency parsing with arc-standard transi-
tions as a seq2seq task by attempting to map from
a source sentence to a target sequence of source
sentence words interleaved with the arc-standard,
reduce-actions in its parse. For example, we attempt
to map the source sentence

But it was the Quotron problems that ...

to the target sequence

But it was @L SBJ @L DEP the Quotron
problems @L NMOD @L NMOD that ...

We use the standard Penn Treebank dataset splits
with Stanford dependency labels, and the standard
UAS/LAS evaluation metric (excluding punctua-
tion) following Chen and Manning (2014). All
models thus see only the words in the source and,
when decoding, the actions it has emitted so far;
no other features are used. We use 2-layer encoder
and decoder LSTMs with 300 hidden units per layer

Dependency Parsing (UAS/LAS)
Kte = 1 Kte = 5 Kte = 10

seq2seq 87.33/82.26 88.53/84.16 88.66/84.33
BSO 86.91/82.11 91.00/87.18 91.17/87.41
ConBSO 85.11/79.32 91.25/86.92 91.57/87.26

Andor 93.17/91.18 - -

Table 3: Dependency parsing. UAS/LAS of seq2seq,
BSO, ConBSO and baselines on PTB test set. Andor is
the current state-of-the-art model for this data set (Andor
et al. 2016), and we note that with a beam of size 32 they
obtain 94.41/92.55. All experiments above haveKtr = 6.

and dropout with a rate of 0.3 between LSTM lay-
ers. We replace singleton words in the training set
with an UNK token, normalize digits to a single
symbol, and initialize word embeddings for both
source and target words from the publicly available
word2vec (Mikolov et al., 2013) embeddings. We
use simple 0/1 costs in defining the ∆ function.

As in the word-ordering case, we also experiment
with modifying the succ function in order to train
under hard constraints, namely, that the emitted tar-
get sequence be a valid parse. In particular, we con-
strain the output at each time-step to obey the stack
constraint, and we ensure words in the source are
emitted in order.

We show results on the test-set in Table 3. BSO
and ConBSO both show significant improvements
over seq2seq, with ConBSO improving most on
UAS, and BSO improving most on LAS. We achieve
a reasonable final score of 91.57 UAS, which lags
behind the state-of-the-art, but is promising for a
general-purpose, word-only model.

Translation We finally evaluate our model on a
small machine translation dataset, which allows us
to experiment with a cost function that is not 0/1,
and to consider other baselines that attempt to mit-
igate exposure bias in the seq2seq setting. We use
the dataset from the work of Ranzato et al. (2016),
which uses data from the German-to-English por-
tion of the IWSLT 2014 machine translation eval-
uation campaign (Cettolo et al., 2014). The data
comes from translated TED talks, and the dataset
contains roughly 153K training sentences, 7K devel-
opment sentences, and 7K test sentences. We use the
same preprocessing and dataset splits as Ranzato et

1303

Machine Translation (BLEU)
Kte = 1 Kte = 5 Kte = 10

seq2seq 22.53 24.03 23.87
BSO, SB-∆ 23.83 26.36 25.48

XENT 17.74 20.10 20.28
DAD 20.12 22.25 22.40
MIXER 20.73 21.81 21.83

Table 4: Machine translation experiments on test set; re-
sults below middle line are from MIXER model of Ran-
zato et al. (2016). SB-∆ indicates sentence BLEU costs
are used in defining ∆. XENT is similar to our seq2seq
model but with a convolutional encoder and simpler at-
tention. DAD trains seq2seq with scheduled sampling
(Bengio et al., 2015). BSO, SB-∆ experiments above
have Ktr = 6.

al. (2016), and like them we also use a single-layer
LSTM decoder with 256 units. We also use dropout
with a rate of 0.2 between each LSTM layer. We em-
phasize, however, that while our decoder LSTM is of
the same size as that of Ranzato et al. (2016), our re-
sults are not directly comparable, because we use an
LSTM encoder (rather than a convolutional encoder
as they do), a slightly different attention mechanism,
and input feeding (Luong et al., 2015).

For our main MT results, we set ∆(ŷ
(k)
1:t) to

1−SB(ŷ
(K)
r+1:t, yr+1:t), where r is the last margin

violation and SB denotes smoothed, sentence-level
BLEU (Chen and Cherry, 2014). This setting of ∆
should act to penalize erroneous predictions with a
relatively low sentence-level BLEU score more than
those with a relatively high sentence-level BLEU
score. In Table 4 we show our final results and those
from Ranzato et al. (2016).8 While we start with an
improved baseline, we see similarly large increases
in accuracy as those obtained by DAD and MIXER,
in particular when Kte > 1.

We further investigate the utility of these
sequence-level costs in Table 5, which compares us-
ing sentence-level BLEU costs in defining ∆ with
using 0/1 costs. We see that the more sophisti-
cated sequence-level costs have a moderate effect on
BLEU score.

8Some results from personal communication.

Machine Translation (BLEU)
Kte = 1 Kte = 5 Kte = 10

0/1-∆ 25.73 28.21 27.43
SB-∆ 25.99 28.45 27.58

Table 5: BLEU scores obtained on the machine trans-
lation development data when training with ∆(ŷ

(k)
1:t) = 1

(top) and ∆(ŷ
(k)
1:t) = 1−SB(ŷ

(K)
r+1:t, yr+1:t) (bottom), and

Ktr = 6.

Timing Given Algorithm 1, we would expect
training time to increase linearly with the size of
the beam. On the above MT task, our highly tuned
seq2seq baseline processes an average of 13,038 to-
kens/second (including both source and target to-
kens) on a GTX 970 GPU. For beams of size Ktr

= 2, 3, 4, 5, and 6, our implementation processes
on average 1,985, 1,768, 1,709, 1,521, and 1,458 to-
kens/second, respectively. Thus, we appear to pay
an initial constant factor of ≈ 3.3 due to the more
complicated forward and backward passes, and then
training scales with the size of the beam. Because
we batch beam predictions on a GPU, however, we
find that in practice training time scales sub-linearly
with the beam-size.

6 Conclusion

We have introduced a variant of seq2seq and an as-
sociated beam search training scheme, which ad-
dresses exposure bias as well as label bias, and
moreover allows for both training with sequence-
level cost functions as well as with hard constraints.
Future work will examine scaling this approach to
much larger datasets.

Acknowledgments

We thank Yoon Kim for helpful discussions and for
providing the initial seq2seq code on which our im-
plementations are based. We thank Allen Schmaltz
for help with the word ordering experiments. We
also gratefully acknowledge the support of a Google
Research Award.

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav

1304

Petrov, and Michael Collins. 2016. Globally normal-
ized transition-based neural networks. ACL.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer. 2015. Scheduled sampling for sequence pre-
diction with recurrent neural networks. In Advances in
Neural Information Processing Systems, pages 1171–
1179.

Anders Björkelund and Jonas Kuhn. 2014. Learning
structured perceptrons for coreference Resolution with
Latent Antecedents and Non-local Features. ACL,
Baltimore, MD, USA, June.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, and Marcello Federico. 2014. Report on
the 11th iwslt evaluation campaign. In Proceedings of
IWSLT, 20014.

Kai-Wei Chang, Hal Daumé III, John Langford, and
Stephane Ross. 2015. Efficient programmable learn-
ing to search. In Arxiv.

Boxing Chen and Colin Cherry. 2014. A system-
atic comparison of smoothing techniques for sentence-
level bleu. ACL 2014, page 362.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In EMNLP, pages 740–750.

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In Proceed-
ings of the 42nd Annual Meeting on Association for
Computational Linguistics, page 111. Association for
Computational Linguistics.

Hal Daumé III and Daniel Marcu. 2005. Learning as
search optimization: approximate large margin meth-
ods for structured prediction. In Proceedings of the
Twenty-Second International Conference on Machine
Learning (ICML 2005), pages 169–176.

Hal Daumé III, John Langford, and Daniel Marcu. 2009.
Search-based structured prediction. Machine Learn-
ing, 75(3):297–325.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Katja Filippova, Enrique Alfonseca, Carlos A Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with lstms. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 360–368.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9:1735–1780.

Liang Huang, Suphan Fayong, and Yang Guo. 2012.
Structured perceptron with inexact search. In Proceed-
ings of the 2012 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 142–151.
Association for Computational Linguistics.

Brian Kingsbury. 2009. Lattice-based optimization
of sequence classification criteria for neural-network
acoustic modeling. In Acoustics, Speech and Signal
Processing, 2009. ICASSP 2009. IEEE International
Conference on, pages 3761–3764. IEEE.

John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In Proceedings of the Eighteenth International Confer-
ence on Machine Learning (ICML 2001), pages 282–
289.

Yijia Liu, Yue Zhang, Wanxiang Che, and Bing Qin.
2015. Transition-based syntactic linearization. In
Proceedings of NAACL.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2015, pages 1412–1421.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111–3119.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting on association for computational
linguistics, pages 311–318. Association for Computa-
tional Linguistics.

Vu Pham, Théodore Bluche, Christopher Kermorvant,
and Jérôme Louradour. 2014. Dropout improves re-
current neural networks for handwriting recognition.
In Frontiers in Handwriting Recognition (ICFHR),
2014 14th International Conference on, pages 285–
290. IEEE.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and
Wojciech Zaremba. 2016. Sequence level training
with recurrent neural networks. ICLR.

Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell.
2011. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings
of the Fourteenth International Conference on Artifi-
cial Intelligence and Statistics, pages 627–635.

Hasim Sak, Oriol Vinyals, Georg Heigold, Andrew W.
Senior, Erik McDermott, Rajat Monga, and Mark Z.

1305

Mao. 2014. Sequence discriminative distributed train-
ing of long short-term memory recurrent neural net-
works. In INTERSPEECH 2014, pages 1209–1213.

Allen Schmaltz, Alexander M Rush, and Stuart M
Shieber. 2016. Word ordering without syntax. arXiv
preprint arXiv:1604.08633.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron C. Courville, and Joelle Pineau. 2016. Build-
ing end-to-end dialogue systems using generative hier-
archical neural network models. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence,
pages 3776–3784.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu,
Maosong Sun, and Yang Liu. 2016. Minimum risk
training for neural machine translation. In Proceed-
ings of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Ilya Sutskever, James Martens, and Geoffrey E Hinton.
2011. Generating text with recurrent neural networks.
In Proceedings of the 28th International Conference
on Machine Learning (ICML), pages 1017–1024.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems (NIPS), pages 3104–3112.

Subhashini Venugopalan, Marcus Rohrbach, Jeffrey
Donahue, Raymond J. Mooney, Trevor Darrell, and
Kate Saenko. 2015. Sequence to sequence - video
to text. In ICCV, pages 4534–4542.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar
as a foreign language. In Advances in Neural Informa-
tion Processing Systems, pages 2755–2763.

Paul Voigtlaender, Patrick Doetsch, Simon Wiesler, Ralf
Schluter, and Hermann Ney. 2015. Sequence-
discriminative training of recurrent neural networks.
In Acoustics, Speech and Signal Processing (ICASSP),
2015 IEEE International Conference on, pages 2100–
2104. IEEE.

Taro Watanabe and Eiichiro Sumita. 2015. Transition-
based neural constituent parsing. Proceedings of ACL-
IJCNLP.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron C. Courville, Ruslan Salakhutdinov, Richard S.
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual at-
tention. In ICML, pages 2048–2057.

Majid Yazdani and James Henderson. 2015. Incremen-
tal recurrent neural network dependency parser with

search-based discriminative training. In Proceedings
of the 19th Conference on Computational Natural Lan-
guage Learning, (CoNLL 2015), pages 142–152.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
CoRR, abs/1409.2329.

Yue Zhang and Stephen Clark. 2011. Syntax-based
grammaticality improvement using ccg and guided
search. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, pages
1147–1157. Association for Computational Linguis-
tics.

Yue Zhang and Stephen Clark. 2015. Discriminative
syntax-based word ordering for text generation. Com-
putational Linguistics, 41(3):503–538.

Hao Zhou, Yue Zhang, and Jiajun Chen. 2015. A
neural probabilistic structured-prediction model for
transition-based dependency parsing. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics, pages 1213–1222.

1306

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1307–1316,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Online Segment to Segment Neural Transduction

Lei Yu1, Jan Buys1 and Phil Blunsom1,2

1University of Oxford
2DeepMind

{lei.yu, jan.buys, phil.blunsom}@cs.ox.ac.uk

Abstract

We introduce an online neural sequence to se-
quence model that learns to alternate between
encoding and decoding segments of the input
as it is read. By independently tracking the en-
coding and decoding representations our algo-
rithm permits exact polynomial marginaliza-
tion of the latent segmentation during train-
ing, and during decoding beam search is em-
ployed to find the best alignment path to-
gether with the predicted output sequence.
Our model tackles the bottleneck of vanilla
encoder-decoders that have to read and mem-
orize the entire input sequence in their fixed-
length hidden states before producing any out-
put. It is different from previous attentive
models in that, instead of treating the at-
tention weights as output of a deterministic
function, our model assigns attention weights
to a sequential latent variable which can be
marginalized out and permits online gener-
ation. Experiments on abstractive sentence
summarization and morphological inflection
show significant performance gains over the
baseline encoder-decoders.

1 Introduction

The problem of mapping from one sequence to an-
other is an importance challenge of natural language
processing. Common applications include machine
translation and abstractive sentence summarisation.
Traditionally this type of problem has been tackled
by a combination of hand-crafted features, align-
ment models, segmentation heuristics, and language
models, all of which are tuned separately.

The recently introduced encoder-decoder
paradigm has proved very successful for machine
translation, where an input sequence is encoded
into a fixed-length vector and an output sequence
is then decoded from said vector (Kalchbrenner
and Blunsom, 2013; Sutskever et al., 2014; Cho
et al., 2014). This architecture is appealing, as it
makes it possible to tackle the problem of sequence-
to-sequence mapping by training a large neural
network in an end-to-end fashion. However it is
difficult for a fixed-length vector to memorize all
the necessary information of an input sequence,
especially for long sequences. Often a very large
encoding needs to be employed in order to capture
the longest sequences, which invariably wastes
capacity and computation for short sequences.
While the attention mechanism of Bahdanau et al.
(2015) goes some way to address this issue, it still
requires the full input to be seen before any output
can be produced.

In this paper we propose an architecture to tackle
the limitations of the vanilla encoder-decoder model,
a segment to segment neural transduction model
(SSNT) that learns to generate and align simul-
taneously. Our model is inspired by the HMM
word alignment model proposed for statistical ma-
chine translation (Vogel et al., 1996; Tillmann et
al., 1997); we impose a monotone restriction on the
alignments but incorporate recurrent dependencies
on the input which enable rich locally non-monotone
alignments to be captured. This is similar to the se-
quence transduction model of Graves (2012), but we
propose alignment distributions which are parame-
terised separately, making the model more flexible

1307

and allowing online inference.
Our model introduces a latent segmentation which

determines correspondences between tokens of the
input sequence and those of the output sequence.
The aligned hidden states of the encoder and de-
coder are used to predict the next output token and to
calculate the transition probability of the alignment.
We carefully design the input and output RNNs such
that they independently update their respective hid-
den states. This enables us to derive an exact dy-
namic programme to marginalize out the hidden
segmentation during training and an efficient beam
search to generate online the best alignment path to-
gether with the output sequence during decoding.
Unlike previous recurrent segmentation models that
only capture dependencies in the input (Graves et al.,
2006; Kong et al., 2016), our segmentation model
is able to capture unbounded dependencies in both
the input and output sequences while still permitting
polynomial inference.

While attentive models treat the attention weights
as output of a deterministic function, our model as-
signs attention weights to a sequential latent variable
which can be marginalized out. Our model is gen-
eral and could be incorporated into any RNN-based
encoder-decoder architecture, such as Neural Turing
Machines (Graves et al., 2014), memory networks
(Weston et al., 2015; Kumar et al., 2016) or stack-
based networks (Grefenstette et al., 2015), enabling
such models to process data online.

We conduct experiments on two different trans-
duction tasks, abstractive sentence summarisation
(sequence to sequence mapping at word level) and
morphological inflection generation (sequence to se-
quence mapping at character level). We evaluate
our proposed algorithms in both the online setting,
where the input is encoded with a unidirectional
LSTM, and where the whole input is available such
that it can be encoded with a bidirectional network.
The experimental results demonstrate the effective-
ness of SSNT — it consistently output performs
the baseline encoder-decoder approach while requir-
ing significantly smaller hidden layers, thus show-
ing that the segmentation model is able to learn to
break one large transduction task into a series of
smaller encodings and decodings. When bidirec-
tional encodings are used the segmentation model
outperforms an attention-based benchmark. Quali-

</s>

.

year

new

lunar

the

for

thursday

close

markets

financial

chinese
ch

inese

mark
ets

clo
sed for

public
holid

ay .
</s
>

Figure 1: Example output of our recurrent segmenta-
tion model on the task of abstractive sentence sum-
marisation. The path highlighted is the alignment
found by the model during decoding.

tative analysis shows that the alignments found by
our model are highly intuitive and demonstrates that
the model learns to read ahead the required number
of tokens before producing output.

2 Model

Let xI
1 be the input sequence of length I and yJ1 the

output sequence of length J . Let yj denote the j-
th token of y. Our goal is to model the conditional
distribution

p(y|x) =
J∏

j=1

p(yj |yj−11 ,x). (1)

We introduce a hidden alignment sequence aJ1
where each aj = i corresponds to an input position
i ∈ {1, . . . , I} that we want to focus on when gener-
ating yj . Then p(y|x) is calculated by marginalizing
over all the hidden alignments,

1308

p(y|x) =∑a p(y,a|x) (2)

≈ ∑
a

∏J
j=1 p(aj |aj−1,y

j−1
1 ,x)︸ ︷︷ ︸

transition probability

·

p(yj |yj−11 , aj ,x).︸ ︷︷ ︸
word prediction

Figure 1 illustrates the model graphically. Each
path from the top left node to the right-most column
in the graph corresponds to an alignment. We con-
strain the alignments to be monotone, i.e. only for-
ward and downward transitions are permitted at each
point in the grid. This constraint enables the model
to learn to perform online generation. Additionally,
the model learns to align input and output segments,
which means that it can learn local reorderings by
memorizing phrases. Another possible constraint on
the alignments would be to ensure that the entire in-
put sequence is consumed before last output word is
emitted, i.e. all valid alignment paths have to end in
the bottom right corner of the grid. However, we do
not enforce this constraint in our setup.

The probability contributed by an alignment is ob-
tained by accumulating the probability of word pre-
dictions at each point on the path and the transition
probability between points. The transition probabil-
ities and the word output probabilities are modeled
by neural networks, which are described in detail in
the following sub-sections.

2.1 Probabilities of Output Word Predictions

The input sentence x is encoded with a Recur-
rent Neural Network (RNN), in particular an LSTM
(Hochreiter and Schmidhuber, 1997). The encoder
can either be a unidirectional or bidirectional LSTM.
If a unidirectional encoder is used the model is able
to read input and generate output symbols online.
The hidden state vectors are computed as

h→i = RNN(h→i−1, v
(e)(xi)), (3)

h←i = RNN(h←i+1, v
(e)(xi)), (4)

where v(e)(xi) denotes the vector representation of
the token x, and h→i and h←i are the forward and
backward hidden states, respectively. For a bidi-
rectional encoder, they are concatenated as hi =

[h→i ;h←i]; and for unidirectional encoder hi = h→i .
The hidden state sj of the RNN for the output se-
quence y is computed as

sj = RNN(sj−1, v(d)(yj−1)), (5)

where v(d)(yj−1) is the encoded vector of the pre-
viously generated output word yj−1. That is, sj en-
codes yj−11 .

To calculate the probability of the next word, we
concatenate the aligned hidden state vectors sj and
haj and feed the result into a softmax layer,

p(yj = l|yj−11 , aj ,x)

= p(yj = l|haj , sj)

= softmax(Ww[haj ; sj] + bw)l.

(6)

The word output distribution in Graves (2012) is pa-
rameterised in similar way.

Figure 2 illustrates the model structure. Note that
the hidden states of the input and output decoders are
kept independent to permit tractable inference, while
the output distributions are conditionally dependent
on both.

2.2 Transition Probabilities
As the alignments are constrained to be monotone,
we can treat the transition from timestep j to j+1 as
a sequence of shift and emit operations. Specif-
ically, at each input position, a decision of shift
or emit is made by the model; if the operation is
emit then the next output word is generated; other-
wise, the model will shift to the next input word.
While the multinomial distribution is an alternative
for parameterising alignments, the shift/emit param-
eterisation does not place an upper limit on the jump
size, as a multinomial distribution would, and biases
the model towards shorter jump sizes, which a multi-
nomial model would have to learn.

We describe two methods for modelling the align-
ment transition probability. The first approach is in-
dependent of the input or output words. To parame-
terise the alignment distribution in terms of shift and
emit operations we use a geometric distribution,

p(aj |aj−1) = (1− e)aj−aj−1e, (7)

where e is the emission probability. This transition
probability only has one parameter e, which can be

1309

x3

x2

x1

s1

h1

<s> y1 y2 y3

y1

Figure 2: The structure of our model. (x1, x2, x3)
and (y1, y2, y3) denote the input and output se-
quences, respectively. The points, e.g. (i, j), in
the grid represent an alignment between xi and yj .
For each column j, the concatenation of the hidden
states [hi, sj] is used to predict yj .

estimated directly by maximum likelihood as

e =

∑
n Jn∑

n In +
∑

n Jn
, (8)

where In and Jn are the lengths of the input and out-
put sequences of training example n, respectively.

For the second method we model the transition
probability with a neural network,

p(a1 = i) =

i−1∏

d=1

(1− p(ed,1))p(ei,1),

p(aj = i|aj−1 = k) =
i−1∏

d=k

(1− p(ed,j))p(ei,j),

(9)

where p(ei,j) denotes the probability of emit for
the alignment aj = i. This probability is obtained by
feeding [hi; sj] into a feed forward neural network,

p(ei,j) = σ(MLP(Wt[hi; sj] + bt)). (10)

For simplicity, p(aj = i|aj−1 = k, sj ,h
i
k) is abbre-

viated as p(aj = i|aj−1 = k).

3 Training and Decoding

Since there are an exponential number of possi-
ble alignments, it is computationally intractable to

explicitly calculate every p(y,a|x) and then sum
them to get the conditional probability p(y|x). We
instead approach the problem using a dynamic-
programming algorithm similar to the forward-
backward algorithm for HMMs (Rabiner, 1989).

3.1 Training
For an input x and output y, the forward variable
α(i, j) = p(aj = i,yj1|x). The value of α(i, j) is
computed by summing over the probabilities of ev-
ery path that could lead to this cell. Formally, α(i, j)
is defined as follows:

For i ∈ [1, I]:

α(i, 1) = p(a1 = i)p(y1|hi, s1). (11)

For j ∈ [2, J], i ∈ [1, I]:

α(i, j) = p(yj |hi, sj)· (12)
i∑

k=1

α(k, j − 1)p(aj = i|aj−1 = k).

The backward variables, defined as β(i, j) =
p(yJj+1|aj = i,yj1,x), are computed as:

For i ∈ [1, I]:

β(i, J) = 1. (13)

For j ∈ [1, J − 1], i ∈ [1, I]:

β(i, j) =
I∑

k=i

p(aj+1 = k|aj = i)β(k, j + 1)·

p(yj+1|hk, sj+1). (14)

During training we estimate the parameters by
minimizing the negative log likelihood of the train-
ing set S:

L(θ) = −
∑

(x,y)∈S
log p(y|x;θ)

= −
∑

(x,y)∈S
log

I∑

i=1

α(i, J).

(15)

Let θj be the neural network parameters w.r.t. the
model output at position j. The gradient is computed
as:

∂ log p(y|x;θ)
∂θ

=
J∑

j=1

I∑

i=1

∂ log p(y|x;θ)
∂α(i, j)

∂α(i, j)

∂θj
.

(16)

1310

The derivative w.r.t. the forward weights is

∂ log p(y|x;θ)
∂α(i, j)

=
β(i, j)

p(y|x;θ) . (17)

The derivative of the forward weights w.r.t. the
model parameters at position j is

∂α(i, j)

∂θj
=
∂p(yj |hi, sj)

∂θj

α(i, j)

p(yj |hi, sj)

+ p(yj |hi, sj)
i∑

k=1

α(j − 1, k)
∂

∂θj
p(aj=i|aj−1=k).

(18)

For the geometric distribution transition probabil-
ity model ∂

∂θj
p(aj = i|aj−1 = k) = 0.

3.2 Decoding

Algorithm 1 DP search algorithm
Input: source sentence x
Output: best output sentence y∗
Initialization: Q ∈ RI×Jmax , bp ∈ NI×Jmax ,
W ∈ NI×Jmax , Iend, Jend.
for i ∈ [1, I] do

Q[i, 1]← maxy∈V p(a1 = i)p(y|hi, s1)
bp[i, 1]← 0
W [i, 1]← argmaxy∈V p(a1 = i)p(y|hi, s1)

end for
for j ∈ [2, Jmax] do

for i ∈ [1, I] do
Q[i, j]← maxy∈V,k∈[1,i]Q[k, j − 1]·

p(aj = i|aj−1 = k)p(y|hi, sj)
bp[i, j],W [i, j]← argmaxy∈V,k∈[1,i] ·
Q[k, j − 1]p(aj = i|aj−1 = k)p(y|hi, sj)

end for
Iend ← argmaxiQ[i, j]
if W [Iend, j] = EOS then

Jend ← j
break

end if
end for
return a sequence of words stored in W by fol-
lowing backpointers starting from (Iend, Jend).

For decoding, we aim to find the best output se-
quence y∗ for a given input sequence x:

y∗ = argmax
y

p(y|x) (19)

The search algorithm is based on dynamic program-
ming (Tillmann et al., 1997). The main idea is to
create a path probability matrix Q, and fill each cell
Q[i, j] by recursively taking the most probable path
that could lead to this cell. We present the greedy
search algorithm in Algorithm 1. We also imple-
mented a beam search that tracks the k best partial
sequences at position (i, j). The notation bp refers
to backpointers, W stores words to be predicted, V
denotes the output vocabulary, Jmax is the maximum
length of the output sequences that the model is al-
lowed to predict.

4 Experiments

We evaluate the effectiveness of our model on two
representative natural language processing tasks,
sentence compression and morphological inflection.
The primary aim of this evaluation is to assess
whether our proposed architecture is able to outper-
form the baseline encoder-decoder model by over-
coming its encoding bottleneck. We further bench-
mark our results against an attention model in order
to determine whether our alternative alignment strat-
egy is able to provide similar benefits while process-
ing the input online.

4.1 Abstractive Sentence Summarisation
Sentence summarisation is the task of generating
a condensed version of a sentence while preserv-
ing its meaning. In abstractive sentence summari-
sation, summaries are generated from the given vo-
cabulary without the constraint of copying words in
the input sentence. Rush et al. (2015) compiled a
data set for this task from the annotated Gigaword
data set (Graff et al., 2003; Napoles et al., 2012),
where sentence-summary pairs are obtained by pair-
ing the headline of each article with its first sentence.
Rush et al. (2015) use the splits of 3.8m/190k/381k
for training, validation and testing. In previous
work on this dataset, Rush et al. (2015) proposed
an attention-based model with feed-forward neural
networks, and Chopra et al. (2016) proposed an
attention-based recurrent encoder-decoder, similar
to one of our baselines.

Due to computational constraints we place the fol-
lowing restrictions on the training and validation set:

1. The maximum lengths for the input sentences

1311

Model ROUGE-1 ROUGE-2 ROUGE-L

Seq2seq 25.16 9.09 23.06
Attention 29.25 12.85 27.32

uniSSNT 26.96 10.54 24.59
biSSNT 27.05 10.62 24.64
uniSSNT+ 30.15 13.59 27.88
biSSNT+ 30.27 13.68 27.91

Table 1: ROUGE F1 scores on the sentence sum-
marisation test set. Seq2seq refers to the vanilla
encoder-decoder and attention denotes the attention-
based model. SSNT denotes our model with align-
ment transition probability modelled as geometric
distribution. SSNT+ refers to our model with tran-
sition probability modelled using neural networks.
The prefixes uni- and bi- denote using unidirectional
and bidirectional encoder LSTMs, respectively.

and summaries are 50 and 25, respectively.

2. For each sentence-summary pair, the product
of the input and output lengths should be no
greater than 500.

We use the filtered 172k pairs for validation and
sample 1m pairs for training. While this training set
is smaller than that used in previous work (and there-
fore our results cannot be compared directly against
reported results), it serves our purpose for evaluat-
ing our algorithm against sequence to sequence and
attention-based approaches under identical data con-
ditions. Following from previous work (Rush et al.,
2015; Chopra et al., 2016; Gülçehre et al., 2016),
we report results on a randomly sampled test set
of 2000 sentence-summary pairs. The quality of
the generated summaries are evaluated by three ver-
sions of ROUGE for different match lengths, namely
ROUGE-1 (unigrams), ROUGE-2 (bigrams), and
ROUGE-L (longest-common substring).

For training, we use Adam (Kingma and Ba,
2015) for optimization, with an initial learning rate
of 0.001. The mini-batch size is set to 32. The
number of hidden units H is set to 256 for both our
model and the baseline models, and dropout of 0.2 is
applied to the input of LSTMs. All hyperparameters
were optimised via grid search on the perplexity of
the validation set. We use greedy decoding to gener-
ate summaries.

Model Configuration Perplexity

Seq2seq

H = 128, L = 1 48.5
H = 256, L = 1 35.6
H = 256, L = 2 32.1
H = 256, L = 3 31.0

biSSNT+
H = 128, L = 1 26.7
H = 256, L = 1 22.6

Table 2: Perplexity on the validation set with 172k
sentence-summary pairs.

Table 1 displays the ROUGE-F1 scores of our
models on the test set, together with baseline mod-
els, including the attention-based model. Our
models achieve significantly better results than
the vanilla encoder-decoder and outperform the
attention-based model. The fact that SSNT+ per-
forms better is in line with our expectations, as the
neural network-parameterised alignment model is
more expressive than that modelled by geometric
distribution.

To make further comparison, we experimented
with different sizes of hidden units and adding more
layers to the baseline encoder-decoder. Table 2 lists
the configurations of different models and their cor-
responding perplexities on the validation set. We can
see that the vanilla encoder-decoder tends to get bet-
ter results by adding more hidden units and stacking
more layers. This is due to the limitation of com-
pressing information into a fixed-size vector. It has
to use larger vectors and deeper structure in order to
memorize more information. By contrast, our model
can do well with smaller networks. In fact, even with
1 layer and 128 hidden units, our model works much
better than the vanilla encoder-decoder with 3 layers
and 256 hidden units per layer.

4.2 Morphological Inflection
Morphological inflection generation is the task of
predicting the inflected form of a given lexical item
based on a morphological attribute. The transforma-
tion from a base form to an inflected form usually in-
cludes concatenating it with a prefix or a suffix and
substituting some characters. For example, the in-
flected form of a German stem abgang is abgängen
when the case is dative and the number is plural.

In our experiments, we use the same dataset as

1312

Model Avg. accuracy

Seq2Seq 79.08
Seq2Seq w/ Attention 95.64
Adapted-seq2seq (FTND16) 96.20

uniSSNT+ 87.85
biSSNT+ 95.32

Table 3: Average accuracy over all the morpho-
logical inflection datasets. The baseline results for
Seq2Seq variants are taken from (Faruqui et al.,
2016).

Faruqui et al. (2016). This dataset was originally
created by Durrett and DeNero (2013) from Wik-
tionary, containing inflections for German nouns
(de-N), German verbs (de-V), Spanish verbs (es-
V), Finnish noun and adjective (fi-NA), and Finnish
verbs (fi-V). It was further expanded by Nicolai et
al. (2015) by adding Dutch verbs (nl-V) and French
verbs (fr-V). The number of inflection types for each
language ranges from 8 to 57. The number of base
forms, i.e. the number of instances in each dataset,
ranges from 2000 to 11200. The predefined split is
200/200 for dev and test sets, and the rest of the data
for training.

Our model is trained separately for each type of
inflection, the same setting as the factored model
described in Faruqui et al. (2016). The model is
trained to predict the character sequence of the in-
flected form given that of the stem. The output is
evaluated by accuracies of string matching. For all
the experiments on this task we use 128 hidden units
for the LSTMs and apply dropout of 0.5 on the input
and output of the LSTMs. We use Adam (Kingma
and Ba, 2015) for optimisation with initial learning
rate of 0.001. During decoding, beam search is em-
ployed with beam size of 30.

Table 3 gives the average accuracy of the
uniSSNT+, biSSNT+, vanilla encoder-decoder, and
attention-based models. The model with the best
previous average result — denoted as adapted-
seq2seq (FTND16) (Faruqui et al., 2016) — is also
included for comparison. Our biSSNT+ model out-
performs the vanilla encoder-decoder by a large
margin and almost matches the state-of-the-art result
on this task. As mentioned earlier, a characteristic
of these datasets is that the stems and their corre-

Dataset DDN13 NCK15 FTND16 biSSNT+

de-N 88.31 88.60 88.12 87.50
de-V 94.76 97.50 97.72 92.11
es-V 99.61 99.80 99.81 99.52
fi-NA 92.14 93.00 95.44 95.48
fi-V 97.23 98.10 97.81 98.10
fr-V 98.80 99.20 98.82 98.65
nl-V 90.50 96.10 96.71 95.90

Avg. 94.47 96.04 96.20 95.32

Table 4: Comparison of the performance of our
model (biSSNT+) against the previous state-of-the-
art on each morphological inflection dataset.

sponding inflected forms mostly overlap. Compare
to the vanilla encoder-decoder, our model is better at
copying and finding correspondences between pre-
fix, stem and suffix segments.

Table 4 compares the results of biSSNT+ and pre-
vious models on each individual dataset. DDN13
and NCK15 denote the models of Durrett and DeN-
ero (2013) and Nicolai et al. (2015), respectively.
Both models tackle the task by feature engineering.
FTND16 (Faruqui et al., 2016) adapted the vanilla
encoder-decoder by feeding the i-th character of the
encoded string as an extra input into the i-th position
of the decoder. It can be considered as a special case
of our model by forcing a fixed diagonal alignment
between input and output sequences. Our model
achieves comparable results to these models on all
the datasets. Notably it outperforms other models on
the Finnish noun and adjective, and verbs datasets,
whose stems and inflected forms are the longest.

5 Alignment Quality

Figure 3 presents visualisations of segment align-
ments generated by our model for sample instances
from both tasks. We see that the model is able to
learn the correct correspondences between segments
of the input and output sequences. For instance, the
alignment follows a nearly diagonal path for the ex-
ample in Figure 3c, where the input and output se-
quences are identical. In Figure 3b, it learns to add
the prefix ‘ge’ at the start of the sequence and replace
‘en’ with ‘t’ after copying ‘zock’. We observe that
the model is robust on long phrasal mappings. As

1313

</s>
.

,
director

managing
new

a
appointed

has
,

daily
business
us-based

the
of

edition
asian

the
,

asia
journal

street
wall
the

w
al

l

st
re

et

jo
ur

na
l

as
ia

na
m

es

ne
w

m
an

ag
in

g

di
re

ct
or

<
/s
>

...

(a)

</s>
n
e
k
c
o
z

g e z o c k t </s>

(b)

</s>
i
t
n
y
y

m
s
u
n
n
e
l
a

a l e n n u s m y y n t i </s>

(c)

Figure 3: Example alignments found by BiSSNT+. Highlighted grid cells represent the correspondence
between the input and output tokens.

shown in Figure 3a, the mapping between ‘the wall
street journal asia, the asian edition of the us-based
business daily’ and ‘wall street journal asia’ demon-
strates that our model learns to ignore phrasal mod-
ifiers containing additional information. We also
find some examples of word reordering, e.g., the
phrase ‘industrial production in france’ is reordered
as ‘france industrial output’ in the model’s predicted
output.

6 Related Work

Our work is inspired by the seminal HMM align-
ment model (Vogel et al., 1996; Tillmann et al.,
1997) proposed for machine translation. In contrast
to that work, when predicting a target word we addi-
tionally condition on all previously generated words,
which is enabled by the recurrent neural models.
This means that the model also functions as a con-
ditional language model. It can therefore be applied
directly, while traditional models have to be com-
bined with a language model through a noisy chan-
nel in order to be effective. Additionally, instead of
EM training on the most likely alignments at each

iteration, our model is trained with direct gradient
descent, marginalizing over all the alignments.

Latent variables have been employed in neural
network-based models for sequence labelling tasks
in the past. Examples include connectionist tem-
poral classification (CTC) (Graves et al., 2006) for
speech recognition and the more recent segmental
recurrent neural networks (SRNNs) (Kong et al.,
2016), with applications on handwriting recogni-
tion and part-of-speech tagging. Weighted finite-
state transducers (WFSTs) have also been aug-
mented to encode input sequences with bidirectional
LSTMs (Rastogi et al., 2016), permitting exact in-
ference over all possible output strings. While these
models have been shown to achieve appealing per-
formance on different applications, they have com-
mon limitations in terms of modelling dependencies
between labels. It is not possible for CTCs to model
explicit dependencies. SRNNs and neural WFSTs
model fixed-length dependencies, making it is diffi-
cult to carry out effective inference as the dependen-
cies become longer.

Our model shares the property of the sequence

1314

transduction model of Graves (2012) in being able
to model unbounded dependencies between output
tokens via an output RNN. This property makes it
possible to apply our model to tasks like summarisa-
tion and machine translation that require the tokens
in the output sequence to be modelled highly depen-
dently. Graves (2012) models the joint distribution
over outputs and alignments by inserting null sym-
bols (representing shift operations) into the output
sequence. During training the model uses dynamic
programming to marginalize over permutations of
the null symbols, while beam search is employed
during decoding. In contrast our model defines a
separate latent alignment variable, which adds flex-
ibility to the way the alignment distribution can be
defined (as a geometric distribution or parameterised
by a neural network) and how the alignments can
be constrained, without redefining the dynamic pro-
gram. In addition to marginalizing during training,
our decoding algorithm also makes use of dynamic
programming, allowing us to use either no beam or
small beam sizes.

Our work is also related to the attention-
based models first introduced for machine transla-
tion (Bahdanau et al., 2015). Luong et al. (2015)
proposed two alternative attention mechanisms: a
global method that attends all words in the input sen-
tence, and a local one that points to parts of the input
words. Another variation on this theme are pointer
networks (Vinyals et al., 2015), where the outputs
are pointers to elements of the variable-length in-
put, predicted by the attention distribution. Jaitly et
al. (2016) propose an online sequence to sequence
model with attention that conditions on fixed-sized
blocks of the input sequence and emits output tokens
corresponding to each block. The model is trained
with alignment information to generate supervised
segmentations.

Although our model shares the same idea of joint
training and aligning with the attention-based mod-
els, our design has fundamental differences and ad-
vantages. While attention-based models treat the at-
tention weights as output of a deterministic func-
tion (soft-alignment), in our model the attention
weights correspond to a hidden variable, that can be
marginalized out using dynamic programming. Fur-
ther, our model’s inherent online nature permits it
the flexibility to use its capacity to chose how much

input to encode before decoding each segment.

7 Conclusion

We have proposed a novel segment to segment neu-
ral transduction model that tackles the limitations of
vanilla encoder-decoders that have to read and mem-
orize an entire input sequence in a fixed-length con-
text vector before producing any output. By intro-
ducing a latent segmentation that determines corre-
spondences between tokens of the input and output
sequences, our model learns to generate and align
jointly. During training, the hidden alignment is
marginalized out using dynamic programming, and
during decoding the best alignment path is gener-
ated alongside the predicted output sequence. By
employing a unidirectional LSTM as encoder, our
model is capable of doing online generation. Exper-
iments on two representative natural language pro-
cessing tasks, abstractive sentence summarisation
and morphological inflection generation, showed
that our model significantly outperforms encoder-
decoder baselines while requiring much smaller hid-
den layers. For future work we would like to incor-
porate attention-based models to our framework to
enable such models to process data online.

Acknowledgments

We thank Chris Dyer, Karl Moritz Hermann, Ed-
ward Grefenstette, Tomáš Kǒciský, Gabor Melis,
Yishu Miao and many others for their helpful com-
ments. The first author is funded by EPSRC.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using RNN encoder-decoder for statistical ma-
chine translation. In Proceedings of EMNLP.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
NAACL.

1315

Greg Durrett and John DeNero. 2013. Supervised learn-
ing of complete morphological paradigms. In Pro-
ceedings of HLT-NAACL.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning. In
Proceedings of NAACL.

David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda.
2003. English gigaword. Linguistic Data Consortium,
Philadelphia.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of
ICML.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.
Neural turing machines. CoRR, abs/1410.5401.

Alex Graves. 2012. Sequence transduction with recur-
rent neural networks. arXiv preprint arXiv:1211.3711.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Su-
leyman, and Phil Blunsom. 2015. Learning to trans-
duce with unbounded memory. In Proceedings of
NIPS, pages 1819–1827.

Çaglar Gülçehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing the
unknown words. CoRR, abs/1603.08148.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Navdeep Jaitly, David Sussillo, Quoc V. Le, Oriol
Vinyals, Ilya Sutskever, and Samy Bengio. 2016. A
neural transducer. In Proceedings of NIPS.

Nal Kalchbrenner and Phil Blunsom. 2013. Recur-
rent continuous translation models. In Proceedings of
EMNLP.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings of
ICIR.

Lingpeng Kong, Chris Dyer, and Noah A Smith. 2016.
Segmental recurrent neural networks. In Proceedings
of ICLR.

Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury,
Robert English, Brian Pierce, Peter Ondruska, Ishaan
Gulrajani, and Richard Socher. 2016. Ask me any-
thing: Dynamic memory networks for natural lan-
guage processing. In Proceedings of ICML.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In Proceedings of EMNLP.

Courtney Napoles, Matthew Gormley, and Benjamin
Van Durme. 2012. Annotated gigaword. In Proceed-
ings of the Joint Workshop on Automatic Knowledge
Base Construction and Web-scale Knowledge Extrac-
tion.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In Proceedings of NAACL.

Lawrence R Rabiner. 1989. A tutorial on hidden markov
models and selected applications in speech recogni-
tion. Proceedings of the IEEE, 77(2):257–286.

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner.
2016. Weighting finite-state transductions with neural
context. In Proceedings of NAACL.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of EMNLP.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Proceedings of NIPS.

Christoph Tillmann, Stephan Vogel, Hermann Ney, and
Alex Zubiaga. 1997. A DP-based search using mono-
tone alignments in statistical translation. In Proceed-
ings of EACL.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Proceedings of NIPS.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
1996. HMM-based word alignment in statistical trans-
lation. In Proceedings of COLING.

Jason Weston, Sumit Chopra, and Antoine Bordes. 2015.
Memory networks. In Proceedings of ICLR.

1316

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1317–1327,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Sequence-Level Knowledge Distillation

Yoon Kim
yoonkim@seas.harvard.edu

Alexander M. Rush
srush@seas.harvard.edu

School of Engineering and Applied Sciences
Harvard University

Cambridge, MA, USA

Abstract

Neural machine translation (NMT) offers a
novel alternative formulation of translation
that is potentially simpler than statistical ap-
proaches. However to reach competitive per-
formance, NMT models need to be exceed-
ingly large. In this paper we consider applying
knowledge distillation approaches (Bucila et
al., 2006; Hinton et al., 2015) that have proven
successful for reducing the size of neural mod-
els in other domains to the problem of NMT.
We demonstrate that standard knowledge dis-
tillation applied to word-level prediction can
be effective for NMT, and also introduce two
novel sequence-level versions of knowledge
distillation that further improve performance,
and somewhat surprisingly, seem to elimi-
nate the need for beam search (even when ap-
plied on the original teacher model). Our best
student model runs 10 times faster than its
state-of-the-art teacher with little loss in per-
formance. It is also significantly better than
a baseline model trained without knowledge
distillation: by 4.2/1.7 BLEU with greedy de-
coding/beam search. Applying weight prun-
ing on top of knowledge distillation results in
a student model that has 13× fewer param-
eters than the original teacher model, with a
decrease of 0.4 BLEU.

1 Introduction

Neural machine translation (NMT) (Kalchbrenner
and Blunsom, 2013; Cho et al., 2014; Sutskever et
al., 2014; Bahdanau et al., 2015) is a deep learning-
based method for translation that has recently shown
promising results as an alternative to statistical ap-

proaches. NMT systems directly model the proba-
bility of the next word in the target sentence sim-
ply by conditioning a recurrent neural network on
the source sentence and previously generated target
words.

While both simple and surprisingly accurate,
NMT systems typically need to have very high ca-
pacity in order to perform well: Sutskever et al.
(2014) used a 4-layer LSTM with 1000 hidden units
per layer (herein 4×1000) and Zhou et al. (2016) ob-
tained state-of-the-art results on English → French
with a 16-layer LSTM with 512 units per layer. The
sheer size of the models requires cutting-edge hard-
ware for training and makes using the models on
standard setups very challenging.

This issue of excessively large networks has been
observed in several other domains, with much fo-
cus on fully-connected and convolutional networks
for multi-class classification. Researchers have par-
ticularly noted that large networks seem to be nec-
essary for training, but learn redundant representa-
tions in the process (Denil et al., 2013). Therefore
compressing deep models into smaller networks has
been an active area of research. As deep learning
systems obtain better results on NLP tasks, compres-
sion also becomes an important practical issue with
applications such as running deep learning models
for speech and translation locally on cell phones.

Existing compression methods generally fall into
two categories: (1) pruning and (2) knowledge dis-
tillation. Pruning methods (LeCun et al., 1990; He
et al., 2014; Han et al., 2016), zero-out weights or
entire neurons based on an importance criterion: Le-
Cun et al. (1990) use (a diagonal approximation to)

1317

the Hessian to identify weights whose removal min-
imally impacts the objective function, while Han
et al. (2016) remove weights based on threshold-
ing their absolute values. Knowledge distillation ap-
proaches (Bucila et al., 2006; Ba and Caruana, 2014;
Hinton et al., 2015) learn a smaller student network
to mimic the original teacher network by minimiz-
ing the loss (typically L2 or cross-entropy) between
the student and teacher output.

In this work, we investigate knowledge distilla-
tion in the context of neural machine translation. We
note that NMT differs from previous work which has
mainly explored non-recurrent models in the multi-
class prediction setting. For NMT, while the model
is trained on multi-class prediction at the word-level,
it is tasked with predicting complete sequence out-
puts conditioned on previous decisions. With this
difference in mind, we experiment with standard
knowledge distillation for NMT and also propose
two new versions of the approach that attempt to ap-
proximately match the sequence-level (as opposed
to word-level) distribution of the teacher network.
This sequence-level approximation leads to a sim-
ple training procedure wherein the student network
is trained on a newly generated dataset that is the
result of running beam search with the teacher net-
work.

We run experiments to compress a large state-of-
the-art 4 × 1000 LSTM model, and find that with
sequence-level knowledge distillation we are able to
learn a 2× 500 LSTM that roughly matches the per-
formance of the full system. We see similar results
compressing a 2 × 500 model down to 2 × 100 on
a smaller data set. Furthermore, we observe that
our proposed approach has other benefits, such as
not requiring any beam search at test-time. As a re-
sult we are able to perform greedy decoding on the
2 × 500 model 10 times faster than beam search on
the 4 × 1000 model with comparable performance.
Our student models can even be run efficiently on
a standard smartphone.1 Finally, we apply weight
pruning on top of the student network to obtain a
model that has 13× fewer parameters than the origi-
nal teacher model. We have released all the code for
the models described in this paper.2

1https://github.com/harvardnlp/nmt-android
2https://github.com/harvardnlp/seq2seq-attn

2 Background

2.1 Sequence-to-Sequence with Attention

Let s = [s1, . . . , sI] and t = [t1, . . . , tJ] be (random
variable sequences representing) the source/target
sentence, with I and J respectively being the
source/target lengths. Machine translation involves
finding the most probable target sentence given the
source:

argmax
t∈T

p(t | s)

where T is the set of all possible sequences. NMT
models parameterize p(t | s) with an encoder neural
network which reads the source sentence and a de-
coder neural network which produces a distribution
over the target sentence (one word at a time) given
the source. We employ the attentional architecture
from Luong et al. (2015), which achieved state-of-
the-art results on English→ German translation.3

2.2 Knowledge Distillation

Knowledge distillation describes a class of methods
for training a smaller student network to perform
better by learning from a larger teacher network
(in addition to learning from the training data set).
We generally assume that the teacher has previously
been trained, and that we are estimating parame-
ters for the student. Knowledge distillation suggests
training by matching the student’s predictions to the
teacher’s predictions. For classification this usually
means matching the probabilities either via L2 on
the log scale (Ba and Caruana, 2014) or by cross-
entropy (Li et al., 2014; Hinton et al., 2015).

Concretely, assume we are learning a multi-class
classifier over a data set of examples of the form
(x, y) with possible classes V . The usual training
criteria is to minimize NLL for each example from
the training data,

LNLL(θ) = −
|V|∑

k=1

1{y = k} log p(y = k |x; θ)

where 1{·} is the indicator function and p the
distribution from our model (parameterized by θ).

3Specifically, we use the global-general attention model
with the input-feeding approach. We refer the reader to the orig-
inal paper for further details.

1318

Figure 1: Overview of the different knowledge distillation approaches. In word-level knowledge distillation (left) cross-entropy

is minimized between the student/teacher distributions (yellow) for each word in the actual target sequence (ECD), as well as

between the student distribution and the degenerate data distribution, which has all of its probabilitiy mass on one word (black). In

sequence-level knowledge distillation (center) the student network is trained on the output from beam search of the teacher network

that had the highest score (ACF). In sequence-level interpolation (right) the student is trained on the output from beam search of

the teacher network that had the highest sim with the target sequence (ECE).

This objective can be seen as minimizing the cross-
entropy between the degenerate data distribution
(which has all of its probability mass on one class)
and the model distribution p(y |x; θ).

In knowledge distillation, we assume access to
a learned teacher distribution q(y |x; θT), possibly
trained over the same data set. Instead of minimiz-
ing cross-entropy with the observed data, we instead
minimize the cross-entropy with the teacher’s prob-
ability distribution,

LKD(θ; θT) =−
|V|∑

k=1

q(y = k |x; θT)×

log p(y = k |x; θ)

where θT parameterizes the teacher distribution and
remains fixed. Note the cross-entropy setup is iden-
tical, but the target distribution is no longer a sparse
distribution.4 Training on q(y |x; θT) is attractive
since it gives more information about other classes
for a given data point (e.g. similarity between
classes) and has less variance in gradients (Hinton
et al., 2015).

4 In some cases the entropy of the teacher/student distribu-
tion is increased by annealing it with a temperature term τ > 1

p̃(y |x) ∝ p(y |x)
1
τ

After testing τ ∈ {1, 1.5, 2} we found that τ = 1 worked best.

Since this new objective has no direct term for the
training data, it is common practice to interpolate
between the two losses,

L(θ; θT) = (1− α)LNLL(θ) + αLKD(θ; θT)

where α is mixture parameter combining the one-hot
distribution and the teacher distribution.

3 Knowledge Distillation for NMT

The large sizes of neural machine translation sys-
tems make them an ideal candidate for knowledge
distillation approaches. In this section we explore
three different ways this technique can be applied to
NMT.

3.1 Word-Level Knowledge Distillation
NMT systems are trained directly to minimize word
NLL, LWORD-NLL, at each position. Therefore if
we have a teacher model, standard knowledge distil-
lation for multi-class cross-entropy can be applied.
We define this distillation for a sentence as,

LWORD-KD = −
J∑

j=1

|V|∑

k=1

q(tj = k | s, t<j)×

log p(tj = k | s, t<j)

where V is the target vocabulary set. The student
can further be trained to optimize the mixture of

1319

LWORD-KD and LWORD-NLL. In the context of NMT,
we refer to this approach as word-level knowledge
distillation and illustrate this in Figure 1 (left).

3.2 Sequence-Level Knowledge Distillation
Word-level knowledge distillation allows transfer of
these local word distributions. Ideally however, we
would like the student model to mimic the teacher’s
actions at the sequence-level. The sequence distri-
bution is particularly important for NMT, because
wrong predictions can propagate forward at test-
time.

First, consider the sequence-level distribution
specified by the model over all possible sequences
t ∈ T ,

p(t | s) =
J∏

j=1

p(tj | s, t<j)

for any length J . The sequence-level negative log-
likelihood for NMT then involves matching the one-
hot distribution over all complete sequences,

LSEQ-NLL = −
∑

t∈T
1{t = y} log p(t | s)

= −
J∑

j=1

|V|∑

k=1

1{yj = k} log p(tj = k | s, t<j)

= LWORD-NLL

where y = [y1, . . . , yJ] is the observed sequence.
Of course, this just shows that from a negative
log likelihood perspective, minimizing word-level
NLL and sequence-level NLL are equivalent in this
model.

But now consider the case of sequence-level
knowledge distillation. As before, we can simply
replace the distribution from the data with a prob-
ability distribution derived from our teacher model.
However, instead of using a single word prediction,
we use q(t | s) to represent the teacher’s sequence
distribution over the sample space of all possible se-
quences,

LSEQ-KD = −
∑

t∈T
q(t | s) log p(t | s)

Note that LSEQ-KD is inherently different from
LWORD-KD, as the sum is over an exponential num-
ber of terms. Despite its intractability, we posit

that this sequence-level objective is worthwhile. It
gives the teacher the chance to assign probabilities to
complete sequences and therefore transfer a broader
range of knowledge. We thus consider an approxi-
mation of this objective.

Our simplest approximation is to replace the
teacher distribution q with its mode,

q(t | s) ∼ 1{t = argmax
t∈T

q(t | s)}

Observing that finding the mode is itself intractable,
we use beam search to find an approximation. The
loss is then

LSEQ-KD ≈ −
∑

t∈T
1{t = ŷ} log p(t | s)

= − log p(t = ŷ | s)

where ŷ is now the output from running beam search
with the teacher model.

Using the mode seems like a poor approximation
for the teacher distribution q(t | s), as we are ap-
proximating an exponentially-sized distribution with
a single sample. However, previous results showing
the effectiveness of beam search decoding for NMT
lead us to belief that a large portion of q’s mass lies
in a single output sequence. In fact, in experiments
we find that with beam of size 1, q(ŷ | s) (on aver-
age) accounts for 1.3% of the distribution for Ger-
man→ English, and 2.3% for Thai→ English (Ta-
ble 1: p(t = ŷ)).5

To summarize, sequence-level knowledge distil-
lation suggests to: (1) train a teacher model, (2) run
beam search over the training set with this model, (3)
train the student network with cross-entropy on this
new dataset. Step (3) is identical to the word-level
NLL process except now on the newly-generated
data set. This is shown in Figure 1 (center).

5Additionally there are simple ways to better approximate
q(t | s). One way would be to consider a K-best list from beam
search and renormalizing the probabilities,

q(t | s) ∼ q(t | s)∑
t∈TK q(t | s)

where TK is the K-best list from beam search. This would
increase the training set by a factor of K. A beam of size
5 captures 2.8% of the distribution for German → English,
and 3.8% for Thai → English. Another alternative is to use a
Monte Carlo estimate and sample from the teacher model (since
LSEQ-KD = Et∼q(t | s)[− log p(t | s)]). However in practice we
found the (approximate) mode to work well.

1320

3.3 Sequence-Level Interpolation
Next we consider integrating the training data back
into the process, such that we train the student
model as a mixture of our sequence-level teacher-
generated data (LSEQ-KD) with the original training
data (LSEQ-NLL),

L = (1− α)LSEQ-NLL + αLSEQ-KD

= −(1− α) log p(y | s)− α
∑

t∈T
q(t | s) log p(t | s)

where y is the gold target sequence.
Since the second term is intractable, we could

again apply the mode approximation from the pre-
vious section,

L = −(1− α) log p(y | s)− α log p(ŷ | s)

and train on both observed (y) and teacher-
generated (ŷ) data. However, this process is non-
ideal for two reasons: (1) unlike for standard knowl-
edge distribution, it doubles the size of the training
data, and (2) it requires training on both the teacher-
generated sequence and the true sequence, condi-
tioned on the same source input. The latter concern
is particularly problematic since we observe that y
and ŷ are often quite different.

As an alternative, we propose a single-sequence
approximation that is more attractive in this setting.
This approach is inspired by local updating (Liang
et al., 2006), a method for discriminative train-
ing in statistical machine translation (although to
our knowledge not for knowledge distillation). Lo-
cal updating suggests selecting a training sequence
which is close to y and has high probability under
the teacher model,

ỹ = argmax
t∈T

sim(t,y)q(t | s)

where sim is a function measuring closeness (e.g.
Jaccard similarity or BLEU (Papineni et al., 2002)).
Following local updating, we can approximate this
sequence by running beam search and choosing

ỹ ≈ argmax
t∈TK

sim(t,y)

where TK is the K-best list from beam search.
We take sim to be smoothed sentence-level BLEU
(Chen and Cherry, 2014).

We justify training on ỹ from a knowledge distil-
lation perspective with the following generative pro-
cess: suppose that there is a true target sequence
(which we do not observe) that is first generated
from the underlying data distributionD. And further
suppose that the target sequence that we observe (y)
is a noisy version of the unobserved true sequence:
i.e. (i) t ∼ D, (ii) y ∼ ε(t), where ε(t) is, for ex-
ample, a noise function that independently replaces
each element in t with a random element in V with
some small probability.6 In such a case, ideally the
student’s distribution should match the mixture dis-
tribution,

DSEQ-Inter ∼ (1− α)D + αq(t | s)

In this setting, due to the noise assumption,D now
has significant probability mass around a neighbor-
hood of y (not just at y), and therefore the argmax
of the mixture distribution is likely something other
than y (the observed sequence) or ŷ (the output from
beam search). We can see that ỹ is a natural approx-
imation to the argmax of this mixture distribution
between D and q(t | s) for some α. We illustrate
this framework in Figure 1 (right) and visualize the
distribution over a real example in Figure 2.

4 Experimental Setup

To test out these approaches, we conduct two sets of
NMT experiments: high resource (English → Ger-
man) and low resource (Thai→ English).

The English-German data comes from WMT
2014.7 The training set has 4m sentences and we
take newstest2012/newstest2013 as the dev set and
newstest2014 as the test set. We keep the top 50k
most frequent words, and replace the rest with UNK.
The teacher model is a 4 × 1000 LSTM (as in Lu-
ong et al. (2015)) and we train two student models:
2× 300 and 2× 500. The Thai-English data comes
from IWSLT 2015.8 There are 90k sentences in the

6While we employ a simple (unrealistic) noise function for
illustrative purposes, the generative story is quite plausible if we
consider a more elaborate noise function which includes addi-
tional sources of noise such as phrase reordering, replacement
of words with synonyms, etc. One could view translation hav-
ing two sources of variance that should be modeled separately:
variance due to the source sentence (t ∼ D), and variance due
to the individual translator (y ∼ ε(t)).

7http://statmt.org/wmt14
8https://sites.google.com/site/iwsltevaluation2015/mt-track

1321

Figure 2: Visualization of sequence-level interpolation on an

example German → English sentence: Bis 15 Tage vor An-
reise sind Zimmer-Annullationen kostenlos. We run beam

search, plot the final hidden state of the hypotheses using t-SNE

and show the corresponding (smoothed) probabilities with con-

tours. In the above example, the sentence that is at the top of

the beam after beam search (green) is quite far away from gold

(red), so we train the model on a sentence that is on the beam

but had the highest sim (e.g. BLEU) to gold (purple).

training set and we take 2010/2011/2012 data as the
dev set and 2012/2013 as the test set, with a vocabu-
lary size is 25k. Size of the teacher model is 2×500
(which performed better than 4×1000, 2×750 mod-
els), and the student model is 2×100. Other training
details mirror Luong et al. (2015).

We evaluate on tokenized BLEU with
multi-bleu.perl, and experiment with
the following variations:

Word-Level Knowledge Distillation (Word-KD)
Student is trained on the original data and addition-
ally trained to minimize the cross-entropy of the
teacher distribution at the word-level. We tested
α ∈ {0.5, 0.9} and found α = 0.5 to work better.

Sequence-Level Knowledge Distillation (Seq-KD)
Student is trained on the teacher-generated data,
which is the result of running beam search and tak-
ing the highest-scoring sequence with the teacher
model. We use beam size K = 5 (we did not see
improvements with a larger beam).

Sequence-Level Interpolation (Seq-Inter) Stu-
dent is trained on the sequence on the teacher’s beam
that had the highest BLEU (beam size K = 35). We

adopt a fine-tuning approach where we begin train-
ing from a pretrained model (either on original data
or Seq-KD data) and train with a smaller learning
rate (0.1). For English-German we generate Seq-
Inter data on a smaller portion of the training set
(∼ 50%) for efficiency.

The above methods are complementary and can
be combined with each other. For example, we
can train on teacher-generated data but still in-
clude a word-level cross-entropy term between the
teacher/student (Seq-KD + Word-KD in Table 1),
or fine-tune towards Seq-Inter data starting from the
baseline model trained on original data (Baseline +
Seq-Inter in Table 1).9

5 Results and Discussion

Results of our experiments are shown in Table
1. We find that while word-level knowledge dis-
tillation (Word-KD) does improve upon the base-
line, sequence-level knowledge distillation (Seq-
KD) does better on English → German and per-
forms similarly on Thai → English. Combining
them (Seq-KD + Word-KD) results in further gains
for the 2 × 300 and 2 × 100 models (although not
for the 2 × 500 model), indicating that these meth-
ods provide orthogonal means of transferring knowl-
edge from the teacher to the student: Word-KD is
transferring knowledge at the the local (i.e. word)
level while Seq-KD is transferring knowledge at the
global (i.e. sequence) level.

Sequence-level interpolation (Seq-Inter), in addi-
tion to improving models trained via Word-KD and
Seq-KD, also improves upon the original teacher
model that was trained on the actual data but fine-
tuned towards Seq-Inter data (Baseline + Seq-Inter).
In fact, greedy decoding with this fine-tuned model
has similar performance (19.6) as beam search with
the original model (19.5), allowing for faster decod-
ing even with an identically-sized model.

We hypothesize that sequence-level knowledge
distillation is effective because it allows the student
network to only model relevant parts of the teacher
distribution (i.e. around the teacher’s mode) instead
of ‘wasting’ parameters on trying to model the entire

9For instance, ‘Seq-KD + Seq-Inter + Word-KD’ in Table
1 means that the model was trained on Seq-KD data and fine-
tuned towards Seq-Inter data with the mixture cross-entropy
loss at the word-level.

1322

Model BLEUK=1 ∆K=1 BLEUK=5 ∆K=5 PPL p(t = ŷ)

English→ German WMT 2014

Teacher Baseline 4× 1000 (Params: 221m) 17.7 − 19.5 − 6.7 1.3%
Baseline + Seq-Inter 19.6 +1.9 19.8 +0.3 10.4 8.2%

Student Baseline 2× 500 (Params: 84m) 14.7 − 17.6 − 8.2 0.9%
Word-KD 15.4 +0.7 17.7 +0.1 8.0 1.0%
Seq-KD 18.9 +4.2 19.0 +1.4 22.7 16.9%
Baseline + Seq-Inter 18.5 +3.6 18.7 +1.1 11.3 5.7%
Word-KD + Seq-Inter 18.3 +3.6 18.5 +0.9 11.8 6.3%
Seq-KD + Seq-Inter 18.9 +4.2 19.3 +1.7 15.8 7.6%
Seq-KD + Word-KD 18.7 +4.0 18.9 +1.3 10.9 4.1%
Seq-KD + Seq-Inter + Word-KD 18.8 +4.1 19.2 +1.6 14.8 7.1%

Student Baseline 2× 300 (Params: 49m) 14.1 − 16.9 − 10.3 0.6%
Word-KD 14.9 +0.8 17.6 +0.7 10.9 0.7%
Seq-KD 18.1 +4.0 18.1 +1.2 64.4 14.8%
Baseline + Seq-Inter 17.6 +3.5 17.9 +1.0 13.0 10.0%
Word-KD + Seq-Inter 17.8 +3.7 18.0 +1.1 14.5 4.3%
Seq-KD + Seq-Inter 18.2 +4.1 18.5 +1.6 40.8 5.6%
Seq-KD + Word-KD 17.9 +3.8 18.8 +1.9 44.1 3.1%
Seq-KD + Seq-Inter + Word-KD 18.5 +4.4 18.9 +2.0 97.1 5.9%

Thai→ English IWSLT 2015

Teacher Baseline 2× 500 (Params: 47m) 14.3 − 15.7 − 22.9 2.3%
Baseline + Seq-Inter 15.6 +1.3 16.0 +0.3 55.1 6.8%

Student Baseline 2× 100 (Params: 8m) 10.6 − 12.7 − 37.0 1.4%
Word-KD 11.8 +1.2 13.6 +0.9 35.3 1.4%
Seq-KD 12.8 +2.2 13.4 +0.7 125.4 6.9%
Baseline + Seq-Inter 12.9 +2.3 13.1 +0.4 52.8 2.5%
Word-KD + Seq-Inter 13.0 +2.4 13.7 +1.0 58.7 3.2%
Seq-KD + Seq-Inter 13.6 +3.0 14.0 +1.3 106.4 3.9%
Seq-KD + Word-KD 13.7 +3.1 14.2 +1.5 67.4 3.1%
Seq-KD + Seq-Inter + Word-KD 14.2 +3.6 14.4 +1.7 117.4 3.2%

Table 1: Results on English-German (newstest2014) and Thai-English (2012/2013) test sets. BLEUK=1: BLEU score with beam

size K = 1 (i.e. greedy decoding); ∆K=1: BLEU gain over the baseline model without any knowledge distillation with greedy

decoding; BLEUK=5: BLEU score with beam size K = 5; ∆K=5: BLEU gain over the baseline model without any knowledge

distillation with beam size K = 5; PPL: perplexity on the test set; p(t = ŷ): Probability of output sequence from greedy decoding

(averaged over the test set). Params: number of parameters in the model. Best results (as measured by improvement over the

baseline) within each category are highlighted in bold.

space of translations. Our results suggest that this
is indeed the case: the probability mass that Seq-
KD models assign to the approximate mode is much
higher than is the case for baseline models trained
on original data (Table 1: p(t = ŷ)). For example,
on English → German the (approximate) argmax
for the 2 × 500 Seq-KD model (on average) ac-
counts for 16.9% of the total probability mass, while
the corresponding number is 0.9% for the baseline.

This also explains the success of greedy decoding
for Seq-KD models—since we are only modeling
around the teacher’s mode, the student’s distribution
is more peaked and therefore the argmax is much
easier to find. Seq-Inter offers a compromise be-
tween the two, with the greedily-decoded sequence
accounting for 7.6% of the distribution.

Finally, although past work has shown that mod-
els with lower perplexity generally tend to have

1323

Model Size GPU CPU Android

Beam = 1 (Greedy)

4× 1000 425.5 15.0 −
2× 500 1051.3 63.6 8.8
2× 300 1267.8 104.3 15.8

Beam = 5

4× 1000 101.9 7.9 −
2× 500 181.9 22.1 1.9
2× 300 189.1 38.4 3.4

Table 2: Number of source words translated per second across

GPU (GeForce GTX Titan X), CPU, and smartphone (Samsung

Galaxy 6) for the various English→ German models. We were

unable to open the 4× 1000 model on the smartphone.

higher BLEU, our results indicate that this is not
necessarily the case. The perplexity of the baseline
2 × 500 English→ German model is 8.2 while the
perplexity of the corresponding Seq-KD model is
22.7, despite the fact that Seq-KD model does sig-
nificantly better for both greedy (+4.2 BLEU) and
beam search (+1.4 BLEU) decoding.

5.1 Decoding Speed

Run-time complexity for beam search grows linearly
with beam size. Therefore, the fact that sequence-
level knowledge distillation allows for greedy de-
coding is significant, with practical implications for
running NMT systems across various devices. To
test the speed gains, we run the teacher/student mod-
els on GPU, CPU, and smartphone, and check the
average number of source words translated per sec-
ond (Table 2). We use a GeForce GTX Titan X for
GPU and a Samsung Galaxy 6 smartphone. We find
that we can run the student model 10 times faster
with greedy decoding than the teacher model with
beam search on GPU (1051.3 vs 101.9 words/sec),
with similar performance.

5.2 Weight Pruning

Although knowledge distillation enables training
faster models, the number of parameters for the
student models is still somewhat large (Table 1:
Params), due to the word embeddings which dom-
inate most of the parameters.10 For example, on the

10Word embeddings scale linearly while RNN parameters
scale quadratically with the dimension size.

Model Prune % Params BLEU Ratio

4× 1000 0% 221 m 19.5 1×
2× 500 0% 84 m 19.3 3×
2× 500 50% 42 m 19.3 5×
2× 500 80% 17 m 19.1 13×
2× 500 85% 13 m 18.8 18×
2× 500 90% 8 m 18.5 26×

Table 3: Performance of student models with varying % of the

weights pruned. Top two rows are models without any pruning.

Params: number of parameters in the model; Prune %: Percent-

age of weights pruned based on their absolute values; BLEU:

BLEU score with beam search decoding (K = 5) after retrain-

ing the pruned model; Ratio: Ratio of the number of parameters

versus the original teacher model (which has 221m parameters).

2 × 500 English → German model the word em-
beddings account for approximately 63% (50m out
of 84m) of the parameters. The size of word em-
beddings have little impact on run-time as the word
embedding layer is a simple lookup table that only
affects the first layer of the model.

We therefore focus next on reducing the mem-
ory footprint of the student models further through
weight pruning. Weight pruning for NMT was re-
cently investigated by See et al. (2016), who found
that up to 80 − 90% of the parameters in a large
NMT model can be pruned with little loss in perfor-
mance. We take our best English→ German student
model (2× 500 Seq-KD + Seq-Inter) and prune x%
of the parameters by removing the weights with the
lowest absolute values. We then retrain the pruned
model on Seq-KD data with a learning rate of 0.2
and fine-tune towards Seq-Inter data with a learning
rate of 0.1. As observed by See et al. (2016), re-
training proved to be crucial. The results are shown
in Table 3.

Our findings suggest that compression benefits
achieved through weight pruning and knowledge
distillation are orthogonal.11 Pruning 80% of the
weight in the 2 × 500 student model results in a
model with 13× fewer parameters than the original
teacher model with only a decrease of 0.4 BLEU.
While pruning 90% of the weights results in a more
appreciable decrease of 1.0 BLEU, the model is

11To our knowledge combining pruning and knowledge dis-
tillation has not been investigated before.

1324

drastically smaller with 8m parameters, which is
26× fewer than the original teacher model.

5.3 Further Observations
• For models trained with word-level knowledge

distillation, we also tried regressing the student
network’s top-most hidden layer at each time
step to the teacher network’s top-most hidden
layer as a pretraining step, noting that Romero
et al. (2015) obtained improvements with a
similar technique on feed-forward models. We
found this to give comparable results to stan-
dard knowledge distillation and hence did not
pursue this further.

• There have been promising recent results on
eliminating word embeddings completely and
obtaining word representations directly from
characters with character composition models,
which have many fewer parameters than word
embedding lookup tables (Ling et al., 2015a;
Kim et al., 2016; Ling et al., 2015b; Jozefowicz
et al., 2016; Costa-Jussa and Fonollosa, 2016).
Combining such methods with knowledge dis-
tillation/pruning to further reduce the memory
footprint of NMT systems remains an avenue
for future work.

6 Related Work

Compressing deep learning models is an active area
of current research. Pruning methods involve prun-
ing weights or entire neurons/nodes based on some
criterion. LeCun et al. (1990) prune weights based
on an approximation of the Hessian, while Han et al.
(2016) show that a simple magnitude-based pruning
works well. Prior work on removing neurons/nodes
include Srinivas and Babu (2015) and Mariet and
Sra (2016). See et al. (2016) were the first to ap-
ply pruning to Neural Machine Translation, observ-
ing that that different parts of the architecture (in-
put word embeddings, LSTM matrices, etc.) admit
different levels of pruning. Knowledge distillation
approaches train a smaller student model to mimic
a larger teacher model, by minimizing the loss be-
tween the teacher/student predictions (Bucila et al.,
2006; Ba and Caruana, 2014; Li et al., 2014; Hin-
ton et al., 2015). Romero et al. (2015) addition-
ally regress on the intermediate hidden layers of the

student/teacher network as a pretraining step, while
Mou et al. (2015) obtain smaller word embeddings
from a teacher model via regression. There has also
been work on transferring knowledge across differ-
ent network architectures: Chan et al. (2015b) show
that a deep non-recurrent neural network can learn
from an RNN; Geras et al. (2016) train a CNN to
mimic an LSTM for speech recognition. Kuncoro
et al. (2016) recently investigated knowledge distil-
lation for structured prediction by having a single
parser learn from an ensemble of parsers.

Other approaches for compression involve low
rank factorizations of weight matrices (Denton et al.,
2014; Jaderberg et al., 2014; Lu et al., 2016; Prab-
havalkar et al., 2016), sparsity-inducing regularizers
(Murray and Chiang, 2015), binarization of weights
(Courbariaux et al., 2016; Lin et al., 2016), and
weight sharing (Chen et al., 2015; Han et al., 2016).
Finally, although we have motivated sequence-level
knowledge distillation in the context of training a
smaller model, there are other techniques that train
on a mixture of the model’s predictions and the data,
such as local updating (Liang et al., 2006), hope/fear
training (Chiang, 2012), SEARN (Daumé III et al.,
2009), DAgger (Ross et al., 2011), and minimum
risk training (Och, 2003; Shen et al., 2016).

7 Conclusion

In this work we have investigated existing knowl-
edge distillation methods for NMT (which work at
the word-level) and introduced two sequence-level
variants of knowledge distillation, which provide
improvements over standard word-level knowledge
distillation.

We have chosen to focus on translation as this
domain has generally required the largest capacity
deep learning models, but the sequence-to-sequence
framework has been successfully applied to a wide
range of tasks including parsing (Vinyals et al.,
2015a), summarization (Rush et al., 2015), dialogue
(Vinyals and Le, 2015; Serban et al., 2016; Li et
al., 2016), NER/POS-tagging (Gillick et al., 2016),
image captioning (Vinyals et al., 2015b; Xu et al.,
2015), video generation (Srivastava et al., 2015), and
speech recognition (Chan et al., 2015a). We antici-
pate that methods described in this paper can be used
to similarly train smaller models in other domains.

1325

References
[Ba and Caruana2014] Lei Jimmy Ba and Rich Caruana.

2014. Do Deep Nets Really Need to be Deep? In
Proceedings of NIPS.

[Bahdanau et al.2015] Dzmitry Bahdanau, Kyunghyun
Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate.
In Proceedings of ICLR.

[Bucila et al.2006] Cristian Bucila, Rich Caruana, and
Alexandru Niculescu-Mizil. 2006. Model Compres-
sion. In Proceedings of KDD.

[Chan et al.2015a] William Chan, Navdeep Jaitly, Quoc
Le, and Oriol Vinyals. 2015a. Listen, Attend and
Spell. arXiv:1508.01211.

[Chan et al.2015b] William Chan, Nan Rosemary Ke, and
Ian Laner. 2015b. Transfering Knowledge from a
RNN to a DNN. arXiv:1504.01483.

[Chen and Cherry2014] Boxing Chen and Colin Cherry.
2014. A Systematic Comparison of Smoothing Tech-
niques for Sentence-Level BLEU. In Proceedings of
the Ninth Workshop on Statistical Machine Transla-
tion.

[Chen et al.2015] Wenlin Chen, James T. Wilson, Stephen
Tyree, Kilian Q. Weinberger, and Yixin Chen. 2015.
Compressing Neural Networks with the Hashing
Trick. In Proceedings of ICML.

[Chiang2012] David Chiang. 2012. Hope and Fear
for Discriminative Training of Statistical Translation
Models. In JMLR.

[Cho et al.2014] Kyunghyun Cho, Bart van Merrienboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014. Learning
Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation. In Proceedings of
EMNLP.

[Costa-Jussa and Fonollosa2016] Marta R. Costa-Jussa
and Jose A.R. Fonollosa. 2016. Character-based Neu-
ral Machine Translation. arXiv:1603.00810.

[Courbariaux et al.2016] Matthieu Courbariaux, Itay
Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized Neural Networks: Training
Neural Networks with Weights and Activations
Constrained to +1 or −1. arXiv:1602.02830.

[Daumé III et al.2009] Hal Daumé III, John Langford,
and Daniel Marcu. 2009. Search-based Structured
Prediction. Machine Learning.

[Denil et al.2013] Misha Denil, Babak Shakibi, Laurent
Dinh, Marc’Aurelio Ranzato, and Nando de Freitas.
2013. Predicting Parameters in Deep Learning. In
Proceedings of NIPS.

[Denton et al.2014] Emily L. Denton, Wojciech Zaremba,
Joan Bruna, Yann LeCun, and Rob Fergus. 2014. Ex-
ploiting Linear Structure within Convolutional Neural

Networks for Efficient Evaluation. In Proceedings of
NIPS.

[Geras et al.2016] Krzysztof J. Geras, Abdel rahman Mo-
hamed, Rich Caruana, Gregor Urban, Shengjie Wang,
Ozlem Aslan, Matthai Philipose, Matthew Richard-
son, and Charles Sutton. 2016. Blending LSTMs into
CNNs. In Proceedings of ICLR Workshop.

[Gillick et al.2016] Dan Gillick, Cliff Brunk, Oriol
Vinyals, and Amarnag Subramanya. 2016. Multilin-
gual Language Processing from Bytes. In Proceedings
of NAACL.

[Han et al.2016] Song Han, Huizi Mao, and William J.
Dally. 2016. Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization
and Huffman Coding. In Proceedings of ICLR.

[He et al.2014] Tianxing He, Yuchen Fan, Yanmin Qian,
Tian Tan, and Kai Yu. 2014. Reshaping Deep Neu-
ral Network for Fast Decoding by Node-Pruning. In
Proceedings of ICASSP.

[Hinton et al.2015] Geoffrey Hinton, Oriol Vinyals, and
Jeff Dean. 2015. Distilling the Knowledge in a Neural
Network. arXiv:1503.0253.

[Jaderberg et al.2014] Max Jaderberg, Andrea Vedaldi,
and Andrew Zisserman. 2014. Speeding up Convo-
lutional Neural Networks with Low Rank Expansions.
In BMCV.

[Jozefowicz et al.2016] Rafal Jozefowicz, Oriol Vinyals,
Mike Schuster, Noam Shazeer, and Yonghui Wu.
2016. Exploring the Limits of Language Modeling.
arXiv:1602.02410.

[Kalchbrenner and Blunsom2013] Nal Kalchbrenner and
Phil Blunsom. 2013. Recurrent Continuous Transla-
tion Models. In Proceedings of EMNLP.

[Kim et al.2016] Yoon Kim, Yacine Jernite, David Son-
tag, and Alexander M. Rush. 2016. Character-Aware
Neural Language Models. In Proceedings of AAAI.

[Kuncoro et al.2016] Adhiguna Kuncoro, Miguel Balles-
teros, Lingpeng Kong, Chris Dyer, and Noah A. Smith.
2016. Distilling an Ensemble of Greedy Dependency
Parsers into One MST Parser. In Proceedings of
EMNLP.

[LeCun et al.1990] Yann LeCun, John S. Denker, and
Sara A. Solla. 1990. Optimal Brain Damage. In Pro-
ceedings of NIPS.

[Li et al.2014] Jinyu Li, Rui Zhao, Jui-Ting Huang, and
Yifan Gong. 2014. Learning Small-Size DNN with
Output-Distribution-Based Criteria. In Proceedings of
INTERSPEECH.

[Li et al.2016] Jiwei Li, Michael Galley, Chris Brockett,
Jianfeg Gao, and Bill Dolan. 2016. A Diversity-
Promoting Objective Function for Neural Conversa-
tional Models. In Proceedings of NAACL 2016.

1326

[Liang et al.2006] Percy Liang, Alexandre Bouchard-
Cote, Dan Klein, and Ben Taskar. 2006. An End-to-
End Discriminative Approach to Machine Translation.
In Proceedings of COLING-ACL.

[Lin et al.2016] Zhouhan Lin, Matthieu Coubariaux,
Roland Memisevic, and Yoshua Bengio. 2016. Neural
Networks with Few Multiplications. In Proceedings of
ICLR.

[Ling et al.2015a] Wang Ling, Tiago Lui, Luis Marujo,
Ramon Fernandez Astudillo, Silvio Amir, Chris Dyer,
Alan W Black, and Isabel Trancoso. 2015a. Finding
Function in Form: Composition Character Models for
Open Vocabulary Word Representation. In Proceed-
ings of EMNLP.

[Ling et al.2015b] Wang Ling, Isabel Trancoso, Chris
Dyer, and Alan W Black. 2015b. Character-based
Neural Machine Translation. arXiv:1511.04586.

[Lu et al.2016] Zhiyun Lu, Vikas Sindhwani, and Tara N.
Sainath. 2016. Learning Compact Recurrent Neural
Networks. In Proceedings of ICASSP.

[Luong et al.2015] Minh-Thang Luong, Hieu Pham, and
Christopher D. Manning. 2015. Effective Approaches
to Attention-based Neural Machine Translation. In
Proceedings of EMNLP.

[Mariet and Sra2016] Zelda Mariet and Suvrit Sra. 2016.
Diversity Networks. In Proceedings of ICLR.

[Mou et al.2015] Lili Mou, Ge Li, Yan Xu, Lu Zhang, and
Zhi Jin. 2015. Distilling Word Embeddings: An En-
coding Approach. arXiv:1506.04488.

[Murray and Chiang2015] Kenton Murray and David
Chiang. 2015. Auto-sizing Neural Networks: With
Applications to N-Gram Language Models. In Pro-
ceedings of EMNLP.

[Och2003] Franz J. Och. 2003. Minimum Error Rate
Training in Statistical Machine Translation. In Pro-
ceedings of ACL.

[Papineni et al.2002] Kishore Papineni, Slim Roukos,
Todd Ward, and Wei-Jing Zhu. 2002. BLEU: A
Method for Automatic Evaluation of Machine Trans-
lation. In Proceedings of ICML.

[Prabhavalkar et al.2016] Rohit Prabhavalkar, Ouais Al-
sharif, Antoine Bruguier, and Ian McGraw. 2016.
On the Compression of Recurrent Neural Networks
with an Application to LVCSR Acoustic Modeling for
Embedded Speech Recognition. In Proceedings of
ICASSP.

[Romero et al.2015] Adriana Romero, Nicolas Ballas,
Samira Ebrahimi Kahou, Antoine Chassang, Carlo
Gatta, and Yoshua Bengio. 2015. FitNets: Hints for
Thin Deep Nets. In Proceedings of ICLR.

[Ross et al.2011] Stephane Ross, Geoffrey J. Gordon, and
Drew Bagnell. 2011. A Reduction of Imitation Learn-
ing and Structured Prediction to No-Regret Online
Learning. In Proceedings of AISTATS.

[Rush et al.2015] Alexander M. Rush, Sumit Chopra, and
Jason Weston. 2015. A Neural Attention Model for
Abstractive Sentence Summarization. In Proceedings
of EMNLP.

[See et al.2016] Abigail See, Minh-Thang Luong, and
Christopher D. Manning. 2016. Compression of Neu-
ral Machine Translation via Pruning. In Proceedings
of CoNLL.

[Serban et al.2016] Iulian V. Serban, Allesandro Sordoni,
Yoshua Bengio, Aaron Courville, and Joelle Pineau.
2016. Building End-to-End Dialogue Systems Using
Generative Hierarchical Neural Network Models. In
Proceedings of AAAI.

[Shen et al.2016] Shiqi Shen, Yong Cheng, Zhongjun He,
Wei He, Hua Wu, Masong Sun, and Yang Liu. 2016.
Minimum Risk Training for Neural Machine Transla-
tion. In Proceedings of ACL.

[Srinivas and Babu2015] Suraj Srinivas and R. Venkatesh
Babu. 2015. Data-free Parameter Pruning for Deep
Neural Networks. BMVC.

[Srivastava et al.2015] Nitish Srivastava, Elman Mansi-
mov, and Ruslan Salakhutdinov. 2015. Unsupervised
Learning of Video Representations using LSTMs.
Proceedings of ICML.

[Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals, and
Quoc Le. 2014. Sequence to Sequence Learning with
Neural Networks. In Proceedings of NIPS.

[Vinyals and Le2015] Oriol Vinyals and Quoc Le. 2015.
A Neural Conversational Model. In Proceedings of
ICML Deep Learning Workshop.

[Vinyals et al.2015a] Oriol Vinyals, Lukasz Kaiser, Terry
Koo, Slave Petrov, Ilya Sutskever, and Geoffrey Hin-
ton. 2015a. Grammar as a Foreign Language. In Pro-
ceedings of NIPS.

[Vinyals et al.2015b] Oriol Vinyals, Alexander Toshev,
Samy Bengio, and Dumitru Erhan. 2015b. Show and
Tell: A Neural Image Caption Generator. In Proceed-
ings of CVPR.

[Xu et al.2015] Kelvin Xu, Jimma Ba, Ryan Kiros,
Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdi-
nov, Richard Zemel, and Yoshua Bengio. 2015. Show,
Attend and Tell: Neural Image Caption Generation
with Visual Attention. In Proceedings of ICML.

[Zhou et al.2016] Jie Zhou, Ying Cao, Xuguang Wang,
Peng Li, and Wei Xu. 2016. Deep Recurrent Models
with Fast-Forward Connections for Neural Machine
Translation. In Proceedings of TACL.

1327

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1328–1338,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Controlling Output Length in Neural Encoder-Decoders

Yuta Kikuchi1∗

kikuchi@lr.pi.titech.ac.jp

Graham Neubig2†

gneubig@cs.cmu.edu

Ryohei Sasano1

sasano@pi.titech.ac.jp

Hiroya Takamura1

takamura@pi.titech.ac.jp

Manabu Okumura1

oku@pi.titecjh.ac.jp

1Tokyo Institute of Technology, Japan
2Carnegie Mellon University, USA

Abstract

Neural encoder-decoder models have shown
great success in many sequence generation
tasks. However, previous work has not in-
vestigated situations in which we would like
to control the length of encoder-decoder out-
puts. This capability is crucial for applica-
tions such as text summarization, in which
we have to generate concise summaries with
a desired length. In this paper, we pro-
pose methods for controlling the output se-
quence length for neural encoder-decoder
models: two decoding-based methods and two
learning-based methods.1 Results show that
our learning-based methods have the capabil-
ity to control length without degrading sum-
mary quality in a summarization task.

1 Introduction

Since its first use for machine translation (Kalch-
brenner and Blunsom, 2013; Cho et al., 2014;
Sutskever et al., 2014), the encoder-decoder ap-
proach has demonstrated great success in many
other sequence generation tasks including image
caption generation (Vinyals et al., 2015b; Xu et
al., 2015), parsing (Vinyals et al., 2015a), dialogue
response generation (Li et al., 2016a; Serban et
al., 2016) and sentence summarization (Rush et al.,
2015; Chopra et al., 2016). In particular, in this pa-
per we focus on sentence summarization, which as

∗Now at Preferred Networks.
† This work was done when the author was at the Nara In-

stitute of Science and Technology.
1Available at https://github.com/kiyukuta/lencon.

its name suggests, consists of generating shorter ver-
sions of sentences for applications such as document
summarization (Nenkova and McKeown, 2011) or
headline generation (Dorr et al., 2003). Recently,
Rush et al. (2015) automatically constructed large
training data for sentence summarization, and this
has led to the rapid development of neural sentence
summarization (NSS) or neural headline generation
(NHG) models. There are already many studies that
address this task (Nallapati et al., 2016; Ayana et al.,
2016; Ranzato et al., 2015; Lopyrev, 2015; Gulcehre
et al., 2016; Gu et al., 2016; Chopra et al., 2016).

One of the essential properties that text summa-
rization systems should have is the ability to gen-
erate a summary with the desired length. Desired
lengths of summaries strongly depends on the scene
of use, such as the granularity of information the
user wants to understand, or the monitor size of the
device the user has. The length also depends on the
amount of information contained in the given source
document. Hence, in the traditional setting of text
summarization, both the source document and the
desired length of the summary will be given as input
to a summarization system. However, methods for
controlling the output sequence length of encoder-
decoder models have not been investigated yet, de-
spite their importance in these settings.

In this paper, we propose and investigate four
methods for controlling the output sequence length
for neural encoder-decoder models. The former two
methods are decoding-based; they receive the de-
sired length during the decoding process, and the
training process is the same as standard encoder-
decoder models. The latter two methods are

1328

learning-based; we modify the network architecture
to receive the desired length as input.

In experiments, we show that the learning-based
methods outperform the decoding-based methods
for long (such as 50 or 75 byte) summaries. We
also find that despite this additional length-control
capability, the proposed methods remain competi-
tive to existing methods on standard settings of the
DUC2004 shared task-1.

2 Background

2.1 Related Work

Text summarization is one of the oldest fields of
study in natural language processing, and many
summarization methods have focused specifically
on sentence compression or headline generation.
Traditional approaches to this task focus on word
deletion using rule-based (Dorr et al., 2003; Zajic
et al., 2004) or statistical (Woodsend et al., 2010;
Galanis and Androutsopoulos, 2010; Filippova and
Strube, 2008; Filippova and Altun, 2013; Filip-
pova et al., 2015) methods. There are also several
studies of abstractive sentence summarization us-
ing syntactic transduction (Cohn and Lapata, 2008;
Napoles et al., 2011) or taking a phrase-based sta-
tistical machine translation approach (Banko et al.,
2000; Wubben et al., 2012; Cohn and Lapata, 2013).

Recent work has adopted techniques such as
encoder-decoder (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Cho et al., 2014) and atten-
tional (Bahdanau et al., 2015; Luong et al., 2015)
neural network models from the field of machine
translation, and tailored them to the sentence sum-
marization task. Rush et al. (2015) were the first
to pose sentence summarization as a new target task
for neural sequence-to-sequence learning. Several
studies have used this task as one of the bench-
marks of their neural sequence transduction meth-
ods (Ranzato et al., 2015; Lopyrev, 2015; Ayana
et al., 2016). Some studies address the other im-
portant phenomena frequently occurred in human-
written summaries, such as copying from the source
document (Gu et al., 2016; Gulcehre et al., 2016).
Nallapati et al. (2016) investigate a way to solve
many important problems capturing keywords, or
inputting multiple sentences.

Neural encoder-decoders can also be viewed as

statistical language models conditioned on the tar-
get sentence context. Rosenfeld et al. (2001) have
proposed whole-sentence language models that can
consider features such as sentence length. However,
as described in the introduction, to our knowledge,
explicitly controlling length of output sequences in
neural language models or encoder-decoders has not
been investigated.

Finally, there are some studies to modify the out-
put sequence according some meta information such
as the dialogue act (Wen et al., 2015), user person-
ality (Li et al., 2016b), or politeness (Sennrich et al.,
2016). However, these studies have not focused on
length, the topic of this paper.

2.2 Importance of Controlling Output Length

As we already mentioned in Section 1, the most
standard setting in text summarization is to input
both the source document and the desired length of
the summary to a summarization system. Summa-
rization systems thus must be able to generate sum-
maries of various lengths. Obviously, this property
is also essential for summarization methods based
on neural encoder-decoder models.

Since an encoder-decoder model is a completely
data-driven approach, the output sequence length
depends on the training data that the model is trained
on. For example, we use sentence-summary pairs
extracted from the Annotated English Gigaword cor-
pus as training data (Rush et al., 2015), and the
average length of human-written summary is 51.38
bytes. Figure 1 shows the statistics of the corpus.
When we train a standard encoder-decoder model
and perform the standard beam search decoding on
the corpus, the average length of its output sequence
is 38.02 byte.

However, there are other situations where we
want summaries with other lengths. For exam-
ple, DUC2004 is a shared task where the maximum
length of summaries is set to 75 bytes, and summa-
rization systems would benefit from generating sen-
tences up to this length limit.

While recent NSS models themselves cannot con-
trol their output length, Rush et al. (2015) and others
following use an ad-hoc method, in which the sys-
tem is inhibited from generating the end-of-sentence
(EOS) tag by assigning a score of−∞ to the tag and

1329

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 100 200 300 400 500 600 700

(a) first sentence (181.87)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 50 100 150 200 250 300

(b) article headline (51.38)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 0.5 1 1.5 2 2.5 3 3.5

(c) ratio (0.30)

Figure 1: Histograms of first sentence length, headline length, and their ratio in Annotated Gigaword English Giga-
word corpus. Bracketed values in each subcaption are averages.

��
h t

��c t

��c t��
h t

Attender

mt

st

yt

s̃t

<s> yt�1

��
h t

��c t

��c t��
h t

Attender

mt

st

yt

s̃t

<s> yt�1

length

bc

at at

Figure 2: The encoder-decoder architecture we used as a
base model in this paper.

generating a fixed number of words2, and finally the
output summaries are truncated to 75 bytes. Ideally,
the models should be able to change the output se-
quence depending on the given output length, and to
output the EOS tag at the appropriate time point in a
natural manner.

3 Network Architecture: Encoder-Decoder
with Attention

In this section, we describe the model architec-
ture used for our experiments: an encoder-decoder
consisting of bi-directional RNNs and an attention
mechanism. Figure 2 shows the architecture of the
model.

Suppose that the source sentence is represented as
a sequence of words x = (x1, x2, x3, ..., xN). For

2According to the published code
(https://github.com/facebook/NAMAS), the default num-
ber of words is set to 15, which is too long for the DUC2004
setting. The average number of words of human summaries in
the evaluation set is 10.43.

a given source sentence, the summarizer generates
a shortened version of the input (i.e. N > M),
as summary sentence y = (y1, y2, y3, ..., yM). The
model estimates conditional probability p(y|x) us-
ing parameters trained on large training data consist-
ing of sentence-summary pairs. Typically, this con-
ditional probability is factorized as the product of
conditional probabilities of the next word in the se-
quence:

p(y|x) =

M∏

t=1

p(yt|y<t,x),

where y<t = (y1, y2, y3, ..., yt−1). In the following,
we describe how to compute p(yt|y<t, x).

3.1 Encoder

We use the bi-directional RNN (BiRNN) as en-
coder which has been shown effective in neural ma-
chine translation (Bahdanau et al., 2015) and speech
recognition (Schuster and Paliwal, 1997; Graves et
al., 2013).

A BiRNN processes the source sentence for
both forward and backward directions with two
separate RNNs. During the encoding process,
the BiRNN computes both forward hidden states
(
−→
h 1,
−→
h 2, ...,

−→
h N) and backward hidden states

(
←−
h 1,
←−
h 2, ...,

←−
h N) as follows:

−→
h t = g(

−→
h t−1, xt),

←−
h t = g(

←−
h t+1, xt).

While g can be any kind of recurrent unit, we use
long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) networks that have memory
cells for both directions (−→c t and←−c t).

1330

After encoding, we set the initial hidden states s0

and memory-cell m0 of the decoder as follows:

s0 =
←−
h 1,

m0 = ←−c 1.

3.2 Decoder and Attender
Our decoder is based on an RNN with LSTM g:

st = g(st−1, xt).

We also use the attention mechanism developed
by Luong et al. (2015), which uses st to compute
contextual information dt of time step t. We first
summarize the forward and backward encoder states
by taking their sum h̄i =

−→
h i +

←−
h i, and then calcu-

late the context vector dt as the weighted sum of
these summarized vectors:

dt =
∑

i

atih̄i,

where at is the weight at the t-th step for h̄i com-
puted by a softmax operation:

ati =
exp(st · h̄i)∑
h̄′ exp(st · h̄′)

.

After context vector dt is calculated, the model
updates the distribution over the next word as fol-
lows:

s̃t = tanh(Whs[st; dt] + bhs),

p(yt|y<t, x) = softmax(Wsos̃t + bso).

Note that s̃t is also provided as input to the LSTM
with yt for the next step, which is called the input
feeding architecture (Luong et al., 2015).

3.3 Training and Decoding
The training objective of our models is to maximize
log likelihood of the sentence-summary pairs in a
given training set D:

Lt(θ) =
∑

(x,y)∈D

log p(y|x; θ),

p(y|x; θ) =
∏

t

p(yt|y<t, x).

Once models are trained, we use beam search to find
the output that maximizes the conditional probabil-
ity.

4 Controlling Length in Encoder-decoders

In this section, we propose our four methods that
can control the length of the output in the encoder-
decoder framework. In the first two methods, the
decoding process is used to control the output length
without changing the model itself. In the other two
methods, the model itself has been changed and is
trained to obtain the capability of controlling the
length. Following the evaluation dataset used in our
experiments, we use bytes as the unit of length, al-
though our models can use either words or bytes as
necessary.

4.1 fixLen: Beam Search without EOS Tags

The first method we examine is a decoding approach
similar to the one taken in many recent NSS meth-
ods that is slightly less ad-hoc. In this method, we
inhibit the decoder from generating the EOS tag by
assigning it a score of −∞. Since the model can-
not stop the decoding process by itself, we simply
stop the decoding process when the length of output
sequence reaches the desired length. More specifi-
cally, during beam search, when the length of the se-
quence generated so far exceeds the desired length,
the last word is replaced with the EOS tag and also
the score of the last word is replaced with the score
of the EOS tag (EOS replacement).

4.2 fixRng: Discarding Out-of-range
Sequences

Our second decoding method is based on discarding
out-of-range sequences, and is not inhibited from
generating the EOS tag, allowing it to decide when
to stop generation. Instead, we define the legitimate
range of the sequence by setting minimum and max-
imum lengths. Specifically, in addition to the normal
beam search procedure, we set two rules:

• If the model generates the EOS tag when the
output sequence is shorter than the minimum
length, we discard the sequence from the beam.

• If the generated sequence exceeds the maxi-
mum length, we also discard the sequence from
the beam. We then replace its last word with
the EOS tag and add this sequence to the beam

1331

(EOS replacement in Section 4.1).3

In other words, we keep only the sequences that
contain the EOS tag and are in the defined length
range. This method is a compromise that allows
the model some flexibility to plan the generated se-
quences, but only within a certain acceptable length
range.

It should be noted that this method needs a larger
beam size if the desired length is very different from
the average summary length in the training data, as
it will need to preserve hypotheses that have the de-
sired length.

4.3 LenEmb: Length Embedding as
Additional Input for the LSTM

Our third method is a learning-based method specif-
ically trained to control the length of the output se-
quence. Inspired by previous work that has demon-
strated that additional inputs to decoder models can
effectively control the characteristics of the output
(Wen et al., 2015; Li et al., 2016b), this model pro-
vides information about the length in the form of an
additional input to the net. Specifically, the model
uses an embedding e2(lt) ∈ RD for each potential
desired length, which is parameterized by a length
embedding matrix Wle ∈ RD×L where L is the
number of length types. In the decoding process, we
input the embedding of the remaining length lt as
additional input to the LSTM (Figure 3). lt is initial-
ized after the encoding process and updated during
the decoding process as follows:

l1 = length,

lt+1 =

{
0 (lt − byte(yt) ≤ 0)
lt − byte(yt) (otherwise),

where byte(yt) is the length of output word yt and
length is the desired length. We learn the values
of the length embedding matrix Wle during train-
ing. This method provides additional information
about the amount of length remaining in the output
sequence, allowing the decoder to “plan” its output
based on the remaining number of words it can gen-
erate.

3This is a workaround to prevent the situation in which all
sequences are discarded from a beam.

jt otitft

st

mtmt�1

st�1

e1(xt) e2(lt)

ltxt

Figure 3: LenEmb: remaining length is used as addi-
tional input for the LSTM of the decoder.

��
h t

��c t

��c t��
h t

Attender

mt

st

yt

s̃t

<s> yt�1

��
h t

��c t

��c t��
h t

Attender

mt

st

yt

s̃t

<s> yt�1

length

bc

at at

Figure 4: LenInit: initial state of the decoder’s memory
cell m0 manages output length.

4.4 LenInit: Length-based Memory Cell
Initialization

While LenEmb inputs the remaining length lt to the
decoder at each step of the decoding process, the
LenInit method inputs the desired length once at
the initial state of the decoder. Figure 4 shows the ar-
chitecture of LenInit. Specifically, the model uses
the memory cell mt to control the output length by
initializing the states of decoder (hidden state s0 and
memory cell m0) as follows:

s0 =
←−
h 1,

m0 = bc ∗ length, (1)

where bc ∈ RH is a trainable parameter and length
is the desired length.

While the model of LenEmb is guided towards
the appropriate output length by inputting the re-
maining length at each step, this LenInit attempts
to provide the model with the ability to manage the
output length on its own using its inner state. Specif-
ically, the memory cell of LSTM networks is suit-
able for this endeavour, as it is possible for LSTMs

1332

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 50 100 150 200 250 300 350 400 450 500 550

(a) first sentence (206.91)

 0

 50

 100

 150

 200

 250

 300

 35 40 45 50 55 60 65 70 75 80

(b) summary (70.00)

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1 1.2

(c) ratio (0.35)
Figure 5: Histograms of first sentence length, summary length, and their ratio in DUC2004.

to learn functions that, for example, subtract a fixed
amount from a particular memory cell every time
they output a word. Although other ways for man-
aging the length are also possible,4 we found this
approach to be both simple and effective.

5 Experiment

5.1 Dataset

We trained our models on a part of the Annotated
English Gigaword corpus (Napoles et al., 2012),
which Rush et al. (2015) constructed for sentence
summarization. We perform preprocessing using the
standard script for the dataset5. The dataset con-
sists of approximately 3.6 million pairs of the first
sentence from each source document and its head-
line. Figure 1 shows the length histograms of the
summaries in the training set. The vocabulary size
is 116,875 for the source documents and 67,564
for the target summaries including the beginning-of-
sentence, end-of-sentence, and unknown word tags.
For LenEmb and LenInit, we input the length of
each headline during training. Note that we do not
train multiple summarization models for each head-
line length, but a single model that is capable of con-
trolling the length of its output.

We evaluate the methods on the evaluation set
of DUC2004 task-1 (generating very short single-
document summaries). In this task, summarization
systems are required to create a very short sum-
mary for each given document. Summaries over
the length limit (75 bytes) will be truncated and
there is no bonus for creating a shorter summary.
The evaluation set consists of 500 source documents
and 4 human-written (reference) summaries for each

4For example, we can also add another memory cell for
managing the length.

5https://github.com/facebook/NAMAS

source document. Figure 5 shows the length his-
tograms of the summaries in the evaluation set. Note
that the human-written summaries are not always as
long as 75 bytes. We used three variants of ROUGE
(Lin, 2004) as evaluation metrics: ROUGE-1 (uni-
gram), ROUGE-2 (bigram), and ROUGE-L (longest
common subsequence). The two-sided permutation
test (Chinchor, 1992) was used for statistical signif-
icance testing (p ≤ 0.05).

5.2 Implementation

We use Adam (Kingma and Ba, 2015) (α=0.001,
β1=0.9, β2=0.999, eps=10−8) to optimize param-
eters with a mini-batch of size 80. Before every
10,000 updates, we first sampled 800,000 training
examples and made groups of 80 examples with
the same source sentence length, and shuffled the
10,000 groups.

We set the dimension of word embeddings to 100
and that of the hidden state to 200. For LSTMs,
we initialize the bias of the forget gate to 1.0 and
use 0.0 for the other gate biases (Józefowicz et al.,
2015). We use Chainer (Tokui et al., 2015) to im-
plement our models. For LenEmb, we set L to 300,
which is larger than the longest summary lengths in
our dataset (see Figure 1-(b) and Figure 5-(b)).

For all methods except fixRng, we found a beam
size of 10 to be sufficient, but for fixRng we used
a beam size of 30 because it more aggressively dis-
cards candidate sequences from its beams during de-
coding.

6 Result

6.1 ROUGE Evaluation

Table 1 shows the ROUGE scores of each method
with various length limits (30, 50 and 75 byte). Re-
gardless of the length limit set for the summariza-

1333

30 byte 50 byte 75 byte
model R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
fixLen 14.34 3.10∗ 13.23 20.00∗ 5.98 18.26∗ 25.87∗ 7.93 23.07∗

fixRng 13.83∗ 3.08∗ 12.88 20.08∗ 5.74 18.19∗ 26.01 7.69∗ 22.77∗

LenEmb(0,L) 14.23 3.21 13.02 20.78 5.97 18.57 26.73 8.39 23.88
LenInit(0,L) 14.31 3.27 13.19 20.87 6.16 19.00 25.87 8.27 23.24
LenEmb(0,∞) 13.75 3.30 12.68 20.62 6.22 18.64 26.42 8.26 23.59
LenInit(0,∞) 13.92 3.49 12.90 20.87 6.19 19.09 25.29∗ 8.00 22.71∗

Table 1: ROUGE scores with various length limits. The scores with ∗ are significantly worse than the best score in
the column (bolded).

source five-time world champion michelle kwan withdrew from the #### us figure skating championships
on wednesday , but will petition us skating officials for the chance to compete at the #### turin
olympics .

reference injury leaves kwan ’s olympic hopes in limbo
fixLen (30) kwan withdraws from us gp

(50) kwan withdraws from us skating championships
(75) kwan pulls out of us figure skating championships for turin olympics

fixRng (30) kwan withdraws from us gp
(50) kwan withdraws from figure skating championships
(75) kwan pulls out of us figure skating championships for turin olympics bid

LenEmb (30) kwan withdraws from us skating
(50) kwan withdraws from us figure skating championships
(75) world champion kwan withdraws from #### olympic figure skating championships

LenInit (30) kwan quits us figure skating
(50) kwan withdraws from #### us figure skating worlds
(75) kwan withdraws from #### us figure skating championships for #### olympics

Table 2: Examples of the output of each method with various specified lengths.

tion methods, we use the same reference summaries.
Note that, fixLen and fixRng generate the sum-
maries with a hard constraint due to their decod-
ing process, which allows them to follow the hard
constraint on length. Hence, when we calculate the
scores of LenEmb and LenInit, we impose a hard
constraint on length to make the comparison fair
(i.e. LenEmb(0,L) and LenInit(0,L) in the table).
Specifically, we use the same beam search as that
for fixRng with minimum length of 0.

For the purpose of showing the length control
capability of LenEmb and LenInit, we show at
the bottom two lines the results of the standard
beam search without the hard constraints on the
length6. We will use the results of LenEmb(0,∞)

and LenInit(0,∞) in the discussions in Sections 6.2
and 6.3.

The results show that the learning-based meth-

6fixRng is equivalence to the standard beam search when
we set the range as (0, ∞).

ods (LenEmb and LenInit) tend to outperform
decoding-based methods (fixLen and fixRng) for
the longer summaries of 50 and 75 bytes. How-
ever, in the 30-byte setting, there is no significant
difference between these two types of methods. We
hypothesize that this is because average compres-
sion rate in the training data is 30% (Figure 1-(c))
while the 30-byte setting forces the model to gen-
erate summaries with 15.38% in average compres-
sion rate, and thus the learning-based models did not
have enough training data to learn compression at
such a steep rate.

6.2 Examples of Generated Summaries

Tables 2 and 3 show examples from the validation
set of the Annotated Gigaword Corpus. The ta-
bles show that all models, including both learning-
based methods and decoding-based methods, can of-
ten generate well-formed sentences.

We can see various paraphrases of “#### us figure

1334

source at least two people have tested positive for the bird flu virus in eastern turkey , health minister
recep akdag told a news conference wednesday .

reference two test positive for bird flu virus in turkey
fixLen (30) two infected with bird flu

(50) two infected with bird flu in eastern turkey
(75) two people tested positive for bird flu in eastern turkey says minister

fixRng (30) two infected with bird flu
(50) two more infected with bird flu in eastern turkey
(75) two people tested positive for bird flu in eastern turkey says minister

LenEmb (30) two bird flu cases in turkey
(50) two confirmed positive for bird flu in eastern turkey
(75) at least two bird flu patients test positive for bird flu in eastern turkey

LenInit (30) two cases of bird flu in turkey
(50) two people tested positive for bird flu in turkey
(75) two people tested positive for bird flu in eastern turkey health conference

Table 3: More examples of the output of each method.

championships”7 and “withdrew”. Some examples
are generated as a single noun phrase (LenEmb(30)
and LenInit(30)) which may be suitable for the
short length setting.

6.3 Length Control Capability of
Learning-based Models

Figure 6 shows histograms of output length from the
standard encoder-decoder, LenEmb, and LenInit.
While the output lengths from the standard model
disperse widely, the lengths from our learning-based
models are concentrated to the desired length. These
histograms clearly show the length controlling capa-
bility of our learning-based models.

Table 4-(a) shows the final state of the beam when
LenInit generates the sentence with a length of 30
bytes for the example with standard beam search in
Table 3. We can see all the sentences in the beam
are generated with length close to the desired length.
This shows that our method has obtained the ability
to control the output length as expected. For com-
parison, Table 4-(b) shows the final state of the beam
if we perform standard beam search in the stan-
dard encoder-decoder model (used in fixLen and
fixRng). Although each sentence is well-formed,
the lengths of them are much more varied.

6.4 Comparison with Existing Methods

Finally, we compare our methods to existing meth-
ods on standard settings of the DUC2004 shared

7Note that “#” is a normalized number and “us” is “US”
(United States).

task-1. Although the objective of this paper is not to
obtain state-of-the-art scores on this evaluation set, it
is of interest whether our length-controllable models
are competitive on this task. Table 5 shows that the
scores of our methods, which are copied from Table
1, in addition to the scores of some existing methods.
ABS (Rush et al., 2015) is the most standard model
of neural sentence summarization and is the most
similar method to our baseline setting (fixLen).
This table shows that the score of fixLen is com-
parable to those of the existing methods. The table
also shows the LenEmb and the LenInit have the
capability of controlling the length without decreas-
ing the ROUGE score.

7 Conclusion

In this paper, we presented the first examination of
the problem of controlling length in neural encoder-
decoder models, from the point of view of sum-
marization. We examined methods for controlling
length of output sequences: two decoding-based
methods (fixLen and fixRng) and two learning-
based methods (LenEmb and LenInit). The re-
sults showed that learning-based methods generally
outperform the decoding-based methods, and the
learning-based methods obtained the capability of
controlling the output length without losing ROUGE
score compared to existing summarization methods.

Acknowledgments

This work was supported by JSPS KAKENHI Grant
Number JP26280080. We are grateful to have the

1335

logp(y|x) byte candidate summary
-4.27 31 two cases of bird flu in turkey
-4.41 28 two bird flu cases in turkey
-4.65 30 two people tested for bird flu
-5.25 30 two people tested in e. turkey
-5.27 31 two bird flu cases in e. turkey
-5.51 29 two bird flu cases in eastern
-5.55 32 two people tested in east turkey
-5.72 30 two bird flu cases in turkey :
-6.04 30 two people fail bird flu virus

(a) the beam of LenInit

logp(y|x) byte candidate summary
-5.05 57 two people tested positive for bird flu in eastern turkey
-5.13 50 two tested positive for bird flu in eastern turkey
-5.30 39 two people tested positive for bird flu
-5.49 51 two people infected with bird flu in eastern turkey
-5.52 32 two tested positive for bird flu
-5.55 44 two infected with bird flu in eastern turkey
-6.00 49 two more infected with bird flu in eastern turkey
-6.04 54 two more confirmed cases of bird flu in eastern turkey
-6.50 49 two people tested positive for bird flu in turkey

(b) the beam of the standard encoder-decoder
Table 4: Final state of the beam when the learning-based model is instructed to output a 30 byte summary for the

source document in Table 3.

0 20 40 60 80 100
length

0

50

100

150

200

250

300

350

fre
qu

en
cy

EncDec

(a) encoder-decoder

0 20 40 60 80 100
length

0

50

100

150

200

250

300

350
fre

qu
en

cy
EncDec
LenEmb(30)
LenEmb(50)
LenEmb(75)

(b) LenEmb

0 20 40 60 80 100
length

0

50

100

150

200

250

300

350

fre
qu

en
cy

EncDec
LenInit(30)
LenInit(50)
LenInit(75)

(c) LenInit

Figure 6: Histograms of output lengths generated by (a) the standard encoder-decoder , (b) LenEmb, and (c)
LenInit. For LenEmb and LenInit, the bracketed numbers in each region are the desired lengths we
set.

model R-1 R-2 R-L
fixLen 25.88 7.93 23.07
fixRng 26.02 7.69 22.78
LenEmb 26.73 8.40 23.88
LenInit 25.87 8.28 23.25
ABS(Rush et al., 2015) 26.55 7.06 22.05
ABS+(Rush et al., 2015) 28.18 8.49 23.81
RAS-Elman(Chopra et al., 2016) 28.97 8.26 24.06
RAS-LSTM(Chopra et al., 2016) 27.41 7.69 23.06

Table 5: Comparison with existing studies for
DUC2004. Note that top four rows are
reproduced from Table 1.

opportunity to use the Kurisu server of Dwango Co.,
Ltd. for our experiments.

References

Ayana, S. Shen, Z. Liu, and M. Sun. 2016. Neural Head-
line Generation with Minimum Risk Training. CoRR,
abs/1604.01904.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR15.

Michele Banko, Vibhu O. Mittal, and Michael J. Wit-
brock. 2000. Headline generation based on statistical
translation. In Proceedings of ACL00, pages 318–325.

Nancy Chinchor. 1992. The statistical significance of
the muc-4 results. In Proceedings MUC4 ’92, pages
30–50.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using rnn encoder–decoder for statistical ma-
chine translation. In Proceedings of the EMNLP14,
pages 1724–1734.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
NAACL-HLT16, pages 93–98.

Trevor Cohn and Mirella Lapata. 2008. Sentence com-
pression beyond word deletion. In Proceedings of
COLING08, pages 137–144.

Trevor Cohn and Mirella Lapata. 2013. An abstrac-

1336

tive approach to sentence compression. ACM TIST13,
4(3):41:1–41:35, July.

Bonnie Dorr, David Zajic, and Richard Schwartz. 2003.
Hedge trimmer: A parse-and-trim approach to head-
line generation. In Proceedings of the HLT-NAACL 03
Text Summarization Workshop, pages 1–8.

Katja Filippova and Yasemin Altun. 2013. Overcoming
the lack of parallel data in sentence compression. In
Proceedings of EMNLP13, pages 1481–1491.

Katja Filippova and Michael Strube. 2008. Dependency
tree based sentence compression. In Proceedings of
INLG08, pages 25–32.

Katja Filippova, Enrique Alfonseca, Carlos A. Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with lstms. In Pro-
ceedings of EMNLP15, pages 360–368.

Dimitrios Galanis and Ion Androutsopoulos. 2010.
An extractive supervised two-stage method for sen-
tence compression. In Proceedings of NAACL-HLT10,
pages 885–893.

A. Graves, N. Jaitly, and A. r. Mohamed. 2013. Hy-
brid speech recognition with deep bidirectional lstm.
In Proceedings of IEEE Workshop on ASRU13, pages
273–278.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li.
2016. Incorporating copying mechanism in sequence-
to-sequence learning. In Proceedings of ACL16, pages
1631–1640.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. In Proceedings of ACL16, pages
140–149.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Rafal Józefowicz, Wojciech Zaremba, and Ilya Sutskever.
2015. An empirical exploration of recurrent net-
work architectures. In Proceedings of ICML15, pages
2342–2350.

Nal Kalchbrenner and Phil Blunsom. 2013. Recur-
rent continuous translation models. In Proceedings
of EMNLP13, pages 1700–1709, Seattle, Washington,
USA, October. Association for Computational Lin-
guistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings of
ICLR15.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A diversity-promoting objec-
tive function for neural conversation models. In Pro-
ceedings of NAACL-HLT16, pages 110–119.

Jiwei Li, Michel Galley, Chris Brockett, Georgios Sp-
ithourakis, Jianfeng Gao, and Bill Dolan. 2016b. A

persona-based neural conversation model. In Proceed-
ings of ACL16, pages 994–1003.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Proceedings of the ACL04
Workshop, pages 74–81.

Konstantin Lopyrev. 2015. Generating news head-
lines with recurrent neural networks. CoRR,
abs/1512.01712.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In Proceedings of EMNLP15,
pages 1412–1421.

Ramesh Nallapati, Bing Xiang, and Bowen Zhou. 2016.
Sequence-to-sequence rnns for text summarization.
CoRR, abs/1602.06023.

Courtney Napoles, Chris Callison-Burch, Juri Ganitke-
vitch, and Benjamin Van Durme. 2011. Paraphras-
tic sentence compression with a character-based met-
ric: Tightening without deletion. In Proceedings of
the Workshop on Monolingual Text-To-Text Genera-
tion, pages 84–90.

Courtney Napoles, Matthew Gormley, and Benjamin
Van Durme. 2012. Annotated gigaword. In Proceed-
ings of the Joint Workshop on Automatic Knowledge
Base Construction and Web-scale Knowledge Extrac-
tion, pages 95–100.

Ani Nenkova and Kathleen McKeown. 2011. Automatic
summarization. In Foundations and Trends R⃝ in Infor-
mation Retrieval, volume 2-3, pages 103–233.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level
training with recurrent neural networks. CoRR,
abs/1511.06732.

Ronald Rosenfeld, Stanley F. Chen, and Xiaojin Zhu.
2001. Whole-sentence exponential language models:
a vehicle for linguistic-statistical integration. Com-
puter Speech & Language, 15(1):55–73.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of EMNLP15,
pages 379–389.

M. Schuster and K.K. Paliwal. 1997. Bidirectional re-
current neural networks. IEEE Transactions on Signal
Processing, 45(11):2673–2681.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Controlling politeness in neural machine trans-
lation via side constraints. In Proceedings of NAACL-
HLT16, pages 35–40.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron C. Courville, and Joelle Pineau. 2016. Build-
ing end-to-end dialogue systems using generative hi-
erarchical neural network models. In Proceedings of
AAAI16, pages 3776–3784.

1337

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Proceedings of NIPS14, pages 3104–3112.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clay-
ton. 2015. Chainer: a next-generation open source
framework for deep learning. In Proceedings of
NIPS15 Workshop on LearningSys.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey E. Hinton. 2015a. Gram-
mar as a foreign language. In Proceedings of NIPS15,
pages 2773–2781.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. 2015b. Show and tell: A neural image
caption generator. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 3156–3164.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned lstm-based natural language
generation for spoken dialogue systems. In Proceed-
ings of EMNLP15, pages 1711–1721, Lisbon, Portu-
gal, September. Association for Computational Lin-
guistics.

Kristian Woodsend, Yansong Feng, and Mirella Lapata.
2010. Title generation with quasi-synchronous gram-
mar. In Proceedings of the EMNLP10, pages 513–523.

Sander Wubben, Antal van den Bosch, and Emiel Krah-
mer. 2012. Sentence simplification by monolingual
machine translation. In Proceedings of ACL12, pages
1015–1024.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual attention.
In David Blei and Francis Bach, editors, Proceedings
of ICML15, pages 2048–2057. JMLR Workshop and
Conference Proceedings.

David Zajic, Bonnie J Dorr, and R. Schwartz. 2004.
Bbn/umd at duc-2004: Topiary. In Proceedings of
NAACL-HLT04 Document Understanding Workshop,
pages 112 – 119.

1338

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1339–1347,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Poet Admits // Mute Cypher: Beam Search to find Mutually Enciphering
Poetic Texts

Cole Peterson and Alona Fyshe
University of Victoria

cpeterso@uvic.ca, afyshe@uvic.ca

Abstract

The Xenotext Experiment implants poetry into
an extremophile’s DNA, and uses that DNA
to generate new poetry in a protein form.
The molecular machinery of life requires that
these two poems encipher each other un-
der a symmetric substitution cipher. We
search for ciphers which permit writing under
the Xenotext constraints, incorporating ideas
from cipher-cracking algorithms, and using
n-gram data to assess a cipher’s “writabil-
ity”. Our algorithm, Beam Verse, is a beam
search which uses new heuristics to navigate
the cipher-space. We find thousands of ci-
phers which score higher than successful ci-
phers used to write Xenotext constrained texts.

1 Introduction

For over a decade, poet Christian Bök has been
working on The Xenotext (Bök, 2008), a literary ex-
periment which aims to insert poetry into the DNA
of an extremophile organism. In contrast to pop-
ular modern data storage mediums like paper and
hard disks, DNA is more robust to accidents, and
requires minimal maintenance to last hundreds or
even thousands of years (Cox, 2001). Many groups
are actively pursuing efficient and stable ways to use
DNA to encode information (Shimanovsky et al.,
2002; Goldman et al., 2013). With his project, Bök
aims to leave a lasting cultural contribution inside
of an organism, which, as a result of DNA’s durabil-
ity and self-replicating properties, could conceivably
survive longer than all other existing works of art.

Furthermore, Bök aims to craft his poem so the
protein it instructs the cell to produce is yet an-

other English poem. In a sense, Bök not only turns
a microbe into a genetic book, he also engineers
the microbe to be, in a sense, a poet. The organ-
ism’s molecular machinery powers this translation
between the two texts, which, at a high level, is a
symmetric substitution cipher between the letters,
and is described in more detail in Section 2. The
two poems (the poet’s and the organism’s) must both
play by the rules we refer to as the Xenotext Con-
straints:

• Each text is valid natural language.

• The substitution cipher function applied to one
text, results in the other text, and vice versa. In
other words, the cipher function must be sym-
metric.

• Whitespace characters (space, new line) enci-
pher themselves, and are the only characters al-
lowed identity mappings.

After four years of work, Bök successfully wrote
two English poems which satisfied the Xenotext
constraints1, becoming the first person to do so. The
first challenge was finding a cipher which allows
for two valid English texts to be written. Finding
“writable” ciphers is difficult and is the focus of this
paper.

We present Beam Verse, a language-agnostic al-
gorithm driven by the target language’s n-gram data,
that searches for “writable” ciphers, and suggests
words and phrases which can be written under them.

1The two poems used the cipher (abcdefghijlmqtvukyspnoxrwz)

1339

We do not concern ourselves with the full biochem-
ical constraints of The Xenotext (eg. the actual im-
pact of the protein and the cell’s reaction to it, or
its viability after folding) and instead only consider
the Xenotext constraints listed above. This problem
sits at the intersection of natural language process-
ing and cryptography, and is a prerequisite to the
genetic engineering required to fully realize a liv-
ing xenotext. Our algorithm uncovers new ciphers
which make satisfying the Xenotext constraints in
English possible, and makes it easier for a poet of
any language to investigate the feasibility of writing
two mutually enciphering texts in their own tongue.

2 Genetic Background

DNA provides instructions to a living cell to pro-
duce a protein. DNA has a double helix structure
(reminiscent of a twisted ladder) and is made up of
four nucleotides: adenine, cytosine, guanine, and
thymine, commonly abbreviated as A, T, C, and G.
Each nucleotide always appears paired with another
across the “rung” of the ladder, A with T, C with G,
and vice versa. To transfer the data in the DNA to
the protein-producing ribosome, the double helix is
“unzipped”, separating the ladder at the rungs, and a
copy of the exposed DNA sequence called an mRNA
transcript is synthesized, pairing in the same way
the DNA did, with the exception that adenine in the
DNA strand pairs with uracil (U) in the mRNA. The
ribosome reads the mRNA as instructions to produce
a specific protein. A protein is a sequence of amino
acids and each triplet of nucleotides in the mRNA
(called a codon) represents one of the twenty amino
acids (see Table 2) (Campbell and Reece, 2008).

We can write in the DNA of an organism by hav-
ing a codon represent a letter. When this sequence
of codons (the full poem) is read by the organism, it
then writes a sequence of amino acids, each of which
represent a letter, in reply2. The letters in each poem
have a bijective relationship determined by the bio-
chemical processes that link them. For example, as
shown in Table 2, the letters E and T are mutually

2This makes the writing lipogrammatic, as there are only 20
amino acids, and one of them (Serine) must be used as the space
character. Serine is used for the space because it is the only
amino acid to encipher itself, as both codons AGT and TCA
produce it, mirroring the constraint that the space is mapped to
itself in our ciphers.

linked, as wherever the poet uses the letter E, the cell
uses the letter T, and vice versa. If the poet was to
write “mute” instead of “poet”, the cell would write
“poet” instead of “mute”.

Poet’s Letter P O E T
DNA Codon AAC GAG CCG GGC

mRNA Codon UUG CUC GGC CCG

Amino Acid phenylalanine leucine glycine proline

Cell’s Letter M U T E
Table 1: Sample translation from text through DNA to new text

This view of DNA is extremely simplistic, and
serves only to motivate and provide context for the
rest of this paper. When using a codon to represent
a poet’s letter and an amino acid to represent one
of the organism’s letters, many complexities arise
which add further constraints to the text, which we
ignore in the remainder of the paper. When actually
inserting his poetry into a cell, Bök struggled to get
the organism to express the correct protein, because
he failed to account for the full complexity of the
cell and caused the cell to “censor” itself (Wershler,
2012). However, we consider these additional con-
straints to be future work.

3 Substitution Ciphers

Substitution ciphers are among the earliest known
forms of cryptography, having existed since at least
the days of Caesar (Sinkov, 1966). They work by
replacing one letter in the plaintext with another to
form the ciphertext. However, they are never used
in modern cryptography because, despite a large
keyspace, substitution ciphers do not change the
letter frequency between plaintext and ciphertext.
When properties of the plaintext are known (like the
language it is written in), letter or word frequency
data from that language can be used to quickly crack
the cipher and uncover the key.

Every word has a deterministic encryption under
a cipher. The encrypted word could be nonsense, or
it could be another word. The word “poet”, for ex-
ample, can encrypt to many other words, including
“mute”. The “poet↔mute” word-pair forms what
we call a partial cipher, and notate as (

poe
mut). We

1340

say this partial cipher has a cardinality of three, as
it defines three letter pairings. A full cipher in a
26-letter language has a cardinality of 13. We also
refer to (

poe
mut) as a primary cipher, because it is the

lowest cardinality cipher to contain the word-pairing
“poet↔mute”.

As no characters except whitespace are allowed
identity mappings a word-pair like “eat↔cat” is
not valid, as both a and t would have to map to
them selves. The symmetric Xenotext constraint
prohibits “admits” from pairing with “cipher”, as
the letter i would require a mapping to both d and
h. However, “admits” can pair with the alterna-
tive spelling “cypher”, forming the primary cipher
(admitscypher). We can combine this cipher with (

poe
mut), as

none of the letter pairs conflict with each other – they
are compatible with each other. Together, they form
(
poeadis
mutcyhr). As the letter-pairs in (

poe
mut) and (admitscypher)

are subsets of the letter-pairs in (
poeadis
mutcyhr), we call

(
poe
mut) and (admitscypher) subciphers of (poeadismutcyhr), and say

that (poeadismutcyhr) extends (
poe
mut) and (admitscypher). For any

two ciphers φ1 and φ2, we use the notation φ1 ⊂ φ2
to denote that φ1 is a subcipher of φ2.

If we applied (
poeadis
mutcyhr) to “Poet Admits” (the

first part of this paper’s title), it would result “Mute
Cypher” (the second part of the paper’s title). The ti-
tle refers to the difficulty of writing under the Xeno-
text constraint, as it is hard to find a cipher where
writing is possible, most of the ciphers are mute.
Once all of the possible word pairs of a target lan-
guage have been discovered (Section 7) the chal-
lenge becomes navigating the tradeoffs of including
a letter pair, as each letter pair eliminates the pos-
sibility of using some word-pairs, while including
other word-pairs.

If a language has an odd number of characters a
symmetric substitution cipher is not possible using
every letter. We must decide which letter to leave
out of our texts. This is accomplished by inserting a
null letter (which appears nowhere in the language)
into our letter set, thus giving the language an even
number of characters. At the conclusion of Beam
Verse the letter paired with null is the character to
leave out.

4 Scoring a Cipher’s “Writability”

When scoring a cipher, an important consideration
is what makes one cipher more “writable” than an-
other. We might score a cipher on the number of
valid words under it, as having more words at your
disposal makes it easier to write, but this is not nec-
essarily so if all the words are all rare and useless.
To combat this, we weight words based upon their
frequency in language, so that better, more frequent
words contribute more to a ciphers overall score.
This values highly frequent and syntactically impor-
tant words, like “the” or “and”, while also allow-
ing a large number of infrequent words to also con-
tribute significantly to the score. However, a word’s
usefulness when writing mutually enciphering texts
is explicitly tied to its sister word under the cipher.
“The” looses its usefulness if every time it is used
in one poem, a less frequent word like “nag’ must
be used in the other. We propose that since a word
pair is only as good as its weakest word, that ciphers
be scored by taking the sum of all available word
pairs, counting the minimum frequency of the two
words. This means that the word pair “the↔nag”
would count the frequency of “nag”.

Multiple different word pairings can form the
same primary cipher. For example, (thea) is formed
by both “the↔eat” and “he↔at”, and would count
the score of both word-pairs. As there are always
less or equal primary ciphers than word-pairs, it is
more memory efficient to store the score of all the
primary ciphers than to store the scores of all the
word-pairs. We count the score of a primary cipher
φp towards a full cipher φf if it is a subcipher of φf .
Formally, if P is the set of all primary ciphers and
φp ∈ P , the score of φf is

∑
φp⊂φf score(φp).

Alternatively, this could be expressed as a dot
product between a vector where every element is the
score of a primary (the score vector, s), and a vec-
tor indicating whether a primary cipher is a subci-
pher (the heuristic vector, h), as seen in equation 1.
In section 8 we show how h can be calculated ef-
ficiently, and also how it can be use to provide an
upper and lower bound the score of a full cipher ex-
tended from a partial cipher.

score = s · h (1)

The concept of a word-pair can easily be extended

1341

to include longer word-level n-grams. Like words,
every n-gram either enciphers to nonsense or has a
sister n-gram it is locked to under a cipher. All n-
gram pairs also have an associated frequency in the
language, and so can contribute to the score of a ci-
pher in the same way as single words do: by the
minimum of the two n-gram’s frequency counting
as the weight of the pair. Using n-grams also indi-
rectly captures some syntactic structure, and allows
for generation of sample phrase and sentence gener-
ation from the cipher by chaining together n-grams.
These small phrases can be used to quickly proto-
type poetry. For our word list and frequency data,
we use Google’s n-grams (Michel et al., 2011), but
any dataset could be used, and would give different
ciphers depending on the data’s source.

5 Graphical and Combinatoric
Representation

There are 7,905,853,580,625 possible symmetric
substitution ciphers in a 26 letter language like En-
glish. Even with the efficient means of scoring ci-
phers shown in section 8 (which can calculate a full
cipher’s score in ∼ 300 microseconds) the brute
force solution would take over 75 years of comput-
ing time. To avoid this expensive full calculation,
we formulate the problem as a graph of partial ci-
phers and use beam search to navigate the graph to
high valued full solutions. We regret that the small-
est non-trivial graph (of a 6 letter language) is too
large to be included here; it requires 75 nodes ar-
ranged in three layers which takes up an entire page,
but it can be found on our website3. An incomplete
graph is shown in Figure 1. As we search the cipher
space we trace edges up through the graph to a full
cipher solution.

The size of the mth layer of a n letter language
is defined by equations 2-4. The counts for a 26-
letter language and a derivation of this equation can
be seen on our website.

f(m, 0) = 1 (2)

f(1, n) = n× (n− 1)/2 (3)

f(m,n) = f(m− 1, n)×
f(1, n− 2× (m− 1))/m (4)

3http://www.langlearnlab.cs.uvic.ca/beamverse

(astzonfj)

(astonf) (aszonj)

(atof) (stnf) (ason) (azoj) (sznj)(isan)

(tf) (ao) (sn) (zj)(ia)

[1,1,1][1,0,0] [0,1,1] [1,1,1] [1,1,1]

Figure 1: An incomplete cipher-graph, showing some of the

partial ciphers which descend from (astzonfj). Three primary ci-

phers are shown in boxes, and are the same example primary

ciphers used in Section 8. Compatibility vectors (discussed in

Section 8.1) are shown for every letter-pair. Edges in this graph

represent a difference of a letter-pair between ciphers. Each car-

dinality of partial cipher has a layer in the graph, which is our

beam in the search.

6 Beam Search

A beam search algorithm does not require us to store
all of this graph in memory, as we only examine
a subset of the ciphers anticipated to be the best.
Beam search works by enumerating all possibilities
for one step of a solution (one layer of the cipher
graph), sorting those options by a heuristic, keep-
ing the best n partial solutions, and pruning the rest
(Edelkamp and Schroedl, 2011). We fully expand
one step further on the best n partial solutions, re-
peating the pruning and expanding process until a
set of full solutions are reached. Beam search can
effectively crack substitution ciphers, as shown by
Nuhn et al. (2013).

A static beam size could be used (keeping the best
thousand partial ciphers at each step, for example),
however, the lower cardinality the partial, the more
possibilities it generates. Every cardinality-1 partial
cipher generates 276 possible cardinality-2 partial
ciphers, whereas a cardinality-12 partial cipher only
generates one possible full cipher (as there are only
two unpaired letters remaining, therefore they must
pair together). A constant beam size will limit the
algorithm’s performance in later stages of the search

1342

if this is not accounted for.
We can rearrange our recursive definition in Equa-

tions 2 to 4 to determine the beam size which will
generate exactly as many partial ciphers as we can
hold in memory. If we want to generateB ciphers in
an n letter language, and are at layer m, we should
prune the beam to b(m,n). This can be found by
replacing replacing f(m,n) for B, and f(m− 1, n)
for b(m,n) in equation 4 and rearranging to produce
equation 5, removingm from equation 4 because we
cannot assume duplicates will be generated.

b(m,n) =
B

f(1, n− 2× (m− 1))
(5)

7 Generating Primary Ciphers

In order to generate the primary ciphers, we must
find all words which can encipher with each other,
and record their score. Rather than checking every
word against every other word, many useless checks
can be avoided by hashing each word or n-gram ac-
cording to the pattern of its letters, a concept which
Hauer et al. (2014) called “pattern-equivalence” and
used to crack substitution ciphers. We use a key
which represents each letter in the n-gram with a
number or symbol, ordered by first occurrence of
the letter, while maintaining whitespace (eg. “and
we are”→ “123 45 165”). Another trigram like “his
or her” would also generate the same key, and so the
two trigrams would be checked against each other to
see if they validly encipher, which they do, forming
a primary partial cipher (andwrhisoe) .

A match on the hash key does not guarantee that
the words form a valid pairing. Many words which
share a key form invalid word-pairings due to the
symmetric or identity restrictions of the Xenotext
constraint (eg. “cat↔eat”, which share the key
“123”, or “admits↔cipher”, which share the key
“123456” are both invalid word-pairings). The score
of a primary cipher is the sum of the score of all
word-pairs which generate the primary. The algo-
rithm is shown in Algorithm 1.

8 Beam Search Heuristics

Recall from Section 3 that, in a full cipher, all let-
ters have a defined mapping (the cipher has a car-
dinality of 13), while in a partial cipher some let-
ters have undefined defined mappings, and that a pri-

Algorithm 1 Generating Primary Ciphers
1: function GENERATE PRIMARIES(ngrams)
2: for word1 ← ngrams do
3: key ← pattern(word1)
4: for word2 ← patternDict[key] do
5: if mutually-encipher(word,word2) then
6: primaries[encipher(word1, word2)] +=

minScore(word1, word2)
7: end if
8: end for
9: patternDict[key].add(word1)

10: end for
11: return primaries
12: end function

mary cipher is the minimal cardinality partial cipher
to contain a particular word-pair and is the build-
ing block of a cipher’s score. We explore three dif-
ferent heuristics which calculate the true score for
full ciphers, and estimate the score of full ciphers
extended from a partial cipher by forming an upper
and lower bound. All heuristics produce a vector h,
which forms the score for a cipher when dotted with
the score vector s (Equation 1). For full ciphers this
vector will be the same regardless of the heuristic
used, and the score from Equation 1 will be the true
score of the full cipher, whereas different heuristics
will give different values for a partial cipher, and
thus guide Beam Verse in different directions. We
implement these heuristics using bitwise operations,
making them both memory and CPU efficient.

To demonstrate the calculation of the heuristics,
we use the following primary ciphers as a running
example, (isan) (score: 100), (atof) (score: 82), and
(onas) (score: 76), which are the same primary ci-
phers as are shown in Figure 1. These three pri-
maries would form the score vector, which is shared
amongst all heuristics, is s = [100, 82, 76]. Thus
P = {(isan), (atof), (onas)}, and |P | = 3. We show the
heuristic calculation for all three heuristics on the
partial cipher (aszonj).

8.1 Upper Bound: Compatibility Vector

Recall that two ciphers are compatible if they have
no conflicting letter-pairs. If two ciphers are com-
patible, it is possible to combine them. Every cipher
φ has a vector representing compatibility with the

1343

primary ciphers P . This vector is |P | long, and con-
tains a 1 in the ith element if φ is compatible with
the ith primary cipher, and a 0 if it is not.

We use a superscript c on a cipher to notate its
compatibility vector. Here are the compatibility vec-
tors for four letter-pairs, using the primary ciphers
outlined above, and are shown in Figure 1:

(ia)
c = [1, 0, 0], (sn)

c = [1, 1, 1],

(ao)
c = [0, 1, 1], (zj)

c = [1, 1, 1].

This is an upper-bound because the primary ci-
phers compatible with φmay not be compatible with
each other. For example, the null cipher, which has
no letter pairings, is compatible with all primary
ciphers, but no full cipher contains all primaries.
When we combine two ciphers φ1 and φ2, which
have compatibility vectors φc1 and φc2, the resulting
cipher φ3 has a compatibility vector φc3 = φc1 ∧ φc2,
where ∧ is the bitwise AND operation. We calculate
the compatibility vector for every letter-pair, and can
combine those vectors to determine the compatibil-
ity vector for any cipher. The heuristic’s score for
(aszonj) follows.

h = (aszonj)
c = (ao)

c ∧ (sn)
c ∧ (zj)

c = [0, 1, 1]

score(aszonj) = 100 · 0 + 82 · 1 + 76 · 1 = 158

8.2 Lower Bound: Guarantee Vector

We can calculate another vector, g for every cipher
φ which represents whether each primary cipher is
a subcipher of φ. This forms a lower bound guar-
antee because any cipher which extends from φ will
also contain the primary ciphers in g, plus poten-
tially more. The null cipher in this case would have
a heuristic vector g of all zeros, as it does not con-
tain any of the primary ciphers. Likewise, in this P ,
all of the individual letter pairs ((ao), (

s
n), (

z
j)) would

have a heuristic vector of all zeros, as all of the pri-
maries require at least two letter-pairs.

Efficiently implementing this heuristic is slightly
more challenging than the compatibility heuristic.
Our method, which uses bitwise operations and is
cacheable like the compatibility vector. Using this
heuristic, g of (aszonj) is [0, 0, 1], as (isan) 6⊂ (aszonj),
(atof) 6⊂ (aszonj), and (ason) ⊂ (aszonj).

This heuristic therefore scores (aszonj) as follows:

score(aszonj) = 100 · 0 + 82 · 0 + 76 · 1 = 76

8.3 Middle Ground: Medium Vector

Both of the two aforementioned heuristics have
weaknesses. The optimistic, max heuristic does not
differentiate between a primary cipher it already has
and one that it potentially has, and the conservative
min heuristic is greedy and short-sighted. Our third
heuristic incorporates elements from the first two,
to ideally form a measure that is neither overly op-
timistic, or overly short-sighted. Unlike the lower
bound heuristic in Section 8.2, which requires all let-
ter pairings to count a primary cipher, this medium
heuristic counts some of the primary cipher’s score
if some of the letter-pairs are present. For example,
if a partial cipher has 3/4 of the required letter pair-
ings for a primary, it would count 75% of the score.

For example, (aszonj) has one of the two letter pair-
ings of the first primary, (isan); one of the two let-
ter pairings of the second primary, (atof); and two
of the two letter pairings of the third primary, (onas).
We represent this as [0.5,0.5,1]. However, we know
from Section 8.2 that the first primary is incompat-
ible with (aszonj), and so we do not count its score.
That makes the heuristic vector h = [0, 0.5, 1], and
score(aszonj) = 100 · 0 + 82 · .5 + 76 · 1 = 117.

We have now evaluated the same cipher using
three different heuristics, all which produce a differ-
ent score. These scores are guaranteed to converge
to the same value at the full cipher.

8.4 Speed improvements

Table 8.4 shows the massive performance gains of
the heuristics, which are over 3000 times faster than
the simplistic means of scoring by iterating over ev-
ery word and checking if it enciphers to anything
useful.

9 Related Work

Nuhn et al. (2013) use a beam search algorithm to
crack substitution ciphers. Our work differs from
their’s in several key ways: in Nuhn et al. (2013)
there are two distinct symbol spaces, that of the ci-
phertext and that of the plaintext and so there is
no concept of symmetry. Each step of Nuhn et
al.’s beam search explores pairing a ciphertext char-
acter with a plaintext character, and decides upon
the “extension-order” to pair the ciphertext letters,
whereas each step of our search pairs two characters

1344

Heuristic Time Memory
word 1× 106µs all words

+1int/word
med 3× 103µs n bits/primary
8.3 + 1 int/primary
min 2× 103µs n bits/primary
8.2 + 1 int/primary
max 3× 102µs 1 bit/primary
8.1 + 1 int/primary

Table 2: Time to score a cipher using different means, and

each mean’s memory requirements. The word method stores the

strings of all words and enciphers them and checks if they are

valid words. It will produce the same value as the min heuristic.

together. As such, we make 13 decisions, not 26.
Additionally, the search space of the non-

symmetric and symmetric ciphers are characteristi-
cally different. If the “extension-order” is predeter-
mined as in Nuhn et al.’s work, there is only one
path from the bottom of the graph to a full solution.
In contrast, our graph has 13! different paths to any
full solution, as all the permutations of the 13 differ-
ent letter pairs are valid paths. On the one hand, this
highly connected property of the graph means that
we can prune our beam to a smaller size, as failing
to expand a partial cipher does not eliminate it from
appearing as a subcipher in a future solution like it
does for Nuhn et al..

However, the connectedness of our cipher graph
does present new challenges. As the Xenotext con-
straints are not satisfied by one cipher, we want
to maximize the number of different solutions pre-
sented to the writer which each allow for unique ex-
pressive potential. We observe, however, that the
connectedness property results in a final beam which
is smaller and less diverse than would be anticipated.
This is caused by multiple partial ciphers in a beam
sharing the same “propensity” to become an identi-
cal full cipher. We solve this by enforcing that every
partial cipher in the beam be incompatible with ev-
ery other, thereby guaranteeing that no two partial
ciphers can share the same “propensity”, and that all
possibilities generated from them in all future layers
will be unique. As there are many (O(n2)) compat-
ibility comparisons to be made at every beam, we
limit only enforce compatibility for the first thou-
sand ciphers in the beam.

Our scoring function is also entirely different
from what would be used to crack a substitution ci-
pher. Unlike Beam Verse, cracking software is tied
to a ciphertext, and typically uses character-level n-
gram data to calculate the probability that a deci-
pherment is valid. Beam Verse, on the other hand,
uses word-level n-grams as the basis of scoring, and
is not tied to any given text, but suggests fragments
of text which satisfy the Xenotext constraint.

10 Results

The raw score of a cipher changes according to the
dataset, and so we report the score divided by high-
est scored cipher across all of the heuristics. Ta-
ble 10 shows results using unigrams, while Table 10
shows results for primary ciphers generated from bi-
grams.

Heuristic High Low End Beam Size
max 0.74 0.53 12160
min 0.98 0.97 4223
med 0.93 0.73 13043

max incomp 0.71 0.59 12160
min incomp 1.00 0.97 4181
med incomp 0.85 0.74 13043

Bök 0.39

Table 3: Normalized scores for three different heuristics on

highest 216 unigram primary ciphers, and a variable beam aim-

ing for 215 ciphers. “Incomp” means that we enforce that all

partial ciphers in the beam be incompatible with each other. The

low value is the normalized score of the index of the shortest

end beam. This is a better comparison that the last cipher in the

beam, as the length of the beams is variable across heuristics.

Heuristic High Low End Beam Size
max 0.81 0.73 9631
min 1.00 0.94 5777
med 0.97 0.88 13291

max incomp 0.81 0.73 9631
min incomp 0.97 0.88 13301
med incomp 0.97 0.84 13291

Bök 0.23

Table 4: Normalized scores for different heuristics on highest

220 bigram primary ciphers, and a variable beam aiming for

215 ciphers.

We note that all ciphers we generate, regardless

1345

of heuristic, score higher than the cipher Bök used
to write his poems. This suggests that there are
many ciphers other than Bök’s which can be used
to write Xenotext constrained poetry. Poems writ-
ten using ciphers generated from Beam Verse can
be found on our website. However, attempting to
write with some high-scoring ciphers has revealed
that our scoring metric may be only loosely cor-
related with the true “writability”, as some ciphers
which score higher that Bök’s we find more difficult
to write with.

Bök’s cipher also scores relatively worse than the
top ciphers using a bigram model (Table 10). Many
of the bigrams Bök uses in his poems are not fre-
quent enough to be in the Google bigrams. Anecdo-
tally, we find ciphers generated using bigram data to
be more writable, as bigram models begin to capture
syntactic structure of the language.

Enforcing that each cipher in the beam be in-
compatible with every other showed minimal gains
with some heuristics and minimal losses in others.
It does, however, guarantee that more ciphers will
be generated. Enforcing incompatibility is probably
not worth the processing time if memory permits in-
creasing the size of the beam instead.

The top scoring cipher4 according to the unigram
model performs similarly to the Bök cipher when
scored against the bigram model, accumulating only
24% of the points the highest scoring bigram cipher
does. The top bigram cipher5 scores 68% of the top
unigram cipher’s score when using unigram scoring,
not as drastic of a difference, but still low enough
to be pruned by Beam Verse and not be discovered.
The discrepancy in scores between models suggests
that “writable” ciphers are excluded from our final
results, and also encourages running Beam Verse
on additional datasets to find new ciphers. A score
which incorporates elements from multiple models
of language might be explored, searching for ciphers
which perform well across all datasets.

11 Further Work

Work in Kao (2011) sets out to quantify good poetic
style and techniques. We note that some poetic tech-
niques, like alliteration and anaphora, are preserved

4(abcdegijkmnqvfhlryutpswozx)
5(abcdefjklnpqxightomuvrswzy)

through the substitution cipher. We could boost allit-
erative n-grams to encourage Beam Verse to include
alliterative n-grams.

As Beam Verse is language agnostic, all of the
work here is applicable to other languages. The
Xenotext constraints might be more easily satisfied
in a different language than English, perhaps a lan-
guage with a smaller character set like Hawaiian
(which only consists of thirteen letters). Addition-
ally, The Xenotext project as defined here only min-
imally uses the organism to actively write – the or-
ganism does not have any degree of freedom to ex-
press itself as its poem is precisely determined by
the author’s poem. However, DNA possesses com-
putational power (Paun et al., 2005), which could be
leveraged to generate natural language. By taking
advantage of the complexity of the cell, its output
could be more loosely defined, and change accord-
ing to mutations in the DNA.

Further investigation can also be done into quanti-
fying the “writability” of a limited vocabulary (per-
haps using semantic and grammar data), and con-
strained text generation under constraint. Poetic en-
deavours with rigid mathematical constraints are not
only attempted by Bök. Any work in the traditions
of the Oulipo, a primarily French-speaking group of
writers who explore the creative potential of mathe-
matical and logical constraints, would stand to ben-
efit immensely from software tools designed to aid
constrained writing. Whereas visual artists and mu-
sicians have been quick to use computers to produce
images and sounds which would have been impossi-
ble by traditional means, writers have been slow to
use computers to produce works which would have
been impossible to create otherwise.

12 Conclusion

In this paper we present a new metric to quantify
“writability” of a symmetric substitution cipher. We
experiment using three different heuristics in a beam
search, an algorithm we call Beam Verse. We find
that our score for “writability”, which takes the min-
imum frequency of a word or n-gram pair, is effec-
tive at finding candidate ciphers, but is not a perfect
metric of “writability” in this constrained environ-
ment. “Writability” is highly subjective, and possi-
bly requires more data than just n-gram frequency

1346

(eg. semantic and grammar information). Luckily,
beam search is highly flexible, and any scoring func-
tion, perhaps using a more sophisticated model of
writability, could be used in place of the one used
here.

Source code and highly scoring ciphers are avail-
able for download6.

References
Christian Bök. 2008. The xenotext experiment.

SCRIPTed, 5:228–231.
Neil A. Campbell and Jane B. Reece. 2008. Biology.

Pearson, 8th edition.
Jonathan PL Cox. 2001. Long-term data storage in dna.

TRENDS in Biotechnology, 19(7):247–250.
Stefan Edelkamp and Stefan Schroedl. 2011. Heuristic

search: theory and applications. Elsevier.
Nick Goldman, Paul Bertone, Siyuan Chen, Christophe

Dessimoz, Emily M LeProust, Botond Sipos, and
Ewan Birney. 2013. Towards practical, high-capacity,
low-maintenance information storage in synthesized
dna. Nature, 494(7435):77–80.

Bradley Hauer, Ryan Hayward, and Grzegorz Kondrak.
2014. Solving substitution ciphers with combined lan-
guage models. pages 2314–2325.

Justine T Kao. 2011. A computational analysis of poetic
craft in contemporary professional and amateur poetry.

Jean-Baptiste Michel, Yuan Kui Shen, Aviva Presser
Aiden, Adrian Veres, Matthew K Gray, Joseph P Pick-
ett, Dale Hoiberg, Dan Clancy, Peter Norvig, and Jon
Orwant. 2011. Quantitative analysis of culture using
millions of digitized books. science, 331(6014):176–
182.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Malte Nuhn, Julian Schamper, and Hermann Ney. 2013.
Beam search for solving substitution ciphers. Citeseer.

Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa.
2005. DNA computing: new computing paradigms.
Springer Science & Business Media.

Boris Shimanovsky, Jessica Feng, and Miodrag Potkon-
jak. 2002. Hiding data in dna. pages 373–386.
Springer.

Abraham Sinkov. 1966. Elementary cryptanalysis: A
mathematical approach, mathematical association of
america, 1966. Additional Reading.

Darren Wershler. 2012. The xenotext experiment, so far.
Canadian Journal of Communication, 37(1):43.

6http://www.langlearnlab.cs.uvic.ca/beamverse

1347

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1348–1358,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

All Fingers are not Equal: Intensity of References in Scientific Articles

Tanmoy Chakraborty
Dept. of Computer Science & UMIACS

University of Maryland, College Park, USA
tanchak@umiacs.umd.edu

Ramasuri Narayanam
IBM Research, India

ramasurn@in.ibm.com

Abstract

Research accomplishment is usually measured
by considering all citations with equal impor-
tance, thus ignoring the wide variety of pur-
poses an article is being cited for. Here, we
posit that measuring the intensity of a refer-
ence is crucial not only to perceive better un-
derstanding of research endeavor, but also to
improve the quality of citation-based applica-
tions. To this end, we collect a rich annotated
dataset with references labeled by the inten-
sity, and propose a novel graph-based semi-
supervised model, GraLap to label the in-
tensity of references. Experiments with AAN
datasets show a significant improvement com-
pared to the baselines to achieve the true labels
of the references (46% better correlation). Fi-
nally, we provide four applications to demon-
strate how the knowledge of reference inten-
sity leads to design better real-world applica-
tions.

1 Introduction

With more than one hundred thousand new schol-
arly articles being published each year, there is a
rapid growth in the number of citations for the rel-
evant scientific articles. In this context, we high-
light the following interesting facts about the pro-
cess of citing scientific articles: (i) the most com-
monly cited paper by Gerard Salton, titled “A Vector
Space Model for Information Retrieval” (alleged to
have been published in 1975) does not actually ex-
ist in reality (Dubin, 2004), (ii) the scientific authors
read only 20% of the works they cite (Simkin and
Roychowdhury, 2003), (iii) one third of the refer-

ences in a paper are redundant and 40% are perfunc-
tory (Moravcsik and Murugesan, 1975), (iv) 62.7%
of the references could not be attributed a specific
function (definition, tool etc.) (Teufel et al., 2006).
Despite these facts, the existing bibliographic met-
rics consider that all citations are equally significant.

In this paper, we would emphasize the fact that
all the references of a paper are not equally influ-
ential. For instance, we believe that for our current
paper, (Wan and Liu, 2014) is more influential refer-
ence than (Garfield, 2006), although the former has
received lower citations (9) than the latter (1650) so
far1. Therefore the influence of a cited paper com-
pletely depends upon the context of the citing paper,
not the overall citation count of the cited paper. We
further took the opinion of the original authors of
few selective papers and realized that around 16%
of the references in a paper are highly influential,
and the rest are trivial (Section 4). This motivates us
to design a prediction model, GraLap to automati-
cally label the influence of a cited paper with respect
to a citing paper. Here, we label paper-reference
pairs rather than references alone, because a refer-
ence that is influential for one citing paper may not
be influential with equal extent for another citing pa-
per.

We experiment with ACL Anthology Network
(AAN) dataset and show that GraLap along with
the novel feature set, quite efficiently, predicts the
intensity of references of papers, which achieves
(Pearson) correlation of 0.90 with the human anno-
tations. Finally, we present four interesting appli-

1The statistics are taken from Google Scholar on June 2,
2016.

1348

cations to show the efficacy of considering unequal
intensity of references, compared to the uniform in-
tensity.

The contributions of the paper are four-fold: (i)
we acquire a rich annotated dataset where paper-
reference pairs are labeled based on the influence
scores (Section 4), which is perhaps the first gold-
standard for this kind of task; (ii) we propose a
graph-based label propagation model GraLap for
semi-supervised learning which has tremendous po-
tential for any task where the training set is less
in number and labels are non-uniformly distributed
(Section 3); (iii) we propose a diverse set of features
(Section 3.3); most of them turn out to be quite ef-
fective to fit into the prediction model and yield im-
proved results (Section 5); (iv) we present four ap-
plications to show how incorporating the reference
intensity enhances the performance of several state-
of-the-art systems (Section 6).

2 Defining Intensity of References

All the references of a paper usually do not carry
equal intensity/strength with respect to the citing
paper because some papers have influenced the re-
search more than others. To pin down this intuition,
here we discretize the reference intensity by numer-
ical values within the range of 1 to 5, (5: most in-
fluential, 1: least influential). The appropriate def-
initions of different labels of reference intensity are
presented in Figure 1, which are also the basis of
building the annotated dataset (see Section 4):

Note that “reference intensity” and “reference
similarity” are two different aspects. It might hap-
pen that two similar reference are used with differ-
ent intensity levels in a citing paper – while one is
just mentioned somewhere in the paper and other
is used as a baseline. Here, we address the former
problem as a semi-supervised learning problem with
clues taken from content of the citing and cited pa-
pers.

3 Reference Intensity Prediction Model

In this section, we formally define the problem and
introduce our prediction model.

• Label-1: The reference is related to the citing ar-
ticle with very limited extent and can be removed
without compromising the competence of the refer-
ences (e.g., (Garfield, 2006) for this paper).
• Label-2: The reference is little mentioned in the
citing article and can be replaced by others without
compromising the adequacy of the references (e.g.,
(Zhu et al., 2015) for this paper).
• Label-3: The reference occurs separately in a sen-
tence within the citing article and has no significant
impact on the current problem (e.g., references to
metrics, tools) (e.g., (Porter, 1997) for this paper).
• Label-4: The reference is important and highly
related to the citing article. It is usually mentioned
several times in the article with long reference con-
text (e.g., (Singh et al., 2015) for this paper).
• Label-5: The reference is extremely important
and occurs (is emphasized) multiple times within
the citing article. It generally points to the cited arti-
cle from where the citing article borrows main ideas
(and can be treated as a baseline) (e.g., (Wan and
Liu, 2014) for this paper).

Figure 1: Definitions of the intensity of references.

3.1 Problem Definition
We are given a set of papers P = {P1, P2, ..., PM}
and a sets of references R = {R1, R2, ..., RM},
where Ri corresponds to the set of references (or
cited papers) of Pi. There is a set of papers PL ∈
P whose references RL ∈ R are already labeled
by ` ∈ L = {1, ..., 5} (each reference is labeled
with exactly one value). Our objective is to de-
fine a predictive function f that labels the references
RU ∈ {R \ RL} of the papers PU ∈ {P \ PL}
whose reference intensities are unknown, i.e., f :
(P,R, PL, RL, PU , RL) −→ L.

Since the size of the annotated (labeled) data is
much smaller than unlabeled data (|PL| � |PU |),
we consider it as a semi-supervised learning prob-
lem.

Definition 1. (Semi-supervised Learning) Given
a set of entries X and a set of possible labels YL,
let us assume that (x1, y1), (x2, y2),..., (xl, yl) be
the set of labeled data where xi is a data point
and yi ∈ YL is its corresponding label. We as-
sume that at least one instance of each class label

1349

is present in the labeled dataset. Let (xl+1, yl+1),
(xl+2, yl+2),..., (xl+n, yl+u) be the unlabeled data
points where YU = {yl+1, yl+2, ...yl+u} are un-
known. Each entry x ∈ X is represented by a set
of features {f1, f2, ..., fD}. The problem is to deter-
mine the unknown labels using X and YL.

3.2 GraLap: A Prediction Model
We propose GraLap, a variant of label propagation
(LP) model proposed by (Zhu et al., 2003) where
a node in the graph propagates its associated label
to its neighbors based on the proximity. We intend
to assign same label to the vertices which are closely
connected. However unlike the traditional LP model
where the original values of the labels continue to
fade as the algorithm progresses, we systematically
handle this problem in GraLap. Additionally, we
follow a post-processing in order to handle “class-
imbalance problem”.
Graph Creation. The algorithm starts with the
creation of a fully connected weighted graph G =
(X,E) where nodes are data points and the weight
wij of each edge eij ∈ E is determined by the radial
basis function as follows:

wij = exp

(
−
∑D

d=1(x
d
i − xdj)2
σ2

)
(1)

The weight is controlled by a parameter σ. Later
in this section, we shall discuss how σ is selected.
Each node is allowed to propagate its label to its
neighbors through edges (the more the edge weight,
the easy to propagate).
Transition Matrix. We create a probabilistic transi-
tion matrix T|X|×|X|, where each entry Tij indicates
the probability of jumping from j to i based on the
following: Tij = P (j → i) =

wij∑|X|
k=1 wkj

.

Label Matrix. Here, we allow a soft label (in-
terpreted as a distribution of labels) to be associ-
ated with each node. We then define a label matrix
Y|X|×|L|, where ith row indicates the label distribu-
tion for node xi. Initially, Y contains only the values
of the labeled data; others are zero.
Label Propagation Algorithm. This algorithm
works as follows:

After initializing Y and T , the algorithm starts by
disseminating the label from one node to its neigh-
bors (including self-loop) in one step (Step 3). Then
we normalize each entry of Y by the sum of its cor-

1: Initialize T and Y
2: while (Y does not converge) do
3: Y ← TY
4: Normalize rows of Y , yij =

yij∑
k yik

5: Reassign original labels to XL

responding row in order to maintain the interpreta-
tion of label probability (Step 4). Step 5 is crucial;
here we want the labeled sources XL to be persis-
tent. During the iterations, the initial labeled nodes
XL may fade away with other labels. Therefore we
forcefully restore their actual label by setting yil = 1
(if xi ∈ XL is originally labeled as l), and other
entries (∀j 6=lyij) by zero. We keep on “pushing”
the labels from the labeled data points which in turn
pushes the class boundary through high density data
points and settles in low density space. In this way,
our approach intelligently uses the unlabeled data in
the intermediate steps of the learning.
Assigning Final Labels. Once YU is computed, one
may take the most likely label from the label distri-
bution for each unlabeled data. However, this ap-
proach does not guarantee the label proportion ob-
served in the annotated data (which in this case is
not well-separated as shown in Section 4). There-
fore, we adopt a label-based normalization tech-
nique. Assume that the label proportions in the la-
beled data are c1, ..., c|L| (s.t.

∑|L|
i=1 ci = 1). In

case of YU , we try to balance the label proportion
observed in the ground-truth. The label mass is the
column sum of YU , denoted by YU.1 , ..., YU.|L| , each
of which is scaled in such a way that YU.1 : ... :
YU.|L| = c1 : ... : c|L|. The label of an unlabeled
data point is finalized as the label with maximum
value in the row of Y .
Convergence. Here we briefly show that our algo-
rithm is guaranteed to converge. Let us combine
Steps 3 and 4 as Y ← T̂ Y , where T̂ = Tij/

∑
k Tik.

Y is composed of YLl×|L| and YUu×|L| , where YU
never changes because of the reassignment. We can
split T̂ at the boundary of labeled and unlabeled data
as follows:

F̂ =

[
T̂ll T̂lu
T̂ul T̂uu

]

Therefore, YU ← T̂uuYU+ T̂ulYL, which can lead
to YU = limn→∞ T̂nuuY

0 + [
∑n

i=1 T̂
(i−1)
uu]T̂ulYL,

where Y 0 is the shape of Y at iteration 0. We need

1350

to show T̂nuuijY
0 ← 0. By construction, T̂ij ≥ 0,

and since T̂ is row-normalized, and T̂uu is a part
of T̂ , it leads to the following condition: ∃γ <
1,
∑u

j=1 T̂uuij ≤ γ, ∀i = 1, ..., u. So,
∑

j

T̂n
uuij

=
∑

j

∑

k

T̂
(n−1)
uuik

T̂uukj

=
∑

k

T̂
(n−1)
uuik

∑

j

T̂uuik

≤
∑

k

T̂
(n−1)
uuik

γ

≤ γn

Therefore, the sum of each row in T̂nuuij converges
to zero, which indicates T̂nuuijY

0 ← 0.
Selection of σ. Assuming a spatial representation
of data points, we construct a minimum spanning
tree using Kruskal’s algorithm (Kruskal, 1956) with
distance between two nodes measured by Euclidean
distance. Initially, no nodes are connected. We
keep on adding edges in increasing order of distance.
We choose the distance (say, df) of the first edge
which connects two components with different la-
beled points in them. We consider df as a heuristic
to the minimum distance between two classes, and
arbitrarily set σ = d0/3, following 3σ rule of nor-
mal distribution (Pukelsheim, 1994).

3.3 Features for Learning Model
We use a wide range of features that suitably rep-
resent a paper-reference pair (Pi, Rij), indicating Pi
refers to Pj through reference Rij . These features
can be grouped into six general classes.
3.3.1 Context-based Features (CF)

The “reference context” of Rij in Pi is defined by
three-sentence window (sentence where Rij occurs
and its immediate previous and next sentences). For
multiple occurrences, we calculate its average score.
We refer to “reference sentence” to indicate the sen-
tence where Rij appears.
(i) CF:Alone. It indicates whether Rij is mentioned
alone in the reference context or together with other
references.
(ii) CF:First. When Rij is grouped with others, this
feature indicates whether it is mentioned first (e.g.,
“[2]” is first in “[2,4,6]”).

Next four features are based on the occurrence of
words in the corresponding lists created manually
(see Table 1) to understand different aspects.

(iii) CF:Relevant. It indicates whether Rij is explic-
itly mentioned as relevant in the reference context
(Rel in Table 1).
(iv) CF:Recent. It tells whether the reference con-
text indicates that Rij is new (Rec in Table 1).
(v) CF:Extreme. It implies that Rij is extreme in
some way (Ext in Table 1).
(vi) CF:Comp. It indicates whether the reference
context makes some kind of comparison with Rij
(Comp in Table 1).

Note we do not consider any sentiment-based fea-
tures as suggested by (Zhu et al., 2015).
3.3.2 Similarity-based Features (SF)

It is natural that the high degree of semantic simi-
larity between the contents of Pi and Pj indicates the
influence of Pj in Pi. We assume that although the
full text of Pi is given, we do not have access to the
full text of Pj (may be due to the subscription charge
or the unavailability of the older papers). Therefore,
we consider only the title of Pj as a proxy of its
full text. Then we calculate the cosine-similarity2

between the title (T) of Pj and (i) SF:TTitle. the ti-
tle, (ii) SF:TAbs. the abstract, SF:TIntro. the in-
troduction, (iv) SF:TConcl. the conclusion, and (v)
SF:TRest. the rest of the sections (sections other
than abstract, introduction and conclusion) of Pi.

We further assume that the “reference context”
(RC) of Pj in Pi might provide an alternate way of
summarizing the usage of the reference. Therefore,
we take the same similarity based approach men-
tioned above, but replace the title of Pj with its RC
and obtain five more features: (vi) SF:RCTitle, (vii)
SF:RCAbs, (viii) SF:RCIntro, (ix) SF:RCConcl and
(x) SF:RCRest. If a reference appears multiple times
in a citing paper, we consider the aggregation of all
RCs together.

3.3.3 Frequency-based Feature (FF)
The underlying assumption of these features is

that a reference which occurs more frequently in
a citing paper is more influential than a single oc-
currence (Singh et al., 2015). We count the fre-
quency of Rij in (i) FF:Whole. the entire content,
(ii) FF:Intro. the introduction, (iii) FF:Rel. the re-
lated work, (iv) FF:Rest. the rest of the sections (as

2We use the vector space based model (Turney and Pantel,
2010) after stemming the words using Porter stammer (Porter,
1997).

1351

Rel pivotal, comparable, innovative, relevant, relevantly, inspiring, related, relatedly, similar, similarly, applicable, appropriate,
pertinent, influential, influenced, original, originally, useful, suggested, interesting, inspired, likewise
recent, recently, latest, later, late, latest, up-to-date, continuing, continued, upcoming, expected, update, renewed, extended

Rec subsequent, subsequently, initial, initially, sudden, current, currently, future, unexpected, previous, previously, old,
ongoing, imminent, anticipated, unprecedented, proposed, startling, preliminary, ensuing, repeated, reported, new, earlier,
earliest, early, existing, further, revised, improved

Ext greatly, awfully, drastically, intensely, acutely, almighty, exceptionally, excessively, exceedingly, tremendously, importantly
significantly, notably, outstandingly

Comp easy, easier, easiest, vague, vaguer, vaguest, weak, weaker, weakest, strong, stronger, strongest, bogus, unclear

Table 1: Manually curated lists of words collected from analyzing the reference contexts. The lists are
further expanded using the Wordnet:Synonym with different lexical variations. Note that while searching
the occurrence of these words in reference contexts, we use different lexical variations of the words instead
of exact matching.

mentioned in Section 3.3.2) of Pi. We also intro-
duce (v) FF:Sec. to measure the fraction of different
sections of Pi where Rij occurs (assuming that ap-
pearance of Rij in different sections is more influ-
ential). These features are further normalized using
the number of sentences in Pi in order to avoid un-
necessary bias on the size of the paper.

3.3.4 Position-based Features (PF)
Position of a reference in a paper might be a pre-

dictive clue to measure the influence (Zhu et al.,
2015). Intuitively, the earlier the reference appears
in the paper, the more important it seems to us. For
the first two features, we divide the entire paper into
two parts equally based on the sentence count and
then see whether Rij appears (i) PF:Begin. in the
beginning or (ii) PF:End. in the end of Pi. Impor-
tantly, if Rij appears multiple times in Pi, we con-
sider the fraction of times it occurs in each part.

For the other two features, we take the entire pa-
per, consider sentences as atomic units, and measure
position of the sentences where Rij appears, includ-
ing (iii) PF:Mean. mean position of appearance, (iv)
PF:Std. standard deviation of different appearances.
These features are normalized by the total length
(number of sentences) of Pi. , thus ranging from 0
(indicating beginning of Pi) to 1 (indicating the end
of Pi).

3.3.5 Linguistic Features (LF)
The linguistic evidences around the context ofRij

sometimes provide clues to understand the intrinsic
influence of Pj on Pi. Here we consider word level
and structural features.
(i) LF:NGram. Different levels of n-grams (1-
grams, 2-grams and 3-grams) are extracted from the
reference context to see the effect of different word
combination (Athar and Teufel, 2012).

(ii) LF:POS. Part-of-speech (POS) tags of the
words in the reference sentence are used as features
(Jochim and Schütze, 2012).
(iii) LF:Tense. The main verb of the reference sen-
tence is used as a feature (Teufel et al., 2006).
(iv) LF:Modal. The presence of modal verbs (e.g.,
“can”, “may”) often indicates the strength of the
claims. Hence, we check the presence of the modal
verbs in the reference sentence.
(v) LF:MainV. We use the main-verb of the refer-
ence sentence as a direct feature in the model.
(vi) LF:hasBut. We check the presence of conjunc-
tion “but”, which is another clue to show less confi-
dence on the cited paper.
(vii) LF:DepRel. Following (Athar and Teufel,
2012) we use all the dependencies present in the ref-
erence context, as given by the dependency parser
(Marneffe et al., 2006).
(viii) LF:POSP. (Dong and Schfer, 2011) use seven
regular expression patterns of POS tags to capture
syntactic information; then seven boolean features
mark the presence of these patterns. We also utilize
the same regular expressions as shown below 3 with
the examples (the empty parenthesis in each exam-
ple indicates the presence of a reference token Rij
in the corresponding sentence; while few examples
are complete sentences, few are not):

• “.*\\(\\) VV[DPZN].*”: Chen () showed that cohesion is held
in the vast majority of cases for English-French.

• “.*(VHP|VHZ) VV.*”: while Cherry and Lin () have shown it to
be a strong feature for word alignment...

• “.*VH(D|G|N|P|Z) (RB)*VBN.*”: Inducing features for tag-
gers by clustering has been tried by several researchers ().

• “.*MD (RB)*VB(RB)* VVN.*”: For example, the likelihood of
those generative procedures can be accumulated to get the like-
lihood of the phrase pair ().

3The meaning of each POS tag can be found in
http://nlp.stanford.edu/software/tagger.
shtml(Toutanova and Manning, 2000).

1352

• “[IW.]*VB(D|P|Z) (RB)*VV[ND].*”: Our experimental set-up
is modeled after the human evaluation presented in ().

• “(RB)*PP (RB)*V.*”: We use CRF () to perform this tagging.

• “.*VVG (NP)*(CC)*(NP).*”: Following (), we provide the an-
notators with only short sentences: those with source sentences
between 10 and 25 tokens long.

These are all considered as Boolean features. For
each feature, we take all the possible evidences from
all paper-reference pairs and prepare a vector. Then
for each pair, we check the presence (absence) of
tokens for the corresponding feature and mark the
vector accordingly (which in turn produces a set of
Boolean features).

3.3.6 Miscellaneous Features (MS)
This group provides other factors to explain why

is a paper being cited. (i) MS:GCount. To answer
whether a highly-cited paper has more academic in-
fluence on the citing paper than the one which is less
cited, we measure the number of other papers (ex-
cept Pi) citing Pj .
(ii) MS:SelfC. To see the effect of self-citation, we
check whether at least one author is common in both
Pi and Pj .
(iii) MG:Time. The fact that older papers are rarely
cited, may not stipulate that these are less influential.
Therefore, we measure the difference of the publica-
tion years of Pi and Pj .
(iv) MG:CoCite. It measures the co-citation counts
of Pi and Pj defined by |Ri∩Rj |

|Ri∪Rj | , which in turn an-
swers the significance of reference-based similarity
driving the academic influence (Small, 1973).

Following (Witten and Frank, 2005), we further
make one step normalization and divide each feature
by its maximum value in all the entires.

4 Dataset and Annotation

We use the AAN dataset (Radev et al., 2009) which
is an assemblage of papers included in ACL related
venues. The texts are preprocessed where sentences,
paragraphs and sections are properly separated us-
ing different markers. The filtered dataset contains
12,843 papers (on average 6.21 references per paper)
and 11,092 unique authors.

Next we use Parscit (Councill et al., 2008) to
identify the reference contexts from the dataset and
then extract the section headings from all the pa-
pers. Then each section heading is mapped into one

of the following broad categories using the method
proposed by (Liakata et al., 2012): Abstract, Intro-
duction, Related Work, Conclusion and Rest.
Dataset Labeling. The hardest challenge in this
task is that there is no publicly available dataset
where references are annotated with the intensity
value. Therefore, we constructed our own annotated
dataset in two different ways. (i) Expert Annota-
tion: we requested members of our research group4

to participate in this survey. To facilitate the labeling
process, we designed a portal where all the papers
present in our dataset are enlisted in a drop-down
menu. Upon selecting a paper, its corresponding
references were shown with five possible intensity
values. The citing and cited papers are also linked
to the original texts so that the annotators can read
the original papers. A total of 20 researchers partic-
ipated and they were asked to label as many paper-
reference pairs as they could based on the definitions
of the intensity provided in Section 2. The annota-
tion process went on for one month. Out of total
1640 pairs annotated, 1270 pairs were taken such
that each pair was annotated by at least two anno-
tators, and the final intensity value of the pair was
considered to be the average of the scores. The Pear-
son correlation and Kendell’s τ among the annota-
tors are 0.787 and 0.712 respectively. (ii) Author
Annotation: we believe that the authors of a paper
are the best experts to judge the intensity of refer-
ences present in the paper. With this intension, we
launched a survey where we requested the authors
whose papers are present in our dataset with signif-
icant numbers. We designed a web portal in similar
fashion mentioned earlier; but each author was only
shown her own papers in the drop-down menu. Out
of 35 requests, 22 authors responded and total 196
pairs are annotated. This time we made sure that
each paper-reference pair was annotated by only one
author. The percentages of labels in the overall an-
notated dataset are as follows: 1: 9%, 2: 74%, 3:
9%, 4: 3%, 5: 4%.

5 Experimental Results

In this section, we start with analyzing the impor-
tance of the feature sets in predicting the reference

4All were researchers with the age between 25-45 working
on document summarization, sentiment analysis, and text min-
ing in NLP.

1353

FF SF CF PF LF MF
0

0.2

0.4

0.6

Feature

P
ea

rs
o
n

 c
o

rr
ea

lt
io

n

N
o

n
−

in
cr

ea
si

n
g

 o
rd

er
 o

f
co

rr
el

at
io

n PF

Rel
Rest
Whole
Intro
Sec

LF

Rest
Whole
Rel
Intro
Sec

FFSF

Alone
Relevant
Extreme
Comp
First
Recent

CF

TIntro
TAbs
TRest
TTitle
TConcl
RCRest
RCIntro
RCAbs
RCTitle
RCConcl

CoCite
Time
SelfC
GCount

(a)

(b)

MF

DepRel
Modal
POS
NGram
POSP
MainV
Tense

Figure 2: Pearson correlation coefficient between
the features and the gold-standard annotations. (a)
Group-wise average correlation, and (b) ranking of
features in each group based on the correlation.

intensity, followed by the detailed results.
Feature Analysis. In order to determine which fea-
tures highly determine the gold-standard labeling,
we measure the Pearson correlation between vari-
ous features and the ground-truth labels. Figure 2(a)
shows the average correlation for each feature group,
and in each group the rank of features based on
the correlation is shown in Figure 2(b). Frequency-
based features (FF) turn out to be the best, among
which FF:Rest is mostly correlated. This set of
features is convenient and can be easily computed.
Both CF and LF seem to be equally important. How-
ever, PF tends to be less important in this task.

Model RMSE ρ R2

Uniform 2.09 -0.05 3.21
SVR+W 1.95 0.54 1.34
SVR+O 1.92 0.56 1.29

C4.5SSL 1.99 0.46 2.46
GLM 1.98 0.52 1.35

(a) Baselines

No. Model RMSE ρ R2

(1) GraLap+ FF 1.10 0.79 1.05
(2) (1) + LF 0.98 0.84 0.95
(3) (2) + CF 0.90 0.87 0.87
(4) (3) + MF 0.95 0.89 0.84
(5) (4) + SF 0.92 0.90 0.82
(6) (5) + PF 0.91 0.90 0.80

(b) Our model

Table 2: Performance of the competing models. The
features are added greedily into the GraLap model.

Results of Predictive Models. For the purpose of
evaluation, we report the average results after 10-
fold cross-validation. Here we consider five base-
lines to compare with GraLap: (i) Uniform: as-
sign 3 to all the references assuming equal inten-
sity, (ii) SVR+W: recently proposed Support Vector
Regression (SVR) with the feature set mentioned
in (Wan and Liu, 2014), (iii) SVR+O: SVR model
with our feature set, (iv) C4.5SSL: C4.5 semi-
supervised algorithm with our feature set (Quinlan,
1993), and (v) GLM: the traditional graph-based LP
model with our feature set (Zhu et al., 2003). Three
metrics are used to compare the results of the com-
peting models with the annotated labels: Root Mean
Square Error (RMSE), Pearson’s correlation coeffi-

cient (ρ), and coefficient of determination (R2)5.
Table 2 shows the performance of the competing

models. We incrementally include each feature set
into GraLap greedily on the basis of ranking shown
in Figure 2(a). We observe that GraLap with only
FF outperforms SVR+O with 41% improvement of
ρ. As expected, the inclusion of PF into the model
improves the model marginally. However, the over-
all performance of GraLap is significantly higher
than any of the baselines (p < 0.01).

6 Applications of Reference Intensity

In this section, we provide four different applica-
tions to show the use of measuring the intensity of
references. To this end, we consider all the labeled
entries for training and run GraLap to predict the
intensity of rest of the paper-reference pairs.

6.1 Discovering Influential Articles
Influential papers in a particular area are often dis-
covered by considering equal weights to all the ci-
tations of a paper. We anticipate that considering
the reference intensity would perhaps return more
meaningful results. To show this, Here we use the
following measures individually to compute the in-
fluence of a paper: (i) RawCite: total number of
citations per paper, (ii) RawPR: we construct a ci-
tation network (nodes: papers, links: citations), and
measure PageRank (Page et al., 1998) of each node
n: PR(n) = 1−q

N + q
∑

m∈M(n)
PR(m)
|L(m)| ; where,

q, the damping factor, is set to 0.85, N is the to-
tal number of nodes, M(n) is the set of nodes that
have edges to n, and L(m) is the set of nodes that
m has an edge to, (iii) InfCite: the weighted
version of RawCite, measured by the sum of in-
tensities of all citations of a paper, (iv) InfPR:
the weighted version of RawPR: PR(n) = 1−q

N +

q
∑

m∈M(n)
Inf(m→n)PR(m)∑

a∈L(m)Inf(m→a)
, where Inf indicates

the influence of a reference. We rank all the arti-
cles based on these four measures separately. Ta-
ble 3(a) shows the Spearman’s rank correlation be-
tween pair-wise measures. As expected, (i) and
(ii) have high correlation (same for (iii) and (iv)),
whereas across two types of measures the correla-
tion is less. Further, in order to know which mea-

5The less (resp. more) the value of RMSE and R2 (resp.
ρ), the better the performance of the models.

1354

sure is more relevant, we conduct a subjective study
where we select top ten papers from each measure
and invite the experts (not authors) who annotated
the dataset, to make a binary decision whether a rec-
ommended paper is relevant. 6. The average pair-
wise inter-annotator’s agreement (based on Cohen’s
kappa (Cohen, 1960)) is 0.71. Table 3(b) presents
that out of 10 recommendations of InfPR, 7 (5) pa-
pers are marked as influential by majority (all) of the
annotators, which is followed by InfCite. These
results indeed show the utility of measuring refer-
ence intensity for discovering influential papers. Top
three papers based on InfPR from the entire dataset
are shown in Table 4.

RowCite RowPR InfCite InfPR
RowCite 1 0.82 0.61 0.54
RowPR 0.82 1 0.52 0.63
InfCite 0.61 0.52 1 0.84
InfPR 0.54 0.63 0.84 1

(a)

Metric All Majority
RowCite 2 5
RowPR 2 4
InfCite 4 5
InfPR 5 7

(b)

Table 3: (a) Spearman’s rank correlation among in-
fluence measures and (b) expert evaluation of the
ranked results (for top 10 recommendations).

6.2 Identifying Influential Authors

H-index, a measure of impact/influence of an author,
considers each citation with equal weight (Hirsch,
2005). Here we incorporate the notion of reference
intensity into it and define hif-index.

Definition 2. An author A with a set of papers P (A)
has an hif-index equals to h, if h is the largest value
such that |{p ∈ P (A)|Inf(p) ≥ h}| ≥ h; where Inf(p)
is the sum of intensities of all citations of p.

We consider 37 ACL fellows as the list of gold-
standard influential authors. For comparative eval-
uation, we consider the total number of papers
(TotP), total number of citations (TotC) and av-
erage citations per paper (AvgC) as three competing
measures along with h-index and hif-index.
We arrange all the authors in our dataset in de-
creasing order of each measure. Figure 3(a) shows
the Spearman’s rank correlation among the com-
mon elements across pair-wise rankings. Figure 3(b)
shows the Precision@k for five competing mea-
sures at identifying ACL fellows. We observe that
hif-index performs significantly well with an
overall precision of 0.54, followed by AvgC (0.37),

6We choose papers from the area of “sentiment analysis” on
which experts agree on evaluating the papers.

h-index (0.35), TotC (0.32) and TotP (0.34). This
result is an encouraging evidence that the reference-
intensity could improve the identification of the
influential authors. Top three authors based on
hif-index are shown in Table 4.

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

k

P
re

ci
si

o
n
@

k

H−index

Hif−index

TopP

TopC

AvgC

(a)

(b)
H−index

0.34AvgC 1

TopP 1 0.34 0.24 0.21

TopP TopC AvgC H−index

0.24

0.21 0.28 0.38 0.31 1

0.310.32 0.24 1

0.24 0.38

0.27TopC 1 0.35 0.32 0.28

0.27

Hif−index

0.35

Hif−index

Figure 3: (a) Sprearman’s rank correlation among
pair-wise ranks, and (b) the performance of all the
measures.

6.3 Effect on Recommendation System
Here we show the effectiveness of reference-
intensity by applying it to a real paper recommen-
dation system. To this end, we consider FeRoSA7

(Chakraborty et al., 2016), a new (probably the first)
framework of faceted recommendation for scien-
tific articles, where given a query it provides facet-
wise recommendations with each facet representing
the purpose of recommendation (Chakraborty et al.,
2016). The methodology is based on random walk
with restarts (RWR) initiated from a query paper.
The model is built on AAN dataset and considers
both the citation links and the content information
to produce the most relevant results. Instead of us-
ing the unweighted citation network, here we use the
weighted network with each edge labeled by the in-
tensity score. The final recommendation of FeRoSA
is obtained by performing RWR with the transition
probability proportional to the edge-weight (we call
it Inf-FeRoSA). We observe that Inf-FeRoSA
achieves an average precision of 0.81 at top 10 rec-
ommendations, which is 14% higher then FeRoSA
while considering the flat version and 12.34% higher
than FeRoSA while considering the faceted version.

6.4 Detecting Citation Stacking
Recently, Thomson Reuters began screening for
journals that exchange large number of anomalous
citations with other journals in a cartel-like arrange-
ment, often known as “citation stacking” (Jump,
2013; Hardcastle, 2015). This sort of citation stack-
ing is much more pernicious and difficult to detect.

7www.ferosa.org

1355

No Paper Author
1. Lexical semantic techniques for corpus analysis (Pustejovsky et al., 1993) Mark Johnson
2. An unsupervised method for detecting grammatical errors (Chodorow and Leacock, 2000) Christopher D. Manning
3. A maximum entropy approach to natural language processing (Berger et al., 1996) Dan Klein

Table 4: Top three papers and authors based on InfPR and Hif-index respectively.

0 500 1000 1500 2000
0

500

1000

1500

Total citations

T
o
ta

l
ci

ta
ti

o
n
s

(e
x
cl

u
d
in

g
 s

el
f−

ci
ta

ti
o
n
s)

0 1 2 3 4 5
0

1

2

3

4

5

IF

IF
if

(a) (b)

Figure 4: Correlation between (a) IF and IFif and
(b) number of citations before and after removing
self-journal citations.

We anticipate that this behavior can be detected by
the reference intensity. Since the AAN dataset does
not have journal information, we use DBLP dataset
(Singh et al., 2015) where the complete metadata
information (along with reference contexts and ab-
stract) is available, except the full content of the pa-
per (559,338 papers and 681 journals; more details
in (Chakraborty et al., 2014)). From this dataset,
we extract all the features mentioned in Section 3.3
except the ones that require full text, and run our
model using the existing annotated dataset as train-
ing instances. We measure the traditional impact
factor (IF) of the journals and impact factor after
considering the reference intensity (IFif). Figure
4(a) shows that there are few journals whose IFif
significantly deviates (3σ from the mean) from IF ;
out of the suspected journals 70% suffer from the ef-
fect of self-journal citations as well (shown in Figure
4(b)), example including Expert Systems with Appli-
cations (current IF of 2.53). One of the future work
directions would be to predict such journals as early
as possible after their first appearance.

7 Related Work

Although the citation count based metrics are widely
accepted (Garfield, 2006; Hirsch, 2010), the belief
that mere counting of citations is dubious has also
been a subject of study (Chubin and Moitra, 1975).
(Garfield, 1964) was the first who explained the rea-
sons of citing a paper. (Pham and Hoffmann, 2003)
introduced a method for the rapid development of
complex rule bases for classifying text segments.

(Dong and Schfer, 2011) focused on a less man-
ual approach by learning domain-insensitive fea-
tures from textual, physical, and syntactic aspects
To address concerns about h-index, different alterna-
tive measures are proposed (Waltman and van Eck,
2012). However they too could benefit from filtering
or weighting references with a model of influence.
Several research have been proposed to weight ci-
tations based on factors such as the prestige of the
citing journal (Ding, 2011; Yan and Ding, 2010),
prestige of an author (Balaban, 2012), frequency of
citations in citing papers (Hou et al., 2011). Re-
cently, (Wan and Liu, 2014) proposed a SVR based
approach to measure the intensity of citations. Our
methodology differs from this approach in at lease
four significant ways: (i) they used six very shallow
level features; whereas we consider features from
different dimensions, (ii) they labeled the dataset by
the help of independent annotators; here we addi-
tionally ask the authors of the citing papers to iden-
tify the influential references which is very realistic
(Gilbert, 1977); (iii) they adopted SVR for labeling,
which does not perform well for small training in-
stances; here we propose GraLap , designed specif-
ically for small training instances; (iv) four applica-
tions of reference intensity mentioned here are com-
pletely new and can trigger further to reassessing the
existing bibliometrics.

8 Conclusion

We argued that the equal weight of all references
might not be a good idea not only to gauge success
of a research, but also to track follow-up work or rec-
ommending research papers. The annotated dataset
would have tremendous potential to be utilized for
other research. Moreover, GraLap can be used for
any semi-supervised learning problem. Each appli-
cation mentioned here needs separate attention. In
future, we shall look into more linguistic evidences
to improve our model.

1356

References
Awais Athar and Simone Teufel. 2012. Context-

enhanced citation sentiment detection. In NAACL,
pages 597–601, Stroudsburg, PA, USA. ACL.

Alexandru T. Balaban. 2012. Positive and negative as-
pects of citation indices and journal impact factors.
Scientometrics, 92(2):241–247.

Adam L. Berger, Vincent J. Della Pietra, and Stephen
A. Della Pietra. 1996. A maximum entropy approach
to natural language processing. Comput. Linguist.,
22(1):39–71, March.

Tanmoy Chakraborty, Suhansanu Kumar, Pawan Goyal,
Niloy Ganguly, and Animesh Mukherjee. 2014. To-
wards a stratified learning approach to predict fu-
ture citation counts. In Proceedings of the 14th
ACM/IEEE-CS Joint Conference on Digital Libraries,
JCDL ’14, pages 351–360, Piscataway, NJ, USA.
IEEE Press.

Tanmoy Chakraborty, Amrith Krishna, Mayank Singh,
Niloy Ganguly, Pawan Goyal, and Animesh Mukher-
jee, 2016. Advances in Knowledge Discovery and
Data Mining: 20th Pacific-Asia Conference, PAKDD
2016, Auckland, New Zealand, April 19-22, 2016, Pro-
ceedings, Part II, chapter FeRoSA: A Faceted Recom-
mendation System for Scientific Articles, pages 528–
541. Springer International Publishing, Cham.

Martin Chodorow and Claudia Leacock. 2000. An unsu-
pervised method for detecting grammatical errors. In
NAACL, pages 140–147, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

D. E. Chubin and S. D. Moitra. 1975. Content-Analysis
of References Adjunct or Alternative to Citation
Counting. Social studies of science, 5(4):423–441.

J. Cohen. 1960. A Coefficient of Agreement for Nominal
Scales. Educational and Psychological Measurement,
20(1):37–41.

Isaac G Councill, C Lee Giles, and Min-Yen Kan. 2008.
Parscit: an open-source crf reference string parsing
package. In LREC, pages 28–30, Marrakech, Mo-
rocco.

Ying Ding. 2011. Applying weighted pagerank to author
citation networks. JASIST, 62(2):236–245.

Cailing Dong and Ulrich Schfer. 2011. Ensemble-style
self-training on citation classification. In IJCNLP,
pages 623–631. ACL, 11.

David Dubin. 2004. The most influential paper gerard
salton never wrote. Library Trends, 52(4):748–764.

Eugene Garfield. 1964. Can citation indexing be au-
tomated? Statistical association methods for mecha-
nized documentation, Symposium proceedings, pages
188–192.

Eugene Garfield. 2006. The History and Meaning of the
Journal Impact Factor. JAMA, 295(1):90–93.

G. N. Gilbert. 1977. Referencing as persuasion. Social
Studies of Science, 7(1):113–122.

James Hardcastle. 2015. Citations, self-citations, and
citation stacking, http://editorresources.
taylorandfrancisgroup.com/
citations-self-citations\
\-and-citation-stacking/.

J. E. Hirsch. 2005. An index to quantify an individual’s
scientific research output. PNAS, 102(46):16569–
16572.

J. E. Hirsch. 2010. An index to quantify an individ-
ual’s scientific research output that takes into account
the effect of multiple coauthorship. Scientometrics,
85(3):741–754, December.

Wen-Ru Hou, Ming Li, and Deng-Ke Niu. 2011. Count-
ing citations in texts rather than reference lists to im-
prove the accuracy of assessing scientific contribution.
BioEssays, 33(10):724–727.

Charles Jochim and Hinrich Schütze. 2012. Towards
a generic and flexible citation classifier based on a
faceted classification scheme. In COLING, pages
1343–1358, Bombay, India.

Paul Jump. 2013. Journal citation
cartels on the rise, https://www.
timeshighereducation.com/news/
journal-citation-cartels-on-the-rise/
2005009.article.

J. B. Kruskal. 1956. On the Shortest Spanning Subtree of
a Graph and the Traveling Salesman Problem. In Pro-
ceedings of the American Mathematical Society, vol-
ume 7, pages 48–50.

Maria Liakata, Shyamasree Saha, Simon Dobnik,
Colin R. Batchelor, and Dietrich Rebholz-Schuhmann.
2012. Automatic recognition of conceptualization
zones in scientific articles and two life science appli-
cations. Bioinformatics, 28(7):991–1000.

M. Marneffe, B. Maccartney, and C. Manning. 2006.
Generating typed dependency parses from phrase
structure parses. In LREC, pages 449–454, Genoa,
Italy, May. European Language Resources Association
(ELRA).

M. J. Moravcsik and P. Murugesan. 1975. Some results
on the function and quality of citations. Social studies
of science, 5(1):86–92.

L. Page, S. Brin, R. Motwani, and T. Winograd. 1998.
The pagerank citation ranking: Bringing order to the
web. In WWW, pages 161–172, Brisbane, Australia.

Son Bao Pham and Achim Hoffmann. 2003. A new ap-
proach for scientific citation classification using cue
phrases. In Tamas Domonkos Gedeon and Lance
Chun Che Fung, editors, Advances in Artificial Intelli-
gence: 16th Australian Conference on AI, pages 759–
771. Springer Berlin Heidelberg.

1357

M. F. Porter. 1997. Readings in information retrieval.
chapter An Algorithm for Suffix Stripping, pages 313–
316. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA.

Friedrich Pukelsheim. 1994. The Three Sigma Rule.
The American Statistician, 48(2):88–91.

James Pustejovsky, Peter Anick, and Sabine Bergler.
1993. Lexical semantic techniques for corpus analy-
sis. Comput. Linguist., 19(2):331–358, June.

J. Ross Quinlan. 1993. C4.5: Programs for Machine
Learning. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

Dragomir R. Radev, Pradeep Muthukrishnan, and Va-
hed Qazvinian. 2009. The acl anthology network
corpus. In Proceedings of the 2009 Workshop on
Text and Citation Analysis for Scholarly Digital Li-
braries, NLPIR4DL, pages 54–61, Stroudsburg, PA,
USA. ACL.

Mikhail V. Simkin and V. P. Roychowdhury. 2003. Read
Before You Cite! Complex Systems, 14:269–274.

Mayank Singh, Vikas Patidar, Suhansanu Kumar, Tan-
moy Chakraborty, Animesh Mukherjee, and Pawan
Goyal. 2015. The role of citation context in pre-
dicting long-term citation profiles: An experimental
study based on a massive bibliographic text dataset. In
CIKM, pages 1271–1280, New York, NY, USA. ACM.

Henry Small. 1973. Co-citation in the scientific litera-
ture: A new measure of the relationship between two
documents. JASIST, 24(4):265–269.

Simone Teufel, Advaith Siddharthan, and Dan Tidhar.
2006. Automatic classification of citation function.
In EMNLP, pages 103–110, Stroudsburg, PA, USA.
ACL.

Kristina Toutanova and Christopher D. Manning. 2000.
Enriching the knowledge sources used in a maximum
entropy part-of-speech tagger. In EMNLP, pages 63–
70, Stroudsburg, PA, USA. ACL.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of semantics.
J. Artif. Int. Res., 37(1):141–188, January.

Ludo Waltman and Nees Jan van Eck. 2012. The in-
consistency of the h-index. JASIST, 63(2):406–415,
February.

Xiaojun Wan and Fang Liu. 2014. Are all literature ci-
tations equally important? automatic citation strength
estimation and its applications. JASIST, 65(9):1929–
1938.

Ian H. Witten and Eibe Frank. 2005. Data Mining: Prac-
tical Machine Learning Tools and Techniques, Second
Edition (Morgan Kaufmann Series in Data Manage-
ment Systems). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

Erjia Yan and Ying Ding. 2010. Weighted citation: An
indicator of an article’s prestige. JASIST, 61(8):1635–
1643.

Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty.
2003. Semi-supervised learning using gaussian fields
and harmonic functions. In ICML, pages 912–919,
Washington D.C.

Xiaodan Zhu, Peter Turney, Daniel Lemire, and Andr
Vellino. 2015. Measuring academic influence: Not
all citations are equal. JASIST, 66(2):408–427.

1358

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1359–1368,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Improving Users’ Demographic Prediction via the Videos They Talk about

Yuan Wang, Yang Xiao, Chao Ma, and Zhen Xiao
Department of Computer Science, Peking University, Beijing 100871, China
{wangyuan, xiaoyang, machao, xiaozhen}@net.pku.edu.cn

Abstract

In this paper, we improve microblog users’
demographic prediction by fully utilizing their
video related behaviors. First, we collect the
describing words of currently popular videos,
including video names, actor names and video
keywords, from video websites. Secondly,
we search these describing words in users’
microblogs, and build the direct relationships
between users and the appeared words. After
that, to make the sparse relationship denser,
we propose a Bayesian method to calculate
the probability of connections between users
and other video describing words. Last-
ly, we build two models to predict users’
demographics with the obtained direct and
indirect relationships. Based on a large real-
world dataset, experiment results show that
our method can significantly improve these
words’ demographic predictive ability.

1 Introduction

Recent studies have indicated that users’ demo-
graphics can be predicted from their linguistic
characteristics. A typical practice is cutting the text
into a bag of words and training a linear classifier.
Although this practice can achieve an acceptable
result in simple tasks such as predicting gender and
age, it loses some important information about the
text structure and does not fully use the relationship
between words.

Nowadays, people spend a lot of time on videos
and social media which provide them with access
to post views and comments. Weibo is one of the
biggest microblogging platforms in China. More

than one third of the “Weibo Trends”1 are about
videos. Generally, people with different demograph-
ic attributes usually have different tastes for videos
(Abisheva et al., 2014). For example, in China
people who watch English drama tend to be well-
educated. Here is a question: if the video related
information in users’ weibo messages can be fully
used, will the users’ demographic prediction be
improved?

One challenge is that many users do not directly
mention the video names in their weibo messages.
Instead, they make comments on the actors or
the plots. If a person likes “Big Bang Theory”,
he may post “Will the Big Bang Theory last into
the next century?” where the sitcom’s name is
mentioned directly, or “Sheldon is so cool, I love
him!” which talks about an actor of the sitcom.
Both posts indicate the user is interested in “Big
Bang Theory”. When involving the demographic
prediction, however, the traditional “bag of words
based” model cannot extract the above information
effectively. Some previous works use topic models
such as LIWC (Pennebaker et al., 2001) or LDA
(Blei et al., 2003) to detect the relations among
users’ words. Usually, they suffer from the short
length of weibo messages and the number of topics.
In addition, the lifespan of most popular video
programs is not very long, which renders traditional
topic models inefficient.

Fortunately, there exist some third-party video
websites, such as youtube.com and youku.com, from
which we can get the most popular videos. For each
video, there is usually a homepage with a actor list

1http://d.weibo.com/100803

1359

and also a comments section, and we can calculate
the video’s Top TF-IDF words (keywords) based on
these comments. Here we define the video name,
actor name and keyword to be three different kinds
of “video describing words”. The relationships
among these words can be used to better understand
weibo users’ video related behaviors. This approach
can be applied to other kinds of words, such as
describing words on books and music. This paper
focuses on the video as an example.

After obtaining the video describing words, we
build three matrices to represent the direct and
indirect relationships between weibo users and these
words. They are User-Video Matrix, User-Actor
Matrix and User-Keyword Matrix, respectively. At
beginning, these three matrices are sparse because
they only represent the direct relationships, which
means that only when the words appear in user’s
weibos, the corresponding position will be set. After
that, we propose a “hidden layer” to detect the
indirect relationships, making them denser.

With these indirect relationships, we can improve
users’ demographic predictions, including gender,
age, education background, and marital status. This
paper makes the followings three contributions:

1. By construct three matrices, we detect the
direct and indirect relationships between weibo
users and video describing words.

2. Two models are proposed to predict users’
demographics by using both direct and indirect
relationships.

3. Experiment results prove that our efforts can
significantly improve the predictive accuracy,
compared with the existing research.

The rest of this paper is organized as follows.
Section 2 introduces the dataset and demographics.
Section 3 introduces how to make full use of video
related behaviors. Section 4 presents experimental
results. Finally, we review related work in Section
5, and draw conclusions in Section 6.

2 Dataset and Demographics

2.1 Dataset
We collected 2,970,642 microblog users from Weibo
(http://weibo.com), the largest microblog service

in China, as our dataset. To avoid spam users
(sometimes called robot users), we only collected
verified users and users followed by verified user.
Weibo conducts manual verifications to make sure
the verified users provide real and authentic profile
information. Table 1 presents four target demo-
graphic attributes and the completion rates (ratio of
effective users). All data is either through Open API
or publicly available. No private data is used in the
experiment.

We also collected 847 popular video programs
from YISQ (4 popular video websites in China:
youku, iqiyi, sohu, qq). These videos mainly fall into
three types: movie, tv play, and variety shows. We
downloaded these videos’ Homepages and extracted
their actors and TOP20 TF-IDF words. The statistics
are shown in Table 2.

2.2 Ground Truth
One problem of our dataset is it contains celebrities,
while our model mainly targets ordinary weibo
users. We implement a filter to exclude celebrities
based on their large numbers of followers (>50000
as default), making the ground truth more represen-
tative. Besides, users with less than 100 messages
are discarded. At last, we obtain 742,323 accounts
with both their demographics and messages.

2.3 Demographics
As Table 1 shows, the demographic attributes con-
cerned in this paper include gender, age, education
background, and marital status:

Gender (Binary): the gender prediction is a
typical binary classification task: male, female.

Age (4-Class): because there is only a handful
of(<1%) user older than 45, we classify users into
the following four age groups: Teenage (<18),
Youngster (18-24), Young (25-34), Mid-age (>34).

Education Background (Binary): we categorize
users’ education background into two groups: uni-
versity, non-university.

Marital Status (Binary): marital status is also
simplified to a binary classification task: single,
non-single.

3 Our Model

In this section, we introduce the framework, which
contains four steps.

1360

Attribute Completion Rate Categories
Gender 95.019% Male, Female

Age 18.604% Teenage (<18), Youngster (18-24), Young (25-34), Mid-age(>34)
Education BG 17.443% University, Non-University
Marital Status 2.203% Single, Non-Single

Table 1: Demographic attributes and corresponding categories

Video Actor Keyword
Variety show 344 1007 2925

Movie 306 741 2049
TV 197 515 1302

Total 847 1422 4094
Table 2: Statics of video relevant information (There is an

overlap between the three collections of actors and keywords.)

The first step generates the “Video describing
words” and represents user as two vectors (Vv, Vo).
Vv consists of user’s “video describing words” and
Vo consists of user’s “other words”. At first, Vv only
contains user’s direct relationships.

Vv: video describing words (direct)
Vo: other words
Va: Vv + Vo

The second step detects the indirect relationships
between users and videos. For example, if a user
mentioned “Robert Downey Jr”, we believe he has
an indirect relationships with “Iron Man” movie. By
doing so, we add user’s indirect relationships into his
Vv, getting a denser vector V ′v .

V ′v : video describing words (direct+indirect)
V ′a: V ′v + Vo

The third step proposes two models respectively
to evaluate whether those indirect relationships,
discovered in second step, can be used to develop
a more accurate prediction model.

The fourth step represents weibo user with the
combination of V ′v and Vo, and use the combination
to train a linear SVM to evaluate whether this effort
can make the prediction better.

3.1 Discover Indirect Relationships
If a user mentioned a video’s name directly, we
believe there is a direct relationship between them.
The rests are unobvious relationships. In this part,

we calculate whether these unobvious relationships
can be transformed into indirect ones.

3.1.1 User-Video Matrix

Firstly, we detect whether a user directly men-
tioned a video program in his weibo messages.
There are two scenarios: the first is this user posts
a message containing the video’s name directly, and
the other is this user reposts a message containing
the video’s name. In this paper, we believe these two
scenarios both indicate there is a direct relationship
between the user and the video, and do not make a
distinction between them. Till now, we construct a
Direct User-Video Matrix (DUVM) to denote all the
direct relationships between users and videos.

Step 1: We know each video program vn contains
some actors anj and keywords wni. We can
calculate P (vn), P (anj |vn) and P (wni|vn) in Step
1. P (vn) represents the probability that a person
has watched the nth video. P (wni|vn) represents
the probability that a person, who has watched the
nth video, mention the nith keyword. P (anj |vn) is
the probability that a person, who has watched the
nth video, mention the njth actor.

P (vn) = num (users watched the nth video) /
num (users)

P (wni|vn) = num (users watched the nth video
and mentioned the nith keyword) / num (users
watched the nth video)

P (anj |vn) = num (users watched the nth video
and mentioned the njth actor) / num (users watched
the nth video)

Step 2: In step 2, If a user doesn’t mention a
video’s name directly, but mentions the video’s relat-
ed actors (Ak) and keywords (Wm), we can update
his unobvious user-video relationships according to
a Bayesian framework.

1361

Figure 1: (1) At first, identify the describing words from users microblogs, which builds the direct relationships between users and

these words. (2) By construct three matrices, we detect the indirect relationships between weibo users and video describing words.

(3)Two models are proposed to predict users demographics by using both direct and indirect relationships.

P (vn|Wm, Ak) =
P (Wm, Ak|vn) ∗ P (vn)

P (Wm, Ak)

=

∏
wni∈Wm

P (wni|vn) ∗
∏

anj∈Ak
P (anj |vn) ∗ P (vn)

P (Wm, Ak)
(1)

Through Step 2, we can discover some new
indirect relationships and update UVM. Go back to
Step 1 and iterate until converges, we can get the
Final UVM at last.

3.1.2 User-Actor Matrix
Every video program has several actors, and the

relationships between weibo users and actors may
contribute to the demographic prediction either. So
we build the UAM, where each row represents a
weibo user and each column represents an actor.

There are two case that the element of UAM will
be set to true: (1) the user ‘i’ directly mentioned
actor ‘j’ in his weibo messages (including post and
repost); (2) the user ‘i’ has watched video ‘v’, and
actor ‘j’ participate in video ‘v’. The second case
needs UVM’s help. We suppose these two cases
affect the value equally in this paper.

3.1.3 User-Keyword Matrix
We can find several keywords to describe each

video from their Homepages. For instance, we

get “Paul Walker”, “fight”, and “car” to describe
“Furious 7”.

Each row of UKM represents a weibo user and
each column represents a keyword of a certain video.
(1) If we find a user has watched the “Furious 7”, no
matter direct or indirect relationship, we can set the
columns of user’s “Furious 7” keywords to true. (2)
The value can be set to true either if the user directly
mentioned these keywords.

3.2 Two Indirect Relationship Based Models

In this part, two models are proposed to predict user-
s’ demographics by using both direct and indirect
relationships.

3.2.1 Discriminant Model (Dis-Model)
Given three matrices, the intuitive way to predict

users’ demographics is using Collaborative Filter-
ing. However, finding the similar users directly
based on the vector similarity is not a good idea,
because a substantial part of users have ever watched
no more than 10 videos. Matrix Factorization has
been proven useful to address data sparsity, for
the reduced orthogonal dimensions are less noisy
than the original data and can capture the latent
associations between users and videos. In our
Dis-Model, we utilize the factorization machines
(Rendle, 2010) to deal with UVM, UAM, and
UKM, reducing the length of user’s dimensionality
from videos’ number (actors’ number, keywords’

1362

5 10 15 20 25
0.65

0.7

0.75

0.8

K value

A
U

C

Performance (AUC) of Gender

LR
SVM
GBDT

(a) AUC of Gender

5 10 15 20 25

0.55

0.6

0.65

K value

A
U

C

Performance (F1) of Age

LR
SVM
GBDT

(b) F1 of Age

5 10 15 20 25
0.65

0.7

0.75

0.8

K value

A
U

C

Performance (AUC) of Education

LR
SVM
GBDT

(c) AUC of Education BG

5 10 15 20 25

0.55

0.6

0.65

K value

A
U

C

Performance (AUC) of Marital

LR
SVM
GBDT

(d) AUC of Marital Status

Figure 2: Performance of different classifiers (LR, SVM,

GBDT) for Dis-Model with varying K.

number) to a smaller value K. Every weibo user can
be represented by the combination of these three K-
length vectors.

Over the last several decades, many kinds of
discriminant classifier have been created. For
our four tasks, we compared Logistic Regression
(LR), Support Vector Machine (SVM), and Gradient
Boosted Decision Tree (GBDT). Figure 2 illustrates
their performance, where GBDT performs the best
in all K values. When K increases from 5 to 20, all
classifiers’ results are all getting better and tend to
be stable when K is bigger than 20. So we choose
GBDT as our default base classifier and K=20 as
default value.

3.2.2 Generative Model (Gen-Model)
We start with introducing an important concept:

video demographic tendency, which means to what
extent a video belongs to a specified demographic
group. For example, if 90% audiences of a movie are
males, we define its demographic tendency on male
as 90%. The actor tendency and keyword tendency
can be calculated in the same way.

In the Gen-Model, (1) we firstly calculate each
video’s (actor, keyword) demographic tendency ac-
cording to its audiences (known demographics).
(2) Based on the demographic tendency of videos
(actors, keywords), we predict user’s (unknown)
demographics via a Bayesian method. (3) At last,
we propose a smooth step to adjust the result.

(1) Calculate video demographic tendency
At first, we calculate every video demographic

tendency as Equation 2:

p(c|vj) =
∑n

i=1(rij ∗ ui(c))∑n
i=1 rij

(2)

P (c|vj) represents the jth video’s demographic
tendency on c, where c is the demographic attribute.
rij will be set to 1 if the ith user has watched the
jth video, otherwise set to 0. ui(c) is a boolean,
representing whether the ith user has the attribute c.

(2) Calculate user demographic attribute
In this step, we predict users’ demographics

according to the demographic tendency of the videos
they has watched. Suppose user’s viewing habits
are independent, we can calculate the probability of
P (c|ui) as Equation 3:

P (c|ui) ∝ P (c|{V })
∝ P ({V }|c) ∗ P (c)
∝

∏

vj∈{V }
P (vj |c) ∗ P (c)

=

∏
vj∈{V } P (c|vj) ∗ P (vj)

P (c)
∗ P (c)

∝
∏

vj∈{V }
P (c|vj)

(3)

{V } represents the collection of videos watched
by ui. P (c|vj) is the jth video’s demographic
tendency on c, as the previous part described.

(3) Smooth the result
Based on the fact that people in same demograph-

ic group may have similar behaviors, we deploy a
smooth component to adjust the value of P (c|vj)
and P (c|ui) according to their top n neighbors. As
mentioned above, we use factorization machines
to transform the user and video vectors into low-
dimensional (K=20) ones. The distance is cal-
culated by Euclidean Distance. The video, actor,
and word have the same treating process, so we
introduce the video as representative.

Smooth the Video’s Demographic Tendency: Base
on video vj’s top n neighbors, we can calcu-
late its neighbors’ average demographic tendency
P (c|nbr(vj)), where P (c|vnbj) is vj’s nbjth neigh-
bor’s demographic tendency.

1363

p(c|nbr(vj)) =
∑n

j=1 P (c|vnbj)
n

(4)

Therefore, we can smooth vj’s demographic
tendency by:

P (c|vj) = α ∗ P (c|vj) + (1− α) ∗ P (c|nbr(vj)) (5)

α is the parameter to control the top n neighbors’
influence. In this paper, we compared ten values of
α and chose 0.7 as default. With the same process,
n is set to 10 as default.

Smooth the User’s Demographic Result: The user
side smooth procedure is similar to the video side,
except user’s P (c|nbr(ui)) is affected by three kinds
of neighbors (unbvi, unbai, unbwi).

p(c|nbr(ui)) =
∑n

i=1 P (c|unbvi)
3n

+

∑n
i=1 P (c|unbai)

3n

+

∑n
i=1 P (c|unbwi)

3n
(6)

Just like video’s smooth process, we adjust ui’s
demographic attributes by:

P (c|ui) = α ∗ P (c|ui) + (1− α) ∗ P (c|nbr(ui)) (7)

The smooth component is deployed as an iterative
procedure, and keeps running until each P (c|ui)
became stable.

Two Baselines: To validate whether those indi-
rect relationships can improve the predictions, we
build two baseline models: Dis-Baseline and Gen-
Baseline. While our two models use the V ′v as input,
these two baseline models use the raw Vv. These two
baseline models adopt the same architecture with
our proposed two models. The only difference is the
input data.

3.3 Fusion Model
As described above, we discovered the indirect
relationships between users and video describing
words, and demonstrated this effort can leading a
better result than directly train the classifier.

0 10 20 30
2

3

4

5

6
Relationships Tendency

Iterations

U
se

r
V

id
eo

 R
el

at
io

ns
hi

ps

Figure 3: Tendency of User-Video relationship number.

But pre-existing models commonly utilize all the
words in user’s weibo messages. So we need to find
out whether our hard-earned improvement would be
submerged by those “Non video describing words”.
We train a Fusion Model using all the words in
weibo messages and indirect relationships together,
and compare it with a baseline model, who only use
all the words (without indirect relationships).

Fusion Baseline: Many pre-existing methods
(Burger et al., 2011; Tu et al., 2015) chose linear
model as their text classifier, for linear model is
suitable for text categorization tasks. We choose
L1-regularized linear SVM as our Fusion Model
and Fusion-Baseline’s classifier. The only difference
between them is the input data (V ′v + Vo vs Vv + Vo).

4 Experiment Results

We conducted a 10-fold cross validation to demon-
strate our framework’s effectiveness, where 8 parts
for training, 1 parts for validation and 1 parts for
testing by default. The performance of presented
methods were evaluated using the Precision, Recall
and Macro-F1 measures. Binary classification tasks
were also measured by Area Under the ROC Curve
(AUC).

4.1 Indirect Relationships Evaluation

In our dataset, each user directly mention 2.6 video
programs on average and only 0.7% has more than
10 direct relationships. As shown in Figure 3, more
and more indirect relationships arise along with the
iterations. User’s relationship number (direct +
indirect) stabilized at 5.7 on average and 13% of
them is bigger than 10.

To answer whether these indirect relationships

1364

Precision Recall F1 AUC

Gender
Dis-Baseline 0.720 0.714 0.717 0.730
Dis-Model 0.786 0.779 0.783 0.812 ↑ 11.2%

Gen-Baseline 0.701 0.687 0.694 0.707
Gen-Model 0.799 0.802 0.801 0.825 ↑ 16.7%

Age
Dis-Baseline 0.569 0.541 0.554 *
Dis-Model 0.642 0.653 0.648 ↑ 16.8% *

Gen-Baseline 0.529 0.504 0.516 *
Gen-Model 0.663 0.645 0.654 ↑ 26.7% *

Education BG
Dis-Baseline 0.707 0.716 0.711 0.730
Dis-Model 0.788 0.801 0.795 0.809 ↑ 11.1%

Gen-Baseline 0.680 0.659 0.669 0.690
Gen-Model 0.790 0.808 0.799 0.812 ↑ 17.7%

Marital Status
Dis-Baseline 0.565 0.549 0.557 0.571
Dis-Model 0.657 0.640 0.648 0.659 ↑ 15.4%

Gen-Baseline 0.572 0.550 0.560 0.581
Gen-Model 0.682 0.691 0.687 0.696 ↑ 19.8%

Table 3: Prediction accuracy based on users’ video describing words. Classes have been balanced.

can make the prediction better, we compared our two
models (Dis-Model & Gen-Model) with two base-
line models. We also compared their performance
on different user groups categorized by user-video
relationship number.

Gender: As Table 3 shows, our two models
both have a significant improvement compared to
the baseline models. The Gen-Model achieve the
best performance (AUC 0.825) in terms of all the
measurement. As Figure 4(a) shows, with the
number growth, our two models’ AUC scores are
both getting better. Surprisingly, when the number
is bigger than 10, the Gen-Model even get a similar
performance of the model using all of the user’s
words.

Age: In the age task, our two models both
outperformed the baseline models significantly, and
the generative model performs better (F1 0.654) too.
We analyzed the result and found the “youngster”
and “young” share the similar watching habits in
Weibo. It’s hard to pick out a 23 years old user from
the 28 years old group. As Figure 4(b) shows, our
two models’ F1 scores are both getting better along
with the growth of user-video relationship number.

Education Background: Not surprisingly, our
two models obviously outperform the result over
two baseline models. This result indicates that

people in different education background has visible
different tastes on video programs.

Marital Status: Table 3 presents the results of
marital status. We notice that the performance of
our two model is still reasonable, but is worse than
gender and education tasks. In addition to that this
task is more difficulty, another reason is when a user
gets married, he might not update the information in
his online profile.

Remark: Experiment results show that our
method can significantly improve these words’
demographic predictive ability by more than 15%
on average. 10 videos is good enough to portray a
weibo user, and can achieve reasonable results in
these 4 inference tasks. The video related behavior
is efficient on predicting gender and education, for
people on these two tasks have visible different
inclinations. Inferring age and marital status is not
easy, but our two models still achieve reasonable
improvements. In general, our two models both
get significantly better results than baselines. The
Gen-Model is a better choice by contrast.

4.2 Fusion Model Evaluation

After we obtained the potential predictive ability
of indirect relationships, we also need to find out
whether it can help pre-existing model perform

1365

6 8 10 12
0.76

0.78

0.8

0.82

0.84

0.86

User−Video relationship number

A
U

C

AUC of Gender (Binary)

Dis−Model
Gen−Model

(a) AUC of Gender

6 8 10 12

0.6

0.65

0.7

User−Video relationship number

F
1

S
co

re

F1 Score of Age (Multi−class)

Dis−Model
Gen−Model

(b) F1 Score of Age

6 8 10 12
0.76

0.78

0.8

0.82

0.84

0.86

User−Video relationship number

A
U

C

 AUC of Education BG (Binary)

Dis−Model
Gen−Model

(c) AUC of Education BG

6 8 10 12

0.65

0.7

0.75

User−Video relationship number

A
U

C

AUC of Marital Status (Binary)

Dis−Model
Gen−Model

(d) AUC of Marital Status

Figure 4: Prediction result with varying User-Video relationship numbers.

1 2 3 4
0.65

0.7

0.75

0.8

M
ac

ro
−

F
1

Fusion Model Performance

Baseline Model
Fusion Model

Figure 5: Results of Fusion Model evaluation (Macro-F1).

better. We compare the Fusion Baseline (Vv+Vo)
with our Fusion Model (V ′v+Vo). As Figure 5 shows,
Fusion Model’s performance is better than Fusion
Baseline’s in all four tasks. The improvement is
about 2-3% on average. As above mentioned, our
approach can be applied to other kinds of words,
such as describing words on books and music. So
there is some room for improvement.

5 Related work

In this section, we briefly review the research works
related to our work.

Many researches (Kumar and Tomkins, 2010;
Goel et al., 2012) found users belong to different
demographic groups behave differently. (Hu et
al., 2007; Murray and Durrell, 2000; Goel et
al., 2012; Kosinski et al., 2012) showed that age,
gender, education level, and even personality can
be predicted from people’s webpage browsing logs.
(Kosinski et al., 2013; Schwartz et al., 2013;
Youyou et al., 2015) showed computers’ judgments
of people’s personalities based on their Facebook
Likes are more accurate and valid than judgments
made by their close acquaintances. (Malmi and
Weber, 2016) showed users’ demographics also can

be predicted based on theirs apps. Apart from the
browsing behaviors, there also exist some works
based on user’s linguistic characteristics. (Schler
et al., 2006) analyzed tens of thousands of blogs
and indicated significant differences in writing style
and word usage between different gender and age
groups. The similar result also showed in (Luyckx
and Daelemans, 1998; Oberlander and Nowson,
2006; Mairesse et al., 2007; Nowson, 2007; Gill
et al., 2009; Rosenthal and McKeown, 2011).
There are some works (Bi et al., 2013; Weber
and Jaimes, 2011; Weber and Castillo, 2010) on
predicting search engine user’s demographics based
on their search queries. (Hovy, 2015) investigated
the influence of user’s demographics on better
understanding their online reviews. (Otterbacher,
2010) used logistic regression model to infer users
gender based on the content of movie reviews.

Many researches focused on the twitter users.
In the Author Profiling task at PAN 2015 (Rangel
et al., 2015), participants approached the task of
identifying age, gender and personality traits from
Twitter. (Nguyen et al., 2013) explored users’ age
prediction task based on their tweets, achieving
better performance than humans. (Burger et al.,
2011) studied the gender predictive ability of twitter
linguistic characteristics, reached 92% accuracy.
(Pennacchiotti and Popescu, 2011) proposed a GB-
DT model to predict users’ age, gender, political
orientation and ethnicity by leveraging their observ-
able information. (Culotta et al., 2015) predicted
the demographics of Twitter users based on whom
they follow, and (Zhong et al., 2015) predicted the
microblog user’s demographic attributes only by
their chick-ins. In (Li et al., 2014), job and education
attributes are extracted by combining a rule based
approach with a probabilistic system. There are
also some works based on users’ social relationships

1366

(Mislove et al., 2010; Henderson et al., 2012; Zhao
et al., 2013).

6 Conclusion

Our motivation on writing this paper is user’s
video related behavior is usually under-utilized on
demographic prediction tasks. With the help of
third-party video sites, we detect the direct and
calculate the indirect relationships between users
and video describing words, and demonstrate this
effort can improve the accuracy of users’ demo-
graphic predictions. To our knowledge, this is the
first work which explores demographic prediction
by fully using users’ video describing words. This
framework has good scalability and can be applied
on other concrete features, such as user’s book
reading behaviors and music listening behaviors.

Acknowledgments

This work was supported by the National Grand
Fundamental Research 973 Program of China under
Grant No.2014CB340405 and the National Nat-
ural Science Foundation of China under Grant
No.61572044.

References

Adiya Abisheva, Venkata Rama Kiran Garimella, David
Garcia, and Ingmar Weber. 2014. Who watches (and
shares) what on youtube? and when?: using twitter
to understand youtube viewership. In Proceedings of
WSDM, pages 593–602. ACM.

Bin Bi, Milad Shokouhi, Michal Kosinski, and Thore
Graepel. 2013. Inferring the demographics of
search users: Social data meets search queries. In
Proceedings of WWW, pages 131–140. International
World Wide Web Conferences Steering Committee.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. the Journal of
machine Learning research, 3:993–1022.

John D Burger, John Henderson, George Kim, and Guido
Zarrella. 2011. Discriminating gender on twitter.
In Proceedings of the EMNLP, pages 1301–1309.
Association for Computational Linguistics.

Aron Culotta, Nirmal Ravi Kumar, and Jennifer Cutler.
2015. Predicting the demographics of twitter users
from website traffic data. In Proceedings of AAAI,
pages 72–78.

Alastair J Gill, Scott Nowson, and Jon Oberlander. 2009.
What are they blogging about? personality, topic and
motivation in blogs. In Proceedings of ICWSM.

Sharad Goel, Jake M Hofman, and M Irmak Sirer. 2012.
Who does what on the web: A large-scale study of
browsing behavior. In Proceedings of ICWSM.

Keith Henderson, Brian Gallagher, Tina Eliassi-Rad,
Hanghang Tong, Sugato Basu, Leman Akoglu, Danai
Koutra, Christos Faloutsos, and Lei Li. 2012. Rolx:
structural role extraction & mining in large graphs. In
Proceedings of SIGKDD, pages 1231–1239. ACM.

Dirk Hovy. 2015. Demographic factors improve
classification performance. In Proceedings of ACL.

Jian Hu, Hua-Jun Zeng, Hua Li, Cheng Niu, and Zheng
Chen. 2007. Demographic prediction based on user’s
browsing behavior. In Proceedings of WWW, pages
151–160. ACM.

Michal Kosinski, David Stillwell, Pushmeet Kohli, Y-
oram Bachrach, and Thore Graepel. 2012. Personality
and website choice.

Michal Kosinski, David Stillwell, and Thore Graepel.
2013. Private traits and attributes are predictable from
digital records of human behavior. Proceedings of the
National Academy of Sciences, 110(15):5802–5805.

Ravi Kumar and Andrew Tomkins. 2010. A characteri-
zation of online browsing behavior. In Proceedings of
WWW, pages 561–570. ACM.

Jiwei Li, Alan Ritter, and Eduard H Hovy. 2014. Weakly
supervised user profile extraction from twitter. In
Proceedings of ACL, pages 165–174.

Kim Luyckx and Walter Daelemans. 1998. Using
syntactic features to predict author personality from
text. Science, 22:319–346.

Francois Mairesse, Marilyn A Walker, Matthias R Mehl,
and Roger K Moore. 2007. Using linguistic
cues for the automatic recognition of personality in
conversation and text. Journal of artificial intelligence
research, pages 457–500.

Eric Malmi and Ingmar Weber. 2016. You are what
apps you use: Demographic prediction based on user’s
apps. arXiv preprint arXiv:1603.00059.

Alan Mislove, Bimal Viswanath, Krishna P Gummadi,
and Peter Druschel. 2010. You are who you know:
inferring user profiles in online social networks. In
Proceedings of WSDM, pages 251–260. ACM.

Dan Murray and Kevan Durrell. 2000. Inferring
demographic attributes of anonymous internet users.
In Web Usage Analysis and User Profiling, pages 7–
20. Springer.

Dong Nguyen, Rilana Gravel, Dolf Trieschnigg, and
Theo Meder. 2013. ”how old do you think i am?”;
a study of language and age in twitter. In Proceedings
of ICWSM. AAAI Press.

1367

Scott Nowson. 2007. Identifying more bloggers: To-
wards large scale personality classification of personal
weblogs. In Proceedings of ICWSM. Citeseer.

Jon Oberlander and Scott Nowson. 2006. Whose thumb
is it anyway?: classifying author personality from
weblog text. In Proceedings of the COLING/ACL
on Main conference poster sessions, pages 627–634.
Association for Computational Linguistics.

Jahna Otterbacher. 2010. Inferring gender of movie
reviewers: exploiting writing style, content and meta-
data. In Proceedings of CIKM, pages 369–378. ACM.

Marco Pennacchiotti and Ana-Maria Popescu. 2011. A
machine learning approach to twitter user classifica-
tion. In Proceedings of ICWSM, pages 281–288.

James W Pennebaker, Martha E Francis, and Roger J
Booth. 2001. Linguistic inquiry and word count:
Liwc 2001. Mahway: Lawrence Erlbaum Associates,
71:2001.

Francisco Rangel, Fabio Celli, Paolo Rosso, Martin
Potthast, Benno Stein, and Walter Daelemans. 2015.
Overview of the 3rd Author Profiling Task at PAN
2015. In Linda Cappellato, Nicola Ferro, Gareth
Jones, and Eric San Juan, editors, CLEF 2015 Eval-
uation Labs and Workshop – Working Notes Papers,
8-11 September, Toulouse, France. CEUR-WS.org,
September.

Steffen Rendle. 2010. Factorization machines. In
Data Mining (ICDM), 2010 IEEE 10th International
Conference on, pages 995–1000. IEEE.

Sara Rosenthal and Kathleen McKeown. 2011. Age pre-
diction in blogs: A study of style, content, and online
behavior in pre-and post-social media generations. In
Proceedings of ACL, pages 763–772. Association for
Computational Linguistics.

Jonathan Schler, Moshe Koppel, Shlomo Argamon, and
James W Pennebaker. 2006. Effects of age and
gender on blogging. In AAAI Spring Symposium:
Computational Approaches to Analyzing Weblogs,
volume 6, pages 199–205.

H Andrew Schwartz, Johannes C Eichstaedt, Margaret L
Kern, Lukasz Dziurzynski, Stephanie M Ramones,
Megha Agrawal, Achal Shah, Michal Kosinski, David
Stillwell, Martin EP Seligman, et al. 2013. Per-
sonality, gender, and age in the language of social
media: The open-vocabulary approach. PloS one,
8(9):e73791.

Cunchao Tu, Zhiyuan Liu, and Maosong Sun, 2015.
Social Media Processing: 4th National Conference,
SMP 2015, Guangzhou, China, November 16-17,
2015, Proceedings, chapter PRISM: Profession Iden-
tification in Social Media with Personal Information
and Community Structure, pages 15–27. Springer
Singapore, Singapore.

Ingmar Weber and Carlos Castillo. 2010. The demo-
graphics of web search. In Proceedings of SIGIR,
pages 523–530. ACM.

Ingmar Weber and Alejandro Jaimes. 2011. Who uses
web search for what: and how. In Proceedings of
WSDM, pages 15–24. ACM.

Wu Youyou, Michal Kosinski, and David Stillwell. 2015.
Computer-based personality judgments are more accu-
rate than those made by humans. Proceedings of the
National Academy of Sciences, 112(4):1036–1040.

Yuchen Zhao, Guan Wang, Philip S Yu, Shaobo Liu,
and Simon Zhang. 2013. Inferring social roles
and statuses in social networks. In Proceedings of
SIGKDD, pages 695–703. ACM.

Yuan Zhong, Nicholas Jing Yuan, Wen Zhong, Fuzheng
Zhang, and Xing Xie. 2015. You are where you go:
Inferring demographic attributes from location check-
ins. In Proceedings of WSDM, pages 295–304. ACM.

1368

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1369–1378,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

AFET: Automatic Fine-Grained Entity Typing by
Hierarchical Partial-Label Embedding

Xiang Ren†∗ Wenqi He†∗ Meng Qu† Lifu Huang] Heng Ji] Jiawei Han†
† University of Illinois at Urbana-Champaign, Urbana, IL, USA

] Computer Science Department, Rensselaer Polytechnic Institute, USA
†{xren7, wenqihe3, mengqu2, hanj}@illinois.edu]{huangl7, jih}@rpi.edu

Abstract

Distant supervision has been widely used in
current systems of fine-grained entity typ-
ing to automatically assign categories (en-
tity types) to entity mentions. However, the
types so obtained from knowledge bases are
often incorrect for the entity mention’s local
context. This paper proposes a novel em-
bedding method to separately model “clean”
and “noisy” mentions, and incorporates the
given type hierarchy to induce loss functions.
We formulate a joint optimization problem
to learn embeddings for mentions and type-
paths, and develop an iterative algorithm to
solve the problem. Experiments on three pub-
lic datasets demonstrate the effectiveness and
robustness of the proposed method, with an
average 15% improvement in accuracy over
the next best compared method1.

1 Introduction

Assigning types (e.g., person, organization)
to mentions of entities in context is an important
task in natural language processing (NLP). The ex-
tracted entity type information can serve as primi-
tives for relation extraction (Mintz et al., 2009) and
event extraction (Ji and Grishman, 2008), and as-
sists a wide range of downstream applications in-
cluding knowledge base (KB) completion (Dong et
al., 2014), question answering (Lin et al., 2012) and
entity recommendation (Yu et al., 2014). While

∗Equal contribution.
1Codes and datasets used in this paper can be down-

loaded at https://github.com/shanzhenren/AFET.

Mention: “Schwarzenegger”; Context: S3;
Candidate Type Set: {person, politician, artist,

actor, author, businessman, althete}

ID Sentence

S1

S2

S3

...

 Governor Arnold Schwarzenegger gives a speech at
 Mission Serve's serv ice project on Veterans Day 2010.

 The fourth movie in the Predator series entitled 'The
 Predator' may see the return of action-movie star Arnold
 Schwarzenegger to the franchise.

 Schwarzenegger’s first property investment was a block
 of six units, for which he scraped together $US27,000.

...

Entity: Arnold Schwarzenegger

Knowledge Bases

Noisy Training Examples

Candidate Type
Set (Sub-tree)

root

product person location
organiz
ation

...

...

politician artist business
man

...

... ...

author actor singer ...

Target Type
Hierarchy

Mention: “Arnold Schwarzenegger”; Context: S1;
Candidate Type Set: {person, politician, artist,

actor, author, businessman, althete}

...

Mention: “Arnold Schwarzenegger”; Context: S2;
Candidate Type Set: {person, politician, artist,

actor, author, businessman, althete}

S1

Distant
Supervision

althete

S2

S3

Figure 1: Current systems may detect Arnold
Schwarzenegger in sentences S1-S3 and assign the same
types to all (listed within braces), when only some types
are correct for context (blue labels within braces).

traditional named entity recognition systems (Rati-
nov and Roth, 2009; Nadeau and Sekine, 2007) fo-
cus on a small set of coarse types (typically fewer
than 10), recent studies (Ling and Weld, 2012;
Yosef et al., 2012) work on a much larger set of
fine-grained types (usually over 100) which form
a tree-structured hierarchy (see the blue region of
Fig. 1). Fine-grained typing allows one mention
to have multiple types, which together constitute a
type-path (not necessarily ending in a leaf node)
in the given type hierarchy, depending on the lo-
cal context (e.g., sentence). Consider the example in
Fig. 1, “Arnold Schwarzenegger” could be labeled as
{person, businessman} in S3 (investment). But
he could also be labeled as {person, politician}
in S1 or {person, artist, actor} in S2. Such
fine-grained type representation provides more in-
formative features for other NLP tasks. For exam-

1369

ple, since relation and event extraction pipelines rely
on entity recognizer to identify possible arguments
in a sentence, fine-grained argument types help dis-
tinguish hundreds or thousands of different relations
and events (Ling and Weld, 2012).

Traditional named entity recognition systems
adopt manually annotated corpora as training
data (Nadeau and Sekine, 2007). But the process
of manually labeling a training set with large num-
bers of fine-grained types is too expensive and error-
prone (hard for annotators to distinguish over 100
types consistently). Current fine-grained typing sys-
tems annotate training corpora automatically using
knowledge bases (i.e., distant supervision) (Ling
and Weld, 2012; Ren et al., 2016a). A typical work-
flow of distant supervision is as follows (see Fig. 1):
(1) identify entity mentions in the documents; (2)
link mentions to entities in KB; and (3) assign, to
the candidate type set of each mention, all KB types
of its KB-linked entity. However, existing distant
supervision methods encounter the following limi-
tations when doing automatic fine-grained typing.
• Noisy Training Labels. Current practice of dis-
tant supervision may introduce label noise to train-
ing data since it fails to take a mention’s local con-
texts into account when assigning type labels (e.g.,
see Fig. 1). Many previous studies ignore the la-
bel noises which appear in a majority of train-
ing mentions (see Table. 1, row (1)), and assume
all types obtained by distant supervision are “cor-
rect” (Yogatama et al., 2015; Ling and Weld, 2012).
The noisy labels may mislead the trained models
and cause negative effect. A few systems try to
denoise the training corpora using simple pruning
heuristics such as deleting mentions with conflicting
types (Gillick et al., 2014). However, such strate-
gies significantly reduce the size of training set (Ta-
ble 1, rows (2a-c)) and lead to performance degrada-
tion (later shown in our experiments). The larger the
target type set, the more severe the loss.
• Type Correlation. Most existing methods (Yo-
gatama et al., 2015; Ling and Weld, 2012) treat ev-
ery type label in a training mention’s candidate type
set equally and independently when learning the
classifiers but ignore the fact that types in the given
hierarchy are semantically correlated (e.g., actor
is more relevant to singer than to politician).
As a consequence, the learned classifiers may bias

Dataset Wiki OntoNotes BBN NYT
of target types 113 89 47 446
(1) noisy mentions (%) 27.99 25.94 22.32 51.81
(2a) sibling pruning (%) 23.92 16.09 22.32 39.26
(2b) min. pruning (%) 28.22 8.09 3.27 32.75
(2c) all pruning (%) 45.99 23.45 25.33 61.12

Table 1: A study of label noise. (1): %mentions with
multiple sibling types (e.g., actor, singer); (2a)-(2c):
%mentions deleted by the three pruning heuristics (2014)
(see Sec. 4), for three experiment datasets and New York
Times annotation corpus (2014).

toward popular types but perform poorly on infre-
quent types since training data on infrequent types is
scarce. Intuitively, one should pose smaller penalty
on types which are semantically more relevant to the
true types. For example, in Fig. 1 singer should
receive a smaller penalty than politician does,
by knowing that actor is a true type for “Arnold
Schwarzenegger” in S2. This provides classifiers
with additional information to distinguish between
two types, especially those infrequent ones.

In this paper, we approach the problem of auto-
matic fine-grained entity typing as follows: (1) Use
different objectives to model training mentions with
correct type labels and mentions with noisy labels,
respectively. (2) Design a novel partial-label loss to
model true types within the noisy candidate type set
which requires only the “best” candidate type to be
relevant to the training mention, and progressively
estimate the best type by leveraging various text fea-
tures extracted for the mention. (3) Derive type cor-
relation based on two signals: (i) the given type hier-
archy, and (ii) the shared entities between two types
in KB, and incorporate the correlation so induced by
enforcing adaptive margins between different types
for mentions in the training set. To integrate these
ideas, we develop a novel embedding-based frame-
work called AFET. First, it uses distant supervision
to obtain candidate types for each mention, and ex-
tract a variety of text features from the mentions
themselves and their local contexts. Mentions are
partitioned into a “clean” set and a “noisy” set based
on the given type hierarchy. Second, we embed
mentions and types jointly into a low-dimensional
space, where, in that space, objects (i.e., features
and types) that are semantically close to each other
also have similar representations. In the proposed
objective, an adaptive margin-based rank loss is pro-

1370

posed to model the set of clean mentions to capture
type correlation, and a partial-label rank loss is for-
mulated to model the “best” candidate type for each
noisy mention. Finally, with the learned embeddings
(i.e., mapping matrices), one can predict the type-
path for each mention in the test set in a top-down
manner, using its text features. The major contribu-
tions of this paper are as follows:

1. We propose an automatic fine-grained entity typ-
ing framework, which reduces label noise in-
troduced by distant supervision and incorporates
type correlation in a principle way.

2. A novel optimization problem is formulated to
jointly embed entity mentions and types to the
same space. It models noisy type set with a
partial-label rank loss and type correlation with
adaptive-margin rank loss.

3. We develop an iterative algorithm for solving the
joint optimization problem efficiently.

4. Experiments with three public datasets demon-
strate that AFET achieves significant improve-
ment over the state of the art.

2 Automatic Fine-Grained Entity Typing

Our task is to automatically uncover the type infor-
mation for entity mentions (i.e., token spans repre-
senting entities) in natural language sentences. The
task takes a document collection D (automatically
labeled using a KB Ψ in conjunction with a target
type hierarchy Y) as input and predicts a type-path
in Y for each mention from the test set Dt.

Type Hierarchy and Knowledge Base. Two key
factors in distant supervision are the target type hi-
erarchy and the KB. A type hierarchy, Y , is a tree
where nodes represent types of interests from Ψ.
Previous studies manually create several clean type
hierarchies using types from Freebase (Ling and
Weld, 2012) or WordNet (Yosef et al., 2012). In this
study, we adopt the existing hierarchies constructed
using Freebase types2. To obtain types for entities
EΨ in Ψ, we use the human-curated entity-type facts
in Freebase, denoted as FΨ =

{
(e, y)

}
⊂ EΨ × Y .

2We use the Freebase dump as of 2015-06-30.

Clean Training
Mentions

Noisy Training
Mentions

Mention: “S1_Arnold Schwarzenegger”; Context: S1;
Candidate Type Set : {person, politician, artist, actor,

author, businessman, althete}
Text Features: {HEAD_Arnold, CXT1_B:Governor, CXT1_A:gives,

POS:NN, TKN_arnold, TKN_schwarzenegger, SHAPE_Aa, ...}

Training mentions with extracted features

lc(mi)

Hierarchical Partial-label Embedding

Type Inference

root

product person location organiz
ation

...

...

politician artist
business

man
...

... ...

author actor singer
...

actor

politician

S1_Arnold
Schwarzenegger

person

Joint
Embedding

Space

CXT1_B:
Governor

HEAD_arnoldMention: “S2_Arnold Schwarzenegger”; Context: S2;
Candidate Type Set : {person, politician, artist, actor,

author, businessman, althete}
Text Features: {HEAD_Arnold, CXT1_B:star, CXT2_B:action

-movie star, CXT3_A:to the franchise, POS:NN, SHAPE_Aa, ...}

...

Mention: “Ted Cruz”; Context: Sn;
Candidate Type Set : {person, politician}

Text Features: {HEAD_Ted, CXT1_B:senator, CXT1_B:told,
CXT3_B:campaign of senator, POS:NN, SHAPE_Aa, ...}

CXT1_B:star

artistCXT3_A:play
 the role

SHAPE:Aa

CXT1_A:gives

CXT1_B:
Senator

Partition
training

mentions

Figure 2: Framework Overview of AFET.

Automatically Labeled Training Corpora. There
exist publicly available labeled corpora such as Wik-
ilinks (Singh et al., 2012) and ClueWeb (Gabrilovich
et al., 2013). In these corpora, entity mentions are
identified and mapped to KB entities using anchor
links. In specific domains (e.g., product reviews)
where such public corpora are unavailable, one can
utilize distant supervision to automatically label the
corpus (Ling and Weld, 2012). Specifically, an en-
tity linker will detect mentions mi and map them
to one or more entity ei in EΨ. Types of ei in KB
are then associated with mi to form its type set Yi,
i.e., Yi =

{
y | (ei, y) ∈ FΨ, y ∈ Y

}
. Formally, a

training corpus D consists of a set of extracted entity
mentionsM = {mi}Ni=1, the context (e.g., sentence,
paragraph) of each mention {ci}Ni=1, and the candi-
date type sets {Yi}Ni=1 for each mention. We repre-
sent D using a set of triples D =

{
(mi, ci,Yi)

}N
i=1

.

Problem Description. For each test mention, we
aim to predict the correct type-path in Y based on
the mention’s context. More specifically, the test set
T is defined as a set of mention-context pairs (m, c),
where mentions in T (denoted asMt) are extracted
from their sentences using existing extractors such
as named entity recognizer (Finkel et al., 2005). We
denote the gold type-path for a test mention m as
Y∗. This work focuses on learning a typing model
from the noisy training corpus D, and estimating Y∗
from Y for each test mention m (in set Mt), based
on mention m, its context c, and the learned model.

Framework Overview. At a high level, the AFET
framework (see also Fig. 2) learns low-dimensional
representations for entity types and text features, and

1371

infers type-paths for test mentions using the learned
embeddings. It consists of the following steps:

1. Extract text features for entity mentions in train-
ing set M and test set Mt using their surface
names as well as the contexts. (Sec. 3.1).

2. Partition training mentions M into a clean set
(denoted asMc) and a noisy set (denoted asMn)
based on their candidate type sets (Sec. 3.2).

3. Perform joint embedding of entity mentions
M and type hierarchy Y into the same low-
dimensional space where, in that space, close ob-
jects also share similar types (Secs. 3.3-3.6).

4. For each test mention m, estimate its type-path
Y∗ (on the hierarchy Y) in a top-down manner
using the learned embeddings (Sec. 3.6).

3 The AFET Framework

This section introduces the proposed framework and
formulates an optimization problem for learning em-
beddings of text features and entity types jointly.

3.1 Text Feature Generation

We start with a representation of entity mentions.
To capture the shallow syntax and distributional se-
mantics of a mention mi ∈ M, we extract various
features from both mi itself and its context ci. Ta-
ble 2 lists the set of text features used in this work,
which is similar to those used in (Yogatama et al.,
2015; Ling and Weld, 2012). We denote the set of
M unique features extracted from D as F = {fj}Mj=1.

3.2 Training Set Partition

A training mention mi (in setM) is considered as a
“clean” mention if its candidate type set obtained by
distant supervision (i.e., Yi) is not ambiguous, i.e.,
candidate types in Yi can form a single path in tree
Y . Otherwise, a mention is considered as “noisy”
mention if its candidate types form multiple type-
paths in Y . Following the above hypothesis, we
judge each mention mi (in set M) and place it in
either the “clean” set Mc, or the “noisy” set Mn.
Finally, we haveM =Mc ∪Mn.

3.3 The Joint Mention-Type Model

We propose to learn mappings into low-dimensional
vector space, where, both entity mentions and type

...

Example Type-Type
Correlation Scores

Knowledge Base

(Ben Affleck, actor)
(Ben Affleck, director)
(Woody Al len, actor)

(Woody Al len, director)
(J. K. Rowling, author)
(Kobe B ryant, athlete)

...

Entity-type facts
Ben Affleck

Woody Allen

J. K. Rowling

Kobe Bryant

person

director

actor

author

athlete

Corr =
(0.6+0.6)/2

=0.6

Corr =
(0.25+0.55)/2

=0.4

person

politician

artist

actor

businessman

author

singer
director

athlete

coach

Adaptive Margin

Sn_Ted Cruz

Context in Sn: “The effective
end of Ted Cruz 's presidential

campaign came on a call …”

politician

athlete

businessman

Score

Sn_Ted CruzScore

Score Sn_Ted Cruz

Margin = 1 /
sim(politician,

athlete) = 3

Margin = 1 / sim(politician,
businessman) = 1.5

Figure 3: An illustration of KB-based type correlation
computation, and the proposed adaptive margin.

labels (in the training set) are represented, and in that
space, two objects are embedded close to each other
if and only if they share similar types. In doing so,
we later can derive the representation of a test men-
tion based on its text features and the learned map-
pings. Mapping functions for entity mentions and
entity type labels are different as they have differ-
ent representations in the raw feature space, but are
jointly learned by optimizing a global objective of
interests to handle the aforementioned challenges.

Each entity mention mi ∈ M can be represented
by aM -dimensional feature vector mi ∈ RM , where
mi,j is the number of occurrences of feature fj (in set
F) formi. Each type label yk ∈ Y is represented by a
K-dimensional binary indicator vector yk ∈ {0, 1}K ,
where yk,k = 1, and 0 otherwise.

Specifically, we aim to learn a mapping func-
tion from the mention’s feature space to a low-
dimensional vector space, i.e., ΦM(mi) : RM 7→ Rd

and a mapping function from type label space to the
same low-dimensional space, i.e., ΦY(yk) : RK 7→
Rd. In this work, we adopt linear maps, as similar to
the mapping functions used in (Weston et al., 2011).

ΦM(mi) = Umi; ΦY(yk) = Vyk, (1)

where U ∈ Rd×M and V ∈ Rd×K are the projection
matrices for mentions and type labels, respectively.

3.4 Modeling Type Correlation
In type hierarchy (tree) Y , types closer to each other
(i.e., shorter path) tend to be more related (e.g.,
actor is more related to artist than to person
in the right column of Fig. 2). In KB Ψ, types as-
signed to similar sets of entities should be more re-
lated to each other than those assigned to quite dif-
ferent entities (Jiang et al., 2015) (e.g., actor is

1372

Feature Description Example
Head Syntactic head token of the mention “HEAD Turing”
Token Tokens in the mention “Turing”, “Machine”
POS Part-of-Speech tag of tokens in the mention “NN”
Character All character trigrams in the head of the mention “:tu”, “tur”, ..., “ng:”
Word Shape Word shape of the tokens in the mention “Aa” for “Turing”
Length Number of tokens in the mention “2”
Context Unigrams/bigrams before and after the mention “CXT B:Maserati ,”, “CXT A:and the”
Brown Cluster Brown cluster ID for the head token (learned using D) “4 1100”, “8 1101111”, “12 111011111111”

Dependency Stanford syntactic dependency (Manning et al., 2014) associated
with the head token “GOV:nn”, “GOV:turing”

Table 2: Text features used in this paper. “Turing Machine” is used as an example mention from “The band’s former drummer Jerry Fuchs—who
was also a member of Maserati, Turing Machine and The Juan MacLean—died after falling down an elevator shaft.”.

more related to director than to author in the
left column of Fig. 3). Thus, type correlation be-
tween yk and yk′ (denoted as wkk′) can be measured
either using the one over the length of shortest path
in Y , or using the normalized number of shared en-
tities in KB, which is defined as follows.

wkk′ =
(∣∣Ek ∩ Ek′

∣∣/
∣∣Ek

∣∣+
∣∣Ek ∩ Ek′

∣∣/
∣∣Ek′

∣∣
)
/2. (2)

Although a shortest path is efficient to compute,
its accuracy is limited—It is not always true that a
type (e.g., athlete) is more related to its parent
type (i.e., person) than to its sibling types (e.g.,
coach), or that all sibling types are equally re-
lated to each other (e.g., actor is more related to
director than to author). We later compare
these two methods in our experiments.

With the type correlation computed, we propose
to apply adaptive penalties on different negative
type labels (for a training mention), instead of treat-
ing all of the labels equally as in most existing
work (Weston et al., 2011). The hypothesis is intu-
itive: given the positive type labels for a mention, we
force the negative type labels which are related to the
positive type labels to receive smaller penalty. For
example, in the right column of Fig. 3, negative la-
bel businessman receives a smaller penalty (i.e.,
margin) than athele does, since businessman
is more related to politician.

Hypothesis 1 (Adaptive Margin) For a mention, if
a negative type is correlated to a positive type, the
margin between them should be smaller.

We propose an adaptive-margin rank loss to
model the set of “clean” mentions (i.e., Mc), based
on the above hypothesis. The intuition is simple: for
each mention, rank all the positive types ahead of
negative types, where the ranking score is measured
by similarity between mention and type. We denote

Types ranked w.r.t. mi

Partial-Label Rank Loss for Noisy Mentions

Mention: mi = “Sn_Ted Cruz”

Context in Sn: “The effective end of Ted Cruz 's
presidential campaign came on a call …”

Mention: mi’ = “S1_Arnold Schwarzenegger”

Context in S1: “ Governor Arnold Schwarzenegger gives

a speech at Mission Serve's service project .…”

“Full” Rank Loss for Clean Mentions

Distance between mi and types

Distance between mi and types

Person
Politician
Business

Artist
Athlete
Actor

Author
Doctor

Score(mi, yk)

0.85
0.77
0.53
0.42
0.40
0.33
0.21
0.05

mi

person Politician

Businessman

Athlete

Artist

Actor

mi

person

Politician

Businessman

Athlete

Artist

Actor

Location

Athlete

Athlete

Politician
Coach
Chief

Doctor
Organization

Location

Politician
Person

Business
Artist

Athlete
Actor

Author

Types ranked w.r.t. mi “Best” candidate type

0.88
0.74
0.55
0.41
0.33
0.31
0.25

Positive
types

Negative
types

Coach

Noisy candidate type set

Figure 4: An illustration of the partial-label rank loss.

fk(mi) as the similarity between (mi, yk) and is de-
fined as the inner product of ΦM(mi) and ΦY(yk).

`c(mi,Yi,Yi) =
∑

yk∈Yi

∑

yk̄∈Yi

L
⌊
rankyk

(
f(mi)

)⌋
Θi,k,k̄;

Θi,k,k̄ = max
{

0, γk,k̄ − fk(mi) + fk̄(mi)
}

;

rankyk

(
f(mi)

)
=
∑

yk̄∈Yi

1

(
γk,k̄ + fk̄(mi) > fk(mi)

)
.

Here, γk,k̄ is the adaptive margin between positive
type k and negative type k̄, which is defined as γk,k̄ =

1 + 1/(wk,k̄ +α) with a smooth parameter α. L(x) =∑x
i=1

1
i transforms rank to a weight, which is then

multiplied to the max-margin loss Θi,k,k̄ to optimize
precision at x (Weston et al., 2011).

3.5 Modeling Noisy Type Labels

True type labels for noisy entity mentionsMn (i.e.,
mentions with ambiguous candidate types in the
given type hierarchy) in each sentence are not avail-
able in knowledge bases. To effectively model the
set of noisy mentions, we propose not to treat all

1373

candidate types (i.e., {Yi} as true labels. Instead, we
model the “true” label among the candidate set as
latent value, and try to infer that using text features.

Hypothesis 2 (Partial-Label Loss) For a noisy
mention, the maximum score associated with its
candidate types should be greater than the scores
associated with any other non-candidate types

We extend the partial-label loss in (Nguyen and
Caruana, 2008) (used to learn linear classifiers) to
enforce Hypothesis 2, and integrate with the adap-
tive margin to define the loss for mi (in setMn).

`n(mi,Yi,Yi) =
∑

k̄∈Yi

L
⌊
rankyk∗

(
f(mi)

)⌋
Ωi,k̄;

Ωi,k = max
{

0, γk∗,k̄ − fk∗(mi) + fk̄(mi)
}

;

rankyk∗

(
f(mi)

)
=
∑

yk̄∈Yi

1

(
γk∗,k̄ + fk̄(mi) > fk∗(mi)

)

where we define . yk∗ = argmaxyk∈Yi
fk(mi) and

yk̄∗ = argmaxyk∈Yi
fk(mi).

Minimizing `n encourages a large margin be-
tween the maximum scores maxyk∈Yi

fyk
(mi) and

maxyk̄∈Yi
fyk

(mi). This forces mi to be embed-
ded closer to the most “relevant” type in the noisy
candidate type set, i.e., y∗ = argmaxyk∈Yi

fyk
(mi),

than to any other non-candidate types (i.e., Hypoth-
esis 2). This constrasts sharply with multi-label
learning (Yosef et al., 2012), where a large margin
is enforced between all candidate types and non-
candidate types without considering noisy types.

3.6 Hierarchical Partial-Label Embedding
Our goal is to embed the heterogeneous graphG into
a d-dimensional vector space, following the three
proposed hypotheses in the section. Intuitively, one
can collectively minimize the objectives of the two
kinds of loss functions `c and `n, across all the train-
ing mentions. To achieve the goal, we formulate a
joint optimization problem as follows.

min
U, V

O =
∑

mi∈Mc

`c(mi,Yi,Yi) +
∑

mi∈Mn

`n(mi,Yi,Yi).

We use an alternative minimization algorithm based
on block-wise coordinate descent (Tseng, 2001) to
jointly optimize the objective O. One can also apply
stochastic gradient descent to do online update.

Type Inference. With the learned mention embed-
dings {ui} and type embeddings {vk}, we perform

Data sets Wiki OntoNotes BBN
#Types 113 89 47
#Documents 780,549 13,109 2,311
#Sentences 1.51M 143,709 48,899
#Training mentions 2.69M 223,342 109,090
#Ground-truth mentions 563 9,604 121,001
#Features 644,860 215,642 125,637
#Edges in graph 87M 5.9M 2.9M

Table 3: Statistics of the datasets.

top-down search in the given type hierarchy Y to
estimate the correct type-path Y∗i . Starting from the
tree’s root, we recursively find the best type among
the children types by measuring the dot product of
the corresponding mention and type embeddings,
i.e., sim(ui,vk). The search process stops when we
reach a leaf type, or the similarity score is below a
pre-defined threshold η > 0.

4 Experiments
4.1 Data Preparation

Datasets. Our experiments use three public datasets.
(1) Wiki (Ling and Weld, 2012): consists of 1.5M
sentences sampled from Wikipedia articles; (2)
OntoNotes (Weischedel et al., 2011): consists of
13,109 news documents where 77 test documents
are manually annotated (Gillick et al., 2014); (3)
BBN (Weischedel and Brunstein, 2005): consists of
2,311 Wall Street Journal articles which are man-
ually annotated using 93 types. Statistics of the
datasets are shown in Table 3.

Training Data. We followed the process in (Ling
and Weld, 2012) to generate training data for the
Wiki dataset. For the BBN and OntoNotes datasets,
we used DBpedia Spotlight3 for entity linking. We
discarded types which cannot be mapped to Free-
base types in the BBN dataset (47 of 93).

Table 2 lists the set of features used in our experi-
ments, which are similar to those used in (Yogatama
et al., 2015; Ling and Weld, 2012) except for top-
ics and ReVerb patterns. We discarded the features
which occur only once in the corpus.

4.2 Evaluation Settings

For the Wiki and OntoNotes datasets, we used the
provided test set. Since BBN corpus is fully anno-
tated, we followed a 80/20 ratio to partition it into

3http://spotlight.dbpedia.org/

1374

training/test sets. We report Accuracy (Strict-F1),
Micro-averaged F1 (Mi-F1) and Macro-averaged F1
(Ma-F1) scores commonly used in the fine-grained
type problem (Ling and Weld, 2012; Yogatama et
al., 2015). Since we use the gold mention set for
testing, the Accuracy (Acc) we reported is the same
as the Strict F1.

Baselines. We compared the proposed method
(AFET) and its variant with state-of-the-art typ-
ing methods, embedding methods and partial-label
learning methods 4: (1) FIGER (Ling and Weld,
2012); (2) HYENA (Yosef et al., 2012); (3)
FIGER/HYENA-Min (Gillick et al., 2014): re-
moves types appearing only once in the docu-
ment; (4) ClusType (Ren et al., 2015): predicts
types based on co-occurring relation phrases; (5)
HNM (Dong et al., 2015): proposes a hybrid neu-
ral model without hand-crafted features; (6) Deep-
Walk (Perozzi et al., 2014): applies Deep Walk to
a feature-mention-type graph by treating all nodes
as the same type; (7) LINE (Tang et al., 2015b):
uses a second-order LINE model on feature-type bi-
partite graph; (8) PTE (Tang et al., 2015a): ap-
plies the PTE joint training algorithm on feature-
mention and type-mention bipartite graphs. (9) WS-
ABIE (Yogatama et al., 2015): adopts WARP loss
to learn embeddings of features and types; (10) PL-
SVM (Nguyen and Caruana, 2008): uses a margin-
based loss to handle label noise. (11) CLPL (Cour
et al., 2011): uses a linear model to encourage large
average scores for candidate types.

We compare AFET and its variant: (1) AFET:
complete model with KB-induced type correlation;
(2) AFET-CoH: with hierarchy-induced correlation
(i.e., shortest path distance); (3) AFET-NoCo: with-
out type correlation (i.e., all margin are “1”) in the
objective O; and (4) AFET-NoPa: without label
partial loss in the objective O.

4.3 Performance Comparison and Analyses
Table 4 shows the results of AFET and its variants.
Comparison with the other typing methods.
AFET outperforms both FIGER and HYENA sys-
tems, demonstrating the predictive power of the

4We used the published code for FIGER, ClusType, HNM,
LINE, PTE, and DeepWalk, and implemented other baselines
which have no public code. Our implementations yield compa-
rable performance as those reported in the original papers.

learned embeddings, and the effectiveness of mod-
eling type correlation information and noisy candi-
date types. We also observe that pruning methods do
not always improve the performance, since they ag-
gressively filter out rare types in the corpus, which
may lead to low Recall. ClusType is not as good
as FIGER and HYENA because it is intended for
coarse types and only utilizes relation phrases.

Comparison with the other embedding methods.
AFET performs better than all other embedding
methods. HNM does not use any linguistic features.
None of the other embedding methods consider the
label noise issue and treat the candidate type sets as
clean. Although AFET adopts the WARP loss in
WSABIE, it uses an adaptive margin in the objec-
tive to capture the type correlation information.

Comparison with partial-label learning methods.
Compared with PL-SVM and CLPL, AFET obtains
superior performance. PL-SVM assumes that only
one candidate type is correct and does not consider
type correlation. CLPL simply averages the model
output for all candidate types, and thus may gener-
ate results biased to frequent false types. Superior
performance of AFET mainly comes from modeling
type correlation derived from KB.

Comparison with its variants. AFET always out-
performs its variant on all three datasets. It gains
performance from capturing type correlation, as well
as handling type noise in the embedding process.

4.4 Case Analyses

Example output on news articles. Table 5 shows
the types predicted by AFET, FIGER, PTE and
WSABIE on two news sentences from OntoNotes
dataset: AFET predicts fine-grained types with bet-
ter accuracy (e.g., person title) and avoids
overly-specific predictions (e.g., news company).
Figure 5 shows the types estimated by AFET,
PTE and WSABIE on a training sentence from
OntoNotes dataset. We found AFET could discover
the best type from noisy candidate types.

...	his	friend	[Travis]	would	take	a	
psychiatrist	on	a	date	to	analyze	...	
Candidate	Types:	{organization,	
music,	person,	artist}

WSABIE:					 {organization}
PTE:	 {music,	person,	artist}
AFET:	 {person}

Figure 5: Example output of AFET and the compared
methods on a training sentence from OntoNotes dataset.

1375

Typing Wiki OntoNotes BBN
Method Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1
CLPL (Cour et al., 2011) 0.162 0.431 0.411 0.201 0.347 0.358 0.438 0.603 0.536
PL-SVM (Nguyen and Caruana, 2008) 0.428 0.613 0.571 0.225 0.455 0.437 0.465 0.648 0.582
FIGER (Ling and Weld, 2012) 0.474 0.692 0.655 0.369 0.578 0.516 0.467 0.672 0.612
FIGER-Min (Gillick et al., 2014) 0.453 0.691 0.631 0.373 0.570 0.509 0.444 0.671 0.613
HYENA (Yosef et al., 2012) 0.288 0.528 0.506 0.249 0.497 0.446 0.523 0.576 0.587
HYENA-Min 0.325 0.566 0.536 0.295 0.523 0.470 0.524 0.582 0.595
ClusType (Ren et al., 2015) 0.274 0.429 0.448 0.305 0.468 0.404 0.441 0.498 0.573
HNM (Dong et al., 2015) 0.237 0.409 0.417 0.122 0.288 0.272 0.551 0.591 0.606
DeepWalk (Perozzi et al., 2014) 0.414 0.563 0.511 0.479 0.669 0.611 0.586 0.638 0.628
LINE (Tang et al., 2015b) 0.181 0.480 0.499 0.436 0.634 0.578 0.576 0.687 0.690
PTE (Tang et al., 2015a) 0.405 0.575 0.526 0.436 0.630 0.572 0.604 0.684 0.695
WSABIE (Yogatama et al., 2015) 0.480 0.679 0.657 0.404 0.580 0.527 0.619 0.670 0.680
AFET-NoCo 0.526 0.693 0.654 0.486 0.652 0.594 0.655 0.711 0.716
AFET-NoPa 0.513 0.675 0.642 0.463 0.637 0.591 0.669 0.715 0.724
AFET-CoH 0.433 0.583 0.551 0.521 0.680 0.609 0.657 0.703 0.712
AFET 0.533 0.693 0.664 0.551 0.711 0.647 0.670 0.727 0.735

Table 4: Study of typing performance on the three datasets.

Text

“... going to be an im-
minent easing of mon-
etary policy, ” said
Robert Dederick , chief
economist at Northern
Trust Co. in Chicago.

...It’s terrific for adver-
tisers to know the reader
will be paying more , ”
said Michael Drexler ,
national media director
at Bozell Inc. ad agency.

Ground
Truth

organization,
company

person,
person title

FIGER organization organization

WSABIE
organization,
company,
broadcast

organization,
company,
news company

PTE organization person

AFET organization,
company

person,
person title

Table 5: Example output of AFET and the compared
methods on two news sentences from OntoNotes dataset.

Testing the effect of training set size and dimen-
sion. Experimenting with the same settings for
model learning, Fig. 6(a) shows the performance
trend on the Wiki dataset when varying the sampling
ratio (subset of mentions randomly sampled from
the training set D). Fig. 6(b) analyzes the perfor-
mance sensitivity of AFET with respect to d—the
embedding dimension on the BBN dataset. Accu-
racy of AFET improves as d becomes large but the
gain decreases when d is large enough.
Testing sensitivity of the tuning parameter.
Fig. 7(b) analyzes the sensitivity of AFET with re-
spect to α on the BBN dataset. Performance in-
creases as α becomes large. When α is large than
0.5, the performance becomes stable.
Testing at different type levels. Fig. 7(a) reports
the Ma-F1 of AFET, FIGER, PTE and WSABIE at
different levels of the target type hierarchy (e.g., per-

0 20 40 60 80 100

Sampling Ratio

0.35

0.40

0.45

0.50

0.55

0.60

M
ic

ro
-F

1

FIGER

WSABIE

AFET

(a) Varying training set size

0 50 100 150 200 250 300

Embedding Size

0.50

0.55

0.60

0.65

0.70

0.75

A
cc

u
ra

cy

PTE

WSABIE

AFET

(b) Varying d

Figure 6: Performance change with respect to (a) sam-
pling ratio of training mentions on the Wiki dataset; and
(b) embedding dimension d on the BBN dataset.

Level-1 Level-2 Level-3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy

FIGER

WSABIE

PTE

AFET

(a) Test at different levels

0.0 0.2 0.4 0.6 0.8 1.0

Alpha

0.60

0.65

0.70

0.75

0.80

Accuracy

Macro-F1

Micro-F1

(b) Varying α

Figure 7: Performance change (a) at different levels of
the type hierarchy on the OntoNotes dataset; and (b) with
respect to smooth parameter α on the BBN dataset.

son and location on level-1, politician and artist on
level-2, author and actor on level-3). The results
show that it is more difficult to distinguish among
more fine-grained types. AFET always outperforms
the other two method, and achieves a 22.36% im-
provement in Ma-F1, compared to FIGER on level-3
types. The gain mainly comes from explicitly mod-
eling the noisy candidate types.

Testing for frequent/infrequent types. We also

1376

Type animal city
of Training Mentions 1882 12421
of Test Mentions 8 240
WSABIE 0.176 0.546
FIGER 0.167 0.648
PTE 0.222 0.677
AFET 0.400 0.766

Table 6: Example output of AFET and other methods on
frequent/infrequent type from OntoNotes dataset.

evaluate the performance on frequent and rare types
(Table 6). Note that we use a different evaluation
metric, which is introduced in (Yosef et al., 2012)
to calculate the F1 score for a type. We find AFET
can always perform better than other baselines and
it works for both frequent and rare types.

5 Related Work

There has been considerable work on named entity
recognition (NER) (Manning et al., 2014), which fo-
cuses on three types (e.g., person, location)
and cast the problem as multi-class classification fol-
lowing the type mutual exclusion assumption (i.e.,
one type per mention) (Nadeau and Sekine, 2007).

Recent work has focused on a much larger set
of fine-grained types (Yosef et al., 2012; Ling and
Weld, 2012). As the type mutual exclusion assump-
tion no longer holds, they cast the problem as multi-
label multi-class (hierarchical) classification prob-
lems (Gillick et al., 2014; Yosef et al., 2012; Ling
and Weld, 2012). Embedding techniques are also
recently applied to jointly learn feature and type rep-
resentations (Yogatama et al., 2015; Dong et al.,
2015). Del Corro et al. (2015) proposed an unsuper-
vised method to generate context-aware candidates
types, and subsequently select the most appropriate
type. Gillick et al. (2014) discuss the label noise is-
sue in fine-grained typing and propose three pruning
heuristics. However, these heuristics aggressively
delete training examples and may suffer from low
recall (see Table. 4).

In the context of distant supervision, label noise
issue has been studied for other information extrac-
tion tasks such as relation extraction (Takamatsu et
al., 2012). In relation extraction, label noise is intro-
duced by the false positive textual matches of en-
tity pairs. In entity typing, however, label noise
comes from the assignment of types to entity men-
tions without considering their contexts. The forms

of distant supervision are different in these two prob-
lems. Recently, (Ren et al., 2016b) has tackled the
problem of label noise in fine-grained entity typing,
but focused on how to generate a clean training set
instead of doing entity typing.

Partial label learning (PLL) (Zhang, 2014;
Nguyen and Caruana, 2008; Cour et al., 2011) deals
with the problem where each training example is as-
sociated with a set of candidate labels, where only
one is correct. Unlike existing PLL methods, our
method considers type hierarchy and correlation.

6 Conclusion and Future Work

In this paper, we study automatic fine-grained en-
tity typing and propose a hierarchical partial-label
embedding method, AFET, that models “clean”
and “noisy” mentions separately and incorporates a
given type hierarchy to induce loss functions. AFET
builds on a joint optimization framework, learns em-
beddings for mentions and type-paths, and itera-
tively refines the model. Experiments on three pub-
lic datasets show that AFET is effective, robust, and
outperforms other comparing methods.

As future work, it would be interesting to study
topical features as the context cues of the entity men-
tions, to leverage multi-sensing embedding to repre-
sent linguistic features with multiple senses, and to
exploits other effective modeling methods to inject
type hierarchy information. The proposed objective
function is general and can be considered to incorpo-
rate various language features, to conduct integrated
modeling of multiple sources, and to be extended to
distantly-supervised relation extraction.

7 Acknowledgments

Research was sponsored in part by the U.S. Army
Research Lab. under Cooperative Agreement
No. W911NF-09-2-0053 (NSCTA), DARPA DEFT
No. FA8750-13-2-0041, National Science Foun-
dation IIS-1017362, IIS-1320617, IIS-1354329,
and IIS-1523198, HDTRA1-10-1-0120, and grant
1U54GM114838 awarded by NIGMS through funds
provided by the trans-NIH Big Data to Knowledge
(BD2K) initiative (www.bd2k.nih.gov). The
views and conclusions contained in this paper are
those of the authors and should not be interpreted as
representing any funding agencies.

1377

References
Timothee Cour, Ben Sapp, and Ben Taskar. 2011. Learn-

ing from partial labels. JMLR, 12:1501–1536.
Luciano Del Corro, Abdalghani Abujabal, Rainer

Gemulla, and Gerhard Weikum. 2015. Finet:
Context-aware fine-grained named entity typing. In
EMNLP.

Xin Luna Dong, Thomas Strohmann, Shaohua Sun, and
Wei Zhang. 2014. Knowledge vault: A web-scale
approach to probabilistic knowledge fusion. In KDD.

Li Dong, Furu Wei, Hong Sun, Ming Zhou, and Ke Xu.
2015. A hybrid neural model for type classification of
entity mentions. In IJCAI.

Jesse Dunietz and Dan Gillick. 2014. A new en-
tity salience task with millions of training examples.
EACL.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local information
into information extraction systems by gibbs sampling.
In ACL.

Evgeniy Gabrilovich, Michael Ringgaard, and Amarnag
Subramanya. 2013. Facc1: Freebase annotation of
clueweb corpora.

Dan Gillick, Nevena Lazic, Kuzman Ganchev, Jesse
Kirchner, and David Huynh. 2014. Context-
dependent fine-grained entity type tagging. arXiv
preprint arXiv:1412.1820.

Heng Ji and Ralph Grishman. 2008. Refining event ex-
traction through cross-document inference. In ACL.

Jyun-Yu Jiang, Chin-Yew Lin, and Pu-Jen Cheng. 2015.
Entity-driven type hierarchy construction for freebase.
In WWW.

Thomas Lin, Oren Etzioni, et al. 2012. No noun phrase
left behind: detecting and typing unlinkable entities.
In EMNLP.

Xiao Ling and Daniel S Weld. 2012. Fine-grained entity
recognition. In AAAI.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J Bethard, and David McClosky.
2014. The stanford corenlp natural language process-
ing toolkit. ACL.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky.
2009. Distant supervision for relation extraction with-
out labeled data. In ACL.

David Nadeau and Satoshi Sekine. 2007. A survey of
named entity recognition and classification. Lingvisti-
cae Investigationes, 30:3–26.

Nam Nguyen and Rich Caruana. 2008. Classification
with partial labels. In KDD.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014.
Deepwalk: Online learning of social representations.
In KDD.

Lev Ratinov and Dan Roth. 2009. Design challenges and
misconceptions in named entity recognition. In ACL.

Xiang Ren, Ahmed El-Kishky, Chi Wang, Fangbo Tao,
Clare R Voss, Heng Ji, and Jiawei Han. 2015.
Clustype: Effective entity recognition and typing by
relation phrase-based clustering. In KDD.

Xiang Ren, Ahmed El-Kishky, Chi Wang, and Jiawei
Han. 2016a. Automatic entity recognition and typing
in massive text corpora. In WWW.

Xiang Ren, Wenqi He, Meng Qu, Clare R Voss, Heng Ji,
and Jiawei Han. 2016b. Label noise reduction in en-
tity typing by heterogeneous partial-label embedding.
In KDD.

Sameer Singh, Amarnag Subramanya, Fernando Pereira,
and Andrew McCallum. 2012. Wikilinks: A large-
scale cross-document coreference corpus labeled via
links to wikipedia. UM-CS-2012-015.

Shingo Takamatsu, Issei Sato, and Hiroshi Nakagawa.
2012. Reducing wrong labels in distant supervision
for relation extraction. In ACL.

Jian Tang, Meng Qu, and Qiaozhu Mei. 2015a. Pte: Pre-
dictive text embedding through large-scale heteroge-
neous text networks. In KDD.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun
Yan, and Qiaozhu Mei. 2015b. Line: Large-scale in-
formation network embedding. In WWW.

Paul Tseng. 2001. Convergence of a block coordi-
nate descent method for nondifferentiable minimiza-
tion. JOTA, 109(3):475–494.

Ralph Weischedel and Ada Brunstein. 2005. Bbn pro-
noun coreference and entity type corpus. Linguistic
Data Consortium, 112.

Ralph Weischedel, Eduard Hovy, Mitchell Marcus,
Martha Palmer, Robert Belvin, Sameer Pradhan,
Lance Ramshaw, and Nianwen Xue. 2011.
Ontonotes: A large training corpus for enhanced pro-
cessing.

Jason Weston, Samy Bengio, and Nicolas Usunier. 2011.
Wsabie: Scaling up to large vocabulary image annota-
tion. In IJCAI.

Dani Yogatama, Dan Gillick, and Nevena Lazic. 2015.
Embedding methods for fine grained entity type clas-
sification. In ACL.

Mohamed Amir Yosef, Sandro Bauer, Johannes Hoffart,
Marc Spaniol, and Gerhard Weikum. 2012. Hyena:
Hierarchical type classification for entity names. In
COLING.

Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley
Sturt, Urvashi Khandelwal, Brandon Norick, and Ji-
awei Han. 2014. Personalized entity recommenda-
tion: A heterogeneous information network approach.
In WSDM.

Min-Ling Zhang. 2014. Disambiguation-free partial la-
bel learning. In SDM.

1378

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1379–1388,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Mining Inference Formulas by Goal-Directed Random Walks

Zhuoyu Wei1,2, Jun Zhao1,2 and Kang Liu1

1 National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing, 100190, China

2 University of Chinese Academy of Sciences, Beijing, 100049, China
{zhuoyu.wei, jzhao, kliu}@nlpr.ia.ac.cn

Abstract

Deep inference on a large-scale knowledge
base (KB) needs a mass of formulas, but it is
almost impossible to create all formulas man-
ually. Data-driven methods have been pro-
posed to mine formulas from KBs automat-
ically, where random sampling and approx-
imate calculation are common techniques to
handle big data. Among a series of method-
s, Random Walk is believed to be suitable for
knowledge graph data. However, a pure ran-
dom walk without goals still has a poor ef-
ficiency of mining useful formulas, and even
introduces lots of noise which may mislead in-
ference. Although several heuristic rules have
been proposed to direct random walks, they
do not work well due to the diversity of for-
mulas. To this end, we propose a novel goal-
directed inference formula mining algorithm,
which directs random walks by the specific
inference target at each step. The algorithm
is more inclined to visit benefic structures to
infer the target, so it can increase efficiency
of random walks and avoid noise simultane-
ously. The experiments on both WordNet and
Freebase prove that our approach is has a high
efficiency and performs best on the task.

1 Introduction

Recently, various knowledge bases (KBs), such as
Freebase (Bollacker et al., 2008), WordNet (Miller,
1995), Yago (Hoffart et al., 2013), have been built,
and researchers begin to explore how to make use of
structural information to promote performances of
several inference-based NLP applications, such as

text entailment, knowledge base completion, ques-
tion and answering. Creating useful formulas is one
of the most important steps in inference, and an ac-
curate and high coverage formula set will bring a
great promotion for an inference system. For ex-
ample, Nationality(x, y) ∧ Nationality(z, y) ∧ Lan-
guage(z, w)⇒ Language(x, w) is a high-quality for-
mula, which means people with the same nationality
probably speak the same language. However, it is a
challenge to create formulas for open-domain KBs,
where there are a great variety of relation types and
it is impossible to construct a complete formula set
by hand.

Several data-driven methods, such as Induc-
tive Logic Programming (ILP) (Muggleton and
De Raedt, 1994) and Markov Logic Network (MLN)
(Richardson and Domingos, 2006), have been pro-
posed to mine formulas automatically from KB da-
ta, which transform frequent sub-structures of KBs,
e.g., paths or loops, into formulas. Figure 1.a shows
a sub-graph extracted from Freebase, and the for-
mula mentioned above about Language can be gen-
erated from the loop in Figure 1.d. However, the
running time of these traditional probabilistic infer-
ence methods is unbearable over large-scale KBs.
For example, MLN needs grounding for each can-
didate formula, i.e., it needs to enumerate all paths.
Therefore, the computation complexity of MLN in-
creases exponentially with the scale of a KB.

In order to handle large-scale KBs, the random
walk is usually employed to replace enumerating al-
l possible sub-structures. However, random walk is
inefficient to find useful structures due to its com-
pletely randomized mechanism. For example in Fig-

1379

Figure 1: a) shows a subgraph extracted from Freebase. b) shows the searching space of finding the yellow path. c) shows a loop

which can generate a false formula. d) shows a loop which can generate a true formula.

ure 1.b, the target path (yellow one) has a small
probability to be visited, the reason is that the algo-
rithm may select all the neighboring entity to trans-
fer with an equal probability. This phenomenon is
very common in KBs, e.g., each entity in Freebase
has more than 30 neighbors in average, so there will
be about 810,000 paths with length 4, and only sev-
eral are useful. There have been two types of meth-
ods proposed to improve the efficiency of random
walks, but they still meet serious problems, respec-
tively.
1) Increasing rounds of random walks. More
rounds of random walks will find more structures,
but it will simultaneously introduce more noise and
thus generate more false formulas. For example, the
loop in Figure 1.c exists in Freebase, but it produces
a false formula, Gender(x, y) ∧ Gender(z, y) ∧ Lan-
guage(z, w)⇒ Language(x, w), which means people
with the same gender speak the same language. This
kind of structures frequently occur in KBs even the
formulas are mined with a high confidence, because
there are a lot of sparse structures in KBs which will
lead to inaccurate confidence. According to our s-
tatistics, more than 90 percent of high-confidence
formulas produced by random walk are noise.
2) Employing heuristic rules to direct random
walks. This method directs random walks to find

useful structures by rewriting the state transition
probability matrix, but the artificial heuristic rules
may only apply to a little part of formulas. For
example, PRA (Lao and Cohen, 2010; Lao et al.,
2011) assumes the more narrow distributions of el-
ements in a formula are, the higher score the for-
mula will obtain. However, formulas with high s-
cores in PRA are not always true. For example,
the formula in Figure 1.c has a high score in PRA,
but it is not true. Oppositely, formulas with low
scores in PRA are not always useless. For exam-
ple, the formula, Father(x, y) ∧ Father(y, z) ⇒
Grandfather(x, t), has a low score when x and y
both have several sons, but it obviously is the most
effective to infer Grandfather. According to our
investigations, the situations are common in KBs.

In this paper, we propose a Goal-directed Ran-
dom Walk algorithm to resolve the above problem-
s. The algorithm employs the specific inference tar-
get as the direction at each step in the random walk
process. In more detail, to achieve such a goal-
directed mechanism, at each step of random walk,
the algorithm dynamically estimates the potentials
for each neighbor by using the ultimate goal, and as-
signs higher probabilities to the neighbors with high-
er potentials. Therefore, the algorithm is more in-
clined to visit structures which are beneficial to infer

1380

the target and avoid transferring to noise structures.
For example in Figure 1, when the inference tar-
get is what language a person speaks, the algorith-
m is more inclined to walk along Nationality edge
than Gender, because Nationality has greater poten-
tial than Gender to infer Language. We build a re-
al potential function based on low-rank distribution-
al representations. The reason of replacing symbols
by distributional representations is that the distribu-
tional representations have less parameters and la-
tent semantic relationship in them can contribute to
estimate potentials more precisely. In summary, the
contributions of this paper are as follows.
• Compared with the basic random walk, our ap-
proach direct random walks by the inference target,
which increases efficiency of mining useful formu-
las and has a great capability of resisting noise.
• Compared with the heuristic methods, our ap-
proach can learn the strategy of random walk au-
tomatically and dynamically adjust the strategy for
different inference targets, while the heuristic meth-
ods need to write heuristic rules by hand and follow
the same rule all the time.
• The experiments on link prediction task prove that
our approach has a high efficiency on mining formu-
las and has a good performance on both WN18 and
FB15K datasets.

The rest of this paper is structured as follows, Sec-
tion 2 introduces the basic random walk for mining
formulas. Section 3 describes our approach in detail.
The experimental results and related discussions are
shown in Section 4. Section 5 introduces some relat-
ed works, and finally, Section 6 concludes this paper.

2 Mining Formulas by Random Walk

2.1 Frequent Pattern Mining

Mining frequent patterns from source data is a prob-
lem that has a long history, and for different spe-
cific tasks, there are different types of source data
and different definitions of pattern. Mining formulas
is more like frequent subgraph mining, which em-
ploys paths or loops as frequent patterns and mines
them from a KB. For each relation type R, the al-
gorithm enumerates paths from entity H to entity
T for each triplet R(H,T). These paths are nor-
malized to formulas by replacing entities to vari-
ables. For example, the loop in Figure 1.d, National-

ity(Bob, America) ∧ Nationality(Stewart, America)
∧ Language(Bob, English) ⇒ Language(Stewart,
English), can be normalized to the formula, Nation-
ality(x, y) ∧ Nationality(z, y) ∧ Language(z, w) ⇒
Language(x, w). Support and confidence are em-
ployed to estimate a formula, where the support val-
ue of a formula f : X ⇒ Y , noted as Sf , is defined
as the proportion of paths in the KB which contains
the body X , and the confidence value of X ⇒ Y ,
noted as Cf , is defined as the proportion of the paths
that contains X which also meets X ⇒ Y . Cf is
calculated as follows,

Cf =
Nf

NX
(1)

whereNf is the total number of instantiated formula
f and NX is the total number of instantiated X .

2.2 Random Walk on Knowledge Graph
Enumerating paths is a time consuming process and
does not apply to large-scale KBs. Therefore, ran-
dom walk on the graph is proposed to collect fre-
quent paths instead of enumerating. Random walk
randomly chooses a neighbor to jump unlike enu-
merating which needs to search all neighbors. To es-
timate a formula f , the algorithm employs f ’s occur-
rence number during random walks N

′
f to approxi-

mate the total number Nf in Equation (1), and sim-
ilarly employs N

′
X to approximate NX . Therefore,

f ’s confidence Cf can be approximatively estimated
by N

′
f and N

′
X , noted as C

′
f .

Random walk maintains a state transition prob-
ability matrix P , and Pij means the probability of
jumping from entity i to entity j. To make the confi-
dence C

′
f as close to the true confidence Cf as pos-

sible, the algorithm sets P as follows,

Pij =

{
1/di, j ∈ Adj(i)
0, j /∈ Adj(i) (2)

where di is the out-degree of the entity i, Adj(i) is
the set of adjacent entities of i, and

∑N
j=1 Pij = 1.

Such a transition matrix means the algorithm may
jump to all the neighboring entities with an equal
probability. Such a random walk is independen-
t from the inference target, so we call this type of
random walk as a goalless random walk. The goal-
less mechanism causes the inefficiency of mining
useful structures. When we want to mine paths for
R(H,T), the algorithm cannot arrive at T from H

1381

in the majority of rounds. Even though the algorith-
m recalls several paths for R(H,T), some of them
may generate noisy formulas for inferring R(H,T).

To solve the above problem, several methods di-
rect random walks by statically modifying P . For
example, PRA sets Prij = P (j|i;r)

|Ri| , P (j|i; r) =
r(i,j)
r(i,∗) , where P (j|i; r) is the probability of reach-
ing node j from node i under the specific relation
r, r(i, ∗) is the number of edges from i under r, and
Ri is the number of relation types from i. Such a
transition matrix implies the more narrow distribu-
tions of elements in a formula are, the higher score
the formula will obtain, which can be viewed as the
heuristic rule of PRA.

3 Our Approach

3.1 Goal-Directed Random Walk

We propose to use the inference target, ρ =
R(H,T), to direct random walks. When predict-
ing ρ, our approach always directs random walks to
find useful structures which may generate formulas
to infer ρ. For different ρ, random walks are direct-
ed by modifying the transition matrix P in differ-
ent ways. Our approach dynamically calculates Prij
when jumping from entity i to entity j under relation
r as follows,

Prij =

Φ(r(i, j), ρ)∑
k∈Adj(i) Φ(r(i, k), ρ)

, j ∈ Adj(i)

0, j /∈ Adj(i)
(3)

where Φ(r(i, j), ρ) is the r(i, j)’s potential which
measures the potential contribution to infer ρ after
walking to j.

Intuitively, if r(i, j) exits in a path from H to T
and this path can generate a benefic formula to in-
fer R(H,T), the probability of jumping from i to j
should larger and thus Φ(r(i, j), ρ) also should be
larger. Reversely, if we cannot arrive at T within the
maximal steps after jumping to j, or if the path pro-
duces a noisy formula leading to a wrong inference,
Pij and Φ(r(i, j), ρ) should both be smaller.

To explicitly build a bridge between the potential
Φ and the inference goal ρ, we maximize the like-
lihood of paths which can infer ρ. First, we recur-
sively define the likelihood of a path from H to t

as PpHt = PpHs · Prst , where Prst is defined in E-
quation (3). We then classify a path pHt into three
separate categories: a) t = T and pHt can produce
a benefic formula to infer R(H,T); b) t 6= T ; c)
t = T but pHt may generate a noisy formula which
misleads inference. Finally, we define the likelihood
function as follows,

maxPP =
∏

pHt∈P
P apHt(1− PpHt)

b+c (4)

where P is all paths found in the process of perform-
ing random walks for R(H,T), and t may be equal
to T or not. a, b, c are three 0-1 variables corre-
sponding to the above categories a), b), c). Only one
in a, b, c can be 1 when PHt belongs to the corre-
sponding category. We then transform maximizing
PP to minimizing Lrw = − logPP and employ SGD
to train it. In practice, there is not a clear-cut bound-
ary between a) and c), so we divide the loss into two
parts: Lrw = Ltrw + λLinfrw . Ltrw is the loss of that
t 6= T , and Linfrw is the loss of that pHT generates a
noisy formula leading to a wrong inference. λ is a
super parameter to balance the two losses. Ltrw and
Linfrw have the same expression but are optimized in
different stages. Ltrw can be optimized during ran-
dom walks, while Linfrw should be optimized in the
inference stage. We rewrite Lrw for a specific path
p as follows,

Lrw(p) = −y logPp − (1− y) log (1− Pp) (5)

where y is the label of the path p and y = 1 if p
is beneficial to infer ρ. To obtain the best Φ, we
compute gradients of Lrw as follows,

∇Lrw(p) = (∇Lrw(r12),∇Lrw(r23), ...)

∇Lrw(rij) = (
∂Lrw(rij)

∂Φrij

,
∂Lrw(rij)

∂Φrik1

,
∂Lrw(rij)

∂Φrik2

, ...)

∂Lrw(rij)

∂Φrij

=
(Pp − y) · (1− Prij)

Φrij · (1− Pp)
∂Lrw(rij)

∂Φrik

= − (Pp − y) · Prij
Φrij · (1− Pp)

(6)
where ∇Lrw(rij) is the component of ∇Lrw(p) at
rij . Φ(r(i, j), ρ) and Φ(r(i, k), ρ) are the potentials
for all triplets r(i, j) ∈ p and r(i, k) /∈ p, and rij is
short for r(i, j). After iteratively updating Φrij and
Φrik by the gradient of Ltrw, the random walks can

1382

be directed to find more paths fromH to T , and con-
sequently it increases efficiency of the random walk.
After updating Φrij and Φrik by the gradient ofLinfrw ,
random walk is more likely to find high-quality path-
s but not noise. Therefore, the goal-directed random
walk increases efficiency of mining benefic formulas
and has a great capability of resisting noise.

3.2 Distributional Potential Function

The potential Φ(r(i, j), ρ) measures an implicit re-
lationship between two triplets in the KB, so the
total number of parameters is the square of the K-
B size. It is hard to precisely estimate all Φ be-
cause of the sparsity of training data. To reduce
the number of parameters, we represent each en-
tity or relation in the KB as a low-rank numeric
vector which is called embeddings (Bordes et al.,
2013), and then we build a potential function Ψ on
embeddings as Φ(r(i, j), ρ) = Ψ(Er(i,j), ER(H,T)),
where Er(i,j) and ER(H,T) are the embeddings of
triplets. In practice, we set Er(i,j) = [Er, Ej] and
ER(H,T) = [ER, ET] because Ei is the same for all
triplets r(i, ∗), where [] is a concatenation operator.

In the view of the neural network, our goal-
directed mechanism is analogous to the attention
mechanism. At each step, the algorithm estimates
attentions for each neighboring edges by Ψ. There-
fore, there are several existing expressions of Ψ,
e.g., the dot product (Sukhbaatar et al., 2015) and
the single-layer perceptron (Bahdanau et al., 2015).
We will not compare different forms of Ψ, the detail
comparison has been presented in the work (Luong
et al., 2015). We directly employ the simplest dot
product for Ψ as follows,

Ψ(Er(i,j), ER(H,T)) = σ(Er(i,j) · ER(H,T)) (7)

where σ is a nonlinear function and we set it as an
exponential function. Ψ has no parameters beside
KB embeddings which are updated during the train-
ing period.

3.3 Integrated Inference Model

To handle the dependence between goal-directed
random walk and subsequent inference, we combine
them into an integrated model and optimize them
together. To predict ρ = R(H,T), the integrated
model first collects formulas for R(H,T), and then

Algorithm 1: Train Integrated Inference Model

Input: KB, Ξ
Output: Ψ, W , F
1: For ρ = R(H,T) ∈ Ξ
2: Repeat ρ-directed Random Walk from H to t
3: Update Ψ by Ltrw
4: If t = T , then F = F ∩ fp
5: Calculate Linf and Linfrw by ρ
6: Update W by Linf
7: Update Ψ by Linfrw
8: Remove f ∈ F with little wf
9: Output Ψ, W , F

merges estimations of different formulas as features
into a score function χ,

χ(ρ) =
∑

f∈Fρ
δ(f) (8)

where Fρ is the formula set obtained by random
walks for ρ, and δ(f) is an estimation of formula
f . The original frequent pattern mining algorithm
employs formulas’ confidence as δ(f) directly, but
it does not produce good results (Galárraga et al.,
2013). There are two ways to solve the problem:
one is selecting another more suitable measure of f
as δ(f) (Tan et al., 2002); the other is attaching a
weight to each formula and learning weights with
supervision, e.g., MLN (Richardson and Domin-
gos, 2006) . We employ the latter method and set
δ(f) = wf ·nf . Finally, we employ a logistic regres-
sion classifier to predict R(H,T), and the posterior
probability of R(H,T) is shown as follows,

P (ρ = y|χ) = F(χ)y(1−F(χ))1−y

F(χ) =
1

1 + e−χ
(9)

where y is a 0-1 label of ρ. Similar to Ltrw in
Equation (5), we treat the negative logarithm of
P (ρ = y|χ) as the loss of inference, Linf =
− logP (ρ = y|χ), and turn to minimize it. More-
over, the loss Linfrw of the above goal-directed ran-
dom walk is influenced by the result of predicting
R(H,T), so Φrij and Φrik will be also updated. Al-
gorithm 1 shows the main process of training, where
Ξ is the triplet set for training, Ψ is the potential
function in Equation (7), F is the formula set, fp is

1383

Dataset Relation Entity Train Valid Test
WN18 18 40,943 141,442 5,000 5,000
FB15K 1,345 14,951 483,142 50,000 59,071

Table 1: Statistics of WN18 and FB15K

a formula generated from the path p, and H,T, t are
entities in the KB. To predict ρ = R(H,T), the al-
gorithm first performs multi rounds of random walk-
s, and each random walk can find a path pHt (at line
2). Then the algorithm decides to update Ψ by Ltrw
based on whether t is T (at line 3), and adds the for-
mula pf into the formula set when t = T (at line
4). After random walks, the inference model pre-
dicts ρ, and computes Linf and Linfrw according to
the prediction result (at line 5). FinallyW and Ψ are
updated by Linf and Linfrw (at line 6-7), respective-
ly. After training by all triplets in Ξ, the algorithm
removes formulas with low weights from F (at line
8) and outputs the model (at line 9). When we infer
a new triplet by this model, the process is similar to
Algorithm 1.

4 Experiments

We first compare our approach with several state-of-
art methods on link prediction task to explore our
approach’s overall ability of inference. Subsequent-
ly, we evaluate formulas mined by different random
walk methods to explore whether the goal-directed
mechanism can increase efficiency of mining useful
structures. Finally, we dive deep into the formulas
generated by our approach to analyze the characters
of our approach.

4.1 Datasets and Evaluation Setup

We conduct experiments on both WN18 and FB15K
datasets which are subsets sampled from WordNet
(Miller, 1995) and Freebase (Bollacker et al., 2008),
respectively, and Table 1 shows the statistics of
them. For the link prediction task, we predict the
missing h or t for a triplet r(h, t) in test set. The de-
tail evaluation method is that t in r(h, t) is replaced
by all entities in the KB and methods need to rank
the right answer at the top of the list, and so does
h in r(h, t). We report the mean of those true an-
swer ranks and the Hits@10 under both ’raw’ and
’filter’ as TransE (Bordes et al., 2013) does, where
Hits@10 is the proportion of correct entities ranked
in the top 10.

Figure 2: Arr@10 of three random walk algorithms and

the horizontal axis represents epochs and the vertical axis

represents Arr@10. Figure 2.a shows results on relation

derivationally related form in WN18, and Figure 2.b shows re-

sults on relation form of government in FB15K.

4.2 Baselines

We employ two types of baselines. One type is
based on random walks including: a) the basic ran-
dom walk algorithm whose state transition probabil-
ity matrix is shown in Equation (2); b) PRA in (Lao
et al., 2011) which is a typical heuristic random walk
algorithm. The other type is based on KB embed-
dings including TransE (Bordes et al., 2013), Rescal
(Nickel et al., 2011), TransH (Wang et al., 2014b),
TransR (Lin et al., 2015b). These embedding-based
methods have no explicit formulas, so we will not
evaluate their performances on mining formulas.

4.3 Settings

We implement three random walk methods under
a unified framework. To predict r(h, ∗) quickly,
we first select Top-K candidate instances, t1→K , by
TransE as (Wei et al., 2015), and then the algorith-
m infers each r(h, ti) and ranks them by inference
results. We adjust parameters for our approach with
the validate dataset, and the optimal configurations
are set as follows. The rounds of random walk is
10, learning rate is 0.0001, training epoch is 100,
the size of candidate set is 500 for WN18 and 100
for FB15K, the embeddings have 50 dimensionali-
ties for WN18 and 100 dimensionalities for FB15K,
and the embeddings are initialized by TransE. For
some relations, random walk truly finds no practica-
ble formulas, so we employ TransE to improve per-

1384

Dataset WN18 FB15K
Metric Mean Rank Hits@10(%) Mean Rank Hits@10(%)

Raw Filt Raw Filt Raw Filt Raw Filt
RESCAL 1,180 1,163 37.2 52.8 828 683 28.4 44.1

2.a TransE 263 251 75.4 89.2 243 125 34.9 47.1
TransH 401 388 73.0 82.3 212 87 45.7 64.4
TransR 238 225 79.8 92.0 198 77 48.2 68.7

2.b RW 28* 17* 84.40 94.89 37* 28* 37.04 51.13
PRA 28* 17* 84.43 94.90 37* 29* 36.72 50.73

2.d Our approach 28* 17* 84.40 94.86 34* 25* 53.47 74.75
Table 2: Link Prediction Results on both WN18 and FB15K

formance for these relations. For embedding-based
methods, we use reported results directly since the
evaluation datasets are identical.

4.4 Results on Link Prediction

We show the results of link prediction for our ap-
proach and all baselines in Table 2 (* means the
mean of ranks for random walk methods are eval-
uated in the Top-K subset), and we can obtain the
following observations:

1) Our approach achieves good performances on
both WN18 and FB15K. On the FB15K, our ap-
proach outperforms all baselines. It indicates that
our approach is effective for inference. On the
WN18, three random walk methods have similar
performances. The reason is that most entities in
WN18 only have a small number of neighbors, so
RW and PRA can also find useful structures in a few
rounds.

2) For FB15K, the performances of RW and
PRA are both poor and even worse than a part of
embedding-based methods, but the performance of
our approach is still the best. The reason is that there
are too many relation types in FB15K, so goalless
random walks introduce lots of noise. Oppositely,
our approach has a great capability of resisting noise
for the goal-directed mechanism.

3) RW and PRA have similar performances on
both datasets, which indicates the heuristic rule of
PRA does not apply to all relations and formulas.

4.5 Paths Recall by Random Walks

To further explore whether the goal-directed mech-
anism can increase efficiency of mining paths, we
compare the three random walk methods by the
number of paths mined. For each triplet R(H,T)

in the training set, we perform 10 rounds of random
walks fromH and record the number of times which
arrive at T, noted as Arr@10. We respectively select
one relation type from WN18 and FB15K and show
the comparison result in Figure 2. We can obtain the
following observations:

1) With the increase of training epochs, Arr@10
of the goal-directed random walk first increases and
then stays around a high value on both WN18 and
FB15K, but the Arr@10 of RW and PRA always
stay the same. This phenomenon indicates that the
goal-directed random walk is a learnable model and
can be trained to find more useful structures with
epochs increasing, but RW and PRA are not.

2) RW and PRA always have similar Arr@10,
which means PRA has not found more formulas.
This indicates that the heuristic rule of PRA is not
always be beneficial to mining more structures for
all relations.

4.6 Example Formulas

In Table 3, we show a small number of formulas
mined by our approach from FB15K, and the formu-
las represent different types. Some formulas contain
clear logic, e.g, Formula 1 means that if the writer
x contributes a story to the film y and y is adapted
from the book z, x is the writer of the book z. Some
formulas have a high probability of being satisfied,
e.g., Formula 3 means the wedding place probably
is also the burial place for some people, and Formu-
la 7 means the parent of the person x died of the
disease and thus the person x has a high risk of suf-
fering from the disease. Some formulas depend on
synonyms, e.g., story by and works written have the
similar meaning in Formula 2. However, there are
still useless formulas, e.g, Formula 8 is useless be-

1385

Relation Formula
works written
1 film story contributor(x,y) ∧ adapted from(y,z)⇒ works written(x,z)
2 story by(y,x)⇒ works written(x,y)
place of burial
3 place of death(x,y)⇒ place of burial(x,y)
4 marriage type of union(x,y) ∧ marriage location of ceremony(y,z)⇒ place of burial(x,z)
service language
5 service location(x,y) ∧ imported from(y,z) ∧ official language(z,w)⇒ service language(x,w)
6 service location(x,y) ∧ exported to(y,z) ∧ languages spoken(z,w)⇒ service language(x,w)
disease risk factors
7 parent cause of death(x,y) ∧ disease risk factors(y,z)⇒ disease risk factors(x,z)
8 disease risk factors(x,y)∧ -disease risk factors(y,x)⇒ disease risk factors(x,y)

Table 3: Example Formulas Obtained by Goal-directed Random Walk

cause the body of the formula is same as the head.
Such useless formula can be removed by a super-
rule, which is that the head of a formula cannot oc-
cur in its body.

5 Related Work

Our work has two aspects, which are related to min-
ing formula automatically and inference on KBs, re-
spectively.

Inductive Logic Programming (ILP) (Muggleton
and De Raedt, 1994) and Association Rule Mining
(ARM) (Agrawal et al., 1993) are both early work-
s on mining formulas. FOIT (Quinlan, 1990) and
SHERLOCK (Schoenmackers et al., 2010) are typ-
ical ILP systems, but the former one usually need
a lot of negative facts and the latter one focuses on
mining formulas from text. AMIE (Galárraga et al.,
2013) is based on ARM and proposes a new mea-
sure for formulas instead of the confidence. Several
structure learning algorithms (Kok and Domingos,
2005; Kok and Domingos, 2009; Kok and Domin-
gos, 2010) based on Markov Logic Network (ML-
N) (Richardson and Domingos, 2006) can also learn
first order logic formulas automatically, but they are
too slow to run on large KBs. ProPPR (Wang et al.,
2013; Wang et al., 2014a) performs structure learn-
ing by depth first searching on the knowledge graph,
which is still not efficient enough to handle web-
scale KBs. PRA (Lao and Cohen, 2010; Lao et al.,
2011) is a method based on random walks and em-
ploys heuristic rules to direct random walks. PRA is
closely related to our approach, but unlike it, our ap-
proach dynamically calculates state transition prob-

abilities. Another method based on random walks
(Wei et al., 2015) merges embedding similarities of
candidates into the random walk as a priori, while
our approach employs KB embeddings to calculate
potentials for neighbors.

The majority of mining formula methods can per-
form inference on KBs, and besides them, a dozen
methods based KB embeddings can also achieve the
inference goal, and the typical ones of them are
TransE (Bordes et al., 2013), Rescal (Nickel et al.,
2011), TransH (Wang et al., 2014b), TransR (Lin et
al., 2015b). These embedding-based methods take
advantage of the implicit relationship between ele-
ments of the KB and perform inference by calcu-
lating similarities. There are also methods which
combine inference formulas and KB embeddings,
such as PTransE (Lin et al., 2015a) and ProPPR+MF
(Wang and Cohen, 2016).

6 Conclusion and Future Works

In this paper, we introduce a goal-directed random
walk algorithm to increase efficiency of mining use-
ful formulas and decrease noise simultaneously. The
approach employs the inference target as the direc-
tion at each steps in the random walk process and
is more inclined to visit structures helpful to infer-
ence. In empirical studies, we show our approach
achieves good performances on link prediction task
over large-scale KBs. In the future, we are interest-
ed in exploring mining formulas directly in the dis-
tributional spaces which may resolve the sparsity of
formulas.

1386

7 Acknowledgments

This work was supported by the Natural Sci-
ence Foundation of China (No. 61533018), the
National Basic Research Program of China (No.
2014CB340503) and the National Natural Science
Foundation of China (No. 61272332). And this
work was also supported by Google through focused
research awards program.

References

Rakesh Agrawal, Tomasz Imieliński, and Arun Swami.
1993. Mining association rules between sets of items
in large databases. ACM SIGMOD Record, 22(2):207–
216.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim S-
turge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of da-
ta, pages 1247–1250. ACM.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran,
Jason Weston, and Oksana Yakhnenko. 2013. Trans-
lating embeddings for modeling multi-relational data.
In Advances in Neural Information Processing System-
s, pages 2787–2795.

Luis Antonio Galárraga, Christina Teflioudi, Katja Hose,
and Fabian Suchanek. 2013. Amie: association
rule mining under incomplete evidence in ontological
knowledge bases. In Proceedings of the 22nd interna-
tional conference on World Wide Web, pages 413–422.
International World Wide Web Conferences Steering
Committee.

Johannes Hoffart, Fabian M Suchanek, Klaus Berberich,
and Gerhard Weikum. 2013. Yago2: A spatially and
temporally enhanced knowledge base from wikipedia.
Artificial Intelligence, 194:28–61.

Stanley Kok and Pedro Domingos. 2005. Learning the
structure of markov logic networks. In Proceedings of
the 22nd international conference on Machine learn-
ing, pages 441–448. ACM.

Stanley Kok and Pedro Domingos. 2009. Learning
markov logic network structure via hypergraph lifting.
In Proceedings of the 26th annual international con-
ference on machine learning, pages 505–512. ACM.

Stanley Kok and Pedro Domingos. 2010. Learning
markov logic networks using structural motifs. In Pro-

ceedings of the 27th international conference on ma-
chine learning (ICML-10), pages 551–558.

Ni Lao and William W Cohen. 2010. Relational retrieval
using a combination of path-constrained random walk-
s. Machine learning, 81(1):53–67.

Ni Lao, Tom Mitchell, and William W Cohen. 2011.
Random walk inference and learning in a large scale
knowledge base. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 529–539. Association for Computational Lin-
guistics.

Yankai Lin, Zhiyuan Liu, and Maosong Sun. 2015a.
Modeling relation paths for representation learning of
knowledge bases. arXiv preprint arXiv:1506.00379.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015b. Learning entity and relation em-
beddings for knowledge graph completion. In AAAI,
pages 2181–2187.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Conference on
Empirical Methods in Natural Language Processing.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Stephen Muggleton and Luc De Raedt. 1994. Inductive
logic programming: Theory and methods. The Jour-
nal of Logic Programming, 19:629–679.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Proceedings of
the 28th international conference on machine learning
(ICML-11), pages 809–816.

J. Ross Quinlan. 1990. Learning logical definitions from
relations. Machine learning, 5(3):239–266.

Matthew Richardson and Pedro Domingos. 2006.
Markov logic networks. Machine learning, 62(1-
2):107–136.

Stefan Schoenmackers, Oren Etzioni, Daniel S Weld, and
Jesse Davis. 2010. Learning first-order horn clauses
from web text. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1088–1098. Association for Computational
Linguistics.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances in
Neural Information Processing Systems, pages 2431–
2439.

Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava.
2002. Selecting the right interestingness measure for
association patterns. In Proceedings of the eighth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 32–41. ACM.

1387

William Yang Wang and William W Cohen. 2016.
Learning first-order logic embeddings via matrix fac-
torization. In Proceedings of the 25th Internation-
al Joint Conference on Artificial Intelligence (IJCAI
2016).

William Yang Wang, Kathryn Mazaitis, and William W
Cohen. 2013. Programming with personalized pager-
ank: a locally groundable first-order probabilistic log-
ic. In Proceedings of the 22nd ACM international con-
ference on Conference on information & knowledge
management, pages 2129–2138. ACM.

William Yang Wang, Kathryn Mazaitis, and William W
Cohen. 2014a. Structure learning via parameter learn-
ing. In Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowl-
edge Management, pages 1199–1208. ACM.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014b. Knowledge graph embedding by trans-
lating on hyperplanes. In AAAI, pages 1112–1119.
Citeseer.

Zhuoyu Wei, Jun Zhao, Kang Liu, Zhenyu Qi, Zhengya
Sun, and Guanhua Tian. 2015. Large-scale knowl-
edge base completion: Inferring via grounding net-
work sampling over selected instances. In Proceed-
ings of the 24th ACM International on Conference
on Information and Knowledge Management, pages
1331–1340. ACM.

1388

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1389–1399,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Lifted Rule Injection for Relation Embeddings

Thomas Demeester
Ghent University - iMinds

Ghent, Belgium
tdmeeste@intec.ugent.be

Tim Rocktäschel and Sebastian Riedel
University College London

London, UK
{t.rocktaschel,s.riedel}@cs.ucl.ac.uk

Abstract

Methods based on representation learning cur-
rently hold the state-of-the-art in many natural
language processing and knowledge base in-
ference tasks. Yet, a major challenge is how to
efficiently incorporate commonsense knowl-
edge into such models. A recent approach reg-
ularizes relation and entity representations by
propositionalization of first-order logic rules.
However, propositionalization does not scale
beyond domains with only few entities and
rules. In this paper we present a highly ef-
ficient method for incorporating implication
rules into distributed representations for au-
tomated knowledge base construction. We
map entity-tuple embeddings into an approxi-
mately Boolean space and encourage a partial
ordering over relation embeddings based on
implication rules mined from WordNet. Sur-
prisingly, we find that the strong restriction
of the entity-tuple embedding space does not
hurt the expressiveness of the model and even
acts as a regularizer that improves general-
ization. By incorporating few commonsense
rules, we achieve an increase of 2 percentage
points mean average precision over a matrix
factorization baseline, while observing a neg-
ligible increase in runtime.

1 Introduction

Current successful methods for automated knowl-
edge base construction tasks heavily rely on learned
distributed vector representations (Nickel et al.,
2012; Riedel et al., 2013; Socher et al., 2013; Chang
et al., 2014; Neelakantan et al., 2015; Toutanova et
al., 2015; Nickel et al., 2015; Verga et al., 2016;

Verga and McCallum, 2016). Although these mod-
els are able to learn robust representations from
large amounts of data, they often lack common-
sense knowledge. Such knowledge is rarely explic-
itly stated in texts but can be found in resources
like PPDB (Ganitkevitch et al., 2013) or WordNet
(Miller, 1995).

Combining neural methods with symbolic com-
monsense knowledge, for instance in the form of
implication rules, is in the focus of current research
(Rocktäschel et al., 2014; Wang et al., 2014; Bow-
man et al., 2015; Wang et al., 2015; Vendrov et al.,
2016; Hu et al., 2016; Rocktäschel and Riedel, 2016;
Cohen, 2016). A recent approach (Rocktäschel et
al., 2015) regularizes entity-tuple and relation em-
beddings via first-order logic rules. To this end, ev-
ery first-order rule is propositionalized based on ob-
served entity-tuples, and a differentiable loss term is
added for every propositional rule. This approach
does not scale beyond only a few entity-tuples and
rules. For example, propositionalizing the rule ∀x :
isMan(x)⇒ isMortal(x) would result in a very
large number of loss terms on a large database.

In this paper, we present a method to incorporate
simple rules while maintaining the computational
efficiency of only modeling training facts. This
is achieved by minimizing an upper bound of the
loss that encourages the implication between rela-
tions to hold, entirely independent from the num-
ber of entity pairs. It only involves representa-
tions of the relations that are mentioned in rules, as
well as a general rule-independent constraint on the
entity-tuple embedding space. In the example given
above, if we require that every component of the

1389

vector representation of isMan is smaller than the
corresponding component of relation isMortal,
then we can show that the rule holds for any non-
negative representation of an entity-tuple. Hence our
method avoids the need for separate loss terms for
every ground atom resulting from propositionaliz-
ing rules. In statistical relational learning this type
of approach is often referred to as lifted inference
or learning (Poole, 2003; Braz, 2007) because it
deals with groups of random variables at a first-order
level. In this sense our approach is a lifted form of
rule injection. This allows for imposing large num-
bers of rules while learning distributed representa-
tions of relations and entity-tuples. Besides drasti-
cally lower computation time, an important advan-
tage of our method over Rocktäschel et al. (2015) is
that when these constraints are satisfied, the injected
rules always hold, even for unseen but inferred facts.
While the method presented here only deals with im-
plications and not general first-order rules, it does
not rely on the assumption of independence between
relations, and is hence more generally applicable.

Our contributions are fourfold: (i) we develop a
very efficient way of regularizing relation represen-
tations to incorporate first-order logic implications
(§3), (ii) we reveal that, against expectation, map-
ping entity-tuple embeddings to non-negative space
does not hurt but instead improves the generaliza-
tion ability of our model (§5.1) (iii) we show im-
provements on a knowledge base completion task by
injecting mined commonsense rules from WordNet
(§5.3), and finally (iv) we give a qualitative analysis
of the results, demonstrating that implication con-
straints are indeed satisfied in an asymmetric way
and result in a substantially increased structuring of
the relation embedding space (§5.6).

2 Background

In this section we revisit the matrix factorization re-
lation extraction model by Riedel et al. (2013) and
introduce the notation used throughout the paper.
We choose the matrix factorization model for its
simplicity as the base on which we develop impli-
cation injection.

Riedel et al. (2013) represent every relation r ∈
R (selected from Freebase (Bollacker et al., 2008)
or extracted as textual surface pattern) by a k-

dimensional latent representation r ∈ Rk. A par-
ticular relation instance or fact is the combination
of a relation r and a tuple t of entities that are en-
gaged in that relation, and is written as 〈r, t〉. We
write O as the set of all such input facts available
for training. Furthermore, every entity-tuple t ∈ T
is represented by a latent vector t ∈ Rk (with T the
set of all entity-tuples in O).

Model F by Riedel et al. (2013) measures the
compatibility between a relation r and an entity-
tuple t using the dot product r>t of their respec-
tive vector representations. During training, the
representations are learned such that valid facts re-
ceive high scores, whereas negative ones receive low
scores. Typically no negative evidence is available
at training time, and therefore a Bayesian Personal-
ized Ranking (BPR) objective (Rendle et al., 2009)
is used. Given a pair of facts fp := 〈rp, tp〉 6∈ O and
fq := 〈rq, tq〉 ∈ O, this objective requires that

r>p tp ≤ r>q tq. (1)

The embeddings can be trained by minimizing a
convex loss function `R that penalizes violations
of that requirement when iterating over the training
set. In practice, each positive training fact 〈r, tq〉 is
compared with a randomly sampled unobserved fact
〈r, tp〉 for the same relation. The overall loss can
hence be written as

LR =
∑

〈r,tq〉∈O
tp∈T , 〈r,tp〉6∈O

`R
(
r>[tp − tq]

)
. (2)

and measures how well observed valid facts are
ranked above unobserved facts, thus reconstructing
the ranking of the training data. We will hence-
forth call LR the reconstruction loss, to make a dis-
tinction with the implication loss that we will intro-
duce later. Riedel et al. (2013) use the logistic loss
`R(s) := − log σ(−s), where σ(s) := (1 + e−x)−1

denotes the sigmoid function. In order to avoid over-
fitting, an L2 regularization term on the r and t em-
beddings is added to the reconstruction loss. The
overall objective to minimize hence is

LF = LR + α
(∑

r‖r‖22 +
∑

t‖t‖22
)

(3)

where α is the regularization strength.

1390

3 Lifted Injection of Implications

In this section, we show how an implication

∀t ∈ T : 〈rp, t〉 ⇒ 〈rq, t〉, (4)

can be imposed independently of the entity-tuples.
For simplicity, we abbreviate such implications as
rp ⇒ rq (e.g., professorAt⇒ employeeAt).

3.1 Grounded Loss Formulation
The implication rule can be imposed by requiring
that every tuple t ∈ T is at least as compatible with
relation rp as with rq. Written in terms of the latent
representations, eq. (4) therefore becomes

∀t ∈ T : r>p t ≤ r>q t (5)

If 〈rp, t〉 is a true fact with a high score r>p t, and
the fact 〈rq, t〉 has an even higher score, it must also
be true, but not vice versa. We can therefore inject
an implication rule by minimizing a loss term with
a separate contribution from every t ∈ T , adding
up to the total loss if the corresponding inequality
is not satisfied. In order to make the contribution of
every tuple t to that loss independent of the magni-
tude of the tuple embedding, we divide both sides of
the above inequality by ‖t‖1. With t̃ := t/‖t‖1, the
implication loss for the rule rp ⇒ rq can be written
as

LI =
∑

∀t∈T
`I
(
[rp − rq]>t̃

)
(6)

for an appropriate convex loss function `I , similarly
to eq. (2). In practice, the summation can be reduced
to those tuples that occur in combination with rp or
rq in the training data. Still, the propositionalization
in terms of training facts leads to a heavy computa-
tional cost for imposing a single implication, simi-
lar to the technique introduced in Rocktäschel et al.
(2015). Moreover, with that simplification there is
no guarantee that the implication between both re-
lations would generalize towards inferred facts not
seen during training.

3.2 Lifted Loss Formulation
The problems mentioned above can be avoided if
instead of LI , a tuple-independent upper bound is
minimized. Such a bound can be constructed, pro-
vided all components of t are restricted to a non-
negative embedding space, i.e., T ⊆ Rk,+. If this

holds, Jensen’s inequality allows us to transform
eq. (6) as follows

LI =
∑

∀t∈T
`I

(k∑

i=1

t̃i [rp − rq]>1i
)

(7)

≤
k∑

i=1

`I
(
[rp − rq]>1i

) ∑

∀t∈T
t̃i (8)

where 1i is the unit vector along dimension i in
tuple-space. This is allowed because the {t̃i}ki=1

form convex coefficients (t̃i > 0, and
∑

i t̃i = 1),
and `I is a convex function. If we define

LUI :=

k∑

i=1

`I
(
[rp − rq]>1i

)
(9)

we can write
LI ≤ βLUI (10)

in which β is an upper bound on
∑

t t̃i. One such
bound is |T |, but others are conceivable too. In prac-
tice we rescale β to a hyper-parameter β̃ that we use
to control the impact of the upper bound to the over-
all loss. We call LUI the lifted loss, as it no longer
depends on any of the entity-tuples; it is grounded
over the unit tuples 1i instead.

The implication rp ⇒ rq can thus be imposed by
minimizing the lifted loss LUI . Note that by mini-
mizing LUI , the model is encouraged to satisfy the
constraint rp ≤ rq on the relation embeddings,
where ≤ denotes the component-wise comparison.
In fact, a sufficient condition for eq. (5) to hold, is

rp ≤ rq and ∀t ∈ T : t ≥ 0 (11)

with 0 the k-dimensional null vector. This corre-
sponds to a single relation-specific loss term, and
the general restriction T ⊆ Rk,+ on the tuple-
embedding space.

3.3 Approximately Boolean Entity Tuples

In order to impose implications by minimizing a
lifted loss LUI , the tuple-embedding space needs to
be restricted to Rk,+. We have chosen to restrict the
tuple space even more than required, namely to the
hypercube t ∈ [0, 1]k, as approximately Boolean
embeddings (Kruszewski et al., 2015). The tuple

1391

embeddings are constructed from real-valued vec-
tors e, using the component-wise sigmoid function

t = σ(e), e ∈ Rk. (12)

For minimizing the loss, the gradients are hence
computed with respect to e, and the L2 regulariza-
tion is applied to the components of e instead of t.

Other choices for ensuring the restriction t ≥ 0
in eq. (11) are possible, but we found that our ap-
proach works better in practice than those (e.g., the
exponential transformation proposed by Demeester
et al. (2016)). It can also be observed that the unit
tuples over which the implication loss is grounded,
form a special case of approximately Boolean em-
beddings.

In order to investigate the impact of this restric-
tion even when not injecting any rules, we introduce
model FS: the original model F, but with sigmoidal
entity-tuples:

LFS =
∑

〈r,tq〉∈O
tp∈T , 〈r,tp〉6∈O

`R
(
r>[σ(ep)− σ(eq)]

)

+ α
(∑

r‖r‖22 +
∑

e‖e‖22
)

(13)

Here, ep and eq are the real-valued representations
as in eq. (12), for tuples tp and tq, respectively.

With the above choice of a non-negative tuple-
embedding space we can now state the full lifted rule
injection model (FSL):

LFSL = LFS + β̃
∑

I∈I
LUI (14)

LUI denotes a lifted loss term for every rule in a set
I of implication rules that we want to inject.

3.4 Convex Implication Loss
The logistic loss `R (see §2) is not suited for im-
posing implications because once the inequality in
eq. (11) is satisfied, the components of rp and rq do
not need to be separated any further. However, with
`R this would continue to happen due to the small
non-zero gradient. In the reconstruction loss LR
this is a desirable effect which further separates the
scores for positive from negative examples. How-
ever, if an implication is imposed between two re-
lations that are almost equivalent according to the

training data, we still want to find almost equivalent
embedding vectors. Hence, we propose to use the
loss

`I(s) = max(0, s+ δ) (15)

with δ a small positive margin to ensure that the gra-
dient does not disappear before the inequality is ac-
tually satisfied. We use δ = 0.01 in all experiments.

The main advantage of the presented approach
over earlier methods that impose the rules in a
grounded way (Rocktäschel et al., 2015; Wang et
al., 2015) is the computational efficiency of impos-
ing the lifted loss. Evaluating LUI or its gradient for
one implication rule is comparable to evaluating the
reconstruction loss for one pair of training facts. In
typical applications there are much fewer rules than
training facts and the extra computation time needed
to inject these rules is therefore negligible.

4 Related Work

Recent research on combining rules with learned
vector representations has been important for new
developments in the field of knowledge base com-
pletion. Rocktäschel et al. (2014) and Rocktäschel
et al. (2015) provided a framework to jointly maxi-
mize the probability of observed facts and proposi-
tionalized first-order logic rules. Wang et al. (2015)
demonstrated how different types of rules can be
incorporated using an Integer Linear Programming
approach. Wang and Cohen (2016) learned em-
beddings for facts and first-order logic rules using
matrix factorization. Yet, all of these approaches
ground the rules in the training data, limiting their
scalability towards large rule sets and KBs with
many entities. As argued in the introduction, this
forms an important motivation for the lifted rule in-
jection model put forward in this work, which by
construction does not suffer from that limitation.
Wei et al. (2015) proposed an alternative strategy to
tackle the scalability problem by reasoning on a fil-
tered subset of grounded facts.

Wu et al. (2015) proposed to use a path ranking
approach for capturing long-range interactions be-
tween entities, and to add these as an extra loss term,
besides the loss that models pairwise relations. Our
model FSL differs substantially from their approach,
in that we consider tuples instead of separate enti-
ties, and we inject a given set of rules. Yet, by cre-

1392

ating a partial ordering in the relation embeddings
as a result of injecting implication rules, model FSL
can also capture interactions beyond direct relations.
This will be demonstrated in §5.3 by injecting rules
between surface patterns only and still measuring an
improvement on predictions for structured Freebase
relations.

Combining logic and distributed representations
is also an active field of research outside of au-
tomated knowledge base completion. Recent ad-
vances include the work by Faruqui et al. (2014),
who injected ontological knowledge from WordNet
into word representations. Furthermore, Vendrov et
al. (2016) proposed to enforce a partial ordering in
an embeddings space of images and phrases. Our
method is related to such order embeddings since
we define a partial ordering on relation embeddings.
However, to ensure that implications hold for all
entity-tuples we also need a restriction on the entity-
tuple embedding space and derive bounds on the
loss. Another important contribution is the recent
work by Hu et al. (2016), who proposed a frame-
work for injecting rules into general neural network
architectures, by jointly training on the actual targets
and on the rule-regularized predictions provided by
a teacher network. Although quite different at first
sight, their work could offer a way to use our model
in various neural network architectures, by integrat-
ing the proposed lifted loss into the teacher network.

This paper builds upon our previous workshop
paper (Demeester et al., 2016). In that work,
we tested different tuple embedding transforma-
tions in an ad-hoc manner. We used approxi-
mately Boolean representations of relations instead
of entity-tuples, strongly reducing the model’s de-
grees of freedom. We now derive the FSL model
from a carefully considered mathematical transfor-
mation of the grounded loss. The FSL model only
restricts the tuple embedding space, whereby rela-
tion vectors remain real valued. Furthermore, previ-
ous experiments were performed on small-scale ar-
tificial datasets, whereas we now test on a real-world
relation extraction benchmark.

Finally, we explicitly discuss the main differ-
ences with respect to the strongly related work from
Rocktäschel et al. (2015). Their method is more gen-
eral, as they cover a wide range of first-order logic
rules, whereas we only discuss implications. Lifted

rule injection beyond implications will be studied in
future research contributions. However, albeit less
general, our model has a number of clear advan-
tages:

Scalability – Our proposed model of lifted rule
injection scales according to the number of implica-
tion rules, instead of the number of rules times the
number of observed facts for every relation present
in a rule.

Generalizability – Injected implications will
hold even for facts not seen during training, because
their validity only depends on the order relation im-
posed on the relation representations. This is not
guaranteed when training on rules grounded in train-
ing facts by Rocktäschel et al. (2015).

Training Flexibility – Our method can be trained
with various loss functions, including the rank-based
loss as used in Riedel et al. (2013). This was not
possible for the model of Rocktäschel et al. (2015)
and already leads to an improved accuracy as seen
from the zero-shot learning experiment in §5.2.

Independence Assumption – In Rocktäschel et
al. (2015) an implication of the form ap ⇒ aq for
two ground atoms ap and aq is modeled by the log-
ical equivalence ¬(ap ∧ ¬aq), and its probability
is approximated in terms of the elementary proba-
bilities π(ap) and π(aq) as 1 − π(ap)

(
1 − π(aq)

)
.

This assumes the independence of the two atoms ap
and aq, which may not hold in practice. Our ap-
proach does not rely on that assumption and also
works for cases of statistical dependence. For ex-
ample, the independence assumption does not hold
in the trivial case where the relations rp and rq in
the two atoms are equivalent, whereas in our model,
the constraints rp ≤ rq and rp ≥ rq would simply
reduce to rp = rq.

5 Experiments and Results

We now present our experimental results. We start
by describing the experimental setup and hyperpa-
rameters. Before turning to the injection of rules,
we compare model F with model FS, and show that
restricting the tuple embedding space has a regu-
larization effect, rather than limiting the expressive-
ness of the model (§5.1). We then demonstrate that
model FSL is capable of zero-shot learning (§5.2),
and show that injecting high-quality WordNet rules

1393

Test relation # R13-F F FS FSL

person/company 106 0.75 0.73 0.74 0.77
location/containedby 73 0.69 0.62 0.70 0.71
person/nationality 28 0.19 0.20 0.20 0.21
author/works written 27 0.65 0.71 0.69 0.65
person/place of birth 21 0.72 0.69 0.72 0.70
parent/child 19 0.76 0.77 0.81 0.85
person/place of death 19 0.83 0.85 0.83 0.85
neighborhood/neighborhood of 11 0.70 0.67 0.63 0.62
person/parents 6 0.61 0.53 0.66 0.66
company/founders 4 0.77 0.73 0.64 0.67
sports team/league 4 0.59 0.44 0.43 0.56
team owner/teams owned 2 0.38 0.64 0.64 0.61
team/arena stadium 2 0.13 0.13 0.13 0.12
film/directed by 2 0.50 0.18 0.17 0.13
broadcast/area served 2 0.58 0.83 0.83 1.00
structure/architect 2 1.00 1.00 1.00 1.00
composer/compositions 2 0.67 0.64 0.51 0.50
person/religion 1 1.00 1.00 1.00 1.00
film/produced by 1 0.50 1.00 1.00 0.33

Weighted MAP 0.67 0.65 0.67 0.69

Table 1: Weighted mean average precision for our
reimplementation of the matrix factorization model
(F) compared to restricting the entity-pair space (FS)
and injecting WordNet rules (FSL). Model F results
by Riedel et al. (2013) are denoted as R13-F.

leads to an improved precision (§5.3). We proceed
with a visual illustration of the relation embeddings
with and without injected rules (§5.4), provide de-
tails on time efficiency of the lifted rule injection
method (§5.5), and show that it correctly captures
the asymmetry of implication rules (§5.6).

All models were implemented in Tensor-
Flow (Abadi et al., 2015). We use the hyperparam-
eters of Riedel et al. (2013), with k = 100 hidden
dimensions and a weight of α = 0.01 for the L2

regularization loss. We use ADAM (Kingma and
Ba, 2014) for optimization with an initial learning
rate of 0.005 and a mini-batch size of 8192. The
embeddings are initialized by sampling uniformly
from [−0.1, 0.1] and we use β̃ = 0.1 for the
implication loss throughout our experiments.

5.1 Restricted Embedding Space

Before incorporating external commonsense knowl-
edge into relation representations, we were curious
how much we lose by restricting the entity-tuple
space to approximately Boolean embeddings. We
evaluate our models on the New York Times dataset
introduced by Riedel et al. (2013). Surprisingly, we
find that the expressiveness of the model does not

suffer from this strong restriction. From Table 1 we
see that restricting the tuple-embedding space seems
to perform slightly better (FS) as opposed to a real-
valued tuple-embedding space (F), suggesting that
this restriction has a regularization effect that im-
proves generalization. We also provide the original
results for model F by Riedel et al. (2013) (denoted
as R13-F) for comparison. Due to a different im-
plementation and optimization procedure, the results
for our model F and R13-F are not identical.

Inspecting the top relations for a sampled dimen-
sion in the embedding space reveals that the rela-
tion space of model FS more closely resembles clus-
ters than that of model F (Table 2). We hypothesize
that this might be caused by approximately Boolean
entity-tuple representations in model FS, resulting in
attribute-like entity-tuple vectors that capture which
relation clusters they belong to.

5.2 Zero-shot Learning
The zero-shot learning experiment performed in
Rocktäschel et al. (2015) leads to an important find-
ing: when injecting implications with right-hand
sides for Freebase relations for which no or very lim-
ited training facts are available, the model should be
able to infer the validity of Freebase facts for those
relations based on rules and correlations between
textual surface patterns.

We inject the same hand-picked relations as used
by Rocktäschel et al. (2015), after removing all
Freebase training facts. The lifted rule injection
(model FSL) reaches a weighted MAP of 0.35,
comparable with 0.38 by the Joint model from
Rocktäschel et al. (2015) (denoted R15-Joint). Note
that for this experiment we initialized the Freebase
relations implied by the rules with negative random
vectors (sampled uniformly from [−7.9,−8.1]). The
reason is that without any negative training facts for
these relations, their components can only go up due
to the implication loss, and we do not want to get
values that are too high before optimization.

Figure 1 shows how the relation extraction perfor-
mance improves when more Freebase relation train-
ing facts are added. It effictively measures how
well the proposed models, matrix factorization (F),
propositionalized rule injection (R15-Joint), and our
model (FSL), can make use of the provided rules
and correlations between textual surface form pat-

1394

Table 2: Top patterns for a randomly sampled dimension in non-restricted and restricted embedding space .

Model F (non-restricted) Model FS (restricted)

nsubj<-represent->dobj rcmod->return->prep->to->pobj
appos->member->prep->of->pobj->team->nn nn<-return->prep->to->pobj
nsubj<-die->dobj nsubj<-return->prep->to->pobj
nsubj<-speak->prep->about->pobj rcmod->leave->dobj
appos->champion->poss nsubj<-quit->dobj

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Fraction of Freebase Training Facts

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

w
M

A
P

Figure 1: Weighted MAP for injecting hand-picked
rules as a function of the fraction of Freebase train-
ing facts. Comparison between model F (lowest, in
blue), R15-Joint (middle, in green) and model FSL
(highest, in red).

terns and increased fractions of Freebase training
facts. Although FSL starts at a lower performance
than R15-Joint when no Freebase training facts are
present, it outperforms R15-Joint and a plain matrix
factorization model by a substantial margin when
provided with more than 7.5% of Freebase train-
ing facts. This indicates that, in addition to being
much faster than R15-Joint, it can make better use
of provided rules and few training facts. We at-
tribute this to the Bayesian personalized ranking loss
instead of the logistic loss used in Rocktäschel et
al. (2015). The former is compatible with our rule-
injection method, but not with the approach of max-
imizing the expectation of propositional rules used
by R15-Joint.

5.3 Injecting Knowledge from WordNet

The main purpose of this work is to be able to
incorporate rules from external resources for aid-

ing relation extraction. We use WordNet hyper-
nyms to generate rules for the NYT dataset. To
this end we iterate over all surface form patterns
in the dataset and attempt to replace words in
the pattern by their hypernyms. If the result-
ing pattern is contained in the dataset, we gen-
erate the corresponding rule. For instance, we
generate a rule appos->diplomat->amod ⇒
appos->official->amod since both patterns
are contained in the NYT dataset and we know from
WordNet that a diplomat is an official. This leads to
427 rules from WordNet that we subsequently anno-
tate manually to obtain 36 high-quality rules. Note
that none of these rules directly imply a Freebase re-
lation. Although the test relations all originate from
Freebase, we still hope to see improvements by tran-
sitive effects, i.e., better surface form representations
that in turn help to predict Freebase facts.

We show results obtained by injecting these
WordNet rules in Table 1 (column FSL). The
weighted MAP measure increases by 2% with
respect to model FS, and 4% compared to our reim-
plementation of the matrix factorization model F.
This demonstrates that imposing a partial ordering
based on implication rules can be used to incorpo-
rate logical commonsense knowledge and increase
the quality of information extraction systems. Note
that our evaluation setting guarantees that only
indirect effects of the rules are measured, i.e., we
do not use any rules directly implying test relations.
This shows that injecting such rules influences
the relation embedding space beyond only the
relations explicitly stated in the rules. For example,
injecting the rule appos<-father->appos
⇒ poss<-parent->appos can contribute
to improved predictions for the test relation
parent/child.

1395

(a) (b)

Figure 2: Visualization of embeddings (columns) for
the relations that appear in the high-quality Word-
Net rules, (a) without and (b) with injection of these
rules. Values range from -1 (orange) via 0 (white) to
1 (purple). Best viewed in color.

5.4 Visualizing Relation Embeddings

We provide a visual inspection of how the structure
of the relation embedding space changes when rules
are imposed. We select all relations involved in the
WordNet rules, and gather them as columns in a sin-
gle matrix, sorted by increasing `1 norm (values in
the 100 dimensions are similarly sorted). Figures 2a
and 2b show the difference between model F (with-
out injected rules) and FSL (with rules). The val-
ues of the embeddings in model FSL are more po-
larized, i.e., we observe stronger negative or posi-
tive components than for model F. Furthermore, FSL
also reveals a clearer difference between the left-
most (mostly negative, more specific) and right-most
(predominantly positive, more general) embeddings
(i.e., a clearer separation between positive and nega-
tive values in the plot), which results from imposing
the order relation in eq. (11) when injecting implica-
tions.

5.5 Efficiency of Lifted Injection of Rules

In order to get an idea of the time efficiency of in-
jecting rules, we measure the time per epoch when
restricting the program execution to a single 2.4GHz
CPU core. We measure on average 6.33s per epoch
without rules (model FS), against 6.76s and 6.97s

when injecting the 36 high-quality WordNet rules
and the unfiltered 427 rules (model FSL), respec-
tively. Increasing the amount of injected rules from
36 to 427 leads to an increase of only 3% in compu-
tation time, even though in our setup all rule losses
are used in every training batch. This confirms the
high efficiency of our lifted rule injection method.

5.6 Asymmetric Character of Implications

In order to demonstrate that injecting implications
conserves their asymmetric nature, we perform the
following experiment. After incorporating high-
quality Wordnet rules rp ⇒ rq into model FSL we
select all of the tuples tp that occur with relation rp
in a training fact 〈rp, tp〉. Matching these with re-
lation rq should result in high values for the scores
r>q tp, if the implication holds. If however the tuples
tq are selected from the training facts 〈rq, tq〉, and
matched with relation rp, the scores r>p tq should
be much lower if the inverse implication does not
hold (in other words, if rq and rp are not equiva-
lent). Table 3 lists the averaged results for 5 example
rules, and the average over all relations in WordNet
rules, both for the case with injected rules (model
FSL), and without rules (model FS). For easier com-
parison, the scores are mapped to the unit interval
via the sigmoid function. This quantity σ(r>t) is
often interpreted as the probability that the corre-
sponding fact holds (Riedel et al., 2013), but be-
cause of the BPR-based training, only differences
between scores play a role here. After injecting
rules, the average scores of facts inferred by these
rules (i.e., column σ(r>q tp) for model FSL) are al-
ways higher than for facts (incorrectly) inferred by
the inverse rules (column σ(r>p tq) for model FSL).
In the fourth example, the inverse rule leads to high
scores as well (on average 0.79, vs. 0.98 for the ac-
tual rule). This is due to the fact that the daily and
newspaper relations are more or less equivalent,
such that the components of rp are not much below
those of rq. For the last example (the ambassador
⇒ diplomat rule), the asymmetry in the implica-
tion is maintained, although the absolute scores are
rather low for these two relations.

The results for model FS reflect how strongly the
implications in either direction are latently present
in the training data. We can only conclude that
model FS manages to capture the similarity be-

1396

rule model FSL model FS
rp ⇒ rq σ(r>q tp) σ(r>p tq) σ(r>q tp) σ(r>p tq)

appos->party->amod ⇒ appos->organization->amod 0.99 0.22 0.70 0.86
poss<-father->appos ⇒ poss<-parent->appos 0.96 0.00 0.72 0.89
appos->prosecutor->nn ⇒ appos->lawyer->nn 0.99 0.01 0.87 0.80
appos->daily->amod ⇒ appos->newspaper->amod 0.98 0.79 0.90 0.86
appos->ambassador->amod ⇒ appos->diplomat->amod 0.31 0.05 0.93 0.84

average over 36 high-quality Wordnet rules 0.95 0.28 0.74 0.70

Table 3: Average of σ(r>q t) over all inferred facts 〈rq, tp〉 for tuples tp from training items for relation rp,
and vice versa, for Wordnet implications rp ⇒ rq, and model FSL (injected rules) vs. model FS (no rules).

tween relations, but not the asymmetric character
of implications. For example, purely based on the
training data, it appears to be more likely that the
parent relation implies the father relation, than
vice versa. This again demonstrates the importance
and added value of injecting external rules capturing
commonsense knowledge.

6 Conclusions

We presented a novel, fast approach for incorporat-
ing first-order implication rules into distributed rep-
resentations of relations. We termed our approach
‘lifted rule injection’, as it avoids the costly ground-
ing of first-order implication rules and is thus inde-
pendent of the size of the domain of entities. By
construction, these rules are satisfied for any ob-
served or unobserved fact. The presented approach
requires a restriction on the entity-tuple embedding
space. However, experiments on a real-world dataset
show that this does not impair the expressiveness of
the learned representations. On the contrary, it ap-
pears to have a beneficial regularization effect.

By incorporating rules generated from WordNet
hypernyms, our model improved over a matrix fac-
torization baseline for knowledge base completion.
Especially for domains where annotation is costly
and only small amounts of training facts are avail-
able, our approach provides a way to leverage exter-
nal knowledge sources for inferring facts.

In future work, we want to extend the proposed
ideas beyond implications towards general first-
order logic rules. We believe that supporting con-
junctions, disjunctions and negations would enable
to debug and improve representation learning based
knowledge base completion. Furthermore, we want
to integrate these ideas into neural methods beyond
matrix factorization approaches.

Acknowledgments

This work was supported by the Research Founda-
tion - Flanders (FWO), Ghent University - iMinds,
Microsoft Research through its PhD Scholarship
Programme, an Allen Distinguished Investigator
Award, and a Marie Curie Career Integration Award.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. 2015. TensorFlow: Large-scale machine
learning on heterogeneous systems. Software avail-
able from tensorflow.org.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of
data, pages 1247–1250. ACM.

Samuel R Bowman, Christopher Potts, and Christopher D
Manning. 2015. Recursive neural networks can learn
logical semantics. In Proceedings of the 3rd Workshop
on Continuous Vector Space Models and their Compo-
sitionality (CVSC).

Rodrigo De Salvo Braz. 2007. Lifted First-order Proba-
bilistic Inference. Ph.D. thesis, Champaign, IL, USA.
AAI3290183.

Kai-Wei Chang, Wen-tau Yih, Bishan Yang, and Christo-
pher Meek. 2014. Typed tensor decomposition of

1397

knowledge bases for relation extraction. In EMNLP,
pages 1568–1579.

William. W. Cohen. 2016. TensorLog: A Differentiable
Deductive Database. ArXiv e-prints, May.

Thomas Demeester, Tim Rocktäschel, and Sebastian
Riedel. 2016. Regularizing relation representations
by first-order implications. In NAACL Workshop on
Automated Knowledge Base Construction (AKBC).

Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris
Dyer, Eduard Hovy, and Noah A Smith. 2014.
Retrofitting word vectors to semantic lexicons. arXiv
preprint arXiv:1411.4166.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. Ppdb: The paraphrase
database. In Annual Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics (HLT-NAACL), pages 758–764.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard
Hovy, and Eric Xing. 2016. Harnessing deep
neural networks with logic rules. arXiv preprint
arXiv:1603.06318.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

German Kruszewski, Denis Paperno, and Marco Baroni.
2015. Deriving boolean structures from distributional
vectors. Transactions of the Association for Computa-
tional Linguistics, 3:375–388.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Arvind Neelakantan, Benjamin Roth, and Andrew Mc-
Callum. 2015. Compositional vector space mod-
els for knowledge base completion. arXiv preprint
arXiv:1504.06662.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2012. Factorizing yago: scalable machine
learning for linked data. In Proceedings of the 21st
international conference on World Wide Web, pages
271–280. ACM.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and
Evgeniy Gabrilovich. 2015. A review of relational
machine learning for knowledge graphs: From multi-
relational link prediction to automated knowledge
graph construction. arXiv preprint arXiv:1503.00759.

David Poole. 2003. First-order probabilistic inference.
In Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 985–991,
San Francisco, CA, USA. Morgan Kaufmann Publish-
ers Inc.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner,
and Lars Schmidt-Thieme. 2009. BPR: Bayesian per-
sonalized ranking from implicit feedback. In Proceed-
ings of the Twenty-Fifth Conference on Uncertainty in

Artificial Intelligence (UAI), pages 452–461, Arling-
ton, Virginia, United States. AUAI Press.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M Marlin. 2013. Relation extraction with
matrix factorization and universal schemas. In An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics (HLT-
NAACL), pages 74–84.

Tim Rocktäschel and Sebastian Riedel. 2016. Learn-
ing knowledge base inference with neural theorem
provers. In NAACL Workshop on Automated Knowl-
edge Base Construction (AKBC).

Tim Rocktäschel, Matko Bosnjak, Sameer Singh, and Se-
bastian Riedel. 2014. Low-dimensional embeddings
of logic. In ACL Workshop on Semantic Parsing.

Tim Rocktäschel, Sameer Singh, and Sebastian Riedel.
2015. Injecting Logical Background Knowledge into
Embeddings for Relation Extraction. In Annual Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics (HLT-NAACL).

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In
Advances in Neural Information Processing Systems
(NIPS).

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Gamon.
2015. Representing text for joint embedding of text
and knowledge bases. In EMNLP.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Ur-
tasun. 2016. Order-embeddings of images and lan-
guage. arXiv preprint, abs/1511.06361.

Patrick Verga and Andrew McCallum. 2016. Row-less
universal schema. In NAACL Workshop on Automated
Knowledge Base Construction (AKBC).

Patrick Verga, David Belanger, Emma Strubell, Ben-
jamin Roth, and Andrew McCallum. 2016. Multilin-
gual relation extraction using compositional universal
schema. In Annual Conference of the North American
Chapter of the Association for Computational Linguis-
tics (HLT-NAACL), pages 886–896. ACL.

William Yang Wang and William W. Cohen. 2016.
Learning first-order logic embeddings via matrix fac-
torization. In Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI
2015), New York, NY, July. AAAI.

William Yang Wang, Kathryn Mazaitis, and William W
Cohen. 2014. Structure learning via parameter learn-
ing. In Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowl-
edge Management, pages 1199–1208. ACM.

Quan Wang, Bin Wang, and Li Guo. 2015. Knowledge
base completion using embeddings and rules. In Pro-

1398

ceedings of the 24th International Conference on Ar-
tificial Intelligence (IJCAI), pages 1859–1865. AAAI
Press.

Zhuoyu Wei, Jun Zhao, Kang Liu, Zhenyu Qi, Zhengya
Sun, and Guanhua Tian. 2015. Large-scale knowl-
edge base completion: Inferring via grounding net-
work sampling over selected instances. In Proceed-
ings of the 24th ACM International on Conference
on Information and Knowledge Management (CIKM),
pages 1331–1340. ACM.

Fei Wu, Jun Song, Yi Yang, Xi Li, Zhongfei Zhang,
and Yueting Zhuang. 2015. Structured embedding
via pairwise relations and long-range interactions in
knowledge base. In AAAI Conference on Artificial In-
telligence, pages 1663–1670.

1399

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1400–1409,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Key-Value Memory Networks for Directly Reading Documents

Alexander H. Miller1 Adam Fisch1 Jesse Dodge1,2 Amir-Hossein Karimi1
Antoine Bordes1 Jason Weston1

1Facebook AI Research, 770 Broadway, New York, NY, USA
2Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, USA

{ahm,afisch,jessedodge,ahkarimi,abordes,jase}@fb.com

Abstract

Directly reading documents and being able to
answer questions from them is an unsolved
challenge. To avoid its inherent difficulty, ques-
tion answering (QA) has been directed towards
using Knowledge Bases (KBs) instead, which
has proven effective. Unfortunately KBs often
suffer from being too restrictive, as the schema
cannot support certain types of answers, and
too sparse, e.g. Wikipedia contains much more
information than Freebase. In this work we
introduce a new method, Key-Value Memory
Networks, that makes reading documents more
viable by utilizing different encodings in the ad-
dressing and output stages of the memory read
operation. To compare using KBs, information
extraction or Wikipedia documents directly in
a single framework we construct an analysis
tool, WIKIMOVIES, a QA dataset that contains
raw text alongside a preprocessed KB, in the
domain of movies. Our method reduces the
gap between all three settings. It also achieves
state-of-the-art results on the existing WIKIQA
benchmark.

1 Introduction

Question answering (QA) has been a long stand-
ing research problem in natural language processing,
with the first systems attempting to answer questions
by directly reading documents (Voorhees and Tice,
2000). The development of large-scale Knowledge
Bases (KBs) such as Freebase (Bollacker et al., 2008)
helped organize information into structured forms,
prompting recent progress to focus on answering
questions by converting them into logical forms that

can be used to query such databases (Berant et al.,
2013; Kwiatkowski et al., 2013; Fader et al., 2014).

Unfortunately, KBs have intrinsic limitations such
as their inevitable incompleteness and fixed schemas
that cannot support all varieties of answers. Since
information extraction (IE) (Craven et al., 2000), in-
tended to fill in missing information in KBs, is neither
accurate nor reliable enough, collections of raw tex-
tual resources and documents such as Wikipedia will
always contain more information. As a result, even if
KBs can be satisfactory for closed-domain problems,
they are unlikely to scale up to answer general ques-
tions on any topic. Starting from this observation,
in this work we study the problem of answering by
directly reading documents.

Retrieving answers directly from text is harder
than from KBs because information is far less struc-
tured, is indirectly and ambiguously expressed, and
is usually scattered across multiple documents. This
explains why using a satisfactory KB—typically only
available in closed domains—is preferred over raw
text. We postulate that before trying to provide an-
swers that are not in KBs, document-based QA sys-
tems should first reach KB-based systems’ perfor-
mance in such closed domains, where clear compari-
son and evaluation is possible. To this end, this paper
introduces WIKIMOVIES, a new analysis tool that
allows for measuring the performance of QA systems
when the knowledge source is switched from a KB
to unstructured documents. WIKIMOVIES contains
∼100k questions in the movie domain, and was de-
signed to be answerable by using either a perfect KB
(based on OMDb1), Wikipedia pages or an imper-

1http://www.omdbapi.com

1400

fect KB obtained through running an engineered IE
pipeline on those pages.

To bridge the gap between using a KB and read-
ing documents directly, we still lack appropriate ma-
chine learning algorithms. In this work we propose
the Key-Value Memory Network (KV-MemNN), a
new neural network architecture that generalizes the
original Memory Network (Sukhbaatar et al., 2015)
and can work with either knowledge source. The
KV-MemNN performs QA by first storing facts in
a key-value structured memory before reasoning on
them in order to predict an answer. The memory
is designed so that the model learns to use keys to
address relevant memories with respect to the ques-
tion, whose corresponding values are subsequently
returned. This structure allows the model to encode
prior knowledge for the considered task and to lever-
age possibly complex transforms between keys and
values, while still being trained using standard back-
propagation via stochastic gradient descent.

Our experiments on WIKIMOVIES indicate that,
thanks to its key-value memory, the KV-MemNN
consistently outperforms the original Memory Net-
work, and reduces the gap between answering from
a human-annotated KB, from an automatically ex-
tracted KB or from directly reading Wikipedia. We
confirm our findings on WIKIQA (Yang et al.,
2015), another Wikipedia-based QA benchmark
where no KB is available, where we demonstrate
that KV-MemNN can reach state-of-the-art results—
surpassing the most recent attention-based neural
network models.

2 Related Work
Early QA systems were based on information re-
trieval and were designed to return snippets of text
containing an answer (Voorhees and Tice, 2000;
Banko et al., 2002), with limitations in terms of ques-
tion complexity and response coverage. The creation
of large-scale KBs (Auer et al., 2007; Bollacker et al.,
2008) have led to the development of a new class of
QA methods based on semantic parsing (Berant et al.,
2013; Kwiatkowski et al., 2013; Fader et al., 2014;
Yih et al., 2015) that can return precise answers to
complicated compositional questions. Due to the
sparsity of KB data, however, the main challenge
shifts from finding answers to developing efficient
information extraction methods to populate KBs auto-

matically (Craven et al., 2000; Carlson et al., 2010)—
not an easy problem.

For this reason, recent initiatives are returning to
the original setting of directly answering from text us-
ing datasets like TRECQA (Wang et al., 2007), which
is based on classical TREC resources (Voorhees et al.,
1999), and WIKIQA (Yang et al., 2015), which is
extracted from Wikipedia. Both benchmarks are or-
ganized around the task of answer sentence selection,
where a system must identify the sentence contain-
ing the correct answer in a collection of documents,
but need not return the actual answer as a KB-based
system would do. Unfortunately, these datasets are
very small (hundreds of examples) and, because of
their answer selection setting, do not offer the option
to directly compare answering from a KB against
answering from pure text. Using similar resources
as the dialog dataset of Dodge et al. (2016), our new
benchmark WIKIMOVIES addresses both deficien-
cies by providing a substantial corpus of question-
answer pairs that can be answered by either using a
KB or a corresponding set of documents.

Even though standard pipeline QA systems like
AskMR (Banko et al., 2002) have been recently re-
visited (Tsai et al., 2015), the best published results
on TRECQA and WIKIQA have been obtained by
either convolutional neural networks (Santos et al.,
2016; Yin and Schütze, 2015; Wang et al., 2016)
or recurrent neural networks (Miao et al., 2015)—
both usually with attention mechanisms inspired by
(Bahdanau et al., 2015). In this work, we introduce
KV-MemNNs, a Memory Network model that oper-
ates a symbolic memory structured as (key, value)
pairs. Such structured memory is not employed in
any existing attention-based neural network architec-
ture for QA. As we will show, it gives the model
greater flexibility for encoding knowledge sources
and helps shrink the gap between directly reading
documents and answering from a KB.

3 Key-Value Memory Networks
The Key-Value Memory Network model is based
on the Memory Network (MemNNs) model (We-
ston et al., 2015; Sukhbaatar et al., 2015) which
has proven useful for a variety of document read-
ing and question answering tasks: for reading chil-
dren’s books and answering questions about them
(Hill et al., 2016), for complex reasoning over sim-

1401

Figure 1: The Key-Value Memory Network model for question answering. See Section 3 for details.

ulated stories (Weston et al., 2016) and for utilizing
KBs to answer questions (Bordes et al., 2015).

Key-value paired memories are a generalization
of the way context (e.g. knowledge bases or docu-
ments to be read) are stored in memory. The lookup
(addressing) stage is based on the key memory while
the reading stage (giving the returned result) uses the
value memory. This gives both (i) greater flexibility
for the practitioner to encode prior knowledge about
their task; and (ii) more effective power in the model
via nontrivial transforms between key and value. The
key should be designed with features to help match
it to the question, while the value should be designed
with features to help match it to the response (an-
swer). An important property of the model is that
the entire model can be trained with key-value trans-
forms while still using standard backpropagation via
stochastic gradient descent.

3.1 Model Description

Our model is based on the end-to-end Memory Net-
work architecture of Sukhbaatar et al. (2015). A
high-level view of both models is as follows: one
defines a memory, which is a possibly very large ar-
ray of slots which can encode both long-term and
short-term context. At test time one is given a query
(e.g. the question in QA tasks), which is used to it-
eratively address and read from the memory (these
iterations are also referred to as “hops”) looking for
relevant information to answer the question. At each
step, the collected information from the memory is
cumulatively added to the original query to build con-
text for the next round. At the last iteration, the final

retrieved context and the most recent query are com-
bined as features to predict a response from a list of
candidates.

Figure 1 illustrates the KV-MemNN model archi-
tecture.

In KV-MemNNs we define the memory slots as
pairs of vectors (k1, v1) . . . , (kM , vM) and denote
the question x. The addressing and reading of the
memory involves three steps:

• Key Hashing: the question can be used to pre-
select a small subset of the possibly large array.
This is done using an inverted index that finds a
subset (kh1 , vh1), . . . , (khN

, vhN
) of memories

of sizeN where the key shares at least one word
with the question with frequency < F = 1000
(to ignore stop words), following Dodge et al.
(2016). More sophisticated retrieval schemes
could be used here, see e.g. Manning et al.
(2008),

• Key Addressing: during addressing, each can-
didate memory is assigned a relevance probabil-
ity by comparing the question to each key:

phi
= Softmax(AΦX(x) ·AΦK(khi

))

where Φ· are feature maps of dimension D, A is
a d×D matrix and Softmax(zi) = ezi/

∑
j e

zj .
We discuss choices of feature map in Sec. 3.2.

• Value Reading: in the final reading step, the
values of the memories are read by taking their
weighted sum using the addressing probabilities,

1402

and the vector o is returned:

o =
∑

i

phi
AΦV (vhi

) .

The memory access process is conducted by the
“controller” neural network using q = AΦX(x) as
the query. After receiving the result o, the query is
updated with q2 = R1(q + o) where R is a d × d
matrix. The memory access is then repeated (specifi-
cally, only the addressing and reading steps, but not
the hashing), using a different matrix Rj on each
hop, j. The key addressing equation is transformed
accordingly to use the updated query:

phi
= Softmax(q>j+1AΦK(khi

)) .

The motivation for this is that new evidence can be
combined into the query to focus on and retrieve more
pertinent information in subsequent accesses. Finally,
after a fixed number H hops, the resulting state of
the controller is used to compute a final prediction
over the possible outputs:

â = argmaxi=1,...,CSoftmax(q>H+1BΦY (yi))

where yi are the possible candidate outputs, e.g. all
the entities in the KB, or all possible candidate an-
swer sentences in the case of a dataset like WIKIQA
(see Sec. 5.2). The d×D matrix B can also be con-
strained to be identical to A. The whole network is
trained end-to-end, and the model learns to perform
the iterative accesses to output the desired target a
by minimizing a standard cross-entropy loss between
â and the correct answer a. Backpropagation and
stochastic gradient descent are thus used to learn the
matrices A,B and R1, . . . , RH .

To obtain the standard End-To-End Memory Net-
work of Sukhbaatar et al. (2015) one can simply set
the key and value to be the same for all memories.
Hashing was not used in that paper, but is important
for computational efficiency for large memory sizes,
as already shown in Dodge et al. (2016). We will now
go on to describe specific applications of key-value
memories for the task of reading KBs or documents.

3.2 Key-Value Memories
There are a variety of ways to employ key-value mem-
ories that can have important effects on overall per-
formance. The ability to encode prior knowledge in

this way is an important component of KV-MemNNs,
and we are free to define ΦX ,ΦY ,ΦK and ΦV for the
query, answer, keys and values respectively. We now
describe several possible variants of ΦK and ΦV that
we tried in our experiments, for simplicity we kept
ΦX and ΦY fixed as bag-of-words representations.

KB Triple Knowledge base entries have a structure
of triple “subject relation object” (see Table 1 for ex-
amples). The representation we consider is simple:
the key is composed of the left-hand side entity (sub-
ject) and the relation, and the value is the right-hand
side entity (object). We double the KB and consider
the reversed relation as well (e.g. we now have two
triples “Blade Runner directed_by Ridley Scott” and
“Ridley Scott !directed_by Blade Runner” where !di-
rected_by is a different entry in the dictionary than
directed_by). Having the entry both ways round is
important for answering different kinds of questions
(“Who directed Blade Runner?” vs. “What did Rid-
ley Scott direct?”). For a standard MemNN that does
not have key-value pairs the whole triple has to be
encoded into the same memory slot.

Sentence Level For representing a document, one
can split it up into sentences, with each memory slot
encoding one sentence. Both the key and the value
encode the entire sentence as a bag-of-words. As
the key and value are the same in this case, this is
identical to a standard MemNN and this approach
has been used in several papers (Weston et al., 2016;
Dodge et al., 2016).

Window Level Documents are split up into win-
dows of W words; in our tasks we only include win-
dows where the center word is an entity. Windows are
represented using bag-of-words. Window represen-
tations for MemNNs have been shown to work well
previously (Hill et al., 2016). However, in Key-Value
MemNNs we encode the key as the entire window,
and the value as only the center word, which is not
possible in the MemNN architecture. This makes
sense because the entire window is more likely to
be pertinent as a match for the question (as the key),
whereas the entity at the center is more pertinent as a
match for the answer (as the value). We will compare
these approaches in our experiments.

Window + Center Encoding Instead of represent-
ing the window as a pure bag-of-words, thus mixing

1403

the window center with the rest of the window, we
can also encode them with different features. Here,
we double the size, D, of the dictionary and encode
the center of the window and the value using the sec-
ond dictionary. This should help the model pick out
the relevance of the window center (more related to
the answer) as compared to the words either side of
it (more related to the question).

Window + Title The title of a document is com-
monly the answer to a question that relates to the
text it contains. For example “What did Harrison
Ford star in?” can be (partially) answered by the
Wikipedia document with the title “Blade Runner”.
For this reason, we also consider a representation
where the key is the word window as before, but
the value is the document title. We also keep all the
standard (window, center) key-value pairs from the
window-level representation as well, thus doubling
the number of memory slots in comparison. To dif-
ferentiate the two keys with different values we add
an extra feature “_window_” or “_title_” to the key,
depending on the value. The “_title_” version also
includes the actual movie title in the key. This rep-
resentation can be combined with center encoding.
Note that this representation is inherently specific to
datasets in which there is an apparent or meaningful
title for each document.

4 The WikiMovies Benchmark
The WIKIMOVIES benchmark consists of question-
answer pairs in the domain of movies. It was built
with the following goals in mind: (i) machine learn-
ing techniques should have ample training examples
for learning; and (ii) one can analyze easily the perfor-
mance of different representations of knowledge and
break down the results by question type. The dataset
can be downloaded from http://fb.ai/babi.

4.1 Knowledge Representations

We construct three forms of knowledge representa-
tion: (i) Doc: raw Wikipedia documents consisting
of the pages of the movies mentioned; (ii) KB: a clas-
sical graph-based KB consisting of entities and rela-
tions created from the Open Movie Database (OMDb)
and MovieLens; and (iii) IE: information extraction
performed on the Wikipedia pages to build a KB
in a similar form as (ii). We take care to construct

Doc: Wikipedia Article for Blade Runner (partially shown)
Blade Runner is a 1982 American neo-noir dystopian science fiction film
directed by Ridley Scott and starring Harrison Ford, Rutger Hauer, Sean
Young, and Edward James Olmos. The screenplay, written by Hampton
Fancher and David Peoples, is a modified film adaptation of the 1968
novel “Do Androids Dream of Electric Sheep?” by Philip K. Dick.
The film depicts a dystopian Los Angeles in November 2019 in which
genetically engineered replicants, which are visually indistinguishable
from adult humans, are manufactured by the powerful Tyrell Corporation
as well as by other “mega-corporations” around the world. Their use
on Earth is banned and replicants are exclusively used for dangerous,
menial, or leisure work on off-world colonies. Replicants who defy the
ban and return to Earth are hunted down and “retired” by special police
operatives known as “Blade Runners”. . . .
KB entries for Blade Runner (subset)
Blade Runner directed_by Ridley Scott
Blade Runner written_by Philip K. Dick, Hampton Fancher
Blade Runner starred_actors Harrison Ford, Sean Young, . . .
Blade Runner release_year 1982
Blade Runner has_tags dystopian, noir, police, androids, . . .
IE entries for Blade Runner (subset)
Blade Runner, Ridley Scott directed dystopian, science fiction, film
Hampton Fancher written Blade Runner
Blade Runner starred Harrison Ford, Rutger Hauer, Sean Young. . .
Blade Runner labelled 1982 neo noir
special police, Blade retired Blade Runner
Blade Runner, special police known Blade
Questions for Blade Runner (subset)
Ridley Scott directed which films?
What year was the movie Blade Runner released?
Who is the writer of the film Blade Runner?
Which films can be described by dystopian?
Which movies was Philip K. Dick the writer of?
Can you describe movie Blade Runner in a few words?

Table 1: WIKIMOVIES: Questions, Doc, KB and IE sources.

QA pairs such that they are all potentially answerable
from either the KB from (ii) or the original Wikipedia
documents from (i) to eliminate data sparsity issues.
However, it should be noted that the advantage of
working from raw documents in real applications is
that data sparsity is less of a concern than for a KB,
while on the other hand the KB has the information
already parsed in a form amenable to manipulation
by machines. This dataset can help analyze what
methods we need to close the gap between all three
settings, and in particular what are the best methods
for reading documents when a KB is not available. A
sample of the dataset is shown in Table 1.

Doc We selected a set of Wikipedia articles about
movies by identifying a set of movies from OMDb2

that had an associated article by title match. We keep
the title and the first section (before the contents box)
for each article. This gives∼17k documents (movies)
which comprise the set of documents our models will
read from in order to answer questions.

2
http://beforethecode.com/projects/omdb/download.aspx

1404

KB Our set of movies were also matched to the
MovieLens dataset3. We built a KB using OMDb
and MovieLens metadata with entries for each movie
and nine different relation types: director, writer, ac-
tor, release year, language, genre, tags, IMDb rating
and IMDb votes, with ∼10k related actors, ∼6k di-
rectors and∼43k entities in total. The KB is stored as
triples; see Table 1 for examples. IMDb ratings and
votes are originally real-valued but are binned and
converted to text (“unheard of”, “unknown”, “well
known”, “highly watched”, “famous”). We finally
only retain KB triples where the entities also appear
in the Wikipedia articles4 to try to guarantee that all
QA pairs will be equally answerable by either the
KB or Wikipedia document sources.

IE As an alternative to directly reading documents,
we explore leveraging information extraction tech-
niques to transform documents into a KB format.
An IE-KB representation has attractive properties
such as more precise and compact expressions of
facts and logical key-value pairings based on subject-
verb-object groupings. This can come at the cost of
lower recall due to malformed or completely missing
triplets. For IE we use standard open-source soft-
ware followed by some task-specific engineering to
improve the results. We first employ coreference res-
olution via the Stanford NLP Toolkit (Manning et al.,
2014) to reduce ambiguity by replacing pronominal
(“he”, “it”) and nominal (“the film”) references with
their representative entities. Next we use the SENNA
semantic role labeling tool (Collobert et al., 2011) to
uncover the grammatical structure of each sentence
and pair verbs with their arguments. Each triplet
is cleaned of words that are not recognized entities,
and lemmatization is done to collapse different inflec-
tions of important task-specific verbs to one form (e.g.
stars, starring, star→ starred). Finally, we append
the movie title to each triple similar to the “Window
+ Title” representation of Sec. 3.2, which improved
results.

4.2 Question-Answer Pairs

Within the dataset’s more than 100,000 question-
answer pairs, we distinguish 13 classes of question

3
http://grouplens.org/datasets/movielens/

4The dataset also includes the slightly larger version without
this constraint.

Method KB IE Doc
(Bordes et al., 2014) QA system 93.5 56.5 N/A
Supervised Embeddings 54.4 54.4 54.4
Memory Network 78.5 63.4 69.9
Key-Value Memory Network 93.9 68.3 76.2

Table 2: Test results (% hits@1) on WIKIMOVIES, comparing

human-annotated KB (KB), information extraction-based KB

(IE), and directly reading Wikipedia documents (Doc).

Memory Representation Doc
Sentence-level 52.4
Window-level 66.8
Window-level + Title 74.1
Window-level + Center Encoding + Title 76.9

Table 3: Development set performance (% hits@1) with differ-

ent document memory representations for KV-MemNNs.

corresponding to different kinds of edges in our KB.
They range in scope from specific—such as actor to
movie: “What movies did Harrison Ford star in?” and
movie to actors: “Who starred in Blade Runner?”—to
more general, such as tag to movie: “Which films can
be described by dystopian?”; see Table 4 for the full
list. For some question there can be multiple correct
answers.

Using SimpleQuestions (Bordes et al., 2015), an
existing open-domain question answering dataset
based on Freebase, we identified the subset of ques-
tions posed by human annotators that covered our
question types. We created our question set by sub-
stituting the entities in those questions with entities
from all of our KB triples. For example, if the orig-
inal question written by an annotator was “What
movies did Harrison Ford star in?”, we created a
pattern “What movies did [@actor] star in?”, which
we substitute for any other actors in our set, and re-
peat this for all annotations. We split the questions
into disjoint training, development and test sets with
∼96k, 10k and 10k examples, respectively. The same
question (even worded differently) cannot appear in
both train and test sets. Note that this is much larger
than most existing datasets; for example, the WIK-
IQA dataset (Yang et al., 2015) for which we also
conduct experiments in Sec. 5.2 has only ∼1000
training pairs.

1405

5 Experiments
This section describes our experiments on WIKI-
MOVIES and WIKIQA.

5.1 WikiMovies

We conducted experiments on the WIKI-
MOVIES dataset described in Sec. 4. Our
main goal is to compare the performance of KB, IE
and Wikipedia (Doc) sources when trying varying
learning methods. We compare four approaches: (i)
the QA system of Bordes et al. (2014) that performs
well on existing datasets WebQuestions (Berant et al.,
2013) and SimpleQuestions (Bordes et al., 2015) that
use KBs only; (ii) supervised embeddings that do not
make use of a KB at all but learn question-to-answer
embeddings directly and hence act as a sanity check
(Dodge et al., 2016); (iii) Memory Networks; and
(iv) Key-Value Memory Networks. Performance is
reported using the accuracy of the top hit (single
answer) over all possible answers (all entities), i.e.
the hits@1 metric measured in percent. In all cases
hyperparameters are optimized on the development
set, including the memory representations of Sec.
3.2 for MemNNs and KV-MemNNs. As MemNNs
do not support key-value pairs, we concatenate key
and value together when they differ instead.

The main results are given in Table 2. The QA
system of Bordes et al. (2014) outperforms Super-
vised Embeddings and Memory Networks for KB
and IE-based KB representations, but is designed
to work with a KB, not with documents (hence the
N/A in that column). However, Key-Value Memory
Networks outperform all other methods on all three
data source types. Reading from Wikipedia docu-
ments directly (Doc) outperforms an IE-based KB
(IE), which is an encouraging result towards auto-
mated machine reading though a gap to a human-
annotated KB still remains (93.9 vs. 76.2). The
best memory representation for directly reading doc-
uments uses “Window-level + Center Encoding +
Title” (W = 7 andH = 2); see Table 3 for a compar-
ison of results for different representation types. Both
center encoding and title features help the window-
level representation, while sentence-level is inferior.

QA Breakdown A breakdown by question type
comparing the different data sources for KV-
MemNNs is given in Table 4. IE loses out especially

Question Type KB IE Doc
Writer to Movie 97 72 91
Tag to Movie 85 35 49
Movie to Year 95 75 89
Movie to Writer 95 61 64
Movie to Tags 94 47 48
Movie to Language 96 62 84
Movie to IMDb Votes 92 92 92
Movie to IMDb Rating 94 75 92
Movie to Genre 97 84 86
Movie to Director 93 76 79
Movie to Actors 91 64 64
Director to Movie 90 78 91
Actor to Movie 93 66 83

Table 4: Breakdown of test results (% hits@1) on WIKI-

MOVIES for Key-Value Memory Networks using different knowl-

edge representations.

Knowledge Representation KV-MemNN
KB 93.9
One Template Sentence 82.9
All Templates Sentences 80.0
One Template + Coreference 76.0
One Template + Conjunctions 74.0
All Templates + Conj. + Coref. 72.5
Wikipedia Documents 76.2

Table 5: Analysis of test set results (% hits@1) for KB vs.

Synthetic Docs on WIKIMOVIES.

to Doc (and KB) on Writer, Director and Actor to
Movie, perhaps because coreference is difficult in
these cases – although it has other losses elsewhere
too. Note that only 56% of subject-object pairs in
IE match the triples in the original KB, so losses are
expected. Doc loses out to KB particularly on Tag to
Movie, Movie to Tags, Movie to Writer and Movie to
Actors. Tag questions are hard because they can ref-
erence more or less any word in the entire Wikipedia
document; see Table 1. Movie to Writer/Actor are
hard because there is likely only one or a few refer-
ences to the answer across all documents, whereas
for Writer/Actor to Movie there are more possible
answers to find.

KB vs. Synthetic Document Analysis To further
understand the difference between using a KB versus
reading documents directly, we conducted an exper-
iment where we constructed synthetic documents
using the KB. For a given movie, we use a simple
grammar to construct a synthetic “Wikipedia” doc-

1406

Method MAP MRR
Word Cnt 0.4891 0.4924
Wgt Word Cnt 0.5099 0.5132
2-gram CNN (Yang et al., 2015) 0.6520 0.6652
AP-CNN (Santos et al., 2016) 0.6886 0.6957
Attentive LSTM (Miao et al., 2015) 0.6886 0.7069
Attentive CNN (Yin and Schütze, 2015) 0.6921 0.7108
L.D.C. (Wang et al., 2016) 0.7058 0.7226
Memory Network 0.5170 0.5236
Key-Value Memory Network 0.7069 0.7265

Table 6: Test results on WikiQA.

ument based on the KB triples: for each relation
type we have a set of template phrases (100 in to-
tal) used to generate the fact, e.g. “Blade Runner
came out in 1982” for the entry BLADE RUNNER

RELEASE_YEAR 1982. We can then parameterize
the complexity of our synthetic documents: (i) using
one template, or all of them; (ii) using conjunctions
to combine facts into single sentences or not; and
(iii) using coreference between sentences where we
replace the movie name with “it”.5 The purpose of
this experiment is to find which aspects are responsi-
ble for the gap in performance to a KB. The results
are given in Table 5. They indicate that some of the
loss (93.9% for KB to 82.9% for One Template Sen-
tence) in performance is due directly to representing
in sentence form, making the subject, relation and
object harder to extract. Moving to a larger number
of templates does not deteriorate performance much
(80%). The remaining performance drop seems to
be split roughly equally between conjunctions (74%)
and coreference (76%). The hardest synthetic dataset
combines these (All Templates + Conj. + Coref.)
and is actually harder than using the real Wikipedia
documents (72.5% vs. 76.2%). This is possibly be-
cause the amount of conjunctions and coreferences
we make are artificially too high (50% and 80% of
the time, respectively).

5.2 WikiQA

WIKIQA (Yang et al., 2015) is an existing dataset
for answer sentence selection using Wikipedia as
the knowledge source. The task is, given a ques-
tion, to select the sentence coming from a Wikipedia
document that best answers the question, where per-
formance is measured using mean average preci-

5This data is also part of the WIKIMOVIES benchmark.

sion (MAP) and mean reciprocal rank (MRR) of the
ranked set of answers. The dataset uses a pre-built
information retrieval step and hence provides a fixed
set of candidate sentences per question, so systems
do not have to consider ranking all of Wikipedia.
In contrast to WIKIMOVIES, the training set size
is small (∼1000 examples) while the topic is much
more broad (all of Wikipedia, rather than just movies)
and the questions can only be answered by reading
the documents, so no comparison to the use of KBs
can be performed. However, a wide range of methods
have already been tried on WIKIQA, thus providing a
useful benchmark to test if the same results found on
WIKIMOVIES carry across to WIKIQA, in particular
the performance of Key-Value Memory Networks.

Due to the size of the training set, following many
other works (Yang et al., 2015; Santos et al., 2016;
Miao et al., 2015) we pre-trained the word vectors
(matrices A and B which are constrained to be iden-
tical) before training KV-MemNNs. We employed
Supervised Embeddings (Dodge et al., 2016) for that
goal, training on all of Wikipedia while treating the
input as a random sentence and the target as the subse-
quent sentence. We then trained KV-MemNNs with
dropout regularization: we sample words from the
question, memory representations and the answers,
choosing the dropout rate using the development set.
Finally, again following other successful methods
(Yin and Schütze, 2015), we combine our approach
with exact matching word features between question
and answers. Key hashing was not used as candidates
were already pre-selected. To represent the memo-
ries, we used the Window-Level representation (the
best choice on the dev set was W = 7) as the key
and the whole sentence as the value, as the value
should match the answer which in this case is a sen-
tence. Additionally, in the representation all numbers
in the text and the phrase “how many” in the question
were replaced with the feature “_number_”. The best
choice of hops was also H = 2 for KV-MemNNs.

The results are given in Table 6. Key-Value Mem-
ory Networks outperform a large set of other methods,
although the results of the L.D.C. method of (Wang
et al., 2016) are very similar. Memory Networks,
which cannot easily pair windows to sentences, per-
form much worse, highlighting the importance of
key-value memories.

1407

6 Conclusion
We studied the problem of directly reading docu-
ments in order to answer questions, concentrating
our analysis on the gap between such direct methods
and using human-annotated or automatically con-
structed KBs. We presented a new model, Key-Value
Memory Networks, which helps bridge this gap, out-
performing several other methods across two datasets,
WIKIMOVIES and WIKIQA. However, some gap in
performance still remains. WIKIMOVIES serves as
an analysis tool to shed some light on the causes.
Future work should try to close this gap further.

Key-Value Memory Networks are versatile models
for reading documents or KBs and answering ques-
tions about them—allowing to encode prior knowl-
edge about the task at hand in the key and value
memories. These models could be applied to storing
and reading memories for other tasks as well, and
future work should try them in other domains, such
as in a full dialog setting.

References

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyga-
niak, R., and Ives, Z. (2007). Dbpedia: A nucleus
for a web of open data. In Semantic Web Confer-
ence, 2007.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neu-
ral machine translation by jointly learning to align
and translate. In ICLR, 2015.

Banko, M., Brill, E., Dumais, S., and Lin, J. (2002).
Askmsr: Question answering using the worldwide
web. In AAAI Spring Symposium on Mining An-
swers from Texts and Knowledge Bases, 2002.

Berant, J., Chou, A., Frostig, R., and Liang, P.
(2013). Semantic parsing on freebase from
question-answer pairs. In EMNLP, 2013.

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and
Taylor, J. (2008). Freebase: a collaboratively cre-
ated graph database for structuring human knowl-
edge. In ACM SIGMOD International Conference
on Management of Data, 2008.

Bordes, A., Chopra, S., and Weston, J. (2014). Ques-
tion answering with subgraph embeddings. In
EMNLP, 2014.

Bordes, A., Usunier, N., Chopra, S., and We-
ston, J. (2015). Large-scale simple question an-

swering with memory networks. arXiv preprint
arXiv:1506.02075.

Carlson, A., Betteridge, J., Kisiel, B., Settles, B.,
Hruschka Jr, E. R., and Mitchell, T. M. (2010).
Toward an architecture for never-ending language
learning. In AAAI Conference on Artificial Intelli-
gence, 2010.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natu-
ral language processing (almost) from scratch. J.
Mach. Learn. Res., 12, 2493–2537.

Craven, M., DiPasquo, D., Freitag, D., McCallum,
A., Mitchell, T., Nigam, K., and Slattery, S. (2000).
Learning to construct knowledge bases from the
world wide web. Artificial intelligence, 118, 69–
113.

Dodge, J., Gane, A., Zhang, X., Bordes, A., Chopra,
S., Miller, A., Szlam, A., and Weston, J. (2016).
Evaluating prerequisite qualities for learning end-
to-end dialog systems. In ICLR, 2016.

Fader, A., Zettlemoyer, L., and Etzioni, O. (2014).
Open question answering over curated and ex-
tracted knowledge bases. In KDD, 2014.

Hill, F., Bordes, A., Chopra, S., and Weston, J.
(2016). The goldilocks principle: Reading chil-
dren’s books with explicit memory representations.
In ICLR, 2016.

Kwiatkowski, T., Choi, E., Artzi, Y., and Zettlemoyer,
L. (2013). Scaling semantic parsers with on-the-fly
ontology matching. In EMNLP, 2013.

Manning, C. D., Raghavan, P., and Schütze, H.
(2008). Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J.,
Bethard, S. J., and McClosky, D. (2014). The stan-
ford corenlp natural language processing toolkit.
In ACL: System Demonstrations, 2014.

Miao, Y., Yu, L., and Blunsom, P. (2015). Neural
variational inference for text processing. arXiv
preprint arXiv:1511.06038.

Santos, C. d., Tan, M., Xiang, B., and Zhou, B.
(2016). Attentive pooling networks. arXiv preprint
arXiv:1602.03609.

1408

Sukhbaatar, S., Szlam, A., Weston, J., and Fergus, R.
(2015). End-to-end memory networks. In NIPS,
2015.

Tsai, C., Yih, W.-t., and Burges, C. (2015). Web-
based question answering: Revisiting askmsr.
Technical report, Technical Report MSR-TR-2015-
20, Microsoft Research.

Voorhees, E. M. et al. (1999). The trec-8 question
answering track report. In Trec, 1999.

Voorhees, E. M. and Tice, D. M. (2000). Building
a question answering test collection. In ACM SI-
GIR Conference on Research and Development in
Information Retrieval, 2000.

Wang, M., Smith, N. A., and Mitamura, T. (2007).
What is the jeopardy model? a quasi-synchronous
grammar for qa. In EMNLP-CoNLL, 2007.

Wang, Z., Mi, H., and Ittycheriah, A. (2016).
Sentence similarity learning by lexical decom-
position and composition. arXiv preprint
arXiv:1602.07019.

Weston, J., Chopra, S., and Bordes, A. (2015). Mem-
ory networks. In ICLR, 2015.

Weston, J., Bordes, A., Chopra, S., and Mikolov, T.
(2016). Towards ai-complete question answering:
a set of prerequisite toy tasks. In ICLR, 2016.

Yang, Y., Yih, W.-t., and Meek, C. (2015). Wik-
iqa: A challenge dataset for open-domain question
answering. In EMNLP, 2015.

Yih, W.-t., Chang, M.-W., He, X., and Gao, J. (2015).
Semantic parsing via staged query graph genera-
tion: Question answering with knowledge base. In
ACL, 2015.

Yin, W. and Schütze, H. (2015). Convolutional neural
network for paraphrase identification. In NACL:
Human Language Technologies, 2015.

1409

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1410–1420,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Analyzing Framing through the Casts of Characters in the News

Dallas Card1 Justin H. Gross2 Amber E. Boydstun3 Noah A. Smith4

1School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2Department of Political Science, University of Massachusetts, Amherst, MA 01003, USA

3Department of Political Science, University of California, Davis, CA 95616, USA
4Computer Science & Engineering, University of Washington, WA 98195, USA

dcard@cmu.edu aboydstun@ucdavis.edu jhgross@polsci.umass.edu
nasmith@cs.washington.edu

Abstract

We present an unsupervised model for the
discovery and clustering of latent “personas”
(characterizations of entities). Our model
simultaneously clusters documents featuring
similar collections of personas. We evalu-
ate this model on a collection of news arti-
cles about immigration, showing that personas
help predict the coarse-grained framing anno-
tations in the Media Frames Corpus. We also
introduce automated model selection as a fair
and robust form of feature evaluation.

1 Introduction

Social science tells us that communication almost
inescapably involves framing—choosing “a few el-
ements of perceived reality and assembling a nar-
rative that highlights connections among them to
promote a particular interpretation” (Entman, 2007).
Memorable examples include loaded phrases (death
tax, war on terror), but the literature attests a much
wider range of linguistic means toward this end (Pan
and Kosicki, 1993; Greene and Resnik, 2009; Choi
et al., 2012; Baumer et al., 2015).

Framing is associated with several phenomena to
which NLP has been applied, including ideology
(Lin et al., 2006; Hardisty et al., 2010; Iyyer et al.,
2014), sentiment (Pang and Lee, 2008; Feldman,
2013), and stance (Walker et al., 2012; Hasan and
Ng, 2013). Although such author attributes are inter-
esting, framing scholarship is concerned with persis-
tent patterns of representation of particular issues—
without necessarily tying these to the states or inten-
tions of authors—and the effects that such patterns

may have on public opinion and policy. We also note
that NLP has often been used in large-scale stud-
ies of news and its relation to other social phenom-
ena (Leskovec et al., 2009; Gentzkow and Shapiro,
2010; Smith et al., 2013; Niculae et al., 2015).

Can framing be automatically recognized? If so,
social-scientific studies of framing will be enabled
by new measurements, and new applications might
bring framing effects to the consciousness of every-
day readers. Several recent studies have begun to
explore unsupervised framing analysis of political
text using autoregressive and hierarchical topic mod-
els (Nguyen et al., 2013; Nguyen et al., 2015; Tsur
et al., 2015), but most of these conceptualize fram-
ing along a single dimension. Rather than trying to
place individual articles on a continuum from lib-
eral to conservative or positive to negative, we are
interested in discovering broad-based patterns in the
ways in which the media communicate about issues.

Here, our focus is on the narratives found in news
stories, specifically the participants in those stories.
Insofar as journalists make use of archetypal narra-
tives (e.g., the struggle of an individual against a
more powerful adversary), we expect to see recur-
ring representations of characters in these narratives
(Schneider and Ingram, 1993; Van Gorp, 2010).
A classic example is the contrast between “wor-
thy” and “unworthy” victims (Herman and Chom-
sky, 1988). More recently, Glenn Greenwald has
pointed out how he was repeatedly characterized as
an activist or blogger, rather than a journalist during
his reporting on the NSA (Greenwald, 2014).

Our model builds on the “Dirichlet persona
model” (DPM) introduced by Bamman et al. (2013)

1410

for the unsupervised discovery of what they called
“personas” in short film summaries (e.g., the “dark
hero”). As in the DPM, we operationalize per-
sonas as mixture of textually-expressed characteris-
tics: what they do, what is done to them, and their
descriptive attributes. We begin by providing a de-
scription of our full model, after which we highlight
the differences from the DPM.

This paper’s main contributions are:

• We strengthen the DPM’s assumptions about
the combinations of personas found in docu-
ments, applying a Dirichlet process prior to in-
fer patterns of coocurrence (§3). The result is
a clustering of documents based on the collec-
tions of personas they use, discovered simulta-
neously with those personas.
• Going beyond named characters, we allow

Bamman-style personas to account for entities
like institutions, objects, and concepts (§5).
• We find that our model produces interpretable

clusters that provide insight into our corpus of
immigration news articles (§6).
• We propose a new kind of evaluation based

on Bayesian optimization. Given a supervised
learning problem, we treat the inclusion of a
candidate feature set (here, personas) as a hy-
perparameter to be optimized alongside other
hyperparameters (§7).
• In the case of U.S. news stories about immigra-

tion, we find that personas are, in many cases,
helpful for automatically inferring the coarse-
grained framing and tone employed in a piece
of text, as defined in the Media Frames Corpus
(Card et al., 2015) (§7).

2 Model Description

The plate diagram for the new model is shown in
Figure 1 (right), with the original DPM (Bamman et
al., 2013) shown on the left.

As evidence, the model considers tuples
〈w, r, e, i〉, where w is a word token and r is the
category of syntactic relation1 it bears to an entity
with index e mentioned in document with index i.
The model’s generative story explains this evidence

1We adopt the terminology from Bamman et al. (2013) of
“agent”, “patient”, and “attribute”, even though these categories
of relations are defined in terms of syntactic dependences.

w

z r

p

!

"

#

$

s

%

&

'

T

E

D
∞

H

w

z r

p

!

"

#

$

s

T

E

D

G &

H

w

z r

p

!

"

#

$

(

'

T

E

D

Figure 1: Plate diagrams for the DPM (left), and for the
new model (right).

as follows:

1. Let there be K topics as in LDA (Blei et al.,
2003). Each topic φk ∼ Dir(γ) is a multino-
mial over the V words in the vocabulary, drawn
from a Dirichlet parameterized by γ.

2. For each of P personas p, and for each syn-
tactic relation type r, define a multinomial ψp,r

over the K topics, each drawn from a Dirichlet
parameterized by β.

3. Assume an infinite set of distributions over per-
sonas drawn from a base distribution H . Each
of these θj ∼ Dir(α) is a multinomial over
the P personas, with an associated probabil-
ity of being selected πj , drawn from the stick-
breaking process with hyperparameter λ.

4. For each document i:

(a) Draw a cluster assignment si ∼ π,
with corresponding multinomial distribu-
tion over personas θsi .

(b) For each entity e participating in i:

i. Draw e’s persona pe ∼ θsi .
ii. For every 〈r, w〉 tuple associated with
e in i, draw z ∼ ψpe,r then w ∼ φz .

The DPM (Figure 1, left) has a similar generative
story, except that each document has a unique distri-
bution over personas. As such, step 4(a) is replaced
with a draw from a symmetric Dirichlet distribution
θi ∼ Dir(α).

1411

3 Clustering Stories

The DPM assumes that each document has a unique
distribution (θi) from which its personas are drawn.
However, for entities mentioned in news articles
(as well as for the dramatis personae of films), we
would expect certain types of personas to occur to-
gether frequently, such as articles about lawmak-
ers and laws. Thus we would like to cluster doc-
uments based on their “casts” of personas. To do
this, we have added a Dirichlet process (DP) prior
on the document-specific distribution over personas
(step 3), which allows the number of clusters to
adapt to the size and complexity of the corpus (An-
toniak, 1974; Escobar and West, 1994).

Although the model admits an unbounded num-
ber of distributions over personas, the properties of
DPs are such that the number used by D documents
will tend to be much less than D. As a result, infer-
ence under this model provides topics φ (distribu-
tions over words) interpretable as textual descriptors
of entities, personas ψ (distributions over reusable
topics), and clusters of articles s with associated dis-
tributions over personas θ.

Following Bamman et al. (2013), we perform in-
ference using collapsed Gibbs sampling, collapsing
out the distributions over words (φ), topics (ψ), and
personas (θ), as well as π. On each iteration, we
first sample a cluster for each document, followed
by a persona for each entity, followed by a topic for
each tuple. Because we assume a conjugate base
measure, sampling clusters can be done efficiently
using the Chinese restaurant process (Aldous, 1985)
for story types, personas, and topics, with slice sam-
pling for hyperparameters (α, β, γ, λ). Because such
algorithms are well known to NLP readers, we have
relegated details to the supplementary material.

During sampling, we discard samples from the
first 10,000 iterations, and collect one sample from
every tenth iteration for following 1,000 iterations.
We sample hyperparameters every 20 iterations for
the first 500 iterations, and every 100 thereafter.

4 Dataset

The Media Frames Corpus (MFC; Card et al., 2015)
consists of annotations for approximately 4,200 ar-
ticles about immigration taken from 13 U.S. news-
papers over the years 1980–2012. The annotations

for these articles are in terms of a set of 15 general-
purpose “framing dimensions” (such as Politics and
Legality), developed to be broadly applicable to a
variety of issues, and to be recognizable in text (by
trained annotators). Each article has been annotated
with a “primary frame” (the overall dominant as-
pect of immigration being emphasized), as well as
an overall “tone” (pro, neutral, or anti), which is the
extent to which a pro-immigration advocate would
like to see the article in print, without implying any
any stance taken by the author.2 The MFC contains
at least two independent annotations for each article;
agreement on the primary frame and tone was estab-
lished through discussion in cases of initial disagree-
ment. A complete list of these framing dimensions
is given in the supplementary material.

In order to train our model on a larger collec-
tion of articles, we use the original corpus of articles
from which the annotated articles in the MFC were
drawn. This produces a corpus of approximately
37,000 articles about immigration; we train the per-
sona model on this larger dataset, only using the
smaller set for evaluation on a secondary task. Note
that the MFC annotations are not used by our model;
rather, we hypothesize that the personas it discovers
may serve as features to help predict framing—this
serves as one of our evaluations (§7).

5 Identifying Entities

The original focus of the DPM was on named char-
acters in movies, which could be identified using
named entity recognition and pronominal corefer-
ence (Bamman et al., 2013), or name matching for
pre-defined characters (Bamman et al., 2014). Here,
we are interested in applying our model to entities
about which we assume no specific prior knowledge.

In order to include a broader set of entities, we
preprocess the corpus and apply a series of filters.
First, we obtain lemmas, part-of-speech tags, de-
pendencies, coreference resolution, and named enti-
ties from the Stanford CoreNLP pipeline (Manning
et al., 2014), as well as supersense tags from the
AMALGrAM tagger (Schneider and Smith, 2015).
For each document, we consider all tokens with a

2The MFC also contains more fine-grained annotations of
spans of text which cue each of the framing dimensions, but we
do not make use of those here.

1412

NN* or PRP part of speech as possible entities,
partially clustered by coreference. We then merge
all clusters (including singletons) within each docu-
ment that share a non-pronomial mention word.

Next, we exclude all clusters lacking at least one
mention classified as a person, organization, lo-
cation, group, object, artifact, process, or act (by
CoreNLP or AMALGrAM). From these, we extract
〈w, r, e, i〉 tuples using extraction patterns lightly
adapted from (Bamman et al., 2013). (The complete
set of patterns are given in the supplementary mate-
rial.) To further restrict the set of entities to those
that have sufficient evidence, we construct a vocab-
ulary for each of the three relations, and exclude
words that appear less than three times in the corre-
sponding vocabulary.3 We then apply one last filter
to exclude entities that have fewer than three qual-
ifying tuples across all mentions. From the dataset
described in §4, we extract 128,655 entities, men-
tioned using 11,262 different mention words, with
575,910 tuples and 11,104 distinct 〈r, w〉 pairs.

6 Exploratory Analysis

Here we discuss our model, as estimated on the cor-
pus of 37,000 articles discussed in §4 with 50 per-
sonas and 100 topics; these values were not tuned.
A cursory examination of topics shows that each
tends to be a group of either verbs or attributes. Per-
sonas, on the other hand, blend topics to include all
three relation types. The estimated Dirichlet hyper-
parameters are all � 1, giving sparse (and hence
easily scanned) distributions over personas, topics,
and words.

Table 1 shows all 50 personas. For each p, we
show (i) the mention words most strongly associated
with p, and (ii) 〈r, w〉 pairs associated with the per-
sona. (To save space, “I” denotes immigrant.) Re-
call that, like the Dirichlet persona model, our model
says nothing about the mention words; they are not
included as evidence during inference.4 Nonethe-
less, each persona is strongly associated with a

3We also exclude the lemma “say” as a stopword, as it is the
most common verb in the corpus by an order of magnitude

4We did explore adding mention words as evidence, but they
tended to dominate the relation tuples. Because our interest is
in a richer set of framing devices than simply the words used to
refer to people (and other entities), we consider here only the
model based on the surrounding context.

sparse handful of mention words, and we find that
labeling each persona by its most strongly associ-
ated mention word (excluding immigrant) is often
sensible (these are capitalized in Table 1, though in
some cases the relation words differentiate strongly
(e.g., the group personas, IDs 17 and 18 in Table 1).

The model finds expected participants (such as
workers, political candidates, and refugees), but also
more conceptual entities, such as laws, bills (IDs
3, 37), and the U.S.-Mexican border (ID 5), which
looms large in the immigration debate. Some in-
teresting distinctions are discovered, such as two of
the worker personas, one high-skilled and residing
legally (ID 48), the other illegal (ID 49).

Using the original publication dates of the arti-
cles, we can estimate the frequency of appearance
of each persona within immigration coverage by
summing the posterior distribution over personas for
each entity mention, and plotting these frequencies
across time. (Note that time metadata is not given
to the model as evidence.) We find immediately that
personas can signal events. Figure 2 shows these
temporal trajectories for a small, selected set of per-
sonas. Although bills and laws are conceptually sim-
ilar, and have similar trajectories from 1980 to 2005,
they are strongly divergent in 2006 and 2010. These
are particularly notable years for immigration pol-
icy, corresponding to the failed Comprehensive Im-
migration Reform Act of 2006 (Senate bill S.2611)
and Arizona’s controversial anti-immigration laws
from 2010.5 Refugees, by contrast, show a marked
spike around the year 2000. Inspection showed
this persona to be strongly tied to the case of Elián
González, which received a great deal of media at-
tention in that year.

The main advantage of the extended model over
the DPM is being able to cluster articles by “casts.”
During sampling, thousands of clusters are created
(and mostly destroyed). Ultimately, our inference
procedure settled on approximately 110 clusters, and
we consider two examples. Figure 3 shows the tem-
poral trajectories of the two clusters with the greatest
representation of the refugee persona. Both show the
characteristic spike around the year 2000. The top
personas for these two clusters are given in Table

5Other notable events which appear to be represented in-
clude the Illegal Immigration Reform and Immigrant Respon-
sibility Act of 1996, and the Secure Fence Act of 2006.

1413

ID Mention words Relations
1 AGENT police official authority federalm tellp finda arresta localm tella
2 ASYLUM crime refugee asylum seeker politicalm seekp grantp commitp seriousm denyp

3 BILL law immigration reform measure comprehensivem passa passp makea havea supportp
4 BOAT van crime document criminalm otherm havep usea usep bea
5 BORDER border patrol border agent mexicanm crossp securep southernm u.s.-mexicom closep
6 BUSH official mcnary people I havea tella wanta tellp formerm calla
7 CANDIDATE bush romney leader republicanm presidentialm democraticm havea calla supporta
8 CARD document visa status greenm newm getp temporarym fakem permanentm
9 CARD visa state document consularm federalm havea mexicanm receivep getp

10 COMPANY country I state nation havea regionalm globalm ruralm takea requirep
11 COUNTRY people I citizen united states americanm otherm enterp havea leavep centralm
12 COUPLE marriage people I class gaym bilingualm same-sexm havea primem seasonalm
13 COURT lawsuit suit ruling federalm filep rulea civilm filea havea
14 EMPLOYER company people business hirea havea manym requirep employa localm
15 FENCE amendment law wall realm 14thm virtualm buildp bea havea
16 GOVERNMENT court judge official federalm localm havea rulea askp otherm
17 GROUP deportation attack country terroristm civilm facep armedm islamicm muslimm

18 GROUP I voter people bush hispanicm immigrantm localm manym wanta havea
19 I ALIEN immigration people worker illegalm allowp havea legalm undocumentedm livea
20 I ALIEN people criminal inmate illegalm criminalm deportp immigrantm detainp releasep
21 I ALIEN worker immigration employer illegalm hirep undocumentedm employp legalm hirea
22 I ALIEN worker people immigration illegalm arrestp undocumentedm arresta chargep transportp
23 I CHILD worker people student immigrantm foreign-bornm havea manym comea newm

24 I GROUP people population business newm immigrantm otherm manym asianm havea
25 I GROUP program center city newm havea firstm bea otherm makea
26 I IMMIGRATION alien worker illegalm legalm hirep havea allowp undocumentedm

27 I IMMIGRATION alien worker people illegalm legalm havea bea comea immigrantm
28 I JEWS refugee israel child sovietm jewishm russianm havea vietnamesem israelim
29 I MAN alien refugee people illegalm chinesem cubanm arrestp haitianm findp
30 I PEOPLE child student worker manym youngm havea illegalm comea bea
31 I PEOPLE country woman man blackm muslimm africanm havea comea koreanm

32 I WORKER people citizen job americanm newm havea mexicanm illegalm manym
33 I WORKER resident student people legalm foreignm permanentm havea allowp skilledm
34 I WORKER student people child undocumentedm illegalm immigrantm havea allowp livea
35 JOB I people immigration law havep havea bea takep goodm makea
36 JOB study survey I labor finda newm findp showa fillp takep
37 LAW immigration law bill measure newm federalm enforcep requirea passp allowa

38 MAN I woman people haitians deportp havea arrestp holdp releasep facea
39 MAN people agent official I arrestp chargep otherm formerm havea facea
40 MAN woman I people girl tella killp havea otherm youngm takep
41 PEOPLE I child man woman havea comea livea goa tellp worka
42 PROFILING violence abuse discrimination racialm domesticm safem physicalm bea affordablem
43 PROGRAM system law agency newm nationalm federalm createp usep specialm
44 REFUGEE I boy people elian cubanm haitianm chinesem havea allowp returnp

45 SCHOOL people I family english havea highm seea comea goa bea
46 SERVICE school care college publicm medicalm providep denyp receivep attendp
47 TRAFFICKING rights group flight humanm internationalm commercialm bea havea takea
48 WORKER I immigration student company foreignm legalm skilledm hirep americanm havea
49 WORKER I people woman man mexicanm immigrantm undocumentedm migrantm illegalm
50 YEAR program month income fiscalm lastm enda nextm previousm begina

Table 1: Personas with their associated mention words and relation tuples (a = agent, p patient,m = modifier/attribute);
I denotes “immigrant.”

1414

1980 1985 1990 1995 2000 2005 2010 2015
Year

0

10

20

30

40

50

60

70

80

90

N
u

m
b

e
r

o
f

a
rt

ic
le

s
(s

m
o
o
th

e
d

)
BILL

LAW

REFUGEE

Figure 2: Temporal patterns of the mentions of selected
personas.

1980 1985 1990 1995 2000 2005 2010 2015
Year

0

10

20

30

40

50

N
u

m
b

e
r

o
f

a
rt

ic
le

s
(s

m
o
o
th

e
d

)

Refugee story type A

Refugee story type B

Figure 3: Temporal patterns of two clusters with the
greatest overall representation of the refugee persona.

2. Type A, which includes a story with the head-
line “Protesters vow to keep Elián in U.S.,” empha-
sizes political aspects, while type B (e.g., “Court
says no to rights for refugees”) emphasizes legal as-
pects. Note that Political and Legality are two of the
framing dimensions used in the MFC.

Do these persona-cast clusters relate to frames?
For the five most common story clusters, (which
have no overlap with the two refugee story types),
Figure 4 shows the number of annotated articles with
each of the primary frames if we assign each article
to its most likely cluster. The second and fifth clus-
ters correlate particularly well with primary frames
(Political and Crime, respectively). This is further
reinforced by looking at the most frequent persona
for each of these story clusters which are candidate
(ID 7) for the second and immigrant (ID 22), char-
acterized by illegalm and arrestp, for the fifth.

Refugee story cluster A
Frequency Persona ID
0.49 REFUGEE immigrant boy 44
0.10 BUSH official mcnary 6
0.06 IMMIGRANT man alien 29
0.05 ASYLUM crime refugee 2
Refugee story cluster B
Frequency Persona ID
0.29 MAN immigrant woman 38
0.23 REFUGEE immigrant boy 44
0.12 COURT lawsuit suit 13
0.10 GOVERNMENT court judge 16

Table 2: Truncated distribution over personas for the two
clusters depicted in Figure 3. IDs index into Table 1.

1 2 3 4 5
Cluster

100

200

300

400

500

N
u

m
b

e
r

o
f

a
rt

ic
le

s

Economics
Capacity
Morality
Fairness
Legality
Policy
Crime
Security
Health
Quality
Culture
Public
Political
External
Other

Figure 4: Number of annotated articles in each of the
five most frequent clusters, with colors showing the pro-
portion of articles annotated with each primary frame.

7 Experiments: Personas and Framing

We evaluate personas as features for automatic anal-
ysis of framing and tone, as defined in the MFC
(§4). Specifically, we build multi-class text clas-
sifiers (separately) for the primary frame and the
tone of a news article, for which there are 15 and
3 classes, respectively. Because there are only a
few thousand annotated articles, we applied 10-fold
cross-validation to estimate performance.

Features are derived from our model by consider-
ing each persona and each story cluster as a potential
feature. A document’s feature values for story types
are the proportion of samples in which it was as-
signed to each cluster. Persona feature values are
similarly derived by the proportion of samples in
which each entity was assigned to each persona,
with the persona values for each entity in each docu-
ment summed into a single set of persona values per

1415

Primary frame
Features: MF (W) (W,P1) (W,P2) (W,P2,S)
Accuracy: 0.174 0.529 0.537 *0.540 0.537
Features: 0 3.9k 3.5k 3.5k 2.8k
Tone
Accuracy: 0.497 0.628 0.631 0.628 0.630
Features: 0 5.0k 5.0k 5.0k 4.0k

Table 3: Evaluation using a direct comparison to a sim-
ple baseline. Each model uses the union of listed features.
(W = unigrams and bigrams, P1 = personas from DPM,
P2 = personas from our model, S = story clusters; MF =
always predict most frequent class.) * indicates a statisti-
cally significant difference compared to the (W) baseline
(p<0.05).

document. We did not use the topics (z) discovered
by our model as features.

7.1 Experiment 1: Direct Comparison

For the first experiment, we train independent multi-
class logistic regression classifiers for predicting pri-
mary frame and tone. We consider adding persona
and/or story cluster features to baseline classifiers
based only on unigrams and bigrams with binarized
counts, a simple but robust baseline (Wang and Man-
ning, 2012).6 In all cases, we use L1 regularization
and use 5-fold cross validation within each split’s
training set to determine the strength of regulariza-
tion. We then repeat this for each of the 10 folds,
thereby producing one prediction (of primary frame
and tone) for every annotated article. The results
of this experiment are given in Table 3; for predict-
ing the primary frame, classifiers that used persona
and/or story cluster features achieve higher accuracy
than the bag-of-words baseline (W); the classifier
using personas from our model but not story clus-
ters is significantly better than the baseline.7 The
enhanced models are also more compact, on aver-
age, using fewer effective features. A benefit to pre-
dicting tone is also observed, but it did not reach
statistical significance.

7.2 Experiment 2: Automatic Evaluation

Although bag-of-n-grams models are known to be
a strong baseline for text classification, researchers
familiar with the extensive catalogue of features of-

6We also binarized the persona feature values.
7Two-tailed McNemar’s test (p<0.05).

fered by NLP will potentially see them as a straw
man. We propose a new and more rigorous method
of comparison, in which a wide range of features are
offered to an automatic model selection algorithm
for each of the prediction tasks, with the features to
be evaluated withheld from the baseline.

Because no single combination of features and
regularization strength is best for all situations, it
is an empirical question which features are best for
each task. We therefore make use of Bayesian op-
timization (Bayesopt) to make as many modeling
decisions as possible (Pelikan, 2005; Snoek et al.,
2012; Bergstra et al., 2015; Yogatama et al., 2015).

In particular, let F be the set of features that
might be used as input to any text classification al-
gorithm. Let f be a new feature that is being pro-
posed. Allow the inclusion or exclusion of each
feature in the feature set to be a hyperparameter
to be optimized, along with any additional deci-
sions such as input transformations (e.g., lowercas-
ing), and feature transformations (e.g., normaliza-
tion). Using an automatic model selection algorithm
such as Bayesian optimization, allow the perfor-
mance on the validation set to guide choices about
all of these hyperparameters on each iteration, and
set up two independent experiments.

For the first condition,A1, allow the algorithm ac-
cess to all features in F . For the second, A2, allow
the algorithm access to all features in F ∪ f . Af-
ter R iterations of each, choose the best model or
the best set of models from each of A1 and A2 (M1

and M2, respectively), based on performance on the
validation set. Finally, compare the selected mod-
els in terms of performance on the test set (using
an appropriate metric such as F1), and examine the
features included in each of the best models. If f
is a helpful feature, we should expect to see that, a)
F1(M2) > F1(M1), and b), f is included in the best
model(s) found by A2.

If F1(M2) > F1(M1) but f is not included in
the best models from A2, this suggests that the per-
formance improvement may simply be a matter of
chance, and there is no evidence that f is helpful.
By contrast, if f is included in the best models, but
F1(M2) is not significantly better than F1(M1), this
suggests that f is offering some value, perhaps in
a more compressed form of the useful signal from
other features, but does not actually offer better per-

1416

Features: (B) (B,P1) (B,P2) (B,P2,S)
Primary frame 0.566 0.568 0.568 0.567
Tone 0.667 0.671 0.667 0.671

Table 4: Mean accuracy of the best three iterations from
Bayesian optimization (chosen based on validation accu-
racy). (B = features from many NLP tools, P1=personas
from the DPM, P2 = personas from our model, S=story
clusters.)

formance.
For this experiment, we use the tree-structured

Parzen estimator for Bayesian optimization
(Bergstra et al., 2015), with L1-regularized logistic
regression as the underlying classifier, and set
R = 40. In addition to the entities and story
clusters identified by these models, we allow these
classifiers access to a large set of features, including
unigrams, bigrams, parts of speech, named entities,
dependency tuples, ordinal sentiment values (Man-
ning et al., 2014), multi-word expressions (Justeson
and Katz, 1995), supersense tags (Schneider and
Smith, 2015), Brown clusters (Brown et al., 1992),
frame semantic features (Das et al., 2010), and
topics produced by standard LDA (Blei et al.,
2003). The inclusion or exclusion of each feature
is determined automatically on each iteration, along
with feature transformations (removal of rare words,
lowercasing, and binary or normalized counts).

The baseline, denoted “B,” offers all features ex-
cept personas and story clusters to Bayesopt; we
consider adding DPM personas, our model’s per-
sonas, and our model’s personas and story clus-
ters. Table 4 shows test-set accuracy for each setup,
averaged across the three best models returned by
Bayesopt.

Using this more rigorous form of evaluation, ap-
proximately the same accuracy is obtained in all ex-
perimental conditions. However, we can still gain
insight into which features are useful by examin-
ing those selected by the best models in each con-
dition. For primary frame prediction, both personas
and story clusters are included by the best models in
every case where they have been offered as possible
features, as are unigrams, dependency tuples, and
semantic frames. Other commonly-selected features
include bigrams and part of speech tags. For pre-
dicting tone, personas are only included by half of
the best models, with the most common features be-

ing unigrams, bigrams, semantic frames, and Brown
clusters. As expected, the best models in each condi-
tion obtain better performance than the models from
experiment 1, thanks to the inclusion of additional
features and transformations.

This secondary evaluation suggests that for this
task, persona features are useful in predicting the
primary frame, but are unable to offer improved per-
formance over existing features, such as semantic
frames. However, the fact that that both personas
and story clusters are included by all the best models
for predicting the primary frame suggests that they
are competitive with other features, and perhaps of-
fer useful information in a more compact form.

8 Qualitative Evaluation

Prior to exposure to any output of our model, one
of the co-authors on this paper (Gross, who has ex-
pertise in both framing and the immigration issue)
prepared a list of personas he expected to frequently
occur in American news coverage of immigration.
Given the example of the “skilled immigrant,” he
listed 22 additional named personas, along with a
few examples of things they do, things done to them,
and attributes.

The list he prepared includes several different
characterizations of immigrants (low-skilled, unau-
thorized, legal, citizen children, undocumented chil-
dren, refugees, naturalized citizens), non-immigrant
personas (U.S. workers, smugglers, politicians, of-
ficials, border patrol, vigilantes), related pairs (pro
/ anti advocacy groups, employers / guest workers,
criminals / victims), and a few more conceptual en-
tities (the border, bills, executive actions). Of these,
almost all are arguably represented in the personas
we have discovered. However, there is rarely a per-
fect one-to-one mapping: predefined personas are
sometimes merged (e.g., “the border” and “border
patrols”) or split (e.g., legislation, employers, and
various categories of immigrants). Personas which
don’t emerge from our model include smugglers,
guest workers, vigilantes, and victims of immigrant
criminals. On the other hand, our model proposes far
more non-person entities, such as ID cards, courts,
companies, jobs, and programs.

These partial matchings between predefined per-
sonas and the results of our model are generally

1417

identifiable by comparing the names given to the
predefined personas to the the most commonly oc-
curring mention words and attributes of our discov-
ered personas. The attributes and action words given
to the predefined personas are harder to evaluate,
as many of them are rare (e.g. politicians “vacil-
late”) or compound phrases (e.g. low-skilled immi-
grants “do jobs Americans won’t do”) that tend to
miss the more obvious properties captured by our
model. For example, the employer persona captured
by our model engages in actions like hire, employ,
and pay. By contrast, the terms given for the pre-
defined “business owners” persona are “lobby” and
“rely on immigrant labor.” Our unsupervised dis-
covery of this persona can clearly be matched to
the predefined persona in this case, but doesn’t pro-
vide such fine-grained insight into how they might
be characterized.

The best match between predefined and discov-
ered personas is the U.S.-Mexican border. Of the
words given for the predefined persona, almost all
are more frequently associated with border than
with any other discovered persona (“Mexican-U.S.,”
“lawless,” “porous,” “unprotected,” “guarded,” and
“militarized”). The most commonly associated
words discovered by our model that are missing
from the predefined description include crossed, se-
cured, southern, and closed.

While this qualitative evaluation helps to demon-
strate the face validity of our model, it would be bet-
ter to have a more comprehensive set of predefined
personas, based on input from additional experts.
Moreover, it also illustrates the challenge of trying
to match the output of an unsupervised model to ex-
pected results. Not only is some merging and split-
ting of categories inevitable, there was a mismatch
in this case in the types of entities to be described
(people as opposed to more abstract entities), and
the ways of describing them (rare but specific words
as opposed to more generic but potentially obvious
terms).

9 Related Work

Much NLP has focused on identifying entities or
events (Ratinov and Roth, 2009; Ritter et al., 2012),
analyzing schemes or narrative events in terms of
characters (Chambers and Jurafsky, 2009), inferring

the relationships between entities (O’Connor et al.,
2013; Iyyer et al., 2016), and predicting personal-
ity types from text (Flekova and Gurevych, 2015).
Bamman also applied variants of the DPM to char-
acters in novels (Bamman et al., 2014).

Previous work on sentiment, stance, and opinion
mining has focused on recognizing stance or polit-
ical sentiment in online ideological debates (Soma-
sundaran and Wiebe, 2010; Hasan and Ng, 2014;
Sridhar et al., 2015), and other forms of social me-
dia (O’Connor et al., 2010; Agarwal et al., 2011),
and recently through the lens of connotation frames
(Rashkin et al., 2016). Opinion mining and senti-
ment analysis are the subject of ongoing research
in NLP and have long served as test platforms for
new methodologies (Socher et al., 2013; İrsoy and
Cardie, 2014; Tai et al., 2015)

Framing is arguably one of the most important
concepts in the social sciences, with roots in to
sociology, psychology, and mass communication
(Gitlin, 1980; Benford and Snow, 2000; D’Angelo
and Kuypers, 2010); the scope and relevance of
framing is widely debated (Rees et al., 2001), with
many authors applying the concept of framing to an-
alyzing documents on particular issues (Baumgart-
ner et al., 2008; Berinsky and Kinder, 2006).

10 Conclusion

We have extended models for discovering latent per-
sonas to simultaneously cluster documents by their
“casts” of personas. Our exploration of the model’s
inferences and their incorporation into a challenging
text analysis task—characterizing coarse-grained
framing in news articles—demonstrate that personas
are a useful abstraction when applying NLP to
social-scientific inquiry. Finally, we introduced a
Bayesian optimization approach to rigorously assess
the usefulness of new features in machine learning
tasks.

Acknowledgments

The authors thank members of the ARK group and
anonymous reviewers for helpful feedback on this work.
This research was made possible by a Natural Sciences
and Engineering Research Council of Canada Postgradu-
ate Scholarship (to D.C.), a Bloomberg Data Science Re-
search Grant (to J.H.G., A.E.B., and N.A.S.), and a Uni-
versity of Washington Innovation Award (to N.A.S.).

1418

References
Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Rambow,

and Rebecca J. Passonneau. 2011. Sentiment analysis
of twitter data. In Proc. of Frame Semantics in NLP:
A Workshop in Honor of Chuck Fillmore (1929-2014).

D. Aldous. 1985. Exchangeability and related topics.
In École d’Été St Flour 1983, pages 1–198. Springer-
Verlag.

Charles E. Antoniak. 1974. Mixtures of dirichlet pro-
cesses with applications to bayesian nonparametric
problems. Annals of Statistics, 2(6), November.

David Bamman, Brendan O’Connor, and Noah A. Smith.
2013. Learning latent personas of film characters. In
Proc. of ACL.

David Bamman, Ted Underwood, and Noah A. Smith.
2014. A bayesian mixed effects model of literary char-
acter. In Proc. of ACL.

Eric Baumer, Elisha Elovic, Ying Qin, Francesca Polletta,
and Geri Gay. 2015. Testing and comparing computa-
tional approaches for identifying the language of fram-
ing in political news. In Proc. of NAACL.

Frank R. Baumgartner, Suzanna L. De Boef, and Am-
ber E. Boydstun. 2008. The decline of the death
penalty and the discovery of innocence. Cambridge
University Press.

Robert D. Benford and David A. Snow. 2000. Framing
processes and social movements: An overview and as-
sessment. Annual Review of Sociology, 26:611–639.

James Bergstra, Brent Komer, Chris Eliasmith, Dan
Yamins, and David D Cox. 2015. Hyperopt: a python
library for model selection and hyperparameter opti-
mization. Computational Science and Discovery, 8(1).

Adam J. Berinsky and Donald R. Kinder. 2006. Making
sense of issues through media frames: Understanding
the Kosovo crisis. Journal of Politics, 68(3):640–656.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vin-
cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-
based N-gram models of natural language. Com-
putional Linguistics, 18(4):467–479.

Dallas Card, Amber E. Boydstun, Justin H. Gross, Philip
Resnik, and Noah A. Smith. 2015. The media frames
corpus: Annotations of frames across issues. In Proc.
of ACL.

Nathanael Chambers and Dan Jurafsky. 2009. Unsuper-
vised learning of narrative schemas and their partici-
pants. In Proc. of ACL.

Eunsol Choi, Chenhao Tan, Lillian Lee, Cristian
Danescu-Niculescu-Mizil, and Jennifer Spindel.
2012. Hedge detection as a lens on framing in
the GMO debates: A position paper. In Proc of.

Workshop on Extra-Propositional Aspects of Meaning
in Computational Linguistics, pages 70–79.

Paul D’Angelo and Jim A. Kuypers. 2010. Doing News
Framing Analysis. Routledge.

Dipanjan Das, Nathan Schneider, Desai Chen, and
Noah A. Smith. 2010. Probabilistic frame-semantic
parsing. In Proc. of NAACL.

Robert M. Entman. 2007. Framing bias: Media in
the distribution of power. Journal of Communication,
57(1):163–173.

Michael D. Escobar and Mike West. 1994. Bayesian
density estimation and inference using mixtures. J.
Amer. Statist. Assoc., 90:577–588.

Ronen Feldman. 2013. Techniques and applications for
sentiment analysis. Commun. ACM, 56(4):82–89.

Lucie Flekova and Iryna Gurevych. 2015. Personality
profiling of fictional characters using sense-level links
between lexical resources. In Proc. of EMNLP.

Matthew Gentzkow and Jesse M. Shapiro. 2010. What
drives media slant? Evidence from U.S. daily newspa-
pers. Econometrica, 78(1):35–71.

Todd Gitlin. 1980. The Whole World is Watching. Berke-
ley: University of California Press.

Stephan Greene and Philip Resnik. 2009. More than
words: Syntactic packaging and implicit sentiment. In
Proc. of ACL.

Glenn Greenwald. 2014. No Place to Hide. Picador.
Eric Hardisty, Jordan L. Boyd-Graber, and Philip Resnik.

2010. Modeling perspective using adaptor grammars.
In Proc. of EMNLP.

Kazi Saidul Hasan and Vincent Ng. 2013. Stance classi-
fication of ideological debates: Data, models, features,
and constraints. In Proc. of IJCNLP.

Kazi Saidul Hasan and Vincent Ng. 2014. Why are you
taking this stance? identifying and classifying reasons
in ideological debates. In Proc. of EMNLP.

Edward S. Herman and Noam Chomsky. 1988. Manu-
facturing Consent. Vintage.

Ozan İrsoy and Claire Cardie. 2014. Opinion min-
ing with deep recurrent neural networks. In Proc of
EMNLP.

Mohit Iyyer, Peter Enns, Jordan L. Boyd-Graber, and
Philip Resnik. 2014. Political ideology detection us-
ing recursive neural networks. In Proc. of ACL.

Mohit Iyyer, Anupam Guha, Snigdha Chaturvedi, Jordan
Boyd-Graber, and Hal Daumé III. 2016. Feuding fam-
ilies and former friends: Unsupervised learning for dy-
namic fictional relationships. In Proc. of NAACL.

J. Justeson and S. Katz. 1995. Technical terminology:
some linguistic properties and an algorithm for identi-
fication in text. Natural Language Engineering.

Jure Leskovec, Lars Backstrom, and Jon Kleinberg.
2009. Meme-tracking and the dynamics of the news
cycle. In Proc. of KDD.

1419

Wei-Hao Lin, Theresa Wilson, Janyce Wiebe, and
Alexander Hauptmann. 2006. Which side are you on?
Identifying perspectives at the document and sentence
levels. In Proc. of CoNNL.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proc. of ACL.

Viet-An Nguyen, Jordan Boyd-Graber, and Philip
Resnik. 2013. Lexical and hierarchical topic regres-
sion. In Proc. of NIPS.

Viet-An Nguyen, Jordan Boyd-Graber, Philip Resnik,
and Kristina Miler. 2015. Tea party in the house: A hi-
erarchical ideal point topic model and its application to
Republican legislators in the 112th congress. In Proc.
of ACL.

Vlad Niculae, Caroline Suen, Justine Zhang, Cristian
Danescu-Niculescu-Mizil, , and Jure Leskovec. 2015.
QUOTUS: The structure of political media coverage as
revealed by quoting patterns. In Proceedings of WWW
2015.

Brendan T. O’Connor, Ramnath Balasubramanyan,
Bryan R. Routledge, and Noah A. Smith. 2010. From
tweets to polls: Linking text sentiment to public opin-
ion time series. In ICWSM.

Brendan O’Connor, Brandon M. Stewart, and Noah A.
Smith. 2013. Learning to extract international rela-
tions from political context. In Proc. of ACL.

Zhongdang Pan and Gerald M. Kosicki. 1993. Fram-
ing analysis: An approach to news discourse. Political
communication, 10(1):55–75.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Found. Trends Inf. Retr., 2(1-2).

M Pelikan. 2005. Bayesian optimization algorithm. In
Hierarchical Bayesian optimization algorithm, pages
31–48. Springer.

Hannah Rashkin, Sameer Singh, and Yejin Choi. 2016.
Connotation frames: A data-driven investigation. In
Proc. of ACL.

Lev Ratinov and Dan Roth. 2009. Design challenges and
misconceptions in named entity recognition. In Proc.
of CoNNL.

Stephen D. Rees, Oscar H. Gandy Jr., , and August E.
Grant, editors. 2001. Framing Public Life. Routledge.

Alan Ritter, Mausam, Oren Etzioni, and Sam Clark.
2012. Open domain event extraction from twitter. In
KDD.

Anne Schneider and Helen Ingram. 1993. Social con-
struction of target populations: Implications for pol-
itics and policy. The American Political Science Re-
view, 87(2):334–347.

Nathan Schneider and Noah A. Smith. 2015. A corpus
and model integrating multiword expressions and su-
persenses. In Proc. of ACL.

Sameer Singh, Amarnag Subramanya, Fernando Pereira,
and Andrew McCallum. 2012. Wikilinks: A large-
scale cross-document coreference corpus labeled via
links to Wikipedia. Technical Report UM-CS-2012-
015, University of Massachusetts, Amherst.

David A. Smith, Ryan Cordell, and Elizabeth Maddock
Dillon. 2013. Infectious texts: modeling text reuse
in nineteenth-century newspapers. In Proc. of IEEE
International Conference on Big Data.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
2012. Practical bayesian optimization of machine
learning algorithms. In Proc. of NIPS.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christo-
pher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proc.
of EMNLP.

Swapna Somasundaran and Janyce Wiebe. 2010. Rec-
ognizing stances in ideological on-line debates. In
Proceedings of the Workshop on Computational Ap-
proaches to Analysis and Generation of Emotion in
Text.

Dhanya Sridhar, James Foulds, Bert Huang, Lise Getoor,
and Marilyn Walker. 2015. Joint models of disagree-
ment and stance in online debate. In Proc. of ACL.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proc. of ACL.

Oren Tsur, Dan Calacci, and David Lazer. 2015. Frame
of mind: Using statistical models for detection of
framing and agenda setting campaigns. In Proc. of
ACL.

Baldwin Van Gorp. 2010. Strategies to take subjectiv-
ity out of framing analysis. In Paul D’Angelo and
Jim A. Kuypers, editors, Doing News Framing Anal-
ysis, chapter 4, pages 84–109. Routledge.

Marilyn A. Walker, Pranav Anand, Robert Abbott, and
Ricky Grant. 2012. Stance classification using dia-
logic properties of persuasion. In Proc. of NAACL.

Sida Wang and Christopher D Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In Proc. of ACL.

Dani Yogatama, Lingpeng Kong, and Noah A. Smith.
2015. Bayesian optimization of text representations.
In EMNLP.

1420

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1421–1431,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

The Teams Corpus and Entrainment in Multi-Party Spoken Dialogues

Diane Litman
University of Pittsburgh

Pittsburgh, PA

Susannah Paletz
University of Maryland

College Park, MD

Zahra Rahimi and Stefani Allegretti and Caitlin Rice
University of Pittsburgh

Pittsburgh, PA

Abstract

When interacting individuals entrain, they be-
gin to speak more like each other. To sup-
port research on entrainment in cooperative
multi-party dialogues, we have created a cor-
pus where teams of three or four speakers play
two rounds of a cooperative board game. We
describe the experimental design and techni-
cal infrastructure used to collect our corpus,
which consists of audio, video, transcriptions,
and questionnaire data for 63 teams (47 hours
of audio). We illustrate the use of our corpus
as a novel resource for studying team entrain-
ment by 1) developing and evaluating team-
level acoustic-prosodic entrainment measures
that extend existing dyad measures, and 2)
investigating relationships between team en-
trainment and participation dominance.

1 Introduction

Linguistic entrainment1 refers to the convergence of
(para)linguistic features across speakers during con-
versation (Brennan and Clark, 1996; Porzel et al.,
2006). Research has found that speakers entrain to
both human and computer conversational partners,
with the amount of entrainment often positively re-
lated to conversational and task success. However,
most prior work has focused on the study of entrain-
ment during two-party dialogues, rather than during
the multi-party conversations typical of teams.

To support the study of entrainment during multi-
party cooperative dialogue, we have created a large-
scale corpus (over 47 hours of recordings) of teams

1Other terms in the literature include accommodation, adap-
tation, alignment, convergence, coordination and priming.

of three or four speakers playing a cooperative board
game requiring conversation. The corpus consists of
audio, video, transcriptions, and questionnaire data
for 63 teams. The goal of the corpus is to provide
a freely-available data resource for the development
and evaluation of multi-party entrainment measures
that can be 1) computed using language technolo-
gies, 2) motivated and validated by the literature on
teams, and 3) associated with measures of task and
dialogue success.

In this paper, we first describe the experimental
design and technical infrastructure used to create our
corpus. We then present two case studies illustrat-
ing the use of our corpus as a novel resource for
studying team entrainment: quantifying acoustic-
prosodic entrainment at the team-level rather than
the dyad-level, and incorporating a construct from
the teamwork literature into the study of entrain-
ment.

2 Background and Related Work

The development of methods for automatically
quantifying entrainment in text and speech data is
an active research area, as entrainment has been
shown to correlate with success measures or with
social variables for a variety of phenomena, e.g.,
acoustic-prosodic, lexical, and syntactic (Nenkova
et al., 2008; Reitter and Moore, 2007; Mitchell et
al., 2012; Levitan et al., 2012; Lee et al., 2011;
Stoyanchev and Stent, 2009; Lopes et al., 2013;
Lubold and Pon-Barry, 2014; Moon et al., 2014;
Sinha and Cassell, 2015). Such research, in turn,
requires corpora with certain properties. A high-
quality spoken language corpus for studying entrain-

1421

ment would include transcriptions suitable for nat-
ural language processing, audio recordings suitable
for signal processing, and meta-data such as task
success or speaker demographics.

While most research has focused on quantify-
ing the amount of entrainment between pairs of
speakers, recent work has started to develop mea-
sures for quantifying entrainment between larger
groups of speakers (Friedberg et al., 2012; Danescu-
Niculescu-Mizil et al., 2012; Gonzales et al., 2010).
To date, however, mainly simple methods such as
unweighted averaging have been used to move from
pairs to groups, and the focus of prior work has
been on text rather than speech (e.g., Wikipedia,
computer-mediated discussions, lexical analysis of
transcriptions). In this paper we both investigate
group acoustic-prosodic entrainment and examine
relationships between group entrainment and a fac-
tor from the teamwork literature called participation
equality / dominance (Paletz and Schunn, 2011).

Also, while freely available speech corpora have
supported the study of entrainment in two-party di-
alogues (e.g., Switchboard, Maptask, the Columbia
Games Corpus, Let’s Go), few community resources
exist for the study of multi-party entrainment. Some
multi-party resources are only text-based (e.g., the
online Slashdot forum (Allen et al., 2014), chat di-
alogues (Afantenos et al., 2015)). Those speech
resources that do exist are often less than ideal as
they were created for other purposes (e.g., Supreme
Court arguments (Beňuš et al., 2014; Danescu-
Niculescu-Mizil et al., 2012), the AMI meeting cor-
pus (Carletta et al., 2006)). Although not cre-
ated to study entrainment, the KTH-Idiap Group-
Interviewing corpus (Oertel et al., 2014) is perhaps
most relevant as it was explicitly designed to sup-
port research on group dynamics. However, the cor-
pus contains only 5 hours of speech, and participants
were PhD students so did not differ on variables such
as age and social status.

The Teams corpus presented and used in this pa-
per was designed to add several notable extensions
to existing multi-party spoken dialogue resources.
In particular, the Teams corpus was experimentally
collected to constrain the team processes, tasks, and
outcomes in ways that facilitate an investigation of
team entrainment. First, the corpus consists of over
45 hours of cooperative task-oriented dialogues be-

tween three or four speakers, where audio and video
files were collected and transcribed using best prac-
tices for computational processing. Second, the
corpus was collected using an experimental manip-
ulation informed by the organizational and social
psychological literature on team processes in order
to create high versus low-entrainment conditions.
Third, since the social psychological literature sug-
gests that team dynamics are more complex than an
average of dyadic interactions, validated question-
naires were used to collect relevant variables of in-
terest to researchers on teams, and individual par-
ticipants were recruited so that teams would exhibit
diversity with respect to these variables.

3 Experimental Study

The Teams corpus was collected in a laboratory
experiment. The laboratory setting enabled high-
quality audio and video capture, while the experi-
mental study allowed manipulations to vary entrain-
ment and to collect measures of team processes.2

3.1 Design

Our data collection was via an experiment with a
2 by 2 within-and-between subjects design. Teams
of 3-4 participants spent 2-3 hours in our lab tak-
ing self-report questionnaires and being audio and
video-taped playing a cooperative board game. Two
manipulations were designed to increase the like-
lihood of task success and entrainment 3. For
the first manipulation, half the teams were given a
teamwork training intervention in which participants
were given specific advice based on a needs analy-
sis of the team skills important to the game (Gregory
et al., 2013). Such mixed teamwork/taskwork train-
ing has been shown to improve team process out-
comes (Salas et al., 2008). The other half only had

2A lab experiment involving a two-player game requir-
ing spoken communication was similarly used to collect the
Columbia Games Corpus of 12 spontaneous task-oriented
dyadic conversations, which has been used in multiple studies
of two-party entrainment (Levitan and Hirschberg, 2011; Lev-
itan et al., 2012; Levitan et al., 2011). Our corpus is approxi-
mately 5 times larger, includes speech from teams rather than
from dyads, and relatedly includes new types of team-related
meta-data. Our corpus also contains both video and audio as
our dialogues were face-to-face rather than restricted to voice.

3As discussed in Section 2, prior research has often found
positive relationships between success and entrainment.

1422

Figure 1: Dialogue excerpt from a Forbidden IslandTM game.

E=Engineer, M=Messenger, and P=Pilot roles in the game.

Square brackets indicate overlapping speech.

training on the rules of the game, which all teams
received.

For the second manipulation, each team played
two isomorphic versions of the game. The game
was originally designed to be played multiple times,
with each session unique depending on the random
placement of specific board tiles and the order of
deck cards. To maintain experimental control, two
specific deck card orders and board tile patterns that
had the same underlying opportunities and obstacles
were created. 33 teams played one game first, and
30 teams played the other game first. In either case,
by the second time, the team should have a better
grasp of the game and appropriate strategies.

3.2 Task
For the team task, we chose the cooperative board
game Forbidden IslandTM , where players take on
the roles of adventurers seeking treasures on an is-
land before it is flooded. We chose this game be-
cause it both demands collaboration and is logisti-
cally feasible for our experiment. The cooperative
task-oriented nature of the game requires players to
communicate to achieve their goals (e.g., discussing
cards and strategies in real time, see Figure 1), lend-
ing itself directly to eliciting entrainment. Further,
the game gives each player a different role to achieve
the team goals, as well as game-specific terminol-
ogy, generalizing to real-world situations with team-
work (e.g. aviation, health care). Logistically, For-
bidden IslandTM can be played equally well with
three or four players. This feature allowed us to
schedule teams of four participants, but still play the
game even if only three showed up. A typical game
is also short enough to be played twice within an ex-
perimental session. Game rules were adapted to en-
sure the game difficulty was suitable for novice play-
ers (e.g., requiring three rather than four treasures

be found before completing the game). As noted in
Section 3.1, two isomorphic versions of the game
were constructed so that the first and second games
would appear visually different but the difficulty
level would be identical between and within teams.
This isomorphism was accomplished by maintain-
ing the position of tiles and cards that determined
order-of-play and game difficulty, while systemat-
ically shifting the position of non-critical tiles and
cards.

3.3 Recruitment

Participants aged 18 years and older who are na-
tive speakers of American English were recruited
via electronic and hardcopy flyers and paid for their
time. They were males and females of any ethnic-
ity from a university and its surrounding community.
To increase ethnicity, race, and age diversity (rare in
corpora typically drawn only from student samples),
we advertised in non-student locations in predomi-
nantly ethnic minority neighborhoods.

3.4 Procedure

As a team’s participants arrived in the lab, each com-
pleted a questionnaire to collect personality, demo-
graphic, and other information such as experience
with the game Forbidden IslandTM . Participants
were then taught how to play the game by watching
a video and playing a tutorial game, then given a few
minutes to ask specific questions. Teams in the inter-
vention condition (the between-subjects manipula-
tion of our experimental design) were given an extra
10 minutes before the first game to receive training
about teamwork strategies such as team roles, com-
munication needs, and how to coordinate their ac-
tions (Gregory et al., 2013), as well as additional in-
formation adapted for the Forbidden IslandTM task
itself. Then each team played the game twice for no
more than 35 minutes per game. Teams were told
that not completing a game in 35 minutes counted
as a loss, and that winning scores for the rest of the
games would be inversely related to game length (a
timer was displayed on a computer monitor during
each game). The intervention condition teams were
also given an additional 5 minutes before the sec-
ond game to discuss what went well and poorly with
their team processes. Finally, both between and after
the two games, all participants filled out question-

1423

naires regarding their team processes.

3.5 Data Capture
Game participants were located around a round ta-
ble 48 inches in diameter in our game-playing lab,
enabling comfortable participant access to the game
board. Each participant sat in a particular location
depending on their role in the game. The survey data
were collected in a separate workstation lab using
Qualtrics, a web-based, survey software tool.

To collect high-quality speech data with minimal
cross-talk, audio was recorded using Sennheiser ME
3-ew close-talk microphones. Each microphone was
connected to a Presonus AudioBox 1818VSL multi-
channel audio interface sampling at 96k, 24 bits.
Audio recordings were monitored using Reaper Dig-
ital Audio Workstation v 4.76. Each game yielded
one stereo recording with the synchronized speech
from all speakers, along with 3 or 4 individual files
(one per participant) representing the audio record-
ing from each microphone. Reaper was used to ren-
der .WAV files with a 48000 Hz sampling rate and a
16 bit PCM Wav bit depth.

To complement the speech, four wall-mounted
Zoom Q4 cameras captured WVGA/30 .MOV video
recordings. The audio streams recorded from the
cameras are at the central room, not the individual,
level. A master audio signal was used to synchronize
the videos with each other and with the audio from
the microphones. Note that the videos also provide
backup audio streams (recording at 256kbps AAC)
for the microphones. In addition, the videos provide
information about the games that are not always ob-
vious from the audio4, as well as non-verbal data for
future analysis (e.g., of gesture or posture).

4 The Teams Corpus

Our experiment ran from February through August
2015, yielding over 47 hours of recordings from 63
teams5 (216 individuals).

4.1 Descriptive Statistics
The 216 participants in our experiment were on av-
erage 25.3 years old (min=18, max=67, SD=11.3).

4We are currently using the videos to annotate game-specific
measures of task success.

5A power analysis for our experiment yielded a minimum
target sample size of 52 teams.

Control Intervention
(n=31) (n=32)

3-per. 4-per. 3-per. 4-per.
of teams 20 11 16 16
avg g1 time 26.6 28.0 26.4 27.3
avg g2 time 18.0 17.7 18.2 19.7

Table 1: Team descriptives (n = 63).

There were 135 females (62.5%) and 81 males
(37.5%). The highest level of education (whether
completed or not) ranged from high school (28
participants, 13.0%) to undergraduate (153 partici-
pants, 70.8%) to postgraduate/professional (35 par-
ticipants, 16.2%). 145 participants (67.1%) were
currently students. 35 participants (16.2%) knew
at least one of their team members. The most fre-
quent self-reported ethnicity/races were Caucasian
(166), Asian (31), Black (24), and Hispanic (10)
(multiple ethnicities were allowed). Thus, our re-
cruitment yielded demographically diverse partici-
pants in ways that are useful for team research.

Table 1 shows the distribution of the teams in our
corpus by experimental condition (control versus in-
tervention) and team size (3 versus 4 person). For
each of these groups of teams, the table also shows
the average time they took in minutes to play games
1 and 2, respectively. A 3-way ANOVA shows a
significant within-team effect for game, with first
games taking significantly longer than second games
(27.1 vs. 18.4 minutes, p < .001). The average
game length did not significantly differ by experi-
mental condition (p > .7) or by team size (p > .3),
and there were also no interaction effects.

Our team-level data provides preliminary evi-
dence for the success of one of our experimental
manipulations, as second games were significantly
shorter than first games. 6

4.2 Audio Segmentation and Transcription
After the experiment was completed, our multi-
ple audio track speech was manually segmented
and transcribed using the Higgins Annotation Tool7.

6The time to complete a game is an easy to compute but a
shallow (inverse) success measure. We are currently annotat-
ing our data for game-specific and dialogue-based success mea-
sures, and will also examine success in terms of team process
measures computable from the questionnaires (Section 4.3).

7http://www.speech.kth.se/hat/

1424

Each audio track, which corresponds to each indi-
vidual player, appears on a separate line in Higgins.
A time stamp line applies to all of the (synchro-
nized) audio tracks. To do transcription, each par-
ticipant’s speech is first segmented into inter-pausal
units, pause-free chunks of speech from a single
speaker (Levitan and Hirschberg, 2011). The thresh-
old used for pause length (i.e., silence) for our cor-
pus is 200 milliseconds. Once speech is segmented
in a specific audio track, a corresponding text line
appears where the transcriber manually types in the
text for the corresponding audio segment. Within
each transcription, text segments may also be de-
fined and assigned values. We are using segments
to annotate non-lexical aspects such as laughs.

4.3 Questionnaire Data

The pre-game questionnaire was used to collect in-
dividual demographic information such as discussed
in Section 4.1, and self-reported data related to per-
sonality (John et al., 1991), cognitive styles (Miron
et al., 2004), and collective orientation (“the propen-
sity to work in a collective manner in team set-
tings” (Driskell et al., 2010)). The between and post-
game questionnaires elicited perceptions of team
processes such as cohesion, satisfaction, and po-
tency/efficacy (Wendt et al., 2009; Wageman et al.,
2005; Guzzo et al., 1993). Such information was
collected as a novel resource for studying multi-
party entrainment, since team processes have been
shown to be positively related to performance (Beal
et al., 2003; Mullen and Copper, 1994).

4.4 Public Release

The Teams corpus will be freely available for re-
search purposes8, with the first release coordinated
with the publication of this paper. The team level
contents of the first release will consist of 63 game 1
and 62 9 game 2 WAV files. The individual level
contents of this release will consist of the demo-
graphic responses for the 216 participants in XLSX
format. Later corpus releases will include associ-
ated audio segmentations and transcriptions in XML

8https://sites.google.com/site/teamentrainmentstudy/corpus
9One audio file was not properly saved during the experi-

ment. The corresponding single-channel audio extracted from
the game’s video will be provided instead.

format, game-level video files, and personality and
team process measures.

5 Case Studies Using the Teams Corpus

This section presents results from two case studies
illustrating the use of the Teams corpus for novel re-
search in multi-party dialogue entrainment. The first
study proposes new team level measures that build
on existing dyad-level measures of proximity and
convergence, then uses these team measures to in-
vestigate whether prior dyad-level acoustic-prosodic
entrainment findings generalize to teams. The sec-
ond study investigates relationships between team
convergence and participation equality / dominance.

5.1 Acoustic-Prosodic Team Entrainment

Speakers do not entrain on all linguistic features
of conversations, and when they do entrain, they
may entrain in different ways on different features.
In this section we examine whether teams entrain
on different acoustic-prosodic features during each
of their two game conversations. Our current ap-
proach to measuring team-level entrainment is based
on averaging dyad-level measures. We build on
two dyad measures, namely, proximity and conver-
gence (Levitan and Hirschberg, 2011). In a conver-
sation, proximity measures feature similarity over
the entire conversation, while convergence measures
an increase in feature proximity over time.

5.1.1 Feature Extraction from Speaker Audio

We focus on the acoustic-prosodic dimensions
of pitch, intensity, and voice quality, following
previous work on dyad entrainment (Levitan and
Hirschberg, 2011; Lubold and Pon-Barry, 2014;
Borrie et al., 2015). Pitch is related to the frequency
of the sound wave. Intensity describes the rate of en-
ergy flow. Jitter and shimmer are measures of vari-
ations of frequency and energy, respectively, which
are descriptive of voice quality. We use the Praat
software (Boersma and Heuven, 2002) to extract the
following 9 acoustic-prosodic features: minimum
(min), maximum (max), mean and standard devi-
ation (SD) of pitch; min, max, mean of intensity;

1425

local jitter10; and local shimmer11. Features are
extracted separately for each speaker and for each
game. Before feature extraction, each game-level
audio file for each speaker is pre-processed to re-
move silences (using a threshold of 1 second).

5.1.2 Measuring Team Proximity
Proximity quantifies the similarity of a feature

value between conversational partners over their en-
tire conversation. Intuitively, if a team has entrained
on a feature in terms of proximity during a partic-
ular game, speakers within the same team should
be more similar (or equivalently, less different) to
each other than to all the other speakers in the corpus
who are not on their team and are playing the same
game (i.e., game 1 or game 2). For each game we
computed a team-level partner difference (TDiffp)
and a team-level other difference (TDiffo). In Sec-
tion 5.1.4 we report paired t-test analyses to infer
entrainment within a game when TDiffp is signifi-
cantly smaller than TDiffo.

The partner difference for a speaker in a
dyad (Levitan and Hirschberg, 2011) is the absolute
difference between the feature value for a speaker
and her partner. For each team, we averaged these
absolute values for all members of the team:

TDiffp =

∑
∀i 6=j∈team(|speakeri − speakerj |)

|team| ∗ (|team| − 1)
(1)

The other difference for a speaker in a dyad (Levitan
and Hirschberg, 2011) is the mean of the absolute
differences between the speaker’s value for a feature
and the values of each of the speakers in the corpus
(for the same game number) with whom the speaker
was not partnered (set X in Formula 2). For each
team, we averaged these means for all the members
of the team:

TDiffo =

∑
∀i∈team(

∑
j |speakeri−Xj |

|X|)

|team| (2)

For proximity, all of the feature values were normal-
ized within a game based on gender12 using z-scores

10The average absolute difference between the amplitudes of
consecutive periods, divided by the average amplitude.

11The average absolute difference between consecutive peri-
ods, divided by the average amplitude.

12Normalization is done only for proximity, since compar-
isons for convergence are within (rather than between) teams.

Feature Game1 Game2
Pitch-min 0.844 0.193
Pitch-max −1.092 0.022
Pitch-mean −1.297 −1.294
Pitch-sd −0.407 −1.652
Intensity-mean −4.469* −4.911*
Intensity-min −2.653* −2.069*
Intensity-max −3.625* −2.853*
Shimmer-local −2.390* −2.782*
Jitter-local −1.242 −2.702*

Table 2: Proximity t-values of a paired t-test comparing team-

level partner (TDiffp) vs. other (TDiffo). Negative t-values

indicate that partner differences are smaller than other differ-

ences. * p < .05. n = 62.

(z =
vij−µj
σj

; vij = value of speaker i in game j
where j ∈ {1, 2}, µj = gender mean in game j, and
σj = gender standard deviation in game j.)

5.1.3 Measuring Team Convergence
Intuitively, there is evidence of convergence when

speakers within a conversation become more similar
to each other later in the conversation. While feature
value differences are compared across teams to in-
fer proximity entrainment, feature value differences
within a single team are compared across time for
convergence entrainment. Since differing time inter-
vals have been examined in the dyad literature, we
compared features extracted from the first versus last
three, five, and seven minutes of each game, as well
as from the two game halves.13 Convergence was
inferred via paired t-tests when the partner differ-
ences (Equation 1) in the second time interval were
significantly smaller than in the earlier time interval
(e.g., the TDiffp in the last 3 minutes of game 1 is
smaller than TDiffp in the first 3 minutes of game
1). To break the games into different time intervals
for feature extraction, we used the raw audio files to
extract the breaking points of the conversation and
then mapped these points to each of the processed
audio files where silence was removed.

5.1.4 Team-Level Entrainment Results
The proximity results are shown in Table 2. Nega-

tive t-values indicate that differences between speak-

13(Levitan and Hirschberg, 2011) also looked for conver-
gence between the two halves of the first game in their corpus.

1426

First vs. last 3 minutes First vs. last 5 minutes First vs. last 7 minutes First vs. second half
Feature Game1 Game2 Game1 Game2 Game1 Game2 Game1 Game2
Pitch-min 2.474* −0.709 1.487 −1.299 1.359 −1.622 0.329 −0.884
Pitch-max 4.947* 1.260 1.892 −0.468 1.348 −0.424 0.457 0.627
Pitch-mean −2.687* 0.109 −2.900* 0.417 −2.965* −0.361 −1.905 −0.266
Pitch-sd 1.364 0.409 1.919 0.591 1.807 0.576 1.271 0.089
Intensity-mean −0.275 −2.946* −0.454 −2.245* −0.229 −1.825 −0.360 −1.540
Intensity-min 0.595 −3.188* −0.136 −4.335* 0.009 −3.317* −0.972 −3.324*
Intensity-max 0.328 0.327 −0.731 1.081 −0.140 0.511 −0.222 0.469
Shimmer-local 2.896* −0.476 3.396* −1.941 3.006* −1.704 2.794* −0.914
Jitter-local 3.205* 0.725 2.796* 0.242 2.867* 0.469 2.973* 0.260

Table 3: Convergence t-values of paired t-tests comparing team-level partner differences (TDiffp) of first 3, 5, 7 minutes vs.

last 3, 5, 7 minutes, respectively, and of first vs. second game half, for each game. Positive t-values indicate convergence (i.e.,

that partner differences in the second interval are smaller than in the first). Negative t-values indicate divergence. Significant

convergence results are in bold. * p < .05. n = 62.

ers who are all within the same team are smaller
than differences between team members and other
speakers in the corpus. Thus, negative values are
indicative of team entrainment. The results show
that the team members were significantly more sim-
ilar to each other than to other speakers on inten-
sity mean, min, and max and on shimmer for both
games. Team-level entrainment on jitter was signif-
icant for only the second game.

The convergence results are shown in Table 3 for
four different temporal comparison intervals. Com-
parison of the significant game 1 results shows that
teams entrained on pitch min, pitch max, shimmer,
and jitter in at least one of the intervals. Both shim-
mer and jitter converged for all choices of temporal
units. For pitch, convergence was instead only seen
using the first and last 3 minutes, which are the inter-
vals farthest in the game from each other. The only
feature that diverged during game 1 is pitch-mean.
The rest of the features did not show significant
team-level partner differences during game 1 for any
temporal interval and thus exhibited maintenance,
meaning that the team members neither converged
nor diverged. During game 2, we observed mainte-
nance for all features except for intensity-mean and
intensity-min, which diverged. Together our results
suggest that when teams in our corpus converged
on a feature, they did so earlier in the experiment
(namely, just during the first game, and sometimes
just in the earliest part of the first game).

As a divergent validity check for convergence, for
each of the 62 teams, we constructed artificial ver-
sions of the real conversations between team mem-

bers: For each member of the team, we randomly
permuted the silence and speech intervals extracted
by Praat. Ideally, we should not see evidence of
convergence within these constructed conversations.
Our results confirm that there was no significant en-
trainment on either of the two constructed games, for
all temporal comparison intervals and all features.

In summary, team acoustic-prosodic entrainment
did not occur for all features. For the features that
did show entrainment, results varied depending on
whether proximity or convergence was examined,
and by the time intervals compared. With respect
to type of entrainment, when looking at the entire
game 1, there was significant evidence of entrain-
ment (proximity) on mean, min, max intensity, and
shimmer. Although there was no significant prox-
imity for min, max pitch and jitter, they did become
more similar (converged) over time. With respect to
time, team convergence was found for shimmer and
jitter independently of temporal interval examined,
but for pitch only when comparing the most distant
temporal intervals in game 1.

5.2 Participation Equality / Dominance

Within psychology, equality of participation has
been associated with successful team performance
and decision-making (e.g., (Mesmer-Magnus and
DeChurch, 2009; Stasser and Titus, 1987)). Within
computational linguistics, balance of participation
with respect to proposal of ideas was associated
with more productive small group (online) conversa-
tions (Niculae and Danescu-Niculescu-Mizil, 2016).

Extending this literature, we perform a novel in-

1427

Model 1 Model 2
B SEB β B SEB β

Session Length 0.187 0.067 0.328* 0.197 0.064 0.344*
Team Size 108.706 47.398 0.269* 69.721 47.980 0.173
Participation Dominance −1077.747 429.130 −0.299*
Model R2 0.186 0.266
Model F 6.761* 7.015*

Table 4: Summary of hierarchical regression analysis for variables predicting entrainment on pitch-max. * p < .05. n = 62.

vestigation of the association between participation
equality/dominance and team entrainment, focusing
on the time interval showing the most significant
convergence results in Section 5.1.4 (entrainment on
pitch-max, pitch-min, jitter, and shimmer from the
first to last 3 minutes of game 1).

Equation 3 defines the participation of player i
in a team, where speech lengthi is the sum of the
lengths of the speech intervals of player i:

participationi =
speech lengthi∑

m∈team speech lengthm
(3)

Participation dominance in turn is the standard de-
viation of the participation for all team members:

Dominance = σ(Participation),

Participation = {participationi|i ∈ team} (4)

Higher standard deviations indicate a greater range
of participation from team members, and lower stan-
dard deviations indicate more participation equality.

We performed a hierarchical regression analysis
for each of the four acoustic-prosodic features noted
above as the target entrainment variable. As in the
convergence section, we measured entrainment as
the average differences (TDiffp) of the team in the
first interval minus the second interval. Larger pos-
itive numbers are indicative of more entrainment.
The independent variables we included in our anal-
ysis are: team size, session length, average age of
the team members, percentage of the female play-
ers in each team, and participation dominance. The
first four are covariates that have been found to be
or are likely related to team communication and/or
dynamics. We hypothesized that participation dom-
inance would be related to entrainment above and
beyond these other potential variables.

Table 4 presents the results with pitch-max for
entrainment. (The other 3 entrainment variables

did not show significant relationships with partici-
pation.) The standardized βs indicate the effect size
and direction of the individual variables on pitch-
max, whereas the R2 indicates the effect size of the
model of all the variables together. Average age and
percent female were not significantly related to en-
trainment on pitch-max, so were excluded from the
final analyses.

First, both team size and session length were en-
tered as potential independent variables into the re-
gression analysis with pitch-max as the dependent
variable. This model (Model 1) was significant.
Specifically, team size and session length were both
significantly positively associated with entrainment
on pitch-max. That is, as team size or session length
increased, entrainment also increased.

Participation dominance was then entered to cre-
ate Model 2, which included team size, session
length, and participation dominance. The amount of
variance explained for participation dominance was
significant above and beyond the variables entered
in Model 1, ∆R2 = 0.08, ∆F (1, 58) = 6.307,
p = 0.015. Specifically, there was a significant neg-
ative association between participation dominance
and entrainment on pitch-max, such that greater par-
ticipation equality was related to greater entrain-
ment. This suggests that the more each team mem-
ber is given a chance to equally contribute, the more
likely they are to entrain on their maximum pitch.

6 Summary and Broader Implications

The long-term goal of our research is to use speech
and language processing, informed by the team-
work literature, to develop computational measures
of conversational team entrainment that will be use-
ful for predicting team success. We first described
the design and contents of the Teams corpus, which
is being made freely available for research pur-
poses. Experimental manipulations, high-quality

1428

audio and video with time-aligned transcriptions,
and self-reported team process data make the cor-
pus a unique resource for studying multi-party dia-
logue entrainment. We provided two examples il-
lustrating the use of the Teams corpus to facilitate
new directions in the study of entrainment: quantify-
ing acoustic-prosodic entrainment at the team rather
than the dyad-level, and incorporating the teamwork
construct of participation dominance into the study
of entrainment. Our current plans include contin-
ued corpus development (recall Section 4.4), and us-
ing more sophisticated methods than dyad averaging
(e.g., using weighting based on team process mea-
sures) to move from dyads to teams.

With respect to broader impact, our entrainment
measures could be used to mine existing corpora
for naturalistic successful and unsuccessful conver-
sations, or to trigger online interventions by dia-
logue systems participating in multi-party conversa-
tions. After additional research understanding the
important thresholds for entrainment, organizations
could unobtrusively measure team effectiveness dur-
ing entrainment, and intervene with training to aid
teams with low entrainment. Similar interventions
would be useful for conversational agents that mon-
itor and facilitate group interactions (e.g., in edu-
cation via computer-supported collaborative learn-
ing). Our work could also support the development
of data mining applications for corpora such as team
meetings or discussions, from classrooms to board-
rooms. Finally, our corpus could support natural lan-
guage processing research regarding any other as-
pect of teamwork (e.g., affect, conflict, topic mod-
eling). In sum, the Teams Corpus should provide
usable, multi-channel data for examining team pro-
cesses for a range of purposes and research disci-
plines.

Acknowledgments

This material is based upon work supported by
the National Science Foundation under Grant Nos.
1420784 and 1420377. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the authors and do not necessar-
ily reflect the views of the National Science Founda-
tion. The authors wish to thank Catharine Oertel and
Mattias Heldner for advice regarding both lab and

equipment needs, and the Learning Research and
Development Center at the University of Pittsburgh
for lab renovation. Finally, we would like to thank
Anish Kumar, the Pitt NLP group, and the anony-
mous reviewers for their help in improving the pa-
per.

References

Stergos Afantenos, Eric Kow, Nicholas Asher, and
Jérémy Perret. 2015. Discourse parsing for multi-
party chat dialogues. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 928–937.

Kelsey Allen, Giuseppe Carenini, and Raymond Ng.
2014. Detecting disagreement in conversations using
pseudo-monologic rhetorical structure. In Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1169–
1180.

Daniel J. Beal, Robin. R. Cohen, Michael J. Burke, and
Christy L. McLendon. 2003. Cohesion and per-
formance in groups: A meta-analytic clarification of
construct relations. Journal of Applied Psychology,
88:989–1004.

Štefan Beňuš, Agustı́n Gravano, Rivka Levitan, Sarah Ita
Levitan, Laura Willson, and Julia Hirschberg. 2014.
Entrainment, dominance and alliance in supreme court
hearings. Knowledge-Based Systems, 71:3–14.

Paul Boersma and Vincent van Heuven. 2002. Praat, a
system for doing phonetics by computer. Glot inter-
national, 5(9/10):341–345.

Stephanie A Borrie, Nichola Lubold, and Heather Pon-
Barry. 2015. Disordered speech disrupts conversa-
tional entrainment: a study of acoustic-prosodic en-
trainment and communicative success in populations
with communication challenges. Frontiers in psychol-
ogy, 6.

Susan E. Brennan and Herbert H. Clark. 1996. Concep-
tual pacts and lexical choice in conversation. Journal
of Experimental Psychology: Learning, Memory, and
Cognition, 22(6):1482–1493.

Jean Carletta, Simone Ashby, Sebastien Bourban, Mike
Flynn, Mael Guillemot, Thomas Hain, Jaroslav
Kadlec, Vasilis Karaiskos, Wessel Kraaij, Melissa
Kronenthal, Guillaume Lathoud, Mike Lincoln, Agnes
Lisowska, Iain McCowan, Wilfried Post, Dennis Rei-
dsma, and Pierre Wellner. 2006. The ami meeting cor-
pus: A pre-announcement. In Steve Renals and Samy
Bengio, editors, Machine Learning for Multimodal In-
teraction, volume 3869 of Lecture Notes in Computer
Science, pages 28–39.

1429

Cristian Danescu-Niculescu-Mizil, Lillian Lee, Bo Pang,
and Jon Kleinberg. 2012. Echoes of power: Language
effects and power differences in social interaction. In
Proceedings of WWW, pages 699–708.

James E. Driskell, Eduardo Salas, and Sandra Hughes.
2010. Collective orientation and team performance:
Development of an individual differences measure.
Human Factors: The Journal of the Human Factors
and Ergonomics Society, 52:316–328.

Heather Friedberg, Diane Litman, and Susannah B. F.
Paletz. 2012. Lexical entrainment and success in stu-
dent engineering groups. In Proceedings Fourth IEEE
Workshop on Spoken Language Technology (SLT), Mi-
ami, Florida, December.

Amy L. Gonzales, Jeffrey T. Hancock, and James W. Pen-
nebaker. 2010. Language style matching as a predic-
tor of social dynamics in small groups. Communica-
tion Research, 37:3–19.

M. E. Gregory, J. Feitosa, T. Driskell, E. Salas, and W. B.
Vessey, 2013. Developing and enhancing teamwork
in organizations: Evidence-based best practices and
guidelines, chapter Designing, delivering, and evaluat-
ing team training in organizations. Jossey-Bass, San
Francisco.

Richard A. Guzzo, Paul R. Yost, Richard J. Campbell,
and Gregory P. Shea. 1993. Potency in groups: Artic-
ulating a construct. British Journal of Social Psychol-
ogy, 32:87–106.

O. P. John, E. M. Donahue, and R. L. Kentle. 1991.
The big five inventory-versions 4a and 54. University
of California, Berkeley, Institute of Personality and
Social Research. http://www.ocf.berkeley.edu/ john-
lab/bfi.htm.

Chi-Chun Lee, Athanasios Katsamanis, Matthew P.
Black, Brian R. Baucom, Panayiotis G. Georgiou, and
Shrikanth Narayanan. 2011. An analysis of pca-based
vocal entrainment measures in married couples’ affec-
tive spoken interactions. In INTERSPEECH, pages
3101–3104.

Rivka Levitan and Julia Hirschberg. 2011. Measuring
acoustic-prosodic entrainment with respect to multiple
levels and dimensions. In Interspeech.

Rivka Levitan, Agustı́n Gravano, and Julia Hirschberg.
2011. Entrainment in speech preceding backchannels.
In Proceedings of ACL/HLT, June.

Rivka Levitan, Agustı́n Gravano, Laura Willson, Stefan
Benus, Julia Hirschberg, and Ani Nenkova. 2012.
Acoustic-prosodic entrainment and social behavior. In
2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 11–19.

José Lopes, Maxine Eskenazi, and Isabel Trancoso.
2013. Automated two-way entrainment to improve

spoken dialog system performance. In ICASSP, pages
8372–8376.

Nichola Lubold and Heather Pon-Barry. 2014. Acoustic-
prosodic entrainment and rapport in collaborative
learning dialogues. In Proceedings of the 2014 ACM
workshop on Multimodal Learning Analytics Work-
shop and Grand Challenge, pages 5–12. ACM.

Jessica R. Mesmer-Magnus and Leslie A. DeChurch.
2009. Information sharing and team performance:
A meta-analysis. Journal of Applied Psychology,
94:535–546.

Ella Miron, Miriam Erez, and Eitan Naveh. 2004. Do
personal characteristics and cultural values that pro-
mote innovation, quality, and efficiency compete or
complement each other? Journal of Organizational
Behavior, 25:175–199.

Christopher Michael Mitchell, Kristy Elizabeth Boyer,
and James C. Lester. 2012. From strangers to part-
ners: Examining convergence within a longitudinal
study of task-oriented dialogue. In SIGDIAL Confer-
ence, pages 94–98.

Seungwhan Moon, Saloni Potdar, and Lara Martin. 2014.
Identifying student leaders from mooc discussion fo-
rums through language influence. In Proceedings of
the EMNLP 2014 Workshop on Analysis of Large Scale
Social Interaction in MOOCs, pages 15–20.

Brian Mullen and Carolyn Copper. 1994. The relation
between group cohesiveness and performance: An in-
tegration. Psychological Bulletin, 115(2):210–227.

Ani Nenkova, Agustı́n Gravano, and Julia Hirschberg.
2008. High frequency word entrainment in spoken di-
alogue. In Proceedings of the 46th Annual Meeting
of the Association for Computational Linguistics on
Human Language Technologies: Short Papers, HLT-
Short ’08, pages 169–172.

Vlad Niculae and Cristian Danescu-Niculescu-Mizil.
2016. Conversational markers of constructive discus-
sions. arXiv preprint arXiv:1604.07407.

Catharine Oertel, Kenneth A. Funes Mora, Samira
Sheikhi, Jean-Marc Odobez, and Joakim Gustafson.
2014. Who will get the grant?: A multimodal corpus
for the analysis of conversational behaviours in group
interviews. In Proceedings of the 2014 Workshop on
Understanding and Modeling Multiparty, Multimodal
Interactions, pages 27–32.

Susanah B. F. Paletz and Christian D. Schunn. 2011. As-
sessing group-level participation in fluid teams: Test-
ing a new metric. Behavioral Research Methods,
43:522–536.

Robert Porzel, Annika Scheffler, and Rainer Malaka.
2006. How entrainment increases dialogical effective-
ness. In Proceedings of the IUI’06 Workshop on Effec-
tive Multimodal Dialogue Interaction, pages 35–42.

1430

David Reitter and Johanna D. Moore. 2007. Predicting
success in dialogue. In Proceedings of the 45th Meet-
ing of the Association of Computational Linguistics,
pages 808–815.

Eduardo Salas, Deborah DiazGranados, Cameron Klein,
C. Shawn Burke, Kevin C. Stagl, Gerald F. Goodwin,
and Stanley M. Halpin. 2008. Does team training
improve team performance? a meta-analysis. Human
Factors, 50:903–933.

Tanmay Sinha and Justine Cassell. 2015. Fine-grained
analyses of interpersonal processes and their effect on
learning. In Artificial Intelligence in Education: 17th
International Conference, pages 781–785.

Garold Stasser and William Titus. 1987. Effects of in-
formation load and percentage of shared information
on the dissemination of unshared information during
group discussion. Journal of Personality and Social
Psychology, 53:81–93.

Svetlana Stoyanchev and Amanda Stent. 2009. Lexi-
cal and syntactic priming and their impact in deployed
spoken dialog systems. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics, Companion Volume: Short
Papers, NAACL-Short ’09, pages 189–192, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Ruth Wageman, J. Richard Hackman, and Erin Lehman.
2005. Team diagnostic survey: Development of an
instrument. Journal of Applied Behavioral Science,
41:373–398.

Hein Wendt, Martin C. Euwema, and I. J. Hetty van
Emmerik. 2009. Leadership and team cohesiveness
across cultures. The Leadership Quarterly, 20:358–
370.

1431

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1432–1441,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Personalized Emphasis Framing for Persuasive Message Generation
Tao Ding and Shimei Pan

Department of Information Systems
University of Maryland, Baltimore County
{taoding01,shimei}@umbc.edu

Abstract
In this paper, we present a study on per-
sonalized emphasis framing which can be
used to tailor the content of a message
to enhance its appeal to different individ-
uals. With this framework, we directly
model content selection decisions based on
a set of psychologically-motivated domain-
independent personal traits including person-
ality (e.g., extraversion) and basic human
values (e.g., self-transcendence). We also
demonstrate how the analysis results can be
used in automated personalized content selec-
tion for persuasive message generation.

1 Introduction

Persuasion is an integral part of our personal and
professional lives. The topic of generating per-
suasive messages has been investigated in different
fields with varied focuses. Psychologists focus on
the cognitive, social and emotional processes of a
persuader and a persuadee to understand what makes
a communication persuasive (Hovland et al., 1953;
Petty and Cacioppo, 1986; Smith and Petty, 1996).
Marketing researchers are interested in applying the-
ories of persuasion in promoting consumer products
(Szybillo and Heslin, 1973; Han and Shavitt, 1994;
Campbell and Kirmani, 2000; Kirmani and Camp-
bell, 2004; Ford, 2005; Hirsh et al., 2012). Natural
Language Generation (NLG) researchers are inter-
ested in studying the relation between language us-
age and persuasion in order to build automated sys-
tems that produce persuasive messages (Guerini et
al., 2011; Reiter et al., 2003).

It is also generally believed that persuasion is
more effective when it is custom-tailored to reflect
the interests and concerns of the intended audience
(Noar et al., 2007; Dijkstra, 2008; Hirsh et al.,
2012). A proven tailoring tactic commonly used by
politicians, marketing executives, as well as public
health advocators is content framing (Meyerowitz
and Chaiken, 1987; Maheswaran and Meyers-Levy,
1990; Grewal et al., 1994; Rothman and Salovey,

1997). Previous framing research has mainly fo-
cused on two types of framing strategies: empha-
sis framing and equivalence framing. To emphasis
frame a message is to simplify reality by focusing on
a subset of the aspects of a situation or an issue and
make them more prominent in a communication to
promote certain definition, causal interpretation and
moral evaluation (Entman and Rojecki, 1993). For
example, in political debating, the topic of nuclear
energy can be framed as an economic development
issue, a safety issue or an environmental issue. In
marketing, the same car can be framed as a low cost
car, a performance car, or a green car. With differ-
ent framing strategies, the authors try to appeal to
individuals with different beliefs and concerns. In
contrast, equivalence framing focuses on presenting
content as either loss-framed or gain-framed mes-
sages. For example, a smoking cessation message
can employ a gain-frame like “You will live longer if
you quit smoking”, or a loss-frame such as “You will
die sooner if you do not quit smoking”. Even though
the messages are equivalent factually, the frames can
influence a receiver’s behavior either to encourage a
desirable behavior or to avoid an unwanted outcome
(Tversky and Kahneman, 1981). In this study, we
focus on personalized emphasis framing which se-
lectively emphasize the aspects of an entity (e.g., a
car) to enhance its appeal to a given receiver.

Using emphasis framing as the framework for
personalized content selection, we can take ad-
vantage of rich findings in prior framing re-
search that link content selection decisions to a set
of psychologically-motivated domain-independent
personal characteristics. This has made our
work more generalizable than those relying on
application-specific user characteristics (e.g., use an
individual’s smoking habit to tailor a smoke ces-
sation message). Since content framing is a part
of the content determination process, the model we
propose is a part of the content planner in a Natu-
ral Language Generation (NLG) system (Reiter and

1432

Dale, 1997).
There are three main contributions of this work.

1. To the best of our knowledge, this is the first ef-
fort in building an automated model of empha-
sis framing for personalized persuasive mes-
sage generation.

2. We made content selection decisions based on
a set of psychologically-motivated application-
independent user traits, such as personality
and basic human values, which makes our
work more generalizable than those relying on
domain-specific user characteristics and prefer-
ences.

3. We propose a cascade content selection model
that integrates personalized content selection
patterns in automated persuasive message gen-
eration.

2 Related Work

In the following, we summarize the research that is
most relevant to our work including prior psychol-
ogy and communication studies that link emphasis
framing with personal traits. Since building com-
putational models of emphasis framing was not the
primary goal in these studies, we also include litera-
ture on personalized Natural Language Generation.

2.1 Emphasis framing and Personal Traits
There is a large body of social, marketing and com-
munication theories on framing effects. (Zaller,
1992; Zaller and Feldman, 1992) point out that
framing essentially reorganizes information to in-
crease accessibility of an issue dimension by high-
lighting one cognitive path that had previously been
in the dark. Others argue that the framing effect is
due to a change in the rank order of the values as-
sociated with different aspects through the interac-
tion with the content found within a message (Nel-
son et al., 1997; Chong and Druckman, 2007; Ja-
coby, 2000). The human decisions are controlled
partly by the formulation of the problem and partly
by the norms, habits, and personal characteristics of
the decision-maker (Tversky and Kahneman, 1981).

Although most research agrees that the character-
istics of a receiver play an important role in fram-
ing effectiveness, there is a significant disagreement

in what characteristics of a receiver result in fram-
ing effects. For example, (Anderson, 2010) states
that people with prior attitudes toward an issue can
be influenced by frames, while Slothuus (Slothuus,
2008) and Tabor et al. (Taber et al., 2009) did not
find a framing effect for those with strong values as-
sociated with an issue prior to exposure to the frame.
The mixed results may be due to the fact that many
of these studies did not take into account that people
with different traits (e.g., different personality) may
react to framing strategies differently.

Recently, personalized framing, especially
personality-based framing research has become a
hot topic. Among them, Hirsh (2012) investigates
whether a persuasive appeal’s effectiveness can
be increased by aligning message framing with
a recipient’s personality profile. In this study,
for a given mobile phone, they constructed five
advertisements, each designed to target one of the
five major personality traits. Their results indicate
that advertisements were evaluated more positively
when they cohered with participants’ personality.
In a separate study, (Conroy et al., 2012) found
that certain personality traits, particularly openness,
agreeableness, and conscientiousness mediate
framing effects when participants were presented
with different frames of political and health issues
such as civil liberties, medical treatments, energy,
affirmative action, and gun control.

Inspired by the above research, we also employ
psychologically-motivated trait models to capture
individual characteristics. In addition to personality,
we also incorporate basic human values since fram-
ing effects were also shown to be related to personal
beliefs and motivations. As a result, we have signifi-
cantly increased the scope of our study over prior re-
search. Moreover, unlike prior research where only
messages hand-crafted by experts were used, we are
interested in building computational models to auto-
matically select a subset of the aspects to highlight
based on personal traits.

2.2 Personalized NLG

There is also a large body of work on personalized
Natural Language Generation (NLG). For example,
STOP is a Natural Language Generation (NLG) sys-
tem that generates tailored smoking cessation let-
ters based on a user’s responses to a four-page

1433

smoking questionnaire (Reiter et al., 2003); PER-
SIVAL customizes the content of search summaries
based on its relevance to a given patient’s health
record (McKeown et al., 2003); MATCH (John-
ston et al., 2002) is a multimodal dialogue sys-
tem that tailors the content of its responses based
on a user’s restaurant preferences; M-PIRO (Bu-
renhult, 2002) tailors the words and the complex-
ity of museum object descriptions for different au-
diences (e.g. adults, children, and experts); PER-
SONAGE (Mairesse and Walker, 2011) and CRAG
2 (Gill et al., 2012) vary linguistic styles to project
intended personality in spoken utterances. In ad-
dition, Carenini and Moore (Carenini and Moore,
2006) employed a multiattribute utility theory-based
user preference model for personalized evaluative
argument generation. Among them, STOP, PER-
SIVAL and MATCH use domain-specific user mod-
els while M-PIRO, PERSONAGE and GRAG2 em-
ploy domain independent user properties, such as
expertise and personality. For PERSONAGE and
GRAG2, personality traits are mainly used to adapt
linguistic styles. So far, there has not been much
work focusing on using domain-independent user
traits to automatically adapt message content to im-
prove its persuasive appeal.

3 Acquiring Personal Traits

Since prior study often links framing effects to in-
dividual characteristics such as personality and in-
dividual motivations and beliefs, here we focus on
two widely-accepted trait models in psychology:
the Big5 personality model (Goldberg, 1993) and
Schwartz’s basic human value model (Schwartz,
2003). Figure 1 shows the description of each of the
Big5 personality traits along with each of the five
basic human value traits.

To acquire the personality and value traits of a
person, traditionally, psychometric tests, such as the
IPIP test for Big 5 personality (Yarkoni, 2010a) and
the PVQ survey for values (Schwartz, 2003), were
used. Recent research in the field of psycholinguis-
tics has shown that it is possible to automatically
infer personal traits from one’s linguistic footprint,
such as tweets, Facebook posts and blogs (Yarkoni,
2010b; Celli and Polonio, 2013; Chen et al., 2014).
Unlike psychometric tests, automated trait analysis

Figure 1: Description of Two Trait Models

allows us to infer personal traits for a large number
of people, which makes it possible to scale up auto-
mated personal persuasion for a very large popula-
tion (e,g., millions of social media users).

4 Acquiring Author Framing Strategy

Framing effects are often subtle and may be influ-
enced by many factors, such as the credibility of the
authors, the personality of the receivers and the con-
text of the communication. In the first study, we
investigate whether it is feasible to build a person-
alized content selection model based on a writer’s
(a.k.a. an author’s) content framing strategies.

To investigate this, we first randomly generated
ten cars, each include eight aspects: safety, fuel
economy, quality, style, price, luxury, performance
and durability. The value of each aspect was ran-
domly generated on a 5-point Likert scale: “1 (very
bad)”, “2 (bad)”, “3 (average)”, “4 (good)”, and “5
(excellent)”. We also conducted a large-scale per-
sonality and basic human value survey on Amazon
Mechanical Turk (AMT). We used the 50-item IPIP
survey (Goldberg, 1993) to obtain a Amazon Me-
chanical Turk worker (a.k.a. Turker)’s personal-
ity scores and the 21-item PVQ survey (Schwartz,
2003) to obtain his/her basic value scores. To en-

1434

sure the quality of the data from AMT, we added
two qualification criteria. A qualified Turker must
(1) have submitted over 5000 tasks (2) with an ac-
ceptance rate over 95%. The survey also included
several validation questions, which are pairs of ques-
tions that are paraphrases of each other. If the an-
swers to a pair of validation questions are signifi-
cantly different, the user data were excluded from
our analysis. After removing invalid data, we col-
lected the traits of 836 Turkers. The raw personality
scores, ranging from 10 to 50, and raw value scores,
ranging from 1 to 6, were computed directly from
the survey answers. The normalized trait scores,
ranging from 0 to 1, were computed using their rank
percentiles in this population.

In addition, we designed two Human Intelligence
Tasks (HITs) on AMT: a content customization task
and a validation task. In the content customization
task (a.k.a. Task 1), a Turker was asked to select
one car aspect to emphasize in his message for a re-
ceiver. The validation task (a.k.a. Task 2) was used
to validate whether a receiver prefers the message
customized for her or not.

Specifically, in Task 1, the Turkers were asked to
imagine that they work for a marketing firm on a
campaign to promote a new car. Each Turker was
given the specification of a car (randomly selected
from the 10 randomly generated cars) and a receiver
(randomly selected from the 836 Turkers whose trait
scores were known to us). The Turker was asked to
write a campaign message to persuade the receiver
to buy the car. But the Turker can only select one of
the eight car aspects to include in his message. Since
customizing a message based on an interaction of all
ten traits can be very challenging for a Turker, we
used a simplified trait profile in our study. The sim-
plified trait profile contains only two traits: the most
prominent personality trait and the most prominent
value trait. The prominence of a trait was defined
based on the normalized trait score. The more dif-
ferent a trait score is from the median (.50), the more
prominent the trait is. For comparison, for the same
car, we also asked the same writer to select a car as-
pect for someone who has an opposite trait profile.
The opposite trait profile is defined as the one that is
most different from the given trait profile (with the
lowest cosine similarity). After the writer selected
a car aspect, he also wrote a campaign message us-

ing the selected aspect. Overall, after removing in-
valid data, we collected 490 pairs of messages for
131 pairs of receivers.

To validate the framing effect, in Task 2, we asked
a new set of Turkers (receivers) to first complete an
IPIP personality survey and a PVQ human value sur-
vey. Based on the survey results, we computed the
trait profile for each of them. In addition, for each
receiver in Task 2, we matched his/her trait profile
with the 131 pairs of trait profiles collected in Task
1. The profile with the highest matching score (com-
puted based on cosine similarity) was selected and
its associated message pair was retrieved.

Then we presented the receiver with a pair of
messages, one created for someone with matching
trait profile, the other for someone with the oppo-
site trait profile. We also randomized the order these
messages were presented. Finally, we asked the re-
ceivers to rate which message they prefer more. If
the framing strategies used by the Turkers (authors)
in Task 1 were effective, then the Turkers (receivers)
in Task 2 will prefer the messages tailored for them
more than the ones tailored for someone with the
opposite trait profile. Overall, after filtering out in-
valid data, we have collected the results from 145 re-
ceivers. Among them, 77 prefer the messages writ-
ten for them, while 68 prefer the messages written
for someone with the opposite trait profiles. We
performed a sign test to determine whether the dif-
ference is statistically significant and the result was
negative (p < 0.2).

Although moderate personalization effects were
found in previous framing research, only expert-
crafted messages were used (Hirsh et al., 2012).
Here, when Turkers (mostly non-experts) were
asked to customize the messages based on a re-
ceiver’s traits, no significant effects were found.
Since authors’ emphasis framing strategies were not
effective, we can not directly use authors’ data to
learn their emphasis framing strategies. Next, we
present several experiments designed to automati-
cally derive emphasis framing strategies based on
a receiver’s traits and his/her aspect selection deci-
sions.

1435

5 Learning Emphasis Framing Strategies

To derive emphasis framing patterns based on a re-
ceiver’s traits and his/her aspect selection decisions,
we designed another HIT (Task 3) on AMT to col-
lect data. In Task 3, each Turker was asked to take
the IPIP and PVQ surveys so that we can obtain
his/her Big5 personality and value scores. In addi-
tion, we also asked him/her to rank all eight car as-
pects based on their importance to him/her. To con-
trol the influence of the value of a car aspect on a
user’s aspect selection decision (e.g., if the value of
“safety” is “poor” and the value of “fuel economy”
is “good”, to promote the car, people almost always
describe it as ”a car with good fuel economy”, not
“an unsafe car”, regardless of a receiver’s personal-
ity). In this study, we kept the values of all car as-
pects unspecified. After removing invalid data, our
dataset has 594 responses, each contains a Turker’s
personality and value scores as well as his/her rank
of the eight car aspects. In the following, we de-
scribe how we analyze the relationship between as-
pect rank and personal traits.

5.1 Pattern Discovery with Regression

In our first study, we employed regression analysis
to identify significant correlations between personal
traits and aspect ranks. Specifically, we trained eight
linear regression models, one for each of the eight
car aspects. The dependent variable in each model
is the rank of an aspect (from 1 to 8) and the in-
dependent variables are the ten user traits. In the
regression analysis, we only focused on the main
effects since a full interaction model with ten traits
will require much more data to train. Since the raw
scores of the personality and value traits use differ-
ent scales, we normalized these scores so that they
are all from 0 to 1. Table 1 shows the regression
results.

Several interesting patterns were discovered in
this analysis: (a) a positive correlation between the
rank of “luxury” and “self-enhancement”, a trait of-
ten associated with people who pursue self-interests
and value social status, prestige and personal suc-
cess (p < 0.0001). This pattern suggests that to pro-
mote a car to someone who scores high on “self-
enhancement”, we need to highlight the “luxury”
aspect of a car. (b) the rank of “safety” is posi-

tively correlated with “conservation”, a trait associ-
ated with people who conform to tradition and pur-
sue safety, harmony, and stability (p < 0.005). This
result suggests that for someone values “conserva-
tion”, it is better to emphasize “car safety” in a per-
sonalized sales message. (c) “self-transcendence”,
a trait often associated with people who pursue the
protection of the welfare of others and the nature,
is positively correlated with the rank of “fuel econ-
omy” (p < 0.005) but negatively correlated with the
rank of “style” (p < 0.005). This suggests that for
someone who values “self-transcendence”, it is bet-
ter to emphasize “fuel economy”, but not so much on
“style”. Other significant correlations uncovered in
this analysis include a negative correlation between
car “price” and “conservation” (p < 0.005), a nega-
tive correlation between car “safety” and “conscien-
tiousness” (p < 0.05), and a positive correlation be-
tween “openness to change” and car “performance”
(p < 0.05).

5.2 Pattern Discovery with Constrained
Clustering

In the regression analysis, we only considered the
main framing effects. In order to discover high-order
interaction patterns with limited data, we want to
use clustering to group people with similar traits to-
gether. In addition, we also want that the people in a
cluster share similar aspect preferences. Otherwise,
we won’t be able to link the trait patterns discovered
in a cluster with specific aspect preferences. Thus,
we employed constrained clustering in this analysis.
With constrained clustering, we can ensure the ho-
mogeneity of the aspect preferences within each re-
sulting cluster.

To facilitate this analysis, first we mapped the
aspect ranks obtained in Task 3 into discrete cate-
gories. For a complete rank of eight car aspects, we
mapped the top three ranked aspects to an “Impor-
tant” class, bottom three to a “Not-Important” class,
and the middle two to a “Neutral” class. In addi-
tion, we encoded the aspect homogeneity require-
ment as constraints. Typically, constrained cluster-
ing incorporates either a set of must-link constraints,
a set of cannot-link constraints, or both. A must-
link constraint is used to specify that the two data
instances in the must-link relation should be placed
in the same cluster. A cannot-link constraint is used

1436

Table 1: Results of the Regression Analysis
Safety Fuel Quality Style Price Luxury Perf Durab

Agreeableness 0.39 -0.52 -0.53 0.54 0.81 0.004 -0.62 -0.27
Conscientiousness -1.75 * -0.31 0.80 0.29 -0.01 0.27 0.83 -0.12

Extroversion 0.69 -0.71 0.008 -0.25 -0.37 0.48 -0.07 0.224
Neurotisim 1.08 -0.01 -0.46 -0.11 -0.32 -0.07 0.18 -0.28
Openness 1.59 -0.05 0.01 -0.99 0.36 -0.53 -0.46 0.07

Conservation 1.99 ** -0.99 -0.66 0.84 -1.72 ** 0.21 0.38 -0.03
Hedonism 1.47 -0.15 -0.69 0.16 0.51 -0.06 -0.82 -0.43

Openness to change -2.15 0.08 0.58 0.48 -1.99 * -0.38 2.29* 1.07
Self-enhancement -1.39 -1.12 0.58 0.47 -0.31 2.41 *** 0.77 -1.41
Self-transcendence 1.33 2.37 ** 1.36 -2.47 ** -0.91 -1.01 -0.33 -0.32

Note: p < 0.05, ** p < 0.005, *** p < 0.0001

Table 2: Patterns Discovered in Clustering Analysis
Feature Cluster Accuracy Label Significant traits

Safety
1 0.7 Important Extrave(+),Neuroti(+)
2 0.64 Neutral Conscie(+),Hedonis(+),Open(+),Self-en(+)
3 0.71 Important Conscie(+),Open(-)

Fuel 1 0.54 Neutral Open(-),Self-en(-)
2 0.54 Not-Important Hedonis(+),Open(+),Self-en(+)

Quality
1 0.43 Important Extrave(+),Neuroti(+)
2 0.45 Non-Important Hedonis(+),Open(+),Self-en(+)
3 0.45 Not-Important Conscie(+),Open(-)

Style
1 0.5 Not-Important Hedonis(-),Open(-)
2 0.55 Neutral Conscie(+),Extrave(+),Neuroti(+)
3 0.62 Neutral Conscie(+),Hedonis(+),Open(+),Self-en(+)
4 0.74 Not-Important Conscie(+),Open(-)

Performance
1 0.73 Neutral Extrave(+),Neuroti(+)
2 0.5 Neutral Conscie(+),Open(-)
3 0.4 Not-Important Hedonis(-),Open(-)

Durability 1 0.56 Not-Important Extrave(+),Hedonis(+),Self-en(+)
2 0.36 Important Conscie(+),Hedonis(+),Open(+),Self-en(+)

Note: CV < 0.12 P < 0.001Diff > 0.2

to specify that the two instances in the cannot-link
relation should not be put in the same cluster. These
constraints act as a guide for which a constrained
clustering algorithm will use to find clusters that sat-
isfy these requirements.

To encode the homogeneity constraint, for each
car aspect (e.g. safety), we can simply add must-
links between every pair of Turkers if they share the
same aspect preference (e.g., both consider “safety”
important) and add cannot-links for every pair of
Turkers who do not share the same aspect prefer-
ences (e.g., one Turker considers “safety” “Impor-
tant”, the other considers it “Not-Important”). But
with both must-links and cannot-links, it is very
likely we will get three big clusters, each is related to
one of the three categories: Important, Neutral and
Not-Important. Although the resulting clusters sat-
isfy the aspect preference homogeneity requirement,
they fail to group people with similar traits together.
As a result, in this analysis, we only used cannot-
links, which not only guarantees the homogeneity of
aspect preferences, but also creates smaller clusters
that group people with similar traits together.

We employed the Metric Pairwise Constrained
KMeans algorithm (MPCK-MEANS) (Bilenko et
al., 2004) to incorporate the aspect preference ho-
mogeneity requirement. The optimal cluster number
K was determined empirically by running MPCK-
MEANS with different Ks, K ∈ [3, 20] (3 is the
minimum number of clusters since we have 3 differ-
ent aspect preference categories).

To determine whether the resulting clusters cap-
ture any interesting patterns, we used two pattern
selection criteria (a) a homogeneity criterion which
requires that there is at least one trait whose values in
the cluster is relatively homogeneous; (b) a distinc-
tiveness criterion which requires that for the traits
identified in (a), their cluster means need to be sig-
nificantly different from the population means. For
(a), we used the coefficient of variation (CV) as the
homogeneity measure. CV, also known as relative
standard deviation (RSD), is a standardized measure
of dispersion of a probability or count distribution.
It is often expressed as a percentage and is defined
as the ratio of the standard deviation σ to the mean
|µ|. In the study, we required that all the CVs of

1437

homogeneous traits to be lower than 0.12. For (b)
we required that the differences of the means need
to be significant based on an independent sample t-
test with p < 0.001 and the difference of means is
greater than 0.2.

Table 2 highlights some of the patterns discovered
using this approach. In this table, we list the cluster
id, cluster label (Important, Not-Important, Neutral),
clustering accuracy, and significant traits in the clus-
ter (“+” indicates that the cluster mean is higher than
population mean, “-” means the opposite). For ex-
ample, based on the Safety-1 pattern, people who
are more extraverted (extrave (+)) and more neu-
rotic (neurotic (+)) tend to consider “car safety” im-
portant. Similarly, based on pattern Safety-3, peo-
ple who are more conscientious (conscie(+)) but
less open (open(-)) tend to consider “safety” impor-
tant. Other interesting patterns include: people who
are less open (open(-)) and do not value hedonism
(hedomis (-)) don’t consider performance very im-
portant (performance-3), and people who are more
extraverted (extrave(+)), value hedonism and self-
enhancement (hedonis(+), self-en(+)) do not think
durability important (durability-1).

6 Apply Emphasis Framing in NLG

The patterns derived in the previous section can be
used in personalized content selection for Natural
Language Generation. In general, to promote a car,
people tend to highlight the good aspects and avoid
the bad aspects, regardless of a receiver’s person-
ality. For example, people will likely to highlight
the fuel economy aspect if a car is very fuel efficient
while de-highlight the same aspect if a car is not fuel
efficient. Thus, during content selection, to take the
value of an aspect into consideration, we employ a
cascade NLG model that integrates value-based con-
tent selection with trait-based personalization.

The input to the cascade content selection model
includes: (1) the values of all the car aspects; (2)
the trait scores of a receiver; (3) the eight linear-
regression models learned in Section 5.2, one for
each aspect; (4) the interaction rules learned in Sec-
tion 5.3; (5) n, the number of aspects needed in the
output; (6) the value difference threshold δ1 that de-
termines whether the values of two or more aspects
are significantly different; (7) the rank difference

threshold δ2 that determines whether the ranks of
two or more aspects predicted by the linear regres-
sion models are significantly different.

To select n aspects to emphasize, our system first
ranks all the aspects based on their values. If the
value of the n-th aspect vn is significantly better than
that of the (n+1)-th aspect vn+1 (i.e., their difference
is greater than δ1), we output the top n aspects di-
rectly. Otherwise, for all the aspects whose values
are either the same or not significantly worse than
vn, their ranks will be determined by the trait-based
linear regression models. Moreover, after re-ranking
relevant aspects based on the predicted ranks from
the regression models, if the predicted rank of the
n-th aspect rn is significantly better than that of
the (n+1)-th aspect rn+1 (i.e., the rank difference is
greater than δ2), we just output the top n aspects in
this list. Otherwise, for those aspects whose ranks
predicted by the linear regression models are not sig-
nificantly lower than rn, we use the interaction rules
discovered in Section 5.3 to further adjust their rank-
ing scores (i.e., increase the rank by δ2 if the clus-
ter label is “Important”, or decrease by δ2 if “Not-
Important”). For each aspect, if more than one inter-
action rule applies, more accurate rules take prece-
dence over less accurate rules. Finally, the system
will output the top n aspects in the final list.

We use an example shown in Figure 2 to illus-
trate the cascade aspect selection process. In this
example, we assume n=3, δ1=1 and δ2=0.5. We first
sorted all the aspects based on their values. Since
the values of “Fuel Economy” and “Luxury” are sig-
nificantly better than the 3rd-ranked aspect “Price”,
their ranks are not affected by personalized aspect
selection. Similarly, since the values of “Perfor-
mance” and “Style” are significantly lower than that
of the 3rd-ranked aspect, their ranks are also not af-
fected by personalization. Since the value differ-
ences among the rest 4 aspects, “Price”, “Durabil-
ity”, “Quality” and “Safety” are all equal or not sig-
nificant worse than v3, we used trait-based person-
alized ranks predicted by the regression models to
re-rank them (the output ranks from the regression
models are shown in the parentheses in the column
“Regression-based Re-Ranking”). After re-ranking
these aspects based on the predicted ranks, since the
rank of the 3rd-ranked aspect “Price” (2.2) and that
of “Safety” (2.5) is within δ2, we use the learned

1438

Figure 2: A Cascade Content Selection Example

interaction rules to adjust their ranks. Since the pre-
dicted ranks of “Durability” and “Quality” are much
worse than that of “Price”, their ranks are not af-
fected by the interaction rules. To apply the interac-
tion rules, assume for a given receiver, both his ex-
traversion and neuroticism scores are much higher
than the population average, the Safety-1, Quality-
1 and Performance-1 rules are applicable. Since the
Safety-1 rule predicts that “Safety” is “Important” to
the receiver while none of the rules affects “Price”,
the predicted rank for “Safety” is increased by δ2
. After this adjustment, the ranks of all the aspects
are shown in the “Final Rank” column. The top 3
aspects based on the final ranks are selected as the
output (those marked with a *).

To evaluate the performance of the cascade con-
tent selection model, we conducted an additional
AMT study. Given the specifications of the ten cars
in Task1, we asked each AMT participant to se-
lect the top-n aspects to emphasize. Here n=1 and
3. In this task, aspect selection not only depends
on the importance of an aspect to a receiver, but
also the values of the aspects of a given car. We
also acquired the personality and value scores of
each Turker based on the IPIP personality and PVQ
value survey. Finally, we compared the output of
our model with the aspects selected by the Turkers.
We used top-n overlapping percentage as the eval-
uation metrics. Overall, we collected the aspect se-
lection results from 38 Turkers, each on ten different
cars. In total, we collected 380 data instances in our
ground truth dataset. We have tested different δ1 and
δ2, the best results were obtained when δ1 = 0 and
δ2 = 0.5. We compared our model with a baseline
system which relies solely on the values of aspects
to determine their ranks in the baseline system. If
two or more aspects have the same value (e.g., the
values of both “Price” and “Durability” are “3(Av-
erage)”, their ranks were determined randomly. Ta-

ble 3 shows the evaluation results. If only 1 aspect is
needed in the output, the Top-1 agreement is 62% for
the cascade model versus the baseline’s 54%. Simi-
larly, if 3 aspects are needed in the output, the Top-3
agreement is 87% for the cascade model versus the
baseline’s 46%. All the differences are statistically
significant based on paired-t test (p ≤ 0.05).

Table 3: Cascade Content Selection Evaluation
Cascade Baseline

Top-1 agreement 0.62 0.54
Top-3 agreement 0.87 0.46

7 Discussion

In general, there are two main challenges in adapt-
ing a personalized content selection model trained
in one domain to another domain: (1) adapting the
data model from one domain (e.g., restaurant data)
to another (e.g., movie data); (2) adapting a domain-
specific user model (e.g., a user’ preferences of
restaurant features such as ”cuisine type”) to a dif-
ferent domain (e.g., a user’s preferences of movie
features such as ”movie genre”). Although our data
model is in the automobile domain, we adopted a
domain-independent user model motivated by psy-
chological theories(e.g., personality and basic hu-
man values), instead of a domain-dependent user
preference models (e.g, a user’s preferences of ”fuel
economy”). This allows us to more easily apply typ-
ical domain adaptation methods such as instance-
based (Zadrozny, 2004) or feature-based transfer
learning (Blitzer et al., 2006) to further adapt the
system and generalize the current results.

8 Conclusions

In this study, we analyzed the relationship between
an individual’s traits and his/her aspect framing de-
cisions. Our analysis has uncovered interesting pat-
terns that can be used to automatically customize
a message’s content to enhance its appeal to its re-
ceivers. We also proposed a cascade content selec-
tion model to automatically incorporate the analysis
results in automated persuasive message generation.
Our evaluation results have demonstrated the effec-
tiveness of this approach.

1439

References
Kristen D Anderson. 2010. Framing traits: The role of

personality in framing effects.
Mikhail Bilenko, Sugato Basu, and Raymond J Mooney.

2004. Integrating constraints and metric learning
in semi-supervised clustering. In Proceedings of
the twenty-first international conference on Machine
learning, page 11. ACM.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Proceedings of the 2006 conference
on empirical methods in natural language processing,
pages 120–128. Association for Computational Lin-
guistics.

G Burenhult. 2002. Generating multilingual person-
alized descriptions of museum exhibits-the m-piro
project.

Margaret C Campbell and Amna Kirmani. 2000. Con-
sumers’ use of persuasion knowledge: The effects of
accessibility and cognitive capacity on perceptions of
an influence agent. journal of Consumer Research,
27(1):69–83.

Sandra Carberry, Jennifer Chu-Carroll, and Stephanie
Elzer. 1999. Constructing and utilizing a model
of user preferences in collaborative consultation dia-
logues. Computational Intelligence, 15(3):185–217.

Giuseppe Carenini and Johanna D Moore. 2006. Gen-
erating and evaluating evaluative arguments. Artificial
Intelligence, 170(11):925–952.

Fabio Celli and Luca Polonio. 2013. Relationships be-
tween personality and interactions in facebook. Social
Networking: Recent Trends, Emerging Issues and Fu-
ture Outlook, pages 41–54.

Jilin Chen, Gary Hsieh, Jalal U Mahmud, and Jeffrey
Nichols. 2014. Understanding individuals’ personal
values from social media word use. In Proceedings of
the 17th ACM conference on Computer supported co-
operative work & social computing, pages 405–414.
ACM.

Dennis Chong and James N Druckman. 2007. Framing
theory. Annu. Rev. Polit. Sci., 10:103–126.

Susan Conroy, Carmine M Pariante, Maureen N Marks,
Helen A Davies, Simone Farrelly, Robin Schacht, and
Paul Moran. 2012. Maternal psychopathology and
infant development at 18 months: the impact of mater-
nal personality disorder and depression. Journal of the
American Academy of Child & Adolescent Psychiatry,
51(1):51–61.

Arie Dijkstra. 2008. The psychology of tailoring-
ingredients in computer-tailored persuasion. Social
and personality psychology compass, 2(2):765–784.

Robert M Entman and Andrew Rojecki. 1993. Freezing
out the public: Elite and media framing of the us anti-
nuclear movement.

Christopher M Ford. 2005. Speak no evil: targeting a
population’s neutrality to defeat an insurgency. Pa-
rameters: The US Army War College Quarterly, Sum-
mer.

Alastair J Gill, Carsten Brockmann, and Jon Oberlan-
der. 2012. Perceptions of alignment and personality in
generated dialogue. In Proceedings of the Seventh In-
ternational Natural Language Generation Conference,
pages 40–48. Association for Computational Linguis-
tics.

Lewis R. Goldberg. 1993. The structure of phenotypic
personality traits. American Psychologist, 48(1):26.

Dhruv Grewal, Jerry Gotlieb, and Howard Marmorstein.
1994. The moderating effects of message framing and
source credibility on the price-perceived risk relation-
ship. Journal of consumer research, pages 145–153.

Marco Guerini, Oliviero Stock, Massimo Zancanaro,
Daniel J OKeefe, Irene Mazzotta, Fiorella de Rosis,
Isabella Poggi, Meiyii Y Lim, and Ruth Aylett. 2011.
Approaches to verbal persuasion in intelligent user in-
terfaces. In Emotion-Oriented Systems, pages 559–
584. Springer.

Sang-Pil Han and Sharon Shavitt. 1994. Persuasion and
culture: Advertising appeals in individualistic and col-
lectivistic societies. Journal of experimental social
psychology, 30(4):326–350.

Jacob B Hirsh, Sonia K Kang, and Galen V Bodenhausen.
2012. Personalized persuasion tailoring persuasive ap-
peals to recipients personality traits. Psychological
science, 23(6):578–581.

Carl I Hovland, Irving L Janis, and Harold H Kelley.
1953. Communication and persuasion; psychological
studies of opinion change.

William G Jacoby. 2000. Issue framing and public opin-
ion on government spending. American Journal of Po-
litical Science, pages 750–767.

Michael Johnston, Srinivas Bangalore, Gunaranjan
Vasireddy, Amanda Stent, Patrick Ehlen, Marilyn
Walker, Steve Whittaker, and Preetam Maloor. 2002.
Match: An architecture for multimodal dialogue sys-
tems. In Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, pages
376–383. Association for Computational Linguistics.

Amna Kirmani and Margaret C Campbell. 2004. Goal
seeker and persuasion sentry: How consumer targets
respond to interpersonal marketing persuasion. Jour-
nal of Consumer Research, 31(3):573–582.

Durairaj Maheswaran and Joan Meyers-Levy. 1990. The
influence of message framing and issue involvement.
Journal of Marketing research, pages 361–367.

François Mairesse and Marilyn A. Walker. 2011. Con-
trolling user perceptions of linguistic style: Trainable
generation of personality traits. Comput. Linguist.,
37(3):455–488, September.

1440

Kathleen R McKeown, Noemie Elhadad, and Vasileios
Hatzivassiloglou. 2003. Leveraging a common rep-
resentation for personalized search and summarization
in a medical digital library. In Proceedings of the 3rd
ACM/IEEE-CS joint conference on Digital libraries,
pages 159–170. IEEE Computer Society.

Beth E Meyerowitz and Shelly Chaiken. 1987. The ef-
fect of message framing on breast self-examination at-
titudes, intentions, and behavior. Journal of personal-
ity and social psychology, 52(3):500.

Thomas E Nelson, Zoe M Oxley, and Rosalee A Claw-
son. 1997. Toward a psychology of framing effects.
Political behavior, 19(3):221–246.

Seth M Noar, Christina N Benac, and Melissa S Harris.
2007. Does tailoring matter? meta-analytic review
of tailored print health behavior change interventions.
Psychological bulletin, 133(4):673.

Richard E Petty and John T Cacioppo. 1986. The elabo-
ration likelihood model of persuasion. Springer.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(01):57–87.

Ehud Reiter, Roma Robertson, and Liesl M Osman.
2003. Lessons from a failure: Generating tailored
smoking cessation letters. Artificial Intelligence,
144(1):41–58.

Alexander J Rothman and Peter Salovey. 1997. Shaping
perceptions to motivate healthy behavior: the role of
message framing. Psychological bulletin, 121(1):3.

Shalom H Schwartz. 2003. A proposal for measuring
value orientations across nations. Questionnaire Pack-
age of the European Social Survey, pages 259–290.

Rune Slothuus. 2008. More than weighting cognitive
importance: A dual-process model of issue framing ef-
fects. Political Psychology, 29(1):1–28.

Stephen M Smith and Richard E Petty. 1996. Mes-
sage framing and persuasion: A message processing
analysis. Personality and Social Psychology Bulletin,
22:257–268.

George J Szybillo and Richard Heslin. 1973. Resistance
to persuasion: Inoculation theory in a marketing con-
text. Journal of Marketing Research, pages 396–403.

Charles S Taber, Damon Cann, and Simona Kucsova.
2009. The motivated processing of political argu-
ments. Political Behavior, 31(2):137–155.

Amos Tversky and Daniel Kahneman. 1981. The fram-
ing of decisions and the psychology of choice. Sci-
ence, 211(4481):453–458.

Tal Yarkoni. 2010a. The abbreviation of personality, or
how to measure 200 personality scales with 200 items.
Journal of Research in Personality, 44(2):180–198.

Tal Yarkoni. 2010b. Personality in 100,000 words:
A large-scale analysis of personality and word use

among bloggers. Journal of research in personality,
44(3):363–373.

Bianca Zadrozny. 2004. Learning and evaluating classi-
fiers under sample selection bias. In ICML.

John Zaller and Stanley Feldman. 1992. A simple theory
of the survey response: Answering questions versus
revealing preferences. American journal of political
science, pages 579–616.

John Zaller. 1992. The nature and origins of mass opin-
ion. Cambridge university press.

1441

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1442–1451,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Cross-Sentence Inference for Process Knowledge

Samuel Louvan+, Chetan Naik+, Sadhana Kumaravel+, Heeyoung Kwon+,
Niranjan Balasubramanian+, Peter Clark∗

+Stony Brook University, ∗Allen Institute for AI,
{slouvan, cnaik, skumaravel, heekwon,niranjan}@cs.stonybrook.edu,

peterc@allenai.org

Abstract

For AI systems to reason about real world situ-
ations, they need to recognize which processes
are at play and which entities play key roles in
them. Our goal is to extract this kind of role-
based knowledge about processes, from mul-
tiple sentence-level descriptions. This knowl-
edge is hard to acquire; while semantic role
labeling (SRL) systems can extract sentence
level role information about individual men-
tions of a process, their results are often noisy
and they do not attempt create a globally con-
sistent characterization of a process.

To overcome this, we extend standard within
sentence joint inference to inference across
multiple sentences. This cross sentence in-
ference promotes role assignments that are
compatible across different descriptions of the
same process. When formulated as an Integer
Linear Program, this leads to improvements
over within-sentence inference by nearly 3%
in F1. The resulting role-based knowledge is
of high quality (with a F1 of nearly 82).

1 Introduction

Knowledge about processes is essential for AI sys-
tems in order to understand and reason about the
world. At the simplest level, even knowing which
class of entities play key roles can be useful for
tasks involving recognition and reasoning about pro-
cesses. For instance, given a description “a pud-
dle drying in the sun”, one can recognize this as an
instance of the process evaporation using a macro-
level role knowledge: Among others, the typical un-
dergoer of evaporation is a kind of liquid (the pud-

1) Evaporation is the process by which liquids are
converted to their gaseous forms.
2) Evaporation is the process by which water is
converted into water vapor.
3) Water vapor rises from water due to evaporation.
4) Clouds arise as water evaporates in the sun.

Table 1: Example sentences for the process evaporation. Un-

derlined spans correspond to fillers for the undergoer role.

dle), and the enabler is usually a heat source (the
sun).

Our goal is to acquire this kind of role-based
knowledge about processes from sentence-level de-
scriptions in grade level texts. Semantic role label-
ing (SRL) systems can be trained to identify these
process specific roles. However, these were de-
veloped for sentence-level interpretation and only
ensure within sentence consistency of labels (Pun-
yakanok et al., 2004; Toutanova et al., 2005; Lewis
et al., 2015), limiting their ability to generate co-
herent characterizations of the process overall. In
particular, the same process participant may appear
in text at different syntactic positions, with different
wording, and with different verbs, which makes it
hard to extract globally consistent descriptions. In
this work, we propose a cross sentence inference
method to address this problem.

To illustrate the challenge consider some exam-
ple sentences on evaporation shown in Table 1.The
underlined spans correspond to fillers for an un-
dergoer role i.e., the main entity that is undergo-
ing evaporation. However, the filler water occurs
as different syntactic arguments with different main
actions. Without large amounts of process-specific
training data, a supervised classifier will not able to

1442

learn these variations reliably. Nevertheless, since
all these sentences are describing evaporation, it is
highly likely that water plays a single role. This ex-
pectation can be encoded as a factor during inference
to promote consistency and improve accuracy, and is
the basis of our approach.

We formalize this cross sentence joint inference
idea as an Integer Linear Program (ILP). Our cen-
tral idea is to collect all sentences for a single pro-
cess, generate candidate arguments, and assign roles
that are globally consistent for all arguments within
the process. This requires a notion of consistency,
which we model as pairwise alignment of arguments
that should receive the same label. Argument-level
entailment alone turns out to be ineffective for this
purpose.

Therefore, we develop an alignment classifier that
uses the compatibility of contexts in which the can-
didate arguments are embedded. We transform the
original role-label training data to create alignment
pairs from arguments that get assigned the same la-
bel, thus avoiding the need for additional labeling.
Finally, the ILP combines the output of the SRL
classifier and the alignment classifier in an objective
function in order to find globally consistent assign-
ments.

An empirical evaluation on a process dataset
shows that proposed cross sentence formulation out-
performs a strong within sentence joint inference
baseline, which uses scores from a custom built role
classifier that is better suited for the target domain.

In summary, this work makes the following con-
tributions:

1. A cross-sentence, collective role-labeling and
alignment method for harvesting process
knowledge.

2. A high quality semantic resource that provides
knowledge about scientific processes discussed
in grade-level texts including physical, biolog-
ical, and natural processes.

3. An evaluation which shows that the proposed
cross sentence inference yields high quality
process knowledge.

2 Related Work

Role-based representations have been shown to be
useful for Open-domain factoid question answer-
ing (Shen and Lapata, 2007; Pizzato and Mollá,
2008), grade-level science exams (Jauhar et al.,
2016) , and comprehension questions on process
descriptions (Berant et al., 2014). Similar to pro-
cess comprehension work, we target semantic rep-
resentations about processes but we focus only on
a high-level summary of the process, rather than
detailed sequential representation of sub-events in-
volved. Moreover, we seek to aggregate knowledge
from multiple descriptions rather than understand a
single discourse about each process.

There has been substantial prior work on se-
mantic role labeling itself, that we leverage in this
work. First, there are several systems trained on
the PropBank dataset, e.g., EasySRL (Lewis et al.,
2015), Mate (Björkelund et al., 2009), Generalized-
Inference (Punyakanok et al., 2004). Although use-
ful, the PropBank roles are verb (predicate) specific,
and thus do not produce consistent labels for a pro-
cess (that may be expressed using several different
verbs). In constrast, frame-semantic parsers, e.g.,
SEMAFOR (Das et al., 2010), trained on FrameNet-
annotated data (Baker et al., 1998) do produce con-
cept (frame)-specific labels, but the FrameNet train-
ing data has poor (< 50%) coverage of the grade
science process terms. Building a resource like
FrameNet for a list of scientific processes is expen-
sive.

Several unsupervised, and semi-supervised ap-
proaches have been proposed to address these issues
for PropBank style predicate-specific roles (Swier
and Stevenson, 2004; Lang and Lapata, 2011;
Fürstenau and Lapata, 2009; Fürstenau and Lapata,
2012; Lang and Lapata, 2010; Klementiev, 2012). A
key idea here is to cluster syntactic signatures of the
arguments and use the discovered clusters as roles.
Another line of research has sought to perform joint
training for syntactic parsing and semantic role la-
beling (Lewis et al., 2015), and in using PropBank
role labels to improve FrameNet processing using
pivot features (Kshirsagar et al., 2015).

Some SRL methods account for context informa-
tion from multiple sentences (Ruppenhofer et al.,
2010; Roth and Lapata, 2015). They focus on an-

1443

Process Undergoer Enabler Action Result
evaporation liquid heat changes gas

water heat energy convert water vapor
weathering rock weather disintegration smaller rocks

solid material heating breaking down smaller particles
photosynthesis carbon dioxide solar energy convert energy

CO2 light energy transforms food

Table 2: Examples of Target Knowledge Roles

notating individual event mentions in a document
using discourse-level evidence such as co-reference
chains. Our task is to aggregate knowledge about
processes from multiple sentences in different doc-
uments. Although both tasks require raw SRL-style
input, the different nature of the process task means
that a different solution framework is needed.

Our goal is to acquire high quality semantic
role based knowledge about processes. This al-
lows us an unique opportunity to jointly inter-
pret sentences that are discussing the same pro-
cess. We build on ideas from previous within sen-
tence joint inference (Punyakanok et al., 2004), ar-
gument similarity notions in semi and unsupervised
approaches (Fürstenau and Lapata, 2012), and com-
bining PropBank roles to propose a cross-sentence
inference technique (Kshirsagar et al., 2015). The
inference can be integrated with existing trained su-
pervised learning pipelines, which can provide a
score for role assignments for a given span.

3 Approach

Processes are complex events with many partici-
pating entities and inter-related sub-events. In this
work, we aim for a relatively simple macro-level
role-based knowledge about processes. Our task is
to find classes of entities that are likely to fill key
roles within a process namely, the undergoer, en-
abler, result, and action1 (different verbs denoting
the main action when the process is occurring, e.g.,
“dry”). We select these roles based on an initial
analysis of grade science questions that involve rec-
ognizing instances of processes from their descrip-
tions. Table 2 shows some examples of the target
knowledge roles.
1For simplicity, we abuse the notion of a role to also include the
main action as a role.

We develop a scalable pipeline for gathering such
role-based process knowledge. The input to our sys-
tem is the name of a process, e.g., “evaporate”. Then
we use a set of query patterns to find sentences that
describe the process. A semantic role classifier then
identifies the target roles in these sentences. The
output is a list of typical fillers for the four process
roles.

This setting presents a unique opportunity, where
the goal is to perform semantic role labeling on a set
of closely related sentences, sentences that describe
the same process. This allows us to design a joint
inference method that can promote expectations of
consistency amongst the extracted role fillers.

There is no large scale training data that can
be readily used for this task. Because we tar-
get process-specific and not verb-specific semantic
roles, existing ProbBank (Kingsbury and Palmer,
2003) trained SRL systems cannot be used di-
rectly. Frame-semantic parsers trained on FrameNet
data (Baker et al., 1998) are also not directly usable
because FrameNet lacks coverage for many of the
processes discussed in the science domain. There-
fore, we create a process dataset that covers a rel-
atively small number of processes, but demonstrate
that the role extraction generalizes to previously un-
seen processes as well.

3.1 Cross-Sentence Inference

Given a set of sentences about a process, we want
to extract role fillers that are globally consistent i.e.,
we want role assignments that are compatible. Our
approach is based on two observations: First, any
given role is likely to have similar fillers for a par-
ticular process. For instance, the undergoers of the
evaporation process are likely to be similar – they
are usually liquids. Second, similar arguments are

1444

φrole

φsent

S11 S12

S21 S22

φalign

Figure 1: A factor graph representation of cross sentence
inference. S11 and S12 denote role assignments for argu-
ments a11 and a12 in one sentence, and S21 and S22 de-
note for arguments a21 and a22 in another. The φrole fac-
tors score each role assignment to the arguments, and the
φalign factors score the compatibility of the connected ar-
guments. φsent factors encode sentence level constraints.

unlikely to fill different roles for the same process.
In evaporation, for example, it is highly unlikely that
water is an undergoer in one sentence but is a re-
sult in another. These role-specific selectional pref-
erences vary for each process and can be learned if
there are enough example role fillers for each pro-
cess during training (Zapirain et al., 2009; Zapirain
et al., 2013). Since, we wish to handle processes for
which we have no training data, we approximate this
by modeling whether two arguments should receive
the same role given their similarity and their context
similarity.

Figure 1 illustrates the cross sentence inference
problem using a factor graph. The Sij random vari-
ables denote the role label assignment for the jth

argument in sentence i. Each assignment to an ar-
gument Sij is scored by a combination of the role
classifier’s score (factor φrole), and its pairwise com-
patibility with the assignments to other arguments
(factor φalign). The factors φsent capture two basic
within sentence constraints.

3.2 Inference using ILP

We formulate the cross sentence inference task using
an Integer Linear Program shown in Figure 2. The
ILP seeks an assignment that maximizes a combina-
tion of individual role assignment scores and their
global compatibility, which is measured as the simi-
larity of fillers for the same role minus similarity of

arg max
z

∑

k

∑

i,j

zijk

(
λ φrole(aij , k)︸ ︷︷ ︸

Role classifier score

+(1− λ)

[
∆(aij , k)−∇(aij , k)

]

︸ ︷︷ ︸
Global compatibility

)

where compatibility with same roles is:

∆(aij , k) =
1

Ñk

∑

l,m

zlmkφalign(aij , alm)

and compatibility with other roles is:

∇(aij) =
2

Ñk′

∑

l,m

∑

n6=k

zlmn φalign(aij , alm)︸ ︷︷ ︸
Penalty when role n 6= k

subject to:∑

k

zijk ≤ 1 ∀ aij ∈ sentencei

∑

j

zijk ≤ 1 ∀ aij ∈ sentencei, k ∈ R

Ñk : Approximate number of arguments with role k

Ñk′ : Approximate number of arguments with role n 6= k

Figure 2: An Integer Linear Program formulation of the Cross-

sentence Inference.

fillers of different roles.
The decision variables zijk denote role assign-

ments to arguments. When zijk is set it denotes that
argument j in sentence i (aij) has been assigned role
k. The objective function uses three components to
assign scores to an assignment.
1. Classifier Score φrole(aij , k) – This is the score

of a sentence-level role classifier for assigning
role k to argument aij .

2. Within Role Compatibility ∆(aij , k) – This is
a measure of argument aij’s compatibility with
other arguments which have also been assigned
the same role k. We measure compatibility us-
ing a notion of alignment. An argument is said
to align with another if they are similar to each
other in some respect (either lexically or se-
mantically). As we show later, we develop an
alignment cclassifier which predicts an alignment
score φalign for each pair of arguments. The com-
patibility is defined as a normalized sum of the
alignment scores for argument aij paired with

1445

other arguments that have also been assigned the
role k. Without some normalization roles with
many arguments will receive higher compatibil-
ity scores.To avoid this, we normalize by (1/Ñk),
where Ñk refers to the number of arguments that
the role classifier originally labeled with role k,
an approximation to the number of arguments
that are currently assigned role k by the ILP.

3. Across Role Incompatibility ∇(aij , k) – This is
a measure of how well aij aligns with the other
arguments that are assigned a different role (n 6=
k). For good assignments this quantity should be
low. Therefore we add this as a penalty to the ob-
jective. As with ∆, we use an approximation for
normalization (1/Ñk′), which is the product of
other roles and the number of arguments in other
sentences that can receive these roles. Because
Ñk′ is typically higher, we boost this score by 2
to balance against ∆.
Last, we use two sets of hard constraints to en-

force the standard within-sentence expectations for
roles: 1) A single argument can receive only one role
label, and 2) A sentence cannot have more than one
argument with the same label, except for the NONE
role.

We use an off-the-shelf solver in Gurobi
(www.gurobi.com) to find an approximate solution
to the resulting optimization problem.

3.3 Role Classifier (Φrole)
The role classifier provides a score for each role la-
bel for a given argument. Although existing SRL
and frame semantic parsers do not directly produce
the role information we need (Section 2), we build
on them by using their outputs for building a process
role classifier.

Before we can assign role labels, we first
need to generate candidate arguments. Using
EasySRL (Lewis et al., 2015), a state-of-the-art SRL
system, we generate the candidate argument spans
for each predicate (verbs) in the sentence. Then, us-
ing a linear SVM classifier (Fan et al., 2008), we
score the candidate arguments and the predicates for
our four roles and a special NONE role to indicate
the argument is not one of the four. The classifier
is trained with a set of annotated examples (see Sec-
tion 4) with the following sets of features.

i) Lexical and Syntactic – We use a small set of

standard SRL features such as lexical and syntactic
contexts of arguments (e.g., head word, its POS tag)
and predicate-argument path features (e.g, depen-
dency paths). We also add features that are specific
to the nature of the process sentences. In particular,
we encode syntactic relationships of arguments with
respect to the process name mention in the sentence.
We use Stanford CoreNLP toolkit (Manning et al.,
2014) to obtain POS tags, and dependency parses to
build these features.

ii) PropBank roles – While they do not have a 1-
to-1 correspondence with process roles, we use the
EasySRL roles coupled with the specific predicate
as a feature to provide useful evidence towards the
process role.

iii) Framenet Frames – We use the frames evoked
by the words in the sentence to allow better feature
sharing among related processes. For instance, the
contexts of undergoers in evaporation and conden-
sation are likely to be similar as they are both state
changes which evoke the same Undergo Change
frame in FrameNet.

iv) Query patterns – We use query patterns to find
sentences that are likely to contain the target roles
of interest. The query pattern that retrieved a sen-
tence can help bias the classifier towards roles that
are likely to be expressed in it.

3.4 Alignment Classifier (Φalign)
Our goal with alignment is to identify arguments that
should receive similar role labels. One way to do this
argument alignment is to use techniques developed
for phrase level entailment or similarity which of-
ten use resources such as WordNet and distributional
embeddings such as word2vec (Mikolov et al., 2013)
vectors. It turns out that this simple entailment or
argument similarity, by itself, is not enough in many
cases for our task2. Moreover, the enabler, and the
result roles are often long phrases whose text-based
similarity is not reliable. A more robust approach is
necessary. Lexical and syntactic similarity of argu-
ments and the context in which they are embedded
can provide valuable additional information. Table 3
shows a complete list of features we use to train the
alignment classifier.
2We used an approach that combined WordNet-based phrase
similarity method, and Word2Vec vector similarity, where the
vectors were learned from a general news domain.

1446

Lexical

Entailment score of arguments.
Word2vec similarity of argument vectors.
Word2Vec similarity of head nodes of arguments.
Word2Vec similarity of parent of the head nodes.
Word2Vec similarity of verbs of argument sentences.
Jaccard similarity of children of the head node.

Syntactic

Similarities of frames to right and left of arguments.
Jaccard similarity of POS tags of argument.
POS tag of head nodes match (boolean).
POS tag of head node parents match (boolean).
Similarity of dep. path from arg to process name.
Similarity of POS tags on arg to process name path.
Similarity of POS tags of arg’s children.
Similarity of the dependencies of the arg’s head.

Sentence

Query patterns match argument sentences (boolean).

Table 3: Alignment Classifier Features. Similarities of sets

were calculated using Jaccard co-efficient.

Fortunately, learning this classifier does not re-
quire any additional training data. The original data
with annotated semantic role labels can be easily
transformed to generate supervision for this classi-
fier. For any given process, we consider all pairs
of arguments in different sentences (i.e., (aij , alm) :
i 6= l) and label them as aligned if they are labeled
with the same role, or unaligned otherwise.

4 Evaluation

Our goal is to generate knowledge about processes
discussed in grade-level science exams. Since ex-
isting semantic resources such as FrameNet do not
provide adequate coverage for these, we created a
dataset of process sentences annotated with the four
process roles: undergoer, enabler, action, and result.

4.1 Dataset
This dataset consists of 1205 role fillers extracted
from 537 sentences retrieved from the web. We
first compiled the target processes from a list of
process-oriented questions found in two collections:
(i) New York Regents science exams (Clark, 2015),
and (ii) helpteaching.com, a Web-based collection

Query Patterns
〈name〉 is the process of 〈x〉
〈name〉 is the process by which 〈x〉
〈name〉 {occurs when} 〈x〉
〈name〉 { helps to | causes } 〈x〉

Table 4: Example query patterns used to find process descrip-

tion sentences.

of practice questions. Then, we identified 127 pro-
cess questions from which we obtained a set of 180
unique target processes. For each target process,
we queried the web using Google to find definition-
style sentences, which describe the target process.
For each process we discarded some noisy sentences
through a combination of automatic and manual fil-
tering.

Table 4 shows some examples of the 14 query
patterns that we used to find process descriptions.
Because these patterns are not process-specific, they
work for unseen processes as well.

To find role fillers from these sentences, we first
processed each sentence using EasySRL (Lewis et
al., 2015) to generate candidate arguments. Some of
the query patterns can be used to generate additional
arguments. For example, in the pattern “〈name〉 is
the process of 〈x〉” if 〈x〉 is a noun then it is likely to
be an undergoer, and thus can be a good candidate.
3. Then two annotators annotated the candidate ar-
guments with the target roles if one were applicable
and marked them as NONE otherwise. Disagree-
ments were resolved by a third annotator. The an-
notations spanned a random subset of 54 target pro-
cesses. The role label distribution is shown below:

Role No. of instance
Undergoer 77
Enabler 154
Action 315
Result 194
NONE 465

Table 5: Role distribution

We conducted five fold cross validation experi-
ments to test role extraction. To ensure that we are
testing the generalization of the approach to unseen

3These patterns are ambiguous and are not adequate by them-
selves for accurately extracting the roles. We use them as fea-
tures.

1447

processes, we generated the folds such that the pro-
cesses in the test fold were unseen during training.
We compared the basic role classifier described in
Section 3.3, the within sentence and the cross sen-
tence inference models. We tune the ILP parame-
ter λ for cross sentence inference based on a coarse-
grained sweep on the training folds.

We also compared with a simple baseline that
learned a mapping from PropBank roles produced
by EasySRL system to the process roles by using
the roles and the verb as features. We also add the
FrameNet frames invoked by the lexical unit in the
sentence. Note this is essentially a subset of the
features we use in our role classifier. As a sec-
ond baseline, we compare with a (nearly) out-of-the-
box application of SEMAFOR (Das et al., 2010), a
FrameNet based frame-semantic parser. We modi-
fied SEMAFOR to override the frame identification
step since the process frame information is already
associated with the test sentences.

4.2 Cross-Sentence Inference Results

Table 6 compares performance of the different meth-
ods. The learned role mapping of shallow seman-
tic roles performs better than SEMAFOR but worse
than the simple role classifier. SEMAFOR uses a
large set of features which help it scale for a di-
verse set of frames in FrameNet. However, many
of these many not be well suited for the process sen-
tences in our relatively smaller dataset. Therefore,
we use our custom role classifier as a strong base-
line to demonstrate within and cross sentence gains.
Enforcing sentence-level consistency through joint

Method Prec. Rec. F1
Role mapping 56.62 59.60 58.07
SEMAFOR 40.72 50.54 45.10

Role class. (φrole) 78.48 78.62 78.55
+ within sent. 86.25 73.91 79.60
+ cross sent. 89.84 75.36 81.97††

Table 6: Process role inference performance. †† indicates

significant improvement over Role + within sentence system.

inference, shown as (+within sent.), improves over
the baseline which does not use any consistency. It
gains precision (by nearly 8 points), while loosing
recall in the trade-off (by about 4.7 points) to yield

an overall gain in F1 by 1.05 points. Enforcing cross
sentence consistency, shown as (+cross sent.) pro-
vides additional gains beyond within sentence infer-
ence by another 2.38 points in F1 4. Table 7 shows
how the gains are distributed across different roles.
Cross sentence inference provides improvements for
all roles, with the biggest for undergoers (nearly 4
points).

Method Und. Ena. Act. Res.
Role Class. 65.38 73.84 83.58 77.30

+ within 66.01 73.11 86.70 76.11
+ cross 70.00 74.31 89.30 78.00

Table 7: Performance (F1) across all roles.

Figure 3 shows the precision/recall plots for the
basic role classifier and within and cross sentence in-
ference. Both inference models trade recall for gains
in precision. Cross sentence yields higher precision
at most recall levels, for a smaller overall loss in re-
call compared to within sentence (1.6 versus 4.9).

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.7

0.8

0.9

1.0

Pr
ec

is
on

Role Classifier
+ within sent.
+ cross sent.

Figure 3: Precision/Recall trade-offs for process role inference.

y-axis is truncated at 0.7 to better visualize the differences.

4.3 Ablations
Table 8 shows the utility of various components of
cross sentence inference. Using argument entail-
ment alone turns out to be ineffective and only pro-
duces a minor improvement (0.16 in F1). How-
ever, the alignment classifier scores are much more
effective and yield about 2.37 points gain in F1.
Both within and across role compatibilities, ∆ and
∇, yield statistically significant improvements5 over
4The single parameter in ILP turned out to be stable across the
folds and obtained this best value at λ = 0.8.

5Significance measured using approximate randomization test

1448

0 10 20 30 40 50

Arguments

−1

0

1

2

3

F1
G

ai
ns

Figure 4: Cross sentence gains in F1 when varying the number

of most similar arguments used to assess compatibilities.

within sentence inference. Combining these com-
plementary compatibilities provides the best gains.

Method Prec. Rec. F1
within sent. 86.25 73.91 79.60

+ Entailment
cross sent. w/ ∆ 85.13 72.64 78.39
cross sent. w/∇ 85.98 73.36 79.17
cross sent. w/ ∆ +∇ 86.62 73.91 79.76

+ Alignment Classifier
cross sent. w/ ∆ 89.07 75.36 81.64††
cross sent. w/∇ 88.72 75.54 81.60††
cross sent. w/ ∆ +∇ 89.84 75.36 81.97††

Table 8: Performance impact of inference components. ††
indicates significant improvement over within sentence.

We also studied the effect of varying the number
of arguments that ILP uses to measure the compat-
ibility of role assignments. Specifically, we allow
inference to use just the top k alignments from the
alignment classifier. Figure 4 shows the main trend.
Using just the top similar argument already yields a
1 point gain in F1. Using more arguments tends to
increase gains in general but with some fluctuations.
Finding an assignment that respects all compatibili-
ties across many argument pairs can be difficult. As
seen in the figure, at some of the shorter span lengths
we see a slightly larger gain (+0.3) compared to us-
ing all spans. This hints at benefits of a more flexible
formulation that makes joint decisions on alignment
and role label assignments.

Table 9 shows an ablation of the alignment clas-
sifier features. Entailment of arguments is the most

informative feature for argument alignment. Adding
lexical and syntactic context compatibilities adds
significant boosts in precision and recall. Know-
ing that the arguments are retrieved by the same
query pattern (sentence feature) only provides mi-
nor improvements. Even though the overall classi-
fication performance is far from perfect, cross sen-
tence can benefit from alignment as long as it pro-
vides a higher score for argument pairs that should
align compared to those that should not.

Feature P R F1
Entailment score only 39.55 14.59 21.32
+Lexical 50.75 26.02 34.40
+Syntactic 62.31 31.47 41.82
+Sentence 62.33 31.41 41.53

Table 9: Performance of different feature groups for alignment.

4.3.1 Error Analysis
We conduct an error analysis over a random set

of 50 errors observed for cross sentence inference.
In addition to issues from noisy web sentences and
nested arguments from bad candidate extraction, we
find the following main types of errors:

• Dissimilar role fillers (27.5 %) – In some pro-
cesses, the fillers for the result role have high
levels of variability that makes alignment error
prone. For the process camouflage, for instance,
the result roles include ‘disorientation’, ‘protect
from predator’, ‘remain undetected’ etc.

• Bad role classifier scores (37.5%) – For some in-
stances the role classifier assign high scores to in-
correct labels, effectively preventing the ILP from
flipping to the correct role. For example, the ar-
gument that follows “causes” tends to be a re-
sult in many cases but not always, leading to high
scoring errors. For example, in the sentence with
“...when heat from the sun causes water on earth’s
...”, the role classifier incorrectly assigns ‘water’
to a result role with high confidence.

• Improper Weighting (7.5%)– Sometimes the ILP
does not improve upon a bad top choice from
the role classifier. In some of these cases, rather
than the fixed lambda, a different weighted com-
bination of role and alignment classifier scores

1449

would have helped the ILP to flip. For example,
the argument ‘under autumn conditions’ from the
sentence ‘hibernation occurs when the insects are
maintained under autumn conditions.’ has a good
role score and is similar to other correctly labeled
enablers such as ‘cold , winter conditions’ but yet
is unable to improve.

The rest (27.5 %) are due to noisy web sentences,
incorrect argument extraction and errors outside the
scope of cross sentence inference.

5 Conclusions

Simple role-based knowledge is essential for rec-
ognizing and reasoning about situations involving
processes. In this work we developed a cross sen-
tence inference method for automatically acquiring
such role-based knowledge for new processes. The
main idea is to enforce compatibility among roles
extracted from sentences belonging to a single pro-
cess. We find that the compatibility can be effec-
tively assessed using an alignment classifier built
without any additional supervision. Empirical eval-
uation on a process dataset shows that cross sentence
inference using an Integer Linear Program helps im-
prove the accuracy of process knowledge extraction.

6 Acknowledgement
The authors would like to thank the anonymous re-
viewers for helpful comments, Meghana Kshirsagar,
Sam Thomson, Mike Lewis for answering imple-
mentation details of their systems, and the Stony
Brook NLP Lab members for their valuable feed-
back and suggestions. This work is supported in
part by Foreign Fulbright PhD Fellowship and by
the grant from Allen Institute for Artificial Intelli-
gence.

References
Collin F Baker, Charles J Fillmore, and John B Lowe.

1998. The berkeley framenet project. In Proceed-
ings of the 17th international conference on Computa-
tional linguistics-Volume 1, pages 86–90. Association
for Computational Linguistics.

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen,
Abby Vander Linden, Brittany Harding, Brad Huang,
Peter Clark, and Christopher D. Manning. 2014.
Modeling biological processes for reading comprehen-
sion. In Proceedings of EMNLP.

Anders Björkelund, Love Hafdell, and Pierre Nugues.
2009. Multilingual semantic role labeling. In Pro-
ceedings of the Thirteenth Conference on Compu-
tational Natural Language Learning: Shared Task,
pages 43–48. Association for Computational Linguis-
tics.

Peter Clark. 2015. Elementary school science and math
tests as a driver for ai: Take the aristo challenge. to
appear.

Dipanjan Das, Nathan Schneider, Desai Chen, and
Noah A. Smith. 2010. Probabilistic frame-semantic
parsing. In Proc. of NAACL-HLT.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. 2008. Liblinear: A library
for large linear classification. The Journal of Machine
Learning Research, 9:1871–1874.

Hagen Fürstenau and Mirella Lapata. 2009. Graph
alignment for semi-supervised semantic role labeling.
In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pages 11–
20, Singapore.

Hagen Fürstenau and Mirella Lapata. 2012. Semi-
supervised semantic role labeling via structural align-
ment. Computational Linguistics, 38(1):135–171.

Sujay Kumar Jauhar, Peter D. Turney, and Eduard H.
Hovy. 2016. Tables as semi-structured knowledge for
question answering. In ACL.

Paul Kingsbury and Martha Palmer. 2003. Propbank: the
next level of treebank. In Proceedings of Treebanks
and lexical Theories, volume 3. Citeseer.

Ivan Titov Alexandre Klementiev. 2012. Semi-
supervised semantic role labeling: Approaching from
an unsupervised perspective. In Proceedings of the
COLING Conference.

Meghana Kshirsagar, Sam Thomson, Nathan Schneider,
Jaime G. Carbonell, Noah A. Smith, and Chris Dyer.
2015. Frame-semantic role labeling with heteroge-
neous annotations. In ACL.

Joel Lang and Mirella Lapata. 2010. Unsupervised in-
duction of semantic roles. In Human Language Tech-
nologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 939–947, Los Angeles, Cal-
ifornia, June. Association for Computational Linguis-
tics.

Joel Lang and Mirella Lapata. 2011. Unsupervised se-
mantic role induction with graph partitioning. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 1320–1331, Ed-
inburgh, Scotland, UK., July. Association for Compu-
tational Linguistics.

Mike Lewis, Luheng He, and Luke Zettlemoyer. 2015.
Joint a* ccg parsing and semantic role labelling. In
Empirical Methods in Natural Language Processing.

1450

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Luiz Augusto Pizzato and Diego Mollá. 2008. Indexing
on semantic roles for question answering. In Coling
2008: Proceedings of the 2nd workshop on Informa-
tion Retrieval for Question Answering, pages 74–81.
Association for Computational Linguistics.

Vasin Punyakanok, Dan Roth, Wen-tau Yih, and Dav Zi-
mak. 2004. Semantic role labeling via integer linear
programming inference. In Proceedings of the 20th In-
ternational Conference on Computational Linguistics,
COLING ’04, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Michael Roth and Mirella Lapata. 2015. Context-
aware frame-semantic role labeling. Transactions of
the Association for Computational Linguistics (TACL),
3:449–460.

Josef Ruppenhofer, Caroline Sporleder, Roser Morante,
Collin Baker, and Martha Palmer. 2010. Semeval-
2010 task 10: Linking events and their participants
in discourse. In Proceedings of the 5th Interna-
tional Workshop on Semantic Evaluation, SemEval
’10, pages 45–50, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Dan Shen and Mirella Lapata. 2007. Using seman-
tic roles to improve question answering. In EMNLP-
CoNLL, pages 12–21.

Robert S Swier and Suzanne Stevenson. 2004. Unsuper-
vised semantic role labelling. In EMNLP.

Kristina Toutanova, Aria Haghighi, and Christopher D.
Manning. 2005. Joint learning improves semantic role
labeling. In ACL.

Beñat Zapirain, Eneko Agirre, and Lluı́s Màrquez i Villo-
dre. 2009. Generalizing over lexical features: Selec-
tional preferences for semantic role classification. In
ACL.

Beñat Zapirain, Eneko Agirre, Lluı́s Màrquez i Villodre,
and Mihai Surdeanu. 2013. Selectional preferences
for semantic role classification. Computational Lin-
guistics, 39:631–663.

1451

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1452–1461,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Toward Socially-Infused Information Extraction:
Embedding Authors, Mentions, and Entities

Yi Yang
Georgia Institute of Technology

Atlanta, GA 30308, USA
yiyang@gatech.edu

Ming-Wei Chang
Microsoft Research

Redmond, WA 98052, USA
minchang@microsoft.com

Jacob Eisenstein
Georgia Institute of Technology

Atlanta, GA 30308, USA
jacobe@gatech.edu

Abstract

Entity linking is the task of identifying men-
tions of entities in text, and linking them to
entries in a knowledge base. This task is espe-
cially difficult in microblogs, as there is little
additional text to provide disambiguating con-
text; rather, authors rely on an implicit com-
mon ground of shared knowledge with their
readers. In this paper, we attempt to cap-
ture some of this implicit context by exploit-
ing the social network structure in microblogs.
We build on the theory of homophily, which
implies that socially linked individuals share
interests, and are therefore likely to mention
the same sorts of entities. We implement this
idea by encoding authors, mentions, and en-
tities in a continuous vector space, which is
constructed so that socially-connected authors
have similar vector representations. These
vectors are incorporated into a neural struc-
tured prediction model, which captures struc-
tural constraints that are inherent in the entity
linking task. Together, these design decisions
yield F1 improvements of 1%-5% on bench-
mark datasets, as compared to the previous
state-of-the-art.

1 Introduction

Entity linking on short texts (e.g., Twitter messages)
is of increasing interest, as it is an essential step for
many downstream applications, such as market re-
search (Asur and Huberman, 2010), topic detection
and tracking (Mathioudakis and Koudas, 2010), and
question answering (Yih et al., 2015). Tweet entity
linking is a particularly difficult problem, because

Figure 1: Illustration on leveraging social relations for entity

disambiguation. Socially connected users u1 and u2 tend to

talk about similar entities (baseball in the example).

the short context around an entity mention is often
insufficient for entity disambiguation. For example,
as shown in Figure 1, the entity mention ‘Giants’
in tweet t1 can refer to the NFL football team New
York Giants or the MLB baseball team San Fran-
cisco Giants. In this example, it is impossible to
disambiguate between these entities solely based on
the individual text message.

We propose to overcome the difficulty and im-
prove the entity disambiguation capability of the
entity linking system by employing social network
structures. The sociological theory of homophily
asserts that socially connected individuals are more
likely to have similar behaviors or share similar in-
terests (McPherson et al., 2001). This property has
been used to improve many natural language pro-
cessing tasks such as sentiment analysis (Tan et al.,
2011; Yang and Eisenstein, 2015), topic classifica-
tion (Hovy, 2015) and user attribute inference (Li et
al., 2015). We assume Twitter users will have simi-
lar interests in real world entities to their near neigh-
bors — an assumption of entity homophily — which

1452

is demonstrated in Figure 1. The social relation be-
tween users u1 and u2 may lead to more coherent
topics in tweets t1 and t2. Therefore, by success-
fully linking the less ambiguous mention ‘Red Sox’
in tweet t2 to the Boston Red Sox baseball team, the
tweet entity linking system will be more confident
on linking ‘Giants’ to the San Francisco Giants foot-
ball team in tweet t1.

To exploit social information, we adopt the recent
advance on embedding information networks (Tang
et al., 2015), which induces low-dimensional rep-
resentations for author nodes based on the network
structure. By learning the semantic interactions be-
tween the author embeddings and the pre-trained
Freebase entity embeddings, the entity linking sys-
tem can incorporate more disambiguating context
from the social network. We also consider low-
dimensional representations of mentions, another
source of related information for entity linking, with
the intuition that semantically related mentions can
refer to similar entities. Previously proposed ap-
proaches (Guo et al., 2013a; Yang and Chang, 2015)
are based on hand-crafted features and off-the-shelf
machine learning algorithms. Our preliminary study
suggests that simply augmenting the traditional sur-
face features with the distributed representations
barely improves the performance of these entity
linking systems. Therefore, we propose NTEL, a
Neural model for Tweet Entity Linking, to leverage
the distributed representations of authors, mentions,
and entities. NTEL can not only make efficient use
of statistical surface features built from a knowledge
base, but also learn the interactions between these
distributed representations.

Our contributions are summarized as follows:

• We present a novel model for entity linking that
exploits distributed representations of users,
mentions, and entities.

• We combine this distributed model with a feed-
forward neural network that learns non-linear
combinations of surface features.

• We perform message-level inference using a
dynamic program to avoid overlapping men-
tions. The architecture is trained with loss-
augmented decoding, a large margin learning
technique for structured prediction.

Data # Tweet # Entity Date

NEEL-train 2,340 2,202 Jul. - Aug. 2011
NEEL-test 1,164 687 Jul. - Aug. 2011
TACL 500 300 Dec. 2012

Table 1: Statistics of data sets.

• The complete system, NTEL, outperforms the
previous state-of-the-art (Yang and Chang,
2015) by 3% average F1 on two benchmark
datasets.

2 Data

Two publicly available datasets for tweet entity link-
ing are adopted in the work. NEEL is originally col-
lected and annotated for the Named Entity Extrac-
tion & Linking Challenge (Cano et al., 2014), and
TACL is first used and released by Fang and Chang
(2014). The datasets are then cleaned and unified
by Yang and Chang (2015). The statistics of the
datasets are presented in Table 1.

3 Testing Entity Homophily

The hypothesis of entity homophily, as presented in
the introduction, is that socially connected individ-
uals are more likely to mention similar entities than
disconnected individuals. We now test the hypoth-
esis on real data before we start building our entity
linking systems.

Twitter social networks We test the assumption
on the users in the NEEL-train dataset. We con-
struct three author social networks based on the
follower, mention and retweet relations between
the 1,317 authors in the NEEL-train dataset, which
we refer as FOLLOWER, MENTION and RETWEET.
Specifically, we use the Twitter API to crawl the
friends of the NEEL users (individuals that they
follow) and the mention/retweet links are induced
from their most recent 3,200 tweets.1 We exploit
bi-directed links to create the undirected networks,
as bi-directed links result in stronger social network
ties than directed links (Kwak et al., 2010; Wu et
al., 2011). The numbers of social relations for the
networks are 1,604, 379 and 342 respectively.

1We are able to obtain at most 3,200 tweets for each Twitter
user, due to the Twitter API limits.

1453

Network sim(i↔ j) sim(i↔/ j)

FOLLOWER 0.128 0.025
MENTION 0.121 0.025
RETWEET 0.173 0.025

Table 2: The average entity-driven similarity results for the net-

works.

Metrics We propose to use the entity-driven sim-
ilarity between authors to test the hypothesis of en-
tity homophily. For a user ui, we employ a Twit-
ter NER system (Ritter et al., 2011) to detect entity
mentions in the timeline, which we use to construct
a user entity vector u

(ent)
i , so that u(ent)i,j = 1 iff

user i has mentioned entity j.2 The entity-driven
similarity between two users ui and uj is defined
as the cosine similarity score between the vectors
u
(ent)
i and u

(ent)
j . We evaluate the three networks

by calculating the average entity-driven similarity
of the connected user pairs and that of the discon-
nected user pairs, which we name as sim(i ↔ j)
and sim(i↔/ j).

Results The entity-driven similarity results of
these networks are presented in Table 2. As shown,
sim(i↔ j) is substantially higher than sim(i↔/ j)
on all three social networks, indicating that socially
connected individuals clearly tend to mention more
similar entities than disconnected individuals. Note
that sim(i↔/ j) is approximately equal to the same
base rate defined by the average entity-driven simi-
larity of all pairs of users, because the vast major-
ity of user pairs are disconnected, no matter how
to define the network. Among the three networks,
RETWEET offers slightly higher sim(i ↔ j) than
FOLLOWER and MENTION. The results verify our
hypothesis of entity homophily, which forms the ba-
sis for this research. Note that all social relation data
was acquired in March 2016; by this time, the au-
thorship information of 22.1% of the tweets in the
NEEL-train dataset was no longer available, because
the tweets or user accounts had been deleted.

4 Method

In this section, we present, NTEL, a novel neural
based tweet entity linking framework that is able to

2We assume each name corresponds to a single entity for
this metric, so this metric only approximates entity homophily.

Figure 2: Illustration of the non-overlapping structure for the

task of tweet entity linking. In order to link ‘Red Sox’ to a real

entity, ‘Red’ and ‘Sox’ should be linked to Nil.

leverage social information. We first formally de-
fine the task of tweet entity linking. Assume we are
given an entity database (e.g., Wikipedia or Free-
base), and a lexicon that maps a surface form into
a set of entity candidates. For each input tweet, we
consider any n-grams of the tweet that match the
lexicon as mention candidates.3 The entity linking
system maps every mention candidate (e.g., ‘Red
Sox’) in the message to an entity (e.g., Boston Red
Sox) or to Nil (i.e., not an entity). There are two
main challenges in the problem. First, a mention
candidate can often potentially link to multiple en-
tities according to the lexicon. Second, as shown
in Figure 2, many mention candidates overlap with
each other. Therefore, the entity linking system is
required to disambiguate entities and produce non-
overlapping entity assignments with respect to the
mention candidates in the tweet.

We formalize this task as a structured learning
problem. Let x be the tweet, u be the author, and
y = {yt}Tt=1 be the entity assignments of the T
mention candidates in the tweet. The overall scoring
function s(x,y, u) can be decomposed as follows,

s(x,y, u) =
T∑

t=1

g(x, yt, u, t), (1)

where g(x, yt, u, t) is the scoring function for the t-
th mention candidate choosing entity yt. Note that
the system needs to produce non-overlapping entity
assignments, which will be resolved in the inference
algorithm.

The overview of NTEL is illustrated in Figure 3.
We further break down g(x, yt, u, t) into two scoring

3We adopted the same entity database and lexicon as those
used by Yang and Chang (2015).

1454

Figure 3: The proposed neural network approach for tweet entity linking. A composition model based on bilinear functions is used

to learn the semantic interactions of user, mention, and entity.

functions:

g(x, yt, u, t; Θ1,Θ2) =

g1(x, yt, t; Θ1) + g2(x, yt, u, t; Θ2), (2)

where g1 is the scoring function for our basic sur-
face features, and g2 is the scoring function for mod-
eling user, mention, entity representations and their
compositions. Θ1 and Θ2 are model parameters that
will be detailed below. We choose to use a mul-
tilayer perceptron (MLP) to model g1(x, yt, t; Θ1),
and we employ simple yet efficient bilinear func-
tions to learn the compositions of user, mention,
and entity representations g2(x, yt, u, t; Θ2). Fi-
nally, we present a training algorithm based on loss-
augmented decoding and a non-overlapping infer-
ence algorithm.

4.1 Modeling Surface Features
We include the 37 features used by Yang and Chang
(2015) as our surface feature set. These features are
extracted from various sources, including a named
entity recognizer, an entity type recognizer, and
some statistics of the Wikipedia pages.

We exploit a multilayer perceptron (MLP) to
transform the surface features to a real-valued score.
The output of the MLP is formalized as follows,

g1(x, yt, t; Θ1) =β>h + b

h =tanh(Wφ(x, yt, t) + b), (3)

where φ(x, yt, t) is the feature function, W is an
M × D matrix, the weights b are bias terms, and
h is the output of the hidden layer of the MLP. β
is an M dimensional vector of weights for the out-
put score, and b is the bias term. The parameters of

the MLP are Θ1 = {W,b,β, b}. Yang and Chang
(2015) argue that non-linearity is the key for obtain-
ing good results on the task, as linear models are
not expressive enough to capture the high-order rela-
tionships between the dense features. They propose
a tree-based non-linear model for the task. The MLP
forms simple non-linear mappings between the input
features and the output score, whose parameters will
be jointly learnt with other components in NTEL.

4.2 Modeling User, Mention, and Entity

To leverage the social network structure, we first
train low-dimensional embeddings for the authors
using the social relations. The mention and entity
representations are given by word embeddings learnt
with a large Twitter corpus and pre-trained Freebase
entity embeddings respectively. We will denote the
user, word, entity embedding matrices as:

E(u) = {v(u)
u } E(w) = {v(w)

w } E(e) = {v(e)
e },

where E(u),E(w),E(e) are V (u) × D(u), V (w) ×
D(w), V (e) × D(e) matrices, and v

(u)
u , v

(w)
w , v

(e)
e

are D(u), D(w), D(e) dimensional embedding vec-
tors respectively. V (u), V (w), V (e) are the vocabu-
lary sizes for users, words, and entities. Finally, we
present a composition model for learning semantic
interactions between user, mention, and entity.

User embeddings We obtain low-dimensional
Twitter author embeddings E(u) using LINE — the
recently proposed model for embedding information
networks (Tang et al., 2015). Specifically, we train
LINE with the second-order proximity, which as-
sumes that Twitter users sharing many neighbors are

1455

close to each other in the embedding space. Accord-
ing to the original paper, the second-order proxim-
ity yields slightly better performances than the first-
order proximity, which assumes connecting users
are close to each other, on a variety of downstream
tasks.

Mention embeddings The representation of a
mention is the average of embeddings of words it
contains. As each mention is typically one to three
words, the simple representations often perform sur-
prisingly well (Socher et al., 2013). We adopt the
structured skip-gram model (Ling et al., 2015) to
learn the word embeddings E(w) on a Twitter corpus
with 52 million tweets (Owoputi et al., 2013). The
mention vector of the t-th mention candidate can be
written as:

v
(m)
t =

1

|x(w)
t |

∑

w∈x(w)
t

v(w)
w , (4)

where x
(w)
t is the set of words in the mention.

Entity embeddings We use the pre-trained Free-
base entity embeddings released by Google to rep-
resent entity candidates, which we refer as E(e).4

The embeddings are trained with the skip-gram
model (Mikolov et al., 2013) on 100 billion words
from various news articles. The entity embeddings
can also be learnt from Wikipedia hyperlinks or
Freebase entity relations, which we leave as future
work.

Compositions of user, mention, and entity The
distributed representations of users, mentions, and
entities offer additional information that is useful for
improving entity disambiguation capability. In par-
ticular, we explore the information by making two
assumptions: socially connected users are interested
in similar entities (entity homophily), and semanti-
cally related mentions are likely to be linked to sim-
ilar entities.

We utilize a simple composition model that takes
the form of the summation of two bilinear scoring
functions, each of which explicitly leverages one of
the assumptions. Given the author representation
v
(u)
u , the mention representation v

(m)
t , and the en-

tity representation v
(e)
yt , the output of the model can

4Available at https://code.google.com/archive/p/word2vec/

be written as:

g2(x, yt, u, t; Θ2) =v(u)
u

>
W(u,e)v(e)

yt

+ v
(m)
t

>
W(m,e)v(e)

yt , (5)

where W(u,e) and W(m,e) are D(u) × D(e) and
D(w) ×D(e) bilinear transformation matrices. Sim-
ilar bilinear formulation has been used in the lit-
erature of knowledge base completion and infer-
ence (Socher et al., 2013; Yang et al., 2014). The
parameters of the composition model are Θ2 =
{W(u,e),W(m,e),E(u),E(w),E(e)}.

4.3 Non-overlapping Inference

The non-overlapping constraint for entity assign-
ments requires inference method that is different
from the standard Viterbi algorithm for a linear
chain. We now present a variant of the Viterbi al-
gorithm for the non-overlapping structure. Given
the overall scoring function g(x, yt, u, t) for the t-th
mention candidate choosing an entity yt, we sort the
mention candidates by their end indices and define
the Viterbi recursion by

ŷt = arg max
yt∈Yxt ,yt 6=Nil

g(x, yt, u, t) (6)

a(1) = max(g(x,Nil, u, 1), g(x, ŷ1, u, 1)) (7)

a(t) = max (ψt(Nil), ψt(ŷt)) (8)

ψt(Nil) =g(x,Nil, u, t) + a(t− 1) (9)

ψt(ŷt) =g(x, ŷt, u, t) +
∑

prev(t)<t′<t

g(x,Nil, u, t′)

+ a(prev(t)) (10)

where Yxt is set of entity candidates for the t-th
mention candidate, and prev(t) is a function that
points out the previous non-overlapping mention
candidate for the t-th mention candidate. We ex-
clude any second-order features between entities.
Therefore, for each mention candidate, we only need
to decide whether it can take the highest scored en-
tity candidate ŷt or the special Nil entity based on
whether it is overlapped with other mention candi-
dates.

1456

4.4 Loss-augmented Training
The parameters need to be learnt during training are
Θ = [Θ1, {W(u,e),W(m,e)}].5 We train NTEL by
minimizing the following loss function for each
training tweet:

L(Θ) = max
y∈Yx

(∆(y,y∗) + s(x,y, u))− s(x,y∗, u),

(11)
where y∗ is the gold structure, Yx represents the
set of valid output structures for x, and ∆(y,y∗)
is the weighted hamming distance between the gold
structure y∗ and the valid structure y. The ham-
ming loss is decomposable on the mention candi-
dates, which enables efficient inferences. We set
the hamming loss weight to 0.2 after a preliminary
search. Note that the number of parameters in our
composition model is large. Thus, we include an
L2 regularizer on these parameters, which is omit-
ted from Equation 11 for brevity. The evaluation of
the loss function corresponds to the loss-augmented
inference problem:

ŷ = arg max
y∈Yx

(∆(y,y∗) + s(x,y, u)), (12)

which can be solved by the above non-overlapping
inference algorithm. We employ vanilla SGD algo-
rithm to optimize all the parameters. The numbers
of training epochs are determined by early stopping
(at most 1000 epochs). Training takes 6-8 hours on
4 threads.

5 Experiments

In this section, we evaluate NTEL on the NEEL and
TACL datasets as described in § 2, focusing on in-
vestigating whether social information can improve
the task. We also compare NTEL with the previous
state-of-the-art system.

5.1 Social Network Expansion
We utilize Twitter follower, mention, and retweet so-
cial networks to train user embeddings. We were
able to identify 2,312 authors for the tweets of the
two datasets in March 2016. We then used the Twit-
ter API to crawl their friend links and timelines,
from which we can induce the networks. We find the

5We fixed the pre-trained embedding matrices during loss-
augmented training.

Network # Author # Relation

FOLLOWER+ 8,772 286,800
MENTION+ 6,119 57,045
RETWEET+ 7,404 59,313

Table 3: Statistics of author social networks used for training

user embeddings.

numbers of social connections (bidirectional links)
between these users are relatively small. In order
to learn better user embeddings, we expand the set
of author nodes by including nodes that will do the
most to densify the author networks. For the fol-
lower network, we add additional individuals who
are followed by at least twenty authors in the orig-
inal set. For the mention or retweet networks, we
add all users who have mentioned or retweeted by at
least ten authors in the original set. The statistics of
the resulting networks are presented in Table 3.

5.2 Experimental Settings

Following Yang and Chang (2015), we train all
the models with the NEEL-train dataset and evalu-
ate different systems on the NEEL-test and TACL
datasets. In addition, 800 tweets from the NEEL-
train dataset are sampled as our development set
to perform parameter tuning. Note that Yang and
Chang (2015) also attempt to optimize F1 scores by
balancing precision and recall scores on the devel-
opment set; we do not fine tune our F1 in this way,
so that we can apply a single trained system across
different test sets.

Metrics We follow prior work (Guo et al., 2013a;
Yang and Chang, 2015) and perform the standard
evaluation for an end-to-end entity linking system,
computing precision, recall, and F1 score according
to the entity references and the system outputs. An
output entity is considered as correct if it matches
the gold entity and the mention boundary overlaps
with the gold mention boundary. More details about
the metrics are described by Carmel et al. (2014).

Competitive systems Our first baseline system,
NTEL-nonstruct, ignores the structure information
and makes the entity assignment decision for each
mention candidate individually. For NTEL, we
start with a baseline system using the surface fea-
tures, and then incorporate the two bilinear functions

1457

(user-entity and mention-entity) described in Equa-
tion 5 incrementally. Our main evaluation uses the
RETWEET+ network, since the retweet network had
the greatest entity homophily; an additional evalua-
tion compares across network types.

Parameter tuning We tune all the hyper-
parameters on the development set, and then re-train
the models on the full training data with the best
parameters. We choose the number of hidden
units for the MLP from {20, 30, 40, 50}, and the
regularization penalty for our composition model
from {0.001, 0.005, 0.01, 0.05, 0.1}. The sizes of
user embeddings and word embeddings are selected
from {50, 100} and {200, 400, 600} respectively.
The pre-trained Freebase entity embedding size is
1000. The learning rate for the SGD algorithm is set
as 0.01. During training, we check the performance
on the development set regularly to perform early
stopping.

5.3 Results

Table 4 summarizes the empirical findings for our
approach and S-MART (Yang and Chang, 2015)
on the tweet entity linking task. For the systems
with user-entity bilinear function, we report results
obtained from embeddings trained on RETWEET+
in Table 4, and other results are available in Table 5.
The best hyper-parameters are: the number of hid-
den units for the MLP is 40, the L2 regularization
penalty for the composition parameters is 0.005, and
the user embedding size is 100. For the word embed-
ding size, we find 600 offers marginal improvements
over 400 but requires longer training time. Thus, we
choose 400 as the size of word embeddings.

As presented in Table 4, NTEL-nonstruct per-
forms 2.7% F1 worse than the NTEL baseline on the
two test sets, which indicates the non-overlapping
inference improves system performance on the task.
With structured inference but without embeddings,
NTEL performs roughly the same as S-MART,
showing that a feedforward neural network offers
similar expressivity to the regression trees employed
by Yang and Chang (2015).

Performance improves substantially with the in-
corporation of low-dimensional author, mention,
and entity representations. As shown in Table 4, by
learning the interactions between mention and entity

representations, NTEL with mention-entity bilinear
function outperforms the NTEL baseline system by
1.8% F1 on average. Specifically, the bilinear func-
tion results in considerable performance gains in re-
calls, with small compromise in precisions on the
datasets.

Social information helps to increase about 1% F1
on top of both the NTEL baseline system and the
NTEL system with mention-entity bilinear compo-
sition. In contrast to the mention-entity compo-
sition model, which mainly focuses on improving
the baseline system on recall scores, the user-entity
composition model increases around 2.5% recalls,
without much sacrifice in precisions.

Our best system achieves the state-of-the-art re-
sults on the NEEL-test dataset and the TACL
dataset, outperforming S-MART by 0.9% and 5.4%
F1 scores respectively. To establish the statistical
significance of the results, we obtain 100 bootstrap
samples for each test set, and compute the F1 score
on each sample for each algorithm. Two-tail paired
t-test is then applied to determine if the F1 scores of
two algorithms are significantly different. NTEL sig-
nificantly outperforms S-MART on the NEEL-test
dataset and the TACL dataset under p < 0.01 level,
with t-statistics equal to 11.5 and 33.6 respectively.

As shown in Table 5, MENTION+ and
RETWEET+ perform slightly better than FOL-
LOWER+. Puniyani et al. (2010) show that the
mention network has stronger linguistic properties
than the follower network, as it gives better correla-
tions on each author’s distribution over latent topics
as induced by latent Dirichlet allocation (Blei et al.,
2003). Our results suggest that the properties hold
with respect to the authors’ interests on real world
entities.

5.4 Error Analysis & Discussion
We examine the outputs of different systems, fo-
cusing on investigating what errors are corrected by
the two bilinear functions. The results reveal that
the mention-entity composition improves the sys-
tem ability to tackle mentions that are abbreviations
such as ‘WSJ’ (The Wall Street Journal) and ‘SJSU’
(San Jose State University), which leads to higher
recall scores. The mention-entity model also helps
to eliminate errors that incorrectly link non-entities
to popular entities. For example, the NTEL baseline

1458

System
user
-entity

mention
-entity

NEEL-test TACL Avg. F1
P R F1 P R F1

Our approach
NTEL-nonstruct 80.0 68.0 73.5 64.7 62.3 63.5 68.5
NTEL 82.8 69.3 75.4 68.0 66.0 67.0 71.2
NTEL X 82.3 71.8 76.7 66.9 68.7 67.8 72.2
NTEL X 80.2 75.8 77.9 66.9 69.3 68.1 73.0
NTEL X X 81.9 75.6 78.6 69.0 69.0 69.0 73.8

Best published results
S-MART 80.2 75.4 77.7 60.1 67.7 63.6 70.7

Table 4: Evaluation results on the NEEL-test and TACL datasets for different systems. The best results are in bold.

Network NEEL-test TACL

P R F1 P R F1

FOLLOWER+ 82.2 75.1 78.5 67.8 68.7 68.2
MENTION+ 82.5 76.0 79.1 67.5 69.3 68.4
RETWEET+ 81.9 75.6 78.6 69.0 69.0 69.0

Table 5: Comparison of different social networks with our full

model. The best results are in bold.

system links ‘sec’ in the tweet ‘I’m a be in Miami
for sec to hit da radio!’ to Southeastern Conference,
which is corrected by the mention-entity composi-
tion model. The word semantic information encoded
in the mention representations alleviates the biased
entity information given by the surface features.

The user-entity composition model is good at han-
dling highly ambiguous mentions. For example,
our full model successfully disambiguates entities
for mentions such as ‘Sox’ (Boston Red Sox vs.
Chicago White Sox), ‘Sanders’ (Bernie Sanders vs.
Barry Sanders), and ‘Memphis’ (Memphis Grizzlies
vs. Memphis, Tennessee), which are mistakenly
linked to the other entities or Nil by the mention-
entity model. Another example is that the social
network information helps the system correctly link
‘Kim’ to Lil’ Kim instead of Kim Kardashian, de-
spite that the latter entity’s wikipedia page is con-
siderably more popular.

6 Related Work

Tweet entity linking Previous work on en-
tity linking mainly focuses on well-written docu-
ments (Bunescu and Pasca, 2006; Cucerzan, 2007;
Milne and Witten, 2008), where entity disambigua-

tion is usually performed by maximizing the global
topical coherence between entities. However, these
approaches often yield unsatisfactory performance
on Twitter messages, due to the short and noisy na-
ture of the tweets. To tackle this problem, collec-
tive tweet entity linking methods that leverage en-
riched context and metadata information have been
proposed (Huang et al., 2014). Guo et al. (2013b)
search for textually similar tweets for a target tweet,
and encourage these Twitter messages to contain
similar entities through label propagation. Shen et
al. (2013) employ Twitter user account information
to improve entity linking, based on the intuition that
all tweets posted by the same user share an under-
lying topic distribution. Fang and Chang (2014)
demonstrate that spatial and temporal signals are
critical for the task, and they advance the perfor-
mance by associating entity prior distributions with
different timestamps and locations. Our work over-
comes the difficulty by leveraging social relations —
socially connected individuals are assumed to share
similar interests on entities. As the Twitter post in-
formation is often sparse for some users, our as-
sumption enables the utilization of more relevant in-
formation that helps to improve the task.

NLP with social relations Most previous work on
incorporating social relations for NLP problems fo-
cuses on Twitter sentiment analysis, where the ex-
istence of social relations between users is consid-
ered as a clue that the sentiment polarities of mes-
sages from the users should be similar. Speriosu et
al. (2011) construct a heterogeneous network with
tweets, users, and n-grams as nodes, and the sen-
timent label distributions associated with the nodes

1459

are refined by performing label propagation over so-
cial relations. Tan et al. (2011) and Hu et al. (2013)
leverage social relations for sentiment analysis by
exploiting a factor graph model and the graph Lapla-
cian technique respectively, so that the tweets be-
longing to social connected users share similar label
distributions. We work on entity linking in Twit-
ter messages, where the label space is much larger
than that of sentiment classification. The social re-
lations can be more relevant in our problem, as it is
challenging to obtain the entity prior distribution for
each individual.

7 Conclusion

We present a neural based structured learning archi-
tecture for tweet entity linking, leveraging the ten-
dency of socially linked individuals to share simi-
lar interests on named entities — the phenomenon
of entity homophily. By modeling the compositions
of vector representations of author, entity, and men-
tion, our approach is able to exploit the social net-
work as a source of contextual information. This
vector-compositional model is combined with non-
linear feature combinations of surface features, via
a feedforward neural network. To avoid predicting
overlapping entity mentions, we employ a structured
prediction algorithm, and train the system with loss-
augmented decoding.

Social networks arise in other settings besides mi-
croblogs, such as webpages and academic research
articles; exploiting these networks is a possible di-
rection for future work. We would also like to in-
vestigate other metadata attributes that are relevant
to the task, such as spatial and temporal signals.

Acknowledgments We thank the EMNLP review-
ers for their constructive feedback. This research
was supported by the National Science Foundation
under awards IIS-1111142 and RI-1452443, by the
National Institutes of Health under award number
R01-GM112697-01, and by the Air Force Office of
Scientific Research.

References

Sitaram Asur and Bernardo A Huberman. 2010. Pre-
dicting the future with social media. In Web Intel-

ligence and Intelligent Agent Technology (WI-IAT),
pages 492–499.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. the Journal of ma-
chine Learning research, 3:993–1022.

R. C Bunescu and M. Pasca. 2006. Using encyclopedic
knowledge for named entity disambiguation. In Pro-
ceedings of the European Chapter of the Association
for Computational Linguistics (EACL).

Amparo E Cano, Giuseppe Rizzo, Andrea Varga,
Matthew Rowe, Milan Stankovic, and Aba-Sah
Dadzie. 2014. Making sense of microposts (# microp-
osts2014) named entity extraction & linking challenge.
Making Sense of Microposts (# Microposts2014).

David Carmel, Ming-Wei Chang, Evgeniy Gabrilovich,
Bo-June Paul Hsu, and Kuansan Wang. 2014. Erd’14:
entity recognition and disambiguation challenge. In
ACM SIGIR Forum, pages 63–77.

Silviu Cucerzan. 2007. Large-scale named entity disam-
biguation based on wikipedia data. In Proceedings of
Empirical Methods for Natural Language Processing
(EMNLP).

Yuan Fang and Ming-Wei Chang. 2014. Entity link-
ing on microblogs with spatial and temporal signals.
Transactions of the Association for Computational
Linguistics (ACL).

Stephen Guo, Ming-Wei Chang, and Emre Kiciman.
2013a. To link or not to link? a study on end-to-
end tweet entity linking. In Proceedings of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL), Atlanta, GA.

Yuhang Guo, Bing Qin, Ting Liu, and Sheng Li. 2013b.
Microblog entity linking by leveraging extra posts. In
Proceedings of Empirical Methods for Natural Lan-
guage Processing (EMNLP), Seattle, WA.

Dirk Hovy. 2015. Demographic factors improve classifi-
cation performance. In Proceedings of the Association
for Computational Linguistics (ACL), pages 752–762,
Beijing, China.

Xia Hu, Lei Tang, Jiliang Tang, and Huan Liu. 2013. Ex-
ploiting social relations for sentiment analysis in mi-
croblogging. In Proceedings of the sixth ACM inter-
national conference on Web search and data mining
(WSDM), pages 537–546.

Hongzhao Huang, Yunbo Cao, Xiaojiang Huang, Heng
Ji, and Chin-Yew Lin. 2014. Collective tweet wikifi-
cation based on semi-supervised graph regularization.
In Proceedings of the Association for Computational
Linguistics (ACL), Baltimore, MD.

Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue
Moon. 2010. What is Twitter, a social network or a
news media? In Proceedings of the Conference on
World-Wide Web (WWW), pages 591–600, New York.
ACM.

1460

Jiwei Li, Alan Ritter, and Dan Jurafsky. 2015. Learn-
ing multi-faceted representations of individuals from
heterogeneous evidence using neural networks. arXiv
preprint arXiv:1510.05198.

Wang Ling, Chris Dyer, Alan Black, and Isabel Trancoso.
2015. Two/too simple adaptations of word2vec for
syntax problems. In Proceedings of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics (NAACL), Denver, CO.

Michael Mathioudakis and Nick Koudas. 2010. Twit-
termonitor: trend detection over the twitter stream.
In Proceedings of the ACM SIGMOD International
Conference on Management of data (SIGMOD), pages
1155–1158.

Miller McPherson, Lynn Smith-Lovin, and James M
Cook. 2001. Birds of a feather: Homophily in social
networks. Annual review of sociology, pages 415–444.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
Neural Information Processing Systems (NIPS), pages
3111–3119, Lake Tahoe.

D. Milne and I. H. Witten. 2008. Learning to link with
Wikipedia. In Proceedings of the International Con-
ference on Information and Knowledge Management
(CIKM).

Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin
Gimpel, Nathan Schneider, and Noah A. Smith. 2013.
Improved part-of-speech tagging for online conversa-
tional text with word clusters. In Proceedings of the
North American Chapter of the Association for Com-
putational Linguistics (NAACL), pages 380–390, At-
lanta, GA.

Kriti Puniyani, Jacob Eisenstein, Shay Cohen, and Eric P.
Xing. 2010. Social links from latent topics in mi-
croblogs. In Proceedings of NAACL Workshop on So-
cial Media, Los Angeles.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named entity recognition in tweets: an exper-
imental study. In Proceedings of Empirical Methods
for Natural Language Processing (EMNLP).

Wei Shen, Jianyong Wang, Ping Luo, and Min Wang.
2013. Linking named entities in tweets with knowl-
edge base via user interest modeling. In Proceedings
of Knowledge Discovery and Data Mining (KDD).

Richard Socher, Danqi Chen, Christopher D. Manning,
and Andrew Y. Ng. 2013. Reasoning With Neural
Tensor Networks For Knowledge Base Completion. In
Neural Information Processing Systems (NIPS), Lake
Tahoe.

Michael Speriosu, Nikita Sudan, Sid Upadhyay, and Ja-
son Baldridge. 2011. Twitter polarity classification

with label propagation over lexical links and the fol-
lower graph. In Proceedings of Empirical Methods for
Natural Language Processing (EMNLP), pages 53–63.

Chenhao Tan, Lillian Lee, Jie Tang, Long Jiang, Ming
Zhou, and Ping Li. 2011. User-level sentiment anal-
ysis incorporating social networks. In Proceedings of
Knowledge Discovery and Data Mining (KDD).

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun
Yan, and Qiaozhu Mei. 2015. Line: Large-scale in-
formation network embedding. In Proceedings of the
Conference on World-Wide Web (WWW).

Shaomei Wu, Jake M Hofman, Winter A Mason, and
Duncan J Watts. 2011. Who says what to whom on
twitter. In Proceedings of the Conference on World-
Wide Web (WWW), pages 705–714.

Yi Yang and Ming-Wei Chang. 2015. S-mart: Novel
tree-based structured learning algorithms applied to
tweet entity linking. In Proceedings of the Association
for Computational Linguistics (ACL), Beijing, China.

Yi Yang and Jacob Eisenstein. 2015. Putting
things in context: Community-specific embedding
projections for sentiment analysis. arXiv preprint
arXiv:1511.06052.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2014. Embedding entities and relations
for learning and inference in knowledge bases. arXiv
preprint arXiv:1412.6575.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of the Association for Com-
putational Linguistics (ACL), Beijing, China.

1461

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1462–1472,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Phonologically Aware Neural Model for Named Entity Recognition in
Low Resource Transfer Settings

Akash Bharadwaj David Mortensen Chris Dyer Jaime G. Carbonell
{akashb, dmortens, cdyer, jgc}@cs.cmu.edu

Language Technologies Institute
Carnegie Mellon University

Abstract

Named Entity Recognition is a well estab-
lished information extraction task with many
state of the art systems existing for a va-
riety of languages. Most systems rely on
language specific resources, large annotated
corpora, gazetteers and feature engineering
to perform well monolingually. In this pa-
per, we introduce an attentional neural model
which only uses language universal phonolog-
ical character representations with word em-
beddings to achieve state of the art perfor-
mance in a monolingual setting using super-
vision and which can quickly adapt to a new
language with minimal or no data. We demon-
strate that phonological character represen-
tations facilitate cross-lingual transfer, out-
perform orthographic representations and in-
corporating both attention and phonological
features improves statistical efficiency of the
model in 0-shot and low data transfer settings
with no task specific feature engineering in the
source or target language.

1 Introduction

Named Entity Recognition (NER) (Nadeau and
Sekine, 2007; Marrero et al., 2013) is an informa-
tion extraction task that deals with finding and clas-
sifying entities in text into a fixed set of types of
interest. It is challenging for a variety of reasons.
Named Entities (NEs) can be arbitrarily synthesized
(eg. people’s/organization’s names). NEs are often
not subject to uniform cross-linguistic spelling con-
ventions: compare France (English) and Frantsiya
(Uzbek). NEs occur rarely in data which makes gen-

eralization difficult. Skewed class statistics necessi-
tate measures to prevent models from merely favor-
ing a majority class.

Named entities must also be annotated in con-
text (eg. “[New York Times]ORG” vs. “[New
York]LOC”). Lexical ambiguity (Turkey—country
vs. bird), semantic ambiguity (“I work at the [New
York Times]ORG” vs. “I read the New York Times”)
and sparsity induced by morphology add complex-
ity.

Despite the challenges mentioned above, compe-
tent monolingual systems that rely on having suffi-
cient annotated data, knowledge and resources avail-
able for engineering features have been developed.
A more challenging task is to design a model that
retains competence in monolingual scenarios and
can easily be transferred to a low resource language
with minimum overhead in terms of data annotation
requirements and feature engineering. This trans-
fer setting introduces additional challenges such
as varying character usage conventions across lan-
guages with same script, differing scripts, lack of
NE transliteration, varying morphology, different
lexicons and mutual non-intelligibility to name a
few.

We propose the following changes over prior
work (Lample et al., 2016) to address the challenges
of the low-resource transfer setting. We use:

1. Language universal phonological character
representations instead of orthographic ones.

2. Attention over characters of a word while
labeling it with an NE category.

1462

Figure 1: Attentional LSTM-CRF architecture. li denotes
the encoding of a word and its left context (forward LSTM)
while ri includes only right context (backward LSTM). In-
puts to word LSTMs are obtained using character LSTMs
and word-embeddings. ai denotes an attentional context
vector concatenated with li and ri.

We show that using phonological character rep-
resentations instead does not negatively impact per-
formance on two languages: Spanish and Turkish.
We then show that using global phonological repre-
sentations enables model transfer from one or more
source languages to a target language with no extra
effort, even when the languages use different scripts.
We demonstrate that while attention over characters
of words has marginal utility in monolingual and
high resource settings, it greatly improves the sta-
tistical efficiency of the model in 0-shot and low
resource transfer settings. We do require a map-
ping from a language’s script to phonological feature
space which is script specific and not task specific.
This presents little or no overhead due to existence
of tools like PanPhon (Littell et al., 2016).

2 Our Approach

Figure 1 provides a high level overview of our
model. We model the words of a sentence at the
type level and the token level. At the type level (ig-
norant of sentential context), we use bidirectional
character LSTMs as in figure 2 to compose charac-
ters of a word to obtain its word representation and
concatenate this with a word embedding that cap-
tures distributional semantics. This can memorize
entities or capture morphological and suffixal clues

Figure 2: Type level word representations - l denotes a
word prefix encoding (by forward char LSTM) while r de-
notes a word suffix encoding (by backward char LSTM).

that can help at a discriminative task like NER. We
compose type level word representations with bi-
directional LSTMs to obtain token level (cognizant
of sentential context) representations. Using token
level word representations along with an attentional
context vector for each word based on the sequence
of characters it contains, we generate score functions
used by a Conditional Random Field (CRF) for in-
ference. To facilitate transfer across languages with
different scripts, we use Epitran 1 and PanPhon (Lit-
tell et al., 2016).

Epitran is a straightforward orthography-to-IPA
(International Phonetic Alphabet [language univer-
sal]) system including a collection of preprocessors
and grapheme-to-phoneme mappings for a variety of
language-script pairs. It converts a word from its na-
tive script into a sequence of IPA characters, each
of which approximately corresponds to a phoneme.
PanPhon is a database of IPA-to-phonological fea-
ture vector mappings and a library for querying, ma-
nipulating, and exploiting this database. It consumes
the output of Epitran and produces feature vectors
(21 dimensions) of phonological characteristics such
as whether a phoneme is articulated with (accom-
panied by) vibration of the vocal folds (voiced),
with the tongue in a high, low, back, or front po-
sition, with the lips rounded or unrounded, with
tongue tip or blade (coronal), etc. Figure 3 depicts
the sequence of operations applied to the same NE

1https://github.com/dmort27/epitran

1463

orthographic
representation

Epitran

IPA
representation

PanPhon

feature
vector

representation

>ڭ�����<

/ʃind͡ʒaŋ/

PanPhon

feature
vector

representation

orthographic
representation

Epitran

IPA
representation

<Şincan>

/ʃind͡ʒan/

TURKISH
1

2

3

1

2

3

ʃ
i
n
d͡ʒ
a
ŋ

ʃ
i
n
d͡ʒ
a
n

Figure 3: Use of Epitran and PanPhon to enable transfer
across orthographies

in Uyghur (Perso-Arabic script) and Turkish (Latin
script), thus making the equivalence across scripts
apparent. We concatenate the feature vectors from
PanPhon and 1-hot encodings of the corresponding
IPA characters and use these as inputs to the charac-
ter bi-LSTMs.

This shift to IPA space is motivated by prior work
(Tsvetkov et al., 2015; Tsvetkov and Dyer, 2015)
which demonstrated the value of projecting ortho-
graphic surface forms of words into a phonologi-
cal space for detecting loan words, transliteration
and cognates even in language pairs that exhibit sig-
nificant typological, morphological and phonologi-
cal differences. Our underlying assumption is that
named entities are likely to be transliterated or re-
tain pronunciation patterns across languages. Addi-
tionally, phenomena such as vowel harmony mani-
fest explicitly in IPA representation and can poten-
tially be helpful for NER. Foreign named entities for
example, need not obey vowel harmony rules preva-
lent in languages like Turkish. A powerful sequence
model such as a LSTM could be tolerant to the noise
created by lexical aberrations, lack of spelling con-
ventions, vowel raising etc. when given a phonolog-
ical representation of an NE in different languages.

Our second proposed change is to incorporate at-
tention over the sequence of IPA segments in a word
when predicting scores for its possible labels. Atten-
tion is an unsupervised alternative to convolution or
feature engineering to capture helpful localized phe-
nomena like capitalization of first letter, presence of
case markers, special characters, helpful morpho-
logical suffixes etc. or the conjunction of multiple

such phenomena. Such features have been the main-
stay of most prior work for NER. Most of these fea-
tures are subtle and occur at the type level, whereas
the CRF performs inference at the token level. We
show (empirically) that attention makes the CRF
more sensitive to such useful type level phenom-
ena during inference and improves the statistical ef-
ficiency of the model in certain scenarios. Having
described our intuitions, we now provide mathemat-
ical details of our model.

2.1 Model Description
2.1.1 LSTM

Long Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) belongs to a special breed
of neural networks called Recurrent Neural Net-
works (RNNs) which are capable of processing se-
quential input of unbounded and arbitrary length.
This makes them suitable for a sequence labeling
task. LSTMs incorporate gating functions at each
time step to allow the network to forget, remember
and update contextual memory and mitigate prob-
lems like vanishing gradient. We use the following
implementation:

it =σ (Wxixt +Whiht−1 +Wcict−1 + bi)

ct =(1− it)� ct−1+
it � tanh(Wxcxt +Whcht−1 + bc)

ot =σ (Wxoxt +Whoht−1 +Wcoct + bo)

ht =ot � tanh(ct)

where � indicates element-wise product and σ indi-
cates element-wise sigmoid function.

In practice we use bi-directional LSTMs (each
with its own parameters) to mitigate cases where the
LSTM may be biased towards the last few inputs it
reads. This is done both at the word-level and the
character level. Let the hidden state at time step t
of the forward LSTM be denoted by

−→
ht and the cor-

responding state of the backward LSTM be denoted
by
←−
ht . At the character level, for a word with L

characters, we only take the final hidden states in
each direction i.e. [

−→
hL;
←−
h0] and concatenate them

to get a representation of the word that comprises
these characters. At the word level, we concatenate
corresponding forward and backward LSTM states
for each word Xt to get [

−→
ht ;
←−
ht] which is the token

1464

level representation for the tth word in a sentence X.
We use this to generate un-normalized energy/score
functions for the CRF layer.

2.2 Attention

Let wt = [
−→
ht ;
←−
ht] indicate the concatenated word bi-

LSTM output (of dimension d1) at step t correspond-
ing to the tth word (Xt) in the input sequence X.
LetMt be the matrix containing the concatenated bi-
directional character LSTM outputs for each charac-
ter of Xt. It has dimensions (lt, d2) where d2 is the
dimension of the concatenated bi-directional charac-
ter LSTM hidden states and lt is the number of char-
acters in Xt. Let mi

t denote the ith row of Mt. Let
P be a parameter matrix of dimension (d1, d2) and p
be a bias vector of length d2. We follow (Bahdanau
et al., 2014) in the formulation of attention context
vector at:

w′t =tanh(wt · P + p)

αi =
exp(w′t ·mi

t)∑lt
j=1 exp(w

′
t ·mj

t)

at =

lt∑

i=1

(αi ∗mi
t)

The attentional context vector at is then appended
to wt to obtain concatenated vector ut = [at; wt].
We apply a linear transform U (matrix of dimension
(d1 + d2, k) where k is the number of unique NER
tags). This gives us:

et = ut · U (1)

where et is a vector of un-normalized energy/score
functions indicating the compatibility between word
Xt and each of the k possible NER labels it can be
given. Note that each word has a separate attention
context vector obtained using the character LSTM
hidden states generated by its constituent characters.

2.3 Conditional Random Field

Unlike Hidden Markov Models, CRFs do not en-
force any independence assumptions among ob-
served data and directly model the likelihood of a la-
beling hypothesis discriminatively. They also model
adjacency compatibility between NER tags which
can capture strong constraints like an ’I-label’ tag

not following an O tag without a ’B-label’ tag in be-
tween them (see section 2.6). In our model, the CRF
is parametrized as follows:

For a word sequence X = (x1, x2, ...xN), let E be
a matrix of dimension (k,N) where k is the number
of unique NER tags and N is the sequence length.
The tth column is the vector et obtained in equation
1. Let T be the square transition matrix of size (k+2,
k+2) which captures transition score between the k
NER tags, the start and the end symbols. Let Y =
(y1, y2, ...yN) be the label sequence associated with
the input word sequence, each yi being an index into
the ordered set of unique NER tags. Let y0 be the
start symbol and yN+1 be the end symbol. The score
of this sequence is evaluated as:

S(X,Y) =
N∑

i=1

Eyi,i +
N∑

j=0

Tyj ,yj+1

LetYX indicate the exponential space of all possi-
ble labelings of this sequence X. The partition func-
tion associated with this CRF is then evaluated as:

Z =
∑

Y ∈YX
eS(X,Y)

The probability of a specific labeling Y ∈ YX :

P (Y |X) =
eS(X,Y)

Z

The training objective is to maximize conditional
log probability of the correct labeling sequence Y ∗:

log(P (Y ∗|X)) = S(X,Y ∗)− log (Z) (2)

The decoding criteria for an input sequence X is:

Y ∗ = argmax
Y ∈YX

S(X,Y) (3)

Normally, evaluating the partition function over
the exponential space of all possible labelings would
be intractable. However, as described in (Lafferty
et al., 2001), this can be done efficiently for linear
chain CRFs using the forward backward algorithm.

2.4 Word Representations
The inputs to our model are in the form of type level
word representations (figure 2). Motivated by the
distributional hypothesis (Harris, 1954; Firth, 1957)

1465

we use word embeddings as inputs. In the monolin-
gual scenario, we use structured skipgram word em-
beddings (Ling et al., 2015a). For the transfer sce-
nario, embeddings can optionally be trained using
techniques like multi CCA described in (Ammar et
al., 2016). By learning a linear transformation from
a shared vector space between languages, the model
may acquire some transfer capability to the target
language.

We use character bi-LSTMs to handle the Out
Of Vocabulary (OOV) problem as in (Ling et al.,
2015b). However, just as a distributional hypothe-
sis exists for words, prior work (Tsvetkov and Dyer,
2015; Tsvetkov et al., 2015) suggests phonological
character representations capture inherent similari-
ties between characters that are not apparent from
orthogonal one-hot orthographic character represen-
tations and can serve as a language universal surro-
gate for character representations. This is also use-
ful for multi-lingual named entity recognition as ex-
plained in section 2. Therefore we make use of Epi-
tran and PanPhon as in figure 3 to obtain both 1-
hot IPA character encodings and phonological fea-
ture vectors capturing similarity between IPA char-
acters. These form the inputs to the character bi-
LSTMs. The mapping from orthographic charac-
ter segments to IPA is sometimes many to one (am-
biguous) and unarticulated characters (like periods
in NE abbreviations) and capitalization information
is lost by default. Given the importance of such or-
thographic features for NER and the ambiguity in-
troduced, a drop in performance may be expected
by using phonological character representations.

2.5 Training

Our model parametrization is similar to (Lample et
al., 2016). The weights to be trained include the the
CRF transition matrix T, the projection parameters
are used to generate matrix E (P and U), the LSTM
parameters and word and character embedding ma-
trices. The objective is to maximize the log prob-
ability of the correct labeling sequence as given in
equation 2. This objective is fully differentiable and
standard back-propagation is used to learn weights.
We use Stochastic Gradient Descent with a learning
rate of 0.05 and gradients clipped at 5.0 providing
best performance. Using Adadelta or Adam leads to
faster convergence but slightly worse performance.

Word level LSTMs use a hidden layer size of 100,
orthographic character LSTMs (if used) used a hid-
den layer of size 25 while phonological character
LSTMs used a hidden layer of size 15 due to the
smaller phonetic alphabet. Tuning these did not have
a major effect on performance. Dropout of 0.5 is
applied after concatenation of the word embeddings
and character LSTM outputs. Best dropout value
was chosen through ablation studies. For Spanish,
we use word embeddings pre-trained on the Span-
ish Gigaword version 3. For transfer experiments,
we use multilingual word embeddings trained using
multi CCA described in (Ammar et al., 2016).

2.6 Entity Types and Tagging Schemes
In all of the datasets in table 1, 4 entity types are
annotated:

1. Persons (PER)
Real/fictional, living/dead people. Aliases and
family names are also annotated. E.g. Barack
Obama, the [Kennedys], Puff Daddy etc.

2. Locations (LOC)
Geographical locations without a dedicated
population and government. E.g. Nile river,
Sahara desert, Mt. Everest, Asia etc.

3. Geo-Political Entities (GPE)
Geographical regions with corresponding pop-
ulation and government. Mentions can be nom-
inal (e.g. India, E.U., Britain etc.) or adjectival
(e.g. [British] army, [French] government etc.).

4. Organizations (ORG)
Names of entities with organization and man-
agerial structure. E.g. Democratic Party,
Google, JetBlue, etc.

A BIO tagging scheme is used for all annotations.
All non-entity tokens are annotated as ’O’. The first
token of an entity span is annotated as ’B-label’ and
all remaining tokens in the entity span are annotated
as ’I-label’.

3 Experiments

We conduct four different experiments:

1. CoNLL 2002 Spanish NER (Sang., 2002) task.
This demonstrates the monolingual compe-
tence of phonological character representations
vs. orthographic representations.

1466

2. Turkish NER using the Linguistic Data Con-
sortium’s LDC2014E115 BOLT Turkish Lan-
guage Pack 2. This demonstrates the utility of
phonological character representations and at-
tention in a morphologically rich, low resource
language. We compare against a state-of-the-
art monolingual model (Lample et al., 2016)
that uses orthographic character LSTMs.

3. Transfer Experiments from Uzbek to Turkish
using LDC2014E112 BOLT 3 data pack for
Uzbek and LDC2014E115 BOLT data pack
for Turkish. These two languages have sim-
ilar syntax and word order (Dryer, 2013) but
vary significantly in morphology, vowel har-
mony and phonology, can use different scripts
(Uzbek-Latin/Cyrilic, Turkish-Latin) and are
not mutually intelligible.

4. Transfer Experiments from Uzbek and Turk-
ish into Uyghur using LDC2014E112 and
LDC2014E115 BOLT data pack for Uzbek
and Turkish respectively and Uyghur data
provided as part of DARPA LORELEI4. These
languages all have different scripts, lexicons,
morphology and phonology. Results are
reported by NIST 5 on an unseen test set.

3.1 Results
Tables 2 and 3 report results from monolingual ex-
periments in Spanish. In table 3, we report the per-
formance of our best model against other state-of-
the-art models for the Spanish CoNLL 2002 NER
task (Sang., 2002). Our model performs marginally
better than other benchmarks with the optimal con-
figuration of hyper-parameters and using pre-trained
word embeddings. Table 2 report ablation study re-
sults, which reveal that using pre-trained word em-
beddings without using character LSTMs yields a
very strong baseline that already out-performs var-
ious previous benchmarks. Using character LSTMs
that compose orthographic character representations
yields a +0.91 improvement in F1 score and a further

2http://opencatalog.darpa.mil/BOLT.html
3BOLT contains newswire, discussion forum, social media

and chat data
4http://www.darpa.mil/program/low-resource-languages-

for-emergent-incidents
5https://www.nist.gov
6Sparse features for character capitalization and character

type (digit, punctuation etc.)

Language # Sentences # Entities
Spanish 8323 18798
Turkish 5065 4883
Uzbek 10078 7960
Uyghur 2161 2668∗

Table 1: Dataset Statistics. * indicates non-gold annotations

produced by a non-speaker linguist.

Phono
Chars

Ortho
Chars

Word
Vecs

Cap+
Cat6

Ortho
Attn

Phono
Attn

F1

No No Yes No No No 83.61
No Yes Yes No No No 84.52
No Yes Yes No Yes No 84.64
No Yes Yes Yes No No 84.91
No Yes Yes Yes Yes No 85.25
Yes No Yes No No No 84.08
Yes No Yes No No Yes 84.88
Yes No Yes Yes No No 84.89
Yes No Yes Yes No Yes 85.81
Yes Yes Yes No No Yes 84.53
Yes Yes Yes Yes No No 84.92
Yes Yes Yes Yes Yes Yes 84.75
Yes Yes Yes Yes No Yes 84.84
Yes Yes Yes Yes Yes No 85.32

Table 2: Ablation Tests on Spanish CoNLL 2002. Bold indi-

cates the best model.

Model F1
Carreras et al. (2002)* 81.39
dos Santos et al. (2015) 82.21
Gillick et al. (2015) 81.83
Gillick et al. (2015)* 82.95
Lample et al. (2016) 85.75
Yang et al. (2016) 85.77
Our Best 85.81

Table 3: Comparison with benchmarks. * indicates a model

that uses external labeled data

Phono
Chars

Ortho
Chars

Word
vecs

Cap+
Cat

Ortho
Attn

Phono
Attn

F1

No No Yes No No No 49.2
No Yes Yes No No No 65.41
No Yes Yes No Yes No 64.76
No Yes Yes Yes No No 60.57
No Yes Yes Yes Yes No 60.87
Yes No Yes No No No 63.04
Yes No Yes No No Yes 66.07
Yes No Yes Yes No No 59.08
Yes No Yes Yes No Yes 62.46
Yes Yes Yes No No Yes 63.43
Yes Yes Yes Yes No No 63.46
Yes Yes Yes Yes Yes Yes 66.47

Table 4: Ablation Tests on Turkish Bold indicates the best

transfer eligible (66.07) and transfer ineligible models (66.47)

1467

Model F1
Lample et al. (2016) 61.11
Lample et al. (2016) with
pretrained embeddings 65.41

Our Best model 66.47
Our Best transfer-eligible model 66.07

Table 5: Comparison with state-of-the-art monolingual Turkish

model

Model F1
Lample et al. (2016) 37.1
Our best transfer model* 51.2

Table 6: NIST evaluations for Uyghur. * indicates transfer from

Uzbek and Turkish

+0.12 F1 with attention. Using phonological charac-
ter representations instead yields an improvement of
+0.47 F1 and a further +0.8 F1 with attention. Thus,
phonological representations benefit more from at-
tention applied over them to beat out orthographic
representations in that scenario. Using sparse fea-
tures indicating the character category (alphabet vs.
number vs. punctuation/non-phonetic) and capital-
ization in conjunction with with phonological char-
acter representations and word embeddings with at-
tention over phonological characters yields the best
configuration that slightly outperforms the best pub-
lished models so far. Given that many previous
benchmarks used features that rely heavily on or-
thography, this is an encouraging result since one
would expect to lose some performance by using
more abstract phonological representations as ex-
plained in section 2.4.

Tables 4 and 5 highlight results from monolingual
experiments on Turkish. This dataset is much more
challenging since the annotated training courpus is
significantly smaller than the CoNLL 2002 shared
task dataset and because Turkish is an agglutinative
language exhibiting sparsity inducing morphology
which leads to huge vocabulary size. As a compet-
itive baseline, we train the LSTM CRF described in
(Lample et al., 2016) due to its documented abil-
ity to obtain state-of-the-art monolingual results for
many languages with minimal feature engineering.
Our best model from the Turkish ablation study out-
performs this baseline. We also see a stark contrast
between the ablation study results for Turkish com-
pared to Spanish. Firstly, word embeddings alone

perform rather poorly due to the challenges of reli-
ably estimating them for a large vocabulary given a
small dataset. Character composed representations
of words provide a significant performance boost
(+17.27 F1 for the best model). Secondly, usage of
sparse character features (like capitalization) seems
to hurt performance in all but the last model in table
4. Thirdly, phonological and orthographic charac-
ter representations are complementary in the case of
Turkish, unlike Spanish. This is not too surprising
since Turkish exhibits phonological phenomena like
vowel harmony. Lack of vowel harmony in a word
could give-away a foreign word or a named entity
for example. Results show that attention is helpful
as well. We would also like to point out that the
only models in the ablation studies eligible for trans-
fer are those that do not use orthographic character
representations. Among these, the model that uses
phonological representation with attention and word
vectors performs the best and also outperforms the
baseline system.

Our next experiments on model transfer are ar-
guably the most interesting. Tables 7 and 8 docu-
ment single source (Uzbek to Turkish) transfer re-
sults. We find that using sparse character category
and capitalization features in conjunction with atten-
tion and phonological features yields the best 0-shot
transfer performance (no training labels in the tar-
get language). Specifically, attention provides +6
F1 in 0-shot and 5% labeled-target language data
scenarios. It is interesting to note that using mul-
tilingual word embeddings for the source and tar-
get languages alone accounts for very poor trans-
fer. We also find that with as little as 20% of the
data, we approach the performance of a monolingual
target model that was trained on all the data. We
also notice that the transfer models retain a consis-
tent advantage over a monolingually trained target
language model across all data availability scenar-
ios. Lastly, we note that while attention provides
a significant improvement in 0-shot and 5% data
availability scenarios, a model without attention (or
sparse features like capitalization) eventually does
better with more data. This indicates that the model
is competent enough to leverage transfer via phonol-
ogy alone. This could also possibly be because at-
tention patterns from Uzbek could bring in a bias
that is eventually sub-optimal for Turkish due to dif-

1468

Phono
Chars

Word
vecs

Cap+
Cat

Phono
Attn

Uzbek
Source F1

Target
0-shot F1

5%
data

20%
data

40%
data

60%
data

80%
data

All
data

No Yes No No 41.87 2.09 23.44 35 42.75 46.32 48.81 50.34
Yes Yes No Yes 61.24 11.9 34.06 47.84 56.1 53.5 64.72 65.2
Yes Yes No No 60.92 15.55 39.42 60.14 63.23 62.54 65.24 65.63
Yes Yes Yes No 64.89 22.14 41.19 54.02 57.06 59.26 60.84 61.72
Yes Yes Yes Yes 61.85 26.92 47.21 58.58 60.32 60.7 62.84 63.58

Table 7: Model Transfer from Uzbek (Source) to Turkish (Target) at different target data availability thresholds

Model 0-shot
5%
data

20%
data

40%
data

60%
data

80%
data

All
data

LSTM-CRF (Lample et al., 2016) 0 33.44 50.61 53.25 57.41 60 61.11
S-LSTM (Lample et al., 2016) 0 15.41 39.33 42.99 51.92 51.55 56.58

Table 8: Monolingual Turkish baseline at different data availability thresholds

ferent morphology and phonology. In future work,
we shall perform more insightful error analysis to
explain these trends.

Table 6 documents NIST evaluation results on an
unseen Uyghur test set (with gold annotations) for
the best transfer model configuration jointly trained
on Turkish and Uzbek gold annotations and Uyghur
training annotations produced by a non-speaker lin-
guist (non-gold). Since Uyghur lacks helpful type-
level orthographic features such as capitalization,
our transfer model in table 6 does not use any
sparse features or attention but benefits from transfer
via the phonological character representations we’ve
proposed. Despite the noisy supervision provided in
the target language, transferring from Turkish and
Uzbek provides a +14.1 F1 improvement over a state
of the art monolingual model trained on the same
Uyghur annotations. It is worth pointing out that
this transfer was achieved across 3 languages each
with different scripts, morphology, phonology and
lexicons.

4 Prior Work

NER is a well-studied sequence-labeling problem
for which many different approaches have been pro-
posed. Early works had a monolingual focus and
relied heavily on feature engineering. Approaches
include maximum entropy models (Chieu and Ng,
2003), hierarchically smoothed tries (Cucerzan and
Yarowsky, 1999), decision trees (Carreras et al.,
2002) and models incorporating syntactic, semantic
and world knowledge (Wakao et al., 1996). Each
of these models brings in a bias of its own. Florian
et al. (2003) successfully tried ensembling multiple

classifiers and improved performance.
Since NER is a sequence labeling problem, there

are local dependencies both among NE labels as-
sociated with words and among the words them-
selves, that could aid the labeling process. To explic-
itly deal with these sequential characteristics, Hid-
den Markov Models (HMMs) and Conditional Ran-
dom Fields (CRFs) became very popular. (Klein
et al., 2003; Florian et al., 2003; McCallum and
Li, 2003; Ratinov and Roth, 2009; Chandra et al.,
1981; Lin and Wu, 2009; Lample et al., 2016; Yang
et al., 2016; Ma and Hovy, 2016). CRFs even-
tually became more popular because they are dis-
criminative models that directly model the required
posterior probability of a labeling sequence using
parametrized functions of features. They do not
model the probability of the observed sentence itself,
avoid Markovian independence assumptions made
by HMMs and avoid the label bias problem.

Most of the work cited so far makes use of hand
engineered features. The following approaches min-
imize the use of features while still maintaining a
monolingual focus. Collobert et al. (2011), Turian et
al. (2010), and Ando and Zhang (2005) use unsuper-
vised features in conjunction with engineered fea-
tures capturing capitalization, character categories
and gazetteer matches. Collobert et al. (2011) use
a Convolutional Neural Network (CNN) over the se-
quence of word embeddings. Huang et al. (2015)
instead use bi-directional LSTMs over the sequence
of words, along with spelling and orthographic fea-
tures.

The most recent work eliminates feature engi-
neering altogether and combines CRFs with LSTMs

1469

which can model long sequences while remember-
ing appropriate past context. Lample et al. (2016)
proposed an architecture that uses both character and
word level LSTMs to produce score functions for
CRF inference conditioned on global context. Ma
and Hovy (2016) replace the character LSTMs of
Lample et al. (2016) with a CNN instead. Yang et
al. (2016) follow a very similar architecture to Lam-
ple et al. (2016), replacing the LSTMs with Gated
Recurrent Units (Cho et al., 2014). However, Yang
et al. (2016) also tackle multi task and multi-lingual
joint training scenarios.

Most of the models cited so far are monolin-
gual either because they use hand crafted features
and language specific resources or because of deep-
seated assumptions. For example a change in or-
thography, lexicon, script, word order or addition
of complex morphology makes transfer impossi-
ble. This is the central challenge that we tackle.
There has been much less work catering to this sce-
nario. Kim et al. (2012) use weak annotations from
Wikipedia metadata and parallel data for multi lin-
gual NER. Yang et al. (2016) addresses the use case
of multilingual joint training, which assumes there
is sufficient data available in all languages. Noth-
man et al. (2013) also operate under the assumption
of availability of Wikipedia data.

To the best of our knowledge, a scenario involving
transfer of a model trained in one (or more) source
language(s) to another language with little or no la-
beled data, different script, different morphology,
different lexicon, lack of transliteration, non-mutual
intelligibility etc. has not been addressed recently.

5 Conclusion

In this paper, we presented two improvements over
a state-of-the-art monolingual model to address
Named Entity Recognition in transfer settings. The
first seeks to reconcile various dimensions of vari-
ability between languages such as varying script,
orthographic conventions, phonological phenomena
etc. by representing words as sequences of IPA (In-
ternational Phonetic Alphabet) segments consistent
across all languages, rather than sequences of char-
acters specific to a particular language. Secondly,
we exploit the one-to-one mapping between input
sequence words and output labels and advocate for

the use of attention over the character/IPA sequence
of a word when predicting its label. We show em-
pirically that these two improvements 1) achieve
at least state-of-the-art performance on a monolin-
gual NER task in Spanish, 2) handle complex mor-
phology in languages such as Turkish, Uzbek and
Uyghur better than state of the art, 3) provide 0-shot
performance in a transfer scenario to a related new
language, well above that possible using multilin-
gual word embeddings alone, and 4) are capable of
generalizing to a new language with much less train-
ing data than a monolingually trained model. More-
over, all of this is achieved without any extra feature
engineering specific to the task or language, apart
from mapping characters in that language to IPA. We
believe these results to be encouraging and look for-
ward to replicating these results on more language
pairs in different language families and further au-
tomating the process of obtaining phonological char-
acter representations.

6 Acknowledgement

This work is sponsored by Defense Advanced Re-
search Projects Agency Information Innovation Of-
fice (I2O). Program: Low Resource Languages
for Emergent Incidents (LORELEI). Issued by
DARPA/I2O under Contract No. HR0011-15-C-
0114. The views and conclusions contained in this
document are those of the authors and should not
be interpreted as representing the official policies,
either expressed or implied, of the U.S. Govern-
ment. The U.S. Government is authorized to re-
produce and distribute reprints for Government pur-
poses notwithstanding any copyright notation here
on.

References

Waleed Ammar, George Mulcaire, Yulia Tsvetkov, Guil-
laume Lample, Chris Dyer, and Noah A Smith. 2016.
Massively multilingual word embeddings. arXiv
preprint arXiv:1602.01925.

Rie Kubota Ando and Tong Zhang. 2005. A framework
for learning predictive structures from multiple tasks
and unlabeled data. The Journal of Machine Learning
Research, 6:1817–1853.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly

1470

learning to align and translate. arXiv preprint
arXiv:1409.0473.

Xavier Carreras, Lluis Marquez, and Lluı́s Padró. 2002.
Named entity extraction using adaboost. In pro-
ceedings of the 6th conference on Natural language
learning-Volume 20, pages 1–4. Association for Com-
putational Linguistics.

Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stock-
meyer. 1981. Alternation. Journal of the Association
for Computing Machinery, 28(1):114–133.

Hai Leong Chieu and Hwee Tou Ng. 2003. Named en-
tity recognition with a maximum entropy approach. In
Walter Daelemans and Miles Osborne, editors, Pro-
ceedings of CoNLL-2003, pages 160–163. Edmonton,
Canada.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the proper-
ties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Silviu Cucerzan and David Yarowsky. 1999. Language
independent named entity recognition combining mor-
phological and contextual evidence. In Proceedings of
the 1999 Joint SIGDAT Conference on EMNLP and
VLC, pages 90–99.

Cıcero dos Santos, Victor Guimaraes, RJ Niterói, and Rio
de Janeiro. 2015. Boosting named entity recogni-
tion with neural character embeddings. In Proceed-
ings of NEWS 2015 The Fifth Named Entities Work-
shop, page 25.

Matthew S. Dryer, 2013. Order of Subject, Object and
Verb. Max Planck Institute for Evolutionary Anthro-
pology, Leipzig.

John Rupert Firth. 1957. A synopsis of linguistic theory.
In In Studies in Linguistic Analysis. Oxford: Philolog-
ical Societ.

Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong
Zhang. 2003. Named entity recognition through clas-
sifier combination. In Walter Daelemans and Miles
Osborne, editors, Proceedings of CoNLL-2003, pages
168–171. Edmonton, Canada.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag
Subramanya. 2015. Multilingual language processing
from bytes. arXiv preprint arXiv:1512.00103.

Zellig S Harris. 1954. Distributional structure. Word,
10(2-3):146–162.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Sungchul Kim, Kristina Toutanova, and Hwanjo Yu.
2012. Multilingual named entity recognition using
parallel data and metadata from wikipedia. In Pro-
ceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Long Papers-Volume
1, pages 694–702. Association for Computational Lin-
guistics.

Dan Klein, Joseph Smarr, Huy Nguyen, and Christo-
pher D. Manning. 2003. Named entity recognition
with character-level models. In Walter Daelemans and
Miles Osborne, editors, Proceedings of CoNLL-2003,
pages 180–183. Edmonton, Canada.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.

Guillaume Lample, Miguel Ballesteros, Sandeep Subra-
manian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.

Dekang Lin and Xiaoyun Wu. 2009. Phrase cluster-
ing for discriminative learning. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume
2-Volume 2, pages 1030–1038. Association for Com-
putational Linguistics.

Wang Ling, Chris Dyer, Alan Black, and Isabel Trancoso.
2015a. Two/too simple adaptations of word2vec for
syntax problems. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies. Association for Computational Linguis-
tics.

Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernan-
dez Astudillo, Silvio Amir, Chris Dyer, Alan W
Black, and Isabel Trancoso. 2015b. Finding func-
tion in form: Compositional character models for
open vocabulary word representation. arXiv preprint
arXiv:1508.02096.

Patrick Littell, David Mortensen, Kartik Goyal, Chris
Dyer, and Lori Levin. 2016. Bridge-language capital-
ization inference in western iranian: Sorani, kurmanji,
zazaki, and tajik. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC16).

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. arXiv
preprint arXiv:1603.01354.

Mónica Marrero, Julián Urbano, Sonia Sánchez-
Cuadrado, Jorge Morato, and Juan Miguel Gómez-
Berbı́s. 2013. Named entity recognition: fallacies,

1471

challenges and opportunities. Computer Standards &
Interfaces, 35(5):482–489.

Andrew McCallum and Wei Li. 2003. Early results
for named entity recognition with conditional random
fields, feature induction and web-enhanced lexicons.
In Proceedings of the seventh conference on Natu-
ral language learning at HLT-NAACL 2003-Volume 4,
pages 188–191. Association for Computational Lin-
guistics.

David Nadeau and Satoshi Sekine. 2007. A survey of
named entity recognition and classification. Lingvisti-
cae Investigationes, 30(1):3–26.

Joel Nothman, Nicky Ringland, Will Radford, Tara Mur-
phy, and James R Curran. 2013. Learning multilin-
gual named entity recognition from wikipedia. Artifi-
cial Intelligence, 194:151–175.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of the Thirteenth Conference on Compu-
tational Natural Language Learning, pages 147–155.
Association for Computational Linguistics.

Erik F. Tjong Kim Sang. 2002. Introduction to the conll-
2002 shared task: Languageindependent named entity
recognition. In Proc. CoNLL.

Yulia Tsvetkov and Chris Dyer. 2015. Cross-lingual
bridges with models of lexical borrowing. JAIR.

Yulia Tsvetkov, Waleed Ammar, and Chris Dyer.
2015. Constraint-based models of lexical borrowing.
NAACL.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method for
semi-supervised learning. In Proceedings of the 48th
annual meeting of the association for computational
linguistics, pages 384–394. Association for Computa-
tional Linguistics.

Takahiro Wakao, Robert Gaizauskas, and Yorick Wilks.
1996. Evaluation of an algorithm for the recognition
and classification of proper names. In Proceedings
of the 16th conference on Computational linguistics-
Volume 1, pages 418–423. Association for Computa-
tional Linguistics.

Zhilin Yang, Ruslan Salakhutdinov, and William Cohen.
2016. Multi-task cross-lingual sequence tagging from
scratch. arXiv preprint arXiv:1603.06270.

1472

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1473–1481,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Long-Short Range Context Neural Networks for Language Modeling

Youssef Oualil1,2 and Mittul Singh1,3 and Clayton Greenberg1,2,3 and Dietrich Klakow1,2,3

1Spoken Language Systems (LSV)
2Collaborative Research Center on Information Density and Linguistic Encoding

3Graduate School of Computer Science
Saarland University, Saarbrücken, Germany

{firstname.lastname}@lsv.uni-saarland.de

Abstract

The goal of language modeling techniques is
to capture the statistical and structural prop-
erties of natural languages from training cor-
pora. This task typically involves the learning
of short range dependencies, which generally
model the syntactic properties of a language
and/or long range dependencies, which are se-
mantic in nature. We propose in this paper a
new multi-span architecture, which separately
models the short and long context informa-
tion while it dynamically merges them to per-
form the language modeling task. This is done
through a novel recurrent Long-Short Range
Context (LSRC) network, which explicitly
models the local (short) and global (long)
context using two separate hidden states that
evolve in time. This new architecture is an
adaptation of the Long-Short Term Memory
network (LSTM) to take into account the lin-
guistic properties. Extensive experiments con-
ducted on the Penn Treebank (PTB) and the
Large Text Compression Benchmark (LTCB)
corpus showed a significant reduction of the
perplexity when compared to state-of-the-art
language modeling techniques.

1 Introduction

A high quality Language Model (LM) is considered
to be an integral component of many systems for
speech and language technology applications, such
as machine translation (Brown et al., 1990), speech
recognition (Katz, 1987), etc. The goal of an LM
is to identify and predict probable sequences of pre-
defined linguistic units, which are typically words.

These predictions are typically guided by the seman-
tic and syntactic properties encoded by the LM.

In order to capture these properties, classical LMs
were typically developed as fixed (short) context
techniques such as, the word count-based meth-
ods (Rosenfeld, 2000; Kneser and Ney, 1995), com-
monly known as N -gram language models, as well
as the Feedforward Neural Networks (FFNN) (Ben-
gio et al., 2003), which were introduced as an al-
ternative to overcome the exponential growth of pa-
rameters required for larger context sizes in N -gram
models.

In order to overcome the short context constraint
and capture long range dependencies known to be
present in language, Bellegarda (1998a) proposed to
use Latent Semantic Analysis (LSA) to capture the
global context, and then combine it with the standard
N -gram models, which capture the local context. In
a similar but more recent approach, Mikolov and
Zweig (2012) showed that Recurrent Neural Net-
work (RNN)-based LM performance can be signif-
icantly improved using an additional global topic
information obtained using Latent Dirichlet Allo-
cation (LDA). In fact, although recurrent architec-
tures theoretically allow the context to indefinitely
cycle in the network, Hai Son et al. (2012) have
shown that, in practice, this information changes
quickly in the classical RNN (Mikolov et al., 2010)
structure, and that it is experimentally equivalent
to an 8-gram FFNN. Another alternative to model
linguistic dependencies, Long-Short Term Memory
(LSTM) (Sundermeyer et al., 2012), addresses some
learning issues from the original RNN by control-
ling the longevity of context information in the net-

1473

work. This architecture, however, does not particu-
larly model long/short context but rather uses a sin-
gle state to model the global linguistic context.

Motivated by the works in (Bellegarda, 1998a;
Mikolov and Zweig, 2012), this paper proposes a
novel neural architecture which explicitly models 1)
the local (short) context information, generally syn-
tactic, as well as 2) the global (long) context, which
is semantic in nature, using two separate recurrent
hidden states. These states evolve in parallel within
a long-short range context network. In doing so,
the proposed architecture is particularly adapted to
model natural languages that manifest local-global
context information in their linguistic properties.

We proceed as follows. Section 2 presents a
brief overview of short vs long range context lan-
guage modeling techniques. Section 3 introduces
the novel architecture, Long-Short Range Context
(LSRC), which explicitly models these two depen-
dencies. Then, Section 4 evaluates the proposed net-
work in comparison to different state-of-the-art lan-
guage models on the PTB and the LTCB corpus. Fi-
nally, we conclude in Section 5.

2 Short vs Long Context Language Models

The goal of a language model is to estimate the
probability distribution p(wT

1) of word sequences
wT
1 = w1, · · · , wT . Using the chain rule, this dis-

tribution can be expressed as

p(wT
1) =

T∏

t=1

p(wt|wt−1
1) (1)

This probability is generally approximated under
different simplifying assumptions, which are typi-
cally derived based on different linguistic observa-
tions. All these assumptions, however, aim at mod-
eling the optimal context information, be it syntac-
tic and/or semantic, to perform the word prediction.
The resulting models can be broadly classified into
two main categories: long and short range context
models. The rest of this section presents a brief
overview of these categories with a particular focus
on Neural Network (NN)-based models.

2.1 Short Range Context
This category includes models that approximate (1)
based on the Markov dependence assumption of or-
derN−1. That is, the prediction of the current word

depends only on the last N − 1 words in the history.
In this case, (1) becomes

p(wT
1) ≈

T∏

t=1

p(wt|wt−1
t−N+1) (2)

The most popular methods that subscribe in this
category are the N -gram models (Rosenfeld, 2000;
Kneser and Ney, 1995) as well as the FFNN
model (Bengio et al., 2003), which estimates
each of the terms involved in this product, i.e,
p(wt|wt−1

t−N+1) in a single bottom-up evaluation of
the network.

Although these methods perform well and are
easy to learn, the natural languages that they try to
encode, however, are not generated under a Markov
model due to their dynamic nature and the long
range dependencies they manifest. Alleviating this
assumption led to an extensive research to develop
more suitable modeling techniques.

2.2 Long Range Context

Conventionally, N-gram related LMs have not been
built to capture long linguistic dependencies, al-
though significant word triggering information is
still available for large contexts. To illustrate such
triggering correlations spread over a large context,
we use correlation defined over a distance d, given
by cd(w1, w2) = Pd(w1,w2)

P (w1)P (w2)
. A value greater than

1 shows that it is more likely that the word w1 fol-
lows w2 at a distance d than expected without the
occurrence ofw2. In Figure 1, we show the variation
of this correlation for pronouns with the distance d.
It can be observed that seeing another “he” about
twenty words after having seen a first “he” is much
more likely. A similar observation can be made for
the word “she”. It is, however, surprising that seeing
“he” after “he” is three times more likely than see-
ing “she” after “she”, so “he” is much more predic-
tive. In the cases of cross-word triggering of “he”→
“she” and “she”→ “he”, we find that the correlation
is suppressed in comparison to the same word trig-
gering for distances larger than three. In summary,
Figure 1 demonstrates that word triggering informa-
tion exists at large distances, even up to one thou-
sand words. These conclusions were confirmed by
similar correlation experiments that we conducted

1474

for different types of words and triggering relations.

 0

 2

 4

 6

 8

 10

 12

 14

 1 10 100 1000

C
o
rr

e
la

ti
o
n

Distance

he -> she

he -> he

she -> he

she -> she

Stat. Ind

Figure 1: Variation of word triggering correlations for pro-

nouns over large distances.

In order to model this long-term correlation and
overcome the restrictive Markov assumption, recur-
rent language models have been proposed to approx-
imate (1) according to

p(wT
1) ≈

T∏

t=1

p(wt|wt−1, ht−1) =
T∏

t=1

p(wt|ht) (3)

In NN-based recurrent models, ht is a context
vector which represents the complete history, and
modeled as a hidden state that evolves within the
network.

2.2.1 Elman-Type RNN-based LM
The classical RNN (Mikolov et al., 2010) esti-

mates each of the product terms in (3) according to

Ht = f (Xt−1 + V ·Ht−1) (4)

Pt = g (W ·Ht) (5)

where Xt−1 is a continuous representation (i.e,
embedding) of the word wt−1, V encodes the re-
current connection weights and W is the hidden-to-
output connection weights. These parameters define
the network and are learned during training. More-
over, f(·) is an activation function, whereas g(·) is
the softmax function. Figure (2) shows an example
of the standard RNN architecture.

Theoretically, the recurrent connections of an
RNN allow the context to indefinitely cycle in the

Figure 2: Elman RNN architecture.

network and thus, modeling long context. In prac-
tice, however, Hai Son et al. (2012) have shown that
this information changes quickly over time, and that
it is experimentally equivalent to an 8-gram FFNN.
This observation was confirmed by the experiments
that we report in this paper.

2.2.2 Long-Short Term Memory Network
In order to alleviate the rapidly changing context

issue in standard RNNs and control the longevity
of the dependencies modeling in the network, the
LSTM architecture (Sundermeyer et al., 2012) in-
troduces an internal memory state Ct, which explic-
itly controls the amount of information, to forget or
to add to the network, before estimating the current
hidden state. Formally, this is done according to

{i, f, o}t = σ
(
U i,f,o ·Xt−1 + V i,f,o ·Ht−1

)
(6)

C̃t = f (U c ·Xt−1 + V c ·Ht−1) (7)

Ct = ft � Ct−1 + it � C̃t (8)

Ht = ot � f (Ct) (9)

Pt = g (W ·Ht) (10)

where � is the element-wise multiplication opera-
tor, C̃t is the memory candidate, whereas it, ft and
ot are the input, forget and output gates of the net-
work, respectively. Figure 3 illustrates the recurrent
module of an LSTM network. Learning of an LSTM
model requires the training of the network parame-
ters U i,f,o,c, V i,f,o,c and W .

Although LSTM models have been shown to out-
perform classical RNN in modeling long range de-
pendencies, they do not explicitly model long/short
context but rather use a single state to encode the
global linguistic context.

1475

Figure 3: Block diagram of the recurrent module of an LSTM

network.

3 Multi-Span Language Models

The attempts to learn and combine short and long
range dependencies in language modeling led to
what is known as multi-span LMs (Bellegarda,
1998a). The goal of these models is to learn the
various constraints, both local and global, that are
present in a language. This is typically done using
two different models, which separately learn the lo-
cal and global context, and then combine their re-
sulting linguistic information to perform the word
prediction. For instance, Bellegarda (1998b) pro-
posed to use Latent Semantics Analysis (LSA) to
capture the global context, and then combine it with
the standard N -gram models, which capture the lo-
cal context, whereas Mikolov and Zweig (2012)
proposed to model the global topic information us-
ing Latent Dirichlet Allocation (LDA), which is then
combined with an RNN-based LM. This idea is not
particular to language modeling but has been also
used in other Natural Language Processing (NLP)
tasks, e.g., Anastasakos et al. (2014) proposed to use
a local/global model to perform a spoken language
understanding task.

3.1 Long-Short Range Context Network

Following the line of thoughts in (Bellegarda,
1998b; Mikolov and Zweig, 2012), we propose a
new multi-span model, which takes advantage of the
LSTM ability to model long range context while,
simultaneously, learning and integrating the short
context through an additional recurrent, local state.
In doing so, the resulting Long-Short Range Con-
text (LSRC) network is able to separately model the

short/long context while it dynamically combines
them to perform the next word prediction task. For-
mally, this new model is defined as

H l
t = f

(
Xt−1 + U c

l ·H l
t−1
)

(11)

{i, f, o}t = σ
(
V i,f,o
l ·H l

t + V i,f,o
g ·Hg

t−1
)

(12)

C̃t = f
(
V c
l ·H l

t + V c
g ·Hg

t−1
)

(13)

Ct = ft � Ct−1 + it � C̃t (14)

Hg
t = ot � f (Ct) (15)

Pt = g (W ·Hg
t) (16)

Learning of an LSRC model requires the training
of the local parameters V i,f,o,c

l and U c
l , the global

parameters V i,f,o,c
g and the hidden-to-output connec-

tion weightsW . This can be done using the standard
Back-Propagation Through Time (BPTT) algorithm,
which is typically used to train recurrent networks.

The proposed approach uses two hidden states,
namely, H l

t and Hg
t to model short and long range

context, respectively. More particularly, the local
state H l

t evolves according to (11) which is noth-
ing but a simple recurrent model as it is defined in
(4). In doing so, H l

t is expected to have a similar be-
havior to RNN, which has been shown to capture
local/short context (up to 10 words), whereas the
global state Hg

t follows the LSTM model, which is
known to capture longer dependencies (see example
in Figure 5). The main difference here, however, is
the dependence of the network modules (gates and
memory candidate) on the previous local state H l

t

instead of the last seen word Xt−1. This model is
based on the assumption that the local context car-
ries more linguistic information, and is therefore,
more suitable to combine with the global context and
update LSTM, compared to the last seen word. Fig-
ure 4 illustrates the recurrent module of an LSRC
network. It is worth mentioning that this model was
not particularly developed to separately learn syn-
tactic and semantic information. This may come,
however, as a result of the inherent local and global
nature of these two types of linguistic properties.

3.2 Context Range Estimation
For many NLP applications, capturing the global
context information can be a crucial component to
develop successful systems. This is mainly due to

1476

Figure 4: Block diagram of the recurrent module of an LSRC

network.

the inherent nature of languages, where a single idea
or topic can span over few sentences, paragraphs or
a complete document. LSA-like approaches take ad-
vantage of this property, and aim at extracting some
hidden “concepts” that best explain the data in a low-
dimension “semantic space”. To some extent, the
hidden layer of LSRC/LSTM can be seen as a vec-
tor in a similar space. The information stored in this
vector, however, changes continuously based on the
processed words. Moreover, interpreting its content
is generally difficult. As an alternative, measuring
the temporal correlation of this hidden vector can
be used as an indicator of the ability of the network
to model short and long context dependencies. For-
mally, the temporal correlation of a hidden state H
over a distance d is given by

cd =
1

D

t=D∑

t=1

SM(Ht, Ht+d) (17)

where D is the test data size in words and SM is
a similarity measure such as the cosine similarity.
This measure allows us to evaluate how fast does the
information stored in the hidden state change over
time.

In Figure 5, we show the variation of this tempo-
ral correlation for the local and global states of the
proposed LSRC network in comparison to RNN and
LSTM for various values of the distance d (up to
3000). This figure was obtained on the test set of
the Penn Treebank (PTB) corpus, described in Sec-
tion (4). The main conclusion we can draw from this
figure is the ability of the LSRC local and global

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

LSRC Local State
LSRC Global State
LSTM State
RNN State

Figure 5: Temporal correlation of the proposed network in

comparison to LSTM and RNN.

states (trained jointly) to behave in a similar fash-
ion to RNN and LSTM states (trained separately),
respectively. We can also conclude that the LSRC
global state and LSTM are able to capture long range
correlations, whereas the context changes rapidly
over time in RNN and LSRC local state.

4 Experiments and Results

4.1 Experimental Setup

We evaluated the proposed architecture on two dif-
ferent benchmark tasks. The first set of experi-
ments was conducted on the commonly used Penn
Treebank (PTB) corpus using the same experimental
setup adopted in (Mikolov et al., 2011) and (Zhang
et al., 2015). Namely, sections 0-20 are used for
training while sections 21-22 and 23-24 are used for
validation an testing, respectively. The vocabulary
was limited to the most 10k frequent words while the
remaining words were mapped to the token <unk>.

In order to evaluate how the proposed approach
performs on large corpora in comparison to other
methods, we run a second set of experiments on the
Large Text Compression Benchmark (LTCB) (Ma-
honey, 2011). This corpus is based on the enwik9
dataset which contains the first 109 bytes of enwiki-
20060303-pages-articles.xml. We adopted the same
training-test-validation data split as well as the the
same data processing1 which were used in (Zhang et
al., 2015). The vocabulary is limited to the most 80k

1All the data processing steps described here for
PTB and LTCB were performed using the FOFE
toolkit in (Zhang et al., 2015), which is available at
https://wiki.eecs.yorku.ca/lab/MLL/_media/
projects:fofe:fofe-code.zip

1477

frequent words with all remaining words replaced by
<unk>. Details about the sizes of these two corpora
can be found in Table 1.

Corpus Train Dev Test
PTB 930K 74K 82K

LTCB 133M 7.8M 7.9M
Table 1: Corpus size in number of words.

Similarly to the RNN LM toolkit2 (Mikolov et al.,
2011), we have used a single end sentence tag be-
tween each two consecutive sentences, whereas the
begin sentence tag was not included3.

4.2 Baseline Models

The proposed LSRC architecture is compared to
different LM approaches that model short or long
range context. These include the commonly used
N -gram Kneser-Ney (KN) (Kneser and Ney, 1995)
model with and without cache (Kuhn and De Mori,
1990), as well as different feedforward and recurrent
neural architectures. For short (fixed) size context
models, we compare our method to 1) the FFNN-
based LM (Bengio et al., 2003), as well as 2) the
Fixed-size Ordinally Forgetting Encoding (FOFE)
approach, which is implemented in (Zhang et al.,
2015) as a sentence-based model. For these short
size context models, we report the results of dif-
ferent history window sizes (1, 2 and 4). The 1st,
2nd and 4th-order FOFE results were either reported
in (Zhang et al., 2015) or obtained using the freely
available FOFE toolkit 1.

For recurrent models that were designed to cap-
ture long term context, we compared the pro-
posed approach to 3) the full RNN (without
classes) (Mikolov et al., 2011), 4) to a deep RNN
(D-RNN)4 (Pascanu et al., 2013), which investigates
different approaches to construct mutli-layer RNNs,
and finally 5) to the LSTM model (Sundermeyer et
al., 2012), which explicitly regulates the amount of

2The RNN LM toolkit is available at http://www.
rnnlm.org/

3This explains the difference in the corpus size compared to
the one reported in (Zhang et al., 2015).

4The deep RNN results were obtained using Lp and maxout
units, dropout regularization and gradient control techniques,
which are known to significantly improve the performance.
None of these techniques, however, were used in our experi-
ments.

information that propagates in the network. The
recurrent models results are reported for different
numbers of hidden layers (1 or 2). In order to inves-
tigate the impact of deep models on the LSRC ar-
chitecture, we added a single hidden, non-recurrent
layer (of size 400 for PTB and 600 for the LTCB ex-
periments) to the LSRC model (D-LSRC). This was
sufficient to improve the performance with a negli-
gible increase in the number of model parameters.

4.3 PTB Experiments

For the PTB experiments, the FFNN and FOFE
models use a word embedding size of 200, whereas
the hidden layer(s) size is fixed at 400, with all hid-
den units using the Rectified Linear Unit (ReLu)
i.e., f(x) = max(0, x) as activation function. We
also use the same learning setup adopted in (Zhang
et al., 2015). Namely, we use the stochastic gra-
dient descent algorithm with a mini-batch size of
200, the learning rate is initialized to 0.4, the mo-
mentum is set to 0.9, the weight decay is fixed at
4×10−5, whereas the training is done in epochs. The
weights initialization follows the normalized initial-
ization proposed in (Glorot and Bengio, 2010). Sim-
ilarly to (Mikolov et al., 2010), the learning rate is
halved when no significant improvement of the val-
idation data log-likelihood is observed. Then, we
continue with seven more epochs while halving the
learning rate after each epoch.

Regarding the recurrent models, we use f =
tanh(·) as activation function for all recurrent lay-
ers, whereas ”f = sigmoid(·)” is used for the input,
forget and output gates of LSTM and LSRC. The
additional non-recurrent layer in D-LSRC, however,
uses the ReLu activation function. The word em-
bedding size was set to 200 for LSTM and LSRC
whereas it is the same as the hidden layer size for
RNN (result of the RNN equation 4). In order to
illustrate the effectiveness of the LSRC model, we
also report the results when the embedding size is
fixed at 100, LSRC(100). The training uses the
BPTT algorithm for 5 time steps. Similarly to short
context models, the mini-batch was set to 200. The
learning rate, however, was set to 1.0 and the weight
decay to 5 × 10−5. The use of momentum did not
lead to any additional improvement. Moreover, the
data is processed sequentially without any sentence
independence assumption. Thus, the recurrent mod-

1478

els will be able to capture long range dependencies
that exist beyond the sentence boundary.

In order to compare the model sizes, we also re-
port the Number of Parameters (NoP) to train for
each of the models above.

model model+KN5 NoP
N-1= 1 2 4 1 2 4 4
KN 186 148 141 — — — —

KN+cache 168 134 129 — — — —
1 Hidden Layer

FFNN 176 131 119 132 116 107 6.32M
FOFE 123 111 112 108 100 101 6.32M

Recurrent Models (1 Layer)
RNN 117 104 8.16M

LSTM (1L) 113 99 6.96M
LSRC(100) 109 96 5.81M
LSRC(200) 104 94 7.0M

2 Hidden Layers
FFNN 176 129 114 132 114 102 6.96M
FOFE 116 108 109 104 98 97 6.96M

Deep Recurrent Models
D-LSTM (2L) 110 97 8.42M
D-RNN4 (3L) 107.5 NR 6.16M
D-LSRC(100) 103 93 5.97M
D-LSRC(200) 102 92 7.16M

Table 2: LMs performance on the PTB test set.

Table 2 shows the perplexity evaluation on the
PTB test set. As a first observation, we can clearly
see that the proposed approach outperforms all other
models for all configurations, in particular, RNN and
LSTM. This observation includes other models that
were reported in the literature, such as random for-
est LM (Xu and Jelinek, 2007), structured LM (Fil-
imonov and Harper, 2009) and syntactic neural net-
work LM (Emami and Jelinek, 2004). More partic-
ularly, we can conclude that LSRC, with an embed-
ding size of 100, achieves a better performance than
all other models while reducing the number of pa-
rameters by ≈ 29% and ≈ 17% compared to RNN
and LSTM, respectively. Increasing the embedding
size to 200, which is used by the other models, im-
proves significantly the performance with a resulting
NoP comparable to LSTM. The significance of the
improvements obtained here over LSTM were con-
firmed through a statistical significance t-test, which

led to p-values ≤ 10−10 for a significance level of
5% and 0.01%, respectively.

The results of the deep models in Table 2 also
show that adding a single non-recurrent hidden layer
to LSRC can significantly improve the performance.
In fact, the additional layer bridges the gap between
the LSRC models with an embedding size of 100
and 200, respectively. The resulting architectures
outperform the other deep recurrent models with a
significant reduction of the number of parameters
(for the embedding size 100), and without usage
of dropout regularization, Lp and maxout units or
gradient control techniques compared to the deep
RNN4(D-RNN).

We can conclude from these experiments that the
explicit modeling of short and long range dependen-
cies using two separate hidden states improves the
performance while significantly reducing the num-
ber of parameters.

100 200 300 400 500 600 700 800
95

100

105

110

115

120

125

130

135

140

145

Hidden Layer Size

P
P

L

RNN
LSTM
LSRC (100)
LSRC (200)
D−LSRC (200)

Figure 6: Perplexity of the different NN-based LMs with dif-

ferent hidden layer sizes on the PTB test set.

In order to show the consistency of the LSRC im-
provement over the other recurrent models, we re-
port the variation of the models performance with
respect to the hidden layer size in Figure 6. This fig-
ure shows that increasing the LSTM or RNN hidden
layer size could not achieve a similar performance to
the one obtained using LSRC with a small layer size
(e.g., 300). It is also worth mentioning that this ob-
servation holds when comparing a 2-recurrent lay-
ers LSTM to LSRC with an additional non-recurrent
layer.

1479

4.4 LTCB Experiments

The LTCB experiments use the same PTB setup
with minor modifications. The results shown in Ta-
ble 3 follow the same experimental setup proposed
in (Zhang et al., 2015). More precisely, these results
were obtained without use of momentum or weight
decay (due to the long training time required for
this corpus), the mini-batch size was set to 400, the
learning rate was set to 0.4 and the BPTT step was
fixed at 5. The FFNN and FOFE architectures use 2
hidden layers of size 600, whereas RNN, LSTM and
LSRC have a single hidden layer of size 600. More-
over, the word embedding size was set to 200 for all
models except RNN, which was set to 600. We also
report results for an LSTM with 2 recurrent layers as
well as for LSRC with an additional non-recurrent
layer. The recurrent layers are marked with an “R”
in Table 3.

model NoP
Context Size M=N-1 1 2 4 4

KN 239 156 132 —
KN+cache 188 127 109 —

FFNN [M*200]-600-600-80k 235 150 114 64.84M
FOFE [M*200]-600-600-80k 112 107 100 64.84M

RNN [600]-R600-80k 85 96.36M
LSTM [200]-R600-80k 66 65.92M

LSTM [200]-R600-R600-80k 61 68.80M
LSRC [200]-R600-80k 63 65.96M

LSRC [200]-R600-600-80k 59 66.32M
Table 3: LMs performance on the LTCB test set.

The results shown in Table 3 generally confirm
the conclusions we drew from the PTB experiments
above. In particular, we can see that the proposed
LSRC model largely outperforms all other models.
In particular, LSRC clearly outperforms LSTM with
a negligible increase in the number of parameters
(resulting from the additional 200 × 200 = 0.04M
local connection weights U c

l) for the single layer
results. We can also see that this improvement is
maintained for deep models (2 hidden layers), where
the LSRC model achieves a slightly better perfor-
mance while reducing the number of parameters
by ≈ 2.5M and speeding up the training time by
≈ 20% compared to deep LSTM.

The PTB and LTCB results clearly highlight the

importance of recurrent models to capture long
range dependencies for LM tasks. The training of
these models, however, requires large amounts of
data to significantly outperform short context mod-
els. This can be seen in the performance of RNN
and LSTM in the PTB and LTCB tables above. We
can also conclude from these results that the explicit
modeling of long and short context in a multi-span
model can lead to a significant improvement over
state-of-the are models.

5 Conclusion and Future Work

We investigated in this paper the importance, fol-
lowed by the ability, of standard neural networks to
encode long and short range dependencies for lan-
guage modeling tasks. We also showed that these
models were not particularly designed to, explicitly
and separately, capture these two linguistic informa-
tion. As an alternative solution, we proposed a novel
long-short range context network, which takes ad-
vantage of the LSTM ability to capture long range
dependencies, and combines it with a classical RNN
network, which typically encodes a much shorter
range of context. In doing so, this network is able
to encode the short and long range linguistic de-
pendencies using two separate network states that
evolve in time. Experiments conducted on the PTB
and the large LTCB corpus have shown that the pro-
posed approach significantly outperforms different
state-of-the are neural network architectures, includ-
ing LSTM and RNN, even when smaller architec-
tures are used. This work, however, did not investi-
gate the nature of the long and short context encoded
by this network or its possible applications for other
NLP tasks. This is part of our future work.

Acknowledgments

This work was in part supported by the Cluster of
Excellence for Multimodal Computing and Interac-
tion, the German Research Foundation (DFG) as
part of SFB 1102, the EU FP7 Metalogue project
(grant agreement number: 611073) and the EU Mal-
orca project (grant agreement number: 698824).

References
[Anastasakos et al.2014] Tasos Anastasakos, Young-Bum

Kim, and Anoop Deoras. 2014. Task specific continu-

1480

ous word representations for mono and multi-lingual
spoken language understanding. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing, ICASSP 2014, Florence, Italy, May 4-9,
2014, pages 3246–3250.

[Bellegarda1998a] J. R. Bellegarda. 1998a. A multi-
span language modeling framework for large vocabu-
lary speech recognition. IEEE Transactions on Speech
and Audio Processing, 6(5):456–467, Sep.

[Bellegarda1998b] Jerome R. Bellegarda. 1998b. Ex-
ploiting both local and global constraints for multi-
span statistical language modeling. In Proceedings of
the 1998 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP ’98, Seattle,
Washington, USA, May 12-15, 1998, pages 677–680.

[Bengio et al.2003] Yoshua Bengio, Réjean Ducharme,
Pascal Vincent, and Christian Jauvin. 2003. A neural
probabilistic language model. J. Mach. Learn. Res.,
3:1137–1155, Mar.

[Brown et al.1990] Peter F. Brown, John Cocke, Stephen
A. Della Pietra, Vincent J. Della Pietra, Fredrick Je-
linek, John D. Lafferty, Robert L. Mercer, and Paul S.
Roossin. 1990. A statistical approach to machine
translation. Comput. Linguist., 16(2):79–85, Jun.

[Emami and Jelinek2004] Ahmad Emami and Frederick
Jelinek. 2004. Exact training of a neural syntactic lan-
guage model. In IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP),
pages 245–248, Montreal, Quebec, Canada, May.

[Filimonov and Harper2009] Denis Filimonov and
Mary P. Harper. 2009. A joint language model with
fine-grain syntactic tags. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), A meeting of SIGDAT, a
Special Interest Group of the ACL, pages 1114–1123,
Singapore, Aug.

[Glorot and Bengio2010] Xavier Glorot and Yoshua Ben-
gio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of
the Thirteenth International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 249–256,
Chia Laguna Resort, Sardinia, Italy, May.

[Hai Son et al.2012] Le Hai Son, Alexandre Allauzen,
and François Yvon. 2012. Measuring the influence
of long range dependencies with neural network lan-
guage models. In Proceedings of the NAACL-HLT
2012 Workshop: Will We Ever Really Replace the N-
gram Model? On the Future of Language Modeling
for HLT, pages 1–10, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

[Katz1987] S. Katz. 1987. Estimation of probabilities
from sparse data for the language model component of
a speech recognizer. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 35(3):400–401, Mar.

[Kneser and Ney1995] Reinhard Kneser and Hermann
Ney. 1995. Improved backing-off for m-gram lan-
guage modeling. In International Conference on
Acoustics, Speech, and Signal Processing, (ICASSP),
pages 181–184, Detroit, Michigan, USA, May.

[Kuhn and De Mori1990] Roland Kuhn and Renato
De Mori. 1990. A cache-based natural language
model for speech recognition. IEEE Trans. Pattern
Anal. Mach. Intell., 12(6):570–583.

[Mahoney2011] Matt Mahoney. 2011. Large text com-
pression benchmark.

[Mikolov and Zweig2012] Tomas Mikolov and Geoffrey
Zweig. 2012. Context dependent recurrent neural
network language model. In 2012 IEEE Spoken Lan-
guage Technology Workshop (SLT), Miami, FL, USA,
December 2-5, 2012, pages 234–239.

[Mikolov et al.2010] Tomas Mikolov, Martin Karafiát,
Lukás Burget, Jan Cernocký, and Sanjeev Khudan-
pur. 2010. Recurrent neural network based lan-
guage model. In 11th Annual Conference of the Inter-
national Speech Communication Association (INTER-
SPEECH), pages 1045–1048, Makuhari, Chiba, Japan,
Sep.

[Mikolov et al.2011] T. Mikolov, S. Kombrink, L. Burget,
J. ernock, and S. Khudanpur. 2011. Extensions of re-
current neural network language model. In Acoustics,
Speech and Signal Processing (ICASSP), 2011 IEEE
International Conference on, pages 5528–5531, May.

[Pascanu et al.2013] Razvan Pascanu, Çaglar Gülçehre,
Kyunghyun Cho, and Yoshua Bengio. 2013. How
to construct deep recurrent neural networks. CoRR,
abs/1312.6026.

[Rosenfeld2000] Ronald Rosenfeld. 2000. Two decades
of statistical language modeling: Where do we go from
here? In Proceedings of the IEEE, volume 88, pages
1270–1278.

[Sundermeyer et al.2012] Martin Sundermeyer, Ralf
Schlüter, and Hermann Ney. 2012. LSTM neural
networks for language modeling. In Interspeech,
pages 194–197, Portland, OR, USA, sep.

[Xu and Jelinek2007] Peng Xu and Frederick Jelinek.
2007. Random forests and the data sparseness prob-
lem in language modeling. Computer Speech & Lan-
guage, 21(1):105–152.

[Zhang et al.2015] Shiliang Zhang, Hui Jiang, Mingbin
Xu, Junfeng Hou, and Li-Rong Dai. 2015. The fixed-
size ordinally-forgetting encoding method for neural
network language models. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing of the Asian Federa-
tion of Natural Language Processing ACL, volume 2,
pages 495–500, july.

1481

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1482–1492,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Jointly Learning Grounded Task Structures from Language Instruction and
Visual Demonstration

Changsong Liu1*, Shaohua Yang1*, Sari Saba-Sadiya1,
Nishant Shukla2, Yunzhong He2, Song-Chun Zhu2, and Joyce Y. Chai1

1Department of Computer Science and Engineering
Michigan State University, East Lansing, MI 48824

2Center for Vision, Cognition, Learning, and Autonomy
University of California, Los Angeles, CA 90095

{cliu,yangshao,sadiyasa,jchai}@cse.msu.edu
{shukla,yunzhong}@cs.ucla.edu,sczhu@stat.ucla.edu

Abstract

To enable language-based communication
and collaboration with cognitive robots, this
paper presents an approach where an agent
can learn task models jointly from language
instruction and visual demonstration using an
And-Or Graph (AoG) representation. The
learned AoG captures a hierarchical task
structure where linguistic labels (for language
communication) are grounded to correspond-
ing state changes from the physical environ-
ment (for perception and action). Our em-
pirical results on a cloth-folding domain have
shown that, although state detection through
visual processing is full of uncertainties and
error prone, by a tight integration with lan-
guage the agent is able to learn an effective
AoG for task representation. The learned AoG
can be further applied to infer and interpret
on-going actions from new visual demonstra-
tion using linguistic labels at different levels
of granularity.

1 Introduction

Given tremendous advances in robotics, computer
vision, and natural language processing, a new gen-
eration of cognitive robots have emerged that aim
to collaborate with humans in joint tasks. To facili-
tate natural and efficient communication with these
physical agents, natural language processing will
need to go beyond traditional symbolic representa-
tions, but rather ground language to sensors (e.g., vi-
sual perception) and actuators (e.g., lower-level con-
trol systems) of physical agents. The internal task

* The first two authors contributed equally to this paper.

representation will need to capture both higher-level
concepts (for language communication) and lower-
level visual features (for perception and action).

To address this need, we have developed an ap-
proach on learning procedural tasks jointly from
language instruction and visual demonstration.
In particular, we use And-Or Graph (AoG),
which has been used in many computer vision tasks
and robotic applications (Zhao and Zhu, 2013; Li et
al., 2016; Xiong et al., 2016), to represent a hier-
archical task model that not only captures symbolic
concepts (extracted from language instructions) but
also the corresponding visual state changes from the
physical environment (detected by computer vision
algorithms).

Different from previous works that ground lan-
guage to perception (Liu et al., 2012; Matuszek et
al., 2012; Kollar et al., 2013; Yu and Siskind, 2013;
Yang et al., 2016), a key innovation in our frame-
work is that language is no longer grounded just to
perceived objects in the environment, but is further
grounded to a hierarchical structure of state changes
where the states are perceived from the environment
during visual demonstration. The state of environ-
ment is an important notion in robotic systems as
the change of states drives planning for lower-level
robotic actions. Thus, connecting language concepts
to state changes, our learned AoG provides a unified
representation that integrates language and vision to
not only support language-based communication but
also facilitate robot action planning and execution in
the future.

More specifically, within this AoG framework, we
have developed and evaluated our algorithms in the

1482

context of learning a cloth-folding task. Although
cloth-folding appears simple and intuitive for hu-
mans, it represents significant challenges for both
vision and robotics systems. Furthermore, although
symbolic language processing in this domain is easy
due to limited use of vocabulary, grounded language
understanding is particularly challenging. A sim-
ple phrase (e.g., “fold in half”) could have differ-
ent grounded meanings (e.g., lower-level represen-
tation) given different contexts. Thus, this cloth-
folding domain is a good starting point to focus on
grounding language to task structures.

Our empirical results have shown that, although
state detection from the physical world can be ex-
tremely noisy, our learning algorithm that tightly in-
corporates language is capable of acquiring an effec-
tive and meaningful task model to compensate the
uncertainties in visual processing. Once the AoG
for the task is learned, it can be applied by our infer-
ence algorithm, for example, to infer on-going ac-
tions from new visual demonstration and generate
linguistic labels at different levels of granularity to
facilitate human-agent communication.

2 Related Work

Recent years have seen an increasing amount of
work on grounding language to visual percep-
tion (Liu et al., 2012; Matuszek et al., 2012; Yu
and Siskind, 2013; Kollar et al., 2013; Naim et al.,
2015; Yang et al., 2016; Gao et al., 2016). Further-
more, the robotics community made significant ef-
forts to utilize novel grounding techniques to facil-
itate task execution given natural language instruc-
tions (Chen et al., 2010; Kollar et al., 2010; Tellex et
al., 2011; Misra et al., 2014) and task learning from
demonstration (Saunders et al., 2006; Chernova and
Veloso, 2008).

Research on Learning from Demonstration
(LfD) employed various approaches to model the
tasks (Argall et al., 2009), such as state-to-action
mapping (Chernova and Veloso, 2009), predicate
calculus (Hofmann et al., 2016), and Hierarchical
Task Networks (Nejati et al., 2006; Hogg et al.,
2009). However, aspiring to enable human robot
communication, the framework developed in this
paper focuses on task representation using language
grounded to a structure of state changes detected

Figure 1: The setting of our situated task learning where a hu-

man teacher teaches the robot how to fold a T-shirt through both

task demonstrations and language instructions.

from the physical world. As demonstrated in recent
work (She et al., 2014a; Misra et al., 2015; She and
Chai, 2016), explicitly modeling change of states is
an important step towards interacting with robots in
the physical world.

Additionally, there has also been an increasing
amount of work that learns new tasks either using
methods like supervised learning on large corpus of
data (Branavan et al., 2010; Branavan et al., 2012;
Tellex et al., 2014; Misra et al., 2014), or by learn-
ing from humans through dialogue (Cantrell et al.,
2012; Mohan et al., 2013; Kirk and Laird, 2013; She
et al., 2014b; Mohseni-Kabir et al., 2015). In this pa-
per, we focus on jointly learning new tasks through
visual demonstration and language instruction. The
learned task model is explicitly represented by an
AoG, a hierarchical structure consisting of both lin-
guistic labels and corresponding changes of states
from the physical world. This rich task model will
facilitate not only language-based communication,
but also lower-level action planning and execution.

3 Task and Data

In this paper, we use cloth-folding (e.g., teaching a
robot how to fold a T-shirt) as the task to demon-
strate and evaluate our joint task learning approach.
As mentioned earlier, cloth-folding, although sim-
ple for humans, represents a challenging task for the
robotics community due to the complex state and ac-
tion space.

Figure 1 illustrates the setting for our situated
task learning. A human teacher can teach a robot
how to fold a T-shirt through simultaneous verbal
instructions and visual demonstrations. A Microsoft
Kinect2 camera is mounted on the robot to record

1483

Figure 2: Examples of our parallel data where language in-

structions are paired with a sequence of visual states detected

from the video.

the human’s visual demonstration, and the human’s
corresponding verbal instructions are recorded by
Kinect2’s embedded microphone array.

A recorded video of task demonstration and its
corresponding verbal instruction become one train-
ing example for our task learning system. Figure 2
shows two examples of such “parallel data”. The vi-
sual demonstration is processed into a sequence of
visual states, where each state is a numeric vector
(~vi) capturing the visual features of the T-shirt at a
particular time (see later Section 5.1 for details). The
recorded verbal instructions are then aligned with
the sequence of visual states based on the timing in-
formation.

During teaching the task, we specifically re-
quested the demonstrator to describe and do each
step at roughly the same time. This greatly simpli-
fied the alignment problem. Since our ultimate goal
is to enable humans to teach the robot through nat-
ural language dialogue and demonstration, our hy-
pothesis is that the alignment issue can be alleviated
by certain dialogue mechanism (e.g., ask to repeat
the action, ask for step-by-step aligned instructions,
etc.). As it is human’s best interest that the robot gets
the clearest instructions, we also anticipate during
dialogue human teachers will be collaborative and
provide mostly aligned instructions. Certainly, these
hypotheses will need to be validated in the dialogue
setting in our future work.

In our collected data, each change of state, i.e.,
a transition between two visual states, is caused by
one or more physical actions. Some language de-
scriptions align with only a single-step change of
state. For instance, “fold right sleeve” is aligned
with the change (~v0 → ~v1) and “fold left sleeve”

is aligned with (~v1 → ~v2) in Example 1. This
kind of single-step change of state is considered as
a primitive action. Other language descriptions are
aligned with a sequence of multiple state changes.
For instance, “fold the two sleeves” in Example 2 is
aligned with two consecutive changes: (~v′0, ~v

′
1, ~v
′
2).

This kind of sequence of state changes is considered
as a complex action, which can be decomposed into
partially ordered primitive actions. A complex ac-
tion can also be concisely represented by the change
from the initial state to the end state in the sequence,
such as (~v′0 → ~v′2) in Example 2.

These parallel data are used to train and test our
learning and inference algorithms presented later.

4 And-Or Graph Representation

We use AoG as the formal model of a procedural
task. Figure 3 shows an example AoG for the cloth-
folding task. It is a hierarchical structure that ex-
plicitly captures the compositionality and reconfig-
urability of a procedural task. The terminal nodes
capture state changes associated with primitive ac-
tions of this task, and non-terminal nodes capture
state changes associated with complex actions which
are further composed by lower-level actions.

In addition to state changes, the learned AoG is
also labeled with linguistic information (e.g., verb
frames) capturing the causes of the corresponding
state changes. The state changes are also considered
as grounded meanings of these verb frames. For ex-
ample, Figure 3 shows two “fold the t-shirt” labels
at the top layer. Note that although symbolically,
these two phrases have the same meaning (e.g., same
verb frames), their grounded meanings are different
as they correspond to different changes of state. Be-
ing able to represent differences or ambiguities in
grounded meanings is crucial to connect language
to perception and action.

Formally, an AoG is defined as a 5-tuple G =
(S,Σ, N,R,Θ), where

• S is a root node (or a start symbol) representing
a complete task.
• Σ is a set of terminal nodes, each of which

represents a change of state associated with a
primitive action.
• N = NAND ∪ NOR is a set of non-terminal

nodes, which is divided into two disjoint sub-

1484

Figure 3: An example of the learned AoG

sets of And-nodes and Or-nodes.
• R is a “child-parent” relation (many-to-one

mapping), i.e., R(nch) = npa (meaning npa is
the parent node of nch), where nch ∈ Σ ∪ N
and npa ∈ N ∪ {S}.
• Θ is a set of conditional probabili-

ties p(nch|npa), where npa ∈ NOR,
nch ∈ {n | R(n) = npa}. Namely, for
each Or-node, Θ defines a probability distribu-
tion over the set of all its children nodes.

In essence, our AoG model is equivalent to Prob-
abilistic Context-Free Grammar (PCFG). An AoG
can be converted into a PCFG:

• Each And-node and its children form a produc-
tion rule

nAND → nch1 ∧ nch2 ∧ . . .

that represents the decomposition of a complex
action into sequentially ordered sub-actions.

• Each Or-node and its children form a produc-
tion rule

nOR → nch1 | nch2 | . . .

that represents all the alternative ways of ac-
complishing an action. Each alternative also
comes with a probability as specified in Θ.

5 Method

5.1 Vision and Language Processing
The input data to our AoG learning algorithm con-
sist of co-occurring visual demonstrations and lan-
guage instructions as described in Section 3. Based

on the RGB-D information provided by the Kinect2
sensor, we developed a vision processing system to
keep track of human’s actions and statuses of the T-
shirt object.

To learn a meaningful task structure, the most im-
portant visual information are those key statuses that
the object goes through. Therefore, our vision sys-
tem processes each visual demonstration into a se-
quence of states. Each state ~v is a multi-dimensional
numeric vector that encodes the geometric infor-
mation of the detected T-shirt, such as its smallest
bounding rectangle and largest inscribed contour-
fitting rectangle. These key states are detected
by tracking the human’s folding actions. Namely,
whenever a folding action is detected1, we append
the new state caused by the action to the sequence of
observed states, till the end of the demonstration.

The verbal instructions given by the demonstra-
tors were mainly verb phrases such as “fold which-
part”, “fold to which-position”, or “fold in-what-
manner”. A semantic parser2 is applied to parse
each instruction text into a canonical verb-frame
representation, such as

FOLD : [PART : left sleeve]
[POSITION : middle].

Through the vision and language processing, each
task demonstration becomes two parallel sequences,
i.e., a sequence of extracted visual states and a se-
quence of parsed language instructions. The align-

1The vision system keeps track of human’s hands, and de-
tects a folding action as a gripping action followed by moving
and releasing the hand(s).

2We use the CMU’s Phoenix parser:
http://wiki.speech.cs.cmu.edu/olympus/index.php/Phoenix

1485

ment between these two sequences is also extracted
from their co-occurrence timing information. Thus,
an instance of a task demonstration is formally rep-
resented as a 3-tuple x = (D,L,∆), where D =
{~v1, ~v2, . . . , ~vM} is the sequence of visual states,
L = {l1, l2, . . . , lK} is the sequence of linguis-
tic verb-frames, and ∆(k) = (i, j) is an “align-
ment function” specifying the correspondence be-
tween a linguistic verb-frame lk and a single or a
sub-sequence of visual state(s) {~vi, . . . , ~vj} (i ≤ j).

Then, given a dataset X of such task demonstra-
tions, our AoG learning algorithm learns an AoG G
as defined in Section 4. The next section describes
our learning algorithm in detail.

5.2 AoG Learning Algorithm

Learning an AoG G = (S,Σ, N,R,Θ) is carried
out in two stages. Firstly, we learn a set of termi-
nal nodes Σ to represent the primitive actions (i.e.,
the actions that can be preformed in a single step).
This is done through clustering the observed visual
states. Secondly, the hierarchical structure (i.e., N
and R) and parameters Θ of the AoG is learned us-
ing an iterative grammar induction algorithm.

5.2.1 Learning Terminal Nodes
A terminal node in the AoG represents a primitive

action, which causes the object to directly change
from one state to another. Thus we represent a ter-
minal node as a 2-tuple of states (or a “change of
state”). Since the visual states detected by computer
vision are numeric vectors with continuous values,
we first apply a clustering algorithm to form a fi-
nite set of discrete state representations. Each clus-
ter then represents a unique situation that one can
encounter in a task. Since when learning a new task
we usually do not know how many unique situa-
tions exist, here we employ a greedy clustering algo-
rithm (Ng and Cardie, 2002), which does not assume
a fixed number of clusters.

As the greedy clustering algorithm relies on the
pairwise similarities of all the visual states, we also
train an SVM classifier on a separate dataset of 22 T-
shirt folding videos and use its classification output
to measure the similarity between two visual states.
The SVM classifier takes two numeric vectors as an
input, and predicts whether these two vectors rep-
resent the same status of a T-shirt. We then apply

this SVM classifier on each pair of detected visual
states in our new dataset (i.e., the dataset for learn-
ing the AoG), and use the SVM’s output class la-
bel (1 or −1) multiplies its classification confidence
score as the similarity measurement between two vi-
sual states.

After clustering all the observed visual states
in the data, we then replace each numeric vec-
tor state representation with the cluster “ID” it be-
longs to. Thus each visual demonstration now be-
comes a sequence of symbolic values, denoted as
D′ = {s1, s2, . . . , sM}. And we further trans-
form it into an equivalent change of state sequence
C = {(s1, s2), (s2, s3), . . . , (sM−1, sM)}, in which
each change of state essentially represents a primi-
tive action in this task. These change of state pairs
then form the set of terminal nodes Σ.

5.2.2 Learning the Structure and Parameters
With the sequences of numeric vector states re-

placed by the “symbolic” change of state sequences
in the first stage, we can further learn the structure
and parameters of an AoG. Namely, to learn N , R,
and Θ that maximize the posterior probability:

arg max
N,R,Θ

P (N,R,Θ|X ,Σ)

= arg max
N,R,Θ

P (N,R|X ,Σ) P (Θ|X ,Σ, N,R).

Following the iterative grammar induction
paradigm (Tu et al., 2013; Xiong et al., 2016),
we employ an iterative procedure that al-
ternatively solves arg max

N,R
P (N,R|X ,Σ) and

arg max
Θ

P (Θ|X ,Σ, N,R).

To solve the first term, we use greedy or beam
search with a heuristic function similar to (Solan et
al., 2005). To solve the second term, we estimate the
probability of each branch of an Or-node by comput-
ing the frequency of that branch, which is essentially
a maximum likelihood estimation similar to (Pei et
al., 2013).

In detail, the learning procedure first initializes
emptyN ,R, and Θ, then iterates through the follow-
ing two steps until no further update can be made.
Step (1): search for new And-nodes.

This step searches for new And-node candidates
from Σ∪N , and updateN andRwith the top-ranked
candidates. Specifically, we denote an And-node
candidate to be searched as A = (sl → sm → sr).

1486

Here sl is the initial state of an existing node, whose
end state is sm. And sr is the end state of another ex-
isting node, whose initial state is sm. Thus an And-
node candidate always has two child nodes, and rep-
resents a pattern of sub-sequences which starts from
state sl, ends at sr, and has sm occurred somewhere
in the middle.

Using the above notation, the heuristic function
for ranking And-node candidates is defined as

h(A) = (1− λ)Pstate(A) + λPlabel(A)

where Pstate(A) captures the prevalence of a partic-
ular And-node candidate based on the observed state
change sequences:

Pstate(A) =
PR(A) + PL(A)

2

and PR(A) is the ratio between the number of times
(sl → sm → sr) appears and the number of times
(sl → sm) appears, and PL(A) is the ratio between
the number of times (sl → sm → sr) appears and
the number of times (sm → sr) appears.

The component Plabel(A) captures the prevalence
of linguistic labels associated with the sequential
state change patterns. It is computed as the ratio
between the number of times (sl → sm → sr)
co-occurs with a linguistic instruction3 and the to-
tal number of times (sl → sm → sr) appears.

We specially define two AoG learning settings
based on the role that language plays:
• Tight language integration: incorporate heuris-

tics on linguistic labels (i.e., λ = 0.5). In
this setting, the learned AoG prefers And-nodes
that not only happen frequently, but also can be
described by a linguistic label.
• Loose language integration: without incorpo-

rating the heuristics on linguistic labels (λ =
0). Each And-node is learned only based on
the frequency of its state change pattern. The
learned node can still acquire a linguistic label
if there happen to be a co-occurring one, but the
chance is lower than the “tight” setting.

Step (2): search for new Or-nodes or new
branches of existing Or-nodes, then update Θ.

Once new And-nodes are added by the previous
step, the next step is to search for Or-nodes that

3Such information is encoded in the ∆ function as men-
tioned in Section 5.1.

can be created or updated. An Or-node in the AoG
essentially represents the set of all And-nodes that
share the same initial and end states, denoted as
(sl → sr) here (sl and sr are the common initial and
end states, respectively). Suppose (sl → s′m → sr)
is a newly added And-node, it is then assigned as a
child of the Or-node (sl → sr). To further update
Θ, the branching probability is computes as the ra-
tio between the number of times (sl → s′m → sr)
appears and the number of times (sl → sr) appears.

5.3 Inference Using AoG

Once a task AoG is learned, it can be applied to in-
terpret and explain new visual demonstrations using
linguistic labels. Due to the noises and uncertainties
from computer vision processing, one key challenge
in interpreting the visual demonstration is to reliably
identify the different states of the T-shirt.

To tackle this issue, we formulate a joint infer-
ence problem. Namely, given a task demonstration
video, we first process it into a sequence of numeric
vector states D = {~v1, ~v2, . . . , ~vM} as described in
Section 5.1. Then the goal of inference is to find the
most-likely parse tree T and a sequence of “sym-
bolic states” D′ = {s1, s2, . . . , sM} based on the
AoG G and the input D:

(T ∗, D′∗) = arg max
T,D′

P (T,D′ | G, D)

We apply a chart parsing algorithm (Klein and
Manning, 2001) to efficiently solve this problem.
Furthermore, to accommodate the ambiguities in
mapping a numeric vector state ~vm to a symbolic
state, we take into consideration the top-k hypothe-
ses measured by the similarity between ~vm and a
symbolic state sk.4 For each state mapping hypoth-
esis, we add a completed edge between indices m
and m + 1 in the chart, with sk as its symbol and
a probability p based on the similarity between ~vm
and sk. Based on the given AoG, the chart pars-
ing algorithm then uses Dynamic Programming to
search the best parse tree that maximizes the joint
probability of P (T,D′|G, D).

Figure 4 illustrates the input and output of our in-
ference algorithm. As illustrated by this example,

4A symbolic state is represented by a cluster of numeric vec-
tor states learned from the training data.

1487

Figure 4: An illustration of the input and output of our AoG-based inference algorithm.

the parse tree represents a hierarchical structure un-
derlying the observed task procedure, and the lin-
guistic labels associated with the nodes can be used
to describe the primitive and complex actions in-
volved in the procedure.

6 Evaluation

Using the setting as described in Section 3, we
collected 45 T-shirt folding demonstrations from 6
people to evaluate our AoG learning and inference
methods. More specifically, we conducted a 5-fold
cross validation. In each fold, 36 demonstrations
were used for training to learn a task AoG. Then the
remaining 9 demonstrations were used for testing, in
which the learned AoG is further applied to process
each of the testing visual demonstrations.

Motivated by earlier work on plan/activity recog-
nition using CFG-based models (Carberry, 1990;
Pynadath and Wellman, 2000), we use an extrin-
sic task that automatically assigns linguistic labels
to new demonstrations to evaluate the quality of the
learned AoG and the effectiveness of the inference
algorithm. This involves three steps: (1) parse the
video using the learned AoG; (2) identify linguistic
labels associated with terminal or nonterminal nodes
in the parse tree; and (3) compare the identified lin-
guistic labels with the manually annotated labels.

We conduct the evaluation at two levels:

• Primitive actions: use linguistic labels associ-
ated with terminal nodes to describe the primi-
tive actions in each video. This level provides
detailed descriptions on how the observed task
procedure is performed step-by-step.

• Complex actions: use linguistic labels associ-
ated with nonterminal nodes to describe com-
plex actions. This provides a high-level “sum-
mary” of the detailed low-level actions.

The capability to recognize fine-grained primitive
actions as well as high-level complex actions in a
task procedure and to communicate those in lan-
guage is important for many real-world AI applica-
tions such as human-robot collaboration (Mohseni-
Kabir et al., 2015) and visual question answer-
ing (Tu et al., 2014).

6.1 Primitive Actions

We first compare the performance of interpreting
primitive actions using the learned AoG with a base-
line. The baseline applies a memory-based (or
similarity-base) approach. Given a testing video, it
extracts all the different visual states and maps each
state to the nearest cluster learned from the train-
ing data (see Section 5.2.1). It then pairs each two
consecutive states as a change of state instance, and
uses the linguistic label corresponding to the identi-
cal change of state found in the training data as the
label of a primitive action.

We measure the primitive action recognition per-
formance in terms of the normalized Minimal Edit
Distance (MED). Namely, for each testing demon-
stration we calculate the MED between the ground-
truth sequence of primitive action labels and the au-
tomatically generated sequence of labels, and divide
the MED value by the length of the ground-truth
sequence to produce a normalized score (a smaller
score indicates better performance in recognizing
the primitive actions).

1488

Figure 5: Performance of interpreting primitive actions. Dif-

ferent number of state mapping hypotheses (k) are used in the

inference algorithm. The x-axis is the number of training ex-

amples used for learning the AoG.

The performances of the baseline and our AoG-
based approach are shown in Figure 5. For the
AoG-based approach, Figure 5 also shows the per-
formances of incorporating different number of state
mapping hypotheses (i.e., k = 1, 5, 10, 15, 20) into
the inference algorithm (Section 5.3). Here we only
report the performance of using AoG learned with
the tight language integration (see Section 5.2.2),
since there is no difference in performance between
the tight and loose language integration settings in
recognizing primitive actions5.

As Figure 5 shows, the baseline performance is
rather weak (i.e., high MED scores). This is largely
due to the noise in state clustering and mapping
from vision. After manually inspecting the collected
demonstration videos, we found 18 unique statuses
associated with folding a T-shirt. However the com-
puter vision based clustering on average produces
more than 30 clusters when all the 36 training ex-
amples are used. This makes it difficult to directly
match the state changes as in the baseline. For our
AoG-based method, when the inference algorithm
only takes the single best state mapping hypothesis
into consideration (i.e., k = 1), it yields a very weak
performance because the observed state change se-
quence often cannot be parsed using the learned
AoG.

However, the performance of the AoG-based

5Because the linguistic labels generated for primitive actions
are all from terminal nodes, and the two different AoG learning
settings only affect nonterminal nodes.

method is significantly improved when multiple
state mapping hypotheses are incorporated into the
inference process. When the top-5 (k = 5) state
mapping hypotheses are incorporated into the AoG-
based inference, its MED score has already outper-
formed the baseline by a 0.3 gap (p < 0.001 using
the Wilcoxon signed-rank test). When k = 20, the
MED score has dropped by more than 0.6 compared
to k = 1 (p < 0.001).

These results indicate that our AoG-based method
is capable of learning useful task structure from
small data. When multiple hypotheses of visual
state mapping are incorporated, the learned AoG can
compensate the uncertainties in vision processing
and identify highly reliable primitive actions from
unseen demonstrations.

6.2 Complex Actions
We further evaluate the performance of interpreting
complex actions using the learned AoG. The base-
line for comparison is similar to the one used in the
previous section. It first converts a test video into
a sequence of “symbolic” states by mapping each
detected visual state to its nearest cluster. It then
enumerates all the possible segments that consist of
more than two consecutive states and search for the
identical segments in the training data. If a matching
segment is found, then the corresponding linguistic
label (if any) is used as the label for a complex ac-
tion. Since complex actions correspond to nontermi-
nal nodes in the parse tree generated by AoG-based
inference, and some of them may have linguistic la-
bels while others may not. We use precision, re-
call, and F-score to measure how well the generated
linguistic labels match the manually segmented and
annotated complex actions in testing videos.

Figure 6 shows the F-scores of recognizing com-
plex actions using the AoG learned from the loose
and the tight language integration, respectively. In
this figure, results are based on k = 20 state map-
ping hypotheses incorporated into the inference al-
gorithm. As shown here, performances from both
settings are significantly better than the baseline
(p < 0.001). The AoG learned based on the tight
integration with language yields significantly bet-
ter performance than the loose integration (over 0.2
gain on F-score, p < 0.001).

This result indicates that the tight integration of

1489

Figure 6: Performances (F-score) of recognizing complex ac-

tions. The lowest curve shows the performance from the base-

line. Two other curves represent the performance using the AoG

learned from the loose integration and the tight integration with

language respectively (where k = 20 is used in inference).

language during AoG learning favors And-node pat-
terns that are more likely to be described by natural
language (or more consistent with human conceptu-
alization of the task structure)6. Such an AoG repre-
sentation can lead to recognition of video segments
that can be better explained or summarized by hu-
man language. This capability of learning explicit
and language-oriented task representations is impor-
tant to link language and vision for enabling situated
human-agent communication/collaboration.

Table 6.2 further shows the results from different
numbers of state mapping hypotheses that are incor-
porated into the inference algorithm. As shown here,
the trend of performance improvement with the in-
crease in k is again observed. When multiple state
mapping hypotheses are incorporated in inference,
the learned AoG is capable of compensating uncer-
tainties in vision processing and producing better
parses for unseen visual demonstrations.

7 Conclusion and Future Work

This paper presents an approach on task learning
where an agent can learn a grounded task model
from human demonstrations and language instruc-
tions. A key innovation of this work is grounding
language to a perceived structure of state changes

6By further investigating the learned AoG under the two dif-
ferent settings, we found that the nonterminal nodes learned
from the tight language integration setting is more likely to
acquire a linguistic label (33%) than the nonterminal nodes
learned from the loose setting (18%).

Table 1: Performance of recognizing complex actions using the

AoG learned from the loose and tight integration of language as

described in Section 5.2. Different (k) number of state mapping

hypotheses are used in the inference algorithm.
k=1 k=5 k=10 k=15 k=20

Precision Loose 0.34 0.76 0.79 0.84 0.84
Tight 0.34 0.8 0.86 0.89 0.9

Recall Loose 0.12 0.33 0.35 0.38 0.38
Tight 0.12 0.51 0.59 0.64 0.65

F-Score Loose 0.17 0.46 0.49 0.52 0.52
Tight 0.18 0.63 0.70 0.74 0.75

based on AoG representation. Once the task model
is acquired, it can be used as a basis to support col-
laboration and communication between humans and
agents/robots. Using cloth-folding as an example,
our empirical results have demonstrated that tightly
integrating language with vision can effectively pro-
duce task structures in AoG that can generalize well
to new demonstrations.

Although we have only made an initial attempt
on a small task, our approach can be naturally ex-
tended to more complex tasks such like assembling
and cooking. Both the AoG representation and the
task learning approach are general and applicable to
different domains. What needs to be adapted is the
representation of the visual states and computer vi-
sion algorithms to detect these states for a specific
task.

Grounding language to a structure of perceived
state changes will provide an important stepping
stone towards integrating language, perception, and
action for human-robot communication and collabo-
ration. Currently, our algorithms learn the task struc-
tures based on offline parallel data. Our future work
will explore incremental learning through human-
agent dialogue to acquire grounded task structures.

Acknowledgments

The authors are grateful to Sarah Fillwock and
James Finch for their help on data collection and
processing, to Mun Wai Lee for his helpful discus-
sions, and to anonymous reviewers for their valu-
able comments and suggestions. This work was
supported in part by N66001-15-C-4035 from the
DARPA SIMPLEX program, and IIS-1208390 and
IIS-1617682 from the National Science Foundation.

1490

References
Brenna D. Argall, Sonia Chernova, Manuela Veloso, and

Brett Browning. 2009. A survey of robot learning
from demonstration. Robotics and autonomous sys-
tems, 57(5):469–483.

S. R. K. Branavan, Luke S. Zettlemoyer, and Regina
Barzilay. 2010. Reading between the lines: Learn-
ing to map high-level instructions to commands. In
Proceedings of the 48th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
1268–1277.

S. R. K. Branavan, Nate Kushman, Tao Lei, and Regina
Barzilay. 2012. Learning high-level planning from
text. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 126–135.

Rehj Cantrell, J. Benton, Kartik Talamadupula, Subbarao
Kambhampati, Paul Schermerhorn, and Matthias
Scheutz. 2012. Tell me when and why to do it! run-
time planner model updates via natural language in-
struction. In 7th ACM/IEEE International Conference
on Human-Robot Interaction (HRI), pages 471–478.

Sandra Carberry. 1990. Plan recognition in natural lan-
guage dialogue. MIT press.

David L. Chen, Joohyun Kim, and Raymond J. Mooney.
2010. Training a multilingual sportscaster: Using per-
ceptual context to learn language. Journal of Artificial
Intelligence Research, 37(1):397–436.

Sonia Chernova and Manuela Veloso. 2008. Teach-
ing multi-robot coordination using demonstration of
communication and state sharing. In Proceedings of
the 7th international joint conference on Autonomous
agents and multiagent systems-Volume 3, pages 1183–
1186.

Sonia Chernova and Manuela Veloso. 2009. Interactive
policy learning through confidence-based autonomy.
Journal of Artificial Intelligence Research, 34(1):1.

Qiaozi Gao, Malcolm Doering, Shaohua Yang, and
Joyce Y. Chai. 2016. Physical causality of action
verbs in grounded language understanding. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL), Volume 1:
Long Papers, pages 1814–1824.

Till Hofmann, Tim Niemueller, Jens Claßen, and Gerhard
Lakemeyer. 2016. Continual planning in golog. In
Thirtieth AAAI Conference on Artificial Intelligence.

Chad Hogg, Ugur Kuter, and Héctor Muñoz-Avila. 2009.
Learning hierarchical task networks for nondetermin-
istic planning domains. In Proceedings of the Twenty-
First International Joint Conference on Artificial Intel-
ligence (IJCAI), pages 1708–1714.

James R. Kirk and John E. Laird. 2013. Learning task
formulations through situated interactive instruction.

In Proceedings of the Second Annual Conference on
Advances in Cognitive Systems (ACS), volume 219,
page 236.

Dan Klein and Christopher D. Manning. 2001. An o(n3)
agenda-based chart parser for arbitrary probabilistic
context-free grammars. Stanford Technical Report.

Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas
Roy. 2010. Toward understanding natural language
directions. In Proceedings of the 5th ACM/IEEE In-
ternational Conference on Human-robot Interaction
(HRI), pages 259–266.

Thomas Kollar, Jayant Krishnamurthy, and Grant P.
Strimel. 2013. Toward interactive grounded language
acqusition. In Robotics: Science and Systems.

Bo Li, Tianfu Wu, Caiming Xiong, and Song-Chun Zhu.
2016. Recognizing car fluents from video. In Pro-
ceedings of the 29th IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Changsong Liu, Rui Fang, and Joyce Y. Chai. 2012. To-
wards mediating shared perceptual basis in situated di-
alogue. In Proceedings of the 13th Annual Meeting of
the Special Interest Group on Discourse and Dialogue,
pages 140–149.

Cynthia Matuszek, Nicholas FitzGerald, Luke Zettle-
moyer, Liefeng Bo, and Dieter Fox. 2012. A joint
model of language and perception for grounded at-
tribute learning. Proceedings of the 29th International
Conference on Machine Learning (ICML).

Dipendra K. Misra, Jaeyong Sung, Kevin Lee, and
Ashutosh Saxena. 2014. Tell me dave: Context-
sensitive grounding of natural language to manipula-
tion instructions. In Proceedings of Robotics: Science
and Systems (RSS).

Dipendra K. Misra, Kejia Tao, Percy Liang, and Ashutosh
Saxena. 2015. Environment-driven lexicon induction
for high-level instructions. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics, pages 992–1002.

Shiwali Mohan, James Kirk, and John Laird. 2013. A
computational model for situated task learning with in-
teractive instruction. In Proceedings of the 12th Inter-
national Conference on Cognitive Modeling (ICCM).

Anahita Mohseni-Kabir, Charles Rich, Sonia Chernova,
Candace L Sidner, and Daniel Miller. 2015. In-
teractive hierarchical task learning from a single
demonstration. In Proceedings of the Tenth An-
nual ACM/IEEE International Conference on Human-
Robot Interaction (HRI), pages 205–212.

Iftekhar Naim, Young Chol Song, Qiguang Liu, Liang
Huang, Henry Kautz, Jiebo Luo, and Daniel Gildea.
2015. Discriminative unsupervised alignment of nat-
ural language instructions with corresponding video

1491

segments. In North American Chapter of the Associ-
ation for Computational Linguistics Human Language
Technologies (NAACL-HLT).

Negin Nejati, Pat Langley, and Tolga Konik. 2006.
Learning hierarchical task networks by observation. In
Proceedings of the 23rd international conference on
Machine learning (ICML), pages 665–672.

Vincent Ng and Claire Cardie. 2002. Improving machine
learning approaches to coreference resolution. In Pro-
ceedings of the 40th Annual Meeting on Association
for Computational Linguistics (ACL), pages 104–111.

Mingtao Pei, Zhangzhang Si, Benjamin Z Yao, and Song-
Chun Zhu. 2013. Learning and parsing video events
with goal and intent prediction. Computer Vision and
Image Understanding, 117(10):1369–1383.

David V. Pynadath and Michael P. Wellman. 2000. Prob-
abilistic state-dependent grammars for plan recogni-
tion. In Proceedings of the Sixteenth conference on
Uncertainty in artificial intelligence, pages 507–514.
Morgan Kaufmann Publishers Inc.

Joe Saunders, Chrystopher L. Nehaniv, and Kerstin Daut-
enhahn. 2006. Teaching robots by moulding behavior
and scaffolding the environment. In Proceedings of
the 1st ACM SIGCHI/SIGART conference on Human-
robot interaction (HRI), pages 118–125.

Lanbo She and Joyce Y. Chai. 2016. Incremental acqui-
sition of verb hypothesis space towards physical world
interaction. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Lanbo She, Yu Cheng, Joyce Y. Chai, Yunyi Jia, Shao-
hua Yang, and Ning Xi. 2014a. Teaching robots
new actions through natural language instructions. In
Proceedings of the 23rd IEEE International Sympo-
sium on Robot and Human Interactive Communica-
tion, pages 868–873.

Lanbo She, Shaohua Yang, Yu Cheng, Yunyi Jia, Joyce Y.
Chai, and Ning Xi. 2014b. Back to the blocks world:
Learning new actions through situated human-robot
dialogue. In Proceedings of the 15th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue.

Zach Solan, David Horn, Eytan Ruppin, and Shimon
Edelman. 2005. Unsupervised learning of natural lan-
guages. Proceedings of the National Academy of Sci-
ences of the United States of America, 102(33):11629–
11634.

Stefanie Tellex, Thomas Kollar, Steven Dickerson,
Matthew R. Walter, Ashis Gopal Banerjee, Seth J.
Teller, and Nicholas Roy. 2011. Understanding natu-
ral language commands for robotic navigation and mo-
bile manipulation. In Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence.

Stefanie Tellex, Pratiksha Thaker, Joshua Joseph, and
Nicholas Roy. 2014. Learning perceptually grounded
word meanings from unaligned parallel data. Machine
Learning, 94(2):151–167.

Kewei Tu, Maria Pavlovskaia, and Song-Chun Zhu.
2013. Unsupervised structure learning of stochastic
and-or grammars. In Advances in Neural Information
Processing Systems (NIPS), pages 1322–1330.

Kewei Tu, Meng Meng, Mun Wai Lee, Tae Eun Choe,
and Song-Chun Zhu. 2014. Joint video and text pars-
ing for understanding events and answering queries.
IEEE MultiMedia, 21(2):42–70.

Caiming Xiong, Nishant Shukla, Wenlong Xiong, and
Song-Chun Zhu. 2016. Robot learning with a spatial,
temporal, and causal and-or graph. In Proceedings of
the 2016 IEEE International Conference on Robotics
and Automation (ICRA).

Shaohua Yang, Qiaozi Gao, Changsong Liu, Caiming
Xiong, Song-Chun Zhu, and Joyce Y. Chai. 2016.
Grounded semantic role labeling. In Proceedings of
the 15th Annual Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (NAACL-HLT),
pages 149–159.

Haonan Yu and Jeffrey M. Siskind. 2013. Grounded lan-
guage learning from video described with sentences.
In Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
53–63.

Yibiao Zhao and Song-Chun Zhu. 2013. Scene pars-
ing by integrating function, geometry and appearance
models. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 3119–3126.

1492

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1493–1503,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Resolving Language and Vision Ambiguities Together: Joint
Segmentation & Prepositional Attachment Resolution in Captioned Scenes

Gordon Christie1,∗, Ankit Laddha2,∗, Aishwarya Agrawal1, Stanislaw Antol1
Yash Goyal1, Kevin Kochersberger1, Dhruv Batra3,1

1Virginia Tech 2Carnegie Mellon University 3Georgia Institute of Technology
ankit1991laddha@gmail.com

{gordonac,aish,santol,ygoyal,kbk,dbatra}@vt.edu

Abstract

We present an approach to simultaneously per-
form semantic segmentation and prepositional
phrase attachment resolution for captioned
images. Some ambiguities in language can-
not be resolved without simultaneously rea-
soning about an associated image. If we con-
sider the sentence “I shot an elephant in my
pajamas”, looking at language alone (and not
using common sense), it is unclear if it is the
person or the elephant wearing the pajamas
or both. Our approach produces a diverse
set of plausible hypotheses for both semantic
segmentation and prepositional phrase attach-
ment resolution that are then jointly reranked
to select the most consistent pair. We show
that our semantic segmentation and preposi-
tional phrase attachment resolution modules
have complementary strengths, and that joint
reasoning produces more accurate results than
any module operating in isolation. Multiple
hypotheses are also shown to be crucial to im-
proved multiple-module reasoning. Our vi-
sion and language approach significantly out-
performs the Stanford Parser (De Marneffe et
al., 2006) by 17.91% (28.69% relative) and
12.83% (25.28% relative) in two different ex-
periments. We also make small improvements
over DeepLab-CRF (Chen et al., 2015).

1 Introduction

Perception and intelligence problems are hard.
Whether we are interested in understanding an im-

* Denotes equal contribution

PASCAL
Sentence Dataset

Consistent

NLP: Sentence Parsing

Ambiguity: (woman on couch)
vs (dog on couch)

Output: Parse Tree

“A dog is
standing next
to a woman
on a couch”

Vision: Semantic Segmentation
Labels: Chairs, desks, etc.

Person

Couch

Couch

Person

Dog

Solution
#1

Solution
#M

Ambiguity:
(dog next to woman) on couch
vs dog next to (woman on couch)

Ambiguity:
(dog next to woman) on couch
vs dog next to (woman on couch)

Figure 1: Overview of our approach. We propose a model
for simultaneous 2D semantic segmentation and preposi-
tional phrase attachment resolution by reasoning about
sentence parses. The language and vision modules each
produce M diverse hypotheses, and the goal is to select
a pair of consistent hypotheses. In this example the am-
biguity to be resolved from the image caption is whether
the dog is standing on or next to the couch. Both modules
benefit by selecting a pair of compatible hypotheses.

age or a sentence, our algorithms must operate un-
der tremendous levels of ambiguity. When a hu-
man reads the sentence “I eat sushi with tuna”, it
is clear that the preposition phrase “with tuna” mod-
ifies “sushi” and not the act of eating, but this may
be ambiguous to a machine. This problem of deter-
mining whether a prepositional phrase (“with tuna”)
modifies a noun phrase (“sushi”) or verb phrase
(“eating”) is formally known as Prepositional Phrase
Attachment Resolution (PPAR) (Ratnaparkhi et al.,
1994). Consider the captioned scene shown in Fig-

1493

ure 1. The caption “A dog is standing next to a
woman on a couch” exhibits a PP attachment am-
biguity – “(dog next to woman) on couch” vs “dog
next to (woman on couch)”. It is clear that having
access to image segmentations can help resolve this
ambiguity, and having access to the correct PP at-
tachment can help image segmentation.

There are two main roadblocks that keep us from
writing a single unified model (say a graphical
model) to perform both tasks: (1) Inaccurate Mod-
els – empirical studies (Meltzer et al., 2005, Szeliski
et al., 2008, Kappes et al., 2013) have repeatedly
found that models are often inaccurate and miscali-
brated – their “most-likely” beliefs are placed on so-
lutions far from the ground-truth. (2) Search Space
Explosion – jointly reasoning about multiple modal-
ities is difficult due to the combinatorial explosion of
search space ({exponentially-many segmentations}
× {exponentially-many sentence-parses}).

Proposed Approach and Contributions. In this
paper, we address the problem of simultaneous ob-
ject segmentation (also called semantic segmenta-
tion) and PPAR in captioned scenes. To the best of
our knowledge this is the first paper to do so.

Our main thesis is that a set of diverse plausible
hypotheses can serve as a concise interpretable sum-
mary of uncertainty in vision and language ‘mod-
ules’ (What does the semantic segmentation mod-
ule see in the world? What does the PPAR mod-
ule describe?) and form the basis for tractable joint
reasoning (How do we reconcile what the semantic
segmentation module sees in the world with how the
PPAR module describes it?).

Given our two modules with M hypotheses each,
how can we integrate beliefs across the segmenta-
tion and sentence parse modules to pick the best
pair of hypotheses? Our key focus is consistency
– correct hypotheses from different modules will be
correct in a consistent way, but incorrect hypotheses
will be incorrect in incompatible ways. Specifically,
we develop a MEDIATOR model that scores pairs for
consistency and searches over all M2 pairs to pick
the highest scoring one. We demonstrate our ap-
proach on three datasets – ABSTRACT-50S (Vedan-
tam et al., 2014), PASCAL-50S, and PASCAL-
Context-50S (Mottaghi et al., 2014). We show that
our vision+language approach significantly outper-
forms the Stanford Parser (De Marneffe et al., 2006)

by 20.66% (36.42% relative) for ABSTRACT-50S,
17.91% (28.69% relative) for PASCAL-50S, and
by 12.83% (25.28% relative) for PASCAL-Context-
50S. We also make small but consistent improve-
ments over DeepLab-CRF (Chen et al., 2015).

2 Related Work

Most works at the intersection of vision and NLP
tend to be ‘pipeline’ systems, where vision tasks
take 1-best inputs from NLP (e.g., sentence pars-
ings) without trying to improve NLP performance
and vice-versa. For instance, Fidler et al. (2013)
use prepositions to improve object segmentation and
scene classification, but only consider the most-
likely parse of the sentence and do not resolve ambi-
guities in text. Analogously, Yatskar et al. (2014) in-
vestigate the role of object, attribute, and action clas-
sification annotations for generating human-like de-
scriptions. While they achieve impressive results at
generating descriptions, they assume perfect vision
modules to generate sentences. Our work uses cur-
rent (still imperfect) vision and NLP modules to rea-
son about images and provided captions, and simul-
taneously improve both vision and language mod-
ules. Similar to our philosophy, an earlier work by
Barnard and Johnson (2005) used images to help
disambiguate word senses (e.g. piggy banks vs snow
banks). In a more recent work, Gella et al. (2016)
studied the problem of reasoning about an image and
a verb, where they attempt to pick the correct sense
of the verb that describes the action depicted in the
image. Berzak et al. (2015) resolve linguistic ambi-
guities in sentences coupled with videos that repre-
sent different interpretations of the sentences. Per-
haps the work closest to us is Kong et al. (2014),
who leverage information from an RGBD image
and its sentential description to improve 3D seman-
tic parsing and resolve ambiguities related to co-
reference resolution in the sentences (e.g., what “it”
refers to). We focus on a different kind of ambiguity
– the Prepositional Phrase (PP) attachment resolu-
tion. In the classification of parsing ambiguities, co-
reference resolution is considered a discourse am-
biguity (Poesio and Artstein, 2005) (arising out of
two different words across sentences for the same
object), while PP attachment is considered a syntac-
tic ambiguity (arising out of multiple valid sentence

1494

structures) and is typically considered much more
difficult to resolve (Bach, 2016, Davis, 2016).

A number of recent works have studied problems
at the intersection of vision and language, such as
Visual Question Answering (Antol et al., 2015, Ge-
man et al., 2014, Malinowski et al., 2015), Vi-
sual Madlibs (Yu et al., 2015), and image caption-
ing (Vinyals et al., 2015, Fang et al., 2015). Our
work falls in this domain with a key difference that
we produce both vision and NLP outputs.

Our work also has similarities with works on
‘spatial relation learning’ (Malinowski and Fritz,
2014, Lan et al., 2012), i.e. learning a visual rep-
resentation for noun-preposition-noun triplets (“car
on road”). While our approach can certainly utilize
such spatial relation classifiers if available, the focus
of our work is different. Our goal is to improve se-
mantic segmentation and PPAR by jointly reranking
segmentation-parsing solution pairs. Our approach
implicitly learns spatial relationships for preposi-
tions (“on”, “above”) but these are simply emergent
latent representations that help our reranker pick out
the most consistent pair of solutions.

Our work utilizes a line of work (Batra et al.,
2012, Batra, 2012, Prasad et al., 2014) on pro-
ducing diverse plausible solutions from probabilis-
tic models, which has been successfully applied
to a number of problem domains (Guzman-Rivera
et al., 2013, Yadollahpour et al., 2013, Gimpel et
al., 2013, Premachandran et al., 2014, Sun et al.,
2015, Ahmed et al., 2015).

3 Approach

In order to emphasize the generality of our approach,
and to show that our approach is compatible with a
wide class of implementations of semantic segmen-
tation and PPAR modules, we present our approach
with the modules abstracted as “black boxes” that
satisfy a few general requirements and minimal as-
sumptions. In Section 4, we describe each of the
modules in detail, making concrete their respective
features, and other details.

3.1 What is a Module?

The goal of a module is to take input variables
x ∈ X (images or sentences), and predict out-
put variables y ∈ Y (semantic segmentation) and

z ∈ Z (prepositional attachment expressed in sen-
tence parse). The two requirements on a module are
that it needs to be able to produce scores S(y|x) for
potential solutions and a list of plausible hypotheses
Y = {y1,y2, . . . ,yM}.

Multiple Hypotheses. In order to be useful, the
set Y of hypotheses must provide an accurate sum-
mary of the score landscape. Thus, the hypotheses
should be plausible (i.e., high-scoring) and mutu-
ally non-redundant (i.e., diverse). Our approach (de-
scribed next) is applicable to any choice of diverse
hypothesis generators. In our experiments, we use
the k-best algorithm of Huang and Chiang (2005)
for the sentence parsing module and the DivMBest
algorithm (Batra et al., 2012) for the semantic seg-
mentation module. Once we instantiate the modules
in Section 4, we describe the diverse solution gener-
ation in more detail.

3.2 Joint Reasoning Across Multiple Modules

We now show how to intergrate information from
both segmentation and PPAR modules. Recall that
our key focus is consistency – correct hypotheses
from different modules will be correct in a consis-
tent way, but incorrect hypotheses will be incorrect
in incompatible ways. Thus, our goal is to search
for a pair (semantic segmentation, sentence parsing)
that is mutually consistent.

Let Y = {y1, . . . ,yM} denote the M seman-
tic segmentation hypotheses and Z = {z1, . . . , zM}
denote the M PPAR hypotheses.

MEDIATOR Model. We develop a “mediator”
model that identifies high-scoring hypotheses across
modules in agreement with each other. Concretely,
we can express the MEDIATOR model as a fac-
tor graph where each node corresponds to a mod-
ule (semantic segmentation and PPAR). Working
with such a factor graph is typically completely in-
tractable because each node y, z has exponentially-
many states (image segmentations, sentence pars-
ing). As illustrated in Figure 2, in this factor-graph
view, the hypothesis sets Y,Z can be considered
‘delta-approximations’ for reducing the size of the
output spaces.

Unary factors S(·) capture the score/likelihood
of each hypothesis provided by the corresponding
module for the image/sentence at hand. Pairwise
factors C(·, ·) represent consistency factors. Impor-

1495

Delta

Approximation

Semantic
Segmentation

Sentence
Parsing

Delta

Approximation S
co

re
(z

)

zS
co

re
(y

)

y

S(yi) S(zj)

y

S
co

re
(z

)

zyS
co

re
(y

)

C(yi, zj)

z

Figure 2: Illustrative inter-module factor graph. Each node takes exponentially-many or infinitely-many states and we
use a ‘delta approximation’ to limit support.

tantly, since we have restricted each module vari-
ables to just M states, we are free to capture ar-
bitrary domain-specific high-order relationships for
consistency, without any optimization concerns. In
fact, as we describe in our experiments, these con-
sistency factors may be designed to exploit domain
knowledge in fairly sophisticated ways.

Consistency Inference. We perform exhaustive
inference over all possible tuples.

argmax
i,j∈{1,...,M}

{
M(yi, zj) = S(yi) + S(zj) + C(yi, zj)

}
.

(1)

Notice that the search space with M hypotheses
each isM2. In our experiments, we allow each mod-
ule to take a different value for M , and typically
use around 10 solutions for each module, leading to
a mere 100 pairs, which is easily enumerable. We
found that even with such a small set, at least one of
the solutions in the set tends to be highly accurate,
meaning that the hypothesis sets have relatively high
recall. This shows the power of using a small set of
diverse hypotheses. For a large M , we can exploit a
number of standard ideas from the graphical models
literature (e.g. dual decomposition or belief propaga-
tion). In fact, this is one reason we show the factor
in Figure 2; there is a natural decomposition of the
problem into modules.

Training MEDIATOR. We can express the ME-
DIATOR score as M(yi, zj) = wᵀφ(x,yi, zj), as
a linear function of score and consistency features
φ(x,yi, zj) = [φS(y

i);φS(z
j);φC(y

i, zj)] , where
φS(·) are the single-module (semantic segmentation
and PPAR module) score features, and φC(·, ·) are
the inter-module consistency features. We describe
these features in detail in the experiments. We learn
these consistency weights w from a dataset anno-
tated with ground-truth for the two modules y, z.
Let {y∗, z∗} denote the oracle pair, composed of

the most accurate solutions in the hypothesis sets.
We learn the MEDIATOR parameters in a discrimina-
tive learning fashion by solving the following Struc-
tured SVM problem:

min
w,ξij

1

2
wᵀw + C

∑

ij

ξij (2a)

s.t. wᵀφ(x,y∗, z∗)︸ ︷︷ ︸
Score of oracle tuple

− wᵀφ(x,yi, zj)︸ ︷︷ ︸
Score of any other tuple

≥ 1︸︷︷︸
Margin

− ξij
L(yi, zj)︸ ︷︷ ︸

Slack scaled by loss

∀i, j ∈ {1, . . . ,M}.

(2b)

Intuitively, we can see that the constraint (2b) tries
to maximize the (soft) margin between the score of
the oracle pair and all other pairs in the hypothe-
sis sets. Importantly, the slack (or violation in the
margin) is scaled by the loss of the tuple. Thus,
if there are other good pairs not too much worse
than the oracle, the margin for such tuples will
not be tightly enforced. On the other hand, the mar-
gin between the oracle and bad tuples will be very
strictly enforced.

This learning procedure requires us to define the
loss function L(yi, zj), i.e., the cost of predicting
a tuple (semantic segmentation, sentence parsing).
We use a weighted average of individual losses:

L(yi, zj) = α`(ygt,yi) + (1− α)`(zgt, zj) (3)

The standard measure for evaluating semantic seg-
mentation is average Jaccard Index (or Intersection-
over-Union) (Everingham et al., 2010), while for
evaluating sentence parses w.r.t. their prepositional
phrase attachment, we use the fraction of preposi-
tions correctly attached. In our experiments, we re-
port results with such a convex combination of mod-
ule loss functions (for different values of α).

1496

4 Experiments

We now describe the setup of our experiments, pro-
vide implementation details of the modules, and de-
scribe the consistency features.

Datasets. Access to rich annotated image +
caption datasets is crucial for performing quanti-
tative evaluations. Since this is the first paper
to study the problem of joint segmentation and
PPAR, no standard datasets for this task exist so
we had to curate our own annotations for PPAR
on three image caption datasets – ABSTRACT-
50S (Vedantam et al., 2014), PASCAL-50S (Vedan-
tam et al., 2014) (expands the UIUC PASCAL
sentence dataset (Rashtchian et al., 2010) from 5
captions per image to 50), and PASCAL-Context-
50S (Mottaghi et al., 2014) (which uses the PAS-
CAL Context image annotations and the same sen-
tences as PASCAL-50S). Our annotations are pub-
licly available on the authors’ webpages. To cu-
rate the PASCAL-Context-50S PPAR annotations,
we first select all sentences that have preposition
phrase attachment ambiguities. We then plotted the
distribution of prepositions in these sentences. The
top 7 prepositions are used, as there is a large drop
in the frequencies beyond these. The 7 prepositions
are: “on”, “with”, “next to”, “in front of”, “by”,
“near”, and “down”. We then further sampled sen-
tences to ensure uniform distribution across prepo-
sitions. We perform a similar filtering for PASCAL-
50S and ABSTRACT-50S (using the top-6 preposi-
tions for ABSTRACT-50S). Details are in the sup-
plement. We consider a preposition ambiguous if
there are at least two parsings where one of the two
objects in the preposition dependency is the same
across the two parsings while the other object is dif-
ferent (e.g. (dog on couch) and (woman on couch)).
To summarize the statistics of all three datasets:

1. ABSTRACT-50S (Vedantam et al., 2014):
25,000 sentences (50 per image) with 500
images from abstract scenes made from cli-
part. Filtering for captions containing the top-6
prepositions resulted in 399 sentences describ-
ing 201 unique images. These 6 prepositions
are: “with”, ‘next to”, “on top of”, “in front
of”, “behind”, and “under”. Overall, there are
502 total prepositions, 406 ambiguous preposi-
tions, 80.88% ambiguity rate and 60 sentences

with multiple ambiguous prepositions.
2. PASCAL-50S (Vedantam et al., 2014): 50,000

sentences (50 per image) for the images in the
UIUC PASCAL sentence dataset (Rashtchian
et al., 2010). Filtering for the top-7 preposi-
tions resulted in a total of 30 unique images,
and 100 image-caption pairs, where ground-
truth PPAR were carefully annotated by two
vision + NLP graduate students. Overall,
there are 213 total prepositions, 147 ambigu-
ous prepositions, 69.01% ambiguity rate and
35 sentences with multiple ambiguous prepo-
sitions.

3. PASCAL-Context-50S (Mottaghi et al.,
2014): We use images and captions from
PASCAL-50S, but with PASCAL Context
segmentation annotations (60 categories in-
stead of 21). This makes the vision task more
challenging. Filtering this dataset for the top-7
prepositions resulted in a total of 966 unique
images and 1,822 image-caption pairs. Ground
truth annotations for the PPAR were collected
using Amazon Mechanical Turk. Workers
were shown an image and a prepositional
attachment (extracted from the corresponding
parsing of the caption) as a phrase (“woman
on couch”), and asked if it was correct. A
screenshot of our interface is available in the
supplement. Overall, there are 2,540 total
prepositions, 2,147 ambiguous prepositions,
84.53% ambiguity rate and 283 sentences with
multiple ambiguous prepositions.

Setup. Single Module: We first show that visual
features help PPAR by using the ABSTRACT-50S
dataset, which contains clipart scenes where the ex-
tent and position of all the objects in the scene is
known. This allows us to consider a scenario with a
perfect vision system.

Multiple Modules: In this experiment we use
imperfect language and vision modules, and show
improvements on the PASCAL-50S and PASCAL-
Context-50S datasets.

Module 1: Semantic Segmentation (SS) y. We
use DeepLab-CRF (Chen et al., 2015) and Di-
vMBest (Batra et al., 2012) to produce M diverse
segmentations of the images. To evaluate we use
image-level class-averaged Jaccard Index.

Module 2: PP Attachment Resolution (PPAR)

1497

z. We use a recent version (v3.3.1; released 2014)
of the PCFG Stanford parser module (De Marn-
effe et al., 2006, Huang and Chiang, 2005) to pro-
duce M parsings of the sentence. In addition to
the parse trees, the module can also output depen-
dencies, which make syntactical relationships more
explicit. Dependencies come in the form depen-
dency type(word1, word2), such as the preposition
dependency prep on(woman-8, couch-11) (the num-
ber indicates the word position in sentence). To eval-
uate, we count the percentage of preposition attach-
ments that the parse gets correct.

Baselines:
• INDEP. In our experiments, we compare our

proposed approach (MEDIATOR) to the highest
scoring solution predicted independently from
each module. For semantic segmentation this is
the output of DeepLab-CRF (Chen et al., 2015)
and for the PPAR module this is the 1-best out-
put of the Stanford Parser (De Marneffe et al.,
2006, Huang and Chiang, 2005). Since our hy-
pothesis lists are generated by greedy M-Best
algorithms, this corresponds to predicting the
(y1, z1) tuple. This comparison establishes the
importance of joint reasoning. To the best of
our knowledge, there is no existing (or even
natural) joint model to compare to.

• DOMAIN ADAPTATION. We learn a reranker
on the parses. Note that domain adaptation is
only needed for PPAR since the Stanford parser
is trained on Penn Treebank (Wall Street Jour-
nal text) and not on text about images (such as
image captions). Such domain adaptation is not
necessary for semantic segmentation. This is
a competitive single-module baseline. Specifi-
cally, we use the same parse-based features as
our approach, and learn a reranker over the Mz

parse trees (Mz = 10).
Our approach (MEDIATOR) significantly outper-

forms both baselines. The improvements over IN-
DEP show that joint reasoning produces more ac-
curate results than any module (vision or language)
operating in isolation. The improvements over DO-
MAIN ADAPTATION establish the source of im-
provements is indeed vision, and not the reranking
step. Simply adapting the parse from its original
training domain (Wall Street Journal) to our domain
(image captions) is not enough.

Ablative Study. Ours-CASCADE: This ablation
studies the importance of multiple hypothesis. For
each module (say y), we feed the single-best out-
put of the other module z1 as input. Each module
learns its own weight w using exactly the same con-
sistency features and learning algorithm as MEDI-
ATOR and predicts one of the plausible hypotheses
ŷCASCADE = argmaxy∈Y wᵀφ(x,y, z1). This ab-
lation of our system is similar to (Heitz et al., 2008)
and helps us in disentangling the benefits of multiple
hypothesis and joint reasoning.

Finally, we note that Ours-CASCADE can be
viewed as special cases of MEDIATOR. Let MEDI-
ATOR-(My,Mz) denote our approach run with My

hypotheses for the first module and Mz for the sec-
ond. Then INDEP corresponds to MEDIATOR-(1, 1)
and CASCADE corresponds to predicting the y so-
lution from MEDIATOR-(My, 1) and the z solution
from MEDIATOR-(1,Mz). To get an upper-bound
on our approach, we report oracle, the accuracy
of the most accurate tuple in 10× 10 tuples.

In the main paper, our results are presented where
MEDIATOR was trained with equally weighted loss
(α = 0.5), but we provide additional results for
varying values of α in the supplement.

MEDIATOR and Consistency Features. Recall
that we have two types of features – (1) score fea-
tures φS(yi) and φS(zj), which try to capture how
likely solutions yi and zj are respectively, and (2)
consistency features φC(yi, zj), which capture how
consistent the PP attachments in zj are with the
segmentation in yi. For each (object1, preposi-
tion, object2) in zj , we compute 6 features between
object1 and object2 segmentations in yi. Since the
humans writing the captions may use multiple syn-
onymous words (e.g. dog, puppy) for the same vi-
sual entity, we use word2vec (Mikolov et al., 2013)
similarities to map the nouns in the sentences to the
corresponding dataset categories.

• Semantic Segmentation Score Features
(φS(yi)) (2-dim): We use ranks and solution
scores from DeepLab-CRF (Chen et al., 2015).

• PPAR Score Features (φS(zi)) (9-dim): We
use ranks and the log probability of parses
from (De Marneffe et al., 2006), and 7 binary
indicators for PASCAL (6 for ABSTRACT-
50S) denoting which prepositions are present
in the parse.

1498

Figure 3: Example on PASCAL-50S (“A dog is stand-
ing next to a woman on a couch.”). The ambiguity in this
sentence “(dog next to woman) on couch” vs “dog next to
(woman on couch)”. We calculate the horizontal and ver-
tical distances between the segmentation centers of “per-
son” and “couch” and between the segmentation centers
of “dog” and “couch”. We see that the “dog” is much fur-
ther below the couch (53.91) than the woman (2.65). So,
if the MEDIATOR model learned that “on” means the first
object is above the second object, we would expect it to
choose the “person on couch” preposition parsing.

• Inter-Module Consistency Features (56-
dim): For each of the 7 prepositions, 8 features
are calculated:

– One feature is the Euclidean distance
between the center of the segmentation
masks of the two objects connected by
the preposition. These two objects in the
segmentation correspond to the categories
with which the soft similarity of the two
objects in the sentence is highest among
all PASCAL categories.

– Four features capture max{0, (normalized
-directional-distance)}, where directional-
distance measures above/below/left/right
displacements between the two objects in
the segmentation, and normalization in-
volves dividing by height/width.

– One feature is the ratio of sizes between
object1 and object2 in the segmentation.

– Two features capture the word2vec sim-
ilarity between the two objects in PPAR
(say ‘puppy’ and ‘kitty’) with their most
similar PASCAL category (say ‘dog’ and
‘cat’), where these features are 0 if the cat-
egories are not present in segmentation.

A visual illustration for some of these features
for PASCAL can be seen in Figure 3. In the
case where an object parsed from zj is not

present in the segmentation yi, the distance
features are set to 0. The ratio of areas fea-
tures (area of smaller object / area of larger ob-
ject) are also set to 0 assuming that the smaller
object is missing. In the case where an ob-
ject has two or more connected components in
the segmentation, the distances are computed
w.r.t. the centroid of the segmentation and the
area is computed as the number of pixels in
the union of the instance segmentation masks.
We also calculate 20 features for PASCAL-50S
and 59 features for PASCAL-Context-50S that
capture that consistency between yi and zj , in
terms of presence/absence of PASCAL cate-
gories. For each noun in PPAR we compute
its word2vec similarity with all PASCAL cat-
egories. For each of the PASCAL categories,
the feature is the sum of similarities (with the
PASCAL category) over all nouns if the cate-
gory is present in segmentation, and is -1 times
the sum of similarities over all nouns otherwise.
This feature set was not used for ABSTRACT-
50S, since these features were intended to help
improve the accuracy of the semantic segmen-
tation module. For ABSTRACT-50S, we only
use the 5 distance features, resulting in a 30-
dim feature vector.

4.1 Single-Module Results
We performed a 10-fold cross-validation on the
ABSTRACT-50S dataset to pick M (=10) and the
weight on the hinge-loss for MEDIATOR (C). The
results are presented in Table 1. Our approach sig-
nificantly outpeforms 1-best outputs of the Stan-
ford Parser (De Marneffe et al., 2006) by 20.66%
(36.42% relative). This shows a need for diverse hy-
potheses and reasoning about visual features when
picking a sentence parse. oracle denotes the best
achievable performance using these 10 hypotheses.

Module
Stanford
Parser

Domain
Adaptation Ours oracle

PPAR 56.73 57.23 77.39 97.53

Table 1: Results on our subset of ABSTRACT-50S.

4.2 Multiple-Module Results
We performed 10-fold cross-val for our results of
PASCAL-50S and PASCAL-Context-50S, with 8

1499

(a) ABSTRACT-50S (b) PASCAL-50S (c) PASCAL-Context-50S
Figure 4: (a) Validation accuracies for different values of M on ABSTRACT-50S, (b) for different values of My,Mz

on PASCAL-50S, (c) for different values of My,Mz on PASCAL-Context-50S.

PASCAL-50S PASCAL-Context-50S

Instance-Level
Jaccard Index PPAR Acc. Average

Instance-Level
Jaccard Index PPAR Acc. Average

DeepLab-CRF 66.83 - - 43.94 - -
Stanford Parser - 62.42 - - 50.75 -
Average - - 64.63 - - 47.345

Domain Adaptation - 72.08 - - 58.32 -

Ours CASCADE 67.56 75.00 71.28 43.94 63.58 53.76
Ours MEDIATOR 67.58 80.33 73.96 43.94 63.58 53.76
oracle 69.96 96.50 83.23 49.21 75.75 62.48

Table 2: Results on our subset of the PASCAL-50S and PASCAL-Context-50S datasets. We are able to significantly
outperform the Stanford Parser and make small improvements over DeepLab-CRF for PASCAL-50S.

train folds, 1 val fold, and 1 test fold, where
the val fold was used to pick My, Mz, and C. Fig-
ure 4 shows the average combined accuracy on val,
which was found to be maximal atMy = 5,Mz = 3
for PASCAL-50S, and My = 1,Mz = 10 for
PASCAL-Context-50S, which are used at test time.

We present our results in Table 2. Our
approach significantly outperforms the Stanford
Parser (De Marneffe et al., 2006) by 17.91%
(28.69% relative) for PASCAL-50S, and 12.83%
(25.28% relative) for PASCAL-Context-50S. We
also make small improvements over DeepLab-
CRF (Chen et al., 2015) in the case of PASCAL-50S.
To measure statistical significance of our results, we
performed paired t-tests between MEDIATOR and
INDEP. For both modules (and average), the null
hypothesis (that the accuracies of our approach and
baseline come from the same distribution) can be
successfully rejected at p-value 0.05. For sake of
completeness, we also compared MEDIATOR with
our ablated system (CASCADE) and found statisti-
cally significant differences only in PPAR.

These results demonstrate a need for each mod-
ule to produce a diverse set of plausible hypothe-
ses for our MEDIATOR model to reason about. In
the case of PASCAL-Context-50S, MEDIATOR per-
forms identical to CASCADE since My is chosen
as 1 (which is the CASCADE setting) in cross-
validation. Recall that MEDIATOR is a larger model
class than CASCADE (in fact, CASCADE is a special
case of MEDIATOR with My = 1). It is interesting
to see that the large model class does not hurt, and
MEDIATOR gracefully reduces to a smaller capac-
ity model (CASCADE) if the amount of data is not
enough to warrant the extra capacity. We hypothe-
size that in the presence of more training data, cross-
validation may pick a different setting of My and
Mz, resulting in full utilization of the model capac-
ity. Also note that our domain adaptation baseline
achieved an accuracy higher than MAP/Stanford-
Parser, but significantly lower than our approach for
both PASCAL-50S and PASCAL-Context-50S. We
also performed this for our single-module experi-
ment and picked Mz (=10) with cross-validation,

1500

on by with

Figure 5: Visualizations for
3 different prepositions (red =
high scores, blue = low scores).
We can see that our model
has implicitly learned spatial ar-
rangements unlike other spatial
relation learning (SRL) works.

PASCAL-50S PASCAL-Context-50S

Feature set
Instance-Level
Jaccard Index PPAR Acc. PPAR Acc.

All features 67.58 80.33 63.58
Drop all consistency 66.96 66.67 61.47
Drop Euclidean distance 67.27 77.33 63.77
Drop directional distance 67.12 78.67 63.63
Drop word2vec 67.58 78.33 62.72
Drop category presence 67.48 79.25 61.19

Table 3: Ablation study of different feature combinations. Only PPAR Acc. is
shown for PASCAL-Context-50S because My = 1.

which resulted in an accuracy of 57.23%. Again,
this is higher than MAP/Stanford-Parser (56.73%),
but significantly lower than our approach (77.39%).
Clearly, domain adaptation alone is not sufficient.
We also see that oracle performance is fairly high,
suggesting that when there is ambiguity and room
for improvement, MEDIATOR is able to rerank ef-
fectively.

Ablation Study for Features. Table 3 displays
results of an ablation study on PASCAL-50S and
PASCAL-Context-50S to show the importance of
the different features. In each row, we retain the
module score features and drop a single set of con-
sistency features. We can see all consistency fea-
tures contribute to the performance of MEDIATOR.

Visualizing Prepositions. Figure 5 shows a vi-
sualization for what our MEDIATOR model has im-
plicitly learned about 3 prepositions (“on”, “by”,
“with”). These visualizations show the score ob-
tained by taking the dot product of distance fea-
tures (Euclidean and directional) between object1
and object2 connected by the preposition with the
corresponding learned weights of the model, consid-
ering object2 to be at the center of the visualization.
Notice that these were learned without explicit train-
ing for spatial learning as in spatial relation learning
(SRL) works (Malinowski and Fritz, 2014, Lan et
al., 2012). These were simply recovered as an in-
termediate step towards reranking SS + PPAR hy-
potheses. Also note that SRL cannot handle multi-
ple segmentation hypotheses, which our work shows
are important (Table 2 CASCADE). In addition, our
approach is more general.

5 Discussions and Conclusion

We presented an approach to the simultaneous rea-
soning about prepositional phrase attachment res-

olution of captions and semantic segmentation in
images that integrates beliefs across the modules
to pick the best pair of a diverse set of hypothe-
ses. Our full model (MEDIATOR) significantly
improves the accuracy of PPAR over the Stan-
ford Parser by 17.91% for PASCAL-50S and by
12.83% for PASCAL-Context-50S, and achieves
a small improvement on semantic segmentation
over DeepLab-CRF for PASCAL-50S. These results
demonstrate a need for information exchange be-
tween the modules, as well as a need for a diverse set
of hypotheses to concisely capture the uncertainties
of each module. Large gains in PPAR validate our
intuition that vision is very helpful for dealing with
ambiguity in language. Furthermore, we see even
larger gains are possible from the oracle accuracies.

While we have demonstrated our approach on
a task involving simultaneous reasoning about lan-
guage and vision, our approach is general and can
be used for other applications. Overall, we hope our
approach will be useful in a number of settings.

Acknowledgements
We thank Larry Zitnick, Mohit Bansal, Kevin Gim-
pel, and Devi Parikh for helpful discussions, sugges-
tions, and feedback included in this work. A major-
ity of this work was done while AL was an intern
at Virginia Tech. This work was partially supported
by a National Science Foundation CAREER award,
an Army Research Office YIP Award, an Office of
Naval Research grant N00014-14-1-0679, and GPU
donations by NVIDIA, all awarded to DB. GC was
supported by DTRA grant HDTRA1-13-1-0015 pro-
vided by KK. The views and conclusions contained
herein are those of the authors and should not be in-
terpreted as necessarily representing official policies
or endorsements, either expressed or implied, of the
U.S. Government or any sponsor.

1501

References
Faruk Ahmed, Dany Tarlow, and Dhruv Batra. 2015.

Optimizing Expected Intersection-over-Union with
Candidate-Constrained CRFs. In ICCV.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick, and
Devi Parikh. 2015. VQA: Visual Question Answer-
ing. In ICCV.

Kent Bach. 2016. Routledge encyclopedia of phi-
losophy entry. http://online.sfsu.edu/
kbach/ambguity.html.

Kobus Barnard and Matthew Johnson. 2005. Word Sense
Disambiguation with Pictures. Artificial Intelligence,
167.

Dhruv Batra, Payman Yadollahpour, Abner Guzman-
Rivera, and Gregory Shakhnarovich. 2012. Di-
verse M-Best Solutions in Markov Random Fields. In
ECCV.

Dhruv Batra. 2012. An Efficient Message-Passing Algo-
rithm for the M-Best MAP Problem. In UAI.

Yevgeni Berzak, Andrei Barbu, Daniel Harari, Boris
Katz, and Shimon Ullman. 2015. Do You See What
I Mean? Visual Resolution of Linguistic Ambiguities.
In EMNLP.

Liang-Chieh Chen, George Papandreou, Iasonas Kokki-
nos, Kevin Murphy, and Alan L Yuille. 2015. Seman-
tic Image Segmentation with Deep Convolutional Nets
and Fully Connected CRFs. In ICLR.

Ernest Davis. 2016. Notes on ambiguity.
http://cs.nyu.edu/faculty/davise/
ai/ambiguity.html.

Marie-Catherine De Marneffe, Bill MacCartney, and
Christopher D Manning. 2006. Generating Typed
Dependency Parses from Phrase Structure Parses. In
LREC.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. 2010. The Pascal Visual Object
Classes (VOC) Challenge. IJCV, 88(2).

Hao Fang, Saurabh Gupta, Forrest N. Iandola, Ru-
pesh Srivastava, Li Deng, Piotr Dollár, Jianfeng
Gao, Xiaodong He, Margaret Mitchell, John C. Platt,
C. Lawrence Zitnick, and Geoffrey Zweig. 2015.
From Captions to Visual Concepts and Back. In
CVPR.

Sanja Fidler, Abhishek Sharma, and Raquel Urtasun.
2013. A Sentence is Worth a Thousand Pixels. In
CVPR.

Spandana Gella, Mirella Lapata, and Frank Keller. 2016.
Unsupervised Visual Sense Disambiguation for Verbs
using Multimodal Embeddings. In NAACL HLT.

Donald Geman, Stuart Geman, Neil Hallonquist, and
Laurent Younes. 2014. A Visual Turing Test for Com-
puter Vision Systems. In PNAS.

K. Gimpel, D. Batra, C. Dyer, and G. Shakhnarovich.
2013. A Systematic Exploration of Diversity in Ma-
chine Translation. In EMNLP.

Abner Guzman-Rivera, Pushmeet Kohli, and Dhruv Ba-
tra. 2013. DivMCuts: Faster Training of Structural
SVMs with Diverse M-Best Cutting-Planes. In AIS-
TATS.

Geremy Heitz, Stephen Gould, Ashutosh Saxena, and
Daphne Koller. 2008. Cascaded Classification Mod-
els: Combining Models for Holistic Scene Under-
standing. In NIPS.

Liang Huang and David Chiang. 2005. Better k-best
Parsing. In IWPT, pages 53–64.

Jörg H. Kappes, Bjoern Andres, Fred A. Hamprecht,
Christoph Schnörr, Sebastian Nowozin, Dhruv Batra,
Sungwoong Kim, Bernhard X. Kausler, Jan Lellmann,
Nikos Komodakis, and Carsten Rother. 2013. A Com-
parative Study of Modern Inference Techniques for
Discrete Energy Minimization Problems. In CVPR.

Chen Kong, Dahua Lin, Mohit Bansal, Raquel Urtasun,
and Sanja Fidler. 2014. What are you talking about?
Text-to-Image Coreference. In CVPR.

Tian Lan, Weilong Yang, Yang Wang, and Greg Mori.
2012. Image Retrieval with Structured Object Queries
Using Latent Ranking SVM. In ECCV.

Mateusz Malinowski and Mario Fritz. 2014. A
pooling approach to modelling spatial relations for
image retrieval and annotation. arXiv preprint
arXiv:1411.5190.

Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz.
2015. Ask Your Neurons: A Neural-based Approach
to Answering Questions about Images. In ICCV.

Talya Meltzer, Chen Yanover, and Yair Weiss. 2005.
Globally Optimal Solutions for Energy Minimization
in Stereo Vision Using Reweighted Belief Propaga-
tion. In ICCV.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. In ICLR.

Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu
Cho, Seong-Whan Lee, Sanja Fidler, Raquel Urtasun,
and Alan Yuille. 2014. The Role of Context for Object
Detection and Semantic Segmentation in the Wild. In
CVPR.

Massimo Poesio and Ron Artstein. 2005. Annotating
(Anaphoric) ambiguity. In Corpus Linguistics Confer-
ence.

Adarsh Prasad, Stefanie Jegelka, and Dhruv Batra. 2014.
Submodular meets Structured: Finding Diverse Sub-
sets in Exponentially-Large Structured Item Sets. In
NIPS.

Vittal Premachandran, Daniel Tarlow, and Dhruv Batra.
2014. Empirical Minimum Bayes Risk Prediction:

1502

How to extract an extra few% performance from vision
models with just three more parameters. In CVPR.

Cyrus Rashtchian, Peter Young, Micah Hodosh, and Julia
Hockenmaier. 2010. Collecting Image Annotations
Using Amazon’s Mechanical Turk. In NAACL HLT
Workshop on Creating Speech and Language Data
with Amazon’s Mechanical Turk.

Adwait Ratnaparkhi, Jeff Reynar, and Salim Roukos.
1994. A Maximum Entropy Model for Prepositional
Phrase Attachment. In Proceedings of the workshop
on Human Language Technology. ACL.

Qing Sun, Ankit Laddha, and Dhruv Batra. 2015. Ac-
tive Learning for Structured Probabilistic Models With
Histogram Approximation. In CVPR.

Richard Szeliski, Ramin Zabih, Daniel Scharstein, Olga
Veksler, Vladimir Kolmogorov, Aseem Agarwala,
Marshall Tappen, and Carsten Rother. 2008. A Com-
parative Study of Energy Minimization Methods for
Markov Random Fields with Smoothness-Based Pri-
ors. PAMI, 30(6).

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi
Parikh. 2014. CIDEr: Consensus-based Image De-
scription Evaluation. In CVPR.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. 2015. Show and Tell: A Neural Image
Caption Generator. In CVPR.

Payman Yadollahpour, Dhruv Batra, and Greg
Shakhnarovich. 2013. Discriminative Re-ranking of
Diverse Segmentations. In CVPR.

Mark Yatskar, Michel Galley, Lucy Vanderwende, and
Luke Zettlemoyer. 2014. See No Evil, Say No Evil:
Description Generation from Densely Labeled Images.
In Lexical and Computational Semantics.

Licheng Yu, Eunbyung Park, Alexander C. Berg, and
Tamara L. Berg. 2015. Visual Madlibs: Fill in the
Blank Description Generation and Question Answer-
ing. In ICCV.

1503

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1504–1515,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

CHARAGRAM: Embedding Words and Sentences via Character n-grams

John Wieting Mohit Bansal Kevin Gimpel Karen Livescu
Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA
{jwieting,mbansal,kgimpel,klivescu}@ttic.edu

Abstract

We present CHARAGRAM embeddings, a sim-
ple approach for learning character-based
compositional models to embed textual se-
quences. A word or sentence is represented
using a character n-gram count vector, fol-
lowed by a single nonlinear transformation
to yield a low-dimensional embedding. We
use three tasks for evaluation: word simi-
larity, sentence similarity, and part-of-speech
tagging. We demonstrate that CHARAGRAM
embeddings outperform more complex archi-
tectures based on character-level recurrent and
convolutional neural networks, achieving new
state-of-the-art performance on several simi-
larity tasks.1

1 Introduction

Representing textual sequences such as words and
sentences is a fundamental component of natural
language understanding systems. Many functional
architectures have been proposed to model compo-
sitionality in word sequences, ranging from sim-
ple averaging (Mitchell and Lapata, 2010; Iyyer et
al., 2015) to functions with rich recursive struc-
ture (Socher et al., 2011; Zhu et al., 2015; Tai et
al., 2015; Bowman et al., 2016). Most work uses
words as the smallest units in the compositional ar-
chitecture, often using pretrained word embeddings
or learning them specifically for the task of inter-
est (Tai et al., 2015; He et al., 2015).

Some prior work has found benefit from using
character-based compositional models that encode

1Trained models and code are available at http://ttic.
uchicago.edu/˜wieting.

arbitrary character sequences into vectors. Exam-
ples include recurrent neural networks (RNNs) and
convolutional neural networks (CNNs) on character
sequences, showing improvements for several NLP
tasks (Ling et al., 2015a; Kim et al., 2015; Balles-
teros et al., 2015; dos Santos and Guimarães, 2015).
By sharing subword information across words, char-
acter models have the potential to better represent
rare words and morphological variants.

Our approach, CHARAGRAM, uses a much sim-
pler functional architecture. We represent a charac-
ter sequence by a vector containing counts of char-
acter n-grams, inspired by Huang et al. (2013). This
vector is embedded into a low-dimensional space
using a single nonlinear transformation. This can
be interpreted as learning embeddings of character
n-grams, which are learned so as to produce effec-
tive sequence embeddings when a summation is per-
formed over the character n-grams in the sequence.

We consider three evaluations: word similar-
ity, sentence similarity, and part-of-speech tagging.
On multiple word similarity datasets, CHARAGRAM

outperforms RNNs and CNNs, achieving state-of-
the-art performance on SimLex-999 (Hill et al.,
2015). When evaluated on a large suite of sentence-
level semantic textual similarity tasks, CHARA-
GRAM embeddings again outperform the RNN and
CNN architectures as well as the PARAGRAM-
PHRASE embeddings of Wieting et al. (2016). We
also consider English part-of-speech (POS) tagging
using the bidirectional long short-term memory tag-
ger of Ling et al. (2015a). The three architectures
reach similar performance, though CHARAGRAM

converges fastest to high accuracy.

1504

We perform extensive analysis of our CHARA-
GRAM embeddings. We find large gains in perfor-
mance on rare words, showing the empirical ben-
efit of subword modeling. We also compare per-
formance across different character n-gram vocabu-
lary sizes, finding that the semantic tasks benefit far
more from large vocabularies than the syntactic task.
However, even for challenging semantic similarity
tasks, we still see strong performance with only a
few thousand character n-grams.

Nearest neighbors show that CHARAGRAM em-
beddings simultaneously address differences due to
spelling variation, morphology, and word choice.
Inspection of embeddings of particular character n-
grams reveals etymological links; e.g., die is close
to mort. We release our resources to the community
in the hope that CHARAGRAM can provide a strong
baseline for subword-aware text representation.

2 Related Work

We first review work on using subword informa-
tion in word embedding models. The simplest ap-
proaches append subword features to word embed-
dings, letting the model learn how to use the sub-
word information for particular tasks. Some added
knowledge-based morphological features to word
representations (Alexandrescu and Kirchhoff, 2006;
El-Desoky Mousa et al., 2013). Others learned em-
beddings jointly for subword units and words, defin-
ing simple compositional architectures (often based
on addition) to create word embeddings from sub-
word embeddings (Lazaridou et al., 2013; Botha and
Blunsom, 2014; Qiu et al., 2014; Chen et al., 2015).

A recent trend is to use richer functional archi-
tectures to convert character sequences into word
embeddings. Luong et al. (2013) used recur-
sive models to compose morphs into word embed-
dings, using unsupervised morphological analysis.
Ling et al. (2015a) used a bidirectional long short-
term memory (LSTM) RNN on characters to em-
bed arbitrary word types, showing strong perfor-
mance for language modeling and POS tagging.
Ballesteros et al. (2015) used this model to repre-
sent words for dependency parsing. Several have
used character-level RNN architectures for machine
translation, whether for representing source or tar-
get words (Ling et al., 2015b; Luong and Man-

ning, 2016), or for generating entire translations
character-by-character (Chung et al., 2016).

Sutskever et al. (2011) and Graves (2013) used
character-level RNNs for language modeling. Oth-
ers trained character-level RNN language models to
provide features for NLP tasks, including tokeniza-
tion and segmentation (Chrupała, 2013; Evang et al.,
2013), and text normalization (Chrupała, 2014).

CNNs with character n-gram filters have been
used to embed arbitrary word types for several tasks,
including language modeling (Kim et al., 2015),
part-of-speech tagging (dos Santos and Zadrozny,
2014), named entity recognition (dos Santos and
Guimarães, 2015), text classification (Zhang et
al., 2015), and machine translation (Costa-Jussà
and Fonollosa, 2016). Combinations of CNNs
and RNNs on characters have also been ex-
plored (Józefowicz et al., 2016).

Most closely-related to our approach is the DSSM
(instantiated variously as “deep semantic similarity
model” or “deep structured semantic model”) de-
veloped by Huang et al. (2013). For an informa-
tion retrieval task, they represented words using fea-
ture vectors containing counts of character n-grams.
Sperr et al. (2013) used a very similar technique to
represent words in neural language models for ma-
chine translation. Our CHARAGRAM embeddings
are based on this same idea. We show this strategy
to be extremely effective when applied to both words
and sentences, outperforming character LSTMs like
those used by Ling et al. (2015a) and character
CNNs like those from Kim et al. (2015).

3 Models

We now describe models that embed textual
sequences using their characters, including our
CHARAGRAM model and the baselines that we com-
pare to. We denote a character-based textual se-
quence by x = 〈x1, x2, ..., xm〉, which includes
space characters between words as well as spe-
cial start-of-sequence and end-of-sequence charac-
ters. We use xji to denote the subsequence of char-
acters from position i to position j inclusive, i.e.,
xji = 〈xi, xi+1, ..., xj〉, and we define xii = xi.

Our CHARAGRAM model embeds a character se-
quence x by adding the vectors of its character n-

1505

grams followed by an elementwise nonlinearity:

gCHAR(x) = h

b+

m+1∑

i=1

i∑

j=1+i−k
I
[
xij ∈ V

]
W xi

j

(1)
where h is a nonlinear function, b ∈ Rd is a bias
vector, k is the maximum length of any character n-
gram, I[p] is an indicator function that returns 1 if p
is true and 0 otherwise, V is the set of character n-
grams included in the model, and W xi

j ∈ Rd is the
vector for character n-gram xij .

The set V is used to restrict the model to a prede-
termined set (vocabulary) of character n-grams. Be-
low, we compare several choices for V . The num-
ber of parameters in the model is d + d|V |. This
model is based on the letter n-gram hashing tech-
nique developed by Huang et al. (2013). One can
also view Eq. (1) (as they did) as first populating
a vector of length |V | with counts of character n-
grams followed by a nonlinear transformation.

We compare the CHARAGRAM model to two
other models. First we consider LSTM architec-
tures (Hochreiter and Schmidhuber, 1997) over the
character sequence x, using the version from Gers et
al. (2003). We use a forward LSTM over the char-
acters in x, then take the final LSTM hidden vector
as the representation of x. Below we refer to this
model as “charLSTM.”

We also compare to convolutional neural net-
work (CNN) architectures, which we refer to below
as “charCNN.” We use the architecture from Kim
(2014) with a single convolutional layer followed by
an optional fully-connected layer. We use filters of
varying lengths of character n-grams, using two pri-
mary configurations of filter sets, one of which is
identical to that used by Kim et al. (2015). Each
filter operates over the entire sequence of character
n-grams in x and we use max pooling for each fil-
ter. We tune over the choice of nonlinearity for both
the convolutional filters and for the optional fully-
connected layer. We give more details below about
filter sets, n-gram lengths, and nonlinearities.

We note that using character n-gram convolu-
tional filters is similar to our use of character n-
grams in the CHARAGRAM model. The difference
is that, in the CHARAGRAM model, the n-gram must
match exactly for its vector to affect the representa-

tion, while in the CNN each filter will affect the rep-
resentation of all sequences (depending on the non-
linearity being used). So the CHARAGRAM model is
able to learn precise vectors for particular character
n-grams with specific meanings, while there is pres-
sure for the CNN filters to capture multiple similar
patterns that recur in the data. Our qualitative analy-
sis shows the specificity of the learned character n-
gram vectors learned by the CHARAGRAM model.

4 Experiments

We perform three sets of experiments. The goal of
the first two (Section 4.1) is to produce embeddings
for textual sequences such that the embeddings for
paraphrases have high cosine similarity. Our third
evaluation (Section 4.2) is a classification task, and
follows the setup of the English part-of-speech tag-
ging experiment from Ling et al. (2015a).

4.1 Word and Sentence Similarity
We compare the ability of our models to capture se-
mantic similarity for both words and sentences. We
train on noisy paraphrase pairs from the Paraphrase
Database (PPDB; Ganitkevitch et al., 2013) with an
L2 regularized contrastive loss objective function,
following the training procedure of Wieting et al.
(2015) and Wieting et al. (2016). More details are
provided in the supplementary material.

4.1.1 Datasets
For word similarity, we focus on two of the

most commonly used datasets for evaluating seman-
tic similarity of word embeddings: WordSim-353
(WS353) (Finkelstein et al., 2001) and SimLex-999
(SL999) (Hill et al., 2015). We also evaluate our best
model on the Stanford Rare Word Similarity Dataset
(Luong et al., 2013).

For sentence similarity, we evaluate on a diverse
set of 22 textual similarity datasets, including all
datasets from every SemEval semantic textual simi-
larity (STS) task from 2012 to 2015. We also eval-
uate on the SemEval 2015 Twitter task (Xu et al.,
2015) and the SemEval 2014 SICK Semantic Relat-
edness task (Marelli et al., 2014). Given two sen-
tences, the aim of the STS tasks is to predict their
similarity on a 0-5 scale, where 0 indicates the sen-
tences are on different topics and 5 indicates that
they are completely equivalent.

1506

Each STS task consists of 4-6 datasets cover-
ing a wide variety of domains, including newswire,
tweets, glosses, machine translation outputs, web
forums, news headlines, image and video captions,
among others. Most submissions for these tasks use
supervised models that are trained and tuned on pro-
vided training data or similar datasets from older
tasks. Further details are provided in the official task
descriptions (Agirre et al., 2012; Agirre et al., 2013;
Agirre et al., 2014; Agirre et al., 2015).

4.1.2 Preliminaries
For training data, we use pairs from PPDB. For

word similarity experiments, we train on word pairs
and for sentence similarity, we train on phrase pairs.
PPDB comes in different sizes (S, M, L, XL, XXL,
and XXXL), where each larger size subsumes all
smaller ones. The pairs in PPDB are sorted by a
confidence measure and so the smaller sets contain
higher precision paraphrases. PPDB is derived au-
tomatically from naturally-occurring bilingual text,
and versions of PPDB have been released for many
languages without the need for any manual annota-
tion (Ganitkevitch and Callison-Burch, 2014).

Before training the CHARAGRAM model, we need
to populate V , the vocabulary of character n-grams
included in the model. We obtain these from the
training data used for the final models in each set-
ting, which is either the lexical or phrasal section of
PPDB XXL. We tune over whether to include the
full sets of character n-grams in these datasets or
only those that appear more than once.

When extracting n-grams, we include spaces and
add an extra space before and after each word or
phrase in the training and evaluation data to ensure
that the beginning and end of each word is repre-
sented. We note that strong performance can be ob-
tained using far fewer character n-grams; we explore
the effects of varying the number of n-grams and the
n-gram orders in Section 4.4.

We used Adam (Kingma and Ba, 2014) with a
learning rate of 0.001 to learn the parameters in the
following experiments.

4.1.3 Word Embedding Experiments
Training and Tuning For hyperparameter tuning,
we used one epoch on the lexical section of PPDB
XXL, which consists of 770,007 word pairs. We

Model Tuned on WS353 SL999

charCNN SL999 26.31 30.64
WS353 33.19 16.73

charLSTM SL999 48.27 54.54
WS353 51.43 48.83

CHARAGRAM
SL999 53.87 63.33
WS353 58.35 60.00

inter-annotator agreement - 75.6 78

Table 1: Word similarity results (Spearman’s ρ × 100). The

inter-annotator agreement is the average Spearman’s ρ between

a single annotator and the average of all others.

used either WS353 or SL999 for model selection
(reported below). We then took the selected hyper-
parameters and trained for 50 epochs to ensure that
all models had a chance to converge.

Full details of our tuning procedure are provided
in the supplementary material. In short, we tuned all
models thoroughly, tuning the activation functions
for CHARAGRAM and charCNN, as well as the reg-
ularization strength, mini-batch size, and sampling
type for all models. For charCNN, we experimented
with two filter sets: one uses 175 filters for each n-
gram size ∈ {2, 3, 4}, and the other uses the set of
filters from Kim et al. (2015), consisting of 25 filters
of size 1, 50 of size 2, 75 of size 3, 100 of size 4, 125
of size 5, and 150 of size 6. We also experimented
with using dropout (Srivastava et al., 2014) on the
inputs to the final layer of charCNN in place of L2

regularization, as well as removing the last feedfor-
ward layer. Neither variation significantly improved
performance on our suite of tasks for word or sen-
tence similarity. However, using more filters does
improve performance, apparently linearly with the
square of the number of filters.

Architecture Comparison The results are shown
in Table 1. The CHARAGRAM model outperforms
both the charLSTM and charCNN models, and also
outperforms recent strong results on SL999.

We also found that the charCNN and charLSTM
models take far more epochs to converge than the
CHARAGRAM model. We noted this trend across ex-
periments and explore it further in Section 4.3.

Comparison to Prior Work We found that per-
formance of CHARAGRAM on word similarity tasks
can be improved by using more character n-grams.
This is explored in Section 4.4. Our best result from
these experiments was obtained with the largest

1507

Model SL999
Hill et al. (2014) 52
Schwartz et al. (2015) 56
Faruqui and Dyer (2015) 58
Wieting et al. (2015) 66.7
CHARAGRAM (large) 70.6

Table 2: Spearman’s ρ× 100 on SL999. CHARAGRAM (large)

refers to the CHARAGRAM model described in Section 4.4.

This model contains 173,881 character n-grams, more than the

100,283 in the CHARAGRAM model used in Table 1.

model we considered, which contains 173,881 n-
gram embeddings. When using WS353 for model
selection and training for 25 epochs, this model
achieves 70.6 on SL999. To our knowledge, this is
the best result reported on SL999 in this setting; Ta-
ble 2 shows comparable recent results. Note that a
higher SL999 number is reported by Mrkšić et al.
(2016), but the setting is not comparable to ours as
they started with embeddings tuned on SL999.

Lastly, we evaluated our model on the Stanford
Rare Word Similarity Dataset (Luong et al., 2013),
using SL999 for model selection. We obtained a
Spearman’s ρ of 47.1, which outperforms the 41.8
result from Soricut and Och (2015) and is compet-
itive with the 47.8 reported by Pennington et al.
(2014), which used a 42B-token corpus for training.

4.1.4 Sentence Embedding Experiments

Training and Tuning We did initial training of
our models using one pass through PPDB XL, which
consists of 3,033,753 unique phrase pairs. Follow-
ing Wieting et al. (2016), we use the annotated
phrase pairs developed by Pavlick et al. (2015) as
our validation set, using Spearman’s ρ to rank the
models. We then take the highest performing mod-
els and train on the 9,123,575 unique phrase pairs in
the phrasal section of PPDB XXL for 10 epochs.

For all experiments, we fix the mini-batch size
to 100, the margin δ to 0.4, and use MAX sam-
pling (see supplementary material). For CHARA-
GRAM, V contains all 122,610 character n-grams
(n ∈ {2, 3, 4}) in the PPDB XXL phrasal section.
Other tuning settings are the same as Section 4.1.3.

For another baseline, we train the PARAGRAM-
PHRASE model of Wieting et al. (2016),
tuning its regularization strength over
{10−5, 10−6, 10−7, 10−8}. The PARAGRAM-
PHRASE model simply uses word averaging as its

composition function, but outperforms many more
complex models.

In this section, we refer to our model as
CHARAGRAM-PHRASE because the input is a char-
acter sequence containing multiple words rather
than only a single word as in Section 4.1.3. Since
the vocabulary V is defined by the training data se-
quences, the CHARAGRAM-PHRASE model includes
character n-grams that span multiple words, per-
mitting it to capture some aspects of word order
and word co-occurrence, which the PARAGRAM-
PHRASE model is unable to do.

We encountered difficulties training the char-
LSTM and charCNN models for this task. We
tried several strategies to improve their chance at
convergence, including clipping gradients, increas-
ing training data, and experimenting with different
optimizers and learning rates. We found success
by using the original (confidence-based) ordering
of the PPDB phrase pairs for the initial epoch of
learning, then shuffling them for subsequent epochs.
This is similar to curriculum learning (Bengio et al.,
2009). The higher-confidence phrase pairs tend to be
shorter and have many overlapping words, possibly
making them easier to learn from.

Results An abbreviated version of the sentence
similarity results is shown in Table 3; the sup-
plementary material contains the full results. For
comparison, we report performance for the median
(50%), third quartile (75%), and top-performing
(Max) systems from the shared tasks. We ob-
serve strong performance for the CHARAGRAM-
PHRASE model. It always does better than the char-
CNN and charLSTM models, and outperforms the
PARAGRAM-PHRASE model on 15 of the 22 tasks.
Furthermore, CHARAGRAM-PHRASE matches or ex-
ceeds the top-performing task-tuned systems on 5
tasks, and is within 0.003 on 2 more. The charLSTM
and charCNN models are significantly worse, with
the charCNN being the better of the two and beating
PARAGRAM-PHRASE on 4 of the tasks.

We emphasize that there are many other mod-
els that could be compared to, such as an LSTM
over word embeddings. This and many other mod-
els were explored by Wieting et al. (2016). Their
PARAGRAM-PHRASE model, which simply learns
word embeddings within an averaging composition

1508

Dataset 50% 75% Max charCNN charLSTM PARAGRAM-
PHRASE

CHARAGRAM-
PHRASE

STS 2012 Average 54.5 59.5 70.3 56.5 40.1 58.5 66.1
STS 2013 Average 45.3 51.4 65.3 47.7 30.7 57.7 57.2
STS 2014 Average 64.7 71.4 76.7 64.7 46.8 71.5 74.7
STS 2015 Average 70.2 75.8 80.2 66.0 45.5 75.7 76.1
2014 SICK 71.4 79.9 82.8 62.9 50.3 72.0 70.0
2015 Twitter 49.9 52.5 61.9 48.6 39.9 52.7 53.6
Average 59.7 65.6 73.6 59.2 41.9 66.2 68.7

Table 3: Results on SemEval textual similarity datasets (Pearson’s r× 100). The highest score in each row is in boldface (omitting

the official task score columns). The last row shows the average performance over all 22 textual similarity datasets

Model Accuracy (%)
charCNN 97.02
charLSTM 96.90
CHARAGRAM 96.99
CHARAGRAM (2-layer) 97.10

Table 4: Results on part-of-speech tagging.

function, was among their best-performing models.
We used this model in our experiments as a strongly-
performing representative of their results.

Lastly, we note other recent work that consid-
ers a similar transfer learning setting. The Fast-
Sent model (Hill et al., 2016) uses the 2014 STS
task in its evaluation and reports an average Pear-
son’s r of 61.3. On the same data, the C-PHRASE
model (Pham et al., 2015) has an average Pearson’s
r of 65.7.2 Both results are lower than the 74.7
achieved by CHARAGRAM-PHRASE on this dataset.

4.2 POS Tagging Experiments

We now consider part-of-speech (POS) tagging,
since it has been used as a testbed for evaluating ar-
chitectures for character-level word representations.
It also differs from semantic similarity, allowing us
to evaluate our architectures on a syntactic task.
We replicate the POS tagging experimental setup
of Ling et al. (2015a). Their model uses a bidirec-
tional LSTM over character embeddings to represent
words. They then use the resulting word representa-
tions in another bidirectional LSTM that predicts the
tag for each word. We replace their character bidi-
rectional LSTM with our three architectures: char-
CNN, charLSTM, and CHARAGRAM.

We use the Wall Street Journal portion of the Penn
Treebank, using Sections 1-18 for training, 19-21 for
tuning, and 22-24 for testing. We set the dimension-
ality of the character embeddings to 50 and that of

2Both the results for FastSent and C-PHRASE were com-
puted from Table 4 in (Hill et al., 2016).

the (induced) word representations to 150. For opti-
mization, we use stochastic gradient descent with a
mini-batch size of 100 sentences. The learning rate
and momentum are set to 0.2 and 0.95 respectively.
We train the models for 50 epochs, again to ensure
that all models have an opportunity to converge.

The other settings for our models are mostly the
same as for the word and sentence experiments (Sec-
tion 4.1). We again use character n-grams with
n ∈ {2, 3, 4}, tuning over whether to include all
54,893 in the training data or only those that occur
more than once. However, there are two minor dif-
ferences from the previous sections. First, we add
a single binary feature to indicate if the token con-
tains a capital letter. Second, our tuning considers
rectified linear units as the activation function for the
CHARAGRAM and charCNN architectures.3

The results are shown in Table 4. Performance
is similar across models. We found that adding a
second fully-connected 150 dimensional layer to the
CHARAGRAM model improved results slightly.4

4.3 Convergence
One observation we made during our experiments
was that different models converged at significantly
different rates. Figure 1 plots the performance of the
word similarity and tagging tasks as a function of
training epoch. For word similarity, we plot the or-
acle Spearman’s ρ on SL999, while for tagging we
plot accuracy on the tuning set. We evaluate every
quarter epoch (approximately every 194,252 word
pairs) for word similarity and every epoch for tag-

3We did not consider ReLU for the similarity experiments
because the final embeddings are used directly to compute co-
sine similarities, which led to poor performance when restrict-
ing the embeddings to be non-negative.

4We also tried adding a second (300 dimensional) layer for
the word and sentence similarity models and found it to hurt
performance.

1509

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

Epoch

Sp
ea

rm
an

’s
ρ

Word Similarity

2 4 6 8 10

0.8

0.85

0.9

0.95

1

Epoch

A
cc

ur
ac

y

POS Tagging

CHARAGRAM

charLSTM
charCNN

Figure 1: Plots of performance versus training epoch for word

similarity and POS tagging.

ging. We only show the first 10 epochs of training in
the tagging plot.

The plots show that the CHARAGRAM model con-
verges quickly to high performance. The charCNN
and charLSTM models take many more epochs to
converge. Even with tagging, which uses a very high
learning rate, CHARAGRAM converges significantly
faster than the others. For word similarity, it ap-
pears that charCNN and charLSTM are still slowly
improving at the end of 50 epochs. This suggests
the possibility that these models could eventually
surpass CHARAGRAM with more epochs. However,
due to the large training sets available from PPDB
and the computational requirements of these archi-
tectures, we were unable to explore the regime of
training for many epochs. We conjecture that slow
convergence could also be the reason for the infe-
rior performance of LSTMs for similarity tasks as
reported by Wieting et al. (2016).

4.4 Model Size Experiments
The default setting for our CHARAGRAM and
CHARAGRAM-PHRASE models is to use all charac-
ter bigram, trigrams, and 4-grams that occur in the
training data at least C times, tuning C over the set
{1, 2}. This results in a large number of param-
eters, which could be seen as an unfair advantage
over the comparatively smaller charCNN and char-
LSTM similarity models, which have up to 881,025

Task # n-grams 2 2,3 2,3,4 2,3,4,5 2,3,4,5,6

POS 100 95.52 96.09 96.15 96.13 96.16

Tagging 1,000 96.72 96.86 96.97 97.02 97.03
50,000 96.81 97.00 97.02 97.04 97.09

Word 100 6.2 7.0 7.7 9.1 8.8

Similarity 1,000 15.2 33.0 38.7 43.2 43.9
50,000 14.4 52.4 67.8 69.2 69.5

Sentence 100 40.2 33.8 32.5 31.2 29.8

Similarity 1,000 50.1 60.3 58.6 56.6 55.6
50,000 45.7 64.7 66.6 63.0 61.3

Table 5: Results of using different numbers and different com-

binations of character n-grams.

and 763,200 parameters respectively (including 134
character embeddings for each).

However, for a given sequence, very few param-
eters in the CHARAGRAM model are actually used.
For charCNN and charLSTM, by contrast, all pa-
rameters are used except character embeddings for
characters not present in the sequence. For a 100-
character sequence, the 300-dimensional CHARA-
GRAM model uses approximately 90,000 parame-
ters, about one-tenth of those used by charCNN and
charLSTM for the same sequence.

We performed a series of experiments to inves-
tigate how the CHARAGRAM and CHARAGRAM-
PHRASE models perform with different numbers and
lengths of character n-grams. For a given k, we
took the k most frequent character n-grams for each
value of n in use. We experimented with k values
in {100, 1000, 50000}. If there were fewer than k
unique character n-grams for a given n, we used all
of them. For these experiments, we did very little
tuning, setting the regularization strength to 0 and
only tuning the activation function. For word simi-
larity, we report performance on SL999 after 5 train-
ing epochs on the lexical section of PPDB XXL. For
sentence similarity, we report the average Pearson’s
r over all 22 datasets after 5 training epochs on the
phrasal section of PPDB XL. For tagging, we report
accuracy on the tuning set after 50 training epochs.

The results are shown in Table 5. When using ex-
tremely small models with only 100 n-grams of each
order, we still see relatively strong performance on
tagging. However, the similarity tasks require far
more n-grams to yield strong performance. Using
1000 n-grams clearly outperforms 100, and 50,000
n-grams performs best. We also found that models
converged more quickly on tagging than on the sim-
ilarity tasks. We suspect this is due to differences
in task complexity. In tagging, the model does not

1510

need to learn all facets of each word’s semantics; it
only needs to map a word to its syntactic categories.
Therefore, simple surface-level features like affixes
can help tremendously. However, learning repre-
sentations that reflect detailed differences in word
meaning is a more fine-grained endeavor and this is
presumably why larger models are needed and con-
vergence is slower.

5 Analysis

5.1 Quantitative Analysis

One of our primary motivations for character-based
models is to address the issue of out-of-vocabulary
(OOV) words, which were found to be one of the
main sources of error for the PARAGRAM-PHRASE

model from Wieting et al. (2016). They reported a
negative correlation (Pearson’s r of -0.45) between
OOV rate and performance. We took the 12,108 sen-
tence pairs in all 20 SemEval STS tasks and binned
them by the total number of unknown words in the
pairs.5 We computed Pearson’s r over each bin. The
results are shown in Table 6.

Number of
Unknown Words N

PARAGRAM-
PHRASE

CHARAGRAM-
PHRASE

0 11,292 71.4 73.8
1 534 68.8 78.8
2 194 66.4 72.8
≥ 1 816 68.6 77.9
≥ 0 12,108 71.0 74.0

Table 6: Performance (Pearson’s r × 100) as a function of

the number of unknown words in the sentence pairs over all

20 SemEval STS datasets. N is the number of sentence pairs.

The CHARAGRAM-PHRASE model has better per-
formance for each number of unknown words. The
PARAGRAM-PHRASE model degrades when more
unknown words are present, presumably because it
is forced to use the same unknown word embedding
for all unknown words. The CHARAGRAM-PHRASE

model has no notion of unknown words, as it can
embed any character sequence.

We next investigated the sensitivity of the two
models to length, as measured by the maximum

5Unknown words were defined as those not present in
the 1.7 million unique (case-insensitive) tokens that com-
prise the vocabulary for the GloVe embeddings available at
http://nlp.stanford.edu/projects/glove/.
The PARAGRAM-SL999 embeddings, used to initialize the
PARAGRAM-PHRASE model, use this same vocabulary.

of the lengths of the two sentences in a pair. We
binned all of the 12,108 sentence pairs in the 20
SemEval STS tasks by length and then again found
the Pearson’s r for both the PARAGRAM-PHRASE

and CHARAGRAM-PHRASE models. The results are
shown in Table 7.

Max Length N
PARAGRAM-

PHRASE
CHARAGRAM-

PHRASE

≤ 4 71 67.9 72.9
5 216 71.1 71.9
6 572 67.0 69.7
7 1,097 71.5 74.0
8 1,356 74.2 74.5
9 1,266 71.7 72.7

10 1,010 70.7 74.2
11-15 3,143 71.8 73.7
16-20 1,559 73.0 75.1
≥ 21 1,818 74.5 75.4

Table 7: Performance (Pearson’s r × 100) as a function of the

maximum number of tokens in the sentence pairs over all 20

SemEval STS datasets. N is the number of sentence pairs.

Both models are robust to sentence length, achiev-
ing the highest correlations on the longest sentences.
We also find that CHARAGRAM-PHRASE outper-
forms PARAGRAM-PHRASE at all sentence lengths.

5.2 Qualitative Analysis

Bigram CHARAGRAM-PHRASE PARAGRAM-PHRASE

not capable incapable, unable, incapacity not, capable, stalled
not able unable, incapable, incapacity not, able, stalled
not possible impossible impracticable unable not, stalled, possible
not sufficient insufficient, sufficient, inadequate not, sufficient, stalled
not easy easy, difficult, tough not, stalled, easy

Table 8: Nearest neighboring words of selected bigrams under

CHARAGRAM-PHRASE and PARAGRAM-PHRASE embeddings.

Aside from OOVs, the PARAGRAM-PHRASE

model lacks the ability to model word order or
cooccurrence, since it simply averages the words in
the sequence. We were interested to see whether
CHARAGRAM-PHRASE could handle negation, since
it does model limited information about word order
(via character n-grams that span multiple words).
We made a list of “not” bigrams that could be repre-
sented by a single word, then embedded each bigram
using both models and did a nearest-neighbor search
over a working vocabulary.6 The results, in Ta-
ble 8, show how the CHARAGRAM-PHRASE embed-
dings model negation. In all cases but one, the near-

6This has all words in PPDB-XXL, our evaluations, and two
other datasets: SST (Socher et al., 2013) and SNLI (Bowman et
al., 2015), resulting in 93,217 unique (up-to-casing) tokens.

1511

Word Nearest Neighbors
vehicals vehical, vehicles, vehicels, vehicular, cars, vehicle, automobiles, car
serious-looking serious, grave, acute, serious-minded, seriousness, gravity, serious-faced
near-impossible impossible, hard/impossible, audacious-impossible, impractical, unable
growths growth, grow, growing, increases, grows, increase, rise, growls, rising
litered liter, litering, lited, liters, literate, literature, literary, literal, lite, obliterated
journeying journey, journeys, voyage, trip, roadtrip, travel, tourney, voyages, road-trip
babyyyyyy babyyyyyyy, baby, babys, babe, baby.i, babydoll, babycake, darling
adirty dirty, dirtyyyyyy, filthy, down-and-dirty, dirtying, dirties, ugly, dirty-blonde

refunding refunds, refunded, refund, repayment, reimbursement, rebate, repay
reimbursements, reimburse, repaying, repayments, rebates, rebating, reimburses

professors professor, professorships, professorship, teachers, professorial, teacher
prof., teaches, lecturers, teachings, instructors, headteachers, teacher-student

huge enormous, tremendous, large, big, vast, overwhelming, immense, giant
formidable, considerable, massive, huger, large-scale, great, daunting

Table 9: Nearest neighbors of CHARAGRAM-PHRASE embeddings. Above the double horizontal line are nearest neighbors of

words that were not in our training data, and below it are nearest neighbors of words that were in our training data.

est neighbor is a paraphrase for the bigram and the
next neighbors are mostly paraphrases as well. The
PARAGRAM-PHRASE model, unsurprisingly, is inca-
pable of modeling negation. In all cases, the nearest
neighbor is not, as it carries much more weight than
the word it modifies. The remaining nearest neigh-
bors are either the modified word or stalled.

We did two additional nearest neighbor ex-
plorations with our CHARAGRAM-PHRASE model.
First, we collected nearest neighbors for words that
were not in the training data (i.e., PPDB XXL), but
were in our working vocabulary. These are shown
in the upper part of Table 9. In the second, we col-
lected nearest neighbors of words that were in our
training data, shown in the lower part of Table 9.

Several kinds of similarity are being captured si-
multaneously. One kind is similarity in terms of
spelling variation, including misspellings (vehicals,
vehicels) and repetition for emphasis (babyyyyyyy).
Another kind is similarity in terms of morpholog-
ical variants of a shared root (e.g., journeying and
journey). We also find many synonym relationships
without significant amounts of overlapping charac-
ters (e.g., vehicles, cars, automobiles). Words in
the training data, which tend to be more commonly
used, do tend to have higher precision in their near-
est neighbors (e.g., neighbors of huge). We see oc-
casional mistakes for words that share many char-
acters but are not paraphrases (e.g., litered, a likely
misspelling of littered).

Lastly, since our model learns embeddings for
character n-grams, we show an analysis of charac-
ter n-gram nearest neighbors in Table 10. They ap-
pear to be grouped into themes, such as death (row

n-gram Nearest Neighbors
die dy, die, dead, dyi, rlif, mort, ecea, rpse, d aw
foo foo, eat, meal, alim, trit, feed, grai, din, nutr, toe
pee peed, hast, spee, fast, mpo , pace, vel, loci, ccel
aiv waiv, aive, boli, epea, ncel, abol, lift, bort, bol
ngu ngue, uist, ongu, tong, abic, gual, fren, ocab, ingu
2 2 , 02, 02 , tw, dua, xx, ii , xx, o 14, d .2

Table 10: Nearest neighbors of character n-gram embeddings

from trained CHARAGRAM-PHRASE model. The underscore in-

dicates a space, which signals the beginning or end of a word.

1), food (row 2), and speed (row 3), but have differ-
ent granularities. The n-grams in the last row appear
in paraphrases of 2, whereas the second-to-last row
shows n-grams in words related to language.

6 Conclusion
We performed a careful empirical comparison of
character-based compositional architectures on three
NLP tasks. We found a consistent trend: the sim-
plest architecture converges fastest to high perfor-
mance. These results, coupled with those from
Wieting et al. (2016), suggest that practitioners
should begin with simple architectures rather than
moving immediately to RNNs and CNNs. We re-
lease our code and trained models so they can be
used by the NLP community for general-purpose,
character-based text representation.

Acknowledgments
We thank the anonymous reviewers for their valu-
able comments. This research used resources of the
Argonne Leadership Computing Facility, which is a
DOE Office of Science User Facility supported un-
der Contract DE-AC02-06CH11357. We thank the
developers of Theano (Theano Development Team,
2016) and NVIDIA Corporation for donating GPUs
used in this research.

1512

References
Eneko Agirre, Mona Diab, Daniel Cer, and Aitor

Gonzalez-Agirre. 2012. SemEval-2012 task 6: A
pilot on semantic textual similarity. In Proceedings
of the First Joint Conference on Lexical and Com-
putational Semantics-Volume 1: Proceedings of the
main conference and the shared task, and Volume 2:
Proceedings of the Sixth International Workshop on
Semantic Evaluation. Association for Computational
Linguistics.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *SEM 2013 shared
task: Semantic textual similarity. In Second Joint
Conference on Lexical and Computational Semantics
(*SEM), Volume 1: Proceedings of the Main Confer-
ence and the Shared Task: Semantic Textual Similarity.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Rada Mihalcea, German Rigau, and Janyce Wiebe.
2014. SemEval-2014 task 10: Multilingual seman-
tic textual similarity. In Proceedings of the 8th Inter-
national Workshop on Semantic Evaluation (SemEval
2014).

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Inigo Lopez-Gazpio, Montse Maritxalar, Rada Mihal-
cea, German Rigau, Larraitz Uria, and Janyce Wiebe.
2015. SemEval-2015 task 2: Semantic textual similar-
ity, English, Spanish and pilot on interpretability. In
Proceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015).

Andrei Alexandrescu and Katrin Kirchhoff. 2006. Fac-
tored neural language models. In Proceedings of
the Human Language Technology Conference of the
NAACL, Companion Volume: Short Papers.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by modeling
characters instead of words with LSTMs. In Proceed-
ings of the 2015 Conference on Empirical Methods in
Natural Language Processing.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and
Jason Weston. 2009. Curriculum learning. In Pro-
ceedings of the 26th annual international conference
on machine learning.

Jan A. Botha and Phil Blunsom. 2014. Compositional
morphology for word representations and language
modelling. In Proceedings of the 31st International
Conference on Machine Learning (ICML-14).

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and D. Christopher Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing.

Samuel R. Bowman, Jon Gauthier, Abhinav Rastogi,
Raghav Gupta, Christopher D. Manning, and Christo-
pher Potts. 2016. A fast unified model for parsing and
sentence understanding. In Proceedings of ACL.

Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun, and
Huanbo Luan. 2015. Joint learning of character and
word embeddings. In Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI).

Grzegorz Chrupała. 2013. Text segmentation with
character-level text embeddings. arXiv preprint
arXiv:1309.4628.

Grzegorz Chrupała. 2014. Normalizing tweets with edit
scripts and recurrent neural embeddings. In Proceed-
ings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers).

Junyoung Chung, Kyunghyun Cho, and Yoshua Ben-
gio. 2016. A character-level decoder without explicit
segmentation for neural machine translation. arXiv
preprint arXiv:1603.06147.

Marta R. Costa-Jussà and José A. R. Fonollosa. 2016.
Character-based neural machine translation. arXiv
preprint arXiv:1603.00810.

Cicero dos Santos and Victor Guimarães. 2015. Boost-
ing named entity recognition with neural character em-
beddings. In Proceedings of the Fifth Named Entity
Workshop.

Cicero dos Santos and Bianca Zadrozny. 2014. Learn-
ing character-level representations for part-of-speech
tagging. In Proceedings of the 31st International Con-
ference on Machine Learning (ICML-14).

Amr El-Desoky Mousa, Hong-Kwang Jeff Kuo, Lidia
Mangu, and Hagen Soltau. 2013. Morpheme-based
feature-rich language models using deep neural net-
works for LVCSR of Egyptian Arabic. In 2013 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE.

Kilian Evang, Valerio Basile, Grzegorz Chrupała, and
Johan Bos. 2013. Elephant: Sequence labeling for
word and sentence segmentation. In Proceedings of
the 2013 Conference on Empirical Methods in Natural
Language Processing.

Manaal Faruqui and Chris Dyer. 2015. Non-
distributional word vector representations. arXiv
preprint arXiv:1506.05230.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2001. Placing search in context: The con-
cept revisited. In Proceedings of the 10th international
conference on World Wide Web. ACM.

Juri Ganitkevitch and Chris Callison-Burch. 2014. The
multilingual paraphrase database. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC-2014).

1513

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The Paraphrase
Database. In Proceedings of HLT-NAACL.

Felix A. Gers, Nicol N. Schraudolph, and Jürgen Schmid-
huber. 2003. Learning precise timing with LSTM re-
current networks. The Journal of Machine Learning
Research, 3.

Alex Graves. 2013. Generating sequences with recurrent
neural networks. arXiv preprint arXiv:1308.0850.

Hua He, Kevin Gimpel, and Jimmy Lin. 2015. Multi-
perspective sentence similarity modeling with convo-
lutional neural networks. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing.

Felix Hill, Kyunghyun Cho, Sebastien Jean, Coline
Devin, and Yoshua Bengio. 2014. Embedding word
similarity with neural machine translation. arXiv
preprint arXiv:1412.6448.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
SimLex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4).

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning distributed representations of sentences from
unlabelled data. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8).

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using click-
through data. In Proceedings of the 22nd ACM inter-
national conference on Conference on information &
knowledge management. ACM.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers).

Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the limits
of language modeling. CoRR, abs/1602.02410.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2015. Character-aware neural language
models. CoRR, abs/1508.06615.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Angeliki Lazaridou, Marco Marelli, Roberto Zamparelli,
and Marco Baroni. 2013. Compositional-ly derived
representations of morphologically complex words in
distributional semantics. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso,
Ramon Fermandez, Silvio Amir, Luis Marujo, and
Tiago Luis. 2015a. Finding function in form: Com-
positional character models for open vocabulary word
representation. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing.

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan W.
Black. 2015b. Character-based neural machine trans-
lation. arXiv preprint arXiv:1511.04586.

Minh-Thang Luong and Christopher D. Manning. 2016.
Achieving open vocabulary neural machine translation
with hybrid word-character models. arXiv preprint
arXiv:1604.00788.

Thang Luong, Richard Socher, and Christopher Man-
ning. 2013. Better word representations with recur-
sive neural networks for morphology. In Proceedings
of the Seventeenth Conference on Computational Nat-
ural Language Learning.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zampar-
elli. 2014. SemEval-2014 task 1: Evaluation of com-
positional distributional semantic models on full sen-
tences through semantic relatedness and textual entail-
ment. In Proceedings of the 8th International Work-
shop on Semantic Evaluation (SemEval 2014).

Jeff Mitchell and Mirella Lapata. 2010. Composition in
distributional models of semantics. Cognitive Science,
34(8).

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gašić, Lina Rojas-Barahona, Pei-Hao Su,
David Vandyke, Tsung-Hsien Wen, and Steve Young.
2016. Counter-fitting word vectors to linguistic con-
straints. arXiv preprint arXiv:1603.00892.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevich,
Benjamin Van Durme, and Chris Callison-Burch.
2015. PPDB 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. In Proceedings of the Annual
Meeting of the Association for Computational Linguis-
tics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. Proceedings of Empirical Methods in
Natural Language Processing (EMNLP 2014).

1514

Nghia The Pham, Germán Kruszewski, Angeliki Lazari-
dou, and Marco Baroni. 2015. Jointly optimizing
word representations for lexical and sentential tasks
with the c-phrase model. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Pa-
pers).

Siyu Qiu, Qing Cui, Jiang Bian, Bin Gao, and Tie-Yan
Liu. 2014. Co-learning of word representations and
morpheme representations. In Proceedings of COL-
ING 2014, the 25th International Conference on Com-
putational Linguistics: Technical Papers.

Roy Schwartz, Roi Reichart, and Ari Rappoport. 2015.
Symmetric pattern based word embeddings for im-
proved word similarity prediction. In Proceedings of
the Nineteenth Conference on Computational Natural
Language Learning.

Richard Socher, Eric H. Huang, Jeffrey Pennington, An-
drew Y. Ng, and Christopher D. Manning. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In Advances in Neural Infor-
mation Processing Systems.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher
Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing.

Radu Soricut and Franz Och. 2015. Unsupervised mor-
phology induction using word embeddings. In Pro-
ceedings of the 2015 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

Henning Sperr, Jan Niehues, and Alex Waibel. 2013.
Letter n-gram-based input encoding for continuous
space language models. In Proceedings of the Work-
shop on Continuous Vector Space Models and their
Compositionality.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1).

Ilya Sutskever, James Martens, and Geoffrey E Hinton.
2011. Generating text with recurrent neural networks.
In Proceedings of the 28th International Conference
on Machine Learning (ICML-11).

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Inter-

national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers).

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints, abs/1605.02688, May.

John Wieting, Mohit Bansal, Kevin Gimpel, Karen
Livescu, and Dan Roth. 2015. From paraphrase
database to compositional paraphrase model and back.
Transactions of the ACL (TACL).

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Towards universal paraphrastic sen-
tence embeddings. In Proceedings of International
Conference on Learning Representations.

Wei Xu, Chris Callison-Burch, and William B Dolan.
2015. SemEval-2015 task 1: Paraphrase and semantic
similarity in Twitter (PIT). In Proceedings of the 9th
International Workshop on Semantic Evaluation (Sem-
Eval).

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. In Advances in Neural Information Process-
ing Systems.

Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. 2015.
Long short-term memory over recursive structures. In
Proceedings of the 32nd International Conference on
Machine Learning.

1515

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1516–1525,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Length bias in Encoder Decoder Models and a Case for Global Conditioning

Pavel Sountsov
Google

siege@google.com

Sunita Sarawagi ∗
IIT Bombay

sunita@iitb.ac.in

Abstract

Encoder-decoder networks are popular for
modeling sequences probabilistically in many
applications. These models use the power of
the Long Short-Term Memory (LSTM) archi-
tecture to capture the full dependence among
variables, unlike earlier models like CRFs that
typically assumed conditional independence
among non-adjacent variables. However in
practice encoder-decoder models exhibit a bias
towards short sequences that surprisingly gets
worse with increasing beam size.

In this paper we show that such phenomenon is
due to a discrepancy between the full sequence
margin and the per-element margin enforced by
the locally conditioned training objective of a
encoder-decoder model. The discrepancy more
adversely impacts long sequences, explaining
the bias towards predicting short sequences.

For the case where the predicted sequences
come from a closed set, we show that a glob-
ally conditioned model alleviates the above
problems of encoder-decoder models. From
a practical point of view, our proposed model
also eliminates the need for a beam-search dur-
ing inference, which reduces to an efficient
dot-product based search in a vector-space.

1 Introduction

In this paper we investigate the use of neural net-
works for modeling the conditional distribution
Pr(y|x) over sequences y of discrete tokens in re-
sponse to a complex input x, which can be another

∗ Work done while visiting Google Research on a leave
from IIT Bombay.

sequence or an image. Such models have applica-
tions in machine translation (Bahdanau et al., 2014;
Sutskever et al., 2014), image captioning (Vinyals et
al., 2015), response generation in emails (Kannan et
al., 2016), and conversations (Khaitan, 2016; Vinyals
and Le, 2015; Li et al., 2015).

The most popular neural network for probabilis-
tic modeling of sequences in the above applications
is the encoder-decoder (ED) network (Sutskever et
al., 2014). A ED network first encodes an input x
into a vector which is then used to initialize a re-
current neural network (RNN) for decoding the out-
put y. The decoder RNN factorizes Pr(y|x) using
the chain rule as

∏
j Pr(yj |y1, . . . , yj−1,x) where

y1, . . . , yn denote the tokens in y. This factoriza-
tion does not entail any conditional independence
assumption among the {yj} variables. This is un-
like earlier sequence models like CRFs (Lafferty et
al., 2001) and MeMMs (McCallum et al., 2000) that
typically assume that a token is independent of all
other tokens given its adjacent tokens. Modern-day
RNNs like LSTMs promise to capture non-adjacent
and long-term dependencies by summarizing the set
of previous tokens in a continuous, high-dimensional
state vector. Within the limits of parameter capacity
allocated to the model, the ED, by virtue of exactly
factorizing the token sequence, is consistent.

However, when we created and deployed an ED
model for a chat suggestion task we observed sev-
eral counter-intuitive patterns in its predicted outputs.
Even after training the model over billions of exam-
ples, the predictions were systematically biased to-
wards short sequences. Such bias has also been seen
in translation (Cho et al., 2014). Another curious

1516

phenomenon was that the accuracy of the predictions
sometimes dropped with increasing beam-size, more
than could be explained by statistical variations of a
well-calibrated model (Ranzato et al., 2016).

In this paper we expose a margin discrepancy in
the training loss of encoder-decoder models to ex-
plain the above problems in its predictions. We show
that the training loss of ED network often under-
estimates the margin of separating a correct sequence
from an incorrect shorter sequence. The discrepancy
gets more severe as the length of the correct sequence
increases. That is, even after the training loss con-
verges to a small value, full inference on the training
data can incur errors causing the model to be under-
fitted for long sequences in spite of low training cost.
We call this the length bias problem.

We propose an alternative model that avoids the
margin discrepancy by globally conditioning the
P (y|x) distribution. Our model is applicable in the
many practical tasks where the space of allowed out-
puts is closed. For example, the responses gener-
ated by the smart reply feature of Inbox is restricted
to lie within a hand-screened whitelist of responses
W ⊂ Y (Kannan et al., 2016), and the same holds for
a recent conversation assistant feature of Google’s
Allo (Khaitan, 2016). Our model uses a second
RNN encoder to represent the output as another fixed
length vector. We show that our proposed encoder-
encoder model produces better calibrated whole se-
quence probabilities and alleviates the length-bias
problem of ED models on two conversation tasks. A
second advantage of our model is that inference is
significantly faster than ED models and is guaran-
teed to find the globally optimal solution. In contrast,
inference in ED models requires an expensive beam-
search which is both slow and is not guaranteed to
find the optimal sequence.

2 Length Bias in Encoder-Decoder Models

In this section we analyze the widely used encoder-
decoder neural network for modeling Pr(y|x) over
the space of discrete output sequences. We use
y1, . . . , yn to denote the tokens in a sequence y. Each
yi is a discrete symbol from a finite dictionary V of
size m. Typically, m is large. The length n of a se-
quence is allowed to vary from sequence to sequence
even for the same input x. A special token EOS ∈ V

is used to mark the end of a sequence. We use Y to
denote the space of such valid sequences and θ to
denote the parameters of the model.

2.1 The encoder-decoder network
The Encoder-Decoder (ED) network represents
Pr(y|x, θ) by applying chain rule to exactly factor-
ize it as

∏n
t=1 Pr(yt|y1, . . . , yt−1,x, θ). First, an en-

coder with parameters θx ⊂ θ is used to transform
x into a d-dimensional real-vector vx. The network
used for the encoder depends on the form of x —
for example, when x is also a sequence, the encoder
could be a RNN. The decoder then computes each
Pr(yt|y1, . . . , yt−1,vx, θ) as

Pr(yt|y1, . . . , yt−1,vx, θ) = P (yt|st, θ), (1)

where st is a state vector implemented using a recur-
rent neural network as

st =

{
vx if t = 0,

RNN(st−1, θE,yt−1 , θR) otherwise.
(2)

where RNN() is typically a stack of LSTM cells that
captures long-term dependencies, θE,y ⊂ θ are pa-
rameters denoting the embedding for token y, and
θR ⊂ θ are the parameters of the RNN. The function
Pr(y|s, θy) that outputs the distribution over the m
tokens is a softmax:

Pr(y|s, θ) = esθS,y

esθS,1 + . . .+ esθS,m
, (3)

where θS,y ⊂ θ denotes the parameters for token y in
the final softmax.

2.2 The Origin of Length Bias
The ED network builds a single probability distri-
bution over sequences of arbitrary length. For an
input x, the network needs to choose the highest
probability y among valid candidate sequences of
widely different lengths. Unlike in applications like
entity-tagging and parsing where the length of the
output is determined based on the input, in appli-
cations like response generation valid outputs can
be of widely varying length. Therefore, Pr(y|x, θ)
should be well-calibrated over all sequence lengths.
Indeed under infinite data and model capacity the ED
model is consistent and will represent all sequence
lengths faithfully. In practice when training data is

1517

finite, we show that the ED model is biased against
long sequences. Other researchers (Cho et al., 2014)
have reported this bias but we are not aware of any
analysis like ours explaining the reasons of this bias.

Claim 2.1. The training loss of the ED model under-
estimates the margin of separating long sequences
from short ones.

Proof. Let x be an input for which a correct out-
put y+ is of length ` and an incorrect output y−

is of length 1. Ideally, the training loss should
put a positive margin between y+ and y− which
is log Pr(y+|x)− log Pr(y−|x). Let us investigate
if the maximum likelihood training objective of the
ED model achieves that. We can write this objective
as:

max
θ

log Pr(y+1 |x, θ)+
∑̀

j=2

log Pr(y+j |y+1...j−1,x, θ).

(4)
Only the first term in the above objective is in-
volved in enforcing a margin between y+ and
y− because log Pr(y+1 |x) is maximized when
log Pr(y−1 |x) is correspondingly minimized. Let
mL(θ) = log Pr(y+1 |x, θ) − log Pr(y−1 |x, θ), the
local margin from the first position and mR(θ) =∑`

j=2 log Pr(y
+
j |y+

1...j−1,x, θ). It is easy to see
that our desired margin between y+ and y− is
log Pr(y+|x) − log Pr(y−|x) = mL + mR. Let
mg = mL +mR. Assuming two possible labels for
the first position (m = 2) 1, the training objective
in Equation 4 can now be rewritten in terms of the
margins as:

min
θ

log(1 + e−mL(θ))−mR(θ)

We next argue that this objective is not aligned with
our ideal goal of making the global marginmL+mR

positive.
First, note that mR is a log probability which un-

der finite parameters will be non-zero. Second, even
though mL can take any arbitrary finite value, the
training objective drops rapidly when mL is positive.
When training objective is regularized and training
data is finite, the model parameters θ cannot take

1For m > 2, the objective will be upper bounded by
minθ log(1 + (m− 1)e−mL(θ))−mR(θ). The argument that
follows remains largely unchanged

very large values and the trainer will converge at a
small positive value of mL. Finally, we show that
the value of mR decreases with increasing sequence
length. For each position j in the sequence, we add
to mR log-probability of y+j . The maximum value
of log Pr(y+j |y+

1...j−1,x, θ) is log(1 − ε) where ε is
non-zero and decreasing with the magnitude of the
parameters θ. In general, log Pr(y+j |y+

1...j−1,x, θ)
can be a much smaller negative value when the input
x has multiple correct responses as is common in con-
versation tasks. For example, an input like x =‘How
are you?’, has many possible correct outputs: y ∈{‘I
am good’, ‘I am great’, ‘I am fine, how about you?’,
etc}. Let fj denote the relative frequency of output
y+j among all correct responses with prefix y+

1...j−1.
The value of mR will be upper bounded as

mR ≤
∑̀

j=2

logmin(1− ε, fj)

This term is negative always and increases in mag-
nitude as sequence length increases and the set of
positive outpus have high entropy. In this situation,
when combined with regularization, our desired mar-
gin mg may not remain positive even though mL is
positive. In summary, the core issue here is that since
the ED loss is optimized and regularized on the lo-
cal problem it does not control for the global, task
relevant margin.

This mismatch between the local margin optimized
during training and the global margin explains the
length bias observed by us and others (Cho et al.,
2014). During inference a shorter sequence for which
mR is smaller wins over larger sequences.

This mismatch also explains why increasing beam
size leads to a drop in accuracy sometimes (Ran-
zato et al., 2016)2. When beam size is large, we are
more likely to dig out short sequences that have oth-
erwise been separated by the local margin. We show
empirically in Section 4.3 that for long sequences
larger beam size hurts accuracy whereas for small
sequences the effect is the opposite.

2.3 Proposed fixes to the ED models
Many ad hoc approaches have been used to alleviate
length bias directly or indirectly. Some resort to nor-

2Figure 6 in the paper shows a drop in BLEU score by 0.5 as
the beam size is increased from 3 to 10.

1518

malizing the probability by the full sequence length
(Cho et al., 2014; Graves, 2013) whereas (Abadie et
al., 2014) proposes segmenting longer sentences into
shorter phrases. (Cho et al., 2014) conjectures that
the length bias of ED models could be because of
limited representation power of the encoder network.
Later more powerful encoders based on attention
achieved greater accuracy (Bahdanau et al., 2014)
on long sequences. Attention can be viewed as a
mechanism of improving the capacity of the local
models, thereby making the local margin mL more
definitive. But attention is not effective for all tasks
— for example, (Vinyals and Le, 2015) report that
attention was not useful for conversation.

Recently (Bengio et al., 2015; Ranzato et al., 2016)
propose another modification to the ED training ob-
jective where the true token yj−1 in the training term
log Pr(yj |y1, . . . , yj−1) is replaced by a sample or
top-k modes from the posterior at position j − 1 via
a careful schedule. Incidently, this fix also helps to
indirectly alleviate the length bias problem. The sam-
pling causes incorrect tokens to be used as previous
history for producing a correct token. If earlier the
incorrect token was followed by a low-entropy EOS
token, now that state should also admit the correct
token causing a decrease in the probability of EOS,
and therefore the short sequence.

In the next section we propose our more direct fix
to the margin discrepancy problem.

3 Globally Conditioned Encoder-Encoder
Models

We represent Pr(y|x, θ) as a globally conditioned
model e

s(y|x,θ)
Z(x,θ) where s(y|x, θ) denotes a score for

output y and Z(x, θ) denotes the shared normalizer.
We show in Section 3.3 why such global condition-
ing solves the margin discrepancy problem of the ED
model. The intractable partition function in global
conditioning introduces several new challenges dur-
ing training and inference. In this section we discuss
how we designed our network to address them.

Our model assumes that during inference the out-
put has to be selected from a given whitelist of re-
sponses W ⊂ Y . In spite of this restriction, the
problem does not reduce to multi-class classification
because of two important reasons. First, during train-
ing we wish to tap all available input-output pairs

including the significantly more abundant outputs
that do not come from the whitelist. Second, the
whitelist could be very large and treating each output
sequence as an atomic class can limit generalization
achievable by modeling at the level of tokens in the
sequence.

3.1 Modeling s(y|x, θ)
We use a second encoder to convert y into a vector
vy of the same size as the vector vx obtained by
encoding x as in a ED network. The parameters used
to encode vx and vy are disjoint. As we are only
interested in a fixed dimensional output, unlike in ED
networks, we have complete freedom in choosing
the type of network to use for this second encoder.
For our experiments, we have chosen to use an RNN
with LSTM cells. Experimenting with other network
architectures, such as bidirectional RNNs remains
an interesting avenue for future work. The score
s(y|x, θ) is the dot-product between vy and vx. Thus
our model is

Pr(y|x) = ev
T
x vy

∑
y′∈Y ev

T
x vy′

. (5)

3.2 Training and Inference
During training we use maximum likelihood to esti-
mate θ given a large set of valid input-output pairs
{(x1,y1), . . . , (xN ,yN)} where each yi belongs to
Y which in general is much larger thanW . Our main
challenge during training is that Y is intractably large
for computing Z. We decompose Z as

Z = es(y|x,θ) +
∑

y′∈Y\y
es(y

′|x,θ), (6)

and then resort to estimating the last term using im-
portance sampling. Constructing a high quality pro-
posal distribution over Y \ y is difficult in its own
right, so in practice, we make the following approxi-
mations. We extract the most common T sequences
across a data set into a pool of negative examples.
We estimate the empirical prior probability of the se-
quences in that pool, Q(y), and then draw k samples
from this distribution. We take care to remove the
true sequence from this distribution so as to remove
the need to estimate its prior probability.

During inference, given an input x we need to find
argmaxy∈Ws(y|x, θ). This task can be performed

1519

y decoder

BOS A EOS BOS B

B EOS

LSTM

Embedding

Softmax

Label

Input

64 64 64 64 64

256256256 256 256 LSTM

Embedding

x encoder

Input
x0 x1 x2 y0 y1

y1 y2

y encoder

BOS B

64 64

256 256 LSTM

Embedding

Input
EOS

64

256

y0 y1 y2

vyvx

vx

Projection Projection512 512

Figure 1: Neural network architectures used in our experiments. The context encoder network is used for both encoder-encoder and

encoder-decoder models to encode the context sequence (‘A’) into a vx. For the encoder-encoder model, label sequence (‘B’) are

encoded into vy by the label encoder network. For the encoder-decoder network, the label sequence is decomposed using the chain

rule by the decoder network.

efficiently in our network because the vectors vy
for the sequences y in the whitelist W can be pre-
computed. Given an input x, we compute vx and take
dot-product with the pre-computed vectors to find the
highest scoring response. This gives us the optimal
response. WhenW is very large, we can obtain an
approximate solution by indexing the vectors vy of
W using recent methods specifically designed for
dot-product based retrieval (Guo et al., 2016).

3.3 Margin
It is well-known that the maximum likelihood train-
ing objective of a globally normalized model is mar-
gin maximizing (Rosset et al., 2003). We illustrate
this property using our set up from Claim 2.1 where
a correct output y+ is of length ` and an incorrect
output y− is of length 1 with two possible labels for
each position (m = 2).

The globally conditioned model learns a parameter
per possible sequence and assigns the probability to
each sequence using a softmax over those parame-
ters. Additionally, we place a Gaussian prior on the
parameters with a precision c. The loss for a positive
example becomes:

LG(y+) = − log
e−θy+∑
y′ e
−θy′

+
c

2

∑

y′
θ2y′ ,

where the sums are taken over all possible sequences.

We also train an ED model on this task. It also
learns a parameter for every possible sequence, but
assigns probability to each sequence using the chain
rule. We also place the same Gaussian prior as above
on the parameters. Let yj denote the first j tokens
{y1, . . . , yj} of sequence y. The loss for a positive
example for this model is then:

LL(y+) = −
∑̀

j=1

log

e
−θ

y+
j

∑
y′j
e
−θy′

j

+
c

2

∑

y′j

θ2y′j

 ,

where the inner sums are taken over all sequences of
length j.

We train both models on synthetic sequences gen-
erated using the following rule. The first token is
chosen to be ‘1’ probability 0.6. If ‘1’ is chosen, it
means that this is a positive example and the remain-
ing `− 1 tokens are chosen to be ‘1’ with probability
0.9

1
`−1 . If a ‘0’ is chosen as the first token, then that

is a negative example, and the sequence generation
does not go further. This means that there are 2`−1

unique positive sequences of length ` and one neg-
ative sequence of length 1. The remaining possible
sequences do not occur in the training or testing data.
By construction the unbiased margin between the
most probable correct example and the incorrect ex-
ample is length independent and positive. We sample
10000 such sequences and train both models using

1520

0.0 0.2 0.4 0.6 0.8 1.0
c

0.4

0.2

0.0

0.2

0.4

M
a
rg

in
Global margin
ED margin
ED local margin

2 3 4 5
`

0.4

0.2

0.0

0.2

0.4

M
a
rg

in

Global margin
ED margin
ED local margin

Figure 2: Comparing final margins of ED model with a glob-

ally conditioned model on example dataset of Section 3.3 as a

function of regularization constant c and message length `.

Adagrad (Duchi et al., 2011) for 1000 epochs with a
learning rate of 0.1, effectively to convergence.

Figure 2 shows the margin for both models (be-
tween the most likely correct sequence and the incor-
rect sequence) and the local margin for the ED model
at the end of training. On the left panel, we used
sequences with ` = 2 and varied the regularization
constant c. When c is zero, both models learn the
same global margin, but as it is increased the margin
for the ED model decreases and becomes negative
at c > 0.2, despite the local margin remaining pos-
itive and high. On the right panel we used c = 0.1
and varied `. The ED model becomes unable to sep-
arate the sequences with length above 2 with this
regularization constant setting.

4 Experiments

4.1 Datasets and Tasks
We contrast the quality of the ED and encoder-
encoder models on two conversational datasets: Open
Subtitles and Reddit Comments.

4.1.1 Open Subtitles Dataset
The Open Subtitles dataset consists of transcrip-

tions of spoken dialog in movies and television shows
(Lison and Tiedemann, 2016). We restrict our model-
ing only to the English subtitles, of which results in
319 million utternaces. Each utterance is tokenized
into word and punctuation tokens, with the start and
end marked by the BOS and EOS tokens. We ran-

domly split out 90% of the utterances into the training
set, placing the rest into the validation set. As the
speaker information is not present in this data set,
we treat each utterance as a label sequence, with the
preceding utterances as context.

4.1.2 Reddit Comments Dataset
The Reddit Comments dataset is constructed from

publicly available user comments on submissions on
the Reddit website. Each submission is associated
with a list of directed comment trees. In total, there
are 41 million submissions and 501 million com-
ments. We tokenize the individual comments in the
same way as we have done with the utternaces in the
Open Subtitles dataset. We randomly split 90% of
the submissions and the associated comments into
the training set, and the rest into the validation set.
We use each comment (except the ones with no par-
ent comments) as a label sequence, with the context
sequence composed of its ancestor comments.

4.1.3 Whitelist and Vocabulary
From each dataset, we derived a dictionary of 20

thousand most commonly used tokens. Additionally,
each dictionary contained the unknown token (UNK),
BOS and EOS tokens. Tokens in the datasets which
were not present in their associated vocabularies were
replaced by the UNK token.

From each data set, we extracted 10 million most
common label sequences that also contained at most
100 tokens. This set of sequences was used as the
negative sample pool for the encoder-encoder models.
For evaluation we created a whitelistW out of the
100 thousand most common sequences. We removed
any sequence from this set that contained any UNK
tokens to simplify inference.

4.1.4 Sequence Prediction Task
To evaluate the quality of these models, we task

them to predict the true label sequence given its
context. Due to the computational expense, we
sub-sample the validation data sets to around 1 mil-
lion context-label pairs. We additionally restrict the
context-label pairs such that the label sequence is
present in the evaluation set of common messages.
We use recall@K as a measure of accuracy of the
model predictions. It is defined as the fraction of
test pairs where the correct label is within K most

1521

probable predictions according to the model. For
encoder-encoder models we use an exhaustive search
over the evaluation set of common messages. For
ED models we use a beam search with width ranging
from 1 to 15 over a token prefix trie constructed from
the sequences inW .

4.2 Model Structure and Training Procedure

The context encoder, label encoder and decoder
are implemented using LSTM recurrent networks
(Hochreiter and Schmidhuber, 1997) with peephole
connections (Sak et al., 2014). The context and label
token sequences were mapped to embedding vectors
using a lookup table that is trained jointly with the
rest of the model parameters. The recurrent nets
were unrolled in time up to 100 time-steps, with label
sequences of greater length discarded and context
sequences of greater length truncated.

The decoder in the ED model is trained by using
the true label sequence prefix as input, and a shifted
label sequence as output (Sutskever et al., 2014). The
partition function in the softmax over tokens is es-
timated using importance sampling with a unigram
distribution over tokens as the proposal distribution
(Jean et al., 2014). We sample 512 negative examples
from Q(y) to estimate the partition function for the
encoder-encoder model. See Figure 1 for connectiv-
ity and network size details.

All models were trained using Adagrad (Duchi
et al., 2011) with an initial base learning rate of 0.1
which we exponentially decayed with a decade of
15 million steps. For stability, we clip the L2 norm
of the gradients to a maximum magnitude of 1 as
described in (Pascanu et al., 2012). All models are
trained for 30 million steps with a mini-batch size of
64. The models are trained in a distributed manner on
CPUs and NVidia GPUs using TensorFlow (Abadi et
al., 2015).

4.3 Results

We first demonstrate the discrepancy between the
local and global margin in the ED models as dis-
cussed in Section 3.3. We used a beam size of 15
to get the top prediction from our trained ED mod-
els on the test data and focussed on the subset for
which the top prediction was incorrect. We measured
local and global margin between the top predicted
sequence (y−) and the correct test sequence (y+) as

follows: Global margin is the difference in their full
sequence log probability. Local margin is the differ-
ence in the local token probability of the smallest
position j where y−j 6= y+j , that is local margin is
Pr(y+j |y+

1...j−1,x, θ) − Pr(y−j |y+
1...j−1,x, θ). Note

the training loss of ED models directly compares
only the local margin.

Global margin is much smaller than local margin
In Figure 3 we show the local and global margin as
a 2D histogram with color luminosity denoting fre-
quency. We observe that the global margin values are
much smaller than the local margins. The prominent
spine is for (y+,y−) pairs differing only in a single
position making the local and global margins equal.
Most of the mass is below the spine. For a significant
fraction of cases (27% for Reddit, and 21% for Sub-
titles), the local margin is positive while the global
margin is negative. That is, the ED loss for these
sequences is small even though the log-probability
of the correct sequence is much smaller than the log-
probability of the predicted wrong sequence.

Beam search is not the bottleneck An interesting
side observation from the plots in Figure 3 is that
more than 98% of the wrong predictions have a nega-
tive margin, that is, the score of the correct sequence
is indeed lower than the score of the wrong predic-
tion. Improving the beam-width beyond 15 is not
likely to improve these models since only in 1.9%
and 1.7% of the cases is the correct score higher than
the score of the wrong prediction.

15 10 5 0 5 10
Local margin

30

25

20

15

10

5

0

5

G
lo

b
a
l
m

a
rg

in

Reddit

15 10 5 0 5 10
Local margin

30

25

20

15

10

5

0

5

G
lo

b
a
l
m

a
rg

in

Subtitles

Figure 3: Local margin versus global margin for incorrectly

predicted sequences. The color luminosity is proportional to

frequency.

1522

Margin discrepancy is higher for longer se-
quences In Figure 4 we show that this discrep-
ancy is significantly more pronounced for longer
sequences. In the figure we show the fraction of
wrongly predicted sequences with a positive local
margin. We find that as sequence length increases,
we have more cases where the local margin is posi-
tive yet the global margin is negative. For example,
for the Reddit dataset half of the wrongly predicted
sequences have a positive local margin indicating that
the training loss was low for these sequences even
though they were not adequately separated.

Reddit

0 1 2 3 4 5 6 7 8 >8
0

0.15

0.3

0.45

0.6

Sequence Length

Subtitles

0 1 2 3 4 5 6 7 8 >8
0

0.1

0.2

0.3

0.4

Sequence Length

Figure 4: Fraction of incorrect predictions with positive local

margin.

Increasing beam size drops accuracy for long se-
quences Next we show why this discrepancy leads
to non-monotonic accuracies with increasing beam-
size. As beam size increases, the predicted se-
quence has higher probability and the accuracy is
expected to increase if the trained probabilities are
well-calibrated. In Figure 5 we plot the number of
correct predictions (on a log scale) against the length
of the correct sequence for beam sizes of 1, 5, 10,
and 15. For small sequence lengths, we indeed ob-
serve that increasing the beam size produces more
accurate results. For longer sequences (length > 4)
we observe a drop in accuracy with increasing the
beam width beyond 1 for Reddit and beyond 5 for
Subtitles.

Globally conditioned models are more accurate
than ED models We next compare the ED model
with our globally conditioned encoder-encoder (EE)
model. In Figure 6 we show the recall@K values
for K=1, 3 and 5 for the two datasets for increasing
length of correct sequence. We find the EE model
is largely better that the ED model. The most in-
teresting difference is that for sequences of length
greater than 8, the ED model has a recall@5 of zero
for both datasets. In contrast, the EE model manages

Reddit
B=1 B=5 B=10 B=15

1 2 3 4 5+

100

1000

10000

Sequence Length

N
um

be
r

C
or

re
ct

Subtitles
B=1 B=5 B=10 B=15

1 2 3 4 5 6+
100

1000

10000

Sequence Length

N
um

be
r

C
or

re
ct

Figure 5: Effect of beam width on the number of correct predic-

tions broken down by sequence length.

to achieve significant recall even at large sequence
lengths.

Length normalization of ED models A common
modification to the ED decoding procedure used to
promote longer message is normalization of the pre-
diction log-probability by its length raised to some
power f (Cho et al., 2014; Graves, 2013). We ex-
perimented with two settings, f = 0.5 and 1.0. Our
experiments show that while this indeed promotes
longer sequences, it does so at the expense of reduc-
ing the accuracy on the shorter sequences.

5 Related Work

In this paper we showed that encoder-decoder mod-
els suffer from length bias and proposed a fix us-
ing global conditioning. Global conditioning has
been proposed for other RNN-based sequence pre-
diction tasks in (Yao et al., 2014) and (Andor et al.,
2016). The RNN models that these work attempt to
fix capture only a weak form of dependency among
variables, for example they assume x is seen incre-
mentally and only adjacent labels in y are directly
dependent. As proved in (2016) these models are
subject to label bias since they cannot represent a dis-
tribution that a globally conditioned model can. Thus,
their fix for global dependency is using a CRFs. Such

1523

Reddit Recall@1
EE ED ED f=0.5 ED f=1.0

1 2 3 4 5 6 7 8 >8
0

0.03

0.06

0.09

0.12

Sequence Length

R
ec

al
l

Reddit Recall@3
EE ED ED f=0.5 ED f=1.0

1 2 3 4 5 6 7 8 >8
0

0.06

0.12

0.18

0.24

Sequence Length

R
ec

al
l

Reddit Recall@5
EE ED ED f=0.5 ED f=1.0

1 2 3 4 5 6 7 8 >8
0

0.075

0.15

0.225

0.3

Sequence Length

R
ec

al
l

Subtitles Recall@1
EE ED ED f=0.5 ED f=1.0

1 2 3 4 5 6 7 8 >8
0

0.1

0.2

0.3

0.4

Sequence Length

R
ec

al
l

Subtitles Recall@3
EE ED ED f=0.5 ED f=1.0

1 2 3 4 5 6 7 8 >8
0

0.15

0.3

0.45

0.6

Sequence Length
R

ec
al

l

Subtitles Recall@5
EE ED ED f=0.5 ED f=1.0

1 2 3 4 5 6 7 8 >8
0

0.15

0.3

0.45

0.6

Sequence Length

R
ec

al
l

Figure 6: Comparing recall@1, 3, 5 for increasing length of correct sequence.

global conditioning will compromise a ED model
which does not assume any conditional independence
among variables. The label-bias proof of (2016) is
not applicable to ED models because the proof rests
on the entire input not being visible during output.
Earlier illustrations of label bias of MeMMs in (Bot-
tou, 1991; Lafferty et al., 2001) also require local
observations. In contrast, the ED model transitions
on the entire input and chain rule is an exact factoriza-
tion of the distribution. Indeed one of the suggestions
in (Bottou, 1991) to surmount label-bias is to use a
fully connected network, which the ED model al-
ready does.

Our encoder-encoder network is reminiscent of
the dual encoder network in (Lowe et al., 2015), also
used for conversational response generation. A cru-
cial difference is our use of importance sampling
to correctly estimate the probability of a large set
of candidate responses, which allows us to use the
model as a standalone response generation system.
Other differences include our model using separate
sets of parameters for the two encoders, to reflect the
assymetry of the prediction task. Lastly, we found it
crucial for the model’s quality to use multiple appro-
priately weighed negative examples for every positive
example during training.

(Ranzato et al., 2016) also highlights limitations
of the ED model and proposes to mix the ED loss
with a sequence-level loss in a reinforcement learning
framework under a carefully tuned schedule. Our
method for global conditioning can capture sequence-

level losses like BLEU score more easily, but may
also benefit from a similar mixed loss function.

6 Conclusion

We have shown that encoder-decoder models in the
regime of finite data and parameters suffer from a
length-bias problem. We have proved that this arises
due to the locally normalized models insufficiently
separating correct sequences from incorrect ones, and
have verified this empirically. We explained why this
leads to the curious phenomenon of decreasing accu-
racy with increasing beam size for long sequences.
Our proposed encoder-encoder architecture side steps
this issue by operating in sequence probability space
directly, yielding improved accuracy for longer se-
quences.

One weakness of our proposed architecture is that
it cannot generate responses directly. An interesting
future work is to explore if the ED model can be used
to generate a candidate set of responses which are
then re-ranked by our globally conditioned model.
Another future area is to see if the techniques for
making Bayesian networks discriminative can fix the
length bias of encoder decoder networks (Peharz et
al., 2013; Guo et al., 2012).

References

[Abadi et al.2015] Martín Abadi, Ashish Agarwal, Paul
Barham, and Eugene Brevdo et al. 2015. TensorFlow:

1524

Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.

[Abadie et al.2014] J Pouget Abadie, D Bahdanau, B van
Merrienboer, K Cho, and Y Bengio. 2014. Over-
coming the curse of sentence length for neural ma-
chine translation using automatic segmentation. CoRR,
abs/1409.1257.

[Andor et al.2016] D Andor, C Alberti, D Weis, A Severyn,
A Presta, K Ganchev, S Petrov, and M Collins. 2016.
Globally normalized transition-based neural network.
CoRR, abs/1603.06042.

[Bahdanau et al.2014] Dzmitry Bahdanau, Kyunghyun
Cho, and Yoshua Bengio. 2014. Neural machine trans-
lation by jointly learning to align and translate. CoRR,
abs/1409.0473.

[Bengio et al.2015] Samy Bengio, Oriol Vinyals, Navdeep
Jaitly, and Noam Shazeer. 2015. Scheduled sampling
for sequence prediction with recurrent neural networks.
In NIPS.

[Bottou1991] L. Bottou. 1991. Une approche theorique
de l’apprentissage connexionniste: Applications a la re-
con‘naissance de la parole. Ph.D. thesis, Universitede
Paris XI.

[Cho et al.2014] KyungHyun Cho, Bart van Merrienboer,
Dzmitry Bahdanau, and Yoshua Bengio. 2014. On
the properties of neural machine translation: Encoder-
decoder approaches. CoRR, abs/1409.1259.

[Duchi et al.2011] John Duchi, Elan Hazad, and Yoram
Singer. 2011. Adaptive subgradient methods for online
learning and stochastic optimization. JMLR, 12.

[Graves2013] Alex Graves. 2013. Generating sequences
with recurrent neural networks. CoRR, abs/1308.0850.

[Guo et al.2012] Yuhong Guo, Dana F. Wilkinson, and
Dale Schuurmans. 2012. Maximum margin bayesian
networks. CoRR, abs/1207.1382.

[Guo et al.2016] R. Guo, S. Kumar, K. Choromanski, and
D. Simcha. 2016. Quantization based fast inner prod-
uct search. In AISTATS.

[Hochreiter and Schmidhuber1997] Sepp Hochreiter and
Jürgen Schmidhuber. 1997. Long short-term memory.
Neural computation, 9(8):1735–1780.

[Jean et al.2014] Sébastien Jean, Kyunghyun Cho, Roland
Memisevic, and Yoshua Bengio. 2014. On using very
large target vocabulary for neural machine translation.
CoRR, abs/1412.2007.

[Kannan et al.2016] Anjuli Kannan, Karol Kurach, Sujith
Ravi, Tobias Kaufmann, Andrew Tomkins, Balint Mik-
los, Greg Corrado, László Lukács, Marina Ganea, Peter
Young, and Vivek Ramavajjala. 2016. Smart reply:
Automated response suggestion for email. In KDD.

[Khaitan2016] Pranav Khaitan.
2016. Chat smarter with allo.
http://googleresearch.blogspot.com/2016/05/chat-
smarter-with-allo.html, May.

[Lafferty et al.2001] John Lafferty, Andrew McCallum,
and Fernando Pereira. 2001. Conditional random
fields: Probabilistic models for segmenting and labeling
sequence data. In ICML.

[Li et al.2015] J Li, M Galley, C Brockett, J Gao, and
B Dolan. 2015. A diversity-promoting objective
function for neural conversation models. CoRR,
abs/1510.03055.

[Lison and Tiedemann2016] Pierre Lison and Jörg Tiede-
mann. 2016. Opensubtitles2016: Extracting large
parallel corpora from movie and tv subtitles. In LREC
2016.

[Lowe et al.2015] R Lowe, N Pow, I V Serban, and
J Pineau. 2015. The ubuntu dialogue corpus: A large
dataset for research in unstructure multi-turn dialogue
systems". In SIGDial.

[McCallum et al.2000] A. McCallum, D. Freitag, and
F. Pereira. 2000. Maximum entropy markov mod-
els for information extraction and segmentation. In
ICML.

[Pascanu et al.2012] Razvan Pascanu, Tomas Mikolov,
and Yoshua Bengio. 2012. Understanding the explod-
ing gradient problem. CoRR, abs/1211.5063.

[Peharz et al.2013] Robert Peharz, Sebastian Tschiatschek,
and Franz Pernkopf. 2013. The most generative maxi-
mum margin bayesian networks. In ICML.

[Ranzato et al.2016] M Ranzato, S Chopra, M Auli, and
W Zaremba. 2016. Sequence level training with recur-
rent neural networks. ICLR.

[Rosset et al.2003] S Rosset, J Zhu, and T Hastie. 2003.
Margin maximizing loss functions. In NIPS.

[Sak et al.2014] Hasim Sak, Andrew Senior, and Francoise
Beaufays. 2014. Long Short-Term Memory Recurrent
Neural Network Architectures for Large Scale Acoustic
Modeling. In INTERSPEECH 2014.

[Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V. Le. 2014. Sequence to sequence learning with
neural networks. In NIPS.

[Vinyals and Le2015] Oriol Vinyals and Quoc V. Le.
2015. A neural conversational model. CoRR,
abs/1506.05869.

[Vinyals et al.2015] Oriol Vinyals, Alexander Toshev,
Samy Bengio, and Dumitru Erhan. 2015. Show and
tell: A neural image caption generator. In CVPR.

[Yao et al.2014] K Yao, B Peng, G Zweig, D Yu, X Li, and
F Gao. 2014. Recurrent conditional random field for
language understanding. In ICASSP.

1525

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1526–1534,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Does String-Based Neural MT Learn Source Syntax?

Xing Shi, Inkit Padhi, and Kevin Knight
Information Sciences Institute & Computer Science Department

University of Southern California
xingshi@isi.edu, ipadhi@usc.edu, knight@isi.edu

Abstract

We investigate whether a neural, encoder-
decoder translation system learns syntactic in-
formation on the source side as a by-product
of training. We propose two methods to de-
tect whether the encoder has learned local and
global source syntax. A fine-grained analy-
sis of the syntactic structure learned by the
encoder reveals which kinds of syntax are
learned and which are missing.

1 Introduction

The sequence to sequence model (seq2seq) has been
successfully applied to neural machine translation
(NMT) (Sutskever et al., 2014; Cho et al., 2014)
and can match or surpass MT state-of-art. Non-
neural machine translation systems consist chiefly
of phrase-based systems (Koehn et al., 2003) and
syntax-based systems (Galley et al., 2004; Galley
et al., 2006; DeNeefe et al., 2007; Liu et al., 2011;
Cowan et al., 2006), the latter of which adds syntac-
tic information to source side (tree-to-string), target
side (string-to-tree) or both sides (tree-to-tree). As
the seq2seq model first encodes the source sentence
into a high-dimensional vector, then decodes into a
target sentence, it is hard to understand and interpret
what is going on inside such a procedure. Consider-
ing the evolution of non-neural translation systems,
it is natural to ask:

1. Does the encoder learn syntactic information
about the source sentence?

2. What kind of syntactic information is learned,
and how much?

3. Is it useful to augment the encoder with addi-
tional syntactic information?

In this work, we focus on the first two questions
and propose two methods:
• We create various syntactic labels of the source

sentence and try to predict these syntactic la-
bels with logistic regression, using the learned
sentence encoding vectors (for sentence-level
labels) or learned word-by-word hidden vectors
(for word-level label). We find that the encoder
captures both global and local syntactic infor-
mation of the source sentence, and different in-
formation tends to be stored at different layers.
• We extract the whole constituency tree of

source sentence from the NMT encoding vec-
tors using a retrained linearized-tree decoder. A
deep analysis on these parse trees indicates that
much syntactic information is learned, while
various types of syntactic information are still
missing.

2 Example

As a simple example, we train an English-French
NMT system on 110M tokens of bilingual data (En-
glish side). We then take 10K separate English sen-
tences and label their voice as active or passive. We
use the learned NMT encoder to convert these sen-
tences into 10k corresponding 1000-dimension en-
coding vectors. We use 9000 sentences to train a
logistic regression model to predict voice using the
encoding cell states, and test on the other 1000 sen-
tences. We achieve 92.8% accuracy (Table 2), far
above the majority class baseline (82.8%). This
means that in reducing the source sentence to a

1526

Model Accuracy
Majority Class 82.8
English to French (E2F) 92.8
English to English (E2E) 82.7

Table 1: Voice (active/passive) prediction accuracy using the

encoding vector of an NMT system. The majority class baseline

always chooses active.

fixed-length vector, the NMT system has decided to
store the voice of English sentences in an easily ac-
cessible way.

When we carry out the same experiment on an
English-English (auto-encoder) system, we find that
English voice information is no longer easily ac-
cessed from the encoding vector. We can only pre-
dict it with 82.7% accuracy, no better than chance.
Thus, in learning to reproduce input English sen-
tences, the seq2seq model decides to use the fixed-
length encoding vector for other purposes.

3 Related work

Interpreting Recurrent Neural Networks. The
most popular method to visualize high-dimensional
vectors, such as word embeddings, is to project them
into two-dimensional space using t-SNE (van der
Maaten and Hinton, 2008). Very few works try to
interpret recurrent neural networks in NLP. Karpa-
thy et al. (2016) use a character-level LSTM lan-
guage model as a test-bed and find several activation
cells that track long-distance dependencies, such as
line lengths and quotes. They also conduct an er-
ror analysis of the predictions. Li et al. (2016) ex-
plore the syntactic behavior of an RNN-based sen-
timent analyzer, including the compositionality of
negation, intensification, and concessive clauses, by
plotting a 60-dimensional heat map of hidden unit
values. They also introduce a first-order derivative
based method to measure each unit’s contribution to
the final decision.
Verifying syntactic/semantic properties. Several
works try to build a good distributional representa-
tion of sentences or paragraph (Socher et al., 2013;
Kalchbrenner et al., 2014; Kim, 2014; Zhao et
al., 2015; Le and Mikolov, 2014; Kiros et al.,
2015). They implicitly verify the claimed syntac-
tic/semantic properties of learned representations by
applying them to downstream classification tasks

such as sentiment analysis, sentence classification,
semantic relatedness, paraphrase detection, image-
sentence ranking, question-type classification, etc.

Novel contributions of our work include:
• We locate a subset of activation cells that are

responsible for certain syntactic labels. We ex-
plore the concentration and layer distribution of
different syntactic labels.
• We extract whole parse trees from NMT encod-

ing vectors in order to analyze syntactic prop-
erties directly and thoroughly.
• Our methods are suitable for large scale mod-

els. The models in this work are 2-layer 1000-
dimensional LSTM seq2seq models.

4 Datasets and models

We train two NMT models, English-French (E2F)
and English-German (E2G). To answer whether
these translation models’ encoders to learn store
syntactic information, and how much, we employ
two benchmark models:
• An upper-bound model, in which the encoder

learns quite a lot of syntactic information. For
the upper bound, we train a neural parser that
learns to “translate” an English sentence to its
linearized constitutional tree (E2P), following
Vinyals et al. (2015).
• An lower-bound model, in which the encoder

learns much less syntactic information. For
the lower bound, we train two sentence auto-
encoders: one translates an English sentence to
itself (E2E), while the other translates a per-
muted English sentence to itself (PE2PE). We
already had an indication above (Section 2) that
a copying model does not necessarily need to
remember a sentence’s syntactic structure.

Figure 1 shows sample inputs and outputs of the
E2E, PE2PE, E2F, E2G, and E2P models.

We use English-French and English-German data
from WMT2014 (Bojar et al., 2014). We take 4M
English sentences from the English-German data to
train E2E and PE2PE. For the neural parser (E2P),
we construct the training corpus following the recipe
of Vinyals et al. (2015). We collect 162K training
sentences from publicly available treebanks, includ-
ing Sections 0-22 of the Wall Street Journal Penn
Treebank (Marcus et al., 1993), Ontonotes version 5

1527

Model Target Language
Input

vocabulary
size

Output
vocabulary

size

Train/Dev/Test
Corpora Sizes

(sentence pairs)
BLEU

E2E English 200K 40K 4M/3000/2737 89.11
PE2PE Permuted English 200K 40K 4M/3000/2737 88.84

E2F French 200K 40K 4M/6003/3003 24.59
E2G German 200K 40K 4M/3000/2737 12.60

E2P
Linearized

constituency tree
200K 121 8162K/1700/2416 n/a

Table 2: Model settings and test-set BLEU-n4r1 scores (Papineni et al., 2002).

Figure 1: Sample inputs and outputs of the E2E, PE2PE, E2F,

E2G, and E2P models.

(Pradhan and Xue, 2009) and the English Web Tree-
bank (Petrov and McDonald, 2012). In addition to
these gold treebanks, we take 4M English sentences
from English-German data and 4M English sen-
tences from English-French data, and we parse these
8M sentences with the Charniak-Johnson parser1

(Charniak and Johnson, 2005). We call these 8,162K
pairs the CJ corpus. We use WSJ Section 22 as our
development set and section 23 as the test set, where
we obtain an F1-score of 89.6, competitive with the
previously-published 90.5 (Table 4).

Model Architecture. For all experiments2,
we use a two-layer encoder-decoder with long
short-term memory (LSTM) units (Hochreiter and
Schmidhuber, 1997). We use a minibatch of 128, a
hidden state size of 1000, and a dropout rate of 0.2.

1The CJ parser is here https://github.com/BLLIP/bllip-
parser and we used the pretrained model ”WSJ+Gigaword-v2”.

2We use the toolkit: https://github.com/isi-nlp/Zoph RNN

Parser
WSJ 23
F1-score

valid trees
(out of 2416)

CJ Parser 92.1 2416
E2P 89.6 2362
(Vinyals et al., 2015) 90.5 unk

Table 3: Labeled F1-scores of different parsers on WSJ Section

23. The F1-score is calculated on valid trees only.

For auto-encoders and translation models, we train
8 epochs. The learning rate is initially set as 0.35
and starts to halve after 6 epochs. For E2P model,
we train 15 epochs. The learning rate is initialized
as 0.35 and starts to decay by 0.7 once the perplexity
on a development set starts to increase. All parame-
ters are re-scaled when the global norm is larger than
5. All models are non-attentional, because we want
the encoding vector to summarize the whole source
sentence. Table 4 shows the settings of each model
and reports the BLEU scores.

5 Syntactic Label Prediction

5.1 Experimental Setup

In this section, we test whether different seq2seq
systems learn to encode syntactic information about
the source (English) sentence.

With 1000 hidden states, it is impractical to in-
vestigate each unit one by one or draw a heat map of
the whole vector. Instead, we use the hidden states
to predict syntactic labels of source sentences via lo-
gistic regression. For multi-class prediction, we use
a one-vs-rest mechanism. Furthermore, to identify
a subset of units responsible for certain syntactic la-
bels, we use the recursive feature elimination (RFE)
strategy: the logistic regression is first trained using

1528

Label Train Test
Number

of
classes

Most
frequent

label
Voice 9000 1000 2 Active
Tense 9000 1000 2 Non-past
TSS 9000 1000 20 NP-VP
POS 87366 9317 45 NN
SPC 81292 8706 24 NP

Table 4: Corpus statistics for five syntactic labels.

Figure 2: The five syntactic labels for sentence “This time , the

firms were ready”.

all 1000 hidden states, after which we recursively
prune those units whose weights’ absolute values are
smallest.

We extract three sentence-level syntactic labels:
1. Voice: active or passive.
2. Tense: past or non-past.
3. TSS: Top level syntactic sequence of the con-

stituent tree. We use the most frequent 19 se-
quences (“NP-VP”, “PP-NP-VP”, etc.) and la-
bel the remainder as “Other”.

and two word-level syntactic labels:
1. POS: Part-of-speech tags for each word.
2. SPC: The smallest phrase constituent that

above each word.
Both voice and tense labels are generated using

rule-based systems based on the constituent tree of
the sentence.

Figure 2 provides examples of our five syntactic
labels. When predicting these syntactic labels using
corresponding cell states, we split the dataset into

training and test sets. Table 4 shows statistics of each
labels.

For a source sentence s,

s = [w1, ..., wi, ..., wn]

the two-layer encoder will generate an array of cell
vectors c during encoding,

c = [(c1,0, c1,1), ..., (ci,0, ci,1), ..., (cn,0, cn,1)]

We extract a sentence-level syntactic labelLs, and
predict it using the encoding cell states that will be
fed into the decoder:

Ls = g(cn,0) or Ls = g(cn,1)

where g(·) is the logistic regression.
Similarly, for extracting word-level syntactic la-

bels:

Lw = [Lw1, ..., Lwi, ..., Lwn]

we predict each label Lwi using the cell states im-
mediately after encoding the word wi:

Lwi = g(ci,0) or LWi = g(ci,1)

5.2 Result Analysis
Test-set prediction accuracy is shown in Figure 3.
For voice and tense, the prediction accuracy of two
auto-encoders is almost same as the accuracy of ma-
jority class, indicating that their encoders do not
learn to record this information. By contrast, both
the neural parser and the NMT systems achieve ap-
proximately 95% accuracy. When predicting the
top-level syntactic sequence (TSS) of the whole sen-
tence, the Part-of-Speech tags (POS), and small-
est phrase constituent (SPC) for each word, all five
models achieve an accuracy higher than that of ma-
jority class, but there is still a large gap between the
accuracy of NMT systems and auto-encoders. These
observations indicate that the NMT encoder learns
significant sentence-level syntactic information—it
can distinguish voice and tense of the source sen-
tence, and it knows the sentence’s structure to some
extent. At the word level, the NMT’s encoder also
tends to cluster together the words that have similar
POS and SPC labels.

Different syntactic information tends to be stored
at different layers in the NMT models. For word-
level syntactic labels, POS and SPC, the accuracy
of the lower layer’s cell states (C0) is higher than
that of the upper level (C1). For the sentence-level

1529

E2P
E2F

E2G
E2E

PE2PE

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

u
ra

cy

Voice

E2P
E2F

E2G
E2E

PE2PE

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

u
ra

cy

Tense

E2P
E2F

E2G
E2E

PE2PE

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

TSS

E2P
E2F

E2G
E2E

PE2PE

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

POS

E2P
E2F

E2G
E2E

PE2PE

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

SPC

Majority Class
C0 All
C0 Top10
C1 All
C1 Top10

Figure 3: Prediction accuracy of five syntactic labels on test. Each syntactic label is predicted using both the lower-layer cell states

(C0) and higher-layer cell states (C1). For each cell state, we predict each syntactic label using all 1000 units (All), as well as the

top 10 units (Top10) selected by recursive feature elimination. The horizontal blue line is the majority class accuracy.

labels, especially tense, the accuracy of C1 is larger
than C0. This suggests that the local features are
somehow preserved in the lower layer whereas more
global, abstract information tends to be stored in the
upper layer.

For two-classes labels, such as voice and tense,
the accuracy gap between all units and top-10 units
is small. For other labels, where we use a one-
versus-rest strategy, the gap between all units and
top-10 units is large. However, when predicting
POS, the gap of neural parser (E2P) on the lower
layer (C0) is much smaller. This comparison in-
dicates that a small subset of units explicitly takes
charge of POS tags in the neural parser, whereas for
NMT, the POS info is more distributed and implicit.

There are no large differences between encoders
of E2F and E2G regarding syntactic information.

Figure 4: E2F and E2F2P share the same English encoder.

When training E2F2P, we only update the parameters of lin-

earized tree decoder, keeping the English encoder’s parameters

fixed.

1530

6 Extract Syntactic Trees from Encoder

6.1 Experimental Setup
We now turn to whether NMT systems capture
deeper syntactic structure as a by-product of learn-
ing to translate from English to another language.
We do this by predicting full parse trees from the in-
formation stored in encoding vectors. Since this is
a structured prediction problem, we can no longer
use logistic regression. Instead, we extract a con-
stituency parse tree from the encoding vector of a
model E2X by using a new neural parser E2X2P
with the following steps:

1. Take the E2X encoder as the encoder of the new
model E2X2P.

2. Initialize the E2X2P decoder parameters with a
uniform distribution.

3. Fine-tune the E2X2P decoder (while keeping
its encoder parameters fixed), using the CJ cor-
pus, the same corpus used to train E2P .

Figure 4 shows how we construct model E2F2P
from model E2F. For fine-tuning, we use the same
dropout rate and learning rate updating configura-
tion for E2P as described in Section 4.

6.2 Evaluation
We train four new neural parsers using the encoders
of the two auto-encoders and the two NMT models
respectively. We use three tools to evaluate and ana-
lyze:

1. The EVALB tool3 to calculate the labeled
bracketing F1-score.

2. The zxx package4 to calculate Tree edit dis-
tance (TED) (Zhang and Shasha, 1989).

3. The Berkeley Parser Analyser5 (Kummerfeld et
al., 2012) to analyze parsing error types.

The linearized parse trees generated by these neu-
ral parsers are not always well-formed. They can be
split into the following categories:
• Malformed trees: The linearized sequence can

not be converted back into a tree, due to miss-
ing or mismatched brackets.
• Well-formed trees: The sequence can be con-

verted back into a tree. Tree edit distance can
be calculated on this category.

3http://nlp.cs.nyu.edu/evalb/
4https://github.com/timtadh/zhang-shasha
5https://github.com/jkkummerfeld/berkeley-parser-analyser

– Wrong length trees: The number of tree
leaves does not match the number of
source-sentence tokens.

– Correct length trees: The number of tree
leaves does match the number of source-
sentence tokens.

Before we move to results, we emphasize the fol-
lowing points:

First, compared to the linear classifier used in Sec-
tion 5, the retrained decoder for predicting a lin-
earized parse tree is a highly non-linear method.
The syntactic prediction/parsing performance will
increase due to such non-linearity. Thus, we do
not make conclusions based only on absolute per-
formance values, but also on a comparison against
the designed baseline models. An improvement over
the lower bound models indicates that the encoder
learns syntactic information, whereas a decline from
the upper bound model shows that the encoder loses
certain syntactic information.

Second, the NMT’s encoder maps a plain English
sentence into a high-dimensional vector, and our
goal is to test whether the projected vectors form
a more syntactically-related manifold in the high-
dimensional space. In practice, one could also pre-
dict parse structure for the E2E in two steps: (1) use
E2E’s decoder to recover the original English sen-
tence, and (2) parse that sentence with the CJ parser.
But in this way, the manifold structure in the high-
dimensional space is destroyed during the mapping.

6.2.1 Result Analysis
Table 5 reports perplexity on training and devel-

opment sets, the labeled F1-score on WSJ Section
23, and the Tree Edit Distance (TED) of various sys-
tems.

Tree Edit Distance (TED) calculates the
minimum-cost sequence of node edit opera-
tions (delete, insert, rename) between a gold tree
and a test tree. When decoding with beam size
10, the four new neural parsers can generate well-
formed trees for almost all the 2416 sentences in the
WSJ section 23. This makes TED a robust metric
to evaluate the overall performance of each parser.
Table 5 reports the average TED per sentence. Trees
extracted from E2E and PE2PE encoding vectors
(via models E2E2P and PE2PE2P, respectively)
get TED above 30, whereas the NMT systems get

1531

Model
Perplexity
on Train

Perplexity
on WSJ 22

Labeled F1
on WSJ23

EVALB-trees
(out of 2416)

Average TED
per sentence

Well-formed
trees

(out of 2416)
PE2PE2P 1.83 1.92 46.64 818 34.43 2416

E2E2P 1.69 1.77 59.35 796 31.25 2416
E2G2P 1.39 1.41 80.34 974 17.11 2340
E2F2P 1.36 1.38 79.27 1093 17.77 2415

E2P 1.11 1.18 89.61 2362 11.50 2415
Table 5: Perplexity, labeled F1-score, and Tree Edit Distance (TED) of various systems. Labeled F1-scores are calculated on

EVALB-trees only. Tree edit distances are calculated on the well-formed trees only. EVALB-trees are those whose number of

leaves match the number of words in the source sentence, and are otherwise accepted by standard Treebank evaluation software.

approximately 17 TED.
Among the well-formed trees, around half have

a mismatch between number of leaves and number
of tokens in the source sentence. The labeled F1-
score is reported over the rest of the sentences only.
Though biased, this still reflects the overall perfor-
mance: we achieve around 80 F1 with NMT en-
coding vectors, much higher than with the E2E and
PE2PE encoding vectors (below 60).

6.2.2 Fine-grained Analysis
Besides answering whether the NMT encoders

learn syntactic information, it is interesting to know
what kind of syntactic information is extracted and
what is not.

As Table 5 shows, different parsers generate dif-
ferent numbers of trees that are acceptable to Tree-
bank evaluation software (“EVALB-trees”), having
the correct number of leaves and so forth. We se-
lect the intersection set of different models’ EVALB-
trees. We get a total of 569 shared EVALB-trees.
The average length of the corresponding sentence is
12.54 and the longest sentence has 40 tokens. The
average length of all 2416 sentences in WSJ section
23 is 23.46, and the longest is 67. As we do not ap-
ply an attention model for these neural parsers, it is
difficult to handle longer sentences. While the in-
tersection set may be biased, it allows us to explore
how different encoders decide to capture syntax on
short sentences.

Table 6 shows the labeled F1-scores and Part-of-
Speech tagging accuracy on the intersection set. The
NMT encoder extraction achieves around 86 per-
cent tagging accuracy, far beyond that of the auto-
encoder based parser.

Model Labeled F1
POS

Tagging Accuracy
PE2PE2P 58.67 54.32

E2E2P 70.91 68.03
E2G2P 85.36 85.30
E2F2P 86.62 87.09

E2P 93.76 96.00
Table 6: Labeled F1-scores and POS tagging accuracy on the

intersection set of EVALB-trees of different parsers. There are

569 trees in the intersection, and the average length of corre-

sponding English sentence is 12.54.

Besides the tagging accuracy, we also utilize the
Berkeley Parser Analyzer (Kummerfeld et al., 2012)
to gain a more linguistic understanding of predicted
parses. Like TED, the Berkeley Parser Analyzer is
based on tree transformation. It repairs the parse tree
via a sequence of sub-tree movements, node inser-
tions and deletions. During this process, multiple
bracket errors are fixed, and it associates this group
of node errors with a linguistically meaningful error
type.

The first column of Figure 5 shows the average
number of bracket errors per sentence for model E2P
on the intersection set. For other models, we report
the ratio of each model to model E2P. Kummerfeld
et al. (2013) and Kummerfeld et al. (2012) give de-
scriptions of different error types. The NMT-based
predicted parses introduce around twice the brack-
eting errors for the first 10 error types, whereas for
“Sense Confusion”, they bring more than 16 times
bracket errors. “Sense confusion” is the case where
the head word of a phrase receives the wrong POS,

1532

Sense Confusion
Single Word Phrase

Different label
Noun boundary error

NP Internal
Unary

Modifier Attach
Verb taking wrong arguments

PP Attach
VP Attach

Co-ordination

0.057
0.150
0.137
0.022
0.053
0.123
0.205
0.035
0.242
0.024
0.081

E2P
(Ave. Bracket Err)

16.58
2.74
2.52
2.20
2.17
1.98
1.46
1.44
1.44
1.36
1.14

E2F2P
(Ratio)

17.77
3.31
2.42
3.20
1.83
2.25
2.03
2.75
1.27
1.27
1.05

E2G2P
(Ratio)

23.77
5.01
5.00
3.10
3.17
3.21
1.69
3.50
1.82
4.55
1.78

E2E2P
(Ratio)

32.19
5.12
5.26
5.10
3.58
3.71
1.82
2.44
2.27
5.64
0.22

PE2PE2P
(Ratio)

Figure 5: For model E2P (the red bar), we show the average number of bracket errors per sentence due to the top 11 error types.

For other models, we show the ratio of each model’s average number of bracket errors to that of model E2P . Errors analyzed on

the intersection set. The table is sorted based on the ratios of the E2F2P model.

resulting in an attachment error. Figure 6 shows an
example.

Even though we can predict 86 percent of parts-
of-speech correctly from NMT encoding vectors, the
other 14 percent introduce quite a few attachment
errors. NMT sentence vectors encode a lot of syntax,
but they still cannot grasp these subtle details.

7 Conclusion

We investigate whether NMT systems learn source-
language syntax as a by-product of training on string
pairs. We find that both local and global syntactic in-
formation about source sentences is captured by the
encoder. Different types of syntax is stored in dif-
ferent layers, with different concentration degrees.
We also carry out a fine-grained analysis of the con-
stituency trees extracted from the encoder, highlight-
ing what syntactic information is still missing.

Acknowledgments

This work was supported by ARL/ARO (W911NF-
10-1-0533) and DARPA (HR0011-15-C-0115).

References

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Matous Machacek,
Christof Monz, Pavel Pecina, Matt Post, Herv Saint-
Amand, Radu Soricut, and Lucia Specia, editors.
2014. Proc. Ninth Workshop on Statistical Machine
Translation.

Figure 6: Example of Sense Confusion. The POS tag for word

“beyond” is predicted as “RB” instead of “IN”, resulting in a

missing prepositional phrase.

1533

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and MaxEnt discriminative rerank-
ing. In Proc. ACL.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using RNN encoder-decoder for statistical ma-
chine translation. In Proc. EMNLP.

Brooke Cowan, Ivona Kučerová, and Michael Collins.
2006. A discriminative model for tree-to-tree trans-
lation. In Proc. EMNLP.

Steve DeNeefe, Kevin Knight, Wei Wang, and Daniel
Marcu. 2007. What can syntax-based MT learn from
phrase-based MT? In Proc. EMNLP-CoNLL.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What ’ s in a translation rule ? Infor-
mation Sciences, 2004.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable inference and training of
context-rich syntactic translation models. In Proc.
ACL.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8).

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proc. ACL.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2016.
Visualizing and understanding recurrent networks. In
Proc. ICLR.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proc. EMNLP.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Proc. NIPS.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proc.
NAACL.

Jonathan K. Kummerfeld, David Hall, James R. Curran,
and Dan Klein. 2012. Parser showdown at the Wall
Street Corral: An empirical investigation of error types
in parser output. In Proc. EMNLP-CoNLL.

Jonathan K. Kummerfeld, Daniel Tse, James R Curran,
and Dan Klein. 2013. An empirical examination of
challenges in Chinese parsing. In Proc. ACL.

Qv Le and Tomas Mikolov. 2014. Distributed represen-
tations of sentences and documents. In Proc. ICML.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models in
nlp. In Proc. NAACL.

Yang Liu, Qun Liu, and Yajuan Lü. 2011. Adjoining
tree-to-string translation. In Proc. ACL.

Mitchell P Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proc. ACL.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 shared task on Parsing the Web. In Notes
of the First Workshop on Syntactic Analysis of Non-
Canonical Language (SANCL).

Sameer S Pradhan and Nianwen Xue. 2009. Ontonotes:
the 90% solution. In Proc. NAACL.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proc. EMNLP.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Proc. NIPS.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research, 9.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar
as a foreign language. In Proc. NIPS.

Kaizhong Zhang and Dennis Shasha. 1989. Simple fast
algorithms for the editing distance between trees and
related problems. SIAM Journal on Computing, 18(6).

Han Zhao, Zhengdong Lu, and Pascal Poupart. 2015.
Self-adaptive hierarchical sentence model. In Proc. IJ-
CAI.

1534

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1535–1545,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Exploiting Source-side Monolingual Data in Neural Machine Translation

Jiajun Zhang† and Chengqing Zong†‡
†University of Chinese Academy of Sciences, Beijing, China

National Laboratory of Pattern Recognition, CASIA, Beijing, China
‡CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China

{jjzhang,cqzong}@nlpr.ia.ac.cn

Abstract

Neural Machine Translation (NMT) based on
the encoder-decoder architecture has recently
become a new paradigm. Researchers have
proven that the target-side monolingual data
can greatly enhance the decoder model of
NMT. However, the source-side monolingual
data is not fully explored although it should
be useful to strengthen the encoder model of
NMT, especially when the parallel corpus is
far from sufficient. In this paper, we propose
two approaches to make full use of the source-
side monolingual data in NMT. The first ap-
proach employs the self-learning algorithm to
generate the synthetic large-scale parallel data
for NMT training. The second approach ap-
plies the multi-task learning framework using
two NMTs to predict the translation and the
reordered source-side monolingual sentences
simultaneously. The extensive experiments
demonstrate that the proposed methods ob-
tain significant improvements over the strong
attention-based NMT.

1 Introduction

Neural Machine Translation (NMT) following the
encoder-decoder architecture proposed by (Kalch-
brenner and Blunsom, 2013; Cho et al., 2014) has
become the novel paradigm and obtained state-of-
the-art translation quality for several language pairs,
such as English-to-French and English-to-German
(Sutskever et al., 2014; Bahdanau et al., 2014; Lu-
ong et al., 2015b; Sennrich et al., 2015). This end-
to-end NMT typically consists of two recurrent neu-
ral networks. The encoder network maps the source

sentence of variable length into the context vector
representation; and the decoder network generates
the target translation word by word starting from the
context vector.

Currently, most NMT methods utilize only the
sentence aligned parallel corpus for model train-
ing, which limits the capacity of the model. Re-
cently, inspired by the successful application of tar-
get monolingual data in conventional statistical ma-
chine translation (SMT) (Koehn et al., 2007; Chi-
ang, 2007), Gulcehre et al. (2015) and Sennrich
et al. (2015) attempt to enhance the decoder net-
work model of NMT by incorporating the target-
side monolingual data so as to boost the transla-
tion fluency. They report promising improvements
by using the target-side monolingual data. In con-
trast, the source-side monolingual data is not fully
explored. Luong et al. (2015a) adopt a simple
autoencoder or skip-thought method (Kiros et al.,
2015) to exploit the source-side monolingual data,
but no significant BLEU gains are reported. Note
that, in parallel to our efforts, Cheng et al. (2016b)
have explored the usage of both source and target
monolingual data using a similar semi-supervised
reconstruction method, in which two NMTs are em-
ployed. One translates the source-side monolingual
data into target translations, and the other recon-
structs the source-side monolingual data from the
target translations.

In this work, we investigate the usage of the
source-side large-scale monolingual data in NMT
and aim at greatly enhancing its encoder network so
that we can obtain high quality context vector rep-
resentations. To achieve this goal, we propose two

1535

approaches. Inspired by (Ueffing et al., 2007; Wu
et al., 2008) handling source-side monolingual cor-
pus in SMT and (Sennrich et al., 2015) exploiting
target-side monolingual data in NMT, the first ap-
proach adopts the self-learning algorithm to gener-
ate adequate synthetic parallel data for NMT train-
ing. In this method, we first build the baseline ma-
chine translation system with the available aligned
sentence pairs, and then obtain more synthetic par-
allel data by translating the source-side monolingual
sentences with the baseline system.

The proposed second approach applies the multi-
task learning framework to predict the target trans-
lation and the reordered source-side sentences at
the same time. The main idea behind is that we
build two NMTs: one is trained on the aligned sen-
tence pairs to predict the target sentence from the
source sentence, while the other is trained on the
source-side monolingual corpus to predict the re-
orderd source sentence from original source sen-
tences1. It should be noted that the two NMTs share
the same encoder network so that they can help each
other to strengthen the encoder model.

In this paper, we make the following contribu-
tions:

• To fully investigate the source-side monolin-
gual data in NMT, we propose and compare
two methods. One attempts to enhance the en-
coder network of NMT by producing rich syn-
thetic parallel corpus using a self-learning algo-
rithm, and the other tries to perform machine
translation and source sentence reordering si-
multaneously with a multi-task learning archi-
tecture.

• The extensive experiments on Chinese-to-
English translation show that our proposed
methods significantly outperform the strong
NMT baseline augmented with the attention
mechanism. We also find that the usage of the
source-side monolingual data in NMT is more
effective than that in SMT. Furthermore, we
find that more monolingual data does not al-
ways improve the translation quality and only
relevant monolingual data helps.

1We reorder all the source-side monolingual sentences so as
to make them close to target language in word order.

start 𝑧𝑖−1

𝑦𝑖−1

𝑧𝑖

𝑦𝑖

𝑧1

𝑦1

𝑥1 𝑥2 𝑥𝑇𝑥

ℎ𝑇𝑥

ℎ𝑇𝑥

ℎ2

ℎ2

ℎ1

ℎ1

⨁

𝛼𝑖1 𝛼𝑖2 𝛼𝑖𝑇𝑥

𝑐𝑖

encoder

decoder

attention

⋯

⋯

⋯

⋯

Figure 1: The encoder-decoder NMT with attention.

2 Neural Machine Translation

Our approach on using source-side monolingual cor-
pora can be applied in any neural machine trans-
lation as long as it employs the encoder-decoder
framework. Without loss of generality, we use the
attention-based NMT proposed by (Bahdanau et al.,
2014), which utilizes recurrent neural networks for
both encoder and decoder as illustrated in Fig. 1.

The encoder-decoder NMT first encodes the
source sentence X = (x1, x2, · · · , xTx) into a se-
quence of context vectors C = (h1,h2, · · · ,hTx)
whose size varies with respect to the source sen-
tence length. Then, the encoder-decoder NMT de-
codes from the context vectors C and generates tar-
get translation Y = (y1, y2, · · · , yTy) one word each
time by maximizing the probability of p(yi|y<i, C).
Note that xj (yi) is word embedding corresponding
to the jth (ith) word in the source (target) sentence.
Next, we briefly review the encoder introducing how
to obtain C and the decoder addressing how to cal-
culate p(yi|y<i, C).

Encoder: The context vectors C are generated
by the encoder using a pair of recurrent neural net-
works (RNN) which consists of a forward RNN
and a backward RNN. The forward RNN operates
left-to-right over the source sentence from the first
word, resulting in the forward context vectors Cf =

(
−→
h 1,
−→
h 2, · · · ,

−→
h Tx), in which

−→
h j = RNN(

−→
h j−1, xj) (1)

←−
h j can be calculated similarly.

1536

RNN can be a Gated Recurrent Unit (GRU) (Cho
et al., 2014) or a Long Short-Term Memory Unit
(LSTM) (Hochreiter and Schmidhuber, 1997). At
each position j of the source sentence, the context
vector hj is defined as the concatenation of the for-
ward and backward context vectors.

Decoder: The conditional probability
p(yi|y<i, C) is computed in different ways ac-
cording to the choice of the context C at time i. In
(Cho et al., 2014), the authors choose C = hTx ,
while Bahdanau et al. (2014) use different context ci
at different time step and the conditional probability
will become:

p(yi|y<i, C) = p(yi|y<i, ci) = g(yi−1, zi, ci) (2)

where zi is the ith hidden state of the decoder and
is calculated conditioning on the previous hidden
state zi−1, previous output yi−1 and and the source
context vector ci at time i:

zi = RNN(zi−1, yi−1, ci) (3)

In attention-based NMT, ci is computed as the
weighted sum of the source-side context vectors, just
as illustrated in the top half of Fig. 1.

All the parameters of the encoder-decoder NMT
are optimized to maximize the following condi-
tional log-likelihood of the sentence aligned bilin-
gual data:

L(θ) = 1

N

N∑

n=1

Ty∑

i=1

logp(y
(n)
i |y

(n)
<i , X

(n), θ) (4)

3 Incorporating Source-side Monolingual
Data in NMT

We can see from the above objective function that all
the network parameters are only optimized on the
sentence aligned parallel corpus. It is well known
that more related data of high quality leads to better
and more robust network models. However, bilin-
gual data is scarce in many languages (or domains).
It becomes a key issue how to improve the encoder
and decoder networks using other data besides the
parallel sentence pairs. Gulcehre et al. (2015) and
Sennrich et al. (2015) have tried to fine-tune the

decoder neural network with target-side large-scale
monolingual data and they report remarkable perfor-
mance improvement with the enhanced decoder. In
contrast, we believe that the encoder part of NMT
can also be greatly strengthened with the source-side
monolingual data.

To investigate fully the source-side monolingual
data in improving the encoder network of NMT, we
propose two approaches: the first one employs the
self-learning algorithm to provide synthetic parallel
data in which the target part is obtained through au-
tomatically translating the source-side monolingual
data, which we refer to as self-learning method. The
second one applies the multi-task learning frame-
work that consists of two NMTs sharing the same
encoder network to simultaneously train one NMT
model on bilingual data and the other sentence
reordering NMT model2 on source-side monolin-
gual data, which we refer to as sentence reordering
method.

3.1 Self-learning Method

Given the sentence aligned bitext Db =

{(X(n)
b , Y

(n)
b)}Nn=1 in which N is not big enough,

we have the source-side large-scale monolingual
data Dsm = {Xm

sm}Mm=1 which is related to the
bitext and M � N .

Our goal is to generate much more bilingual data
usingDb andDsm. From the view of machine learn-
ing, we are equipped with some labelled dataDb and
plenty of unlabelled data Dsm, and we aim to obtain
more labelled data for training better models. Self-
learning is a simple but effective algorithm to tackle
this issue. It first establishes a baseline with labelled
data and then adopts the baseline to predict the la-
bels of the unlabelled data. Finally, the unlabelled
data together with the predicted labels become new
labelled data.

In our scenario, the self-learning algorithm per-
form the following three steps . First, a baseline ma-
chine translation (MT) system (can use any transla-
tion model, SMT or NMT) is built with the given
bilingual data Db. Second, the baseline MT sys-

2NMT is essentially a sequence-to-sequence prediction
model. In most cases, the input sequence is different from the
output sequence. In the sentence reordering NMT, we require
that output sequence to be the reordered input sentences which
are close to English word order.

1537

𝑥1 𝑥2 𝑥𝑇𝑥

ℎ𝑇𝑥

ℎ𝑇𝑥

ℎ2

ℎ2

ℎ1

ℎ1 ⋯

⋯

𝑥′1 𝑥′2 𝑥′𝑇𝑥

𝑠𝑇𝑥 𝑠2 𝑠1 ⋯

𝑦1 𝑦2 𝑦𝑇𝑦

𝑧𝑇𝑦 𝑧2 𝑧1 ⋯

reordering translation

reordered source-side

monolingual data

sentence aligned

bilingual data

Figure 2: Multi-task learning framework to use source-side

monolingual data in NMT, which includes a translation model

and a sentence reordering model.

tem automatically translates the source-side mono-
lingual sentences Dsm into target translations Dtt =
{(Y m

tt)}Mm=1, and further pairs Dsm with Dtt re-
sulting in the synthetic parallel corpus Dsyn =
{(Xm

sm, Y
m
tt)}Mm=1. Third, the synthetic parallel cor-

pus Dsyn plus the original bitext Db are combined
together to train the new NMT model.

In principle, we can apply any MT system as the
baseline to generate the synthetic bilingual data. In
accordance with the translation model we focus on
in this work, we employ NMT as the baseline MT
system. Note that the synthetic target parts may neg-
atively influence the decoder model of NMT. To ad-
dress this problem, we can distinguish original bitext
from the synthetic bilingual sentences during NMT
training by freezing the parameters of the decoder
network for the synthetic data.

It is worthy to discuss why self-learning algo-
rithm can improve the encoder model of NMT. Even
though we requireDsm to share the same source lan-
guage vocabulary as Db and no new word transla-
tions can be generated, the source-side monolingual
data provides much more permutations of words in
the vocabulary. Our RNN encoder network model
will be optimized to well explain all of the word per-
mutations. Thus, the encoder model of NMT can be
enhanced for better generalization.

3.2 Sentence Reordering Method

The self-learning algorithm needs to translate first
the large-scale source-side monolingual data. A nat-

ural question arises that whether can we improve
the encoder model of NMT using just source-side
monolingual corpora rather than the synthetic par-
allel data. Luong et al. (2015a) attempt to lever-
age source-side monolingual data in NMT using a
simple autoencoder and skip-thought vectors. How-
ever, no promising results are reported. We believe
that the reason lies in two aspects: 1) the large-scale
monolingual data is not carefully selected; and 2)
the adopted model is relatively simple. In this work,
we propose to apply the multi-task learning method
which designs a parameter sharing neural network
framework to perform two tasks: machine transla-
tion and source sentence reordering. Fig.2 illus-
trates the overview of our framework for source-side
monolingual data usage.

As shown in Fig. 2, our framework consists of
two neural networks that shares the same encoder
model but employs two different decoder models for
machine translation and sentence reordering respec-
tively. For the machine translation task trained on
the sentence aligned parallel data Db, the network
parameters are optimized to maximize the condi-
tional probability of the target sentence Y (n)

b given a
source sentenceX(n)

b , namely argmaxp(Y (n)
b |X(n)

b).
As for the sentence reordering task trained on

source-side monolingual data Dsm, we regard it as a
special machine translation task in which the target
output is just the reordered source sentence, Y (m)

sm =

X
′(m)
sm . X

′(m)
sm is obtained from X

(m)
sm by using the

pre-ordering rules proposed by (Wang et al., 2007),
which can permutate the words of the source sen-
tence so as to approximate the target language word
order3. In this way, the sentence reordering NMT is
more powerful than an autoencoder. Using the NMT
paradigm, the shared encoder network is leveraged
to learn the deep representation C(n)

sm of the source
sentenceX(n)

sm , and the decoder network is employed
to predict the reordered source sentence from the
deep representation C

(n)
sm (here X(n)

sm ∈ Dsm) by
maximizing p(X

′(n)
sm |X(n)

sm). Note that the above two

3The pre-ordering rules are obtained from the parsed source
trees which heavily depend on the accuracy and efficiency of the
parser. In fact, it takes us lots of time (even longer than synthetic
parallel data generation) to parse all the source-side monolin-
gual data. In the future, we attempt to design a more efficient
pre-ordering method relying only on the bilingual training data.

1538

tasks share the same encoder model to obtain the en-
coding of the source sentences. Accordingly, the
overall objective function of this multi-task learn-
ing is the summation of log probabilities of machine
translation and sentence reordering:

L(θ) = 1

N

N∑

n=1

Ty∑

i=1

logp(y
(n)
i |y

(n)
<i , X

(n), θ)

+
1

M

M∑

m=1

TX∑

i=1

logp(X
′(m)
i |X

′(m)
<i , X(m), θ)

(5)

where (θ = θenc, θdecT , θdecR). θenc is the param-
eter collection of source language encoder network,
θdecT denotes the parameter set of the decoder net-
work for translation, and θdecR represents the param-
eters of the decoder network for sentence reordering.

Intuitively, the sentence reordering task is easier
than the translation task. Furthermore, in this paper,
we pay much more attention on the translation task
compared to the sentence reordering task. Consider-
ing these, we distinguish these two tasks during the
parameter optimization process. It is performed us-
ing an alternate iteration strategy. For each iteration,
we first optimize the encoder-decoder network pa-
rameters in the reordering task for one epoch. The
learnt encoder network parameters are employed to
initialize the encoder model for the translation task.
Then, we learn the encoder-decoder network param-
eters in the translation task for several epochs4. The
new encoder parameters are then used to initialize
the encoder model for the reordering task. We con-
tinue the iteration until the constraint (e.g. iteration
number or no parameter change) is satisfied. The
weakness is that this method is less efficient than the
self-learning approach.

4 Experimental Settings

In this section we describe the data set used in our
experiments, data preprocessing, the training and
evaluation details, and all the translation methods we
compare in experiments.

4We rune four epochs for the translation task in each itera-
tion.

4.1 Dataset
We perform two tasks on Chinese-to-English trans-
lation: one for small data set and the other for
large-scale data set. Our small training data in-
cludes 0.63M sentence pairs (after data cleaning)
extracted from LDC corpora5. The large-scale data
set contains about 2.1M sentence pairs including the
small training data. For validation, we choose NIST
2003 (MT03) dataset. For testing, we use NIST
2004 (MT04), NIST 2005 (MT05) and NIST 2006
(MT06) datasets. As for the source-side monolin-
gual data, we collect about 20M Chinese sentences
from LDC and we retain the sentences in which
more than 50% words should appear in the source-
side portion of the bilingual training data, resulting
in 6.5M monolingual sentences for small training
data set (12M for large-scale training data set) or-
dered by the word hit rate.

4.2 Data Preprocessing
We apply word-level translation in experiments. The
Chinese sentences are word segmented using Stan-
ford Word Segmenter6. To pre-order the Chinese
sentences using the syntax-based reordering method
proposed by (Wang et al., 2007), we utilize the
Berkeley parser (Petrov et al., 2006). The English
sentences are tokenized using the tokenizer script
from the Moses decoder7. To speed up the training
procedure, we clean the training data and remove all
the sentences of length over 50 words. We limit the
vocabulary in both Chinese and English to the most
40K words and all the out-of-vocabulary words are
replaced with UNK.

4.3 Training and Evaluation Details
Each NMT model is trained on GPU K40 us-
ing stochastic gradient decent algorithm AdaGrad
(Duchi et al., 2011). We use mini batch size of 32.
The word embedding dimension of source and tar-
get language is 500 and the size of hidden layer is
set to 1024. The training time for each model ranges
from 5 days to 10 days for small training data set and
ranges from 8 days to 15 days for large training data

5LDC2000T50, LDC2002L27, LDC2002T01,
LDC2002E18, LDC2003E07, LDC2003E14, LDC2003T17,
LDC2004T07.

6http://nlp.stanford.edu/software/segmenter.shtml
7http://www.statmt.org/moses/

1539

Method MT03 MT04 MT05 MT06
Moses 30.30 31.04 28.19 30.04
RNNSearch 28.38 30.85 26.78 29.27
RNNSearch-Mono-SL (25%) 29.65 31.92 28.65 29.86
RNNSearch-Mono-SL (50%) 32.43 33.16 30.43 32.35
RNNSearch-Mono-SL (75%) 30.24 31.18 29.33 28.82
RNNSearch-Mono-SL (100%) 29.97 30.78 26.45 28.06
RNNSearch-Mono-MTL (25%) 31.68 32.51 29.8 31.29
RNNSearch-Mono-MTL (50%) 33.38 34.30 31.57 33.40
RNNSearch-Mono-MTL (75%) 31.69 32.83 28.17 30.26
RNNSearch-Mono-MTL (100%) 30.31 30.62 27.23 28.85
RNNSearch-Mono-Autoencoder (50%) 31.55 32.07 28.19 30.85
RNNSearch-Mono-Autoencoder (100%) 27.81 30.32 25.84 27.73

Table 1: Translation results (BLEU score) for different translation methods. For our methods exploring the source-side monolingual

data, we investigate the performance change as we choose different scales of monolingual data (e.g. from top 25% to 100%

according to the word coverage of the monolingual sentence in source language vocabulary of bilingual training corpus).

set8. We use case-insensitive 4-gram BLEU score as
the evaluation metric (Papineni et al., 2002).

4.4 Translation Methods

In the experiments, we compare our method with
conventional SMT model and a strong NMT model.
We list all the translation methods as follows:

• Moses: It is the state-of-the-art phrase-based
SMT system (Koehn et al., 2007). We use its
default configuration and train a 4-gram lan-
guage model on the target portion of the bilin-
gual training data.

• RNNSearch: It is an attention-based NMT sys-
tem (Bahdanau et al., 2014).

• RNNSearch-Mono-SL: It is our NMT system
which makes use of the source-side large-scale
monolingual data by applying the self-learning
algorithm.

• RNNSearch-Mono-MTL: It is our NMT sys-
tem that exploits the source-side monolingual
data by using our multi-task learning frame-
work which performs machine translation and
sentence reordering at the same time.

8It needs another 5 to 10 days when adding millions of
monolingual data.

• RNNSearch-Mono-Autoencoder: It also ap-
plies the multi-task learning framework in
which a simple autoencoder is adopted on
source-side monolingual data (Luong et al.,
2015a).

5 Translation Results on Small Data

For translation quality evaluation, we attempt to fig-
ure out four questions: 1) Can the source-side mono-
lingual data improve the neural machine translation?
2) Could the improved NMT outperform the state-
of-the-art phrase-based SMT? 3) Whether it is true
that the more the source-side monolingual data the
better the translation quality? 4) Which MT model
is more suitable to incorporate source-side monolin-
gual data: SMT or NMT?

5.1 Effects of Source-side Monolingual Data in
NMT

Table 1 reports the translation quality for different
methods. Comparing the first two lines in Table
1, it is obvious that the NMT method RNNSearch
performs much worse than the SMT model Moses
on Chinese-to-English translation. The gap is as
large as approximately 2.0 BLEU points (28.38 vs.
30.30). We speculate that the encoder-decoder net-
work models of NMT are not well optimized due to
insufficient bilingual training data.

The focus of this work is to figure out whether

1540

the encoder model of NMT can be improved using
source-side monolingual data and further boost the
translation quality. The four lines (3-6 in Table 1)
show the BLEU scores when applying self-learning
algorithm to incorporate the source-side monolin-
gual data. Clearly, RNNSearch-Mono-SL outper-
forms RNNSearch in most cases. The best perfor-
mance is obtained if the top 50% monolingual data is
used. The biggest improvement is up to 4.05 BLEU
points (32.43 vs. 28.38 on MT03) and it also signif-
icantly outperforms Moses.

When employing our multi-task learning frame-
work to incorporate source-side monolingual data,
the translation quality can be further improved
(Lines 7-10 in Table 1). For example, RNNSearch-
Mono-MTL using the top 50% monolingual data can
remarkably outperform the baseline RNNSearch,
with an improvement up to 5.0 BLEU points (33.38
vs. 28.38 on MT03). Moreover, it also performs
significantly better than the state-of-the-art phrase-
based SMT Moses by the largest gains of 3.38 BLEU
points (31.57 vs. 28.19 on MT05). The promis-
ing results demonstrate that source-side monolin-
gual data can improve neural machine translation
and our multi-task learning is more effective.

From the last two lines in Table 1, we can see
that RNNSearch-Mono-Autoencoder can also im-
prove the translation quality by more than 1.0 BLEU
points when using the most related monolingual
data. However, it underperforms RNNSearch-Mono-
MTL by a large gap. It indicates that sentence re-
ordering model is better than sentence reconstruc-
tion model for exploiting the source-side monolin-
gual data.

Note that we sort the source-side monolingual
data according to the word coverage 9 in the bilin-
gual training data. Sentences in the front have more
shared words with the source-side vocabulary of
bilingual training data. We can clearly see from
Table 1 that monolingual data cannot always im-
prove NMT. By adding closely related corpus (25%
to 50%), the methods can achieve better and bet-
ter performance. However, when adding more unre-

9In current work, the simple word coverage is applied to
indicate the similarity. In the future, we plan to use phrase em-
bedding (Zhang et al., 2014) or sentence embedding (Zhang et
al., 2015; Wang et al., 2016a; Wang et al., 2016b) to select the
relevant monolingual data.

0.0 0.2 0.4 0.6 0.8 1.0
Top k*100% source-side monolingual data used

29

30

31

32

33

34

35

BL
EU

 s
co

re
 (%

)

Translation Quality on MT04

Moses
RNNSearch
Moses_mono
RNNSearch_SL
RNNSearch_MTL

Figure 3: Effects of source-side monolingual data on MT04.

lated monolingual data (75% to 100%) which shares
fewer and fewer words in common with the bilin-
gual data, the translation quality becomes worse and
worse, and even worse than the baseline RNNSearch.
Both self-learning algorithm RNNSearch-Mono-SL
and multi-task learning framework RNNSearch-
Mono-MTL have the same trend. This indicates that
only closely related source-side monolingual data
can lead to performance improvement.

5.2 NMT vs. SMT on Using Source-side
Monolingual Data

Although the proposed multi-task learning frame-
work cannot fit SMT because of no shared deep
information between the two tasks in SMT, self-
learning algorithm can also be applied in SMT as
done by (Ueffing et al., 2007; Wu et al., 2008). We
may want to know whether NMT is more effective
in using source-side monolingual data than SMT.

We apply the self-learning algorithm in SMT by
incorporating top 25%, 50%, 75% and 100% syn-
thetic sentence pairs to retrain baseline Moses. Fig.
3 shows the effect of source-side monolingual data
in different methods on test set MT04. The fig-
ure reveals three similar phenomena. First, related
monolingual data can boost the translation quality
no matter whether NMT or SMT is used, but mixing
more unrelated monolingual corpus will decrease
the performance. Second, integrating closely related
source-side monolingual data in NMT (RNNSearch-
SL and RNNSearch-MTL) is much more effective
than that in SMT (e.g. results for top 50%). It
is because that SMT relies on the translation rules

1541

Method MT03 MT04 MT05 MT06
RNNSearch 35.18 36.20 33.21 32.86
RNNSearch-Mono-MTL (50%) 36.32 37.51 35.08 34.26
RNNSearch-Mono-MTL (100%) 35.75 36.74 34.23 33.52

Table 2: Translation results (BLEU score) for different translation methods in large-scale training data.

learnt from the bilingual training data and the syn-
thetic parallel data is obtained by these rules, and
thus the synthetic parallel data cannot generate much
more information. In contrast, NMT provides a
encoder-decoder mechanism and depends heavily
on the source language semantic vector representa-
tions which facilitate the information sharing. Third,
the translation quality changes much more dramati-
cally in NMT methods than that in SMT. It indicates
that the neural network models incline to be more
affected by the quality of the training data.

6 Translation Results on Large-scale Data

A natural question arises that is the source-side
monolingual data still very helpful when we have
much more bilingual training data. We conduct the
large-scale experiments using our proposed multi-
task framework RNNSearch-Mono-MTL. Table 2 re-
ports the results.

We can see from the table that closely related
source-side monolingual data (the top 50%) can
also boost the translation quality on all of the test
sets. The performance improvement can be more
than 1.0 BLEU points. Compared to the results
on small training data, the gains from source-side
monolingual data are much smaller. It is reasonable
since large-scale training data can make the param-
eters of the encoder-decoder parameters much sta-
ble. We can also observe the similar phenomenon
that adding more unrelated monolingual data leads
to decreased translation quality.

7 Related Work

As a new paradigm for machine translation, the
encoder-decoder based NMT has drawn more and
more attention. Most of the existing methods mainly
focus on designing better alignment mechanisms
(attention model) for the decoder network (Cheng
et al., 2016a; Luong et al., 2015b; Cohn et al.,
2016; Feng et al., 2016; Tu et al., 2016; Mi et al.,

2016a; Mi et al., 2016b), better objective functions
for BLEU evaluation (Shen et al., 2016) and better
strategies for handling unknown words (Luong et al.,
2015c; Sennrich et al., 2015; Li et al., 2016) or large
vocabularies (Jean et al., 2015; Mi et al., 2016c).

Our focus in this work is aiming to make full
use of the source-side large-scale monolingual data
in NMT, which is not fully explored before. The
most related works lie in three aspects: 1) apply-
ing target-side monolingual data in NMT, 2) target-
ing knowledge sharing with multi-task NMT, and 3)
using source-side monolingual data in conventional
SMT and NMT.

Gulcehre et al. (2015) first investigate the target-
side monolingual data in NMT. They propose shal-
low and deep fusion methods to enhance the decoder
network by training a big language model on target-
side large-scale monolingual data. Sennrich et al.
(2015) further propose a new approach to use target-
side monolingual data. They generate the synthetic
bilingual data by translating the target monolingual
sentences to source language sentences and retrain
NMT with the mixture of original bilingual data and
the synthetic parallel data. It is similar to our self-
learning algorithm in which we concern the source-
side monolingual data. Furthermore, their method
requires to train an additional NMT from target lan-
guage to source language, which may negatively in-
fluence the attention model in the decoder network.

Dong et al. (2015) propose a multi-task learn-
ing method for translating one source language into
multiple target languages in NMT so that the en-
coder network can be shared when dealing with sev-
eral sets of bilingual data. Zoph et al. (2016), Zoph
and Knight (2016) and Firat et al. (2016) further deal
with more complicated cases (e.g. multi-source lan-
guages). Note that all these methods require bilin-
gual training corpus. Instead, we adapt the multi-
task learning framework to better accommodate the
source-side monolingual data.

Ueffing et al. (2007) and Wu et al. (2008) explore

1542

the usage of source-side monolingual data in con-
ventional SMT with a self-learning algorithm. Al-
though we apply self-learning in this work, we use it
to enhance the encoder network in NMT rather than
generating more translation rules in SMT and we
also adapt a multi-task learning framework to take
full advantage of the source-side monolingual data.
Luong et al. (2015a) also investigate the source-side
monolingual data in the multi-task learning frame-
work, in which a simple autoencoder or skip-thought
vectors are employed to model the monolingual
data. Our sentence reordering model is more pow-
erful than simple autoencoder in encoder enhance-
ment. Furthermore, they do not carefully prepare
the monolingual data for which we show that only
related monolingual data leads to big improvements.

In parallel to our work, Cheng et al. (2016b) pro-
pose a similar semi-supervised framework to handle
both source and target language monolingual data.
If source-side monolingual data is considered, a re-
construction framework including two NMTs is em-
ployed. One NMT translates the source-side mono-
lingual data into target language translations, from
which the other NMT attempts to reconstruct the
original source-side monolingual data. In contrast
to their approach, we propose a sentence reorder-
ing model rather than the sentence reconstruction
model. Furthermore, we carefully investigate the re-
lationship between the monolingual data quality and
the translation performance improvement.

8 Conclusions and Future Work

In this paper, we propose a self-learning algo-
rithm and a new multi-task learning framework to
use source-side monolingual data so as to improve
the encoder network of the encoder-decoder based
NMT. The self-learning algorithm generates the syn-
thetic parallel corpus and enlarge the bilingual train-
ing data to enhance the encoder model of NMT.
The multi-task learning framework performs ma-
chine translation on bilingual data and sentence re-
ordering on source-side monolingual data by shar-
ing the same encoder network. The experiments
show that our method can significantly outperform
the strong attention-based NMT baseline, and the
proposed multi-task learning framework performs
better than the self-learning algorithm at the expense

of low efficiency. Furthermore, the experiments also
demonstrate that NMT is more effective for incor-
porating the source-side monolingual data than con-
ventional SMT. We also observe that more mono-
lingual data does not always improve the translation
quality and only relevant data does help.

In the future, we would like to design smarter
mechanisms to distinguish real data from synthetic
data in self-learning algorithm, and attempt to pro-
pose better models for handling source-side mono-
lingual data. We also plan to apply our methods
in other languages, especially for low-resource lan-
guages.

Acknowledgments

We thank the reviewers for their valuable com-
ments and suggestions. This research work has
been partially funded by the Natural Science Foun-
dation of China under Grant No. 91520204 and
No. 61303181, and supported by the Strate-
gic Priority Research Program of the CAS (Grant
XDB02070007).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Yong Cheng, Shiqi Shen, Zhongjun He, Wei He, Hua Wu,
Maosong Sun, and Yang Liu. 2016a. Agreement-
based joint training for bidirectional attention-based
neural machine translation. In Proceedings of AAAI
2016.

Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua Wu,
Maosong Sun, and Yang Liu. 2016b. Semi-supervised
learning for neural machine translation. In Proceed-
ings of ACL 2016.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. computational linguistics, 33(2):201–228.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using rnn encoder-decoder for statis-
tical machine translation. In Proceedings of EMNLP
2014.

Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vymolova,
Kaisheng Yao, Chris Dyer, and Gholamreza Haffari.
2016. Incorporating structural alignment biases into
an attentional neural translation model. In Proceed-
ings of NAACL 2016.

1543

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for multi-
ple language translation. In Proceedings of ACL 2015.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Shi Feng, Shujie Liu, Mu Li, and Ming Zhou. 2016.
Implicit distortion and fertility models for attention-
based encoder-decoder nmt model. arXiv preprint
arXiv:1601.03317.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. 2016.
Multi-way, multilingual neural machine translation
with a shared attention mechanism. arXiv preprint
arXiv:1601.01073.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On us-
ing monolingual corpora in neural machine translation.
arXiv preprint arXiv:1503.03535.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Sebastien Jean, Kyunghyun Cho, Roland Memisevic, and
Yoshua Bengio. 2015. On using very large target vo-
cabulary for neural machine translation. In Proceed-
ings of ACL 2015.

Nal Kalchbrenner and Phil Blunsom. 2013. Recur-
rent continuous translation models. In Proceedings of
EMNLP 2013.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard
S. Zemel, Antonio Torralba, Raquel Urtasun, and
Sanja Fidler. 2015. Skip-thought vectors. In Pro-
ceedings of NIPS 2015.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, et al. 2007. Moses: Open source toolkit for
statistical machine translation. In Proceedings of ACL
2007, pages 177–180.

Xiaoqing Li, Jiajun Zhang, and Chengqing Zong. 2016.
Towards zero unknown word in neural machine trans-
lation. In Proceedings of IJCAI 2016.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2015a. Multi-task
sequence to sequence learning. arXiv preprint
arXiv:1511.06114.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015b. Effective approaches to attention-
based neural machine translation. In Proceedings of
EMNLP 2015.

Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol
Vinyals, and Wojciech Zaremba. 2015c. Addressing

the rare word problem in neural machine translation.
In Proceedings of ACL 2015.

Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe
Ittycheriah. 2016a. A coverage embedding model for
neural machine translation. In Proceedings of EMNLP
2016.

Haitao Mi, Zhiguo Wang, Niyu Ge, and Abe Ittycheriah.
2016b. Supervised attentions for neural machine
translation. In Proceedings of EMNLP 2016.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016c.
Vocabulary manipulation for large vocabulary neural
machine translation. In Proceedings of ACL 2016.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of ACL
2002, pages 311–318.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of COLING-
ACL 2006.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu,
Maosong Sun, and Yang Liu. 2016. Minimum risk
training for neural machine translation. In Proceed-
ings of ACL 2016.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of NIPS 2014.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Coverage-based neural machine
translation. In Proceedings of ACL 2016.

Nicola Ueffing, Gholamreza Haffari, and Anoop Sarkar.
2007. Transductive learning for statistical machine
translation. In Proceedings of ACL 2007.

Chao Wang, Michael Collins, and Philipp Koehn. 2007.
Chinese syntactic reordering for statistical machine
translation. In Proceedings of EMNLP 2007.

Zhiguo Wang, Haitao Mi, and Abe Ittycheriah. 2016a.
Semi-supervised clustering for short text via deep rep-
resentation learning. In Proceedings of CoNLL 2016.

Zhiguo Wang, Haitao Mi, and Abe Ittycheriah. 2016b.
Sentence similarity learning by lexical decomposition
and composition. arXiv preprint arXiv:1602.07019.

Hua Wu, Haifeng Wang, and Chengqing Zong. 2008.
Domain adaptation for statistical machine translation
with domain dictionary and monolingual corpora. In
Proceedings of COLING 2008, pages 993–1000.

Jiajun Zhang, Shujie Liu, Mu Li, Ming Zhou, and
Chengqing Zong. 2014. Bilingually-constrained
phrase embeddings for machine translation. In Pro-
ceedings of ACL 2014.

1544

Jiajun Zhang, Dakun Zhang, and Jie Hao. 2015. Local
translation prediction with global sentence representa-
tion. In Proceedings of IJCAI 2015.

Barret Zoph and Keven Knight. 2016. Transfer learn-
ing for low-resource neural machine translation. arXiv
preprint arXiv:1604.02201v1.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Multi-source neural translation. In
Proceedings of NAACL 2016.

1545

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1546–1556,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Phrase-based Machine Translation is State-of-the-Art
for Automatic Grammatical Error Correction

Marcin Junczys-Dowmunt and Roman Grundkiewicz
Adam Mickiewicz University in Poznań

ul. Umultowska 87, 61-614 Poznań, Poland
{junczys,romang}@amu.edu.pl

Abstract

In this work, we study parameter tuning to-
wards the M2 metric, the standard metric for
automatic grammar error correction (GEC)
tasks. After implementing M2 as a scorer
in the Moses tuning framework, we investi-
gate interactions of dense and sparse features,
different optimizers, and tuning strategies for
the CoNLL-2014 shared task. We notice er-
ratic behavior when optimizing sparse feature
weights with M2 and offer partial solutions.
We find that a bare-bones phrase-based SMT
setup with task-specific parameter-tuning out-
performs all previously published results for
the CoNLL-2014 test set by a large margin
(46.37% M2 over previously 41.75%, by an
SMT system with neural features) while be-
ing trained on the same, publicly available
data. Our newly introduced dense and sparse
features widen that gap, and we improve the
state-of-the-art to 49.49% M2.

1 Introduction

Statistical machine translation (SMT), especially the
phrase-based variant, is well established in the field
of automatic grammatical error correction (GEC)
and systems that are either pure SMT or incorporate
SMT as system components occupied top positions
in GEC shared tasks for different languages.

With the recent paradigm shift in machine trans-
lation towards neural translation models, neural
encoder-decoder models are expected to appear in
the field of GEC as well, and first published results
(Xie et al., 2016) already look promising. As it is
the case in classical bilingual machine translation

research, these models should be compared against
strong SMT baselines. Similarly, system combina-
tions of SMT with classifier-based approaches (Ro-
zovskaya and Roth, 2016) suffer from unnecessarily
weak MT base systems which make it hard to assess
how large the contribution of the classifier pipelines
really is. In this work we provide these baselines.

During our experiments, we find that a bare-bones
phrase-based system outperforms the best published
results on the CoNLL-2014 test set by a significant
margin only due to a task-specific parameter tun-
ing when being trained on the same data as previous
systems. When we further investigate the influence
of well-known SMT-specific features and introduce
new features adapted to the problem of GEC, our fi-
nal systems outperform the best reported results by
8% M2, moving the state-of-the-art results for the
CoNLL-2014 test set from 41.75% M2 to 49.49%.

The paper is organized as follows: section 2
describes previous work, the CoNLL-2014 shared
tasks on GEC and follow-up papers. Our main con-
tributions are presented in sections 3 and 4 where
we investigate the interaction of parameter tuning
towards the M2 metric with task-specific dense and
sparse features. Especially tuning for sparse fea-
tures is more challenging than initially expected, but
we describe optimizer hyper-parameters that make
sparse feature tuning with M2 feasible. Section 5
reports on the effects of adding a web-scale n-gram
language model to our models.

Scripts and models used in this paper are available
from https://github.com/grammatical/
baselines-emnlp2016 to facilitate repro-
ducibility of our results.

1546

CoN
LL

20
14

(u)

Sus
an

to
et

al.
(20

14
) (r)

Xie
et

al.
(20

16
) (u)

Cho
lla

mpa
tt e

t a
l. (

20
16

) (r)

Hoa
ng

et
al.

(20
16

) (r)

de
ns

e (r)

sp
ars

e (r)

de
ns

e (u)

sp
ars

e (u)
0.0

10.0

20.0

30.0

40.0

50.0

baseline (r)
baseline (u)

M2

this work

Figure 1: Comparison with previous work on the
CoNLL-2014 task, trained on publicly available
data. Dashed lines mark results for our baseline sys-
tems with restricted (r) and unrestricted (u) data.

2 Previous Work

While machine translation has been used for GEC
in works as early as Brockett et al. (2006), we start
our discussion with the CoNLL-2014 shared task
(Ng et al., 2014) where for the first time an unre-
stricted set of errors had to be fully corrected. Previ-
ous work, most notably during the CoNLL shared-
task 2013 (Ng et al., 2013), concentrated only on
five selected errors types, but machine translation
approaches (Yoshimoto et al., 2013; Yuan and Fe-
lice, 2013) were used as well.

The goal of the CoNLL-2014 shared task was to
evaluate algorithms and systems for automatically
correcting grammatical errors in essays written by
second language learners of English. Grammatical
errors of 28 types were targeted. Participating teams
were given training data with manually annotated
corrections of grammatical errors and were allowed
to use additional publicly available data.

The corrected system outputs were evalu-
ated blindly using the MaxMatch (M2) metric
(Dahlmeier and Ng, 2012). Thirteen system sub-
missions took part in the shared task. Among the

top-three positioned systems, two submissions —
CAMB (Felice et al., 2014) and AMU (Junczys-
Dowmunt and Grundkiewicz, 2014)1 — were par-
tially or fully based on SMT. The second system,
CUUI (Rozovskaya et al., 2014), was a classifier-
based approach, another popular paradigm in GEC.

After the shared task, Susanto et al. (2014) pub-
lished work on GEC systems combinations. They
combined the output from a classification-based
system and a SMT-based system using MEMT
(Heafield and Lavie, 2010), reporting new state-of-
the-art results for the CoNLL-2014 test set.

Xie et al. (2016) presented a neural network-
based approach to GEC. Their method relies on
a character-level encoder-decoder recurrent neural
network with an attention mechanism. They use data
from the public Lang-8 corpus and combine their
model with an n-gram language model trained on
web-scale Common Crawl data.

More recent results are Chollampatt et al. (2016)
and Hoang et al. (2016) which also rely on MT
systems with new features (a feed-forward neural
translation model) and n-best list re-ranking meth-
ods. However, most of the improvement over the
CoNLL-2014 shared task of these works stems from
using the parameter tuning tools we introduced in
Junczys-Dowmunt and Grundkiewicz (2014).

In Figure 1 we give a graphical overview of the
published results for the CoNLL-2014 test set in
comparison to the results we will discuss in this
work. Positions marked with (r) use only restricted
data which corresponds to the data set used by Su-
santo et al. (2014). Positions with (u) make use
of web-scale data, this corresponds to the resources
used in Xie et al. (2016). We marked the participants
of the CoNLL-2014 shared task as unrestricted as
some participants made use of Common Crawl data
or Google n-grams. The visible plateau for results

1Junczys-Dowmunt and Grundkiewicz (2014) is our own
contribution and introduced many of the concepts discussed in
this work, but seemingly to little effect during the task. Later
analysis revealed that our submission had an incorrectly filtered
language model that was missing many possible entries. Our
original system without this deficiency would have achieved re-
sults around 44% M2 already in 2014. This discovery triggered
an intensive reanalysis of our shared task system with signifi-
cantly new conclusions presented in this work. We apologize
for supplying these results so late, as this seems to have halted
progress in the field for nearly two years.

1547

M
T

(r)

cla
ssi

fier
(u)

pip
lin

e (u)

de
ns

e (r)

sp
ars

e (r)

de
ns

e (u)

sp
ars

e (u)
0.0

10.0

20.0

30.0

40.0

50.0

M2

this workRozovskaya and Roth (2016)

Figure 2: Comparison with Rozovskaya and Roth
(2016) using the non-public Lang-8 data set. Here
(r) means no web-scale monolingual resources, (u)
includes Google 1T n-grams or CommonCrawl.

prior to this work seem to confirm our claims about
missing strong baselines.

Rozovskaya and Roth (2016) introduce a SMT-
classifier pipeline with state-of-the-art results. Un-
fortunately, these results are reported for a training
set that is not publicly available (data crawled from
the Lang-8 website)2. Figure 2 compares our results
for this resource to Rozovskaya and Roth (2016).
See Section 6 for details.

3 Dense feature optimization

Moses comes with tools that can tune parameter vec-
tors according to different MT tuning metrics. Prior
work used Moses with default settings: minimum
error rate training (Och, 2003) towards BLEU (Pa-
pineni et al., 2002). BLEU was never designed for
grammatical error correction; we find that directly
optimizing for M2 works far better.

2We shared this resource that has been crawled by us for use
in Junczys-Dowmunt and Grundkiewicz (2014) privately with
Rozovskaya and Roth (2016), but originally were not planning
to report results for this resource in the future. We now provide a
comparison to Rozovskaya and Roth (2016), but discourage any
further use of this unofficial data due to reproducibility issues.

3.1 Tuning towards M2

The M2 metric (Dahlmeier and Ng, 2012) is an F-
Score, based on the edits extracted from a Leven-
shtein distance matrix. For the CoNLL-2014 shared
task, the β-parameter was set to 0.5, putting two
times more weight on precision than on recall.

In Junczys-Dowmunt and Grundkiewicz (2014)
we have shown that tuning with BLEU is counter-
productive in a setting where M2 is the evaluation
metric. For inherently weak systems this can result
in all correction attempts to be disabled, MERT then
learns to disallow all changes since they lower the
similarity to the reference as determined by BLEU.
Systems with better training data, can be tuned with
BLEU without suffering this “disabling” effect, but
will reach non-optimal performance. However, Su-
santo et al. (2014) tune the feature weights of their
two SMT-based systems with BLEU on the CoNLL-
2013 test set and report state-of-the-art results.

Despite tuning with M2, in Junczys-Dowmunt and
Grundkiewicz (2014) we were not able to beat sys-
tems that did not tune for the task metric. We re-
investigated these ideas with radically better results,
re-implemented the M2 metric in C++ and added
it as a scorer to the Moses parameter optimization
framework. Due to this integration we can now tune
parameter weights with MERT, PRO or Batch Mira.
The inclusion of the latter two enables us to experi-
ment with sparse features.

Based on Clark et al. (2011) concerning the ef-
fects of optimizer instability, we report results aver-
aged over five tuning runs. Additionally, we com-
pute parameter weight vector centroids as suggested
by Cettolo et al. (2011). They showed that param-
eter vector centroids averaged over several tuning
runs yield similar to or better than average results
and reduce variance. We generally confirm this for
M2-based tuning.

3.2 Dense features

The standard features in SMT have been chosen to
help guiding the translation process. In a GEC set-
ting the most natural units seem to be minimal edit
operations that can be either counted or modeled in
context with varying degrees of generalization. That
way, the decoder can be informed on several levels

1548

source phrase target phrase LD D I S

a short time . short term only . 3 1 1 1
a situation into a situation 1 0 1 0
a supermarket . a supermarket . 0 0 0 0
a supermarket . at a supermarket 2 1 1 0
able unable 1 0 0 1

Table 1: Word-based Levenshtein distance (LD) fea-
ture and separated edit operations (D = deletions, I
= insertions, S = substitutions)

of abstraction how the output differs from the input.3

In this section we implement several features that try
to capture these operation in isolation and in context.

3.2.1 Stateless features

Our stateless features are computed during trans-
lation option generation before decoding, model-
ing relations between source and target phrases.
They are meant to extend the standard SMT-specific
MLE-based phrase and word translation probabili-
ties with meaningful phrase-level information about
the correction process.

Levenshtein distance. In Junczys-Dowmunt and
Grundkiewicz (2014) we use word-based Leven-
shtein distance between source and target as a trans-
lation model feature, Felice et al. (2014) indepen-
dently experiment with a character-based version.

Edit operation counts. We further refine Leven-
shtein distance feature with edit operation counts.
Based on the Levenshtein distance matrix, the num-
bers of deletions, insertions, and substitutions that
transform the source phrase into the target phrase
are computed, the sum of these counts is equal to
the original Levenshtein distance (see Table 1).

3.2.2 Stateful features

Contrary to stateless features, stateful features can
look at translation hypotheses outside their own span
and take advantage of the constructed target context.
The most typical stateful features are language mod-
els. In this section, we discuss LM-like features over
edit operations.

3We believe this is important information that currently has
not yet been mastered in neural encoder-decoder approaches.

Corpus Sentences Tokens

NUCLE 57.15 K 1.15 M
CoNLL-2013 Test Set 1.38 K 29.07 K
CoNLL-2014 Test Set 1.31 K 30.11 K
Lang-8 2.23 M 30.03 M
Lang-8 (non-public) 3.72 M 51.07 M

Wikipedia 213.08 M 3.37 G
CommonCrawl (u) 59.13 G 975.63 G

Table 2: Parallel (above line) and monolingual train-
ing data.

Operation Sequence Model. Durrani et al. (2013)
introduce Operation Sequence Models in Moses.
These models are Markov translation models that
in our setting can be interpreted as Markov edition
models. Translations between identical words are
matches, translations that have different words on
source and target sides are substitutions; insertions
and deletions are interpreted in the same way as for
SMT. Gaps, jumps, and other operations typical for
OSMs do not appear as we disabled reordering.

Word-class language model. The monolingual
Wikipedia data has been used create a 9-gram word-
class language model with 200 word-classes pro-
duced by word2vec (Mikolov et al., 2013). This fea-
tures allows to capture possible long distance depen-
dencies and semantical aspects.

3.3 Training and Test Data

The training data provided in both shared tasks
is the NUS Corpus of Learner English (NUCLE)
(Dahlmeier et al., 2013). NUCLE consists of 1,414
essays written by Singaporean students who are non-
native speakers of English. The essays cover top-
ics, such as environmental pollution, health care, etc.
The grammatical errors in these essays have been
hand-corrected by professional English teachers and
annotated with one of the 28 predefined error type.

Another 50 essays, collected and annotated sim-
ilarly as NUCLE, were used in both CoNLL GEC
shared tasks as blind test data. The CoNLL-2014
test set has been annotated by two human annota-
tors, the CoNLL-2013 by one annotator. Many par-
ticipants of CoNLL-2014 shared task used the test
set from 2013 as development set for their systems.

As mentioned before, we report main results us-

1549

Base
lin

e

Lev
en

sh
tei

n

Edit
op

s.

All d
en

se

36.0

38.0

40.0

42.0

M2

(a) Optimized using BLEU on the
CoNLL-2013 test set

Base
lin

e

Lev
en

sh
tei

n

Edit
op

s.

All d
en

se

(b) Optimized using M2 on the
CoNLL-2013 test set

Base
lin

e

Lev
en

sh
tei

n

Edit
op

s.

All d
en

se

Average M2

Centroid M2

(c) Optimized using M2 on 4 folds
of error-rate-adapted NUCLE

Figure 3: Results on the CoNLL-2014 test set for different optimization settings (5 runs for each system)
and different feature sets, the “All dense” entry includes OSM, the word class language model, and edit
operations). The small circle marks results for averaged weights vectors and is chosen as the final result.

ing similar training data as Susanto et al. (2014). We
refer to this setting that as the “resticted-data set-
ting” (r). Parallel data for translation model train-
ing is adapted from the above mentioned NUCLE
corpus and the publicly available Lang-8 corpus
(Mizumoto et al., 2012), this corpus is distinct from
the non-public web-crawled data described in Sec-
tion 6. Uncorrected sentences serve as source data,
corrected counterparts as target data. For language
modeling, the target language sentences of both par-
allel resources are used, additionally we extract all
text from the English Wikipedia.

Phrase-based SMT makes it ease to scale up in
terms of training data, especially in the case of n-
gram language models. To demonstrate the ease of
data integration we propose an “unrestricted setting”
(u) based on the data used in Junczys-Dowmunt and
Grundkiewicz (2014), one of the shared task submis-
sions, and later in Xie et al. (2016). We use Common
Crawl data made-available by Buck et al. (2014).

3.4 Experiments
Our system is based on the phrase-based part of the
statistical machine translation system Moses (Koehn
et al., 2007). Only plain text data is used for lan-
guage model and translation model training. Ex-
ternal linguistic knowledge is introduced during pa-
rameter tuning as the tuning metric relies on the

error annotation present in NUCLE. The transla-
tion model is built with the standard Moses training
script, word-alignment models are produced with
MGIZA++ (Gao and Vogel, 2008), we restrict the
word alignment training to 5 iterations of Model 1
and 5 iterations of the HMM-Model. No reorder-
ing models are used, the distortion limit is set to
0, effectively prohibiting any reordering. All sys-
tems use one 5-gram language model that has been
estimated from the target side of the parallel data
available for translation model training. Another 5-
gram language model trained on Wikipedia in the
restricted setting or on Common Crawl in the unre-
stricted case.

Systems are retuned when new features of any
type are added. We first successfully reproduce re-
sults from Susanto et al. (2014) for BLEU-based
tuning on the CoNLL-2013 test set as the devel-
opment set (Fig. 3a) using similar training data.
Repeated tuning places the scores reported by Su-
santo et al. (2014) for their SMT-ML combinations
(37.90 – 39.39) within the range of possible values
for a purely Moses-based system without any spe-
cific features (35.19 – 38.38) or with just the Leven-
shtein distance features (37.46 – 40.52). Since Su-
santo et al. (2014) do not report results for multiple
tuning steps, the extend of influence of optimizer

1550

instability on their experiments remains unclear.
Even with BLEU-based tuning, we can see signifi-
cant improvements when replacing Levenshtein dis-
tance with the finer-grained edit operations, and an-
other performance jump with additional stateful fea-
tures. The value range of the different tuning runs
for the last feature set includes the currently best-
performing system (Xie et al. (2016) with 40.56%),
but the result for the averaged centroid are inferior.

Tuning directly with M2 (Fig. 3b) and averag-
ing weights across five iterations, yields between
40.66% M2 for a vanilla Moses system and 42.32%
for a system with all described dense features. Re-
sults seen to be more stable. Averaging weight vec-
tors across runs to produce the final vector seems
like a fair bet. Performance with the averaged
weight vectors is either similar to or better than the
average number for five runs.

3.5 Larger development sets

No less important than choosing the correct tun-
ing metric is a good choice of the development set.
Among MT researches, there is a number of more
or less well known truths about suitable develop-
ment sets for translation-focused settings: usually
they consist of between 2000 and 3000 sentences,
they should be a good representation of the testing
data, sparse features require more sentences or more
references, etc. Until now, we followed the seem-
ingly obvious approach from Susanto et al. (2014) to
tune on the CoNLL-2013 test set. The CoNLL-2013
test set consists of 1380 sentences, which might be
barely enough for a translation-task, and it is unclear
how to quantify it in the context of grammar correc-
tion. Furthermore, calculating the error rate in this
set reveals that only 14.97% of the tokens are part of
an erroneous fragment, for the rest, input and refer-
ence data are identical. Intuitively, this seems to be
very little significant data for tuning an SMT system.

We therefore decide to take advantage of the en-
tire NUCLE data as a development set which so
far has only been used as translation model train-
ing data. NUCLE consist of more than 57,000 sen-
tences, however, the error rate is significantly lower
than in the previous development set, only 6.23%.
We adapt the error rate by greedily removing sen-
tences from NUCLE until an error rate of ca. 15%
is reached, 23381 sentences and most error annota-

tions remain. We further divide the data into four
folds. Each folds serves as development set for pa-
rameter tuning, while the three remaining parts are
treated as translation model training data. The full
Lang-8 data is concatenated with is NUCLE train-
ing set, and four models are trained. Tuning is then
performed four times and the resulting four parame-
ter weight vectors are averaged into a single weight
vector across folds. We repeat this procedure again
five times which results in 20 separate tuning steps.
Results on the CoNLL-2014 test set are obtained us-
ing the full translation model with a parameter vec-
tor average across five runs. The CoNLL-2013 test
set is not being used for tuning and can serve as a
second test set.

As can be seen in Fig. 3c, this procedure sig-
nificantly improves performance, also for the bare-
bones set-up (41.63%). The lower variance between
iterations is an effect of averaging across folds.

It turns out that what was meant to be a strong
baseline, is actually among the strongest systems re-
ported for this task, outperformed only by the fur-
ther improvements over this baseline presented in
this work.

4 Sparse Features

We saw that introducing finer-grained edit opera-
tions improved performance. The natural evolution
of that idea are features that describe specific cor-
rection operations with and without context. This
can be accomplished with sparse features, but tun-
ing sparse features according to the M2 metric poses
unexpected problems.

4.1 Optimizing for M2 with PRO and Mira

The MERT tool included in Moses cannot handle
parameter tuning with sparse feature weights and
one of the other optimizers available in Moses has
to be used. We first experimented with both, PRO
(Hopkins and May, 2011) and Batch Mira (Cherry
and Foster, 2012), for the dense features only, and
found PRO and Batch Mira with standard settings
to either severely underperform in comparison to
MERT or to suffer from instability with regard to
different test sets (Table 3).

Experiments with Mira hyper-parameters allowed
to counter these effects. We first change the

1551

Optimizer 2013 2014

MERT 33.50 42.85
PRO 33.68 40.34
Mira 29.19 34.13

-model-bg 31.06 43.88
-D 0.001 33.86 42.91

Table 3: Tuning with different optimizers with dense
features only, results are given for the CoNLL-2013
and CoNLL-2014 test set

background BLEU approximation method in Batch
Mira to use model-best hypotheses (--model-bg)
which seems to produce more satisfactory results.
Inspecting the tuning process, however, reveals
problems with this setting, too. Figure 4 documents
how instable the tuning process with Mira is across
iterations. The best result is reached after only three
iterations. In a setting with sparse features this
would result in only a small set of weighted sparse
features.

After consulting with one of the authors of Batch-
Mira, we set the background corpus decay rate to
0.001 (-D 0.001), resulting in a sentence-level
approximation of M2. Mira’s behavior seems to sta-
bilize across iterations. At this point it is not quite
clear why this is required. While PRO’s behav-
ior is more sane during tuning, results on the test
sets are subpar. It seems that no comparable hyper-
parameter settings exist for PRO.

4.2 Sparse edit operations
Our sparse edit operations are again based on the
Levenshtein distance matrix and count specific edits
that are annotated with the source and target tokens
that took part in the edit. For the following erro-
neous/corrected sentence pair
Err: Then a new problem comes out .
Cor: Hence , a new problem surfaces .

we generate sparse features that model contextless
edits (matches are omitted):
subst(Then,Hence)=1
insert(,)=1
subst(comes, surfaces)=1
del(out)=1

and sparse features with one-sided left or right or
two-sided context:
<s>_subst(Then,Hence)=1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15.0

20.0

25.0

30.0

No. of iterations

M2

MERT
PRO
Mira
Mira -model-bg
Mira -model-bg -D 0.001

Figure 4: Results per iteration on development set
(4-th NUCLE fold)

subst(Then,Hence)_a=1
Hence_insert(,)=1
insert(,)_a=1
problem_subst(comes, surfaces)=1
subst(comes, surfaces)_out=1
comes_del(out)=1
del(out)_.=1
<s>_subst(Then,Hence)_a=1
Hence_insert(,)_a=1
problem_subst(comes, surfaces)_out=1
comes_del(out)_.=1

All sparse feature types are added on-top of our
best dense-features system. When using sparse fea-
tures with context, the contextless features are in-
cluded. The context annotation comes from the er-
roneous source sentence, not from the corrected tar-
get sentence. We further investigate different source
factors: elements taking part in the edit operation or
appearing in the context can either be word forms
(factor 0) or word classes (factor 1). As before for
dense features we average sparse feature weights
across folds and multiple tuning runs.

Figure 5 summarizes the results for our sparse
feature experiments. On both test sets we can
see significant improvements when including edit-
based sparse features, the performance increases
even more when source context is added. The
CoNLL-2013 test set contains annotations from only
one annotator and is strongly biased towards high

1552

2 4 6 8

32.0

34.0

36.0

M2

(a) CoNLL-2014 test set

2 4 6 8

42.0

44.0

46.0

M2

(b) CoNLL-2014 test set

Symbol Description

E0 Edit operation on words, no context
E1 Edit operation on word classes, no context
E0C10 Edit operation on words with left/right context of maximum length 1 on words
E1C11 Edit operation on word classes with left/right context of maximum length 1 on word classes
E0C11 Edit operation on words with left/right context of maximum length 1 on word classes

Figure 5: Results on the CoNLL-2013 and CoNLL-2014 test set for different sparse features sets

precision which might explain the greater instability.
It appears that sparse features with context where
surface forms and word-classes are mixed allow for
the best fine-tuning.

5 Adding a web-scale language model

Until now we restricted our experiments to data used
by Susanto et al. (2014). However, systems from the
CoNLL-2014 were free to use any publicly available
data, for instance in Junczys-Dowmunt and Grund-
kiewicz (2014), we made use of an n-gram lan-
guage model trained from Common Crawl. Xie et
al. (2016) reach the best published result for the task
(before this work) by integrating a similar n-gram
language model with their neural approach.

We filter the English resources made available
by Buck et al. (2014) with cross-entropy filtering
(Moore and Lewis, 2010) using the corrected NU-
CLE corpus as seed data. We keep all sentence
with a negative cross-entropy score and compute a 5-
gram KenLM (Heafield, 2011) language model with
heavy pruning. This step produces roughly 300G
of compressed text and a manageable 21G binary
model (available for download).

Table 4 summarizes the best results reported in

this paper for the CoNLL-2014 test set (column
2014) before and after adding the Common Crawl
n-gram language model. The vanilla Moses base-
line with the Common Crawl model can be seen as a
new simple baseline for unrestricted settings and is
ahead of any previously published result. The com-
bination of sparse features and web-scale monolin-
gual data marks our best result, outperforming pre-
viously published results by 8% M2 using similar
training data. While our sparse features cause a re-
spectable gain when used with the smaller language
model, the web-scale language model seems to can-
cel out part of the effect.

Bryant and Ng (2015) extended the CoNLL-2014
test set with additional annotations from two to ten
annotators. We report results for this valuable re-
source (column 2014-10) as well.4 According to
Bryant and Ng (2015), human annotators seem to
reach on average 72.58% M2 which can be seen as
an upper-bound for the task. In this work, we made
a large step towards this upper-bound.

4See Bryant and Ng (2015) for a re-assessment of the
CoNLL-2014 systems with this extended test set.

1553

2014 2014-10
System Prec. Recall M2 Prec. Recall M2

Baseline 48.97 26.03 41.63 69.29 31.35 55.78
+CCLM 58.91 25.05 46.37 77.17 29.38 58.23

Best dense 50.94 26.21 42.85 71.21 31.70 57.00
+CCLM 59.98 28.17 48.93 79.98 32.76 62.08

Best sparse 57.99 25.11 45.95 76.61 29.74 58.25
+CCLM 61.27 27.98 49.49 80.93 32.47 62.33

Table 4: Best results in restricted setting with added unrestricted language model for original (2014) and
extended (2014-10) CoNLL test set (trained with public data only).

System Prec. Recall M2

R&R (np) 60.17 25.64 47.40

Best dense (np) 53.56 29.59 46.09
+CCLM 61.74 30.51 51.25

Best sparse (np) 58.57 27.11 47.54
+CCLM 63.52 30.49 52.21

Table 5: Previous best systems trained with non-
public (np) error-corrected data for comparison with
Rozovskaya and Roth (2016) denoted as R&R.

6 More error-corrected data

As mentioned before, Rozovskaya and Roth (2016)
trained their systems on crawled data from the Lang-
8 website that has been collect by us for our submis-
sion to the CoNLL-2014 shared task. Since this data
has not been made officially available, we treat it as
non-public. This makes it difficult to put their results
in relation with previously published work, but we
can at least provide a comparison for our systems.
As our strongest MT-only systems trained on pub-
lic data already outperform the pipelined approaches
from Rozovskaya and Roth (2016), it is unsurprising
that adding more error-corrected parallel data results
in an even wider gap (Table 5). We can assume that
this gap would persist if only public data had been
used. Although these are the highest reported results
for the CoNLL-2014 shared task so far, we think of
them as unofficial results and refer to Table 4 as our
final results in this work.

7 Conclusions

Despite the fact that statistical machine translation
approaches are among the most popular methods in

automatic grammatical error correction, few papers
that report results for the CoNLL-2014 test set seem
to have exploited its full potential. An important as-
pect when training SMT systems that one needs to
tune parameters towards the task evaluation metric
seems to have been under-explored.

We have shown that a pure SMT system actu-
ally outperforms the best reported results for any
paradigm in GEC if correct parameter tuning is per-
formed. With this tuning mechanism available, task-
specific features have been explored that bring fur-
ther significant improvements, putting phrase-based
SMT ahead of other approaches by a large margin.
None of the explored features require complicated
pipelines or re-ranking mechanisms. Instead they
are a natural part of the log-linear model in phrase-
based SMT. It is therefore quite easy to reproduce
our results and the presented systems may serve as
new baselines for automatic grammatical error cor-
rection. Our systems and scripts have been made
available for better reproducibility.

Acknowledgments

The authors would like to thank Colin Cherry for
his help with Batch Mira hyper-parameters and
Kenneth Heafield for many helpful comments and
discussions. This work was partially funded by
the Polish National Science Centre (Grant No.
2014/15/N/ST6/02330) and by Facebook. The
views and conclusions contained herein are those of
the authors and should not be interpreted as neces-
sarily representing the official policies or endorse-
ments, either expressed or implied, of Facebook.

1554

References
Chris Brockett, William B. Dolan, and Michael Gamon.

2006. Correcting ESL errors using phrasal SMT tech-
niques. In Proceedings of the 21st International Con-
ference on Computational Linguistics and the 44th An-
nual Meeting of the Association for Computational
Linguistics, pages 249–256, Stroudsburg, USA. Asso-
ciation for Computational Linguistics.

Christopher Bryant and Hwee Tou Ng. 2015. How far
are we from fully automatic high quality grammatical
error correction? In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing of the Asian Federation of
Natural Language Processing, pages 697–707. Asso-
ciation for Computational Linguistics.

Christian Buck, Kenneth Heafield, and Bas van Ooyen.
2014. N-gram counts and language models from the
Common Crawl. In Proceedings of the Language
Resources and Evaluation Conference, pages 3579–
3584, Reykjavı́k, Iceland.

Mauro Cettolo, Nicola Bertoldi, and Marcello Federico.
2011. Methods for smoothing the optimizer instability
in SMT. In MT Summit XIII: the Thirteenth Machine
Translation Summit, pages 32–39.

Colin Cherry and George Foster. 2012. Batch tuning
strategies for statistical machine translation. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
427–436, Stroudsburg, USA. Association for Compu-
tational Linguistics.

Shamil Chollampatt, Kaveh Taghipour, and Hwee Tou
Ng. 2016. Neural network translation models for
grammatical error correction.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and Noah A.
Smith. 2011. Better hypothesis testing for statistical
machine translation: Controlling for optimizer insta-
bility. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, HLT ’11, pages 176–
181, Stroudsburg, USA. Association for Computa-
tional Linguistics.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better evalu-
ation for grammatical error correction. In Proceedings
of the 2012 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 568–572, Strouds-
burg, USA. Association for Computational Linguis-
tics.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner en-
glish: The NUS Corpus of Learner English. In Pro-

ceedings of the Eighth Workshop on Innovative Use of
NLP for Building Educational Applications, pages 22–
31, Atlanta, Georgia. Association for Computational
Linguistics.

Nadir Durrani, Alexander Fraser, Helmut Schmid, Hieu
Hoang, and Philipp Koehn. 2013. Can Markov
Models Over Minimal Translation Units Help Phrase-
Based SMT? In ACL (2), pages 399–405. The Associ-
ation for Computer Linguistics.

Mariano Felice, Zheng Yuan, Øistein E. Andersen, He-
len Yannakoudakis, and Ekaterina Kochmar. 2014.
Grammatical error correction using hybrid systems
and type filtering. In Proceedings of the Eigh-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task, pages 15–24, Balti-
more, Maryland. Association for Computational Lin-
guistics.

Qin Gao and Stephan Vogel. 2008. Parallel implemen-
tations of word alignment tool. In Software Engineer-
ing, Testing, and Quality Assurance for Natural Lan-
guage Processing, pages 49–57. ACL.

Kenneth Heafield and Alon Lavie. 2010. Combin-
ing machine translation output with open source:
The Carnegie Mellon multi-engine machine transla-
tion scheme. The Prague Bulletin of Mathematical
Linguistics, 93:27–36.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, WMT
’11, pages 187–197, Stroudsburg, USA. Association
for Computational Linguistics.

Duc Tam Hoang, Shamil Chollampatt, and Hwee Tou Ng.
2016. Exploiting n-best hypotheses to improve an smt
approach to grammatical error correction.

Mark Hopkins and Jonathan May. 2011. Tuning as rank-
ing. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP
’11, pages 1352–1362, Stroudsburg, USA. Association
for Computational Linguistics.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2014. The AMU system in the CoNLL-2014 shared
task: Grammatical error correction by data-intensive
and feature-rich statistical machine translation. In
Proceedings of the Eighteenth Conference on Com-
putational Natural Language Learning: Shared Task
(CoNLL-2014 Shared Task), pages 25–33, Baltimore,
USA. Association for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Annual

1555

Meeting of the Association for Computational Linguis-
tics. The Association for Computer Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomoya Mizumoto, Yuta Hayashibe, Mamoru Komachi,
Masaaki Nagata, and Yu Matsumoto. 2012. The effect
of learner corpus size in grammatical error correction
of ESL writings. In Proceedings of COLING 2012,
pages 863–872.

Robert C. Moore and William Lewis. 2010. Intelli-
gent selection of language model training data. In
Proceedings of the ACL 2010 Conference Short Pa-
pers, ACLShort ’10, pages 220–224, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 shared task on grammatical error correction. In
Proceedings of the 17th Conference on Computational
Natural Language Learning: Shared Task, pages 1–
12, Sofia, Bulgaria. Association for Computational
Linguistics.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, , and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning: Shared Task (CoNLL-2014
Shared Task), pages 1–14, Baltimore, USA. Associ-
ation for Computational Linguistics.

Franz Josef Och. 2003. Minimum error rate train-
ing in statistical machine translation. In Proceedings
of the 41st Annual Meeting on Association for Com-
putational Linguistics - Volume 1, ACL ’03, pages
160–167, Stroudsburg, USA. Association for Compu-
tational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Computa-
tional Linguistics, pages 311–318, Stroudsburg, USA.
Association for Computational Linguistics.

Alla Rozovskaya and Dan Roth. 2016. Grammatical er-
ror correction: Machine translation and classifiers. In
Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL 2016, Au-
gust 7-12, 2016, Berlin, Germany, Volume 1: Long Pa-
pers. The Association for Computer Linguistics.

Alla Rozovskaya, Kai-Wei Chang, Mark Sammons, Dan
Roth, and Nizar Habash. 2014. The Illinois-Columbia
system in the CoNLL-2014 shared task. In CoNLL-
2014, pages 34–42.

Hendy Raymond Susanto, Peter Phandi, and Tou Hwee
Ng. 2014. System combination for grammatical error

correction. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 951–962. Association for Computa-
tional Linguistics.

Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Ju-
rafsky, and Andrew Y. Ng. 2016. Neural language
correction with character-based attention. CoRR,
abs/1603.09727.

Ippei Yoshimoto, Tomoya Kose, Kensuke Mitsuzawa,
Keisuke Sakaguchi, Tomoya Mizumoto, Yuta
Hayashibe, Mamoru Komachi, and Yuji Matsumoto.
2013. NAIST at 2013 CoNLL grammatical error
correction shared task. In Proceedings of the 17th
Conference on Computational Natural Language
Learning: Shared Task, pages 26–33, Sofia, Bulgaria.
Association for Computational Linguistics.

Zheng Yuan and Mariano Felice. 2013. Constrained
grammatical error correction using statistical machine
translation. In Proceedings of the 17th Conference on
Computational Natural Language Learning: Shared
Task, pages 52–61, Sofia, Bulgaria. Association for
Computational Linguistics.

1556

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1557–1567,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Incorporating Discrete Translation Lexicons
into Neural Machine Translation

Philip Arthur∗, Graham Neubig∗†, Satoshi Nakamura∗
∗ Graduate School of Information Science, Nara Institute of Science and Technology

† Language Technologies Institute, Carnegie Mellon University
philip.arthur.om0@is.naist.jp gneubig@cs.cmu.edu s-nakamura@is.naist.jp

Abstract

Neural machine translation (NMT) often
makes mistakes in translating low-frequency
content words that are essential to understand-
ing the meaning of the sentence. We propose
a method to alleviate this problem by aug-
menting NMT systems with discrete transla-
tion lexicons that efficiently encode transla-
tions of these low-frequency words. We de-
scribe a method to calculate the lexicon proba-
bility of the next word in the translation candi-
date by using the attention vector of the NMT
model to select which source word lexical
probabilities the model should focus on. We
test two methods to combine this probability
with the standard NMT probability: (1) using
it as a bias, and (2) linear interpolation. Exper-
iments on two corpora show an improvement
of 2.0-2.3 BLEU and 0.13-0.44 NIST score,
and faster convergence time.1

1 Introduction

Neural machine translation (NMT, §2; Kalchbren-
ner and Blunsom (2013), Sutskever et al. (2014))
is a variant of statistical machine translation (SMT;
Brown et al. (1993)), using neural networks. NMT
has recently gained popularity due to its ability to
model the translation process end-to-end using a sin-
gle probabilistic model, and for its state-of-the-art
performance on several language pairs (Luong et al.,
2015a; Sennrich et al., 2016).

One feature of NMT systems is that they treat
each word in the vocabulary as a vector of

1Tools to replicate our experiments can be found at
http://isw3.naist.jp/~philip-a/emnlp2016/index.html

Input: I come from Tunisia.
Reference: チュニジアの出身です。

Chunisia no shusshindesu.
(I’m from Tunisia.)

System: ノルウェーの出身です。
Noruue- no shusshindesu.
(I’m from Norway.)

Figure 1: An example of a mistake made by NMT
on low-frequency content words.

continuous-valued numbers. This is in contrast to
more traditional SMT methods such as phrase-based
machine translation (PBMT; Koehn et al. (2003)),
which represent translations as discrete pairs of
word strings in the source and target languages. The
use of continuous representations is a major advan-
tage, allowing NMT to share statistical power be-
tween similar words (e.g. “dog” and “cat”) or con-
texts (e.g. “this is” and “that is”). However, this
property also has a drawback in that NMT systems
often mistranslate into words that seem natural in the
context, but do not reflect the content of the source
sentence. For example, Figure 1 is a sentence from
our data where the NMT system mistakenly trans-
lated “Tunisia” into the word for “Norway.” This
variety of error is particularly serious because the
content words that are often mistranslated by NMT
are also the words that play a key role in determining
the whole meaning of the sentence.

In contrast, PBMT and other traditional SMT
methods tend to rarely make this kind of mistake.
This is because they base their translations on dis-
crete phrase mappings, which ensure that source
words will be translated into a target word that has

1557

been observed as a translation at least once in the
training data. In addition, because the discrete map-
pings are memorized explicitly, they can be learned
efficiently from as little as a single instance (barring
errors in word alignments). Thus we hypothesize
that if we can incorporate a similar variety of infor-
mation into NMT, this has the potential to alleviate
problems with the previously mentioned fatal errors
on low-frequency words.

In this paper, we propose a simple, yet effective
method to incorporate discrete, probabilistic lexi-
cons as an additional information source in NMT
(§3). First we demonstrate how to transform lexi-
cal translation probabilities (§3.1) into a predictive
probability for the next word by utilizing attention
vectors from attentional NMT models (Bahdanau et
al., 2015). We then describe methods to incorporate
this probability into NMT, either through linear in-
terpolation with the NMT probabilities (§3.2.2) or as
the bias to the NMT predictive distribution (§3.2.1).
We construct these lexicon probabilities by using
traditional word alignment methods on the training
data (§4.1), other external parallel data resources
such as a handmade dictionary (§4.2), or using a hy-
brid between the two (§4.3).

We perform experiments (§5) on two English-
Japanese translation corpora to evaluate the
method’s utility in improving translation accuracy
and reducing the time required for training.

2 Neural Machine Translation

The goal of machine translation is to translate a se-
quence of source words F = f

|F |
1 into a sequence of

target words E = e
|E|
1 . These words belong to the

source vocabulary Vf , and the target vocabulary Ve

respectively. NMT performs this translation by cal-
culating the conditional probability pm(ei|F, ei−1

1)
of the ith target word ei based on the source F and
the preceding target words ei−1

1 . This is done by en-
coding the context ⟨F, ei−1

1 ⟩ a fixed-width vector ηi,
and calculating the probability as follows:

pm(ei|F, ei−1
1) = softmax(Wsηi + bs), (1)

where Ws and bs are respectively weight matrix and
bias vector parameters.

The exact variety of the NMT model depends on
how we calculate ηi used as input. While there

are many methods to perform this modeling, we opt
to use attentional models (Bahdanau et al., 2015),
which focus on particular words in the source sen-
tence when calculating the probability of ei. These
models represent the current state of the art in NMT,
and are also convenient for use in our proposed
method. Specifically, we use the method of Luong et
al. (2015a), which we describe briefly here and refer
readers to the original paper for details.

First, an encoder converts the source sentence F
into a matrix R where each column represents a sin-
gle word in the input sentence as a continuous vec-
tor. This representation is generated using a bidirec-
tional encoder

−→r j = enc(embed(fj),
−→r j−1)

←−r j = enc(embed(fj),
←−r j+1)

rj = [←−r j ;
−→r j].

Here the embed(·) function maps the words into a
representation (Bengio et al., 2003), and enc(·) is
a stacking long short term memory (LSTM) neural
network (Hochreiter and Schmidhuber, 1997; Gers
et al., 2000; Sutskever et al., 2014). Finally we con-
catenate the two vectors −→r j and←−r j into a bidirec-
tional representation rj . These vectors are further
concatenated into the matrix R where the jth col-
umn corresponds to rj .

Next, we generate the output one word at a time
while referencing this encoded input sentence and
tracking progress with a decoder LSTM. The de-
coder’s hidden state hi is a fixed-length continuous
vector representing the previous target words ei−1

1 ,
initialized as h0 = 0. Based on this hi, we calculate
a similarity vector αi, with each element equal to

αi,j = sim(hi, rj). (2)

sim(·) can be an arbitrary similarity function, which
we set to the dot product, following Luong et al.
(2015a). We then normalize this into an attention
vector, which weights the amount of focus that we
put on each word in the source sentence

ai = softmax(αi). (3)

This attention vector is then used to weight the en-
coded representation R to create a context vector ci

for the current time step

c = Ra.

1558

Finally, we create ηi by concatenating the previous
hidden state hi−1 with the context vector, and per-
forming an affine transform

ηi = Wη[hi−1; ci] + bη,

Once we have this representation of the current
state, we can calculate pm(ei|F, ei−1

1) according to
Equation (1). The next word ei is chosen according
to this probability, and we update the hidden state by
inputting the chosen word into the decoder LSTM

hi = enc(embed(ei), hi−1). (4)

If we define all the parameters in this model as
θ, we can then train the model by minimizing the
negative log-likelihood of the training data

θ̂ = argmin
θ

∑

⟨F, E⟩

∑

i

− log(pm(ei|F, ei−1
1 ; θ)).

3 Integrating Lexicons into NMT

In §2 we described how traditional NMT models
calculate the probability of the next target word
pm(ei|ei−1

1 , F). Our goal in this paper is to improve
the accuracy of this probability estimate by incorpo-
rating information from discrete probabilistic lexi-
cons. We assume that we have a lexicon that, given
a source word f , assigns a probability pl(e|f) to tar-
get word e. For a source word f , this probability will
generally be non-zero for a small number of transla-
tion candidates, and zero for the majority of words
in VE . In this section, we first describe how we in-
corporate these probabilities into NMT, and explain
how we actually obtain the pl(e|f) probabilities in
§4.

3.1 Converting Lexicon Probabilities into
Conditioned Predictive Proabilities

First, we need to convert lexical probabilities pl(e|f)
for the individual words in the source sentence
F to a form that can be used together with
pm(ei|ei−1

1 , F). Given input sentence F , we can
construct a matrix in which each column corre-
sponds to a word in the input sentence, each row
corresponds to a word in the VE , and the entry cor-
responds to the appropriate lexical probability:

LF =

pl(e = 1|f1) · · · pl(e = 1|f|F |)
...

. . .
...

pl(e = |Ve||f1) · · · pl(e = |Ve||f|F |)

 .

This matrix can be precomputed during the encoding
stage because it only requires information about the
source sentence F .

Next we convert this matrix into a predictive prob-
ability over the next word: pl(ei|F, ei−1

1). To do so
we use the alignment probability a from Equation
(3) to weight each column of the LF matrix:

pl(ei|F, ei−1
1) = LF ai =

pl(e = 1|f1) · · · plex(e = 1|f|F |)
...

. . .
...

pl(e = Ve|f1) · · · plex(e = Ve|f|F |)

ai,1

...
ai,|F |

 .

This calculation is similar to the way how attentional
models calculate the context vector ci, but over a
vector representing the probabilities of the target vo-
cabulary, instead of the distributed representations
of the source words. The process of involving ai

is important because at every time step i, the lexi-
cal probability pl(ei|ei−1

1 , F) will be influenced by
different source words.

3.2 Combining Predictive Probabilities

After calculating the lexicon predictive proba-
bility pl(ei|ei−1

1 , F), next we need to integrate
this probability with the NMT model probability
pm(ei|ei−1

1 , F). To do so, we examine two methods:
(1) adding it as a bias, and (2) linear interpolation.

3.2.1 Model Bias

In our first bias method, we use pl(·) to bias
the probability distribution calculated by the vanilla
NMT model. Specifically, we add a small constant ϵ
to pl(·), take the logarithm, and add this adjusted log
probability to the input of the softmax as follows:

pb(ei|F, ei−1
1) = softmax(Wsηi + bs+

log(pl(ei|F, ei−1
1) + ϵ)).

We take the logarithm of pl(·) so that the values will
still be in the probability domain after the softmax is
calculated, and add the hyper-parameter ϵ to prevent
zero probabilities from becoming −∞ after taking
the log. When ϵ is small, the model will be more
heavily biased towards using the lexicon, and when
ϵ is larger the lexicon probabilities will be given less
weight. We use ϵ = 0.001 for this paper.

1559

3.2.2 Linear Interpolation
We also attempt to incorporate the two probabil-

ities through linear interpolation between the stan-
dard NMT probability model probability pm(·) and
the lexicon probability pl(·). We will call this the
linear method, and define it as follows:

po(ei|F, ei−1
1) =

pl(ei = 1|F, ei−1
1) pm(e = 1|F, ei−1

1)
...

...
pl(ei = |Ve||F, ei−1

1) pm(e = |Ve||F, ei−1
1)

[
λ

1− λ

]
,

where λ is an interpolation coefficient that is the re-
sult of the sigmoid function λ = sig(x) = 1

1+e−x .
x is a learnable parameter, and the sigmoid func-
tion ensures that the final interpolation level falls be-
tween 0 and 1. We choose x = 0 (λ = 0.5) at the
beginning of training.

This notation is partly inspired by Allamanis et
al. (2016) and Gu et al. (2016) who use linear inter-
polation to merge a standard attentional model with
a “copy” operator that copies a source word as-is
into the target sentence. The main difference is that
they use this to copy words into the output while our
method uses it to influence the probabilities of all
target words.

4 Constructing Lexicon Probabilities

In the previous section, we have defined some ways
to use predictive probabilities pl(ei|F, ei−1

1) based
on word-to-word lexical probabilities pl(e|f). Next,
we define three ways to construct these lexical prob-
abilities using automatically learned lexicons, hand-
made lexicons, or a combination of both.

4.1 Automatically Learned Lexicons

In traditional SMT systems, lexical translation prob-
abilities are generally learned directly from parallel
data in an unsupervised fashion using a model such
as the IBM models (Brown et al., 1993; Och and
Ney, 2003). These models can be used to estimate
the alignments and lexical translation probabilities
pl(e|f) between the tokens of the two languages us-
ing the expectation maximization (EM) algorithm.

First in the expectation step, the algorithm esti-
mates the expected count c(e|f). In the maximiza-

tion step, lexical probabilities are calculated by di-
viding the expected count by all possible counts:

pl,a(e|f) =
c(f, e)∑
ẽ c(f, ẽ)

,

The IBM models vary in level of refinement, with
Model 1 relying solely on these lexical probabil-
ities, and latter IBM models (Models 2, 3, 4, 5)
introducing more sophisticated models of fertility
and relative alignment. Even though IBM models
also occasionally have problems when dealing with
the rare words (e.g. “garbage collecting” effects
(Liang et al., 2006)), traditional SMT systems gen-
erally achieve better translation accuracies of low-
frequency words than NMT systems (Sutskever et
al., 2014), indicating that these problems are less
prominent than they are in NMT.

Note that in many cases, NMT limits the target
vocabulary (Jean et al., 2015) for training speed or
memory constraints, resulting in rare words not be-
ing covered by the NMT vocabulary VE . Accord-
ingly, we allocate the remaining probability assigned
by the lexicon to the unknown word symbol ⟨unk⟩:

pl,a(e = ⟨unk⟩|f) = 1−
∑

i∈Ve

pl,a(e = i|f). (5)

4.2 Manual Lexicons
In addition, for many language pairs, broad-
coverage handmade dictionaries exist, and it is desir-
able that we be able to use the information included
in them as well. Unlike automatically learned lexi-
cons, however, handmade dictionaries generally do
not contain translation probabilities. To construct
the probability pl(e|f), we define the set of trans-
lations Kf existing in the dictionary for particular
source word f , and assume a uniform distribution
over these words:

pl,m(e|f) =

{
1

|Kf | if e ∈ Kf

0 otherwise
.

Following Equation (5), unknown source words will
assign their probability mass to the ⟨unk⟩ tag.

4.3 Hybrid Lexicons
Handmade lexicons have broad coverage of words
but their probabilities might not be as accurate as the

1560

Data Corpus Sentence
Tokens

En Ja

Train
BTEC 464K 3.60M 4.97M
KFTT 377K 7.77M 8.04M

Dev
BTEC 510 3.8K 5.3K
KFTT 1160 24.3K 26.8K

Test
BTEC 508 3.8K 5.5K
KFTT 1169 26.0K 28.4K

Table 1: Corpus details.

learned ones, particularly if the automatic lexicon is
constructed on in-domain data. Thus, we also test a
hybrid method where we use the handmade lexi-
cons to complement the automatically learned lexi-
con.2 3 Specifically, inspired by phrase table fill-up
used in PBMT systems (Bisazza et al., 2011), we
use the probability of the automatically learned lex-
icons pl,a by default, and fall back to the handmade
lexicons pl,m only for uncovered words:

pl,h(e|f) =

{
pl,a(e|f) if f is covered
pl,m(e|f) otherwise

(6)

5 Experiment & Result

In this section, we describe experiments we use to
evaluate our proposed methods.

5.1 Settings
Dataset: We perform experiments on two widely-
used tasks for the English-to-Japanese language
pair: KFTT (Neubig, 2011) and BTEC (Kikui et
al., 2003). KFTT is a collection of Wikipedia article
about city of Kyoto and BTEC is a travel conversa-
tion corpus. BTEC is an easier translation task than
KFTT, because KFTT covers a broader domain, has
a larger vocabulary of rare words, and has relatively
long sentences. The details of each corpus are de-
picted in Table 1.

We tokenize English according to the Penn Tree-
bank standard (Marcus et al., 1993) and lowercase,

2Alternatively, we could imagine a method where we com-
bined the training data and dictionary before training the word
alignments to create the lexicon. We attempted this, and results
were comparable to or worse than the fill-up method, so we use
the fill-up method for the remainder of the paper.

3While most words in the Vf will be covered by the learned
lexicon, many words (13% in experiments) are still left uncov-
ered due to alignment failures or other factors.

and tokenize Japanese using KyTea (Neubig et al.,
2011). We limit training sentence length up to 50
in both experiments and keep the test data at the
original length. We replace words of frequency less
than a threshold u in both languages with the ⟨unk⟩
symbol and exclude them from our vocabulary. We
choose u = 1 for BTEC and u = 3 for KFTT, re-
sulting in |Vf | = 17.8k, |Ve| = 21.8k for BTEC and
|Vf | = 48.2k, |Ve| = 49.1k for KFTT.
NMT Systems: We build the described models us-
ing the Chainer4 toolkit. The depth of the stacking
LSTM is d = 4 and hidden node size h = 800.
We concatenate the forward and backward encod-
ings (resulting in a 1600 dimension vector) and then
perform a linear transformation to 800 dimensions.

We train the system using the Adam (Kingma and
Ba, 2014) optimization method with the default set-
tings: α = 1e−3, β1 = 0.9, β2 = 0.999, ϵ =
1e−8. Additionally, we add dropout (Srivastava et
al., 2014) with drop rate r = 0.2 at the last layer of
each stacking LSTM unit to prevent overfitting. We
use a batch size of B = 64 and we run a total of
N = 14 iterations for all data sets. All of the ex-
periments are conducted on a single GeForce GTX
TITAN X GPU with a 12 GB memory cache.

At test time, we use beam search with beam size
b = 5. We follow Luong et al. (2015b) in replac-
ing every unknown token at position i with the tar-
get token that maximizes the probability pl,a(ei|fj).
We choose source word fj according to the high-
est alignment score in Equation (3). This unknown
word replacement is applied to both baseline and
proposed systems. Finally, because NMT models
tend to give higher probabilities to shorter sentences
(Cho et al., 2014), we discount the probability of
⟨EOS⟩ token by 10% to correct for this bias.
Traditional SMT Systems: We also prepare two
traditional SMT systems for comparison: a PBMT
system (Koehn et al., 2003) using Moses5 (Koehn et
al., 2007), and a hierarchical phrase-based MT sys-
tem (Chiang, 2007) using Travatar6 (Neubig, 2013),
Systems are built using the default settings, with
models trained on the training data, and weights
tuned on the development data.
Lexicons: We use a total of 3 lexicons for the

4http://chainer.org/index.html
5http://www.statmt.org/moses/
6http://www.phontron.com/travatar/

1561

System
BTEC KFTT

BLEU NIST RECALL BLEU NIST RECALL
pbmt 48.18 6.05 27.03 22.62 5.79 13.88
hiero 52.27 6.34 24.32 22.54 5.82 12.83
attn 48.31 5.98 17.39 20.86 5.15 17.68
auto-bias 49.74∗ 6.11∗ 50.00 23.20† 5.59† 19.32
hyb-bias 50.34† 6.10∗ 41.67 22.80† 5.55† 16.67

Table 2: Accuracies for the baseline attentional NMT (attn) and the proposed bias-based method using
the automatic (auto-bias) or hybrid (hyb-bias) dictionaries. Bold indicates a gain over the attn
baseline, † indicates a significant increase at p < 0.05, and ∗ indicates p < 0.10. Traditional phrase-based
(pbmt) and hierarchical phrase based (hiero) systems are shown for reference.

proposed method, and apply bias and linear
method for all of them, totaling 6 experiments. The
first lexicon (auto) is built on the training data
using the automatically learned lexicon method of
§4.1 separately for both the BTEC and KFTT ex-
periments. Automatic alignment is performed using
GIZA++ (Och and Ney, 2003). The second lexicon
(man) is built using the popular English-Japanese
dictionary Eijiro7 with the manual lexicon method
of §4.2. Eijiro contains 104K distinct word-to-word
translation entries. The third lexicon (hyb) is built
by combining the first and second lexicon with the
hybrid method of §4.3.
Evaluation: We use standard single reference
BLEU-4 (Papineni et al., 2002) to evaluate the trans-
lation performance. Additionally, we also use NIST
(Doddington, 2002), which is a measure that puts a
particular focus on low-frequency word strings, and
thus is sensitive to the low-frequency words we are
focusing on in this paper. We measure the statistical
significant differences between systems using paired
bootstrap resampling (Koehn, 2004) with 10,000 it-
erations and measure statistical significance at the
p < 0.05 and p < 0.10 levels.

Additionally, we also calculate the recall of rare
words from the references. We define “rare words”
as words that appear less than eight times in the tar-
get training corpus or references, and measure the
percentage of time they are recovered by each trans-
lation system.

5.2 Effect of Integrating Lexicons
In this section, we first a detailed examination of
the utility of the proposed bias method when used

7http://eijiro.jp

0 1000 2000 3000 4000
time (minutes)

5

10

15

20

BL
EU
attn
auto-bias
hyb-bias

Figure 2: Training curves for the baseline attn and
the proposed bias method.

with the auto or hyb lexicons, which empirically
gave the best results, and perform a comparison
among the other lexicon integration methods in the
following section. Table 2 shows the results of these
methods, along with the corresponding baselines.

First, compared to the baseline attn, our bias
method achieved consistently higher scores on both
test sets. In particular, the gains on the more diffi-
cult KFTT set are large, up to 2.3 BLEU, 0.44 NIST,
and 30% Recall, demonstrating the utility of the pro-
posed method in the face of more diverse content
and fewer high-frequency words.

Compared to the traditional pbmt systems
hiero, particularly on KFTT we can see that the
proposed method allows the NMT system to exceed
the traditional SMT methods in BLEU. This is de-
spite the fact that we are not performing ensembling,
which has proven to be essential to exceed tradi-
tional systems in several previous works (Sutskever

1562

Input Do you have an opinion regarding extramarital affairs?
Reference 不倫に関して意見がありますか。

Furin ni kanshite iken ga arimasu ka.
attn サッカーに関する意見はありますか。

Sakkā ni kansuru iken wa arimasu ka. (Do you have an opinion about soccer?)
auto-bias 不倫に関して意見がありますか。

Furin ni kanshite iken ga arimasu ka. (Do you have an opinion about affairs?)
Input Could you put these fragile things in a safe place?
Reference この壊れ物を安全な場所に置いてもらえませんか。

Kono kowaremono o anzen’na basho ni oite moraemasen ka.
attn 貴重品を安全に出したいのですが。

Kichō-hin o anzen ni dashitai nodesuga. (I’d like to safely put out these valuables.)
auto-bias この壊れ物を安全な場所に置いてもらえませんか。

Kono kowaremono o anzen’na basho ni oite moraemasen ka.
(Could you put these fragile things in a safe place?)

Table 3: Examples where the proposed auto-bias improved over the baseline system attn. Underlines
indicate words were mistaken in the baseline output but correct in the proposed model’s output.

et al., 2014; Luong et al., 2015a; Sennrich et al.,
2016). Interestingly, despite gains in BLEU, the
NMT methods still fall behind in NIST score on
the KFTT data set, demonstrating that traditional
SMT systems still tend to have a small advantage in
translating lower-frequency words, despite the gains
made by the proposed method.

In Table 3, we show some illustrative examples
where the proposed method (auto-bias) was able
to obtain a correct translation while the normal at-
tentional model was not. The first example is a
mistake in translating “extramarital affairs” into the
Japanese equivalent of “soccer,” entirely changing
the main topic of the sentence. This is typical of the
errors that we have observed NMT systems make
(the mistake from Figure 1 is also from attn, and
was fixed by our proposed method). The second ex-
ample demonstrates how these mistakes can then af-
fect the process of choosing the remaining words,
propagating the error through the whole sentence.

Next, we examine the effect of the proposed
method on the training time for each neural MT
method, drawing training curves for the KFTT data
in Figure 2. Here we can see that the proposed bias
training methods achieve reasonable BLEU scores
in the upper 10s even after the first iteration. In con-
trast, the baseline attn method has a BLEU score
of around 5 after the first iteration, and takes signifi-
cantly longer to approach values close to its maximal

Figure 3: Attention matrices for baseline attn and
proposed bias methods. Lighter colors indicate
stronger attention between the words, and boxes sur-
rounding words indicate the correct alignments.

accuracy. This shows that by incorporating lexical
probabilities, we can effectively bootstrap the learn-
ing of the NMT system, allowing it to approach an
appropriate answer in a more timely fashion.8

It is also interesting to examine the alignment vec-
tors produced by the baseline and proposed meth-

8Note that these gains are despite the fact that one iteration
of the proposed method takes a longer (167 minutes for attn
vs. 275 minutes for auto-bias) due to the necessity to cal-
culate and use the lexical probability matrix for each sentence.
It also takes an additional 297 minutes to train the lexicon with
GIZA++, but this can be greatly reduced with more efficient
training methods (Dyer et al., 2013).

1563

(a) BTEC

Lexicon
BLEU NIST

bias linear bias linear
- 48.31 5.98
auto 49.74∗ 47.97 6.11 5.90
man 49.08 51.04† 6.03∗ 6.14†

hyb 50.34† 49.27 6.10∗ 5.94
(b) KFTT

Lexicon
BLEU NIST

bias linear bias linear
- 20.86 5.15
auto 23.20† 18.19 5.59† 4.61
man 20.78 20.88 5.12 5.11
hyb 22.80† 20.33 5.55† 5.03

Table 4: A comparison of the bias and linear
lexicon integration methods on the automatic, man-
ual, and hybrid lexicons. The first line without lexi-
con is the traditional attentional NMT.

ods, a visualization of which we show in Figure
3. For this sentence, the outputs of both meth-
ods were both identical and correct, but we can
see that the proposed method (right) placed sharper
attention on the actual source word correspond-
ing to content words in the target sentence. This
trend of peakier attention distributions in the pro-
posed method held throughout the corpus, with
the per-word entropy of the attention vectors being
3.23 bits for auto-bias, compared with 3.81 bits
for attn, indicating that the auto-bias method
places more certainty in its attention decisions.

5.3 Comparison of Integration Methods

Finally, we perform a full comparison between the
various methods for integrating lexicons into the
translation process, with results shown in Table 4.
In general the bias method improves accuracy for
the auto and hyb lexicon, but is less effective for
the man lexicon. This is likely due to the fact that
the manual lexicon, despite having broad coverage,
did not sufficiently cover target-domain words (cov-
erage of unique words in the source vocabulary was
35.3% and 9.7% for BTEC and KFTT respectively).

Interestingly, the trend is reversed for the
linear method, with it improving man systems,
but causing decreases when using the auto and

hyb lexicons. This indicates that the linear
method is more suited for cases where the lexi-
con does not closely match the target domain, and
plays a more complementary role. Compared to
the log-linear modeling of bias, which strictly en-
forces constraints imposed by the lexicon distribu-
tion (Klakow, 1998), linear interpolation is intu-
itively more appropriate for integrating this type of
complimentary information.

On the other hand, the performance of linear in-
terpolation was generally lower than that of the bias
method. One potential reason for this is the fact that
we use a constant interpolation coefficient that was
set fixed in every context. Gu et al. (2016) have re-
cently developed methods to use the context infor-
mation from the decoder to calculate the different in-
terpolation coefficients for every decoding step, and
it is possible that introducing these methods would
improve our results.

6 Additional Experiments

To test whether the proposed method is useful on
larger data sets, we also performed follow-up ex-
periments on the larger Japanese-English ASPEC
dataset (Nakazawa et al., 2016) that consist of 2
million training examples, 63 million tokens, and
81,000 vocabulary size. We gained an improvement
in BLEU score from 20.82 using the attn baseline
to 22.66 using the auto-bias proposed method.
This experiment shows that our method scales to
larger datasets.

7 Related Work

From the beginning of work on NMT, unknown
words that do not exist in the system vocabulary
have been focused on as a weakness of these sys-
tems. Early methods to handle these unknown words
replaced them with appropriate words in the target
vocabulary (Jean et al., 2015; Luong et al., 2015b)
according to a lexicon similar to the one used in this
work. In contrast to our work, these only handle
unknown words and do not incorporate information
from the lexicon in the learning procedure.

There have also been other approaches that incor-
porate models that learn when to copy words as-is
into the target language (Allamanis et al., 2016; Gu
et al., 2016; Gülçehre et al., 2016). These models

1564

are similar to the linear approach of §3.2.2, but
are only applicable to words that can be copied as-
is into the target language. In fact, these models can
be thought of as a subclass of the proposed approach
that use a lexicon that assigns a all its probability to
target words that are the same as the source. On the
other hand, while we are simply using a static in-
terpolation coefficient λ, these works generally have
a more sophisticated method for choosing the inter-
polation between the standard and “copy” models.
Incorporating these into our linear method is a
promising avenue for future work.

In addition Mi et al. (2016) have also recently pro-
posed a similar approach by limiting the number of
vocabulary being predicted by each batch or sen-
tence. This vocabulary is made by considering the
original HMM alignments gathered from the train-
ing corpus. Basically, this method is a specific ver-
sion of our bias method that gives some of the vocab-
ulary a bias of negative infinity and all other vocab-
ulary a uniform distribution. Our method improves
over this by considering actual translation probabil-
ities, and also considering the attention vector when
deciding how to combine these probabilities.

Finally, there have been a number of recent works
that improve accuracy of low-frequency words us-
ing character-based translation models (Ling et al.,
2015; Costa-Jussà and Fonollosa, 2016; Chung et
al., 2016). However, Luong and Manning (2016)
have found that even when using character-based
models, incorporating information about words al-
lows for gains in translation accuracy, and it is likely
that our lexicon-based method could result in im-
provements in these hybrid systems as well.

8 Conclusion & Future Work

In this paper, we have proposed a method to in-
corporate discrete probabilistic lexicons into NMT
systems to solve the difficulties that NMT systems
have demonstrated with low-frequency words. As
a result, we achieved substantial increases in BLEU
(2.0-2.3) and NIST (0.13-0.44) scores, and observed
qualitative improvements in the translations of con-
tent words.

For future work, we are interested in conducting
the experiments on larger-scale translation tasks. We
also plan to do subjective evaluation, as we expect

that improvements in content word translation are
critical to subjective impressions of translation re-
sults. Finally, we are also interested in improve-
ments to the linear method where λ is calculated
based on the context, instead of using a fixed value.

Acknowledgment

We thank Makoto Morishita and Yusuke Oda for
their help in this project. We also thank the faculty
members of AHC lab for their supports and sugges-
tions.

This work was supported by grants from the Min-
istry of Education, Culture, Sport, Science, and
Technology of Japan and in part by JSPS KAKENHI
Grant Number 16H05873.

References

Miltiadis Allamanis, Hao Peng, and Charles Sutton.
2016. A convolutional attention network for extreme
summarization of source code. In Proceedings of the
33th International Conference on Machine Learning
(ICML).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of the
4th International Conference on Learning Representa-
tions (ICLR).

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Research,
pages 1137–1155.

Arianna Bisazza, Nick Ruiz, and Marcello Federico.
2011. Fill-up versus interpolation methods for phrase-
based SMT adaptation. In Proceedings of the 2011
International Workshop on Spoken Language Transla-
tion (IWSLT), pages 136–143.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathematics
of statistical machine translation: Parameter estima-
tion. Computational Linguistics, pages 263–311.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, pages 201–228.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder–decoder ap-
proaches. In Proceedings of the Workshop on Syntax
and Structure in Statistical Translation (SSST), pages
103–111.

1565

Junyoung Chung, Kyunghyun Cho, and Yoshua Bengio.
2016. A character-level decoder without explicit seg-
mentation for neural machine translation. In Proceed-
ings of the 54th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 1693–1703.

Marta R. Costa-Jussà and José A. R. Fonollosa. 2016.
Character-based neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 357–361.

George Doddington. 2002. Automatic evaluation of ma-
chine translation quality using n-gram co-occurrence
statistics. In Proceedings of the Second Interna-
tional Conference on Human Language Technology
Research, pages 138–145.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameterization
of IBM model 2. In Proceedings of the 2013 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 644–648.

Felix A. Gers, Jürgen A. Schmidhuber, and Fred A. Cum-
mins. 2000. Learning to forget: Continual prediction
with LSTM. Neural Computation, pages 2451–2471.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li.
2016. Incorporating copying mechanism in sequence-
to-sequence learning. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 1631–1640.

Çaglar Gülçehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing the
unknown words. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguis-
tics (ACL), pages 140–149.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, pages
1735–1780.

Sébastien Jean, KyungHyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large tar-
get vocabulary for neural machine translation. In Pro-
ceedings of the 53th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL) and the 7th
Internationali Joint Conference on Natural Language
Processing of the Asian Federation of Natural Lan-
guage Processing, ACL 2015, July 26-31, 2015, Bei-
jing, China, Volume 1: Long Papers, pages 1–10.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1700–1709.

Gen-ichiro Kikui, Eiichiro Sumita, Toshiyuki Takezawa,
and Seiichi Yamamoto. 2003. Creating corpora for
speech-to-speech translation. In 8th European Confer-
ence on Speech Communication and Technology, EU-

ROSPEECH 2003 - INTERSPEECH 2003, Geneva,
Switzerland, September 1-4, 2003, pages 381–384.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. CoRR.

Dietrich Klakow. 1998. Log-linear interpolation of lan-
guage models. In Proceedings of the 5th International
Conference on Speech and Language Processing (IC-
SLP).

Phillip Koehn, Franz Josef Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proceedings
of the 2003 Human Language Technology Conference
of the North American Chapter of the Association for
Computational Linguistics (HLT-NAACL), pages 48–
54.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondřej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Proceed-
ings of the 45th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 177–180.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of the
2004 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by agreement. In Proceedings of the 2006 Hu-
man Language Technology Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (HLT-NAACL), pages 104–111.

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan W.
Black. 2015. Character-based neural machine transla-
tion. CoRR.

Minh-Thang Luong and Christopher D. Manning. 2016.
Achieving open vocabulary neural machine translation
with hybrid word-character models. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 1054–1063.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015a. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1412–1421.

Minh-Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol
Vinyals, and Wojciech Zaremba. 2015b. Addressing
the rare word problem in neural machine translation.
In Proceedings of the 53th Annual Meeting of the As-
sociation for Computational Linguistics (ACL) and the
7th Internationali Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural
Language Processing, ACL 2015, July 26-31, 2015,
Beijing, China, Volume 1: Long Papers, pages 11–19.

1566

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of English: The Penn treebank. Computational
Linguistics, pages 313–330.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016.
Vocabulary manipulation for neural machine transla-
tion. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 124–129.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao Kuro-
hashi, and Hitoshi Isahara. 2016. Aspec: Asian scien-
tific paper excerpt corpus. In Proceedings of the Ninth
International Conference on Language Resources and
Evaluation (LREC 2016), pages 2204–2208.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise prediction for robust, adaptable
Japanese morphological analysis. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 529–533.

Graham Neubig. 2011. The Kyoto free translation task.
http://www.phontron.com/kftt.

Graham Neubig. 2013. Travatar: A forest-to-string ma-
chine translation engine based on tree transducers. In
Proceedings of the 51th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), pages 91–
96.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, pages 19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 311–318.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 86–96.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, pages 1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Proceedings of the 28th Annual Conference on Neural
Information Processing Systems (NIPS), pages 3104–
3112.

1567

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1568–1575,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Transfer Learning for Low-Resource Neural Machine Translation

Barret Zoph* Deniz Yuret Jonathan May and Kevin Knight
Information Sciences Institute Computer Engineering Information Sciences Institute

University of Southern California Koç University Computer Science Department
barretzoph@gmail.com dyuret@ku.edu.tr University of Southern California

{jonmay,knight}@isi.edu

Abstract

The encoder-decoder framework for neural
machine translation (NMT) has been shown
effective in large data scenarios, but is much
less effective for low-resource languages. We
present a transfer learning method that signifi-
cantly improves BLEU scores across a range
of low-resource languages. Our key idea is
to first train a high-resource language pair
(the parent model), then transfer some of the
learned parameters to the low-resource pair
(the child model) to initialize and constrain
training. Using our transfer learning method
we improve baseline NMT models by an av-
erage of 5.6 BLEU on four low-resource lan-
guage pairs. Ensembling and unknown word
replacement add another 2 BLEU which brings
the NMT performance on low-resource ma-
chine translation close to a strong syntax based
machine translation (SBMT) system, exceed-
ing its performance on one language pair. Ad-
ditionally, using the transfer learning model
for re-scoring, we can improve the SBMT sys-
tem by an average of 1.3 BLEU, improving
the state-of-the-art on low-resource machine
translation.

1 Introduction

Neural machine translation (NMT) (Sutskever et al.,
2014) is a promising paradigm for extracting trans-
lation knowledge from parallel text. NMT sys-
tems have achieved competitive accuracy rates un-
der large-data training conditions for language pairs

This work was carried out while all authors were at USC’s
Information Sciences Institute.

*This author is currently at Google Brain.

Language Train Test SBMT NMT
Size Size BLEU BLEU

Hausa 1.0m 11.3K 23.7 16.8
Turkish 1.4m 11.6K 20.4 11.4
Uzbek 1.8m 11.5K 17.9 10.7
Urdu 0.2m 11.4K 17.9 5.2

Table 1: NMT models with attention are outperformed by stan-

dard string-to-tree statistical MT (SBMT) when translating low-

resource languages into English. Train/test bitext corpus sizes

are English token counts. Single-reference, case-insensitive

BLEU scores are given for held-out test corpora.

such as English–French. However, neural methods
are data-hungry and learn poorly from low-count
events. This behavior makes vanilla NMT a poor
choice for low-resource languages, where parallel
data is scarce. Table 1 shows that for 4 low-resource
languages, a standard string-to-tree statistical MT
system (SBMT) (Galley et al., 2004; Galley et al.,
2006) strongly outperforms NMT, even when NMT
uses the state-of-the-art local attention plus feed-
input techniques from Luong et al. (2015a).

In this paper, we describe a method for substan-
tially improving NMT results on these languages.
Our key idea is to first train a high-resource lan-
guage pair, then use the resulting trained network
(the parent model) to initialize and constrain training
for our low-resource language pair (the child model).
We find that we can optimize our results by fixing
certain parameters of the parent model and letting
the rest be fine-tuned by the child model. We re-
port NMT improvements from transfer learning of
5.6 BLEU on average, and we provide an analysis
of why the method works. The final NMT system

1568

approaches strong SBMT baselines in all four lan-
guage pairs, and exceeds SBMT performance in one
of them. Furthermore, we show that NMT is an ex-
ceptional re-scorer of ‘traditional’ MT output; even
NMT that on its own is worse than SBMT is con-
sistently able to improve upon SBMT system output
when incorporated as a re-scoring model.

We provide a brief description of our NMT model
in Section 2. Section 3 gives some background on
transfer learning and explains how we use it to im-
prove machine translation performance. Our main
experiments translating Hausa, Turkish, Uzbek, and
Urdu into English with the help of a French–English
parent model are presented in Section 4. Section 5
explores alternatives to our model to enhance under-
standing. We find that the choice of parent language
pair affects performance, and provide an empirical
upper bound on transfer performance using an arti-
ficial language. We experiment with English-only
language models, copy models, and word-sorting
models to show that what we transfer goes beyond
monolingual information and that using a transla-
tion model trained on bilingual corpora as a parent
is essential. We show the effects of freezing, fine-
tuning, and smarter initialization of different com-
ponents of the attention-based NMT system during
transfer. We compare the learning curves of transfer
and no-transfer models, showing that transfer solves
an overfitting problem, not a search problem. We
summarize our contributions in Section 6.

2 NMT Background

In the neural encoder-decoder framework for MT
(Neco and Forcada, 1997; Castaño and Casacu-
berta, 1997; Sutskever et al., 2014; Bahdanau et
al., 2014; Luong et al., 2015a), we use a recurrent
neural network (encoder) to convert a source sen-
tence into a dense, fixed-length vector. We then use
another recurrent network (decoder) to convert that
vector to a target sentence. In this paper, we use
a two-layer encoder-decoder system (Figure 1) with
long short-term memory (LSTM) units (Hochreiter
and Schmidhuber, 1997). The models were trained
to optimize maximum likelihood (via a softmax
layer) with back-propagation through time (Werbos,
1990). Additionally, we use an attention mecha-
nism that allows the target decoder to look back at

Figure 1: The encoder-decoder framework for neural machine

translation (NMT) (Sutskever et al., 2014). Here, a source sen-

tence C B A (presented in reverse order as A B C) is trans-

lated into a target sentence W X Y Z. At each step, an evolving

real-valued vector summarizes the state of the encoder (blue,

checkerboard) and decoder (red, lattice). Not shown here are

the attention connections present in our model used by the de-

coder to access encoder states.

the source encoder, specifically the local attention
model from Luong et al. (2015a). In our model we
also use the feed-input input connection from Luong
et al. (2015a) where at each timestep on the decoder
we feed in the top layer’s hidden state into the lowest
layer of the next timestep.

3 Transfer Learning

Transfer learning uses knowledge from a learned
task to improve the performance on a related task,
typically reducing the amount of required training
data (Torrey and Shavlik, 2009; Pan and Yang,
2010). In natural language processing, transfer
learning methods have been successfully applied to
speech recognition, document classification and sen-
timent analysis (Wang and Zheng, 2015). Deep
learning models discover multiple levels of repre-
sentation, some of which may be useful across tasks,
which makes them particularly suited to transfer
learning (Bengio, 2012). For example, Cireşan et
al. (2012) use a convolutional neural network to rec-
ognize handwritten characters and show positive ef-
fects of transfer between models for Latin and Chi-
nese characters. Ours is the first study to apply trans-
fer learning to neural machine translation.

There has also been work on using data from
multiple language pairs in NMT to improve perfor-
mance. Recently, Dong et al. (2015) showed that
sharing a source encoder for one language helps
performance when using different target decoders

1569

Decoder Hausa Turkish Uzbek Urdu
NMT 16.8 11.4 10.7 5.2
Xfer 21.3 17.0 14.4 13.8
Final 24.0 18.7 16.8 14.5
SBMT 23.7 20.4 17.9 17.9

Table 2: Our method significantly improves NMT results for

the translation of low-resource languages into English. Results

show test-set BLEU scores. The ‘NMT’ row shows results with-

out transfer, and the ‘Xfer’ row shows results with transfer. The

‘Final’ row shows BLEU after we ensemble 8 models and use

unknown word replacement.

for different languages. In that paper the authors
showed that using this framework improves perfor-
mance for low-resource languages by incorporating
a mix of low-resource and high-resource languages.
Firat et al. (2016) used a similar approach, employ-
ing a separate encoder for each source language,
a separate decoder for each target language, and
a shared attention mechanism across all languages.
They then trained these components jointly across
multiple different language pairs to show improve-
ments in a lower-resource setting.

There are a few key differences between our work
and theirs. One is that we are working with truly
small amounts of training data. Dong et al. (2015)
used a training corpus of about 8m English words for
the low-resource experiments, and Firat et al. (2016)
used from 2m to 4m words, while we have at most
1.8m words, and as few as 0.2m. Additionally, the
aforementioned previous work used the same do-
main for both low-resource and high-resource lan-
guages, while in our case the datasets come from
vastly different domains, which makes the task
much harder and more realistic. Our approach
only requires using one additional high-resource
language, while the other papers used many. Our
approach also allows for easy training of new low-
resource languages, while Dong et al. (2015) and Fi-
rat et al. (2016) do not specify how a new language
should be added to their pipeline once the models are
trained. Finally, Dong et al. (2015) observe an aver-
age BLEU gain on their low-resource experiments of
+1.16, and Firat et al. (2016) obtain BLEU gains of
+1.8, while we see a +5.6 BLEU gain.

The transfer learning approach we use is simple
and effective. We first train an NMT model on a

Re-scorer
SBMT Decoder

Hausa Turkish Uzbek Urdu
None 23.7 20.4 17.9 17.9
NMT 24.5 21.4 19.5 18.2
Xfer 24.8 21.8 19.5 19.1
LM 23.6 21.1 17.9 18.2

Table 3: Our transfer method applied to re-scoring output n-

best lists from the SBMT system. The first row shows the

SBMT performance with no re-scoring and the other 3 rows

show the performance after re-scoring with the selected model.

Note: the ‘LM’ row shows the results when an RNN LM trained

on the large English corpus was used to re-score.

large corpus of parallel data (e.g., French–English).
We call this the parent model. Next, we initialize an
NMT model with the already-trained parent model.
This new model is then trained on a very small par-
allel corpus (e.g., Uzbek–English). We call this the
child model. Rather than starting from a random po-
sition, the child model is initialized with the weights
from the parent model.

A justification for this approach is that in scenar-
ios where we have limited training data, we need a
strong prior distribution over models. The parent
model trained on a large amount of bilingual data
can be considered an anchor point, the peak of our
prior distribution in model space. When we train the
child model initialized with the parent model, we fix
parameters likely to be useful across tasks so that
they will not be changed during child model train-
ing. In the French–English to Uzbek–English ex-
ample, as a result of the initialization, the English
word embeddings from the parent model are copied,
but the Uzbek words are initially mapped to random
French embeddings. The parameters of the English
embeddings are then frozen, while the Uzbek em-
beddings’ parameters are allowed to be modified,
i.e. fine-tuned, during training of the child model.
Freezing certain transferred parameters and fine tun-
ing others can be considered a hard approximation to
a tight prior or strong regularization applied to some
of the parameter space. We also experiment with
ordinary L2 regularization, but find it does not sig-
nificantly improve over the parameter freezing de-
scribed above.

Our method results in large BLEU increases for
a variety of low resource languages. In one of the

1570

Language Pair Role Train Dev Test
Size Size Size

Spanish–English child 2.5m 58k 59k
French–English parent 53m 58k 59k
German–English parent 53m 58k 59k

Table 4: Data used for a low-resource Spanish–English task.

Sizes are English-side token counts.

four language pairs our NMT system using trans-
fer beats a strong SBMT baseline. Not only do
these transfer models do well on their own, they also
give large gains when used for re-scoring n-best lists
(n = 1000) from the SBMT system. Section 4 de-
tails these results.

4 Experiments
To evaluate how well our transfer method works we
apply it to a variety of low-resource languages, both
stand-alone and for re-scoring a strong SBMT base-
line. We report large BLEU increases across the
board with our transfer method.

For all of our experiments with low-resource lan-
guages we use French as the parent source language
and for child source languages we use Hausa, Turk-
ish, Uzbek, and Urdu. The target language is al-
ways English. Table 1 shows parallel training data
set sizes for the child languages, where the language
with the most data has only 1.8m English tokens.
For comparison, our parent French–English model
uses a training set with 300 million English tokens
and achieves 26 BLEU on the development set. Ta-
ble 1 also shows the SBMT system scores along with
the NMT baselines that do not use transfer. There is
a large gap between the SBMT and NMT systems
when our transfer method is not used.

The SBMT system used in this paper is a string-
to-tree statistical machine translation system (Gal-
ley et al., 2006; Galley et al., 2004). In this system
there are two count-based 5-gram language mod-
els. One is trained on the English side of the
WMT 2015 English–French dataset and the other is
trained on the English side of the low-resource bi-
text. Additionally, the SBMT models use thousands
of sparsely-occurring, lexicalized syntactic features
(Chiang et al., 2009).

For our NMT system, we use development sets for
Hausa, Turkish, Uzbek, and Urdu to tune the learn-

Parent BLEU ↑ PPL ↓
none 16.4 15.9
French–English 31.0 5.8
German–English 29.8 6.2

Table 5: For a low-resource Spanish–English task, we exper-

iment with several choices of parent model: none, French–

English, and German–English. We hypothesize that French–

English is best because French and Spanish are similar.

ing rate, parameter initialization range, dropout rate,
and hidden state size for all the experiments. For
training we use a minibatch size of 128, hidden state
size of 1000, a target vocabulary size of 15K, and
a source vocabulary size of 30K. The child models
are trained with a dropout probability of 0.5, as in
Zaremba et al. (2014). The common parent model
is trained with a dropout probability of 0.2. The
learning rate used for both child and parent mod-
els is 0.5 with a decay rate of 0.9 when the de-
velopment perplexity does not improve. The child
models are all trained for 100 epochs. We re-scale
the gradient when the gradient norm of all param-
eters is greater than 5. The initial parameter range
is [-0.08, +0.08]. We also initialize our forget-gate
biases to 1 as specified by Józefowicz et al. (2015)
and Gers et al. (2000). For decoding we use a beam
search of width 12.

4.1 Transfer Results

The results for our transfer learning method applied
to the four languages above are in Table 2. The par-
ent models were trained on the WMT 2015 (Bojar
et al., 2015) French–English corpus for 5 epochs.
Our baseline NMT systems (‘NMT’ row) all receive
a large BLEU improvement when using the transfer
method (the ‘Xfer’ row) with an average BLEU im-
provement of 5.6. Additionally, when we use un-
known word replacement from Luong et al. (2015b)
and ensemble together 8 models (the ‘Final’ row)
we further improve upon our BLEU scores, bringing
the average BLEU improvement to 7.5. Overall our
method allows the NMT system to reach competi-
tive scores and outperform the SBMT system in one
of the four language pairs.

1571

Figure 2: Our NMT model architecture, showing six blocks of parameters, in addition to source/target words and predictions.

During transfer learning, we expect the source-language related blocks to change more than the target-language related blocks.

Language Pair Parent Train Size BLEU ↑ PPL ↓
Uzbek–English

None 1.8m 10.7 22.4
French–English 1.8m 15.0 (+4.3) 13.9

French′–English
None 1.8m 13.3 28.2
French–English 1.8m 20.0 (+6.7) 10.9

Table 6: A better match between parent and child languages should improve transfer results. We devised a child language called

French′, identical to French except for word spellings. We observe that French transfer learning helps French′ (13.3→20.0) more

than it helps Uzbek (10.7→15.0).

4.2 Re-scoring Results

We also use the NMT model with transfer learn-
ing as a feature when re-scoring output n-best lists
(n = 1000) from the SBMT system. Table 3 shows
the results of re-scoring. We compare re-scoring
with transfer NMT to re-scoring with baseline (i.e.
non-transfer) NMT and to re-scoring with a neural
language model. The neural language model is an
LSTM RNN with 2 layers and 1000 hidden states. It
has a target vocabulary of 100K and is trained using
noise-contrastive estimation (Mnih and Teh, 2012;
Vaswani et al., 2013; Baltescu and Blunsom, 2015;
Williams et al., 2015). Additionally, it is trained us-
ing dropout with a dropout probability of 0.2 as sug-
gested by Zaremba et al. (2014). Re-scoring with the
transfer NMT model yields an improvement of 1.1–
1.6 BLEU points above the strong SBMT system; we
find that transfer NMT is a better re-scoring feature
than baseline NMT or neural language models.

In the next section, we describe a number of ad-
ditional experiments designed to help us understand
the contribution of the various components of our
transfer model.

5 Analysis

We analyze the effects of using different parent mod-
els, regularizing different parts of the child model,
and trying different regularization techniques.

5.1 Different Parent Languages
In the above experiments we use French–English as
the parent language pair. Here, we experiment with
different parent languages. In this set of experiments
we use Spanish–English as the child language pair.
A description of the data used in this section is pre-
sented in Table 4.

Our experimental results are shown in Table 5,
where we use French and German as parent lan-
guages. If we just train a model with no transfer on
a small Spanish–English training set we get a BLEU

score of 16.4. When using our transfer method we
get Spanish–English BLEU scores of 31.0 and 29.8
via French and German parent languages, respec-
tively. As expected, French is a better parent than
German for Spanish, which could be the result of
the parent language being more similar to the child
language. We suspect using closely-related parent
language pairs would improve overall quality.

1572

���

���

���

���

���

���

�� ��� ��� ��� ��� ���

�
�
��
��
�
���

������

������������������
����������������
�������������������
�����������������

Figure 3: Uzbek–English learning curves for the NMT atten-

tion model with and without transfer learning. The training per-

plexity converges to a similar value in both cases. However, the

development perplexity for the transfer model is significantly

better.

5.2 Effects of having Similar Parent Language
Next, we look at a best-case scenario in which the
parent language is as similar as possible to the child
language.

Here we devise a synthetic child language (called
French′) which is exactly like French, except its vo-
cabulary is shuffled randomly. (e.g., “internationale”
is now “pomme,” etc). This language, which looks
unintelligible to human eyes, nevertheless has the
same distributional and relational properties as ac-
tual French, i.e. the word that, prior to vocabu-
lary reassignment, was ‘roi’ (king) is likely to share
distributional characteristics, and hence embedding
similarity, to the word that, prior to reassignment,
was ‘reine’ (queen). French should be the ideal par-
ent model for French′.

The results of this experiment are shown in Ta-
ble 6. We get a 4.3 BLEU improvement with an
unrelated parent (i.e. French–parent and Uzbek–
child), but we get a 6.7 BLEU improvement with
a ‘closely related’ parent (i.e. French–parent and
French′–child). We conclude that the choice of par-
ent model can have a strong impact on transfer mod-
els, and choosing better parents for our low-resource
languages (if data for such parents can be obtained)
could improve the final results.

5.3 Ablation Analysis
In all the above experiments, only the target input
and output embeddings are fixed during training. In
this section we analyze what happens when different

���

���

���

���

���

�� ��� ��� ��� ��� ���

�
�
��
��
�
���

������

��������������
������������
���������������
�������������

Figure 4: Uzbek–English learning curves for the transfer

model with and without dictionary-based assignment of Uzbek

word types to French word embeddings (from the parent

model). Dictionary-based assignment enables faster improve-

ment in early epochs. The model variants converge, showing

that the unaided model is able to untangle the initial random

Uzbek/French word-type mapping without help.

parts of the model are fixed, in order to determine the
scenario that yields optimal performance. Figure 2
shows a diagram of the components of a sequence-
to-sequence model. Table 7 shows the effects of al-
lowing various components of the child NMT model
to be trained. We find that the optimal setting for
transferring from French–English to Uzbek–English
in terms of BLEU performance is to allow all of the
components of the child model to be trained except
for the input and output target embeddings.

Even though we use this setting for our main
experiments, the optimum setting is likely to be
language- and corpus-dependent. For Turkish, ex-
periments show that freezing attention parameters as
well gives slightly better results. For parent-child
models with closely related languages we expect
freezing, or strongly regularizing, more components
of the model to give better results.

5.4 Learning Curve

In Figure 3 we plot learning curves for both a trans-
fer and a non-transfer model on training and devel-
opment sets. We see that the final training set per-
plexities for both the transfer and non-transfer model
are very similar, but the development set perplexity
for the transfer model is much better.

The fact that the two models start from and con-
verge to very different points, yet have similar train-
ing set performances, indicates that our architecture

1573

Source Source Target
Attention

Target Input Target Output Dev Dev
Embeddings RNN RNN Embeddings Embeddings BLEU ↑ PPL ↓
� � � � � � 0.0 112.6
1 � � � � � 7.7 24.7
1 1 � � � � 11.8 17.0
1 1 1 � � � 14.2 14.5
1 1 1 1 � � 15.0 13.9
1 1 1 1 1 � 14.7 13.8
1 1 1 1 1 1 13.7 14.4

Table 7: Starting with the parent French–English model (BLEU =24.4, PPL=6.2), we randomly assign Uzbek word types to French

word embeddings, freeze various parameters of the neural network model (�), and allow Uzbek–English (child model) training

to modify other parts (1). The table shows how Uzbek–English BLEU and perplexity vary as we allow more parameters to be

re-trained.

and training algorithm are able to reach a good min-
imum of the training objective regardless of the ini-
tialization. However, the training objective seems
to have a large basin of models with similar perfor-
mance and not all of them generalize well to the de-
velopment set. The transfer model, starting with and
staying close to a point known to perform well on a
related task, is guided to a final point in the weight
space that generalizes to the development set much
better.

5.5 Dictionary Initialization

Using the transfer method, we always initialize
input language embeddings for the child model
with randomly-assigned embeddings from the par-
ent (which has a different input language). A smarter
method might be to initialize child embeddings with
similar parent embeddings, where similarity is mea-
sured by word-to-word t-table probabilities. To get
these probabilities we compose Uzbek–English and
English–French t-tables obtained from the Berke-
ley Aligner (Liang et al., 2006). We see from Fig-
ure 4 that this dictionary-based assignment results
in faster improvement in the early part of the train-
ing. However the final performance is similar to our
standard model, indicating that the training is able
to untangle the dictionary permutation introduced by
randomly-assigned embeddings.

5.6 Different Parent Models

In the above experiments, we use a parent model
trained on a large French–English corpus. One
might hypothesize that our gains come from exploit-

Transfer Model BLEU ↑ PPL ↓
None 10.7 22.4
French–English Parent 14.4 14.3
English–English Parent 5.3 55.8
EngPerm–English Parent 10.8 20.4
LM Xfer 12.9 16.3

Table 8: Transfer for Uzbek–English NMT with parent models

trained only on English data. The English–English parent learns

to copy English sentences, and the EngPerm–English learns to

un-permute scrambled English sentences. The LM is a 2-layer

LSTM RNN language model.

ing the English half of the corpus as an additional
language model resource. Therefore, we explore
transfer learning for the child model with parent
models that only use the English side of the French–
English corpus. We consider the following parent
models in our ablative transfer learning scenarios:

• A true translation model (French–English Par-
ent)

• A word-for-word English copying model
(English–English Parent)

• A model that unpermutes scrambled English
(EngPerm–English Parent)

• (The parameters of) an RNN language model
(LM Xfer)

The results, in Table 8, show that transfer learning
does not simply import an English language model,
but makes use of translation parameters learned
from the parent’s large bilingual text.

1574

6 Conclusion

Overall, our transfer method improves NMT scores
on low-resource languages by a large margin and al-
lows our transfer NMT system to come close to the
performance of a very strong SBMT system, even
exceeding its performance on Hausa–English. In
addition, we consistently and significantly improve
state-of-the-art SBMT systems on low-resource lan-
guages when the transfer NMT system is used for re-
scoring. Our experiments suggest that there is still
room for improvement in selecting parent languages
that are more similar to child languages, provided
data for such parents can be found.

Acknowledgments

This work was supported by ARL/ARO (W911NF-
10-1-0533), DARPA (HR0011-15-C-0115), and the
Scientific and Technological Research Council of
Turkey (TÜBİTAK) (grants 114E628 and 215E201).

References
D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural ma-

chine translation by jointly learning to align and trans-
late. In Proc. ICLR.

P. Baltescu and P. Blunsom. 2015. Pragmatic neural lan-
guage modelling in machine translation. In Proc. HLT-
NAACL.

Y. Bengio. 2012. Deep learning of representations for
unsupervised and transfer learning. JMLR, 27.

O. Bojar, R. Chatterjee, C. Federmann, B. Haddow,
M. Huck, C. Hokamp, P. Koehn, V. Logacheva,
C. Monz, M. Negri, M. Post, C. Scarton, L. Specia,
and M. Turchi. 2015. Findings of the 2015 workshop
on statistical machine translation. In Proc. WMT.

M. A. Castaño and F. Casacuberta. 1997. A connec-
tionist approach to machine translation. In Proc. Eu-
rospeech.

D. Chiang, K. Knight, and W. Wang. 2009. 11,001 new
features for statistical machine translation. In Proc.
HLT-NAACL.

D. C. Cireşan, U. Meier, and J. Schmidhuber. 2012.
Transfer learning for Latin and Chinese characters
with deep neural networks. In Proc. IJCNN.

D. Dong, H. Wu, W. He, D. Yu, and H. Wang. 2015.
Multi-task learning for multiple language translation.
In Proc. ACL-IJCNLP.

O. Firat, K. Cho, and Y. Bengio. 2016. Multi-way, mul-
tilingual neural machine translation with a shared at-
tention mechanism. In Proc. NAACL-HLT.

M. Galley, M. Hopkins, K. Knight, and D. Marcu. 2004.
What’s in a translation rule? In Proc. HLT-NAACL.

M. Galley, J. Graehl, K. Knight, D. Marcu, S. DeNeefe,
W. Wang, and I. Thayer. 2006. Scalable inference and
training of context-rich syntactic translation models.
In Proc. ACL-COLING.

F. A. Gers, J. Schmidhuber, and F. Cummins. 2000.
Learning to forget: Continual prediction with LSTM.
Neural computation, 12(10).

S. Hochreiter and J. Schmidhuber. 1997. Long short-
term memory. Neural Computation, 9(8).

R. Józefowicz, W. Zaremba, and I. Sutskever. 2015. An
empirical exploration of recurrent network architec-
tures. In Proc. ICML.

P. Liang, B. Taskar, and D. Klein. 2006. Alignment by
agreement. In Proc. HLT-NAACL.

M. Luong, H. Pham, and C. Manning. 2015a. Effective
approaches to attention-based neural machine transla-
tion. In Proc. EMNLP.

T. Luong, I. Sutskever, Q. Le, O. Vinyals, and
W. Zaremba. 2015b. Addressing the rare word prob-
lem in neural machine translation. In Proc. ACL.

A. Mnih and Y. W. Teh. 2012. A fast and simple algo-
rithm for training neural probabilistic language mod-
els. In Proc. ICML.

R. Neco and M. Forcada. 1997. Asynchronous transla-
tions with recurrent neural nets. In Proc. International
Conference on Neural Networks.

S. J. Pan and Q. Yang. 2010. A survey on transfer learn-
ing. IEEE Transactions on Knowledge and Data En-
gineering, 22(10).

I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence
to sequence learning with neural networks. In Proc.
NIPS.

L. Torrey and J. Shavlik. 2009. Transfer learning. In
E. Soria, J. Martin, R. Magdalena, M. Martinez, and
A. Serrano, editors, Handbook of Research on Ma-
chine Learning Applications and Trends: Algorithms,
Methods, and Techniques. IGI Global.

A. Vaswani, Y. Zhao, V. Fossum, and D. Chiang. 2013.
Decoding with large-scale neural language models im-
proves translation. In Proc. EMNLP.

D. Wang and T. Fang Zheng. 2015. Transfer learn-
ing for speech and language processing. CoRR,
abs/1511.06066.

P. J. Werbos. 1990. Backpropagation through time: what
it does and how to do it. Proc. IEEE, 78(10).

W. Williams, N. Prasad, D. Mrva, T. Ash, and T. Robin-
son. 2015. Scaling recurrent neural network language
models. In Proc. ICASSP.

W. Zaremba, I. Sutskever, and O. Vinyals. 2014.
Recurrent neural network regularization. CoRR,
abs/1409.2329.

1575

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1576–1585,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

MixKMeans: Clustering Question-Answer Archives

Deepak P
Centre for Data Sciences and Scalable Computing

Queen’s University Belfast, UK
deepaksp@acm.org

Abstract

Community-driven Question Answering
(CQA) systems that crowdsource experiential
information in the form of questions and
answers and have accumulated valuable
reusable knowledge. Clustering of QA
datasets from CQA systems provides a means
of organizing the content to ease tasks such
as manual curation and tagging. In this paper,
we present a clustering method that exploits
the two-part question-answer structure in QA
datasets to improve clustering quality. Our
method, MixKMeans, composes question and
answer space similarities in a way that the
space on which the match is higher is allowed
to dominate. This construction is motivated
by our observation that semantic similarity
between question-answer data (QAs) could
get localized in either space. We empirically
evaluate our method on a variety of real-world
labeled datasets. Our results indicate that
our method significantly outperforms state-
of-the-art clustering methods for the task of
clustering question-answer archives.

1 Introduction

Community-based Question Answering (CQA) sys-
tems such as Yahoo! Answers1, StackOverflow2 and
Baidu Zhidao3 have become dependable sources of
knowledge to solve common user problems. Unlike
factoid question answering4, CQA systems focus on

1http://answers.yahoo.com
2http://www.stackoverflow.com
3http://en.wikipedia.org/en/Baidu Knows
4e.g., http://trec.nist.gov/data/qa.html

crowdsourcing how and why questions and their an-
swers. As is the case with any system where con-
tent is generated by web users, the generated con-
tent would be of varying quality, reliability, readabil-
ity and abstraction. Thus, manual curation of such
datasets is inevitable to weed out low quality and
duplicate content to ensure user satisfaction. A nat-
ural way to aid manual curation of such broad-based
CQA archives is to employ clustering so that seman-
tically related QAs are grouped together; this would
help organize the corpus in a way that experts en-
gaged in manual curation be assigned specific clus-
ters relating to areas of their expertise. Cluster-
ing also provides a platform to enable tagging the
QA dataset; cluster topics could be used as tags, or
other QAs in the same cluster could be tagged as
being related to a QA. The fundamental difference
between CQA archives and general text document
collections is the existence of a two-part structure
in QAs and the difference in lexical “character” be-
tween the question and answer parts. This lexical
chasm (i.e., gap) (Berger et al., 2000) between ques-
tion and answer parts has been a subject of much
study, especially, in the context of improving QA re-
trieval. In this paper, we consider using the two-part
structure in QAs for clustering CQA datasets.

Motivating Example: Table 1 lists four example
QAs from the context of a CQA system focused on
addressing myriad technical issues. These QAs have
been tagged in the table with a manually identified
root-cause to aid understanding; the root-cause is
not part of the CQA data per se. QA1 and QA2 are
seen to address related issues pertaining to routers,
whereasQA3 andQA4 are focused on the same nar-

1576

row issue dealing with java libraries. Since QA1
and QA2 address different problems, they may not
be expected to be part of the same cluster in fine-
grained clusterings. On the other hand, the solu-
tions suggested in QA3 and QA4 are distinct and
different legitimate solutions to the same problem
cause. Thus, from a semantics perspective, it is intu-
itive that QA3 and QA4 should be part of the same
cluster in any clustering of the CQA dataset to aid
actioning on them together; a human expert might
decide to merge the question parts and tag one of
the answers as an alternative answer. Let us now
examine the lexical relatedness between the pairs as
illustrated in Table 2. State-of-the-art text similar-
ity measures that quantify word overlaps are likely
to judge QA1 and QA2 to be having a medium sim-
ilarity when either the question-part or the answer-
part are considered. For the pair (QA3, QA4), the
question-part similarity would be judged to be high
and the answer-part similarity as low. Thus, the high
similarity between the root-causes ofQA3 andQA4
manifest primarily in their question-parts. Analo-
gously, we observed that some QAs involving the
same root-cause lead to high answer-part similarity
despite poor question-part similarity. This is espe-
cially true in cases involving suggestion of the same
sequence of solution steps despite the question-part
being divergent due to focusing on different symp-
toms of the same complex problem. From these ob-
servations, we posit that high similarities on either
the question-space or answer-space is indicative of
semantic relatedness. Any clustering method that
uses a sum, average or weighted sum aggregation
function to arrive at pair-wise similarities, such as
a K-Means clustering that treats the collated QA as
a single document, would intuitively be unable to
heed to such differential manifestation of semantic
similarities across the two parts.
Our Contributions: We address the problem of
harnessing the two-part structure in QA pairs to im-
prove clustering of CQA data. Based on our obser-
vations on CQA data such as those illustrated in the
example, we propose a clustering approach, MixK-
Means, that composes similarities (dissimilarities)
in the question and answer spaces using a max (min)
operator style aggregation. Through abundant em-
pirical analysis on real-world CQA data, we illus-
trate that our method outperforms the state-of-the-

art approaches for the task of CQA clustering.

2 Related Work

To enable position our work in the context of exist-
ing literature, we now summarize prior work along
three related directions, viz., (1) processing of CQA
datasets, (2) multi-modal data clustering, and (3) K-
Means extensions.
Processing CQA Datasets: Most work on pro-
cessing CQA data has been in the realm of re-
trieval, where the task addressed is to leverage CQA
datasets to aid answering new questions. These start
with a new question and find one of (i) related ques-
tions (Zhou et al., 2015), (ii) potentially usable an-
swers (Shtok et al., 2012), or (iii) related QAs (Xue
et al., 2008). Different methods differ in the tech-
nique employed to overcome the lexical chasm, with
statistical translation models (Brown et al., 1993)
that model word-level correlations between ques-
tions and answers being the most popular tool for the
same. Usage of topic models (e.g., (Cai et al., 2011))
and combining evidence from topic and translation
models (Zhou et al., 2015) have also met with suc-
cess. The usage of deep-learning methods such as
deep belief networks (Wang et al., 2011) and auto-
encoders (Zhou et al., 2016) have also been explored
for QA retrieval. While the problem of estimat-
ing the relevance of a QA to address a new ques-
tion is related to the problem of estimating sim-
ilarities between QAs to aid clustering, the latter
problem is different in that both question and an-
swer parts are available at either side. In fact, our
problem, CQA clustering, has been largely unex-
plored among literature in CQA data processing. In
the interest of benchmarking our work against tech-
niques from the CQA processing community, we
consider the correlated latent representation learnt
by the recent auto-encoder based neural network
(AENN) method (Zhou et al., 2016) as input to
K-Means, and empirically validate our technique
against the AENN+K-Means combination (referred
to as AENN, for short) in our experimental study.
Outside the task of retrieval, there has been work on
getting QAs from experience reports (Deepak et al.,
2012) and discussion forums (P and Visweswariah,
2014). Conversational transcripts from contact cen-
tres, as outlined in (Kummamuru et al., 2009), form

1577

QA Cause

QA1

Q: My internet connection is not working, my router shows the ”Internet” led blinking in red. Router
A: Please go to the router login page and re-login with broadband credentials; click “connect” Authentication
and you should be on the internet. Issue

QA2

Q: My internet connection is not working, only the power led is lit in the router. Router
A: Check whether the router login page is loading. Else, the broadband cable Loose
may not be connected properly. Connection

QA3

Q: My Java app is picking up the old dojo 0.4.4 libraries though I have a newer version. Multiple
A: Search for dojo 0.4.4 in Windows, and delete off the folder, and it should Libraries in
automatically start using the newer version. Classpath

QA4

Q: My java application is not picking up the new dojo 1.11.1 libraries that I just installed. Multiple
A: Update the java classpath variable to exclude the Libraries in
path to the earlier version, and add the path to the new version. Classpath

Table 1: Example CQA Data

QA Lexical
Pair Part Similarity

QA1 QA2 Question Medium
QA1 QA2 Answer Medium
QA3 QA4 Question High
QA3 QA4 Answer Low

Table 2: Similarity Analysis of QAs from Table 1

another rich source of QA data, but need careful seg-
mentation due to interleaving of question and an-
swer parts.
Multi-modal Data Clustering: The problem of
clustering CQA data is an instance of the gen-
eral problem of clustering multi-modal (aka multi-
relational, multi-view or heterogeneous) data when
the question and answer parts are seen as instanti-
ations of the same root cause, but in question and
answer ’modalities’. Clustering multi-modal data
has been explored well in the context of multi-media
data clustering where each data element comes in
multi-modal form such as [image, caption] pairs or
[audio, text] pairs. The pioneering work in this
field adapted markov random fields (Bekkerman and
Jeon, 2007) to generate separate clusterings for each
modality. Later approaches are closer to our task
of generating a unified clustering across modalities;
they work by learning a unified latent space embed-
ding of the dataset, followed by usage of K-Means
clustering (MacQueen and others, 1967). Eigen-
decomposition (Petkos et al., 2012), spectral meth-
ods (Blaschko and Lampert, 2008) and canonical
correlation analysis (Jin et al., 2015) have been ex-

ploited for learning the latent space prior to the clus-
tering step. A recent work (Meng et al., 2014)
proposes a single-pass leader-clustering5 style for-
mulation called GHF-ART to progressively assign
data objects to clusters. Unlike most other methods
that assume that vector representations are obtained
from general multimedia data, the authors of GHF-
ART lay out how text data be pre-processed for us-
age in GHF-ART, making it an appropriate method
for usage in our setting. Accordingly, we will use
GHF-ART as a baseline method for our experimen-
tal study.
K-Means Extensions: The method that we propose
in this paper, MixKMeans, draws generous inspira-
tion from the classical K-Means clustering formula-
tion (MacQueen and others, 1967). There have been
numerous extensions to the basic K-Means formula-
tion over the last many decades; many such exten-
sions have been covered in focused surveys (Stein-
ley, 2006; Jain, 2010). Of particular interest in
our scenario are those relating to usage of varying
(dis)similarity measures. (Patel and Mehta, 2012)
discuss the usage of various popular distance mea-
sures within the K-Means framework. The point-
symmetry distance, where the distance between an
object and the cluster prototype is determined using
other objects’ information, has been explored (Su
and Chou, 2001) for usage within K-Means for face
recognition applications. Another work (Visalak-
shi and Suguna, 2009) suggests the computation of
the aggregate distance as a fraction of the distance

5
https://cran.r-project.org/web/packages/leaderCluster/index.html

1578

along the closest attribute to that along the farthest
attribute. Despite the plethora of work around ex-
tending K-Means to work with a variety of methods
to aggregate distances across attributes, we have not
come across previous work composing distances at
the level of attribute sets (or modalities) like we will
do in this work.

3 Problem Definition

Let D = {(q1, a1), . . . , (qn, an)} be a dataset of
QAs from a CQA archive where each answer ai was
posted in response to the corresponding question qi.
The CQA clustering problem is the task of parti-
tioning D into k clusters C = {C1, . . . , Ck} where
∪i Ci = D and ∀(i, j), i 6= j ⇒ Ci ∩ Cj = φ (dis-
jointedness) hold such that similar QAs are grouped
into the same cluster and dissimilar QAs are as-
signed to different clusters. The key aspect that dif-
ferentiates the CQA clustering problem from gen-
eral clustering of relational data is the opportunity to
leverage the specifics of the CQA data, such as the
two-part structure, to model the similarity measure
that would drive the clustering.
Evaluation: The quality of a clustering method may
be quantified by assessing how well the clustering
it produces, i.e., C, reflects the semantic similari-
ties between QAs in D. Given a QA (qi, ai) ∈ D,
the other QAs that share the same cluster may be
thought of as the result set, i.e., the set of related
QAs according to C. In a labeled dataset such as
CQADupStack (Hoogeveen et al., 2015) where re-
lated QA pairs have been manually identified for
each (qi, ai), the quality of the results set may be as-
sessed by contrasting against the labeled set using a
standard metric such as F-score6. These QA-specific
F-scores are then aggregated across the QAs in D to
arrive at a single quality measure for the clustering.
We will use such aggregated dataset-level F-scores
as our primary evaluation measure. It may be noted
that the related labellings may not be “clustering-
friendly”; for example, there may not exist any k-
clustering with no related labels going across clus-
ters. Additionally, we observed that not all related
QAs were labeled to be related in the CQADupStack
dataset. The dataset owners confirm the problem of
missing labelings in a very recent study (Hoogeveen

6https://en.wikipedia.org/wiki/F1 score

et al., 2016). It is conceivable that only a few po-
tential results were manually inspected to inject la-
bellings. Thus, while the relative trends on F-score
offer insights, the absolute F-scores may only be
treated as a loose lower bounds.

4 MixKMeans: Our Method

We now describe the key details of our proposed
technique, MixKMeans. The name is motivated by
the flexibility that is built into the method to mix
(dis)similarities across question and answer spaces
in a formulation that derives inspiration from the
classical K-Means algorithm (MacQueen and oth-
ers, 1967). Throughout this formulation, we repre-
sent question and answer parts of QAs by their re-
spective tf-idf vectors. We start with our objective
function and move on to the iterative optimization.

4.1 Objective Function

Guided by our observation from Section 1 that the
space in which a pair of QAs are more similar should
hold sway in determining their overall match, we
outline a penalty function for a clustering C:

O∗ =∑C∈C
∑

(q,a)∈C min
{
wq d(q, C.µ.q), wa d(a,C.µ.a)

}

(1)

where C.µ = (C.µ, q, C.µ.a) is a prototypi-
cal QA vector for cluster C and the parameter
pair [wq, wa] control the relative weighting between
question and answer parts. d(., .) is a dissimilar-
ity function modeled as a simple sum of squares
of element-wise differences between vector entries,
i.e., d(x, y) =

∑
i(x[i]− y[i])2.

Intuitively,O∗ sums up the distance between each
QA in D and the prototypical QA vector of the clus-
ter to which it is assigned to, making it a penalty
function. Since we use dissimilarities that are in-
versely related to similarities, the min function cap-
tures the idea that the aggregate (dis)similarity be es-
timated according to the measure in the best match-
ing space. For optimization convenience, we replace
the min construction by a differentiable approxima-
tion to get a modified objective function:

1579

O =
∑

C∈C

∑

(q,a)∈C

((
wqd(q, C.µ.q)

)x
+

(
wad(a,C.µ.a)

)x) 1
x

(2)

where x is a reasonably high negative value or
x → −∞. This is used since (ax + bx)1/x approxi-
mates min{a, b} for high negative values of x. It is
worth noting that the opposite effect (i.e., max ap-
proximation) is achieved when x → ∞ for usage
in scenarios where a max combination is desirable.
The remainder of the steps are applicable for posi-
tive values of x too.

4.2 Optimization Approach
There are two sets of variables in Equation 2, viz.,
cluster assignments of QAs inD and the cluster pro-
totypes (C.µs). We optimize for each set of variables
alternatively, much like in the EM-steps used in the
classical K-Means algorithm.

4.2.1 Estimating Cluster Memberships
The cluster membership estimation directly falls

out from the objective function and the current es-
timates of cluster prototypes since O (Equation 2)
involves an instance-specific term for each QA. We
will simply assign each QA to the cluster such that
the respective instance-specific term is minimized:

Cluster((q, a)) = argmin
C∈C

(
dxQ+A((q, a), C.µ)

) 1
x

(3)
dxQ+A(., .) is a short-hand for composite distance,

composed of two terms (which we will denote as
dxQ(., .) and dxA(., .) respectively):

dxQ+A((q, a), C.µ
◦) =

(
wq × d(q, C.µ◦.q)

)x
+

(
wa × d(a,C.µ◦.a)

)x (4)

4.2.2 Estimating Cluster Prototypes
We now estimate the cluster prototype in element-

wise fashion. Consider a particular element in the
C.µ.q vector, C.µ.q[i]; computing the partial deriva-
tive and simplifying:

∂O
∂C.µ.q[i] =

∑
(q,a)∈C

[
− 2

(
dxQ+A((q, a), C.µ)

) 1−x
x

dx−1Q ((q, a), C.µ) wq (q[i]− C.µ.q[i])
]

(5)

Equating the first derivative to zero and solving
for C.µ.q[i] gets us to the following form:

C.µ.q[i] =

∑
(q,a)∈C

q[i]

[(
dxQ+A((q,a),C.µ◦)

) 1−x
x

dx−1
Q ((q,a),C.µ◦)

]

∑
(q,a)∈C

[(
dxQ+A((q,a),C.µ◦)

) 1−x
x

dx−1
Q ((q,a),C.µ◦)

]

(6)

whereC.µ◦ is used to indicate the estimate ofC.µ
from the previous iteration. The corresponding esti-
mation for C.µ.a[i] is:

C.µ.a[i] =

∑
(q,a)∈C

a[i]

[(
dxQ+A((q,a),C.µ◦)

) 1−x
x

dx−1
A ((q,a),C.µ◦)

]

∑
(q,a)∈C

[(
dxQ+A((q,a),C.µ◦)

) 1−x
x

dx−1
A ((q,a),C.µ◦)

]

(7)

Equations 6 and 7 form the cluster prototype esti-
mation steps of our method. It may be noted that for
the choice of parameters (x = 1, wq = wa), either
equations reduce it to the usual centroid estimation
process for K-Means (since the terms within [. . .] re-
duce to 1.0), as intuitively expected. Thus, the mod-
ified formulation generalizes K-Means by allowing
to weigh each element differently, the weight being
modeled as a product two components:

• First component involves dxQ+A(., .) and is a
function of the composite distance of (q, a) to
the cluster prototype.

• Second component involves one of dx−1Q (., .)

or dx−1A (., .) and is a function of the respective
space (Q or A) to which the specific vector ele-
ment belongs.

1580

Alg. 1 MixKMeans
Input. Dataset D, number of clusters k
Hyper-parameters: x, wq, wa
Output. Clustering C

1: Initialize C.µs using data points from D
2: while not yet converged do
3: ∀(q, a) ∈ D, assign cluster using Eq. 3
4: ∀C ∈ C, estimate C.µ using Eq. 6 & 7
5: end while
6: Return current clustering assignments as C

4.3 MixKMeans: The Algorithm

Having outlined the various steps, we are now ready
to present the overall MixKMeans algorithm in
Algorithm 1. As the pseudo-code indicates, the clus-
ter assignment and prototype estimation steps are
run in a loop until the clustering converges. Addi-
tionally, we terminate after a threshold number of it-
erations even if the clustering does not converge by
then; we set the threshold to 10.

Initialization: In the initialization step, we ini-
tialize the first cluster prototype using a random QA
from D. Each of the next cluster prototypes are ini-
tialized using the QA that has the highest sum of
distances to all pre-chosen cluster prototypes, dis-
tance computed using (dxQ+A(., .))

1/x. This is in-
spired by previous work on spreading out the clus-
ter centroids (Arthur and Vassilvitskii, 2007) in K-
Means initialization.

Hyperparameters: The algorithm has three
hyper-parameters, viz., the exponentiation parame-
ter x and the weight parameters wq and wa. As
outlined in Sec. 4.1, x should be a negative value;
we observed that any value beyond −3.0 does not
make any significant differences to the final cluster-
ing (while higher absolute values for the exponent
pose an underflow risk) and thus use x = −3.0 con-
sistently. For the weights, we set wq = 0.2 and
wa = 0.8. Due to the min-formulation in the ob-
jective function, a lower weight increases the in-
fluence of the respective space. Thus, we let our
composed similarities be influenced more by the
question-space similarities as in previous work (Xue
et al., 2008).

4.4 Generalizing MixKMeans

Since the question and answer spaces are neatly seg-
regated into different terms in the parameter up-
date equations, MixKMeans is easily generalizable
to work with more than two spaces. Consider the
set of spaces to beM = {. . . ,M, . . .} and that each
object,X ∈ D be represented by an |M| tuple; now,
the modified update equations are as follows:

Cluster(X) = argmin
C∈C

(
d ∑
M∈M

M (X,C.µ)

) 1
x

(8)

C.µ.M [i] =

∑
X∈C

X.M [i]

[(
dx ∑
M∈M

M
(X,C.µ◦)

) 1−x
x

dx−1
M (X,C.µ◦)

]

∑
X∈C

[(
dx ∑
M∈M

M
(X,C.µ◦)

) 1−x
x

dx−1
M (X,C.µ◦)

]

(9)

where the somewhat awkward notation
dx∑
M∈M

M (., .) denotes the direct generalization

of dxQ+A(., .) to cover all spaces inM.
A simple modeling extension to use the general-

ized MixKMeans in the CQA setting is to consider
the question title and question description as two
separate spaces instead of using a single question
space, increasing the total number of spaces to three;
such a split of the question-part was used in (Qiu et
al., 2013). In certain cases, one might want to use
spaces that are of questionable quality due to rea-
sons such as sparsity (e.g., set of tags associated with
a question) and reliability (e.g., comments attached
to a QA that could be noisy). The best way to lever-
age such spaces would be to include it inM for the
modeling, but use a high weight for wM ; due to the
min-style construction in the objective function, that
setting will ensure that that space is called into play
only when (a) signals from other spaces are not very
strong, and (b) the signal from the space in question
is very strong.

5 Experimental Evaluation

5.1 Datasets, Baselines and Setup
Datasets: We use the recently released data col-

1581

lection, CQADupStack (Hoogeveen et al., 2015),
for our experimental evaluation. Unlike most other
datasets, this has each QA labeled with a set of
related QAs, as alluded to in Section 3; this makes
automated evaluation feasible in lieu of a laborious
user study. We use the android, gis, stats and
physics datasets from the CQADupStack collection,
with our choice of datasets motivated by dataset
size. These datasets comprise 2193, 3726, 4004 and
5044 QAs respectively.

Baselines: We use two baselines from literature
in our study, (i) AENN (Zhou et al., 2016), (ii)
GHF-ART (Meng et al., 2014). AENN, as alluded
to in Section 2, refers to the K-Means clustering in
the latent space learnt by correlated auto-encoders
across the Q-A subspaces. AENN requires triplets
of the form [question, answer, other answer] in
the training phase; we populate the other answer
part by the answer to a related question from the
dataset (it may be noted that this is advantageous to
AENN since it gets to ‘see’ some related labelings
in the training, whereas other methods can’t). GHF-
ART is the state-of-the-art multi-modal clustering
approach that is targeted towards scenarios that
involve a text modality. Unlike typical clustering
algorithms that can generate a pre-specified (k)
number of clusters, the number of clusters in the
GHF-ART output is controlled by a vigilance
parameter, ρ. Lower values of ρ result in smaller
number of clusters and vice versa. A third intuitive
baseline is the degenerate x = 1 instantiation of
MixKMeans, which we will denote as X1. We are
interested in evaluating the improvement achieved
by MixKMeans over the best possible instantiation
of X1; towards that, for every setting denoted by
the combination [dataset, k], we do a search over
possible positive values of wq and wa within the
locus of the line wq + wa = 1. It may be noted that
this search space includes simple QA clustering us-
ing K-Means, being the case where wq = wa = 0.5.
We collect the best result of X1 from across the
grid-search for each setting. This approach, which
we will denote as X1∗, while impractical in real
scenarios due to usage of labeled data, gives an
empirical upper bound of the accuracy of X1.

Experimental Setup: We use a latent space di-

Figure 1: Android: F-Score (Y-Axis) vs. k

Figure 2: GIS: F-Score (Y-Axis) vs. k

Figure 3: Stats: F-Score (Y-Axis) vs. k

Figure 4: Physics: F-Score (Y-Axis) vs. k

mensionality of 2000 for AENN since we observed
an accuracy peak around that value, and set GHF-
ART parameters to their recommended values from
the paper. For MixKMeans, we use tf-idf represen-
tation and set (x = −3.0, wq = 0.2, wa = 0.8)
as discussed earlier (Section 4.3). We use the F-
score7 measure to experimentally compare the ap-
proaches. The F-score is computed using the related

7https://en.wikipedia.org/wiki/F1 score

1582

Figure 5: MixKMeans: F-Score (Y-Axis) vs. wq at k = 600

labellings in the CQADupStack data, in a manner as
described in Section 3. As pointed out therein, due
to the sparse labellings, the F-score may only be re-
garded as a loose lower bound of their real values on
a fully-labeled dataset.

5.2 Comparative Analysis

The results of the comparative analysis benchmark-
ing our approach MixKMeans (MKM) against base-
lines X1∗, AENN and GHF-ART for the various
datasets appear in Fig 1 (Android), Fig 2 (GIS),
Fig 3 (Stats) and Fig 4 (Physics). Each of the trend-
lines plot the F-Score against varying number of
clusters in the output (k) in the range {100, 1000}.
Since the number of clusters cannot be pre-specified
for GHF-ART directly, we varied its ρ parameter to
generate varying number of clusters to generate a
trend-line that can be compared against MixKMeans,
AENN and X1∗ directly. It may be noted that F-
score is generally seen to increase when the cluster-
ing is more fine-grained (i.e., high k); this is an arti-
fact of the sparse labeling that causes large clusters
to have very low precision, causing precision and re-
call to diverge at low k, thus reducing the F-score.
In most cases, MixKMeans is seen to outperform the
other methods by scoring significantly higher in the
F-Score, illustrating the superiority of our method.
A notable exception appears in the higher values of
k in the android dataset where GHF-ART quickly
catches up and surpasses the others; however, it may
be noted that k ≈ 1000 is an extremely fine-grained
clustering for the android dataset with 2193 QAs,
and is thus not a very useful setting in practice. On
the average, MixKMeans achieves an F-score im-
provement of between 30 − 100% over the other
methods.

5.3 MixKMeans Parameter Analysis

We now analyze the F-score trends of MixKMeans
against varying values of the weight parameters.
Since the relative weighting between wq and wa is
what matters (simply scaling them both up by the
same multiplier does not make any difference due
to the construction of the objective), we set wa =
(1.0 − wq) and do the analysis for varying values
of wq keeping k = 600. As may be observed from
the results in Figure 5, MixKMeans was seen to peak
around wq = 0.2-0.5 while degrading gracefully to-
wards higher values of wq. The android dataset, per-
haps due to its relatively small size, records a dif-
ferent behavior as compared to the other trend-lines.
Similar trends were observed for other values of k,
indicating MixKMeans is not highly sensitive to the
parameter and degrades gracefully outside the peak.

6 Conclusions and Future Work

We considered the problem of clustering question-
answer archives from CQA systems. Clustering, we
observed, helps in organizing CQA archival data for
purposes such as manual curation and tagging. We
motivated, by way of examples, as to why simi-
larities along question and answer spaces be better
composed using methods other than simple sum or
average type aggregation. In particular, we noted
that there are potentially different ways to answer
questions pertaining to the same root-cause, miti-
gating the manifestation of the inherent root-cause
similarity in the answer-space. Analogously, a so-
phisticated root-cause could be narrated differently
by different people in the question part, while elicit-
ing very similar answers. In short, we observe that
legitimate reasons cause manifestation of semantic
similarity between QAs to be localized on to one
of the spaces. Accordingly, we propose a cluster-
ing method for QA archives, MixKMeans, that can
heed to high similarities in either spaces to drive the
clustering. MixKMeans works by iteratively opti-
mizing the two sets of parameters, cluster assign-
ments and cluster prototype learning, in an approach
inspired by the classical K-Means algorithm. We
empirically benchmark our method against current
methods on multiple real-world datasets. Our exper-
imental study illustrates that our method is able to
significantly outperform other methods, establishing

1583

MixKMeans as the preferred method for the task of
clustering CQA datasets.

Future Work: As discussed in Section 4.4,
MixKMeans is eminently generalizable to beyond
two spaces. Considering the usage of other kinds of
data (e.g., tags, comments) as additional “spaces” to
extend the CQA clustering problem is an interesting
direction for future work. The applicability of MixK-
Means and it’s max variant (i.e., with x > 0) for
other kinds of multi-modal clustering problems from
domains such as multimedia processing is worth ex-
ploring. The extension of the formulation to include
a weight learning step may be appropriate for sce-
narios where prior information on the relative im-
portance of the different spaces is not available. It is
easy to observe that MixKMeans is prone to local op-
tima issues; this makes devising better initialization
strategies another potential direction. Yet another di-
rection of interest is to make MixKMeans clusters
interpretable, potentially by augmenting each clus-
ter with word-level rules as used in earlier work on
partitional document clustering (Balachandran et al.,
2012).

References
David Arthur and Sergei Vassilvitskii. 2007. k-means++:

The advantages of careful seeding. In Proceedings of
the eighteenth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 1027–1035. Society for Indus-
trial and Applied Mathematics.

Vipin Balachandran, Deepak P, and Deepak Khemani.
2012. Interpretable and reconfigurable clustering
of document datasets by deriving word-based rules.
Knowl. Inf. Syst., 32(3):475–503.

Ron Bekkerman and Jiwoon Jeon. 2007. Multi-modal
clustering for multimedia collections. In Computer Vi-
sion and Pattern Recognition, 2007. CVPR’07. IEEE
Conference on, pages 1–8. IEEE.

Adam Berger, Rich Caruana, David Cohn, Dayne Freitag,
and Vibhu Mittal. 2000. Bridging the lexical chasm:
statistical approaches to answer-finding. In Proceed-
ings of the 23rd annual international ACM SIGIR con-
ference on Research and development in information
retrieval, pages 192–199. ACM.

Matthew B Blaschko and Christoph H Lampert. 2008.
Correlational spectral clustering. In Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1–8. IEEE.

Peter F Brown, Vincent J Della Pietra, Stephen A Della
Pietra, and Robert L Mercer. 1993. The mathematics

of statistical machine translation: Parameter estima-
tion. Computational linguistics, 19(2):263–311.

Li Cai, Guangyou Zhou, Kang Liu, and Jun Zhao. 2011.
Learning the latent topics for question retrieval in com-
munity qa. In IJCNLP, volume 11, pages 273–281.

P. Deepak, Karthik Visweswariah, Nirmalie Wiratunga,
and Sadiq Sani. 2012. Two-part segmentation of text
documents. In 21st ACM International Conference on
Information and Knowledge Management, CIKM’12,
Maui, HI, USA, October 29 - November 02, 2012,
pages 793–802.

Doris Hoogeveen, Karin M Verspoor, and Timothy Bald-
win. 2015. Cqadupstack: A benchmark data set for
community question-answering research. In Proceed-
ings of the 20th Australasian Document Computing
Symposium, page 3. ACM.

Doris Hoogeveen, Karin M Verspoor, and Timothy Bald-
win. 2016. Cqadupstack: Gold or silver?

Anil K Jain. 2010. Data clustering: 50 years beyond
k-means. Pattern recognition letters, 31(8):651–666.

Cheng Jin, Wenhui Mao, Ruiqi Zhang, Yuejie Zhang, and
Xiangyang Xue. 2015. Cross-modal image cluster-
ing via canonical correlation analysis. In Twenty-Ninth
AAAI Conference on Artificial Intelligence.

Krishna Kummamuru, Deepak Padmanabhan, Shourya
Roy, and L Venkata Subramaniam. 2009. Unsuper-
vised segmentation of conversational transcripts. Sta-
tistical Analysis and Data Mining, 2(4):231–245.

James MacQueen et al. 1967. Some methods for classi-
fication and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on math-
ematical statistics and probability, volume 1, pages
281–297. Oakland, CA, USA.

Lei Meng, Ah-Hwee Tan, and Dong Xu. 2014. Semi-
supervised heterogeneous fusion for multimedia data
co-clustering. Knowledge and Data Engineering,
IEEE Transactions on, 26(9):2293–2306.

Deepak P and Karthik Visweswariah. 2014. Unsuper-
vised solution post identification from discussion fo-
rums. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics, ACL
2014, June 22-27, 2014, Baltimore, MD, USA, Volume
1: Long Papers, pages 155–164.

Vaishali R. Patel and Rupa G. Mehta, 2012. Proceed-
ings of the International Conference on Soft Comput-
ing for Problem Solving (SocProS 2011) December
20-22, 2011: Volume 2, chapter Data Clustering: In-
tegrating Different Distance Measures with Modified
k-Means Algorithm, pages 691–700. Springer India,
India.

Georgios Petkos, Symeon Papadopoulos, and Yiannis
Kompatsiaris. 2012. Social event detection using mul-
timodal clustering and integrating supervisory signals.

1584

In Proceedings of the 2nd ACM International Confer-
ence on Multimedia Retrieval, page 23. ACM.

Xipeng Qiu, Le Tian, and Xuanjing Huang. 2013. Latent
semantic tensor indexing for community-based ques-
tion answering. In ACL (2), pages 434–439.

Anna Shtok, Gideon Dror, Yoelle Maarek, and Idan
Szpektor. 2012. Learning from the past: answering
new questions with past answers. In Proceedings of
the 21st international conference on World Wide Web,
pages 759–768. ACM.

Douglas. Steinley. 2006. K-means clustering: A half-
century synthesis. British Journal of Mathematical
and Statistical Psychology, 59(1):1–34.

Mu-Chun Su and Chien-Hsing Chou. 2001. A modified
version of the k-means algorithm with a distance based
on cluster symmetry. IEEE Transactions on Pattern
Analysis & Machine Intelligence, (6):674–680.

N Karthikeyani Visalakshi and J Suguna. 2009. K-means
clustering using max-min distance measure. In Fuzzy
Information Processing Society, 2009. NAFIPS 2009.
Annual Meeting of the North American, pages 1–6.
IEEE.

Baoxun Wang, Bingquan Liu, Xiaolong Wang, Chengjie
Sun, and Deyuan Zhang. 2011. Deep learning ap-
proaches to semantic relevance modeling for chinese
question-answer pairs. ACM Transactions on Asian
Language Information Processing (TALIP), 10(4):21.

Xiaobing Xue, Jiwoon Jeon, and W Bruce Croft. 2008.
Retrieval models for question and answer archives. In
Proceedings of the 31st annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 475–482. ACM.

Tom Chao Zhou, Michael Rung-Tsong Lyu, Irwin King,
and Jie Lou. 2015. Learning to suggest questions in
social media. Knowledge and Information Systems,
43(2):389–416.

Guangyou Zhou, Yin Zhou, Tingting He, and Wensheng
Wu. 2016. Learning semantic representation with
neural networks for community question answering re-
trieval. Knowledge-Based Systems, 93:75–83.

1585

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1586–1597,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

It Takes Three to Tango: Triangulation Approach to Answer Ranking
in Community Question Answering

Preslav Nakov, Lluı́s Màrquez and Francisco Guzmán
Arabic Language Technologies Research Group

Qatar Computing Research Institute, HBKU
{pnakov,lmarquez,fguzman}@qf.org.qa

Abstract

We address the problem of answering new
questions in community forums, by selecting
suitable answers to already asked questions.
We approach the task as an answer ranking
problem, adopting a pairwise neural network
architecture that selects which of two compet-
ing answers is better. We focus on the util-
ity of the three types of similarities occurring
in the triangle formed by the original ques-
tion, the related question, and an answer to
the related comment, which we call relevance,
relatedness, and appropriateness. Our pro-
posed neural network models the interactions
among all input components using syntac-
tic and semantic embeddings, lexical match-
ing, and domain-specific features. It achieves
state-of-the-art results, showing that the three
similarities are important and need to be mod-
eled together. Our experiments demonstrate
that all feature types are relevant, but the most
important ones are the lexical similarity fea-
tures, the domain-specific features, and the
syntactic and semantic embeddings.

1 Introduction

In recent years, community Question Answering
(cQA) forums, such as StackOverflow, Quora, Qatar
Living, etc., have gained a lot of popularity as a
source of knowledge and information. These forums
typically organize their content in the form of multi-
ple topic-oriented question–comment threads, where
a question posed by a user is followed by a list of
other users’ comments, which intend to answer the
question.

Many of such on-line forums are not moderated,
which often results in (a) noisy and (b) redundant
content, as users tend to deviate from the question
and start asking new questions or engage in conver-
sations, fights, etc.

Web forums try to solve problem (a) in various
ways, most often by allowing users to up/down-
vote answers according to their perceived useful-
ness, which makes it easier to retrieve useful an-
swers in the future. Unfortunately, this negatively
penalizes recent comments, which might be the most
relevant and updated ones. This is due to the time it
takes for a comment to accumulate votes. Moreover,
voting is prone to abuse by forum trolls (Mihaylov
et al., 2015; Mihaylov and Nakov, 2016a).

Problem (b) is harder to solve, as it requires that
users verify that their question has not been asked
before, possibly in a slightly different way. This
search can be hard, especially for less experienced
users as most sites only offer basic search, e.g., a site
search by Google. Yet, solving problem (b) automat-
ically is important both for site owners, as they want
to prevent question duplication as much as possible,
and for users, as finding an answer to their ques-
tions without posting means immediate satisfaction
of their information needs.

In this paper, we address the general problem
of finding good answers to a given new ques-
tion (referred to as original question) in one such
community-created forum. More specifically, we
use a pairwise deep neural network to rank com-
ments retrieved from different question-comment
threads according to their relevance as answers to
the original question being asked.

1586

A key feature of our approach is that we inves-
tigate the contribution of the edges in the trian-
gle formed by the pairwise interactions between the
original question, the related question, and the re-
lated comments to rank comments in a unified fash-
ion. Additionally, we use three different sets of fea-
tures that capture such similarity: lexical, distributed
(semantics/syntax), and domain-specific knowledge.

The experimental results show that addressing the
answer ranking task directly, i.e., modelling only
the similarity between the original question and
the answer-candidate comments, yields very low
results. The other two edges of the triangle are
needed to obtain good results, i.e., the similarity be-
tween the original question and the related question
and the similarity between the related question and
the related comments. Both aspects add significant
and cumulative improvements to the overall perfor-
mance. Finally, we show that the full network, in-
cluding the three pairs of similarities, outperforms
the state-of-the-art on a benchmark dataset.

The rest of the paper is organized as follows: Sec-
tion 2 discusses the similarity triangle in answer
ranking for cQA, Section 3 presents our pairwise
neural network model for answering new questions
in community forums, which integrates multiple lev-
els of interaction, Section 4 describes the features we
used, Section 5 presents our evaluation setup, the ex-
periments and the results, Section 6 discusses some
related work, and Section 7 wraps up the paper with
a brief summary of the contributions and some pos-
sible directions for future work.

2 The Similarity Triangle in cQA

Figure 1 presents an example illustrating the simi-
larity triangle that we use when solving the answer
ranking problem in cQA. In the figure, q stands for
the new question, q′ is an existing related question,
and c is a comment within the thread of question q′.

The edge qc relates to the main cQA task ad-
dressed in this paper, i.e., deciding whether a com-
ment for a potentially related question is a good an-
swer to the original question. We will say that the
relation captures the relevance of c for q.

The edge qq′ represents the similarity between the
original and the related questions. We will call this
relation relatedness.

Can I drive with an Australian driver’s license in Qatar? q:

q’: How long can i drive in Qatar with my
international driver's permit before I'm forced
to change my Australian license to a Qatari
one? When I do change over to a Qatar license
do I actually lose my Australian license? I'd
prefer to keep it if possible...

c:
depends on the insurer, Qatar Insurance Company said this in email
to me:“Thank you for your email! With regards to your query
below, a foreigner is valid to drive in Doha with the following
conditions: Foreign driver with his country valid driving license
allowed driving only for one week from entry date Foreign driver
with international valid driving license allowed driving for 6
months from entry date Foreign driver with GCC driving license
allowed driving for 3 months from entry”. As an Aussie your driving
licence should be transferable to a Qatar one with only the eyetest
(temporary, then permanent once RP sorted).

Figure 1: The similarity triangle in cQA.

Finally, the edge q′c represents the decision of
whether c is a good answer for the question from its
thread, q′. We will call this relation appropriateness.

In this particular example, q and q′ are indeed re-
lated, and c is a good answer for both q′ and q.1

In the past, the approaches to cQA were focused
on using information from the new question q, an
existing related question q′, and a comment c within
the thread of q′, to solve different cQA sub-tasks.
For example, answer selection, which selects the
most appropriate comment c within the thread q′,
was addressed in SemEval-2015 Task 3 (Nakov et
al., 2015). Similarly, question–question similarity,
which looks for the most related questions to a given
question, was addressed by many authors (Jeon et
al., 2005; Duan et al., 2008; Li and Manandhar,
2011; Zhou et al., 2015; dos Santos et al., 2015).

In this paper, we solve the cQA task problem2 in
a novel way by using the three types of similarities
jointly. Our main hypothesis is that relevance, ap-
propriateness, and relatedness are essential to find-
ing the best answer in a community Question An-
swering setting. Below we present experimental re-
sults that support this hypothesis.

1The essence of this triangle is also described in SemEval
2016 Task 3 to motivate a three-subtask setting for cQA (Nakov
et al., 2016). In that evaluation exercise, q′c and qq′ are pre-
sented as subtask A and subtask B, respectively. In this paper,
we mainly use them as similarity relations to be modeled in the
learning architecture to solve the answer ranking task.

2We use the task setup and the datasets from SemEval-2016
Task 3, focusing on subtask C (Nakov et al., 2016).

1587

3 Neural Model for Answer Ranking

As explained above, we tackle answer ranking as
a three-way similarity problem, exploring similar-
ity features that capture lexical, distributed (seman-
tics and syntax), and domain-specific knowledge. To
achieve this, we propose a pairwise neural network
(NN) approach for the cQA task, which is inspired
by our NN framework for machine translation eval-
uation (Guzmán et al., 2015).3 The input of the NN
consists of the original question q, two competing
comments, c1 and c2, and the questions from the
threads of the two comments, q′1 and q′2. The out-
put of the network is a decision about which of the
two comments is a better answer to q.

The main properties of our NN approach can be
summarized as follows: (i) it works in a pairwise
fashion, which is appropriate for the ranking nature
of the cQA problem; (ii) it allows for an easy in-
corporation of rich syntactic and semantic embed-
ded representations of the input texts; (iii) it models
non-linear relationships between all input elements
(q, c1, c2, q′1 and q′2), which allows us to study the
interactions and the impact of the three types of sim-
ilarity (relevance, relatedness and appropriateness)
when solving the answer ranking task.

3.1 Architecture
Our full NN model for pairwise answer ranking is
depicted in Figure 2. We have a binary classification
task with input x = (q, q′1, c1, q

′
2, c2), which should

output 1 if c1 is a better answer to the original ques-
tion q than c2, and 0 otherwise.4 In this setting, q′1
and q′2 are questions related to q, whose threads con-
tain the comments c1 and c2, respectively. They pro-
vide useful information to link the two comments to
the original question. On the one hand, they allow
to predict whether the comments are good answers
within their respective threads. On the other hand,
they allow to infer whether the questions for which
the comments were produced are closely related to
the original question. The pair of comments can be-
long to the same thread (i.e., q′1 ≡ q′2) or they can
come from different threads.

3Also, we previously used a similar framework for finding
good answers in a question-comment thread (Guzmán et al.,
2016a; Guzmán et al., 2016b).

4In this work, we do not learn to predict ties, and ties are
excluded from our training data.

f(q,q'1,c1,q'2,c2)

ψ(q,q'1)ψ(q,c1)

hq1

hq2

h12

vxc1

xc2

xq

q

c1

c2

sentences embeddings pairwise nodes pairwise features

output layer

q'1

xq'2

q'2

xq'1

ψ(q'1,c1)

ψ(q,q'2) ψ(q,c2) ψ(q'2,c2)

Figure 2: The overall architecture of our neural net-
work model for pairwise answer ranking in commu-
nity question answering.

The feed-forward neural network com-
putes a sigmoid function f(q, q′1, c1, q

′
2, c2) =

sig(wT
v φ(q, q′1, c1, q

′
2, c2) + bv), where φ(.)

transforms the input through the hidden layer,
wv are the weights from the hidden layer
to the output layer, and bv is a bias term.
The function φ(.) is actually a concatenation
of three subfunctions: φ(q, q′1, c1, q

′
2, c2) =

[φ1(q, q
′
1, c1), φ2(q, q

′
2, c2), φ1,2(q

′
1, c1, q

′
2, c2)].

We first map the question and the comments to
a fixed-length vector [xq,xq′1

,xc1 ,xq′2
,xc2] using

syntactic and semantic embeddings. Then, we feed
this vector as input to the neural network, which
models several types of interactions, using different
groups of nodes in the hidden layer. Overall, we
make use of three different groups of nodes in the
hidden layer.

The first two groups include the relevance nodes
hq1 and hq2. These groups of hidden nodes model
how relevant comment cj is to the original question
q given that it belongs to the thread of the related
question q′j . In these hidden nodes, we model com-
plex non-linear interactions between the distributed
representations of q, q′j and cj . Intuitively, these
nodes are designed to learn to distinguish a relevant
comment by extracting features from the distributed
representations of a comment and of the question it
is supposed to answer.

1588

The last group of nodes in the hidden layer is the
similarity node h12. It measures the similarity be-
tween c1 and c2 and their respective questions q′1
and q′2. This node is designed to compute the non-
linear interactions between the syntactic and seman-
tic representations of comment-comment, comment-
question and question-question pairs. Intuitively,
this can help disambiguate when comments are very
similar or were generated from the same or from
very similar questions.

The model further allows to incorporate exter-
nal sources of information in the form of skip
arcs that go directly from the input to the output
layer, skipping the hidden layer. These arcs rep-
resent pairwise similarity feature vectors inspired
by the edges of the triangle in Figure 1. In Fig-
ure 2, we indicate these pairwise external feature
sets as: ψ(q, q′1), ψ(q, q′2) for relatedness; ψ(q′1, c1),
ψ(q′2, c2) for appropriateness; and ψ(q, c1), ψ(q, c2)
for relevance. When including the skip-arc features,
the activation at the output is f(q, q′1, c1, q

′
2, c2) =

sig(wT
v [φ(q, q′1, c1, q

′
2, c2), ψ(q, q′1), ψ(q, q′2),

ψ(q′1, c1), ψ(q′2, c2), ψ(q, c1), ψ(q, c2)] + bv).
We use these feature vectors to encode ma-

chine translation evaluation measures, components
thereof, cQA task-specific features, etc. The next
section gives more detail about these features.

4 Features

We experiment with three kinds of features: (i) lexi-
cal features that measure similarity at a word, word
n-gram, and paraphrase level, (ii) distributed repre-
sentations that measure similarity at a syntactic and
semantic level, (iii) domain-specific knowledge fea-
tures, which capture similarity using thread-level in-
formation and other features that have proven valu-
able to solve similar tasks (Nicosia et al., 2015).

4.1 Lexical similarity features

These types of features measure similarity at a sur-
face level between the following pairs: (q,q′1), (q,q′2),
(q′1, c1), (q′2, c2), (q1, c1), and (q2, c2). They are in-
spired by our previous work on Machine Transla-
tion Evaluation (MTE) (Guzmán et al., 2015), and
we previously found them useful for finding good
answers in a question-comment thread (Guzmán et
al., 2016a; Guzmán et al., 2016b).

MTFEATS We use (as pairwise features) the fol-
lowing six machine translation evaluation features:
(i) BLEU: This is the most commonly used mea-
sure for machine translation evaluation, which is
based on n-gram overlap and length ratios (Papineni
et al., 2002). (ii) NIST: This measure is similar
to BLEU, and is used at evaluation campaigns run
by NIST (Doddington, 2002). (iii) TER: Trans-
lation error rate; it is based on the edit distance
between a translation hypothesis and the reference
(Snover et al., 2006). (iv) METEOR: A complex
measure, which matches the hypothesis and the ref-
erence using synonyms and paraphrases (Lavie and
Denkowski, 2009). (v) Unigram PRECISION and
RECALL.

BLEUCOMP Following (Guzmán et al., 2015),
we further use as features various components that
are involved in the computation of BLEU: n-gram
precisions, n-gram matches, total number of n-
grams (n=1,2,3,4), lengths of the hypotheses and
of the reference, length ratio between them, and
BLEU’s brevity penalty. Again, these are computed
over the same six pairs of vectors as before.

4.2 Distributed representations
We use the following vector-based embeddings of
all input components: q, c1, c2, q′1, and q′2.

GOOGLE VEC We use the pre-trained, 300-
dimensional embedding vectors from WORD2VEC

(Mikolov et al., 2013). We compute a vector rep-
resentation of the text by simply averaging over the
embeddings of all words in the text.

QL VEC We train in-domain word embeddings
using WORD2VEC on all available QatarLiving data.
Again, we use these embeddings to compute 100-
dimensional vector representations for all input
components by averaging over all words in the texts.

SYNTAX VEC We parse the entire ques-
tion/comment using the Stanford neural parser
(Socher et al., 2013), and we use the final 25-
dimensional vector that is produced internally as a
by-product of parsing.

Moreover, we use the above vectors to calcu-
late pairwise similarity features, i.e., the cosine be-
tween the following six vector pairs: (q, c1), (q, c2),
(q′1, c1), (q′2, c2), (q, q′1) and (q, q′2).

1589

4.3 Domain-specific features

We extract various domain-specific features that use
thread-level and other useful information known to
capture relatedness and appropriateness.

SAME AUTHOR We have a thread-level meta-
feature, which we apply to the pairs (q′1, c1), (q′2, c2).
It checks whether the person answering the question
is also the one who asked it, i.e., do the related ques-
tion and the comment have the same author. The
idea is that the person asking a question is unlikely
to answer his/her own question, but s/he could ask
a clarification question or thank another person who
has provided a useful answer earlier in the thread.

CQ′RANK FEAT We further have two thread-
level meta-features related to the rank of the com-
ment in the thread, which we apply to the pairs
(q′1, c1) and (q′2, c2): (i) reciprocal rank of the com-
ment in the thread, i.e., 1/ρ, where ρ is the rank of
the comment; (ii) percentile of the number of com-
ments in the thread, calculated as follows: the first
comment gets the score of 1.0, the second one gets
0.9, and so on. Note that in our dataset, there are
exactly ten comments per thread.

QQ′RANK FEAT We also have three features
modeling the rank of the related question in the list
of related questions for the original question, which
we apply to the pairs (q, q′1) and (q, q′2).

In total, use the following six features: (i) the re-
ciprocal rank of q′1 or q′2 in the list of related ques-
tions for q; (ii) the reciprocal ordinal rank5 of q′1 or
q′2 in the list of related questions for q; (iii) the per-
centile of the q′1 or q′2 in the list of related questions
for q, calculated as for the comments.

CQRANK FEAT. Finally, we have features for the
rank of the comment in the list of 100 comments for
the original question, which we apply to the pairs
(q, c1) and (q, c2): (i) reciprocal rank of the comment
in the list; (ii) percentile of the comment in the list.

5The related questions are obtained using a query to a search
engine (using words from the original question), with results
limited to QatarLiving. However, some of the returned results
pointed to the wrong (non-forum) sections of the website or to
questions with less than ten comments, and these were skipped.
Suppose that the surviving top ten related questions were at
ranks 3, 7, 18, ... in the original list. Now, we can use these
ranks ρ, or we can use instead the ordinal ranks r: 1, 2, 3, ...

TASK FEAT. We further have features that have
been proven useful in the answer selection task
from SemEval 2015 Task 3 (Nakov et al., 2015).
This includes some comment-specific features,
which refer to c1 and c2 only, but which we
apply twice, to generate features for the pairs
(q′1, c1), (q′2, c2), (q1, c1), and (q2, c2): number
of URLs/images/emails/phone numbers; number of
occurrences of the string thank;6 number of to-
kens/sentences; average number of tokens; number
of nouns/verbs/adjectives/adverbs/pronouns; num-
ber of positive/negative smileys; number of sin-
gle/double/triple exclamation/ interrogation sym-
bols; number of interrogative sentences (based on
parsing); number of words that are not in word2vec’s
Google News vocabulary.7

And also some question-comment pair fea-
tures, which we apply to the pairs (q′1, c1),
(q′2, c2), (q1, c1), and (q2, c2): (i) question to com-
ment count ratio in terms of sentences/tokens/
nouns/verbs/adjectives/adverbs/pronouns; (ii) ques-
tion to comment count ratio of words that are not in
word2vec’s Google News vocabulary.

5 Experiments and Results

We experimented with the data from SemEval-
2016 Task 3 on “Community Question Answering”.
More precisely, the problem addressed is subtask C
(Question–External Comment Similarity), which is
the primary cQA task. For a given new question (re-
ferred to as the original question), the task provides
the set of the first ten related questions (retrieved
by a search engine), each associated with the first
ten comments appearing in the question-comment
thread. The goal then is to rank the total of 100
comments according to their appropriateness with
respect to the original question.

In this framework, the retrieval part of the task is
done as a pre-processing step, and the challenge is
to learn to rank all good comments above all bad
ones. All the data comes from the QatarLiving fo-
rum, and the related questions are obtained using
Google search with the original question’s text lim-
ited to the www.qatarliving.com domain.

6When an author thanks somebody, this post is typically a
bad answer to the original question.

7Can detect slang, foreign language, etc., which would indi-
cate a bad answer.

1590

The task offers a higher quality training dataset
TRAIN-PART1, which includes 200 original ques-
tions, 1,999 related questions and 19,990 comments,
and a lower-quality TRAIN-PART2, which we did
not use. Additionally, it provides a development
set (DEV, with 50 original questions, 500 related
questions and 5,000 related comments) and a TEST

set (70 original questions, 700 related questions and
7,000 related comments). Apart from the class la-
bels for subtask C, the datasets also offer class labels
for subtask A (i.e., whether a comment is a good an-
swer to the question in the thread) and subtask B
(i.e., whether the related questions is relevant for the
original question).

5.1 Setting

we use Theano (Bergstra et al., 2010) to train our
model on TRAIN-PART1 with hidden layers of size
3 for 100 epochs with minibatches of size 30, regu-
larization of 0.05, and a learning rate of 0.01, using
stochastic gradient descent with adagrad (Duchi et
al., 2011). We normalize the input feature values to
the [−1; 1] interval using minmax, and we initialize
the NN weights by sampling from a uniform distri-
bution as in (Bengio and Glorot, 2010).

We evaluate the model on DEV after each epoch,
and ultimately we keep the model that achieves the
highest accuracy;8 in case of a tie, we prefer the pa-
rameters from a later epoch. We selected the above
parameter values on the DEV dataset using the full
model, and we use them for all experiments in Sec-
tion 5.3, where we evaluate on the TEST dataset.

Note that, we train the NN using all pairs of
(Good, Bad) comments, in both orders, ignoring
ties. At test time, we compute the full ranking of
comments by scoring all possible pairs, and by then
accumulating the scores at the comment level.

5.2 Evaluation and baselines

The results are calculated with the official scorer
from the SemEval-2016 Task 3. We report three
ranking-based measures that are commonly ac-
cepted in the IR community: Mean average preci-
sion (MAP), which is the official evaluation mea-
sure of the task, average recall (AvgRec), and mean
reciprocal rank (MRR).

8We tried Kendall’s Tau (τ), but it performed slightly worse.

For comparison purposes, we report the results for
two baselines. One corresponds to a random order-
ing of the comments, assuming zero knowledge of
the task. The second one is a more realistic baseline,
which keeps the question ranking from the search
engine (Google search) and the chronological or-
der of the comments within the thread of teh related
question. Although this may be considered a very
naı̈ve baseline, it is actually notably informed. The
question ranking from Google search takes into ac-
count the relevance of the entire thread (question and
comments) to the original question. Moreover, there
is a natural concentration of the best answers in the
first comments of the threads.

5.3 Main results

Table 1 shows the evaluation results on the TEST

dataset for several variants of our pairwise neural
network architecture. Regarding our network con-
figurations, we present the results from simpler to
more complex.

Relevance The “Relevance only” network con-
tains only the relevance relations and features cor-
responding to q, c1 and c2. The rest of the com-
ponents are deactivated in the network. This corre-
sponds to solving the task without any information
about the related questions and the appropriateness
of the comments in their threads, i.e., just by com-
paring the texts of the comments and of the original
question. In some sense, this setup is largely less
informed than the IR baseline. The results are very
low, being only ∼7 MAP points higher than the ran-
dom baseline.

Relevance + appropriateness Adding the appro-
priateness interactions between c1 and q′1, and be-
tween c2 and q′2 improves MAP by ∼9 points. Al-
though more informed, as some information from
the related questions is taken indirectly, the results
of this system are still below the IR baseline.

Relevance + relatedness Adding the relatedness
interactions and features between q and q′1, and q and
q′2, turns out to be crucial. When added to the “Rel-
evance only” basic system, the MAP score jumps
to 52.43, significantly above the IR baseline. This
shows that question–question similarity plays an im-
portant role in solving the cQA task.

1591

System MAP AvgRec MRR

Relevance relations only 21.78 20.66 22.59
+ Appropriateness 30.94 29.86 35.02
+ Relatedness 52.43 57.05 60.14

Full Network 54.51 60.93 62.94

Baseline 1 (random) 15.01 11.44 15.19
Baseline 2 (IR+chron.) 40.36 45.97 45.83

Table 1: Results on the answer ranking task of our
full NN vs. variants using partial information.

Full Network Adding both appropriateness and
relatedness interactions yields an improvement of
another two MAP points absolute (to 54.51), which
shows that appropriateness features encode infor-
mation that is complementary to the information
modeled by relevance and relatedness. Note that
the results with the other evaluation metrics (Av-
gRec and MRR) follow exactly the same pattern. In
summary, we can conclude that in order to solve the
community question answering problem, we need to
(i) find the best related questions, and (ii) judge the
relevance of individual comments with respect to the
new question.

5.4 Features in perspective

Table 2 shows the results of an ablation study when
removing some groups of features.9 More specif-
ically, we drop lexical similarities, domain-specific
features, and the complex semantic-syntactic inter-
actions modeled in the hidden layer between the em-
beddings and the domain-specific features.

We can see that the lexical similarity features
(which we modeled by MT evaluation metrics), have
a large impact: excluding them from the network
yields a decrease of over eight MAP points. This can
be explained as the strong dependence that related-
ness has over strict word matching. Since questions
are relatively short, a better related question will be
one that matches better the original question.

9Note that here we only show the impact of groups of fea-
tures, e.g., we do not consider experiments with different em-
beddings such as GOOGLE VEC, QL VEC, and SYNTAX VEC,
which all belong to the lexical similarity group of features. This
is because in previous work (which was limited to subtask A),
our ablation study has shown that all features in a group clearly
contribute to the overall performance (Guzmán et al., 2016a;
Guzmán et al., 2016b).

System MAP AvgRec MRR ∆MAP

Full Network 54.51 60.93 62.94
− Lexical similarity 45.89 51.54 53.29 -8.62
− Domain-specific 48.48 50.46 53.78 -6.03
− Distributed rep. 51.17 56.63 56.91 -3.34

No hidden layer 52.19 58.23 59.95 -2.32

Table 2: Results of the ablation study.
As expected, eliminating the domain-specific fea-

tures also hurts the performance greatly: by six
MAP points absolute. Eliminating the use of dis-
tributed representation has a lesser impact: 3.3 MAP
points absolute. This is in line with our previous
findings (Guzmán et al., 2015; Guzmán et al., 2016a;
Guzmán et al., 2016b) that semantic and syntactic
embeddings are useful to make a fine-grained dis-
tinction between comments (relevance, appropriate-
ness), which are usually longer.

We have also found that there is an interaction be-
tween features and similarity relations. For example,
for relatedness, lexical similarity is 2.6 MAP points
more informative10 than distributed representations.
In contrast, for relevance, distributed representations
are 0.7 MAP points more informative than lexical
similarities.

5.5 Impact of the hidden layer

Table 2 also presents the results of a system that
has the full set of features, but eliminates the hid-
den layer from the neural network. This is equiva-
lent to training a Maximum Entropy classifier with
the complete set of features. This simplified sys-
tem performs consistently worse than the full NN
model (−2.32 MAP,−2.7 AvgRec, and−2.99 MRR
points), which shows that using the hidden layer to
model the non-linear interactions between informa-
tion sources has a decent overall contribution.

5.6 Making appropriateness more useful

Since the SemEval-2016 Task 3 datasets also pro-
vide labeled examples for the so called “subtask A”
(q′c; appropriateness) and “subtask B” (qq′; related-
ness), one could use this supervision to help train
the neural network for the primary cQA task. We
observed that relatedness has proven quite informa-
tive. However, the improvements observed from us-
ing appropriateness were more modest.

10As measured by the relative drop in MAP performance.

1592

System MAP AvgRec MRR

Full Network 54.51 60.93 62.94
Full + appr. preds. 55.82 61.63 62.39

Table 3: Using appropriateness predictions.

We present here a stacked experiment in which an
additional neural network trained to predict appro-
priateness is used to inform the full network model.
More concretely, we train a feed-forward pairwise
neural network for subtask A, which is a simplifi-
cation of the architecture from Figure 2. The input
is reduced to three elements (q′, c1, c2), where q′ is
the thread question and c1 and c2 are a pair of com-
ments in the thread. The output consists of deciding
whether c1 is a better answer to q′ than c2. All the
pairwise interactions between input components are
included in the hidden layer, and we use the same
features to train the network as the ones described in
Section 4 (obviously, this time the input and the fea-
tures are reduced to those involving q′, c1 and c2).
We used this exact setting in previous work for solv-
ing subtask A (Guzmán et al., 2016a; Guzmán et al.,
2016b).

We used the network to classify all subtask A ex-
amples in TRAIN-PART1, DEV and TEST, and we
used the resulting scores at the comment level as
skip-arc features for the full NN model: (a) alone,
included in ψ(q′1, c1) and ψ(q′2, c2), and (b) multi-
plied by each of the QQ′Rank feat features, included
in ψ(q, c1) and ψ(q, c2).

In Table 3, we observe that using the pre-trained
network to incorporate subtask A predictions as fea-
tures yields another sizable improvement to a final
MAP of 55.82 (the increase is smaller for AvgRec,
and MRR is slightly hurt), which suggests that pre-
training parts of the NN with labeled examples to
perform a dedicated task, is a promising direction
for future work.

5.7 Results in perspective

Next, in order to put our results in perspective, we
compare them to the state of the art for this prob-
lem, represented by the systems that participated in
SemEval-2016 Task 3, subtask C. The comparison
is shown in Table 4, where we list the top-3 systems,
as well as the average and the worst scores for the
official runs of all participating teams.

System MAP AvgRec MRR

Full Network + subtask A preds. 55.82 61.63 62.39
* 1st (Mihaylova et al., 2016) 55.41 60.66 61.48
Full Network 54.51 60.93 62.94
* 2nd (Filice et al., 2016) 52.95 59.27 59.23
* 3rd (Mihaylov and Nakov, 2016b) 51.68 53.43 55.96
.
SemEval Average 49.30 53.74 54.39
.
SemEval Worst 43.20 47.96 47.79

Baseline 2 (IR+chron.) 40.36 45.97 45.83

Table 4: Comparative results with the state of the art,
i.e., the top-3 systems that participated in SemEval-
2016 Task 3, subtask C.

We can see that all systems in the competition per-
formed over the IR baseline with MAP scores rang-
ing from 43.20 to 55.41. We can further see that our
full network with subtask A predictions achieves the
best results with 55.82 MAP. The margin over the
best SemEval system is small in terms of MAP but
more noticeable in terms of AvgRec and MRR. Note
that, even without the Subtask A predictions, our
pairwise neural network still produces results that
are on par with the state of the art (with improve-
ments slightly over one point in both cases).

6 Related Work

Recently, a variety of neural network models have
been applied to community question answering
tasks such as question-question similarity (Zhou et
al., 2015; dos Santos et al., 2015; Lei et al., 2015)
and answer selection (Severyn and Moschitti, 2015;
Wang and Nyberg, 2015; Feng et al., 2015; Tan
et al., 2015; Filice et al., 2016; Barrón-Cedeño et
al., 2016; Mohtarami et al., 2016). Most of these
papers concentrate on constructing advanced neural
network architectures in order to model the problem
at hand better.

For instance, dos Santos et al. (2015) propose a
neural network approach combining a convolutional
neural network and a bag-of-words representation
for modeling question-question similarity. Simi-
larly, Tan et al. (2015) adopt a neural attention mech-
anism over bidirectional long short-term memory
(LSTM) neural network to generate better answer
representations given the questions.

1593

Similarly, Lei et al. (2015) use a combination of
recurrent and convolutional neural models to map
questions to semantic representations. The mod-
els are pre-trained within an encoder-decoder frame-
work (from body to title) in order to de-noise the
long question body from irrelevant text.

The main objective of our work here is different:
we focus on studying the impact of the different in-
put components in a novel cQA setting of ranking
answers for new questions, and we use a more stan-
dard neural network.

The setting of cQA as a triangle of three inter-
related subtasks, which we use here, has been re-
cently proposed in SemEval-2016 Task 3 on Com-
munity Question Answering (Nakov et al., 2016).
Above, we empirically compared our results to those
of the best participating systems. Unfortunately,
most of the systems that took part in the compe-
tition, including the winning system of the SUper
team (Mihaylova et al., 2016), approached the task
indirectly by solving subtask A at the thread level
and then using these predictions together with the
reciprocal rank of the related questions to produce a
final ranking for subtask C.

One exception is the Kelp system (Filice et al.,
2016), which was ranked second in the competition.
Their approach is most similar to ours, as it also tries
to combine information from different subtasks and
from all input components. It does so in a modu-
lar kernel function, including stacking from inde-
pendent subtask A and B classifiers, and it applies
SVMs to train a Good vs. Bad classifier (Filice et
al., 2016). In contrast, our approach here proceeds
in a pairwise setting, it is lighter in terms of features
engineering, and presents a direct way to combine
the relations between the different subtasks in an in-
tegrated neural network model.

Finally, our model uses lexical features derived
from machine translation evaluation. Some previous
work also used MT model(s) as a feature(s) (Berger
et al., 2000; Echihabi and Marcu, 2003; Jeon et al.,
2005; Soricut and Brill, 2006; Riezler et al., 2007; Li
and Manandhar, 2011; Surdeanu et al., 2011; Tran
et al., 2015; Hoogeveen et al., 2016; Wu and Zhang,
2016), e.g., a variation of IBM model 1 (Brown et
al., 1993), to compute the probability that the ques-
tion is a “translation” of the candidate answer.

7 Conclusion

We presented a neural-based approach to a novel
problem in cQA, where given a new question, the
task is to rank comments from related question-
threads according to their relevance as answers to
the original question. We explored the utility of
three types of similarities between the original ques-
tion, the related question, and the related comment.

We adopted a pairwise feed-forward neural net-
work architecture, which takes as input the origi-
nal question and two comments together with their
corresponding related questions. This allowed us
to study the impact and the interaction effects of
the question-question relatedness and comment-
to-related question appropriateness relations when
solving the primary cQA relevance task. The large
performance gains obtained from using relatedness
features show that question-question similarity plays
a crucial role in finding relevant comments (+30
MAP points). Yet, including appropriateness re-
lations is needed to achieve state-of-the-art results
(+3.3 MAP) on benchmark datasets.

We also studied the impact of several types of fea-
tures, especially domain-specific features, but also
lexical features and syntactic embeddings. We ob-
served that lexical similarity MTE features prove
the most important, followed by domain-specific
features, and syntactic and semantic embeddings.
Overall, they all showed to be necessary to achieve
state-of-the-art results.

In future work, we plan to use the labels for sub-
tasks A and B, which are provided in the datasets
in order to pre-train the corresponding components
of the full network for answer ranking. We further
want to apply a similar network to other semantic
similarity problems, such as textual entailment.

Acknowledgments

This research was performed by the Arabic Lan-
guage Technologies (ALT) group at the Qatar Com-
puting Research Institute (QCRI), HBKU, part of
Qatar Foundation. It is part of the Interactive
sYstems for Answer Search (Iyas) project, which is
developed in collaboration with MIT-CSAIL.

Last but not least, we would also like to thank
the anonymous reviewers for their constructive com-
ments, which have helped us improve the paper.

1594

References
Alberto Barrón-Cedeño, Giovanni Da San Martino,

Shafiq Joty, Alessandro Moschitti, Fahad A. Al
Obaidli, Salvatore Romeo, Kateryna Tymoshenko, and
Antonio Uva. 2016. ConvKN at SemEval-2016 Task
3: Answer and question selection for question answer-
ing on Arabic and English fora. In Proceedings of the
10th International Workshop on Semantic Evaluation,
SemEval ’16, pages 896–903, San Diego, CA.

Yoshua Bengio and Xavier Glorot. 2010. Understanding
the difficulty of training deep feedforward neural net-
works. In Proceedings of Artificial Intelligence and
Statistics, AISTATS ’10, pages 249–256, Chia Laguna
Resort, Sardinia, Italy.

Adam Berger, Rich Caruana, David Cohn, Dayne Freitag,
and Vibhu Mittal. 2000. Bridging the lexical chasm:
Statistical approaches to answer-finding. In Proceed-
ings of the 23rd Annual International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’00, pages 192–199, Athens,
Greece.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pas-
cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio. 2010. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for Scientific
Computing Conference, SciPy ’10, Austin, TX.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathematics
of statistical machine translation: Parameter estima-
tion. Comput. Linguist., 19(2):263–311.

George Doddington. 2002. Automatic evaluation of ma-
chine translation quality using n-gram co-occurrence
statistics. In Proceedings of the Second Interna-
tional Conference on Human Language Technology
Research, HLT ’02, pages 138–145, San Diego, CA.

Cicero dos Santos, Luciano Barbosa, Dasha Bogdanova,
and Bianca Zadrozny. 2015. Learning hybrid rep-
resentations to retrieve semantically equivalent ques-
tions. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing, ACL-IJCNLP ’15, pages 694–699,
Beijing, China.

Huizhong Duan, Yunbo Cao, Chin-Yew Lin, and Yong
Yu. 2008. Searching questions by identifying question
topic and question focus. In Proceedings of the 45th
Annual Meeting of the Association of Computational
Linguistics, ACL ’08, pages 156–164, Columbus, OH.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning
Research, 12:2121–2159.

Abdessamad Echihabi and Daniel Marcu. 2003. A
noisy-channel approach to question answering. In
Proceedings of the 41st Annual Meeting of the Associ-
ation for Computational Linguistics, ACL ’03, pages
16–23, Sapporo, Japan.

Minwei Feng, Bing Xiang, Michael R. Glass, Lidan
Wang, and Bowen Zhou. 2015. Applying deep learn-
ing to answer selection: A study and an open task. In
Proceedings of the 2015 IEEE Workshop on Automatic
Speech Recognition and Understanding, ASRU ’15,
pages 813–820, Scottsdale, AZ.

Simone Filice, Danilo Croce, Alessandro Moschitti, and
Roberto Basili. 2016. KeLP at SemEval-2016 Task 3:
Learning semantic relations between questions and an-
swers. In Proceedings of the 10th International Work-
shop on Semantic Evaluation, SemEval ’16, pages
1116–1123, San Diego, CA.

Francisco Guzmán, Shafiq Joty, Lluı́s Màrquez, and
Preslav Nakov. 2015. Pairwise neural machine trans-
lation evaluation. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing, ACL-IJCNLP ’15, pages
805–814, Beijing, China.

Francisco Guzmán, Lluı́s Màrquez, and Preslav Nakov.
2016a. Machine translation evaluation meets commu-
nity question answering. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics, ACL ’16, pages 460–466, Berlin, Ger-
many.

Francisco Guzmán, Preslav Nakov, and Lluı́s Màrquez.
2016b. MTE-NN at SemEval-2016 Task 3: Can
machine translation evaluation help community ques-
tion answering? In Proceedings of the 10th In-
ternational Workshop on Semantic Evaluation, Se-
mEval ’16, pages 887–895, San Diego, CA.

Doris Hoogeveen, Yitong Li, Huizhi Liang, Bahar Salehi,
Timothy Baldwin, and Long Duong. 2016. UniMelb
at SemEval-2016 Task 3: Identifying similar questions
by combining a CNN with string similarity measures.
In Proceedings of the 10th International Workshop on
Semantic Evaluation, SemEval ’16, pages 851–856,
San Diego, CA.

Jiwoon Jeon, W. Bruce Croft, and Joon Ho Lee. 2005.
Finding similar questions in large question and an-
swer archives. In Proceedings of the 14th ACM Inter-
national Conference on Information and Knowledge
Management, CIKM ’05, pages 84–90, Bremen, Ger-
many.

Alon Lavie and Michael Denkowski. 2009. The ME-
TEOR metric for automatic evaluation of machine
translation. Machine Translation, 23(2–3):105–115.

Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi S.
Jaakkola, Kateryna Tymoshenko, Alessandro Mos-

1595

chitti, and Lluı́s Màrquez. 2015. Denoising bodies to
titles: Retrieving similar questions with recurrent con-
volutional models. arXiv preprint arXiv:1512.05726.

Shuguang Li and Suresh Manandhar. 2011. Improv-
ing question recommendation by exploiting informa-
tion need. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Hu-
man Language Technologies, ACL ’11, pages 1425–
1434, Portland, OR.

Todor Mihaylov and Preslav Nakov. 2016a. Hunting for
troll comments in news community forums. In Pro-
ceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, ACL ’16, pages 399–
405, Berlin, Germany.

Todor Mihaylov and Preslav Nakov. 2016b. SemanticZ
at SemEval-2016 Task 3: Ranking relevant answers in
community question answering using semantic simi-
larity based on fine-tuned word embeddings. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation, SemEval ’16, pages 879–886, San
Diego, CA.

Todor Mihaylov, Georgi Georgiev, and Preslav Nakov.
2015. Finding opinion manipulation trolls in news
community forums. In Proceedings of the Nine-
teenth Conference on Computational Natural Lan-
guage Learning, CoNLL ’15, pages 310–314, Beijing,
China.

Tsvetomila Mihaylova, Pepa Gencheva, Martin Boyanov,
Ivana Yovcheva, Todor Mihaylov, Momchil Hardalov,
Yasen Kiprov, Daniel Balchev, Ivan Koychev, Preslav
Nakov, Ivelina Nikolova, and Galia Angelova. 2016.
SUper Team at SemEval-2016 Task 3: Building a
feature-rich system for community question answer-
ing. In Proceedings of the 10th International Work-
shop on Semantic Evaluation, SemEval ’16, pages
836–843, San Diego, CA.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space word
representations. In Proceedings of the 2013 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, NAACL-HLT ’13, pages 746–751, At-
lanta, GA.

Mitra Mohtarami, Yonatan Belinkov, Wei-Ning Hsu,
Yu Zhang, Tao Lei, Kfir Bar, Scott Cyphers, and
Jim Glass. 2016. SLS at SemEval-2016 Task 3:
Neural-based approaches for ranking in community
question answering. In Proceedings of the 10th In-
ternational Workshop on Semantic Evaluation, Se-
mEval ’16, pages 828–835, San Diego, CA.

Preslav Nakov, Lluı́s Màrquez, Walid Magdy, Alessan-
dro Moschitti, Jim Glass, and Bilal Randeree. 2015.
SemEval-2015 Task 3: Answer selection in commu-
nity question answering. In Proceedings of the 9th

International Workshop on Semantic Evaluation, Se-
mEval ’15, pages 269–281, Denver, CO.

Preslav Nakov, Lluı́s Màrquez, Alessandro Moschitti,
Walid Magdy, Hamdy Mubarak, Abed Alhakim Frei-
hat, Jim Glass, and Bilal Randeree. 2016. SemEval-
2016 task 3: Community question answering. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation, SemEval ’16, pages 525–545, San
Diego, CA.

Massimo Nicosia, Simone Filice, Alberto Barrón-
Cedeño, Iman Saleh, Hamdy Mubarak, Wei Gao,
Preslav Nakov, Giovanni Da San Martino, Alessandro
Moschitti, Kareem Darwish, Lluı́s Màrquez, Shafiq
Joty, and Walid Magdy. 2015. QCRI: Answer selec-
tion for community question answering - experiments
for Arabic and English. In Proceedings of the 9th
International Workshop on Semantic Evaluation, Se-
mEval ’2015, pages 203–209, Denver, CO.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of 40th
Annual Meeting of the Association for Computational
Linguistics, ACL ’02, pages 311–318, Philadelphia,
PA.

Stefan Riezler, Alexander Vasserman, Ioannis Tsochan-
taridis, Vibhu Mittal, and Yi Liu. 2007. Statisti-
cal machine translation for query expansion in answer
retrieval. In Proceedings of the 45th Annual Meet-
ing of the Association of Computational Linguistics,
ACL ’07, pages 464–471, Prague, Czech Republic.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’15,
pages 373–382, Santiago, Chile.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of the 7th Biennial Conference of the
Association for Machine Translation in the Americas,
AMTA ’06, pages 223–231, Cambridge, MA.

Richard Socher, John Bauer, Christopher D. Manning,
and Andrew Y. Ng. 2013. Parsing with compositional
vector grammars. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguis-
tics, ACL ’13, pages 455–465, Sofia, Bulgaria.

Radu Soricut and Eric Brill. 2006. Automatic question
answering using the web: Beyond the factoid. Inf.
Retr., 9(2):191–206.

Mihai Surdeanu, Massimiliano Ciaramita, and Hugo
Zaragoza. 2011. Learning to rank answers to non-
factoid questions from web collections. Comput. Lin-
guist., 37(2):351–383.

1596

Ming Tan, Bing Xiang, and Bowen Zhou. 2015. LSTM-
based deep learning models for non-factoid answer se-
lection. arXiv preprint arXiv:1511.04108.

Quan Hung Tran, Vu Tran, Tu Vu, Minh Nguyen,
and Son Bao Pham. 2015. JAIST: Combining
multiple features for answer selection in community
question answering. In Proceedings of the 9th In-
ternational Workshop on Semantic Evaluation, Se-
mEval ’15, pages 215–219, Denver, CO.

Di Wang and Eric Nyberg. 2015. A long short-term
memory model for answer sentence selection in ques-
tion answering. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing, ACL-IJCNLP ’15, pages
707–712, Beijing, China.

Yunfang Wu and Minghua Zhang. 2016. ICL00
at SemEval-2016 Task 3: Translation-based method
for CQA system. In Proceedings of the 10th In-
ternational Workshop on Semantic Evaluation, Se-
mEval ’16, pages 857–860, San Diego, CA.

Guangyou Zhou, Tingting He, Jun Zhao, and Po Hu.
2015. Learning continuous word embedding with
metadata for question retrieval in community question
answering. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing, ACL-IJCNLP ’15, pages 250–
259, Beijing, China.

1597

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1598–1607,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Character-Level Question Answering with Attention

David Golub
University of Washington

golubd@cs.washington.edu

Xiaodong He
Microsoft Research

xiaohe@microsoft.com

Abstract

We show that a character-level encoder-
decoder framework can be successfully ap-
plied to question answering with a structured
knowledge base. We use our model for single-
relation question answering and demonstrate
the effectiveness of our approach on the Sim-
pleQuestions dataset (Bordes et al., 2015),
where we improve state-of-the-art accuracy
from 63.9% to 70.9%, without use of ensem-
bles. Importantly, our character-level model
has 16x fewer parameters than an equivalent
word-level model, can be learned with signif-
icantly less data compared to previous work,
which relies on data augmentation, and is ro-
bust to new entities in testing. 1

1 Introduction

Single-relation factoid questions are the most com-
mon form of questions found in search query logs
and community question answering websites (Yih et
al., 2014; Fader et al., 2013). A knowledge-base
(KB) such as Freebase, DBpedia, or Wikidata can
help answer such questions after users reformulate
them as queries. For instance, the question “Where
was Barack Obama born?” can be answered by is-
suing the following KB query:

λ(x).place of birth(Barack Obama, x)

However, automatically mapping a natural language
question such as “Where was Barack Obama born?”

1Our code is publicly available at https://github.
com/davidgolub/simpleqa

to its corresponding KB query remains a challeng-
ing task.

There are three key issues that make learning this
mapping non-trivial. First, there are many para-
phrases of the same question. Second, many of the
KB entries are unseen during training time; however,
we still need to correctly predict them at test time.
Third, a KB such as Freebase typically contains mil-
lions of entities and thousands of predicates, mak-
ing it difficult for a system to predict these entities at
scale (Yih et al., 2014; Fader et al., 2014; Bordes et
al., 2015). In this paper, we address all three of these
issues with a character-level encoder-decoder frame-
work that significantly improves performance over
state-of-the-art word-level neural models, while also
providing a much more compact model that can be
learned from less data.

First, we use a long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) encoder to em-
bed the question. Second, to make our model ro-
bust to unseen KB entries, we extract embeddings
for questions, predicates and entities purely from
their character-level representations. Character-
level modeling has been previously shown to gen-
eralize well to new words not seen during training
(Ljubešić et al., 2014; Chung et al., 2016), which
makes it ideal for this task. Third, to scale our model
to handle the millions of entities and thousands of
predicates in the KB, instead of using a large out-
put layer in the decoder to directly predict the entity
and predicate, we use a general interaction function
between the question embeddings and KB embed-
dings that measures their semantic relevance to de-
termine the output. The combined use of character-

1598

W h e r e ... b o r n ?

…
𝑣<𝑠>

Q: Where was Barack Obama born?

O b a m a B a r a c k O b a m a

Obama 0.18
Barack Obama 0.60
...

CNNE
CNNE CNNE

𝑣𝐵𝑎𝑟𝑎𝑐𝑘 𝑂𝑏𝑎𝑚𝑎

…

a) Question encoder
(character-level LSTM)

c) Entity & Predicate encoder
(character-level CNNs)

b) KB query decoder
(LSTM with an attention mechanism)

…

people/…/spouse 0.2
people/…/…birth 0.58
...

CNNP
CNNP CNNP

…

h0

</s>

Entity attentions

Predicate attentions
p e o p l e/…/ s p o u s e

h1

h2

h3

p e o p l e/…/ p l a
c e _ o f _ b i r t h

s1 … s4 … sn

{α1}

{α2}

𝑣𝑒𝑛𝑡𝑖𝑡𝑦

𝑣𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒

𝑐1

𝑐2

…

Figure 1: Our encoder-decoder architecture that generates a query against a structured knowledge base.
We encode our question via a long short-term memory (LSTM) network and an attention mechanism to
produce our context vector. During decoding, at each time step, we feed the current context vector and an
embedding of the English alias of the previously generated knowledge base entry into an attention-based
decoding LSTM to generate the new candidate entity or predicate.

level modeling and a semantic relevance function
allows us to successfully produce likelihood scores
for the KB entries that are not present in our vo-
cabulary, a challenging task for standard encoder-
decoder frameworks.

Our novel, character-level encoder-decoder
model is compact, requires significantly less data to
train than previous work, and is able to generalize
well to unseen entities in test time. In particular,
without use of ensembles, we achieve 70.9% accu-
racy in the Freebase2M setting and 70.3% accuracy
in the Freebase5M setting on the SimpleQuestions
dataset, outperforming the previous state-of-arts of
62.7% and 63.9% (Bordes et al., 2015) by 8.2%
and 6.4% respectively. Moreover, we only use the
training questions provided in SimpleQuestions to
train our model, which cover about 24% of words in
entity aliases on the test set. This demonstrates the
robustness of the character-level model to unseen
entities. In contrast, data augmentation is usually
necessary to provide more coverage for unseen
entities and predicates, as done in previous work
(Bordes et al., 2015; Yih et al., 2014).

2 Related Work

Our work is motivated by three major threads
of research in machine learning and natural lan-

guage processing: semantic-parsing for open-
domain question answering, character-level lan-
guage modeling, and encoder-decoder methods.

Semantic parsing for open-domain question an-
swering, which translates a question into a struc-
tured KB query, is a key component in question an-
swering with a KB. While early approaches relied on
building high-quality lexicons for domain-specific
databases such as GeoQuery (Tang and Mooney,
2001), recent work has focused on building seman-
tic parsing frameworks for general knowledge bases
such as Freebase (Yih et al., 2014; Bordes et al.,
2014a; Bordes et al., 2015; Berant and Liang, 2014;
Fader et al., 2013; Dai et al., 2016).

Semantic parsing frameworks for large-scale
knowledge bases have to be able to successfully gen-
erate queries for the millions of entities and thou-
sands of predicates in the KB, many of which are
unseen during training. To address this issue, recent
work relies on producing embeddings for predicates
and entities in a KB based on their textual descrip-
tions (Bordes et al., 2014a; Bordes et al., 2015; Yih
et al., 2014; Yih et al., 2015; Bishan Yang, 2015).
A general interaction function can then be used to
measure the semantic relevance of these embedded
KB entries to the question and determine the most
likely KB query.

1599

Most of these approaches use word-level embed-
dings to encode entities and predicates, and there-
fore might suffer from the out-of-vocabulary (OOV)
problem when they encounter unseen words during
test time. Consequently, they often rely on signif-
icant data augmentation from sources such as Par-
alex (Fader et al., 2013), which contains 18 million
question-paraphrase pairs scraped from WikiAn-
swers, to have sufficient examples for each word
they encounter (Bordes et al., 2014b; Yih et al.,
2014; Bordes et al., 2015).

As opposed to word-level modeling, character-
level modeling can be used to handle the OOV is-
sue. While character-level modeling has not been
applied to factoid question answering before, it has
been successfully applied to information retrieval,
machine translation, sentiment analysis, classifica-
tion, and named entity recognition (Huang et al.,
2013; Shen et al., 2014; Chung et al., 2016; Zhang
et al., 2015; Santos and Zadrozny, 2014; dos Santos
and Gatti, 2014; Klein et al., 2003; dos Santos, 2014;
dos Santos et al., 2015). Moreover, Chung et al.
(2015) demonstrate that gated-feedback LSTMs on
top of character-level embeddings can capture long-
term dependencies in language modeling.

Lastly, encoder-decoder networks have been ap-
plied to many structured machine learning tasks.
First introduced in Sutskever et al. (2014), in an
encoder-decoder network, a source sequence is first
encoded with a recurrent neural network (RNN) into
a fixed-length vector which intuitively captures its
“meaning”, and then decoded into a desired tar-
get sequence. This approach and related memory-
based or attention-based approaches have been suc-
cessfully applied in diverse domains such as speech
recognition, machine translation, image captioning,
parsing, executing programs, and conversational di-
alogues (Amodei et al., 2015; Venugopalan et al.,
2015; Bahdanau et al., 2015; Vinyals et al., 2015;
Zaremba and Sutskever, 2014; Xu et al., 2015;
Sukhbaatar et al., 2015).

Unlike previous work, we formulate question an-
swering as a problem of decoding the KB query
given the question and KB entries which are en-
coded in embedding spaces. We therefore inte-
grate the learning of question and KB embeddings
in a unified encoder-decoder framework, where the
whole system is optimized end-to-end.

3 Model

Since we focus on single-relation question answer-
ing in this work, our model decodes every ques-
tion into a KB query that consists of exactly two
elements–the topic entity, and the predicate. More
formally, our model is a function f(q, {e}, {p}) that
takes as input a question q, a set of candidate enti-
ties {e} = e1, ..., en, a set of candidate predicates
{p} = p1, ..., pm, and produces a likelihood score
p(ei, pj |q) of generating entity ei and predicate pj
given question q for all i ∈ 1...n, j ∈ 1...m.

As illustrated in Figure 1, our model consists of
three components:

1. A character-level LSTM-based encoder for the
question which produces a sequence of embed-
ding vectors, one for each character (Figure
1a).

2. A character-level convolutional neural net-
work (CNN)-based encoder for the predi-
cates/entities in a knowledge base which pro-
duces a single embedding vector for each pred-
icate or entity (Figure 1c).

3. An LSTM-based decoder with an attention
mechanism and a relevance function for gener-
ating the topic entity and predicate to form the
KB query (Figure 1b).

The details of each component are described in the
following sections.

3.1 Encoding the Question
To encode the question, we take two steps:

1. We first extract one-hot encoding vectors for
characters in the question, x1, ..., xn, where xi
represents the one-hot encoding vector for the
ith character in the question. We keep the
space, punctuation and original cases without
tokenization.

2. We feed x1, ..., xn from left to right into a two-
layer gated-feedback LSTM, and keep the out-
puts at all time steps as the embeddings for the
question, i.e., these are the vectors s1, ..., sn.

1600

3.2 Encoding Entities and Predicates in the KB
To encode an entity or predicate in the KB, we take
two steps:

1. We first extract one-hot encoding vectors for
characters in its English alias, x1, ..., xn, where
xi represents the one-hot encoding vector for
the ith character in the alias.

2. We then feed x1, ..., xn into a temporal CNN
with two alternating convolutional and fully-
connected layers, followed by one fully-
connected layer:

f(x1, ..., xn) = tanh(W3 ×max(tanh(W2×
conv(tanh(W1 × conv(x1, ..., xn))))))

where f(x1...n) is an embedding vector of size
N , W3 has size RN×h, conv represents a tem-
poral convolutional neural network, and max
represents a max pooling layer in the temporal
direction.

We use a CNN as opposed to an LSTM to embed
KB entries primarily for computational efficiency.
Also, we use two different CNNs to encode enti-
ties and predicates because they typically have sig-
nificantly different styles (e.g., “Barack Obama” vs.
“/people/person/place of birth”).

3.3 Decoding the KB Query
To generate the single topic entity and predicate to
form the KB query, we use a decoder with two key
components:

1. An LSTM-based decoder with attention. Its
hidden states at each time step i, hi, have the
same dimensionality N as the embeddings of
entities/predicates. The initial hidden state h0
is set to the zero vector: ~0.

2. A pairwise semantic relevance function that
measures the similarity between the hidden
units of the LSTM and the embedding of an en-
tity or predicate candidate. It then returns the
mostly likely entity or predicate based on the
similarity score.

In the following two sections, we will first de-
scribe the LSTM decoder with attention, followed
by the semantic relevance function.

3.3.1 LSTM-based Decoder with Attention
The attention-based LSTM decoder uses a similar

architecture as the one described in Bahdanau et al.
(2015). At each time step i, we feed in a context
vector ci and an input vector vi into the LSTM. At
time i = 1 we feed a special input vector v<S> =
~0 into the LSTM. At time i = 2, during training,
the input vector is the embedding of the true entity,
while during testing, it is the embedding of the most
likely entity as determined at the previous time step.

We now describe how we produce the context
vector ci. Let hi−1 be the hidden state of the LSTM
at time i−1, sj be the jth question character embed-
ding, n be the number of characters in the question,
r be the size of sj , andm be a hyperparameter. Then
the context vector ci, which represents the attention-
weighted content of the question, is recomputed at
each time step i as follows:

ci =
n∑

j=1

αijsj ,

αij =
exp (eij)∑Tx
k=1 exp (eik)

eij =v
>
a tanh (Wahi−1 + Uasj) ,

where {α} is the attention distribution that is ap-
plied over each hidden unit sj , Wa ∈ Rm×N , Ua ∈
Rm×r, and va ∈ R1×m.

3.3.2 Semantic Relevance Function
Unlike machine translation and language model-

ing where the vocabulary is relatively small, there
are millions of entries in the KB. If we try to di-
rectly predict the KB entries, the decoder will need
an output layer with millions of nodes, which is
computationally prohibitive. Therefore, we resort
to a relevance function that measures the semantic
similarity between the decoder’s hidden state and
the embeddings of KB entries. Our semantic rel-
evance function takes two vectors x1, x2 and re-
turns a distance measure of how similar they are to
each other. In current experiments we use a simple
cosine-similarity metric: cos(x1, x2).

Using this similarity metric, the likelihoods of
generating entity ej and predicate pk are:

1601

RESULTS ON SIMPLEQUESTIONS DATASET

KB TRAIN SOURCES AUTOGEN. EMBED MODEL ENSEMBLE SQ # TRAIN
WQ SIQ PRP QUESTIONS TYPE Accuracy EXAMPLES

FB2M no yes no no Char Ours 1 model 70.9 76K
FB2M no yes no no Word Ours 1 model 53.9 76K
FB2M yes yes yes yes Word MemNN 1 model 62.7 26M
FB5M no yes no no Char Ours 1 model 70.3 76K
FB5M no yes no no Word Ours 1 model 53.1 76K
FB5M yes yes yes yes Word MemNN 5 models 63.9 27M
FB5M yes yes yes yes Word MemNN Subgraph 62.9 27M
FB5M yes yes yes yes Word MemNN 1 model 62.2 27M

Table 1: Experimental results on the SimpleQuestions dataset. MemNN results are from Bordes et al.
(2015). WQ, SIQ and PRP stand for WebQuestions, SimpleQuestions and paraphrases from WikiAnswers.

P (ej) =
exp(λcos(h1, ej))∑n
i=1 exp(λcos(h1, ei))

P (pk) =
exp(λcos(h2, pk))∑m
i=1 exp(λcos(h2, pi))

where λ is a constant, h1, h2 are the hidden states of
the LSTM at times t = 1 and t = 2, e1, ..., en are the
entity embeddings, and p1, ..., pm are the predicate
embeddings. A similar likelihood function was used
to train the semantic similarity modules proposed in
Yih et al. (2014) and Yih et al. (2015), Palangi et al.
(2016), Huang et al. (2013).

During inference, e1, ..., en and p1, ..., pm are the
embeddings of candidate entities and predicates.
During training e1, ..., en, p1, ..., pm are the embed-
dings of the true entity and 50 randomly-sampled
entities, and the true predicate and 50 randomly-
sampled predicates, respectively.

3.4 Inference
For each question q, we generate a candidate set
of entities and predicates, {e} and {p}, and feed it
through the model f(q, {e}, {p}). We then decode
the most likely (entity, predicate) pair:

(e∗, p∗) = argmaxei,pj (P (ei) ∗ P (pj))

which becomes our semantic parse.
We use a similar procedure as the one described

in Bordes et al. (2015) to generate candidate entities
{e} and predicates {p}. Namely, we take all entities
whose English alias is a substring of the question,
and remove all entities whose alias is a substring of
another entity. For each English alias, we sort each

entity with this alias by the number of facts that it
has in the KB, and append the top 10 entities from
this list to our set of candidate entities. All predi-
cates pj for each entity in our candidate entity set
become the set of candidate predicates.

3.5 Learning
Our goal in learning is to maximize the joint likeli-
hood P (ec)·P (pc) of predicting the correct entity ec
and predicate pc pair from a set of randomly sampled
entities and predicates. We use back-propagation to
learn all of the weights in our model.

All the parameters of our model are learned
jointly without pre-training. These parameters in-
clude the weights of the character-level embeddings,
CNNs, and LSTMs. Weights are randomly initial-
ized before training. For the ith layer in our network,
each weight is sampled from a uniform distribution
between − 1

|li| and 1
|li| , where |li| is the number of

weights in layer i.

4 Dataset and Experimental Settings

We evaluate the proposed model on the SimpleQues-
tions dataset (Bordes et al., 2015). The dataset con-
sists of 108,442 single-relation questions and their
corresponding (topic entity, predicate, answer en-
tity) triples from Freebase. It is split into 75,910
train, 10,845 validation, and 21,687 test questions.
Only 10,843 of the 45,335 unique words in entity
aliases and 886 out of 1,034 unique predicates in
the test set were present in the train set. For the
proposed dataset, there are two evaluation settings,
called FB2M and FB5M, respectively. The former
uses a KB for candidate generation which is a sub-

1602

set of Freebase and contains 2M entities, while the
latter uses subset of Freebase with 5M entities.

In our experiments, the Memory Neural Networks
(MemNNs) proposed in Bordes et al. (2015) serve
as the baselines. For training, in addition to the 76K
questions in the training set, the MemNNs use 3K
training questions from WebQuestions (Berant et al.,
2013), 15M paraphrases from WikiAnswers (Fader
et al., 2013), and 11M and 12M automatically gener-
ated questions from the KB for the FB2M and FB5M
settings, respectively. In contrast, our models are
trained only on the 76K questions in the training set.

For our model, both layers of the LSTM-based
question encoder have size 200. The hidden layers
of the LSTM-based decoder have size 100, and the
CNNs for entity and predicate embeddings have a
hidden layer of size 200 and an output layer of size
100. The CNNs for entity and predicate embeddings
use a receptive field of size 4, λ = 5, and m = 100.
We train the models using RMSProp with a learning
rate of 1e−4.

In order to make the input character sequence
long enough to fill up the receptive fields of mul-
tiple CNN layers, we pad each predicate or entity
using three padding symbols P , a special start sym-
bol, and a special end symbol. For instance, Obama
would become SstartPPPObamaPPPSend. For
consistency, we apply the same padding to the ques-
tions.

5 Results

5.1 End-to-end Results on SimpleQuestions
Following Bordes et al. (2015), we report results
on the SimpleQuestions dataset in terms of SQ ac-
curacy, for both FB2M and FB5M settings in Ta-
ble 1. SQ accuracy is defined as the percentage
of questions for which the model generates a cor-
rect KB query (i.e., both the topic entity and predi-
cate are correct). Our single character-level model
achieves SQ accuracies of 70.9% and 70.3% on
the FB2M and FB5M settings, outperforming the
previous state-of-art results by 8.2% and 6.4%, re-
spectively. Compared to the character-level model,
which only has 1.2M parameters, our word-level
model has 19.9M parameters, and only achieves a
best SQ accuracy of 53.9%. In addition, in contrast
to previous work, the OOV issue is much more se-

vere for our word-level model, since we use no data
augmentation to cover entities unseen in the train
set.

5.2 Ablation and Embedding Experiments
We carry out ablation studies in Sections 5.2.1 and
5.2.2 through a set of random-sampling experi-
ments. In these experiments, for each question, we
randomly sample 200 entities and predicates from
the test set as noise samples. We then mix the gold
entity and predicate into these negative samples, and
evaluate the accuracy of our model in predicting the
gold predicate or entity from this mixed set.

5.2.1 Character-Level vs. Word-Level Models
We first explore using word-level models as an al-

ternative to character-level models to construct em-
beddings for questions, entities and predicates.

Both word-level and character-level models per-
form comparably well when predicting the predi-
cate, reaching an accuracy of around 80% (Table
3). However, the word-level model has considerable
difficulty generalizing to unseen entities, and is only
able to predict 45% of the entities accurately from
the mixed set. These results clearly demonstrate that
the OOV issue is much more severe for entities than
predicates, and the difficulty word-level models have
when generalizing to new entities.

In contrast, character-level models have no such
issues, and achieve a 96.6% accuracy in predicting
the correct entity on the mixed set. This demon-
strates that character-level models encode the se-
mantic representation of entities and can match en-
tity aliases in a KB with their mentions in natural
language questions.

5.2.2 Depth Ablation Study
We also study the impact of the depth of neural

networks in our model. The results are presented
in Table 2. In the ablation experiments we compare
the performance of a single-layer LSTM to a two-
layer LSTM to encode the question, and a single-
layer vs. two-layer CNN to encode the KB entries.
We find that a two-layer LSTM boosts joint accu-
racy by over 6%. The majority of accuracy gains are
a result of improved predicate predictions, possibly
because entity accuracy is already saturated in this
experimental setup.

1603

of LSTM Layers # of CNN Layers Joint Accuracy Predicate Accuracy Entity Accuracy
2 2 78.3 80.0 96.6
2 1 77.7 79.4 96.8
1 2 71.5 73.9 95.0
1 1 72.2 74.7 94.9

Table 2: Results for a random sampling experiment where we varied the number of layers used for convolutions and
the question-encoding LSTM. We terminated training models after 14 epochs and 3 days on a GPU.

Embedding Type Joint Accuracy Predicate Accuracy Entity Accuracy
Character 78.3 80.0 96.6
Word 37.6 78.8 45.5

Table 3: Results for a random sampling experiment where we varied the embedding type (word vs. character-level).
We used 2 layered-LSTMs and CNNs for all our experiments. Our models were trained for 14 epochs and 3 days.

5.3 Attention Mechanisms
In order to further understand how the model per-
forms question answering, we visualize the attention
distribution over question characters in the decoding
process. In each sub-figure of Figure 2, the x-axis
is the character sequence of the question, and the y-
axis is the attention weight distribution {αi}. The
blue curve is the attention distribution when gener-
ating the entity, and green curve is the attention dis-
tribution when generating the predicate.

Interestingly, as the examples show, the attention
distribution typically peaks at empty spaces. This
indicates that the character-level model learns that a
space defines an ending point of a complete linguis-
tic unit. That is, the hidden state of the LSTM en-
coder at a space likely summarizes content about the
character sequence before that space, and therefore
contains important semantic information that the de-
coder needs to attend to.

Also, we observe that entity attention distribu-
tions are usually less sharp and span longer portions
of words, such as “john” or “rutters”, than predicate
attention distributions (e.g., Figure 2a). For enti-
ties, semantic information may accumulate gradu-
ally when seeing more and more characters, while
for predicates, semantic information will become
clear only after seeing the complete word. For ex-
ample, it may only be clear that characters such as
“song by” refer to a predicate after a space, as op-
posed to the name of a song such as “song bye bye
love” (Figures 2a, 2b). In contrast, a sequence of
characters starts to become a likely entity after see-

ing an incomplete name such as “joh” or “rutt”.
In addition, a character-level model can identify

entities whose English aliases were never seen in
training, such as “phrenology” (Figure 2d). The
model apparently learns that words ending with the
suffix “nology” are likely entity mentions, which is
interesting because it reads in the input one character
at a time.

Furthermore, as observed in Figure 2d, the atten-
tion model is capable of attending disjoint regions of
the question and capture the mention of a predicate
that is interrupted by entity mentions. We also note
that predicate attention often peaks at the padding
symbols after the last character of the question, pos-
sibly because sentence endings carry extra informa-
tion that further help disambiguate predicate men-
tions. In certain scenarios, the network may only
have sufficient information to build a semantic rep-
resentation of the predicate after being ensured that
it reached the end of a sentence.

Finally, certain words in the question help identify
both the entity and the predicate. For example, con-
sider the word “university” in the question “What
type of educational institution is eastern new mexico
university” (Figure 2c). Although it is a part of the
entity mention, it also helps disambiguate the predi-
cate. However, previous semantic parsing-based QA
approaches (Yih et al., 2015; Yih et al., 2014) as-
sume that there is a clear separation between pred-
icate and entity mentions in the question. In con-
trast, the proposed model does not need to make this
hard categorization, and attends the word “univer-
sity” when predicting both the entity and predicate.

1604

6 Error Analysis

We randomly sampled 50 questions where the
best-performing model generated the wrong KB
query and categorized the errors. For 46 out of the
50 examples, the model predicted a predicate with
a very similar alias to the true predicate, i.e. “/mu-
sic/release/track” vs. “/music/release/track list”.
For 21 out of the 50 examples, the model predicted
the wrong entity, e.g., “Album” vs. “Still Here” for
the question “What type of album is still here?”.
Finally, for 18 of the 50 examples, the model pre-
dicted the wrong entity and predicate, i.e. (“Play”,
“/freebase/equivalent topic/equivalent type”) for
the question “which instrument does amapola
cabase play?” Training on more data, augment-
ing the negative sample set with words from the
question that are not an entity mention, and having
more examples that disambiguate between similar
predicates may ameliorate many of these errors.

7 Conclusion

In this paper, we proposed a new character-level,
attention-based encoder-decoder model for question
answering. In our approach, embeddings of ques-
tions, entities, and predicates are all jointly learned
to directly optimize the likelihood of generating the
correct KB query. Our approach improved the state-
of-the-art accuracy on the SimpleQuestions bench-
mark significantly, using much less data than pre-
vious work. Furthermore, thanks to character-level
modeling, we have a compact model that is robust
to unseen entities. Visualizations of the attention
distribution reveal that our model, although built on
character-level inputs, can learn higher-level seman-
tic concepts required to answer a natural language
question with a structured KB. In the future we want
extend our system to multi-relation questions.

8 Acknowledgements

We thank the anonymous reviewers, Luke Zettle-
moyer, Yejin Choi, Joel Pfeiffer, and members of the
UW NLP group for helpful feedback on the paper.

a)

b)

c)

d)

Figure 2: Attention distribution over outputs of a
left-to-right LSTM on question characters.

1605

References
[Amodei et al.2015] Dario Amodei, Rishita Anubhai,

Eric Battenberg, Carl Case, Jared Casper, Bryan C.
Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam
Coates, Greg Diamos, Erich Elsen, Jesse Engel, Linxi
Fan, Christopher Fougner, Tony Han, Awni Y. Han-
nun, Billy Jun, Patrick LeGresley, Libby Lin, Sharan
Narang, Andrew Y. Ng, Sherjil Ozair, Ryan Prenger,
Jonathan Raiman, Sanjeev Satheesh, David Seetapun,
Shubho Sengupta, Yi Wang, Zhiqian Wang, Chong
Wang, Bo Xiao, Dani Yogatama, Jun Zhan, and
Zhenyao Zhu. 2015. Deep speech 2: End-to-end
speech recognition in english and mandarin. CoRR,
abs/1512.02595.

[Bahdanau et al.2015] Dzmitry Bahdanau, Kyunghyun
Cho, and Yoshua Bengio. 2015. Neural machine
translation by jointly learning to align and translate.
In ICLR.

[Berant and Liang2014] J. Berant and P. Liang. 2014. Se-
mantic parsing via paraphrasing. In Association for
Computational Linguistics (ACL).

[Berant et al.2013] Jonathan Berant, Andrew Chou, Roy
Frostig, and Percy Liang. 2013. Semantic parsing
on freebase from question-answer pairs. In Empirical
Methods in Natural Language Processing (EMNLP).

[Bishan Yang2015] Xiaodong He Jianfeng Gao Li Deng
Bishan Yang, Scott Wen-tau Yih. 2015. Embed-
ding entities and relations for learning and infer-
ence in knowledge bases. In Proceedings of the In-
ternational Conference on Learning Representations
(ICLR) 2015, May.

[Bordes et al.2014a] Antoine Bordes, Sumit Chopra, and
Jason Weston. 2014a. Question answering with sub-
graph embeddings. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 615–620, Doha, Qatar,
October. Association for Computational Linguistics.

[Bordes et al.2014b] Antoine Bordes, Jason Weston, and
Nicolas Usunier. 2014b. Open question answer-
ing with weakly supervised embedding models. In
Proceedings of the European Conference on Machine
Learning and Knowledge Discovery in Databases -
Volume 8724, ECML PKDD 2014, pages 165–180,
New York, NY, USA. Springer-Verlag New York, Inc.

[Bordes et al.2015] Antoine Bordes, Nicolas Usunier,
Sumit Chopra, and Jason Weston. 2015. Large-scale
simple question answering with memory networks. In
Proc. NIPS.

[Chung et al.2015] Junyoung Chung, Çaglar Gülçehre,
Kyunghyun Cho, and Yoshua Bengio. 2015. Gated
feedback recurrent neural networks. In Proceedings of
the 32nd International Conference on Machine Learn-

ing, ICML 2015, Lille, France, 6-11 July 2015, pages
2067–2075.

[Chung et al.2016] Junyoung Chung, Kyunghyun Cho,
and Yoshua Bengio. 2016. A character-level de-
coder without explicit segmentation for neural ma-
chine translation. arXiv preprint arXiv:1603.06147.

[Dai et al.2016] Zihang Dai, Lei Li, and Wei Xu. 2016.
Cfo: Conditional focused neural question answering
with large-scale knowledge bases. In ACL.

[dos Santos and Gatti2014] Cicero dos Santos and Maira
Gatti. 2014. Deep convolutional neural networks for
sentiment analysis of short texts. In Proceedings of
COLING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages
69–78, Dublin, Ireland, August. Dublin City Univer-
sity and Association for Computational Linguistics.

[dos Santos et al.2015] Cıcero dos Santos, Victor
Guimaraes, RJ Niterói, and Rio de Janeiro. 2015.
Boosting named entity recognition with neural char-
acter embeddings. In Proceedings of NEWS 2015 The
Fifth Named Entities Workshop, page 25.

[dos Santos2014] Cicero dos Santos. 2014. Think posi-
tive: Towards twitter sentiment analysis from scratch.
In Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 647–651,
Dublin, Ireland, August. Association for Computa-
tional Linguistics and Dublin City University.

[Fader et al.2013] Anthony Fader, Luke Zettlemoyer, and
Oren Etzioni. 2013. Paraphrase-driven learning for
open question answering. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1608–
1618, Sofia, Bulgaria, August. Association for Com-
putational Linguistics.

[Fader et al.2014] Anthony Fader, Luke Zettlemoyer, and
Oren Etzioni. 2014. Open question answering over
curated and extracted knowledge bases. In The 20th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’14, New York,
NY, USA - August 24 - 27, 2014, pages 1156–1165.

[Hochreiter and Schmidhuber1997] Sepp Hochreiter and
Jürgen Schmidhuber. 1997. Long short-term memory.
Neural Comput., 9(8):1735–1780, November.

[Huang et al.2013] Po-Sen Huang, Xiaodong He, Jian-
feng Gao, Li Deng, Alex Acero, and Larry Heck.
2013. Learning deep structured semantic models for
web search using clickthrough data. In Proceedings
of the 22nd ACM international conference on Confer-
ence on information & knowledge management, pages
2333–2338. ACM.

[Klein et al.2003] Dan Klein, Joseph Smarr, Huy Nguyen,
and Christopher D Manning. 2003. Named entity
recognition with character-level models. In Proceed-
ings of the seventh conference on Natural language

1606

learning at HLT-NAACL 2003-Volume 4, pages 180–
183. Association for Computational Linguistics.

[Ljubešić et al.2014] Nikola Ljubešić, Tomaž Erjavec,
and Darja Fišer. 2014. Standardizing tweets with
character-level machine translation. In Proceedings of
the 15th International Conference on Computational
Linguistics and Intelligent Text Processing - Volume
8404, CICLing 2014, pages 164–175, New York, NY,
USA. Springer-Verlag New York, Inc.

[Palangi et al.2016] Hamid Palangi, Li Deng, Yelong
Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen,
Xinying Song, and Rabab Ward. 2016. Deep sen-
tence embedding using long short-term memory net-
works: Analysis and application to information re-
trieval. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 24(4):694–707.

[Santos and Zadrozny2014] Cicero D Santos and Bianca
Zadrozny. 2014. Learning character-level represen-
tations for part-of-speech tagging. In Proceedings of
the 31st International Conference on Machine Learn-
ing (ICML-14), pages 1818–1826.

[Shen et al.2014] Yelong Shen, Xiaodong He, Jianfeng
Gao, Li Deng, and Gregoire Mesnil. 2014. A latent
semantic model with convolutional-pooling structure
for information retrieval. CIKM, November.

[Sukhbaatar et al.2015] Sainbayar Sukhbaatar, Jason We-
ston, Rob Fergus, et al. 2015. End-to-end memory
networks. In Advances in Neural Information Process-
ing Systems, pages 2431–2439.

[Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V Le. 2014. Sequence to sequence learning with
neural networks. In Advances in neural information
processing systems, pages 3104–3112.

[Tang and Mooney2001] Lappoon R Tang and Ray-
mond J Mooney. 2001. Using multiple clause con-
structors in inductive logic programming for semantic
parsing. In Machine Learning: ECML 2001, pages
466–477. Springer.

[Venugopalan et al.2015] Subhashini Venugopalan, Hui-
juan Xu, Jeff Donahue, Marcus Rohrbach, Raymond
Mooney, and Kate Saenko. 2015. Translating videos
to natural language using deep recurrent neural net-
works. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 1494–1504, Denver, Colorado, May–June.
Association for Computational Linguistics.

[Vinyals et al.2015] Oriol Vinyals, Ł ukasz Kaiser, Terry
Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton.
2015. Grammar as a foreign language. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Process-
ing Systems 28, pages 2773–2781. Curran Associates,
Inc.

[Xu et al.2015] Kelvin Xu, Jimmy Ba, Ryan Kiros,
Kyunghyun Cho, Aaron Courville, Ruslan Salakhudi-
nov, Rich Zemel, and Yoshua Bengio. 2015. Show,
attend and tell: Neural image caption generation with
visual attention. In David Blei and Francis Bach, ed-
itors, Proceedings of the 32nd International Confer-
ence on Machine Learning (ICML-15), pages 2048–
2057. JMLR Workshop and Conference Proceedings.

[Yih et al.2014] Wen-tau Yih, Xiaodong He, and Christo-
pher Meek. 2014. Semantic parsing for single-relation
question answering. In Proceedings of ACL. Associa-
tion for Computational Linguistics, June.

[Yih et al.2015] Wen-tau Yih, Ming-Wei Chang, Xi-
aodong He, and Jianfeng Gao. 2015. Semantic pars-
ing via staged query graph generation: Question an-
swering with knowledge base. In Proceedings of the
Joint Conference of the 53rd Annual Meeting of the
ACL and the 7th International Joint Conference on
Natural Language Processing of the AFNLP. ACL
Association for Computational Linguistics, July.

[Zaremba and Sutskever2014] Wojciech Zaremba and
Ilya Sutskever. 2014. Learning to execute. arXiv
preprint arXiv:1410.4615.

[Zhang et al.2015] Xiang Zhang, Junbo Zhao, and Yann
LeCun. 2015. Character-level convolutional networks
for text classification. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 28,
pages 649–657. Curran Associates, Inc.

1607

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1608–1616,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning to Generate Textual Data

Guillaume Bouchard†‡∗ and Pontus Stenetorp†∗ and Sebastian Riedel†
{g.bouchard,p.stenetorp,s.riedel}@cs.ucl.ac.uk
†Department of Computer Science, University College London

‡Bloomsbury AI

Abstract

To learn text understanding models with
millions of parameters one needs massive
amounts of data. In this work, we argue that
generating data can compensate for this need.
While defining generic data generators is dif-
ficult, we propose to allow generators to be
“weakly” specified in the sense that a set of
parameters controls how the data is generated.
Consider for example generators where the ex-
ample templates, grammar, and/or vocabulary
is determined by this set of parameters. In-
stead of manually tuning these parameters, we
learn them from the limited training data at
our disposal. To achieve this, we derive an ef-
ficient algorithm called GENERE that jointly
estimates the parameters of the model and the
undetermined generation parameters. We il-
lustrate its benefits by learning to solve math
exam questions using a highly parametrized
sequence-to-sequence neural network.

1 Introduction

Many tasks require a large amount of training data
to be solved efficiently, but acquiring such amounts
is costly, both in terms of time and money. In several
situations, a human trainer can provide their domain
knowledge in the form of a generator of virtual data,
such as a negative data sampler for implicit feedback
in recommendation systems, physical 3D rendering
engines as a simulator of data in a computer vision
system, simulators of physical processes to solve
science exam question, and math problem genera-
tors for automatically solving math word problems.

∗ Contributed equally to this work.

Domain-specific data simulators can generate an
arbitrary amount of data that can be treated exactly
the same way as standard observations, but since
they are virtual, they can also be seen as regularizers
dedicated to the task we want to solve (Scholkopf
and Smola, 2001). While simple, the idea of data
simulation is powerful and can lead to significantly
better estimations of a predictive model because it
prevents overfitting. At the same time it is subject
to a strong model bias, because such data genera-
tors often generate data that is different from the ob-
served data.

Creating virtual samples is strongly linked to
transfer learning when the task to transfer is corre-
lated to the objective (Pan and Yang, 2010). The
computer vision literature adopted this idea very
early through the notion of virtual samples. Such
samples have a natural interpretation: by creating
artificial perturbations of an image, its semantics is
likely to be unchanged, i.e. training samples can be
rotated, blurred, or slightly cropped without chang-
ing the category of the objects contained in the im-
age (Niyogi et al., 1998).

However, for natural language applications the
idea of creating invariant transformations is diffi-
cult to apply directly, as simple meaning-preserving
transformations – such as the replacement of words
by their synonyms or active-passive verb trans-
formations – are quite limited. More advanced
meaning-preserving transformations would require
an already good model that understands natural lan-
guage. A more structure-driven approach is to build
top-down generators, such as probabilistic gram-
mars, with a much wider coverage of linguistic phe-

1608

nomena. This way of being able to leverage many
years of research in computational linguistics to cre-
ate good data generators would be a natural and use-
ful reuse of scientific knowledge, and better than
blindly believing in the current trend of “data takes
all”.

While the idea of generating data is straightfor-
ward, one could argue that it may be difficult to
come up with good generators. What we mean by
a good generator is the ability to help predicting test
data when the model is trained on the generated data.
In this paper, we will show several types of gener-
ators, some contributing more than others in their
ability to generalize to unseen data. When design-
ing a good generator there are several decisions one
must make: should we generate data by modifying
existing training samples, or “go wild” and derive
a full probabilistic context-free grammar that could
possibly generate unnatural examples and add noise
to the estimator? While we do not arrive at a spe-
cific framework to build programs that generate vir-
tual data, in this work we assume that a domain ex-
pert can easily write a program in a programming
language of her choice, leaving some generation pa-
rameters unspecified. In our approach these unspeci-
fied parameters are automatically learned, by select-
ing the ones most compatible with the model and the
training data.

In the next section, we introduce GENERE, a
generic algorithm that extends any gradient-based
learning approach with a data generator that can be
tuned while learning the model on the training data
using stochastic optimization. In Section 2.2, we
show how GENERE can be adapted to handle a (pos-
sibly non-differentiable) black-box sampler without
requiring modifications to it. We also illustrate how
this framework can be implemented in practice for
a specific use case: the automatic solving of math
exam problems. Further discussion is given in the
concluding section.

2 Regularization Based on a Generative
Model

As with any machine learning approach, we assume
that given the realisation of a variable x ∈ X repre-
senting the input, we want to predict the distribution
of a variable y ∈ Y representing the output. The

goal is to find this predictive distribution by learning
it from examples D := {(xi, yi)}ni=1.

Building on the current success in the applica-
tion of deep learning to NLP, we assume that there
exists a good model family {fθ, θ ∈ Θ} to pre-
dict y given x, where θ is an element of the pa-
rameter space Θ. For example, the stacked LSTM
encoder-decoder is a general purpose model that
has helped to improve results on relatively complex
tasks, such as machine translation (Sutskever et al.,
2014), syntactic parsing (Vinyals et al., 2014), se-
mantic parsing (Dong and Lapata, 2016) and textual
entailment (Rocktäschel et al., 2016).

For many applications, the amount of training
data is too small or too costly to acquire. We hence
look for alternative ways to regularize the model so
that we can achieve good performance using few
data points.

Let pθ(y|x) be the target prediction model. Given
the training dataset D, the penalized maximum like-
lihood estimator is obtained by minθ∈Θ L(θ) where:

L(θ) := `(θ) + λΩ(θ) . (1)

where `(θ) := − 1
n

∑n
i=1 log pθ(yi|xi) =

EP̂ [log pθ(y|x)] is the negative log-likelihood.
Here, Ω(θ) is a regularizer that prevents over-fitting,
λ ∈ R the regularization parameter that can be
set by cross-validation, and P̂ is the empirical
distribution. Instead of using a standard regularizer
Ω – such as the squared norm or the Lasso penalty
which are domain-agnostic, – in this paper we
propose to use a generative model to regularize the
estimator.

Domain knowledge A natural way to inject back-
ground knowledge is to define a generative model
that simulates the way the data is generated. In text
understanding applications, such generative mod-
els are common and include probabilistic context-
free grammars (PCFG) and natural language gen-
eration frameworks (e.g. SimpleNLG (Gatt and
Reiter, 2009)). Let Pγ(x, y) be such a generative
model parametrized by a continuous parameter vec-
tor γ ∈ Γ, such as the concatenation of all the pa-
rameters of the production rules in a PCFG. One
important difference between the discriminative and
the generative probability distributions is that the in-

1609

ference problem of y given x might be intractable1

for the generative model, even if the joint model can
be computed efficiently.

In this work, we use the following regularizer:

Ω(θ) := min
γ∈Γ

EPγ(x,y)

[
log

(
Pγ(y|x)

pθ(y|x)

)]
.(2)

This regularizer makes intuitive sense as it corre-
sponds to the smallest possible Kullback-Leibler di-
vergence between the generative and discriminative
models. We can see that if the generator pγ is
close to the distribution that generates the test data,
the method can potentially yield good performance.
However, in practice, γ is unknown and difficult to
set. In this work, we focus on several techniques
that can be used to estimate the generative parameter
vector γ on the training data, making the regularizer
data-dependent.

Minimizing the objective from Equation (1) is
equivalent to minimize the following function over
Θ× Γ:

L(θ, γ) := `(θ) + λEPγ(x,y)

[
log

(
pγ(y|x)

pθ(y|x)

)]
.

This estimator is called GENERE for Generative
Regularization and can be viewed as a Generative-
Discriminative Tradeoff estimator (GDT (Bouchard
and Triggs, 2004)) that smoothly interpolates be-
tween a purely un-regularized discriminative model
when λ = 0 and a generative model when λ tends to
infinity.

2.1 The GENERE Algorithm

The objective L(θ, γ) can also be written as an
expectation under a mixture distribution P̃γ :=

1
1+λ P̂+ λ

1+λPγ . The two components of this mixture
are the empirical data distribution P̂ and the gener-
ation distribution Pγ . The final objective is penal-
ized by the entropy of the the generation H(γ) :=
EPγ [log pγ(y|x)]:

L(θ, γ) = −(1 + λ)EP̃γ
[log pθ(y|x)]− λH(γ) . (3)

1Even if tractable, inference can be very costly: for exam-
ple, PCFG decoding can be done using dynamic programming
and has a cubic complexity in the length of the decoded sen-
tence, which is still too high for some applications with long
sentences.

This objective can be minimized using stochastic
gradient descent by sampling real data or generated
data according to the proportions 1

1+λ and λ
1+λ , re-

spectively. The pseudocode is provided in Algo-
rithm 1. It can be viewed as a variant of the RE-
INFORCE algorithm which is commonly used in Re-
inforcement Learning (Williams, 1988) using the
policy gradient. It is straightforward to verify that
at each iteration, GENERE computes a noisy esti-
mate of the exact gradient of the objective function
L(θ, γ) with respect to the model parameters θ and
the generation parameters2 γ.

An important quantity introduced in Algorithm 1
is the baseline value µ that approximates the average
log-likelihood of a point sampled according to P̃γ .
Since it is unknown in general, an average estimate
is obtained using a geometric averaging scheme with
a coefficient α that is typically set to 0.98.

Algorithm 1 The GENERE Algorithm

Require: P̂ : real data sampler
Require: Pγ : parametric data generator
Require: λ: generative regularization strength
Require: η: learning rate
Require: α: baseline smoothing coefficient

1: Initialize parameters θ, sampling coefficients γ
and baseline µ

2: for t = 1, 2, · · · do
3: x, y ∼ 1

1+λ P̂ + λ
1+λPγ

4: gθ ← ∇θ log pθ(y|x)
5: gγ ← (log pθ(y|x)− µ)∇γ log pγ(x, y)
6: (θ, γ)← (θ, γ)− η(gθ, gγ)
7: µ← αµ+ (1− α) log pθ(y|x)
8: end for

Generative models: interpretable sampling, in-
tractable inference Generative modeling is natu-
ral because we can consider latent variables that add
interpretable meaning to the different components of
the model. For example, in NLP we can define the
latent variable as being the relations that are men-
tioned in the sentence.

2The derivative with respect to γ, leads to Algorithm 1 with
µ = −1, but the algorithm is also valid for different values of µ
as the average gradient remains the same if we add a multiple of
∇γ log pγ(x, y) to the gradient gγ (line 5 in Algorithm 1) which
has zero-mean on average. Choosing µ to be the average of the
past gradient enables the gradient to have a lower variance.

1610

We could consider two main types of approaches
to choose a good structure for a parameterized data
generator:

• Discrete data structure: we can use efficient
algorithms, such as dynamic programming to
perform sampling and which can propagate the
gradient

• Continuous distribution: having a continuous
latent variable enables easy handling of corre-
lations across different parts of the model.

It is often laborious to design data generators
which can return the probability of the samples it
generates3, as well as the gradient of this probability
with respect to the input parameters γ.

In the next section, we show how to alleviate this
constraint by allowing any data-generating code to
be used with nearly no modification.

2.2 GENERE with a Black Box Sampler
Let us assume the data generator is a black box
that takes a K-dimensional seed vector as input
and outputs an input-output sample x, y. To enable
GENERE to be applied without having to modify the
code of data generators. The trick is to use a exist-
ing generator with parameter γ, and to create a new
generator that essentially adds noise to γ. This noise
will be denoted ∆ ∈ Γ. We used the following data
generation process:

1. Sample a Gaussian seed vector ∆ ∼ N (0, I)

2. Use the data generator Gz with seed value z :=
∆+γ to generate an input-output sample (x, y).

This two-step generation procedure enables the
gradient information to be computed using the den-
sity of a Gaussian distribution. The use of a stan-
dardized centered variable for the seed is justified
by the fact that the parametrization of Gz takes into
account possible shifts and rescaling. Formally, this
is equivalent to Algorithm 1 with the following gen-
erative model:

pγ(x, y) = E∆∼N (0,I) [gγ+∆(x, y)] (4)

3This difficulty comes from the fact that generators may be
using third-party code, such as rendering engines, grammars
sampler, and deterministic operations such a sorting that are
non-differentiable.

where gz is the density of the black-box data gen-
erator Gz for the seed value z ∈ RK . Ideally, the
second data generator that takes z as an input and
generates the input/output pair (x, y) should be close
to a deterministic function in order to allocate more
uncertainty in the trainable part of the model which
corresponds to the Gaussian distribution.4

Learning The pseudo-code for the Black Box
GENERE variant is shown in Algorithm 2. It is sim-
ilar to Algorithm 1, but here the sampling phase is
decomposed into the two steps: A random Gaussian
variable sampling followed by the black box sam-
pling of generators.

Algorithm 2 Black Box GENERE

Require: P̂ : real data sampler
Require: G(γ): black box data generator
Require: λ: generative regularization strength
Require: ηγ , ηθ: learning rates

1: Initialize parameters θ, sampling coefficients γ
and baseline µ

2: for t = 1, 2, · · · do
3: if 1

1+λ > U([0, 1]) then
4: x, y ∼ P̂
5: else
6: ∆ ∼ N (0, I)
7: x, y ∼ Gγ+∆

8: γ ← γ − ηγ(log pθ(y|x)− µ)∆
9: end if

10: θ ← θ − ηθ∇θ log pθ(y|x)
11: µ← αµ+ (1− α) log pθ(y|x)
12: end for

3 Application to Encoder-Decoder

In this section, we show that the GENERE algorithm
is well suited to tune data generators for problems
that are compatible with the encoder-decoder archi-
tecture commonly used in NLP.

3.1 Mixture-based Generators
In the experiments below, we consider mixture-
based generators with known components but
unknown mixture proportions. Formally, we

4What we mean by deterministic is that the black-box sam-
pler has the form δ{f(∆ + γ) = (x, y)}, where δ is the indica-
tor function.

1611

parametrize the proportions using a softmax link
σ(t) := exp(tk)/

∑K
k′=1 exp(tk′). In other words,

the data generator distribution is:

pγ(x, y) =
K∑

k=1

σk(γ + ∆)pk(x, y),

where pk(x, y) are data distributions, called base
generators, that are provided by domain experts, and
∆ is a K-dimensional centered Gaussian with an
identity covariance matrix. This class of genera-
tor makes sense in practice, as we typically build
multiple base generators pk(x, y), k = 1, · · · ,K,
without knowing ahead of time which one is the
most relevant. Then, the training data is used by
the GENERE algorithm to automatically learn the
optimal parameter γ that controls the contribution
{πk}Kk=1 of each of the base generators, equal to
πk := E∆∼N (0,I) [σk(γ + ∆)].

3.2 Synthetic Experiment

In this section, we illustrate how GENERE can learn
to identify the correct generator, when the data gen-
erating family is a mixture of multiple data genera-
tors and only one of these distributions – say p1 –
has been used to generate the data. The other dis-
tributions (p2, · · · , pK) are generating input-output
data samples (x, y) with different distributions.

We verified that the algorithm correctly identifies
the correct data distribution, and hence leads to bet-
ter generalization performances than what the model
achieves without the generator.

In this illustrative experiment, a simple text-to-
equation translation problem is created, where in-
puts are sentences describing an equation such as
“compute one plus three minus two”, and outputs are
symbolic equations, such as “X = 1 + 3 - 2”. Num-
bers were varying between -20 and 20, and equa-
tions could have 2 or 3 numbers with 2 or 3 opera-
tions.

As our model, we used a 20-dimensional
sequence-to-sequence model with LSTM recurrent
units. The model was initialized using 200 iterations
of standard gradient descent on the log-probability
of the output. GENERE was run for 500 iterations,
varying the fraction of real and generated samples
from 0% to 100%. A `2 regularization of magnitude

0.1 was applied to the model. The baseline smooth-
ing coefficient was set to 0.98 and the shrinkage pa-
rameter was set to 0.99. All the experiments were
repeated 10 times and a constant learning rate of 0.1
was used.

Results are shown on Figure 1, where the average
loss computed on the test data is plotted against the
fraction of real data used during learning.

We can see that the best generalization perfor-
mance is obtained when there is a balanced mix of
real and artificial data, but the proportion depends
on the amount of training data: on the left hand side,
the best performance is obtained with generated data
only, meaning that the number of training samples is
so small that GENERE only used the training data
to select the best base generator (the component p1),
and the best performance is attained using only gen-
erated data. The plot on the right hand side is in-
teresting because it contains more training data, and
the best performance is not obtained using only the
generator, but with 40% of the real data, illustrating
the fact that it is beneficial to jointly use real and
simulated data during training.

3.3 Math word problems
To illustrate the benefit of using generative regular-
ization, we considered a class of real world problems
for which obtaining data is costly: learning to an-
swer math exam problems. Prior work on this prob-
lem focuses on standard math problems given to stu-
dents aged between 8 and 10, such as the following:5

For Halloween Sarah received 66 pieces of
candy from neighbors and 15 pieces from
her older sister. If she only ate 9 pieces a
day, how long would the candy last her?

The answer is given by the following equation:
X = (66 + 15)/9 . Note that similarly to real world
school exams, giving the final answer of (9 in this
case) is not considered enough for the response to
be correct.

The only publicly available word problem
datasets we are aware of contain between 400 and
600 problems (see Table 2), which is not enough
to properly train sufficiently rich models that cap-
ture the link between the words and the quantities
involved in the problem.

5From the Common Core dataset (Roy and Roth, 2015)

1612

Figure 1: Test loss vs. fraction of real data used in GENERE on the text-to-equation experiment.

Sequence-to-sequence learning is the task of pre-
dicting an output sequence of symbols based on a
sequence of input symbols. It is tempting to cast the
problem of answering math exams as a sequence-
to-sequence problem: given the sequence of words
from the problem description, we can predict the se-
quence of symbols for the equation as output. Cur-
rently, the most successful models for sequence pre-
diction are Recurrent Neural Nets (RNN) with non-
linear transitions between states.

Treated as a translation problem, math word prob-
lem solving should be simpler than developing a
machine translation model between two human lan-
guages, as the output vocabulary (the math symbols)
is significantly smaller than any human vocabulary.
However, machine translation can be learned on mil-
lions of pairs of already translated sentences, and
such massive training datasets dwarf all previously
introduced math exam datasets.

We used standard benchmark data from the litera-
ture. The first one, AI2, was introduced by Hosseini
et al. (2014) and covers addition and subtraction of
one or two variables or two additions scraped from
two web pages. The second (IL), introduced by Roy
et al. (2015), contains single operator questions but
covers addition, subtraction, multiplication, and di-
vision, and was also obtained from two, although
different from AI2, web pages. The last data set
(CC) was introduced by Roy and Roth (2015) to
cover combinations of different operators and was
obtained from a fifth web page.

An overview of the equation patterns in the data
is shown in Table 1. It should be noted that there
are sometimes numbers mentioned in the problem

AI2 IL CC
X + Y X + Y X + Y− Z
X + Y + Z X− Y X ∗ (Y + Z)
X− Y X ∗ Y X ∗ (Y− Z)

X/Y (X + Y)/Z
(X− Y)/Z

Table 1: Patterns of the equations seen in the datasets for one

permutation of the placeholders.

AI2 IL CC
Train 198 214 300
Dev 66 108 100
Test 131 240 200

Total 395 562 600
Table 2: Math word problems dataset sizes.

description that are not used in the equation.
As there are no available train/dev/test splits in the

literature we introduced such splits for all three data
sets. For AI2 and CC, we simply split the data ran-
domly and for IL we opted to maintain the clusters
described in Roy and Roth (2015). We then used the
implementation of Roy and Roth (2015) provided by
the authors, which is the current state-of-the-art for
all three data sets, to obtain results to compare our
model against. The resulting data sizes are shown
on Table 2. We verified that there are no duplicate
problems, and our splits and a fork of the baseline
implementation are available online.6

3.4 Development of the Generator

Generators were organized as a set of 8 base genera-
tors pk, summarized in Table 4. Each base generator

6https://github.com/ninjin/roy_and_roth_2015

1613

John sprints to William’s apartment. The distance is 32 yards from John’s apartment to
William’s apartment. It takes John 2 hours to at the end get there. How fast did John go?

32 / 2

Sandra has 7 erasers. She grasps 7 more. The following day she grasps 18 whistles at the
local supermarket. How many erasers does Sandra have in all?

7 + 7

A pet store had 81 puppies In one day they sold 41 of them and put the rest into cages with 8
in each cage. How many cages did they use?

(81 - 41) / 8

S1 V1 Q1 O1 C1 S1(pronoun) V2 Q2 of O1(pronoun) and V2 the rest into O3(plural) with
Q3 in each O3. How many O3(plural) V3?

(Q1 - Q2) /
Q3

Table 3: Examples of generated sentences (first 3 rows). The last row is the template used to generate the 3rd example where

brackets indicate modifiers, symbols starting with ’S’ or ’O’ indicate a noun phrase for a subject or object, symbols with ’V’

indicate a verb phrase, and symbols with ’Q’ indicate a quantity. They are identified with a number to match multiple instances of

the same token.

has several functions associated with it. The func-
tions were written by a human over 3 days of full-
time development. The first group of base genera-
tors is only based on the type of symbol the equation
has, the second group is the pair (#1, #2) to represent
equations with one or two symbols. Finally, the last
two generators are more experimental as they corre-
spond to simple modifications applied to the avail-
able training data. The Noise ‘N’ generator picks
one or two random words from a training sample to
create a new (but very similar) problem. Finally, the
‘P’ generator is based on computing the statistics of
the words for the same question pattern (as one can
see in Table 1), and generates data using simple bi-
ased word samples, where words are distributed ac-
cording to their average positions in the training data
(positions are computed relatively to the quantities
appearing in the text, i.e. “before the first number”,
“between the 1st and the 2nd number”, etc.).

3.5 Implementation Details

We use a standard stacked RNN encoder-
decoder (Sutskever et al., 2014), where we
varied the recurrent unit between LSTM and
GRU (Cho et al., 2014), stack depth from 1 to 3,
the size of the hidden states from 4 to 512, and the
vocabulary threshold size. As input to the encoder,
we downloaded pre-trained 300-dimensional em-
beddings trained on Google News data using the
word2vec software (Mikolov et al., 2013). The
development data was used to tune these parameters
before performing the evaluation on the test set. We
obtained the best performances with a single stack,
GRU units, and a hidden state size of 256.

The problem...
+ contains at least one addition
- contains at least one subtraction
* contains at least one multiplication
/ contains at least one division
1 has a single mathematical operation
2 has a couple of mathematical operations
N is a training sample with words removed
P is based on word position frequencies

Table 4: The base generators to create math exam problems.

The optimization algorithm was based on stochas-
tic gradient descent using Adam as an adaptive step
size scheme (Kingma and Ba, 2014), with mini-
batches of size 32. A total of 256 epochs over the
data was used in all the experiments.

To evaluate the benefit of learning the data gener-
ator, we used a hybrid method as a baseline where
a fraction of the data is real and another fraction is
generated using the default parameters of the gen-
erators (i.e. a uniform distribution over all the base
generators). The optimal value for this fraction ob-
tained on the development set was 15% real data,
85% generated data. For GENERE, we used a fixed

AI2 IL CC Avg.
RR2015 82.4 75.4 55.5 71.1
100% Data 72.5 53.7 95.0 73.7
100% Gen 60.3 51.2 92.0 67.8
85%Gen + 15%Data 74.0 55.4 97.5 75.6
GENERE 77.9 56.7 98.5 77.7

Table 5: Test accuracies of the math-exam methods on the

available datasets averaged over 10 random runs.

1614

size learning rate of 0.1, the smoothing coefficient
was selected to be 0.5, and the shrinkage coefficient
to be 0.99.

We also compared our approach to the publicly
available math exam solver RR2015 (Roy and Roth,
2015). This method is based on a combination of
template-based features and categorizers. The ac-
curacy performance was measured by counting the
number of times the equation generated the correct
results, so that 10 + 7 and 7 + 10 would both be con-
sidered to be correct. Results are shown on Table 5.

We can see that there is a large difference in
performance between RR2015 and the RNN-based
encoder-decoder approach. While their method
seems to be very good on some datasets, it fails on
CC, which is the dataset in which one needs two
equations involving parentheses. On average, the
trend is the following: using data only does not suc-
ceed in giving good results, and we can see that with
generated data we are performing better already.
This could be explained by the fact that the gener-
ators’ vocabulary has a good overlap with the vo-
cabulary of the real data. However, mixing real and
generated data improves performance significantly.
When GENERE is used, the sampling is tuned to the
problem at hand and give better generalization per-
formance.

To understand if GENERE learned a meaning-
ful data generator, we inspected the coefficients
γ1, · · · , γ8 that are used to select the 8 data gener-
ators described earlier. This is shown is Figure 2.

The results are quite surprising at first sight: the
AI2 dataset only involves additions and subtractions,
but GENERE selects the generator generating divi-
sions as the most important. Investigating, we noted
that problems generated by the division generator
were reusing some lexical items that were present
in AI2, making the vocabulary very close to the
problems in AI2, even if it does not cover division.
We can also note that the differences in proportions
are quite small among the 4 symbols +,−, ∗ and /
across all the datasets. We can also clearly see that
the noisy generator ‘N’ and ‘P’ are not very relevant
in general. We explain this by the fact that the noise
induced by these generators is too artificial to gen-
erate relevant data for training. Their likelihood on
the model trained on real data remains small.

Figure 2: Base generators proportions learned by GENERE.

4 Conclusion

In this work, we argued that many problems can be
solved by high-capacity discriminative probabilistic
models, such as deep neural nets, at the expense of
a large amount of required training data. Unlike
the current trend which is to reduce the size of the
model, or to define features well targeted for the
task, we showed that we can completely decouple
the choice of the model and the design of a data gen-
erator. We proposed to allow data generators to be
“weakly” specified, leaving the undetermined coef-
ficients to be learned from data. We derived an ef-
ficient algorithm called GENERE, that jointly esti-
mates the parameters of the model and the undeter-
mined sampling coefficients, removing the need for
costly cross-validation. While this procedure could
be viewed as a generic way of building informa-
tive priors, it does not rely on a complex integra-
tion procedure such as Bayesian optimization, but
corresponds to a simple modification of the standard
stochastic optimization algorithms, where the sam-
pling alternates between the use of real and gener-
ated data. While the general framework assumes
that the sampling distribution is differentiable with
respect to its learnable parameters, we proposed a
Gaussian integration trick that does not require the

1615

data generator to be differentiable, enabling practi-
tioners to use any data sampling code, as long as the
generated data resembles the real data.

We also showed in the experiments, that a simple
way to parametrize a data generator is to use a mix-
ture of base generators, that might have been derived
independently. The GENERE algorithm learns auto-
matically the relative weights of these base genera-
tors, while optimizing the original model. While the
experiments only focused on sequence-to-sequence
decoding, our preliminary experiments with other
high-capacity deep neural nets seem promising.

Another future work direction is to derive efficient
mechanisms to guide the humans that are creating
the data generation programs. Indeed, there is a lack
of generic methodology to understand where to start
and which training data to use as inspiration to create
generators that generalize well to unseen data.

Acknowledgments

We would like to thank Subhro Roy for helping us
run his model on our new data splits. We are very
thankful to Thomas Demeester, Johannes Welbl and
Matko Bošnjak for their valuable feedback. Lastly,
we would like to thank the three anonymous review-
ers for their helpful comments and feedback.

This work was supported by a Marie Curie Ca-
reer Integration Award and an Allen Distinguished
Investigator Award.

References
Guillaume Bouchard and Bill Triggs. 2004. The trade-

off between generative and discriminative classifiers.
In 16th IASC International Symposium on Computa-
tional Statistics (COMPSTAT’04), pages 721–728.

Kyunghyun Cho, Bart Van Merriënboer, Çalar Gülçehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using rnn encoder–decoder for statistical ma-
chine translation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1724–1734, Doha, Qatar,
October. Association for Computational Linguistics.

Li Dong and Mirella Lapata. 2016. Language to
logical form with neural attention. arXiv preprint
arXiv:1601.01280.

Albert Gatt and Ehud Reiter. 2009. Simplenlg: A realisa-
tion engine for practical applications. In Proceedings

of the 12th European Workshop on Natural Language
Generation, pages 90–93. Association for Computa-
tional Linguistics.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 523–533, Doha, Qatar, October. Association for
Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111–3119.

P. Niyogi, F. Girosi, and T. Poggio. 1998. Incorporating
prior information in machine learning by creating vir-
tual examples. Proceedings of the IEEE, 86(11):2196–
2209, Nov.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. Knowledge and Data Engineering,
IEEE Transactions on, 22(10):1345–1359.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Her-
mann, Tomáš Kočiskỳ, and Phil Blunsom. 2016. Rea-
soning about entailment with neural attention. In In-
ternational Conference on Learning Representations.

Subhro Roy and Dan Roth. 2015. Solving general arith-
metic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1743–1752. Association for
Computational Linguistics.

Subhro Roy, Tim Vieira, and Dan Roth. 2015. Reason-
ing about quantities in natural language. Transactions
of the Association for Computational Linguistics, 3:1–
13.

Bernhard Scholkopf and Alexander J Smola. 2001.
Learning with kernels: support vector machines, reg-
ularization, optimization, and beyond. MIT press.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing systems,
pages 3104–3112.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey E. Hinton. 2014. Gram-
mar as a foreign language. CoRR, abs/1412.7449.

Ronald J Williams. 1988. On the use of backpropaga-
tion in associative reinforcement learning. In Neural
Networks, 1988., IEEE International Conference on,
pages 263–270. IEEE.

1616

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1617–1628,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

A Theme-Rewriting Approach for Generating Algebra Word Problems

Rik Koncel-Kedziorski
Ioannis Konstas

Luke Zettlemoyer
Hannaneh Hajishirzi

University of Washington
kedzior@uw.edu, {ikonstas, lsz, hannaneh}@cs.washington.edu

Abstract

Texts present coherent stories that have a par-
ticular theme or overall setting, for example
science fiction or western. In this paper, we
present a text generation method called rewrit-
ing that edits existing human-authored narra-
tives to change their theme without changing
the underlying story. We apply the approach
to math word problems, where it might help
students stay more engaged by quickly trans-
forming all of their homework assignments
to the theme of their favorite movie with-
out changing the math concepts that are be-
ing taught. Our rewriting method uses a two-
stage decoding process, which proposes new
words from the target theme and scores the re-
sulting stories according to a number of fac-
tors defining aspects of syntactic, semantic,
and thematic coherence. Experiments demon-
strate that the final stories typically represent
the new theme well while still testing the orig-
inal math concepts, outperforming a number
of baselines. We also release a new dataset of
human-authored rewrites of math word prob-
lems in several themes.

1 Introduction

Storytelling is the complex activity of expressing a
plot, its events and participants in words meaning-
ful to an audience. Automatic storytelling systems
can be used for customized sport commentaries, en-
riching video games with personalized or dynamic
plot-lines (Barros and Musse, 2007), or providing
customized learning materials which meet each indi-
vidual student’s needs and interests (Bartlett, 2004).
In this paper, we focus on generating narrative-style

Jim walked 0.2 of a mile from school to David’s
house and 0.7 of a mile from David’s house to his
own house. How many miles did Jim walk in all?
Star Wars
Uncle Owen walked 0.2 of a mile from hangar to Luke
Skywalker’s room and 0.7 of a mile from Luke Sky-
walker’s room to his own room. How many miles did
Uncle Owen walk in all?
Cartoon
Finn squished 0.2 of a mile from cupboard to
Melissa’s dock and 0.7 of a mile from Melissa’s dock
to his own dock. How many miles did Finn squish in
all?
Western
Duane strolled 0.2 of a mile from barn to Madeline’s
camp and 0.7 of a mile from Madeline’s camp to his
own camp. How many miles did Duane stroll in all?

Figure 1: An example story and rewrites in 3 themes.

math word problems (Figure 1) and demonstrate that
it is possible to design an algorithm that can auto-
matically change the overall theme of a text without
changing its underlying story, for example to create
more engaging homework that is in the theme of a
student’s favorite movie.

A math word problem is a coherent story that
provides the student with good clues to the cor-
rect mathematical operations between the numerical
quantities described therein. However, the particular
theme of a problem, whether it be about collecting
apples or traveling distances through space, can vary
significantly so long as the correlation between the
story and underlying equation is maintained. Stu-
dents’ success at solving a word problem is tied
to their interest in the problem’s theme (Renninger

1617

et al., 2002), and personalizing word problems in-
creases student understanding, engagement, and per-
formance in the problem solving process (Hart,
1996; Davis-Dorsey et al., 1991).

Motivated by this need for thematically diverse,
highly coherent stories, we address the problem
of story rewriting, or transforming human-authored
stories into novel, coherent stories in a new theme.
Rather than synthesizing first a story plot (McIntyre
and Lapata, 2009; McIntyre and Lapata, 2010) or
script (Chambers and Jurafsky, 2009; Pichotta and
Mooney, 2016; Granroth-Wilding and Clark, 2016)
from scratch, we instead begin from an existing
story and iteratively edit it towards a thematically
novel but –most crucially– semantically compatible
story. This approach allows us to reuse much, but
not all, of the syntactic and semantic structure of the
original text, resulting in the creation of more coher-
ent and solvable math word problems.

We define a theme to be a collection of refer-
ence texts, such as a movie script or series of books.
Given a theme, the rewrite algorithm constructs new
texts by substituting thematically appropriate words
and phrases, as measured with automatic metrics
over the theme text collection, for parts of the orig-
inal texts. This process optimizes for a number of
metrics of overall text quality, including syntactic,
semantics, and discourse scores. It uses no hand
crafted templates and requires no theme-specific
tuning data, making it easy to apply for new themes
in practice. Tables 4–6 show example stories gener-
ated from the rewrite system.

To evaluate performance, we collected a corpus
of 450 rewrites of math word problems in Star Wars
and Children’s Cartoon themes via crowdsourcing.1

Experiments with automated metrics and human
evaluations demonstrate that the approach described
here outperforms a number of baselines and can pro-
duce solvable problems in multiple different themes,
even with no in-domain tuning.

2 Related Work

Our approach is related to the previous work in story
generation (e.g., McIntyre and Lapata (2010)) and
sentence rewriting (e.g., text simplification (Xu et

1Data and code available at https://gitlab.cs.
washington.edu/kedzior/Rewriter/.

al., 2016)), as reviewed in this section. It has three
major differences from all these approaches: First,
we focus on multi-sentence stories where preserving
the coherence, discourse relations, and solvability is
essential. Previous work mainly focuses on rewrit-
ing single sentences. Second, we build a theme
from a text corpus and show how the stories can be
adapted to new themes. Third, our method leverages
the human-authored story to capture the semantic
skeleton and the plot of the current story, rather than
synthesizing the story plot. To our knowledge, we
are the first to introduce a text rewriting formulation
for story generation.

Story generation has been of long interest to AI
researchers (Meehan, 1976; Lebowitz, 1987; Turner,
1993; Liu and Singh, 2002; Mostafazadeh et al.,
2016). Recent methods in story generation first syn-
thesize candidate plots for a story and then compile
those plots into text. Li et al. (2013) use crowd-
sourcing to build plot graphs. McIntyre and Lap-
ata (2009; 2010) address story generation through
the automatic deduction and reassembly of scripts
(Schank and Abelson, 1977), or structured represen-
tations of events and their participants, and causal
relationships involved. Leveraging the automatic
script learning methods of Chambers and Jurafsky
(2009), McIntyre and Lapata (2010) learn candidate
entity-centered plot graphs, or possible events in-
volving the entity and an ordering between these
events, with the use of a genetic algorithm. Then
plots are compiled into stories through the use of
a rule-based text surface realizer (Lavoie and Ram-
bow, 1997) and reranked using a language model.

Polozov et al. (2015) automatically generate math
word problems tailored to a student’s interest us-
ing Answer Set Programming to satisfy a collec-
tion of pedagogical and narrative requirements. This
method naturally produces highly coherent, person-
alized story problems that meet pedagogical require-
ments, at the expense of building the thematic on-
tologies and discourse constraints by hand.2

Additionally, there is related work in text simpli-
fication (Wubben et al., 2012; Kauchak, 2013; Zhu
et al., 2010; Vanderwende et al., 2007; Woodsend
and Lapata, 2011b; Hwang et al., 2015), sentence

2According to Polozov et al. (2015) building small thematic
ontologies of types, relations, and discourse tropes (100-200 en-
tries) for each of only 3 literary settings took 1-2 person months.

1618

compression (Filippova and Strube, 2008; Rush et
al., 2015), and paraphrasing (Ganitkevitch et al.,
2013; Chen and Dolan, 2011; Ganitkevitch et al.,
2011). All these tasks are focused on rewriting sen-
tences under a predefined set of constraints, such as
simplicity. Different rule-based and data-driven ap-
proaches are introduced by Petersen and Ostendorf
(2007), Vickrey and Koller (2008), and Siddharthan
(2004). Most data-driven approaches take advantage
of machine translation techniques, use source-target
sentence pairs, and learn rewrite operations (Yatskar
et al., 2010; Woodsend and Lapata, 2011a), or use
additional external paraphrasing resources (Xu et al.,
2016).

Finally, this work is related to those on auto-
matically solving math word problems. Specific
topics include number word problems (Shi et al.,
2015), logic puzzle problems (Mitra and Baral,
2015), arithmetic word problems (Hosseini et al.,
2014; Roy and Roth, 2015), algebra word prob-
lems (Kushman et al., 2014; Zhou et al., 2015;
Koncel-Kedziorski et al., 2015a; Roy et al., 2016),
and geometry word problems (Seo et al., 2015; Seo
et al., 2014). Several datasets of word problems are
available (Koncel-Kedziorski et al., 2016; Huang et
al., 2016), though none address the need for thematic
text.

3 Problem Formulation

Our system takes as input a story s and a theme t,
and outputs the best rewrite s∗ from generated can-
didates S.

A theme t is defined as a textual corpus that de-
scribes a topic or a domain. This is an intentionally
broad definition that allows a variety of textual re-
sources to serve as themes. For example, the collec-
tion of all Science Fiction stories from the Project
Gutenberg can be a theme, or the script of a single
movie, or a sampling of fan fiction from the Inter-
net. This flexibility adds to the utility of our work,
as varying amounts of thematic text may be avail-
able.

The generated candidate s∗ is the most themati-
cally fit problem that is syntactically and semanti-
cally coherent given the original problem s and the
new theme t. We represent a story in terms of the
words it contains, so that s = {w1, w2, . . . wn} and

Sam had 2 dogs. Each had 3 puppies.

Syntactic relations

Candidates (s’)

Semantic relations

Luke Skywalker had 2 ships. Each had 3 droids.

Original (s)

Syn(s’|s)

SemPair(s’|s)Th(s’|t)

SemLex(s’|s)

Figure 2: An overview of our method for scoring a candi-
date story s′ given a human-authored story s and a theme
t. Syn(s′|s): compatibility of syntactic relations (purple
arrows), Sempair(s

′|s): coherence of semantic relations
(blue arrows), SemLex(s

′|s): semantic mapping of indi-
vidual words, and Th(s′|s, t): thematicity.

|s| = n. The new story s′ is defined as:

s′ =
{
f(w1), f(w2), . . . f(wn)

}

where the function f(w) : Vo → VKt ∪∅, rewrites a
word from the vocabulary of the original problem Vo
to either a word, a trivial noun compound of length
K (e.g., multi-word named entity) from the vocab-
ulary of the the thematic vocabulary Vt, or reduces
to the empty symbol, i.e., omits the input word en-
tirely; hence the length of s′ can differ from that of
the original problem.

Formally, our goal is to select the candidate
s′ ∈ S by maximizing a scoring functionR over the-
matic, syntactic and semantic constraints, subject to
a set of parameters θ:

s∗ = argmax
s′∈S
R(s′|s, t; θ) (1)

In order to find the best story s∗, our problem
reduces to generating candidate stories s′ from the
space of possible rewrites of the human-authored
story s in a new theme t (Section 5). Since there
are exponentially many rewrites, we follow a two-
stage decoding approach: first we identify only the
content words wi in the input problem, and provide
for each a list of the top-k most salient thematic can-
didate words and trivial noun compounds. We then
search the space by progressively introducing more
rewrites in the beam, and scoring them according to
R (Section 4). Figure 2 shows the overview of the
scoring function for a candidate sentence s′.

1619

4 Scoring Stories

The scoring functionR decomposes into three com-
ponents, capturing aspects of syntactic compatibil-
ity, semantic coherence, and thematicity:

R(s′|s, t; θ) =α× Sem(s′|s)
+ β × Syn(s′|s) (2)

+ γ × Th(s′|s, t)

The syntactic (Syn) and semantic (Sem) coherence
components measure the coherence of the words in
the new story s′, as well as their compatibility to the
syntactic and semantic relations in the original story
s. On the other hand, thematicity (Th) scores the
relevance and importance of words in the new story
with respect to theme t.

We describe each of these components and the de-
coding process in the following sections.

4.1 Thematicity
Recall that a theme t is defined as a collection
of documents that share a common topic, such as
books in the science fiction genre, or scripts of hor-
ror movies. We define thematicity of a word w′ as
the measure of salience, or how discriminative that
word is to a given theme.3 For example, robot and
spaceship are expected to be highly thematic with
respect to Star Wars. In our setting we extend this
definition to a candidate problem s′ given s and t as:

Th(s′|s, t) =
|s|∑

i

Sal(w′i, t) (3)

where w′i is a word from the candidate problem, and
Sal is its salience score with respect to the theme.
In the context of this work we argue that the the-
matic adaptation of the content words, i.e., nouns,
verbs, named entities, and adjectives, plays the most
important role in forming a new thematic problem.
Therefore, we define their salience (except named
entities) based on their tf-idf score over the theme t,
and set it to zero for function words. Since named
entities have relatively low frequencies in the theme
corpus we set their salience to 1− 1

c(w′i)
, where c(w′i)

3We will be interchangeably referring to w′ as either the
word or the head of the multi-word noun compound that
rewrites the equivalent word w in the original problem.

is the number of times w′i occurs in the theme. In
the example story in Figure 2 the thematicity score
is derived as Sal(Luke Skywalker) + Sal(ships) +
Sal(droids).

4.2 Syntactic compatibility
This work offers a new method for syntactic and
discourse coherence based on preserving human-
authored syntactic structure in generated text (hence
our use of the term rewriting). The syntactic con-
structs in a document play a distinctive role in main-
taining cohesion across sentences. We consider the
human-authored syntax of the original story s as
gold standard, and use it to score a candidate prob-
lem s′ by considering how well the syntactic rela-
tions of s apply to s′.

Formally, given a dependency triple (wi, wj , l)
from a parse of a sentence in s, we compute the
likelihood for the corresponding triple (w′i, w

′
j , l) for

w′i, w
′
j in s′. We define the syntactic score for all

sentences in s′ as:

Syn(s′|s) =
∑

i,j,l|(wi,wj ,l)∈Dep(s)

LDep(w
′
i, w
′
j , l) (4)

where Dep(s) are the dependency parse trees for all
sentences in s; LDep is a 3-gram language model
over dependency triples which gives the likelihood
of an arc label l being used between a pair of words
(w′i, w

′
j). For example in Figure 2, the syntactic

compatibility score includes dependency likelihoods
of LDep(ship, 2, num), LDep(had, ship, dobj).

Therefore, the Syn function prefers stories s′ that
(a) have similar dependency structure to the origi-
nal story s and (b) make use of a common syntactic
configuration.

4.3 Semantic Coherence
The semantic coherence component expresses how
well a candidate s′ rewrites individual words and
realizes the semantic relationships that exist in the
human-authored story s. Ideally, we would like to
preserve enough of the semantics of s in order to
produce a coherent story s′, yet we are populating s′

with words taken from an unrelated theme. There-
fore, we model the semantics of a story s′ in terms
of the lexical semantics contributed by individual
words as well as semantic relationships that exist be-
tween its elements. Note that the relationships can

1620

cross the sentence boundaries, promoting discourse
coherence.

We decompose semantic relations in a story into
a set of local, lexical relationships between pairs of
words. Specifically, we consider semantic relations
for noun-noun and verb-verb pairs as provided by
WordNet (Miller, 1995). Since some relations are
not directly outlined in these resources (e.g., the se-
lectional preferences of nouns with regard to their
adjectival modifiers), we also consider the word-
embedding similarity between words. For example
in Figure 2 the semantic relationships are denoted
with blue arrows between pairs of content words in
the story (e.g., {Sam, dogs}, {dogs, puppies}, etc).

More formally, we define the semantic coherence
of s′ with respect to s as:

Sem(s′|s) =
|s′|∑

i

SemLex(wi, w
′
i) (5)

+
∑

i,j∈CW

SemPair({wi, wj}, {w′i, w′j})

where CW is the set of pairs of indices of content
words (nouns, verbs, adjectives, and named entities)
from s. We focus on the content words of the orig-
inal problem, as they carry most of the semantic in-
formation. SemLex and SemPair functions are se-
mantic adaptation scores for individual words and
semantic relations respectively, described below.

Semantic Compatibility between words (SemLex)
is defined as:

SemLex(wi, w
′
i) = cos(wi, w

′
i) +Resnik(wi, w

′
i)

(6)

where cos(wi, w
′
i) denotes the cosine similarity be-

tween the vector space embeddings of two words wi

andw′i
4, andResnik(wi, w

′
i) expresses the informa-

tion content of the lowest subsumer of {wi, w
′
i} in

WordNet. For example in Figure 2, the semantic
compatibility score incorporates lexical similarities
SemLex(dog, ship), etc.

Compatibility score between semantic relations
(SemPair) is defined by adding two components:
PairSim and Analogy that compute how seman-
tic relations between pairs of words are preserved in

4For the ease of notation, we represent the embedding of the
words with wi as well.

the new story:

PairSim =cos(wi, wj) ∗ cos(w′i, w′j) (7)

Analogy =cos(w′i + wj − wi, w
′
j) (8)

PairSim preserves the similarity between pairs of
words {wi, wj} in s and the corresponding pair
{w′i, w′j} in the new story s′. Intuitively, ifwi andwj

are semantically close to each other, we would like
the corresponding words to be close in the new story
as well. For example in Figure 2, ‘dog’ and ‘puppy’
are similar in the original story, we expect the cor-
responding words ‘ship’ and ‘droid’ to be similar in
the new story. The Analogy function, inspired by
Mikolov et al. (2013), computes the analogy of w′j
fromw′i given the relationship that holds betweenwi

and wj in the vector space. For example in Figure 2,
the relation between ‘Sam’ and ‘dog’ is similar to
the relation between ‘Luke Skywalker’ and ‘ship’.

5 Decoding

Our decoding process begins by first identifying
the content words wi (nouns, verbs, adjectives and
named entities) in the original problem s that will be
considered as initial points for rewriting. For each
of these lexical classes we extract the top-k most
thematic words and trivial noun compounds from
the theme t. For example, in Figure 2, candidate
nouns are: ‘ships’, ‘robots’, ‘droids’, etc., and for
verbs: ‘blast’, ‘soar’, ‘command’, etc. Recall that
the space of candidate rewrites is large, prohibiting
an exhaustive enumeration. We therefore do approx-
imate search with a beam by considering simultane-
ously all possible paths that start at the different ini-
tial points. At each step the decoder considers an
additional rewrite from the list of candidates, adds it
to the existing hypothesis path, and scores it accord-
ing to functionR (Equation 2).

All the counterpart scores are locally optimal,
as they factor over each new word w′i or pair of
{w′i, w′j}, where w′j is a rewrite already existing in
the hypothesis path. At any given step we may re-
combine hypotheses that share the same prefix hy-
pothesis path, and keep the top scoring one. The
process terminates when there are no more rewrites
left. We also experimented decoding with a variety
of orderings of the text in the original problem s,
including left-to-right, and head-first following the

1621

dependency tree of each sentence and then concate-
nating these linearizations; we observed that consid-
ering multiple paths achieves the best performance.

6 Data Collection

For the set of human-authored stories {s}, we use a
corpus of math word problems described in Koncel-
Kedziorski et al. (2016). We select a subset of
150 problems targeting 5th and 6th grade levels, all
of which involve a single equation in one variable.
These problems have 2.7 sentences and 29.4 words
on average, 12.6 of which are considered content
words by our system. In order to tune and evaluate
our model, we collect a corpus of human-authored
rewrites produced by workers from Amazon Me-
chanical Turk based on two themes: Star Wars, and
Adventure Time (a children’s cartoon).

We experimented with different ways of helping
to define the theme for the workers, including of-
fering automatically generated word clouds or en-
forcing that a response includes one of several key-
words. In practice, we have found that using specific
cultural elements as themes (such as famous movie
or cartoon franchises) attracts workers who already
have a strong knowledge of the theme, resulting in
higher quality work.

To help explain the rewriting process, we show
workers three examples of thematic rewrites with
varying degrees of correlation to the original prob-
lems. We then show workers a random problem
from the original set {s} and a corresponding equa-
tion for that problem. We instruct the workers to
“rewrite” the problem according to the theme, en-
suring that their rewritten problem can be solved by
the provided equation. The final dataset collection
comprises of 450 human-authored rewrites. We col-
lect 3 rewrites for 100 of the original problems for
the Star Wars theme (based on the popular Star Wars
sequel movies), and 3 rewrites for the rest of the 50
original problems, for the Children Cartoons Theme
(CARTOON), based on the Adventure Time TV show.
We keep 150 examples from the Star Wars theme for
development (STARdev), and the rest 150 for testing
(STARtest).

We collected the STARdev and CARTOON data
based on workers with the “master” designation
and at least 95% approval rating. Then we pro-

ceeded collecting STARtest by a subset of the authors
of STARdev who self-identify as theme experts and
whose quality of work is manually confirmed.

7 Experiments

7.1 Setup

Implementation Details We pre-process the
themes using the Stanford CoreNLP tools (Man-
ning et al., 2014) for tokenization, Named Entity
Recognition (Finkel et al., 2005), and dependency
parsing (Chen and Manning, 2014). For calculating
salience scores, we use the ScriptBase dataset of
movie scripts (Gorinski and Lapata, 2015). The
Star Wars theme is constructed from the available
script, roughly 7300 words. The Cartoon theme is
constructed from fan-authored scripts of the first 10
episodes of the show (Springfield, 2016) totaling
1370 words. Since our thematic options are taken
from arbitrary text, we use the lists of offensive
terms published by The Racial Slur database
(Database, 2016) and FrontGate Media (Media,
2016) to filter out offensive content. To prohibit
overgeneration, we forbid the transformation of stop
words or math-specific words (Survivors, 2013;
Koncel-Kedziorski et al., 2015b).

For syntactic compatibility score Syn (Equa-
tion 4) we use the English Fiction subset of the
Google Syntactic N-grams corpus (Goldberg and
Orwant, 2013) and train a 3-gram language model
using KenLM (Heafield, 2011). For SemLex,
PairSim and Analogy (Equations 6-8) we use
the pretrained word embeddings of Levy and Gold-
berg (2014). These embeddings are trained using
dependency contexts rather than windows of ad-
jacent words, allowing them to capture functional
word similarity. Finally, we tune the parameters
of our model (Equation 2) on the development set
STARdev and pick those values5 that maximize ME-
TEOR score (Denkowski and Lavie, 2014) against 3
human references.

Evaluation We compare two ablated configura-
tions of our method against our full model (FULL):
-SYN that only uses semantic and thematicity com-
ponents and does not incorporate the syntactic com-
patibility score, -SEM replaces the semantic coher-

5We set α = 0.1, β = 0.1 and γ = 1

1622

Model STARdev STARtest CARTOON

FULL 31.82 29.16 32.08
-SEM 28.72 25.55 27.55
-SYN 31.92 29.14 32.04

Table 1: METEOR results for different configu-
ration of our model on STARdev , STARtest and
CARTOON datasets.

ence score with the simpler cos(wi, w
′
i), effectively

rewriting only single words, and not pairs. We re-
frained from ablating the thematicity score as it is
the core part of our model that drives the rewriting
process into a new theme.

We evaluate our method using an automatic met-
ric, and via eliciting human judgments on Ama-
zon Mechanical Turk. For automatic evaluation, we
compute the METEOR score, comparing the out-
put of each model for a given problem and theme
to the 3 human rewrites we collected, on STARdev,
STARtest and CARTOON. METEOR is a recall-
oriented metric, widely used in the MT community;
the additional stemming, synonym and paraphrase
matching modules make it more applicable for our
use, given the nature of our rewriting task.6

For human evaluation, we conduct pairwise com-
parison tests, pairing FULL against a human rewrite
(HUMAN), FULL against -SYN, and FULL against
-SEM. Participants were given a short description
of the theme, and the output of each system. For
each test we asked 40 subjects to select which prob-
lem they preferred over 5 pairs of outputs; we ob-
tained a total of 200 (5x40) responses for STARtest

and CARTOON.
In order to better understand the strengths and

weaknesses of the generated stories, we conducted a
more detailed human evaluation. 8 participants were
presented with the output of the three automatic sys-
tems, human rewrites (HUMAN), and a theme. The
participants were asked to rate the stories across
three dimensions: coherence (how coherent is the
text of the problem?), solvability (can elementary
school students solve it?), and thematicity (how well
does the problem express them?) on a scale from
1 to 5. We collected ratings over 16 outputs from

6The average METEOR score comparing 1 annotator
against the other 2 is 0.26, indicating that there are diverse cor-
rect strategies for solving the rewriting problem.

Model STARtest CARTOON

FULL 65.0 57.9
-SYN 35.0 42.1
FULL 68.8 69.4
-SEM 31.2 30.6
FULL 17.9 10.0
HUMAN 82.1 90.0

Table 2: Human evaluation results on pairwise compar-
isons between FULL and -SYN, and FULL and HUMAN,
on STARtest and CARTOON datasets.

Model Thematicity Coherence Solvability
HUMAN 3.7 3.175 4.025
FULL 3.7 3.025 3.9
-SYN 3.375 3.075 3.825
-SEM 3.325 2.65 3.7

Table 3: Human evaluation results for FULL, -SYN,
-SEMand HUMAN on thematicity, coherence and solv-
ability on STARtest.

STARtest, resulting in 128 responses.

7.2 Results

Table 1 reports METEOR; we notice that removing
the semantic coherence scores in -SEM hurts the per-
formance compared to FULL; this confirms our claim
that semantic compatibility is crucial for building
coherent stories. On the other hand, -SYN performs
similarly to FULL. Closer inspection of the -SYN sys-
tem’s output reveals a greater diversity in thematic
elements as a result of the relaxed syntactic compat-
ibility constraints. Hence it is more likely to have
greater overlap with any of the reference rewrites,
resulting in higher METEOR scores.

However, a pairwise comparison between
FULL and -SYN (Table 2) reveals that human sub-
jects consistently prefer the output of FULL instead
of -SYN both for STARtest and CARTOON. Table 2
also reports that HUMAN outperforms the output
of the FULL model, and a pairwise comparison of
FULL and -SEM which yields a result in line with the
METEOR scores.

Table 3 shows the results of the detailed com-
parison of Thematicity, Coherence, and Solvability.
This table clearly shows the strong contribution of
the semantic component of our system. The specific
contribution of the syntactic component is to pro-

1623

Star Wars
s1. Wendy bought 4 new chairs and 4 new tables for
her house. If she spent 6 minutes on each piece fur-
niture putting it together, how may minutes did it take
her to finish?
s′1. Leia bought 4 new ships and 4 new guns for
her room. If she spent 6 minutes on each wasteland
weapon putting it together, how many minutes did it
take her to terminate?
s2. My car gets 20 miles per gallon of gas. How many
miles can I drive on 5 gallons of gas?
s′2. My cruiser gets 20 miles per gallon of light. How
many miles can I drive on 5 gallons of light?
s3.Tyler had 15 dogs. Each dog had 5 puppies. How
many puppies does Tyler now have?
s′3. Biggs had 15 creatures. Each creature had 5 crea-
tures. How many creatures does Biggs now have?

Table 4: Examples of the original stories si and rewritten
math word problems s′i in Star War theme.

duce overall more solvable and thematically satisfy-
ing problems, although it can slightly affect coher-
ence especially when automatic parses fail. Finally,
the overall high ratings for human-authored stories
across all three dimensions, confirm the high quality
of the crowd-sourced stories.

7.3 Qualitative Examples

Table 4–6 shows some problems generated by our
method. Recall that since our system needs no an-
notated thematic training data, we can easily gen-
erate from any theme where thematic text is avail-
able. To demonstrate this fact, we include gener-
ated examples in a Western theme from novels from
the Project Gutenberg corpus. Many of the results
of our system are very legible, with only minor
agreement errors. Coherent, thematic semantic re-
lations are evident in problems such as s′1, where
ships, guns, and weapons combine to effect the Star
Wars theme; this is also evident in s′5, where people
with western sounding names like Kurt and Made-
line trade in cigarettes, an old-fashioned pre-cursor
to e-cigarettes.

In some cases, semantic inconsistencies result in
weird sounding problems, such as in s′6 where the
main character receives “wheat of grub”. But be-
cause of the syntactic compatibility component, our
model scores this candidate higher because of the

Cartoon
s7. Dave was helping the cafeteria workers pick up
lunch trays, but he could only carry 9 trays at a time.
If he had to pick up 17 trays from one table and 55
trays from another, how many trips will he make?
s′7. Finn was helping the cupboard men pick up candy
bottles, but he could only carry 9 bottles at a time.
If he had to pick up 17 bottles from one ring and 55
bottles from another, how many swords will he make?
s8. If books came from all the 4 continents that Bryan
had been into and he collected 122 books per conti-
nent, how many books does he have from all 4 conti-
nents combined?
s′8. If dances came from all the 4 mountains that Finn
had been into and he collected 122 dances per moun-
tain, how many dances does he have from all 4 moun-
tains combined?
s9. A bucket contains 3 gallons of water. If Derek
adds 6.8 gallons more, how many gallons will there
be in all?
s′9. A bottle makes 3 gallons of serum. If Finn adds
6.8 gallons more, how many gallons will there be in
all?

Table 5: Examples of the original stories si and rewritten
math word problems s′i in Cartoon theme.

connection between “wheat” and “graze”.
Semantic incoherence is less of a problem in the

cartoon theme, where absurd interactions between
characters are expected. However, a difficulty for
our system is demonstrated in s′7, where the physical
entity “swords” is substituted for the nominalization
of an event “trips”. Improvements to the semantic
coherence component could resolve such issues.

Table 7 shows some instances where the rewrite
algorithm produces unusable results. An example
of under-generation is s′10. Here, too many words
are left untouched, resulting in both ungrammatical-
ity and semantic incoherence. In s′11, we witness
some limitations of using word vectors. The rare
word “Ferris” is not close to anything in the Star
Wars theme, and is thus mapped almost arbitrarily
to “int” (movie script shorthand for an interior shot).
Better treatment of noun compounds and the use of
phrase vectors would reduce such errors.

8 Conclusion

We formalized the problem of story rewriting as au-
tomatically changing the theme of a text without

1624

Western
s4. Christians father and the senior ranger gathered
firewood as they walked towards the lake in the park
...
s′4. Christian ’s partner and the lone sheriff harvested
barley as they strolled towards the hip in the orchard
...
s5. Sally had 27 cards. Dan gave her 41 new cards.
Sally bought 20 cards. How many cards does Sally
have now?
s′5. Madeline had 27 cigarettes. Kurt gave her 41 new
cigarettes. Madeline bought 20 cigarettes. How many
cigarettes does madeline have now?
s6. For Halloween Megan received 11 pieces of candy
from neighbors and 5 pieces from her older sister. If
she only ate 8 pieces a day, how long would the candy
last her?
s′6. For Halloween Madeline received 11 wheat of
grub from proprietors and 5 wheat from her nameless
partner. If she only grazed 8 wheat a day, how long
would the grub last her?

Table 6: Examples of the original stories si and rewritten
math word problems s′i in Western theme.

altering the underlying story and developed an ap-
proach for rewriting algebra word problems where
the rewriting model optimized for a number of mea-
sures of overall text coherence. Experiments on a
newly gathered dataset demonstrated our model can
produce themed texts that are usually solvable.

Future work could improve the thematicity and
solvability components by incorporating domain-
specific and commonsense knowledge, leveraging
information extraction. Additionally, neural net-
work architectures (e.g., LSTMs, seq2seq) can be
trained to rewrite coherently with less reliance on
brittle syntactic parses. Additionally, we plan to
study rewriting in other domains such as children’s
short stories and extend the model to generate math
word problems directly from equations. Finally, we
intend to incorporate the generated problems in ed-
ucational technology and tutoring systems.

Acknowledgments

This research was supported by the NSF (IIS
1616112), Allen Institute for AI (66-9175),
Allen Distinguished Investigator Award, DARPA
(FA8750-13-2-0008) and a Google research faculty

Poor Rewrites
s10. It rained 0.9 inches on Monday. On Tuesday, it
rained 0.7 inches less than on Monday. How much did
it rain on Tuesday?
s′10. It blasted 0.9 inches on Monday. On Tuesday, it
blasted 0.7 inches less than on Monday. How much
did it light on Tuesday?
s11. The Ferris wheel in Paradise Park has 14 seats.
Each seat can hold 6 people. How many people can
ride the Ferris wheel at the same time?
s′11. The int grab in chewbacca mesa has 14 areas.
Each area can hold 6 troops. How many troops can
ride the int grab at the same time?

Table 7: Examples of the original stories si and poorer
rewrites s′i in the Star Wars theme.

award. We thank the anonymous reviewers for their
helpful comments.

References
Leandro Motta Barros and Soraia Raupp Musse. 2007.

Planning algorithms for interactive storytelling. Com-
puters in Entertainment (CIE), 5(1):4.

Lora Bartlett. 2004. Expanding teacher work roles: a re-
source for retention or a recipe for overwork? Journal
of Education Policy, 19(5):565–582.

Nathanael Chambers and Dan Jurafsky. 2009. Unsuper-
vised Learning of Narrative Schemas and Their Par-
ticipants. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th Inter-
national Joint Conference on Natural Language Pro-
cessing of the AFNLP: Volume 2-Volume 2, pages 602–
610. Association for Computational Linguistics.

David Chen and William B. Dolan. 2011. Collecting
highly parallel data for paraphrase evaluation. In Pro-
ceedings of the Association for Computational Lin-
guistics (ACL).

Danqi Chen and Christopher Manning. 2014. A fast and
accurate dependency parser using neural networks.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 740–750, Doha, Qatar, October. Association for
Computational Linguistics.

The Racial Slur Database. 2016. The racial slur
database.

Judy Davis-Dorsey, Steven M Ross, and Gary R Morri-
son. 1991. The role of rewording and context per-
sonalization in the solving of mathematical word prob-
lems. Journal of Educational Psychology, 83(1):61.

Michael Denkowski and Alon Lavie. 2014. Meteor Uni-
versal: Language Specific Translation Evaluation for

1625

Any Target Language. In Proceedings of the EACL
2014 Workshop on Statistical Machine Translation.

K. Filippova and M. Strube. 2008. Dependency
tree based sentence compression. In Proceedings of
the Fifth International Natural Language Generation
Conference (INLG)).

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs sam-
pling. In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics, ACL ’05,
pages 363–370, Stroudsburg, PA, USA. Association
for Computational Linguistics.

J. Ganitkevitch, C. Callison-Burch, C. Napoles, and
B. Van Durme. 2011. Learning sentential paraphrases
from bilingual parallel corpora for text-to-text genera-
tion. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. In Proceedings of the Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (NAACL HLT), pages 758–764, Atlanta, Georgia,
June. Association for Computational Linguistics.

Yoav Goldberg and Jon Orwant. 2013. A Dataset of
syntactic-Ngrams over Time from a Very Large Cor-
pus of English Books. In Second Joint Conference on
Lexical and Computational Semantics (* SEM), vol-
ume 1, pages 241–247.

Philip John Gorinski and Mirella Lapata. 2015. Movie
script summarization as graph-based scene extraction.
In Human Language Technologies: The 2015 Annual
Conference of the North American Chapter of the ACL.

Mark Granroth-Wilding and Stephen Clark. 2016. What
happens next? event prediction using a compositional
neural network model. In Proceedings of the 30th
AAAI Conference on Artificial Intelligence (AAAI-16),
Phoenix, Arizona.

Janis M Hart. 1996. The Effect of Personalized Word
Problems. Teaching Children Mathematics, 2(8):504–
505.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, WMT
’11, pages 187–197, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to Solve
Arithmetic Word Problems with Verb Categorization.
In EMNLP, pages 523–533.

Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin,
and Wei-Ying Ma. 2016. How well do computers

solve math word probl ems? large-scale dataset con-
struction and evaluation. In Proceedings of the 2016
North American Chapter of the ACL (NAACL HLT).

William Hwang, Hannaneh Hajishirzi, Mari Ostendorf,
and Wei Wu. 2015. Aligning Sentences from Standard
Wikipedia to Simple Wikipedia. In Proceedings of the
2015 Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL).

David Kauchak. 2013. Improving text simplification lan-
guage modeling using unsimplified text data. In Pro-
ceedings of the Conference of the Association for Com-
putational Linguistics (ACL).

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Ang. 2015a.
Parsing Algebraic Word Problems into Equations.
TACL, 3.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Ang. 2015b.
Parsing algebraic word problems into equations.
Transactions of the Association for Computational
Linguistics, 3:585–597.

Rik Koncel-Kedziorski, Subhro Roy, Aida Aimini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A Math Word Problem Repository. In Proceedings
of the Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL HLT).

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to Automatically
Solve Algebra Word Problems. In ACL, pages 271–
281.

Benoit Lavoie and Owen Rambow. 1997. A Fast and
Portable Realizer for Text Generation Systems. In
Proceedings of the fifth conference on Applied natu-
ral language processing, pages 265–268. Association
for Computational Linguistics.

Michael Lebowitz. 1987. Planning Stories. In Proceed-
ings of the cognitive science society, Hillsdale, pages
234–242.

Omer Levy and Yoav Goldberg. 2014. Dependency-
Based Word Embeddings. In ACL, pages 302–308.

Boyang Li, Stephen Lee-Urban, George Johnston, and
Mark O. Riedl. 2013. Story generation with crowd-
sourced plot graphs. In Proceedings of AAAI Confer-
ece on Artificial Intelligence (AAAI).

Hugo Liu and Push Singh. 2002. MAKEBELIEVE: Us-
ing Commonsense Knowledge to Generate Stories. In
AAAI/IAAI, pages 957–958.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of the Conference of
the Association for Computational Linguistics: System
Demonstrations (ACL), pages 55–60.

1626

Neil McIntyre and Mirella Lapata. 2009. Learning to
Tell Tales: A Data-driven Approach to Story Gener-
ation. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th Inter-
national Joint Conference on Natural Language Pro-
cessing of the AFNLP: Volume 1-Volume 1, pages 217–
225. Association for Computational Linguistics.

Neil McIntyre and Mirella Lapata. 2010. Plot Induction
and Evolutionary Search for Story Generation. In Pro-
ceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 1562–1572. As-
sociation for Computational Linguistics.

FrontGate Media. 2016. Terms to block.
James Richard Meehan. 1976. The Metanovel: Writing

Stories by Computer. Technical report, DTIC Docu-
ment.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient Estimation of Word
Representations in Vector Space. arXiv preprint
arXiv:1301.3781.

George A Miller. 1995. WordNet: A Lexical Database
for English. Communications of the ACM, 38(11):39–
41.

Arindam Mitra and Chitta Baral. 2015. Learning to au-
tomatically solve logic grid puzzles. In EMNLP.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A corpus
and evaluation framework for deeper understanding
of commonsense stories. In Proceedings of the 2016
North American Chapter of the ACL (NAACL HLT).

Sarah Petersen and Mari Ostendorf. 2007. Text simpli-
fication for langauge learners: A corpus analysis. In
Proceedings of the Speech and Language Technology
in Education Workshop (SLaTE).

Karl Pichotta and Raymond J. Mooney. 2016. Learn-
ing statistical scripts with LSTM recurrent neural net-
works. In Proceedings of the 30th AAAI Conference
on Artificial Intelligence (AAAI-16), Phoenix, Arizona.

Oleksandr Polozov, Eleanor ORourke, Adam M Smith,
Luke Zettlemoyer, Sumit Gulwani, and Zoran
Popovic. 2015. Personalized Mathematical Word
Problem Generation. In Proceedings of the 24th In-
ternational Joint Conference on Artificial Intelligence
(IJCAI 2015). To appear.

KA Renninger, L Ewen, and AK Lasher. 2002. Indi-
vidual interest as context in expository text and math-
ematical word problems. Learning and Instruction,
12(4):467–490.

Subhro Roy and Dan Roth. 2015. Solving General Arith-
metic Word Problems. In EMNLP.

Subhro Roy, Shyam Upadhyay, and Dan Roth. 2016.
Equation parsing : Mapping sentences to grounded

equations. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP).

Roger C Schank and Robert P Abelson. 1977. Scripts,
Plans, Goals, and Understanding: An Inquiry into Hu-
man Knowledge Structures. Hillsdale, NJ: Lawrence
Erlbaum.

Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, and
Oren Etzioni. 2014. Diagram Understanding in Ge-
ometry Questions. In AAAI.

Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren Et-
zioni, and Clint Malcolm. 2015. Solving Geometry
Problems: Combining Text and Diagram Interpreta-
tion. In EMNLP.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically Solv-
ing Number Word Problems by Semantic Parsing and
Reasoning. In EMNLP.

Advaith Siddharthan. 2004. Syntactic simplification and
text cohesion. Research on Language and Computa-
tion, 4(1):77–109.

Springfield. 2016. Adventure time with finn & jake
episode scripts.

Ladder Survivors. 2013. Key words for math problems.
Scott R Turner. 1993. Minstrel: A Computer Model of

Creativity and Storytelling.
Lucy Vanderwende, Hisami Suzuki, Chris Brockett, and

Ani Nenkova. 2007. Beyond sumbasic: Task-focused
summarization with sentence simplification and lexi-
cal expansion. Information Processing and Manage-
ment.

David Vickrey and Daphne Koller. 2008. Sentence sim-
plification for semantic role labeling. In Proceedings
of the Conference of the Association for Computa-
tional Linguistics (ACL), pages 344–352.

Kristian Woodsend and Mirella Lapata. 2011a. Learning
to simplify sentences with quasi-synchronous gram-
mar and integer programming. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Kristian Woodsend and Mirella Lapata. 2011b. Wikisim-
ple: Automatic simplification of wikipedia articles. In
Proceedings of the Association for Advancement of
Artificial Intelligence Conference on Artificial Intelli-
gence (AAAI), pages 927–932, San Francisco, CA.

Sander Wubben, Antal Van Den Bosch, and Emiel Krah-
mer. 2012. Sentence simplification by monolingual

1627

machine translation. In Proceedings of the Confer-
ence of the Association for Computational Linguistics
(ACL), pages 1015–1024.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen,
and Chris Callison-Burch. 2016. Optimizing statisti-
cal machine translation for text simplification. Trans-
actions of Association of Computational Linguistics.

Mark Yatskar, Bo Pang, Cristian Danescu-Niculescu-
Mizil, and Lillian Lee. 2010. For the sake of sim-
plicity: Unsupervised extraction of lexical simplifica-
tions from wikipedia. In Proceedings of the Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies (NAACL HLT).

Lipu Zhou, Shuaixiang Dai, and Liwei Chen. 2015.
Learn to Solve Algebra Word Problems Using
Quadratic Programming. In EMNLP.

Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych.
2010. A monolingual tree-based translation model
for sentence simplification. In Proceedings of the In-
ternational Conference on Computational Linguistics
(COLING).

1628

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1629–1638,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Context-Sensitive Lexicon Features for Neural Sentiment Analysis

Zhiyang Teng, Duy-Tin Vo and Yue Zhang
Singapore University of Technology and Design

{zhiyang teng, duytin vo}@mymail.sutd.edu.sg
yue zhang@sutd.edu.sg

Abstract

Sentiment lexicons have been leveraged as a
useful source of features for sentiment anal-
ysis models, leading to the state-of-the-art
accuracies. On the other hand, most ex-
isting methods use sentiment lexicons with-
out considering context, typically taking the
count, sum of strength, or maximum senti-
ment scores over the whole input. We pro-
pose a context-sensitive lexicon-based method
based on a simple weighted-sum model, using
a recurrent neural network to learn the sen-
timents strength, intensification and negation
of lexicon sentiments in composing the sen-
timent value of sentences. Results show that
our model can not only learn such operation
details, but also give significant improvements
over state-of-the-art recurrent neural network
baselines without lexical features, achieving
the best results on a Twitter benchmark.

1 Introduction

Sentiment lexicons (Hu and Liu, 2004; Wilson et al.,
2005; Esuli and Sebastiani, 2006) have been a useful
resource for opinion mining (Kim and Hovy, 2004;
Agarwal et al., 2011; Moilanen and Pulman, 2007;
Choi and Cardie, 2008; Mohammad et al., 2013;
Guerini et al., 2013; Vo and Zhang, 2015). Contain-
ing sentiment attributes of words such as polarities
and strengths, they can serve to provide a word-level
foundation for analyzing the sentiment of sentences
and documents. We investigate an effective way to
use sentiment lexicon features.

A traditional way of deciding the sentiment of a
document is to use the sum of sentiment values of

It’s an insignificant [criticism]−1→−0.5.
Nobody gives a [good]+3→−1 performance in this
movie
She’s not [terrific]+5→+1 but not [terrible]−5→−1
either.
It’s not a very [good]+3→−0.25 movie song!
It removes my [doubts]−3→+1.

Figure 1: Example sentiment compositions.

all words in the document that exist in a sentiment
lexicon (Turney, 2002; Hu and Liu, 2004). This
simple method has been shown to give surprisingly
competitive accuracies in several sentiment analysis
benchmarks (Kiritchenko et al., 2014), and is still
the standard practice for specific research commu-
nities with mature domain-specific lexicons, such
as finance (Kearney and Liu, 2014) and product re-
views (Ding et al., 2008).

More sophisticated sentence-level features such
as the counts of positive and negative words, their
total strength, and the maximum strength, etc, have
also been exploited (Kim and Hovy, 2004; Wilson et
al., 2005; Agarwal et al., 2011). Such lexicon fea-
tures have been shown highly effective, leading to
the best accuracies in the SemEval shared task (Mo-
hammad et al., 2013). On the other hand, they are
typically based on bag-of-word models, hence suf-
fering two limitations. First, they do not explicitly
handle semantic compositionality (Polanyi and Za-
enen, 2006; Moilanen and Pulman, 2007; Taboada
et al., 2011), some examples of which are shown in
Figure 1. The composition effects can exhibit in-
tricacies such as negation over intensification (e.g.
not very good), shifting (e.g. not terrific) vs flip-

1629

ping negation (e.g. not acceptable), content word
negation (e.g. removes my doubts) and unbounded
dependencies (e.g. No body gives a good perfor-
mance).

Second, they cannot effectively deal with word
sense variations (Devitt and Ahmad, 2007; De-
necke, 2009). Guerini et al. (2013) show chal-
lenges in modeling the correlation between context-
dependent posterior word sentiments and their con-
text independent priors. For example, the sentiment
value of “cold” varies between “cold beer”, “cold
pizza” and “cold person” due to sense and context
differences. Such variations raise difficulties for a
sentiment classifier with bag-of-word nature, since
they can depend on semantic information over long
phrases or the full sentence.

We investigate a method that can potentially ad-
dress the above issues, by using a recurrent neu-
ral network to capture context-dependent seman-
tic composition effects over sentences. Shown in
Figure 2, the model is conceptually simple, us-
ing a weighted sum of lexicon sentiments and a
sentence-level bias to estimate the sentiment value
of a sentence. The key idea is to use a bi-directional
long-short-term-memory (LSTM) (Hochreiter and
Schmidhuber, 1997; Graves et al., 2013) model to
capture global syntactic dependencies and seman-
tic information, based on which the weight of each
sentiment word together with a sentence-level sen-
timent bias score are predicted. Such weights are
context-sensitive, and can express flipping negation
by having negative values.

The advantages of the recurrent network model
over existing semantic-composition-aware discrete
models such as (Choi and Cardie, 2008) include its
capability of representing non-local and subtle se-
mantic features without suffering from the challenge
of designing sparse manual features. On the other
hand, compared with neural network models, which
recently give the state-of-the-art accuracies (Li et
al., 2015; Tai et al., 2015), our model has the ad-
vantage of leveraging sentiment lexicons as a useful
resource. To our knowledge, we are the first to in-
tegrate the operation into sentiment lexicons and a
deep neural model for sentiment analysis.

The conceptually simple model gives strong em-
pirical performances. Results on standard sentiment
benchmarks show that our method gives competitive

Figure 2: Overall model structure. The sentiment score of the

sentence “not a bad movie at all” is a weighted sum of the scores

of sentiment words “not”, ”bad” and a sentence-level bias score

b. score(not) and score(bad) are prior scores obtained from

sentiment lexicons. γ1 and γ3 are context-sensitive weights for

sentiment words “not” and “bad”, respectively.

accuracies to the state-of-the-art models in the liter-
ature. As a by-product, the model can also correctly
identify the compositional changes on the sentiment
values of each word given a sentential context.

Our code is released at
https://github.com/zeeeyang/lexicon rnn.

2 Related Work

There exist many statistical methods that exploit
sentiment lexicons (Kim and Hovy, 2004; Agarwal
et al., 2011; Mohammad et al., 2013; Guerini et al.,
2013; Tang et al., 2014b; Vo and Zhang, 2015; Cam-
bria, 2016). Mohammad et al. (2013) leverage a
large sentiment lexicon in a SVM model, achiev-
ing the best results in the SemEval 2013 bench-
mark on sentence-level sentiment analysis (Nakov et
al., 2013). Compared to these methods, our model
has two main advantages. First, we use a recurrent
neural network to model context, thereby exploiting
non-local semantic information. Second, our model
offers context-sensitive operational details on each
word.

Several previous methods move beyond bag-of-
word models in leveraging lexicons. Most notably,
Moilanen and Pulman (2007) introduce the ideas
from compositional semantics (Montague, 1974)
into sentiment operations, developing a set of com-
position rules for handling negations. Along the
line, Taboada et al. (2011) developed a lexicon and
a collection of sophisticated rules for addressing in-
tensification, negation and other phenomena. Differ-

1630

ent from these rule-based methods, Choi and Cardie
(2008) use a structured linear model to learn seman-
tic compositionality relying on a set of manual fea-
tures. In contrast, we leverage a recurrent neural
model for inducing semantic composition features
automatically. Our weighted-sum representation of
semantic compositionality is formally simpler com-
pared with fine-grained rules such as (Taboada et al.,
2011). However, it is sufficient for describing the
resulting effect of complex and context-dependent
operations, with the semantic composition process
being modeled by LSTM. Our sentiment analyzer
also enjoys a more competitive LSTM baseline com-
pared to a traditional discrete models.

Our work is also related to recent work on us-
ing deep neural networks for sentence-level senti-
ment analysis, which exploits convolutional (Kalch-
brenner et al., 2014; Kim, 2014; Ren et al., 2016),
recursive (Socher et al., 2013; Dong et al., 2014;
Nguyen and Shirai, 2015) and recurrent neural net-
works (Liu et al., 2015; Wang et al., 2015; Zhang et
al., 2016), giving highly competitive accuracies. As
our baseline, LSTM (Tai et al., 2015; Li et al., 2015)
stands among the best neural methods. Our model
is different from these prior methods in mainly two
aspects. First, we introduce sentiment lexicon fea-
tures, which effectively improve classification ac-
curacies. Second, we learn extra operation details,
namely the weights on each word, automatically as
hidden variables. While the baseline uses LSTM
features to perform end-to-end mapping between
sentences and sentiments, our model uses them to in-
duce the lexicon weights, via which word level sen-
timent are composed to derive sentence level senti-
ment.

3 Model

Formally, given a sentence s = w1w2...wn and a
sentiment lexicon D, denote the subjective words in
s as wDj1w

D
j2
...wDjm . Our model calculates the senti-

ment score of s according to D in the form of

Score(s) =

m∑

t=1

γjtscore(w
D
jt) + b, (1)

where Score(wDjt) is the sentiment value of wjt , γjt
are sentiment weights and b is a sentence-level bias.
The sentiment values of words and sentences are real

numbers, with the sign indicating the polarity and
the absolute value indicating the strength.

As shown in Figure 2, our neural model consists
of three main layers, namely the input layer, the
feature layer and the output layer. The input layer
maps each word in the input sentence into a dense
real-value vector. The feature layer exploits a bi-
directional LSTM (Graves and Schmidhuber, 2005;
Graves et al., 2013) to extract non-local semantic in-
formation over the sequence. The output layer cal-
culates a weight score for each sentiment word, as
well as an overall sentiment bias of the sentence.

In this figure, the score of the sentence “not a
bad movie at all” is decided by a weighted sum of
the sentiments of “bad” and “not”1, and a sentiment
shift bias based on the sentence structure. Ideally,
the weight on “not” should be a small negative value,
which results in a slightly positive sentiment shift.
The weight on “bad” should be negative, which rep-
resents a flip in the polarity. These weights jointly
model a negation effect that involves both shifting
and flipping.

3.1 Bidirectional LSTM

We use LSTM (Hochreiter and Schmidhuber, 1997)
for feature extraction, which recurrently processes
sentence s token by token. For each word wt, the
model calculate a hidden state vector ht. A LSTM
cell block makes use of an input gate it, a memory
cell ct, a forget gate ft and an output gate ot to con-
trol information flow from the history x1...xt and
h1...ht−1 to the current state ht. Formally, ht is
computed as follows:

it = σ(Wixt + Uiht−1 + Vict−1 + bi)

ft = 1.0− it

gt = tanh(Wgxt + Ught−1 + bg)

ct = ft � ct−1 + it � gt

ot = σ(Woxt + Uoht−1 + Voct + bo)

ht = ot � tanh(ct)

Here xt is the word embedding of word wt, σ de-
notes the sigmoid function, � is element-wise mul-
tiplication. Wi, Ui, Vi, bi, Wg, Ug, bg, Wo, Uo,
Vo and bo are LSTM parameters.

1Most sentiment lexicons assign a negative score to the word
“not”.

1631

We apply a bidirectional extension of LSTM
(BiLSTM) (Graves and Schmidhuber, 2005; Graves
et al., 2013), shown in Figure 2, to encode the input
sentence s both left-to-right and right-to-left. The
BiLSTM model maps each word wt to a pair of
hidden vectors hL

t and hR
t , which denote the hid-

den vector of the left-to-right LSTM and right-to-
left LSTM, respectively. We use different parame-
ters for the left-to-right LSTM and the right-to-left
LSTM. These state vectors are used as features for
calculating the sentiment weights γ.

In addition, we append a sentence end marker
w<e> to the left-to-right LSTM and a sentence start
marker w<s> to the right-to-left LSTM. The hidden
state vector of w<s> and w<e> are denoted as hR

s

and hL
e , respectively.

3.2 Output Layer
The base score. Given a lexicon word wjt in the
sentence s (wjt ∈ D), we use the hidden state vec-
tors hL

jt
and hR

jt
in the feature layer to calculate a

weight value τjt . As shown in Figure 3, a two-layer
neural network is used to induce τjt . In particular,
a hidden layer combines hL

t and hR
t using a non-

linear tanh activation

ps
jt = tanh(WL

psh
L
jt + WR

psh
R
jt + bps) (2)

The resulting hidden vector ps
jt

is then mapped into
τjt using another tanh layer.

τ sjt = 2 tanh(Wpwps
jt + bpw) (3)

We choose the 2tanh function to make the learned
weights conceptually useful. The factor 2 is in-
troduced for modelling the effect of intensification.
Since the range of tanh function is [−1, 1], the range
of 2tanh is [−2, 2]. Intuitively, a weight value of
1 maps the word sentiment directly to the sentence
sentiment, such as the weight for “good” in “This is
good”. A weight value in (1, 2] represents intensifi-
cation, such as the weight for “bad” in “very bad”.
Similarly, a weight value in (0, 1) represents weak-
ening, and a weight in (−2, 0) represents various
scales of negations.

Given all lexicon words wDjt in the sentence, we
calculate a base score for the sentence

Sbase =

∑m
t=1 τjtscore(w

D
jt

)

m
(4)

Figure 3: Weight score calculation.

By averaging the score of each word, the resulting
Sbase is confined to [−2α, 2α], where α is the maxi-
mum absolute value of word sentiment. In the above
equations, WL

ps, WR
ps, bps, Wpw and bpw are

model parameters.
The bias score. We use the same neural network

structure in Figure 3 to calculate the overall bias of
the input sentence. The input to the neural network
includes hR

s and hL
e , and the output is a bias score

Sbias . Intuitively, the calculation of Sbias relies on
information of the full sentence. hR

s and hL
e are

chosen because they have commonly been used in
the research literature to represent overall sentential
information (Graves et al., 2013; Cho et al., 2014).

We use a dedicated set of parameters for calculat-
ing the bias, where

pB = tanh(WL
pbhL

e + WR
pbhR

s + bpb) (5)

and
Sbias = 2 tanh(WbpB + bp) (6)

WL
pb, WR

pb, bpb, Wb and bL
p are parameters.

3.3 Final Score Calculation
The base Sbase and bias Sbias are linearly interpo-
lated to derive the final sentiment value for the sen-
tence s.

Score(s) = λSbase + (1− λ)Sbias (7)

λ ∈ [0, 1] reflects the relative importance of the base
score in the sentence. It offers a new degree of model
flexibility, and should be calculated for each sen-
tence specifically. We use the attention model (Bah-
danau et al., 2014) to this end. In particular, the
base score features hL

t /hR
t and the bias score fea-

tures hL
e /hR

s are combined in the calculation

λ = σ(Wsλhbase + Wbλhbias + bλ) (8)

1632

where
hbias = hL

e ⊕ hR
s (9)

and

hbase =

∑m
t=1 hL

jt
⊕ hR

jt

m
(10)

Here σ denotes the sigmoid activation function and
⊕ denotes vector concatenation. Wsλ, Wbλ and
bλ are model parameters.

The final score of the sentence is

Score(s) = λSbase + (1− λ)Sbias

=
λ

m

m∑

t=1

τjtscore(w
D
jt) + (1− λ)Sbias

This corresponds to the original Equation 1 by γjt =
λ
mτjt and b = (1− λ)Sbias.

3.4 Training and Testing
Our training data contains two different settings.
The first is binary sentiment classification. In this
task, every sentence si is annotated with a sentiment
label li, where li = 0 and li = 1 to indicate negative
and positive sentiment, respectively. We apply logis-
tic regression on the output layer. Denote the proba-
bility of a sentence si being positive and negative as
p1si and p0si respectively. p0si and p1si are estimated as

p1si = σ(Score(si))

p0si = 1− p1si
(11)

Suppose that there areN training sentences, the loss
function over the training set is defined as

L(Θ) = −
N∑

i=1

log plisi +
λr
2
||Θ||2, (12)

where Θ is the set of model parameters. λr is a pa-
rameter for L2 regularization.

The second setting is multi-class classification. In
this task, every sentence si is assigned a sentiment
label li from 0 to 4, which represent very negative,
negative, neutral, positive and very positive, respec-
tively. We apply least square regression on the out-
put layer. Since the output range of 2tanh is [-2, 2],
the value of the base score and the bias score both
belongs to [-2, 2]. The final score is a weighted sum
of the base score and the bias score, also belonging
to [-2, 2]. However, the gold sentiment label ranges

Positive Negative Total
Train 3,009 1,187 4,196
Dev 483 283 766
Test 1,313 490 1,803
Table 1: Statistics of the Twitter dataset.

Task Label
Training

Sentences
Dev

Sentences
Test

Sentences

5-class

-2 1,092 139 279
-1 2,218 289 633
0 1,624 229 389
1 2,322 279 510
2 1,288 165 399

2-class 0 3,310 444 909
1 3,610 428 912

Table 2: Statistics of SST.

from 0 to 4. We add an offset -2 to every gold sen-
timent label to both adapt our model to the train-
ing data and to increase the interpretability of the
learned weights. The loss function for this problem
is then defined as

L(Θ) =

N∑

i=1

(Score(si)− li)2 +
λr
2
||Θ||2 (13)

During testing, we predict the sentiment label l∗i of
a sentence si by

l∗i =

−2 if Score(si) ≤ −1.5

−1 if − 1.5 < Score(si) ≤ −0.5

0 if − 0.5 < Score(si) ≤ 0.5

1 if 0.5 < Score(si) ≤ 1.5

2 if Score(si) > 1.5

(14)

4 Experiments

4.1 Experimental Settings
Data. We test our model on three datasets, includ-
ing a dataset on Twitter sentiment classification, a
dataset on movie review and a dataset with mixed
domains. The Twitter dataset is taken from Se-
mEval 2013 (Nakov et al., 2013). We downloaded
the dataset according to the released ids. The statis-
tics of the dataset are shown in Table 1.

The movie review dataset is Stanford Sentiment
Treebank2 (SST) (Socher et al., 2013). For each sen-
tence in this treebank, a corresponding constituent

2http://nlp.stanford.edu/sentiment/index.html

1633

Polarity books dvds electronics music videogames
Positive 19 19 19 20 20
Negative 29 20 19 20 20

Table 3: Document distribution of the mixed domain dataset.

tree is given. Each internal constituent node is an-
notated with a sentiment label ranging from 0 to 4.
We follow Socher et al. (2011) and Li et al. (2015)
to perform five-class and binary classification, with
the data statistics being shown in Table 2.

In order to examine cross-domain robustness,
we apply our model on a product review cor-
pus (Täckström and McDonald, 2011), which con-
tains 196 documents covering 5 domains: books,
dvds, electronics, music and videogames. The doc-
ument distribution is listed in Table 3.

Lexicons. We use four sentiment lexicons,
namely TS-Lex, S140-Lex, SD-Lex and SWN-Lex.
TS-Lex3 is a large-scale sentiment lexicon built
from Twitter by Tang et al. (2014a) for learning
sentiment-specific phrase embeddings. S140-Lex4

is the Sentiment140 lexicon, which is built from
point-wise mutual information using distant super-
vision (Go et al., 2009; Mohammad et al., 2013).

SD-Lex is built from SST. We construct a sen-
timent lexicon from the training set by excluding
all neutral words and adding the aforementioned
offset -2 to each entry. SWN-Lex is a sentiment
lexicon extracted from SentimentWordNet3.0 (Bac-
cianella et al., 2010). For words with different part-
of-speech tags, we keep the minimum negative score
or the maximum positive score. The original score
in the SentimentWordNet3.0 is a probability value
between 0 and 1, and we scale it to [-2, 2]5.

When building these lexicons, we only use the
sentiment scores for unigrams. Ambiguous words
are discarded. Both TS-Lex and S140-Lex are
Twitter-specific sentiment lexicons. They are used
in the Twitter sentiment classification task. SD-Lex
and SWN-Lex are exploited for the Stanford dataset.
The statistics of lexicons are listed in Table 4.

3http://ir.hit.edu.cn/ dytang/paper/14coling/data.zip
4http://saifmohammad.com/Lexicons/Sentiment140-

Lexicon-v0.1.zip
5Taboada et al. (2011) also mentioned two methods to derive

sentiment score for a sentiment word from SentimentWordNet.
We leave them for future work.

Lexicon Positive Negative Total
SD-Lex 2,547 2,448 4,995
SWN-Lex 15,568 17,412 32,980
TS-Lex 33,997 32,026 66,023
S140-Lex 24,156 38,312 62,468

Table 4: Statistics of sentiment lexicons.

4.2 Implementation Details
We implement our model based on the CNN
toolkit.6 Parameters are optimized using stochastic
gradient descent with momentum (Sutskever et al.,
2013). The decay rate is 0.1. For initial learning rate,
L2 and other hyper-parameters, we adopt the default
values provided by the CNN toolkits. We select the
best model parameter according to the classification
accuracy on the development set.

For the Twitter data, we use the glove.twitter.27B7

as pretrained word embeddings. For the Stan-
ford dataset, following Li et al. (2015), we use
glove.840B.300d8 as pretrained word embeddings.
Words that do not exist in both the training set
and the pretrained lookup table are treated as out-
of-vocabulary (OOV) words. Following Dyer et
al. (2015), singletons in the training data are ran-
domly mapped to UNK with a probability punk dur-
ing training. We set punk = 0.1. All word em-
beddings are fine-tuned. We use dropout (Srivastava
et al., 2014) in the input layer to prevent overfitting
during training.

One-layered BiLSTM is used for all tasks. The
dimension of the hidden vector in LSTM is 150. The
size of the second layer in Figure 3 is 64.

4.3 Development Results
Table 5 shows results on the Twitter development
set. Bi-LSTM is our model using the bias score
Sbias only, which is equivalent to bidirectional
LSTM model of Li et al. (2015) and Tai et al.
(2015), since they use same features and only dif-
fer in the output layer. Bi-LSTM+avg.lexicon
is a baseline model integrating the average sen-
timent scores of lexicon words as a feature, and
Bi-LSTM+flex.lexicon is our final model, which
considers both the Bi-LSTM score (Sbias) and the
context-sensitive score (Sbase).

6https://github.com/clab/cnn
7http://nlp.stanford.edu/data/glove.twitter.27B.zip
8http://nlp.stanford.edu/data/glove.840B.300d.zip

1634

Method Dict Dev(%)
Bi-LSTM None 84.2
Bi-LSTM+avg.lexicon S140-Lex 84.9
Bi-LSTM+flex.lexicon S140-Lex 86.4

Table 5: Results on the Twitter development set.

Method Test(%)
SVM6 (Zhu et al., 2014) 78.5
Tang et al. (2014a) 82.4
Bi-LSTM 86.7
Bi-LSTM + TS-Lex 87.6
Bi-LSTM + S140-Lex 88.0
Table 6: Results on the Twitter test set.

Bi-LSTM+avg.lexicon improves the classifica-
tion accuracy over Bi-LSTM by 0.7 point, which
shows the usefulness of sentiment lexicons to re-
current neural models using a vanilla method. It
is consistent with previous research on discrete
models. By considering context-sensitive weight-
ing for sentiment words Bi-LSTM+flex.lexicon fur-
ther outperforms Bi-LSTM+avg.lexicon, improv-
ing the accuracy by 1.5 points (84.9→ 86.4), which
demonstrates the strength of context-sensitive scor-
ing. Base on the development results, we use Bi-
LSTM+flex.lexicon for the remaining experiments.

4.4 Main Results
Twitter. Table 6 shows results on the Twitter test set.
SVM6 is our implementation of Zhu et al. (2014),
which extracts six types of manual features from TS-
Lex for SVM classification. The features include:
(1) the number of sentiment words in the sentence;
(2) the total sentiment scores of the sentence; (3) the
maximum sentiment score; (4) the total positive and
negative sentiment scores; (5) the sentiment score of
the last word in the sentence. The system of Tang
et al. (2014a) is a state-of-the-art system that ex-
tracts various manually designed features from TS-
Lex, such as bag-of-words, term frequency, parts-of-
speech, the sum of sentiment scores of all words in
a tweet, etc, for SVM. The Bi-LSTM rows are our
final models with different lexicons.

Both SVM6 and Tang et al. (2014a) exploit dis-
crete features. Compared to them, Bi-LSTM gives
better accuracies without using lexicons, which
demonstrates the relative strength of deep neural net-
work for sentiment analysis. Compared with Tang et
al. (2014a), our Bi-LSTM+TS-Lex model improves

Method 5-class 2-class
RAE (Socher et al., 2011) 43.2 82.4
MV-RNN (Socher et al., 2012) 44.4 82.9
RNTN (Socher et al., 2013) 45.7 85.4
DRNN (Irsoy and Cardie, 2014) 49.8 88.6
Dependency TreeLSTM (Tai et al., 2015) 48.4 85.7
Constituency TreeLSTM (Tai et al., 2015) 51.0 88.0
Constituency TreeLSTM (Li et al., 2015) 50.4 86.7
S-LSTM (Zhu et al., 2015) 50.1 -
LSTM-RNN (Le and Zuidema, 2015) 49.9 88.0
CNN-non-static (Kim, 2014) 48.0 87.2
CNN-multichannel (Kim, 2014) 47.4 88.1
DCNN (Kalchbrenner et al., 2014) 48.5 86.8
Paragraph-Vec (Le and Mikolov, 2014) 48.7 87.8
NBoW (Kalchbrenner et al., 2014) 42.4 80.5
SVM (Socher et al., 2013) 40.7 79.4
BiLSTM (Tai et al., 2015) 49.1 87.5
BiLSTM (Li et al., 2015) 49.8 86.7
Hier-Sequence (Li et al., 2015) 50.7 86.9
Bi-LSTM+SD-Lex 50.0 88.1
Bi-LSTM+SWN-Lex 51.1 89.2
Table 7: Results on SST. 5-class shows fine-grained classifica-

tion. The last block lists our results.

the sentiment classification accuracy from 82.4 to
87.6, which again shows the strength of context-
sensitive features. S140-Lex gives slight improve-
ments over TS-Lex.

SST. Table 7 shows the results on SST. We in-
clude various results of recursive (the first block),
convolutional (the second block), and sequential
LSTM models (the fourth block). These neural mod-
els give the recent state-of-the-art on this dataset.
Our method achieves highly competitive accuracies.
In particular, compared to sequential LSTMs, our
best model gives the top result both on the binary
and fine-grained classification task. This shows the
usefulness of lexicons to neural models. In addition,
SWN-Lex gives better results compared with SD-
Lex. This is intuitive because SD-Lex is a smaller
lexicon compared to SWN-Lex (4,999 entries v.s.
32,980 entries). SD-Lex does not bring external
knowledge to this dataset, while SWN-Lex does.

Cross-domain Results. Lexicon-based methods
can be robust for cross-domain sentiment analy-
sis (Taboada et al., 2011). We test the robustness
of our model in the mixed domain dataset of prod-
uct reviews (Täckström and McDonald, 2011). This
dataset contains document level sentiments. We take
the majority voting strategy to transform sentiment

1635

Model Train Test Books Dvds Electronics Music Videogames Average
Bi-LSTM None None 71.79 89.74 65.79 95 85 81.63

Bi-LSTM+flex.lexicon SD-Lex SD-Lex 76.92 84.62 78.95 92.5 80 82.65
Bi-LSTM+flex.lexicon SD-Lex SWN-Lex 82.05 92.31 73.68 92.5 80 84.18
Bi-LSTM+flex.lexicon SWN-Lex SWN-Lex 84.62 92.31 68.42 100 85 86.22

Table 8: Cross-domain sentiment analysis. Training domain is movie review.

Figure 4: Sentiment composition examples.

of sentences to the document level. We compare
the effects of different lexicons over a baseline Bi-
LSTM trained on SST (movie domain).

Table 8 shows the results. Introducing the sen-
timent lexicons SD-Lex and SWN-Lex consistently
improves the classification accuracy across five do-
mains compared with the baseline Bi-LSTM model.
When trained and tested using the same lexicon,
SWN-Lex gives better performances on three out of
five domains. SD-Lex gives better results only on
Electronics. This shows that the results are sensi-
tive to the domain of the sentiment lexicon, which is
intuitive.

We also investigate a model trained using SD-
Lex but tested by replacing SD-Lex with SWN-Lex.
This is to examine the generalizability of a source-
domain model on different target domains by plug-
ging in relevant domain-specific lexicons, without
being retrained. Results show that the mode still out-
performs the SD-Lex lexicon on two out of five do-
mains, but is less accurate than full retraining using
SWN-Lex.

4.5 Discussion

Figure 4 shows the details of sentiment composition
for two sentences in the SST, learned automatically
by our model. For the first sentence, the three sub-
jective words in the lexicon “pure”, “excitement”

ID Sentence Bi-LSTM SWN-Lex

1
The issue of faith is not
explored very deeply 0 -1

2

Steers turns in a snappy
screenplay that curls at
the edges; it ’s so clever
you want to hate it.

2 1

3
A film so tedious that it is
impossible to care whether
that boast is true or not.

-2 -1

Table 9: Example predictions made by the Bi-LSTM model and

our Bi-LSTM+SWN-Lex model for fine-grained classification

task. Red words and blue words are positive and negative entries

in the SentimentWordNet3.0 lexicon, respectively.

and “not” receives weights of 1.6, 1.9 and −0.6,
respectively, and the overall bias of the sentence is
positive. A λ value (0.58) that slightly biases to-
wards the base score leads to a final sentiment score
is 1.8, which is close to the gold label 2.

In the second example, both negation words re-
ceived positive weight values, and the bias over the
sentence is negative. A λ (0.3) value that biases
towards the bias score results in a final score of
−1.2, which is close to the gold label −1. These
results demonstrate the capacity of the model to de-
cide how word-level sentiments composite accord-
ing to sentence-level context.

Table 9 shows three sentences in the Stanford
test set which are incorrectly classified by Bi-
LSTM model, but correctly labeled by our Bi-
LSTM+SWN-Lex model. These examples show
that our model is more sensitive to context-
dependent sentiment changes, thanks to the use of
lexicons as a basis.

5 Conclusion

We proposed a conceptually-simple, yet empirically
effective method of introducing sentiment lexicon
features to state-of-the-art LSTM models for sen-
timent analysis. Compared to the simple averag-

1636

ing method in traditional bag-of-word models, our
system leverages the strength of semantic feature
learning by LSTM models to calculate a context-
dependent weight for each word given an input sen-
tence. The method gives competitive results on var-
ious sentiment analysis benchmarks. In addition,
thanks to the use of lexicons, our model can im-
prove the cross-domain robustness of recurrent neu-
ral models for sentiment analysis.

Acknowledgments

Yue Zhang is the corresponding author. Thanks
to anonymous reviewers for their helpful com-
ments and suggestions. Yue Zhang is supported
by NSFC61572245 and T2MOE201301 from Sin-
gapore Ministry of Education.

References

Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Rambow,
and Rebecca Passonneau. 2011. Sentiment analysis
of twitter data. In Proceedings of the Workshop on
Languages in Social Media, pages 30–38.

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-
tiani. 2010. Sentiwordnet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining. In
Proceedings of LREC, volume 10, pages 2200–2204.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473.

Erik Cambria. 2016. Affective computing and sentiment
analysis. IEEE Intelligent Systems, 31(2):102–107.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using rnn encoder–decoder for statistical ma-
chine translation. In Proceedings of EMNLP, pages
1724–1734.

Yejin Choi and Claire Cardie. 2008. Learning with com-
positional semantics as structural inference for subsen-
tential sentiment analysis. In Proceedings of EMNLP,
pages 793–801.

Kerstin Denecke. 2009. Are sentiwordnet scores suited
for multi-domain sentiment classification? In ICDIM,
pages 1–6. IEEE.

Ann Devitt and Khurshid Ahmad. 2007. Sentiment
polarity identification in financial news: A cohesion-
based approach.

Xiaowen Ding, Bing Liu, and Philip S Yu. 2008. A holis-
tic lexicon-based approach to opinion mining. In Pro-

ceedings of the 2008 International Conference on Web
Search and Data Mining, pages 231–240.

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming
Zhou, and Ke Xu. 2014. Adaptive recursive neural
network for target-dependent twitter sentiment classi-
fication. In Proceedings of ACL, pages 49–54.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In ACL.

Andrea Esuli and Fabrizio Sebastiani. 2006. Sentiword-
net: A publicly available lexical resource for opinion
mining. In Proceedings of LREC, volume 6, pages
417–422.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1:12.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5):602–610.

A. Graves, A. Mohamed, and G. Hinton. 2013. Speech
recognition with deep recurrent neural networks.

Marco Guerini, Lorenzo Gatti, and Marco Turchi. 2013.
Sentiment analysis: How to derive prior polarities
from SentiWordNet. In Proceedings of EMNLP, pages
1259–1269.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Minqing Hu and Bing Liu. 2004. Mining and summariz-
ing customer reviews. In Proceedings of KDD, KDD
’04, pages 168–177.

Ozan Irsoy and Claire Cardie. 2014. Deep recursive
neural networks for compositionality in language. In
Advances in Neural Information Processing Systems,
pages 2096–2104.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of ACL, pages 655–
665.

Colm Kearney and Sha Liu. 2014. Textual sentiment in
finance: A survey of methods and models. Interna-
tional Review of Financial Analysis, 33:171–185.

Soo-Min Kim and Eduard Hovy. 2004. Determining the
sentiment of opinions. In Proceedings of the 20th in-
ternational conference on Computational Linguistics,
page 1367.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of EMNLP, pages
1746–1751.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M. Moham-
mad. 2014. Sentiment analysis of short informal texts.
J. Artif. Intell. Res. (JAIR), 50:723–762.

1637

Quoc V. Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. CoRR,
abs/1405.4053.

Phong Le and Willem Zuidema. 2015. Compositional
distributional semantics with long short term memory.
In Proceedings of the Fourth Joint Conference on Lex-
ical and Computational Semantics, pages 10–19.

Jiwei Li, Minh-Thang Luong, Dan Jurafsky, and Eudard
Hovy. 2015. When are tree structures necessary for
deep learning of representations?

Pengfei Liu, Xipeng Qiu, Xinchi Chen, Shiyu Wu, and
Xuanjing Huang. 2015. Multi-timescale long short-
term memory neural network for modelling sentences
and documents. In Proceedings of EMNLP, pages
2326–2335.

Saif M. Mohammad, Svetlana Kiritchenko, and Xiaodan
Zhu. 2013. Nrc-canada: Building the state-of-the-
art in sentiment analysis of tweets. In Proceedings of
SemEval-2013, June.

Karo Moilanen and Stephen Pulman. 2007. Sentiment
composition.

Richard Montague. 1974. Formal Philosophy: Selected
Papers of Richard Montague. Ed. and with an Introd.
by Richmond H. Thomason. Yale University Press.

Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva,
Veselin Stoyanov, Alan Ritter, and Theresa Wilson.
2013. Semeval-2013 task 2: Sentiment analysis in
twitter. In Second Joint Conference on Lexical and
Computational Semantics (*SEM), Volume 2: Pro-
ceedings of SemEval-2013, pages 312–320.

Thien Hai Nguyen and Kiyoaki Shirai. 2015. Phrasernn:
Phrase recursive neural network for aspect-based sen-
timent analysis. In Proceedings of EMNLP.

Livia Polanyi and Annie Zaenen. 2006. Contextual va-
lence shifters. In Computing attitude and affect in text:
Theory and applications, pages 1–10.

Yafeng Ren, Yue Zhang, Meishan Zhang, and Donghong
Ji. 2016. Context-sensitive twitter sentiment classifi-
cation using neural network. In Proceedings of AAAI.

Richard Socher, Jeffrey Pennington, Eric H. Huang, An-
drew Y. Ng, and Christopher D. Manning. 2011.
Semi-Supervised Recursive Autoencoders for Pre-
dicting Sentiment Distributions. In Proceedings of
EMNLP.

Richard Socher, Brody Huval, Christopher D. Manning,
and Andrew Y. Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Proceed-
ings of EMNLP, pages 1201–1211.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
D. Christopher Manning, Andrew Ng, and Christopher
Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Pro-
ceedings of EMNLP, pages 1631–1642.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Ilya Sutskever, James Martens, George Dahl, and Geof-
frey Hinton. 2013. On the importance of initialization
and momentum in deep learning. In Proceedings of
the 30th international conference on machine learning
(ICML-13), pages 1139–1147.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kimberly
Voll, and Manfred Stede. 2011. Lexicon-based meth-
ods for sentiment analysis. Computational linguistics,
37(2):267–307.

Oscar Täckström and Ryan McDonald. 2011. Discov-
ering fine-grained sentiment with latent variable struc-
tured prediction models. In Advances in Information
Retrieval, pages 368–374.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of ACL, pages 1556–1566.

Duyu Tang, Furu Wei, Bing Qin, Ming Zhou, and Ting
Liu. 2014a. Building large-scale twitter-specific sen-
timent lexicon : A representation learning approach.
In Proceedings of COLING, pages 172–182, August.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu,
and Bing Qin. 2014b. Learning sentiment-specific
word embedding for twitter sentiment classification.
In Proceedings of ACL, pages 1555–1565, June.

Peter Turney. 2002. Thumbs up or thumbs down? se-
mantic orientation applied to unsupervised classifica-
tion of reviews. In Proceedings of ACL.

Duy-Tin Vo and Yue Zhang. 2015. Target-dependent
twitter sentiment classification with rich automatic
features. In Proceedings of IJCAI, pages 1347–1353,
July.

Xin Wang, Yuanchao Liu, Chengjie SUN, Baoxun Wang,
and Xiaolong Wang. 2015. Predicting polarities
of tweets by composing word embeddings with long
short-term memory. In Proceedings of ACL, pages
1343–1353.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of HLT-EMNLP.

Meishan Zhang, Yue Zhang, and Duy-Tin Vo. 2016.
Gated neural networks for targeted sentiment analysis.

Xiaodan Zhu, Svetlana Kiritchenko, and Saif M Moham-
mad. 2014. Nrc-canada-2014: Recent improvements
in the sentiment analysis of tweets.

Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. 2015.
Long short-term memory over tree structures. CoRR,
abs/1503.04881.

1638

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1639–1649,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Event-Driven Emotion Cause Extraction with Corpus Construction

Lin Gui1, Dongyin Wu1, Ruifeng Xu1,2∗, Qin Lu3 and Yu Zhou1

1. School of Computer Science and Technology, Harbin Institute of Technology,
Shenzhen Graduate School, Shenzhen, China

2. Guangdong Provincial Engineering Technology Research Center for Data Science
3. Department of Computing, the Hong Kong Polytechnic University, Hong Kong

guilin.nlp@gmail.com;wudongyinhit@gmail.com;xuruifeng@hitsz.edu.cn;
csluqin@comp.polyu.edu.hk;zhouyu.nlp@gmail.com

Abstract

In this paper, we present our work in emo-
tion cause extraction. Since there is no open
dataset available, the lack of annotated re-
sources has limited the research in this area.
Thus, we first present a dataset we built using
SINA city news. The annotation is based on
the scheme of the W3C Emotion Markup Lan-
guage. Second, we propose a 7-tuple defini-
tion to describe emotion cause events. Based
on this general definition, we propose a new
event-driven emotion cause extraction method
using multi-kernel SVMs where a syntactical
tree based approach is used to represent events
in text. A convolution kernel based multi-
kernel SVM are used to extract emotion caus-
es. Because traditional convolution kernels do
not use lexical information at the terminal n-
odes of syntactic trees, we modify the kernel
function with a synonym based improvemen-
t. Even with very limited training data, we
can still extract sufficient features for the task.
Evaluations show that our approach achieves
11.6% higher F-measure compared to refer-
enced methods. The contributions of our work
include resource construction, concept defini-
tion and algorithm development.

1 Introduction

With the rapid growth of Internet, people can easily
share experiences and emotions through this power-
ful medium anywhere and anytime. How to analyze
the emotions of individuals through their writings
becomes a new challenge for NLP. In recent years, s-

∗corresponding author

tudies in emotion analysis focus on emotion classifi-
cation including detection of emotions expressed by
writers of text (Gao et al., 2013) as well as predic-
tion of reader emotions (Chang et al., 2015). There
are also some information extraction tasks in emo-
tion analysis, such as extracting the feeler of emo-
tion (Das and Bandyopadhyay, 2010). However,
these methods need to observe emotion linked ex-
pressions. Sometimes, however, we care more about
the stimuli, or the cause of an emotion. For instance,
manufacturers want to know why people love, or
hate a certain product. The White House may al-
so prefer to know the cause of the emotional text
“Let us hit the streets” rather than the distribution of
different emotions.

There are three main challenges in the study of e-
motion cause extraction. The first is that, up to now,
there is no open dataset available for emotion cause
extraction. This may explain why there are only few
studies on emotion causes. The second is that, there
is no formal definition about event in emotion cause
extraction even though some researches claim that
they extract events of emotion causes (Lee et al.,
2010; Chen et al., 2010). The third is that, due to
the complexity in annotation, the size of corpus for
emotion cause extraction is usually very small. Due
to this limitation, many machine learning method-
s are not suited for emotion cause detection. How
to mine deep knowledge of a language for emotion
causes is another thorny issue.

In this paper, we first present an annotated dataset
for emotion cause extraction to be released to the
public. We then propose to use a 7-tuple to define
emotion cause events. Based on this general defi-

1639

nition, we then present a new event-driven emotion
cause extraction method. The basic idea is to ex-
tract events in the context of emotional text through
dependency parsing. Then, a syntactic structure is
used to represent nearby events. Based on this struc-
tured representation of events, a modified convolu-
tion kernel which also takes lexical features(as ter-
minal nodes) is used to determine whether an event
is emotion cause relevant. This method can detect
all possible combinations of syntactic structures to
obtain sufficient features for emotion analysis us-
ing a limited training set. Compared to existing
methods, which either use manual rules or com-
monsense knowledge to extend information, our ap-
proach is completely machine learning based and it
still achieves state-of-the-art performance. The con-
tributions of this work include both resource devel-
opment and algorithm development.

The rest of the paper is organized as follows. Sec-
tion 2 provides a review of related works on emotion
analysis. Section 3 presents emotion cause relat-
ed definitions and the construction of emotion cause
extraction corpus. Section 4 gives the event-driven
emotion cause extraction method and section 5 is
the evaluations and discussions. Section 6 concludes
this work and gives the future directions.

2 Related Works

Identifying emotion categories in text is an essen-
tial subject in NLP and its applications (Liu, 2015).
Moreover, emotion causes can provide important in-
formation on why there is any emotion changes. In
this section, we introduce related works on the emo-
tion analysis and emotion cause extraction.

The first issue in emotion analysis is to determine
the taxonomy of emotions. Researchers have pro-
posed a list of primary emotions(Plutchik, 1980; Ek-
man, 1984; Turner, 2000). In this study, we adop-
t Ekman’s emotion classification (Ekman, 1984),
which identifies six primary emotions, namely hap-
piness, sadness, fear, anger, disgust and surprise,
known as the “Big6”1 scheme in the W3C Emotion
Markup Language. This list is agreed upon by most
previous works in Chinese emotion analysis.

The second issue is how to do emotion clas-
sification and emotion information extraction.

1http://www.w3.org/TR/emotion-voc/xml#big6

Beck (Beck et al., 2014) proposed a Multi-task
Gaussian-process based method for emotion clas-
sification. Xu (Xu et al., 2012) used a coarse to
fine method to classify emotions in Chinese blog.
Gao (Gao et al., 2013) proposed a joint model to co-
train a polarity classifier and an emotion classifier.
Chang (Chang et al., 2015) used linguistic template
to predict reader’s emotions. Das (Das and Bandy-
opadhyay, 2010) used an unsupervised method to
extract emotion feelers from Bengali blog. There
are other studies focused on joint learning with sen-
timent (Luo et al., 2015; Mohtarami et al., 2013),
emotion in tweets or blog (Hasegawa et al., 2013;
Qadir and Riloff, 2014; Ou et al., 2014; Liu et al.,
2013; Quan and Ren, 2009), and emotional lexicon
construction (Yang et al., 2014; Staiano and Gueri-
ni, 2014; Mohammad and Turney, 2013). However,
these related works all focused on analysis of emo-
tion expressions rather than emotion causes..

Sophia M. Y. Lee first proposed a task on emotion
cause extraction (Lee et al., 2010). They manual-
ly constructed a corpus from Academia Sinica Bal-
anced Chinese Corpus. Based on this corpus, Chen
and Lee (Chen et al., 2010) proposed a rule based
method to detect emotion causes. The basic idea is
to make linguistic rules for cause extraction. Some
studies (Gui et al., 2014; Li and Xu, 2014; Gao et al.,
2015) extended the rule based method to in-formal
text in Weibo text (Chinese tweets).

Other than rule based methods, Ghazi (Ghaz-
i et al., 2015) used CRFs to extract emotion caus-
es. However, it requires emotion cause and emo-
tion keywords to be in the same sentence. I. Rus-
so (Russo et al., 2011) proposed a crowd-sourcing
method to obtain emotion cause related common-
sense knowledge. But it is challenging to extend the
commonsense knowledgebase automatically.

Resources used in the above works are not pub-
licly accessible. Most of the methods used are rule
based. Learning based methods are quite limited be-
cause annotated data is quite small in size due to
high cost for annotation. Thus, rule based meth-
ods seem to be the easiest way to achieve acceptable
performance. Since machine learning methods re-
quire more knowledge, which is difficult to general-
ize. So automatic methods only focused on simple
text genre.

1640

3 Construction of Emotion Cause Corpus

In this section, we first describe the linguistic phe-
nomenon in emotion expressions. It serves as the in-
spiration to develop the annotated dataset. We then
introduce details of the annotation scheme, followed
by the construction of the dataset.

3.1 Linguistic Phenomenon of Emotion Causes
Emotion causes play an important role in emotion
expressions. An emotion cause reveals the stimulus
of an emotion. Considering linguistic phenomenon
of emotion causes, we follow three basic principles
in corpus construction: (1) Keep the whole context
of emotion expression; (2) The basic processing unit
is at the clause level; and (3) Use of formal text.

In written text, there is an emotion keyword,
which is used to express an emotion, in the context
of the emotion cause. Thus, finding the appropri-
ate context of emotion keywords in the annotation
is the pre-requisite to identify its cause. It is the
reason why we keep the whole context of emotion
keywords.

Another important kind of cues is the presence of
conjunctions and prepositions. These words indi-
cate the discourse information between clauses. In
order to make use of discourse information, the ba-
sic analysis unit should be at clause level rather than
at sentence level.

In the third principle, we choose the formal tex-
t in corpus construction. According to the related
works, emotion expressions can have overlapping e-
motion cause and emotion target (Gui et al., 2014)
in informal text. This is why some studies even in-
corporate cause extraction with target identification
to improve performance. However, our focus is on
emotion cause identification. We use formal news
text to avoid the potential mix up.

3.2 Collection and Annotation
We first take 3 years (2013-15) Chinese city news
from NEWS SINA2 containing 20,000 articles as the
raw corpus. Based on a list of 10,259 Chinese pri-
mary emotion keywords (keywords for short) (Xu
et al., 2008), we extract 15,687 instances by key-
word matching from the raw data. Here, we call the
presence of an emotion keyword as an instance in

2http://news.sina.com.cn/society/

the corpus. For each matched keyword, we extract
three preceding clauses and three following clauses
as the context of an instance. If a sentence has more
than 3 clauses in each direction, the context will in-
clude the rest of the sentence to make the context
complete. For simplicity, we omit cross paragraph
context.

Note that the presence of keywords does not nec-
essarily convey emotional information due to differ-
ent possible reasons such as negative polarity and
sense ambiguity. For example, “祝愿/wishes” is
an emotion word of “happiness”. It can also be
the name of a song. Also, the presence of emotion
keywords does not necessarily guarantee the exis-
tence of emotional cause neither. After removing
those irrelevant instances, there are 2,105 instances
remain. For each emotional instance, two annotators
manually annotate the emotion categories and the
cause(es) in the W3C Emotion Markup Language
(EML) format. Ex1 shows an example of an anno-
tated emotional sentence in the corpus, presented by
the original simplified Chinese, followed by its En-
glish translation. To save space, we remove the xml
tags in the annotation. The original annotated data
is in a subsidiary file3. The basic analysis unit is a
clause. Emotion cause is marked by <cause>, and
the emotion keyword is marked by<keywords>. E-
motion type, POS, position and the length of anno-
tation are also annotated in Emotionml format.

Ex.1: 朱某今年55岁，1979年参加工作时
才19岁，已有36年的手艺。“我当时被分到丹阳南
京理发店工作，这是当时丹阳最大的理发店。我在
那儿获得了好多证书和荣誉。”<cause POS=“v”
Dis=“-1”>说 起 自 己 的 荣 誉</cause>， 朱 某 很
是<keywords type=happiness>自豪</keywords>。

Mr. Zhu is 55 years old. He started working
in 1979 as a barber when he was 19 , and has 36
years of experience. “I was assigned to work at the
Barbershop in Danyang, Nanjing. It is the largest
barbershop in Danyang. I won many awards and
honors there.” <cause POS=“v” Dis=“-1”>Talking
about his honors</cause>, Mr. Zhu is so <keywords
type=“happiness”> proud </keywords>.

Ex.1 only contains one cause. However, one key-
word may have more than one corresponding emo-
tion causes. In Ex.2, there are two relevant causes

3http://hlt.hitsz.edu.cn/?page id=694

1641

Item Number
Instance 2,105
Clauses 11,799
Emotion Cause 2,167
Document with 1 emotion 2,046
Document with 2 emotion 56
Document with 3 emotion 3

Table 1: Details of the Dataset

for one keyword. In our dataset, only 59 instances
have two or more causes.

Ex.2: 劝说过程中，消防官兵了解到，该
女子是由于<cause POS=“v” Dis=“-2”>对方拖欠
工程款</cause>，<cause POS=“v” Dis=“-1”>家中
又急需用钱</cause>，<keywords type=sadness>无
奈</keywords>才选择跳楼轻生。

During persuasion, firemen realized that the woman
attempted suicide because of <cause POS=“v” Dis=“-
2”>the hold back of wages by the employer</cause>,
and <cause POS=“v” Dis=“-1”>her family asked
for money urgently</cause>, she feels <keywords
type=sadness>helpless</keywords> and thus

3.3 Details of Dataset and Its Annotations
Each instance in our dataset contains only one emo-
tion keyword and at least one emotion cause. It is
ensured that the keyword instance and the causes are
relevant. The number of extracted instances, claus-
es, and emotion causes are listed in Table 1. Note
that 97.2% of the instances has only one emotion
cause, and instances that have two and three emo-
tion causes hold 2.6% and 0.2% respectively. Table
2 shows the distribution of emotion types and Ta-
ble 3 shows the distribution of cause positions. In
the latter we can see that 78% emotion causes ad-
join the emotion keywords at the clause level. Ap-
parently, position plays a very important role in e-
motion cause extraction. Thus, using distance based
features for emotion cause extraction is rational and
necessary. Table 4 lists the phrase types of emotion
causes. Verbs and verb phrases cover 93% of al-
l cause events. Thus, our learning algorithm mainly
focus on them.

Two annotators work independently during the
annotation process. The key point is to distinguish
clause level and phrase level in cause annotation.
The clause level labels the clause which contains
the emotion cause. The phrase level determines the
boundary of an emotion cause. When two annota-

Emotion Number Percentage
Happiness 544 25.83%
Sadness 567 26.94%
Fear 379 18.00%
Anger 302 14.35%
Disgust 225 10.69%
Surprise 88 4.18%
Table 2: Distribution of Emotion Types

Position Number Percentage
Previous 3 clauses 37 1.71%
Previous 2 clauses 167 7.71%
Previous 1 clauses 1,180 54.45%
In the same clauses 511 23.58%
Next 1 clauses 162 7.47%
Next 2 clauses 48 2.22%
Next 3 clauses 11 0.51%
Other 42 1.94%

Table 3: Cause Position of Each Emotion

tors have different opinion on one instance at clause
level, we involve a third annotator as the arbitrator.
In the phrase level, we use the larger boundary of
the two annotations when they have the same anno-
tation at the clause level. We reach 0.9287 for the
kappa value on clause level annotation which con-
firmed the reliability of our annotation.

4 Event-Driven Emotion Cause Extraction

Due to the complexity of annotation in emotion
cause identification, the size of annotated corpus is
usually small. Since we aim to use machine learning
methods to automatically learn and identify caus-
es, we use a convolution kernel to detect all pos-
sible combinations in the syntactic structure. This
allows learning from syntactic representations for e-
motion cause extraction. The basic idea of our pro-
posed method is to use a tree-structure representa-
tion to capture features for emotion cause identifica-
tion. For training data, we extract all valid tree struc-
tures for each event, referred to as the ETs (Even-
t Trees). If an event is a cause, the corresponding
ET is positive. Otherwise, the corresponding ET is
negative. Then, we train a convolution kerneland a

POS/phrase type Number Percentage
Noun/Noun phrase 147 6.78%
Verb/Verb phrase 2020 93.21%

Table 4: Distribution of the POS Tag

1642

multi-kernel SVMs using the training set to classi-
fy candidate ETs in the testing set. Since more than
97% emotion keywords only have one cause, and
more than 95% causes are near the emotion key-
words, candidate ETs are extracted from the context
of emotion keywords. We only choose the ET with
the highest probability in the classification result as
the emotion cause.

4.1 Event Tree Construction

Even though there are related works on event identi-
fication in emotion cause detection, there is no for-
mal definition of events In area of artificial intelli-
gence (AI), researchers, such as Radinsky (Radinsky
et al., 2012), gave a formal definition of an even-
t as “action, actor, object, instrument, location and
time”. In our work, we need to give clear definition
of event first.

In emotion cause extraction, the components of
an event should be simpler. We are only interested
in the action, the actor and the object, which are de-
noted as P , O1, O2, respectively, following the con-
ventions in AI. Since Chinese is a SVO language,
the actor is the subject and the action is the verb.
The subject and the object of a sentence may have
attributes and a predicate may have adverbial and
complement. Since these components may also be
helpful in emotion cause extraction, we formally de-
fine an emotion cause event as a 7-tuple:
e = (AttO1 , O1, Adv, P, Cpl, AttO2 , O2).
Here, AttO1 is the attribute of O1；AttO2 is the

attribute of O2；Adv is the adverbial of the predi-
cate P；and Cpl is P ’s complement. In case syn-
tactic components are not present, NIL values are
used. Note that the main cue in an event is P , the ac-
tion. So, in our algorithm, we extract all verbs from
the text, and use dependency parsing4 to extract all
relevant syntactic components specified in e. Then,
we can construct an ET.

An ET has has a fixed height of four levels. The
top level is the root node. Since Chinese is a SVO
language, the descendant of the root is S(subject),
V(verb), and O(object). Then, the seven even-
t components can be categorized and filled up in
the relevant slots. (AttO1 ,O1) belongs to S(O1),
(Adv,P ,Cpl) belong to V , and (AttO2 ,O2) belongs

4https://github.com/HIT-SCIR/ltp

Figure 1: Example ETs of Emotion Causes.

toO. Then we can get the ET based on the definition
of an event.

Let us review Ex.1 and Ex.2 again. There are
three emotion cause events below with their corre-
sponding ETs shown in Figure 1.

1.“说起自己的荣誉/Talking about his honors”
2.“对方拖欠工程款/ the hold back wages by employ-

ers”
3.“家中又急需用钱/ her family asked for money ur-

gently”

After the construction of the ETs, emotion cause
extraction becomes a classification problem. If an
ET is an emotion cause, the label should be positive.
Otherwise, the label should be negative. A binary
classifier should be used.

4.2 Emotion Cause Extraction
After the construction of ETs, we obtain positive and
negative ET samples. Due to small amount of train-
ing samples, it is necessary to capture all features in
the ETs. We choose convolution kernel based SVMs
because it can search all possible syntactic features
under a tree structure.

Convolution kernel function

1643

The convolution kernel, also known as the tree k-
ernel (Collins and Duffy, 2002), is widely used in
many NLP tasks (Srivastava et al., 2013; Moschitti,
2006). For any two inputs T1 and T2 based on a tree
structure , the kernel is defined as:

K(T1, T2) =
∑

n1∈T1

∑

n2∈T2

δ(n1, n2). (1)

Here, n1 and n2 are tree nodes. δ is a function
defined recursively:
1.δ(n1, n2) = 0 if the productions of n1 and n2 are
different; 2.Else, δ(n1, n2) = 1 if n1 and n2 are
matching in pre-terminals; 3.Otherwise,

δ(n1, n2) =
∏

i

(1 + δ(c(n1, i), c(n2, i))).

Here, c(n, i) is the i-th node of n.
However, the above tree kernel definition does

not consider terminals, which means that the actual
words in a sentence are ignored. As emotions causes
are semantically meaningful, we need to incorporate
lexical information into the convolution kernel.

Modified kernel function
In order to distinguish different ETs, we need to

modify the definition of the tree kernel to include
lexical words in a clause. So we add one more defi-
nition to include the terminals:
4.If n1 and n2 are terminal nodes, δ(n1, n2) = 1
if and only if n1 and n2 are synonyms. Otherwise
δ(n1, n2) = 0.

Here a synonym is defined in Tongyici Cilin (Ex-
tended).5 which has 17,817 synonyms and 77,343
words. We use the synonym rather than word match-
ing because the size of the corpus is limited. simple
word matching is quite sparse.

Let KET−O denote the original kernel and
KET−M denote the modified kernel, respectively.
It can be easily proven that KET−M is a valid ker-
nel function. Following the notation in (Collins and
Duffy, 2002), KET−O =

∑
i
hi(T1) · hi(T2), where

hi(T1) =
∑

n1∈N1

Ii(n1), hi(T2) =
∑

n2∈N2

Ii(n2) and

the function Ii(n) is 1 if the sub-tree i is rooted
at node n and 0 otherwise. So the original tree k-
ernel is an inner product and the kernel matrix is

5http://ir.hit.edu.cn/demo/ltp/Sharing Plan.htm

semi-definite. In our modified kernel, the func-
tion Ii(n) is more complicated. Beside the defi-
nition above, it has the following additional defi-
nition : Ii(n) is 1 if i is a terminal node and it
is a synonym of n. The new indicator is marked
as I ′i(n). Then we have: KET−M (T1, T2) =∑
n1∈T1

∑
n2∈T2

∑
i
I ′i(n1)I

′
i(n2). This means that the

modified kernel is symmetrical and the kernel matrix
is semi-definite. In our work, KET−M uses SVM
optimization and the code is from SVM-light-TK6.

Multi-kernel function
Since there are only syntactic information and

synonyms in the convolution kernel based method,
we need to add some lexical features. Given a 7-
tuple event e, we obtain the bag-of-words based or
word embedding based representation for each com-
ponent in e, and the distance between a component
and emotion keywords are used as the features, re-
spectively. Let the features of each component in e
be Ri, for every i ∈ e. Then, we can capture the
feature set, F , of an ET by a joint operation, called
the ET features:

F = {RAttO1
⊕RO1 ⊕ ...⊕RAttO2

}. (2)

We can join the ET features with syntactic informa-
tion by a multi-kernel function. For any two ETs T1
and T2, with the respective features F1 and F2, the
two new multi-kernels can be defined as:

Knew+O(T1, T2) = KET−O(T1, T2) +Kvec(F1, F2), (3)

Knew∗O(T1, T2) = KET−O(T1, T2)×Kvec(F1, F2), (4)

Knew+M (T1, T2) = KET−M (T1, T2) +Kvec(F1, F2), (5)

Knew∗M (T1, T2) = KET−M (T1, T2)×Kvec(F1, F2). (6)

Here, Kvec denotes a kernel function which can
be a linear kernel, a polynomial kernel or a Gaussian
kernel. The next step is to train the classifier based
on the multi-kernel function.

The training data is already in labeled ET format.
To prepare testing data, we extract all ETs from a
given instance as candidate ETs. A classifier is used
to obtain the probability of emotion cause for each
ET to produce a ranked list of candidate ETs. The
ET with the highest rank serves as the cause event
for the current instance.

6http://disi.unitn.it/moschitti/Tree-Kernel.htm

1644

5 Performance Evaluations

5.1 Experimental Setup
In the experiments, we stochastically select 90% of
the dataset as training data and 10% as testing da-
ta. In order to obtain statistically credible results,
we evaluate our methods and the reference methods
25 times. We conduct two sets of experiments. The
first one evaluates the performance at the clause lev-
el to identify the clauses that contain emotion caus-
es. The second one evaluates emotion causes using
verb classification. This is because 93.21% of emo-
tion causes are verb/verb phrase and verbs serve as
the action component in event definition.

5.2 Emotion Cause Extraction
We use the commonly accepted measure proposed
by Lee (Lee et al., 2010) for emotion cause extrac-
tion (Gao et al., 2015; Li and Xu, 2014). In this
measure, if a roposed emotion cause covers the an-
notated answer, the sequence is considered correct.
Te precision, recall, and F-measure are defined by

Precision =

∑
correct cause1∑
proposed cause1

,

Recall =

∑
correct cause1∑

annotated cause1
,

F −measure = 2× Precision×Recall
Precision+Recall

.

In the experiment, evaluation is conducted for the
following works:
1.RB(Rule based method): Among several rule
based methods (Lee et al., 2010; Gui et al., 2014;
Li and Xu, 2014). We use lee2010’s rules (listed in
Appendix of this paper).
2.CB(Commonsense based method): In order to re-
produce this method (Russo et al., 2011), we use
the Chinese Emotion Cognition Lexicon (Xu et al.,
2013) as the commonsense. The lexicon contains
more than 5,000 emotion stimulations and their cor-
responding reflection words.
3.ML(Rule base features for machine learning):
Rules are used as features with other manual fea-
tures for emotion cause classification (Chen et al.,
2010).
4. Kvec : Features are defined in Formula (2) in the
training of classifier.

Method Precision Recall F-measure
RB 0.6747 0.4287 0.5243
CB 0.2672 0.7130 0.3887
RB+CB 0.5435 0.5307 0.5370
RB+CB+ML 0.5921 0.5307 0.5597
Kvec 0.4200 0.4375 0.4285
Kword2vec 0.4301 0.4233 0.4136
KET−O 0.3982 0.4134 0.4057
KET−M 0.4583 0.4745 0.4662
Knew+O 0.6446 0.6779 0.6608
Knew∗O 0.6492 0.6701 0.6595
Knew+M 0.6588 0.6927 0.6752
Knew∗M 0.6673 0.6841 0.6756

Table 5: Performance on the Dataset

5.Kword2vec: Word2vec (Mikolov et al., 2013) is
used to learn word representation. Use the repre-
sentation according to Formula (2) in the training of
classifier.
6.KET−O : This is the original tree kernel.
7.KET−M : This is the modified tree kernel in For-
mula (1).
8.Knew+O, Knew∗O, Knew+M and Knew∗M : Use
the multi-kernel gives by formulas from (3) to (6).

The performance result is given in Table 5. A-
mong all methods, Knew∗M achieves the top perfor-
mance in F-measure. Compared to other methods,
the improvement is significant with p-value less than
0.01 in t-test.

Even though RB achieves the top precision, its F-
measure is limited by the low recall. Since CB is
opposite to RB, the performance by RB+CB is im-
proved. However, the improvement is quite limited,
at 0.0127 in F-measure. The F-measure of our re-
produced RB is similar to mentioned result of other
references (Gui et al., 2014; Li and Xu, 2014). They
repeat Lee’s (Lee et al., 2010) method and achieve
the F-measure with 0.55 more or less.

(Chen et al., 2010) reported that by using hand-
crafted rules as features to train a classifier with
some additional features such as conjunction, action
and epistemic verbs, performance can be improved
significantly. In our experiment, the result is oppo-
site to this claim. The main reason is the samples
in (Chen et al., 2010) are less complex. About 85%
of the emotion causes are in the same clause where
the emotion keywords are. Our corpus is quite dif-
ferent. The percentage of causes in the same clause
where the emotion keyword itself is has only about

1645

23.6%. (Chen et al., 2010)’s method does not han-
dle long distance relations well. This explains why
it does not work well for our dataset. Although
(RB+CB+ML) does not perform well, there is still
0.0334 improvement in F-measure compare to RB.
Among our proposed methods, Kvec on the ET fea-
ture achieves 0.4285 in F-measure. Compare to CB
and ML, the performance is not satisfactory. How-
ever, as a simple feature to represent lexical informa-
tion, the performance is acceptable. word2vec also
yield similar result. Maybe the joint operation is too
simple to handle composition.

For the modified tree kernel KET−M , the perfor-
mance is 0.0605 higher than the original tree ker-
nel KET−O in F-measure. It means that the consid-
eration of terminal node improves the performance
of the tree kernel significantly. The modified tree
kernel KET−M is also 0.0377 higher than Kvec,
and 0.0526 higher than Kword2vec in F-measure.
This means kernel based syntactic representation
does have better generalization ability. The origi-
nal kernel function KET−O has syntactic informa-
tion but no lexicon, and it not only underperforms
compared to KET−M but also Kvec and Kword2vec.
This demonstrates our modified kernel function can
effectively turn an inferior method into a superior
one. Compared to rule based method, the perfor-
mance still needs to be enhanced and a multi-kernel
is necessary. After the combination with ET feature
using a multi-kernel, the performance of Knew∗M
achieves a higher level with 0.6756 in F-measure.
Compare to RB, the improvement in F-measure is
0.1513. Compare to the combination of existing
methods, the improvement is 0.1159. The reason
is that our method represents events at the syntactic
level. Synonym information gives the model more
generalization ability.

5.3 Verb Classification for Emotion Cause
In this section, we examine the performance of ETs
classification with respect to verbs identified in the
emotion clauses.

ETs Classification
Our method is based on ETs classification to

choose the candidate ET with the highest probabili-
ty. The performance is measured by the verbs in the
identified ET. Results are shown in Table 6.

Note that Kword2vec performs much better than

Method Precision Recall F-measure
Kvec 0.3500 0.2951 0.3192
Kword2vec 0.3200 0.4833 0.3848
KET−O 0.3906 0.2773 0.3228
KET−M 0.3978 0.3303 0.3473
Knew+O 0.4211 0.7219 0.5319
Knew∗O 0.4197 0.7305 0.5331
Knew+M 0.4407 0.7694 0.5651
Knew∗M 0.4532 0.7504 0.5646

Table 6: Performance on ETs Classification

Kvec in verb identification, contrary to their simi-
lar performance in clause identification. The rea-
son is that extraction result is based on ranking and
only top ranked event affects the performance. In
other words, precision is more important than re-
call here. For the same reason, Knew+M is better
than Knew∗M in classification of ETs, although on-
ly marginally. Nonetheless, using revised convolu-
tion kernel with multi-kernel training is still signifi-
cantly better than the original kernelKnew∗M which
achieves the best performance in Table 5. When the
precision of the two methods are similar, such as
KET−O and KET−M , the effect of recall becomes
important.

The multi-kernel not only achieves the best per-
formance on both precision and recall, the increase
in performance is also significant with at least
0.2173 (between KET−M and Knew∗M). Obvious-
ly, multi-kernel is not just a simple voting or joint
for the components, it benefits from two kernels to
achieve better performance.

5.4 Error Analysis
There are mainly three types of errors in our model.
We use case examples to show them.

a) Cascading Events
In some cases, events may happen like a chain re-

action. An event that leads to an emotion may be the
consequent of another event. Identifying the right
event in a chain is more challenging. In the follow-
ing example:

Ex.3: 约兰·沃森坠入冰冷的水中。<cause>刺骨
的冰水</cause>让他感到极其寒冷与<keywords>害
怕</keywords>，约兰·沃森慌忙用不太流利的中文
大呼“救命”。

John Watson fell into icy water. <cause>The
chilly water</cause> made him feel so cold and
<keywords>scared</keywords> John Watson had to

1646

use his broken Chinese to call for help.

the emotion cause should be “刺骨的冰水/the
chilly water”. Our method output “坠入冰冷的
水中/fell into icy water” as the emotion cause with
probability 60.83%. The probability of the correc-
t cause is 58.89%. As a probability based method,
our method does not have the ability to analyze the
sequence of events nor the relation between them.

b) Sensory verbs
Sensory verbs usually indicate the emotion cause.

There are exceptional cases as shown below:
Ex.4: 了解霸凌事件后。教务主任说，这三名学生

知道错了也感到很<keywords>害怕</keywords>，
他们<cause>可能面临劳动服务</cause>

After investigation on bullying, the head says that
the students realized their mistake and were also
<keywords>scared</keywords>. They <cause> may
need to do community service</cause>

In this case, the cause of “scared” is the punish-
ment of community service. But the template of “知
道…感到/realized ... and felt” usually indicate that
there is an emotion cause between the two senso-
ry verbs. Our algorithm gives “知道错了/ realized
their mistake” a probability of 61.65% as a cause, al-
though this is incorrect. But, this actually indicates
that our method can learn latent patterns in text.

c) Coverage of cause candidates
In the construction of ETs, we use actions as the

cue to construct candidate events. However, 6.78%
of our clauses do not have action words. So, these
clauses are not selected as candidates.

6 Conclusion

In this paper, we present our work on emotion cause
extraction. Due to the lack of open resources for this
area of study, we first construct an annotated dataset
from news text which will be released for public use.
We also propose an event-driven emotion cause ex-
traction method to capture the triggering events e-
motion changes. In this method, we propose a 7-
tuple representation of events using syntactic struc-
tures to identify events. Based on this structured rep-
resentation of events and the inclusion of lexical fea-
tures, a convolution kernel based learning method is
designed to train a multi-kernel classifier to identify
emotion cause events. Compared to manually con-
structed rules and commonsense knowledge based

methods, our proposed model can automatically ob-
tain structure features and lexical features to achieve
state-of-the-art performance on this dataset.

Acknowledgment
This work was supported by the National Natural Sci-

ence Foundation of China 61370165, 61632011, National
863 Program of China 2015AA015405, Shenzhen Pea-
cock Plan Research Grant KQCX20140521144507925
and Shenzhen Foundational Research Funding J-
CYJ20150625142543470, Guangdong Provincial Engi-
neering Technology Research Center for Data Science
2016KF09. The project is also partially supported by HK
GRF grant PolyU 152111/14E.

Appendix

No. Rules

1
i) C(B/F) + I(F) + E(F) + K(F)
ii) E = the nearest Na/Nb/Nc/Nh after I in F
iii) C = the nearest (N)+(V)+(N) before I in F/B

2
i) E(B/F) + II/IV/V/VI(B/F) + C(B/F) + K(F)
ii) E=the nearest Na/Nb/Nc/Nh before II/IV/V/VI in B/F
iii) C = the nearest (N)+(V)+(N) before K in F

3
i) II/IV/V/VI (B) + C(B) + E(F) + K(F)
ii) E = the nearest Na/Nb/Nc/Nh before K in F
iii) C = the nearest (N)+(V)+(N) after II/IV/V/VI in B

4
i) E(B/F) + K(F) + IV/VII(F) + C(F/A)
ii) E = a: the nearest Na/Nb/Nc/Nh before K in F; b: the first Na/Nb/Nc/Nh in B
iii) C = the nearest (N)+(V)+(N) after IV/VII in F/A

5
i) E(F)+K(F)+VI(A)+C(A)
ii) E = the nearest Na/Nb/Nc/Nh before K in F
iii) C = the nearest (N)+(V)+(N) after VI in A

6
i) I(F) + E(F) + K(F) + C(F/A)
ii) E = the nearest Na/Nb/Nc/Nh after I in F
iii) C = the nearest (N)+(V)+(N) after K in F or A

7
i) E(B/F) + yue4 C yue4 K “the more C the more K” (F)
ii) E = the nearest Na/Nb/Nc/Nh before the first yue4 in B/F
iii) C = the V in between the two yue4’s in F

8
i) E(F) + K(F) + C(F)
ii) E = the nearest Na/Nb/Nc/Nh before K in F
iii) C = the nearest (N)+(V)+(N) after K in F

9
i) E(F) + IV(F) + K(F)
ii) E = the nearest Na/Nb/Nc/Nh before IV in F
iii) C = IV+(an aspectual marker) in F

10
i) K(F) + E(F) + de “possession”(F) + C(F)
ii) E = the nearest Na/Nb/Nc/Nh after K in F
iii) C = the nearest (N)+V+(N)+“的”+N after de in F

11
i) C(F) + K(F) + E(F)
ii) E = the nearest Na/Nb/Nc/Nh after K in F
iii) C = the nearest (N)+(V)+(N) before K in F

12
i) E(B) + K(B) + III (B) + C(F)
ii) E = the nearest Na/Nb/Nc/Nh before K in F
iii) C = the nearest (N)+(V)+(N) after III in F

13
i) III(B) + C(B) + E(F) + K(F)
ii) E = the nearest Na/Nb/Nc/Nh before K in F
iii) C = the nearest (N)+(V)+(N) after III in B

14
i) C(B) + E(F) + K(F)
ii) E = the nearest Na/Nb/Nc/Nh before K in F
iii) C = the nearest (N)+(V)+(N) before K in B

15
i) E(B) +C(B) + K(F)
ii) E = the first Na/Nb/Nc/Nh in B
iii) C = the nearest (N)+(V)+(N) before K in B

Table 7: Linguistic Rules in RB

Here, C = Cause event; E = Experiencer; K = Key-
word/emotion verb; B = Clause before the focus clause;
F = Focus clause/the clause containing the emotion ver-
b; A = Clause after the focus clause; I to VII are cue
words in (Lee et al., 2010); Na/Nb/Nc/Nh is common
noun/proper noun/place noun/pronoun.

1647

References

Daniel Beck, Trevor Cohn, and Lucia Specia. 2014. Joint
emotion analysis via multi-task gaussian processes. In
EMNLP, pages 1798–1803.

Yung-Chun Chang, Cen-Chieh Chen, Yu-Lun Hsieh, and
WL Hsu. 2015. Linguistic template extraction for
recognizing reader-emotion and emotional resonance
writing assistance. ACL-IJCNLP, pages 775–780.

Ying Chen, Sophia Yat Mei Lee, Shoushan Li, and Chu-
Ren Huang. 2010. Emotion cause detection with lin-
guistic constructions. In Proceedings of the 23rd In-
ternational Conference on Computational Linguistic-
s, pages 179–187. Association for Computational Lin-
guistics.

Michael Collins and Nigel Duffy. 2002. New rank-
ing algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. In Pro-
ceedings of the 40th annual meeting on association for
computational linguistics, pages 263–270. Association
for Computational Linguistics.

Dipankar Das and Sivaji Bandyopadhyay. 2010. Finding
emotion holder from bengali blog texts—an unsuper-
vised syntactic approach. In PACLIC, pages 621–628.

Paul Ekman. 1984. Expression and the nature of emo-
tion. Approaches to emotion, 3:19–344.

Wei Gao, Shoushan Li, Sophia Yat Mei Lee, Guodong
Zhou, and Chu-Ren Huang. 2013. Joint learning on
sentiment and emotion classification. In Proceedings
of the 22nd ACM international conference on Confer-
ence on information & knowledge management, pages
1505–1508. ACM.

Kai Gao, Hua Xu, and Jiushuo Wang. 2015. A rule-
based approach to emotion cause detection for chi-
nese micro-blogs. Expert Systems with Applications,
42(9):4517–4528.

Diman Ghazi, Diana Inkpen, and Stan Szpakowicz.
2015. Detecting emotion stimuli in emotion-bearing
sentences. In Computational Linguistics and Intelli-
gent Text Processing, pages 152–165. Springer.

Lin Gui, Li Yuan, Ruifeng Xu, Bin Liu, Qin Lu, and
Yu Zhou. 2014. Emotion cause detection with lin-
guistic construction in chinese weibo text. In Natural
Language Processing and Chinese Computing, pages
457–464. Springer.

Takayuki Hasegawa, Nobuhiro Kaji, Naoki Yoshinaga,
and Masashi Toyoda. 2013. Predicting and eliciting
addressee’s emotion in online dialogue. In ACL (1),
pages 964–972.

Sophia Yat Mei Lee, Ying Chen, and Chu-Ren Huang.
2010. A text-driven rule-based system for emo-
tion cause detection. In Proceedings of the NAACL
HLT 2010 Workshop on Computational Approaches to

Analysis and Generation of Emotion in Text, pages 45–
53. Association for Computational Linguistics.

Weiyuan Li and Hua Xu. 2014. Text-based emotion clas-
sification using emotion cause extraction. Expert Sys-
tems with Applications, 41(4):1742–1749.

Huanhuan Liu, Shoushan Li, Guodong Zhou, Chu-Ren
Huang, and Peifeng Li. 2013. Joint modeling of news
reader’s and comment writer’s emotions. In ACL (2),
pages 511–515.

Bing Liu. 2015. Sentiment analysis: Mining opinion-
s, sentiments, and emotions. Cambridge University
Press.

Kun-Hu Luo, Zhi-Hong Deng, Liang-Chen Wei, and
Hongliang Yu. 2015. Jeam: A novel model for
cross-domain sentiment classification based on emo-
tion analysis. In EMNLP, pages 2503–2508.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111–3119.

Saif M Mohammad and Peter D Turney. 2013. Crowd-
sourcing a word–emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

Mitra Mohtarami, Man Lan, and Chew Lim Tan. 2013.
Probabilistic sense sentiment similarity through hid-
den emotions. In ACL (1), pages 983–992.

Alessandro Moschitti. 2006. Efficient convolution k-
ernels for dependency and constituent syntactic trees.
In Machine Learning: ECML 2006, pages 318–329.
Springer.

Gaoyan Ou, Wei Chen, Tengjiao Wang, Zhongyu Wei,
Binyang Li, Dongqing Yang, and Kam-Fai Wong.
2014. Exploiting community emotion for microblog
event detection. In EMNLP, pages 1159–1168.

Robert Plutchik. 1980. Emotion: A psychoevolutionary
synthesis.

Ashequl Qadir and Ellen Riloff. 2014. Learning emo-
tion indicators from tweets: Hashtags, hashtag pattern-
s, and phrases. In EMNLP, pages 1203–1209.

Changqin Quan and Fuji Ren. 2009. Construction of a
blog emotion corpus for chinese emotional expression
analysis. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing:
Volume 3-Volume 3, pages 1446–1454. Association for
Computational Linguistics.

Kira Radinsky, Sagie Davidovich, and Shaul Markovitch.
2012. Learning to predict from textual data. Journal
of Artificial Intelligence Research, pages 641–684.

Irene Russo, Tommaso Caselli, Francesco Rubino, Ester
Boldrini, and Patricio Martı́nez-Barco. 2011. Emo-
cause: an easy-adaptable approach to emotion cause
contexts. In Proceedings of the 2nd Workshop on

1648

Computational Approaches to Subjectivity and Senti-
ment Analysis, pages 153–160. Association for Com-
putational Linguistics.

Shashank Srivastava, Dirk Hovy, and Eduard H Hovy.
2013. A walk-based semantically enriched tree ker-
nel over distributed word representations. In EMNLP,
pages 1411–1416.

Jacopo Staiano and Marco Guerini. 2014. De-
pechemood: a lexicon for emotion analysis
from crowd-annotated news. arXiv preprint arX-
iv:1405.1605.

Jonathan H Turner. 2000. On the origins of human e-
motions: A sociological inquiry into the evolution of
human affect. Stanford University Press Stanford, CA.

Linhong Xu, Hongfei Lin, Yu Pan, Hui Ren, and Jianmei
Chen. 2008. Constructing the affective lexicon ontol-
ogy. Journal of the China Society for Scientific and
Technical Information, 27(2):180–185.

Jun Xu, Ruifeng Xu, Qin Lu, and Xiaolong Wang.
2012. Coarse-to-fine sentence-level emotion classifi-
cation based on the intra-sentence features and senten-
tial context. In Proceedings of the 21st ACM interna-
tional conference on Information and knowledge man-
agement, pages 2455–2458. ACM.

Ruifeng Xu, Chengtian Zou, Yanzhen Zheng, Xu Jun, Lin
Gui, Bin Liu, and Xiaolong Wang. 2013. A new e-
motion dictionary based on the distinguish of emotion
expression and emotion cognition. Journal of Chinese
Information Processing, 27(6):82–90.

Min Yang, Dingju Zhu, and Kam-Pui Chow. 2014. A
topic model for building fine-grained domain-specific
emotion lexicon. In ACL (2), pages 421–426.

1649

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1650–1659,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Neural Sentiment Classification with User and Product Attention

Huimin Chen1, Maosong Sun1,2∗, Cunchao Tu1, Yankai Lin1, Zhiyuan Liu1

1Department of Computer Science and Technology,
State Key Lab on Intelligent Technology and Systems,

National Lab for Information Science and Technology, Tsinghua University, Beijing, China
2Beijing Advanced Innovation Center for Imaging Technology,

Capital Normal University, Beijing, China

Abstract

Document-level sentiment classification aims
to predict user’s overall sentiment in a doc-
ument about a product. However, most of
existing methods only focus on local text in-
formation and ignore the global user pref-
erence and product characteristics. Even
though some works take such information
into account, they usually suffer from high
model complexity and only consider word-
level preference rather than semantic levels.
To address this issue, we propose a hierarchi-
cal neural network to incorporate global user
and product information into sentiment clas-
sification. Our model first builds a hierar-
chical LSTM model to generate sentence and
document representations. Afterwards, user
and product information is considered via at-
tentions over different semantic levels due to
its ability of capturing crucial semantic com-
ponents. The experimental results show that
our model achieves significant and consistent
improvements compared to all state-of-the-
art methods. The source code of this paper
can be obtained from https://github.
com/thunlp/NSC.

1 Introduction

Sentiment analysis aims to analyze people’s sen-
timents or opinions according to their generated
texts and plays a critical role in the area of data
mining and natural language processing. Recently,
sentiment analysis draws increasing attention of re-
searchers with the rapid growth of online review

∗Corresponding author: M. Sun (sms@tsinghua.edu.cn)

sites such as Amazon, Yelp and IMDB, due to its
importance to personalized recommendation.

In this work, we focus on the task of document-
level sentiment classification, which is a fundamen-
tal problem of sentiment analysis. Document-level
sentiment classification assumes that each docu-
ment expresses a sentiment on a single product and
targets to determine the overall sentiment about the
product.

Most existing methods take sentiment classifica-
tion as a special case of text classification problem.
Such methods treat annotated sentiment polarities
or ratings as categories and apply machine learning
algorithms to train classifiers with text features, e.g.,
bag-of-words vectors (Pang et al., 2002). Since the
performance of text classifiers heavily depends on
the extracted features, such studies usually attend to
design effective features from text or additional sen-
timent lexicons (Ding et al., 2008; Taboada et al.,
2011).

Motivated by the successful utilization of deep
neural networks in computer vision (Ciresan et al.,
2012), speech recognition (Dahl et al., 2012) and
natural language processing (Bengio et al., 2006),
some neural network based sentiment analysis mod-
els are proposed to learn low-dimensional text fea-
tures without any feature engineering (Glorot et al.,
2011; Socher et al., 2011; Socher et al., 2012;
Socher et al., 2013; Kim, 2014). Most proposed
neural network models take the text information in
a sentence or a document as input and generate the
semantic representations using well-designed neu-
ral networks. However, these methods only focus

1650

on the text content and ignore the crucial character-
istics of users and products. It is a common sense
that the user’s preference and product’s characteris-
tics make significant influence on the ratings.

To incorporate user and product information into
sentiment classification, (Tang et al., 2015b) bring
in a text preference matrix and a representation vec-
tor for each user and product into CNN sentiment
classifier. It modifies the word meaning in the in-
put layer with the preference matrix and concate-
nates the user/product representation vectors with
generated document representation before softmax
layer. The proposed model achieves some im-
provements but suffers the following two problems:
(1) The introduction of preference matrix for each
user/product is insufficient and difficult to be well
trained with limited reviews. For example, most
users in IMDB and Yelp only have several tens of
reviews, which is not enough to obtain a well-tuned
preference matrix. (2) The characteristics of user
and product should be reflected on the semantic
level besides the word level. For example, a two
star review in Yelp said “great place to grab a steak
and I am a huge fan of the hawaiian pizza · · · but
I don’t like to have to spend 100 bucks for a diner
and drinks for two”. It’s obvious that the poor rating
result mainly relies on the last sentence compared
with others.

To address these issues, we propose a novel hier-
archical LSTM model to introduce user and prod-
uct information into sentiment classification. As
illustrated in Fig. 1, our model mainly consists of
two parts. Firstly, we build a hierarchical LSTM
model to generate sentence-level representation and
document-level representation jointly. Afterwards,
we introduce user and product information as atten-
tions over different semantic levels of a document.
With the consideration of user and product informa-
tion, our model can significantly improve the per-
formance of sentiment classification in several real-
world datasets.

To summarize, our effort provide the following
three contributions:

(1) We propose an effective Neural Sentiment
Classification model by taking global user and prod-
uct information into consideration. Comparing
with (Tang et al., 2015b), our model contains much

less parameters and is more efficient for training.
(2) We introduce user and product information

based attentions over different semantic levels of a
document. Traditional attention-based neural net-
work models only take the local text information
into consideration. In contrast, our model puts for-
ward the idea of user-product attention by utilizing
the global user preference and product characteris-
tics.

(3) We conduct experiments on several real-
world datasets to verify the effectiveness of our
model. The experimental results demonstrate that
our model significantly and consistently outper-
forms other state-of-the-art models.

2 Related Work

With the trends of deep learning in computer vi-
sion, speech recognition and natural language pro-
cessing, neural models are introduced into senti-
ment classification field due to its ability of text
representation learning. (Glorot et al., 2011) use
Stacked Denoising Autoencoder in sentiment clas-
sification for the first time. Socher conducts a se-
ries of recursive neural network models to learn
representations based on the recursive tree struc-
ture of sentences, including Recursive Autoen-
coder (RAE) (Socher et al., 2011), Matrix-Vector
Recursive Neural Network (MV-RNN) (Socher et
al., 2012) and Recursive Neural Tensor Network
(RNTN) (Socher et al., 2013). Besides, (Kim, 2014)
and (Johnson and Zhang, 2014) adopt convolution
neural network (CNN) to learn sentence representa-
tions and achieve outstanding performance in senti-
ment classification.

Recurrent neural network also benefits sentiment
classification because it is capable of capturing the
sequential information. (Li et al., 2015), (Tai et
al., 2015) investigate tree-structured long-short term
memory (LSTM) networks on text or sentiment
classification. There are also some hierarchical
models proposed to deal with document-level senti-
ment classification (Tang et al., 2015a; Bhatia et al.,
2015), which generate different levels (e.g., phrase,
sentence or document) of semantic representations
within a document. Moreover, attention mecha-
nism is also introduced into sentiment classification,
which aims to select important words from a sen-

1651

Word

Representation

LSTM

Layer

LSTM

Layer

Sentence

Representation

Document

Representation

Sentence

Level

Word

Level

Sentence Attention

Word Attention

1
1w 2

1w
1

1l
w

1
1h 2

1h l
1

1
h

1h 2h hn

1s

d

u p

1S 2S Sn

1
2w

2
2w 2

lw
2

21
2h l

2

2
h2h

2s

2
nw

2
nh

1
nw n

nl
w

1
nh l

n

n
h

sn

Figure 1: The architecture of User Product Attention based Neural Sentiment Classification model.

tence or sentences from a document (Yang et al.,
2016).

Most existing sentiment classification models ig-
nore the global user preference and product charac-
teristics, which have crucial effects on the sentiment
polarities. To address this issue, (Tang et al., 2015b)
propose to add user/product preference matrices and
representation vectors into CNN models. Neverthe-
less, it suffers from high model complexity and only
considers word-level preference rather than seman-
tic levels. In contrast, we propose an efficient neural
sentiment classification model with users and prod-
ucts to serve as attentions in both word and semantic
levels.

3 Methods

In this section, we will introduce our User Prod-
uct Attention (UPA) based Neural Sentiment Clas-
sification (NSC) model in detail. First, we give the
formalizations of document-level sentiment classi-
fication. Afterwards, we discuss how to obtain doc-
ument semantic representation via the Hierarchical
Long Short-term Memory (HLSTM) network . At
last, we present our attention mechanisms which in-
corporates the global information of users and prod-
ucts to enhance document representations. The en-
hanced document representation is used as features
for sentiment classification. An overall illustration
of UPA based NSC model is shown in Fig. 1.

3.1 Formalizations

Suppose a user u ∈ U has a review about a prod-
uct p ∈ P . We represent the review as a document d
with n sentences {S1,S2, · · · ,Sn}. Here, li is the
length of i-th sentence. The i-th sentence Si con-
sists of li words as {wi

1, w
i
2, · · · , wi

li
}. Document-

level sentiment classification aims to predict the
sentiment distributions or ratings of these reviews
according to their text information.

3.2 Neural Sentiment Classification Model

According to the principle of compositionality
(Frege, 1892), we model the semantic of a docu-
ment through a hierarchical structure composed of
word-level, sentence-level and document-level. To
model the semantic representations of sentences, we
adopt Long Short-Term Memory (LSTM) network
because of its excellent performance on sentiment
classification, especially for long documents. Sim-
ilarly, we also use LSTM to learn document repre-
sentations.

In word level, we embed each word in a sentence
into a low dimensional semantic space. That means,
each word wi

j is mapped to its embedding wi
j ∈ Rd.

At each step, given an input word wi
j , the current

cell state cij and hidden state hi
j can be updated with

the previous cell state cij−1 and hidden state hi
j−1 as

1652

follows:

iij
f ij
oij

 =

σ
σ
σ

 (W ·

[
hi
j−1,w

i
j

]
+ b), (1)

ĉij = tanh(W ·
[
hi
j−1,w

i
j

]
+ b), (2)

cij = f ij � cij−1 + iij � ĉij , (3)

hi
j = oij � tanh(cij), (4)

where i, f ,o are gate activations, � stands for
element-wise multiplication, σ is sigmoid function,
W,b are the parameters we need to train. We then
feed hidden states [hi

1,h
i
2, · · · ,hi

li
] to an average

pooling layer to obtain the sentence representation
si.

In sentence level, we also feed the sentence em-
beddings [s1, s2, · · · , sn] into LSTM and then ob-
tain the document representation d through an aver-
age pooling layer in a similar way.

3.3 User Product Attention
We bring in User Product Attention to capture the

crucial components over different semantic levels
for sentiment classification. Specifically, we em-
ploy word-level UPA to generate sentence represen-
tations and sentence-level UPA to obtain document
representation. We give the detailed implementa-
tions in the following parts.

It is obvious that not all words contribute equally
to the sentence meaning for different users and
products. Hence, in word level, instead of feed-
ing hidden states to an average pooling layer, we
adopt a user product attention mechanism to extract
user/product specific words that are important to
the meaning of sentence. Finally, we aggregate the
representations of those informative words to form
the sentence representation. Formally, the enhanced
sentence representation is a weighted sum of hidden
states as:

si =

li∑

j=1

αi
jh

i
j , (5)

where αi
j measures the importance of the j-th word

for current user and product. Here, we embed each
user u and each product p as continuous and real-
valued vectors u ∈ Rdu and p ∈ Rdp , where du

and dp are the dimensions of user embeddings and
product embeddings respectively. Thus, the atten-
tion weight αi

j for each hidden state can be defined
as:

αi
j =

exp(e(hi
j ,u,p))∑li

k=1 exp(e(h
i
k,u,p))

, (6)

where e is a score function which scores the impor-
tance of words for composing sentence representa-
tion. The score function e is defined as:

e(hi
j ,u,p) =

vT tanh(WHhij +WUu+WPp+ b),
(7)

where WH , WU and WP are weight matrices, v is
weight vector and vT denotes its transpose.

The sentences that are clues to the meaning of
the document vary in different users and products.
Therefore, in sentence level, we also use a attention
mechanism with user vector u and product vector
p in word level to select informative sentences to
compose the document representation. The docu-
ment representation d is obtained via:

d =
n∑

i=1

βihi, (8)

where βi is the weight of hidden state hi in sentence
level which can be calculated similar to the word
attention.

3.4 Sentiment Classification
Since document representation d is hierarchically

extracted from the words and sentences in the doc-
uments, it is a high level representation of the docu-
ment. Hence, we regard it as features for document
sentiment classification. We use a non-linear layer
to project document representation d into the target
space of C classes:

d̂ = tanh(Wcd+ bc). (9)

Afterwards, we use a softmax layer to obtain the
document sentiment distribution:

pc =
exp(d̂c)∑C
k=1 exp(d̂k)

, (10)

where C is the number of sentiment classes, pc is
the predicted probability of sentiment class c. In

1653

Datasets #classes #docs #users #products #docs/user #docs/product #sens/doc #words/sen
IMDB 10 84,919 1,310 1,635 64.82 51.94 16.08 24.54

Yelp 2014 5 231,163 4,818 4,194 47.97 55.11 11.41 17.26
Yelp 2013 5 78,966 1,631 1,633 48.42 48.36 10.89 17.38

Table 1: Statistics of IMDB, Yelp2013 and Yelp2014 datasets

our model, cross-entropy error between gold senti-
ment distribution and our model’s sentiment distri-
bution is defined as loss function for optimization
when training:

L = −
∑

d∈D

C∑

c=1

pgc(d) · log(pc(d)), (11)

where pgc is the gold probability of sentiment class
c with ground truth being 1 and others being 0, D
represents the training documents.

4 Experiments

In this section, we introduce the experimental set-
tings and empirical results on the task of document-
level sentiment classification.

4.1 Experimental Settings
We evaluate the effectiveness of our NSC model

on three sentiment classification datasets with user
and product information: IMDB, Yelp 2013 and
Yelp 2014, which are built by (Tang et al., 2015b).
The statistics of the datasets are summarized in
Table 1. We split the datasets into training, de-
velopment and testing sets in the proportion of
8:1:1, with tokenization and sentence splitting by
Stanford CoreNLP (Manning et al., 2014). We
use two metrics including Accuracy which mea-
sures the overall sentiment classification perfor-
mance andRMSE which measures the divergences
between predicted sentiment classes and ground
truth classes. The Accuracy and RMSE metrics
are defined as:

Accuracy =
T

N
(12)

RMSE =

√∑N
i=1(gdi − pri)2

N
, (13)

where T is the numbers of predicted sentiment rat-
ings that are identical with gold sentiment ratings,

N is the numbers of documents and gdi, pri repre-
sent the gold sentiment rating and predicted senti-
ment rating respectively.

Word embeddings could be randomly initialized
or pre-trained. We pre-train the 200-dimensional
word embeddings on each dataset in (Tang et al.,
2015a) with SkipGram (Mikolov et al., 2013). We
set the user embedding dimension and product em-
bedding dimension to be 200, initialized to zero.
The dimensions of hidden states and cell states in
our LSTM cells are set to 200. We tune the hy-
per parameters on the development sets and use
adadelta (Zeiler, 2012) to update parameters when
training. We select the best configuration based on
performance on the development set, and evaluate
the configuration on the test set.

4.2 Baselines

We compare our NSC model with several base-
line methods for document sentiment classification:

Majority regards the majority sentiment cate-
gory in training set as the sentiment category of each
document in test set.

Trigram trains a SVM classifier with unigrams,
bigrams and trigrams as features.

TextFeature extracts text features including
word and character n-grams, sentiment lexicon fea-
tures, etc, and then train a SVM classifier.

UPF extracts use-leniency features (Gao et al.,
2013) and corresponding product features from
training data, which is further concatenated with the
features in Trigram an TextFeature.

AvgWordvec averages word embeddings in a
document to obtain document representation which
is fed into a SVM classifier as features.

SSWE generates features with sentiment-specific
word embeddings (SSWE) (Tang et al., 2014) and
then trains a SVM classifier.

RNTN + RNN represents each sentence with the
Recursive Neural Tensor Network (RNTN) (Socher
et al., 2013) and feeds sentence representations into

1654

Models IMDB Yelp2013 Yelp2014
Acc. RMSE Acc. RMSE Acc. RMSE

Models without user and product information
Majority 0.196 2.495 0.411 1.060 0.392 1.097
Trigram 0.399 1.783 0.569 0.814 0.577 0.804

TextFeature 0.402 1.793 0.556 0.845 0.572 0.800
AvgWordvec + SVM 0.304 1.985 0.526 0.898 0.530 0.893

SSWE + SVM 0.312 1.973 0.549 0.849 0.557 0.851
Paragraph Vector 0.341 1.814 0.554 0.832 0.564 0.802

RNTN + Recurrent 0.400 1.764 0.574 0.804 0.582 0.821
UPNN (CNN and no UP) 0.405 1.629 0.577 0.812 0.585 0.808

NSC 0.443 1.465 0.627 0.701 0.637 0.686
NSC + LA 0.487 1.381 0.631 0.706 0.630 0.715

Models with user and product information
Trigram + UPF 0.404 1.764 0.570 0.803 0.576 0.789

TextFeature + UPF 0.402 1.774 0.561 1.822 0.579 0.791
JMARS N/A 1.773 N/A 0.985 N/A 0.999

UPNN (CNN) 0.435 1.602 0.596 0.784 0.608 0.764
UPNN (NSC) 0.471 1.443 0.631 0.702 N/A N/A

NSC+UPA 0.533 1.281 0.650 0.692 0.667 0.654
Table 2: Document-level sentiment classification results. Acc.(Accuracy) and RMSE are the evaluation metrics. The best perfor-

mances are in bold in both groups.

the Recurrent Neural Network (RNN). Afterwards,
the hidden vectors of RNN are averaged to obtain
document representation for sentiment classifica-
tion.

Paragraph Vector implements the PVDM (Le
and Mikolov, 2014) for document sentiment clas-
sification.

JMARS considers the information of users and
aspects with collaborative filtering and topic model-
ing for document sentiment classification.

UPNN brings in a text preference matrix and a
representation vector for each user and product into
CNN sentiment classifier (Kim, 2014). It modifies
the word meaning in the input layer with the prefer-
ence matrix and concatenates the user/product rep-
resentation vectors with generated document repre-
sentation before softmax layer.

For all baseline methods above, we report the re-
sults in (Tang et al., 2015b) since we use the same
datasets.

4.3 Model Comparisons
We list the experimental results in Table 2. As

shown in this table, we manually divide the results
into two parts, the first one of which only considers
the local text information and the other one incorpo-

rates both local text information and the global user
product information.

From the first part in Table 2, we observe that
NSC, the basic implementation of our model, sig-
nificantly outperforms all the other baseline meth-
ods which only considers the local text informa-
tion. To be specific, NSC achieves more than 4%
improvements over all datasets compared to typical
well-designed neural network models. It demon-
strates that NSC is effective to capture the sequen-
tial information, which can be a crucial factor to
sentiment classification. Moreover, we employ the
idea of local semantic attention (LA) in (Yang et
al., 2016) and implement it in NSC model (denoted
as NSC+LA). The results shows that the attention
based NSC obtains a considerable improvements
than the original one. It proves the importance of
selecting more meaningful words and sentences in
sentiment classification, which is also a main reason
of introducing global user and product information
in an attention form.

In the second part of Table 2, we show the per-
formance of models with user product information.
From this part, we have the following observations:

(1) The global user and product information is

1655

Basic Model
Level IMDB Yelp2013 Yelp2014

Word Sentence Acc RMSE Acc RMSE Acc RMSE

NSC

AVG AVG 0.443 1.465 0.627 0.701 0.637 0.686
AVG ATT 0.498 1.336 0.632 0.701 0.653 0.672
ATT AVG 0.513 1.330 0.640 0.686 0.662 0.657
ATT ATT 0.533 1.281 0.650 0.692 0.667 0.654

Table 3: Effect of attention mechanisms in word and sentence level. AVG means an average pooling layer, and ATT represents

the attention mechanism in word or sentence level.

Basic Model Attention Type
IMDB Yelp2013 Yelp2014

Acc RMSE Acc RMSE Acc RMSE

NSC

ATT 0.487 1.381 0.631 0.706 0.630 0.715
PA 0.485 1.456 0.630 0.704 0.644 0.676
UA 0.525 1.276 0.645 0.699 0.644 0.680

UPA 0.533 1.281 0.650 0.692 0.667 0.654
Table 4: Effect of user and product attention mechanisms. UA represents the user attention mechanism, and PA indicates the

product attention mechanism.

helpful to neural network based models for senti-
ment classification. With the consideration of such
information in IMDB, UPNN achieves 3% improve-
ment and our proposed NSC+UPA obtains 9% im-
provement in accuracy. The significant improve-
ments state the necessity of considering these global
information in sentiment classification.

(2) Our proposed NSC model with user produc-
tion attention (NSC+UPA) significantly and consis-
tently outperforms all the other baseline methods. It
indicates the flexibility of our model on various real-
world datasets. Note that, we also implement (Tang
et al., 2015b)’s method to deal with user and prod-
uct information on NSC (denoted as UPNN (NSC)).
Though the employment of NSC improves the per-
formance of UPNN, it is still not comparable to our
model. More specifically, UPNN exceed the mem-
ory of our GPU (12G) when dealing with Yelp2014
dataset due to the high complexity of its parame-
ters. Compared to UPNN which utilizes the user
product information with matrices and vectors si-
multaneously, our model only embeds each user and
product as a vector, which makes it suitable to large-
scale datasets. It demonstrates that our NSC model
is more effective and efficient to handle additional
user and product information.

Observations above demonstrate that NSC with
user product attention (NSC+UPA) is capable of
capturing meanings of multiple semantic layers

within a document. Comparing with other user
product based models, our model incorporates
global user product information in an effective and
efficient way. Furthermore, the model is also robust
and achieves consistent improvements than state-of-
the-art methods on various real-world datasets.

4.4 Model Analysis: Effect of Attention
Mechanisms in Word and Sentence Level

Table 3 shows the effect of attention mechanisms
in word or sentence level respectively. From the
table, we can observe that: (1) Both the atten-
tion mechanisms applied in word level and sentence
level improve the performance for document senti-
ment classification compared with utilizing average
pooling in word and sentence level; (2) The atten-
tion mechanism in word level improves more for our
model as compared to sentence level. The reason is
that the word attention mechanism can capture the
informative words in all documents, while the sen-
tence attention mechanism may only work in long
documents with various topics. (3) The model con-
sidering both word level attention and sentence level
attention outperforms the ones considering only one
semantic level attention. It proves that the charac-
teristics of users and products are reflected on mul-
tiple semantic levels, which is also a critical mo-
tivation of introducing User Product Attention into
sentiment classification.

1656

0 100 200 300 400 500 600 700 800 900 1000
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Input document length

A
cc

u
ra

cy

NSC+UPA
UPNN(NSC)
NSC+LA
NSC

(a) Accuracy over document length

0 5 10 15 20 25 30 35
0.35

0.4

0.45

0.5

0.55

0.6

Input sentence number

A
cc

ur
ac

y

NSC+UPA
UPNN(NSC)
NSC+LA
NSC

(b) Accuracy over sentence number

Figure 2: Accuracy over various input document lengths on IMDB test set

4.5 Model Analysis: Effect of User Product
Attention Mechanisms

Table 4 shows the performance of attention mech-
anisms with the information of users or products.
From the table, we can observe that:

(1) The information of both users and products
contributes to our model as compared to a semantic
attention. It demonstrates that our attention mech-
anism can catch the specific characteristic of a user
or a product.

(2) The information of users is more effective
than the products to enhance document representa-
tions. Hence, the discrimination of user preference
is more obvious than product characteristics.

4.6 Model Analysis: Performance over
Sentence Numbers and Lengths

To investigate the performance of our model
over documents with various lengths, we compare
the performance of different implementations of
NSC under different document lengths and sentence
number settings. Fig. 2 shows the accuracy of sen-
timent classification generated by NSC, NSC+ATT,
UPNN(NSC) and NSC+UPA on the IMDB test set
with respect to input document lengths and input
sentence numbers in a document. From Fig. 2, we
observe that our model NSC with attention mecha-
nism of user and product information consistently
outperforms other baseline methods for all input
document lengths and sentence numbers. It indi-
cates the robustness and flexibility of NSC on dif-

ferent datasets.

4.7 Case Study

 Great wine , great ambiance , amazing music !

User1
Preference

Local
Attention

User2
Preference

Figure 3: Visualization of attentions over words

To demonstrate the effectiveness of our global at-
tention, we provide a review instance in Yelp2013
dataset for example. The content of this review is
“Great wine, great ambiance, amazing music!”. We
visualize the attention weights in word-level for two
distinct users and the local semantic attention (LA)
in Fig 3. Here, the local semantic attention rep-
resents the implementation in (Yang et al., 2016),
which calculates the attention without considering
the global information of users and products. Note
that, darker color means lower weight.

According to our statistics, the first user often
mentions “wine” in his/her review sentences. On
the contrary, the second user never talks about
“wine” in his/her review sentences. Hence, we in-
fer that the first user may has special preference to
wine while the second one has no concern about
wine. From the figure, we observe an interesting
phenomenon which confirms to our inference. For
the word “wine”, the first user has the highest atten-

1657

tion weight and the second user has the lowest atten-
tion weight. It indicates that our model can capture
the global user preference via our user attention.

5 Conclusion and Future Work

In this paper, we propose a hierarchical neural
network which incorporates user and product in-
formation via word and sentence level attentions.
With the user and product attention, our model can
take account of the global user preference and prod-
uct characteristics in both word level and semantic
level. In experiments, we evaluate our model on
sentiment analysis task. The experimental results
show that our model achieves significant and consis-
tent improvements compared to other state-of-the-
art models.

We will explore more in future as follows:
(1) In this paper, we only consider the global user

preference and product characteristics according to
their personal behaviors. In fact, most users and
products usually have some text information such
as user and product profiles. We will take advan-
tages of those information in sentiment analysis in
future.

(2) Aspect level sentiment classification is also
a fundamental task in the field of sentiment analy-
sis. The user preference and product characteristics
may also implicitly influence the sentiment polarity
of the aspect. We will explore the effectiveness of
our model on aspect level sentiment classification.

6 Acknowledgements

This work is supported by the National So-
cial Science Foundation of China (13&ZD190) and
the National Natural Science Foundation of China
(NSFC No. 61331013). We sincerely thank Shiqi
Shen and Lei Xu for their insightful discussions,
and thank Ayana, Yu Zhao, Ruobing Xie, Jiacheng
Zhang and Meng Zhang in Tsinghua University
Natural Language Processing group for their con-
structive comments. We also thank all anonymous
reviewers for their insightful suggestions.

References
Yoshua Bengio, Holger Schwenk, Jean-Sébastien

Senécal, Fréderic Morin, and Jean-Luc Gauvain.

2006. Neural probabilistic language models. In
Innovations in Machine Learning, pages 137–186.
Springer.

Parminder Bhatia, Yangfeng Ji, and Jacob Eisenstein.
2015. Better document-level sentiment analysis from
rst discourse parsing. In Proceedings of EMNLP.

Dan Ciresan, Ueli Meier, and Jürgen Schmidhuber.
2012. Multi-column deep neural networks for image
classification. In Proceedings of CVPR, pages 3642–
3649. IEEE.

George E Dahl, Dong Yu, Li Deng, and Alex Acero.
2012. Context-dependent pre-trained deep neural net-
works for large-vocabulary speech recognition. IEEE
Trans. Audio, Speech, and Language Processing,
20(1):30–42.

Xiaowen Ding, Bing Liu, and Philip S Yu. 2008. A
holistic lexicon-based approach to opinion mining. In
Proceedings of WSDM, pages 231–240. ACM.

Gottlob Frege. 1892. On sense and reference. In Lud-
low.

Wenliang Gao, Naoki Yoshinaga, Nobuhiro Kaji, and
Masaru Kitsuregawa. 2013. Modeling user leniency
and product popularity for sentiment classification. In
Proceedings of IJCNLP, pages 1107–1111.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Proceed-
ings of ICML, pages 513–520.

Rie Johnson and Tong Zhang. 2014. Effective use of
word order for text categorization with convolutional
neural networks. arXiv preprint arXiv:1412.1058.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of EMNLP.

Quoc V Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Proceed-
ings of ICML.

Jiwei Li, Dan Jurafsky, and Eudard Hovy. 2015. When
are tree structures necessary for deep learning of rep-
resentations? arXiv preprint arXiv:1503.00185.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of ACL, pages 55–
60.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: Sentiment classification us-
ing machine learning techniques. In Proceedings of
EMNLP, pages 79–86.

1658

Richard Socher, Jeffrey Pennington, Eric H Huang, An-
drew Y Ng, and Christopher D Manning. 2011. Semi-
supervised recursive autoencoders for predicting sen-
timent distributions. In Proceedings of EMNLP, pages
151–161.

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Proceed-
ings of EMNLP, pages 1201–1211.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of EMNLP, page 1642.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kim-
berly Voll, and Manfred Stede. 2011. Lexicon-based
methods for sentiment analysis. CL, 37(2):267–307.

Kai Sheng Tai, Richard Socher, and Christopher D Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of ACL.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu,
and Bing Qin. 2014. Learning sentiment-specific
word embedding for twitter sentiment classification.
In Proceedings of ACL, pages 1555–1565.

Duyu Tang, Bing Qin, and Ting Liu. 2015a. Document
modeling with gated recurrent neural network for sen-
timent classification. In Proceedings of EMNLP,
pages 1422–1432.

Duyu Tang, Bing Qin, and Ting Liu. 2015b. Learn-
ing semantic representations of users and products for
document level sentiment classification. In Proceed-
ings of ACL.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex
Smola, and Eduard Hovy. 2016. Hierarchical atten-
tion networks for document classification. In Pro-
ceedings NAACL.

Matthew D Zeiler. 2012. Adadelta: an adaptive learning
rate method. arXiv preprint arXiv:1212.5701.

1659

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1660–1669,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Cached Long Short-Term Memory Neural Networks
for Document-Level Sentiment Classification

Jiacheng Xu† Danlu Chen‡ Xipeng Qiu∗‡ Xuanjing Huang‡
Software School, Fudan University †

School of Computer Science, Fudan University ‡

Shanghai Key Laboratory of Intelligent Information Processing, Fudan University†‡

825 Zhangheng Road, Shanghai, China†‡

{jcxu13,dlchen13,xpqiu,xjhuang}@fudan.edu.cn

Abstract

Recently, neural networks have achieved great
success on sentiment classification due to their
ability to alleviate feature engineering. How-
ever, one of the remaining challenges is to
model long texts in document-level sentiment
classification under a recurrent architecture
because of the deficiency of the memory unit.
To address this problem, we present a Cached
Long Short-Term Memory neural networks
(CLSTM) to capture the overall semantic in-
formation in long texts. CLSTM introduces
a cache mechanism, which divides memory
into several groups with different forgetting
rates and thus enables the network to keep
sentiment information better within a recur-
rent unit. The proposed CLSTM outperforms
the state-of-the-art models on three publicly
available document-level sentiment analysis
datasets.

1 Introduction

Sentiment classification is one of the most widely
used natural language processing techniques in
many areas, such as E-commerce websites, online
social networks, political orientation analyses (Wil-
son et al., 2009; O’Connor et al., 2010), etc.

Recently, deep learning approaches (Socher et al.,
2013; Kim, 2014; Chen et al., 2015; Liu et al., 2016)
have gained encouraging results on sentiment clas-
sification, which frees researchers from handcrafted
feature engineering. Among these methods, Recur-
rent Neural Networks (RNNs) are one of the most

∗ Corresponding author.

prevalent architectures because of the ability to han-
dle variable-length texts.

Sentence- or paragraph-level sentiment analysis
expects the model to extract features from limited
source of information, while document-level senti-
ment analysis demands more on selecting and stor-
ing global sentiment message from long texts with
noises and redundant local pattern. Simple RNNs
are not powerful enough to handle the overflow and
to pick up key sentiment messages from relatively
far time-steps .

Efforts have been made to solve such a scalabil-
ity problem on long texts by extracting semantic in-
formation hierarchically (Tang et al., 2015a; Tai et
al., 2015), which first obtain sentence representa-
tions and then combine them to generate high-level
document embeddings. However, some of these so-
lutions either rely on explicit a priori structural as-
sumptions or discard the order information within
a sentence, which are vulnerable to sudden change
or twists in texts especially a long-range one (Mc-
Donald et al., 2007; Mikolov et al., 2013). Re-
current models match people’s intuition of reading
word by word and are capable to model the intrinsic
relations between sentences. By keeping the word
order, RNNs could extract the sentence representa-
tion implicitly and meanwhile analyze the semantic
meaning of a whole document without any explicit
boundary.

Partially inspired by neural structure of human
brain and computer system architecture, we present
the Cached Long Short-Term Memory neural net-
works (CLSTM) to capture the long-range senti-
ment information. In the dual store memory model

1660

proposed by Atkinson and Shiffrin (1968), memo-
ries can reside in the short-term “buffer” for a lim-
ited time while they are simultaneously strengthen-
ing their associations in long-term memory. Accord-
ingly, CLSTM equips a standard LSTM with a sim-
ilar cache mechanism, whose internal memory is di-
vided into several groups with different forgetting
rates. A group with high forgetting rate plays a role
as a cache in our model, bridging and transiting the
information to groups with relatively lower forget-
ting rates. With different forgetting rates, CLSTM
learns to capture, remember and forget semantics in-
formation through a very long distance.

Our main contributions are as follows:

• We introduce a cache mechanism to diversify
the internal memory into several distinct groups
with different memory cycles by squashing
their forgetting rates. As a result, our model can
capture the local and global emotional informa-
tion, thereby better summarizing and analyzing
sentiment on long texts in an RNN fashion.
• Benefiting from long-term memory unit with a

low forgetting rate, we could keep the gradi-
ent stable in the long back-propagation process.
Hence, our model could converge faster than a
standard LSTM.
• Our model outperforms state-of-the-art meth-

ods by a large margin on three document-level
datasets (Yelp 2013, Yelp 2014 and IMDB). It
worth noticing that some of the previous meth-
ods have utilized extra user and product infor-
mation.

2 Related Work

In this section, we briefly introduce related work in
two areas: First, we discuss the existing document-
level sentiment classification approaches; Second,
we discuss some variants of LSTM which address
the problem on storing the long-term information.

2.1 Document-level Sentiment Classification
Document-level sentiment classification is a sticky
task in sentiment analysis (Pang and Lee, 2008),
which is to infer the sentiment polarity or intensity
of a whole document. The most challenging part is
that not every part of the document is equally in-
formative for inferring the sentiment of the whole

document (Pang and Lee, 2004; Yessenalina et al.,
2010). Various methods have been investigated and
explored over years (Wilson et al., 2005; Pang and
Lee, 2008; Pak and Paroubek, 2010; Yessenalina
et al., 2010; Moraes et al., 2013). Most of these
methods depend on traditional machine learning al-
gorithms, and are in need of effective handcrafted
features.

Recently, neural network based methods are
prevalent due to their ability of learning discrimina-
tive features from data (Socher et al., 2013; Le and
Mikolov, 2014; Tang et al., 2015a). Zhu et al. (2015)
and Tai et al. (2015) integrate a tree-structured
model into LSTM for better semantic composi-
tion; Bhatia et al. (2015) enhances document-level
sentiment analysis by using extra discourse par-
ing results. Most of these models work well on
sentence-level or paragraph-level sentiment classifi-
cation. When it comes to the document-level sen-
timent classification, a bottom-up hierarchical strat-
egy is often adopted to alleviate the model complex-
ity (Denil et al., 2014; Tang et al., 2015b; Li et al.,
2015).

2.2 Memory Augmented Recurrent Models
Although it is widely accepted that LSTM has more
long-lasting memory units than RNNs, it still suffers
from “forgetting” information which is too far away
from the current point (Le et al., 2015; Karpathy et
al., 2015). Such a scalability problem of LSTMs is
crucial to extend some previous sentence-level work
to document-level sentiment analysis.

Various models have been proposed to increase
the ability of LSTMs to store long-range informa-
tion (Le et al., 2015; Salehinejad, 2016) and two
kinds of approaches gain attraction. One is to aug-
ment LSTM with an external memory (Sukhbaatar
et al., 2015; Monz, 2016), but they are of poor per-
formance on time because of the huge external mem-
ory matrix. Unlike these methods, we fully exploit
the potential of internal memory of LSTM by adjust-
ing its forgetting rates.

The other one tries to use multiple time-scales
to distinguish different states (El Hihi and Bengio,
1995; Koutnik et al., 2014; Liu et al., 2015). They
partition the hidden states into several groups and
each group is activated and updated at different fre-
quencies (e.g. one group updates every 2 time-step,

1661

the other updates every 4 time-step). In these meth-
ods, different memory groups are not fully inter-
connected, and the information is transmitted from
faster groups to slower ones, or vice versa.

However, the memory of slower groups are not
updated at every step, which may lead to senti-
ment information loss and semantic inconsistency.
In our proposed CLSTM, we assign different forget-
ting rates to memory groups. This novel strategy
enable each memory group to be updated at every
time-step, and every bit of the long-term and short-
term memories in previous time-step to be taken into
account when updating.

3 Long Short-Term Memory Networks

Long short-term memory network (LSTM) (Hochre-
iter and Schmidhuber, 1997) is a typical recurrent
neural network, which alleviates the problem of gra-
dient diffusion and explosion. LSTM can capture
the long dependencies in a sequence by introducing
a memory unit and a gate mechanism which aims
to decide how to utilize and update the information
kept in memory cell.

Formally, the update of each LSTM component
can be formalized as:

i(t) = σ(Wix
(t) +Uih

(t−1)), (1)

f (t) = σ(Wfx
(t) +Ufh

(t−1)), (2)

o(t) = σ(Wox
(t) +Uoh

(t−1)), (3)

c̃(t) = tanh(Wcx
(t) +Uch

(t−1)), (4)

c(t) = f (t) � c(t−1) + i(t) � c̃(t), (5)

h(t) = o(t) � tanh(c(t)), (6)

where σ is the logistic sigmoid function. Opera-
tor � is the element-wise multiplication operation.
i(t), f (t), o(t) and c(t) are the input gate, forget gate,
output gate, and memory cell activation vector at
time-step t respectively, all of which have the same
size as the hidden vector h(t) ∈ RH . Wi, Wf ,
Wo ∈ RH×d and Ui, Uf , Uo ∈ RH×H are train-
able parameters. Here, H and d are the dimension-
ality of hidden layer and input respectively.

+

C

σ

+

C~

output

forget

input

IN

OUT

C

σ

+

C~

output

CIFG

IN

OUT

Figure 1: (a) A standard LSTM unit and (b) a CIFG-
LSTM unit. There are three gates in (a), the input
gate, forget gate and output gates, while in (b), there
are only two gates, the CIFG gate and output gate.

4 Cached Long Short-Term Memory
Neural Network

LSTM is supposed to capture the long-term and
short-term dependencies simultaneously, but when
dealing with considerably long texts, LSTM also
fails on capturing and understanding significant sen-
timent message (Le et al., 2015). Specifically, the
error signal would nevertheless suffer from gradient
vanishing in modeling long texts with hundreds of
words and thus the network is difficult to train.

Since the standard LSTM inevitably loses valu-
able features, we propose a cached long short-term
memory neural networks (CLSTM) to capture in-
formation in a longer steps by introducing a cache
mechanism. Moreover, in order to better control and
balance the historical message and the incoming in-
formation, we adopt one particular variant of LSTM
proposed by Greff et al. (2015), the Coupled Input
and Forget Gate LSTM (CIFG-LSTM).

Coupled Input and Forget Gate LSTM Previous
studies show that the merged version gives perfor-
mance comparable to a standard LSTM on language
modeling and classification tasks because using the
input gate and forget gate simultaneously incurs re-
dundant information (Chung et al., 2014; Greff et
al., 2015).

In the CIFG-LSTM, the input gate and forget gate
are coupled as one uniform gate, that is, let i(t) =
1 − f (t). We use f (t) to denote the coupled gate.
Formally, we will replace Eq. 5 as below:

c(t) = f (t) � c(t−1) + (1− f (t))� c̃(t) (7)

Figure 1 gives an illustrative comparison of a stan-
dard LSTM and the CIFG-LSTM.

1662

Cached LSTM Cached long short-term mem-
ory neural networks (CLSTM) aims at capturing
the long-range information by a cache mechanism,
which divides memory into several groups, and dif-
ferent forgetting rates, regarded as filters, are as-
signed to different groups.

Different groups capture different-scale depen-
dencies by squashing the scales of forgetting rates.
The groups with high forgetting rates are short-term
memories, while the groups with low forgetting rates
are long-term memories.

Specially, we divide the memory cells into K
groups {G1, · · · , GK}. Each group includes a in-
ternal memory ck, output gate ok and forgetting
rate rk. The forgetting rate of different groups are
squashed in distinct ranges.

We modify the update of a LSTM as follows.

r
(t)
k = ψk

σ(Wk

rx
(t) +

K∑

j=1

Uj→k
f h(t−1)

j)

 ,

(8)

o
(t)
k = σ(Wk

ox
(t) +

K∑

j=1

Uj→k
o h(t−1)

j), (9)

c̃
(t)
k = tanh(Wk

cx
(t) +

K∑

j=1

Uj→k
c h(t−1)

j), (10)

c
(t)
k = (1− r

(t)
k)� c

(t−1)
k + (r

(t)
k)� c̃

(t)
k , (11)

h(t)
k = o

(t)
k � tanh(c

(t)
k), (12)

where r
(t)
k represents forgetting rate of the k-th

memory group at step t; ψk is a squash function,
which constrains the value of forgetting rate rk
within a range. To better distinguish the different
role of each group, its forgetting rate is squashed into
a distinct area. The squash function ψk(z) could be
formalized as:

rk = ψk(z) =
1

K
· z+ k − 1

K
, (13)

where z ∈ (0, 1) is computed by logistic sigmoid
function. Therefore, rk can constrain the forgetting
rate in the range of (k−1K , k

K).
Intuitively, if a forgetting rate rk approaches to 0,

the group k tends to be the long-term memory; if a

+

SOFTMAX

x1 x2 x3 x4

high medium low input

Input

Forward

Backward

Output

Figure 2: An overview of the proposed architecture.
Different styles of arrows indicate different forget-
ting rates. Groups with stars are fed to a fully con-
nected layers for softmax classification. Here is an
instance of B-CLSTM with text length equal to 4
and the number of memory groups is 3.

rk approaches to 1, the group k tends to be the short-
term memory. Therefore, group G1 is the slowest,
while groupGK is the fastest one. The faster groups
are supposed to play a role as a cache, transiting in-
formation from faster groups to slower groups.

Bidirectional CLSTM Graves and Schmidhuber
(2005) proposed a Bidirectional LSTM (B-LSTM)
model, which utilizes additional backward informa-
tion and thus enhances the memory capability.

We also employ the bi-directional mechanism on
CLSTM and words in a text will receive informa-
tion from both sides of the context. Formally, the
outputs of forward LSTM for the k-th group is
[
−→
h

(1)
k ,
−→
h

(2)
k , . . . ,

−→
h

(T)
k]. The outputs of backward

LSTM for the k-th group is [
←−
h

(1)
k ,
←−
h

(2)
k , . . . ,

←−
h

(T)
k].

Hence, we encode each word wt in a given text
w1:T as h(t)

k :

h
(t)
k =

−→
h

(t)
k ⊕

←−
h

(t)
k , (14)

where the ⊕ indicates concatenation operation.

Task-specific Output Layer for Document-level
Sentiment Classification With the capability of
modeling long text, we can use our proposed model
to analyze sentiment in a document. Figure 2 gives
an overview of the architecture.

Since the first group, the slowest group, is sup-
posed to keep the long-term information and can bet-
ter represent a whole document, we only utilize the

1663

Dataset Type Train Size Dev. Size Test Size Class Words/Doc Sents/Doc
IMDB Document 67426 8381 9112 10 394.6 16.08

Yelp 2013 Document 62522 7773 8671 5 189.3 10.89
Yelp 2014 Document 183019 22745 25399 5 196.9 11.41

Table 1: Statistics of the three datasets used in this paper. The rating scale (Class) of Yelp2013 and Yelp2014
range from 1 to 5 and that of IMDB ranges from 1 to 10. Words/Doc is the average length of a sample and
Sents/Doc is the average number of sentences in a document.

final state of this group to represent a document. As
for the B-CLSTM, we concatenate the state of the
first group in the forward LSTM at T -th time-step
and the first group in the backward LSTM at first
time-step.

Then, a fully connected layer followed by a soft-
max function is used to predict the probability distri-
bution over classes for a given input. Formally, the
probability distribution p is:

p = softmax(Wp × z+ bp), (15)

where Wp and bp are model’s parameters. Here z

is
−→
h

(T)
1 in CLSTM, and z is [

−→
h

(T)
1 ⊕←−h (1)

1] in B-
CLSTM.

5 Training

The objective of our model is to minimize the cross-
entropy error of the predicted and true distributions.
Besides, the objective includes an L2 regularization
term over all parameters. Formally, suppose we have
m train sentence and label pairs (w(i)

1:Ti
, y(i))mi=1, the

object is to minimize the objective function J(θ):

J(θ) = − 1

m

m∑

i=1

logp
(i)

y(i)
+
λ

2
||θ||2, (16)

where θ denote all the trainable parameters of our
model.

6 Experiment

In this section, we study the empirical result of our
model on three datasets for document-level senti-
ment classification. Results show that the proposed
model outperforms competitor models from several
aspects when modelling long texts.

6.1 Datasets
Most existing datasets for sentiment classification
such as Stanford Sentiment Treebank (Socher et al.,

2013) are composed of short paragraphs with sev-
eral sentences, which cannot evaluate the effective-
ness of the model under the circumstance of encod-
ing long texts. We evaluate our model on three pop-
ular real-world datasets, Yelp 2013, Yelp 2014 and
IMDB. Table 1 shows the statistical information of
the three datasets. All these datasets can be publicly
accessed1. We pre-process and split the datasets in
the same way as Tang et al. (2015b) did.

• Yelp 2013 and Yelp 2014 are review datasets
derived from Yelp Dataset Challenge2 of year
2013 and 2014 respectively. The sentiment po-
larity of each review is 1 star to 5 stars, which
reveals the consumers’ attitude and opinion to-
wards the restaurants.
• IMDB is a popular movie review dataset con-

sists of 84919 movie reviews ranging from 1 to
10 (Diao et al., 2014). Average length of each
review is 394.6 words, which is much larger
than the length of two Yelp review datasets.

6.2 Evaluation Metrics
We use Accuracy (Acc.) and MSE as evaluation
metrics for sentiment classification. Accuracy is a
standard metric to measure the overall classification
result and Mean Squared Error (MSE) is used to fig-
ure out the divergences between predicted sentiment
labels and the ground truth ones.

6.3 Baseline Models
We compare our model, CLSTM and B-CLSTM
with the following baseline methods.

• CBOW sums the word vectors and applies a
non-linearity followed by a softmax classifica-
tion layer.

1http://ir.hit.edu.cn/˜dytang/paper/
acl2015/dataset.7z

2http://www.yelp.com/dataset_challenge

1664

Model IMDB Yelp 2014 Yelp 2013
Acc. (%) MSE Acc. (%) MSE Acc. (%) MSE

CBOW 34.8 2.867 56.8 0.620 54.5 0.706
PV (Tang et al., 2015b) 34.1 3.291 56.4 0.643 55.4 0.692
RNTN+Recurrent (Tang et al., 2015b) 40.0 3.112 58.2 0.674 57.4 0.646
UPNN (CNN) (Tang et al., 2015b) 40.5 2.654 58.5 0.653 57.7 0.659
JMARS* (Diao et al., 2014) - 3.143 - 0.998 - 0.970
UPNN (CNN)* (Tang et al., 2015b) 43.5 2.566 60.8 0.584 59.6 0.615
RNN 20.5 6.163 41.0 1.203 42.8 1.144
LSTM 37.8 2.597 56.3 0.592 53.9 0.656
CIFG-LSTM 39.1 2.467 55.2 0.598 57.3 0.558
CLSTM 42.1 2.399 59.2 0.539 59.4 0.587
BLSTM 43.3 2.231 59.2 0.538 58.4 0.583
CIFG-BLSTM 44.5 2.283 60.1 0.527 59.2 0.554
B-CLSTM 46.2 2.112 61.9 0.496 59.8 0.549

Table 2: Sentiment classification results of our model against competitor models on IMDB, Yelp 2014 and
Yelp 2013. Evaluation metrics are classification accuracy (Acc.) and MSE. Models with * use user and
product information as additional features. Best results in each group are in bold.

Dataset IMDB Yelp13 Yelp14
Hidden layer units 120 120 120
Number of groups 3 4 4
Weight Decay 1e−4 1e−4 5e−4
Batch size 128 64 64

Table 3: Optimal hyper-parameter configuration for
three datasets.

• JMARS is one of the state-of-the-art recom-
mendation algorithm (Diao et al., 2014), which
leverages user and aspects of a review with col-
laborative filtering and topic modeling.
• CNN UPNN (CNN) (Tang et al., 2015b) can be

regarded as a CNN (Kim, 2014). Multiple fil-
ters are sensitive to capture different semantic
features during generating a representation in a
bottom-up fashion.
• RNN is a basic sequential model to model texts

(Elman, 1991).
• LSTM is a recurrent neural network with mem-

ory cells and gating mechanism (Hochreiter
and Schmidhuber, 1997).
• BLSTM is the bidirectional version of LSTM,

and can capture more structural information
and longer distance during looking forward and
back (Graves et al., 2013).
• CIFG-LSTM & CIFG-BLSTM are Coupled

Input Forget Gate LSTM and BLSTM, de-

noted as CIFG-LSTM and CIFG-BLSTM re-
spectively (Greff et al., 2015). They combine
the input and forget gate of LSTM and require
smaller number of parameters in comparison
with the standard LSTM.

6.4 Hyper-parameters and Initialization
For parameter configuration, we choose parameters
on validation set mainly according to classification
accuracy for convenience because MSE always has
strong correlation with accuracy. The dimension of
pre-trained word vectors is 50. We use 120 as the
dimension of hidden units, and choose weight de-
cay among { 5e−4, 1e−4, 1e−5 }. We use Adagrad
(Duchi et al., 2011) as optimizer and its initial learn-
ing rate is 0.01. Batch size is chosen among { 32,
64, 128 } for efficiency. For CLSTM, the number of
memory groups is chosen upon each dataset, which
will be discussed later. We remain the total number
of the hidden units unchanged. Given 120 neurons
in all for instance, there are four memory groups and
each of them has 30 neurons. This makes model
comparable to (B)LSTM. Table 3 shows the optimal
hyper-parameter configurations for each dataset.

For model initialization, we initialize all recur-
rent matrices with randomly sampling from uni-
form distribution in [-0.1, 0.1]. Besides, we use
GloVe(Pennington et al., 2014) as pre-trained word
vectors. The word embeddings are fine-tuned during
training. Hyper-parameters achieving best results on

1665

0 2 4 6 8 10

30

40

50

60

Epoches

A
cc

(%
)

LSTM

CIFG-LSTM

BLSTM

CIFG-BLSTM

B-CLSTM

(a) Accuracy on Yelp 2013

0 2 4 6 8 10

1.5

2.0

Epoches

M
SE

LSTM

CIFG-LSTM

BLSTM

CIFG-BLSTM

B-CLSTM

(b) MSE on Yelp 2013

Figure 3: Convergence speed experiment on Yelp 2013. X-axis is the iteration epoches and Y-axis is the
classifcication accuracy(%) achieved.

the validation set are chosen for final evaluation on
test set.

6.5 Results
The classification accuracy and mean square error
(MSE) of our models compared with other competi-
tive models are shown in Table 2. When comparing
our models to other neural network models, we have
several meaningful findings.

1. Among all unidirectional sequential models,
RNN fails to capture and store semantic fea-
tures while vanilla LSTM preserves sentimen-
tal messages much longer than RNN. It shows
that internal memory plays a key role in text
modeling. CIFG-LSTM gives performance
comparable to vanilla LSTM.

2. With the help of bidirectional architecture,
models could look backward and forward to
capture features in long-range from global per-
spective. In sentiment analysis, if users show
their opinion at the beginning of their review,
single directional models will possibly forget
these hints.

3. The proposed CLSTM beats the CIFG-LSTM
and vanilla LSTM and even surpasses the bidi-
rectional models. In Yelp 2013, CLSTM
achieves 59.4% in accuracy, which is only 0.4
percent worse than B-CLSTM, which reveals
that the cache mechanism has successfully and
effectively stored valuable information without

the support from bidirectional structure.
4. Compared with existing best methods, our

model has achieved new state-of-the-art re-
sults by a large margin on all document-
level datasets in terms of classification accu-
racy. Moreover, B-CLSTM even has surpassed
JMARS and CNN (UPNN) methods which uti-
lized extra user and product information.

5. In terms of time complexity and numbers of pa-
rameters, our model keeps almost the same as
its counterpart models while models of hierar-
chically composition may require more compu-
tational resources and time.

6.6 Rate of Convergence

We compare the convergence rates of our mod-
els, including CIFG-LSTM, CIFG-BLSTM and B-
CLSTM, and the baseline models (LSTM and
BLSTM). We configure the hyper-parameter to
make sure every competing model has approxi-
mately the same numbers of parameters, and vari-
ous models have shown different convergence rates
in Figure 3. In terms of convergence rate, B-CLSTM
beats other competing models. The reason why B-
CLSTM converges faster is that the splitting mem-
ory groups can be seen as a better initialization and
constraints during the training process.

1666

1 2 3 4 5 6

59.5

60

60.5

61

Group Number

A
cc

(%
)

(a) Acc on Yelp 2013

1 2 3 4 5 6

60

61

62

Group Number

(b) Acc on Yelp 2014

1 2 3 4 5 6

44

45

46

Group Number

(c) Acc on IMDB

Figure 4: Classification accuracy on different number of memory group on three datasets. X-axis is the
number of memory group(s).

10 20 30 40 50 60 70 80 90 100

30

35

40

45

50

Length Ranking (%)

A
cc

(%
)

CBOW CIFG-LSTM CLSTM

CIFG-BLSTM B-CLSTM

Figure 5: Study of model sensitivity on document
length on IMDB. All test samples are sorted by their
length and divided into 10 parts. Left most dot
means classification accuracy on the shortest 10%
samples. X-axis is length ranking from 0% to 100%.

6.7 Effectiveness on Grouping Memory

For the proposed model, the number of memory
groups is a highlight. In Figure 4, we plot the best
prediction accuracy (Y-axis) achieved in validation
set with different number of memory groups on all
datasets. From the diagram, we can find that our
model outperforms the baseline method. In Yelp
2013, when we split the memory into 4 groups, it
achieves the best result among all tested memory
group numbers. We can observe the dropping trends
when we choose more than 5 groups.

For fair comparisons, we set the total amount of
neurons in our model to be same with vanilla LSTM.
Therefore, the more groups we split, the less the neu-
rons belongs to each group, which leads to a worse
capacity than those who have sufficient neurons for
each group.

6.8 Sensitivity on Document Length
We also investigate the performance of our model
on IMDB when it encodes documents of different
lengths. Test samples are divided into 10 groups
with regard to the length. From Figure 5, we can
draw several thoughtful conclusions.

1. Bidirectional models have much better perfor-
mance than the counterpart models.

2. The overall performance of B-CLSTM is bet-
ter than CIFG-BLSTM. This means that our
model is adaptive to both short texts and long
documents. Besides, our model shows power
in dealing with very long texts in comparison
with CIFG-BLSTM.

3. CBOW is slightly better than CIFG-LSTM due
to LSTM forgets a large amount of information
during the unidirectional propagation.

7 Conclusion

In this paper, we address the problem of effectively
analyzing the sentiment of document-level texts in
an RNN architecture. Similar to the memory struc-
ture of human, memory with low forgetting rate cap-
tures the global semantic features while memory
with high forgetting rate captures the local seman-
tic features. Empirical results on three real-world

1667

document-level review datasets show that our model
outperforms state-of-the-art models by a large mar-
gin.

For future work, we are going to design a strategy
to dynamically adjust the forgetting rates for fine-
grained document-level sentiment analysis.

Acknowledgments

We appreciate the constructive work from Xinchi
Chen. Besides, we would like to thank the anony-
mous reviewers for their valuable comments. This
work was partially funded by National Natural Sci-
ence Foundation of China (No. 61532011 and
61672162), the National High Technology Re-
search and Development Program of China (No.
2015AA015408).

References
Richard C Atkinson and Richard M Shiffrin. 1968. Hu-

man memory: A proposed system and its control pro-
cesses. The psychology of learning and motivation,
2:89–195.

Parminder Bhatia, Yangfeng Ji, and Jacob Eisenstein.
2015. Better document-level sentiment analysis from
rst discourse parsing. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing,(EMNLP).

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Shiyu Wu, and
Xuanjing Huang. 2015. Sentence modeling with
gated recursive neural network. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. NIPS Deep Learning Workshop.

Misha Denil, Alban Demiraj, Nal Kalchbrenner, Phil
Blunsom, and Nando de Freitas. 2014. Modelling,
visualising and summarising documents with a sin-
gle convolutional neural network. arXiv preprint
arXiv:1406.3830.

Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alexan-
der J. Smola, Jing Jiang, and Chong Wang. 2014.
Jointly modeling aspects, ratings and sentiments for
movie recommendation (JMARS). In The 20th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’14, New York,
NY, USA - August 24 - 27, 2014, pages 193–202.

John C Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive Subgradient Methods for Online Learning

and Stochastic Optimization. Journal of Machine
Learning Research, 12:2121–2159.

Salah El Hihi and Yoshua Bengio. 1995. Hierarchical
recurrent neural networks for long-term dependencies.
In NIPS, pages 493–499.

Jeffrey L Elman. 1991. Distributed representations,
simple recurrent networks, and grammatical structure.
Machine Learning, 7(2-3):195–225.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5):602–610.

Alan Graves, Navdeep Jaitly, and Abdel-rahman Mo-
hamed. 2013. Hybrid speech recognition with deep
bidirectional lstm. In Automatic Speech Recognition
and Understanding (ASRU), 2013 IEEE Workshop on,
pages 273–278. IEEE.

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k,
Bas R Steunebrink, and Jürgen Schmidhuber. 2015.
LSTM: A Search Space Odyssey. arXiv.org, March.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2015.
Visualizing and understanding recurrent networks. In-
ternational Conference on Learning Representations
(ICLR), Workshop Track.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1746-1751.

Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen
Schmidhuber. 2014. A clockwork rnn. pages 1863–
1871.

Quoc V Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In ICML,
volume 14, pages 1188–1196.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hin-
ton. 2015. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint
arXiv:1504.00941.

Jiwei Li, Thang Luong, Dan Jurafsky, and Eduard H.
Hovy. 2015. When are tree structures necessary for
deep learning of representations? In Llus Mrquez,
Chris Callison-Burch, Jian Su, Daniele Pighin, and
Yuval Marton, editors, EMNLP, pages 2304–2314.
The Association for Computational Linguistics.

PengFei Liu, Xipeng Qiu, Xinchi Chen, Shiyu Wu, and
Xuanjing Huang. 2015. Multi-timescale long short-
term memory neural network for modelling sentences
and documents. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing.

1668

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016.
Recurrent neural network for text classification with
multi-task learning. In Proceedings of International
Joint Conference on Artificial Intelligence.

Ryan McDonald, Kerry Hannan, Tyler Neylon, Mike
Wells, and Jeff Reynar. 2007. Structured mod-
els for fine-to-coarse sentiment analysis. In Annual
Meeting-Association For Computational Linguistics,
volume 45, page 432. Citeseer.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. arXiv.org.

Ke Tran Arianna Bisazza Christof Monz. 2016. Recur-
rent memory networks for language modeling. In Pro-
ceedings of NAACL-HLT, pages 321–331.

Rodrigo Moraes, Joao Francisco Valiati, and Wilson
P GaviãO Neto. 2013. Document-level senti-
ment classification: An empirical comparison between
svm and ann. Expert Systems with Applications,
40(2):621–633.

Brendan O’Connor, Ramnath Balasubramanyan, Bryan R
Routledge, and Noah A Smith. 2010. From Tweets to
Polls: Linking Text Sentiment to Public Opinion Time
Series. ICWSM 2010.

Alexander Pak and Patrick Paroubek. 2010. Twitter as a
corpus for sentiment analysis and opinion mining. In
LREc, volume 10, pages 1320–1326.

Bo Pang and Lillian Lee. 2004. A sentimental edu-
cation: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42Nd Annual Meeting on Association for Compu-
tational Linguistics, ACL ’04, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and trends in infor-
mation retrieval, 2(1-2):1–135.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global Vectors for Word Rep-
resentation. EMNLP, pages 1532–1543.

Hojjat Salehinejad. 2016. Learning over long time lags.
arXiv preprint arXiv:1602.04335.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the conference on empirical meth-
ods in natural language processing (EMNLP), volume
1631, page 1642. Citeseer.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances in
Neural Information Processing Systems, pages 2431–
2439.

Kai Sheng Tai, Richard Socher, and Christopher D Man-
ning. 2015. Improved Semantic Representations
From Tree-Structured Long Short-Term Memory Net-
works. ACL, pages 1556–1566.

Duyu Tang, Bing Qin, and Ting Liu. 2015a. Document
Modeling with Gated Recurrent Neural Network for
Sentiment Classification. EMNLP, pages 1422–1432.

Duyu Tang, Bing Qin, and Ting Liu. 2015b. Learning
Semantic Representations of Users and Products for
Document Level Sentiment Classification. ACL, pages
1014–1023.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of the conference
on human language technology and empirical methods
in natural language processing, pages 347–354. Asso-
ciation for Computational Linguistics.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2009. Recognizing contextual polarity: An explo-
ration of features for phrase-level sentiment analysis.
Computational linguistics, 35(3):399–433.

Ainur Yessenalina, Yisong Yue, and Claire Cardie. 2010.
Multi-level structured models for document-level sen-
timent classification. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1046–1056. Association for Com-
putational Linguistics.

Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. 2015.
Long short-term memory over recursive structures. In
Proceedings of the 32nd International Conference on
Machine Learning, pages 1604–1612.

1669

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1670–1679,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Deep Neural Networks with Massive Learned Knowledge

Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov, Eric P. Xing
School of Computer Science
Carnegie Mellon University

{zhitingh,zichaoy,rsalakhu,epxing}@cs.cmu.edu

Abstract

Regulating deep neural networks (DNNs) with
human structured knowledge has shown to be
of great benefit for improved accuracy and in-
terpretability. We develop a general frame-
work that enables learning knowledge and its
confidence jointly with the DNNs, so that the
vast amount of fuzzy knowledge can be incor-
porated and automatically optimized with lit-
tle manual efforts. We apply the framework
to sentence sentiment analysis, augmenting a
DNN with massive linguistic constraints on
discourse and polarity structures. Our model
substantially enhances the performance using
less training data, and shows improved inter-
pretability. The principled framework can also
be applied to posterior regularization for regu-
lating other statistical models.

1 Introduction

Deep neural networks (DNNs) have achieved re-
markable success in a large variety of application
domains (Krizhevsky et al., 2012; Hinton et al.,
2012; Bahdanau et al., 2014). However, the power-
ful end-to-end learning comes with limitations, in-
cluding the requirement on massive amount of la-
beled data, uninterpretability of prediction results,
and difficulty of incorporating human intentions and
domain knowledge.

To alleviate these drawbacks, recent work has fo-
cused on training DNNs with extra domain-specific
features (Collobert et al., 2011), combining ora-
cle similarity constraints (Karaletsos et al., 2016),
modeling output correlations (Deng et al., 2014),
and others. Recently, Hu et al. (2016) proposed a

general distillation framework that transfers knowl-
edge expressed as first-order logic (FOL) rules into
neural networks, where FOL constraints are inte-
grated via posterior regularization (Ganchev et al.,
2010). Despite the intuitiveness of FOL rules and
the impressive performance in various tasks, the
approach, as with the previous posterior constraint
methods (Ganchev et al., 2010; Liang et al., 2009;
Zhu et al., 2014), has been limited to simple a pri-
ori fixed constraints with manually selected weights,
lacking the ability of inducing and adapting abstract
knowledge from data. This issue is further exacer-
bated in the context of regulating DNNs that map
raw data directly into the label space, leaving a huge
semantic gap in between, and making it unfeasible
to express rich human knowledge built on the inter-
mediate abstract concepts.

In this paper, we introduce a generalized frame-
work which enables a learning procedure for knowl-
edge representations and their weights jointly with
the regulated DNN models. This greatly extends the
applicability to massive structures in diverse forms,
such as structured models and soft logic rules, fa-
cilitating practitioners to incorporate rich domain
expertise and fuzzy constraints. Specifically, we
propose a mutual distillation method that iteratively
transfers information between DNN and structured
knowledge, resulting in effective integration of the
representation learning capacity of DNN and the
generalization power of structured knowledge. Our
method does not require additional supervision be-
yond raw data-labels for knowledge learning.

We present an instantiation of our method in
the task of sentence sentiment analysis. We aug-

1670

ment a base convolutional network with linguis-
tic knowledge that encourages coherent sentiment
transitions across the clauses in terms of discourse
relations. All uncertain modules, such as clause
relation and polarity identification, are automati-
cally learned from data, freeing practitioners from
exhaustive specification. We further improve the
model by integrating thousands of soft word polar-
ity and negation rules, with their confidence directly
induced from the data.

Trained with only sentence level supervisions, our
model substantially outperforms plain neural net-
works learned from both sentence and clause labels.
Our method also shows enhanced generalization on
limited data size, and improved interpretability of
predictions.

Our work enjoys general versatility on diverse
types of structured knowledge and neural architec-
tures. The principled knowledge and weight learn-
ing approach can also be applied to the posterior
constraint frameworks (Ganchev et al., 2010; Liang
et al., 2009) for regulating other statistical models.

2 Related Work

Deep Networks with Structured Knowledge
Combining the powerful deep neural models with
structured knowledge has been of increasing interest
to enhance generalization and improve interpretabil-
ity (Li et al., 2015; Deng et al., 2014; Johnson et al.,
2016). Recently, Hu et al. (2016) proposed to trans-
fer logical knowledge information into neural net-
works with diverse architectures (e.g., convolutional
networks and recurrent networks). They devel-
oped an iterative distillation framework that trains
the neural network to emulate the predictions of a
“teacher” model which is iteratively constructed by
imposing posterior constraints on the network. The
framework has shown to be effective in regulating
different neural models. However, the method has
required fixed constraints and manually specified
weights, making it unsuitable to incorporate large
amount of fuzzy human intuitions where adaptation
to data is necessary to obtain meaningful knowledge
representations.

The limitation is in fact shared with the general-
purpose posterior regularization methods (Ganchev
et al., 2010; Liang et al., 2009; Zhu et al., 2014).

Though attempts have been made to learn the con-
straint weights from additional supervisions (Mei et
al., 2014) or for tractability purposes (Steinhardt and
Liang, 2015), learning and optimizing knowledge
expressions jointly with the regulated models from
data is still unsolved, and critically restricting the
application scope.

Sentiment Analysis Sentence level sentiment
classification is to identify the sentiment polarity
(e.g., positive or negative) of a sentence (Pang and
Lee, 2008). Recently, a number of neural models
have been developed and achieved new levels of per-
formance (Kim, 2014; Socher et al., 2013; Lei et
al., 2015). Despite the impressive success, most of
the existing neural network approaches require large
amount of labeled data while encoding very lim-
ited linguistic knowledge, making them inefficient
to handle sophisticated linguistic phenomena, such
as contrastive transitions and negations (Choi and
Cardie, 2008; Bhatia et al., 2015).

Hu et al. (2016) combines a neural network with
a logic rule that captures contrastive sense by ob-
serving the word “but” in a sentence. However, such
simple deterministic rules suffer from limited gener-
ality and robustness. This paper develops a new sen-
timent neural model that combines a large diverse
set of linguistic knowledge through our enhanced
framework. Our method efficiently captures com-
plex linguistic patterns from limited data, and yields
highly interpretable predictions.

3 Mutual Distillation
This section introduces the proposed framework that
enables joint learning of knowledge components and
their weights with the neural network models. In
particular, we generalize the one-sided distillation
method of (Hu et al., 2016) (section 3.1), and pro-
pose to mutually transfer information between the
neural network and the structured constraints for ef-
fective knowledge learning (section 3.2), and opti-
mize the weights by considering jointly all compo-
nents (section 3.3).

We consider input variable x ∈ X and target
variable y ∈ Y . For clarity we focus on classifi-
cation where y is a one-hot encoding of the class
labels, though our method also applies to other con-
texts. Let (X,Y) denote a set of instances of (x,y).

1671

A neural network defines a conditional probability
pθ(y|x) parameterized by θ. We will omit the sub-
script θ when there is no ambiguity.

3.1 Network Learning with Knowledge
Distillation

We first review the iterative distillation method
(Hu et al., 2016) that transfers structured knowledge
into neural networks. Consider constraint functions
fl ∈ X × Y → R, indexed by l, that encode the
knowledge and we want to satisfy (i.e., maximize
by optimizing the predictions y) with confidence
weights λl ∈ R. Given the current state of the neural
network parameters θ at each iteration, a structure-
enriched teacher network q is obtained by solving

min
q∈P

KL(q(Y)‖pθ(Y |X))− C
∑

l
λlEq[fl(X,Y)], (1)

where P denotes the appropriate distribution space;
and C is the regularization parameter. Problem (1)
is convex and has a closed-form solution

q∗(Y) ∝ pθ(Y |X) exp
{
C
∑

l
λlfl(X,Y)

}
, (2)

whose normalization term can be calculated ef-
ficiently according to how the constraints factor-
ize (Hu et al., 2016). The neural network pθ at it-
eration t is then updated with a distillation objec-
tive (Hinton et al., 2015) that balances between im-
itating soft predictions of teacher q and predicting
true hard labels:

θ(t+1) = arg min
θ∈Θ

1

N

N∑

n=1

(1− π)`(yn,σθ(xn))

+ π`(s(t)
n ,σθ(xn)),

(3)

where ` denotes the loss function (e.g., cross en-
tropy loss for classification); σθ(x) is the softmax
output of pθ on x; s(t)n is the soft prediction vec-
tor of q on training point xn at iteration t; N is
the training size; and π is the imitation parameter
calibrating the relative importance of the two objec-
tives. The training procedure iterates between Eq.(2)
and Eq.(3), resulting in the richly structured teacher
model q and the knowledge distilled student network
p. While q generally provides better accuracy, p is
more lightweight and applicable to many different
contexts (Hu et al., 2016; Liang et al., 2008).

In (Hu et al., 2016), the constraint fl(X,Y) has
been limited to be of the form rl(X,Y)− 1, where

rl is an FOL function yielding truth values in [0, 1],
and is required to be fully-specified a priori and
fixed throughout the training. Besides, the constraint
weight λl has to be manually selected. This severely
deviates from the characters of human knowledge
which is usually abstract, fuzzy, built on high-level
concepts (e.g., discourse relations, visual attributes)
as opposed to low-level observations (e.g., word
sequences, image pixels), and thus incomplete in
the sense of end-to-end learning that maps raw in-
put directly into target space of interest. This ne-
cessitates expressing structured knowledge allowing
some modules unknown and induced automatically
from observations.

3.2 Knowledge Learning

To substantially extend the scope of knowledge used
in the framework, we introduce learnable modules
φ in the knowledge expression denoted as fφ. The
module φ is general, and can be, e.g., free parame-
ters of structured metrics, or dependency structures
over semantic units. We assume fφ can be optimized
in terms of φ against a given objective (e.g., through
gradient descent for parameter updating). We aim to
learn the knowledge by determining φ from data.

For clarity we consider one knowledge constraint
and omit the index l. We further assume the con-
straint factorizes over data instances. Note that
our method can straightforwardly be applied to the
case of multiple constraints and constraints span-
ning multiple instances. As any meaningful knowl-
edge is expected to be consistent with the ob-
servations, a straightforward way is then to di-
rectly optimize against the training data: φ∗ =
arg maxφ

1
N

∑
n fφ(xn,yn), and insert the result-

ing fφ∗ in Eq.(1) for subsequent steps. However,
such a pipelined method fails to establish interac-
tions between the knowledge and network learning,
and can lead to a sub-optimal system, as shown in
our experiments.

To address this, we inspect the posterior regular-
ization objective in Eq.(1), and write it in an anal-
ogous form to the variational free energy of some
model evidence. Specifically, let log hφ(X,Y) ,
Cλfφ(X,Y), then the objective can be written as

−
∑

Y

q(Y) log
p(Y |X)hφ(X,Y)

q(Y)
. (4)

1672

Intuitively, we can view the output distribution of the
neural network p(Y |X) as a prior distribution over
the labels, while considering hφ(X,Y) as defining
a “likelihood” metric w.r.t the observations, making
the objective analogous to a (negative) variational
lower bound of the respective “model”. This natu-
rally inspires an EM-type algorithm (Neal and Hin-
ton, 1998) to optimize relevant parameters and im-
prove the “evidence”: the E-step optimizes over q,
yielding Eq.(2); and the M-step optimizes over φ.
Further incorporating the true training labels with
balancing parameter π′, we obtain the update for φ:

φ(t+1) = arg max
φ∈Φ

1

N

N∑

n=1

(1− π′)hφ(xn,yn)

+ π′Eq(t)(y)[hφ(xn,y)]

(5)

The update rule resembles the distillation objective
for learning parameters θ in Eq.(3). Indeed, the ex-
pectation term in Eq.(5) in effect optimizes hφ on
examples labeled by q(y), i.e., forcing the knowl-
edge function to mimic the predictions of the teacher
model and distill encoded information. Thus, be-
sides transferring from structured knowledge to a
neural model by Eq.(3), we now further bridge from
the neural network to the knowledge constraints for
joint learning and better integrating the best of both
worlds. We call our framework with the symmet-
ric objectives as mutual distillation. In fact, we can
view Eq.(4) as a single joint objective and we are
alternating optimization of θ and φ, resulting in the
update rules in Eq.(3) and Eq.(5) with the supervised
loss terms included, respectively (and with the loss
function in Eq.(3) being cross-entropy loss).

Additionally, the resemblance of the two objec-
tives indicates that we can readily translate the suc-
cessful neural learning method to knowledge learn-
ing. For instance, the expectation term in Eq.(5),
as the second loss term in Eq.(3), can be evaluated
on rich unlabeled data in addition to labeled exam-
ples, enabling semi-supervised learning which has
shown to be useful (Hu et al., 2016). Empirical stud-
ies show superiority of the proposed method over
several potential alternatives (section 5).

3.3 Weight Learning

Besides optimizing the knowledge representations,
we also aim to automate the selection of constraint

weights by learning from data. This would enable
us to incorporate massive amount of noisy knowl-
edge, without the need to worry about the confidence
which is usually unfeasible to set manually.

As the constraint weights serve to balance be-
tween the different components of the whole frame-
work, we learn the weights by optimizing the regu-
larized joint model q (see Eq.(2)):

λ(t+1) = arg max
λ≥0

1

N

N∑

n=1

qλ(yn) (6)

This is also validated in the view of regularized
Bayes (Zhu et al., 2014) where q is a generalized
posterior function by regularizing the standard pos-
terior p (see Eq.(1)). Although here, we omit the
Bayesian treatment of the weights λ and instead
optimize them directly to find the posterior. It is
straightforward to impose priors over λ to encode
preferences. In practice, Eq. (6) can be carried out
through gradient descent.

The training procedure of the proposed mutual
distillation is summarized in Algorithm 1.

Algorithm 1 Mutual Distillation
Input: Training data D = {(xn,yn)}Nn=1,

Initial knowledge constraints F = {fφ,l}Ll=1,
Initial neural network pθ,
Parameters: π, π’ – imitation parameters

C – regularization parameters
1: Initialize neural network parameters θ
2: Initialize knowledge parameters φ and weights λ
3: while not converged do
4: Sample a minibatch (X,Y) ⊂ D
5: Build the teacher model q with Eq.(2) and Eq.(6)
6: Update pθ with distillation objective Eq.(3)
7: Update fl (l = 1, . . . , L) with distillation objec-

tive Eq.(5)
8: end while

Output: Learned network p, knowledge modulesF , and
the joint teacher network q

4 Sentiment Classification

This section provides a concrete instance of our
general framework in the task of sentence sentiment
analysis. We augment a base convolutional network
with a large diverse set of linguistic knowledge, in-
cluding 1) sentiment transition structure for coher-
ent multi-level prediction, 2) conjunction word rules

1673

����������		
���
��������������
��������������� ����������		
���
�������� ��������
��������������

� �

� �

convolutional network discourse relation & sentiment transition

� �

� �
�

transition matrixes

discourse relationclause sentiment

student model (�) prediction

teacher model (�) prediction

��������
�������
��
���������

	���	����
�����

shared conv params

distillation distillation

Figure 1: Our sentiment classification model. The left part is the base convolutional network over sentences, and the right part is the

knowledge component over clauses. Blue arrows denote neural feed-forwards; red arrows denote knowledge incorporation steps;

and the orange dashed arrows denote the distillation processes. The convolutional parameters are shared across all the networks.

for improving discourse relation identification, and
3) word polarity rules for tackling negations. These
knowledge structures are fulfilled with neural net-
work modules that are learned jointly within our
framework. The resulting model efficiently captures
sophisticated linguistic patterns from limited data,
and produces interpretable predictions.

Figure 1 shows an overview of our model. We
assume binary sentiment labels (i.e., positive-1 and
negative-0). The left part of the figure is the base
neural network for sentence classification. Since our
framework is agnostic to the neural architecture, we
can use any off-the-shelf neural models such as con-
volutional network and recurrent network. Here we
choose the simple yet effective convolutional net-
work proposed in (Kim, 2014). The network takes
as input the word embedding vectors of a given sen-
tence, and extracts feature maps with a convolutional
layer followed by max-over-time pooling. A final
fully-connected layer with softmax activation trans-
forms the extracted features into a prediction vector.

We next introduce the three types of domain
knowledge, which leverage rich fine-grained level
structures, from clauses to words, to guide sentence
level prediction. The clause segmentation of sen-
tences is obtained using the public Stanford parser 1.

Sentiment transition by discourse relation Dis-
course structures characterize how the clauses (i.e.,

1http://nlp.stanford.edu/software/openie.html

discourse units) of a sentence are connected with
each other and thereby provide clues for coher-
ent sentence and clause labeling. Instead of us-
ing standard general-purpose discourse relation sys-
tem, we define three types of relations between ad-
jacent clauses (denoted as ci and ci+1) specific to
sentiment change, namely, consistent (ci and ci+1

have the same polarity), contrastive (ci+1 opposes
ci and is the main part), and concessive (ci+1 op-
poses ci and is secondary). The relations also indi-
cate the connections between clauses and the whole
sentence. For instance, a contrastive relation typi-
cally indicates ci+1 has the same polarity with the
full sentence (we reasonably assume a sentence has
contrastive sense in at most one position). To en-
code these dependencies we define sentiment tran-
sition matrices conditioned on discourse relation r
and sentence polarity y, denoted as Mr,y. For in-
stance, given r = contrastive and y = 0, we expect
the sentiment change between two adjacent clauses
to follow

Mr=contrastive,y=0 =

[
0 0
1 0

]
, (7)

i.e., transiting from positive polarity of ci to negative
of ci+1. We list all transition matrices in supplement.

We now design a constraint on sentence predic-
tions leveraging the above knowledge. Using the
identification modules presented shortly, we first get
the discourse relation probabilities pri,i+1 as well as

1674

the sentiment polarity probabilities pci and pci+1 of
adjacent clauses (ci, ci+1). For a given sentence la-
bel ys, we then compute the expected transition ma-
trix at each position by M̄i,ys = Epri,i+1

[Mr,ys]. The
value of the constraint function on y = ys is then
defined as the probability of the most likely clause
polarity configuration according to the clause pre-
dictions pc· and the averaged transitions M̄·,ys :

fst(x, ys) = max
a∈{0,1}m

∏
i
pri,ai · M̄i,ys,aiai+1 , (8)

where a is the polarity configuration and m is the
number of clauses. We use the Viterbi algorithm for
efficient computation.

We need the clause relation and polarity proba-
bilities pr and pc, which are unfeasible to identify
from raw text with only simple deterministic rules.
We apply a convolutional network for each module,
with similar network architectures to the base net-
work (we describe details in the supplement). For ef-
ficiency, we tie the convolutional parameters across
all the networks, while leaving the parameters of the
fully-connected layers to be learned individually.

Conjunction word rules We enhance the dis-
course relation neural network with robust clues
from explicit discourse connectives (e.g., “but”,
“and”, etc.) that occur in the sentence. In particular,
we collect a set of conjunction words (listed in the
supplement) and specify a rule constraint for each of
them. For instance, the conjunction “and” results in
the following constraint function:

f rel(ci, ci+1, r) = (1and(ci, ci+1)⇒ r = consistent) ,

where 1and(ci, ci+1) is an indicator function that
takes 1 if the two clauses are connected by “and”,
and 0 otherwise. Note that these rules are soft, with
the confidence weights learned from data. We use
the regularized joint model over the base discourse
network for predicting the relations.

Negation and word polarity rules Negations re-
verse the polarity of relevant statements. Identifying
negation sense has been a challenging problem for
accurate sentiment prediction. We address this by
incorporating rich lexicon rules at the clause level.
That is, if a polarity-carrying word (e.g., “good”)
occurs in the scope of a negator (e.g., “not”), then
the sentiment prediction of the clause is encouraged

to be the opposite polarity. We specify one separate
rule for each polarity-carrying word from public lex-
icons (see the supplement), e.g.,

f lex(ci, yc) =
(
1good(ci)⇒ yc = negative

)
, (9)

where 1good(ci) is an indicator function that takes
1 if word “good” occurs in a negation scope in the
clause text, and 0 otherwise. This results in over
3,000 rules, and our automated weight optimization
frees us from manually selecting the weights ex-
haustively. We define the negation scope to be the 4
words following a negator (Choi and Cardie, 2008).

Though polarities of single words can be brit-
tle features for determining the sentiment of a long
statement due to complex semantic compositions,
they are more robust and effective at the level of
clauses which are generally short and simple. More-
over, inaccurate rules will be downplayed through
the weight learning procedure.

We have presented our neural sentiment model.
We tackle several long-standing challenges by di-
rectly incorporating linguistic knowledge. Compar-
ing to previous work that designs various neural ar-
chitectures and relies on substantial annotations for
specific issues (Socher et al., 2013; Bhatia et al.,
2015), our knowledge framework is more straight-
forward, interpretable, and general, while still pre-
serving the power of neural methods.

Notably, even with several additional compo-
nents to be learned for knowledge representation,
our method does not require extra supervision sig-
nals beyond the raw sentence-labels, making our
framework generally applicable to many different
tasks (Neelakantan et al., 2016).

The sentiment transition knowledge is expressed
in the form of structured model with features ex-
tracted using neural networks. Though apparently
similar to recent deep structured models such as
neural-CRFs (Durrett and Klein, 2015; Ammar et
al., 2014; Do et al., 2010), ours is different since
we parsimoniously extract features that are neces-
sary for precise and efficient knowledge expression,
as opposed to neural-CRFs that learn as rich repre-
sentations as possible for final prediction.

5 Experiments

We evaluate our method on the widely-used sen-
timent classification benchmarks. Our knowledge

1675

Model Accuracy (%)

sentences
1 CNN (Kim, 2014) 86.6
2 CNN+REL q: 87.8; p: 87.1
3 CNN+REL+LEX q: 88.0; p: 87.2

sentences
4 MC-CNN (Kim, 2014) 86.8
5 Tensor-CNN (Lei et al., 2015) 87.0
6 CNN+But-q (Hu et al., 2016) 87.1

+phrases

7 CNN (Kim, 2014) 87.2
8 Tree-LSTM (Tai et al., 2015) 88.0
9 MC-CNN (Kim, 2014) 88.1

10 CNN+But-q (Hu et al., 2016) 89.2
11 MVCNN (Yin and Schutze, 2015) 89.4

Table 1: Classification performance on SST2. The top and

second blocks use only sentence-level annotations for training,

while the bottom block uses both sentence- and phrases-level

annotations. We report the accuracy of both the regularized

teacher model q and the student model p after distillation.

enriched model significantly outperforms plain neu-
ral networks. We obtain even higher improvements
with limited data sizes. Comparison with extensive
other potential knowledge learning methods shows
the effectiveness of our framework. Our model also
shows improved interpretability.

5.1 Setup
Datasets Two classification benchmarks are used:
1) Stanford Sentiment Treebank-2 (SST2) (Socher
et al., 2013) is a binary classification dataset that
consists of 6920/872/1821 moview review sentences
in the train/dev/test sets, respectively. Besides
sentence-level annotations, the dataset also provides
exhaustive gold-standard labels at fine-grained lev-
els, from clauses to phrases. The resulting full train-
ing set includes 76,961 labeled instances. We train
our model using only the sentence-level annotations,
and compare to baselines learned from either train-
ing set. 2) Customer Reviews (CR) (Hu and Liu,
2004) consists of 3,775 product reviews with pos-
itive and negative polarities. Following previous
work we use 10-fold cross-validation.

Model configurations We evaluate two variants
of our model: CNN+REL leverages the knowledge
of sentiment transition and discourse conjunctions,
and CNN+REL+LEX additionally incorporates the
negation lexicon rules.

Throughout the experiments we set the regulariza-
tion parameter to C = 10. The imitation parameters
π and π′ decay as π(t) = π′(t) = 0.9t where t is

training size
10% 30% 50% 100%

ac
cu

 (
%

)

80

82

84

86

88
 CNN+REL+LEX-q
 CNN

Figure 2: Performance with varying sizes of training examples.

the iteration number (Bengio et al., 2015; Hu et al.,
2016). For the base neural network, we choose the
“non-static” version from (Kim, 2014) and use the
same configurations.

5.2 Classification Results

Table 1 shows the classification performance on the
SST2 dataset. From rows 1-3 we see that our pro-
posed sentiment model that integrates the diverse
set of knowledge (section 4) significantly outper-
forms the base CNN (Kim, 2014). The improve-
ment of the student network p validates the effec-
tiveness of the iterative mutual distillation process.
Consistent with the observations in (Hu et al., 2016),
the regularized teacher model q provides further per-
formance boost, though it imposes additional com-
putational overhead for explicit knowledge repre-
sentations. Note that our models are trained with
only sentence-level annotations. Compared with the
baselines trained in the same setting (rows 4-6), our
model with the full knowledge, CNN+REL+LEX,
performs the best. CNN+But-q (row 6) is the base
CNN augmented with a logic rule that identifies con-
trastive sense through explicit occurrence of word
“but” (section 3.1) (Hu et al., 2016). Our enhanced
framework enables richer knowledge and achieves
much better performance.

Our method further outperforms the base CNN
that is additionally trained with dense phrase-level
annotations (row 7), showing improved generaliza-
tion of the knowledge-enhanced model from limited
data. Figure 2 further studies the performance with
varying training sizes. We can clearly observe that
the incorporated knowledge tends to offer higher im-
provement with less training data. This property can
be particularly desirable in applications of structured
predictions where manual annotations are expensive
while rich human knowledge is available.

1676

Model Accuracy (%)

1 CNN (Kim, 2014) 84.1±0.2
2 CNN+REL q: 85.0±0.2; p: 84.7±0.2
3 CNN+REL+LEX q: 85.3±0.3; p: 85.0±0.2
4 MC-CNN (Kim, 2014) 85.0
5 Bi-RNN (Lai et al., 2015) 82.6

6 CRF-PR
(Yang and Cardie, 2014) 82.7

7 AdaSent (Zhao et al., 2015) 86.3

Table 2: Classification performance on the CR dataset. We

report the average accuracy±one standard deviation with 10-

fold CV. The top block compares the base CNN (row 1) with

the knowledge-enhanced CNNs by our framework.

Table 2 shows model performance on the CR
dataset. Our model again surpasses the base net-
work and several other competitive neural methods
by a large margin. Though falling behind AdaSent
(row 7) which has a more specialized and complex
architecture than standard convolutional networks,
the proposed framework indeed is general enough
to apply on top of it for further enhancement.

To further evaluate the proposed mutual distilla-
tion framework for learning knowledge, we compare
to an extensive set of other possible knowledge op-
timization approaches. Table 3 shows the results.
In row 2, the “opt-joint” method optimizes the reg-
ularized joint model of Eq.(2) directly in terms of
both the neural network and knowledge parameters.
Row 3, “opt-knwl-pipeline”, is an approach that first
optimizes the standalone knowledge component and
then inserts it into the previous framework of (Hu et
al., 2016) as a fixed constraint. Without interaction
between the knowledge and neural network learn-
ing, the pipelined method yields inferior results. Fi-
nally, rows 4-5 display a method that adapts the
knowledge component at each iteration by optimiz-
ing the joint model q in terms of the knowledge pa-
rameters. We report the accuracy of both the student
network p (row 4) and the joint teacher network q
(row 5), and compare with our method in row 6 and
7, respectively. We can see that both models per-
forms poorly, achieving the accuracy of only 68.6%
for the knowledge component, similar to the accu-
racy achieved by the “opt-joint” method.

In contrast, our mutual distillation framework of-
fers the best performance. Table 3 shows that
the knowledge component as a standalone classi-
fier does not achieve high accuracy (the numbers in

Model Accuracy (%)

1 CNN (Kim, 2014) 86.6
2 opt-joint 86.9 (68.8)
3 opt-knwl-pipeline 86.7 (70.4)
4 opt-joint-iterative-p 86.9
5 opt-joint-iterative-q 87.6 (68.6)

6 mutual-p 87.2
7 mutual-q 88.0 (72.5)

Table 3: Comparisons between our mutual distillation (rows

4-5) and other knowledge optimization methods, on SST2. See

the text for details. The numbers in parentheses are the accuracy

of the learned knowledge component (Figure 1, right part) if we

take it as a standalone classifier. All knowledge is used.

it 's all very cute , though not terribly funny if you 're …

0.4 0.6 0.8 0.2
concessive: 0.9

Figure 3: An example sentence and the results of the learned

knowledge modules applied on it. Red denotes positive, and

blue denotes negative. The snippet “not ... funny” triggers the

negation rule.

enough, good, strong,
engaging, great

awful, loses, fake
doubt, bad

Table 4: The top 5 positive (left) and negative (right) words

with the largest weights of the negation rules.

parentheses). As discussed in section 4, this is be-
cause of the parsimonious formulation for the pre-
cise knowledge expression, while leaving the ex-
pressive base NN to extract rich representations. The
enhanced performance of the combination indicates
complementary effects of the two parts.

5.3 Qualitative Analysis

Our model not only provides better classification
performance, but also shows improved interpretabil-
ity due to the learned structured knowledge repre-
sentation. Figure 3 illustrates an example sentence
from test set. We see that the clause sentiments as
well as the discourse relation are correctly captured.
The negation rule of “not ... funny” (Eq.(9)) also
helps to identify the right polarity.

Table 4 lists the top-5 positive and negative words
that are most confident for the negation rules, pro-
viding insights into the linguistic norms in the movie
review context.

1677

6 Conclusion

In this paper we have developed a framework that
learns structured knowledge and its weights for reg-
ulating deep neural networks through mutual distil-
lation. We instantiated our framework for the senti-
ment classification task. Using massive learned lin-
guistic knowledge, our neural model provides sub-
stantial improvements over many of the existing ap-
proaches, especially in the limited data setting. In
the future work, we plan to apply our framework to
other text and vision applications.

Acknowledgments

We thank the anonymous reviewers for their valu-
able comments. This work is supported by NSF
IIS1218282, NSF IIS1447676, Air Force FA8721-
05-C-0003.

References
Waleed Ammar, Chris Dyer, and Noah A Smith. 2014.

Conditional random field autoencoders for unsuper-
vised structured prediction. In Proc. of NIPS, pages
3311–3319.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer. 2015. Scheduled sampling for sequence pre-
diction with recurrent neural networks. In Proc. of
NIPS, pages 1171–1179.

Parminder Bhatia, Yangfeng Ji, and Jacob Eisenstein.
2015. Better document-level sentiment analysis from
rst discourse parsing. In Proc. of EMNLP.

Yejin Choi and Claire Cardie. 2008. Learning with com-
positional semantics as structural inference for subsen-
tential sentiment analysis. In Proc. of EMNLP, pages
793–801. Association for Computational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
JMLR, 12:2493–2537.

Jia Deng, Nan Ding, Yangqing Jia, Andrea Frome, Kevin
Murphy, Samy Bengio, Yuan Li, Hartmut Neven, and
Hartwig Adam. 2014. Large-scale object classifica-
tion using label relation graphs. In ECCV 2014, pages
48–64. Springer.

Trinh Do, Thierry Arti, et al. 2010. Neural conditional
random fields. In Proc. of AISTATS, pages 177–184.

Greg Durrett and Dan Klein. 2015. Neural CRF parsing.
Kuzman Ganchev, Joao Graça, Jennifer Gillenwater, and

Ben Taskar. 2010. Posterior regularization for struc-
tured latent variable models. JMLR, 11:2001–2049.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-
nior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. 2012. Deep neural networks for acous-
tic modeling in speech recognition: The shared views
of four research groups. Signal Processing Magazine,
IEEE, 29(6):82–97.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proc. of KDD, pages 168–
177. ACM.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy,
and Eric Xing. 2016. Harnessing deep neural net-
works with logic rules. In Proc. of ACL.

Matthew J. Johnson, David K. Duvenaud, Alex B.
Wiltschko, Sandeep R. Datta, and Ryan P. Adams.
2016. Composing graphical models with neural net-
works for structured representations and fast inference.
Arxiv preprint arXiv:1603.06277.

Theofanis Karaletsos, Serge Belongie, Cornell Tech, and
Gunnar Rätsch. 2016. Bayesian representation learn-
ing with oracle constraints. In Proc. of ICLR.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. Proc. of EMNLP.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
2012. Imagenet classification with deep convolutional
neural networks. In Proc. of NIPS, pages 1097–1105.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text clas-
sification. In AAAI, pages 2267–2273.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2015.
Molding cnns for text: non-linear, non-consecutive
convolutions. In Proc. of EMNLP.

Jiwei Li, Dan Jurafsky, and Eudard Hovy. 2015. When
are tree structures necessary for deep learning of rep-
resentations?

Percy Liang, Hal Daumé III, and Dan Klein. 2008.
Structure compilation: trading structure for features.
In Proc. of ICML, pages 592–599. ACM.

Percy Liang, Michael I Jordan, and Dan Klein. 2009.
Learning from measurements in exponential families.
In Proc. of ICML, pages 641–648. ACM.

Shike Mei, Jun Zhu, and Jerry Zhu. 2014. Robust Reg-
Bayes: Selectively incorporating first-order logic do-
main knowledge into Bayesian models. In Proc. of
ICML, pages 253–261.

1678

Radford M Neal and Geoffrey E Hinton. 1998. A view
of the em algorithm that justifies incremental, sparse,
and other variants. In Learning in graphical models,
pages 355–368. Springer.

Arvind Neelakantan, Quoc V Le, and Ilya Sutskever.
2016. Neural programmer: Inducing latent programs
with gradient descent. In Proc. of ICLR.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and trends in infor-
mation retrieval, 2(1-2):1–135.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proc. of EMNLP, volume 1631, page 1642. Citeseer.

Jacob Steinhardt and Percy S Liang. 2015. Learning with
relaxed supervision. In Proc. of NIPS, pages 2809–
2817.

Kai Sheng Tai, Richard Socher, and Christopher D Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proc. of ACL.

Bishan Yang and Claire Cardie. 2014. Context-aware
learning for sentence-level sentiment analysis with
posterior regularization. In Proc. of ACL, pages 325–
335.

Wenpeng Yin and Hinrich Schutze. 2015. Multichan-
nel variable-size convolution for sentence classifica-
tion. Proc. of CONLL.

Han Zhao, Zhengdong Lu, and Pascal Poupart. 2015.
Self-adaptive hierarchical sentence model. arXiv
preprint arXiv:1504.05070.

Jun Zhu, Ning Chen, and Eric P Xing. 2014. Bayesian
inference with posterior regularization and applica-
tions to infinite latent svms. JMLR, 15(1):1799–1847.

1679

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1680–1690,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

De-Conflated Semantic Representations

Mohammad Taher Pilehvar and Nigel Collier
Language Technology Lab

Department of Theoretical and Applied Linguistics
University of Cambridge

Cambridge, UK
{mp792,nhc30}@cam.ac.uk

Abstract

One major deficiency of most semantic repre-
sentation techniques is that they usually model
a word type as a single point in the semantic
space, hence conflating all the meanings that
the word can have. Addressing this issue by
learning distinct representations for individ-
ual meanings of words has been the subject of
several research studies in the past few years.
However, the generated sense representations
are either not linked to any sense inventory or
are unreliable for infrequent word senses. We
propose a technique that tackles these prob-
lems by de-conflating the representations of
words based on the deep knowledge that can
be derived from a semantic network. Our ap-
proach provides multiple advantages in com-
parison to the previous approaches, including
its high coverage and the ability to generate
accurate representations even for infrequent
word senses. We carry out evaluations on six
datasets across two semantic similarity tasks
and report state-of-the-art results on most of
them.

1 Introduction

Modeling the meanings of linguistic items in a
machine-interpretable form, i.e., semantic represen-
tation, is one of the oldest, yet most active, areas
of research in Natural Language Processing (NLP).
The field has recently experienced a resurgence of
interest with neural network-based models that view
the representation task as a language modeling prob-
lem and learn dense representations (usually re-
ferred to as embeddings) by efficiently processing

massive amounts of texts. However, either in its
conventional count-based form (Turney and Pantel,
2010) or the recent predictive approach, the prevail-
ing objective of representing each word type as a
single point in the semantic space has a major limita-
tion: it ignores the fact that words can have multiple
meanings and conflates all these meanings into a sin-
gle representation. This objective can have negative
impacts on accurate semantic modeling, e.g., seman-
tically unrelated words that are synonymous to dif-
ferent senses of a word are pulled towards each other
in the semantic space (Neelakantan et al., 2014).
For example, the two semantically-unrelated words
squirrel and keyboard are pulled towards each other
in the semantic space for their similarities to two dif-
ferent senses of mouse, i.e., rodent and computer in-
put device.

Recently, there has been a growing interest in ad-
dressing the meaning conflation deficiency of word
representations. A series of techniques have been
developed to associate a word to multiple points
in the semantic space by clustering its contexts
in a given text corpus and learning distinct rep-
resentations for individual clusters (Reisinger and
Mooney, 2010; Huang et al., 2012). However, these
techniques usually assume a fixed number of word
senses per word type, disregarding the fact that the
number of senses per word can range from one
(monosemy) to dozens. Neelakantan et al. (2014)
tackled this issue by allowing the number to be dy-
namically adjusted for each word during training.
However, the approach and all the other clustering-
based techniques still suffer from the fact that the
computed sense representations are not linked to

1680

any sense inventory, a linking which would require
large amounts of sense-annotated data (Agirre et al.,
2006). In addition, because of their dependence on
knowledge derived from a text corpus, these tech-
niques are generally unable to learn accurate repre-
sentations for word senses that are infrequent in the
underlying corpus.

Knowledge-based techniques tackle these issues
by deriving sense-specific knowledge from exter-
nal sense inventories, such as WordNet (Fellbaum,
1998), and learning representations that are linked
to the sense inventory. These approaches either use
sense definitions and employ Word Sense Disam-
biguation (WSD) to gather sense-specific contexts
(Chen et al., 2014; Iacobacci et al., 2015) or take
advantage of the properties of WordNet, such as
synonymy and direct semantic relations (Rothe and
Schütze, 2015). However, the non-optimal WSD
techniques and the shallow utilization of knowl-
edge from WordNet do not allow these techniques
to learn accurate and high-coverage semantic repre-
sentations for all senses in the inventory.

We propose a technique that de-conflates a given
word representation into its constituent sense repre-
sentations by exploiting deep knowledge from the
semantic network of WordNet. Our approach pro-
vides the following three main advantages in com-
parison to the past work: (1) our representations are
linked to the WordNet sense inventory and, accord-
ingly, the number of senses for a word is a dynamic
parameter which matches that defined by WordNet;
(2) the deep exploitation of WordNet’s semantic net-
work allows us to obtain accurate semantic repre-
sentations, even for word senses that are infrequent
in generic text corpora; and (3) our methodology in-
volves only minimal parameter tuning and can be ef-
fectively applied to any sense inventory that is view-
able as a semantic network and to any word repre-
sentation technique. We evaluate our sense repre-
sentations in two tasks: word similarity (both in-
context and in-isolation) and cross-level semantic
similarity. Experimental results show that the pro-
posed technique can provide consistently high per-
formance across six datasets, outperforming the re-
cent state of the art on most of them.

2 De-Conflated Representations

Preliminaries. Our proposed approach takes a set
of pre-trained word representations and uses the
graph structure of a semantic lexical resource in or-
der to de-conflate the representations into those of
word senses. Therefore, our approach firstly re-
quires a set of pre-trained word representations (e.g.,
word embeddings). Any model that maps a given
word to a fixed-size vector representation (i.e., vec-
tor space model) can be used by our approach. In our
experiments, we opted for a set of publicly available
word embeddings (cf. §3.1).

Secondly, we require a lexical resource whose se-
mantic relations allow us to view it as a graph G =
(V,E) where each vertex in the set of vertices V cor-
responds to a concept and edges in E denote lexico-
semantic relationships among these vertices. Each
concept c ∈ V is mapped to a set of word senses by
a mapping function µ(c) : c→ {s1, . . . , sl}. Word-
Net, the de facto community standard sense inven-
tory, is a suitable resource that satisfies these prop-
erties. WordNet can be readily represented as a se-
mantic graph in which vertices are synsets and edges
are the semantic relations that connect these synsets
(e.g., hypernymy and meronymy). The mapping
function in WordNet maps each synset to the set of
synonymous words it contains (i.e., word senses).

2.1 Overview of the approach

Our goal is to compute a semantic representation
that places a given word sense in an existing seman-
tic space of words. We achieve this by leveraging
word representations as well as the knowledge de-
rived from WordNet. The gist of our approach lies
in its computation of a list of sense biasing words for
a given word sense. To this end, we first analyze the
semantic network of WordNet and extract a list of
most representative words that can effectively pin-
point the semantics of individual synsets (§2.2). We
then leverage an effective technique which learns se-
mantic representations for individual word senses by
placing the senses in the proximity of their corre-
sponding sense biasing words (§2.3).

2.2 Determining sense biasing words

Algorithm 1 shows the procedure we use to extract
from WordNet a list of sense biasing words for a

1681

Algorithm 1 Get sense biasing words for synset yt
Require: Graph G = (V,E) of vertices V = {yi}mi=1

(of m synsets) and edges E (semantic relationships
between synsets)

Require: Function µ(yi) that returns for a given synset
yi the words it contains

Require: Target synset yt ∈ V for which a sense biasing
word sequence is required

Ensure: The sequence Bt of sense biasing words for
synset yt

1: Bt← ()
2: for all word w in µ(yt) do
3: Bt← Bt ∪ (w)
4: for yi ∈ V : yi 6= yt do
5: pi← PERSONALIZEDPAGERANK(yi, yt, G)
6: (y∗h)

m−1
h=1 ← SORT(V \{yt}) according to scores pi

7: for h : 1 to m− 1 do
8: for all word w in µ(y∗h) do
9: if w /∈ Bt then

10: Bt ← Bt ∪ (w)
11: return sequence Bt

given target synset yt. The algorithm receives as its
inputs the semantic graph of WordNet and the map-
ping function µ(·), and outputs an ordered list of bi-
asing words Bt for yt. The list comprises the most
semantically-related words to synset yt which can
best represent and pinpoint its meaning. We lever-
age a graph-based algorithm for the computation of
the sense biasing words.

Specifically, we use the Personalized PageRank
(Haveliwala, 2002, PPR) algorithm which has been
extensively used by several NLP applications (Yeh
et al., 2009; Niemann and Gurevych, 2011; Agirre
et al., 2014). To this end, we first represent the se-
mantic network of WordNet as a row-stochastic tran-
sition matrix M ∈ Rm×m wherem is the number of
synsets in WordNet (|V |). The cell Mij of M is set
to the inverse of the degree of i if there is a seman-
tic relationship between synsets i and j and to zero
otherwise. We compute the PPR distribution for a
target synset yt by using the power iteration method
Pt+1 = (1− σ)P0 + σMPt, where σ is the damp-
ing factor (usually set to 0.85) and P0 is a one-hot
initialization vector with the corresponding dimen-
sion of yt being set to 1.0. The weight pi in line 5
is the value of the ith dimension of the PPR vector
P computed for the synset yt. This weight can be
seen as the importance of the corresponding synset

Sense biasing words

1 dactyl, finger, toe, thumb, pollex, body part, nail, minimus,
tarsier, webbed, extremity, appendage

2 figure, cardinal number, cardinal, integer, whole number,
numeration system, number system, system of numeration,
large integer, constituent, element, digital

Table 1: The top sense biasing words for the synsets containing

the anatomical (#1) and numerical (#2) senses of the noun digit.

of the ith dimension (i.e., yi) to yt. When applied
to a semantic network, such as the WordNet graph,
this importance can be interpreted as semantic rel-
evance. Hence, the value of pi denotes the extent
of semantic relatedness between yi and yt. We use
this notion and retrieve a list of most semantically-
related words to yt.

To achieve this, we sort the synsets {y∗ ∈ V :
y∗ 6= yt} according to their PPR values {pi}m−1i=1

(line 6). We then iterate (lines 7-10) the sorted list
(y∗) and for each synset y∗h append the list Bt with
all the words in y∗h (i.e., µ(y∗h)). However, in order to
ensure that the words in the target synset yt appear as
the most representative words in Bt, we first assign
these words to the list (line 3). Finally, the algorithm
returns the ordered list Bt of sense biasing words for
the target synset yt.

Table 1 shows a sample of top biasing words ex-
tracted for the two senses of the noun digit: the
numerical and the anatomical senses.1 We explain
in §2.3 how we use the sense biasing lists to learn
sense-specific representations. Note that the size
of the list is equal to the total number of strings
in WordNet. However, we observed that taking a
very small portion of the top-ranking elements in the
lists is enough to generate representations that per-
form very similarly to those generated when using
the full-sized lists (please see §3.1).

2.3 Learning sense representations

Let V be the set of pre-trained d-dimensional word
representations. Our objective here is to compute
a set V∗ = {v∗s1 , . . . , v∗sn} of representations for n
word senses {s1, . . . , sn} in the same d-dimensional
semantic space of words. We achieve this for each
sense si by de-conflating the representation vsi of
its corresponding lemma and biasing it towards the

1The first and third senses of the noun digit in WordNet 3.0.

1682

representations of the words in Bi. Specifically, we
obtain a representation v∗si for a word sense si by
solving:

argmin
v∗si

α d(v∗si , vsi) +
∑

bij∈Bi
δij d(v

∗
si , vbij) (1)

where vsi and vbij are the respective word repre-
sentations (∈ V) of the lemma of si and the jth

biasing word in the list of biasing words for si,
i.e, Bi. The distance d(v, v′) between vectors v
and v′ is measured by squared Euclidean distance
‖v − v′‖2= ∑

k(vk − v′k)2. The first term in For-
mula 1 requires the representation of the word sense
si (i.e., v∗si) to be similar to that of its corresponding
lemma, i.e., vsi , whereas the second term encour-
ages v∗si to be in the proximity of its biasing words
in the semantic space. The above criterion is simi-
lar to the frameworks of Das and Smith (2011) and
Faruqui et al. (2015) which, though being convex, is
usually solved for efficiency reasons by an iterative
method proposed by Bengio et al. (2007). Follow-
ing these works, we obtain the below equation for
computing the representation of a word sense si:

v∗si =
αvsi +

∑
bij∈Bi δijvbij

α+
∑

j δij
. (2)

We define δij as e−λr(i,j)
|Bi| where r(i, j) denotes the

rank of the word bij in the list Bi. This is essen-
tially an exponential decay function that gives more
importance to the top-ranking biasing words for si.
The hyperparameter α denotes the extent to which
v∗si is kept close to its corresponding lemma repre-
sentation vsi . Following Faruqui et al. (2015), we
set α to 1. The only parameter to be tuned in our
experiments is λ. We discuss the tuning of this pa-
rameter in §3.1. The representation of a synset yi
can be accordingly calculated as the centroid of the
vectors of its associated word senses, i.e.,

{ vyi
‖vyi‖

: vyi =
∑

s∈µ(yi)
v̂∗s , v̂

∗
s =

v∗s
‖v∗s‖

}. (3)

As a result of this procedure, we obtain the set
V∗ of n sense representations in the same semantic
space as word representations in V . In fact, we now
have a unified semantic space which enables a direct
comparison of the two types of linguistic items. In

Closest words

1 crappie, trout, guitar, shad, walleye, bassist, angler, catfish,
trombone, percussion, piano, drummer, saxophone, jigs, fish

2 baritone, piano, guitar, trombone, saxophone, cello, percussion,
tenor, saxophonist, clarinet, pianist, vocals, solos, harmonica

3 fish, trout, shrimp, anglers, fishing, bait, guitar, salmon,
shark, fisherman, lakes, seafood, drummer, whale, fisheries

Table 2: Ten most similar words to the word bass (#1) and two

of its senses: music (#2) and fish (#3).

Figure 1: The illustration of the word digit and two of its com-

puted senses in our unified 2-d semantic space.

§3.3 we evaluate our approach in the word to sense
similarity measurement framework.

We show in Table 2 the closest words to the word
bass and two of its senses, music and fish,2 in our
unified semantic space. We can see in row #1 a mix-
ture of both meanings when the word representation
is used whereas the closest words to the senses (rows
#2 and #3) are mostly in-domain and specific to the
corresponding sense.

To exhibit another interesting property of our
sense representation approach, we depict in Figure
1 the word digit and its numerical and anatomical
senses (from the example in Table 1) in a 2-d seman-
tic space, along with a sample set of words in their

2The first and fourth senses in WordNet 3.0, respectively
defined as “the lowest part of the musical range” and “the lean
flesh of a saltwater fish of the family Serranidae.”

1683

proximity.3 We can see that the word digit is placed
in the semantic space in the neighbourhood of words
from the numerical domain (lower left of the figure),
mainly due the dominance (Sanderson and Van Ri-
jsbergen, 1999) of this sense in the general-domain
corpus on which the word embeddings in our ex-
periments were trained (cf. §3.1). However, upon
de-conflation, the emerging anatomical sense of the
word is shifted towards the region in the semantic
space which is occupied by anatomical words (up-
per right of the figure). A clustering-based sense
representation technique would have failed in accu-
rately representing the infrequent anatomical mean-
ing of digit by analyzing a general domain corpus
(such as the one used here). But our sense repre-
sentation technique, thanks to its proper usage of
knowledge from a sense inventory, is effective in
unveiling and accurately modeling less frequent or
domain-specific senses of a given word.

Please note that any vector space model represen-
tation technique can be used for the pre-training of
word representations in V . Also, the list of sense
biasing words can be obtained for larger sense in-
ventories, such as FreeBase (Bollacker et al., 2008)
or BabelNet (Navigli and Ponzetto, 2012). We leave
the exploration of further ways of computing sense
biasing words to future work.

3 Experiments

We benchmarked our sense representation approach
against several recent techniques on two standard
tasks: word similarity (§3.2), for which we eval-
uate on both in-isolation and in-context similarity
datasets, and cross-level semantic similarity (§3.3).

3.1 Experimental setup

Pre-trained word representations. As our word
representations, we used the 300-d Word2vec
(Mikolov et al., 2013) word embeddings trained on
the Google News dataset4 mainly for their popular-
ity across different NLP applications. However, our
approach is equally applicable to any count-based
representation technique (Baroni and Lenci, 2010;
Turney and Pantel, 2010) or any other embedding

3We used the t-SNE algorithm (van der Maaten and Hinton,
2008) for dimensionality reduction.

4https://code.google.com/archive/p/word2vec/

approach (Pennington et al., 2014; LeCun et al.,
2015). We leave the evaluation and comparison of
various word representation techniques with differ-
ent training approaches, objectives, and dimension-
alities to future work.

Parameter tuning. Recall from §2.3 that our pro-
cedure for learning sense representations needs only
one parameter to be tuned, i.e., λ. We did not per-
form an extensive tuning on the value of this param-
eter and set its value to 1/5 after trying four differ-
ent values (1, 1/2, 1/5, and 1/10) on a small validation
dataset. We leave the more systematic tuning of the
parameter and the choice of alternative decay func-
tions (cf. §2.3) to future work.

The size of the sense biasing words lists. Also
recall from §2.2 that the extracted lists of sense bias-
ing words were originally as large as the total num-
ber of unique strings in WordNet (around 150K in
ver. 3.0). But, given that we use an exponential de-
cay function in our learning algorithm (cf. §2.3),
the impact of the low-ranking words in the list is
negligible. In fact, we observed that taking a very
small portion of the top-ranking words, i.e., the top
25, produces similarity scores that are on par with
those generated when the full lists were considered.
Therefore, we experimented with the down-sized
lists which enabled us to generate very quickly sense
representations for all word senses in WordNet.

3.2 Word similarity
Comparison systems. We compared our results
against nine other sense representation techniques:
the WordNet-based approaches of Pilehvar and Nav-
igli (2015), Chen et al. (2014), Rothe and Schütze
(2015), Jauhar et al. (2015), and Iacobacci et
al. (2015) and the clustering-based approaches of
Huang et al. (2012), Tian et al. (2014), Neelakan-
tan et al. (2014), and Liu et al. (2015) (please see
§4 for more details). We also compared against the
approach of Faruqui et al. (2015) which uses knowl-
edge derived from WordNet for improving word rep-
resentations. From the different configurations pre-
sented in (Faruqui et al., 2015) we chose the sys-
tem that uses GloVe (Pennington et al., 2014) with
all WordNet relations which is their best perform-
ing monolingual system. As for the approach of
Jauhar et al. (2015), we show the results of the

1684

EM+RETERO system which performs most consis-
tently across different datasets.

Benchmarks. As our word similarity benchmark,
we considered five datasets: RG-65 (Rubenstein
and Goodenough, 1965), YP-130 (Yang and Pow-
ers, 2005), MEN-3K (Bruni et al., 2014), SimLex-
999 (Hill et al., 2015, SL-999), and Stanford Con-
textual Word Similarity (Huang et al., 2012, SCWS).
The latter benchmark provides for each word a con-
text that triggers a specific meaning of it, making the
dataset very suitable for the evaluation of sense rep-
resentation. For each datasets, we list the results that
are reported by any of our comparison systems.

Similarity measurement. For the SCWS dataset,
we follow the past works (Reisinger and Mooney,
2010; Huang et al., 2012) and report the results ac-
cording to two system configurations: (1) AvgSim:
where the similarity between two words is computed
as the average of all the pairwise similarities be-
tween their senses, and (2) AvgSimC: where each
pairwise sense similarity is weighted by the rele-
vance of each sense to its corresponding context. For
all the other datasets, since words are not provided
with any context (they are in isolation), we measure
the similarity between two words as that between
their most similar senses. In all the experiments, we
use the cosine distance as our similarity measure.

3.2.1 Experimental results
Tables 4 and 3 show the results of our system, DE-

CONF, and the comparison systems on the SCWS
and the other four similarity datasets, respectively.
In both tables we also report the word vectors base-
line, whenever they are available, which is computed
by directly comparing the corresponding word rep-
resentations of the two words (∈ V). Note that the
word-based baseline does not apply to the approach
of Pilehvar and Navigli (2015) as it is purely based
on the semantic network of WordNet and does not
use any pre-trained word embeddings.

We can see from the tables that our sense rep-
resentations obtain considerable improvements over
those of words across the five datasets. This high-
lights the fact that the de-conflation of word rep-
resentations into those of their individual meanings
has been highly beneficial. On the SCWS dataset,
DECONF outperforms all the recent state-of-the-art

sense representation techniques (in their best set-
tings) which proves the effectiveness of our ap-
proach in capturing the semantics of specific mean-
ings of the words. The improvement is consistent
across both system configurations (i.e., AvgSim and
AvgSimC). Moreover, the state-of-the-art WordNet-
based approach of Rothe and Schütze (2015) uses
the same initial word vectors as DECONF does (cf.
§3.1). Hence, the improvement we obtain indicates
that our approach has made better use of the sense-
specific knowledge encoded in WordNet.

As seen in Table 3 our approach shows com-
petitive performance on the other four datasets.
The YP-130 dataset focuses on verb similarity,
whereas SimLex-999 contains verbs and adjectives
and MEN-3K has word pairs with different parts of
speech (e.g., a noun compared to a verb). The results
we obtain on these datasets exhibit the reliability of
our approach in modeling non-nominal word senses.

3.2.2 Discussion
The similarity scale of the SimLex-999 dataset is

different from our other word similarity benchmarks
in that it assigns relatively low scores to antonymous
pairs. For instance, sunset-sunrise and man-woman
in this dataset are assigned the respective similari-
ties of 2.47 and 3.33 (in a [0, 10] similarity scale)
which is in the same range as the similarity between
word pairs with slight domain relatedness, such as
head-nail (2.47), air-molecule (3.05), or succeed-try
(3.98). In fact, we observed that tweaking the simi-
larity scale of our system in a way that it diminishes
the similarity scores between antonyms can result
in a significant performance improvement on this
dataset. To this end, we performed an experiment
in which the similarity of a word pair was simply
divided by 3 whenever the two words belonged to
synsets that were linked by an antonymy relation in
WordNet.5 We observed that the performance on the
SimLex-999 dataset increased to 61.6 (from 54.2)
and 59.1 (from 51.7) according to Pearson (r× 100)
and Spearman (ρ × 100) correlation scores, respec-
tively.

5We chose 3 so as to transform a pair with high similar-
ity score (around 9.0) to one with slight semantic similarity
(around 3.0) in the [0, 10] similarity scale of SimLex-999. We
also tested for other values in [2, 6] an observed similar perfor-
mance gains.

1685

Dataset Approach Sense-based score Word-based score
r ρ r ρ

MEN-3K

Iacobacci et al. (2015) − 80.5 − 66.5
DECONF 78.0 78.6 72.3 73.2
Faruqui et al. (2015) − 75.9 − 73.7
Pilehvar and Navigli (2015) 61.7 66.6 − −

RG-65

DECONF 90.5 89.6 77.2 76.1
Iacobacci et al. (2015) − 87.1 − 73.2
Faruqui et al. (2015) − 84.2 − 76.7
Pilehvar and Navigli (2015) 80.2 84.3 − −

YP-130
DECONF 81.6 75.2 58.0 55.9
Pilehvar and Navigli (2015) 79.0 71.0 − −
Iacobacci et al. (2015) − 63.9 − 34.3

SimLex-999 DECONF 54.2 51.7 45.4 44.2
Pilehvar and Navigli (2015) 43.4 43.6 − −

Table 3: Pearson (r × 100) and Spearman (ρ × 100) correlation scores on four standard word similarity benchmarks. For each

benchmark, we show the results reported by any of the comparison systems along with the scores for their corresponding initial

word representations (word-based).

Approach Score
AvgSim AvgSimC

DECONF 70.8 71.5
Rothe and Schütze (2015) (best) 68.9 69.8
Neelakantan et al. (2014) (best) 67.3 69.3
Chen et al. (2014) 66.2 68.9
Liu et al. (2015) (best) − 68.1
Huang et al. (2012) 62.8 65.7
Tian et al. (2014) (best) − 65.7
Iacobacci et al. (2015) 62.4 −
Jauhar et al. (2015) − 58.7

Initial word vectors 65.1

Table 4: Spearman correlation scores (ρ × 100) on the Stan-

ford Contextual Word Similarity (SCWS) dataset. We report

the AvgSim and AvgSimC scores (cf. §3.2) for each system,

where available.

3.3 Cross-Level semantic similarity

In addition to the word similarity benchmark, we
evaluated the performance of our representations
in the cross-level semantic similarity measurement
framework. For this, we opted for the SemEval-
2014 task on Cross-Level Semantic Similarity (Ju-
rgens et al., 2014, CLSS). The word to sense simi-
larity subtask of this task, with 500 instances in its
test set, provides a suitable benchmark for the eval-
uation of sense representation techniques.

For a word sense s and a word w, we compute the
similarity score according to four different strate-

gies: the similarity of s to the most similar sense
of w (MaxSim), the average similarity of s to indi-
vidual senses of w (AvgSim), the direct similarity of
s to w when the latter is modeled as its word repre-
sentation (Sense-to-Word or S2W) or as the centroid
of its senses’ representations (Sense to aggregated
word senses or S2A). For this task, we can only com-
pare against the publicly-available sense representa-
tions of Iacobacci et al. (2015), Rothe and Schütze
(2015), Pilehvar and Navigli (2015) and Chen et al.
(2014) which are linked to the WordNet sense inven-
tory.

3.3.1 Experimental results
Table 5 shows the results on the word to sense

dataset of the SemEval-2014 CLSS task, according
to Pearson (r × 100) and Spearman (ρ × 100) cor-
relation scores and for the four strategies. As can
be seen from the low overall performance, the task
is a very challenging benchmark with many Word-
Net out-of-vocabulary or slang terms and rare us-
ages. Despite this, DECONF provides consistent im-
provement over the comparison sense representation
techniques according to both measures and for all
the strategies.

Across the four strategies, S2A proves to be the
most effective for DECONF and the representations
of Rothe and Schütze (2015). The representations of
Chen et al. (2014) perform best with the S2W strat-

1686

System MaxSim AvgSim S2W S2A

r ρ r ρ r ρ r ρ

DECONF∗ 36.4 37.6 36.8 38.8 34.9 35.6 37.5 39.3
Rothe and Schütze (2015)∗ 34.0 33.8 34.1 33.6 33.4 32.0 35.4 34.9
Iacobacci et al. (2015)∗ 19.1 21.5 21.3 24.2 22.7 21.7 19.5 21.1
Chen et al. (2014)∗ 17.7 18.0 17.2 16.8 27.7 26.7 17.9 18.8

DECONF 35.5 36.4 36.2 38.0 34.9 35.6 36.8 38.4
Pilehvar and Navigli (2015) 19.4 23.8 21.2 26.0 − − − −
Iacobacci et al. (2015) 19.0 21.5 20.9 23.2 22.3 20.6 19.2 20.4

Table 5: Evaluation results on the word to sense similarity test dataset of the SemEval-14 task on Cross-Level Semantic Similarity,

according to Pearson (r × 100) and Spearman (ρ × 100) correlations. We show results for four similarity computation strategies

(see §3.3). The best results per strategy are shown in bold whereas they are underlined for the best strategies per system. Systems

marked with ∗ are evaluated on a slightly smaller dataset (474 of the original 500 pairs) so as to have a fair comparison with Rothe

and Schütze (2015) and Chen et al. (2014) that use older versions of WordNet (1.7.1 and 1.7, respectively).

egy whereas those of Iacobacci et al. (2015) do not
show a consistent trend with relatively low perfor-
mance across the four strategies. Also, a comparison
of our results across the S2W and S2A strategies re-
veals that a word’s aggregated representation, i.e.,
the centroid of the representations of its senses, is
more accurate than its original word representation.

Our analysis showed that the performance of the
approaches of Rothe and Schütze (2015) and Ia-
cobacci et al. (2015) were hampered partly due to
their limited coverage. In fact, the former was un-
able to model around 35% of the synsets in WordNet
1.7.1, mainly for its shallow exploitation of knowl-
edge from WordNet, whereas the latter approach did
not cover around 15% of synsets in WordNet 3.0.
Chen et al. (2014) provide near-full coverage for
word senses in WordNet. However, the relatively
low performance of their system shows that the us-
age of glosses in WordNet and the automated dis-
ambiguation have not resulted in accurate sense rep-
resentations. Thanks to its deep exploitation of the
underlying resource, our approach provides more re-
liable representations and full coverage for all word
senses and synsets in WordNet.

The three best-performing systems in the task are
Meerkat Mafia (Kashyap et al., 2014) (r = 37.5,
ρ = 39.3), SimCompass (Banea et al., 2014) (r =
35.4, ρ = 34.9), and SemantiKLUE (Proisl et al.,
2014) (r = 17.9, ρ = 18.8). Note that these systems
are specifically designed for the cross-level similar-
ity measurement task. For instance, the best-ranking

system in the task leverages a compilation of several
dictionaries, including The American Heritage Dic-
tionary, Wiktionary and WordNet, in order to handle
slang terms and rare usages, which leads to its com-
petitive performance (Kashyap et al., 2014).

4 Related Work

Learning semantic representations for individual
senses of words has been an active area of research
for the past few years. Based on the way they view
the problem, the recent techniques can be classified
into two main branches: (1) those that, similarly to
our work, extract knowledge from external sense in-
ventories for learning sense representations; and (2)
those techniques that cluster the contexts in which a
word appears in a given text corpus and learn distinct
representations for individual clusters.

Examples for the first branch include the ap-
proaches of Chen et al. (2014), Jauhar et al. (2015)
and Rothe and Schütze (2015), all of which use
WordNet as an external resource and obtain sense
representations for this sense inventory. Chen et
al. (2014) uses the content words in the definition
of a word sense and WSD. However, the sole us-
age of glosses as sense-distinguishing contexts and
the non-optimal WSD make the approach inaccu-
rate, particularly for highly polysemous words with
similar senses and for word senses with short def-
initions. Similarly, Rothe and Schütze (2015) use
only polysemy and synonymy properties of words
in WordNet along with a small set of semantic re-

1687

lations. This significantly hampers the reliability of
the technique in providing high coverage (discussed
further in §3.3.1). Our approach improves over these
works by exploiting deep knowledge from the se-
mantic network of WordNet, coupled with an effec-
tive training approach. ADW (Pilehvar and Navigli,
2015) is another WordNet-based approach which ex-
ploits only the semantic network of this resource and
obtains interpretable sense representations. Other
work in this branch include SensEmbed (Iacobacci
et al., 2015) and Nasari (Camacho-Collados et al.,
2015; Camacho-Collados et al., 2016) which are
based on the BabelNet sense inventory (Navigli
and Ponzetto, 2012). The former technique first
disambiguates words in a given corpus with the
help of a knowledge-based WSD system and then
uses the generated sense-annotated corpus as train-
ing data for Word2vec. Nasari combines structural
knowledge from the semantic network of BabelNet
with corpus statistics derived from Wikipedia for
representing BabelNet synsets. However, the ap-
proach falls short of modeling non-nominal senses
as Wikipedia, due to its very encyclopedic nature,
does not cover verbs, adjectives, or adverbs.

The second branch, which is usually referred to
as multi-prototype representation, is often associ-
ated with clustering. Reisinger and Mooney (2010)
proposed one of the recent pioneering techniques
in this branch. Other prominent work in the cate-
gory include topical word embeddings (Liu et al.,
2015) which use latent topic models for assigning
topics to each word in a corpus and learn topic-
specific word representations, and the technique pro-
posed by Huang et al. (2012) which incorporates
“global document context.” Tian et al. (2014) mod-
ified the Skip-gram model in order to learn multi-
ple embeddings for each word type. Despite the fact
that these techniques do not usually take advantage
of the knowledge encoded in structured knowledge
resource, they generally suffer from two disadvan-
tages. The first limitation is that they usually make
an assumption that a given word has a fixed number
of senses, ignoring the fact that polysemy is highly
dynamic across words that can range from monose-
mous to highly ambiguous with dozens of associ-
ated meanings (McCarthy et al., 2016). Neelakan-
tan et al. (2014) tackled this issue by estimating the
number of senses for a word type during the learn-

ing process. However, all techniques in the second
branch suffer from another disadvantage that their
computed sense representations are not linked to any
sense inventory, a linking which itself would require
the existence of high coverage sense-annotated data
(Agirre et al., 2006).

Another notable line of research incorporates
knowledge from external resources, such as PPDB
(Ganitkevitch et al., 2013) and WordNet, to improve
word embeddings (Yu and Dredze, 2014; Faruqui et
al., 2015). Neither of the two techniques however,
provide representations for word senses.

5 Conclusions

We put forward a sense representation technique,
namely DECONF, that provides multiple advantages
in comparison to the recent state of the art: (1) the
number of word senses in our technique is flexi-
ble and the computed representations are linked to
word senses in WordNet; (2) DECONF is effective
in providing accurate representation of word senses,
even for those senses that do not usually appear fre-
quently in generic text corpora; and (3) our approach
is general in that it can be readily applied to any set
of word representations and any semantic network
without the need for extensive parameter tuning.
Our experimental results showed that DECONF can
outperform recent state of the art on several datasets
across two tasks. The computed representations for
word senses in WordNet 3.0 are released at https:
//pilehvar.github.io/deconf/. We in-
tend to apply our technique to the task of harmo-
nizing biomedical terms in the PheneBank project.
As future work, we plan to investigate the possibil-
ity of using larger semantic networks, such as Free-
Base and BabelNet, which would also allow us to
apply the technique to languages other than English.
We also plan to evaluate the performance of our ap-
proach with other decay functions as well as with
other initial word representations.

Acknowledgments

The authors gratefully acknowledge the support of
the MRC grant No. MR/M025160/1 for PheneBank.

1688

References

[Agirre et al.2006] Eneko Agirre, David Martı́nez,
Oier López de Lacalle, and Aitor Soroa. 2006.
Evaluating and optimizing the parameters of an unsu-
pervised graph-based wsd algorithm. In Proceedings
of the First Workshop on Graph Based Methods for
Natural Language Processing, TextGraphs-1, pages
89–96.

[Agirre et al.2014] Eneko Agirre, Oier López de Lacalle,
and Aitor Soroa. 2014. Random walks for knowledge-
based Word Sense Disambiguation. Computational
Linguistics, 40(1):57–84.

[Banea et al.2014] Carmen Banea, Di Chen, Rada Mihal-
cea, Claire Cardie, and Janyce Wiebe. 2014. Simcom-
pass: Using deep learning word embeddings to assess
cross-level similarity. In Proceedings of the 8th Inter-
national Workshop on Semantic Evaluation (SemEval
2014), pages 560–565, Dublin, Ireland.

[Baroni and Lenci2010] Marco Baroni and Alessandro
Lenci. 2010. Distributional memory: A general
framework for corpus-based semantics. Computa-
tional Linguistics, 36(4):673–721.

[Bengio et al.2007] Yoshua Bengio, Olivier Delalleau,
and Nicolas Le Roux. 2007. Semi-Supervised Learn-
ing. MIT Press. chapter Label Propagation and
Quadratic Criterion.

[Bollacker et al.2008] Kurt Bollacker, Colin Evans,
Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: A collaboratively created graph
database for structuring human knowledge. In
Proceedings of the 2008 ACM SIGMOD Interna-
tional Conference on Management of Data, pages
1247–1250, Vancouver, Canada.

[Bruni et al.2014] Elia Bruni, Nam Khanh Tran, and
Marco Baroni. 2014. Multimodal distributional se-
mantics. Journal of Artificial Intelligence Research,
49(1):1–47.

[Camacho-Collados et al.2015] José Camacho-Collados,
Mohammad Taher Pilehvar, and Roberto Navigli.
2015. NASARI: a Novel Approach to a Semantically-
Aware Representation of Items. In Proceedings of
NAACL, pages 567–577, Denver, USA.

[Camacho-Collados et al.2016] José Camacho-Collados,
Mohammad Taher Pilehvar, and Roberto Navigli.
2016. NASARI: Integrating explicit knowledge and
corpus statistics for amultilingual representation of
concepts and entities. Artificial Intelligence, 240:36
– 64.

[Chen et al.2014] Xinxiong Chen, Zhiyuan Liu, and
Maosong Sun. 2014. A unified model for word sense
representation and disambiguation. In Proceedings of
EMNLP 2014, pages 1025–1035, Doha, Qatar.

[Das and Smith2011] Dipanjan Das and Noah A. Smith.
2011. Semi-supervised frame-semantic parsing for
unknown predicates. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
1435–1444, Portland, Oregon, USA.

[Faruqui et al.2015] Manaal Faruqui, Jesse Dodge, Su-
jay Kumar Jauhar, Chris Dyer, Eduard Hovy, and
Noah A. Smith. 2015. Retrofitting word vectors to
semantic lexicons. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 1606–1615, Denver, Colorado.

[Fellbaum1998] Christiane Fellbaum, editor. 1998.
WordNet: An Electronic Database. MIT Press, Cam-
bridge, MA.

[Ganitkevitch et al.2013] Juri Ganitkevitch, Benjamin
Van Durme, and Chris Callison-Burch. 2013.
PPDB: The paraphrase database. In Proceedings of
NAACL-HLT, pages 758–764, Atlanta, Georgia.

[Haveliwala2002] Taher H. Haveliwala. 2002. Topic-
sensitive PageRank. In Proceedings of the 11th Inter-
national Conference on World Wide Web, pages 517–
526, Honolulu, Hawaii, USA.

[Hill et al.2015] Felix Hill, Roi Reichart, and Anna Ko-
rhonen. 2015. SimLex-999: Evaluating semantic
models with (genuine) similarity estimation. Compu-
tational Linguistics, 41(4):665–695.

[Huang et al.2012] Eric H. Huang, Richard Socher,
Christopher D. Manning, and Andrew Y. Ng. 2012.
Improving word representations via global context and
multiple word prototypes. In Proceedings of ACL,
pages 873–882, Jeju Island, Korea.

[Iacobacci et al.2015] Ignacio Iacobacci, Moham-
mad Taher Pilehvar, and Roberto Navigli. 2015.
SensEmbed: Learning sense embeddings for word
and relational similarity. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 95–105, Beijing, China.

[Jauhar et al.2015] Sujay Kumar Jauhar, Chris Dyer, and
Eduard Hovy. 2015. Ontologically grounded multi-
sense representation learning for semantic vector
space models. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 683–693, Denver, Colorado.

[Jurgens et al.2014] David Jurgens, Mohammad Taher
Pilehvar, and Roberto Navigli. 2014. SemEval-2014
task 3: Cross-level semantic similarity. In Proceed-
ings of the 8th International Workshop on Semantic
Evaluation (SemEval 2014), pages 17–26, Dublin, Ire-
land.

1689

[Kashyap et al.2014] Abhay L. Kashyap, Lushan Han,
Roberto Yus, Jennifer Sleeman, Taneeya W. Satya-
panich, Sunil R Gandhi, and Tim Finin. 2014.
Meerkat Mafia: Multilingual and Cross-Level Seman-
tic Textual Similarity systems. In Proceedings of the
8th International Workshop on Semantic Evaluation,
pages 416–423.

[LeCun et al.2015] Yann LeCun, Yoshua Bengio, and Ge-
offrey Hinton. 2015. Deep learning. Nature,
521(7553):436–444.

[Liu et al.2015] Yang Liu, Zhiyuan Liu, Tat-Seng Chua,
and Maosong Sun. 2015. Topical word embeddings.
In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, pages 2418–2424.

[McCarthy et al.2016] Diana McCarthy, Marianna Apid-
ianaki, and Katrin Erk. 2016. Word sense cluster-
ing and clusterability. Computational Linguistics, in
press.

[Mikolov et al.2013] Tomas Mikolov, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013. Efficient estimation
of word representations in vector space. In Workshop
at International Conference on Learning Representa-
tions, Scottsdale, Arizona.

[Navigli and Ponzetto2012] Roberto Navigli and Si-
mone Paolo Ponzetto. 2012. BabelNet: The
automatic construction, evaluation and application
of a wide-coverage multilingual semantic network.
Artificial Intelligence, 193:217–250.

[Neelakantan et al.2014] Arvind Neelakantan, Jeevan
Shankar, Alexandre Passos, and Andrew McCallum.
2014. Efficient non-parametric estimation of multiple
embeddings per word in vector space. In Proceedings
of EMNLP 2014, pages 1059–1069, Doha, Qatar.

[Niemann and Gurevych2011] Elisabeth Niemann and
Iryna Gurevych. 2011. The people’s Web meets
linguistic knowledge: Automatic sense alignment of
Wikipedia and WordNet. In Proceedings of the Ninth
International Conference on Computational Seman-
tics, pages 205–214, Oxford, United Kingdom.

[Pennington et al.2014] Jeffrey Pennington, Richard
Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Pro-
ceedings of EMNLP 2014, pages 1532–1543, Doha,
Qatar.

[Pilehvar and Navigli2015] Mohammad Taher Pilehvar
and Roberto Navigli. 2015. From senses to texts: An
all-in-one graph-based approach for measuring seman-
tic similarity. Artificial Intelligence, 228:95–128.

[Proisl et al.2014] Thomas Proisl, Stefan Evert, Paul
Greiner, and Besim Kabashi. 2014. SemantiK-
LUE: Robust semantic similarity at multiple levels us-
ing maximum weight matching. In Proceedings of
SemEval-2014, pages 532–540, Dublin, Ireland.

[Reisinger and Mooney2010] Joseph Reisinger and Ray-
mond J. Mooney. 2010. Multi-prototype vector-space
models of word meaning. In Human Language Tech-
nologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 109–117, Los Angeles, Cali-
fornia.

[Rothe and Schütze2015] Sascha Rothe and Hinrich
Schütze. 2015. AutoExtend: Extending word em-
beddings to embeddings for synsets and lexemes.
In Proceedings of ACL, pages 1793–1803, Beijing,
China.

[Rubenstein and Goodenough1965] Herbert Rubenstein
and John B. Goodenough. 1965. Contextual cor-
relates of synonymy. Communications of the ACM,
8(10):627–633.

[Sanderson and Van Rijsbergen1999] Mark Sanderson
and C. J. Van Rijsbergen. 1999. The impact on
retrieval effectiveness of skewed frequency distri-
butions. ACM Transactions of Infmation Systems,
17(4):440–465.

[Tian et al.2014] Fei Tian, Hanjun Dai, Jiang Bian, Bin
Gao, Rui Zhang, Enhong Chen, and Tie-Yan Liu.
2014. A probabilistic model for learning multi-
prototype word embeddings. In Proceedings of COL-
ING 2014, the 25th International Conference on Com-
putational Linguistics: Technical Papers, pages 151–
160, Dublin, Ireland.

[Turney and Pantel2010] Peter D. Turney and Patrick
Pantel. 2010. From frequency to meaning: Vector
space models of semantics. Journal of Artificial Intel-
ligence Research, 37(1):141–188.

[van der Maaten and Hinton2008] L.J.P van der Maaten
and G.E. Hinton. 2008. Visualizing high-dimensional
data using t-SNE. Journal of Machine Learning Re-
search, 9: 25792605.

[Yang and Powers2005] Dongqiang Yang and David
M. W. Powers. 2005. Measuring semantic similarity
in the taxonomy of WordNet. In Proceedings of the
Twenty-eighth Australasian Conference on Computer
Science, volume 38, pages 315–322, Newcastle,
Australia.

[Yeh et al.2009] Eric Yeh, Daniel Ramage, Christo-
pher D. Manning, Eneko Agirre, and Aitor Soroa.
2009. WikiWalk: Random walks on Wikipedia for se-
mantic relatedness. In Proceedings of the 2009 Work-
shop on Graph-based Methods for Natural Language
Processing, pages 41–49, Suntec, Singapore.

[Yu and Dredze2014] Mo Yu and Mark Dredze. 2014.
Improving lexical embeddings with semantic knowl-
edge. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 545–550, Baltimore,
Maryland.

1690

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1691–1702,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Improving Sparse Word Representations with Distributional Inference for
Semantic Composition

Thomas Kober, Julie Weeds, Jeremy Reffin and David Weir
TAG laboratory, Department of Informatics, University of Sussex

Brighton, BN1 9RH, UK
{t.kober, j.e.weeds, j.p.reffin, d.j.weir}@sussex.ac.uk

Abstract

Distributional models are derived from co-
occurrences in a corpus, where only a
small proportion of all possible plausible co-
occurrences will be observed. This results
in a very sparse vector space, requiring a
mechanism for inferring missing knowledge.
Most methods face this challenge in ways
that render the resulting word representa-
tions uninterpretable, with the consequence
that semantic composition becomes hard to
model. In this paper we explore an alter-
native which involves explicitly inferring un-
observed co-occurrences using the distribu-
tional neighbourhood. We show that distribu-
tional inference improves sparse word repre-
sentations on several word similarity bench-
marks and demonstrate that our model is com-
petitive with the state-of-the-art for adjective-
noun, noun-noun and verb-object composi-
tions while being fully interpretable.

1 Introduction

The aim of distributional semantics is to derive
meaning representations based on observing co-
occurrences of words in large text corpora. However
not all plausible co-occurrences will be observed
in any given corpus, resulting in word representa-
tions that only capture a fragment of the meaning
of a word. For example the verbs “walking” and
“strolling” may occur in many different and pos-
sibly disjoint contexts, although both verbs would
be equally plausible in numerous cases. This sub-
sequently results in incomplete representations for
both lexemes. In addition, models based on counting

co-occurrences face the general problem of sparsity
in a very high-dimensional vector space. The most
common approaches to these challenges have in-
volved the use of various techniques for dimension-
ality reduction (Bullinaria and Levy, 2012; Lapesa
and Evert, 2014) or the use of low-dimensional
and dense neural word embeddings (Mikolov et al.,
2013; Pennington et al., 2014). The common prob-
lem in both of these approaches is that composition
becomes a black-box process due to the lack of inter-
pretability of the representations. Count-based mod-
els are therefore a very attractive line of work with
regards to a number of important long-term research
challenges, most notably the development of an ade-
quate model of distributional compositional seman-
tics. In this paper we propose the use of distribu-
tional inference (DI) to inject unobserved but plau-
sible distributional semantic knowledge into the vec-
tor space by leveraging the intrinsic structure of the
distributional neighbourhood. This results in richer
word representations and furthermore mitigates the
sparsity effect common in high-dimensional vector
spaces, while remaining fully interpretable.
Our contributions are as follows: we show that typed
and untyped sparse word representations, enriched
by distributional inference, lead to performance im-
provements on several word similarity benchmarks,
and that a higher-order dependency-typed vector
space model, based on “Anchored Packed Depen-
dency Trees (APTs)” (Weir et al., 2016), is com-
petitive with the state-of-the-art for adjective-noun,
noun-noun and verb-object compositions. Using our
method, we are able to bridge the gap in perfor-
mance between high dimensional interpretable mod-

1691

els and low dimensional non-interpretable models
and offer evidence to support a possible explanation
of why high-dimensional models usually perform
worse, together with a simple, practical method for
over-coming this problem. We furthermore demon-
strate that intersective approaches to composition
benefit more from distributional inference than com-
position by union and highlight the ability of com-
position by intersection to disambiguate the mean-
ing of a phrase in a local context.
The remainder of this paper is structured as follows:
we discuss related work in section 2, followed by
an introduction of the APT framework for semantic
composition in section 3. We describe distributional
inference in section 4 and present our experimental
work, together with our results in section 5. We con-
clude this paper and outline future work in section 6.

2 Related Work

Our method follows the distributional smoothing
approach of Dagan et al. (1994) and Dagan et
al. (1997). In these works the authors are con-
cerned with smoothing the probability estimate for
unseen words in bigrams. This is achieved by mea-
suring which unobserved bigrams are more likely
than others on the basis of the Kullback-Leibler di-
vergence between bigram distributions. This has
led to significantly improved performance on a lan-
guage modelling for speech recognition task, as well
as for word-sense disambiguation in machine trans-
lation (Dagan et al., 1994; Dagan et al., 1997).
More recently Padó et al. (2013) used a distribu-
tional approach for smoothing derivationally related
words, such as oldish – old, as a back-off strategy
in case of data sparsity. However, none of these
approaches have used distributional inference as a
general technique for directly enriching sparse dis-
tributional vector representations, or have explored
its behaviour for semantic composition.
Compositional models of distributional semantics
have become an increasingly popular topic in the re-
search community. Starting from simple pointwise
additive and multiplicative approaches to composi-
tion, such as Mitchell and Lapata (2008; 2010), and
Blacoe and Lapata (2012), to tensor based models,
such as Baroni and Zamparelli (2010), Coecke et

al. (2010), Grefenstette et al. (2013) and Paperno
et al. (2014), and neural network based approaches,
such as Socher et al. (2012), Le and Zuidema (2015),
Mou et al. (2015) and Tai et al. (2015). Zanzotto
et al. (2015) provide a decompositional analysis of
how similarity is affected by distributional compo-
sition, and link compositional models to convolu-
tion kernels. Most closely related to our approach
of composition are the works of Thater et al. (2010),
Thater et al. (2011) and Weeds et al. (2014), which
aim to provide a general model of compositionality
in a typed distributional vector space. In this paper
we adopt the approach to distributional composition
introduced by Weir et al. (2016), whose APT frame-
work is based on a higher-order dependency-typed
vector space, however they do not address the issue
of sparsity in their work.

3 Background

Distributional vector space models can broadly
be categorised into untyped proximity based
models and typed models (Baroni and Lenci,
2010). Examples of the former include Deer-
wester et al. (1990); Lund and Burgess (1996);
Curran (2004); Sahlgren (2006); Bullinaria and
Levy (2007) and Turney and Pantel (2010). These
models count the number of times every word in a
large corpus co-occurs with other words within a
specified spatial context window, without leveraging
the structural information of the text. Typed models
on the other hand, take the grammatical relation
between two words for a co-occurrence event
into account. Early proponents of that approach
are Grefenstette (1994) and Lin (1998). More
recent work by Padó and Lapata (2007), Erk and
Padó (2008) and Weir et al. (2016) uses dependency
paths to build a structured vector space model. In
both kinds of models, the raw counts are usually
transformed by Positive Pointwise Mutual Informa-
tion (PPMI) or a variant of it (Church and Hanks,
1990; Niwa and Nitta, 1994; Scheible et al., 2013;
Levy and Goldberg, 2014).
In the following we will give an explanation of the
theory of composition with APTs as introduced by
Weir et al. (2016), which we adopt in this paper.
In addition to direct relations between two words,
the APT model also considers inverse and higher

1692

order relations. Inverse relations are denoted with
a horizontal bar above the dependency relation,
such as amod for an inverse adjectival modifier.
Higher order dependencies are separated by a
colon as in the second order distributional feature
dobj:nsubj. The example below illustrates
how raw text is processed to retrieve elementary
representations in our APT model. As an example
we consider a lowercased corpus consisting of the
sentences:

we folded the clean clothes
i like your clothes
we bought white shoes yesterday
he folded the white sheets

We dependency parse the raw sentences and,
following Weir et al. (2016), align and aggregate the
resulting parse trees according to their dependency
type as shown in Figure 1. For example the lexeme
clothes has the distributional features amod:dry
and dobj:nsubj:we among others. Over a large
corpus, this results in a very high-dimensional and
sparse vector space, which due to its typed nature is
much sparser than for untyped models.

we folded the
... clean clothes

...
i like

... your
... clothes

...

we bought
...

... white shoes yesterday
he folded the

... white sheets
...

nsubj amod

det

dobj

nmod:tmod

nmod:poss

Figure 1: Aligned Packed Dependency Tree representation of

the example sentences.

Composition with APTs
Composition is linguistically motivated by the prin-
ciple of compositionality, which states that the
meaning of a complex expression is fully deter-
mined by its structure and the meanings of its con-
stituents (Frege, 1884). Many simple approaches to
semantic composition neglect the structure and lose
information in the composition process. For exam-
ple, the phrases house boat and boat house have
the exact same representation when composition is
done via a pointwise arithmetic operation. Despite

performing well in a number of studies, this com-
mutativity is not desirable for a fine grained un-
derstanding of the semantics of natural language.
When performing composition with APTs, we adopt
the method introduced by Weir et al. (2016) which
views distributional composition as a process of con-
textualisation. For composing the adjective white
with the noun clothes via the dependency relation
amod we need to consider how the adjective inter-
acts with the noun in the vector space. The distri-
butional features of white describe things that are
white via their first order relations such as amod,
and things that can be done to white things, such as
bought via amod:dobj in the example above.
Table 1 shows a number of features extracted from
the aligned dependency trees in Figure 1 and high-
lights that adjectives and nouns do not share many
features if only first order dependencies would be
considered. However through the inclusion of in-
verse and higher order dependency paths we can ob-
serve that the second order features of the adjective
align with the first order features of the noun. For
composition, the adjective white needs to be offset
by its inverse relation to clothes1 making it distribu-
tionally similar to a noun that has been modified by
white. Offsetting can be seen as shifting the current
viewpoint in the APT data structure and is necessary
for aligning the feature spaces for composition (Weir
et al., 2016). We are then in a position to compose
the offset representation of white with the vector for
clothes by the union or the intersection of their fea-
tures.
Table 2 shows the resulting feature spaces of the
composed vectors. It is worth noting that any arith-
metic operation can be used to combine the counts
of the aligned features, however for this paper we
use pointwise addition for both composition func-
tions. One of the advantages of this approach to
composition is that the inherent interpretability of
count-based models naturally expands beyond the
word level, allowing us to study the distributional se-
mantics of phrases in the same space as words. Due
to offsetting one of the constituents, the composition
operation is not commutative and hence avoids iden-
tical representations for house boat and boat house.
However, the typed nature of our vector space re-

1The inverse of amod is just amod.

1693

white clothes
Distributional Features Offset Features (by amod) Co-occurrence Count Distributional Features Co-occurrence Count
amod:shoes :shoes 1 amod:clean 1
amod:dobj:bought dobj:bought 1 dobj:like 1
amod:dobj:folded dobj:folded 1 dobj:folded 1
amod:dobj:nsubj:we dobj:nsubj:we 1 dobj:nsubj:we 1

Table 1: Example feature spaces for the lexemes white and clothes extracted from the dependency tree of Figure 1. Not all features

are displayed for space reasons. Offsetting amod:shoes by amod results in an empty dependency path, leaving just the word

co-occurrence :shoes as feature.

Composition by union Composition by intersection
Distributional Features Co-occurrence Count Distributional Features Co-occurrence Count
:shoes 1
amod:clean 1
dobj:bought 1
dobj:folded 2 dobj:folded 2
dobj:like 1
dobj:nsubj:we 2 dobj:nsubj:we 2

Table 2: Comparison of composition by union and composition by intersection. Not all features are displayed for space reasons.

sults in extreme sparsity, for example while the un-
typed VSM has 130k dimensions, our APT model
can have more than 3m dimensions. We therefore
need to enrich the elementary vector representations
with the distributional information of their nearest
neighbours to ease the sparsity effect and infer miss-
ing information. Due to the syntactic nature of our
composition operation it is not straightforward to
apply common dimensionality reduction techniques
such as SVD, as the type information needs to be
preserved.

4 Distributional Inference

Following Dagan et al. (1994) and Dagan et
al. (1997), we propose a simple unsupervised al-
gorithm for enriching sparse vector representations
with their nearest neighbours. We show that our
distributional inference algorithm improves perfor-
mance for untyped and typed models on several
word similarity benchmarks, as well as being com-
petitive with the state-of-the-art on semantic com-
position. As shown in algorithm 1 below, we iter-
ate over all word vectors w in a given distributional
model M , and add the vector representations of the
nearest neighbours n, determined by cosine similar-
ity, to the representation of the enriched word vector
w′. The parameter α in line 4 scales the contribu-
tion of the original word vector to the resulting en-
riched representation. In this work we always chose
α to be identical to the number of neighbours used

for distributional inference. For example, if we used
10 neighbours for DI, we would set α = 10, which
we found sufficient to prevent the neighbours from
dominating the vector representation. In our exper-
iments we kept the input distributional model fixed,
however it is equally possible to update the given
model in an online fashion, adding some amount
of stochasticity to the enriched word vector repre-
sentations. There is a number of possibilities for
the neighbour retrieval function neighbours() and
we explore several options in this paper. The algo-
rithm furthermore is agnostic to the input distribu-
tional model, for example it is possible to use com-
pletely different vector space models for querying
neighbours and enrichment.

Algorithm 1 Distributional Inference
1: procedure DIST INFERENCE(M)
2: init M ′
3: for all w in M do
4: w′ ← w × α
5: for all n in neighbours(M,w) do
6: w′ ← w′ + n
7: add w′ to M ′
8: end for
9: end for

10: return M ′
11: end procedure

1694

Static Top n Neighbour Retrieval
The perhaps simplest way is to choose the top n
most similar neighbours for each word in the vec-
tor space and enrich the respective vector represen-
tations with them.

Density based Neighbour Retrieval
This approach has its roots in kernel density esti-
mation (Parzen, 1962), however instead of defining
a static global parzen window, we set the window
size for every word individually, depending on the
distance to its nearest neighbour, plus a threshold.
For example if the cosine distance between the target
vector and its top neighbour is 0.5, we use a window
size of 0.5 + ε for that word. In our experiments we
typically define ε to be proportional to the distance
of the nearest neighbour (e.g. ε = 0.5× 0.1).

WordNet based Neighbour Retrieval
Instead of leveraging the intrinsic structure of our
distributional vector space, we retrieve neighbours
by querying WordNet (Fellbaum, 1998), and treat
synsets with agreeing PoS tags as the nearest neigh-
bours of any target vector. This restricts the retrieved
neighbours to synonyms only.

5 Experiments

Our model is based on a cleaned October 2013
Wikipedia dump, which excludes all pages with
fewer than 20 page views, resulting in a corpus of
approximately 0.6 billion tokens (Wilson, 2015).
The corpus is lowercased, tokenised, lemmatised,
PoS tagged and dependency parsed with the Stan-
ford NLP tools, using universal dependencies (Man-
ning et al., 2014; de Marneffe et al., 2014). We then
build our APT model with first, second and third or-
der relations. We remove distributional features with
a count of less than 10, and vectors containing fewer
than 50 non-zero entries. The raw counts are subse-
quently transformed to PPMI weights. The untyped
vector space model is built from the same lower-
cased, tokenised and lemmatised Wikipedia corpus.
We discard terms with a frequency of less than 50
and apply PPMI to the raw co-occurrence counts.

Shifted PPMI
We explore a range of different values for shifting
the PPMI scores as these have a significant impact

on the performance of the APT model. The effect
of shifting PPMI scores for untyped vector space
models has already been explored in Levy and Gold-
berg (2014), and Levy et al. (2015), thus we only
present results for the APT model. As shown in
equation 1, PMI is defined as the log of the ratio
of the joint probability of observing a word w and
a context c together, and the product of the respec-
tive marginals of observing them separately. In our
APT model, a context c is defined as a dependency
relation together with a word.

PMI(w, c) = log
P (w, c)

P (w)P (c)

SPPMI(w, c) = max(PMI(w, c)− log k, 0)

(1)

As PMI is negatively unbounded, PPMI is used to
ensure that all values are greater than or equal to
0. Shifted PPMI (SPPMI) subtracts a constant from
any PMI score before applying the PPMI threshold.
We experiment with values of 1, 5, 10, 40 and 100
for the shift parameter k.

5.1 Word Similarity Experiments
We first evaluate our models on 3 word similar-
ity benchmarks, MEN (Bruni et al., 2014), which
is testing for relatedness (e.g. meronymy or
holonymy) between terms, SimLex-999 (Hill et al.,
2015), which is testing for substitutability (e.g. syn-
onymy, antonymy, hyponymy and hypernymy), and
WordSim-353 (Finkelstein et al., 2001), where we
use the version of Agirre et al. (2009), who split the
dataset into a relatedness and a substitutability sub-
set. Baroni and Lenci (2011) have shown that un-
typed models are typically better at capturing relat-
edness, whereas typed models are better at encoding
substitutability. Performance is measured by com-
puting Spearman’s ρ between the cosine similarities
of the vector representations and the corresponding
aggregated human similarity judgements. For these
experiments we keep the number of neighbours that
a word vector can consume fixed at 30. This value is
based on preliminary experiments on WordSim-353
(see Figure 2) using the static top n neighbour re-
trieval function and a PPMI shift of k = 40. Figure 2
shows that distributional inference improves perfor-
mance for any number of neighbours over a model
without DI (marked as horizontal dashed lines for
each WordSim-353 subset) and peaks at a value of

1695

30. Performance slightly degrades with more neigh-
bours. For the untyped VSM we use a symmetric
window of 5 on either side of the target word.

Figure 2: Effect of the number of neighbours on WordSim-353.

Table 3 highlights the effect of the SPPMI shift
parameter k, while keeping the number of neigh-
bours fixed at 30 and using the static top n neigh-
bour retrieval function. For the APT model, a value
of k = 40 performs best (except for SimLex-999,
where smaller shifts give better results), with a per-
formance drop-off for larger shifts. In our experi-
ments we find that a shift of k = 1 results in top per-
formance for the untyped vector space model. It ap-
pears that shifting the PPMI scores in the APT model
has the effect of cleaning the vectors from noisy
PPMI artefacts, which reinforces the predominant
sense, while other senses get suppressed. Sub-
sequently, this results in a cleaner neighbourhood
around the word vector, dominated by a single sense.
This explains why distributional inference slightly
degrades performance for smaller values of k.

Table 4 shows that distributional inference suc-
cessfully infers missing information for both model
types, resulting in improved performance over mod-
els without the use of DI on all datasets. The im-
provements are typically larger for the APT model,
suggesting that it is missing more distributional
knowledge in its elementary representations than un-
typed models. The density window and static top n
neighbour retrieval functions perform very similar,
however the static approach is more consistent and
never underperforms the baseline for either model
type on any dataset. The WordNet based neigh-
bour retrieval function performs particularly well on
SimLex-999. This can be explained by the fact that

antonyms, which frequently happen to be among the
nearest neighbours in distributional vector spaces,
are regarded as dissimilar in SimLex-999, whereas
the WordNet neighbour retrieval function only re-
turns synonyms. The results furthermore confirm
the effect that untyped models perform better on
datasets modelling relatedness, whereas typed mod-
els work better for substitutability tasks (Baroni and
Lenci, 2011).

5.2 Composition Experiments

Our approach to semantic composition as described
in section 3 requires the dimensions of our vector
space models to be meaningful and interpretable.
However, the problem of missing information is am-
plified in compositional settings as many compati-
ble dimensions between words are not observed in
the source corpus. It is therefore crucial that dis-
tributional inference is able to inject some of the
missing information in order to improve the com-
position process. For the experiments involving se-
mantic composition, we enrich the elementary rep-
resentations of the phrase constituents before com-
position.
We first conduct a qualitative analysis for our
APT model and observe the effect of distributional
inference on the nearest neighbours of composed
adjective-noun, noun-noun and verb-object com-
pounds. In these experiments, we show how dis-
tributional inference changes the neighbourhood in
which composed phrases are embedded, and high-
light the difference between composition by union
and composition by intersection. For this exper-
iment we use the static top n neighbour retrieval
function with 30 neighbours and k = 40.
Table 5 shows a small number of example phrases
together with their top 3 nearest neighbours, com-
puted from the union of all words in the Wikipedia
corpus and all phrase pairs in the Mitchell and La-
pata (2010) dataset. As can be seen, nearest neigh-
bours of phrases can be either single words or other
composed phrases. Words or phrases marked with
“*” in Table 5 mean that DI introduced, or failed
to downrank, a spurious neighbour, while boldface
means that performing distributional inference re-
sulted in a neighbourhood more coherent with the
query phrase than without DI.
Table 5 shows that composition by union is unable to

1696

APTs MEN SimLex-999 WordSim-353 (rel) WordSim-353 (sub)
without DI with DI without DI with DI without DI with DI without DI with DI

k = 1 0.54 0.52 0.31 0.30 0.34 0.27 0.62 0.60
k = 5 0.64 0.65 0.35 0.36 0.56 0.51 0.74 0.73
k = 10 0.63 0.66 0.35 0.36 0.56 0.55 0.75 0.74
k = 40 0.63 0.68 0.30 0.32 0.55 0.61 0.75 0.76
k = 100 0.61 0.67 0.26 0.29 0.47 0.60 0.71 0.72

Table 3: Effect of the magnitude of the shift parameter k in SPPMI on the word similarity tasks. Boldface means best performance

per dateset.

APTs (k = 40) No Distributional Inference Density Window Static Top n WordNet
MEN 0.63 0.67 0.68 0.63
SimLex-999 0.30 0.32 0.32 0.38
WordSim-353 (rel) 0.55 0.62 0.61 0.56
WordSim-353 (sub) 0.75 0.78 0.76 0.77
Untyped VSM (k = 1) No Distributional Inference Density Window Static Top n WordNet
MEN* 0.71 0.71 0.71 0.71
SimLex-999 0.30 0.29 0.30 0.36
WordSim-353 (rel) 0.60 0.64 0.64 0.52
WordSim-353 (sub) 0.70 0.73 0.72 0.67

Table 4: Neighbour retrieval function comparison. Boldface means best performance on a dataset per VSM type. *) With 3

significant figures, the density window approach (0.713) is slightly better than the baseline without DI (0.708), static top n (0.710)

and WordNet (0.710).

downrank unrelated neighbours introduced by dis-
tributional inference. For example large quantity
is incorrectly introduced as a top ranked neighbour
for the phrase small house, due to the proximity of
small and large in the vector space. The phrases
market leader and television programme are two ex-
amples of incoherent neighbours, which the compo-
sition function was unable to downrank and where
DI could not improve the neighbourhood. Compo-
sition by intersection on the other hand vastly ben-
efits from distributional inference. Due to the in-
creased sparsity induced by the composition pro-
cess, a neighbourhood without DI produces numer-
ous spurious neighbours as in the case of the verb
have as a neighbour for win battle. Distributional
inference introduces qualitatively better neighbours
for almost all phrases. For example, government
leader and opposition member are introduced as top
ranked neighbours for the phrase party leader, and
stress importance and underline are introduced as
new top neighbours for the phrase emphasise need.
These results show that composition by union does
not have the ability to disambiguate the meaning of
a word in a given phrasal context, whereas composi-
tion by intersection has that ability but requires dis-

tributional inference to unleash its full potential.
For a quantitative analysis of distributional in-

ference for semantic composition, we evaluate our
model on the composition dataset of Mitchell and
Lapata (2010), consisting of 108 adjective-noun,
108 noun-noun, and 108 verb-object pairs. The task
is to compare the model’s similarity estimates with
the human judgements by computing Spearman’s
ρ. For comparing the performance of the different
neighbour retrieval functions, we choose the same
parameter settings as in the word similarity experi-
ments (k = 40 and using 30 neighbours for DI).

Table 6 shows that the static top n and den-
sity window neighbour retrieval functions perform
very similar again. The density window retrieval
function outperforms static top n for composition
by intersection and vice versa for composition by
union. The WordNet approach is competitive for
composition by union, but underperfoms the other
approaches for composition by intersection signifi-
cantly. For further experiments we use the static top
n approach as it is computationally cheap and easy
to interpret due to the fixed number of neighbours.
Table 6 also shows that while composition by in-
tersection is significantly improved by distributional

1697

Phrase Comp. Union Union (with DI) Intersection Intersection (with DI)
national AN government, regime, government, regime*, federal assembly, federal assembly, government,
government ministry european state* government, monopoly local office
small AN house, public building, house, public building, apartment, cottage, cottage, apartment, cabin
house building large quantity* cabin
party NN leader, market leader, leader, government leader, party official, NDP, government leader, party official,
leader government leader market leader* leader opposition member
training NN programme, action programme, programme, action programme*, training college, trainee, training college,
programme television programme television programme* education course education course, seminar
win battle VO win, win match, ties win, win match, fight war win match, win, have fight war, fight, win match
emphasise VO emphasise, underline, emphasise, underline, emphasise, prioritize, emphasise, stress importance,
need underscore underscore negate underline

Table 5: Nearest neighbours AN, NN and VO pairs in the Mitchell and Lapata (2010) dataset, with and without distributional

inference. Words and phrases marked with * denote spurious neighbours, boldfaced words and phrases mark improved neighbours.

inference, composition by union does not appear to
benefit from it.

Composition by Union or Intersection
Both model types in this study support composition
by union as well as composition by intersection. In
untyped models, composition by union and com-
position by intersection can be achieved by point-
wise addition and pointwise multiplication respec-
tively. The major difference between composition
in the APT model and the untyped model is that in
the former, composition is not commutative due to
offsetting the modifier in a dependency relation (see
section 3). Blacoe and Lapata (2012) showed that
an intersective composition function such as point-
wise multiplication represents a competitive and ro-
bust approach in comparison to more sophisticated
composition methods. For the final set of experi-
ments on the Mitchell and Lapata (2010) dataset,
we present results the APT model and the untyped
model, using composition by union and composi-
tion by intersection, with and without distributional
inference. We compare our models with the best
performing untyped VSMs of Mitchell and Lap-
ata (2010), and Blacoe and Lapata (2012), the best
performing APT model of Weir et al. (2016), as
well as with the recently published state-of-the-art
methods by Hashimoto et al. (2014), and Wieting
et al. (2015), who are using neural network based
approaches. For our models, we use the static top
n approach as neighbour retrieval function and tune
the remaining parameters, the SPPMI shift k (1, 5,
10, 40, 100) and the number of neighbours (10, 30,
50, 100, 500, 1000, 5000), for both model types,
and the sliding window size for the untyped VSM
(1, 2, 5), on the development portion of the Mitchell
and Lapata (2010) dataset. We keep the vector con-

figuration (k and window size) fixed for all phrase
types and only tune the number of neighbours used
for DI individually. The best vector configuration
for the APT model is achieved with k = 10 and
for the untyped VSM with k = 1. For composition
by intersection best performance on the dev set was
achieved with 1000 neighbours for ANs, 10 for NNs
and 50 for VOs with DI. For composition by union,
top performance was obtained with 100 neighbours
for ANs, 30 neighbours for NNs and 50 for VOs.
The best results for the untyped model on the dev
set are achieved with a symmetric window size of 1
and using 5000 neighbours for ANs, 10 for NNs and
1000 for VOs with composition by pointwise multi-
plication, and 30 neighbours for ANs, 5000 for NNs
and 5000 for VOs for composition by pointwise ad-
dition. The validated numbers of neighbours on the
development set show that the problem of missing
information appears to be more severe for seman-
tic composition than for word similarity tasks. Even
though a neighbour at rank 1000 or lower does not
appear to have a close relationship to the target word,
it still can contribute useful co-occurrence informa-
tion not observed in the original vector.
Table 7 shows that composition by intersection with

distributional inference considerably improves upon
the best results for APT models without distribu-
tional inference and for untyped count-based mod-
els, and is competitive with the state-of-the-art neu-
ral network based models of Hashimoto et al. (2014)
and Wieting et al. (2015). Distributional inference
also improves upon the performance of an untyped
VSM where composition by pointwise multiplica-
tion is outperforming the models of Mitchell and La-
pata (2010), and Blacoe and Lapata (2012). Table 7
furthermore shows that DI has a smaller effect on

1698

APTs No Distributional Inference Density Window Static Top n WordNet
intersection union intersection union intersection union intersection union

Adjective-Noun 0.10 0.41 0.31 0.39 0.25 0.40 0.12 0.41
Noun-Noun 0.18 0.42 0.34 0.38 0.37 0.45 0.24 0.36
Verb-Object 0.17 0.36 0.36 0.36 0.34 0.35 0.25 0.36
Average 0.15 0.40 0.34 0.38 0.32 0.40 0.20 0.38

Table 6: Neighbour retrieval function. Underlined means best performance per phrase type, boldface means best average perfor-

mance overall.

Model Adjective-Noun Noun-Noun Verb-Object Average
APT – union 0.45 (0.45) 0.45 (0.43) 0.38 (0.37) 0.43 (0.42)
APT – intersect 0.50 (0.38) 0.49 (0.44) 0.43 (0.36) 0.47 (0.39)
Untyped VSM – addition 0.46 (0.46) 0.40 (0.41) 0.38 (0.33) 0.41 (0.40)
Untyped VSM – multiplication 0.46 (0.42) 0.48 (0.45) 0.40 (0.39) 0.45 (0.42)
Mitchell and Lapata (2010) (untyped VSM & multiplication) 0.46 0.49 0.37 0.44
Blacoe and Lapata (2012) (untyped VSM & multiplication) 0.48 0.50 0.35 0.44
Hashimoto et al. (2014) (PAS-CLBLM & Addnl) 0.52 0.46 0.45 0.48
Wieting et al. (2015) (Paragram word embeddings & RNN) 0.51 0.40 0.50 0.47
Weir et al. (2016) (APT & union) 0.45 0.42 0.42 0.43

Table 7: Results for the Mitchell and Lapata (2010) dataset. Results in brackets denote the performance of the respective models

without the use of distributional inference. Underlined means best within group, boldfaced means best overall.

the APT model based on composition by union and
the untyped model based on composition by point-
wise addition. The reason, as pointed out in the dis-
cussion for Table 5, is that the composition function
has no disambiguating effect and thus cannot elim-
inate unrelated neighbours introduced by distribu-
tional inference. An intersective composition func-
tion on the other hand is able to perform the disam-
biguation locally in any given phrasal context. This
furthermore suggests that for the APT model it is not
necessary to explicitly model different word senses
in separate vectors, as composition by intersection
is able to disambiguate any word in context individ-
ually. Unlike the models of Hashimoto et al. (2014)
and Wieting et al. (2015), the elementary word rep-
resentations, as well as the representations for com-
posed phrases and the composition process in our
models are fully interpretable2.

6 Conclusion and Future Work

One of the major challenges in count-based mod-
els is dealing with sparsity and missing information.
To address this challenge, we contribute an unsu-
pervised algorithm for enriching sparse word rep-
resentations by exploiting the distributional neigh-
bourhood. We have demonstrated its benefit to typed

2We release the APT vectors and our code at https://
github.com/tttthomasssss/apt-toolkit.

and untyped vector space models on a range of tasks
and have shown that with distributional inference
our APT model is competitive with the state-of-the-
art for adjective-noun, noun-noun and verb-object
compositions while being fully interpretable. With
our method, we are able to bridge the gap in perfor-
mance between low-dimensional non-interpretable
and high-dimensional interpretable representations.
Lastly, we have investigated the different behaviour
of composition by union and composition by inter-
section and have shown that an intersective com-
position function, together with distributional in-
ference, has the ability to locally disambiguate the
meaning of a phrase.

In future work we aim to scale our approach to se-
mantic composition with distributional inference to
longer phrases and full sentences. We furthermore
plan to investigate whether the number of neigh-
bours required for improving elementary vector rep-
resentations remains as high for other compositional
tasks and longer phrases as in this study.

Acknowledgments

This work was funded by UK EPSRC project
EP/IO37458/1 “A Unified Model of Compositional
and Distributional Compositional Semantics: The-
ory and Applications”. We would like to thank our
anonymous reviewers for their helpful comments.

1699

References

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
Kravalova, Marius Pasca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distributional
and wordnet-based approaches. In Proceedings of
NAACL-HLT, pages 19–27, Boulder, Colorado, June.
Association for Computational Linguistics.

Marco Baroni and Alessandro Lenci. 2010. Distribu-
tional memory: A general framework for corpus-based
semantics. Computational Linguistics, 36(4):673–
721, December.

Marco Baroni and Alessandro Lenci. 2011. How we
blessed distributional semantic evaluation. In Pro-
ceedings of GEMS Workshop, GEMS ’11, pages 1–10,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Marco Baroni and Roberto Zamparelli. 2010. Nouns
are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Proceedings of EMNLP, pages 1183–1193, Cam-
bridge, MA, October. Association for Computational
Linguistics.

William Blacoe and Mirella Lapata. 2012. A com-
parison of vector-based representations for semantic
composition. In Proceedings of EMNLP, pages 546–
556, Jeju Island, Korea, July. Association for Compu-
tational Linguistics.

Elia Bruni, Nam Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Int. Res.,
49(1):1–47, January.

John A. Bullinaria and Joseph P. Levy. 2007. Extract-
ing semantic representations from word co-occurrence
statistics: A computational study. Behavior Research
Methods, pages 510–526.

John A. Bullinaria and Joseph P. Levy. 2012. Extract-
ing semantic representations from word co-occurrence
statistics: stop-lists, stemming, and svd. Behavior Re-
search Methods, 44(3):890–907.

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicogra-
phy. Computational Linguistics, 16(1):22–29, March.

Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark.
2010. Mathematical foundations for a composi-
tional distributional model of meaning. CoRR,
abs/1003.4394.

James Curran. 2004. From Distributional to Semantic
Similarity. Ph.D. thesis, University of Edinburgh.

Ido Dagan, Fernando Pereira, and Lillian Lee. 1994.
Similarity-based estimation of word cooccurrence
probabilities. In Proceedings of ACL, pages 272–278,
Las Cruces, New Mexico, USA, June. Association for
Computational Linguistics.

Ido Dagan, Lillian Lee, and Fernando Pereira. 1997.
Similarity-based methods for word sense disambigua-
tion. In Proceedings of ACL, pages 56–63, Madrid,
Spain, July. Association for Computational Linguis-
tics.

Marie-Catherine de Marneffe, Timothy Dozat, Natalia
Silveira, Katri Haverinen, Filip Ginter, Joakim Nivre,
and Christopher D. Manning. 2014. Universal stan-
ford dependencies: A cross-linguistic typology. In
Proceedings of LREC, pages 4585–4592, Reykjavik,
Iceland, May. European Language Resources Associ-
ation (ELRA). ACL Anthology Identifier: L14-1045.

Scott Deerwester, Susan T. Dumais, George W. Furnas,
Thomas K. Landauer, and Richard Harshman. 1990.
Indexing by latent semantic analysis. J. Amer. Soc.
Inf. Sci., 41(6):391–407.

Katrin Erk and Sebastian Padó. 2008. A structured
vector space model for word meaning in context. In
Proceedings of EMNLP, pages 897–906, Honolulu,
Hawaii, October. Association for Computational Lin-
guistics.

Christiane Fellbaum, editor. 1998. WordNet: an elec-
tronic lexical database. MIT Press.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2001. Placing search in context: The concept
revisited. In Proceedings of WWW, WWW ’01, pages
406–414, New York, NY, USA. ACM.

Gottlob Frege. 1884. Die Grundlagen der Arithmetik:
Eine logisch mathematische Untersuchung über den
Begriff der Zahl. W. Koebner.

Edward Grefenstette, Georgiana Dinu, Yao-Zhong
Zhang, Mehrnoosh Sadrzadeh, and Marco Baroni.
2013. Multi-step regression learning for composi-
tional distributional semantics. Proceedings of IWCS.

Gregory Grefenstette. 1994. Explorations in Automatic
Thesaurus Discovery. Kluwer Academic Publishers,
Norwell, MA, USA.

Kazuma Hashimoto, Pontus Stenetorp, Makoto Miwa,
and Yoshimasa Tsuruoka. 2014. Jointly learning
word representations and composition functions us-
ing predicate-argument structures. In Proceedings of
EMNLP, pages 1544–1555, Doha, Qatar, October. As-
sociation for Computational Linguistics.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695, December.

Gabriella Lapesa and Stefan Evert. 2014. A large scale
evaluation of distributional semantic models: Parame-
ters, interactions and model selection. TACL, 2:531–
545.

1700

Phong Le and Willem Zuidema. 2015. The forest con-
volutional network: Compositional distributional se-
mantics with a neural chart and without binarization.
In Proceedings of EMNLP, pages 1155–1164, Lisbon,
Portugal, September. Association for Computational
Linguistics.

Omer Levy and Yoav Goldberg. 2014. Neural word em-
bedding as implicit matrix factorization. In Proceed-
ings of NIPS, pages 2177–2185.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. TACL, 3:211–225.

Dekang Lin. 1998. Automatic retrieval and clustering
of similar words. In Proceedings of ACL, pages 768–
774, Montreal, Quebec, Canada, August. Association
for Computational Linguistics.

Kevin Lund and Curt Burgess. 1996. Producing
high-dimensional semantic spaces from lexical co-
occurrence. Behavior Research Methods, Instruments,
& Computers, 28(2):203–208.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of ACL - System
Demonstrations, pages 55–60.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Proceedings of NIPS, pages 3111–3119.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In In Proceedings of
ACL-08: HLT, pages 236–244.

Jeff Mitchell and Mirella Lapata. 2010. Composition in
distributional models of semantics. Cognitive Science,
34(8):1388–1429.

Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, and Zhi
Jin. 2015. Discriminative neural sentence modeling
by tree-based convolution. In Proceedings of EMNLP,
pages 2315–2325, Lisbon, Portugal, September. Asso-
ciation for Computational Linguistics.

Yoshiki Niwa and Yoshihiko Nitta. 1994. Co-occurrence
vectors from corpora vs. distance vectors from dic-
tionaries. In Proceedings of Coling, COLING ’94,
pages 304–309, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Sebastian Padó and Mirella Lapata. 2007. Dependency-
based construction of semantic space models. Compu-
tational Linguistics, 33(2):161–199.

Sebastian Padó, Jan Šnajder, and Britta Zeller. 2013.
Derivational smoothing for syntactic distributional se-
mantics. In Proceedings of ACL, pages 731–735,
Sofia, Bulgaria, August. Association for Computa-
tional Linguistics.

Denis Paperno, Nghia The Pham, and Marco Baroni.
2014. A practical and linguistically-motivated ap-
proach to compositional distributional semantics. In
Proceedings of ACL, pages 90–99, Baltimore, Mary-
land, June. Association for Computational Linguistics.

Emanuel Parzen. 1962. On estimation of a probabil-
ity density function and mode. Ann. Math. Statist.,
33(3):1065–1076, 09.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of EMNLP, pages 1532–
1543, Doha, Qatar, October. Association for Compu-
tational Linguistics.

Magnus Sahlgren. 2006. The Word-space model. Ph.D.
thesis, University of Stockholm (Sweden).

Silke Scheible, Sabine Schulte im Walde, and Sylvia
Springorum. 2013. Uncovering distributional dif-
ferences between synonyms and antonyms in a word
space model. In Proceedings of IJCNLP, pages 489–
497, Nagoya, Japan, October. Asian Federation of Nat-
ural Language Processing.

Richard Socher, Brody Huval, Christopher D. Manning,
and Andrew Y. Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Proceed-
ings of EMNLP, pages 1201–1211, Jeju Island, Korea,
July. Association for Computational Linguistics.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representa-
tions from tree-structured long short-term memory
networks. In Proceedings of ACL, pages 1556–1566,
Beijing, China, July. Association for Computational
Linguistics.

Stefan Thater, Hagen Fürstenau, and Manfred Pinkal.
2010. Contextualizing semantic representations using
syntactically enriched vector models. In Proceedings
of ACL, pages 948–957, Uppsala, Sweden, July. Asso-
ciation for Computational Linguistics.

Stefan Thater, Hagen Fürstenau, and Manfred Pinkal.
2011. Word meaning in context: A simple and effec-
tive vector model. In Proceedings of IJCNLP, pages
1134–1143, Chiang Mai, Thailand, November. Asian
Federation of Natural Language Processing.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of semantics.
J. Artif. Int. Res., 37(1):141–188, January.

Julie Weeds, David Weir, and Jeremy Reffin. 2014.
Distributional composition using higher-order depen-
dency vectors. In Proceedings of the 2nd Workshop
on Continuous Vector Space Models and their Compo-
sitionality, pages 11–20, Gothenburg, Sweden, April.
Association for Computational Linguistics.

David Weir, Julie Weeds, Jeremy Reffin, and Thomas
Kober. 2016. Aligning packed dependency trees:

1701

a theory of composition for distributional seman-
tics. Computational Linguistics, in press (http:
//arxiv.org/abs/1608.07115).

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. From paraphrase database to composi-
tional paraphrase model and back. TACL, 3:345–358.

Benjamin Wilson. 2015. The unknown perils of
mining wikipedia. https://blog.lateral.io/2015/06/the-
unknown-perils-of-mining-wikipedia/, June.

Fabio Massimo Zanzotto, Lorenzo Ferrone, and Marco
Baroni. 2015. Squibs: When the whole is not greater
than the combination of its parts: A ”decompositional”
look at compositional distributional semantics. Com-
putational Linguistics, 41(1):165–173.

1702

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1703–1712,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Modelling Interaction of Sentence Pair with Coupled-LSTMs

Pengfei Liu Xipeng Qiu∗ Yaqian Zhou Jifan Chen Xuanjing Huang
Shanghai Key Laboratory of Intelligent Information Processing, Fudan University

School of Computer Science, Fudan University
825 Zhangheng Road, Shanghai, China

{pfliu14,xpqiu,zhouyaqian,jfchen14, xjhuang}@fudan.edu.cn

Abstract

Recently, there is rising interest in modelling
the interactions of two sentences with deep
neural networks. However, most of the exist-
ing methods encode two sequences with sepa-
rate encoders, in which a sentence is encoded
with little or no information from the other
sentence. In this paper, we propose a deep
architecture to model the strong interaction
of sentence pair with two coupled-LSTMs.
Specifically, we introduce two coupled ways
to model the interdependences of two LSTMs,
coupling the local contextualized interactions
of two sentences. We then aggregate these in-
teractions and use a dynamic pooling to select
the most informative features. Experiments on
two very large datasets demonstrate the effi-
cacy of our proposed architectures.

1 Introduction

Distributed representations of words or sentences
have been widely used in many natural language
processing (NLP) tasks, such as text classification
(Kalchbrenner et al., 2014; Liu et al., 2015), ques-
tion answering and machine translation (Sutskever
et al., 2014) and so on. Among these tasks, a com-
mon problem is modelling the relevance/similarity
of the sentence pair, which is also called text seman-
tic matching.

Recently, deep learning based models is rising a
substantial interest in text semantic matching and
have achieved some great progresses (Hu et al.,
2014; Qiu and Huang, 2015; Wan et al., 2016).

∗Corresponding author.

According to the phases of interaction between
two sentences, previous models can be classified
into three categories.
Weak interaction Models Some early works fo-
cus on sentence level interactions, such as ARC-
I(Hu et al., 2014), CNTN(Qiu and Huang, 2015)
and so on. These models first encode two sequences
with some basic (Neural Bag-of-words, BOW) or
advanced (RNN, CNN) components of neural net-
works separately, and then compute the matching
score based on the distributed vectors of two sen-
tences. In this paradigm, two sentences have no in-
teraction until arriving final phase.
Semi-interaction Models Some improved meth-
ods focus on utilizing multi-granularity represen-
tation (word, phrase and sentence level), such as
MultiGranCNN (Yin and Schütze, 2015) and Multi-
Perspective CNN (He et al., 2015). Another kind
of models use soft attention mechanism to obtain
the representation of one sentence by depending on
representation of another sentence, such as ABCNN
(Yin et al., 2015), Attention LSTM(Rocktäschel et
al., 2015; Hermann et al., 2015). These models can
alleviate the weak interaction problem, but are still
insufficient to model the contextualized interaction
on the word as well as phrase level.
Strong Interaction Models These models di-
rectly build an interaction space between two sen-
tences and model the interaction at different posi-
tions, such as ARC-II (Hu et al., 2014), MV-LSTM
(Wan et al., 2016) and DF-LSTMs(Liu et al., 2016).
These models can easily capture the difference be-
tween semantic capacity of two sentences.

In this paper, we propose a new deep neural net-
work architecture to model the strong interactions

1703

of two sentences. Different with modelling two sen-
tences with separated LSTMs, we utilize two inter-
dependent LSTMs, called coupled-LSTMs, to fully
affect each other at different time steps. The out-
put of coupled-LSTMs at each step depends on both
sentences. Specifically, we propose two interdepen-
dent ways for the coupled-LSTMs: loosely coupled
model (LC-LSTMs) and tightly coupled model (TC-
LSTMs). Similar to bidirectional LSTM for single
sentence (Schuster and Paliwal, 1997; Graves and
Schmidhuber, 2005), there are four directions can be
used in coupled-LSTMs. To utilize all the informa-
tion of four directions of coupled-LSTMs, we aggre-
gate them and adopt a dynamic pooling strategy to
automatically select the most informative interaction
signals. Finally, we feed them into a fully connected
layer, followed by an output layer to compute the
matching score.

The contributions of this paper can be summa-
rized as follows.

1. Different with the architectures of using sim-
ilarity matrix, our proposed architecture di-
rectly model the strong interactions of two sen-
tences with coupled-LSTMs, which can cap-
ture the useful local semantic relevances of two
sentences. Our architecture can also capture
the multiple granular interactions by several
stacked coupled-LSTMs layers.

2. Compared to previous works on text matching,
we perform extensive empirical studies on two
very large datasets. The massive scale of the
datasets allows us to train a very deep neu-
ral network and present an elaborate qualitative
analysis of our models, which gives an intuitive
understanding how our model worked.

2 Sentence Modelling with LSTM

Long short-term memory network (LSTM) (Hochre-
iter and Schmidhuber, 1997) is a type of recurrent
neural network (RNN) (Elman, 1990), and specifi-
cally addresses the issue of learning long-term de-
pendencies.

We define the LSTM units at each time step t to
be a collection of vectors in Rd: an input gate it, a
forget gate ft, an output gate ot, a memory cell ct
and a hidden state ht. d is the number of the LSTM

units. The elements of the gating vectors it, ft and
ot are in [0, 1].

The LSTM is precisely specified as follows.

c̃t
ot
it
ft

 =

tanh
σ
σ
σ

TA,b

[
xt

ht−1

]
, (1)

ct = c̃t � it + ct−1 � ft, (2)

ht = ot � tanh (ct) , (3)

where xt is the input at the current time step; TA,b

is an affine transformation which depends on param-
eters of the network A and b. σ denotes the logistic
sigmoid function and � denotes elementwise multi-
plication.

The update of each LSTM unit can be written pre-
cisely as follows

(ht, ct) = LSTM(ht−1, ct−1,xt). (4)

Here, the function LSTM(·, ·, ·) is a shorthand for
Eq. (1-3).

3 Coupled-LSTMs for Strong Sentence
Interaction

To deal with two sentences, one straightforward
method is to model them with two separate LSTMs.
However, this method is difficult to model local in-
teractions of two sentences. An improved way is to
introduce attention mechanism, which has been used
in many tasks, such as machine translation (Bah-
danau et al., 2014) and question answering (Her-
mann et al., 2015).

Inspired by the multi-dimensional recurrent neu-
ral network (Graves et al., 2007; Graves and
Schmidhuber, 2009; Byeon et al., 2015) and grid
LSTM (Kalchbrenner et al., 2015) in computer vi-
sion community, we propose two models to capture
the interdependences between two parallel LSTMs,
called coupled-LSTMs (C-LSTMs).

To facilitate our models, we firstly give some def-
initions. Given two sequences X = x1, x2, · · · , xn
and Y = y1, y2, · · · , ym, we let xi ∈ Rd denote the
embedded representation of the word xi. The stan-
dard LSTM have one temporal dimension. When
dealing with a sentence, LSTM regards the posi-
tion as time step. At position i of sentence x1:n,

1704

h
(1)
1 h

(1)
2 h

(1)
3

h
(2)
1 h

(2)
2 h

(2)
3

(a) Parallel LSTMs

h
(1)
1 h

(1)
2 h

(1)
3

h
(2)
1 h

(2)
2 h

(2)
3

(b) Attention LSTMs

h
(1)
41 h

(2)
41 h

(1)
42 h

(2)
42 h

(1)
43 h

(2)
43 h

(1)
44 h

(2)
44

h
(1)
31 h

(2)
31 h

(1)
32 h

(2)
32 h

(1)
33 h

(2)
33 h

(1)
34 h

(2)
34

h
(1)
21 h

(2)
21 h

(1)
22 h

(2)
22 h

(1)
23 h

(2)
23 h

(1)
24 h

(2)
24

h
(1)
11 h

(2)
11 h

(1)
12 h

(2)
12 h

(1)
13 h

(2)
13 h

(1)
14 h

(2)
14

(c) Loosely coupled-LSTMs

h41 h42 h43 h44

h31 h32 h33 h34

h21 h22 h23 h24

h11 h12 h13 h14

(d) Tightly coupled-
LSTMs

Figure 1: Four different coupled-LSTMs.

the output hi reflects the meaning of subsequence
x0:i = x0, · · · , xi.

To model the interaction of two sentences as early
as possible, we define hi,j to represent the interac-
tion of the subsequences x0:i and y0:j .

Figure 1(c) and 1(d) illustrate our two propose
models. For intuitive comparison of weak interac-
tion parallel LSTMs, we also give parallel LSTMs
and attention LSTMs in Figure 1(a) and 1(b)1.

We describe our two proposed models as follows.

3.1 Loosely Coupled-LSTMs (LC-LSTMs)

To model the local contextual interactions of two
sentences, we enable two LSTMs to be interde-
pendent at different positions. Inspired by Grid
LSTM (Kalchbrenner et al., 2015) and word-by-
word attention LSTMs (Rocktäschel et al., 2015),
we propose a loosely coupling model for two inter-
dependent LSTMs.

More concretely, we refer to h
(1)
i,j as the encoding

of subsequence x0:i in the first LSTM influenced by
the output of the second LSTM on subsequence y0:j .
Meanwhile, h(2)

i,j is the encoding of subsequence y0:j
in the second LSTM influenced by the output of the
first LSTM on subsequence x0:i

1In Rocktäschel et al. (2015) model, conditioned LSTM was
used, meaning that h(1)

1 is produced conditioned on h
(2)
3

h
(1)
i,j and h

(2)
i,j are computed as

h
(1)
i,j = LSTM1(H

(1)
i−1, c

(1)
i−1,j ,xi), (5)

h
(2)
i,j = LSTM2(H

(2)
j−1, c

(2)
i,j−1,yj), (6)

where

H
(1)
i−1 = [h

(1)
i−1,j ,h

(2)
i−1,j], (7)

H
(2)
j−1 = [h

(1)
i,j−1,h

(2)
i,j−1]. (8)

3.2 Tightly Coupled-LSTMs (TC-LSTMs)
The hidden states of LC-LSTMs are the combi-
nation of the hidden states of two interdependent
LSTMs, whose memory cells are separated. In-
spired by the configuration of the multi-dimensional
LSTM (Byeon et al., 2015), we further conflate
both the hidden states and the memory cells of
two LSTMs. We assume that hi,j directly model
the interaction of the subsequences x0:i and y0:j ,
which depends on two previous interaction hi−1,j
and hi,j−1, where i, j are the positions in sentence
X and Y .

We define a tightly coupled-LSTMs units as fol-
lows.

c̃i,j
oi,j
ii,j
f1i,j
f2i,j

=

tanh
σ
σ
σ
σ

TA,b

xi

yj

hi,j−1
hi−1,j

 , (9)

ci,j = c̃i,j � ii,j + [ci,j−1, ci−1,j]T
[
f1i,j
f2i,j

]
(10)

hi,j = ot � tanh (ci,j) (11)

where the gating units ii,j and oi,j determine which
memory units are affected by the inputs through c̃i,j ,
and which memory cells are written to the hidden
units hi,j . TA,b is an affine transformation which
depends on parameters of the network A and b. In
contrast to the standard LSTM defined over time,
each memory unit ci,j of a tightly coupled-LSTMs
has two preceding states ci,j−1 and ci−1,j and two
corresponding forget gates f1i,j and f2i,j .

3.3 Analysis of Two Proposed Models
Our two proposed coupled-LSTMs can be formu-
lated as
(hi,j , ci,j) = C-LSTMs(hi−1,j ,hi,j−1, ci−1,j , ci,j−1,xi,yj),

(12)

1705

x1, · · · ,xn

y
1
,·
··
,y

m

∑ ∑
· · · Pooling Fully

Connected
Layer

Output
Layer

Input Layer Stacked C-LSTMs Pooling Layer

Figure 2: Architecture of coupled-LSTMs for sentence-pair encoding. Inputs are fed to four C-LSTMs fol-
lowed by an aggregation layer. Blue cuboids represent different contextual information from four directions.

where C-LSTMs can be either TC-LSTMs or
LC-LSTMs.

The input consists of two type of information
at step (i, j) in coupled-LSTMs: temporal dimen-
sion hi−1,j ,hi,j−1, ci−1,j , ci,j−1 and depth dimen-
sion xi,yj . The difference between TC-LSTMs and
LC-LSTMs is the dependence of information from
temporal and depth dimension.

Interaction Between Temporal Dimensions The
TC-LSTMs model the interactions at position (i, j)
by merging the internal memory ci−1,j ci,j−1 and
hidden state hi−1,j hi,j−1 along row and column di-
mensions. In contrast with TC-LSTMs, LC-LSTMs
firstly use two standard LSTMs in parallel, produc-
ing hidden states h1

i,j and h2
i,j along row and column

dimensions respectively, which are then merged to-
gether flowing next step.

Interaction Between Depth Dimension In TC-
LSTMs, each hidden state hi,j at higher layer re-
ceives a fusion of information xi and yj , flowed
from lower layer. However, in LC-LSTMs, the in-
formation xi and yj are accepted by two corre-
sponding LSTMs at the higher layer separately.

The two architectures have their own charac-
teristics, TC-LSTMs give more strong interactions
among different dimensions while LC-LSTMs en-
sures the two sequences interact closely without be-
ing conflated using two separated LSTMs.

Comparison of LC-LSTMs and word-by-word
Attention LSTMs The characteristic of attention
LSTMs is that they obtain the attention weighted
representation of one sentence considering he align-
ment between the two sentences, which is asymmet-
ric unidirectional encoding. Nevertheless, in LC-

LSTM, each hidden state of each step is obtained
with the consideration of interaction between two
sequences with symmetrical encoding fashion.

4 End-to-End Architecture for Sentence
Matching

In this section, we present an end-to-end deep ar-
chitecture for matching two sentences, as shown in
Figure 2.

4.1 Embedding Layer

To model the sentences with neural model, we firstly
need transform the one-hot representation of word
into the distributed representation. All words of
two sequences X = x1, x2, · · · , xn and Y =
y1, y2, · · · , ym will be mapped into low dimensional
vector representations, which are taken as input of
the network.

4.2 Stacked Coupled-LSTMs Layers

A basic block consists of five layers. We firstly use
four directional coupled-LSTMs to model the local
interactions with different information flows. And
then we sum the outputs of these LSTMs by aggre-
gation layer. To increase the learning capabilities of
the coupled-LSTMs, we stack the basic block on top
of each other.

4.2.1 Four Directional Coupled-LSTMs Layers
The C-LSTMs is defined along a certain pre-

defined direction, we can extend them to access to
the surrounding context in all directions. Similar
to bi-directional LSTM, there are four directions in
coupled-LSTMs.

(h1
i,j , c

1
i,j) = C-LSTMs(hi−1,j ,hi,j−1, ci−1,j , ci,j−1,xi,yj),

(h2
i,j , c

2
i,j) = C-LSTMs(hi−1,j ,hi,j+1, ci−1,j , ci,j+1,xi,yj),

(h3
i,j , c

3
i,j) = C-LSTMs(hi+1,j ,hi,j+1, ci+1,j , ci,j+1,xi,yj),

1706

(h4
i,j , c

4
i,j) = C-LSTMs(hi+1,j ,hi,j−1, ci+1,j , ci,j−1,xi,yj).

4.2.2 Aggregation Layer
The aggregation layer sums the outputs of four di-

rectional coupled-LSTMs into a vector.

ĥi,j =
4∑

d=1

hd
i,j , (13)

where the superscript t of hi,j denotes the different
directions.

4.2.3 Stacking C-LSTMs Blocks
To increase the capabilities of network of learning

multiple granularities of interactions, we stack sev-
eral blocks (four C-LSTMs layers and one aggrega-
tion layer) to form deep architectures.

4.3 Pooling Layer

The output of stacked coupled-LSTMs layers is a
tensor H ∈ Rn×m×d, where n andm are the lengths
of sentences, and d is the number of hidden neurons.
We apply dynamic pooling to automatically extract
Rp×q subsampling matrix in each slice Hi ∈ Rn×m,
similar to (Socher et al., 2011).

More formally, for each slice matrix Hi, we par-
tition the rows and columns of Hi into p×q roughly
equal grids. These grid are non-overlapping. Then
we select the maximum value within each grid
thereby obtaining a p× q × d tensor.

4.4 Fully-Connected Layer

The vector obtained by pooling layer is fed into a full
connection layer to obtain a final more abstractive
representation.

4.5 Output Layer

The output layer depends on the types of the tasks,
we choose the corresponding form of output layer.
There are two popular types of text matching tasks in
NLP. One is ranking task, such as community ques-
tion answering. Another is classification task, such
as textual entailment.

1. For ranking task, the output is a scalar matching
score, which is obtained by a linear transforma-
tion after the last fully-connected layer.

MQA RTE
Embedding size 100 100
Hidden layer size 50 50
Initial learning rate 0.05 0.005
Regularization 5E−5 1E−5
Pooling (p, q) (2,1) (1,1)

Table 1: Hyper-parameters for our model on two
tasks.

2. For classification task, the outputs are the prob-
abilities of the different classes, which is com-
puted by a softmax function after the last fully-
connected layer.

5 Training

Our proposed architecture can deal with different
sentence matching tasks. The loss functions varies
with different tasks. More concretely, we use max-
margin loss (Bordes et al., 2013; Socher et al., 2013)
for ranking task and cross-entropy loss for classifi-
cation task.

To minimize the objective, we use stochastic gra-
dient descent with the diagonal variant of AdaGrad
(Duchi et al., 2011). To prevent exploding gradients,
we perform gradient clipping by scaling the gradient
when the norm exceeds a threshold (Graves, 2013).

6 Experiment

In this section, we investigate the empirical perfor-
mances of our proposed model on two different text
matching tasks: classification task (recognizing tex-
tual entailment) and ranking task (matching of ques-
tion and answer).

6.1 Hyperparameters and Training

The word embeddings for all of the models are ini-
tialized with the 100d GloVe vectors (840B token
version, (Pennington et al., 2014)) and fine-tuned
during training to improve the performance. The
other parameters are initialized by randomly sam-
pling from uniform distribution in [−0.1, 0.1].

For each task, we take the hyperparameters which
achieve the best performance on the development set
via an small grid search over combinations of the ini-
tial learning rate [0.05, 0.0005, 0.0001], l2 regular-
ization [0.0, 5E−5, 1E−5, 1E−6] and the threshold

1707

value of gradient norm [5, 10, 100]. The final hyper-
parameters are set as Table 1.

6.2 Competitor Methods
• Neural bag-of-words (NBOW): Each sequence

as the sum of the embeddings of the words it
contains, then they are concatenated and fed to
a MLP.

• Single LSTM: A single LSTM to encode the
two sequences, which is used in (Rocktäschel
et al., 2015).

• Parallel LSTMs: Two sequences are encoded
by two LSTMs separately, then they are con-
catenated and fed to a MLP.

• Attention LSTMs: An attentive LSTM to en-
code two sentences into a semantic space,
which used in (Hermann et al., 2015;
Rocktäschel et al., 2015).

• Word-by-word Attention LSTMs: An improve-
ment of attention LSTM by introducing word-
by-word attention mechanism, which used in
(Hermann et al., 2015; Rocktäschel et al.,
2015).

6.3 Experiment-I: Recognizing Textual
Entailment

Recognizing textual entailment (RTE) is a task to de-
termine the semantic relationship between two sen-
tences. We use the Stanford Natural Language In-
ference Corpus (SNLI) (Bowman et al., 2015). This
corpus contains 570K sentence pairs, and all of the
sentences and labels stem from human annotators.
SNLI is two orders of magnitude larger than all other
existing RTE corpora. Therefore, the massive scale
of SNLI allows us to train powerful neural networks
such as our proposed architecture in this paper.

6.3.1 Results
Table 2 shows the evaluation results on SNLI. The

3rd column of the table gives the number of param-
eters of different models without the word embed-
dings.

Our proposed two C-LSTMs models with four
stacked blocks outperform all the competitor mod-
els, which indicates that our thinner and deeper net-
work does work effectively.

Model k |θ|M Test
NBOW 100 80K 75.1
single LSTM
(Rocktäschel et al., 2015)

100 111K 80.9

parallel LSTMs
(Bowman et al., 2015)

100 221K 77.6

Attention LSTMs
(Rocktäschel et al., 2015)

100 252K 82.3

Attention(w-by-w) LSTMs
(Rocktäschel et al., 2015)

100 252K 83.5

LC-LSTMs (Single Direction) 50 45K 80.5
LC-LSTMs 50 45K 80.9
four stacked LC-LSTMs 50 135K 84.3
TC-LSTMs (Single Direction) 50 77.5K 80.1
TC-LSTMs 50 77.5K 81.6
four stacked TC-LSTMs 50 190K 85.1

Table 2: Results on SNLI corpus.

Besides, we can see both LC-LSTMs and TC-
LSTMs benefit from multi-directional layer, while
the latter obtains more gains than the former. We at-
tribute this discrepancy between two models to their
different mechanisms of controlling the information
flow from depth dimension.

Compared with attention LSTMs, our two mod-
els achieve comparable results to them using much
fewer parameters (nearly 1/5). By stacking C-
LSTMs2 , the performance of them are improved
significantly, and the four stacked TC-LSTMs
achieve 85.1% accuracy on this dataset.

Moreover, we can see TC-LSTMs achieve better
performance than LC-LSTMs on this task, which
need fine-grained reasoning over pairs of words as
well as phrases.

6.3.2 Understanding Behaviors of Neurons in
C-LSTMs

To get an intuitive understanding of how the C-
LSTMs work on this problem, we examined the neu-
ron activations in the last aggregation layer while
evaluating the test set using TC-LSTMs. We find
that some cells are bound to certain roles.

Let hi,j,k denotes the activation of the k-th neu-
ron at the position of (i, j), where i ∈ {1, . . . , n}
and j ∈ {1, . . . ,m}. By visualizing the hidden state
hi,j,k and analyzing the maximum activation, we

2To make a fair comparison, we also train a stacked
attention-based LSTM with the same setting as our models,
while it does not make significant improvement with 83.7% ac-
curacy.

1708

Index of Cell Word or Phrase Pairs
3-th (in a pool, swimming), (near a fountain, next to the ocean), (street, outside)
9-th (doing a skateboard, skateboarding), (sidewalk with, inside), (standing, seated)
17-th (blue jacket, blue jacket), (wearing black, wearing white), (green uniform, red uniform)
25-th (a man, two other men), (a man, two girls), (an old woman, two people)

Table 3: Multiple interpretable neurons and the word-pairs/phrase-pairs captured by these neurons.

A

pe
rs

on is

w
ea

rin
g a

gr
ee

n

sh
ir

t .

.
over
hunched
pants
black
and
shirt
red
a
in
person
A

−0.5 0 0.5

(a) 3rd neuron

A

pe
rs

on is

ou
ts

id
e .

.

street

the

down

walking

is

jeans

wearing

woman

A

0 0.2 0.4 0.6

(b) 17th neuron

Figure 3: Illustration of two interpretable neurons
and some word-pairs capture by these neurons. The
darker patches denote the corresponding activations
are higher.

can find that there exist multiple interpretable neu-
rons. For example, when some contextualized local
perspectives are semantically related at point (i, j)
of the sentence pair, the activation value of hidden
neuron hi,j,k tend to be maximum, meaning that the
model could capture some reasoning patterns.

Figure 3 illustrates this phenomenon. In Fig-
ure 3(a), a neuron shows its ability to monitor
the local contextual interactions about color. The
activation in the patch, including the word pair
“(red, green)”, is much higher than others.
This is informative pattern for the relation predic-
tion of these two sentences, whose ground truth
is contradiction. An interesting thing is there
are two words describing color in the sentence
“ A person in a red shirt and black
pants hunched over.”. Our model ignores
the useless word “black”, which indicates that this
neuron selectively captures pattern by contextual un-
derstanding, not just word level interaction.

In Figure 3(b), another neuron shows that it
can capture the local contextual interactions,
such as “(walking down the street,

outside)”. These patterns can be easily captured
by pooling layer and provide a strong support for
the final prediction.

Table 3 illustrates multiple interpretable neurons
and some representative word or phrase pairs which
can activate these neurons. These cases show that
our models can capture contextual interactions be-
yond word level.

6.3.3 Error Analysis
Although our models C-LSTMs are more sen-

sitive to the discrepancy of the semantic capacity
between two sentences, some semantic mistakes at
the phrasal level still exist. For example, our models
failed to capture the key informative pattern when
predicting the entailment sentence pair “A girl
takes off her shoes and eats blue
cotton candy/The girl is eating
while barefoot.”

Besides, despite the large size of the training
corpus, it’s still very different to solve some
cases, which depend on the combination of the
world knowledge and context-sensitive infer-
ences. For example, given an entailment pair
“a man grabs his crotch during a
political demonstration/The man
is making a crude gesture”, all models
predict “neutral”. This analysis suggests that
some architectural improvements or external world
knowledge are necessary to eliminate all errors
instead of simply scaling up the basic model.

6.4 Experiment-II: Matching Question and
Answer

Matching question answering (MQA) is a typical
task for semantic matching. Given a question, we
need select a correct answer from some candidate
answers.

In this paper, we use the dataset collected from
Yahoo! Answers with the getByCategory function

1709

Model k P@1(5) P@1(10)
Random Guess - 20.0 10.0
NBOW 50 63.9 47.6
single LSTM 50 68.2 53.9
parallel LSTMs 50 66.9 52.1
Attention LSTMs 50 73.5 62.0
Attention LSTMs (w-by-w) 50 75.1 64.0
LC-LSTMs (Single Direction) 50 75.4 63.0
LC-LSTMs 50 76.1 64.1
three stacked LC-LSTMs 50 78.5 66.2
TC-LSTMs (Single Direction) 50 74.3 62.4
TC-LSTMs 50 74.9 62.9
three stacked TC-LSTMs 50 77.0 65.3

Table 4: Results on Yahoo question-answer pairs
dataset.

provided in Yahoo! Answers API, which produces
963, 072 questions and corresponding best answers.
We then select the pairs in which the length of ques-
tions and answers are both in the interval [4, 30], thus
obtaining 220, 000 question answer pairs to form the
positive pairs.

For negative pairs, we first use each question’s
best answer as a query to retrieval top 1, 000 results
from the whole answer set with Lucene, where 4 or
9 answers will be selected randomly to construct the
negative pairs.

The whole dataset is divided into training, vali-
dation and testing data with proportion 20 : 1 : 1.
Moreover, we give two test settings: selecting the
best answer from 5 and 10 candidates respectively.

6.4.1 Results

Results of MQA are shown in the Table 4. For our
models, due to stacking block more than three layers
can not make significant improvements on this task,
we just use three stacked C-LSTMs.

By analyzing the evaluation results of question-
answer matching in table 4, we can see strong in-
teraction models (attention LSTMs, our C-LSTMs)
consistently outperform the weak interaction mod-
els (NBOW, parallel LSTMs) with a large margin,
which suggests the importance of modelling strong
interaction of two sentences.

Our proposed two C-LSTMs surpass the competi-
tor methods and C-LSTMs augmented with multi-
directions layers and multiple stacked blocks fully
utilize multiple levels of abstraction to directly boost
the performance.

Additionally, LC-LSTMs is superior to TC-
LSTMs. The reason may be that MQA is a relative
simple task, which requires less reasoning abilities,
compared with RTE task. Moreover, the parameters
of LC-LSTMs are less than TC-LSTMs, which en-
sures the former can avoid suffering from overfitting
on a relatively smaller corpus.

7 Related Work

Our architecture for sentence pair encoding can be
regarded as strong interaction models, which have
been explored in previous models.

An intuitive paradigm is to compute similari-
ties between all the words or phrases of the two
sentences. Socher et al. (2011) firstly used this
paradigm for paraphrase detection. The represen-
tations of words or phrases are learned based on re-
cursive autoencoders.

A major limitation of this paradigm is the inter-
action of two sentence is captured by a pre-defined
similarity measure. Thus, it is not easy to in-
crease the depth of the network. Compared with
this paradigm, we can stack our C-LSTMs to model
multiple-granularity interactions of two sentences.

Rocktäschel et al. (2015) used two LSTMs
equipped with attention mechanism to capture the it-
eration between two sentences. This architecture is
asymmetrical for two sentences, where the obtained
final representation is sensitive to the two sentences’
order.

Compared with the attentive LSTM, our proposed
C-LSTMs are symmetrical and model the local con-
textual interaction of two sequences directly.

8 Conclusion and Future Work

In this paper, we propose an end-to-end deep archi-
tecture to capture the strong interaction information
of sentence pair. Experiments on two large scale text
matching tasks demonstrate the efficacy of our pro-
posed model and its superiority to competitor mod-
els. Besides, we present an elaborate qualitative
analysis of our models, which gives an intuitive un-
derstanding how our model worked.

In future work, we would like to incorporate some
gating strategies into the depth dimension of our pro-
posed models, like highway or residual network, to
enhance the interactions between depth and other di-

1710

mensions thus training more deep and powerful neu-
ral networks.

Acknowledgments
We would like to thank the anonymous reviewers for
their valuable comments. This work was partially
funded by National Natural Science Foundation of
China (No. 61532011 and 61672162), the National
High Technology Research and Development Pro-
gram of China (No. 2015AA015408).

References
D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural ma-

chine translation by jointly learning to align and trans-
late. ArXiv e-prints, September.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran,
Jason Weston, and Oksana Yakhnenko. 2013. Trans-
lating embeddings for modeling multi-relational data.
In NIPS.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing.

Wonmin Byeon, Thomas M Breuel, Federico Raue, and
Marcus Liwicki. 2015. Scene labeling with lstm re-
current neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 3547–3555.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive science, 14(2):179–211.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5):602–610.

Alex Graves and Jürgen Schmidhuber. 2009. Offline
handwriting recognition with multidimensional recur-
rent neural networks. In Advances in Neural Informa-
tion Processing Systems, pages 545–552.

Alex Graves, Santiago Fernández, and Jürgen Schmid-
huber. 2007. Multi-dimensional recurrent neural net-
works. In Artificial Neural Networks–ICANN 2007,
pages 549–558. Springer.

Alex Graves. 2013. Generating sequences with recurrent
neural networks. arXiv preprint arXiv:1308.0850.

Hua He, Kevin Gimpel, and Jimmy Lin. 2015. Multi-
perspective sentence similarity modeling with convo-
lutional neural networks. In Proceedings of the 2015

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1576–1586.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems, pages 1684–1692.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen.
2014. Convolutional neural network architectures for
matching natural language sentences. In Advances in
Neural Information Processing Systems.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of ACL.

Nal Kalchbrenner, Ivo Danihelka, and Alex Graves.
2015. Grid long short-term memory. arXiv preprint
arXiv:1507.01526.

PengFei Liu, Xipeng Qiu, Xinchi Chen, Shiyu Wu, and
Xuanjing Huang. 2015. Multi-timescale long short-
term memory neural network for modelling sentences
and documents. In Proceedings of the Conference on
EMNLP.

Pengfei Liu, Xipeng Qiu, Jifan Chen, and Xuanjing
Huang. 2016. Deep fusion LSTMs for text seman-
tic matching. In Proceedings of Annual Meeting of the
Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. Proceedings of the Empiricial Meth-
ods in Natural Language Processing (EMNLP 2014),
12:1532–1543.

Xipeng Qiu and Xuanjing Huang. 2015. Convolutional
neural tensor network architecture for community-
based question answering. In Proceedings of Interna-
tional Joint Conference on Artificial Intelligence.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Her-
mann, Tomáš Kočiskỳ, and Phil Blunsom. 2015. Rea-
soning about entailment with neural attention. arXiv
preprint arXiv:1509.06664.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. Signal Processing,
IEEE Transactions on, 45(11):2673–2681.

Richard Socher, Eric H Huang, Jeffrey Pennin, Christo-
pher D Manning, and Andrew Y Ng. 2011. Dynamic
pooling and unfolding recursive autoencoders for para-
phrase detection. In Advances in Neural Information
Processing Systems.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In

1711

Advances in Neural Information Processing Systems,
pages 926–934.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems, pages 3104–3112.

Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang
Pang, and Xueqi Cheng. 2016. A deep architecture for
semantic matching with multiple positional sentence
representations. In AAAI.

Wenpeng Yin and Hinrich Schütze. 2015. Convolutional
neural network for paraphrase identification. In Pro-
ceedings of the 2015 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 901–
911.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen
Zhou. 2015. Abcnn: Attention-based convolutional
neural network for modeling sentence pairs. arXiv
preprint arXiv:1512.05193.

1712

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1713–1723,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Universal Decompositional Semantics on Universal Dependencies

Aaron Steven White Drew Reisinger Keisuke Sakaguchi Tim Vieira
Sheng Zhang Rachel Rudinger Kyle Rawlins Benjamin Van Durme

Johns Hopkins University

Abstract

We present a framework for augmenting data
sets from the Universal Dependencies project
with Universal Decompositional Semantics.
Where the Universal Dependencies project
aims to provide a syntactic annotation stan-
dard that can be used consistently across many
languages as well as a collection of corpora
that use that standard, our extension has simi-
lar aims for semantic annotation. We describe
results from annotating the English Univer-
sal Dependencies treebank, dealing with word
senses, semantic roles, and event properties.

1 Introduction

This paper describes the Universal Decompositional
Semantics (Decomp) project, which aims to aug-
ments Universal Dependencies (UD) data sets with
robust, scalable semantic annotations based in lin-
guistic theory. The UD project1 aims to provide
(i) a syntactic dependency annotation standard that
can be used consistently across many languages
and (ii) a collection of corpora that use that stan-
dard (De Marneffe et al., 2014; Nivre et al., 2015).
Decomp provides complementary semantic annota-
tions that scale across different types of semantic in-
formation and different languages and can integrate
seamlessly with any UD-annotated corpus.

Decomp has two mutually supportive tenets—
semantic decomposition and simplicity. As we dis-
cuss further in the next section, these tenets allow
us to collect annotations from everyday speakers of
a language that are rooted in basic, commonsensical

1http://universaldependencies.org

Your buddy Beau invited me

amodnmod:poss

nsubj

dobj

AWARENESS +
VOLITION +
... ...

ARG
ARG

REALIS +
... ...

ANIMATE +
... ...

Figure 1: Decompositional semantics atop syntax.

aspects of meaning and that can be straightforwardly
explained and generally agreed upon in context.

In this paper, we describe Decomp protocols for
three domains—semantic role decomposition, event
decomposition, and word sense decomposition—
and we present annotation results on top of the En-
glish UD v1.2 (EUD1.2) treebank.2 We begin in §2
by connecting Decomp with previous work on de-
composition in linguistic theory. In §3, we present
PredPatt, which is a software package for prepro-
cessing UD annotated corpora for input into De-
comp protocols. In §4, we present a major revi-
sion to Reisinger et al.’s (2015) semantic role de-
composition protocol (SPR1). Our revision, SPR2,
brings SPR1 into full alignment with Decomp while
adding various new features. In §5, we present
Decomp-aligned annotation of event properties, fo-
cusing specifically on event realis. Finally, in §6, we
describe a Decomp-aligned word sense decomposi-
tion protocol and associated set of annotations.

2 Universal Decompositional Semantics

A range of perspectives suggest that the proper rep-
resentation for word meanings is decompositional.

2All datasets are available at http://decomp.net.

1713

For example, Dowty (1979) followed by a sub-
stantial amount of research (e.g. Jackendoff 1990;
Rappaport-Hovav and Levin 1998; Levin and Rap-
paport Hovav 2005) suggests that word meanings
can be factored into (i) idiosyncratic, item-specific
components and (ii) general components, such as
CAUSATION, that are used across the lexicon. In
the domain of thematic roles, Dowty (1991) argues
that notions such as AGENT should be decomposed
into simpler, more primitive properties such as voli-
tional participation in an event. Pustejovsky (1991)
decomposes word meanings into qualia structures
that again incorporate more primitive properties of
events and individuals. In spite of this wealth of
theory, existing annotation protocols rarely take the
idea into account, operating at the level that the
above approaches decompose with very few excep-
tions (Greene and Resnik, 2009; Hartshorne et al.,
2013; Reisinger et al., 2015). Decomp’s premise is
that a decompositional approach to large-scale an-
notation has benefits for both the annotation pro-
cess and downstream uses of annotated data (cf.
He et al. 2015; Bos et al. 2017 for recent non-
decompositional approaches).

To capture these benefits, Decomp incorporates
semantic decomposition directly into its protocols
by mapping from decompositional theories, such as
Dowty’s, into straightforward questions on binary
properties that are easily answered. This method
of constructing annotation protocols gives rise to
simplicity in the protocol, since the resulting ques-
tions are much more commonsensical and easily ex-
plained than the concepts they are decomposing. For
instance, Dowty (1991) decomposes the relatively
unintuitive notion (for ordinary speakers) of AGENT

into much simpler properties, such as VOLITION and
MOVEMENT. Instead of asking about whether a ver-
bal argument is an AGENT (with the concomitant
complex training process for annotators), a Decomp
protocol might then ask about whether the referent
of the argument had volition in or moved as a result
of the event. Simplicity in the protocol in turn al-
lows a Decomp protocol to gather annotations from
untrained native (and naı̈ve) speakers of a language.
In large part, the current paper is focused on devel-
oping questions that everyday speakers can agree on
and that are key for lexical representations.

An added benefit of questions on binary proper-

ties is they allow the use of ordinal prompts (Likert
scales), allowing annotators to record subjective un-
certainty of a property in a given context, which can
then be aggregated across multiple responses with
less severe impact to inter-annotator agreement.

3 Predicative patterns

In this section, we introduce PredPatt, which is a
lightweight tool for identifying the structure of pred-
icates and arguments from Universal Dependencies.
We use the PredPatt’s output as input to the Decomp-
aligned annotation protocols we describe in §4 – §6.
To ensure that this output is accurate, we evaluate on
multiple UD-annotated corpora: automatically gen-
erated English parses and gold treebanks in Chinese,
English, Hebrew, Hindi, and Spanish.3

PredPatt employs deterministic, unlexicalized
rules over UD parses. We provide a high-level
overview of the process here.4

Input UD Parse with Universal POS tags
1. Predicate and argument root identification
2. Argument resolution
3. Predicate and argument phrase extraction
4. Optional Post-processing
Output collection of predicate-argument structures

UD Parse A universal dependency (UD) parse, is
a set of labeled pairs. Each pair has the form RE-
LATION(DEPENDENT, GOVERNOR). The UD parse
also includes a sequence of Universal POS tags. An
example of a UD parse is in Figure 1.

Predicate and argument root identification
Predicate and argument roots (i.e., dependency
tree nodes) are identified by local configurations—
specifically, edges in the UD parse. The simplest
example is NSUBJ(s, v) and DOBJ(o, v), which
indicate that v is a predicate root, and that s and
o are argument roots. Similarly, roots of clausal
subjects and clausal complements are also predicate
roots. Nominal modifiers inside adverbial modifiers

3While we are not aware of a similar tool for Universal
Dependencies, PredPatt is similar to ClausIE (Del Corro and
Gemulla, 2013) and ArgOE (Gamallo et al., 2012), which sup-
ports Spanish, Portuguese, Galician and English.

4A detailed description of PredPatt is available at https:
//github.com/hltcoe/PredPatt. PredPatt derives
from the system described by Rudinger and Van Durme (2014).

1714

are arguments to the verb being modified, e.g.,
Investors turned away from [the stock market].
PredPatt also extracts relations from appositives,
possessives, copula, and adverbial modifiers.

Argument resolution PredPatt includes argu-
ment resolution rules to handle missing arguments
of many syntactic constructions, including predi-
cate coordination, relative clauses, and embedded
clauses. Argument resolution is crucial in lan-
guages that mark arguments using morphology, such
as Spanish and Portuguese, because there are more
cases of covert subjects. Other common cases for
argument resolution are when predicates appear in
a conjunction, e.g., Chris likes to sing and dance,
has no arc from dance to its subject Chris. In rela-
tive clauses, the arguments of an embedded clause
appear outside the subtree, e.g., borrowed in The
books John borrowed from the library are overdue.
has books as an argument and so does are-overdue.

Predicate extraction PredPatt extracts a descrip-
tive name for complex predicates. For example,
[PredPatt] finds [structure] in [text] has a 3-place
predicate named (?a finds ?b in ?c). The primary
logic here is (a) to lift mark and case tokens (e.g.,
in) out of the argument subtree, (b) to add adverbial
modifiers, auxiliaries, and negation (e.g., [Chris] did
not sleep quietly). PredPatt uses the text order of to-
kens and arguments to derive a name for the pred-
icate; no effort is made to further canonicalize this
name, nor align it to a verb ontology.

Argument phrase extraction Argument extrac-
tion filters tokens from the dependency subtree be-
low the argument root. These filters primarily sim-
plify the subtree, e.g., removing relative clauses and
appositives inside an argument. The default set of
filters were chosen to preserve meaning, since it is
not generally the case that all modifiers can safely
be dropped (more aggressive argument simplifica-
tion settings are available as options).

Post-processing PredPatt implements a number of
optional post-processing routines, such as conjunc-
tion expansion, argument simplification (which fil-
ters out non-core arguments, leaving only subjects

Lang #Sent #Output Precision

Chinese 98 375 69.1% ±4.7%

English 79 210 86.2% ±4.7%

Hebrew 12 30 66.7% ±17.9%

Hindi 22 50 52.0% ±14.3%

Spanish 27 55 70.9% ±12.4%

Table 1: Results of manual evaluation of PredPatt on UD

and objects), and language-specific hooks.5

Gold treebanks in multiple languages We eval-
uated PredPatt manually on several randomly sam-
pled sentences taken from the UD banks of Chinese,
English, Hebrew, Hindi and Spanish. This evalua-
tion runs PredPatt with the gold standard UD parse.
We report the number of sentences evaluated along
with the number of extractions from those sentences
(a proxy for recall) and precision (95% confidence
interval) for each language in Table 1.

4 Semantic role decomposition

A decompositional strategy has been successfully
used by Reisinger et al. (2015) to annotate thematic
role information under their Semantic Proto-Role la-
beling protocol (SPR1), which is based on Dowty’s
(1991) seminal thematic proto-role theory.6

In this section, we present a major revision to
SPR1 aimed at strengthening and generalizing the
protocol beyond Reisinger et al.’s dataset. We
present three pilots aimed at validating our new pro-
tocol as well as a bulk annotation of a large subset
of core arguments in EUD1.2. Finally, we describe,
deploy, and validate methods for extending SPR2’s
reach beyond this subset, resulting in SPR2.1.

4.1 SPR1 protocol

In the SPR1 protocol, each core argument of a verb
is annotated for the likelihood that particular proper-
ties hold of that argument’s referent as a participant
in the event denoted by the verb.

Property questions The properties selected for
this purpose, given in Table 2, are based on those
invoked by Dowty (1991) in his prototype-theoretic

5UD itself allows for language-specific exceptions to the
“universal” standard, and we therefore allow that practice here.

6See Kako 2006; Greene and Resnik 2009; Madnani et al.
2010; Hartshorne et al. 2013 for work using similar protocols.

1715

Role property How likely or unlikely is it that...

instigation ARG caused the PRED to happen?
volition ARG chose to be involved in the PRED?
awareness ARG was/were aware of being involved in the PRED?
sentient ARG was/were sentient?
change of location ARG changed location during the PRED?

-exists as physical ARG existed as a physical object?
existed before ARG existed before the PRED began?
existed during ARG existed during the PRED?
existed after ARG existed after the PRED stopped?
change of possession ARG changed possession during the PRED?
change of state ARG was/were altered or somehow changed during or by

the end of the PRED?
-stationary ARG was/were stationary during the PRED?
-location of event ARG described the location of the PRED?
-physical contact ARG made physical contact with someone or something

else involved in the PRED?
was used ARG was/were used in carrying out the PRED?

-pred changed arg The PRED caused a change in ARG?
+was for benefit PRED happened for the benefit of ARG?
+partitive Only a part or portion of ARG was involved in the PRED?
+change of state continuous The change in ARG happened throughout the PRED?

Table 2: Questions posed to annotators. + indicates questions

new to SPR2; - indicates SPR1 questions dropped in SPR2.

reconstruction of linking theory. Reisinger et al.’s
(2015) SPR1 dataset, produced under this proto-
col, provides annotations of the Wall Street Jour-
nal portions of the Penn Treebank (PTB; Marcus
et al. 1993) that are also annotated for core argument
PropBank (Palmer et al., 2005) roles.

Filtering and data collection In Reisinger et al.
2015, verbs were excluded that occur in certain
syntactic environments that interfere with property
judgments. In particular, participles and impera-
tives were excluded, as well as verbs in embedded
clauses, in questions, and under negation or auxil-
iaries. We carry these filters forward to our own bulk
annotation by implementing them over PredPatt out-
put and then show how these filters can be lifted.

Annotators To ensure internal consistency of the
judgments, Reisinger et al.’s data was based on a sin-
gle Amazon Mechanical Turk annotator.

4.2 SPR2 protocol

First we update both the set of questions and
the method for presenting these questions in order
to streamline the annotation process and simplify
Reisinger et al.’s protocol. Second, to deal with po-
tentially ungrammatical sentences, as well as to add
an extra layer of quality control to the generation
of property questions, we add an acceptability judg-
ment question to the protocol. Finally, we collect an-
notations from multiple trusted annotators with two-
way redundancy, allowing us to normalize the data
in a way that is impossible with SPR1.

Property questions While Reisinger et al.’s prop-
erties were mainly motivated by linguistic theory,
in the process of developing SPR2 we identified
several redundancies as well as potential sources
of error; these changes are summarized in Table
2. Redundancies include stationary being es-
sentially the negation of change of location,
and predicate changed argument being
almost identical to change of state. The
property exists as physical was dropped
because it is a purely referential (non-relational)
property of the argument; thus, it is redundant
with our more elaborated decompositional word
sense protocol. The location of event and
physical contact properties were removed
because of lower interannotator agreement and high
within-annotator response variance in SPR1.

In addition to this streamlining, we added three
new properties that target new types of arguments:
benefactives, partitives, and incremental themes.
Benefactive arguments and partitive arguments of-
ten have special morphosyntactic properties in many
languages. In English, for example, benefactives
can appear in double-object constructions with verbs
like buy, and in many languages they correlate with
special morphology. Partitives involve partial af-
fectedness and similarly are often marked with mor-
phological case (Kiparsky, 1998). The third new
property, change of state continuous, is
a plain-language version of Dowty’s (1991) incre-
mental theme proto-role property, which Reisinger
et al. (2015) did not include. An argument is an
INCREMENTAL THEME with respect to an event if
the temporal progress of the event can be measured
in terms of, or put into correspondence with, the
part-whole structure of that argument which under-
goes some gradual change (Tenny, 1987; Krifka,
1989, a.o.). For example, in an event of mowing
the lawn, the lawn is an incremental theme because
the progress of mowing is directly related to the por-
tion of the lawn that has been mowed. Though in-
cremental theme is quite abstract in comparison to
other proto-role properties, it is widely agreed that
something like this property is involved in linking
thematic roles to syntactic position.

Dynamic reveal The question corresponding to
the change of state continuous property

1716

presupposes that the argument under consideration
did, in fact, undergo some change of state. This
means that if an annotator has previously deter-
mined that the property change of state does
not apply, then asking about change of state
continuous is at best inefficient, since we can de-
terministically predict that the answer should be NA,
and at worst confusing to the annotator, since the
question triggers a presupposition failure.

To avoid such presupposition failures in SPR2,
which we suspect led to additional noise and anno-
tation time as part of SPR1, we modified the an-
notation interface so that certain questions are re-
vealed dynamically based on the answers to other
questions. The set of questions is now orga-
nized hierarchically instead of as a flat list. In
this hierarchical structure, change of state is
a parent of change of state continuous,
which means that the latter question only appears if
the annotator gives a high ordinal value to the for-
mer. Questions that remain hidden are assumed to
have NA as their answer. For SPR2, this pair of prop-
erties is the only one affected by the dynamic reveal
feature, though this aspect of the protocol will be
extended in later versions.

Acceptability judgments Two kinds of grammat-
ical acceptability judgments were collected. The
first kind, collected on a five-point scale, asked about
the acceptability of the sentence containing the ar-
gument in question. The second kind, collected as
a binary judgment, asked whether the question was
hard to answer because of grammatical errors. This
second was triggered only when annotators gave a
response on the bottom three values of the ordinal
scale for the relevant property question. We do not
analyze these judgments here for reasons of space,
but they are available as part of the released dataset.

Multiple annotators with redundancy Reisinger
et al.’s (2015) reason for not using redundant an-
notations was that a single annotator would pro-
vide internally consistent judgments, but this con-
sistency comes at the cost of potential bias in the
judgments.7 In order to evaluate bias, we move to

7For example, in analyzing the SPR1 dataset that Reisinger
et al. make available, we noted that their annotator has a some-
what idiosyncratic way of answering the was used question,
which aims at identifying instruments: the annotator marks him

Figure 2: Example of semantic role decomposition task.

two-way redundancy (and later versions of the pro-
tocol are compatible with greater redundancy).

Heterogeneous data SPR2 extends the coverage
of Semantic Proto-Role Labeling to heterogeneous
genres. The SPR1 dataset contains only annotations
of newswire text. This is not ideal for either prac-
tical or scientific purposes, since newswire tends to
be biased toward otherwise rare word senses—often
pertaining to financial markets—but low coverage of
otherwise common word sense.

To remedy these coverage issues, we extend SPR1
to the English Universal Dependencies (version 1.2)
treebank (EUD1.2). EUD1.2 is based on the Lin-
guistic Data Consortium’s English Web Treebank
(Bies et al., 2012) and contains a much wider set
of genres than the Penn Treebank—including we-
blogs, newsgroup discussions, emails from the En-
ronSent Corpus, reviews from English Google re-
views, and answers from Yahoo! Answers. EUD1.2
has the added benefit of being natively annotated
with gold-standard Universal Dependencies (UD)
parses (Nivre et al., 2015).

4.3 Pilot experiments

In this section, we present three pilot experiments
conducted on a subset of EUD1.2 and aimed at val-
idating the updated protocol in preparation for de-
ployment of the full task. In the first, we use the
SPR1 protocol to obtain judgments on a small sam-
ple of EUD1.2 sentences from the same trusted an-
notator that produced SPR1. In the second, we open
the same task to multiple annotators. And in the
third, we deploy our updated SPR2 protocol on the

in (i) as likely to have been used in carrying out the advising.

(i) Sen. Bill Bradley of New Jersey advised him that the Dow
Jones Industrial Average had declined by 190 points.

This is a general pattern for this question for this annotator.

1717

same subset of EUD1.2—again, open to multiple an-
notators. We use these three pilots to evaluate in-
terannotator agreement within and across protocols
(where possible) and to construct a pool of trusted
annotators to work on the full annotation task.

Item selection For each pilot, the same set of sen-
tences were used. These sentences were selected
based on properties of both the predicate and its
corresponding arguments in each sentence. The pi-
lot experiments were limited to the same 10 verbs
(want, put, think, see, know, look, say, take, tell,
give) that were considered in Reisinger et al.’s pilot.

As in Reisinger et al. 2015, tokens were excluded
with verbs that occur in certain syntactic environ-
ments that interfere with property judgments. We
used the same filters described by those authors,
modified for UD. Additionally, verbs occurring as
the second item in a conjunction were removed, as
EUD1.2 does not have sufficient annotation to iden-
tify all arguments of such verbs from the syntax.

Verbal arguments were defined as the subtrees
governed by a verb via a core grammatical relation
(nsubj, nsubpass, dobj, and iobj). In addi-
tion, occurrences of the pronoun it in subject posi-
tion were excluded because of inconsistencies in the
annotation of expletive subjects in EUD1.2.

Pilots 1 & 2: SPR1 protocol Pilot 1, designed to
compare SPR1 directly to SPR2, used the same pro-
tocol described in Reisinger et al. 2015 and was de-
ployed on 99 argument tokens selected based on the
method above.8 To ensure that the only difference
between SPR1 and this pilot was which sentences
were annotated, we obtained the AMT identifier for
the SPR1 annotator from Reisinger et al. Thus, the
only annotator in this pilot was the same one that
produced all the annotations for the SPR1 dataset.

The data from this pilot cannot be compared
to the SPR1 dataset on a token level, since the
items do not come from the same dataset. But
these data can be compared to the SPR1 dataset
on a type level by averaging responses to particu-
lar questions asked about particular argument po-
sitions (e.g., nsubj, dobj, etc.) for a particular
predicate (e.g., want, put, etc.) and then comparing

8For each verb, 10 arguments were selected, with the excep-
tion of see, which only had 9 due to an off-by-one error.

the correlation between these averages. The aver-
age type-level correlation between the average by-
predicate, by-argument relation ratings in the SPR1
dataset and those in the current pilot was high for all
verb-argument pairs (Spearman ρ=0.82).

Pilot 2 uses the same materials and protocol as
Pilot 1. The only difference between the two is that
this pilot was open to multiple annotators. A total
of 33 annotators participated, one of whom was the
same annotator that produced all the annotations for
the SPR1 dataset and participated in Pilot 1.

For each argument token, we collected five judg-
ments per property question. Interannotator agree-
ment was calculated by argument token for the like-
lihood responses using pairwise Spearman rank cor-
relations. The mean ρ across all annotator pairs and
argument tokens was 0.562 (95% CI=[0.549, 0.574])
and, due to heavy left skew, the median was 0.618
(95% CI=[0.603, 0.631]). This agreement is rela-
tively high, suggesting that different annotators tend
to agree on the relative likelihood of a property ap-
plying to an argument.

Since the SPR1 and Pilot 1 annotator was among
this group, we can also assess the extent to which the
Pilot 1 annotator is consistent with other annotators.
Comparing this annotator to every other annotator
that annotated the same argument token, the mean
ρ was 0.499 (95% CI=[0.451, 0.546]), and the me-
dian was 0.565 (95% CI=[0.504, 0.637]). This sug-
gests that, on average, the other annotators are even
more consistent with each other than they are with
the original SPR1 annotator, vindicating the use of
multiple annotators.

Pilot 3: SPR2 protocol Pilot 3 uses the same ma-
terials as Pilots 1 and 2 but introduces the SPR2 pro-
tocol laid out above. A total of 57 annotators par-
ticipated in this pilot. For each argument token, we
again collected five judgments per property.

Interannotator agreement was calculated by argu-
ment token for the likelihood responses using pair-
wise Spearman rank correlations. The mean ρ across
all annotator pairs and argument tokens was 0.622
(95% CI=[0.610, 0.634]) and, again due to heavy
left skew, the median was 0.677 (95% CI=[0.662,
0.690]). This higher agreement compared to Pilot 2
likely arises due to the fact that we have fewer ques-
tions in the SPR2 protocol and suggests that we suc-

1718

ceeded in removing noisy questions without adding
questions that were similarly noisy.

Since we use the same materials as Pilots 1 and
2, we can also compare the SPR1 and SPR2 proto-
cols on the subset of questions they share. We find
similar mean agreement, at 0.593 (95% CI=[0.580,
0.607]), and median agreement, at 0.665 (95%
CI=[0.652, 0.672]), to that we found within the Pi-
lots 2 and 3 results. This suggests that the addi-
tion and subtraction of questions does not substan-
tially alter annotators’ judgments on the questions
that both protocols share.

4.4 Trusted annotator pool

To ensure annotation consistency in our bulk an-
notation, we constructed a pool of trusted annota-
tors from those annotators that participated in Pi-
lots 2 and 3. We used two metrics to construct this
pool: rating agreement and applicability agreement.
Both of these metrics control for various factors that
might raise or lower agreement independent of the
annotator—e.g., the particular question, the partic-
ular sentence, the particular argument type, etc.—
using generalized linear mixed effects models. This
pool contains a total of 86 trusted annotators.

4.5 Bulk task

For our bulk task, we used the SPR2 protocol to an-
notate a total of 3,806 argument tokens spanning
2,759 unique predicate lemmas. These argument
tokens were part of a filtered set constructed using
Reisinger et al.’s filtering scheme described above.

We collected two judgments per property, per ar-
gument token. Interannotator agreement was calcu-
lated in the same way as for the pilots. The mean ρ
was 0.617 (95% CI=[0.611, 0.623]), and the median
was 0.679, (95% CI=[0.673, 0.686]). This agree-
ment is very close to that found in the pilots, sug-
gesting that rating consistency extends beyond the
constrained set of predicates used in the pilots.

One issue with SPR1 that remains unaddressed in
SPR2 is the use of filters. This significantly reduces
the potential coverage of the protocol and relies on
extremely rich syntactic annotation. This second is
not problematic when we have gold standard tree-
banks like EUD1.2, but it becomes an issue when
moving beyond such treebanks.

To alleviate this filter issue, we propose a further
revision of SPR2. In this version (SPR2.1), we al-
ter the SPR2 instructions to take into account cases
where the property questions may be difficult to an-
swer. These fall into at least three categories: even-
tualities that haven’t happened (irrealis eventuali-
ties), generics, and habituals. In SPR2.1, annotators
are instructed about each case and to answer as if a
specific event of that kind did actually happen.

We annotated predicates that occurred in a sen-
tence from the previous bulk task but were filtered
from that task based on Reisinger et al.’s (2015) fil-
ters. We have so far annotated all such predicates
with less than 100 instances in all of EUD1.2 and
plan to continue annotation to get full coverage of
these sentences.

A total of 26 annotators from our trusted pool par-
ticipated in this annotation. As in the previous bulk
task, we collected two judgments per property, per
argument token. The interannotator agreement was
calculated in the same way as for the previous bulk
task and pilots and was reasonably high with a mean
ρ of 0.528 (95% CI=[0.522, 0.535]) and median ρ
of 0.571 (95% CI=[0.563, 0.580]). This somewhat
lower agreement is to be expected, since these pred-
icates were selected to be harder than those in the
previous task.

4.6 Discussion

We presented a major revision to Reisinger et al.’s
(2015) decompositional Semantic Proto-Role Label-
ing protocol (SPR1) and deployed this revised proto-
col (SPR2) in three validation pilots and a bulk task.
We then described two extensions to this protocol
aimed at expanding the annotable arguments.

One issue that arises with SPR2.1 is that it sub-
stantially complicates the instructions, clashing with
Decomp simplicity tenet. In the next section, we de-
scribe a task aimed at allowing us to better target
predicates that need these more elaborated instruc-
tions, allowing us to use the simpler SPR2 protocol
where possible.

5 Event decomposition

As discussed in §4, SPR1 and SPR2 employ filters
that run on top of dependency parses to ensure that
proto-role property questions about particular argu-

1719

Figure 3: Example of the event decomposition task

ments are answerable. We showed that these filters
can be bypassed by altering the instructions given
to annotators. This approach substantially increases
the length of the tasks instructions, however, and so
ideally, these lengthened instructions should be used
only when absolutely necessary. One place it seems
likely to be necessary is when the event in a sentence
did not in fact occur.

In this section, we present a protocol, inspired by
the one developed by de Marneffe et al. (2012), for
targeting these sorts of sentence with special instruc-
tions in future versions of SPR (see also Saurı́ and
Pustejovsky 2012). A major benefit of this protocol
is that it produces a foundation for future decompo-
sitional event annotations.

Protocol The protocol has four major compo-
nents: questions about (i) whether or not a particu-
lar word refers to an eventuality (event or state); (ii)
whether the sentence is understandable; (iii) whether
or not, according to the author, the event has already
happened is currently happening; and (iv) how con-
fident the annotator is about their answer to (iii).

The first two components were included to filter
out items that are either incorrectly labeled as pred-
icates or that the annotator could not annotate for
components (iii) and (iv), and if an annotator an-
swered no to either for a particular predicate candi-
date, (iii) and (iv) did not appear. Thus, like SPR2.x,
this protocol incorporates a hierarchy of questions
that can be elaborated in future versions.

Data collection We applied this protocol to every
predicate candidate found in an EUD1.2 sentence
annotated under SPR2 and SPR2.1. This yields an-
notations for a superset of the predicates annotated
under SPR2.x, and thus components (i) and (ii) of
these annotations can be used as a post hoc filter on
the SPR2.x annotations or to decide on whether to
include a predicate for future SPR2.x tasks.

A total of 6,930 predicate candidates were an-
notated in batches of 10 by 24 unique annotators
recruited from the trusted annotator pool built for
SPR2.x. Each predicate candidate was judged by
two distinct annotators.

Data validation For each of the four components
interannotator agreement was computed by each
group of 10 predicates. For the categorical re-
sponses, we would ideally use Cohen’s κ, but there
were so many cases of perfect agreement for the cat-
egorical responses that Cohen’s κ is ill-defined in
many cases. As such, we report raw agreement here.

The mean raw agreement for whether each pred-
icate candidate was a predicate was 0.955 (95%
CI=[0.950, 0.960]). The mean raw agreement
for whether the sentence was understandable was
[0.976, (95% CI=[0.971, 0.980]); and the mean raw
agreement for whether the eventuality happened or
was happening was 0.820 (95% CI=[0.811, 0.829]).

Discussion We presented the first version of a new
event decomposition protocol. This protocol inte-
grates with and is in the same spirit as the SPR2.x
protocols produced in the previous section.

In the next section, we describe a complemen-
tary protocol for decomposing word sense, focusing
specifically on noun senses. This last protocol com-
pletes a picture wherein we decompose predicate ar-
gument semantics into three parts: the properties of
a predicate independent of its arguments, the prop-
erties of a predicate’s arguments in relation to the
event the predicate denotes, and the properties of an
argument independent of the predicate.

6 Word sense decomposition

In §4 and §5, we focused on semantic questions that
deal with eventualities. In this section, we describe a
Decomp protocol for decomposing word sense. Our
goal is similar to that in previous sections: elicit re-
sponses from everyday speakers of the language re-
garding basic properties, in relation to the context of
a natural language sentence.

Protocol If directly following the strategy ex-
plored thus far, we would create an interface that
enumerated many dozens (or hundreds) of seman-
tic properties one might ask about a word in context,
and in further developments of Decomp there may

1720

Figure 4: Example of the word sense task.

be specific properties that are deemed essential for
direct querying of annotators. However, here we rely
on the rich pre-existing taxonomy of lexical knowl-
edge captured in the WordNet hierarchy (Miller,
1995) in order to more efficiently gather implicit
property responses. Everyday speakers can per-
form basic word sense disambiguation (Snow et al.,
2008): this falls under the simplicity tenant of De-
comp. Once a word is disambiguated in context we
then can infer automatically whether an instance is,
e.g., a physical object.

While WordNet is a valuable resource, the selec-
tion of a specific categorical sense under an enu-
merated set of prespecified options is troubling in a
similar way as Dowty was concerned with thematic
roles (see Kilgarriff 1997). Therefore we follow a
path similar to Sussna (1993) in asking annotators
for zero or more senses that are appropriate.9

Candidate senses are extracted from WordNet
synsets. We have grounded argument tokens in
WordNet in order to make efficient use of existing
lexical semantic resourses, but this protocol could in
principle be used with any other lexical semantic re-
source. We believe these annotations will be useful
already in the context of the other annotations, but
in addition, future work will use these sense ground-
ings to derive commonsense properties beyond those
directly encoded in the WordNet hierarchy.

Data collection A total of 18,054 word tokens
(arguments) in 10,833 total sentences extracted
from EUD1.2 were annotated for sense by at least
three annotators recruited from Amazon Mechanical
Turk. Each token had an average of 5.63 candidates
senses for annotators to choose from (Figure 4). In
total, 1,065 unique annotators participated.

9Not only does this weaken the commitment to a single cat-
egorical meaning, but it also reduces concerns of annotators be-
ing confused by overly fine-grain definitions (Navigli, 2006).

Data validation Inter-annotator agreement was
computed by lemma by taking the Jaccard index for
each pair of annotators that judged the senses for that
lemma: # of senses checked by both annotators

of senses checked by either annotator . The overall
inter-annotator agreement using this measure was
0.592: this is reasonably high considering the ex-
tremely low chance-level.

In total, 9,317 token-sense pairs were agreed upon
by all annotators. We refer to these token-sense pairs
as gold word sense(s) for the token. If we relax the
agreement threshold for a token-sense pair to be gold
to 0.5—i.e. half or more annotators agreed on that
pair—the number of gold word sense(s) goes up to
27,326. Out of 18,054 individual arguments, 8,553
of them have a single gold word sense and 370 have
two or more gold word senses as in the example
in Figure 4. Similarly, if we relax the agreement
threshold down to 0.5, 9,656 arguments have a sin-
gle gold word sense and 17,281 arguments have two
or more gold word senses.

7 Conclusion

We have described the Universal Decompositional
Semantics (Decomp) project, which aims to con-
struct and deploy a set of cross-linguistically ro-
bust semantic annotation protocols that are based
in linguistic theory and that integrate seamlessly
with the Universal Dependencies project. We
then proposed Decomp-aligned protocols for three
domains—semantic role decomposition, event de-
composition, and word sense decomposition—and
presented annotations, all freely available, that use
these protocols and are constructed on top of the En-
glish UD v1.2 treebank. In future work, we intend
to further revise and extend these protocols as well
as produce novel protocols aligned with Decomp.

Acknowledgments

This research was supported by the JHU HLTCOE,
DARPA DEFT, DARPA LORELEI, and NSF IN-
SPIRE BCS-1344269. The U.S. Government is
authorized to reproduce and distribute reprints for
Governmental purposes. The views and conclusions
contained in this publication are those of the authors
and should not be interpreted as representing offi-
cial policies or endorsements of DARPA or the U.S.
Government.

1721

References

Ann Bies, Justin Mott, Colin Warner, and Seth
Kulick. English web treebank. Linguistic Data
Consortium, Philadelphia, PA, 2012.

Johan Bos, Valerio Basile, Kilian Evang, Noortje
Venhuizen, and Johannes Bjerva. The Groningen
Meaning Bank. In Nancy Ide and James Puste-
jovsky, editors, Handbook of Linguistic Annota-
tion. Springer, Berlin, 2017.

Marie-Catherine de Marneffe, Christopher D. Man-
ning, and Christopher Potts. Did it happen? The
pragmatic complexity of veridicality assessment.
Computational Linguistics, 38(2):301–333, 2012.

Marie-Catherine De Marneffe, Timothy Dozat, Na-
talia Silveira, Katri Haverinen, Filip Ginter,
Joakim Nivre, and Christopher D. Manning. Uni-
versal Stanford dependencies: A cross-linguistic
typology. In Proceedings of LREC, volume 14,
pages 4585–4592, 2014.

Luciano Del Corro and Rainer Gemulla. Clausie:
clause-based open information extraction. In Pro-
ceedings of the 22nd international conference on
World Wide Web, pages 355–366, 2013.

David Dowty. Word Meaning and Montague Gram-
mar. D. Reidel Publishing Company, 1979.

David Dowty. Thematic proto-roles and argument
selection. Language, 67(3):547–619, 1991.

Pablo Gamallo, Marcos Garcia, and Santiago
Fernández-Lanza. Dependency-based open infor-
mation extraction. In Proceedings of the Joint
Workshop on Unsupervised and Semi-Supervised
Learning in NLP, pages 10–18, 2012.

Stephan Greene and Philip Resnik. More than
words: Syntactic packaging and implicit senti-
ment. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the
North American Chapter of the Association for
Computational Linguistics, pages 503–511. As-
sociation for Computational Linguistics, 2009.
ISBN 1-932432-41-8.

Joshua K. Hartshorne, Claire Bonial, and Martha
Palmer. The VerbCorner Project: Toward an
Empirically-Based Semantic Decomposition of
Verbs. In Proceedings of the 2013 Conference on

Empirical Methods in Natural Language Process-
ing, pages 1438–1442, 2013.

Luheng He, Mike Lewis, and Luke Zettlemoyer.
Question-Answer Driven Semantic Role Label-
ing: Using Natural Language to Annotate Natural
Language. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 643–653, 2015.

Ray S. Jackendoff. Semantic Structures. MIT Press,
1990.

Edward Kako. Thematic role properties of subjects
and objects. Cognition, 101(1):1–42, 2006.

Adam Kilgarriff. I don’t believe in word senses.
Computers and the Humanities, 31(2):91–113,
1997.

Paul Kiparsky. Partitive case and aspect. The Pro-
jection of Arguments: Lexical and compositional
factors, 265:307, 1998.

Manfred Krifka. Nominal reference, temporal
constitution, and quantification in event seman-
tics. In R. Bartsch, J. van Benthem, and P. von
Emde Boas, editors, Semantics and Contextual
Expression. Foris Publications, 1989.

Beth Levin and Malka Rappaport Hovav. Argument
realization. Cambridge University Press, 2005.

Nitin Madnani, Jordan Boyd-Graber, and Philip
Resnik. Measuring transitivity using untrained
annotators. In Proceedings of the NAACL HLT
2010 Workshop on Creating Speech and Lan-
guage Data with Amazon’s Mechanical Turk,
pages 188–194, 2010.

Mitchell P. Marcus, Mary Ann Marcinkiewicz,
and Beatrice Santorini. Building a Large
Annotated Corpus of English: The Penn
Treebank. Computational Linguistics, 19(2):
313–330, June 1993. ISSN 0891-2017. URL
http://dl.acm.org/citation.cfm?
id=972470.972475.

George A. Miller. Wordnet: A lexical database for
english. Commun. ACM, 38(11):39–41, Novem-
ber 1995. ISSN 0001-0782. doi: 10.1145/219717.
219748. URL http://doi.acm.org/10.
1145/219717.219748.

Roberto Navigli. Meaningful clustering of senses
helps boost word sense disambiguation perfor-

1722

mance. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics
and 44th Annual Meeting of the Association for
Computational Linguistics, pages 105–112, Syd-
ney, Australia, July 2006. Association for Com-
putational Linguistics. doi: 10.3115/1220175.
1220189. URL http://www.aclweb.org/
anthology/P06-1014.

Joakim Nivre, Željko Agić, Maria Jesus Aranzabe,
Masayuki Asahara, Aitziber Atutxa, Miguel
Ballesteros, John Bauer, Kepa Bengoetxea,
Riyaz Ahmad Bhat, Cristina Bosco, Sam Bow-
man, Giuseppe G. A. Celano, Miriam Connor,
Marie-Catherine de Marneffe, Arantza Diaz de
Ilarraza, Kaja Dobrovoljc, Timothy Dozat, Tomaž
Erjavec, Richárd Farkas, Jennifer Foster, Daniel
Galbraith, Filip Ginter, Iakes Goenaga, Koldo
Gojenola, Yoav Goldberg, Berta Gonzales, Bruno
Guillaume, Jan Hajič, Dag Haug, Radu Ion, Elena
Irimia, Anders Johannsen, Hiroshi Kanayama,
Jenna Kanerva, Simon Krek, Veronika Laippala,
Alessandro Lenci, Nikola Ljubešić, Teresa Lynn,
Christopher Manning, Cătălina Mărănduc, David
Mareček, Héctor Martı́nez Alonso, Jan Mašek,
Yuji Matsumoto, Ryan McDonald, Anna Missilä,
Verginica Mititelu, Yusuke Miyao, Simonetta
Montemagni, Shunsuke Mori, Hanna Nurmi,
Petya Osenova, Lilja Øvrelid, Elena Pascual,
Marco Passarotti, Cenel-Augusto Perez, Slav
Petrov, Jussi Piitulainen, Barbara Plank, Martin
Popel, Prokopis Prokopidis, Sampo Pyysalo,
Loganathan Ramasamy, Rudolf Rosa, Shadi
Saleh, Sebastian Schuster, Wolfgang Seeker,
Mojgan Seraji, Natalia Silveira, Maria Simi,
Radu Simionescu, Katalin Simkó, Kiril Simov,
Aaron Smith, Jan Štěpánek, Alane Suhr, Zsolt
Szántó, Takaaki Tanaka, Reut Tsarfaty, Sumire
Uematsu, Larraitz Uria, Viktor Varga, Veronika
Vincze, Zdeněk Žabokrtský, Daniel Zeman,
and Hanzhi Zhu. Universal Dependencies 1.2.
http://universaldependencies.github.io/docs/,
November 2015. URL https://lindat.
mff.cuni.cz/repository/xmlui/
handle/11234/1-1548.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
The proposition bank: An annotated corpus of se-
mantic roles. Computational Linguistics, 31(1):

71–106, 2005.

James Pustejovsky. The generative lexicon. Compu-
tational Linguistics, 17(4):409–441, 1991.

M. Rappaport-Hovav and Beth Levin. Building verb
meanings. In M. Butts and W. Geuder, editors,
The Projection of Arguments: Lexical and com-
positional factors, pages 97–134. CSLI Publica-
tions, 1998.

Drew Reisinger, Rachel Rudinger, Francis Fer-
raro, Craig Harman, Kyle Rawlins, and Benjamin
Van Durme. Semantic Proto-Roles. Transactions
of the Association for Computational Linguistics,
3:475–488, 2015.

Rachel Rudinger and Benjamin Van Durme. Is the
stanford dependency representation semantic? In
ACL Workshop: EVENTS, 2014.

Roser Saurı́ and James Pustejovsky. Are you sure
that this happened? assessing the factuality de-
gree of events in text. Computational Linguistics,
38(2):261–299, 2012.

Rion Snow, Brendan O’Connor, Daniel Jurafsky,
and Andrew Ng. Cheap and fast – but is it
good? Evaluating non-expert annotations for nat-
ural language tasks. In Proceedings of the 2008
Conference on Empirical Methods in Natural
Language Processing, pages 254–263, Honolulu,
Hawaii, October 2008. Association for Com-
putational Linguistics. URL http://www.
aclweb.org/anthology/D08-1027.

Michael Sussna. Word sense disambiguation for
free-text indexing using a massive semantic net-
work. In Proceedings of the Second International
Conference on Information and Knowledge Man-
agement, CIKM ’93, pages 67–74, New York,
NY, USA, 1993.

Carol Lee Tenny. Grammaticalizing aspect and
affectedness. Thesis, Massachusetts Institute of
Technology, 1987. URL http://dspace.
mit.edu/handle/1721.1/14704.

1723

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1724–1733,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Friends with Motives: Using Text to Infer Influence on SCOTUS

Yanchuan Sim
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

ysim@cs.cmu.edu

Bryan R. Routledge
Tepper School of Business
Carnegie Mellon University
Pittsburgh, PA 15213, USA

routledge@cmu.edu

Noah A. Smith
Computer Science & Engineering

University of Washington
Seattle, WA 98195, USA

nasmith@cs.washington.edu

Abstract

We present a probabilistic model of the in-
fluence of language on the behavior of the
U.S. Supreme Court, specifically influence of
amicus briefs on Court decisions and opin-
ions. The approach assumes that amici are
rational, utility-maximizing agents who try to
win votes or affect the language of court opin-
ions. Our model leads to improved predictions
of justices’ votes and perplexity of opinion
language. It is amenable to inspection, allow-
ing us to explore inferences about the persua-
siveness of different amici and influenceability
of different justices; these are consistent with
earlier findings.

“Language is the central tool of our trade.”
John G. Roberts, 2007 (Garner, 2010)

1 Introduction

The Supreme Court of the United States (SCOTUS),
the highest court in the American judiciary, makes
decisions with far-reaching effects. In a typical case,
there are four participating parties: petitioners and
respondents who file briefs arguing the merits of
their sides of a case (“merits briefs”); third-party en-
tities with an interest (but not a direct stake) in the
case, who file amicus curiae1 briefs to provide fur-
ther arguments and recommendations on either side;
and justices who, after oral arguments and discus-

1Amicus curiae is Latin for “friends of the court.” Hereafter,
we use amicus in singular and amici in plural to refer to these
interested third parties. It is common for several amici to co-
author a single brief, which we account for in our model.

sions, vote on the case and write “opinions” to ex-
plain the Court’s decisions.2

In recent years, amicus briefs are increasingly be-
ing employed as a lobbying tool to influence the
Court’s decision-making process (Franze and An-
derson, 2015; Kearney and Merrill, 2000). The con-
tent of these briefs reveals explicit attempts to per-
suade justices and provides a fascinating setting for
empirical study of influence through language. As
such, we take the perspective of an amicus, propos-
ing a probabilistic model of the various parties to a
case that accounts for the amicus’ goals.

Our model of SCOTUS is considerably more
comprehensive than past work in political science,
which has focused primarily on ideal point models
that use votes as evidence. Text has been incorpo-
rated more recently as a way of making such models
more interpretable, but without changing the funda-
mental assumptions (Lauderdale and Clark, 2014).
Here, we draw on decision theory to posit amici as
rational agents. We assume these amici-agents max-
imize their expected utility by framing their argu-
ments to sway justices towards favorable outcomes.

We build directly on Sim et al. (2015), who used
utility functions to explicitly model the goals of am-
ici in a probabilistic setting. Their approach only
considered amici in aggregate, inferring nothing
about any specific amicus, such as experience or mo-
tivation for filing briefs. Here, we enrich their model
to allow such analysis and also introduce Court opin-
ions as evidence. By modeling the justices’ author-

2We use the term opinions to refer to these decision-
explaining documents, not to abstract positions as the term is
used in much NLP research.

1724

ing process as well, we can capture an important
aspect of amici’s goals: influencing the text of the
opinions.

In §3, we demonstrate the effectiveness of our ap-
proach on vote prediction and perplexity. Further-
more, we present analyses that reveal the persuasive-
ness of amici and influenceability of justices that are
consistent with past findings.

2 Generative Models of SCOTUS

Our approach builds on a series of probabilistic
models only recently considered in NLP research.
To keep the discussion self-contained, we begin with
classical models of votes alone and build up toward
our novel contributions.

2.1 Modeling Votes

Ideal point (IP) models are a mainstay in quantitative
political science, often applied to voting records to
place voters (lawmakers, justices, etc.) in a continu-
ous space. A justice’s “ideal point” is a latent vari-
able positioning him in this space. Martin and Quinn
(2002) introduced the unidimensional IP model for
judicial votes, which posits an IP ψj ∈ R for each
justice j. Often the ψj values are interpreted as po-
sitions along a liberal-conservative ideological spec-
trum. Each case i is represented by popularity (ai)
and polarity (bi) parameters.3 A probabilistic view
of the unidimensional IP model is that justice j votes
in favor of case i’s petitioner (as opposed to the re-
spondent) with probability

p(vi,j = petitioner | ψj , ai, bi) = σ(ai + biψj)

where σ(x) = exp(x)
1+exp(x) is the logistic function.

When the popularity parameter ai is high enough,
every justice is more likely to favor the petitioner.
The polarity bi captures the importance of a justice’s
ideology: polarizing cases (i.e., |bi| � 0) push jus-
tice j more strongly to the side of the petitioner (if
bi has the same sign as ψj) or the respondent (other-
wise).

Amici IP models. Sim et al. (2015) introduced
a multidimensional IP model that incorporated text

3This model is also known as a two parameter logistic model
in item-response theory (Fox, 2010), where ai is “difficulty”
and bi is “discrimination.”

from merits and amicus briefs as evidence. They in-
ferred dimensions of IP that are grounded in “top-
ical” space, where topics are learned using latent
Dirichlet allocation (Blei et al., 2003). In their pro-
posed model, the merits briefs describe the issues
and facts of the case, while amicus briefs were hy-
pothesized to “frame” the facts and potentially influ-
ence the outcome of the case. For case i and justice
j, the vote probability is

p(vi,j = petitioner | ψj ,θi,∆i, ai, bi, ci) (1)

= σ
(
ai + biψ

>
j

(
θi + 1

|Ai|
∑

k∈Ai
c
si,k
i ∆i,k︸ ︷︷ ︸

case IP

))

whereAi is the set of amicus briefs filed on this case,
si,k denotes the side (∈ {petitioner, respondent})
supported by the kth brief, and cp

i , and cr
i are the ami-

cus polarities for briefs on either side. The case IP is
influenced by merits briefs (embedded in θi) and by
the amicus briefs (embedded in ∆i,k), both of which
are rescaled independently by the case discrimina-
tion parameters to generate the vote probability. The
model assumes that briefs on the same side share a
single embedding and that individual briefs on one
side influence the vote-specific IP equally.

New IP model: Persuasive amici. Lynch (2004)
and others have argued that some amici are more
effective than others, with greater influence on jus-
tices. We therefore propose a new model which
considers amici as individual actors. Starting from
Eq. 1, we consider two additional variables: each
amicus e’s persuasiveness (πe > 0) and each jus-
tice j’s influenceability (χj > 0).4

p(vi,j = petitioner | ψj , χj ,θi,∆i, ai, bi,π) (2)

= σ
(
ai + biψ

>
j

(
θi +

χj

|Ai|
∑

k∈Ai
π̄i,k∆i,k

))

where π̄i,k =

∑
e∈Ei,k πe

|Ei,k| is the average of their π-
values, with Ei,k denoting the set of entities who co-
authored the kth amicus brief for case i.

Intuitively, a larger value of χj will shift the case
IP more towards the contents of the amicus briefs,

4Note that the amici IP model of Sim et al. (2015), Eq. 1, is
a special case of this model where χj = 1 and each case has po-
larity parameters for each side; no information is shared across
briefs written by the same amicus-entity for different cases.

1725

thus making the justice seem more “influenced” by
amicus. Likewise, briefs co-authored by groups of
amici who are more effective (i.e., larger π̄i,k), will
“frame” the case towards their biases. Unlike Sim et
al. (2015), we eschew the amicus polarity parame-
ters (ci) and instead rely on the influenceability and
persuasiveness parameters. Furthermore, we note
that they performed a post-hoc analysis of amici in-
fluence on justices but we do so directly through χj .

With appropriate priors on the latent variables, the
generative story for votes is:

1. For each topic t ∈ {1, . . . , T}, draw topic-word
distributions φt ∼ Dirichlet(β).

2. For each justice j ∈ J , draw justice IP ψj ∼
N (0, σ2JI + ρ1)5 and influenceability χj ∼
logN (0, σ2I I).

3. For each amicus-entity e ∈ E , draw its persua-
siveness πe ∼ logN (0, σ2P I).

4. For each case i ∈ C:
(a) Draw case parameters ai, bi ∼ N (0, σ2C).
(b) Draw topic proportions for merits θi ∼

Dirichlet(α).
(c) For each word w(m)

i,n in the merits briefs, draw

topic indicators z(m)
i,n ∼ Categorical(θi) and

w
(m)
i,n ∼ Categorical(φ

z
(m)
i,n

).

(d) For each amicus brief indexed by k:
i. Draw topic proportions ∆i,k according to a

distribution discussed in §2.3.
ii. For each word w(a)

i,n in the brief, draw topic

indicators z(a)i,k,n ∼ Categorical(∆i,k) and

w
(a)
i,k,n ∼ Categorical(φ

z
(a)
i,k,n

).

(e) For each participating justice j ∈ Ji, draw vote
vi,j according to Eq. 2.

2.2 Modeling Opinions

In most SCOTUS cases, a justice is assigned to au-
thor a majority opinion, and justices voting in the
majority “join” in the opinion. Justices may author
additional opinions concurring or dissenting with
the majority, and they may choose to join concurring

5The positive off-diagonal elements of the covariance ma-
trix for justice IPs (ψj) orient the issue-specific dimensions in
the same direction (i.e., with conservatives at the same end)
and provide shrinkage of IP in each dimension to their common
mean across dimensions (Lauderdale and Clark, 2014).

and dissenting opinions written by others. Here, we
extend the IP model of votes to generate the opinions
of a case; this marks the second major extension be-
yond the IP model of Sim et al. (2015).

SCOTUS justices often incorporate language
from merits (Feldman, 2016b; Feldman, 2016a) and
amicus (Collins et al., 2015; Ditzler, 2011) briefs
into their opinions. While amicus briefs are not
usually used directly in legal analyses, the back-
ground and technical information they provide are
often quoted in opinions. As such, we model opin-
ions as a mixture of its justice-authors’ topic pref-
erences, topic proportions of the merits briefs (θ),
and topic proportions of the amicus briefs (∆). This
can also be viewed as an author-topic model (Rosen-
Zvi et al., 2004) where justices, litigants, and groups
of amici are all effective authors. To accomplish
this, we introduce an explicit switching variable x
for each word, which selects between the different
sources of topics, to capture the mixture proportions.

Since any justice can author additional opinions
explaining the rationale behind their votes, we con-
catenate all opinions supporting the same side of a
case into a single document.6 However, we note
that concurring opinions often contain perspectives
that are different from the majority opinion and
by concatenating them, we may lose some infor-
mation about individual justices’ styles or prefer-
ences. Building on the generative model for votes,
the generative story for each case i’s two opinions-
documents is:

5. For each justice j ∈ J , draw topics Γj ∼
Dirichlet(α).

6. For each case i ∈ C:
(a) For each side s ∈ {petitioner, respondent},

draw “author”-mixing proportions:

τ si ∼ Dirichlet

p(vi,1 = s)
...

p(vi,|J | = s)

1
1

(3)

where the last two dimensions are for choos-
ing topics from the merits and amicus briefs, re-

6Opinions where justices dissent from the majority are con-
catenated together, and those where justices concur with the ma-
jority are concatenated with the majority opinion.

1726

spectively.7 Intuitively, our model assumes that
opinions will incorporate more language from
justices who agree with it.

(b) For each side s ∈ {petitioner, respondent} and
each word w(o)

i,s,n in the opinion for side s,
i. Draw xi,s,n ∼ Categorical(τ si).

ii. If xi,s,n ∈ Ji, draw z
(o)
i,s,n ∼

Categorical(Γxi,s,n), the justice’s topic
distribution.

iii. If xi,s,n = merits, draw z
(o)
i,s,n ∼

Categorical(θi), the merits topic distribu-
tion.

iv. If xi,s,n = amici, draw z
(o)
i,s,n ∼

Categorical(∆s
i), side s’s amicus briefs

topic distribution.
v. Draw word w(o)

i,s,n ∼ Categorical(φ
z
(o)
i,s,n

).

Unlike in the Court, where an opinion is mainly
authored by a single justice, all the participating jus-
tices contribute to an opinion in our generative story,
with different proportions. This approach simpli-
fies the computational model and reflects the closed-
door nature of discussions held by justices prior to
writing their opinions. Our model assumes that jus-
tices debate together, and that the arguments are re-
flected in the final opinions. In future work, we
might extend the model to infer an authoring pro-
cess that separates an initial author from “joiners.”

2.3 Amici Utility

Our approach assumes that amici are rational and
purposeful decisionmakers who write briefs to in-
fluence the outcome of a case; this assumption leads
to the design of the distribution over ∆ (generative
model step 4(d)i). When writing a brief ∆, an am-
icus seeks to increase the response to her brief (i.e.,
votes), while keeping her costs low. We encode her
objectives as a utility function, which she aims to
maximize with respect to the decision variable ∆:

U(∆) = R(∆)− C(∆) (4)

where R(·) is the extrinsic response (reward) that
an amicus gets from filing brief ∆ and C(·) is the
“cost” of filing the brief; dependency on other latent

7In cases where there are less than nine justices voting, the
size of τ p

i and τ r
i may be smaller.

variables is notationally suppressed. When author-
ing her brief, we assume that the amicus writer has
knowledge of the justices (IP and topic preferences),
case parameters, and merits, but not the other amici
participating in the case.8

Amicus curiae are motivated to position them-
selves (through their briefs) in such a way as to im-
prove the likelihood that their arguments will per-
suade SCOTUS justices. This is reflected in the way
a justice votes or through the language of the opin-
ions. Hence, we investigate two response functions.
First, an amicus supporting side s seeks to win votes
for s,

Rvote(∆) = 1
|J |
∑

j∈J p(vj = s | . . .), (5)

which is the expected number of votes for side s,
under the model. This follows Sim et al. (2015).

An alternative is to maximize the (topical) simi-
larity between her brief and the Court’s opinion(s)
siding with s,

Ropinion(∆) = 1−H2(∆,Ωs), (6)

where H2(P,Q) = 1
2‖
√
P − √Q‖22 is the squared

Hellinger (1909) distance between two distributions,
and Ωs is the expected topic mixture under the
model assumptions in §2.2 (which has a closed
form). In short, the amicus gains utility by ac-
curately predicting the expected opinion, thereby
gaining publicity and demonstrating to members,
donors, potential clients, and others that the lan-
guage of the highly visible SCOTUS opinion was
influenced. Both Eqs. 5 and 6 reward amici when
justices “agree” with them, for different definitions
of agreement.

We assume the cost C(∆) = H2(∆,θ), the
squared Hellinger distance between the mixture pro-
portions of the amicus brief and merits briefs.9 The
cost term defines the “budget” set of the amicus:
briefs cannot be arbitrary text, as there is disutility or

8Capturing strategic amici agents (a petitioner amicus
choosing brief topics considering a respondent amicus’ brief)
would require a game-theoretic model and, we conjecture,
would require a much richer representation of policy and goals.
That idea is left for future research.

9Sim et al. (2015) used a Euclidean distance for cost rather
than Hellinger distance, which we believe is a better fit for prob-
ability distributions without sacrificing symmetry (cf. KL diver-
gence).

1727

effort required to carefully frame a case, and mone-
tary cost to hiring legal counsel. The key assumption
is that framing is costly, while simply matching the
merits is cheap (and presumably unnecessary).

Notationally, we use Uvote to refer to models
where Eq. 5 is in the utility function (in Eq. 4) and
Uopinion where it is Eq. 6.

Random utility models Recall our assumption
that amici are purposeful writers whose briefs are
optimized for their utility function. In an ideal set-
ting, the ∆ which we observe will be utility maxi-
mizing. We simplify computation by assuming that
these amici agents’ preferences also contain an id-
iosyncratic random component that is unobserved to
us. This is a common assumption in discrete choice
models known as a “random utility model” (McFad-
den, 1974). We view the utility function as a prior
on ∆,

putil(∆ | . . .) ∝ exp ηU(∆),

where our functional equations for utility imply
−1 ≤ U(·) ≤ 1. η is a hyperparameter tuned us-
ing cross validation. The behavior which we observe
(i.e., the amicus’ topic mixture proportions) has a
likelihood that is proportional to utility.

2.4 Parameter Estimation
The models we described above can be estimated
within a Bayesian framework. We decoupled the
estimation of the votes model from the opinions
model; we first estimate the parameters for the votes
model and hold them fixed while we estimate the
new latent variables in the opinions model. In our
preliminary experiments, we found that estimating
parameters for both votes and opinions jointly led to
slow mixing and poor predictive performance. Sep-
arating the estimation procedure into two stages al-
lows the model to find better parameters for the votes
model, which are then fed into the opinions model as
priors through the vote probabilities.

We used Metropolis within Gibbs, a hybrid
MCMC algorithm, to sample the latent parameters
from their posterior distributions (Tierney, 1994).10

For the Metropolis-Hastings proposal distributions,
we used a Gaussian for the case parameters a, b, and
justice IPs ψ, log-normal distributions for χ and π,

10The details of our sampler and hyperparameter settings can
be found in §A and §B of the supplementary materials.

and logistic-normal distribution for the variables on
the simplex θ,∆, τ , and Γ. We tuned the hyperpa-
rameters of the proposal distributions at each itera-
tion to achieve a target acceptance rate of 15–45%.
We used T = 128 topics for model and initialized
topic proportions (θ,∆) and topic-word distribu-
tions (φ) using online LDA (Hoffman et al., 2010).

3 Experiments

Data. In our experiments, we use SCOTUS cases
between 1985–2014; votes and metadata are from
Spaeth et al. (2013) and brief texts come from Sim et
al. (2015). We concatenate each of the 2,643 cases’
merits briefs from both parties to form a single doc-
ument, where the text is used to infer the represen-
tation of the case in topical space (θ; i.e., merits
briefs are treated as “facts of the case”). Likewise,
opinions supporting the same side of the case (i.e.,
majority and concurring vs. dissents) were concate-
nated to form a single document. In our dataset, the
opinions are explicitly labeled with the justice who
authored them (as well as other justices who decide
to “join” it).

As the amicus briefs in the dataset were not ex-
plicitly labeled with the side that they support, Sim
et al. (2015) built a binary classifier with bag-of-
n-gram features that took advantage of cues in the
brief content that strongly signal the side that the
amici supports (e.g., “in support of petitioner”). We
used their classifier to label the amici’s support-
ing side. Additionally, we created regular expres-
sion rules to identify and standardize amicus au-
thors from the header of briefs. We filtered am-
ici who have participated in fewer than 5 briefs11

and merged regional chapters of amicus organiza-
tions together (i.e., “ACLU of Kansas” and “ACLU
of Kentucky” are both labeled “ACLU”). On the
other hand, we separated labeled amicus briefs by
the U.S. Solicitor General according to the presi-
dential administration when the brief is filed (i.e.,
an amicus brief filed during Obama’s administration
will be labeled “USSG-Obama”). The top three am-
ici by number of briefs filed are American Civil Lib-
erties Union (463), Utah (376), and National Asso-

11Briefs which have no authors as a result of the filtering pro-
cess are removed from our dataset. This occurred in about 24%
of amicus briefs.

1728

Cases / Votes 2,643 / 23,465
Merits / Amicus briefs 16,416 / 16,303
Opinions 4,187
Phrases 18,207,326

Table 1: Corpus statistics.

ciation of Criminal Defense Lawyers (359).
We represent a document as a bag of n-grams with

part of speech tags that follow the simple but effec-
tive pattern (Adjective|Cardinal|Noun)+ Noun (Juste-
son and Katz, 1995). We filter phrases appearing
fewer than 100 times or in more than 8,500 docu-
ments, obtaining a final set of 48,589 phrase types.
Table 1 summarizes the details of our corpus.

Predicting Votes. We quantify the performance of
our vote model using 5-fold cross validation and on
predicting future votes from past votes. The utility
function in the vote model uses the response func-
tion in Eq. 5. Due to the specification of IP models,
we need the case parameters of new cases to predict
the direction of the votes. Gerrish and Blei (2011)
accomplished this by using regression on legislative
text to predict the case parameters (a, b). Here, we
follow a similar approach, fitting ridge regression
models on the merits brief topic mixtures θ to pre-
dict a and b for each case.12 On the held-out test
cases, we sampled the mixture proportions for the
merits and amicus briefs directly using latent Dirich-
let allocation with parameters learned while fitting
our vote model. With the parameters from our fitted
vote model and ridge regression, we can predict the
votes of every justice for every case.

We compared the performance of our model with
two strong baselines: (i) a random forest trained on
case-centric metadata coded by Spaeth et al. (2013)
to make predictions on how justices would vote
(Katz et al., 2014) and (ii) Sim et al. (2015)’s amici
IP model, which uses amicus briefs and their version
of utility; it is a simpler version of our vote model
that does not consider the persuasiveness of differ-
ent amici or the influenceability of different justices.
For prediction in Sim et al. (2015), we used the same
approach described above to estimate the case pa-
rameters a, b, and regressing on amicus brief topics
(∆) instead for amicus polarities cp and cr. Table 2

12We tuned the parameters of the regression using 5-fold
cross-validation on the training data.

Model 5-fold 2013 2014
Most frequent 0.597 0.694 0.650
Random forest 0.651 0.648 0.633
Vote model without U vote 0.661 0.655 0.660
Sim et al. (2015) 0.675 0.658 0.661
Vote model with U vote 0.685 0.664 0.672

Table 2: Accuracy of vote prediction. There are 70 cases
(625 votes) and 69 cases (619 votes) in the 2013 and 2014
test sets, respectively.

shows performance on vote prediction.
We evaluated the models using 5-fold cross vali-

dation, as well as on forecasting votes in 2013 and
2014 (trained using data from 1985 to the preceding
year). Our model outperformed the baseline models.
The improvement in accuracy over Sim et al. (2015)
is small; most likely because both models are very
similar, the main difference being the parametriza-
tion of amicus briefs. In the 2013 test set, the distri-
bution of votes is significantly skewed towards the
petitioner (compared to the training data), which re-
sulted in the most frequent class classifier perform-
ing much better than everything else. Fig. 1 illus-
trates our model’s estimated ideal points for selected
topics.

Predicting Opinions. We also estimated the opin-
ion model using the utility function with response
function in Eq. 6. We use perplexity as a proxy to
measure the opinion content predictive ability of our
model. Perplexity on a test set is commonly used
to quantify the generalization ability of probabilistic
models and make comparisons among models over
the same observation space. For a case with opinion
w supporting side s, the perplexity is defined as

exp

(
− log p(w | s, . . .)

N

)
,

whereN is the number of tokens in the opinion and a
lower perplexity indicates better generalization per-
formance. The likelihood term can be approximated
using samples from the inference step.

Table 3 shows the perplexity of our model on
opinions in the test set. As described in §2.4, we
learn the vote model in the first stage before esti-
mating the opinion model. Here, we compare our
model against using vote models that do not in-
clude Uvote to evaluate the sensitivity of our opinion

1729

4 2 0 2 4 6

Ginsburg
Sotomayor

Kagan
Breyer

Kennedy
Roberts

Alito
Scalia

Thomas

17: juror, prosecutor,
death penalty

4 2 0 2 4 6

32: speech, first
amendment, free speech

4 2 0 2 4 6

61: eeoc, title vii,
discrimination

4 2 0 2 4 6

120: marriage, same
sex, man

Figure 1: Justices’ ideal points for selected topics. Justices whose topic IPs are close to each other are more likely to
vote in the same direction on cases involving those topics. The IP estimated by our model is consistent with publicly
available knowledge regarding justices’ ideological stances on these issues.

model to the vote model parameters. Additionally,
we compared against two baselines trained on just
the opinions: one using LDA13 and another using the
author-topic model (Rosen-Zvi et al., 2004). For the
author-topic model, we treat each opinion as being
“authored” by the participating justices, a pseudo-
author representing the litigants which is shared be-
tween opinions in a case, and a unique amicus au-
thor for each side. Our model with Uopinion achieves
better generalization performance than the simpler
baselines, while we do not see significant differences
in whether the first stage vote models useUvote. This
is not surprising since the vote model’s results are
similar with or without Uvote and it influences the
opinion model indirectly through priors andUopinion.

In our model, the latent variable Γj captures the
proportion of topics that justice j is likely to con-
tribute to an opinion. When j has a high probability
of voting for a particular side, our informed prior in-
creases the likelihood that j’s topics will be selected
for words in the opinion. While Γj serves a similar
purpose to ψj in characterizing j through her ideo-
logical positions, ψj relies on votes and gives us a
“direction” of j’s ideological standing, whereas Γj
is estimated from text produced by the justices and
only gives us the “magnitude” of her tendency to au-
thor on a particular issue. In Table 4, we identify the
top topics in Γj by considering the deviation from
the mean of all justice’s Γ, i.e., Γj,k − 1

|J |
∑

j Γj,k.

Amici Persuasiveness. The latent variable πe cap-
tures the model’s belief about amicus e’s brief’s ef-

13We used scikit-learn’s LDA module (Pedregosa et
al., 2011) which implements the online variational Bayes algo-
rithm (Hoffman et al., 2010).

Model 5-fold 2013 2014
LDA 2.86 2.67 2.63
Author-Topic 2.62 2.36 2.25

Opinion model without U opinion
†2.43 †2.26 †2.13
2.45 2.27 2.11

Opinion model with U opinion
†2.10 †1.91 †1.96
2.07 1.98 1.94

Table 3: Perplexity of Court’s opinions (×103). There
are 30,133 phrases (98 opinions) and 23,706 phrases (109
opinions) in the 2013 and 2014 test set, respectively. Re-
sults marked † are initialized with a vote model U vote.

fect on the case IP, which we call “persuasiveness.”
A large πe indicates that across the dataset, e exerts
a larger effect on the case IPs, that is, according to
our model, she has a larger impact on the Court’s
decision than other amici. Fig. 2 is a swarm plot
illustrating the distribution of π values for different
types of amicus writers.

Our model infers that governmental offices tend to
have larger π values than private organizations, es-
pecially the U.S. Solicitor General.14 In fact, Lynch
(2004) found through interviews with SCOTUS law
clerks that “amicus briefs from the solicitor general
are ‘head and shoulders’ above the rest, and are of-
ten considered more carefully than party briefs.”

Another interesting observation from Fig. 2 is the
low π value for ACLU and ABA, despite being pro-
lific amicus brief filers. While it is tempting to say
that amici with low π values are ineffective, we find
that there is almost no correlation between π and the
proportion of cases where they were on the winning
side.15 Note that our model does not assume that a

14The average π for Federal, State/Local and Others are 2.35,
1.11, and 0.929 respectively.

15The Spearman’s ρ between π and the proportion of winning

1730

John G. Roberts
32: speech, first amendment, free speech, message, expres-
sion
61: eeoc, title vii, discrimination, woman, civil rights act
52: sec, fraud, security, investor, section ##b
Ruth B. Ginsburg
61: eeoc, title vii, discrimination, woman, civil rights act
80: class, settlement, rule ##, class action, r civ
96: taxpayer, bank, corporation, fund, irs
Antonin Scalia
94: 42 USC 1983, qualified immunity, immunity, official,
section ####
57: president, senate, executive, article, framer
80: class, settlement, rule ##, class action, r civ

Table 4: Top three topics contributed to Court opinions
for selected justices (Γ). The full list can be found in
supplementary §C.

“persuasive” amicus tends to win. Instead, an am-
icus with large π will impact the case IP most, and
thus explain a justice’s vote or opinion (even dissent-
ing) more than the other components in a case.

Insofar as π explains a vote, we must exercise cau-
tion; it is possible that the amicus played no role
in the decision-making process and the values of πe
simply reflect our modeling assumptions and/or ar-
tifacts of the data. Without entering the minds of
SCOTUS justices, or at least observing their closed-
door deliberations, it is difficult to measure the in-
fluence of amicus briefs on justices’ decisions.

Justice Influenceability. The latent variable χj
measures the relative effect of amicus briefs on jus-
tice j’s vote IP; when χj is large, justice j’s vote
probability is affected by amicus briefs more. Since
χj is shared between all cases that a justice partic-
ipates in, χj should correspond to how much they
value amicus briefs. Some justices, such as the late
Scalia, are known to be dubious of amicus briefs,
preferring to leave the task of reading these briefs to
their law clerks, who will pick out any notable briefs
for them; we would expect Scalia to have a smaller
χ than other justices. In Table 5, we compare the χ
values of justices with how often they cite an amicus
brief in any opinion they wrote (Franze and Ander-
son, 2015). The χ values estimated by our model are

sides is −0.0549. On average, an amicus supports the winning
side in 55% of cases. For the ACLU, ABA, CAC, and CWFA,
the proportions are 44%, 50%, 47%, and 50% respectively.

Federal State/Local Others
4

3

2

1

0

1

2

3

4

lo
g

 π

Bush

Clinton

Obama

Reagan

Bush Sr.

NYC,RI,MS

ACLU

ABA

CWFA

CAC

Figure 2: Amici “persuasiveness” by organization type.
Federal refers to different presidential administration’s
federal government (and represented by the U.S. Solicitor
General) and State/Local refers to state and local govern-
ments. The abbreviated amici are New York City (NYC),
Rhode Island (RI), Mississippi (MS), Concerned Women
For America (CWFA), Constitution Accountability Cen-
ter (CAC), American Bar Association (ABA), and Amer-
ican Civil Liberties Union (ACLU).

consistent with our expectations.16

We note that the χ values correlate considerably
with the general ideological leanings of the justices.
This might be a coincidence or an inability of the
model’s specification to discern between ideological
extremeness and influenceability.

4 Related Work

The ideal points model was first introduced by Poole
and Rosenthal (1985) and has inspired a variety of IP
models in SCOTUS (Lauderdale and Clark, 2014;
Martin and Quinn, 2002) and Congressional bills
(Clinton et al., 2004; Gerrish and Blei, 2011; Heck-
man and Snyder, 1996). IP has provided a useful
framework to characterize voters using roll call in-
formation and textual evidence.

We view amicus briefs as “purposeful” texts,
where authors are writing to maximize their utility
function. This is related to work investigating news
media for “slant” to maximize profit (Gentzkow and
Shapiro, 2010) and economists choosing research
topics maximize certain career outcomes (Jelveh et
al., 2015). More generally, extensive literature in

16The Spearman’s ρ between χj and citation rates is 0.678.

1731

Justice χj Citation rate (%)
Sonia Sotomayor 1.590 45
Elena Kagan 0.714 40
Stephen G. Breyer 0.637 38
Ruth B. Ginsburg 0.515 41
John G. Roberts 0.495 42
Anthony M. Kennedy 0.468 42
Samuel A. Alito 0.286 27
Antonin Scalia 0.268 22
Clarence Thomas 0.162 25

Table 5: Justice χ values and their average amicus cita-
tion rates between 2010–2015, provided by Franze and
Anderson (2015).

econometrics estimates structural utility-based deci-
sions (Berry et al., 1995, inter alia).

Researchers have used SCOTUS texts to study
authorship (Li et al., 2013), historical changes
(Wang et al., 2012), power relationships (Danescu-
Niculescu-Mizil et al., 2012; Prabhakaran et al.,
2013), and pragmatics (Goldwasser and Daumé,
2014).

5 Conclusion

We presented a random utility model of the Supreme
Court that is more comprehensive than earlier work.
We considered an individual amicus’ persuasiveness
and motivations through two different utility func-
tions. On the vote prediction task, our results are
consistent with earlier work, and we can infer and
compare the relative effectiveness of an individual
amicus. Moreover, our opinions model and opinion
utility function achieved better generalization per-
formance than simpler methods.

Acknowledgments

The authors thank the anonymous reviewers for their
thoughtful feedback and Tom Clark, Philip Resnik,
and members of the ARK group for their valuable
comments. This research was supported in part by
an A*STAR fellowship to Y. Sim, by a Google re-
search award, and by computing resources from the
Pittsburgh Supercomputing Center.

References
Steven Berry, James Levinsohn, and Ariel Pakes. 1995.

Automobile prices in market equilibrium. Economet-

rica: Journal of the Econometric Society, pages 841–
890.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022.

Joshua Clinton, Simon Jackman, and Douglas Rivers.
2004. The statistical analysis of roll call data. Ameri-
can Political Science Review, 98:355–370.

Paul M. Collins, Pamela C. Corley, and Jesse Hamner.
2015. The influence of amicus curiae briefs on U.S.
Supreme Court opinion content. Law & Society Re-
view, 49(4):917–944.

Cristian Danescu-Niculescu-Mizil, Lillian Lee, Bo Pang,
and Jon Kleinberg. 2012. Echoes of power: Language
effects and power differences in social interaction. In
Proc. of WWW.

Megan Ann Ditzler. 2011. Language overlap between
solicitor general amicus curiae and Supreme Court ma-
jority opinions: An analysis. Master’s thesis, Southern
Illinois University Carbondale.

Adam Feldman. 2016a. All copying is not created equal:
Examining Supreme Court opinions’ borrowed lan-
guage. Journal of Appellate Practice and Process, 17.

Adam Feldman. 2016b. A brief assessment of Supreme
Court opinion language, 1946–2013. Mississippi Law
Journal, 85.

J. P. Fox. 2010. Bayesian Item Response Modeling: The-
ory and Applications. Statistics for Social and Behav-
ioral Sciences. Springer-Verlag New York.

Anthony J. Franze and R. Reeves Anderson.
2015. Record breaking term for amicus cu-
riae in Supreme Court reflects new norm.
National Law Journal, Supreme Court Brief.
http://www.nationallawjournal.com/
supremecourtbrief/id=1202735095655/,
August 19, 2015.

Bryan A. Garner. 2010. Interviews with United States
Supreme Court justices. In Joseph Kimble, editor, The
Scribes Journal of Legal Writing, volume 13. Ameri-
can Society of Legal Writers.

Matthew Gentzkow and Jesse M Shapiro. 2010. What
drives media slant? Evidence from U.S. daily newspa-
pers. Econometrica, 78(1):35–71.

Sean Gerrish and David Blei. 2011. Predicting legisla-
tive roll calls from text. In Proc. of ICML.

Dan Goldwasser and Hal Daumé. 2014. “I object!” mod-
eling latent pragmatic effects in courtroom dialogues.
In Proc. of EACL.

James J. Heckman and James M. Snyder. 1996. Linear
probability models of the demand for attributes with
an empirical application to estimating the preferences
of legislators. Working Paper 5785, National Bureau
of Economic Research.

1732

Ernst D. Hellinger. 1909. Neue Begründung der
Theorie quadratischer Formen von unendlichvielen
Veränderlichen. Journal für die reine und angewandte
Mathematik (Crelle’s Journal), 1909(136):210–271.

Matthew Hoffman, Francis R. Bach, and David M. Blei.
2010. Online learning for latent Dirichlet allocation.
In Advances in Neural Information Processing Sys-
tems 23.

Zubin Jelveh, Bruce Kogut, and Suresh Naidu. 2015.
Political language in economics. Columbia Business
School Research Paper Series, 14(57).

John S. Justeson and Slava M. Katz. 1995. Technical ter-
minology: Some linguistic properties and an algorithm
for identification in text. Natural Language Engineer-
ing, 1:9–27.

Daniel Martin Katz, Michael James Bommarito, and
Josh Blackman. 2014. Predicting the behavior of
the Supreme Court of the United States: A gen-
eral approach. http://ssrn.com/abstract=
2463244.

Joseph D. Kearney and Thomas W. Merrill. 2000. The
influence of amicus curiae briefs on the Supreme
Court. University of Pennsylvania Law Review, pages
743–855.

Benjamin E. Lauderdale and Tom S. Clark. 2014.
Scaling politically meaningful dimensions using texts
and votes. American Journal of Political Science,
58(3):754–771.

William Li, Pablo Azar, David Larochelle, Phil Hill,
James Cox, Robert C. Berwick, and Andrew W. Lo.
2013. Using algorithmic attribution techniques to
determine authorship in unsigned judicial opinions.
Stanford Technology Law Review, pages 503–534.

Kelly J. Lynch. 2004. Best friends – Supreme Court law
clerks on effective amicus curiae briefs. Journal of
Law & Politics, 20.

Andrew D. Martin and Kevin M. Quinn. 2002. Dynamic
ideal point estimation via Markov Chain Monte Carlo
for the U.S. Supreme Court, 19531999. Political Anal-
ysis, 10(2):134–153.

Daniel McFadden. 1974. Conditional logit analysis of
qualitative choice behavior. In Paul Zarembka, editor,
Frontiers in Econometrics, pages 105–142. Academic
Press.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–
2830. Available at http://scikit-learn.
org/.

Keith T. Poole and Howard Rosenthal. 1985. A spatial
model for legislative roll call analysis. American Jour-
nal of Political Science, 29(2):357–384.

Vinodkumar Prabhakaran, Ajita John, and Dorée D.
Seligmann. 2013. Who had the upper hand? rank-
ing participants of interactions based on their relative
power. In Proc. of IJCNLP.

Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers, and
Padhraic Smyth. 2004. The author-topic model for
authors and documents. In Proc. of UAI.

Yanchuan Sim, Bryan Routledge, and Noah A. Smith.
2015. The utility of text: The case of amicus briefs
and the Supreme Court. In Proc. of AAAI.

Harold J. Spaeth, Sara Benesh, Lee Epstein, Andrew D.
Martin, Jeffrey A. Segal, and Theodore J. Ruger. 2013.
Supreme Court Database, Version 2013 Release 01.
Database at http://supremecourtdatabase.
org.

Luke Tierney. 1994. Markov chains for explor-
ing posterior distributions. The Annals of Statistics,
22(4):1701–1728.

William Yang Wang, Elijah Mayfield, Suresh Naidu, and
Jeremiah Dittmar. 2012. Historical analysis of le-
gal opinions with a sparse mixed-effects latent variable
model. In Proc. of ACL.

1733

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1734–1743,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Verb Phrase Ellipsis Resolution Using Discriminative and Margin-Infused
Algorithms

Kian Kenyon-Dean Jackie Chi Kit Cheung Doina Precup
School of Computer Science

McGill University
kian.kenyon-dean@mail.mcgill.ca, {jcheung,dprecup}@cs.mcgill.ca

Abstract

Verb Phrase Ellipsis (VPE) is an anaphoric
construction in which a verb phrase has been
elided. It occurs frequently in dialogue and
informal conversational settings, but despite
its evident impact on event coreference reso-
lution and extraction, there has been relatively
little work on computational methods for iden-
tifying and resolving VPE. Here, we present
a novel approach to detecting and resolving
VPE by using supervised discriminative ma-
chine learning techniques trained on features
extracted from an automatically parsed, pub-
licly available dataset. Our approach yields
state-of-the-art results for VPE detection by
improving F1 score by over 11%; additionally,
we explore an approach to antecedent identifi-
cation that uses the Margin-Infused-Relaxed-
Algorithm, which shows promising results.

1 Introduction

Verb Phrase Ellipsis (VPE) is an anaphoric construc-
tion in which a verbal constituent has been omitted.
In English, an instance of VPE consists of two parts:
a trigger, typically an auxiliary or modal verb, that
indicates the presence of a VPE; and an antecedent,
which is the verb phrase to which the elided element
resolves (Bos and Spenader, 2011; Dalrymple et al.,
1991). For example, in the sentence, “The govern-
ment includes money spent on residential renova-
tion; Dodge does not”, the trigger “does” resolves
to the antecedent “includes money spent on residen-
tial renovation”.

The ability to perform VPE resolution is impor-
tant for tasks involving event extraction, especially

in conversational genres such as informal dialogue
where VPE occurs more frequently (Nielsen, 2005).
Most current event extraction systems ignore VPE
and derive some structured semantic representation
by reading information from a shallow dependency
parse of a sentence. Such an approach would not
only miss many valid links between an elided verb
and its arguments, it could also produce nonsensi-
cal extractions if applied directly on an auxiliary
trigger. In the example above, a naive approach
might produce an unhelpful semantic triple such as
(Dodge, agent, do).

There have been several previous empirical stud-
ies of VPE (Hardt, 1997; Nielsen, 2005; Bos and
Spenader, 2011; Bos, 2012; Liu et al., 2016). Many
previous approaches were restricted to solving spe-
cific subclasses of VPE (e.g., VPE triggered by do
(Bos, 2012)), or have relied on simple heuristics for
some or all of the steps in VPE resolution, such as
by picking the most recent previous clause as the an-
tecedent.

In this paper, we develop a VPE resolution
pipeline which encompasses a broad class of VPEs
(Figure 1), decomposed into the following two steps.
In the VPE detection step, the goal is to determine
whether or not a word triggers VPE. The second
step, antecedent identification, requires selecting the
clause containing the verbal antecedent, as well as
determining the exact boundaries of the antecedent,
which are often difficult to define.

Our contribution is to combine the rich linguis-
tic analysis of earlier work with modern statistical
approaches adapted to the structure of the VPE res-
olution problem. First, inspired by earlier work,

1734

Figure 1: Example of the VPE resolution pipeline on an exam-

ple found in WSJ file wsj 0036.

our system exploits linguistically informed features
specific to VPE in addition to standard features
such as lexical features or POS tags. Second,
we adapt the Margin-Infused-Relaxed-Algorithm
(MIRA) (Crammer et al., 2006), which has been
popular in other tasks, such as machine translation
(Watanabe et al., 2007) and parsing (McDonald et
al., 2005), to antecedent identification. This algo-
rithm admits a partial loss function which allows
candidate solutions to overlap to a large degree. This
makes it well suited to antecedent identification, as
candidate antecedents can overlap greatly as well.

On VPE detection, we show that our approach sig-
nificantly improves upon a deterministic rule-based
baseline and outperforms the state-of-the-art system
of Liu et al. (2016) by 11%, from 69.52% to 80.78%.
For antecedent identification we present results that
are competitive with the state-of-the-art (Liu et al.,
2016). We also present state-of-the-art results with
our end-to-end VPE resolution pipeline. Finally, we
perform feature ablation experiments to analyze the
impact of various categories of features.

2 Related Work

VPE has been the subject of much work in the-
oretical linguistics (Sag, 1976; Dalrymple et al.,
1991, inter alia). VPE resolution could have a sig-

nificant impact on related problems such as event
coreference resolution (Lee et al., 2012; Bejan and
Harabagiu, 2010; Liu et al., 2014) and event ex-
traction (Ahn, 2006; Kim et al., 2009; Ritter et al.,
2012). It has, however, received relatively little at-
tention in the computational literature.

Hardt (1992) engaged in the first study of compu-
tational and algorithmic approaches for VPE detec-
tion and antecedent identification by using heuris-
tic, linguistically motivated rules. Hardt (1997) ex-
tracted a dataset of 260 examples from the WSJ cor-
pus by using an algorithm that exploited null ele-
ments in the PTB parse trees. Nielsen (2005) built a
dataset that combined sections of the WSJ and BNC;
he showed that the more informal settings captured
in the BNC corpora show significantly more fre-
quent occurrences of VPE, especially in dialogue ex-
cerpts from interviews and plays. Using this dataset,
he created a full VPE pipeline from raw input text
to a full resolution by replacing the trigger with the
intended antecedent1.

Bos and Spenader (2011) annotated the WSJ for
occurrences of VPE. They found over 480 instances
of VPE, and 67 instances of the similar phenomenon
of do-so anaphora. Bos (2012) studied do-VPE by
testing algorithmic approaches to VPE detection and
antecedent identification that utilize Discourse Rep-
resentation Theory.

Concurrently with the present work, Liu et al.
(2016) explored various decompositions of VPE res-
olution into detection and antecedent identification
subtasks, and they corrected the BNC annotations
created by Nielsen (2005), which were difficult to
use because they depended on a particular set of
preprocessing tools. Our work follows a similar
pipelined statistical approach. However, we explore
an expanded set of linguistically motivated features
and machine learning algorithms adapted for each
subtask. Additionally, we consider all forms of
VPE, including to-VPE, whereas Liu et al. only con-
sider modal or light verbs (be, do, have) as candi-
dates for triggering VPE. This represented about 7%

1e.g., the resolution of the example in Figure 1 would be
“The government includes money spent on residential renova-
tion; Dodge does not [include money spent on residential reno-
vation]”. We did not pursue this final step due to the lack of a
complete dataset that explicitly depicts the correct grammatical
resolution of the VPE.

1735

Auxiliary Type Example Frequency

Do does, done 214 (39%)
Be is, were 108 (19%)

Have has, had 44 (8%)
Modal will, can 93 (17%)

To to 29 (5%)
So do so/same3 67 (12%)

TOTAL 554
Table 1: Auxiliary categories for VPE and their frequencies in

all 25 sections of the WSJ.

of the dataset that they examined.

3 Approach and Data

We divide the problem into two separate tasks: VPE
detection (Section 4), and antecedent identification
(Section 5). Our experiments use the entire dataset
presented in (Bos and Spenader, 2011). For prepro-
cessing, we used CoreNLP (Manning et al., 2014)
to automatically parse the raw text of WSJ for fea-
ture extraction. We also ran experiments using gold-
standard parses; however, we did not find significant
differences in our results2. Thus, we only report re-
sults on automatically generated parses.

We divide auxiliaries into the six different cate-
gories shown in Table 1, which will be relevant for
our feature extraction and model training process,
as we will describe. This division is motivated by
the fact that different auxiliaries exhibit different be-
haviours (Bos and Spenader, 2011). The results we
present on the different auxiliary categories (see Ta-
bles 2 and 4) are obtained from training a single clas-
sifier over the entire dataset and then testing on aux-
iliaries from each category, with the ALL result be-
ing the accuracy obtained over all of the test data.

2An anonymous reviewer recommended that further exper-
iments could be performed by using the more informative NPs
created with NML nodes (Vadas and Curran, 2007) on the gold-
standard parsed WSJ.

3For example, “John will go to the store and Mary will do
the same/likewise/the opposite”. Do X anaphora and modals are
not technically auxiliary verbs, as noted by the annotators of our
dataset (Bos and Spenader, 2011), but for the purposes of this
study we generalize them all as auxiliaries while simultaneously
dividing them into their correct lexical categories.

4 VPE Detection

The task of VPE detection is structured as a binary
classification problem. Given an auxiliary, a, we
extract a feature vector f , which is used to predict
whether or not the auxiliary is a trigger for VPE. In
Figure 1, for example, there is only one auxiliary
present, “does”, and it is a trigger for VPE. In our
experiments, we used a logistic regression classifier.

4.1 Feature Extraction
We created three different sets of features related to
the auxiliary and its surrounding context.

Auxiliary. Auxiliary features describe the charac-
teristics of the specific auxiliary, including the fol-
lowing:
� word identity of the auxiliary
� lemma of the auxiliary
� auxiliary type (as shown in Table 1)

Lexical. These features represent:
� the three words before and after the trigger
� their part-of-speech (POS) tags
� their POS bigrams

Syntactic. We devise these features to encode the
relationship between the candidate auxiliary and its
local syntactic context. These features were deter-
mined to be useful through heuristic analysis of VPE
instances in a development set. The feature set in-
cludes the following binary indicator features (a =
the auxiliary):
� a c-commands4 a verb
� a c-commands a verb that comes after it
� a verb c-commands a
� a verb locally5 c-commands a
� a locally c-commands a verb
� a is c-commanded by “than”, “as”, or “so”
� a is preceded by “than”, “as”, or “so”
� a is next to punctuation
� the word “to” precedes a
� a verb immediately follows a
� a is followed by “too” or “the same”
4A word A c-commands another word B if A’s nearest

branching ancestor in the parse tree is an ancestor of B, fol-
lowing the definition of Carnie (2013). We use this term purely
to define a syntactic relation between two points in a parse tree.

5A word A and word B share a local structure if they have
the same closest S-node ancestor in the parse tree.

1736

4.2 Baseline
As a baseline, we created a rule-based system in-
spired by Nielsen’s (2005) approach to solving VPE
detection. The baseline algorithm required signifi-
cant experimental tuning on the development set be-
cause different linguistically hand-crafted rules were
needed for each of the six trigger forms. For exam-
ple, the following rule for modals achieved 80% F1-
accuracy (see Table 2): “assume VPE is occurring if
the modal does not c-command a verb that follows
it”. The other trigger forms, however, required sev-
eral layers of linguistic rules. The rules for be and
have triggers were the most difficult to formulate.

4.3 Experiments
We evaluate our models as usual using precision, re-
call and F1 metric for binary classification. The pri-
mary results we present in this section are obtained
through 5-fold cross validation over all 25 sections
of the automatically-parsed dataset. We use cross
validation because the train-test split suggested by
Bos and Spenader (2011) could result in highly var-
ied results due to the small size of the dataset (see
Table 1). Because the vast majority of auxiliaries do
not trigger VPE, we over-sample the positive cases
during training. Table 2 shows a comparison be-
tween the machine learning technique and a rule-
based baseline for the six auxiliary forms. Table 3
shows results obtained from using the same train-
test split used by Liu et al. (2016) in order to provide
a direct comparison.

Results. Using a standard logistic regression clas-
sifier, we achieve an 11% improvement in accuracy
over the baseline approach, as can be seen in Table 2.
The rule-based approach was insufficient for be and
have VPE, where logistic regression provides the
largest improvements. Although we improve upon
the baseline by 29%, the accuracy achieved for be-
VPE is still low; this occurs mainly because: (i) be
is the most commonly used auxiliary, so the number
of negative examples is high compared to the num-
ber of positive examples; and, (ii) the analysis of the
some of the false positives showed that there may
have been genuine cases of VPE that were missed
by the annotators of the dataset (Bos and Spenader,
2011). For example, this sentence (in file wsj 2057)
was missed by the annotators (trigger in bold, an-

Auxiliary Baseline ML Change

Do 0.83 0.89 +0.06
Be 0.34 0.63 +0.29

Have 0.43 0.75 +0.32
Modal 0.80 0.86 +0.06

To 0.76 0.79 +0.03
So 0.67 0.86 +0.19

ALL 0.71 0.82 +0.11

Table 2: VPE detection results (baseline F1, Machine Learning

F1, ML F1 improvement) obtained with 5-fold cross validation.

Test Set Results P R F1

Liu et al. (2016) 0.8022 0.6134 0.6952
This work 0.7574 0.8655 0.8078

Table 3: Results (precision, recall, F1) for VPE detection using

the train-test split proposed by Bos and Spenader (2011).

tecedent italicized) “Some people tend to ignore that
a 50-point move is less in percentage terms than it
was when the stock market was lower.”; here it is
clear that was is a trigger for VPE.

In Table 3, we compare our results to those
achieved by Liu et al. (2016) when using WSJ sets
0-14 for training and sets 20-24 for testing. We im-
prove on their overall accuracy by over 11%, due
to the 25% improvement in recall achieved by our
method. Our results show that oversampling the pos-
itive examples in the dataset and incorporating lin-
guistically motivated syntactic features provide sub-
stantial gains for VPE detection. Additionally, we
consider every instance of the word to as a potential
trigger, while they do not - this lowers their recall be-
cause they miss every gold-standard instance of to-
VPE. Thus, not only do we improve upon the state-
of-the-art accuracy, but we also expand the scope of
VPE-detection to include to-VPE without causing a
significant decrease in accuracy.

5 Antecedent Identification

In this section we assume that we are given a trig-
ger, from which we have to determine the correct
antecedent; i.e., in the example in Figure 1, our task
would be to identify “includes money spent on res-

1737

idential renovation” as the correct antecedent. Our
approach to this problem begins with generating a
list of candidate antecedents. Next, we build a fea-
ture vector for each candidate by extracting features
from the context surrounding the trigger and an-
tecedent. Lastly, we use these features to learn a
weight vector by using the Margin-Infused-Relaxed-
Algorithm.

5.1 Candidate Generation
We generate a list of candidate antecedents by first
extracting all VPs and ADJPs (and all contiguous
combinations of their constituents) from the current
sentence and the prior one. We then filter these can-
didates by predefining possible POS tags that an an-
tecedent can start or end with according to the train-
ing set’s gold standard antecedents. This method
generates an average of 55 candidate antecedents per
trigger, where triggers in longer sentences cause the
creation of a larger number of candidate antecedents
due to the larger number of VPs. This strategy ac-
counts for 92% of the gold antecedents on the val-
idation set by head match. We experimented with
a less restrictive generation filter, but performance
was not improved due to the much larger number of
candidate antecedents.

5.2 Feature Extraction
We construct a feature vector representation for each
candidate antecedent; in the example in Figure 1, for
example, we would need feature vectors that differ-
entiate between the two potential antecedents “in-
cludes money” and “includes money spent on resi-
dential renovation”.

Alignment. This feature set results from an align-
ment algorithm that creates a mapping between the
S-clause nearest to the trigger, St, and the S-clause
nearest to the potential antecedent, Sa. The purpose
of these features is to represent the parallelism (or
lack thereof) between an antecedent’s local vicinity
with that of the trigger. The creation of this align-
ment algorithm was motivated by our intuition that
the clause surrounding the trigger will have a par-
allel structure to that of the antecedent, and that an
alignment between the two would best capture this
parallelism. In the example sentence in Figure 2
(trigger in bold, antecedent italicized) “Investors can

Figure 2: Alignment algorithm example with simplified depen-

dencies.

get slightly higher yields on deposits below $50,000
than they can on deposits of $90,000 and up” a sim-
ple observation of parallelism is that both the trig-
ger and the correct antecedent are followed by the
phrase “on deposits”.

Formally, for each S ∈ {Sa, St}, we extract the
dependencies in S as chunks of tokens, where each
dependency chunk di contains all tokens between
its governor and dependent (whichever comes first).
Next, for each di ∈ Sa, if di contains any tokens that
belong to the antecedent, delete those tokens. Sim-
ilarly, for each di ∈ St, delete any token in di that
belongs to T . We then perform a bipartite match-
ing to align the di ∈ St to the dj ∈ Sa, where
each edge’s weight is determined by a scoring func-
tion s(di, dj). The scoring function we use consid-
ers the F1-similarity between the lemmas, POS-tags,
and words shared between the two chunks, as well
as whether or not the chunks share the same depen-
dency name.

1738

In the example in Figure 2 we can see that the
correct antecedent, “get slightly higher yields”, has
a stronger alignment than the incorrect one, “get
slightly higher yields on deposits”. This occurs be-
cause we remove the candidate antecedent from its
S-clause before creating the chunks; this leaves three
nodes for the correct antecedent which map to the
three nodes of the trigger’s S-clause. However, this
process only leaves two nodes for the incorrect can-
didate antecedent, thus causing one chunk to be un-
mapped, thus creating a weaker alignment.

We then use this mapping to generate a feature
vector for the antecedent, which contains: the mini-
mum, maximum, average, and standard deviation of
the scores between chunks in the mapping; the num-
ber and percentage of unmapped chunks; the depen-
dencies that have (and have not) been mapped to; the
dependency pairs that were mapped together; and
the minimum, maximum, average, and standard de-
viation of the cosine-similarity between the average
word embedding of the words in a chunk between
each di, dj pair in the mapping.

NP Relation. These features compare the Noun
Phrase (NP) closest to the antecedent to the NP clos-
est to the trigger. This is motivated by an obser-
vation of many instances of VPE where it is often
the case that the entity preceding the trigger is either
repeated, similar, or corefers to the entity preced-
ing the antecedent. The relationship between each
NP is most significantly represented by features cre-
ated with pre-trained word2vec word embeddings
(Mikolov et al., 2013). For each NP, and for each
word in the NP, we extract its pre-trained word em-
bedding and then average them all together. We then
use the cosine similarity between these two vectors
as a feature.

Syntactic. Syntactic features are based on the re-
lationship between the candidate antecedent’s parse
tree with that of the trigger. This feature set includes
the following features, with the last three being in-
fluenced by Hardt’s (1997) “preference factors” (a =
candidate antecedent, t = trigger):
� if a’s first word is an auxiliary
� if a’s head (i.e., first main verb) is an auxiliary
� the POS tag of a’s first and last words
� the frequency of each POS tag in the antecedent

� the frequency of each phrase (i.e., NP, VP,
ADJP, etc.) in a’s sentence and t’s sentence
� if “than”, “as”, or “so” is between a and t
� if the word before a has the same POS-tag or

lemma as t
� if a word in a c-commands a word in t
� if a’s first or last word c-commands the trigger
� Be-Do Form: if the lemma of the token preced-

ing a is be and the t’s lemma is do
� Recency: distance between a and t and the dis-

tance between the t’s nearest VP and a
� Quotation: if t is between quotation marks and

similarly for a

Matching. This last feature set was influenced by
the features described by Liu et al. (2016). We
only use the “Match” features described by them;
namely: whether the POS-tags, lemmas, or words
in a two-token window before the start of the an-
tecedent exactly match the two before the trigger;
and whether the POS-tag, lemma, or word of the ith
token before the antecedent equals that of the i-1th
token before the trigger (for i ∈ {1, 2, 3}, where
i = 1 considers the trigger itself).

5.3 Training Algorithm - MIRA
Since many potential antecedents share relatively
similar characteristics, and since we have many fea-
tures and few examples, we use the Margin-Infused-
Relaxed-Algorithm (MIRA) in order to identify the
most likely potential antecedent. MIRA maximizes
the margin between the best candidate and the rest
of the potential antecedents according to a loss
function. It has been used for tasks with similar
characteristics, such as statistical machine transla-
tion (Watanabe et al., 2007).

The training algorithm begins with a random ini-
tialization of the weight vector w. The training
set contains triggers, each trigger’s candidate an-
tecedents, and their gold standard antecedents; it is
reshuffled after each training epoch. We find the
K highest-scoring potential antecedents, a1, . . . , ak,
according to the current weight value. A learn-
ing rate parameter determines how much we retain
the new weight update with respect to the previous
weight vector values.

MIRA defines the update step of the standard on-
line training algorithm: it seeks to learn a weight

1739

vector that, when multiplied with a feature vector fi,
gives the highest score to the antecedent that is most
similar to the gold standard antecedent, a∗. This is
posed as an optimization problem:

minimize
wi

‖wi − wi−1‖+ C
K∑

k

ξk

subject to wi · a∗ − wi · ak + ξk ≥ L(a∗, ak),
k = 1, . . . ,K

(1)
Here, L is the loss function that controls the mar-

gin between candidates and the gold standard; it is
defined as the evaluation metric proposed by Bos
and Spenader (2011) (described in Section 5.5).

The ξ are slack variables and C ≥ 0 is a hyper-
parameter that controls the acceptable margin. This
problem is solved by converting it to its Lagrange
dual form6.

5.4 Baseline Algorithm
The baseline we created was motivated by Bos’s
(2012) baseline algorithm: given a trigger, return as
the antecedent the nearest VP that does not include
the trigger. This is a naı̈ve approach to antecedent
identification because it does not consider the re-
lationship between the context surrounding the an-
tecedent and the context surrounding the trigger.

5.5 Experiments
We evaluate our results following the proposed met-
rics of Bos and Spenader (2011), as do Liu et al.
(2016). Accuracy for antecedent identification is
computed according to n = the number of correctly
identified tokens between the candidate antecedent
and the gold standard antecedent. Precision is n
divided by the length of the candidate antecedent,
recall is n divided by the length of the correct an-
tecedent, and accuracy is the harmonic mean of pre-
cision and recall. For MIRA, final results are deter-
mined by choosing the weight vector that achieved
the best performance on a validation set that is split
off from part of the training set, as calculated after
each update step.

6In this study, the dual form was implemented by hand using
Gurobi’s python API (Gurobi Optimization Inc., 2015).

Auxiliary Baseline MIRA Change

do 0.42 0.71 +0.29
be 0.37 0.63 +0.26

modal 0.42 0.67 +0.25
so 0.15 0.53 +0.38

have 0.39 0.61 +0.22
to 0.03 0.58 +0.55

ALL 0.36 0.65 +0.29

Table 4: Results (baseline accuracy, MIRA accuracy, accuracy

improvement) for antecedent identification; obtained with 5-

fold cross validation.

End-to-end Results P R F1

Liu et al. (2016) 0.5482 0.4192 0.4751
This work 0.4871 0.5567 0.5196

Table 5: End-to-end results (precision, recall, F1) using the

train-test split proposed by Bos and Spenader (2011).

MIRA has several hyper-parameters that were
tuned through a grid search over the validation set.
The most crucial parameters were the learning rate
α, and C, while the value of K did not cause signif-
icant changes in accuracy.

Results. In Table 4, we see that MIRA improves
upon the baseline with a 29% increase in overall ac-
curacy. MIRA provides significant gains for each
form of VPE, although there is room for improve-
ment, especially when identifying the antecedents of
do-so triggers.

Liu et al. (2016) achieve an accuracy of 65.20%
with their joint resolution model for antecedent iden-
tification when using the train-test split proposed
by Bos and Spenader (2011); our model achieves
62.20% accuracy. However, their experimental de-
sign was slightly different than ours — they only
considered antecedents of triggers detected by their
oracle trigger detection method, while we use all
gold-standard triggers, meaning our results are not
directly comparable to theirs. Our cross validated
results (65.18% accuracy) paint a better picture of
the quality of our model because the small size of
the dataset (554 samples) can cause highly varied
results.

1740

Excluded P R F1

Auxiliary 0.7982 0.7611 0.7781
Lexical 0.6937 0.8408 0.7582
Syntactic 0.7404 0.7330 0.7343

NONE 0.8242 0.8120 0.8170

Table 6: Feature ablation results (feature set excluded, preci-

sion, recall, F1) on VPE detection; obtained with 5-fold cross

validation.

In Table 5 we present end-to-end results obtained
from our system when using the triggers detected by
our VPE detection model (see Section 4). We com-
pare these results to the end-to-end results of the best
model of Liu et al. (2016). Following Liu et al., we
assign partial credit during end-to-end evaluation in
the following way: for each correctly detected (true
positive) trigger, the Bos and Spenader (2011) an-
tecedent evaluation score between the trigger’s pre-
dicted antecedent and its gold antecedent is used (as
opposed to a value of 1). As can be seen from Table
5, we trade about 6 points of precision for 14 points
of recall, thus improving state-of-the-art end-to-end
accuracy from 47.51% to 51.96%.

6 Feature Ablation Studies

We performed feature ablation experiments in order
to determine the impact that the different feature sets
had on performance.

Trigger Detection. In Table 6 we can see that the
syntactic features were essential for obtaining the
best results, as can be seen by the 8.3% improve-
ment, from 73.4% to 81.7%, obtained from includ-
ing these features. This shows that notions from the-
oretical linguistics can prove to be invaluable when
approaching the problem of VPE detection and that
extracting these features in related problems may
improve performance.

Antecedent Identification. Table 7 presents the
results from a feature ablation study on antecedent
identification. The most striking observation is that
the alignment features do not add any significant im-
provement in the results. This is either because there
simply is not an inherent parallelism between the

Features Excluded Accuracy

Alignment 0.6511
NP Relation 0.6428

Syntactic 0.5495
Matching 0.6504

NONE 0.6518

Table 7: Feature ablation results (feature set excluded, preci-

sion, recall, F1) on antecedent identification; obtained with 5-

fold cross validation.

trigger site and the antecedent site, or because the
other features represent the parallelism adequately
without necessitating the addition of the alignment
features. The heuristic syntactic features provide a
large (10%) accuracy improvement when included.
These results show that a dependency-based align-
ment approach to feature extraction does not rep-
resent the parallelism between the trigger and an-
tecedent as well as features based on the lexical and
syntactic properties of the two.

7 Conclusion and Future Work

We presented an approach for the tasks of Verb
Phrase Ellipsis detection and antecedent identifica-
tion that leverages features informed both by the-
oretical linguistics and NLP, and employs machine
learning methods to build VPE detection and an-
tecedent identification tools using these features.
Our results show the importance of distinguishing
VPE triggers from each other, and highlight the im-
portance of using the notion of c-command for both
tasks.

For VPE detection, we improve upon the accu-
racy of the state-of-the-art system by over 11%, from
69.52% to 80.78%. For antecedent identification,
our results significantly improve upon a baseline al-
gorithm and we present results that are competitive
with the state-of-the-art, as well as state-of-the-art
results for an end-to-end system. We also expand the
scope of previous state-of-the-art by including the
detection and resolution of to-VPE, thus building a
system that encompasses the entirety of the Bos and
Spenader (2011) VPE dataset.

In future work, we would like to further inves-

1741

tigate other margin-based optimizations similar to
MIRA, but perhaps even more resilient to over-
fitting. We also seek to improve the antecedent iden-
tification approach by extracting stronger features.

Acknowledgments

This work was funded by McGill University and the
Natural Sciences and Engineering Research Council
of Canada via a Summer Undergraduate Research
Project award granted to the first author. We thank
the anonymous reviewers for their helpful sugges-
tions, and we thank Nielsen, Hector Liu, and Edgar
Gonzàlez for their clarifying remarks over email.

References
David Ahn. 2006. The stages of event extraction. In

Proceedings of the Workshop on Annotating and Rea-
soning about Time and Events, pages 1–8. Association
for Computational Linguistics.

Cosmin Adrian Bejan and Sanda Harabagiu. 2010. Un-
supervised event coreference resolution with rich lin-
guistic features. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguis-
tics, pages 1412–1422. Association for Computational
Linguistics.

Johan Bos and Jennifer Spenader. 2011. An annotated
corpus for the analysis of VP ellipsis. Language Re-
sources and Evaluation, 45(4):463–494.

Johan Bos. 2012. Robust VP ellipsis resolution in DR
theory. In Staffan Larsson and Lars Borin, editors,
From Quantification to Conversation, volume 19 of
Tributes, pages 145–159. College Publications.

Andrew Carnie. 2013. Syntax: A generative introduc-
tion. John Wiley & Sons.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-
Shwartz, and Yoram Singer. 2006. Online passive-
aggressive algorithms. The Journal of Machine Learn-
ing Research, 7:551–585.

Mary Dalrymple, Stuart M Shieber, and Fernando CN
Pereira. 1991. Ellipsis and higher-order unification.
Linguistics and Philosophy, 14(4):399–452.

Gurobi Optimization Inc. 2015. Gurobi optimizer refer-
ence manual.

Daniel Hardt. 1992. An algorithm for VP ellipsis. In
Proceedings of the 30th Annual Meeting on Associa-
tion for Computational Linguistics, pages 9–14. Asso-
ciation for Computational Linguistics.

Daniel Hardt. 1997. An empirical approach to VP ellip-
sis. Computational Linguistics, 23(4):525–541.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview
of BioNLP ’09 shared task on event extraction. In
Proceedings of the Workshop on Current Trends in
Biomedical Natural Language Processing: Shared
Task, pages 1–9. Association for Computational Lin-
guistics.

Heeyoung Lee, Marta Recasens, Angel Chang, Mihai
Surdeanu, and Dan Jurafsky. 2012. Joint entity and
event coreference resolution across documents. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
489–500. Association for Computational Linguistics.

Zhengzhong Liu, Jun Araki, Eduard H Hovy, and Teruko
Mitamura. 2014. Supervised within-document event
coreference using information propagation. In LREC,
pages 4539–4544.

Zhengzhong Liu, Edgar Gonzalez, and Dan Gillick.
2016. Exploring the steps of verb phrase ellipsis. In
Proceedings of the Workshop on Coreference Resolu-
tion Beyond OntoNotes (CORBON 2016), co-located
with NAACL 2016, pages 32–40.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Association for Computational Lin-
guistics (ACL) System Demonstrations, pages 55–60.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005. Online large-margin training of dependency
parsers. In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, pages
91–98. Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111–3119.

Leif Arda Nielsen. 2005. A Corpus-Based Study of Verb
Phrase Ellipsis Identification and Resolution. Ph.D.
thesis, King’s College London.

Alan Ritter, Oren Etzioni, Sam Clark, et al. 2012. Open
domain event extraction from twitter. In Proceedings
of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1104–
1112. ACM.

Ivan A Sag. 1976. Deletion and logical form. Ph.D.
thesis, Massachusetts Institute of Technology.

David Vadas and James Curran. 2007. Adding noun
phrase structure to the penn treebank. In Annual Meet-
ing - Association for Computational Linguistics, vol-
ume 45, page 240.

1742

Taro Watanabe, Jun Suzuki, Hajime Tsukada, and Hideki
Isozaki. 2007. Online large-margin training for sta-
tistical machine translation. In Proceedings of the
2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning (EMNLP-CoNLL), pages 764–
773.

1743

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1744–1753,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Distilling an Ensemble of Greedy Dependency Parsers into One MST Parser

Adhiguna Kuncoro♠ Miguel Ballesteros♦ Lingpeng Kong♠
Chris Dyer♠♣ Noah A. Smith♥

♠School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
♦NLP Group, Pompeu Fabra University, Barcelona, Spain

♣Google DeepMind, London, UK
♥Computer Science & Engineering, University of Washington, Seattle, WA, USA

{akuncoro,cdyer,lingpenk}@cs.cmu.edu
miguel.ballesteros@upf.edu, nasmith@cs.washington.edu

Abstract

We introduce two first-order graph-based de-
pendency parsers achieving a new state of the
art. The first is a consensus parser built from
an ensemble of independently trained greedy
LSTM transition-based parsers with different
random initializations. We cast this approach
as minimum Bayes risk decoding (under the
Hamming cost) and argue that weaker con-
sensus within the ensemble is a useful signal
of difficulty or ambiguity. The second parser
is a “distillation” of the ensemble into a sin-
gle model. We train the distillation parser
using a structured hinge loss objective with
a novel cost that incorporates ensemble un-
certainty estimates for each possible attach-
ment, thereby avoiding the intractable cross-
entropy computations required by applying
standard distillation objectives to problems
with structured outputs. The first-order distil-
lation parser matches or surpasses the state of
the art on English, Chinese, and German.

1 Introduction

Neural network dependency parsers achieve state of
the art performance (Dyer et al., 2015; Weiss et
al., 2015; Andor et al., 2016), but training them in-
volves gradient descent on non-convex objectives,
which is unstable with respect to initial parameter
values. For some tasks, an ensemble of neural net-
works from different random initializations has been
found to improve performance over individual mod-
els (Sutskever et al., 2014; Vinyals et al., 2015, in-
ter alia). In §3, we apply this idea to build a first-
order graph-based (FOG) ensemble parser (Sagae

and Lavie, 2006) that seeks consensus among 20
randomly-initialized stack LSTM parsers (Dyer et
al., 2015), achieving nearly the best-reported per-
formance on the standard Penn Treebank Stanford
dependencies task (94.51 UAS, 92.70 LAS).

We give a probabilistic interpretation to the en-
semble parser (with a minor modification), viewing
it as an instance of minimum Bayes risk inference.
We propose that disagreements among the ensem-
ble’s members may be taken as a signal that an at-
tachment decision is difficult or ambiguous.

Ensemble parsing is not a practical solution, how-
ever, since an ensemble of N parsers requires N
times as much computation, plus the runtime of find-
ing consensus. We address this issue in §5 by distill-
ing the ensemble into a single FOG parser with dis-
criminative training by defining a new cost function,
inspired by the notion of “soft targets” (Hinton et al.,
2015). The essential idea is to derive the cost of each
possible attachment from the ensemble’s division of
votes, and use this cost in discriminative learning.
The application of distilliation to structured predic-
tion is, to our knowledge, new, as is the idea of em-
pirically estimating cost functions.

The distilled model performs almost as well as
the ensemble consensus and much better than (i)
a strong LSTM FOG parser trained using the con-
ventional Hamming cost function, (ii) recently pub-
lished strong LSTM FOG parsers (Kiperwasser and
Goldberg, 2016; Wang and Chang, 2016), and (iii)
many higher-order graph-based parsers (Koo and
Collins, 2010; Martins et al., 2013; Le and Zuidema,
2014). It represents a new state of the art for graph-
based dependency parsing for English, Chinese, and

1744

German. The code to reproduce our results is pub-
licly available.1

2 Notation and Definitions

Let x = 〈x1, . . . , xn〉 denote an n-length sentence.
A dependency parse for x, denoted y, is a set of
tuples (h,m, `), where h is the index of a head, m
the index of a modifier, and ` a dependency label
(or relation type). Most dependency parsers are con-
strained to return y that form a directed tree.

A first-order graph-based (FOG; also known as
“arc-factored”) dependency parser exactly solves

ŷ(x) = arg max
y∈T (x)

∑

(h,m)∈y
s(h,m,x)

︸ ︷︷ ︸
S(y,x)

, (1)

where T (x) is the set of directed trees over x, and
s is a local scoring function that considers only a
single dependency arc at a time. (We suppress de-
pendency labels; there are various ways to incorpo-
rate them, discussed later.) To define s, McDonald
et al. (2005a) used hand-engineered features of the
surrounding and in-between context of xh and xm;
more recently, Kiperwasser and Goldberg (2016)
used a bidirectional LSTM followed by a single hid-
den layer with non-linearity.

The exact solution to Eq. 1 can be found using
a minimum (directed) spanning tree algorithm (Mc-
Donald et al., 2005b) or, under a projectivity con-
straint, a dynamic programming algorithm (Eisner,
1996), in O(n2) or O(n3) runtime, respectively. We
refer to parsing with a minimum spanning tree algo-
rithm as MST parsing.

An alternative that runs in linear time is
transition-based parsing, which recasts parsing as
a sequence of actions that manipulate auxiliary data
structures to incrementally build a parse tree (Nivre,
2003). Such parsers can return a solution in a faster
O(n) asymptotic runtime. Unlike FOG parsers,
transition-based parsers allow the use of scoring
functions with history-based features, so that attach-
ment decisions can interact more freely; the best per-
forming parser at the time of this writing employ
neural networks (Andor et al., 2016).

1https://github.com/adhigunasurya/
distillation_parser.git

Let hy(m) denote the parent of xm in y (using a
special null symbol when m is the root of the tree),
and hy′(m) denotes the parent of xm in the pre-
dicted tree y′. Given two dependency parses of the
same sentence, y and y′, the Hamming cost is

CH(y,y′) =
n∑

m=1

{
0 if hy(m) = hy′(m)
1 otherwise

This cost underlies the standard dependency pars-
ing evaluation scores (unlabeled and labeled attach-
ment scores, henceforth UAS and LAS). More gen-
erally, a cost functionC maps pairs of parses for the
same sentence to non-negative values interpreted as
the cost of mistaking one for the other, and a first-
order cost function (FOC) is one that decomposes
by attachments, like the Hamming cost.

Given a cost function C and a probabilistic model
that defines p(y | x), minimum Bayes risk (MBR)
decoding is defined by

ŷMBR(x) = arg min
y∈T (x)

∑

y′∈T (x)
p(y′ | x) · C(y,y′)

= arg min
y∈T (x)

Ep(Y |x)[C(y,Y)]. (2)

Under the Hamming cost, MBR parsing equates al-
gorithmically to FOG parsing with s(h,m,x) =
p((h,m) ∈ Y | x), the posterior marginal of the
attachment under p. This is shown by linearity of
expectation; see also Titov and Henderson (2006).

Apart from MBR decoding, cost functions are
also used for discriminative training of a parser. For
example, suppose we seek to estimate the param-
eters θ of scoring function Sθ. One approach is
to minimize the structured hinge loss of a training
dataset D with respect to θ:

min
θ

∑

(x,y)∈D
[− Sθ(y,x)

+ max
y′∈T (x)

(
Sθ(y

′,x) + C(y′,y)
)
]

(3)

Intuitively, this amounts to finding parameters that
separate the model score of the correct parse from
any wrong parse by a distance proportional to the
cost of the wrong parse. With regularization, this is
equivalent to the structured support vector machine

1745

(Taskar et al., 2005; Tsochantaridis et al., 2005),
and if Sθ is (sub)differentiable, many algorithms
are available. Variants have been used extensively
in training graph-based parsers (McDonald et al.,
2005b; Martins et al., 2009), which typically make
use of Hamming cost, so that the inner max can be
solved efficiently using FOG parsing with a slightly
revised local scoring function:

s′(h,m,x) = s(h,m,x) +

{
0 if (h,m) ∈ y
1 otherwise

(4)
Plugging this into Eq. 1 is known as cost-
augmented parsing.

3 Consensus and Minimum Bayes Risk

Despite the recent success of neural network depen-
dency parsers, most prior works exclusively report
single-model performance. Ensembling neural net-
work models trained from different random start-
ing points is a standard technique in a variety of
problems, such as machine translation (Sutskever
et al., 2014) and constituency parsing (Vinyals et
al., 2015). We aim to investigate the benefit of en-
sembling independently trained neural network de-
pendency parsers by applying the parser ensembling
method of Sagae and Lavie (2006) to a collection of
N strong neural network base parsers.

Here, each base parser is an instance of the
greedy, transition-based parser of Dyer et al. (2015),
known as the stack LSTM parser, trained from a
different random initial estimate. Given a sen-
tence x, the consensus FOG parser (Eq. 1) defines
score s(h,m,x) as the number of base parsers that
include the attachment (h,m), which we denote
votes(h,m).2 An example of this scoring function
with an ensemble of 20 models is shown in Figure 1
We assign to dependency (h,m) the label most fre-
quently selected by the base parsers that attach m to
h.

Next, note that if we let s(h,m,x) =
votes(h,m)/N , this has no effect on the parser (we
have only scaled by a constant factor). We can there-
fore view s as a posterior marginal, and the ensemble
parser as an MBR parser (Eq. 2).

2An alternative to building an ensemble of stack LSTM
parsers in this way would be to average the softmax decisions
at each timestep (transition), similar to Vinyals et al. (2015).

John saw the woman with a telescope

19

1

Figure 1: Our ensemble’s votes (20 models) on an am-
biguous PP attachment of with. The ensemble is nearly
but not perfectly unanimous in selecting saw as the head.

Model UAS LAS UEM
Andor et al. (2016) 94.61 92.79 -
N = 1 (stack LSTM) 93.10 90.90 47.60
ensemble, N = 5, MST 93.91 91.94 50.12
ensemble, N = 10, MST 94.34 92.47 52.07
ensemble, N = 15, MST 94.40 92.57 51.86
ensemble, N = 20, MST 94.51 92.70 52.44

Table 1: PTB-SD task: ensembles improve over a strong
greedy baseline. UEM indicates unlabeled exact match.

Experiment. We consider this approach on the
Stanford dependencies version 3.3.0 (De Marneffe
and Manning, 2008) Penn Treebank task. As noted,
the base parsers instantiate the greedy stack LSTM
parser (Dyer et al., 2015).3

Table 1 shows that ensembles, even with small
N , strongly outperform a single stack LSTM parser.
Our ensembles of greedy, locally normalized parsers
perform comparably to the best previously reported,
due to Andor et al. (2016), which uses a beam (width
32) for training and decoding.

4 What is Ensemble Uncertainty?

While previous works have already demonstrated
the merit of ensembling in dependency parsing
(Sagae and Lavie, 2006; Surdeanu and Manning,
2010), usually with diverse base parsers, we con-
sider whether the posterior marginals estimated by
p̂((h,m) ∈ Y | x) = votes(h,m)/N can be in-
terpreted. We conjecture that disagreement among
base parsers about where to attach xm (i.e., uncer-
tainty in the posterior) is a sign of difficulty or am-

3We use the standard data split (02–21 for training, 22
for development, 23 for test), automatically predicted part-
of-speech tags, same pretrained word embedding as Dyer et
al. (2015), and recommended hyperparameters; https://
github.com/clab/lstm-parser, each with a different
random initialization; this differs from past work on ensembles,
which often uses different base model architectures.

1746

Sentence: It will go for work ranging from refinery
modification to changes in the distribution system,
including the way service stations pump fuel into
cars.

xh posterior new cost Hamming
go 0.143 0.143 1

work 0.095 0.191 1
modification 0.190 0.096 1

changes 0.286 0.000 0
system 0.095 0.191 1
pump 0.190 0.096 1

stations 0.000 0.286 1

Table 2: An ambiguous sentence from the training set and
the posteriors4 of various possible parents for including.
The last two columns are, respectively, the contributions
to the distillation cost CD (explained in §5.1, Eq. 5) and
the standard Hamming cost CH . The most probable head
under the ensemble is changes, which is also the correct
answer.

biguity. If this is true, then the ensemble provides
information about which confusions are more or less
reasonable—information we will exploit in our dis-
tilled parser (§5).

A complete linguistic study is out of scope here;
instead, we provide a motivating example before
empirically validating our conjecture. Table 2 shows
an example where there is considerable disagree-
ment among base parsers over the attachment of a
word (including). We invite the reader to attempt to
select the correct attachment and gauge the difficulty
of doing so, before reading on.

Regardless of whether our intuition that this is an
inherently difficult and perhaps ambiguous case is
correct, it is uncontroversial to say that the words
in the sentence not listed, which received zero votes
(e.g., both instances of the), are obviously implausi-
ble attachments.

Our next idea is to transform ensemble uncer-
tainty into a new estimate of cost—a replacement

4In §3, we used 20 models. Since those 20 models were
trained on the whole training set, they cannot be used to obtain
the uncertainty estimates on the training set, where the example
sentence in Table 2 comes from. Therefore we trained a new
ensemble of 21 models from scratch with five-way jackknifing.
The same jackknifing setting is used in the distillation parser
(§6).

for the Hamming cost—and use it in discriminative
training of a single FOG parser. This allows us to
distill what has been learned by the ensemble into a
single model.

5 Distilling the Ensemble

Despite its state of the art performance, our ensem-
ble requires N parsing calls to decode each sen-
tence. To reduce the computational cost, we intro-
duce a method for “distilling” the ensemble’s knowl-
edge into a single parser, making use of a novel cost
function to communicate this knowledge from the
ensemble to the distilled model. While models that
combine the outputs of other parsing models have
been proposed before (Martins et al., 2008; Nivre
and McDonald, 2008; Zhang and Clark, 2008, in-
ter alia), these works incorporated the scores or out-
puts of the baseline parsers as features and as such
require running the first-stage models at test-time.
Creating a cost function from a data analysis proce-
dure is, to our knowledge, a new idea.

The idea is attractive because cost functions are
model-agnostic; they can be used with any parser
amenable to discriminative training. Further, only
the training procedure changes; parsing at test time
does not require consulting the ensemble at all,
avoiding the costly application of the N parsers to
new data, unlike model combination techniques like
stacking and beam search.

Distilling an ensemble of classifiers into one sim-
pler classifer that behaves similarly is due to Bucilǎ
et al. (2006) and Hinton et al. (2015); they were
likewise motivated by a desire to create a simpler
model that was cheaper to run at test time. In their
work, the ensemble provides a probability distribu-
tion over labels for each input, and this predicted
distribution serves as the training target for the dis-
tilled model (a sum of two cross entropies objective
is used, one targeting the empirical training distribu-
tion and the other targeting the ensemble’s posterior
distribution). This can be contrasted with the super-
vision provided by the training data alone, which
conventionally provides a single correct label for
each instance. These are respectively called “soft”
and “hard” targets.

We propose a novel adaptation of the soft target
idea to the structured output case. Since a sentence

1747

Sentence: John saw the woman with a telescope

xh soft hard
John 0.0 0
saw 0.95 1
the 0.0 0

woman 0.05 0
a 0.0 0

telescope 0.0 0

Table 3: Example of soft targets (taken from our 20-
model ensemble’s uncertainty on the sentence) and hard
targets (taken from the gold standard) for possible parents
of with. The soft target corresponds with the posterior
(second column) in Table 2, but the hard target differs
from the Hamming cost (last column of Table 2) since
the hard target assigns a value of 1 to the correct answer
and 0 to all others (the reverse is true for Hamming cost).

has an exponential (in its length) number of parses,
representing the posterior distribution over parses
predicted by the ensemble is nontrivial. We solve
this problem by taking a single parse from each
model, representing the N -sized ensemble’s parse
distribution using N samples.

Second, rather than considering uncertainty at the
level of complete parse trees (which would be anal-
ogous to the classification case) or larger structures,
we instead consider uncertainty about individual at-
tachments, and seek to “soften” the attachment tar-
gets used in training the parser. An illustration
for the prepositional phrase attachment ambiguity in
Fig. 1, taken from the ensemble output for the sen-
tence, is shown in Table 3. Soft targets allow us to
encode the notion that mistaking woman as the par-
ent of with is less bad than attaching with to John
or telescope. Hard targets alone do not capture this
information.

5.1 Distillation Cost Function

The natural place to exploit this additional informa-
tion when training a parser is in the cost function.
When incorporated into discriminative training, the
Hamming cost encodes hard targets: the correct at-
tachment should receive a higher score than all in-
correct ones, with the same margin. Our distillation
cost function aims to reduce the cost of decisions
that—based on the ensemble uncertainty—appear to

be more difficult, or where there may be multiple
plausible attachments.

Let π(h,m) =

1− p̂((h,m) ∈ Y | x) = N − votes(h,m)

N
.

Our new cost function is defined by CD(y,y
′) =

∑n
m=1max

{
0, π(hy′(m),m)− π(hy(m),m)

}

=
∑n

m=1max
{
0, p̂(hy(m),m)− p̂(hy′(m),m)

}
.

(5)

Recall that y denotes the correct parse, according
to the training data, and y′ is a candidate parse.

This function has several attractive properties:

1. When a word xm has more than one plausi-
ble (according to the ensemble) but incorrect
(according to the annotations) attachment, each
one has a diminished cost (relative to Hamming
cost and all implausible attachments).

2. The correct attachment (according to the gold-
standard training data) always has zero cost
since hy(m) = hy′(m) and Eq. 5 cancels out.

3. When the ensemble is confident, cost for its
choice(s) is lower than it would be under Ham-
ming cost—even when the ensemble is wrong.
This means that we are largely training the dis-
tilled parser to simulate the ensemble, includ-
ing mistakes and correct predictions. This en-
courages the model to replicate the state of the
art ensemble performance.

4. Further, when the ensemble is perfectly con-
fident and correct, every incorrect attachment
has a cost of 1, just as in Hamming cost.

5. The cost of any attachment is bounded above
by the proportion of votes assigned to the cor-
rect attachment.

One way to understand this cost function is to
imagine that it gives the parser more ways to achieve
a zero-cost5 attachment. The first is to correctly at-
tach a word to its correct parent. The second is
to predict a parent that the ensemble prefers to the
correct parent, i.e., π(hy′(m),m) < π(hy(m),m).
Any other decision will incur a non-zero cost that is

5It is important to note the difference between cost (Eq. 5)
and loss (Eq. 3).

1748

proportional to the implausibility of the attachment,
according to the ensemble. Hence the model is su-
pervised both by the hard targets in the training data
annotations and the soft targets from the ensemble.

While it may seem counter-intuitive to place zero
cost on an incorrect attachment, recall that the cost
is merely a margin that must separate the scores
of parses containing correct and incorrect arcs. In
contrast, the loss (in our case, the structured hinge
loss) is the “penalty” the learner tries to minimize
while training the graph-based parser, which de-
pends on both the cost and model score as defined
in Equation 3. When an incorrect arc is preferred
by the ensemble over the gold arc (hence assigned a
cost/margin of 0), the model will still incur a loss
if s(hy(m),m,x) < s(hy′(m),m,x). In other
words, the score of any incorrect arc (including
those strongly preferred by the ensemble) cannot be
higher than the score of the gold arc.

The learner only incurs 0 loss if
s(hy(m),m,x) ≥ s(hy′(m),m,x). This means
that the gold score and the predicted score can have
a margin of 0 (i.e., have the same score and incur no
loss) when the ensemble is highly confident of that
prediction, but the score of the correct parse cannot
be lower regardless of how confident the ensemble
is (hence the objective does not encourage incorrect
trees at the expense of gold ones).

In the example in Table 2, we show the (additive)
contribution to the distillation cost by each attach-
ment decision (column labeled “new cost”). Note
that more plausible attachments according to the en-
semble have a lower cost than less plausible ones
(e.g., the cost for modification is less than system,
though both are incorrect). While in the last line sta-
tions received no votes in the ensemble (implausible
attachment), its contribution to the cost is bounded
by the proportion of votes for correct attachment.
The intuition is that, when the ensemble is not cer-
tain of the correct answer, it should not assign a large
cost to implausible attachments. In contrast, Ham-
ming cost would assign a cost of 1 (column labeled
“Hamming”) in all incorrect cases.

5.2 Distilled Parser
Our distilled parser is trained discriminatively with
the structured hinge loss (Eq. 3). This is a natural
choice because it makes the cost function explicit

and central to learning.6 Further, because our en-
semble’s posterior gives us information about each
attachment individually, the cost function we con-
struct can be first-order, which simplifies training
with exact inference.

This approach to training a model is well-
studied for a FOG parser, but not for a transition-
based parser, which is comprised of a collection
of classifiers trained to choose good sequences of
transitions—not to score whole trees for good at-
tachment accuracy. Transition-based approaches are
therefore unsuitable for our proposed distillation
cost function, even though they are asymptotically
faster. We proceed with a FOG parser (with Eis-
ner’s algorithm for English and Chinese, and MST
for German since it contains a considerable number
of non-projective trees) as the distilled model.

Concretely, we use a bidirectional LSTM fol-
lowed by a hidden layer of non-linearity to calculate
the scoring function s(h,m,x), following Kiper-
wasser and Goldberg (2016) with minor modifica-
tions. The bidirectional LSTM maps each word xi
to a vector x̄i that embeds the word in context (i.e.,
x1:i−1 and xi+1:n). Local attachment scores are
given by:

s(h,m,x) = v> tanh (W[x̄h; x̄m] + b) (6)

where the model parameters are v, W, and b, plus
the bidirectional LSTM parameters. We will refer to
this parsing model as neural FOG.

Our model architecture is nearly identical to that
of Kiperwasser and Goldberg (2016), with two pri-
mary differences. The first difference is that we fix
the pretrained word embeddings and compose them
with learned embeddings and POS tag embeddings
(Dyer et al., 2015), allowing the model to simulta-
neously leverage pretrained vectors and learn a task-
specific representation.7 Unlike Kiperwasser and
Goldberg (2016), we did not observe any degrada-
tion by incorporating the pretrained vectors. Second,

6Alternatives that do not use cost functions include proba-
bilistic parsers, whether locally normalized like the stack LSTM
parser used within our ensemble, or globally normalized, as in
Andor et al. (2016); cost functions can be incorporated in such
cases with minimum risk training (Smith and Eisner, 2006) or
softmax margin (Gimpel and Smith, 2010).

7To our understanding, Kiperwasser and Goldberg (2016)
initialized with pretrained vectors and backpropagated during
training.

1749

we apply a per-epoch learning rate decay of 0.05 to
the Adam optimizer. While the Adam optimizer au-
tomatically adjusts the global learning rate accord-
ing to past gradient magnitudes, we find that this ad-
ditional per-epoch decay consistently improves per-
formance across all settings and languages.

6 Experiments

We ran experiments on the English PTB-SD version
3.3.0, Penn Chinese Treebank (Xue et al., 2002), and
German CoNLL 2009 (Hajič et al., 2009) tasks.

Experimental settings. We used the standard
splits for all languages. Like Chen and Manning
(2014) and Dyer et al. (2015), we use predicted tags
with the Stanford tagger (Toutanova et al., 2003)
for English and gold tags for Chinese. For German
we use the predicted tags provided by the CoNLL
2009 shared task organizers. All models were aug-
mented with pretrained structured-skipgram (Ling et
al., 2015) embeddings; for English we used the Gi-
gaword corpus and 100 dimensions, for Chinese Gi-
gaword and 80, and for German WMT 2010 mono-
lingual data and 64.

Hyperparameters. The hyperparameters for
neural FOG are summarized in Table 4. For the
Adam optimizer we use the default settings in the
CNN neural network library.8 Since the ensemble
is used to obtain the uncertainty on the training set,
it is imperative that the stack LSTMs do not overfit
the training set. To address this issue, we performed
five-way jackknifing of the training data for each
stack LSTM model to obtain the training data uncer-
tainty under the ensemble. To obtain the ensemble
uncertainty on each language, we use 21 base mod-
els for English (see footnote 4), 17 for Chinese, and
11 for German.

Speed. One potential drawback of using a
quadratic or cubic time parser to distill an ensemble
of linear-time transition-based models is speed. Our
FOG model is implemented using the same CNN li-
brary as the stack LSTM transition-based parser. On
the same single-thread CPU hardware, the distilled
MST parser9 parses 20 sentences per second with-
out any pruning, while a single stack LSTM model

8https://github.com/clab/cnn.git
9The runtime of the Hamming-cost bidirectional LSTM

FOG parser is the same as the distilled parser.

Bi-LSTM dimension 100
Bi-LSTM layers 2
POS tag embedding 12
Learned word embedding 32
Hidden Layer Units 100
Labeler Hiden Layer Units 100
Optimizer Adam
Learning rate decay 0.05

Table 4: Hyperparameters for the distilled FOG parser.
Both the model architecture and the hyperparameters are
nearly identical with Kiperwasser and Goldberg (2016).
We apply a per-epoch learning rate decay to the Adam op-
timizer, which consistently improves performance across
all datasets.

is only three times faster at 60 sentences per second.
Running an ensemble of 20 stack LSTMs is at least
20 times slower (without multi-threading), not in-
cluding consensus parsing. In the end, the distilled
parser is more than ten times faster than the ensem-
ble pipeline.

Accuracy. All scores are shown in Table 5. First,
consider the neural FOG parser trained with Ham-
ming cost (CH in the second-to-last row). This is a
very strong benchmark, outperforming many higher-
order graph-based and neural network models on all
three datasets. Nonetheless, training the same model
with distillation cost gives consistent improvements
for all languages. For English, we see that this
model comes close to the slower ensemble it was
trained to simulate. For Chinese, it achieves the
best published scores, for German the best published
UAS scores, and just after Bohnet and Nivre (2012)
for LAS.

Effects of Pre-trained Word Embedding. As
an ablation study, we ran experiments on English
without pre-trained word embedding, both with the
Hamming and distillation costs. The model trained
with Hamming cost achieved 93.1 UAS and 90.9
LAS, compared to 93.6 UAS and 91.1 LAS for
the model with distillation cost. This result further
showcases the consistent improvements from using
the distillation cost across different settings and lan-
guages.

We conclude that “soft targets” derived from en-
semble uncertainty offer useful guidance, through
the distillation cost function and discriminative
training of a graph-based parser. Here we consid-

1750

System Method P? PTB-SD CTB German
CoNLL’09

UAS LAS UAS LAS UAS LAS
Zhang and Nivre (2011) Transition (beam) - - 86.0 84.4 - -
Bohnet and Nivre (2012)† Transition (beam) - - 87.3 85.9 91.37 89.38
Chen and Manning (2014) Transition (greedy) X 91.8 89.6 83.9 82.4 - -
Dyer et al. (2015) Transition (greedy) X 93.1 90.9 87.2 85.7 - -
Weiss et al. (2015) Transition (beam) X 94.0 92.0 - - - -
Yazdani and Henderson (2015) Transition (beam) - - - - 89.6 86.0
Ballesteros et al. (2015) Transition (greedy) 91.63 89.44 85.30 83.72 88.83 86.10
Ballesteros et al. (2016) Transition (greedy) X 93.56 91.42 87.65 86.21 - -
Kiperwasser and Goldberg (2016) Transition (greedy) X 93.9 91.9 87.6 86.1 - -
Andor et al. (2016) Transition (beam) X 94.61 92.79 - - 90.91 89.15
Ma and Zhao (2012) Graph (4th order) - - 87.74 - - -
Martins et al. (2013) Graph (3rd order) 93.1 - - - - -
Le and Zuidema (2014) Reranking/blend X 93.8 91.5 - - - -
Zhu et al. (2015) Reranking/blend X - - 85.7 - - -
Kiperwasser and Goldberg (2016) Graph (1st order) 93.1 91.0 86.6 85.1 - -
Wang and Chang (2016) Graph (1st order) X 94.08 91.82 87.55 86.23 - -
This work: ensemble, N = 20, MST Transition (greedy) X 94.51 92.70 89.80 88.56 91.86 89.98
This work: neural FOG, CH Graph (1st order) X 93.76 91.60 87.32 85.82 91.22 88.82
This work: neural FOG, CD (distilled) Graph (1st order) X 94.26 92.06 88.87 87.30 91.60 89.24

Table 5: Dependency parsing performance on English, Chinese, and German tasks. The “P?” column indicates the use
of pretrained word embeddings. Reranking/blend indicates that the reranker score is interpolated with the base model’s
score. Note that previous works might use different predicted tags for English. We report accuracy without punctuation
for English and Chinese, and with punctuation for German, using the standard evaluation script in each case. We only
consider systems that do not use additional training data. The best overall results are indicated with bold (this was
achieved by the ensemble of greedy stack LSTMs in Chinese and German), while the best non-ensemble model is
denoted with an underline. The † sign indicates the use of predicted tags for Chinese in the original publication,
although we report accuracy using gold Chinese tags based on private correspondence with the authors.

ered a FOG parser, though future work might inves-
tigate any parser amenable to training to minimize a
cost-aware loss like the structured hinge.

7 Related Work

Our work on ensembling dependency parsers is
based on Sagae and Lavie (2006) and Surdeanu and
Manning (2010); an additional contribution of this
work is to show that the normalized ensemble votes
correspond to MBR parsing. Petrov (2010) pro-
posed a similar model combination with random ini-
tializations for phrase-structure parsing, using prod-
ucts of constituent marginals. The local optima in
his base model’s training objective arise from latent
variables instead of neural networks (in our case).

Model distillation was proposed by Bucilǎ et al.
(2006), who used a single neural network to simu-
late a large ensemble of classifiers. More recently,
Ba and Caruana (2014) showed that a single shal-

low neural network can closely replicate the per-
formance of an ensemble of deep neural networks
in phoneme recognition and object detection. Our
work is closer to Hinton et al. (2015), in the sense
that we do not simply compress the ensemble and
hit the “soft target,” but also the “hard target” at the
same time10. These previous works only used model
compression and distillation for classification; we
extend the work to a structured prediction problem
(dependency parsing).

Täckström et al. (2013) similarly used an ensem-
ble of other parsers to guide the prediction of a seed
model, though in a different context of “ambiguity-
aware” ensemble training to re-lexicalize a trans-
fer model for a target language. We similarly use
an ensemble of models as a supervision for a sin-

10Our cost is zero when the correct arc is predicted, regard-
less of what the soft target thinks, something a compression
model without gold supervision cannot do.

1751

gle model. By incorporating the ensemble uncer-
tainty estimates in the cost function, our approach
is cheaper, not requiring any marginalization during
training. An additional difference is that we learn
from the gold labels (“hard targets”) rather than only
ensemble estimates on unlabeled data.

Kim and Rush (2016) proposed a distillation
model at the sequence level, with application in
sequence-to-sequence neural machine translation.
There are two primary differences with this work.
First, we use a global model to distill the ensemble,
instead of a sequential one. Second, Kim and Rush
(2016) aim to distill a larger model into a smaller
one, while we propose to distill an ensemble instead
of a single model.

8 Conclusions

We demonstrate that an ensemble of 20 greedy stack
LSTMs (Dyer et al., 2015) can achieve state of the
art accuracy on English dependency parsing. This
approach corresponds to minimum Bayes risk de-
coding, and we conjecture that the arc attachment
posterior marginals quantify a notion of uncertainty
that may indicate difficulty or ambiguity. Since run-
ning an ensemble is computationally expensive, we
proposed discriminative training of a graph-based
model with a novel cost function that distills the en-
semble uncertainty. Deriving a cost function from a
statistical model and extending distillation to struc-
tured prediction are new contributions. This dis-
tilled model, trained to simulate the slower ensemble
parser, improves over the state of the art on Chinese
and German.

Acknowledgments

We thank Swabha Swayamdipta, Sam Thomson,
Jesse Dodge, Dallas Card, Yuichiro Sawai, Gra-
ham Neubig, and the anonymous reviewers for use-
ful feedback. We also thank Juntao Yu and Bernd
Bohnet for re-running the parser of Bohnet and
Nivre (2012) on Chinese with gold tags. This work
was sponsored in part by the Defense Advanced Re-
search Projects Agency (DARPA) Information Inno-
vation Office (I2O) under the Low Resource Lan-
guages for Emergent Incidents (LORELEI) program
issued by DARPA/I2O under Contract No. HR0011-
15-C-0114; it was also supported in part by Contract

No. W911NF-15-1-0543 with the DARPA and the
Army Research Office (ARO). Approved for public
release, distribution unlimited. The views expressed
are those of the authors and do not reflect the of-
ficial policy or position of the Department of De-
fense or the U.S. Government. Miguel Ballesteros
was supported by the European Commission un-
der the contract numbers FP7-ICT-610411 (project
MULTISENSOR) and H2020-RIA-645012 (project
KRISTINA).

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Proc. of
ACL.

Jimmy Ba and Rich Caruana. 2014. Do deep nets really
need to be deep? In Proc. of NIPS.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by modeling
characters instead of words with LSTMs. In Proc. of
EMNLP.

Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and
Noah A. Smith. 2016. Training with exploration
improves a greedy stack-LSTM parser. In Proc. of
EMNLP.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Proc. of
EMNLP-CoNLL.

Cristian Bucilǎ, Rich Caruana, and Alexandru Niculescu-
Mizil. 2006. Model compression. In Proc. of KDD.

Danqi Chen and Christopher Manning. 2014. A fast and
accurate dependency parser using neural networks. In
Proc. of EMNLP.

Marie-Catherine De Marneffe and Christopher D. Man-
ning. 2008. Stanford typed dependencies manual.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proc. of ACL.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Proc. of
COLING.

Kevin Gimpel and Noah A Smith. 2010. Softmax-
margin CRFs: Training log-linear models with cost
functions. In Proc. of NAACL.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian

1752

Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 Shared Task: Syntactic and semantic dependen-
cies in multiple languages. In Proc. of CONLL 2009
Shared Task.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proc. of EMNLP.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple
and accurate dependency parsing using bidirectional
LSTM feature representations. TACL.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proc. of ACL.

Phong Le and Willem Zuidema. 2014. The inside-
outside recursive neural network model for depen-
dency parsing. In Proc. of EMNLP.

Wang Ling, Chris Dyer, Alan W Black, and Isabel Tran-
coso. 2015. Two/too simple adaptations of word2vec
for syntax problems. In Proc. of NAACL.

Xuezhe Ma and Hai Zhao. 2012. Fourth-order depen-
dency parsing. In Proc. of COLING.

André F. T. Martins, Dipanjan Das, Noah A. Smith, and
Eric P. Xing. 2008. Stacking dependency parsers. In
Proc. of EMNLP.

André F. T. Martins, Noah A. Smith, and Eric P. Xing.
2009. Polyhedral outer approximations with applica-
tion to natural language parsing. In Proc. of ICML.

André F. T. Martins, Mariana S.C. Almeida, and Noah A.
Smith. 2013. Turning on the turbo: Fast third-order
non-projective turbo parsers. In Proc. of ACL.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005a. Online large-margin training of dependency
parsers. In Proc. of ACL.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005b. Non-projective dependency parsing
using spanning tree algorithms. In Proc. of EMNLP.

Joakim Nivre and Ryan McDonald. 2008. Integrating
graph-based and transition-based dependency parsers.
In Proc. of ACL.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In Proc. of IWPT.

Slav Petrov. 2010. Products of random latent variable
grammars. In Proc.of NAACL.

Kenji Sagae and Alon Lavie. 2006. Parser combination
by reparsing. In Proc. of NAACL.

David A. Smith and Jason Eisner. 2006. Minimum risk
annealing for training log-linear models. In Proc. of
ACL.

Mihai Surdeanu and Christopher D. Manning. 2010. En-
semble models for dependency parsing: Cheap and
good? In Proc. of NAACL.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proc. of NIPS.

Oscar Täckström, Ryan T. McDonald, and Joakim Nivre.
2013. Target language adaptation of discriminative
transfer parsers. In Proc. of NAACL.

Ben Taskar, Vassil Chatalbashev, Daphne Koller, and
Carlos Guestrin. 2005. Learning structured prediction
models: A large margin approach. In Proc. of ICML.

Ivan Titov and James Henderson. 2006. Bayes risk min-
imization in natural language parsing. Technical re-
port, University of Geneva.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proc. of
NAACL.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hof-
mann, and Yasemin Altun. 2005. Large margin meth-
ods for structured and interdependent output variables.
JMLR.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar
as a foreign language. In Proc. of NIPS.

Wenhui Wang and Baobao Chang. 2016. Graph-based
dependency parsing with bidirectional LSTM. In
Proc. of ACL.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In Proc. of ACL.

Nianwen Xue, Fu-Dong Chiou, and Martha Palmer.
2002. Building a large-scale annotated chinese cor-
pus. In Proc. of COLING.

Majid Yazdani and James Henderson. 2015. Incre-
mental recurrent neural network dependency parser
with search-based discriminative training. In Proc. of
CoNLL.

Yue Zhang and Stephen Clark. 2008. A tale of
two parsers: Investigating and combining graph-based
and transition-based dependency parsing using beam-
search. In Proc. of EMNLP.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proc. of ACL.

Chenxi Zhu, Xipeng Qiu, Xinchi Chen, and Xuanjing
Huang. 2015. A re-ranking model for dependency
parser with recursive convolutional neural network. In
Proc. of ACL-IJCNLP.

1753

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1754–1764,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

LSTM Shift-Reduce CCG Parsing

Wenduan Xu
Computer Laboratory

University of Cambridge
wx217@cam.ac.uk

Abstract
We describe a neural shift-reduce parsing
model for CCG, factored into four unidirec-
tional LSTMs and one bidirectional LSTM.
This factorization allows the linearization of
the complete parsing history, and results in
a highly accurate greedy parser that outper-
forms all previous beam-search shift-reduce
parsers for CCG. By further deriving a glob-
ally optimized model using a task-based loss,
we improve over the state of the art by up to
2.67% labeled F1.

1 Introduction

Combinatory Categorial Grammar (CCG; Steedman,
2000) parsing is challenging due to its so-called
“spurious” ambiguity that permits a large num-
ber of non-standard derivations (Vijay-Shanker and
Weir, 1993; Kuhlmann and Satta, 2014). To ad-
dress this, the de facto models resort to chart-based
CKY (Hockenmaier, 2003; Clark and Curran, 2007),
despite CCG being naturally compatible with shift-
reduce parsing (Ades and Steedman, 1982). More
recently, Zhang and Clark (2011) introduced the
first shift-reduce model for CCG, which also showed
substantial improvements over the long-established
state of the art (Clark and Curran, 2007).

The success of the shift-reduce model (Zhang and
Clark, 2011) can be tied to two main contributing
factors. First, without any feature locality restric-
tions, it is able to use a much richer feature set;
while intensive feature engineering is inevitable, it
has nevertheless delivered an effective and concep-
tually simpler alternative for both parameter estima-
tion and inference. Second, it couples beam search

with global optimization (Collins, 2002; Collins and
Roark, 2004; Zhang and Clark, 2008), which makes
it less prone to search errors than fully greedy mod-
els (Huang et al., 2012).

In this paper, we present a neural architecture for
shift-reduce CCG parsing based on long short-term
memories (LSTMs; Hochreiter and Schmidhuber,
1997). Our model is inspired by Dyer et al. (2015),
in which we explicitly linearize the complete history
of parser states in an incremental fashion by requir-
ing no feature engineering (Zhang and Clark, 2011;
Xu et al., 2014), and no atomic feature sets (Chen
and Manning, 2014). However, a key difference is
that we achieve this linearization without relying on
any additional control operations or compositional
tree structures (Socher et al., 2010; Socher et al.,
2011; Socher et al., 2013), both of which are vital
in the architecture of Dyer et al. (2015). Crucially,
unlike the sequence-to-sequence transduction model
of Vinyals et al. (2015), which primarily conditions
on the input words, our model is sensitive to all as-
pects of the parsing history, including arbitrary po-
sitions in the input.

As another contribution, we present a global
LSTM parsing model by adapting an expected F-
measure loss (Xu et al., 2016). As well as natu-
rally incorporating beam search during training, this
loss optimizes the model towards the final evaluation
metric (Goodman, 1996; Smith and Eisner, 2006;
Auli and Lopez, 2011b), allowing it to learn shift-
reduce action sequences that lead to parses with high
expected F-scores. We further show the globally op-
timized model can be leveraged with greedy infer-
ence, resulting in a deterministic parser as accurate

1754

Dexter likes experiments

NP (S\NP)/NP NP
>T

S/(S\NP)
>B

S/NP
>

S

Figure 1: A CCG derivation, in which each point corresponds to
the result of a shift-reduce action. In this example, composition
(B) and application (>) are re actions, and type-raising (T) is a
un action.

as its beam-search counterpart.
On standard CCGBank tests, we clearly outper-

form all previous shift-reduce CCG parsers; and by
combining the parser with an attention-based LSTM
supertagger (§4), we obtain further significant im-
provements (§5).

2 Shift-Reduce CCG Parsing

CCG is strongly lexicalized by definition. A CCG

grammar extracted from CCGBank (Hockenmaier
and Steedman, 2007) contains over 400 lexical types
and over 1,500 non-terminals (Clark and Curran,
2007), which is an order of magnitude more than
those of a typical CFG parser. This lexicalized na-
ture raises another unique challenge for parsing—
any parsing model for CCG needs to perform lexical
disambiguation. This is true even in the approach
of Fowler and Penn (2010), in which a context-
free cover grammar extracted from CCGBank is
used to parse CCG. Indeed, as noted by Auli and
Lopez (2011a), the search problem for CCG pars-
ing is equivalent to finding an optimal derivation
in the weighted intersection of a regular language
(generated by the supertagger) and a mildly context-
sensitive language (generated by the parser), which
can quickly become expensive.

The shift-reduce paradigm (Aho and Ullman,
1972; Yamada and Matsumoto, 2003; Nivre and
Scholz, 2004) applied to CCG (Zhang and Clark,
2011) presents a more elegant solution to this prob-
lem by allowing the parser to conduct lexical as-
signment “incrementally” as a complete parse is be-
ing built by the decoder. This is not possible with
a chart-based parser, in which complete derivations
must be built first. Therefore, a shift-reduce parser
is able to consider a much larger set of categories
per word for a given input, achieving higher lexi-

cal assignment accuracy than the C&C parser (Clark
and Curran, 2007), even with the same supertagging
model (Zhang and Clark, 2011; Xu et al., 2014).

In our parser, we follow this strategy and adopt
the Zhang and Clark (2011) style shift-reduce tran-
sition system, which assumes a set of lexical cate-
gories has been assigned to each word using a su-
pertagger (Bangalore and Joshi, 1999; Clark and
Curran, 2004). Parsing then proceeds by applying
a sequence of actions to transform the input main-
tained on a queue, into partially constructed deriva-
tions, kept on a stack, until the queue and available
actions on the stack are both exhausted. At each time
step, the parser can choose to shift (sh) one of the
lexical categories of the front word onto the stack,
and remove that word from the queue; reduce (re)
the top two subtrees on the stack using a CCG rule,
replacing them with the resulting category; or take
a unary (un) action to apply a CCG type-raising or
type-changing rule to the stack-top element. For ex-
ample, the deterministic sequence of shift-reduce ac-
tions that builds the derivation in Fig.1 is: sh⇒ NP ,
un ⇒ S/(S\NP), sh ⇒ (S\NP)/NP , re ⇒
S/NP , sh ⇒ NP and re ⇒ S , where we use⇒ to
indicate the CCG category produced by an action.1

3 LSTM Shift-Reduce Parsing

3.1 LSTM
Recurrent neural networks (RNNs; e.g., see Elman,
1990) are factored into an input layer xt and a hid-
den state (layer) ht with recurrent connections, and
they can be represented by the following recurrence:

ht = Φθ(xt,ht−1), (1)

where xt is the current input, ht−1 is the previous
hidden state and Φ is a set of affine transformations
parametrized by θ. Here, we use a variant of RNN
referred to as LSTMs, which augment Eq. 1 with a
cell state, ct, s.t.

ht, ct = Φθ(xt,ht−1, ct−1). (2)

Compared with conventional RNNs, this extra fa-
cility gives LSTMs more persistent memories over

1Our parser models normal-form derivations (Eisner, 1996)
in CCGBank. However, unlike Zhang and Clark (2011), deriva-
tions are not restricted to be normal-form during inference.

1755

longer time delays and makes them less suscepti-
ble to the vanishing gradient problem (Bengio et al.,
1994). Hence, they are better at modeling temporal
events that are arbitrarily far in a sequence.

Several extensions to the vanilla LSTM have been
proposed over time, each with a modified instan-
tiation of Φθ that exerts refined control over e.g.,
whether the cell state could be reset (Gers et al.,
2000) or whether extra connections are added to the
cell state (Gers and Schmidhuber, 2000). Our in-
stantiation is as follows for all LSTMs:

it = σ(Wixxt + Wihht−1 + Wicct−1 + bi)

ft = σ(Wfxxt + Wfhht−1 + Wfcct−1 + bf)

ct = ft � ct−1+

it � tanh(Wcxxt + Wchht−1 + bc)

ot = σ(Woxxt + Wohht−1 + Wocct + bo)

ht = ot � tanh(ct),

where σ is the sigmoid activation and � is the
element-wise product.

In addition to unidirectional LSTMs that
model an input sequence x0,x1, . . . ,xn−1 in
a strict left-to-right order, we also use bidirec-
tional LSTMs (Graves and Schmidhuber, 2005)
(BLSTMs), which read the input from both direc-
tions with two independent LSTMs. At each step,
the forward hidden state ht is computed using Eq. 2
for t = (0, 1, . . . , n − 1); and the backward hidden
state ĥt is computed similarly but from the reverse
direction for t = (n − 1, n − 2, . . . , 0). Together,
the two hidden states at each step t capture both past
and future contexts, and the representation for each
xt is obtained as the concatenation [ht; ĥt].

3.2 Embeddings

The neural network model employed by Chen and
Manning (2014), and followed by a number of other
parsers (Weiss et al., 2015; Zhou et al., 2015; Am-
bati et al., 2016; Andor et al., 2016; Xu et al., 2016)
allows higher-order feature conjunctions to be au-
tomatically discovered from a set of dense feature
embeddings. However, a set of atomic feature tem-
plates, which are only sensitive to contexts from the
top few elements on the stack and queue are still
needed to dictate the choice of these embeddings.
Instead, we dispense with such templates and seek

input: w0 . . . wn−1

axiom: 0 : (0, ε, β, φ)

goal: 2n− 1 + µ : (n, δ, ε,∆)

t : (j, δ, xwj |β,∆)

t+ 1 : (j + 1, δ|xwj , β,∆)
(sh; 0 ≤ j < n)

t : (j, δ|s1|s0, β,∆)

t+ 1 : (j, δ|x, β,∆ ∪ 〈x〉)) (re; s1s0 → x)

t : (j, δ|s0, β,∆)

t+ 1 : (j, δ|x, β,∆)
(un; s0 → x)

Figure 2: The shift-reduce deduction system. For the sh de-
duction, xwj denotes an available lexical category for wj ; for
re, 〈x〉 denotes the set of dependencies on x.

to design a model that is sensitive to both local and
non-local contexts, on both the stack and queue.

Consequently, embeddings represent atomic input
units that are added to our parser and are preserved
throughout parsing. In total we use four types of
embeddings, namely, word, CCG category, POS and
action, where each has an associated look-up table
that maps a string of that type to its embedding. The
look-up table for words is Lw ∈ Rk×|w|, where k is
the embedding dimension and |w| is the size of the
vocabulary. Similarly, we have look-up tables for
CCG categories, Lc ∈ Rl×|c|, for the three types of
actions, La ∈ Rm×3, and for POS tags, Lp ∈ Rn×|p|.

3.3 Model

Parser. Fig. 2 shows the deduction system of our
parser.2 We denote each parse item as (j, δ, β,∆),
where j is the positional index of the word at the
front of the queue, δ is the stack (with its top ele-
ment s0 to the right), and β is the queue (with its
top element wj to the left) and ∆ is the set of CCG

dependencies realized for the input consumed so far.
Each item is also associated with a step indicator t,
signifying the number of actions applied to it and
the goal is reached in 2n − 1 + µ steps, where µ is
the total number of un actions. We also define each
action in our parser as a 4-tuple (τt, ct, wct , pwct

),
where τt ∈ {sh, re, un} for t ≥ 1, ct is the resulting
category of τt, and wct is the head word attached to

2We assume greedy inference unless otherwise stated.

1756

Figure 3: An example representation for a parse item at time
step t, with the 4 unidirectional LSTMs (left) and the bidirec-
tional LSTM (right). The shaded cells on the left represent
δt = [hU

t ;h
V
t ;h

X
t ;h

Y
t] (Eq. 3); and the shaded cells on the right

represent wj = [hW
j ; ĥ

W
j].

ct with pwct
being its POS tag.3

LSTM model. LSTMs are designed to handle
time-series data, in a purely sequential fashion; and
we try to exploit this fact by completely linearizing
all aspects of the parsing history. Concretely, we fac-
tor the model as five LSTMs, comprising four uni-
directional ones, denoted as U, V, X and Y, and an
additional BLSTM, denoted as W (Fig. 3). Before
parsing each sentence, we feed W with the complete
input (padded with a special embedding⊥ as the end
of sentence token); and we use wj = [hW

j ; ĥW
j] to

represent wj in subsequent steps.4 We also add ⊥ to
the other 4 unidirectional LSTMs as initialization.

Given this factorization, the stack representation
for a parse item (j, δ, β,∆) at step t, for t ≥ 1, is
obtained as

δt = [hU
t ;hV

t ;hX
t ;hY

t], (3)

and together with wj , [δt;wj] gives a representation
for the parse item. For the axiom item, we repre-
sent it as [δ0;w0], where δ0 = [hU

⊥;hV
⊥;hX

⊥;hY
⊥] is

a representation for its stack.
Each time the parser applies an action

(τt, ct, wct , pwct
), we update the model by adding

the embedding of τt, denoted as La(τt), onto U,
and adding the other three embeddings of the action
4-tuple, namely Lc(ct), Lw(wct) and Lp(pwct

),
onto V, X and Y respectively.

To predict the next action, we first derive an action
hidden layer bt, by passing the parse item represen-
tation [δt;wj] through an affine transformation, s.t.

bt = f(B[δt;wj] + r), (4)
3In case of multiple heads, we always choose the first one.
4Word and POS embeddings are concatenated at each input

position j, for 0 ≤ j < n; and wn = [hW
⊥; ĥ

W
⊥].

where B is a parameter matrix of the model, r is
a bias vector and f is a ReLU non-linearity (Nair
and Hinton, 2010). Then we apply another affine
transformation (with A as the weights and s as the
bias) to bt:

at = f(Abt + s),

and obtain the probability of the ith action in at as

p(τ it |bt) =
exp{ait}∑

τkt ∈T (δt,βt)
exp{akt }

,

where T (δt, βt) is the set of feasible actions for the
current parse item, and τ it ∈ T (δt, βt).

3.4 Derivations and Dependency Structures
Our model naturally linearizes CCG derivations “in-
crementally” following their post-order traversals.
As such, the four unidirectional LSTMs always have
the same number of steps; and at each step, the con-
catenation of their hidden states (Eq. 3) represents a
point in a CCG derivation (i.e., an action 4-tuple).
Due to the large amount of flexibility in how de-
pendencies are realized in CCG (Hockenmaier, 2003;
Clark and Curran, 2007), and in line with most ex-
isting CCG parsing models, including dependency
models, we have chosen to model CCG derivations,
rather than dependency structures.5 We also hypoth-
esize that tree structures are not necessary for the
current model, since they are already implicit in the
linearized derivations; and similarly, we have found
the action embeddings to be nonessential (§5.2).

3.5 Training
As a baseline, we first train a greedy model, in
which we maximize the log-likelihood of each tar-
get action in the training data. More specifically, let
(τ g1 , . . . , τ

g
Tn

) be the gold-standard action sequence
for a training sentence n, a cross-entropy criterion is
used to obtain the error gradients, and for each sen-
tence, training involves minimizing

L(θ) = − log

Tn∏

t=1

p(τ gt |bt) = −
Tn∑

t=1

log p(τ gt |bt),

where θ is the set of all parameters in the model.
5Most CCG dependency models (e.g., see Clark and Curran

(2007) and Xu et al. (2014)) model CCG derivations with de-
pendency features.

1757

As other greedy models (e.g., see Chen and Man-
ning (2014) and Dyer et al. (2015)), our greedy
model is locally optimized, and suffer from the label
bias problem (Andor et al., 2016). A partial solution
to this is to use beam search at test time, thereby re-
covering higher scoring action sequences that would
otherwise be unreachable with fully greedy infer-
ence. In practice, this has limited effect (Table 2),
and a number of more principled solutions have been
recently proposed to derive globally optimized mod-
els during training (Watanabe and Sumita, 2015;
Weiss et al., 2015; Zhou et al., 2015; Andor et al.,
2016). Here, we extend our greedy model into a
global one by adapting the expected F-measure loss
of Xu et al. (2016). To our best knowledge, this is
the first attempt to train a globally optimized LSTM
shift-reduce parser.

Let θ = {U,V,X,Y,W,B,A} be the weights
of the baseline greedy model,6 we initialize the
weights of the global model, which has the same ar-
chitecture as the baseline, to θ, and we reoptimize θ
in multiple training epochs as follows:

1. Pick a sentence xn from the training set, decode
it with beam search, and generate a k-best list
of output parses with the current θ, denoted as
Λ(xn).7

2. For each parse yi in Λ(xn), compute its
sentence-level F1 using the set of dependencies
in the ∆ field of its parse item. In addition, let
|yi| be the total number of actions that derived
yi and sθ(y

j
i) be the softmax action score of the

jth action, given by the LSTM model. Com-
pute the log-linear score of its action sequence
as ρ(yi) =

∑|yi|
j=1 log sθ(y

j
i).

3. Compute the negative expected F1 objective
(defined below) for xn and minimize it using
stochastic gradient descent (maximizing ex-
pected F1). Repeat these three steps for the re-
maining sentences.

6We use boldface letters to designate the weights of the cor-
responding LSTMs, and omit bias terms for brevity.

7As in Xu et al. (2016), we did not preset k, and found k =
11.06 on average with a beam size of 8 that we used for this
training.

More formally, the loss J(θ), is defined as

J(θ) = −XF1(θ)

= −
∑

yi∈Λ(xn)

p(yi|θ)F1(∆yi ,∆
G
xn),

where F1(∆yi ,∆
G
xn) is the sentence level F1 of the

parse derived by yi, with respect to the gold-standard
dependency structure ∆G

xn of xn; p(yi|θ) is the nor-
malized probability score of the action sequence yi,
computed as

p(yi|θ) =
exp{γρ(yi)}∑

y∈Λ(xn) exp{γρ(y)} ,

where γ is a parameter that sharpens or flattens the
distribution (Tromble et al., 2008).8 Different from
the maximum-likelihood objective, XF1 optimizes
the model on a sequence level and towards the final
evaluation metric, by taking into account all action
sequences in Λ(xn).

4 Attention-Based LSTM Supertagging

In addition to the size of the label space, supertag-
ging is difficult because CCG categories can encode
long-range dependencies and tagging decisions fre-
quently depend on non-local contexts. For example,
in He went to the zoo with a cat, a possible cate-
gory for with, (S\NP)\(S\NP)/NP , depends on
the word went further back in the sentence.

Recently a number of RNN models have been
proposed for CCG supertagging (Xu et al., 2015;
Lewis et al., 2016; Vaswani et al., 2016; Xu et al.,
2016), and such models show dramatic improve-
ments over non-recurrent models (Lewis and Steed-
man, 2014b). Although the underlying models differ
in their exact architectures, all of them make each
tagging decision using only the hidden states at the
current input position, and this imposes a potential
bottleneck in the model. To mitigate this, we gen-
eralize the attention mechanisms of Bahdanau et al.
(2015) and Luong et al. (2015), and adapt them to
supertagging, by allowing the model to explicitly
use hidden states from more than one input posi-
tions for tagging each word. Similar to Bahdanau et
al. (2015) and Luong et al. (2015), a key feature in

8We found γ = 1 to be a good choice during development.

1758

our model is a soft alignment vector that weights the
relative importance of the considered hidden states.

For an input sentence w0, w1, . . . , wn−1, we con-
sider wt = [ht; ĥt] (§3.1) to be the representa-
tion of the tth word (0 ≤ t < n, wt ∈ R2d×1),
given by a BLSTM with a hidden state size d for
both its forward and backward layers.9 Let k be
a context window size hyperparameter, we define
Ht ∈ R2d×(k−1) as

Ht = [wt−bk/2c, . . . ,wt−1,wt+1, . . . ,wt+bk/2c],

which contains representations for all words in the
size k window except wt. At each position t, the
attention model derives a context vector ct ∈ R2d×1

(defined below) from Ht, which is used in conjunc-
tion with wt to produce an attentional hidden layer:

xt = f(M[ct;wt] + m), (5)

where f is a ReLU non-linearity, M ∈ Rg×4d is a
learned weight matrix, m is a bias term, and g is the
size of xt. Then xt is used to produce another hidden
layer (with N as the weights and n as the bias):

zt = Nxt + n,

and the predictive distribution over categories is ob-
tained by feeding zt through a softmax activation.

In order to derive the context vector ct, we first
compute bt ∈ R(k−1)×1 from Ht and wt using α ∈
R1×4d, s.t. the ith entry in bt is

bit = α[wT [i];wt],

for i ∈ [0, k−1), T = [t−bk/2c, . . . , t−1, t+1, . . . , t+

bk/2c]; and ct is derived as follows:

at = softmax(bt),

ct = Htat,

where at is the alignment vector. We also exper-
iment with two types of attention reminiscent of
the global and local models in Luong et al. (2015),
where the first attends over all input words (k = n)
and the second over a local window.

It is worth noting that two other works have con-
currently tackled supertagging with BLSTM mod-
els. In Vaswani et al. (2016), a language model

9Unlike in the parsing model, POS tags are excluded.

layer is added on top of a BLSTM, which allows
embeddings of previously predicted tags to propa-
gate through and influence the pending tagging de-
cision. However, the language model layer is only
effective when both scheduled sampling for train-
ing (Bengio et al., 2015) and beam search for infer-
ence are used. We show our attention-based mod-
els can match their performance, with only standard
training and greedy decoding. Additionally, Lewis
et al. (2016) presented a BLSTM model with two
layers of stacking in each direction; and as an inter-
nal baseline, we show a non-stacking BLSTM with-
out attention can achieve the same accuracy.

5 Experiments

Dataset and baselines. We conducted all experi-
ments on CCGBank (Hockenmaier and Steedman,
2007) with the standard splits.10 We assigned POS

tags with the C&C POS tagger, and used 10-fold
jackknifing for both POS tagging and supertagging.
All parsers were evaluated using F1 over labeled
CCG dependencies.

For supertagging, the baseline models are the
RNN model of Xu et al. (2015), the bidirectional
RNN (BRNN) model of Xu et al. (2016), and
the BLSTM supertagging models in Vaswani et al.
(2016) and Lewis et al. (2016). For parsing exper-
iments, we compared with the global beam-search
shift-reduce parsers of Zhang and Clark (2011)
and Xu et al. (2014). One neural shift-reduce CCG

parser baseline is Ambati et al. (2016), which is a
beam-search shift-reduce parser based on Chen and
Manning (2014) and Weiss et al. (2015); and the oth-
ers are the RNN shift-reduce models in Xu et al.
(2016). Additionally, the chart-based C&C parser
was included by default.

Model and training parameters.11 All our
LSTM models are non-stacking with a single
layer.12 For the supertagging models, the LSTM

10Training: Sections 02-21 (39,604 sentences). Develop-
ment: Section 00 (1,913 sentences). Test: Section 23 (2,407
sentences).

11We implemented all models using the CNN toolkit:
https://github.com/clab/cnn.

12The BLSTMs have a single layer in each direction. We
experimented with 2 layers in all models during development
and found negligible improvements.

1759

Model Dev Test
C&C 91.50 92.02
Xu et al. (2015) 93.07 93.00
Xu et al. (2016) 93.49 93.52
Lewis et al. (2016) 94.1 94.3
Vaswani et al. (2016) 94.08 -
Vaswani et al. (2016) +LM +beam 94.24 94.50
BLSTM 94.11 94.29
BLSTM-local 94.31 94.46
BLSTM-global 94.22 94.42

Table 1: 1-best supertagging results on both the dev and test
sets. BLSTM is the baseline model without attention; BLSTM-
local and -global are the two attention-based models.

hidden state size is 256, and the size of the atten-
tional hidden layer (xt, Eq. 5) is 200. All parsing
model LSTMs have a hidden state size of 128, and
the size of the action hidden layer (bt, Eq. 4) is 80.

Pretrained word embeddings for all models are
100-dimensional (Turian et al., 2010), and all other
embeddings are 50-dimensional. We also pretrained
CCG lexical category and POS embeddings on the
concatenation of the training data and a Wikipedia
dump parsed with C&C.13 All other parameters were
uniformly initialized in ±

√
6/(r + c), where r and

c are the number of rows and columns of a ma-
trix (Glorot and Bengio, 2010).

For training, we used plain non-minibatched
stochastic gradient descent with an initial learning
rate η0 = 0.1 and we kept iterating in epochs until
accuracy no longer increases on the dev set. For all
models, a learning rate schedule ηe = η0/(1 + λe)
with λ = 0.08 was used for e ≥ 11. Gradients were
clipped whenever their norm exceeds 5. Dropout
training as suggested by Zaremba et al. (2014), with
a dropout rate of 0.3, and an `2 penalty of 1× 10−5,
were applied to all models.

5.1 Supertagging Results

Table 1 summarizes 1-best supertagging results. Our
baseline BLSTM model without attention achieves
the same level of accuracy as Lewis et al. (2016)
and the baseline BLSTM model of Vaswani et al.
(2016). Compared with the latter, our hidden state
size is 50% smaller (256 vs. 512).

For training and testing the local attention model
(BLSTM-local), we used an attention window size

13We used the gensim word2vec toolkit: https://
radimrehurek.com/gensim/.

Supertagger β
Beam 0.09 0.07 0.06 0.01 0.001
1 86.49 86.52 86.56 86.26 85.80
2 86.55 86.58 86.63 86.39 86.01
8 86.61 86.64 86.67 86.40 86.07

Table 2: Tuning beam size and supertagger β on the dev set.

Model LP LR LF CAT
LSTM-w 90.13 76.99 83.05 94.24
LSTM-w+c 89.37 83.25 86.20 94.34
LSTM-w+c+a 89.31 83.39 86.25 94.38
LSTM-w+c+a+p 89.43 83.86 86.56 94.47

Table 3: F1 on dev for all the greedy models.

of 5 (tuned on the dev set), and it gives an improve-
ment of 0.94% over the BRNN supertagger (Xu
et al., 2016), achieving an accuracy on par with
the beam-search (size 12) model of Vaswani et al.
(2016) that is enhanced with a language model. De-
spite being able to consider wider contexts than the
local model, the global attention model (BLSTM-
global) did not show further gains, hence we used
BLSTM-local for all parsing experiments below.

5.2 Parsing Results
All parsers we consider use a supertagger probabil-
ity cutoff β to prune categories less likely than β
times the probability of the best category in a distri-
bution: for the C&C parser, it uses an adaptive strat-
egy to backoff to more relaxed β values if no span-
ning analysis is found given an initial β setting; for
all the shift-reduce parsers, fixed β values are used
without backing off. Since β determines the deriva-
tion space of a parser, it has a large impact on the
final parsing accuracy.

For the maximum-likelihood greedy model, we
found using a small β value (bigger ambiguity) for
training significantly improved accuracy, and we
chose β = 1× 10−5 (5.22 categories per word with
jackknifing) via development experiments. This re-
inforces the findings in a number of other CCG

parsers (Clark and Curran, 2007; Auli and Lopez,
2011a; Zhang and Clark, 2011; Lewis and Steed-
man, 2014a; Xu et al., 2014): even though a more
relaxed β increases ambiguity, it leads to more ac-
curate models at test time. On the other hand, we
found using smaller β values at test time led to sig-
nificantly better results (Table 2). And this observa-
tion differs from the beam-search models which use
the same β value for both training and testing.

1760

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 0 5 10 15 20 25 30

F
1

 (
la

b
e

le
d

)
o

n
 d

e
v
 s

e
t

Training epochs

LSTM-w
LSTM-wc

LSTM-wca
LSTM-wcap

(a) Dev F1 of the greedy models

 86.6

 86.7

 86.8

 86.9

 87

 87.1

 87.2

 87.3

 87.4

 87.5

 0 5 10 15 20

F
1

 (
la

b
e

le
d

)
o

n
 d

e
v
 s

e
t

Training epochs

LSTM-XF1 (beam = 8)

(b) Dev F1 of the XF1 model

Figure 4: Learning curves with dev F-scores for all models.

Section 00 Section 23
Model Beam LP LR LF CAT LP LR LF CAT
C&C (normal-form) - 85.18 82.53 83.83 92.39 85.45 83.97 84.70 92.83
C&C (dependency hybrid) - 86.07 82.77 84.39 92.57 86.24 84.17 85.19 93.00
Zhang and Clark (2011) 16 87.15 82.95 85.00 92.77 87.43 83.61 85.48 93.12
Xu et al. (2014) 128 86.29 84.09 85.18 92.75 87.03 85.08 86.04 93.10
Ambati et al. (2016) 16 - - 85.69 93.02 - - 85.57 92.86
Xu et al. (2016)-greedy 1 88.12 81.38 84.61 93.42 88.53 81.65 84.95 93.57
Xu et al. (2016)-XF1 8 88.20 83.40 85.73 93.56 88.74 84.22 86.42 93.87
LSTM-greedy 1 89.43 83.86 86.56 94.47 89.75 84.10 86.83 94.63
LSTM-XF1 1 89.68 85.29 87.43 94.41 89.85 85.51 87.62 94.53
LSTM-XF1 8 89.54 85.46 87.45 94.39 89.81 85.81 87.76 94.57

Table 4: Parsing results on the dev (Section 00) and test (Section 23) sets with 100% coverage, with all LSTM models using the
BLSTM-local supertagging model. All experiments using auto POS. CAT (lexical category assignment accuracy). LSTM-greedy
is the full greedy parser.

The greedy model. Table 3 shows the dev set re-
sults for all greedy models, where the four types
of embeddings, that is, word (w), CCG category
(c), action (a) and POS (p), are gradually intro-
duced. The full model LSTM-w+c+a+p surpasses
all previous shift-reduce models (Table 4), achiev-
ing a dev set accuracy of 86.56%. Category em-
beddings (LSTM-w+c) yielded a large gain over us-
ing word embeddings alone (LSTM-w); action em-
beddings (LSTM-w+c+a) provided little improve-
ment, but further adding POS embeddings (LSTM-
w+c+a+p) gave noticeable recall (+0.61%) and F1
improvements (+0.36%) over LSTM-w+c. Fig. 4a
shows the learning curves, where all models con-
verged in under 30 epochs.

The XF1 model. Table 4 also shows the results for
the XF1 models (LSTM-XF1), which use all four
types of embeddings. We used a beam size of 8, and

Model Dev Test
LSTM-BRNN 85.86 86.37
LSTM-BLSTM 86.26 86.64
LSTM-greedy 86.56 86.83

Table 5: Effect of different supertaggers on the full greedy
parser. LSTM-greedy is the same parser as in Table 4, which
uses the BLSTM-local supertagger.

a β value of 0.06 for both training and testing (tuned
on the dev set); and training took 12 epochs to con-
verge (Fig. 4b), with an F1 of 87.45% on the dev
set. Decoding the XF1 model with greedy inference
only slightly decreased recall and F1, and this re-
sulted in a highly accurate deterministic parser. On
the test set, our XF1 greedy model gives +2.67%
F1 improvement over the greedy model in Xu et al.
(2016); and the beam-search XF1 model achieves an
F1 improvement of +1.34% compared with the XF1
model of Xu et al. (2016).

1761

Model LP LR LF
Xu et al. (2015) 87.68 86.41 87.04
Lewis et al. (2016) 87.7 86.7 87.2
Lewis et al. (2016)? 88.6 87.5 88.1
Vaswani et al. (2016)∗ - - 88.32
Lee et al. (2016) - - 88.7
LSTM-XF1 (beam = 1) 89.85 85.51 87.62
LSTM-XF1 (beam = 8) 89.81 85.81 87.76

Table 6: Comparison of our XF1 models with chart-based
parsers on the test set. ? denotes a tri-trained model and ∗ indi-
cates a different POS tagger.

Effect of the supertagger. To isolate the parsing
model from the supertagging model, we first ex-
perimented with the BRNN supertagging model as
in Xu et al. (2016) for both training and testing
the full greedy LSTM parser. Using this supertag-
ger, we still achieved the highest F1 (85.86%) on
the dev set (LSTM-BRNN, Table 5) in compari-
son with all previous shift-reduce models; and an
improvement of 1.42% F1 over the greedy model
of Xu et al. (2016) was obtained on the test set
(Table 4). We then experimented with using the
baseline BLSTM supertagging model for parsing
(LSTM-BLSTM), and observed the attention-based
setup (LSTM-greedy) outperformed it, despite the
attention-based supertagger (BLSTM-local) did not
give better multi-tagging accuracy. We owe this to
the fact that very tight β cutoff values—resulting
in almost deterministic supertagging decisions on
average—are required by the parser during infer-
ence; for instance, BLSTM-local has an average am-
biguity of 1.09 on the dev set with β = 0.06.14

Comparison with chart-based models. For com-
pleteness and to put our results in perspective, we
compare our XF1 models with other CCG parsers
in the literature (Table 6): Xu et al. (2015) is the
log-linear C&C dependency hybrid model with an
RNN supertagger front-end; Lewis et al. (2016)
is an LSTM supertagger-factored parser using the
A∗ CCG parsing algorithm of Lewis and Steed-
man (2014a); Vaswani et al. (2016) combine a
BLSTM supertagger with a new version of the C&C

parser (Clark et al., 2015) that uses a max-violation
percetrpon, which significantly improves over the

14All β cutoffs were tuned on the dev set; for BRNN, we
found the same β settings as in Xu et al. (2016) to be optimal;
for BLSTM, β = 4 × 10−5 for training (with an ambiguity of
5.27) and β = 0.02 for testing (with an ambiguity of 1.17).

original C&C models; and finally, a global recursive
neural network model with A∗ decoding (Lee et al.,
2016). We note that all these alternative models—
with the exception of Xu et al. (2015) and Lewis et
al. (2016)—use structured training that accounts for
violations of the gold-standard, and we conjecture
further improvements for our model are possible by
incorporating such mechanisms.15

6 Conclusion

We have presented an LSTM parsing model for CCG,
with a factorization allowing the linearization of the
complete parsing history. We have shown that this
simple model is highly effective, with results out-
performing all previous shift-reduce CCG parsers.
We have also shown global optimization benefits an
LSTM shift-reduce model; and contrary to previous
findings with the averaged percetpron (Zhang and
Clark, 2008), we empirically demonstrated beam-
search inference is not necessary for our globally op-
timized model. For future work, a natural direction
is to explore integrated supertagging and parsing in
a single neural model (Zhang and Weiss, 2016).

Acknowledgment

I acknowledge the support from the Carnegie Trust
for the Universities of Scotland through a Carnegie
Scholarship.

References
Anthony Ades and Mark Steedman. 1982. On the order

of words. In Linguistics and philosophy. Springer.
Alfred Aho and Jeffrey Ullman. 1972. The theory of

parsing, translation, and compiling. Prentice-Hall.
Bharat Ram Ambati, Tejaswini Deoskar, and Mark Steed-

man. 2016. Shift-reduce CCG parsing using neural
network models. In Proc. of NAACL (Volume 2).

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Proc. of
ACL.

Michael Auli and Adam Lopez. 2011a. A comparison of
loopy belief propagation and dual decomposition for

15Our XF1 training considers shift-reduce action sequences,
but not violations of the gold-standard (e.g., see Huang et
al. (2012), Watanabe and Sumita (2015), Zhou et al. (2015)
and Andor et al. (2016)).

1762

integrated CCG supertagging and parsing. In Proc. of
ACL.

Michael Auli and Adam Lopez. 2011b. Training a log-
linear parser with loss functions via softmax-margin.
In Proc. of EMNLP.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. of ICLR.

Srinivas Bangalore and Aravind Joshi. 1999. Supertag-
ging: An approach to almost parsing. In Computa-
tional linguistics. MIT Press.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradient
descent is difficult. In Neural Networks, IEEE Trans-
actions on. IEEE.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer. 2015. Scheduled sampling for sequence pre-
diction with recurrent neural networks. In Proc. of
NIPS.

Danqi Chen and Christopher Manning. 2014. A fast and
accurate dependency parser using neural networks. In
Proc. of EMNLP.

Stephen Clark and James Curran. 2004. The importance
of supertagging for wide-coverage CCG parsing. In
Proc. of COLING.

Stephen Clark and James Curran. 2007. Wide-coverage
efficient statistical parsing with CCG and log-linear
models. In Computational Linguistics. MIT Press.

Stephen Clark, Darren Foong, Luana Bulat, and Wend-
uan Xu. 2015. The Java version of the C&C parser.
Technical report, University of Cambridge Computer
Laboratory.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In Proc. of
ACL.

Michael Collins. 2002. Discriminative training methods
for hidden Markov models: Theory and experiments
with perceptron algorithms. In Proc. of EMNLP.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proc. of ACL.

Jason Eisner. 1996. Efficient normal-form parsing for
Combinatory Categorial Grammar. In Proc. of ACL.

Jeffrey Elman. 1990. Finding structure in time. In Cog-
nitive science. Elsevier.

Timothy Fowler and Gerald Penn. 2010. Accu-
rate context-free parsing with Combinatory Categorial
Grammar. In Proc. of ACL.

Felix Gers and Jürgen Schmidhuber. 2000. Recurrent
nets that time and count. In Neural Networks. IEEE.

Felix Gers, Jürgen Schmidhuber, and Fred Cummins.
2000. Learning to forget: Continual prediction with
LSTM. In Neural computation. MIT Press.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proc. of AISTATS.

Joshua Goodman. 1996. Parsing algorithms and metrics.
In Proc. of ACL.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional LSTM
and other neural network architectures. In Neural Net-
works. Elsevier.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. In Neural computation. MIT
Press.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
Bank: A corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. In Com-
putational Linguistics. MIT Press.

Julia Hockenmaier. 2003. Data and Models for Statis-
tical Parsing with Combinatory Categorial Grammar.
Ph.D. thesis, University of Edinburgh.

Liang Huang, Suphan Fayong, and Yang Guo. 2012.
Structured perceptron with inexact search. In Proc.
of NAACL.

Marco Kuhlmann and Giorgio Satta. 2014. A new pars-
ing algorithm for Combinatory Categorial Grammar.
In Transactions of the Association for Computational
Linguistics. ACL.

Kenton Lee, Mike Lewis, and Luke Zettlemoyer. 2016.
Global neural CCG parsing with optimality guaran-
tees. In Proc. of EMNLP.

Mike Lewis and Mark Steedman. 2014a. A* CCG
parsing with a supertag-factored model. In Proc. of
EMNLP.

Mike Lewis and Mark Steedman. 2014b. Improved CCG
parsing with semi-supervised supertagging. In Trans-
actions of the Association for Computational Linguis-
tics. ACL.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016.
LSTM CCG parsing. In Proc. of NAACL.

Minh-Thang Luong, Hieu Pham, and Christopher Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proc. of EMNLP.

Vinod Nair and Geoffrey Hinton. 2010. Rectified linear
units improve restricted boltzmann machines. In Proc.
of ICML.

Joakim Nivre and Mario Scholz. 2004. Deterministic
dependency parsing of English text. In Proc. of COL-
ING.

David Smith and Jason Eisner. 2006. Minimum-risk
annealing for training log-linear models. In Proc. of
COLING-ACL.

Richard Socher, Christopher Manning, and Andrew Ng.
2010. Learning continuous phrase representations and
syntactic parsing with recursive neural networks. In

1763

Proc. of the NIPS Deep Learning and Unsupervised
Feature Learning Workshop.

Richard Socher, Cliff Lin, Christopher Manning, and An-
drew Ng. 2011. Parsing natural scenes and natural
language with recursive neural networks. In Proc. of
ICML.

Richard Socher, John Bauer, Christopher Manning, and
Andrew Ng. 2013. Parsing with compositional vector
grammars. In Proc. of ACL.

Mark Steedman. 2000. The Syntactic Process. MIT
Press.

Roy Tromble, Shankar Kumar, Franz Och, and Wolfgang
Macherey. 2008. Lattice minimum bayes-risk de-
coding for statistical machine translation. In Proc. of
EMNLP.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method for
semi-supervised learning. In Proc. of ACL.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan
Musa. 2016. Supertagging with LSTMs. In Proc. of
NAACL (Volume 2).

Krishnamurti Vijay-Shanker and David Weir. 1993.
Parsing some constrained grammar formalisms. In
Computational Linguistics. MIT Press.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar
as a foreign language. In Proc. of NIPS.

Taro Watanabe and Eiichiro Sumita. 2015. Transition-
based neural constituent parsing. In Proc. of ACL.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In Proc. of ACL.

Wenduan Xu, Stephen Clark, and Yue Zhang. 2014.
Shift-reduce CCG parsing with a dependency model.
In Proc. of ACL.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.
CCG supertagging with a recurrent neural network. In
Proc. of ACL (Volume 2).

Wenduan Xu, Michael Auli, and Stephen Clark. 2016.
Expected F-measure training for shift-reduce parsing
with recurrent neural networks. In Proc. of NAACL.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical
dependency analysis using support vector machines.
In Proc. of IWPT.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization. In
Proc. of ICLR.

Yue Zhang and Stephen Clark. 2008. A tale of
two parsers: investigating and combining graph-based
and transition-based dependency parsing using beam-
search. In Proc. of EMNLP.

Yue Zhang and Stephen Clark. 2011. Shift-reduce CCG
parsing. In Proc. of ACL.

Yuan Zhang and David Weiss. 2016. Stack-propagation:
Improved representation learning for syntax. In Proc.
of ACL.

Hao Zhou, Yue Zhang, Shujian Huang, and Jiajun Chen.
2015. A neural probabilistic structured-prediction
model for transition-based dependency parsing. In
Proc. of ACL.

1764

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1765–1774,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

An Evaluation of Parser Robustness for Ungrammatical Sentences

Homa B. Hashemi
Intelligent Systems Program

University of Pittsburgh
hashemi@cs.pitt.edu

Rebecca Hwa
Computer Science Department

University of Pittsburgh
hwa@cs.pitt.edu

Abstract

For many NLP applications that require a
parser, the sentences of interest may not be
well-formed. If the parser can overlook prob-
lems such as grammar mistakes and produce
a parse tree that closely resembles the correct
analysis for the intended sentence, we say that
the parser is robust. This paper compares the
performances of eight state-of-the-art depen-
dency parsers on two domains of ungrammat-
ical sentences: learner English and machine
translation outputs. We have developed an
evaluation metric and conducted a suite of ex-
periments. Our analyses may help practition-
ers to choose an appropriate parser for their
tasks, and help developers to improve parser
robustness against ungrammatical sentences.

1 Introduction

Previous works have shown that, in general, parser
performances degrade when applied to out-of-
domain sentences (Gildea, 2001; McClosky et al.,
2010; Foster, 2010; Petrov et al., 2010; Foster et al.,
2011). If a parser performs reasonably well for a
wide range of out-of-domain sentences, it is said to
be robust (Bigert et al., 2005; Kakkonen, 2007; Fos-
ter, 2007).

Sentences that are ungrammatical, awkward, or
too casual/colloquial can all be seen as special kinds
of out-of-domain sentences. These types of sen-
tences are commonplace for NLP applications, from
product reviews and social media analysis to intel-
ligent language tutors and multilingual processing.
Since parsing is an essential component for many
applications, it is natural to ask: Are some parsers

more robust than others against sentences that are
not well-formed? Previous works on parser evalu-
ation that focused on accuracy and speed (Choi et
al., 2015; Kummerfeld et al., 2012; McDonald and
Nivre, 2011; Kong and Smith, 2014) have not taken
ungrammatical sentences into consideration.

In this paper, we report a set of empirical analy-
ses of eight leading dependency parsers on two do-
mains of ungrammatical text: English-as-a-Second
Language (ESL) learner text and machine transla-
tion (MT) outputs. We also vary the types of train-
ing sources; the parsers are trained with the Penn
Treebank (to be comparable with other studies) and
Tweebank, a treebank on tweets (to be a bit more
like the test domain) (Kong et al., 2014).

The main contributions of the paper are:

• a metric and methodology for evaluating un-
grammatical sentences without referring to a
gold standard corpus;

• a quantitative comparison of parser accuracy of
leading dependency parsers on ungrammatical
sentences; this may help practitioners to select
an appropriate parser for their applications; and

• a suite of robustness analyses for the parsers on
specific kinds of problems in the ungrammati-
cal sentences; this may help developers to im-
prove parser robustness in the future.

2 Evaluation of Parser Robustness

Parser evaluation for ungrammatical texts presents
some domain-specific challenges. The typical ap-
proach to evaluate parsers is to compare parser out-

1765

puts against manually annotated gold standards. Al-
though there are a few small semi-manually con-
structed treebanks on learner texts (Geertzen et al.,
2013; Ott and Ziai, 2010) or tweets (Daiber and
van der Goot, 2016), their sizes make them unsuit-
able for the evaluation of parser robustness. More-
over, some researchers have raised valid questions
about the merit of creating a treebank for ungram-
matical sentences or adapting the annotation schema
(Cahill, 2015; Ragheb and Dickinson, 2012).

A “gold-standard free” alternative is to compare
the parser output for each problematic sentence with
the parse tree of the corresponding correct sentence.
Foster (2004) used this approach over a small set of
ungrammatical sentences and showed that parser’s
accuracy is different for different types of errors.
A limitation of this approach is that the compari-
son works best when the differences between the
problematic sentence and the correct sentence are
small. This is not the case for some ungrammatical
sentences (especially from MT systems). Another
closely-related approach is to semi-automatically
create treebanks from artificial errors. For exam-
ple, Foster generated artificial errors to the sentences
from the Penn Treebank for evaluating the effect of
error types on parsers (Foster, 2007). In another
work, Bigert et al. (2005) proposed an unsupervised
evaluation of parser robustness based on the intro-
duction of artificial spelling errors in error-free sen-
tences. Kakkonen (2007) adapted a similar method
to compare the robustness of four parsers over sen-
tences with misspelled words.

Our proposed evaluation methodology is similar
to the “gold-standard free” approach; we compare
the parser output for an ungrammatical sentence
with the automatically generated parse tree of the
corresponding correct sentence. In the next section,
we discuss our evaluation metric to address the con-
cerns that some ungrammatical sentences may be
very different from their corrected versions. This al-
lows us to evaluate parsers with more realistic data
that exhibit a diverse set of naturally occurring er-
rors, instead of artificially generated errors or lim-
ited error types.

3 Proposed Evaluation Methodology

For the purpose of robustness evaluation, we take the
automatically produced parse tree of a well-formed
sentence as “gold-standard” and compare the parser
output for the corresponding problematic sentence
against it. Even if the “gold-standard” is not per-
fectly correct in absolute terms, it represents the
norm from which parse trees of problematic sen-
tences diverge: if a parser were robust against un-
grammatical sentences, its output for these sentences
should be similar to its output for the well-formed
ones.

Determining the evaluation metric for compar-
ing these trees, however, presents another chal-
lenge. Since the words of the ungrammatical sen-
tence and its grammatical counterpart do not neces-
sarily match (an example is given in Figure 1), we
cannot use standard metrics such as Parseval (Black
et al., 1991). We also cannot use adapted metrics
for comparing parse trees of unmatched sentences
(e.g., Sparseval (Roark et al., 2006)), because these
metrics consider all the words regardless of the mis-
matches (extra or missing words) between two sen-
tences. This is a problem for comparing ungrammat-
ical sentences to grammatical ones because a parser
is unfairly penalized when it assigns relations to ex-
tra words and when it does not assign relations to
missing words. Since a parser cannot modify the
sentence, we do not want to penalize these extra-
neous or missing relations; on the other hand, we
do want to identify cascading effects on the parse
tree due to a grammar error. For the purpose of
evaluating parser robustness against ungrammatical
sentences, we propose a modified metric in which
the dependencies connected to unmatched (extra or
missing) error words are ignored. A more formal
definition is as follows:

• Shared dependency is a mutual dependency be-
tween two trees;

• Error-related dependency is a dependency con-
nected to an extra word1 in the sentence;

• Precision is (# of shared dependencies) / (# of
dependencies of the ungrammatical sentence -

1The extra word in the ungrammatical sentences is an un-
necessary word error, and the extra word in the grammatical
sentence is a missing word error.

1766

I appreciate all about this

I appreciate all this

ROOT

ROOT

U
ng

ra
m

m
at

ic
al

G
ra

m
m

at
ic

al

Figure 1: Example of evaluating robustness of an
ungrammatical sentence (top) dependency parse tree
with its corresponding grammatical sentence (bot-
tom).

of error-related dependencies of the ungram-
matical sentence);

• Recall is (# of shared dependencies) / (# of de-
pendencies of the grammatical sentence - # of
error-related dependencies of the grammatical
sentence); and

• Robustness F1 is the harmonic mean of preci-
sion and recall.

Figure 1 shows an example in which the un-
grammatical sentence has an unnecessary word,
“about”, so the three dependencies connected to it
are counted as error-related dependencies. The two
shared dependencies between the trees result in a
precision of 2/(5−3) = 1, recall of 2/(4−0) = 0.5,
and Robustness F1 of 66%.

4 Experimental Setup

Our experiments are conducted over a wide range of
dependency parsers that are trained on two different
treebanks: Penn Treebank (PTB) and Tweebank. We
evaluate the robustness of parsers over two datasets
that contain ungrammatical sentences: writings of
English-as-a-Second language learners and machine
translation outputs. We choose datasets for which
the corresponding correct sentences are available (or
easily reconstructed).

4.1 Parsers

Our evaluation is over eight state-of-the-art depen-
dency parsers representing a wide range of ap-
proaches. We use the publicly available versions of
each parser with the standard parameter settings.

Malt Parser (Nivre et al., 2007)2 A greedy
transition-based dependency parser. We use LI-
BLINEAR setting in the learning phase.

Mate Parser v3.6.1 (Bohnet, 2010)3 A graph-based
dependency parser that uses second-order maxi-
mum spanning tree.

MST Parser (McDonald and Pereira, 2006)4 A first-
order graph-based parser that searches for maxi-
mum spanning trees.

Stanford Neural Network Parser (SNN) (Chen and
Manning, 2014)5 A transition-based parser that
uses word embeddings. We use pre-trained
word embeddings from Collobert et al. (2011) as
recommended by the authors.

SyntaxNet (Andor et al., 2016)6 A transition-based neu-
ral network parser. We use the globally normalized
training of the parser with default parameters.

Turbo Parser v2.3 (Martins et al., 2013)7 A graph-
based dependency parser that uses dual decompo-
sition algorithm with third-order features.

Tweebo Parser (Kong et al., 2014)8 An extension of the
Turbo Parser specialized to parse tweets. Tweebo
Parser adds a new constraint to the Turbo Parser’s
integer linear programming to ignore some Twitter
tokens from parsing, but also simultaneously uses
these tokens as parsing features.

Yara Parser (Rasooli and Tetreault, 2015)9 A
transition-based parser that uses beam search
training and dynamic oracle.

4.2 Data
We train all the parsers using two treebanks and test
their robustness over two ungrammatical datasets.

4.2.1 Parser Training Data
Penn Treebank (PTB) We follow the standard
splits of Penn Treebank, using section 2-21 for train-
ing, section 22 for development, and section 23 for

2www.maltparser.org
3code.google.com/p/mate-tools
4seas.upenn.edu/˜strctlrn/MSTParser/

MSTParser.html
5nlp.stanford.edu/software/nndep.shtml
6github.com/tensorflow/models/tree/

master/syntaxnet
7www.cs.cmu.edu/˜ark/TurboParser
8github.com/ikekonglp/TweeboParser
9github.com/yahoo/YaraParser

1767

testing. We transform bracketed sentences from
PTB into dependency formats using Stanford Ba-
sic Dependency representation (De Marneffe et al.,
2006) from Stanford parser v3.6. We assign POS
tags to the training data using Stanford POS tagger
(Toutanova et al., 2003) with ten-way jackknifing
(with 97.3% accuracy).

Tweebank Tweebank is a Twitter dependency cor-
pus annotated by non-experts containing 929 tweets
(Kong et al., 2014). Kong et al. (2014) used 717
of tweets for training and 201 for test10. We fol-
low the same split in our experiments. We use pre-
trained POS tagging model of Kong et al. (2014)
(with 92.8% accuracy) over the tweets.

The elements in tweets that have no syntactic
function (such as hashtags, URLs and emoticons)
are annotated as unselected tokens (no tokens as the
heads). In order to be able to use Tweebank in other
parsers, we link the unselected tokens to the wall
symbol (i.e. root as the heads). This assumption will
generate more arcs from the root, but since we use
the same evaluation setting for all the parsers, the
results are comparable. We evaluate the accuracy of
the trained parser on Tweebank with the unlabeled
attachment F1 score (same procedure as Kong et al.
(2014)).

4.2.2 Robustness Test Data
To test the robustness of parsers, we choose two

datasets of ungrammatical sentences for which their
corresponding correct sentences are available. For a
fair comparison, we automatically assign POS tags
to the test data. When parsers are trained on PTB,
we use the Stanford POS tagger (Toutanova et al.,
2003). When parsers are trained on Tweebank, we
coarsen POS tags to be compatible with the Twitter
POS tags using the mappings specified by Gimpel et
al. (2011).

English-as-a-Second Language corpus (ESL)
For the ungrammatical sentences, we use the First
Certificate in English (FCE) dataset (Yannakoudakis
et al., 2011) that contains the writings of English as
a second language learners and their corresponding
error corrections. Given the errors and their correc-
tions, we can easily reconstruct the corrected version

10github.com/ikekonglp/TweeboParser/tree/
master/Tweebank

of each ungrammatical ESL sentence. From this cor-
pus, we randomly select 10,000 sentences with at
least one error; there are 4954 with one error; 2709
with two errors; 1290 with three; 577 with four; 259
with five; 111 with six; and 100 with 7+ errors.

Machine Translation corpus (MT) Machine
translation outputs are another domain of ungram-
matical sentences. We use the LIG (Potet et al.,
2012) which contains 10,881 and LISMI’s TRACE
corpus11 which contains 6,693 French-to-English
machine translation outputs and their human post-
editions. From these corpora, we randomly se-
lect 10,000 sentences with at least edit distance one
(upon words) with their human-edited sentence. The
distribution of the number of sentences with their
edit distances from 1 to 10+ is as follows (begin-
ning with 1 edit distance and ending with 10+): 674;
967; 1019; 951; 891; 802; 742; 650; 547; and 2752.

4.3 Evaluation Metric
In the robustness evaluation metric (Section 3),
shared dependencies and error-related dependencies
are detected based on alignments between words in
the ungrammatical and grammatical sentences. We
find the alignments in the FCE and MT data in a
slightly different way. In the FCE dataset, in which
the error words are annotated, the grammatical and
ungrammatical sentences can easily be aligned. In
the MT dataset, we use the TER (Translation Error
Rate) tool (default settings)12 to find alignments.

In our experiments, we present unlabeled robust-
ness F1 micro-averaged across the test sentences.
We consider punctuations when parsers are trained
with the PTB data, because punctuations can be
a source of ungrammaticality. However, we ig-
nore punctuations when parsers are trained with the
Tweebank data, because punctuations are not anno-
tated in the tweets with their dependencies.

5 Experiments

The experiments aim to address the following ques-
tions given separate training and test data:

1. How do parsers perform on erroneous sen-
tences? (Section 5.1)

11anrtrace.limsi.fr/trace_postedit.tar.
bz2

12www.cs.umd.edu/˜snover/tercom

1768

Parser
Train on PTB §1-21 Train on Tweebanktrain

UAS Robustness F1 UAF1 Robustness F1

PTB §23 ESL MT Tweebanktest ESL MT
Malt 89.58 93.05 76.26 77.48 94.36 80.66
Mate 93.16 93.24 77.07 76.26 91.83 75.74
MST 91.17 92.80 76.51 73.99 92.37 77.71
SNN 90.70 93.15 74.18 53.4 88.90 71.54
SyntaxNet 93.04 93.24 76.39 75.75 88.78 81.87
Turbo 92.84 93.72 77.79 79.42 93.28 78.26
Tweebo - - - 80.91 93.39 79.47
Yara 93.09 93.52 73.15 78.06 93.04 75.83

Table 1: Parsers’ performance in terms of accuracy and robustness. The best result in each column is given
in bold, and the worst result is in italics.

2. To what extent is each parser negatively im-
pacted by the increase in the number of errors
in sentences? (Section 5.2)

3. To what extent is each parser negatively im-
pacted by the interactions between multiple er-
rors? (Section 5.3)

4. What types of errors are more problematic for
parsers? (Section 5.4)

5.1 Overall Accuracy and Robustness
The overall performances of all parsers are shown in
Table 1. Note that the Tweebo Parser’s performance
is not trained on the PTB because it is a specializa-
tion of the Turbo Parser, designed to parse tweets.
Table 1 shows that, for both training conditions, the
parser that has the best robustness score in the ESL
domain has also high robustness for the MT domain.
This suggests that it might be possible to build robust
parsers for multiple ungrammatical domains. The
training conditions do matter – Malt performs better
when trained from Tweebank than from the PTB. In
contrast, Tweebank is not a good fit with the neu-
ral network parsers due to its small size. Moreover,
SNN uses pre-trained word embeddings, and 60% of
Tweebank tokens are missing.

Next, let us compare parsers within each train/test
configuration for their relative robustness. When
trained on the PTB, all parsers are comparably ro-
bust on ESL data, while they exhibit more differ-
ences on the MT data, and, as expected, everyone’s
performance is much lower because MT errors are
more diverse than ESL errors. We expected that by

training on Tweebank, parsers will perform better on
ESL data (and maybe even MT data), since Twee-
bank is arguably more similar to the test domains
than the PTB; we also expected Tweebo to outper-
form others. The results are somewhat surprising.
On the one hand, the highest parser score increased
from 93.72% (Turbo trained on PTB) to 94.36%
(Malt trained on Tweebank), but the two neural net-
work parsers performed significantly worse, most
likely due to the small training size of Tweebank. In-
terestingly, although SyntaxNet has the lowest score
on ESL, it has the highest score on MT, showing
promise in its robustness.

5.2 Parser Robustness by Number of Errors

To better understand the overall results, we further
breakdown the test sentences by the number of er-
rors each contains. Our objectives are: (1) to observe
the speed with which the parsers lose their robust-
ness as the sentences become more error-prone; (2)
to determine whether some parsers are more robust
than others when handling noisier data.

Figure 2 presents four graphs, plotting robust-
ness F1 scores against the number of errors for all
parsers under each train/test configuration. In terms
of the parsers’ general degradation of robustness, we
observe that: 1) parsing robustness degrades faster
with the increase of errors for the MT data than the
ESL data; 2) training on the PTB led to a more simi-
lar behavior between the parsers than when training
on Tweebank; 3) training on Tweebank does help
some parsers to be more robust against many errors.

In terms of relative robustness between parsers,

1769

Figure 2: Variation in parser robustness as the number of errors in the test sentences increases.

we observe that Malt, Turbo, and Tweebo parsers
are more robust than others given noisier inputs.
The SNN parser is a notable outlier when trained on
Tweebank due to insufficient training examples.

5.3 Impact of Error Distances

This experiment explores the impact of the interac-
tivity of errors. We assume that errors have more
interaction if they are closer to each other, and less
interaction if they are scattered throughout the sen-
tence. We define “near” to be when there is at most
1 word between errors and “far” to be when there
are at least 6 words between errors. We expect all
parsers to have more difficulty on parsing sentences
when their errors have more interaction, but how do
the parsers compare against each other? We conduct
this experiment using a subset of sentences that have
exactly three errors; we compare parser robustness
when these three errors are near each other with the
robustness when the errors are far apart.

Table 2 presents the results as a collection of
shaded bars. This aims to give an at-a-glance vi-
sualization of the outcomes. In this representation,
all parsers with the same train data and test domain
(including both the near and far sets) are treated as
one group. The top row specifies the lowest score of
all parsers on both test sets; the bottom row speci-
fies the highest score. The shaded area of each bar
indicates the relative robustness of each parser with
respect to the lowest and highest scores of the group.
An empty bar indicates that it is the least robust (cor-
responding to the lowest score in the top row); a
fully shaded bar means it is the most robust (cor-
responding to the highest score in the bottom row).
Consider the left-most box, in which parsers trained
on PTB and tested on ESL are compared. In this

group13, Yara (near) is the least robust parser with a
score of F1 = 87.3%, while SNN (far) is the most
robust parser with a score of F1 = 93.4%; as ex-
pected, all parsers are less robust when tested on
sentences with near errors than far errors, but they
do exhibit relative differences: Turbo parser seems
most robust in this setting. Turbo parser’s lead in
handling error interactivity holds for most of the
other train/test configurations as well; the only ex-
ception is for Tweebank/MT, where SyntaxNet and
Malt are better. Compared to ESL data, near er-
rors in MT data are more challenging for all parsers;
when trained on PTB, most are equally poor, except
for Yara, which has the worst score (79.1%), even
though it has the highest score when the errors are
far apart (91.5%). Error interactivity has the most
effect on Yara parser in all but one train/test config-
uration (Tweebank/ESL).

5.4 Impact of Error Types

In the following experiments, we examine the im-
pact of different error types. To remove the impact
due to interactivity between multiple errors, these
studies use a subset of sentences that have only one
error. Although all parsers are fairly robust for sen-
tences containing one error, our focus here is on the
relative performances of parsers over different error
types: We want to see whether some error types are
more problematic for some parsers than others.

5.4.1 Impact of grammatical error types
The three main grammar error types are replace-

ment (a word need replacing), missing (a word miss-
ing), and unnecessary (a word is redundant). Our

13As previously explained, Tweebo is not trained on PTB, so
it has no bars associated with it.

1770

Train on PTB §1-21 Train on Tweebanktrain
Parser ESL MT ESL MT

Near Far Near Far Near Far Near Far
min 87.3 (Yara) 79.1 (Yara) 82.4 (SyntaxNet) 80.6 (SNN)
Malt
Mate
MST
SNN
SyntaxNet
Turbo
Tweebo
Yara
max 93.4 (SNN) 91.5 (Yara) 94.5 (Malt) 94.4 (Malt)

Table 2: Parser performance on test sentences with three near and three far errors. Each box represents one
train/test configuration for all parsers and error types. The bars within indicate the level of robustness scaled
to the lowest score (empty bar) and highest score (filled bar) of the group.

Train on PTB §1-21 Train on Tweebanktrain
Parser ESL MT ESL MT

Repl. Miss. Unnec. Repl. Miss. Unnec. Repl. Miss. Unnec. Repl. Miss. Unnec.
min 93.7 (MST) 92.8 (Yara) 89.4 (SyntaxNet) 87.8 (SNN)
Malt
Mate
MST
SNN
SyntaxNet
Turbo
Tweebo
Yara
max 96.9 (Turbo) 97.2 (SNN) 97.8 (Malt) 97.6 (Malt)

Table 3: Parser robustness on sentences with one grammatical error, each can be categorized as a replace-
ment error, a missing word error or an unnecessary word error.

goal is to see whether different error types have dif-
ferent effect on parsers. If yes, is there a parser that
is more robust than others?

As shown in Table 3, replacement errors are the
least problematic error type for all the parsers; on
the other hand, missing errors are the most difficult
error type for parsers. This finding suggests that
a preprocessing module for correcting missing and
unnecessary word errors may be helpful in the pars-
ing pipeline.

5.4.2 Impact of error word category
Another factor that might affect parser perfor-

mances is the class of errors; for example, we might
expect an error on a preposition to have a higher im-
pact (since it is structural) than an error on an adjec-
tive. We separate the sentences into two groups: er-
ror occurring on an open- or closed-class word. We

expect closed-class errors to have a stronger negative
impact on the parsers because they contain function
words such as determiners, pronouns, conjunctions
and prepositions.

Table 4 shows results. As expected, closed-class
errors are generally more difficult for parsers. But
when parsers are trained on PTB and tested on MT,
there are some exceptions: Turbo, Mate, MST and
Yara parsers tend to be more robust on closed-class
errors. This result corroborates the importance of
building grammar error correction systems to handle
closed-class errors such as preposition errors.

5.4.3 Impact of error semantic role
An error can be either in a verb role, an argument

role, or no semantic role. We extract semantic role
of the error by running Illinoise semantic role labeler
(Punyakanok et al., 2008) on corrected version of the

1771

Train on PTB §1-21 Train on Tweebanktrain
Parser ESL MT ESL MT

Open class Closed class Open class Closed class Open class Closed class Open class Closed class
min 95.1 (SNN) 94.5 (Yara) 89.6 (SyntaxNet) 91.5 (SNN)
Malt
Mate
MST
SNN
SyntaxNet
Turbo
Tweebo
Yara
max 96.8 (Malt) 96.1 (SNN) 97.6 (Malt) 97.0 (Malt)

Table 4: Parser robustness on sentences with one error, where the error either occurs on an open-class
(lexical) word or a closed-class (functional) word.

Train on PTB §1-21 Train on Tweebanktrain
Parser ESL MT ESL MT

Verb Argument No role Verb Argument No role Verb Argument No role Verb Argument No role
min 94.1 (SyntaxNet) 91.8 (Malt) 91.8 (SNN) 92.2 (SNN)
Malt
Mate
MST
SNN
SyntaxNet
Turbo
Tweebo
Yara
max 96.7 (Turbo) 96.7 (SyntaxNet) 96.9 (Malt) 96.9 (Malt)

Table 5: Parser robustness on sentences with one error where the error occurs on a word taking on a verb
role, an argument role, or a word with no semantic role.

sentences. We then obtain the role of the errors using
alignments between ungrammatical sentence and its
corrected counterpart.

Table 5 shows the average robustness of parsers
when parsing sentences that have one error. For
parsers trained on the PTB data, handling sentences
with argument errors seem somewhat easier than
those with other errors. For parsers trained on the
Tweebank, the variation in the semantic roles of the
errors does not seem to impact parser performance;
each parser performs equally well or poorly across
all roles; comparing across parsers, Malt seems par-
ticularly robust to error variations due to semantic
roles.

6 Conclusions and Recommendations

In this paper, we have presented a set of empirical
analyses on the robustness of processing ungram-
matical text for several leading dependency parsers,
using an evaluation metric designed for this purpose.

We find that parsers indeed have different responses
to ungrammatical sentences of various types. We
recommend practitioners to examine the range of
ungrammaticality in their input data (whether it is
more like tweets or has grammatical errors like ESL
writings). If the input data contains text more simi-
lar to tweets (e.g. containing URLs and emoticons),
Malt or Turbo parser may be good choices. If the
input data is more similar to the machine translation
outputs; SyntaxNet, Malt, Tweebo and Turbo parser
are good choices.

Our results also suggest that some preprocess-
ing steps may be necessary for ungrammatical sen-
tences, such as handling redundant and missing
word errors. While there are some previous works
on fixing the unnecessary words in the literature
(Xue and Hwa, 2014), it is worthy to develop better
NLP methods for catching and mitigating the miss-
ing word errors prior to parsing. Finally, this work
corroborate the importance of building grammar er-
ror correction systems for handling closed-class er-

1772

rors such as preposition errors.

Acknowledgments

This work was supported in part by the National Sci-
ence Foundation Award #1550635. We would like
to thank the anonymous reviewers and the Pitt NLP
group for their helpful comments.

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally normal-
ized transition-based neural networks. arXiv preprint
arXiv:1603.06042.

Johnny Bigert, Jonas Sjöbergh, Ola Knutsson, and Mag-
nus Sahlgren. 2005. Unsupervised evaluation of
parser robustness. In Computational Linguistics and
Intelligent Text Processing, pages 142–154.

E. Black, S. Abney, S. Flickenger, C. Gdaniec, C. Gr-
ishman, P. Harrison, D. Hindle, R. Ingria, F. Jelinek,
J. Klavans, M. Liberman, M. Marcus, S. Roukos,
B. Santorini, and T. Strzalkowski. 1991. A procedure
for quantitatively comparing the syntactic coverage
of English grammars. In Proceedings of the DARPA
Speech and Natural Language Workshop, pages 306–
311.

Bernd Bohnet. 2010. Very high accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings of
the 23rd International Conference on Computational
Linguistics, pages 89–97.

Aoife Cahill. 2015. Parsing learner text: to shoehorn or
not to shoehorn. In Proceedings of LAW IX - The 9th
Linguistic Annotation Workshop, page 144.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740–750.

Jinho D Choi, Joel Tetreault, and Amanda Stent. 2015.
It depends: Dependency parser comparison using a
web-based evaluation tool. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics, pages 26–31.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Joachim Daiber and Rob van der Goot. 2016. The de-
noised web treebank: Evaluating dependency parsing
under noisy input conditions. In LREC.

Marie-Catherine De Marneffe, Bill MacCartney, Christo-
pher D Manning, et al. 2006. Generating typed depen-
dency parses from phrase structure parses. In LREC,
number 2006, pages 449–454.

Jennifer Foster, Özlem Çetinoglu, Joachim Wagner,
Joseph Le Roux, Stephen Hogan, Joakim Nivre,
Deirdre Hogan, Josef Van Genabith, et al. 2011. #
hardtoparse: POS tagging and parsing the twitterverse.
In proceedings of the Workshop On Analyzing Micro-
text (AAAI 2011), pages 20–25.

Jennifer Foster. 2004. Parsing ungrammatical input: an
evaluation procedure. In LREC.

Jennifer Foster. 2007. Treebanks gone bad. Interna-
tional Journal of Document Analysis and Recognition,
10(3-4):129–145.

Jennifer Foster. 2010. “cba to check the spelling” in-
vestigating parser performance on discussion forum
posts. In The Annual Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics, pages 381–384.

Jeroen Geertzen, Theodora Alexopoulou, and Anna Ko-
rhonen. 2013. Automatic linguistic annotation of
large scale l2 databases: the EF-Cambridge open lan-
guage database (EFCamDat). In Proceedings of the
31st Second Language Research Forum.

Daniel Gildea. 2001. Corpus variation and parser perfor-
mance. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, pages
167–202.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael
Heilman, Dani Yogatama, Jeffrey Flanigan, and
Noah A Smith. 2011. Part-of-speech tagging for Twit-
ter: Annotation, features, and experiments. In ACL-
HLT, pages 42–47.

Tuomo Kakkonen. 2007. Robustness evaluation of two
CCG, a PCFG and a link grammar parsers. Proceed-
ings of the 3rd Language & Technology Conference:
Human Language Technologies as a Challenge for
Computer Science and Linguistics.

Lingpeng Kong and Noah A Smith. 2014. An empirical
comparison of parsing methods for stanford dependen-
cies. arXiv preprint arXiv:1404.4314.

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A Smith. 2014. A dependency parser for
tweets. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing.

Jonathan K Kummerfeld, David Hall, James R Curran,
and Dan Klein. 2012. Parser showdown at the wall
street corral: An empirical investigation of error types
in parser output. In Proceedings of the 2012 Joint

1773

Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 1048–1059.

André FT Martins, Miguel Almeida, and Noah A Smith.
2013. Turning on the turbo: Fast third-order non-
projective turbo parsers. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics, pages 617–622.

David McClosky, Eugene Charniak, and Mark Johnson.
2010. Automatic domain adaptation for parsing. In
The Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 28–36.

Ryan McDonald and Joakim Nivre. 2011. Analyzing
and integrating dependency parsers. Computational
Linguistics, 37(1):197–230.

Ryan T McDonald and Fernando CN Pereira. 2006. On-
line learning of approximate dependency parsing algo-
rithms. In EACL.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,
Gülsen Eryigit, Sandra Kübler, Svetoslav Marinov,
and Erwin Marsi. 2007. Maltparser: A language-
independent system for data-driven dependency pars-
ing. Natural Language Engineering, 13(02):95–135.

Niels Ott and Ramon Ziai. 2010. Evaluating depen-
dency parsing performance on german learner lan-
guage. Proceedings of the Ninth Workshop on Tree-
banks and Linguistic Theories (TLT-9), 9:175–186.

Slav Petrov, Pi-Chuan Chang, Michael Ringgaard, and
Hiyan Alshawi. 2010. Uptraining for accurate deter-
ministic question parsing. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 705–713.

Marion Potet, Emmanuelle Esperança-Rodier, Laurent
Besacier, and Hervé Blanchon. 2012. Collection of
a large database of French-English SMT output cor-
rections. In LREC, pages 4043–4048.

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. 2008.
The importance of syntactic parsing and inference in
semantic role labeling. Computational Linguistics,
34(2):257–287.

Marwa Ragheb and Markus Dickinson. 2012. Defining
syntax for learner language annotation. In COLING
(Posters), pages 965–974.

Mohammad Sadegh Rasooli and Joel Tetreault. 2015.
Yara parser: A fast and accurate dependency parser.
arXiv preprint arXiv:1503.06733.

Brian Roark, Mary Harper, Eugene Charniak, Bonnie
Dorr, Mark Johnson, Jeremy G Kahn, Yang Liu, Mari
Ostendorf, John Hale, Anna Krasnyanskaya, et al.
2006. Sparseval: Evaluation metrics for parsing
speech. In LREC.

Kristina Toutanova, Dan Klein, Christopher D Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In NAACL,
pages 173–180.

Huichao Xue and Rebecca Hwa. 2014. Redundancy de-
tection in esl writings. In EACL, pages 683–691.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics, pages 180–189.

1774

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1775–1786,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Neural Shift-Reduce CCG Semantic Parsing

Dipendra K. Misra and Yoav Artzi
Department of Computer Science and Cornell Tech

Cornell University
New York, NY 10011

{dkm,yoav}@cs.cornell.edu

Abstract

We present a shift-reduce CCG semantic
parser. Our parser uses a neural network ar-
chitecture that balances model capacity and
computational cost. We train by transferring a
model from a computationally expensive log-
linear CKY parser. Our learner addresses two
challenges: selecting the best parse for learn-
ing when the CKY parser generates multiple
correct trees, and learning from partial deriva-
tions when the CKY parser fails to parse. We
evaluate on AMR parsing. Our parser per-
forms comparably to the CKY parser, while
doing significantly fewer operations. We also
present results for greedy semantic parsing
with a relatively small drop in performance.

1 Introduction

Shift-reduce parsing is a class of parsing methods
that guarantees a linear number of operations in sen-
tence length. This is a desired property for practical
applications that require processing large amounts of
text or real-time response. Recently, such techniques
were used to build state-of-the-art syntactic parsers,
and have demonstrated the effectiveness of deep
neural architectures for decision making in linear-
time dependency parsing (Chen and Manning, 2014;
Dyer et al., 2015; Andor et al., 2016; Kiperwasser
and Goldberg, 2016). In contrast, semantic parsing
often relies on algorithms with polynomial number
of operations, which results in slow parsing times
unsuitable for practical applications. In this paper,
we apply shift-reduce parsing to semantic parsing.
Specifically, we study transferring a learned Combi-
natory Categorial Grammar (CCG; Steedman, 1996,

2000) from a dynamic-programming CKY model to
a shift-reduce neural network architecture.

We focus on the feed-forward architecture of
Chen and Manning (2014), where each parsing step
is a multi-class classification problem. The state of
the parser is represented using simple feature em-
beddings that are passed through a multilayer per-
ceptron to select the next action. While simple, the
capacity of this model to capture interactions be-
tween primitive features, instead of relying on sparse
complex features, has led to new state-of-the-art per-
formance (Andor et al., 2016). However, applying
this architecture to semantic parsing presents learn-
ing and inference challenges.

In contrast to dependency parsing, semantic pars-
ing corpora include sentences labeled with the sys-
tem response or the target formal representation, and
omit derivation information. CCG induction from
such data relies on latent-variable techniques and re-
quires careful initialization (e.g., Zettlemoyer and
Collins, 2005, 2007). Such feature initialization
does not directly transfer to a neural network archi-
tecture with dense embeddings, and the use of hid-
den layers further complicates learning by adding
a large number of latent variables. We focus on
data that includes sentence-representation pairs, and
learn from a previously induced log-linear CKY
parser. This drastically simplifies learning, and can
be viewed as bootstrapping a fast parser from a slow
one. While this dramatically narrows down the num-
ber of parses per sentence, it does not eliminate am-
biguity. In our experiments, we often get multiple
correct parses, up to 49K in some cases. We also
observe that the CKY parser generates no parses for

1775

Some old networks remain inoperable

NP[x]/N[x] N[x]/N[x] N[pl] S\NP[pl]/(N[pl]/N[pl]) N[x]/N[x]
λf.A(λx.f(x) ∧ quant(x, λf.λx.f(x)∧ λn.network(n) λf.λx.f(λr.remain-01(r)∧ λf.λx.f(x) ∧ ARG3(x,
A(λs.some(s)))) mod(x,A(λo.old(o))) ARG1(r, x)) A(λp.possible(p) ∧ polarity(p,−)∧

domain(p,A(λo.operate-01(o)))))
> >

N[pl] S\NP[pl]
λn.network(n)∧ λx.λr.remain-01(r) ∧ ARG1(r, x) ∧ ARG3(r,A(λp.possible(p)

mod(n,A(λo.old(o))) ∧polarity(p,−) ∧ domain(p,A(λo.operate-01(o)))))
>

NP[pl]
A(λn.network(n) ∧mod(n,A(λo.old(o))) ∧ quant(n,A(λs.some(s))))

<
S

λr.remain-01(r) ∧ ARG1(r,A(λn.network(n) ∧mod(n,A(λo.old(o))) ∧ quant(n,A(λs.some(s)))))∧
ARG3(r,A(λp.possible(p) ∧ polarity(p,−) ∧ domain(p,A(λo.operate-01(o)))))

Figure 1: Example CCG tree with five lexical entries, three forward applications (>) and a backward application (<).

a significant number of training sentences. There-
fore, we propose an iterative algorithm that automat-
ically selects the best parses for training at each iter-
ation, and identifies partial derivations for best-effort
learning, if no parses are available.

CCG parsing largely relies on two types of ac-
tions: using a lexicon to map words to their cate-
gories, and combining categories to acquire the cat-
egories of larger phrases. In most semantic pars-
ing approaches, the number of operations is dom-
inated by the large number of categories available
for each word in the lexicon. For example, the lex-
icon in our experiments includes 1.7M entries, re-
sulting in an average of 146, and up to 2K, ap-
plicable actions. Additionally, both operations and
parser state have complex structures, for example
including both syntactic and semantic information.
Therefore, unlike in dependency parsing (Chen and
Manning, 2014), we can not treat action selection as
multi-class classification, and must design an archi-
tecture that can accommodate a varying number of
actions. We present a network architecture that con-
siders a variable number of actions, and emphasizes
low computational overhead per action, instead fo-
cusing computation on representing the parser state.

We evaluate on Abstract Meaning Representa-
tion (AMR; Banarescu et al., 2013) parsing. We
demonstrate that our modeling and learning contri-
butions are crucial to effectively commit to early de-
cisions during parsing. Somewhat surprisingly, our
shift-reduce parser provides equivalent performance
to the CKY parser used to generate the training data,
despite requiring significantly fewer operations, on
average two orders of magnitude less. Similar to
previous work, we use beam search, but also, for
the first time, report greedy CCG semantic parsing
results at a relatively modest 9% decrease in perfor-
mance, while the source CKY parser with a beam of
one demonstrates a 71% decrease. While we focus

on semantic parsing, our learning approach makes
no task-specific assumptions and has potential for
learning efficient models for structured prediction
from the output of more expensive ones.1

2 Task and Background

Our goal is to learn a function that, given a sentence
x, maps it to a formal representation of its meaning
z with a linear number of operations in the length of
x. We assume access to a training set ofN examples
D = {(x(i), z(i))}Ni=1, each containing a sentence
x(i) and a logical form z(i). Since D does not con-
tain complete derivations, we instead assume access
to a CKY parser learned from the same data. We
evaluate performance on a test set {(x(i), z(i))}Mi=1

of M sentences x(i) labeled with logical forms z(i).
While we describe our approach in general terms,
we apply our approach to AMR parsing and evalu-
ate on a common benchmark (Section 6).

To map sentences to logical forms, we use CCG,
a linguistically-motivated grammar formalism for
modeling a wide-range of syntactic and seman-
tic phenomena (Steedman, 1996, 2000). A CCG
is defined by a lexicon Λ and sets of unary Ru

and binary Rb rules. In CCG parse trees, each
node is a category. Figure 1 shows a CCG tree
for the sentence Some old networks remain inop-
erable. For example, S\NP[pl]/(N[pl]/N[pl]) :
λf.λx.f(λr.remain-01(r)∧ARG1(r, x)) is the cat-
egory of the verb remain. The syntactic type
S\NP[pl]/(N[pl]/N[pl]) indicates that two argu-
ments are expected: first an adjectiveN[pl]/N[pl] and
then a plural noun phrase NP[pl]. The final syntac-
tic type will be S. The forward slash / indicates
the argument is expected on the right, and the back-
ward slash \ indicates it is expected on the left. The
syntactic attribute pl is used to express the plural-

1The source code and pre-trained models are available at
http://www.cs.cornell.edu/~dkm/ccgparser.

1776

ity constraint of the verb. The simply-typed lambda
calculus logical form in the category represents se-
mantic meaning. The typing system includes atomic
types (e.g., entity e, truth value t) and functional
types (e.g., 〈e, t〉 is the type of a function from e to
t). In the example category above, the expression on
the right of the colon is a 〈〈〈e, t〉, 〈e, t〉〉, 〈e, 〈e, t〉〉〉-
typed function expecting first an adjectival modi-
fier and then an ARG1 modifier. The conjunction
∧ specifies the roles of remain-01. The lexicon Λ
maps words to CCG categories. For example, the
lexical entry remain ` S\NP[pl]/(N[pl]/N[pl]) :
λf.λx.f(λr.remain-01(r) ∧ARG1(r, x)) pairs the
example category with remain. The parse tree in the
figure includes four binary operations: three forward
applications (>) and a backward application (<).

3 Neural Shift Reduce Semantic Parsing

Given a sentence x = 〈x1, . . . , xm〉 with m tokens
xi and a CCG lexicon Λ, let GEN(x; Λ) be a function
that generates CCG parse trees. We design GEN as
a shift-reduce parser, and score decisions using em-
beddings of parser states and candidate actions.

3.1 Shift-Reduce Parsing for CCG
Shift-reduce parsers perform a single pass of the
sentence from left to right to construct a parse tree.
The parser configuration2 is defined with a stack and
a buffer. The stack contains partial parse trees, and
the buffer the remainder of the sentence to be pro-
cessed. Formally, a parser configuration c is a tu-
ple 〈σ, β〉, where the stack σ is a list of CCG trees
[sl · · · s1], and the buffer β is a list of tokens from x
to be processed [xi · · ·xm].3 For example, the top-
left of Figure 2 shows a parsing configuration with
two partial trees on the stack and two words on the
buffer (remain and inoperable).

Parsing starts with the configuration
〈[], [x1 · · ·xm]〉, where the stack is empty and
the buffer is initialized with x. In each parsing
step, the parser either consumes a word from
the buffer and pushes a new tree to the stack, or
applies a parsing rule to the trees at the top of the
stack. For simplicity, we apply CCG rules to trees,

2We use the terms parser configuration and parser state
interchangeably.

3The head of the stack σ is the right-most entry, and the
head of the buffer β is the left-most entry.

where a rule is applied to the root categories of the
argument trees to create a new tree with the argu-
ments as children. We treat lexical entries as trees
with a single node. There are three types of actions:4

SHIFT(l, 〈σ, xi| · · · |xj |β〉) = 〈σ|g, β〉
BINARY(b, 〈σ|s2|s1, β〉) = 〈σ|b(s2, s1), β〉
UNARY(u, 〈σ|s1, β〉) = 〈σ|u(s1), β〉 .

Where b ∈ Rb is a binary rule, u ∈ Ru is a unary
rule, and l is a lexical entry xi, . . . xj ` g for the to-
kens xi,. . . ,xj and CCG category g. SHIFT creates a
tree given a lexical entry for the words at the top of
the buffer, BINARY applies a binary rule to the two
trees at the head of the stack, and UNARY applies a
unary rule to the tree at head of the stack. A config-
uration is terminal when no action is applicable.

Given a sentence x, a derivation is a sequence of
action-configuration pairs 〈〈c1, a1〉, . . . , 〈ck, ak〉〉,
where action ai is applied to configuration ci to gen-
erate configuration ci+1. The result configuration
ck+1 is of the form 〈[s], []〉, where s represents a
complete parse tree, and the logical form z at the
root category represents the meaning of the com-
plete sentence. Following previous work with CKY
parsing (Zettlemoyer and Collins, 2005), we disal-
low consecutive unary actions. We denote the set of
actions allowed from configuration c as A(c).

3.2 Model

Our goal is to balance computation and model ca-
pacity. To recover a rich representation of the con-
figuration, we use a multilayer perceptron (MLP) to
create expressive interactions between a small num-
ber of simple features. However, since we con-
sider many possible actions in each step, comput-
ing activations for multiple hidden layers for each
action is prohibitively expensive. Instead, we opt
for a computationally-inexpensive action represen-
tation computed by concatenating feature embed-
dings. Figure 2 illustrates our architecture.

Given a configuration c, the probability of an ac-
tion a is:

p(a | c) =
exp {φ(a, c)WbF(ξ(c))}∑

a′∈A(c) exp {φ(a′, c)WbF(ξ(c))} ,

4We follow the standard notation of L|x indicating a list
with all the entries from L and x as the right-most element.

1777

Stack Buffer

h2 = max{0,W2h1 + b2}

h1 = max{0,W1h0 + b1}

h3 = W3h2 + b3

Embedding Layer

Hidden
Layers

Dimensionality
Reduction Layer

Embedding Layer

Embedding Layer

Bilinear Softmax Layer

Configuration
Embedding

�(a1, c)

�(a2, c)

cConfiguration A(c)Actions

FMLP

⇠(c)

s2 s1 b2

Some old networks remain inoperable

NP[x]/N[x] N[x]/N[x] N[pl] S\NP[pl]/(N[pl]/N[pl]) N[x]/N[x]

�f.A(�x.f(x) ^ quant(x, �f.�x.f(x)^ �n.network(n) �f.�x.f(�r.remain-01(r)^ �f.�x.f(x) ^ARG3(x, A(�p.possible(p)^
A(�s.some(s)))) MOD(x, A(�o.old(o))) ARG1(r, x)) polarity(p,�) ^ domain(p, A(�o.operate-01(o)))))

> >
N[pl] S\NP[pl]

�n.network(n)^ �x.�r.remain-01(r) ^ARG1(r, x) ^ARG3(r, A(�p.possible(p)
MOD(n, A(�o.old(o))) ^polarity(p,�) ^ domain(p, A(�o.operate-01(o)))))

>
NP[pl]

A(�n.network(n) ^MOD(n, A(�o.old(o))) ^ quant(n, A(�s.some(s))))
<

S
�r.remain-01(r) ^ARG1(r, A(�n.network(n) ^MOD(n, A(�o.old(o))) ^ quant(n, A(�s.some(s)))))^

ARG3(r, A(�p.possible(p) ^ polarity(p,�) ^ domain(p, A(�o.operate-01(o)))))

1

Some old networks remain inoperable

NP[x]/N[x] N[x]/N[x] N[pl] S\NP[pl]/(N[pl]/N[pl]) N[x]/N[x]

�f.A(�x.f(x) ^ quant(x, �f.�x.f(x)^ �n.network(n) �f.�x.f(�r.remain-01(r)^ �f.�x.f(x) ^ARG3(x, A(�p.possible(p)^
A(�s.some(s)))) MOD(x, A(�o.old(o))) ARG1(r, x)) polarity(p,�) ^ domain(p, A(�o.operate-01(o)))))

> >
N[pl] S\NP[pl]

�n.network(n)^ �x.�r.remain-01(r) ^ARG1(r, x) ^ARG3(r, A(�p.possible(p)
MOD(n, A(�o.old(o))) ^polarity(p,�) ^ domain(p, A(�o.operate-01(o)))))

>
NP[pl]

A(�n.network(n) ^MOD(n, A(�o.old(o))) ^ quant(n, A(�s.some(s))))
<

S
�r.remain-01(r) ^ARG1(r, A(�n.network(n) ^MOD(n, A(�o.old(o))) ^ quant(n, A(�s.some(s)))))^

ARG3(r, A(�p.possible(p) ^ polarity(p,�) ^ domain(p, A(�o.operate-01(o)))))

1

Some old networks remain inoperable

NP[x]/N[x] N[x]/N[x] N[pl] S\NP[pl]/(N[pl]/N[pl]) N[x]/N[x]

�f.A(�x.f(x) ^ quant(x, �f.�x.f(x)^ �n.network(n) �f.�x.f(�r.remain-01(r)^ �f.�x.f(x) ^ARG3(x, A(�p.possible(p)^
A(�s.some(s)))) MOD(x, A(�o.old(o))) ARG1(r, x)) polarity(p,�) ^ domain(p, A(�o.operate-01(o)))))

> >
N[pl] S\NP[pl]

�n.network(n)^ �x.�r.remain-01(r) ^ARG1(r, x) ^ARG3(r, A(�p.possible(p)
MOD(n, A(�o.old(o))) ^polarity(p,�) ^ domain(p, A(�o.operate-01(o)))))

>
NP[pl]

A(�n.network(n) ^MOD(n, A(�o.old(o))) ^ quant(n, A(�s.some(s))))
<

S
�r.remain-01(r) ^ARG1(r, A(�n.network(n) ^MOD(n, A(�o.old(o))) ^ quant(n, A(�s.some(s)))))^

ARG3(r, A(�p.possible(p) ^ polarity(p,�) ^ domain(p, A(�o.operate-01(o)))))

1

b1

pl

xNP/N

N

Some old networks remain inoperable

NP[x]/N[x] N[x]/N[x] N[pl] S\NP[pl]/(N[pl]/N[pl]) N[x]/N[x]

�f.A(�x.f(x) ^ quant(x, �f.�x.f(x)^ �n.network(n) �f.�x.f(�r.remain-01(r)^ �f.�x.f(x) ^ARG3(x, A(�p.possible(p)^
A(�s.some(s)))) MOD(x, A(�o.old(o))) ARG1(r, x)) polarity(p,�) ^ domain(p, A(�o.operate-01(o)))))

> >
N[pl] S\NP[pl]

�n.network(n)^ �x.�r.remain-01(r) ^ARG1(r, x) ^ARG3(r, A(�p.possible(p)
MOD(n, A(�o.old(o))) ^polarity(p,�) ^ domain(p, A(�o.operate-01(o)))))

>
NP[pl]

A(�n.network(n) ^MOD(n, A(�o.old(o))) ^ quant(n, A(�s.some(s))))
<

S
�r.remain-01(r) ^ARG1(r, A(�n.network(n) ^MOD(n, A(�o.old(o))) ^ quant(n, A(�s.some(s)))))^

ARG3(r, A(�p.possible(p) ^ polarity(p,�) ^ domain(p, A(�o.operate-01(o)))))

1

Some old networks remain inoperable

NP[x]/N[x] N[x]/N[x] N[pl] S\NP[pl]/(N[pl]/N[pl]) N[x]/N[x]

�f.A(�x.f(x) ^ quant(x, �f.�x.f(x)^ �n.network(n) �f.�x.f(�r.remain-01(r)^ �f.�x.f(x) ^ARG3(x, A(�p.possible(p)^
A(�s.some(s)))) MOD(x, A(�o.old(o))) ARG1(r, x)) polarity(p,�) ^ domain(p, A(�o.operate-01(o)))))

> >
N[pl] S\NP[pl]

�n.network(n)^ �x.�r.remain-01(r) ^ARG1(r, x) ^ARG3(r, A(�p.possible(p)
MOD(n, A(�o.old(o))) ^polarity(p,�) ^ domain(p, A(�o.operate-01(o)))))

>
NP[pl]

A(�n.network(n) ^MOD(n, A(�o.old(o))) ^ quant(n, A(�s.some(s))))
<

S
�r.remain-01(r) ^ARG1(r, A(�n.network(n) ^MOD(n, A(�o.old(o))) ^ quant(n, A(�s.some(s)))))^

ARG3(r, A(�p.possible(p) ^ polarity(p,�) ^ domain(p, A(�o.operate-01(o)))))

1

a1 = Binary(forward-apply, c)

a2 = Unary(bare-plural, c)

Some networks remain inoperable

NP[x]/N[x] N[pl] S\NP[pl]/(N[pl]/N[pl]) N[x]/N[x]

�f.A1(�x.f(x) ^ REL(x, �n.network(n) �f.�x.f(�r.remain-01(r)^ �f.�x.f(x) ^ REL(x, A3(�p.possible(p) ^ REL(p,�)^
A2(�s.some(s)))) ARG1(r, x)) REL(p, A4(�o.operate-01(o)))))

> >
NP[pl] S\NP[pl]

A1(�n.network(n) ^ REL(n, A2(�s.some(s)))) �x.�r.remain-01(r) ^ARG1(r, x) ^ REL(r, A3(�p.possible(p) ^ REL(p,�)^
REL(p, A4(�o.operate-01(o)))))

<
S

�r.remain-01(r) ^ARG1(r, A1(�n.network(n) ^ REL(n, A2(�s.some(s)))))^
REL(r, A3(�p.possible(p) ^ REL(p,�) ^ REL(p, A4(�o.operate-01(o)))))

1

a|A(c)| = Shift

, c

!

P (ai) / exp(�(ai, c)Wbh3)

8i = 1 . . . |A(c)|

�(a|A(c)|, c)

Figure 2: Illustration of scoring the next action given the configuration c when parsing the sentence Some old networks
remain inoperable. Embeddings of the same feature type are colored the same. The configuration embedding ξ(c) is a
concatenation of syntax embeddings (green) and the logical form embedding (blue; computed by ψ) for the top entries
in the stack. We then pass ξ(c) through the MLP F . Given the actions A(c), we compute the embeddings φ(ai, c),
i = 1 . . . |A(c)|. The actions and MLP representation are combined with a bilinear softmax layer. The number of
concatenated vectors and stack elements used is for illustration. The details are described in Section 3.2.

where φ(a, c) is the action embedding, ξ(c) is the
configuration embedding, and F is an MLP. Wb

is a bilinear transformation matrix. Given a sen-
tence x and a sequence of action-configuration pairs
〈〈c1, a1〉, . . . , 〈ck, ak〉〉, the probability of a CCG
tree y is

p(y | x) =
∏

i=1...k

p(ai | ci) .

The probability of a logical form z is then
p(z | x) =

∑

y∈Y(z)
p(y | x) ,

where Y(z) is the set of CCG trees with the logical
form z at the root.

MLP Architecture F We use a MLP with two
hidden layers parameterized by {W1,W2,b1,b2}
with a ReLu non-linearity (Glorot et al., 2011).
Since the output of F influences the dimensionality
of Wb, we add a linear layer parameterized by W3

and b3 to reduce the dimensionality of the configu-
ration, thereby reducing the dimensionality of Wb.

Configuration Embedding ξ(c) Given a config-
uration c = 〈[sl · · · s1], [xi · · ·xm]〉, the input to F
is a concatenation of syntactic and semantic embed-
dings, as illustrated in Figure 2. We concatenate em-

beddings from the top three trees in the stack s1, s2,
s3.5 When a feature is not present, for example when
the stack or buffer are too small, we use a tunable
null embedding.

Given a tree on the stack sj , we define two syn-
tactic features: attribute set and stripped syntax.
The attribute feature is created by extracting all the
syntactic attributes of the root category of sj . The
stripped syntax feature is the syntax of the root cat-
egory without the syntactic attributes. For example,
in Figure 2, we embed the stripped category N and
attribute pl for s1, and NP/N and x for s2. The at-
tributes are separated from the syntax to reduce spar-
sity, and the interaction between them is computed
by F . The sparse features are converted to dense
embeddings using a lookup table and concatenated.
In addition, we also embed the logical form at the
root of sj . Figure 3 illustrates the recursive embed-
ding function ψ.6 Using a recursive function to em-
bed logical forms is computationally intensive. Due
to strong correlation between sentence length and
logical form complexity, this computation increases

5For simplicity, the figure shows only the top two trees.
6The algorithm is provided in the supplementary material.

1778

{Wr, �r}

{Wr, �r}

{Wr, �r}

JOHN

arg0

e

x

x

�x.arg0(x, JOHN)

arg0(x, JOHN)

(x, JOHN)

he, he, tii
{Wr, �r}

{Wr, �r}

JOHN

arg0

Figure 3: Illustration of embedding the logical form
λx.arg0(x, JOHN) with the recursive embedding func-
tion ψ. In each level in ψ, the children nodes are com-
bined with a single-layer neural network parameterized
by Wr, δr, and the tanh activation function. Com-
puted embeddings are in dark gray, and embeddings from
lookup tables are in light gray. Constants are embed-
ded by combining name and type embeddings, literals
are unrolled to binary recursive structures, and lambda
terms are combinations of variable type and body em-
beddings. For example, JOHN is embedded by com-
bining the embeddings of its name and type, the literal
arg0(x, JOHN) is recursively embedded by first embed-
ding the arguments (x, JOHN) and then combining the
predicate, and the lambda term is embedded to create the
embedding of the entire logical form.

the cost of configuration embedding by a factor lin-
ear in sentence length. In Section 6, we experiment
with including this option, balancing between poten-
tial expressivity and speed.

Action Embedding φ(a, c) Given an action a ∈
A(c), and the configuration c, we generate the action
representation by computing sparse features, con-
verting them to dense embeddings via table lookup,
and concatenating. If more than one feature of the
same type is triggered, we average their embed-
dings. When no features of a given type are trig-
gered, we use a tunable placeholder embedding in-
stead. The features include all the features used by
Artzi et al. (2015), including all conjunctive fea-
tures, as well as properties of the action and configu-
ration, such as the POS tags of tokens on the buffer.7

Discussion Our use of an MLP is inspired by Chen
and Manning (2014). However, their architecture is
designed to handle only a fixed number of actions,
while we observe varying number of actions. There-
fore, we adopt a probabilistic model similar to Dyer
et al. (2015) to effectively combine the benefits of

7See the supplementary material for feature details.

the two approaches.8 We factorize the exponent in
our objective into action φ(a, c) and configuration
F(ξ(c)) embeddings. While every parse step in-
volves a single configuration, the number of actions
is significantly higher. With the goal of minimizing
the amount of computation per action, we use simple
concatenation only for action embedding. However,
this requires retaining sparse conjunctive action fea-
tures since they are never combined through hidden
layers similar to configuration features.

3.3 Inference

To compute the set of parse trees GEN(x; Λ), we
perform beam search to recover the top-k parses.
The beam contains configurations. At each step, we
expand all configurations with all actions, and keep
only the top-k new configurations. To promote di-
versity in the beam, given two configurations with
the same signature, we keep only the highest scor-
ing one. The signature includes the previous config-
uration in the derivation, the state of the buffer, and
the root categories of all stack elements. Since all
features are computed from these elements, this op-
timization does not affect the max-scoring tree. Ad-
ditionally, since words are assigned structured cat-
egories, a key problem is unknown words or word
uses. Following Zettlemoyer and Collins (2007), we
use a two-pass parsing strategy, and allow skipping
words controlled by the term γ in the second pass.
The term γ is added to the exponent of the action
probability when words are skipped. See the sup-
plementary material for the exact form.

Complexity Analysis The shift-reduce parser pro-
cesses the sentence from left to right with a linear
number of operations in sentence length. We define
an operation as applying an action to a configuration.
Formally, the number of operations for a sentence of
lengthm is bounded byO(4mk(|λ|+ |Rb|+ |Ru|)),
where |λ| is the number of lexical entries per to-
ken, k is the beam size, Rb is the set of binary
rules, and Ru the set of unary rules. In compari-
son, the number of operations for the CKY parser,
where an operation is applying a rule to a single
cell or two adjacent cells in the chart, is bounded
by O(m|λ| + m3k2|Rb| + m2b|Ru|). For sentence

8We experimented with an LSTM parser similar to Dyer
et al. (2015). However, performance was not competitive. This
direction remains an important avenue for future work.

1779

length 25, the mean in our experiments, the shift-
reduce parser performs 100 time fewer operations.
See the supplementary material for the full analysis.

4 Learning

We assume access to a training set of N examples
D = {(x(i), z(i))}Ni=1, each containing a sentence
x(i) and a logical form z(i). The data does not in-
clude information about the lexical entries and CCG
parsing operations required to construct the correct
derivations. We bootstrap this information from a
learned parser. In our experiments we use a learned
dynamic-programming CKY parser. We transfer the
lexicon Λ directly from the input parser, and focus
on estimating the parameters θ, which include fea-
ture embeddings, hidden layer matrices, and bias
terms. The main challenge is learning from the noisy
supervision provided by the input parser. In our ex-
periments, the CKY parser fails to correctly parse
40% of the training data, and returns on average 147
max-scoring correct derivations for the rest. We pro-
pose an iterative algorithm that treats the choice be-
tween multiple parse trees as latent, and effectively
learns from partial analysis when no correct deriva-
tion is available.

The learning algorithm (Algorithm 1) starts by
processing the data using the CKY parser (lines 3 -
4). For each sentence x(i), we collect the max-
scoring CCG trees with z(i) at the root. The CKY
parser often contains many correct parses with iden-
tical scores, up to 49K parses per sentence. There-
fore, we randomly sample and keep up to 1K trees.
This process is done once, and the algorithm then
runs for T iterations. At each iteration, given the sets
of parses from the CKY parser Y , we select the max-
probability parse according to our current parame-
ters θ (line 10) and add all the shift-reduce decisions
from this parse to DA (line 12), the action data set
that we use to estimate the parameters. We approxi-
mate the arg max with beam search using an oracle
computed from the CKY parses.9 CONFGEN aggre-
gates the configuration-action pairs from the highest
scoring derivation. Parse selection depends on θ and
this choice will gradually converge as the parame-
ters improve. The action data set is used to compute
the `2-regularized negative log-likelihood objective

9Our oracle is non-deterministic and incomplete (Goldberg
and Nivre, 2013).

Algorithm 1 The learning algorithm.

Input: Training set D = {(x(i), z(i))}Ni=1, learning rate µ,
regularization parameter `2, and number of iterations T .

Definitions: GENMAXCKY(x, z) returns the set of max-
scoring CKY parses for x with z at the root. SCORE(y, θ)
scores a tree y according to the parameters θ (Section 3.2).
CONFGEN(x, y) is the sequence of action-configuration
pairs that generates y given x (Section 3.1). BP(∆J)
takes the objective J and back-propagates the error ∇J
through the computation graph for the sample used to com-
pute the objective. ADAGRAD(∆) applies a per-feature
learning rate to the gradient ∆ (Duchi et al., 2011).

Output: Model parameters θ.
1: » Get trees from CKY parser.
2: Y ← []
3: for i = 1 to N do
4: Y[i] = GENMAXCKY(x(i), z(i))

5: for t = 1 to T do
6: » Pick max-scoring trees and create action dataset.
7: DA = ∅
8: for i = 1 to N do
9: if Y[i] 6= ∅ then

10: A← CONFGEN(x(i),
11: arg maxy∈Y[i] SCORE(y, θ))
12: for 〈c, a〉 ∈ A do
13: DA ← DA ∪ {〈c, a〉}
14: » Back-propagate the loss through the network.
15: for 〈c, a〉 ∈ DA do
16: J def

= − log p(a | c) + `2
2
θT θ

17: ∆← BP(∇J)
18: θ ← θ − µADAGRAD(∆)

19: return θ

J (line 16) and back-propagate the error to compute
the gradient (line 17). We use AdaGrad (Duchi et al.,
2011) to update the parameters θ (line 18).

4.1 Learning from Partial Derivations

The input parser often fails to generate correct
parses. In our experiments, this occurs for 40% of
the training data. In such cases, we can obtain a
forest of partial parse trees Yp. Each partial tree
y ∈ Yp corresponds to a span of tokens in the sen-
tence and is scored by the input parser. In practice,
the spans are often overlapping. Our goal is to gen-
erate high quality configuration-action pairs 〈c, a〉
from Yp. These pairs will be added to DA for train-
ing. While extracting actions a is straightforward,
generating configurations c requires reconstructing
the stack σ from an incomplete forest of partial trees
Yp. Figure 4 illustrates our proposed process. Let
CKYSCORE(y) be the CKY score of the partial tree
y. To reconstruct σ, we select non-overlapping par-

1780

x1 x2 x3 x16

x1:6 x11:14

Figure 4: Partial derivation selection for learning (Sec-
tion 4.1). The dotted triangles represent skipped spans
in the sentence, where no high quality partial trees were
found. Dark triangles represent the selected partial trees.
We identify two contiguous spans, 1-6 and 11-14, and
generate two synthetic sentences for training: the tokens
are treated as complete sentences and actions and stack
state are generated from the partial trees.

tial trees Y that correspond to the entire sentence
by solving arg maxY⊆Yp CKYSCORE(y) under two
constraints: (a) no two trees from Y correspond to
overlapping tokens, and (b) for each token in x, there
exists y ∈ Y that corresponds to it. We solve the
arg max using dynamic programming. The gener-
ated set Y approximates an intermediate state of a
shift-reduce derivation. However, Yp often does not
contain high quality partial derivation for all spans.
To skip low quality partial trees and spans that have
no trees, we generate empty trees ye for every span,
where CKYSCORE(ye) = 0, and add them to Yp.
If the set of selected partial trees Y includes empty
trees, we divide the sentence to separate examples
and ignore these parts. This results in partial and
approximate stack reconstruction. Finally, since YP
is noisy, we prune from it partial trees with a root
that does not match the syntactic type for this span
from an automatically generated CCGBank (Hock-
enmaier and Steedman, 2007) syntactic parse.

Our complete learning algorithm alternates be-
tween epochs of learning with complete parse trees
and learning with partial derivations. In epochs
where we use partial derivations, we use a modified
version of Algorithm 1, where lines 9-10 are updated
to use the above process.

5 Related work

Our approach is inspired by recent results in de-
pendency parsing, specifically by the architecture
of Chen and Manning (2014), which was further
developed by Weiss et al. (2015) and Andor et al.
(2016). Dyer et al. (2015) proposed to encode
the parser state using an LSTM recurrent architec-
ture, which has been shown generalize well between
languages (Ballesteros et al., 2015; Ammar et al.,
2016). Our network architecture combines ideas

from the two threads: we use feature embeddings
and a simple MLP to score actions, while our prob-
ability distribution is similar to the LSTM parser.

The majority of CCG approaches for semantic
parsing rely on CKY parsing with beam search (e.g.,
Zettlemoyer and Collins, 2005, 2007; Kwiatkowski
et al., 2010, 2011; Artzi and Zettlemoyer, 2011,
2013; Artzi et al., 2014; Matuszek et al., 2012;
Kushman and Barzilay, 2013). Semantic parsing
with other formalisms also often relied on CKY-
style algorithms (e.g., Liang et al., 2009; Kim and
Mooney, 2012). With a similar goal to ours, Berant
and Liang (2015) designed an agenda-based parser.
In contrast, we focus on a method with linear num-
ber of operations guarantee.

Following the work of Collins and Roark (2004)
on learning for syntactic parsers, Artzi et al. (2015)
proposed an early update procedure for inducing
CCG grammars with a CKY parser. Our partial
derivations learning method generalizes this method
to parsers with global features.

6 Experimental Setup
Task and Data We evaluate on AMR parsing with
CCG. AMR is a general-purpose meaning represen-
tation, which has been used in multiple tasks (Pan
et al., 2015; Liu et al., 2015; Sawai et al., 2015;
Garg et al., 2016), We use the newswire portion
of AMR Bank 1.0 release (LDC2014T12), which
displays some of the fundamental challenges in se-
mantic parsing, including long newswire sentences
with a broad array of syntactic and semantic phe-
nomena. We follow the standard train/dev/test split
of 6603/826/823 sentences. We evaluate with the
SMATCH metric (Cai and Knight, 2013). Our parser
is incorporated into the two-stage approach of Artzi
et al. (2015). The approach includes a bi-directional
and deterministic conversion between AMR and
lambda calculus. Distant references, for example
such as introduced by pronouns, are represented
using Skolem IDs, globally-scoped existentially-
quantified unique IDs. A derivation includes a CCG
tree, which maps the sentence to an underspecified
logical form, and a constant mapping, which maps
underspecified elements to their fully specified form.
The key to the approach is the underspecified logi-
cal forms, where distant references and most rela-
tions are not fully specified, but instead represented

1781

AMR Underspecified Logical Form Logical Form
(c/conclude-02

:ARG0 (l/lawyer)
:ARG1 (a/argument

:poss l)
:time (l2/late))

A1(λc.conclude-02(c) ∧
ARG0(c,A2(λl.lawyer(l))) ∧
ARG1(c,A3(λa.argument(a) ∧

poss(a,R(IDIDID)))) ∧
RELRELREL(c,A4(λl2.late(l2))))

A1(λc.conclude-02(c) ∧
ARG0(c,A2(λl.lawyer(l))) ∧
ARG1(c,A3(λa.argument(a) ∧

poss(a,R(2)))) ∧
time(c,A4(λl2.late(l2))))

Figure 5: AMR for the sentence the lawyer concluded his arguments late. In Artzi et al. (2015), The AMR (left) is
deterministically converted to the logical form (right). The underspecified logical form is the result of the first stage,
CCG parsing, and contains two placeholders (bolded): ID for a reference, and REL for a relation. To generate the
final logical form, the second stage resolves ID to the identifier of the lawyer (2), and REL to the relation time. We
focus on a model for the first stage and use an existing model for the second stage.

as placeholders. Figure 5 shows an example AMR,
its lambda calculus conversion, and its underspec-
ified logical form. (Artzi et al., 2015) use a CKY
parser to identify the best CCG tree, and a factor
graph for the second stage. We integrate our shift-
reduce parser into the two-stage setup by replacing
the CKY parser. We use the same CCG configura-
tion and integrate our parser into the join probabilis-
tic model. Formally, given a sentence x, the proba-
bility of an AMR logical form z is

p(z | x) =
∑

u

p(z | u, x)
∑

y∈Y(u)
p(y | x) ,

where u is an underspecified logical form, Y(u) is
the set of CCG trees with u at the root. We use our
shift-reduce parser to compute p(y | x) and use the
pre-trained model from Artzi et al. (2015) for p(z |
u, x). Following Artzi et al. (2015), we disallow
configurations that will not result in a valid AMR,
and design a heuristic post-processing technique to
recover a single logical form from terminal config-
urations that include multiple disconnected partial
trees on the stack. We use the recovery technique
when no complete parses are available.

Tools We evaluate with the SMATCH metric (Cai
and Knight, 2013). We use EasyCCG (Lewis and
Steedman, 2014) for CCGBank categories (Sec-
tion 4.1). We implement our system using Cornell
SPF (Artzi, 2016), and the deeplearning4j library.10

The setup of Artzi et al. (2015) also includes the Illi-
nois NER (Ratinov and Roth, 2009) and Stanford
CoreNLP POS Tagger (Manning et al., 2014).

Parameters and Initialization We minimize our
loss on a held-out 10% of the training data to tune
our parameters, and train the final model on the
full data. We set the number of epochs T = 3,
regularization coefficient `2 = 10−6, learning rate

10http://deeplearning4j.org/

Parser P R F
CKY (Artzi et al., 2015) 67.2 65.1 66.1
Greedy CKY 64.1 11.29 19.19
SR (complete model) 67.0 63.4 65.3

w/o semantic embedding 67.1 63.3 65.1
w/o partial derivation learning 66.0 62.2 64.0

Ensemble SR (syntax) 68.2 64.1 66.0
Ensemble SR (syntax, semantics) 68.1 63.9 65.9
SR with CKY model 52.5 49.36 50.88

Table 1: Development SMATCH results.

Parser P R F

JAMR11 67.8 59.2 63.2
CKY (Artzi et al., 2015) 66.8 65.7 66.3
Shift Reduce 68.1 64.2 66.1

Wang et al. (2015a)13 72.0 67.0 70.0

Table 2: Test SMATCH results.12

µ = 0.05, skipping term γ = 1.0. We set the di-
mensionality of feature embeddings based on the vo-
cabulary size of the feature type. The exact dimen-
sions are listed in the supplementary material. We
use 65 ReLU units for h1 and h2, and 50 units for
h3. We initialize θ with the initialization scheme of
Glorot and Bengio (2010), except the bias term for
ReLu layers, which we initialize to 0.1 to increase
the number of active units on initialization. During
test, we use the vector 0 as embedding for unseen
features. We use a beam of 512 for testing and 2 for
CONFGEN (Section 4).
Model Ensemble For our final results, we
marginalize the output over three models M using
p(z | x, θ,Λ) = 1

|M |
∑

m∈M p(z | m,x, θ,Λ).

7 Results
Table 1 shows development results. We trained each
model three times and report the best performance.
We observed a variance of roughly 0.5 in these runs.
We experimented with different features for con-
figuration embedding and with removing learning
with partial derivations (Section 4.1). The com-

1782

plete model gives the best single-model performance
of 65.3 F1 SMATCH, and we observe the benefits
for semantic embeddings and learning from partial
derivations. Using partial derivations allowed us
to learn 370K more features, 22% of observed em-
beddings. We also evaluate ensemble performance.
We observe an overall improvement in performance.
However, with multiple models, the benefit of us-
ing semantic embeddings vanishes. This result is
encouraging since semantic embeddings can be ex-
pensive to compute if the logical form grows with
sentence length. We also provide results for run-
ning a shift-reduce log-linear parser p(a | c) ∝
exp{wTφCKY(a, c)} using the input CKY model.
We observe a significant drop in performance, which
demonstrates the overall benefit of our architecture.

Figure 6 shows the development performance of
our best performing ensemble model for different
beam sizes. The performance decays slowly with
decreasing beam size. Surprisingly, our greedy
parser achieves 59.77 SMATCH F1, while the CKY
parser with a beam of 1 achieves only 19.2 SMATCH

F1 (Table 1). This allows our parser to trade-off a
modest drop in accuracy for a significant improve-
ment in runtime.

Table 2 shows the test results using our best per-
forming model (ensemble with syntax features). We
compare our approach to the CKY parser of Artzi
et al. (2015) and JAMR (Flanigan et al., 2014).11,12

We also list the results of Wang et al. (2015b), who
demonstrated the benefit of auxiliary analyzers and
is the current state of the art.13 Our performance is
comparable to the CKY parser of (Artzi et al., 2015),
which we use to bootstrap our system. This demon-
strates the ability of our parser to match the perfor-
mance of a dynamic-programming parser, which ex-
ecutes significantly more operations per sentence.

Finally, Figure 7 shows our parser runtime rel-
ative to sentence length. In this analysis, we fo-
cus on runtime, and therefore use a single model.

11 JAMR results are taken from Artzi et al. (2015).
12 Pust et al. (2015), Flanigan et al. (2014), and Wang et al.

(2015b) report results on different sections of the corpus. These
results are not comparable to ours.

13Our goal is to study the effectiveness of our model trans-
fer approach and architecture. Therefore, we avoid using any
resources used in (Wang et al., 2015b) that are not used in the
CKY parser we compare to.

1 32 128 256 512 600

59

62

66

Beam size

S
M

A
T

C
H

F1

Figure 6: The effect of beam size on model performance.

5 10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

Sentence length

W
al

lt
im

e
(s

ec
.)

Figure 7: Wall-time performance of shift reduce parser
with only syntax features (blue), with syntax and seman-
tic features (orange) and the CKY parser of Artzi et al.
(2015) (black).

We compare two versions of our system, including
and excluding semantic embeddings, and the CKY
parser of Artzi et al. (2015). We run both parsers
with 16 cores and 122GB memory. The shift-reduce
parser is three times faster on average, and up to ten
times faster on long sentences. Since our parser is
currently using CPUs, future work focused on GPU
porting is likely to see further improvements.

8 Conclusion
Our parser design emphasizes a balance between
model capacity and the ability to combine atomic
features against the computational cost of scor-
ing actions. We also design a learning algorithm
to transfer learned models and learn neural net-
work models from ambiguous and partial supervi-
sion. Our model shares many commonalities with
transition-based dependency parsers. This makes it
a good starting point to study the effectiveness of
other dependency parsing techniques for semantic
parsing, for example global normalization (Andor
et al., 2016) and bidirectional LSTM feature repre-
sentations (Kiperwasser and Goldberg, 2016).

Acknowledgments
This research was supported in part by gifts from
Google and Amazon. The authors thank Kenton Lee
for technical advice, and Adam Gibson and Alex
Black of Skymind for help with Deeplearning4j. We
also thank Tom Kwiatkowski, Arzoo Katiyar, Tianze
Shi, Vlad Niculae, the Cornell NLP Group, and the
reviewers for helpful advice.

1783

References

Ammar, W., Mulcaire, G., Ballesteros, M., Dyer, C.,
and Smith, N. A. (2016). Many languages, one
parser. Transactions of the Association for Com-
putational Linguistics.

Andor, D., Alberti, C., Weiss, D., Severyn, A.,
Presta, A., Ganchev, K., Petrov, S., and Collins,
M. (2016). Globally normalized transition-based
neural networks. CoRR.

Artzi, Y. (2016). Cornell SPF: Cornell semantic
parsing framework. ArXiv e-prints.

Artzi, Y., Das, D., and Petrov, S. (2014). Learn-
ing compact lexicons for CCG semantic parsing.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

Artzi, Y., Lee, K., and Zettlemoyer, L. (2015).
Broad-coverage CCG semantic parsing with
AMR. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing.

Artzi, Y. and Zettlemoyer, L. S. (2011). Bootstrap-
ping semantic parsers from conversations. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing.

Artzi, Y. and Zettlemoyer, L. S. (2013). Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Asso-
ciation for Computational Linguistics, 1.

Ballesteros, M., Dyer, C., and Smith, N. A. (2015).
Improved transition-based parsing by modeling
characters instead of words with LSTMs.

Banarescu, L., Bonial, C., Cai, S., Georgescu, M.,
Griffitt, K., Hermjakob, U., Knight, K., Koehn,
P., Palmer, M., and Schneider, N. (2013). Abstract
meaning representation for sembanking. In Pro-
ceedings of the Linguistic Annotation Workshop.

Berant, J. and Liang, P. (2015). Imitation learning
of agenda-based semantic parsers. Transactions
of the Association for Computational Linguistics,
3.

Cai, S. and Knight, K. (2013). Smatch: an eval-
uation metric for semantic feature structures. In
Proceedings of the Conference of the Association
of Computational Linguistics.

Chen, D. and Manning, C. D. (2014). A fast and ac-
curate dependency parser using neural networks.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

Collins, M. and Roark, B. (2004). Incremental pars-
ing with the perceptron algorithm. In Proceedings
of the Annual Meeting on Association for Compu-
tational Linguistics.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adap-
tive subgradient methods for online learning and
stochastic optimization. The Journal of Machine
Learning Research.

Dyer, C., Ballesteros, M., Ling, W., Matthews, A.,
and Smith, N. A. (2015). Transition-based depen-
dency parsing with stack long short-term memory.
In Proceedings of the Annual Meeting on Associ-
ation for Computational Linguistics.

Flanigan, J., Thomson, S., Carbonell, J., Dyer, C.,
and Smith, N. A. (2014). A discriminative graph-
based parser for the Abstract Meaning Represen-
tation. In Proceedings of the Conference of the
Association of Computational Linguistics.

Garg, S., Galstyan, A., Hermjakob, U., and Marcu,
D. (2016). Extracting biomolecular interactions
using semantic parsing of biomedical text. In Pro-
ceedings of the Conference on Artificial Intelli-
gence.

Glorot, X. and Bengio, Y. (2010). Understanding the
difficulty of training deep feedforward neural net-
works. In International Conference on Artificial
Intelligence and Statistics.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep
sparse rectifier neural networks. In International
Conference on Artificial Intelligence and Statis-
tics.

Goldberg, Y. and Nivre, J. (2013). Training de-
terministic parsers with non-deterministic ora-
cles. Transactions of the Association for Com-
putational Linguistics, 1.

Hockenmaier, J. and Steedman, M. (2007). CCG-
Bank: A corpus of CCG derivations and depen-
dency structures extracted from the Penn Tree-
bank. Computational Linguistics.

Kim, J. and Mooney, R. J. (2012). Unsupervised
PCFG induction for grounded language learning

1784

with highly ambiguous supervision. In Proceed-
ings of the Conference on Empirical Methods in
Natural Language Processing.

Kiperwasser, E. and Goldberg, Y. (2016). Simple
and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transac-
tions of the Association for Computational Lin-
guistics, 4.

Kushman, N. and Barzilay, R. (2013). Using se-
mantic unification to generate regular expressions
from natural language. In Proceedings of the
Human Language Technology Conference of the
North American Association for Computational
Linguistics.

Kwiatkowski, T., Zettlemoyer, L. S., Goldwater, S.,
and Steedman, M. (2010). Inducing probabilistic
CCG grammars from logical form with higher-
order unification. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language
Processing.

Kwiatkowski, T., Zettlemoyer, L. S., Goldwater, S.,
and Steedman, M. (2011). Lexical generalization
in CCG grammar induction for semantic parsing.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

Lewis, M. and Steedman, M. (2014). A* CCG pars-
ing with a supertag-factored model. In Proceed-
ings of the Conference on Empirical Methods in
Natural Language Processing.

Liang, P., Jordan, M., and Klein, D. (2009). Learn-
ing semantic correspondences with less supervi-
sion. In Proceedings of the Joint Conference of
the Association for Computational Linguistics the
International Joint Conference on Natural Lan-
guage Processing.

Liu, F., Flanigan, J., Thomson, S., Sadeh, N., and
Smith, N. A. (2015). Toward abstractive summa-
rization using semantic representations. In Pro-
ceedings of the North American Association for
Computational Linguistics.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J.,
Bethard, S. J., and McClosky, D. (2014). The
Stanford CoreNLP natural language processing
toolkit. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics.

Matuszek, C., FitzGerald, N., Zettlemoyer, L. S.,
Bo, L., and Fox, D. (2012). A joint model of lan-
guage and perception for grounded attribute learn-
ing. In Proceedings of the International Confer-
ence on Machine Learning.

Pan, X., Cassidy, T., Hermjakob, U., Ji, H., and
Knight, K. (2015). Unsupervised entity linking
with Abstract Meaning Representation. In Pro-
ceedings of the North American Association for
Computational Linguistics.

Pust, M., Hermjakob, U., Knight, K., Marcu, D.,
and May, J. (2015). Parsing english into abstract
meaning representation using syntax-based ma-
chine translation. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language
Processing.

Ratinov, L. and Roth, D. (2009). Design challenges
and misconceptions in named entity recognition.
In Proceedings of the Conference on Computa-
tional Natural Language Learning.

Sawai, Y., Shindo, H., and Matsumoto, Y. (2015).
Semantic structure analysis of noun phrases using
abstract meaning representation. In Proceedings
of the annual meeting on Association for Compu-
tational Linguistics.

Steedman, M. (1996). Surface Structure and Inter-
pretation. The MIT Press.

Steedman, M. (2000). The Syntactic Process. The
MIT Press.

Wang, C., Xue, N., and Pradhan, S. (2015a). Boost-
ing transition-based amr parsing with refined ac-
tions and auxiliary analyzers. In Proceedings of
the Annual Meeting of the Association for Com-
putational Linguistics.

Wang, C., Xue, N., Pradhan, S., and Pradhan, S.
(2015b). A transition-based algorithm for AMR
parsing. In Proceedings of the North American
Association for Computational Linguistics.

Weiss, D., Alberti, C., Collins, M., and Petrov, S.
(2015). Structured training for neural network
transition-based parsing. In Proceedings of the
annual meeting on Association for Computational
Linguistics.

Zettlemoyer, L. S. and Collins, M. (2005). Learning
to map sentences to logical form: Structured clas-

1785

sification with probabilistic categorial grammars.
In Proceedings of the Conference on Uncertainty
in Artificial Intelligence.

Zettlemoyer, L. S. and Collins, M. (2007). Online
learning of relaxed CCG grammars for parsing to
logical form. In Proceedings of the Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning.

1786

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1787–1796,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Syntactic Parsing of Web Queries

Xiangyan Sun
Fudan University

Haixun Wang
Facebook

Yanghua Xiao∗
Fudan University

Zhongyuan Wang
Microsoft Research

Abstract

Syntactic parsing of web queries is impor-
tant for query understanding. However, web
queries usually do not observe the grammar of
a written language, and no labeled syntactic
trees for web queries are available. In this pa-
per, we focus on a query’s clicked sentence,
i.e., a well-formed sentence that i) contains
all the tokens of the query, and ii) appears in
the query’s top clicked web pages. We ar-
gue such sentences are semantically consistent
with the query. We introduce algorithms to de-
rive a query’s syntactic structure from the de-
pendency trees of its clicked sentences. This
gives us a web query treebank without manual
labeling. We then train a dependency parser
on the treebank. Our model achieves much
better UAS (0.86) and LAS (0.80) scores than
state-of-the-art parsers on web queries.

1 Introduction

Syntactic analysis is important in understanding
a sentence’s grammatical constituents, parts of
speech, syntactic relations, and semantics. In this
paper, we are concerned with the syntactic structure
of a short text. The challenge is that short texts, for
example, web queries, do not observe grammars of
written languages (e.g., users often overlook capital-
ization, function words, and word order when creat-

∗ Correspondence author. This paper was supported
by National Key Basic Reserach Program of China un-
der No.2015CB358800, by National NSFC(No.61472085,
61171132, 61033010, U1509213), by Shanghai Municipal Sci-
ence and Technology Commission foundation key project under
No.15JC1400900.

ing a web query), and applying parsers trained on
standard treebanks on queries leads to poor results.

Syntactic structures are valuable for query under-
standing. Consider the following web queries and
their syntactic structures we would like to construct:

cover iphone 6 plus
NN NN CD NN

nn num amod

distance earth moon
NN NN NN

nn
nn

faucet adapter female
NN NN ADJ

nn nn

The syntactic structure of query cover iphone
6 plus tells us that the head token is cover, in-
dicating its intent is to shop for the cover of an
iphone, instead of iphones. With this knowledge,
search engines show ads of iphone covers instead of
iphones. For distance earth moon, the head
is distance, indicating its intent is to find the dis-
tance between the earth and the moon. For faucet
adapter female, the intent is to find a female
faucet adapter. In summary, correctly identifying
the head of a query helps identify its intent, and
correctly identifying the modifiers helps rewrite the
query (e.g., dropping non-essential modifiers).

Syntactic parsing of web queries is challenging
for at least two reasons. First, grammatical signals
from function words and word order are not avail-
able. Query distance earth moon is missing
function words between (preposition), and (coordi-
nator), and the (determiner) in conveying the intent

1787

distance between the earth and the moon. Also, it
is likely that queries {distance earth moon,
earth moon distance, earth distance
moon, · · · } have the same intent, which means they
should have the same syntactic structure. Second,
there is no labeled dependency trees (treebank) for
web queries, nor is there a standard for construct-
ing such dependency trees. It will take a tremendous
amount of time and effort to come up with such a
standard and a treebank for web queries.

In this paper, we propose an end-to-end solution
from treebank construction to syntactic parsing for
web queries. Our model achieves a UAS of 0.830
and an LAS of 0.747 on web queries, which is
dramatic improvement over state-of-the-art parsers
trained from standard treebanks.

2 Our Approach

The biggest challenge of syntactic analysis of web
queries is that they do not contain sufficient gram-
matical signals required for parsing. Indeed, web
queries can be very ambiguious. For example, kids
toysmay mean either toys for kids or kids
with toys, for which the dependency relation-
ships between toys and kids are totally opposite.

kids with toys
NN IN NN

prep pobj

toys for kids
NN IN NN

prep pobj

In view of this, why is syntactic parsing of web
queries a legitimate problem? We have shown some
example syntactic structures for 3 queries in Section
1. How do we know they are the correct syntactic
structures for the queries? We answer these ques-
tions here.

2.1 Derive syntax from semantics
In many cases, humans can easily determine the syn-
tax of a web query because its intent is easy to under-
stand. For example, for toys kids, we are pretty
sure as a web query, its intent is to look for toys for
kids, instead of the other way around. Thus, toys
should be the head of the query, and kids should be
its modifier. In other words, when the semantics of a
query is understood, we can often recover its syntax.

We may then manually annotate web queries.
Specifically, given a query, a human annotator forms
a sentence that is consistent with the meaning he

comes up for the query. Then, from the sentence’s
syntactic structure (which is well understood and
can be derived by a parser), the annotator derives the
syntactic structure of the query. For example, for
query thai food houston, the annotator may
formulate the following sentence:

... my favorite Thai food in Houston ...
PRP$ JJ NNP NN IN NN

poss

amod

nn prep pobj

Then we may project the dependency tree of the
sentence to the query:

thai food houston
NNP NN NN

nn nn

The above approach has two issues. First, food
and houston are not directly connected in the de-
pendency tree of the sentence. We connected them
in the query, but in general, it is not trivial to in-
fer synatx of the query from sentences in a consis-
tent way. There is no linguistic standard for doing
this. Second, annotation is very costly. A treebank
project takes years to accomplish.

2.2 Semantics of a web query
To avoid human annotation, we derive syntactic un-
derstanding of the query from semantic understand-
ing of the query. Our goal is to decide for any two
tokens x, y ∈ q, whether there is a dependency arc
between x and y, and if yes, what the dependency is.

Context-free signals. One approach to determine
the dependency between x and y is to directly model
P (e|x, y), where e denotes the dependency (x → y
or x ← y). It is context-free because we do not
condition on the query where x and y appear in.

To acquire P (e|x, y), we may consider annotated
corpora such as Google’s syntactic ngram (Goldberg
and Orwant, 2013). For any x and y, we count the
number of times that x is a dependent of y in the cor-
pus. One disadvantage of this approach is that web
queries and normal text differ significantly in distri-
bution. Another approach (Wang et al., 2014) is to
use search log to estimate P (e|x, y), where x and
y are nouns. Specifically, we find queries of pat-
tern x PREP y, where PREP is a preposition {of, in,
for, at, on, with, · · · }. We have P (x → y|x, y) =

1788

nx,y

nx,y+ny,x
where nx,y denotes the number of times

pattern x PREP y appears in the search log. The dis-
advantage is that the simple pattern only gives de-
pendency between two nouns.

Context-sensitive signals. The context-free ap-
proach has two major weaknesses: (1) It is risky to
decide the dependency between two tokens without
considering the context. (2) Context-free signals do
not reveal the type of dependency, that is, it does not
reveal the linguistic relationship between the head
and the modifier.

To take context into consideration, which means
estimating P (e|x, y, q) for any two tokens x, y ∈ q,
we are looking at the problem of building a parser
for web queries. This requires a training dataset (a
treebank). In this work, we propose to automati-
cally create such a treebank. The feasibility is cen-
tered on the following assumption: The intent of q
is contained in or consistent with the semantics of
its clicked sentences. We call sentence s a clicked
sentence of q if i) s appears in a top clicked page for
q, and ii) s contains all tokens in q. For instance, as-
sume sentence s = “... my favorite Thai
food in Houston ...” appears in one of the
most frequently clicked pages for query q = thai
food houston, then s is a clicked sentence of q.
It follows from the above assumption that the de-
pendency between any two tokens in q are likely to
be the same as the dependency between their corre-
sponding tokens in s. This allows to create a tree-
bank if we can project the dependency from sen-
tences to queries. However, since x and y may not
be directly connected by a dependency edge in s,
we need a method to derive the dependency between
x, y ∈ q from the (indirect) dependency between
x, y ∈ s. We propose such a method in Section 3.

3 Treebank for Web Queries

We create a web query treebank by projecting de-
pendency from clicked sentences to queries.

3.1 Inferring a dependency tree

A query q may have multiple clicked sentences. We
describe here how we project dependency to q from
such a sentence s. We describe how we aggregate
dependencies from multiple sentences in Sec 3.2.

Under our assumption, each token x ∈ q must
appear in sentence s. But x may appear multiple
times in s (especially when x is a function word).
As an example, for query apple watch stand,
we may get the following sentence:

Its apple watch charging stand is my favorite stand .
PRP$ NN NN NN NN VBZ PRP$ JJ NN .

poss

nn nn nn

nsubj
cop

poss
amod punct

Sentence s contains token stand twice, but only
one subtree contains each token in q exactly once.

apple watch charging stand
NN NN NN NN

nn nn nn

We use the following heuristics to derive a depen-
dency tree for query q from sentence s.

1. Let Ts denote all the subtrees of the depen-
dency tree of s.

2. Find the minimum subtree t ∈ Ts such that
each x ∈ q has one and only one match x′ ∈ t.

3. Derive dependency tree tq,s for q from t as fol-
lows. For any two tokens x and y in q:

(a) if there is an edge from x′ to y′ in t, we
create a same edge from x to y in tq,s.

(b) if there is a path1 from x′ to y′ in t, we
create an edge from x to y in tq,s, and label
it temporarily as dep.

We note the following. First, we argue that if the
dependency tree of s has a subtree that contains each
token in q once and only once, then it is very likely
that the subtree expresses the same semantics as the
query. On the other hand, if we cannot find such a
subtree, it is an indication that we cannot derive rea-
sonable dependency information from the sentence.

Second, it’s possible x′ and y′ are not connected
directly in s but through one or more other tokens.
Thus, we do not know the label of the derived edge.
We will decide on the label in Sec 3.3.

Third, we want to know whether it is meaningful
to connect x and y in q while x′ and y′ are not di-
rectly connected in s. We evaluated a few hundreds

1A path consists of edges of the same direction.

1789

of query-sentence pairs. Among the cases where de-
pendency trees for queries can be derived success-
fully, we found that x′ and y′ are connected in 5
possible ways (Table 1). We describe them in de-
tails next.

directly connected 46%
connected via function words 24%
connected via modifiers 24%
connected via a head noun 4%
connected via a verb 2%

Table 1: Dependency Projection

Directly connected. In this case, we copy the
edge and its label directly. Consider query party
supplies cheap’s clicked sentence below:

... selection of cheap party supplies is ...
NN IN JJ NN NNS VBZ

prep

amod

nn

pobj

Here both (party, supplies) and (supplies,
cheap) are directly connected. The query inherits
the dependencies, but note that tokens supplies
and cheap have different word orders in q and s:

party supplies cheap
NN NNS JJ

nn amod

Connected via function words. It is quite com-
mon prepositions are omitted in a query. Consider
query moon landing’s clicked sentence:

... first soft landing on moon in 37 years .
JJ JJ NN IN NN IN CD NNS .

amod
amod prep pobj

prep

num
pobj

We can derive the following dependency tree:

moon landing
NN NN

dep

For query side effects b12, suppose we
have the following sentence:

The side effects of vitamin b12 ...
DT NN NNS IN NN JJ

det
nn prep nn

pobj

The derived dependency tree should be:

side effects b12
NN NNS JJ

nn dep

For these two cases, we need to introduce a de-
rived edge for the query, which will be resolved later
to a specific dependency label.

Connected via modifiers. Many web queries are
noun compounds. Their clicked sentences may have
more modifiers. Depending on the bracketing, we
may or may not have direct dependencies.

For offshore work and its clicked sentence
below, missing drilling in the query does not
cause any problem: offshore and work are still
directly connected in the dependency tree.

... this offshore drilling work ...
DT JJ NN NN

amod

nn

But not for crude price and its clicked sentence.
Still, there is a path: crude← oil← price.

... crude oil price is rousing ...
JJ NN NN VBZ VBG

amod nn dep ccomp

In this case, we create a dependency between
crude and oil in the query and give it a tempo-
rary label dep. We will resolve it to a specific label
later.

crude price
NN NN

dep

Connected via a head noun. In some cases, the
head of a noun compound is missing. Consider
country singers and its clicked sentence:

... singers in country music ...
NNS IN NN NN

prep nn
pobj

Clearly they mean the same thing, but the head
(music) of the noun compound is missing in the
query. Still, a path exists from singers to
country, and we create a dependency:

1790

country singers
NN NN

dep

Connected via a verb. One common case is the
omission of copular verbs. Consider plants
poisonous to goats and its clicked sentence:

... many plants are poisonous to goats .
JJ NNS VBP JJ TO NNS .

amod

nsubj

cop prep
pobj

Here, the missing are does not cause any problem.
But for query pain between breasts and its
clicked sentence:

The pain that appears between the breasts ...
DT NN WDT VBZ IN DT NNS

det nsubj
rcmod

prep det

pobj

we need to introduce a derived edge, and it leads to:

pain between breasts
NN IN NNS

prep pobj

3.2 Inferring a unique dependency tree
A query corresponds to multiple clicked sentences.
From each sentence, we derive a dependency tree.
These dependency trees may not be the same, be-
cause i) dependency parsing for sentences is not per-
fect; ii) queries are ambiguous; or iii) some queries
do not have well-formed clicked sentences.

To choose a unique dependency tree for a query q,
we define a scoring function f to measure the qual-
ity of a dependency tree tq derived from q’s clicked
sentence s:

f(tq, s) =
∑

(x→y)∈tq
−αdist(x, y) + log

count(x→ y)

count(x← y)

(1)

where (x→ y) is an edge in the tree tq, count(x→
y) is the occurrence count of the edge x → y in
the entire query dataset, dist(x, y) is the distance
of words x and y on the original sentence parsing
tree, and α is a parameter to adjust the importance
between the two measures (its value is empirically
determined).

The first term of the scoring function measures the
compactness of the query tree. Consider two clicked

Correct Wrong Query Sentence
side← effects side→ effects 1110:1 11257:17
benefits→ of benefits← of 144:63 5228:0
Full←Movie Full→Movie 128:5 1585:27
coconut← oil coconut→ oil 91:10 1507:46
credit← card credit→ card 96:2 4394:60

Table 2: Examples of globally inconsistent head
modifier relations

sentences for query deep learning:

... learning how to deep fry chicken ...

... JJ WRB NN IN NN IN ...

acl

advmod
mark

advmod dobj

... enjoy deep learning ...

... VBP JJ NN ...

dobj
amod

In the first sentence, deep and learning are
indirectly connected through fry so the total dis-
tance measure is 2. In the second query, the distance
is 1. Therefore, query aligned with the second sen-
tence is better than the first sentence.

The second term of the scoring function measures
the global consistency among head modifier direc-
tions. For a word pair (x, y), if in the dataset, the
number of edges x → y dominates the number of
edges x← y, then the latter is likely to be incorrect.

One important thing to note is word order. Word
order may influence the head-modifier relations be-
tween two words. For example, child of and
of child should definitely have different head-
modifier relations. Therefore, we treat two words
of different order as two different word pairs.

Table 2 shows some examples of conflicting de-
pendency edges and their corresponding occurrence
count in queries and sentences.

3.3 Label refinement
In Section 3.1, some dependencies are derived with
a placeholder label dep. Before we use the data
to train a parser, we must resolve dep to a true
label, otherwise they introduce inconsistency in
the training data. For example, consider a sim-
ple query crude price. From clicked sen-
tences that contain crude oil price, we de-

1791

rive crude
dep←−−price, but from those that contain

crude price, we derive crude amod←−−−price.
To resolve dep, we resort to majority vote first.

For any x
dep←−− y, we count the occurrence of x label←−−

y in the training data for each concrete label. If the
frequency of a certain label is dominating by a pre-
determined threshold (10 times more frequent than
any other label), then we resolve dep to that label.

With our training data, the above process is able
to resolve about 90% dependencies. We can simply
discard queries that contain unresolvable dependen-
cies. However, such queries still contain useful in-
formation, for example, the direction of this edge,
and the directions and labels of all the other edges.
We develop a bootstrapping method to preserve such
useful information. First, we train a parser on data
without dep labels. This skips about 10% queries in
our experiments. Second, we use the parser to pre-
dict the unknown label. If the prediction is consis-
tent with the annotation except for the dep label, we
use the predicted label. Third, we add the resolved
queries into the training data and train a final parser.
Experiments show the bootstrapping approach im-
proves the quality of the parser.

4 Dependency Parsing

We train a parser from the web query treebank
data. We also try to incorporate context-free head-
modifier signals into parsing. To make it easier to
incorporate such signals, we adopt a neural network
approach to train our POS tagger and parser.

4.1 Neural network POS tagger and parser

We first train a neural network POS tagger for web
queries. For each word in the sentence, we construct
features out of a fixed context window centered at
that word. The features include the word itself, case
(whether the first letter, any letter, or every letter in
the word, is in uppercase), prefix, and suffix (we rec-
ognize a pre-defined set of prefixes and suffixes, for
the rest we use a special token “UNK”). For the word
feature, we use pre-trained word2vec embeddings.
For word case and prefix/suffix, we use random ini-
tialization for the embeddings. The accuracy of the
trained POS tagger is similar to that of (Ganchev et
al., 2012), which outperforms POS taggers trained
on PTB data.

Buffer features
b1.wt, b2.wt, b3.wt
Stack features
s1.wt, s2.wt, s3.wt
Tree features
lc1(s1).wtl, lc2(s1).wtl, rc1(s1).wtl, rc2(s1).wtl
lc1(lc1(s1)).wtl, rc1(rc1(s1)).wtl
lc1(s2).wtl, lc2(s2).wtl, rc1(s2).wtl, rc2(s2).wtl
lc1(lc1(s2)).wtl, rc1(rc1(s2)).wtl

Table 3: The feature templates. si(i = 1, 2, ...) de-
note the ith top element of the stack, bi(i = 1, 2, ...)
denote the ith element on the buffer, lck(si) and
rck(si) denote the kth leftmost and rightmost chil-
dren of si, w denotes words, t denotes POS tag, l
denotes label.

We use the arc standard transition based depen-
dency parsing system (Nivre, 2004). The architec-
ture of the neural network dependency parser is sim-
ilar to that of (Chen and Manning, 2014) designed
for parsing sentences. The features used in parsing
are shown in Table 3.

4.2 Context free features

In Section 2.2, we discussed context-free signals
P (e|x, y) and context-sensitive signals P (e|x, y, q).
Previous work (Wang et al., 2014) uses context-free
signals for syntactic analysis of a query. Our ap-
proach outperforms the context-free approach.

An interesting question is, will context-free sig-
nals further improve our approach? The rationale is
that although context-sensitive signals P (e|x, y, q)
are more accurate in predicting the dependency be-
tween x and y, such signals are also very sparse. Do
context-free signals P (e|x, y) provide backoff infor-
mation in parsing?

It is not straightforward to include P (e|x, y) in
the neural network model. The head-modifier rela-
tions P (e|x, y) may exist between any pair of tokens
in the input query. Essentially, it is a pairwise graph-
ical model and it is difficult to directly incorporate
the signals in transition based dependency parsing.

We treat context-free signals as prior knowledge.
We train head-modifier embeddings for each to-
ken, and use such embeddings as pre-trained embed-
dings. Specifically, we use an approach similar to
training word2vec embeddings but focusing on head

1792

modifier relationships instead of co-occurrence rela-
tionships. More specifically, we train an one hidden
layer neural network classifier to determine whether
two words have head-modifier relations. The input
of the neural network is the concatenation of the em-
beddings of two words. The output is whether the
two words form a proper head-modifier relationship.
We obtain a large set of head-modifier data from text
corpus by mining “h PREP m” pattern in search log
where h and m are nouns. Then, for each known
head modifier pair h and m, we use (h,m) as pos-
itive example and (m,h) as negative example. For
each word, we also choose a few random words as
negative examples. During the training process, the
gradients are back propagated to the word embed-
dings. After training, the embeddings should con-
tain sufficient information to recover head modifier
relations between any word pairs.

But we did not observe improvement over the ex-
isting neural network that are trained on context sen-
sitive treebank data alone. The head-modifier em-
beddings has about 3% advantage in UAS over ran-
domized embeddings. However, using pretrained
word2vec embeddings, we also achieve 3% advan-
tage. Thus, it seems that context-sensitive signals
plus the generalizing power of embeddings contain
all the context-free signals already.

5 Experiments

In this section, we start with some case studies. Then
we describe data and compare models.

In experiments, we use the standard UAS (unla-
beled attachment score) and LAS (labeled attach-
ment score) score for measuring the quality of de-
pendency parsing. They are calculated as:

UAS =
correct arc directions

total arcs
(2)

LAS =
correct arc directions and labels

total arcs
(3)

5.1 Case Study

We compare dependency trees produced by our
QueryParser and Stanford Parser (Chen and Man-
ning, 2014) for some web queries (Stanford Parser
is trained from the standard PTB treebank). Table 4
shows that Stanford Parser heavily relies on gram-
mar signals such as function words and word or-

der, while QueryParser relies more on the seman-
tics of the query. For instance, in the 1st exam-
ple, QueryParser identifies toys as the head, re-
gardless of the word order, while Stanford parser
always assumes the last token as the head. In the
2nd example, the semantics of the query is a school
(vanguard school) at a certain location (lake
wales). QueryParser captures the semantics and
correctly identifies school as the head (root) of the
query, while Stanford parser treats the entire query
as a single noun compound (likely inferred from the
POS tags).

5.2 Clicked Sentences

For training data, we use one-month Bing query log
(between July 25, 2015 and August 24, 2015). From
the log, we obtain web query q and its top clicked
URLs {url1, url2, ..., urlm}. From the urls, we re-
trieve the clicked HTML document, and find sen-
tences {s1, s2, ..., sn} that contain all words (regard-
less to their order of occurrence) in q. Then we ex-
tract query-sentence tuples (q, s, count) to serve as
our training data to generate a web query treebank.
The size (# of distinct query-sentence pairs) of the
raw clicked sentences is 390,225,806.

5.3 Web Query Treebank

We evaluate the 3 steps of treebank generation. Af-
ter each step, we sample 100 queries from the result
and manually compute their UAS and LAS scores.
We also count the number of total query instances in
each step. The results are shown in Table 5.

• Inferring a dependency tree: For each (query,
sentence) pair, we project dependency from
the sentence to the query. The number of in-
stances shown in Table 5 are the input num-
ber of (query, sentence) pairs. It shows that
we obtain dependency trees for only 31% of the
queries, while the rest do not satisfy our filter-
ing criterion. This however is not a concern.
By sacrificing recall in this process, we ensure
high precision. Given that query log is large,
precision is more important.

• Inferring a unique dependency tree: In this
step, we group (query, sentence) pairs by
unique queries. Using the method in Section

1793

QueryParser Stanford parser

toys kids
NNS NNS

nn

kids toys
NNS NNS

nn

toys kids
NNS NNS

nn

kids toys
NNS NNS

nn

vanguard school lake wales
NN NN NN NNS

nn
nn

nn

vanguard school lake wales
NN NN NN NNS

nn

nn
nn

pretty little liars season 4 episode 6
RB JJ NNS NN CD NN CD

advmod
nn

nn
num

nn

num

pretty little liars season 4 episode 6
RB JJ NNS NN CD NN CD

advmod

nn
nn

num
nn num

interview questions contract specialist
NN NNS NN NN

nn nn

nn

contract specialist interview question
NN NN NN NN

nn nn nn

interview questions contract specialist
NN NNS NN NN

nn

nn

nn

contract specialist interview question
NN NN NN NN

nn

nn

nn

Table 4: Case study of parsers.

3.2, each group produces one or zero depen-
dency trees. The number of instances in Table
5 corresponds to the number of different query
groups. The overall success rate is high. This
is expected as the filtering process uses major-
ity voting, and we already have high precision
parsing trees after the first step.

• Label refinement: Dependency labels are re-
fined using the methodology in Section 3.3. It
shows that with majority voting and bootstrap-
ing, we are able to keep all the input.

5.4 Parser Performance

We compare QueryParser against three state-of-the-
art parsers: Stanford parser, which is a transition
based dependency parser based on neural network,
MSTParser (McDonald et al., 2005), which is a

graph based dependency parser based on minimum
spanning tree algorithms, and LSTMParser (Dyer et
al., 2015), which is a transition based dependency
parser based on stack long short-term memory cells.
Here, QueryParser is trained from our web query
treebank, while Stanford Parser and MSTParser are
trained from standard PTB treebanks.

For comparison, we manually labeled 1,000 web
queries to serve as a ground truth dataset2. We pro-
duce POS tags for the queries using our neural net-
work POS tagger. To specifically measure the ability
of QueryParser in parsing queries with no explicit
syntax structure, we split the entire dataset All into
two parts: NoFunc and Func, which correspond to
queries without any function word, and queries with
at least one function word. The number of queries

2https://github.com/wishstudio/queryparser

1794

Step Total Instances Produced Instances Success Rate UAS LAS
Inferring a dependency tree 3986300 1229860 31% 0.906 0.851
Inferring a unique tree 716261 680857 95% 0.910 0.851
Label refinement 680857 680857 100% 0.917 0.855

Table 5: Training dataset generation statistics

System
All (n=1000) NoFunc (n=900) Func (n=100)
UAS LAS UAS LAS UAS LAS

Stanford 0.694 0.602 0.670 0.568 0.834 0.799
MSTParser 0.699 0.616 0.683 0.691 0.799 0.766
LSTMParser 0.700 0.608 0.679 0.578 0.827 0.790
QueryParser + label refinement 0.829 0.769 0.824 0.761 0.858 0.818
QueryParser + word2vec 0.843 0.788 0.843 0.784 0.838 0.812
QueryParser + label refinement + word2vec 0.862 0.804 0.858 0.795 0.883 0.854

Table 6: Parsing performance on web queries

of the two datasets are 900 and 100, respectively.
Table 6 shows the results. We use 3 versions

of QueryParser. The first two use random word
embedding for initialization, and the first one does
not use label refinement. From the results, it can
be concluded that QueryParser consistently outper-
formed competitors on query parsing task. Pre-
trained word2vec embeddings improve performance
by 3-5 percent, and the postprocess of label refine-
ment also improves the performance by 1-2 percent.

Table 6 also shows that conventional depencency
parsers trained on sentence dataset relies much more
on the syntactic signals in the input. While Stanford
parser and MSTParser have similar performance to
our parser on Func dataset, the performance drops
significantly on All and NoFunc dataset, when the
majority of input has no function words.

6 Related Work

Some recent work (Ganchev et al., 2012; Barr et al.,
2008) investigated the problem of syntactic analysis
for web queries. However, current study is mostly
at postag rather than dependency tree level. Barr et
al. (2008) showed that applying taggers trained on
traditional corpora on web queries leads to poor re-
sults. Ganchev et al. (2012) propose a simple, ef-
ficient procedure in which part-of-speech tags are
transferred from retrieval-result snippets to queries
at training time. But they do not reveal syntactic
structures of web queries.

More work has focused on resolving simple re-
lations or structures in queries or short texts, par-
ticularly entity-concept relations (Shen et al., 2006;
Wang et al., 2015; Hua et al., 2015), entity-attribute
relations (Pasca and Van Durme, 2007; Lee et al.,
2013), head-modifier relations (Bendersky et al.,
2010; Wang et al., 2014). Such relations are impor-
tant but not enough. The general dependency rela-
tions we focus on is an important addition to query
understanding.

On the other hand, there is extensive work on syn-
tactic analysis of well-formed sentences (De Marn-
effe et al., 2006). Recently, a lot of work (Collobert
et al., 2011; Vinyals et al., 2015; Chen and Manning,
2014; Dyer et al., 2015) started using neural network
for this purpose. In this work, we use similar neural
network architecture for web queries.

7 Conclusion

Syntactic analysis of web queries is extremely im-
portant as it reveals actional signals to many down-
stream applications, including search ranking, ads
matching, etc. In this work, we first acquire well-
formed sentences that contain the semantics of the
query, and then infer the syntax of the query from
the sentences. This essentially creates a treebank for
web queries. We then train a neural network depen-
dency parser from the treebank. Our experiments
show that we achieve significant improvement over
traditional parsers on web queries.

1795

References

Cory Barr, Rosie Jones, and Moira Regelson. 2008. The
linguistic structure of english web-search queries. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, EMNLP ’08, pages
1021–1030, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Michael Bendersky, Donald Metzler, and W Bruce Croft.
2010. Learning concept importance using a weighted
dependence model. In Proceedings of the third ACM
international conference on Web search and data min-
ing, pages 31–40. ACM.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In EMNLP, pages 740–750.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Marie-Catherine De Marneffe, Bill MacCartney, Christo-
pher D Manning, et al. 2006. Generating typed de-
pendency parses from phrase structure parses. In Pro-
ceedings of LREC, volume 6, pages 449–454.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependeny parsing with stack long short-term
memory. In Proc. ACL.

Kuzman Ganchev, Keith Hall, Ryan McDonald, and Slav
Petrov. 2012. Using search-logs to improve query tag-
ging. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics, ACL
’12, pages 238–242, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Yoav Goldberg and Jon Orwant. 2013. A dataset of
syntactic-ngrams over time from a very large corpus
of english books. In Second Joint Conference on Lexi-
cal and Computational Semantics (* SEM), volume 1,
pages 241–247.

Wen Hua, Zhongyuan Wang, Haixun Wang, Kai Zheng,
and Xiaofang Zhou. 2015. Short text understand-
ing through lexical-semantic analysis. In International
Conference on Data Engineering (ICDE).

Taesung Lee, Zhongyuan Wang, Haixun Wang, and
Seung-won Hwang. 2013. Attribute extraction and
scoring: A probabilistic approach. In International
Conference on Data Engineering (ICDE).

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings of
the conference on Human Language Technology and
Empirical Methods in Natural Language Processing,

pages 523–530. Association for Computational Lin-
guistics.

Joakim Nivre. 2004. Incrementality in deterministic de-
pendency parsing. In Proceedings of the Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together, pages 50–57. Association for Compu-
tational Linguistics.

Marius Pasca and Benjamin Van Durme. 2007. What
you seek is what you get: Extraction of class attributes
from query logs. In IJCAI, volume 7, pages 2832–
2837.

Dou Shen, Jian-Tao Sun, Qiang Yang, and Zheng Chen.
2006. Building bridges for web query classification.
In Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in in-
formation retrieval, pages 131–138. ACM.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar
as a foreign language. In Advances in Neural Informa-
tion Processing Systems, pages 2755–2763.

Zhongyuan Wang, Haixun Wang, and Zhirui Hu. 2014.
Head, modifier, and constraint detection in short texts.
In Data Engineering (ICDE), 2014 IEEE 30th Inter-
national Conference on, pages 280–291. IEEE.

Zhongyuan Wang, Kejun Zhao, Haixun Wang, Xiaofeng
Meng, and Ji-Rong Wen. 2015. Query understand-
ing through knowledge-based conceptualization. In
Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence (IJCAI).

1796

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1797–1806,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Unsupervised Text Recap Extraction for TV Series

Hongliang Yu and Shikun Zhang and Louis-Philippe Morency
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA, 15213, USA

{yuhongliang, shikunz, morency}@cs.cmu.edu

Abstract

Sequences found at the beginning of TV
shows help the audience absorb the essence
of previous episodes, and grab their attention
with upcoming plots. In this paper, we pro-
pose a novel task, text recap extraction. Com-
pared with conventional summarization, text
recap extraction captures the duality of sum-
marization and plot contingency between ad-
jacent episodes. We present a new dataset,
TVRecap, for text recap extraction on TV
shows. We propose an unsupervised model
that identifies text recaps based on plot de-
scriptions. We introduce two contingency fac-
tors, concept coverage and sparse reconstruc-
tion, that encourage recaps to prompt the up-
coming story development. We also propose a
multi-view extension of our model which can
incorporate dialogues and synopses. We con-
duct extensive experiments on TVRecap, and
conclude that our model outperforms summa-
rization approaches.

1 Introduction

According to a study by FX Networks, in U.S., the
total number of ongoing scripted TV series hit a new
high of 409 on broadcast, cable, and streaming in
20151. Such a large number indicates there are more
shows than anyone can realistically watch. To attract
prospective audiences as well as help current view-
ers recall the key plot when airing new episodes,
some TV shows add a clip montage, which is called
a recap sequence, at the beginning of new episodes
or seasons. Recaps not only help the audience

1http://tinyurl.com/jugyyu2

absorb the essence of previous episodes, but also
grab people’s attention with upcoming plots. How-
ever, creating those recaps for every newly aired
episode is labor-intensive and time-consuming. To
our advantage, there are many textual scripts freely
available online which describe the events and ac-
tions happening during the TV show episodes2.
These textual scripts contain plot descriptions of the
events, dialogues of the actors, and sometimes also
the synopsis summarizing the whole episode.

These abundant textual resources enable us to
study a novel, yet challenging task: automatic
text recap extraction, illustrated in Figure 1. The
goal of text recap extraction is to identify seg-
ments from scripts which both summarize the cur-
rent episode and prompt the story development of
the next episode. This unique task brings new
technical challenges as it goes beyond summariz-
ing prior TV episodes, by introducing a concept of
plot contingency to the upcoming TV episode. It
differs from conventional summarization techniques
which do not consider the interconnectivity between
neighboring episodes. Text recaps should capture
the duality of summarization and plot contingency
between neighboring episodes. To our knowledge,
no dataset exists to study this research topic.

In this paper, we present an unsupervised model
to automatically extrapolate text recaps of TV shows
from plot descriptions. Since we assume recaps
should cover the main plot of the current episode
and also prompt the story development of the next
episode, our model jointly optimizes these two ob-

2http://www.simplyscripts.com/tv_all.
html

1797

We see Shannon and Sayid working on the translation. Sayid finds

the translation nonsense, slightly annoyed. Shannon walks off, upset

and frustrated with Sayid and herself. Back to the robbery. Hutton

opens the door as Jason is pointing gun at him.

Kate shoots Joson in the leg. Kate opens the box which reveals an

envelope inside.

On-Island – Jack is with the case asking Kate to tell him what is inside.

Jack opens the box, and finds an envelope. Kate opens the envelope

and pulls out a small airplane. After admitting it belongs to the man

Kate loved and killed, Kate sits down and starts crying. Jack looks

nonplussed, he closes up the case and walks away.

Shot of everyone moving up the beach. Rose sitting by a tree, Charlie

approaches. Shot of Shannon walking up to Sayid on the beach.

Boone stares at Sayid and Shannon from behind a tree with a

weird look on his face. Kate just stares at her toy airplane.

Next EpisodeCurrent Episode

Boone is watching Shannon read from far away. Sayid shows up, and

hands a box to Shannon to thank for her help with the translation.

Shannon opens the box which contains purple flowery shoes. They

continue talking as the shot switches to Boone watching them.

Flashback - Shot of Boone with his arm around a girl, carrying tennis

racket and ball, walking up steps from the tennis court to the pool area

of a club. Sound of a cell phone ringing. Shannon is in a shaky voice.

Shannon is yelling at someone on her end.

On-Island - Shot of Sayid limping along the beach.

Boone confronts Sayid and tells him to stay away from his sister

Shannon. Locke calls Boone away. Boone and Locke walk off into the

jungle.

… …

Text Recap

We see Shannon and Sayid working

on the translation.

Kate opens the box which reveals

an envelope inside.

After admitting it belongs to the man

Kate loved and killed, Kate sits

down and starts crying.

Boone stares at Sayid and Shannon

from behind a tree with a weird look

on his face.

Text Recap Extraction

Figure 1: Illustration of text recap extraction. The system extracts sentences from the current episode. The text recap sentences in

black summarize the current episode, while colored sentences motivate the next episode.

jectives. To summarize the current episode, our
model exploits coverage-based summarization tech-
niques. To connect to the next episode, we devise
two types of plot contingency factors between adja-
cent episodes. These factors implement the coverage
and reconstruction assumptions to the next episode.
We also show how our model can be extended to in-
tegrate dialogues and synopses when available.

We introduce a new dataset3, named TVRecap
for text recap extraction which consists of TV se-
ries with textual scripts, including descriptions, di-
alogues and synopses. The dataset enables us to
study whether contingency-based methods which
exploit relationships between adjacent episodes can
improve summarization-based methods.

The rest of this paper is organized as follows. In
Section 2, we discuss related work and the motiva-
tion for our work. In Section 3, we introduce our
new dataset for text recap extraction. Section 4 ex-
plains our proposed model for text recap extraction,
and Section 5 expands the model by incorporating
synopses and dialogues. In Section 6 and 7, we
present our experimental results and analyses, and
finally conclude our work in Section 8.

2 Related Work

In this section, we discuss three related research top-
ics. Text summarization is an relevant task that aims
to create a summary that retains the most important
points of the original document. Then we discuss the

3http://multicomp.cs.cmu.edu

evaluation metrics of text summarization. Finally,
we discuss the video description which is comple-
mentary to our work.

Generic Text Summarization Alogrithms Text
summarization is widely explored in the news do-
main (Hong and Nenkova, 2014; McKeown, 2005).
Generally, there are two approaches: extractive and
abstractive summarization.

Extractive summarization forms a summary by
choosing the most representative sentences from the
original corpus. The early system LEAD (Was-
son, 1998) was pioneering work. It selected lead-
ing text of the document as the summary, and was
applied in news searching to help online customers
focus their queries on the beginning of news docu-
ments. He et al. (2012) assumed that summarization
should consist of sentences that could best recon-
struct the original document. They modeled rela-
tionship among sentences by forming an optimiza-
tion problem. Moreover, Sipos et al. (2012) and
Lin and Bilmes (2010) studied multi-document sum-
marization using coverage-based methods. Among
them, Lin and Bilmes (2010) proposed to approxi-
mate the optimal solution of a class of functions by
exploiting submodularity.

Abstractive summarization automatically create
new sentences. For example, compared with the
sentence-level analysis in extractive summarization,
Bing et al. (2015) explored fine-grained syntactic
units, i.e. noun/verb phrases, to represent concepts
in input documents. The informative phrases were

1798

then used to generate sentences.
In this paper, we generalize the idea of text sum-

marization to text recap extraction. Instead of sum-
marizing a given document or collection, our model
emphasizes plot contingency with the next episode.

Summarization Applications Summarization
techniques are not restricted to informative re-
sources (e.g. news), applications in broader areas
are gaining attention (Aparı́cio et al., 2016). As
the prevailance of online forums, Misra et al.
(2015) developed tools to recognize arguments
from opinionated conversations, and group them
across discussions. In entertainment industry, Sang
and Xu (2010) proposed a character-based movie
summarization approach by incorporating scripts
into movie analysis. Moreover, recent applications
include multimedia artifact generation (Figueiredo
et al., 2015), music summarization (Raposo et al.,
2015) and customer satisfaction analysis (Roy et al.,
2016).

Video Description Generating video descriptions
is a task that studies automatic generation of natural
language that describes events happening in video
clips. Most work uses sequential learning for en-
coding temporal information and language genera-
tion (Guadarrama et al., 2013; Rohrbach et al., 2013,
2015; Donahue et al., 2015). Our work is com-
plementary to video description: the large number
of unlabeled videos can be utilized to train end-to-
end recap extraction system when video description
models can properly output textual descriptions.

Contributions of This Paper In contrast with
prior work, the main contributions of this paper are:
(1) We propose a novel problem, text recap extrac-
tion for TV series. Our task aims to identify seg-
ments from scripts which both summarize the cur-
rent episode and prompt the story development of
the upcoming episode;
(2) We propose an unsupervised model for text recap
extraction from descriptions. It models the episode
contingency through two factors, next episode sum-
marization and sparse reconstruction;
(3) We introduce a new dataset for TV show recap
extraction, where descriptions, dialogues and syn-
opses are provided.

3 The TVRecap Dataset

We collected a new dataset, called TVRecap, for text
recap extraction on TV series. We gathered and
processed scripts, subtitles and synopses from web-
sites4 as components to build our model upon. We
also established ground truth to help future research
on this challenging topic. TVRecap includes all sea-
sons from the widely-known show “Lost” with a
total of 106 episodes. Statistics of our dataset are
shown in Table 1.

sent. avg. # sent. # words avg. # w./s.
description 14,686 138.5 140,684 9.57
dialogue 37,714 355.8 284,514 7.54
synopsis 453 4.27 7,868 17.36
recap 619 17.19 5,892 9.52

Table 1: Statistics of TVRecap.

This section describes how textual scripts and
synopses are processed, and how we automatically
define the ground truth of text recap annotations.

Descriptions, Dialogues and Synopses A script
for one TV series episode is a sequence of di-
alogues interleaved with descriptions (marked by
square brackets). We automatically split the script
into descriptions and dialogues. For each episode,
We also downloaded the synopsis, a human-written
paragraph summarizing the main plot of the episode.
Figure 2 shows examples of a script and a synopsis
from our TVRecap dataset.

LOCKE: Two players. Two sides. One is light... one is dark. Walt, do

you want to know a secret?

[Claire writing in her diary. Jin approaches and offers her some

urchin. She shakes her head, but then gives in and takes some.]

CLAIRE: No. Thank you. No, it's okay. [Jin keeps insisting] No,
really. Okay. Thanks.

(a) Script: containing descriptions and dialogues.

Boone steals the decreasing water supply in a misguided attempt to

help everyone, but the survivors turn on him. A sleep-deprived Jack

chases after what appears to be his deceased father in the forests

and eventually discovers caves with fresh water. Jack comes to

terms with his role as leader. In flashbacks, Jack goes to Australia
to retrieve his deceased father.

(b) Synopsis.

Figure 2: Example of a script (including descriptions and dia-

logues) and a synopsis.

4http://lostpedia.wikia.com/ and https://
www.wikipedia.org/

1799

All plot descriptions and dialogues are time-
aligned automatically using the subtitle files5. We
first aligned the dialogue sentences from the script
with the subtitle files which contain time-stamps (in
milliseconds) of the spoken dialogues. Then we es-
timated time-stamps of description sentences using
surrounding dialogues.

Since descriptions sometimes contain words not
relevant to the event, we manually post-processed
all descriptions and recap sentences as follows: (1)
remove trivial sentences such as “music on”, (2) re-
move introductory terms like “Shot of ”, (3) com-
plete missing grammatical components (like omitted
subjects) of sentences when possible.

Text Recap Annotations The goal of our ground
truth annotation is to identify the text descriptions
associated with the TV show recap. We performed
this annotation task in three steps.

First, we automatically extracted the recap se-
quence, which is a montage of important scenes
from previous episodes to inform viewers of what
has happened in the show, from the TV show video.
These recap sequences, if available, are always
shown at the beginning of TV episodes. We auto-
matically separated video recap sequences from full-
length video files by detecting a lengthy appearance
of black frames in the first several minutes of the
episode. Second, we located the frames of the re-
cap sequences in the videos of previous episodes,
and recorded their time-stamps. Finally, the recap
annotations are automatically identified by compar-
ing the video time-stamps with the text description
time-stamps. A description is annotated as part of
the recap if at least 4 frames from the video recap
are present during this description.

4 Our Text Recap Extraction Model

In our Text Recap Extraction Model (TREM), we
assume a good text recap should have two charac-
teristics: (a) it covers the main plot of the current
episode, and (b) it holds plot contingency with the
next episode. Under the first assumption, the text
recap can be seen as a summarization that retains
the most important plots. Under assumption (b), the
text recap should capture the connections between
two consecutive episodes.

5http://www.tvsubtitles.net/

Formally, the system is given E episodes from a
specific TV show, where each episode contains tex-
tual descriptions. We define these descriptions as
D = {D1, · · · , DE}, whereDi is the set of descrip-
tions of episode i. Di is composed of descriptive
sentences as Di = {di1, · · · , di|Di|}, where dij is the
j-th sentence. The goal of our task is to find text re-
caps R = {R1, · · · , RE−1} where the components
of Ri are selected from Di with a length budget
(constraint on the number of sentences) |Ri| ≤ K.

In our TREM model, the text recap Ri of the i-th
episode is optimized by:

max
Ri⊂Di

F(Ri) = S(Ri, Di) +M(Ri, Di+1)

s.t |Ri| ≤ K,
(1)

where S(Ri, Di) measures how well Ri summa-
rizes Di, and M(Ri, Di+1) quantifies the level of
connectivity between the text recap of the current
episode and the plot description of the next episode.
By using M(·, ·), we expect to produce text re-
caps with better plot contingency with the upcoming
story.

In the following sections, we demonstrate in de-
tails: (1) the definition of the summarization func-
tion S(·, ·); (2) two factors that derive the contin-
gency functionM(·, ·) based on different hypothe-
ses.

4.1 Plot Summarization
In this section, we discuss the summarization com-
ponent of our model’s objective function. Our model
is inspired by the coverage-based summarization
(Lin and Bilmes, 2010), whose key idea is to find
a proxy that approximates the information overlap
between the summary and the original document. In
this work, any text is assumed to be represented by a
set of “concepts” using weights to distinguish their
importance. To be more specific, a concept is de-
fined as a noun/verb/adjective or noun/verb phrase.
In terms of concepts, we define the summarization
term S(Ri, Di) as follows:

S(Ri, Di) =
∑

c∈C(Di)

z(c,Di)max
r∈Ri

w(c, r), (2)

where C(Di) = {c′|c′ ∈ dij , ∀dij ∈ Di} is the con-
cept set of Di, and z(c,Di) measures the impor-
tance of c in Di. We use Term Frequency Inverse

1800

Document Frequency (TF-IDF) (Salton and Buck-
ley, 1988) to calculate z(c,Di). Finally, w(c, r) de-
notes the relatedness of a concept c to a sentence r.

We use Word2Vec (Mikolov et al., 2013) vectors
as the semantic representation of concepts, and de-
fine w(c, r) as:

w(c, r) = |c| ·max
c′∈r

cos(c, c′), (3)

where bold notations are the Word2Vec representa-
tions of c and c′. Note that if c is a phrase, c is mean
pooled by the embeddings of its component words.
|c| is the number of words in c.

4.2 Plot Contingency
We model plot contingency on the concept level as
well as on the sentence level. Therefore, the compo-
nentM(·, ·) is decomposed into two factors:

M(Ri, Di+1) =λsMs(R
i, Di+1)+

λrMr(R
i, Di+1).

(4)

where Ms(R
i, Di+1) measures how well Ri

can summarize the next episode Di+1 and
Mr(R

i, Di+1) is the factor that quantify the
ability of Ri to reconstruct Di+1. λs, λr ≥ 0 are
coefficients for Ms(·, ·) and Mr(·, ·) respectively.
In the following sections, we define and explain
these two factors in details.

4.2.1 Concept Coverage
Following the coverage assumption of Section

4.1, we argue that the text recap should also cover
important concepts from the next episode. There-
fore, the first contingency factor can be defined
in the same form as the summarization component
where Di’s in Equation 2 are replaced by Di+1’s:

Ms(R
i, Di+1) =

∑

c∈C(Di+1)

z(c,Di+1)max
r∈Ri

w(c, r).

(5)

4.2.2 Sparse Reconstruction
As events happening in the current episode can

have an impact on the next episode, there exist hid-
den connections between the descriptive sentences
in Di and Di+1. To be more specific, assuming de-
scriptive sentences from Di+1 are dependent on a
few sentences in Di, we aim to infer such hidden

contingency. Here we assume that sentence di+1
j is

related to a small number of sentences in Di.
Let αi+1

j ∈ R|Di| be the indicator that determines
which sentences in Di prompt di+1

j , and W be the
matrix that transforms these contingent sentences to
the embedding space of di+1

j . Intuitively, our model
learns W by assuming each sentence in Di+1 can
be reconstructed by contingent sentences from Di:

di+1
j ≈WDiαi+1

j , (6)

In the equation, we first convert every description
sentence to its distributed representation using the
pre-trained skip-thought model proposed by Kiros
et al. (2015). The sentence embedding is denoted in
bold (e.g. di

j for sentence dij). D
i = [di

1; · · · ;di
|Di|]

stacks the vector representations of all sentences in
Di, and αi+1

j linearly combines the contingent sen-
tences.

We propose to jointly optimize αi+1
j and W by:

min
{αi+1}E−1

i=1 ,W

∑

i,j

(
‖WDiαi+1

j − di+1
j ‖22

+ γ‖αi+1
j ‖1

)
+ θ‖W‖2F ,

(7)

where we denote αi+1 = [αi+1
1 ; · · · ;αi+1

|Di+1|]. We

impose sparsity constraint on αi+1
j with L1 norm

such that only a small fraction of sentences in Di

will be linked to di+1
j . γ and θ are coefficients of the

regularization terms.
Given the optimal W∗ from Equation 7, our main

objective is to identify the subset of descriptions in
Di that best capture the contingency betweenDi and
Di+1. The reconstruction contingency factor can be
defined as:

Mr(R
i, Di+1) =

∑

d∈Di+1

max
r∈Ri

rᵀW∗d. (8)

4.3 Optimization
In this section, we describe our approach to optimize
the main objective function expressed in Equations
1 and 7.

Finding an efficient algorithm to optimize a
set function like Equation 1 is often challenging.
However, it can be easily shown that the objec-
tive function of Equation 1 is submodular, since
all its components S(Ri, Di),Ms(R

i, Di+1) and

1801

Mr(R
i, Di+1) are submodular with respect to Ri.

According to Lin and Bilmes (2011), there exists a
simple greedy algorithm for monotonic submodular
function maximization where the solution is guar-
anteed to be close to the real optimum. Specifi-
cally, if we denote Ri

greedy as the approximation op-
timized by greedy algorithm andRi∗ as the best pos-
sible solution, then F(Ri

greedy) ≥ (1− 1
e) · F(Ri∗),

where F(·) is the objective function of Equation 1
and e ≈ 2.718 denotes the natural constant. The
greedy approach is shown in Algorithm 1.

Algorithm 1 Text Recap Extraction
Input: Vectorized sentence representations
{Di}Ei=1, parameters λs, λr, θ, γ, budget K,
optimal W∗ for Equation 7.

Output: Text recaps {Ri}Ei=1.
1: for i = 1, · · · , E
2: Initialize Ri ← ∅;
3: REPEAT
4: r∗ ← argmaxF(Ri ∪ {r});
5: Ri ← Ri ∪ {r∗};
6: UNTIL |Ri| ≥ K
7: end

Algorithm 1 requires the optimal W∗ learned
from the adjacent episode pairs in Equation 7. We
utilize the algorithm that iteratively updates W and
α given the current solution. At each iteration,
each variable (W or {αi+1}) is updated by fixing
the other. At t-th iteration, W(t) is computed as
the solution of ridge regression (Hoerl and Kennard,
1970):

W(t) = DXᵀ(XXᵀ + θI)−1, (9)

where D and X stack all di+1
j and xi+1

j ,
Diαi+1

j , ∀i = 1, · · · , E − 1, j = 1, · · · , |Di|. Fix-
ing W, each αi+1

j can be solved separately by gen-
eral sparse coding algorithms as stated in Mairal
et al. (2009). Algorithm 2 shows the optimization
process of Equation 7.

5 Multi-View Recap Extraction

In addition to plot descriptions, there are also dia-
logues and plot synopses available for TV shows.
Descriptions, dialogues and synopses can be seen as
three different views of the same TV show episode.

Algorithm 2 Reconstruction Matrix Optimization
Input: Vectorized sentence representations
{Di}Ei=1, θ and γ.

Output: Contingency matrix W.
1: Initialize W(0) ← I and αi+1(0)

j ← 0,∀i, j;
2: Initialize iteration step t← 0;
3: REPEAT
4: t← t+ 1;
5: W(t) is updated according to Equation 9;
6: ∀i, j,αi+1,(t)

j ← sparse coding(W(t));
7: UNTIL ‖W(t) −W(t−1)‖2F ≤ ε

Previously, we build TREM using plot descriptions.
In this section, we expand our TREM model to in-
corporate plot synopses and dialogues. We define
text synopses and dialogues as S = {S1, · · · , SE}
and T = {T 1, · · · , TE}, where Si and T i are the
set of sentences from synopses and dialogues of the
i-th episode.

Dialogues In TV shows, a lot of useful informa-
tion is presented via actors’ dialogues which moti-
vates us to extend our TREM model to include di-
alogues. Both views can be used to identify recap
segments which are assumed to be summative and
contingent. Denote the neighboring dialogues of
Ri as N(Ri) = {t ∈ T i

∣∣∃r ∈ Ri, s.t. |time(t) −
time(r)| < δ}, we extend the optimization objective
(Equation 1) into:

F(Ri) =
(
S(Ri, Di) + S(N(Ri), T i)

)

+
(
M(Ri, Di+1) +M(N(Ri), T i+1)

)
.

(10)

Synopses Since a synopsis is a concise summary
of each episode, we can treat plot summarization as
text alignment where Ri is assumed to match the
content of Si. Therefore, the summarization term
can be redefined by substituting Di with Si:

S(Ri, Si) =
∑

c∈C(Si)

z(c, Si)max
r∈Ri

w(c, r). (11)

Similarly, the contingency component can be
modified to include connections from synopses to
detailed descriptions. For Equation 8, we substitute

1802

ROUGE-1 ROUGE-2 ROUGE-SU4
ILP-Ext (Banerjee et al., 2015) 0.308 0.112 0.091
ILP-Abs (Banerjee et al., 2015) 0.361 0.158 0.120
Our approach TREM 0.405 0.207 0.148
w/o SR 0.393 0.189 0.144
w/o CC 0.383 0.171 0.132
w/o SR&CC (summarization only) 0.374 0.168 0.129

Table 2: Experimental results on different methods using descriptions. Contingency-based methods generally outperforms

summarization-based methods.

Di+1 to Si+1 where our model only focuses on high-
level storyline:

Mr(R
i, Si+1) =

∑

s∈Si+1

max
r∈Ri

rᵀW∗s. (12)

6 Experimental Setup

We designed our experiments to evaluate whether
our TREM model, by considering contingency be-
tween adjacent episodes, can achieve better results
than summarization techniques. Furthermore, we
want to examine how each contingency factor as
proposed in Section 4.2 contributes to the system
performance. As our model can integrate multiple
views, we want to dissect the effects of using differ-
ent combinations of three views.

6.1 Comparison Models
To answer the research questions presented above,
we compare the following methods in our experi-
ments.
− ILP-Ext and ILP-Abs (Banerjee et al., 2015):
This summarizer generates sentences by optimizing
the integer linear programming problem in which
the information content and linguistic quality are de-
fined. Both extractive and abstractive implementa-
tions are used in our experiments.
− TREM: Our TREM model proposed in Section 4
extracts sentences that can both summarize the cur-
rent episode and prompt the next episode with two
contingency factors.
− TREM w/o SR: The TREM model without the
sparse reconstruction factor proposed in Section
4.2.2.
− TREM w/o CC: The TREM model without the
concept coverage factor proposed in Section 4.2.1.
− TREM w/o SR&CC: The summarization-only
TREM model without contingency factors. In the

rest of the paper, we also call it as TREM-Summ.
− Multi-view TREM: The augmented TREM
model with descriptions, dialogues and synopses as
proposed in Section 5. Different views and combi-
nations will be tested in our experiments.

6.2 Methodology
Using TVRecap, we measure the quality of gener-
ated sentences following the standard metrics in the
summarization community, ROUGE (Lin and Hovy,
2003).

For the purpose of evaluation, we defined a de-
velopment and a test set, by randomly selecting 18
adjacent pairs of episodes from all seasons. These
episodes were selected to have at least two recap
description sentences. The remaining 70 episodes
were only used during the learning process of W.
After tuning hyper-parameters on development set,
we report the comparison results on the test set.

7 Results and Discussion

7.1 Overall Results
Table 2 shows our experimental results comparing
TREM and baseline models using descriptions.

In general, contingency-based methods (TREM,
TREM w/o SR and TREM w/o CC) outperform
summarization-based methods. Our contingency
assumptions are verified as adding CC and SC
both improve TREM with summarization compo-
nent only. Moreover, the best result is achieved by
the complete TREM model with both contingency
factors. It suggests that these two factors, modeling
word-level summarization and sentence-level recon-
struction, are complementary.

From the summarization-based methods, we can
see that our TREM-Summ gets higher ROUGE
scores than two ILP approaches. Additionally, we

1803

Target sentence from next episode Sentences with highest reconstruction value from current episode

Kate is putting water bottles in a pack.
We see three bottles of water.
They go into a room with a body bag on a gurney.
Kate is going through clothes, as Claire approaches.

Locke is with his knife case, holding a pencil, sitting by a fire.
Boone is coming up to camp and sees Locke sitting by a fire.
Locke throws a knife into the ground, just out of Boone’s reach.
Boone quickly cuts through the ropes and starts running.

In another part of the temple grounds, Miles and Hurley are
playing Tic-Tac-Toe by placing leaves in a grid of sticks on
the ground.

John contemplates the fabric swatches he is holding.
On the beach, Frank covers Locke’s body with a tarp.
Helen closes the door and brings the case inside to the kitchen.

Table 3: A case study on sparse reconstruction as proposed in Section 4.2.2. Sentences in the first column are reconstructed by

sentences in the second column. The first two examples successfully captures related sentences, while the third example fails.

note that the performance of ILP-Ext is poor. This
is because ILP-Ext tends to output short sentences,
while ROUGE is a recall-oriented measurement.

Model Current Next R-1 R-2 R-SU4

TREM-Summ

des - 0.374 0.168 0.129
syn - 0.369 0.163 0.121
dial - 0.354 0.138 0.115

des+syn - 0.384 0.172 0.132
des+dial - 0.386 0.168 0.135

TREM

des des 0.405 0.207 0.148
des syn 0.411 0.219 0.154
des dial 0.375 0.158 0.127
des des+syn 0.409 0.210 0.154
des des+dial 0.395 0.177 0.142

Table 4: Comparison of views in summarization-only TREM

and full TREM with contingency factors. “des”, “syn”, and

“dial” are abbreviated for description, synopses and dialogues.

7.2 Multi-view Comparison

As shown in Table 4, The second study examines
the effect of different views in both types of methods
using the TREM model. In single-view summariza-
tion, TREM-Summ with descriptions outperforms
methods based on the other two views. In terms of
hybrid of views, only ROUGE-1 is significantly im-
proved, while ROUGE-2 and ROUGE-SU4, which
focus more on semantic consistency, have little im-
provement.

In contingency-based methods, we keep the cur-
rent episode represented as descriptions which ob-
tain the best performance in single-view summa-
rization, and change the views of the next episode.
Comparing the model using descriptions with the
one fusing descriptions and synopses, we can see
that simply adding views does not guarantee higher
ROUGE scores. In both TREM-Summ and full
TREM, dialogue is inferior to others. It might be be-

cause dialogues contain too many trivial sentences.
Synopses, however, are relatively short, but provide
key plots to summarize the story, and hence achieve
the best ROUGE scores.

7.3 Qualitative Study on Sparse
Reconstruction

In this section, we give some examples to illustrate
the process of sparse reconstruction. Equation 7
assumes that each descriptive sentence can be re-
constructed by a few sentences from the previous
episode. Table 3 shows three examples of sentences
with their top-3 reconstructive sentences, which are
defined by values in the indicator vector αi+1

j .

7.4 Limitations and Future Work

TREM restrains the contingency within adjacent
episodes. However, storylines sometimes proceed
through multiple episodes. In our model, with more
connectivity termsM(Ri, Dj) where i < j, we can
develop more general system with longer dependen-
cies.

While our model and dataset are appropriate for
text recap extraction and algorithm comparison, this
task can be further applied to multimedia settings,
where visual or acoustic information can be in-
cluded. Therefore, in future work, we plan to expand
our work to broader applications where intercon-
nectivity between consecutive instances is crucial,
such as educational lectures, news series and book
chapters. Specifically, TREM can be integrated with
video description results to get an end-to-end system
that produces video recaps.

1804

8 Conclusion

In this paper, we explore a new problem of text
recap extraction for TV shows. We propose an
unsupervised model that identifies recap segments
from multiple views of textual scripts. To facili-
tate the study of this new research topic, we cre-
ate a dataset called TVRecap, which we test our
approach on. From the experimental results, we
conclude that contingency-based methods improve
summarization-based methods at ROUGE measure-
ments by exploiting plot connection between adja-
cent episodes.

Acknowledgement

This material is based in part upon work partially
supported by the National Science Foundation (IIS-
1523162). Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

References

Marta Aparı́cio, Paulo Figueiredo, Francisco Ra-
poso, David Martins de Matos, Ricardo Ribeiro,
and Luı́s Marujo. 2016. Summarization of films
and documentaries based on subtitles and scripts.
Pattern Recognition Letters 73:7–12.

Siddhartha Banerjee, Prasenjit Mitra, and Kazu-
nari Sugiyama. 2015. Multi-document abstrac-
tive summarization using ilp based multi-sentence
compression. In 24th International Joint Con-
ference on Artificial Intelligence (IJCAI). Buenos
Aires, Argentina: AAAI press.

Lidong Bing, Piji Li, Yi Liao, Wai Lam, Wei-
wei Guo, and Rebecca J Passonneau. 2015.
Abstractive multi-document summarization via
phrase selection and merging. arXiv preprint
arXiv:1506.01597 .

Jeffrey Donahue, Lisa Anne Hendricks, Ser-
gio Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, Kate Saenko, and Trevor Darrell.
2015. Long-term recurrent convolutional net-
works for visual recognition and description. In
Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. pages
2625–2634.

Paulo Figueiredo, Marta Aparı́cio, David Martins
de Matos, and Ricardo Ribeiro. 2015. Gen-
eration of multimedia artifacts: An extractive
summarization-based approach. arXiv preprint
arXiv:1508.03170 .

Sergio Guadarrama, Niveda Krishnamoorthy, Girish
Malkarnenkar, Subhashini Venugopalan, Ray-
mond Mooney, Trevor Darrell, and Kate Saenko.
2013. Youtube2text: Recognizing and describ-
ing arbitrary activities using semantic hierarchies
and zero-shot recognition. In Proceedings of the
IEEE International Conference on Computer Vi-
sion. pages 2712–2719.

Zhanying He, Chun Chen, Jiajun Bu, Can Wang, Li-
jun Zhang, Deng Cai, and Xiaofei He. 2012. Doc-
ument summarization based on data reconstruc-
tion. In AAAI.

Arthur E Hoerl and Robert W Kennard. 1970. Ridge
regression: Biased estimation for nonorthogonal
problems. Technometrics 12(1):55–67.

Kai Hong and Ani Nenkova. 2014. Improving the
estimation of word importance for news multi-
document summarization. In EACL. pages 712–
721.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. 2015. Skip-thought vectors.
arXiv preprint arXiv:1506.06726 .

Chin-Yew Lin and Eduard Hovy. 2003. Auto-
matic evaluation of summaries using n-gram co-
occurrence statistics. In Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Hu-
man Language Technology-Volume 1. Association
for Computational Linguistics, pages 71–78.

Hui Lin and Jeff Bilmes. 2010. Multi-document
summarization via budgeted maximization of
submodular functions. In Human Language Tech-
nologies: The 2010 Annual Conference of the
North American Chapter of the Association for
Computational Linguistics. Association for Com-
putational Linguistics, pages 912–920.

Hui Lin and Jeff Bilmes. 2011. A class of submod-
ular functions for document summarization. In
Proceedings of the 49th Annual Meeting of the

1805

Association for Computational Linguistics: Hu-
man Language Technologies-Volume 1. Associa-
tion for Computational Linguistics, pages 510–
520.

Julien Mairal, Francis Bach, Jean Ponce, and
Guillermo Sapiro. 2009. Online dictionary learn-
ing for sparse coding. In Proceedings of the
26th annual international conference on machine
learning. ACM, pages 689–696.

Kathleen McKeown. 2005. Text summarization:
News and beyond. In Proceedings of the Aus-
tralasian Language Technology Workshop. pages
4–4.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Amita Misra, Pranav Anand, JEF Tree, and
MA Walker. 2015. Using summarization to dis-
cover argument facets in online idealogical dia-
log. In NAACL HLT . pages 430–440.

Francisco Raposo, Ricardo Ribeiro, and David Mar-
tins de Matos. 2015. On the application of generic
summarization algorithms to music. IEEE Signal
Processing Letters 22(1):26–30.

Anna Rohrbach, Marcus Rohrbach, and Bernt
Schiele. 2015. The long-short story of movie de-
scription. In Pattern Recognition, Springer, pages
209–221.

Marcus Rohrbach, Wei Qiu, Ivan Titov, Stefan
Thater, Manfred Pinkal, and Bernt Schiele. 2013.
Translating video content to natural language de-
scriptions. In Proceedings of the IEEE Inter-
national Conference on Computer Vision. pages
433–440.

Shourya Roy, Ragunathan Mariappan, Sandipan
Dandapat, Saurabh Srivastava, Sainyam Galhotra,
and Balaji Peddamuthu. 2016. Qa rt: A system
for real-time holistic quality assurance for contact
center dialogues. In Thirtieth AAAI Conference
on Artificial Intelligence.

Gerard Salton and Christopher Buckley. 1988.
Term-weighting approaches in automatic text re-
trieval. Information processing & management
24(5):513–523.

Jitao Sang and Changsheng Xu. 2010. Character-
based movie summarization. In Proceedings of
the 18th ACM international conference on Multi-
media. ACM, pages 855–858.

Ruben Sipos, Adith Swaminathan, Pannaga Shiv-
aswamy, and Thorsten Joachims. 2012. Tempo-
ral corpus summarization using submodular word
coverage. In Proceedings of the 21st ACM in-
ternational conference on Information and knowl-
edge management. ACM, pages 754–763.

Mark Wasson. 1998. Using leading text for news
summaries: Evaluation results and implications
for commercial summarization applications. In
Proceedings of the 17th international conference
on Computational linguistics-Volume 2. Associa-
tion for Computational Linguistics, pages 1364–
1368.

1806

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1807–1816,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

On- and Off-Topic Classification and Semantic Annotation of
User-Generated Software Requirements

Markus Dollmann and Michaela Geierhos
Heinz Nixdorf Institute
University of Paderborn

Fürstenallee 11, 33102 Paderborn, Germany
{dollmann|geierhos}@hni.upb.de

Abstract

Users prefer natural language software re-
quirements because of their usability and ac-
cessibility. When they describe their wishes
for software development, they often provide
off-topic information. We therefore present
REaCT1, an automated approach for identify-
ing and semantically annotating the on-topic
parts of requirement descriptions. It is de-
signed to support requirement engineers in the
elicitation process on detecting and analyzing
requirements in user-generated content. Since
no lexical resources with domain-specific in-
formation about requirements are available,
we created a corpus of requirements writ-
ten in controlled language by instructed users
and uncontrolled language by uninstructed
users. We annotated these requirements re-
garding predicate-argument structures, con-
ditions, priorities, motivations and semantic
roles and used this information to train clas-
sifiers for information extraction purposes.
REaCT achieves an accuracy of 92% for the
on- and off-topic classification task and an F1-
measure of 72% for the semantic annotation.

1 Introduction

“Requirements are what the software product, or
hardware product, or service, or whatever you in-
tend to build, is meant to do and to be” (Robert-
son and Robertson, 2012). This intuitive descrip-
tion of requirements has one disadvantage. It is as
vague as a requirement that is written by an un-
trained user. More generally, functional require-
ments define what a product, system or process, or

1Requirements Extraction and Classification Tool

a part of it is meant to do (Robertson and Robert-
son, 2012; Vlas and Robinson, 2011). Due to its ex-
pressiveness, natural language (NL) became a pop-
ular medium of communication between users and
developers during the requirement elicitation pro-
cess (de Almeida Ferreira and da Silva, 2012; Mich
et al., 2004). Especially in large ICT projects, re-
quirements, wishes, and ideas of up to thousands of
different users have to be grasped (Castro-Herrera
et al., 2009). For this purpose, requirement en-
gineers collect their data, look for project-relevant
concepts and summarize the identified technical fea-
tures. However, this hand-crafted aggregation and
translation process from NL to formal specifica-
tions is error-prone (Goldin and Berry, 1994). Since
people are getting tired and unfocused during this
monotonous work, the risk of information loss in-
creases. Hence, this process should be automated as
far as possible to support requirement engineers.

In this paper, we introduce our approach to iden-
tify and annotate requirements in user-generated
content. We acquired feature requests for open
source software from SourceForge2, specified by
(potential) users of the software. We divided these
requests into off-topic information and (on-topic)
requirements to train a binary text classifier. This
allows an automated identification of new require-
ments in user-generated content. In addition, we col-
lected requirements in controlled language from the
NFR corpus3 and from web pages with user-story
explanations. We annotated the semantically rele-

2https://sourceforge.net
3http://openscience.us/repo/

requirements/other-requirements/nfr

1807

vant parts of the acquired requirements for infor-
mation extraction purposes. This will support re-
quirements engineers on requirement analysis and
enables a further processing such as disambiguation
or the resolution of incomplete expressions.

This paper is structured as follows: In Section 2,
we discuss the notion of requirements. Then we pro-
vide an overview of previous work (Section 3), be-
fore we introduce lexical resources necessary for our
method (Section 4). The approach itself is presented
in Section 5 before it is evaluated in Section 6. Fi-
nally, we conclude this work in Section 7.

2 The Nature of Requirements

Requirement engineers and software developers
have to meet users’ wishes in order to create new
software products. Such descriptions of software
functionalities can be expressed in different ways:
For example, by using controlled languages or
formal methods, clarity and completeness can be
achieved. But non-experts can hardly apply them
and therefore do not belong to the user group. For
this reason, users are encouraged to express their in-
dividual requirements for the desired software ap-
plication in NL in order to improve user accep-
tance and satisfaction (Firesmith, 2005). In gen-
eral, software requirements are expressed through
active verbs such as “to calculate” or “to publish”
(Robertson and Robertson, 2012). In this work, we
distinguish requirements expressed in NL between
controlled and uncontrolled language.

A controlled language is a subset of NL, which is
characterized by a restricted grammar and/or limited
vocabulary (Yue et al., 2010). Requirements in con-
trolled language do not suffer from ambiguity, re-
dundancy and complexity (Yue et al., 2010). That is
why these recommendations lead to a desirable input
for text processing. Robertson and Robertson (2012)
therefore recommend specifying each requirement
in a single sentence with one verb. Furthermore,
they suggest the following start of record “The [sys-
tem/product/process] shall ...”, which focuses on the
functionality and keeps the active form of a sen-
tence. An example therefore is “The system shall
display the Events in a graph by time.” Another type
of controlled requirements are user stories. They fol-
low the form “As a [role], I want [something] so

that [benefit]” and describe software functionalities
from the user’s perspective (Cohn, 2004). Compared
to the previous ones, they do not focus on the tech-
nical implementation but concentrate on the goals
and resulting benefits. An example therefore is “As
a Creator, I want to upload a video from my local
machine so that any users can view it.”

We also consider uncontrolled language in this
work because requirements are usually specified by
users that have not been instructed for any type
of formulation. Requirements in uncontrolled lan-
guage do not stick to grammar and/or orthographic
rules and may contain abbreviations, acronyms or
emoticons. There is no restriction how to express
oneself. An example therefore is “Hello, I would
like to suggest the implementation of expiration date
for the master password :)”.

In the following, the word “requirement” is used
for a described functionality. We assume that its
textualization is written within a single English sen-
tence. Requirements are specified in documents like
the Software Requirements Specification (SRS). We
refer to SRS and other forms (e.g. e-mails, memos
from workshops, transcripts of interviews or entries
in bug-trackers) as requirement documentations.

3 Previous Work

It is quite common that requirement engineers
elicit requirements together with users in interviews,
group meetings, or by using questionnaires (Mich,
1996). Researchers developed (semi-) automated
and collaborative approaches to support requirement
engineers in this process (Ankori and Ankori, 2005;
Castro-Herrera et al., 2009). Besides the elicitation
in interaction with the users, an identification of re-
quirements from existing sources is possible. For
example, John and Dörr (2003) used documenta-
tions from related products to derive requirements
for a new product. Vlas and Robinson (2011) used
unstructured, informal, NL feature requests from
the platform SourceForge to collect requirements for
open source software. They presented a rule-based
method to identify and classify requirements accord-
ing to the quality criteria of the McCall’s Quality
Model (McCall, 1977). Analogous to their work, we
want to automatically detect requirements in user-
generated content. While they applied a rule-based

1808

method, we plan to identify requirements in user-
generated content with a machine learning approach.
Since those approaches automatically identify pat-
terns for this classification task, we expect a higher
recall and more reliable results.

Goldin and Berry (1994) identified so-called ab-
stractions (i.e. relevant terms and concepts related to
a product) of elicited requirements for a better com-
prehension of the domain and its restrictions. Their
tool AbstFinder is based on the idea that the signifi-
cance of terms and concepts is related to the number
of mentions in the text. However, in some cases,
there is only a weak correlation between the term
frequencies and their relevance in documents. This
problem can be reduced by a statistical corpus anal-
ysis, when the actual term frequency is similar to the
expected (Sawyer et al., 2002; Gacitua et al., 2011).
This approach eliminates corpus specific stopwords
and misleading frequent terms. In our work, we in-
tent to perform a content analysis of the previously
detected requirements. However, instead of only
identifying significant terms and concepts, we cap-
ture the semantically relevant parts of requirements
such as conditions, motivations, roles or actions (cf.
Figure 1).

In addition to the identification of abstractions,
there are methods to transform NL requirements into
graphical models (e.g. in Unified Modeling Lan-
guage) (Harmain and Gaizauskas, 2003; Ambriola
and Gervasi, 2006; Körner and Gelhausen, 2008).
A systematic literature review, done by Yue et al.
(2010), aims at the modeling of requirements by
comparing transformation techniques in such mod-
els. Unlike those techniques, we aim to keep the ex-
pressive aspect of the original textual requirements
and semantically annotate them for filtering pur-
poses. These results can be further used for dif-
ferent NLP tasks such as disambiguation, resolu-
tion of vagueness or the compensation of under-
specification.

The semantic annotation task of this work is sim-
ilar to semantic role labeling (SLR). According to
Jurafsky and Martin (2015), the goal of SLR is un-
derstanding events and their participants, especially
being able to answer the question who did what to
whom (and perhaps also when and where). In this
work, we seek to adapt this goal to the requirements
domain, where we want to answer the question what

actions should be done by which component (and
perhaps also who wants to perform that action, are
there any conditions, what is the motivation for per-
forming this action and is there a priority assigned
to the requirement).

4 Gathering and Annotation of Controlled
and Uncontrolled Requirements

There are benchmarks comparing automated meth-
ods for requirement engineering (Tichy et al., 2015).
However, none of the published datasets is sufficient
to train a text classifier, since annotated information
is missing. For our purposes, we need a data set with
annotated predicate-argument structures, conditions,
priorities, motivations and semantic roles. We there-
fore created a semantically annotated corpus by us-
ing the categories shown in Figure 1, which repre-
sent all information bits of a requirement. Since the
approach should be able to distinguish between (on-
topic) requirements and off-topic comments, we ac-
quired software domain-specific off-topic sentences,
too.

Therefore, we acquired requirements in con-
trolled language from the system’s and the user’s
perspective. While requirements from the system’s
perspective are describing technical software func-
tionalities, the requirements from the user’s per-
spective express wishes for software, to fulfill user
needs. For instance, the NFR corpus4 covers the sys-
tem’s perspective of controlled requirements spec-
ifications. It consists of 255 functional and 370
non-functional requirements whereof we used the
functional subset to cover the system’s perspective.
Since we could not identify any requirement corpus
that describes a software at user’s request, we ac-
quired 304 user stories from websites and books that
describe how to write user stories.

However, these requirements in controlled lan-
guage have not the same characteristics as uncon-
trolled requirements descriptions. For the acquisi-
tion of uncontrolled requirements, we adapted the
idea of Vlas and Robinson (2011) that is based on
feature requests gathered from the open-source soft-
ware platform SourceForge5. These feature requests

4https://terapromise.csc.ncsu.edu/repo/
requirements/nfr/nfr.arff

5https://sourceforge.net

1809

are created by users that have not been instructed for
any type of formulation. Since these requests do not
only contain requirements, we split them into sen-
tences and manually classified them in requirements
and off-topic information. Here, we consider social
communication, descriptions of workflows, descrip-
tions of existing software features, feedback, salu-
tations, or greetings as off-topic information. In to-
tal, we gathered 200 uncontrolled on-topic sentences
(i.e. requirements) and 492 off-topic ones.

Then we analyzed the acquired requirements in
order to identify the different possible semantic cat-
egories to annotate their relevant content in our re-
quirements corpus (cf. Figure 1):

– component
– refinement of component

– action
– argument of action

– condition
– priority
– motivation
– role
– object

– refinement of object
– sub-action

– argument of sub-action
– sub-priority
– sub-role
– sub-object

– refinement of sub-object

Figure 1: Semantic categories in our software requirements

corpus used for annotation purposes

The categories component or role, action and ob-
ject are usually represented by subject, predicate
and object of a sentence. In general, a description
refers to a component, either to a product or sys-
tem itself or to a part of the product/system. Ac-
tions describe what a component should accomplish
and affect. Actions have an effect on Objects. The
authors of the requirements can refine the descrip-
tion of components and objects, which is covered
by the categories refinement of component and re-
finement of object. For each action, users can set a
certain priority, describe their motivation for a spe-
cific functionality, state conditions, and/or even de-
fine some semantic roles. Apart from the component

and the object, additional arguments of the action
(predicate of a sentence) are annotated with argu-
ment of action. In some cases, requirements contain
sub-requirements in subordinate clauses. The anno-
tators took this into account when using the prede-
fined sub-categories. An example of an annotated
requirement is shown in Figure 2.

Figure 2: Annotated requirement sample

Two annotators independently labeled the cate-
gories in the requirements. We define one of the
annotation set as gold standard and the other as can-
didate set. We will use the gold standard for training
and testing purposes in Section 5 and 6 and the can-
didate set for calculating an inter-annotator agree-
ment. In total, our gold standard consists of 3,996
labeled elements (i.e. clauses, phrases, and even
modality). The frequency distribution is shown in
Table 1.

Semantic Category CR UR Total

component 241 84 325
refinement of component 6 16 22

action 526 204 730
argument of action 180 104 284

condition 94 39 133
priority 488 209 697

motivation 33 19 52
role 406 42 448

object 540 195 735
refinement of object 155 48 203

sub-action 76 40 116
argument of sub-action 27 14 41

sub-priority 22 16 38
sub-role 22 11 33

sub-object 78 37 115
refinement of sub-object 16 8 24

Total 2,910 1,086 3,996

Table 1: Number of annotated elements per category in our

gold standard (CR=controlled requirements, UR=uncontrolled

requirements)

1810

The inter-annotator agreement in multi-token an-
notations is commonly evaluated by using F1-score
(Chinchor, 1998). The two annotators achieve an
agreement of 80%, whereby the comparison was in-
voked from the gold standard.

Many information extraction tasks use the IOB
encoding6 for annotation purposes. When using the
IOB encoding, the first token of an element is split
into its head (first token) and its tail (rest of the ele-
ment). That way, its boundaries are labeled with B
(begin) and I (inside). This allows separating suc-
cessive elements of the same category. Thus, we use
the IOB encoding during the annotation step. How-
ever, we want to discuss a drawback of this notation:
When applying text classification approaches in in-
formation extraction tasks with IOB encoding, the
number of classes reduplicates and this reduces the
amount of training data per class. During our an-
notation process, successive elements of the same
semantic category only occurred in the case of argu-
ment of the action and argument of the sub-action.
When we disregard the IOB encoding, we can eas-
ily split up (sub-)actions by keywords such as “in”,
“by”, “from”, “as”, “on”, “to”, “into”, “for”, and
“through”. So if we use IO encoding, it can be eas-
ily transformed to the IOB encoding. The only dif-
ference between IOB and IO encoding is that it does
not distinguish between the head and tail of an el-
ement and therefore does not double the number of
classes.

5 REaCT – A Two-Stage Approach

Requirement documentations are the input of our
system. Figure 3 illustrates the two-stage approach
divided in two separate classification tasks. First,
we apply an on-/off-topic classification to decide
whether a sentence is a requirement or irrelevant for
the further processing (cf. Section 5.1). Then, the
previously identified requirements were automati-
cally annotated (Section 5.2). As a result, we get
filtered and semantically annotated requirements in
XML or JSON.

The models for on-/off-topic classification and se-
mantic annotation are trained on the gathered re-
quirements (cf. Section 4). We split up the gold
standard on sentence level in a ratio of 4:1 in a train-

6I (inside), O (outside) or B (begin) of an element

Figure 3: Processing pipeline of the two-stage approach

ing set of 607 requirements and test set of 152 re-
quirements. Furthermore, we used 10-fold cross val-
idation on the training set for algorithm configura-
tion and feature engineering (cf. Section 5.1 and
Section 5.2). Finally, our approach is evaluated on
the test set (cf. Section 6).

5.1 On-/Off-Topic Classification Task

User requirement documentations often contain off-
topic information. Therefore, we present a binary
text classification approach that distinguishes be-
tween requirements and off-topic content. Thus, we
trained different classification algorithms and tested
them using various features and parameter settings.
We compared the results to select the best algorithm
together with its best-suited parameter values and
features.

5.1.1 Features
To differentiate requirements from off-topic con-

tent, the sentences will be transformed in numerical
feature vectors using a bag-of-words approach with
different settings7. The features for the transforma-
tion are listed along with their possible parameter
settings in Table 2. We can choose whether the fea-
ture should be taken from word or character n-grams
(a.1). For both versions, the unit can range between
[n,m] (a.2), which can be specified by parameters.
Here, we consider all combinations of n = [1, 5] and
m = [1, 5] (where m ≥ n). If the feature should be
build from word n-grams, stopword detection is pos-
sible (a.3). Additionally, terms can be ignored that
reach a document frequency below or above a given

7Parameters; to be chosen during algorithm configuration

1811

threshold (e.g. domain-specific stopwords) (a.4 and
a.5). Another threshold can be specified to only
consider the top features ordered by term frequency
(a.6). Besides, it is possible to re-weight the units
in the bag-of-words model in relation to the inverse
document frequency (IDF) (a.7). Moreover, the fre-
quency vector can be reduced to binary values (a.8),
so that the bag-of-words model only contains infor-
mation about the term occurrence but not about its
calculated frequency. We also consider the length
of a sentence as feature (b). Furthermore, the fre-
quency of the part-of-speech (POS) tags (c) and the
dependencies between the tokens (d) can be added to
the feature vector8. These two features are optional
(c.1 and d.1). This set of features covers the domain-
specific characteristics and should enable the identi-
fication of the requirements.

Feature/Parameter Possible Values

a Bag of words

a.1 analyzer word, char
a.2 ngram range (1,1),(1,2),

...,(5,5)
a.3 stop words True, False
a.4 max df [0,8,1,0]
a.5 min df [0.0,0.5]
a.6 max features int or None
a.7 use idf True, False
a.8 binary True, False

b Length of the sentence

c Dependencies

c.1 use dep True, False

d Part of speech

d.1 use pos True, False

Table 2: Features for on-/off-topic classification together with

their corresponding parameters

5.1.2 Selected Algorithms
We selected the following algorithms from the

scikit-learn library9 for binary classification: deci-
sion tree (DecisionTreeClassifier), Naive

8We use spaCy (https://spacy.io) for POS tagging
and dependency parsing

9http://scikit-learn.org

Bayes (BernoulliNB and MultionmialNB),
support vector machine (SVC and NuSVC) as well
as ensemble methods (BaggingClassifier,
RandomForestClassifier, ExtraTree-
Classifier and AdaBoostClassifier).
Finally, after evaluating these algorithms, we
chose the best one for the classification task (cf.
Section 6).

5.2 Semantic Annotation Task

For each identified requirement, the approach should
annotate the semantic components (cf. Figure 1).
Here, we use text classification techniques on token
level for information extraction purposes. The ben-
efit is that these techniques can automatically learn
rules to classify data from the annotated elements
(cf. Section 4). Each token will be assigned to one
of the semantic categories presented in Figure 1 or
the additional class O (outside according IOB nota-
tion).

We decided in favor of IO encoding during
classification to reduce the drawback described in
Section 4. We finally convert the classification re-
sults into the IOB encoding by labeling the head of
each element as begin and the tail as inside. By us-
ing the keywords listed in Section 4 as separators,
we further distinguish the beginning and the inner
parts of arguments.

5.2.1 Features
In the second classification step, we had to adapt

the features to token level. The goal of feature en-
gineering is to capture the characteristics of the to-
kens embedded in their surrounding context. We di-
vided the features in four groups: orthographic and
semantic features of the token, contextual features,
and traceable classification results.

Orthographic features of a token are its graphe-
matic representation (a) and additional flags that de-
cide if a token contains a number (b), is capitalized
(c), or is somehow uppercased (d) (cf. Table 3). For
the graphematic representation, we can choose be-
tween the token or the lemma (a.1). Another or-
thographic feature provides information about the
length of the token (e). Furthermore, we can use
the pre- and suffix characters of the token as fea-
tures (f and g). Their lengths are configurable (f.1
and g.1).

1812

Feature/Parameter Possible Values

a Graphematic representation

a.1 use lemma True, False

b Token contains a number

c Token is capitalized

d Token is somehow uppercased

e Length of the token

f Prefix of the token

f.1 length prefix [0,5]

g Suffix of the token

g.1 length suffix [0,5]

Table 3: Orthographic features for semantic annotation

Furthermore, we consider the relevance (h), the
POS tag (i) and the WordNet ID of a token (j) as
its semantic features (cf. Table 4). By checking the
stopword status of a token, we can decide about its
relevance. Besides, the POS tag of each token is
used as feature. When applying the POS informa-
tion, we can choose between the Universal Tag Set10

(consisting of 17 POS tags) and the Penn Treebank
Tag Set11 (including of 36 POS tags) (i.1). Another
boolean feature tells us whether the token appears
in WordNet12. We use this feature as indicator for
component or object identification.

Feature/Parameter Possible Values

h Relevance

i Part-of-speech tag

i.1 extended tagset True, False

j WordNet ID

Table 4: Semantic features for semantic annotation

As contextual features, we use sentence length
(k), index of the token in the sentence (l), as well
as the tagging and dependency parsing information
of the surrounding tokens (m, n and o) (cf. Table 5).
Thus, the POS tags sequences of the n previous and

10http://universaldependencies.org/u/pos/
11http://www.ling.upenn.edu/courses/Fall_

2003/ling001/penn_treebank_pos.html
12https://wordnet.princeton.edu

the next m token are considered, where n and m are
defined during algorithm configuration (l.1 and n.1).
Moreover, it can be specified if each POS tag should
be stored as a single feature or should be concate-
nated (e.g. NOUN+VERB+NOUN) (l.2 and n.2).

Feature/Parameter Possible Values

k Sentence length

l Index of the token

m Previous part-of-speech tags

l.1 n pos prev [0,15]
l.2 conc prev pos True, False

n Subsequent part-of-speech tags

n.1 n pos succ [0,15]
n.2 conc succ pos True, False

o Dependencies

Table 5: Contextual features for semantic annotation

The classification task is carried out from left to
right in the sentence. This enables the considera-
tion of previous classification results (cf. Table 6).
We implemented two slightly different variants that
can be combined on demand: Firstly, we can de-
fine a fixed number of previous classification results
as independent or concatenated features (i.e. a slid-
ing window (p)). Secondly, the number of token al-
ready assigned to a particular class may be a valu-
able information (q). This is especially of interest
for the hierarchical structure of the categories: For
instance, a sub-object should only occur if an object
has already been identified. These two features are
optional (p.1 and q.1). The size of the sliding win-
dow will be specified during algorithm configuration
(p.2).

Feature/Parameter Possible Values

p Sliding windows

p.1 conc prev labels True, False
p.2 window size [0,10]

q Number of previous labels per category

q.1 use prev labels True, False

Table 6: Traceable classification results for semantic annotation

1813

5.2.2 Selected Algorithms

In addition to the classifiers we already used in
the on-/off-topic classification task, we considered
three sequential learning algorithms: conditional
random fields (FrankWolfeSSVM) from the PyS-
truct-library13, multinomial hidden markov model
(MultinomialHMM) as well as structured percep-
tron from the seqlearn-library14. We could not esti-
mate feasible parameter settings for the NuSVC clas-
sifier, so that this classifier was ignored. We chose
the algorithm with the best results on the test set for
annotating the requirements (cf. Section 6).

6 Evaluation

As mentioned in Section 5, the data was separated
in a ratio of 4:1 in a training and a test set. We
trained all classifiers on the training set with their
defined settings from the automated algorithm con-
figuration. Subsequently, we evaluated these classi-
fiers on the test set. Our results are shown in Table 7
that lists the accuracy for the best classifier per algo-
rithm family of the on-/off-topic classification task.
The ExtraTreeClassifier performs best on
the test data with an accuracy of 92%. The accuracy
was calculated with the following formula:

accuracy =
#true positives+#true negatives

#classified requirements

The ExtraTreeClassifier is an implemen-
tation of Extremely Randomized Trees (Geurts et al.,
2006). We achieved the best result when using char-
acter n-grams as features in the model with a fixed
length of 4. Thereby, we considered term occurrence
instead of term frequency and IDF. Before creating
the bag-of-words model, the approach removes stop-
words. Furthermore, the frequency of the POS tags
and their dependencies are used as features. In to-
tal, the ExtraTreeClassifier used 167 esti-
mators based on entropy in the ensemble (algorithm-
specific parameters).

13https://pystruct.github.io
14https://github.com/larsmans/seqlearn

Classifier Accuracy

AdaBoostClassifier 0.87
ExtraTreeClassifier 0.92
MultinomialNB 0.89
NuSVC 0.90

Table 7: Accuracy of best classifiers per algorithm family in the

on-/off-topic classification task after algorithm configuration

Table 8 shows the values for precision, recall, and
F1 of the ExtraTreeClassifier. In brief, the
introduced approach detects requirements in user-
generated content with an average F1-score of 91%.

Class Precision Recall F1

off-topic info 0.94 0.85 0.89
requirements 0.89 0.96 0.93

Avg. 0.92 0.91 0.91

Table 8: Evaluation results for the on-/off-topic classification

with the ExtraTreeClassifier

Table 9 provides an overview of the results of the
semantic annotation task. To determine the F1-score,
the agreement of the predicted and the a priori given
annotations is necessary to count an element as true
positive.

Again, the ExtraTreeClassifier achieves
the best F1-score of 72%. We gained the best re-
sults by using 171 randomized decision trees based
on entropy (algorithm-specific parameters). As fea-
tures, we took the POS tags from Universal Tag Set
for the twelve previous and the three following to-
kens. Traceable classification results are taken into
account by a sliding window of size 1. Besides, we
validate if a class label has already been assigned.
For each considered token, the four prefix and the
two suffix characters as well as the graphematic rep-
resentation of the token are applied as features.

The sequential learning algorithms
(FrankWolfeSSVM, MultinomialHMM and
StructuredPerceptron) perform worse
than the other classifiers. We assume that this
is due to the small amount of available training
data. However, the methods depending on de-
cision trees, especially the ensemble methods
(RandomForestClassifier, Bagging-

1814

Classifier and ExtraTreeClassifier),
perform significantly better.

Classifier F1

AdaBoostClassifier 0.33
ExtraTreeClassifier 0.72
FrankWolfeSSVM 0.50
MultinomialNB 0.64
SVC 0.70

Table 9: F1-scores of best classifiers per algorithm family in the

semantic annotation task after algorithm configuration

In Table 10, we provide detailed results achieved
with the ExtraTreeClassifier for the differ-
ent semantic categories. The recognition of main
aspects (component, action and object) reached F1-
scores of 73%, 80% and 68%. The semantic cate-
gories, that have only a few training examples, are
more error-prone (e.g. sub-action or sub-object).

Semantic Category Precision Recall F1

component 0.71 0.75 0.73
ref. of component 0.17 0.14 0.15

action 0.78 0.82 0.80
arg. of action 0.49 0.62 0.54

condition 0.88 0.61 0.72
priority 0.96 0.96 0.96

motivation 0.67 0.29 0.40
role 0.93 0.86 0.89

object 0.63 0.74 0.68
ref. of object 0.69 0.51 0.59

sub-action 0.46 0.44 0.45
arg. of sub-action 0.33 0.29 0.31

sub-priority 0.44 0.57 0.50
sub-role 0.40 0.80 0.53

sub-object 0.35 0.33 0.34
ref. of sub-object 0.67 0.33 0.44

Avg. 0.72 0.73 0.73

Table 10: Evaluation results for the semantic annotation with

the ExtraTreeClassifier

7 Conclusion and Future Work

Requirement engineers and software developers
have to meet users’ wishes to create new software
products. The goal of this work was to develop a
system that can identify and analyze requirements
expressed in natural language. These are written
by users unlimited in their way of expression. Our
system REaCT achieves an accuracy of 92% in dis-
tinguishing between on- and off-topic information
in the user-generated requirement descriptions. The
text classification approach for semantic annotation
reaches an F1-score of 72% – a satisfying result
compared to the inter-annotator agreement of 80%.
One possibility to improve the quality of the seman-
tic annotation is to expand the training set. Espe-
cially the sequential learning techniques need more
training data. Besides, this would have a positive im-
pact on those semantic categories that only contain
a small number of annotated elements.

Developers and requirement engineers can
facilely identify requirements written by users for
products in different scenarios by applying our
approach. Moreover, the semantic annotations
are useful for further NLP tasks. User-generated
software requirements adhere to the same quality
standards as software requirements that are col-
lected and revised by experts: They should be
complete, unambiguous and consistent (Hsia et al.,
1993). Since there was no assistant system to check
the quality for many years (Hussain et al., 2007)
we plan to extend the provided system in order
to provide some quality analysis of the extracted
information. We have already developed concepts
to generate suggestions for non-experts, how to
complete or clarify their requirement descriptions
(Geierhos et al., 2015). Based on these insights, we
want to implement a system for the resolution of
vagueness and incompleteness of NL requirements.

Acknowledgments

Special thanks to our colleagues Frederik S. Bäumer
and David Kopecki for their support during the se-
mantic annotation of the requirements. This work
was partially supported by the German Research
Foundation (DFG) within the Collaborative Re-
search Centre ”On-The-Fly Computing“ (SFB 901).

1815

References
Vincenzo Ambriola and Vincenzo Gervasi. 2006. On

the Systematic Analysis of Natural Language Require-
ments with CIRCE. Automated Software Engineering,
13(1):107–167.

Ronit Ankori and Ronit Ankori. 2005. Automatic re-
quirements elicitation in agile processes. In Pro-
ceedings of the 2005 IEEE International Conference
on Software - Science, Technology and Engineering,
pages 101–109. IEEE.

Carlos Castro-Herrera, Chuan Duan, Jane Cleland-
Huang, and Bamshad Mobasher. 2009. A recom-
mender system for requirements elicitation in large-
scale software projects. In Proceedings of the 2009
ACM Symposium on Applied Computing, pages 1419–
1426. ACM.

Nancy A. Chinchor, editor. 1998. Proceedings of the
Seventh Message Understanding Conference (MUC-7)
Named Entity Task Definition, Fairfax, VA.

Mike Cohn. 2004. User Stories Applied: For Agile Soft-
ware Development. Addison Wesley Longman Pub-
lishing Co., Redwood City, CA, USA.

David de Almeida Ferreira and Alberto Rodrigues
da Silva. 2012. RSLingo: An information extrac-
tion approach toward formal requirements specifica-
tions. In Model-Driven Requirements Engineering
Workshop, pages 39–48. IEEE.

Donald G. Firesmith. 2005. Are Your Requirements
Complete? Journal of Object Technology, 4(2):27–43,
February.

Ricardo Gacitua, Pete Sawyer, and Vincenzo Gervasi.
2011. Relevance-based abstraction identification:
technique and evaluation. Requirements Engineering,
16(3):251–265.

Michaela Geierhos, Sabine Schulze, and Frederik Simon
Bäumer. 2015. What did you mean? Facing the Chal-
lenges of User-generated Software Requirements. In
Proceedings of the 7th International Conference on
Agents and Artificial Intelligence, pages 277–283, 10 -
12 January. Lisbon. ISBN: 978-989-758-073-4.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. 2006.
Extremely randomized trees. Machine Learning,
63(1):3–42.

Leah Goldin and Daniel M. Berry. 1994. AbstFinder,
A Prototype Abstraction Finder for Natural Language
Text for Use in Requirements Elicitation: Design,
Methodology, and Evaluation. Automated Software
Engineering, 4(4):375–412.

H.M. Harmain and R. Gaizauskas. 2003. CM-Builder:
A Natural Language-Based CASE Tool for Object-
Oriented Analysis. IEEE International Conference
on Software - Science, Technology & Engineering,
10(2):157–181.

Pei Hsia, Alan Davis, and David Kung. 1993. Status
Report: Requirements Engineering. IEEE Software,
10(6):75–79, November.

Ishrar Hussain, Olga Ormandjieva, and Leila Kosseim.
2007. Automatic Quality Assessment of SRS Text by
Means of a Decision-Tree-Based Text Classifier. In
Proceedings of the 7th International Conference on
Quality Software, QSIC ’07, pages 209–218. IEEE.

Isabel John and Jörg Dörr. 2003. Elicitation of Require-
ments from User Documentation. In Proceedings of
the 9th International Workshop on Requirements En-
gineering: Foundation of Software Quality, pages 17–
26. Springer.

Daniel Jurafsky and James H Martin. 2015. Semantic
role labeling. In Speech and Language Processing. 3rd
ed. draft edition.

Sven J. Körner and Tom Gelhausen. 2008. Improving
Automatic Model Creation using Ontologies. In Pro-
ceedings of the 20th International Conference on Soft-
ware Engineering & Knowledge Engineering, pages
691–696. Knowledge Systems Institute.

Jim McCall. 1977. McCall’s Qual-
ity Model. http://www.sqa.net/
softwarequalityattributes.html.

Luisa Mich, Mariangela Franch, and Pier Luigi Novi In-
verardi. 2004. Market research for requirements anal-
ysis using linguistic tools. Requirements Engineering,
9(2):151–151.

Luisa Mich. 1996. NL-OOPS: from natural language
to object oriented requirements using the natural lan-
guage processing system LOLITA. Natural Language
Engineering, 2:161–187.

James Robertson and Suzanne Robertson. 2012. Mas-
tering the Requirements Process. Getting Require-
ments Right. Addison-Wesley Publishing, New York,
NY, USA.

Peter Sawyer, Paul Rayson, and Roger Garside. 2002.
REVERE: support for requirements synthesis from
documents. Information Systems Frontiers, 4(3):343–
353.

Walter F. Tichy, Mathias Landhäußer, and Sven J. Körner.
2015. nlrpBENCH: A Benchmark for Natural Lan-
guage Requirements Processing. In Multikonferenz
Software Engineering & Management 2015. GI.

Radu Vlas and William N. Robinson. 2011. A Rule-
Based Natural Language Technique for Requirements
Discovery and Classification in Open-Source Software
Development Projects. In Proceedings of the 44th
Hawaii International Conference on System Sciences,
pages 1–10. IEEE.

Tao Yue, Lionel C. Briand, and Yvan Labiche. 2010.
A systematic review of transformation approaches be-
tween user requirements and analysis models. Re-
quirements Engineering, 16(2):75–99.

1816

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1817–1826,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Deceptive Review Spam Detection
via Exploiting Task Relatedness and Unlabeled Data

Zhen Hai† Peilin Zhao‡ Peng Cheng§ Peng Yang∗ Xiao-Li Li † Guangxia Li¶
†Institute for Infocomm Research, A*STAR, Singapore, {haiz,xlli}@i2r.a-star.edu.sg

‡Ant Financial, Hangzhou, China, peilin.zpl@alipay.com
§SCSE, Nanyang Technological University, Singapore, pcheng1@ntu.edu.sg

∗Tencent AI Lab, Shenzhen, China, henryppyang@tencent.com
¶SCST, Xidian University, Xi’an, China, gxli@xidian.edu.cn

Abstract

Existing work on detecting deceptive reviews
primarily focuses on feature engineering and
applies off-the-shelf supervised classification
algorithms to the problem. Then, one real
challenge would be to manually recognize
plentiful ground truth spam review data for
model building, which is rather difficult and
often requires domain expertise in practice. In
this paper, we propose to exploit the related-
ness of multiple review spam detection tasks
and readily available unlabeled data to address
the scarcity of labeled opinion spam data.
We first develop a multi-task learning method
based on logistic regression (MTL-LR), which
can boost the learning for a task by sharing
the knowledge contained in the training sig-
nals of other related tasks. To leverage the
unlabeled data, we introduce a graph Lapla-
cian regularizer into each base model. We
then propose a novel semi-supervised multi-
task learning method via Laplacian regular-
ized logistic regression (SMTL-LLR) to fur-
ther improve the review spam detection per-
formance. We also develop a stochastic al-
ternating method to cope with the optimiza-
tion for SMTL-LLR. Experimental results on
real-world review data demonstrate the benefit
of SMTL-LLR over several well-established
baseline methods.

1 Introduction

Nowadays, more and more individuals and organi-
zations have become accustomed to consulting user-
generated reviews before making purchases or on-
line bookings. Considering great commercial ben-

efits, merchants, however, have tried to hire peo-
ple to write undeserving positive reviews to promote
their own products or services, and meanwhile to
post malicious negative reviews to defame those of
their competitors. The fictitious reviews and opin-
ions, which are deliberately created in order to pro-
mote or demote targeted entities, are known as de-
ceptive opinion spam (Jindal and Liu, 2008; Ott et
al., 2011).

By formulating deceptive opinion spam detection
as a classification problem, existing work primarily
focuses on extracting different types of features and
applies off-the-shelf supervised classification algo-
rithms to the problem (Jindal and Liu, 2008; Ott et
al., 2011; Feng et al., 2012; Chen and Chen, 2015).
Then, one weakness of previous work lies in the de-
mand of manually recognizing a large amount of
ground truth review spam data for model training.
Unlike other forms of spamming activities, such as
email or web spam, deceptive opinion spam, which
has been deliberately written to sound authentic, is
more difficult to be recognized by manual read. In
an experiment, three undergraduate students were
(randomly) invited to identify spam reviews from
nonspam ones in hotel domain. As shown in Table 1,
their average accuracy is merely 57.3% (Ott et al.,
2011). Then, given a limited set of labeled review
data for a domain, e.g., hotel, it is almost impossible
to build a robust classification model for detecting
deceptive spam reviews in reality.

In this work, we deal with the problem of de-
tecting a textual review as spam or not, i.e., non-
spam. We consider each deceptive review spam de-
tection problem within each domain, e.g., detecting

1817

Judge-1 Judge-2 Judge-3
Accuracy 61.9% 56.9% 53.1%
F-spam 48.7% 30.3% 43.6%
F-nonspam 69.7% 68.8% 59.9%

Table 1: Performance of human judges for review spam
detection in hotel domain (Ott et al., 2011), where F-
spam/F-nonspam means F-score for spam/nonspam label.

spam hotel/restuarnt reviews from hotel/restaurnat
domain, to be a different task. Previous studies
have empirically shown that learning multiple re-
lated tasks simultaneously can significantly improve
performance relative to learning each task indepen-
dently, especially when only a few labeled data per
task are available (Caruana, 1997; Bakker and Hes-
kes, 2003; Argyriou et al., 2006). Thus, given the
limited labeled review data for each domain, we for-
mulate the review spam detection tasks for multi-
ple domains, e.g., hotel, restaurant, and so on, as a
multi-task learning problem.

We develop a multi-task learning method via lo-
gistic regression (MTL-LR) to address the problem.
One key advantage of the method is that it allows
to boost the learning for one review spam detection
task by leveraging the knowledge contained in the
training signals of other related tasks. Then, there
is often a large quantity of review data freely avail-
able online. In order to leverage the unlabeled data,
we introduce a graph Laplacian regularizer into each
base logistic regression model. We extend MTL-
LR, and propose a novel semi-supervised multi-task
learning model via Laplacian regularized logistic re-
gression (SMTL-LLR) to further boost the review
spam detection performance under the multi-task
learning setting. Moreover, to cope with the opti-
mization problem for SMTL-LLR, we also develop
a stochastic alternating optimization method, which
is computationally efficient.

To the best of our knowledge, this is the first work
that generalizes opinion spam detection from in-
dependent single-task learning to symmetric multi-
task learning setting. By symmetric, we mean that
the setting seeks to improve the performance of all
learning tasks simultaneously. In this sense, it is dif-
ferent from transfer learning (Pan and Yang, 2010),
where the objective is to improve the performance
of a target task using information from source tasks.

Under this new setting, we can exploit the com-
monality shared by related review spam detection
tasks as well as readily available unlabeled data, and
then alleviate the scarcity of labeled spam review
data. Experimental results on real-world review data
demonstrate the superiority of SMTL-LLR over sev-
eral representative baseline methods.

The rest of this paper is organized as follows. Sec-
tion 2 presents related work. Section 3 introduces
the proposed methods and stochastic alternating op-
timization algorithm. Then, in Section 4, we present
the experimental results in detail, and conclude this
paper in Section 5.

2 Related Work

Previous work typically formulates deceptive opin-
ion spam detection as a classification problem, and
then presents different types of features to train su-
pervised classification algorithms for the problem.
Jindal and Liu (2008) first studied opinion spam de-
tection problem. They built the ground truth review
data set by treating the duplicate reviews in a given
corpus as spam reviews and the rest as nonspam re-
views. They presented review, product, and reviewer
related features, and then trained logistic regression
(LR) model on the features for finding fake review
spam. Ott et al. (2011) created the ground truth re-
view data via a crowd-sourcing service called Ama-
zon Mechanical Turk1. They presented three dif-
ferent types of features for opinion spam detection,
i.e., genre identification features, psycholinguistic
deception features, and standard n-gram text fea-
tures. They found that the supervised support vec-
tor machines (SVM) trained on the textual n-gram
features can achieve good performance. Feng et al.
(2012) presented syntactic stylometry features and
trained SVM model for deception detection, while
Chen and Chen (2015) built the SVM classifier on
a diversity of features, such as content and thread
features, for opinion spam detection in web forum.
In addition, Li et al. (2014) employed a feature-
based additive model to explore the general rule for
deceptive opinion spam detection. Generally, in or-
der to build robust supervised review spam detection
models, we have to manually recognize large-scale
ground truth spam data. But this could be very ex-

1https://www.mturk.com

1818

pensive, and often requires domain expertise.
Though a large amount of unlabeled review data

are freely available online, very limited work has
been done on developing semi-supervised methods
for review spam detection. Li et al. (2011) used
a two-view co-training method (Blum and Mitchell,
1998) for semi-supervised learning to identify fake
review spam. One limitation of the work is that it
needs additional reviewer information when build-
ing model. Given a corpus of textual reviews, the
reviewer related view may not be always available
in reality. Moreover, the co-training method is not
intrinsically geared to learning from the unlabeled
review data, instead, simply makes use of the un-
labeled reviews within a fully supervised learning
framework, negating the semi-supervised learning
benefit. For some particular scenarios, the available
training data could be only a partially labeled set of
positive examples, e.g., spam reviews, and a large
set of unlabeled reviews. Positive unlabeled learn-
ing (PU) (De Comite et al., 1999; Liu et al., 2002)
may be then used for deceptive review spam detec-
tion (Hernandez et al., 2013). However, this clearly
contrasts with our problem, where our training data
contains a complete labeled set of positive (spam)
and negative (nonspam) reviews besides the unla-
beled set of review data.

In addition, instead of detecting spam reviews di-
rectly, considerable efforts have been made to recog-
nize review spammers, i.e., online users who have
written spam reviews. Lim et al. (2010) studied
different types of spamming behavioral indicators,
and then used a regression method on the indicators
for finding review spammers. Wang et al. (2012)
investigated the relationships among reviewers, re-
views, and stores, and developed a social review
graph based method to identify online store spam-
mers. Mukherjee et al. (2013) developed an author
spamicity Bayesian model to exploit the observed
behavioral footprints for spammer detection. In re-
ality, a group of online users may work together to
create spam reviews. Mukherjee et al. (2012) de-
veloped a group spam ranking algorithm to detect
spammer groups.

Multi-task learning is a learning paradigm that
seeks to boost generalization performance by learn-
ing a task together with other tasks at the same time
while using a shared representation (Caruana, 1997).

Most majority of existing work on multi-task learn-
ing does not infer actual task relations from train-
ing data automatically, instead, they typically make
the assumptions that the relations are existent or are
given as prior knowledge (Thrun and O’Sullivan,
1996; Bakker and Heskes, 2003; Evgeniou and Pon-
til, 2004; Argyriou et al., 2006; Liu et al., 2009).
To better fit the multi-task learning model to real-
world data, Zhang and Yeung (2010) proposed a
convex regularization formulation named multi-task
relation learning (MTRL), which can learn real rela-
tionships between tasks under a multi-task learning
framework.

In this work, we focus on detecting online decep-
tive review spam. We formulate review spam detec-
tion for multiple domains (e.g., hotel and restaurant)
as a multi-task learning problem. Following the con-
vex framework of MTRL, we first develop a multi-
task learning method via logistic regression (MTL-
LR). We employ logistic regression as base classifi-
cation model, because: 1) It is a robust model that
does not have configuration parameters to tune; 2) It
can be straightforwardly extended, and be efficiently
trained using convex optimization techniques (Hoi
et al., 2006; Minka, 2003); and 3) It has been shown
effective for large-scale text classification and fake
review detection problems (Hoi et al., 2006; Jindal
and Liu, 2008). Then, to leverage the large volume
of unlabeled review data, we extend the base logis-
tic regression model, and incorporate a graph Lapla-
cian regularizer into it. We thus develop a new semi-
supervised multi-task learning paradigm via Lapla-
cian regularized logistic regression, which is able to
further boost the performance for review spam de-
tection.

3 Methodology

3.1 Multi-task Learning via Logistic
Regression

Given m review domains D1, . . . ,Dm, we ac-
cordingly have m review spam detection tasks
T1, . . . , Tm, which share a common feature space
with d dimensions. For the task Ti in the domain
Di, there is a small labeled set of li review examples
Li = {(xi

1, y
i
1), . . . , (x

i
li
, yi

li
)}, where xi

j ∈ Rd is
the vectorial representation of the review j in the la-
beled set Li, and yi

j ∈ {+1,−1} refers to the spam

1819

(+1) or nonspam (−1) label of the review.
When there is only one review spam detection

task, for example, Ti, we can use logistic regression
(LR) model to learn a supervised classifier based on
the labeled set Li. The objective function of LR for
single-task learning is

P i
LR(wi)

=
1

li

li∑

j=1

ln(1 + exp(−yi
jw

⊤
i xi

j)) +
λ

2
∥wi∥2,

where wi ∈ Rd, λ > 0 refers to regularization pa-
rameter.

Once the model is learned from solving the opti-
mization problem, given a test review instance xj′

of the task Ti, we can employ the model to predict it
as spam, i.e., ŷj′ = 1, with probability

Prob(ŷj′ = 1) =
1

1 + exp(−w⊤
i xi

j′)
.

Now we have m review spam detection tasks for
multiple domains, and we would learn m supervised
classification models simultaneously. To achieve
this, we introduce a covariance matrix Ω to represent
the correlations among the m review spam detection
tasks, where Ωij refers to the relation/covariance be-
tween a pair of tasks Ti and Tj . Since Ω is a task
covariance matrix, we require it to satisfy the con-
straint Ω ≽ 0, i.e., positive semidefinite. We also re-
strict Tr(Ω) = 1 without of loss of generality, since
for any covariance matrix Tr(Σ) ̸= 1, we can use

Σ
Tr(Σ) as Ω. If the covariance matrix is given as prior
knowledge, then we introduce a supervised multi-
task learning (MTL) framework via logistic regres-
sion as follows

PΩ
MTL(W)

=

m∑

i=1

1

li

li∑

j=1

ln(1 + exp(−yi
jw

T
i xi

j))

+
λ

2
Tr(WWT) +

β

2
Tr(WΩ−1WT),

where W = (w1, . . . ,wm), and β > 0 is a regular-
ization parameter.

Under this multi-task learning setting, the first
term refers to the sum of all the average empirical

loss, the second term refers to the regularizer used to
avoid over-fitting, and the last term is introduced to
leverage the shared knowledge from multiple learn-
ing tasks according to their relationships.

In reality, the covariance matrix may be not pro-
vided a priori. We then present the following multi-
task learning model, which can learn the model pa-
rameters W and Ω automatically from training re-
view data

PMTL(W,Ω)

=

m∑

i=1

1

li

li∑

j=1

ln(1 + exp(−yi
jw

T
i xi

j))

+
λ

2
Tr(WWT) +

β

2
Tr(WΩ−1WT)

s.t. Ω ≽ 0, T r(Ω) = 1,

If we have only one review spam detection task, i.e.,
m = 1, then it is straightforward to verify that the
above multi-task learning formulation would be re-
duced to single-task objective function of logistic re-
gression.

3.2 Semi-supervised Multi-task Learning via
Laplacian Regularized Logistic Regression

Generally, for a given review domain Di, there
is a large set of unlabeled reviews Ui =
{xi

li+1, . . . ,x
i
ni
} in addition to the labeled review

set Li. Then, for each review spam detection task
Ti, we constracut a weighted neighborhood graph
Gi = (Vi, Ei) based on both labeled and unlabeled
review sets Li and Ui. V refers to the set of data
points, each of which stands for a review example
xi

j (j : 1, . . . , ni) from either Li or Ui. E refers to
the set of weighted edges. Specifically, if a review
example/point xi

j is among the K nearest neighbors
of the review point xi

k, we put an edge linking the
two examples, and vice versa. We also assign an ad-
jacent weight score si

jk to the edge, which represents
the similarity or closeness between the two reviews.
Once the neighborhood graph Gi has been built for
each task, a Laplacian regularizer can be then con-
strcted on the graph to extend the regular logistic re-
gression model.

Considering the similarity matrix Si that corre-
sponds to the graph Gi for the task Ti, it is expected
that a good model would also minimize the follow-

1820

ing objective

∑

jk

si
jk(w

⊤
i xi

j −w⊤
i xi

k)
2,

This objective implies that w⊤
i xi

j should be close to
w⊤

i xi
k if the similarity si

jk is large. The objective
can be simplified as

∑

jk

si
jk(w

⊤
i xi

j −w⊤
i xi

k)
2

= Tr(w⊤
i Xi(Di − Si)X

⊤
i wi)

= Tr(w⊤
i XiLiX

⊤
i wi),

where Di = diag(Di
jj) is a diagonal matrix, Di

jj =∑
k si

jk, and Li = Di−Si refers to the graph Lapla-
cian matrix.

Then, given both labeled review set Li and un-
labeled set Ui for the task Ti, we extend the ba-
sic logistic regression by incorporating the graph
Laplacian regularizer into its learning framework,
and develop a new semi-supervised Laplacian regu-
larized logistic regression (LLR) model. The objec-
tive function of LLR for semi-supervised single-task
learning is given below

P i
LLR(wi)

=
1

li

li∑

j=1

ln(1 + exp(−yi
jw

⊤
i xi

j))

+
λ

2
∥wi∥2 +

γ

2
Tr(w⊤

i XiLiX
⊤
i wi),

where λ > 0 and γ > 0 are regularization parame-
ters.

The semi-supervised formulation of LLR bal-
ances several desires. The first term is used to min-
imize the loss of the model on the labeled review
data, the second term is used to minimize the com-
plexity of the model, and the last term refers to the
Laplacian regularizer, which is introduced to make
the prediction of the model smooth on the whole re-
view data set.

Next, based on the objective function of the above
LLR model, we extend the supervised multi-task
learning framework, and propose a novel semi-
supervised multi-task learning paradigm via Lapla-
cian regularized logistic regression (SMTL-LLR) as

follows

PSMTL(W,Ω)

=

m∑

i=1

1

li

li∑

j=1

ln(1 + exp(−yi
jw

T
i xi

j))

+
λ

2
Tr(WW⊤) +

β

2
Tr(WΩ−1W⊤)

+
γ

2

m∑

i=1

1

ni
Tr(wT

i XiLiX
T
i wi)

s.t., Ω ≽ 0, T r(Ω) = 1.

Under this new semi-supervised unified frame-
work, our proposed SMTL-LLR model can lever-
age the large amount of unlabeled review data in ad-
dition to the labeled ones to learn multiple review
spam detection models simultaneously, and then,
what is learned for one task can help other related
tasks be learned better. In contrast, previous single-
task learning based review spam detection models,
which are trained independently, and are typically
built on a limited set of labeled review data, cannot
benefit from this.

3.3 Stochastic Alternating Method

There are two parameters W and Ω in the objective
function of the proposed SMTL-LLR model. It is
not easy to optimize the objective function against
the two parameters at the same time. We then de-
velop a stochastic alternating method to cope with
the optimization problem for SMTL-LLR, i.e., alter-
natively updating one parameter by fixing the other.
In particular, we initialize W with the values ran-
domly chosen from [0, 1], and initialize Ω as a di-
agonal matrix, where Ωii = 1

m . For each iteration,
the key update steps for the two parameters are de-
scribed as follows

• Step 1: Update W while Ω is fixed.

W← argmin
W

PSMTL(W,Ω)

• Step 2: Update Ω while W is fixed.

Ω← argmin
Ω

PSMTL(W,Ω)

1821

3.3.1 Updating W While Fixing Ω

For Step 1 of the alternating optimization method,
we introduce a stochastic gradient descent method
to efficiently update the parameter W, while Ω is
fixed. Formally, given a learning task Ti, we ran-
domly choose a subset or mini-batch of reviews
Ai

b = {(xi
j , y

i
j)|j ∈ [li]} from the labeled set Li in

a particular iteration, where [li] denotes {1, . . . , li}
and |Ai

b| = r ≪ li. Based on the subset of labeled
reviews Ai

b, we can construct an unbiased estimate
of the objective function

PSMTL(W,Ω, {Ai
b}mi=1)

=
m∑

i=1

1

r

∑

j∈Ai
b

ln(1 + exp(−yi
jw

T
i xi

j))

+
λ

2
Tr(WWT) +

β

2
Tr(WΩ−1WT)

+
γ

2

m∑

i=1

1

ni
Tr(wT

i XiLiX
T
i wi)

We can then obtain an unbiased stochastic gradi-
ent of the objective

∇WPSMTL(W,Ω, {Ai
b}mi=1)

= [g1
b , . . . ,g

m
b] + λW + βWΩ−1

+[γ
1

n1
X1L1X

T
1 w1, . . . , γ

1

nm
XmLmXT

mwm],

where

gi
b =

1

r

∑

j∈Ai
b

−yi
jx

i
j

1 + exp(yi
jw

T
i xi

j)
.

Next, the model parameter W can be updated via
stochastic gradient descent method

Wt+ 1
2

= Wt − ηt∇WPSMTL(W,Ω, {Ai
b}mi=1)

where ηt > 0 refers to learning rate in iteration t.
Note that, after each update step for the parame-

ter W, we perform a scaling process by forcing the
solution

∥Wt+1∥F ≤
√

2m ln(2)/λ,

and then have the following update rule

Wt+1 = min(1,

√
2m ln(2)/λ

∥Wt+ 1
2
∥F

)Wt+ 1
2
.

We provide a straightforward theoretical analysis,
which shows an upper bound of the norm of the op-
tima solution W∗, and explains why we perform the
above scaling step. Using the fact that

PSMTL(W∗) ≤ PSMTL(0),

we thus have

λ

2
∥W∗∥2F ≤ PSMTL(W∗)

≤ PSMTL(0) = m ln(2).

The fist inequality is guaranteed by

ln(1 + exp(−yi
jw

⊤
i xi

j)) > 0,

T r(WΩ−1W⊤) ≥ 0,

and

Tr(w⊤
i XiLiX

⊤
i wi) ≥ 0.

3.3.2 Updating Ω While Fixing W

The second step of the stochastic alternating
method is equivalent to solving the following opti-
mization problem

min
Ω

Tr(WΩ−1W⊤)

s.t., Ω ≽ 0, T r(Ω) = 1.

This convex formulation enjoys the following
closed-form solution (Zhang and Yeung, 2010)

Ω =
(W⊤W)

1
2

Tr((W⊤W)
1
2)

.

It is obviously observed that Ω models the correla-
tions between each pair of the tasks or the models.

Algorithm 1 summarizes the stochastic alternat-
ing optimization method for SMTL-LLR. Given la-
beled and unlabeled review data for multiple review
domains, we run the algorithm for P alternating
loops. Within each loop p, we update the model pa-
rameter W for T iterations via stochastic gradient
descent method, where B is number of mini-batches;
after that, we update the task covariance matrix Ω
once based on new W. The procedure is performed
iteratively until it is converged. Then, multiple op-
timized review spam detection models and task co-
variance matrix would be learned finally.

1822

Algorithm 1 Stochastic Alternating Method
Input:
Labeled and unlabeled review data for multiple tasks
Initial learning rate η0, hyper-parameter δ
Regularization parameters λ, β, γ
Initialization:
Initialize W with values randomly chosen from [0, 1]
Initialize Ω = diag(1/m, . . . , 1/m)
for p = 1, . . . , P do

W̃1 = W
for t = 1, . . . , T do

Learning rate ηt = η0

1+η0δt
Randomly shuffle reviews in the training set
for b = 1, . . . , B do

Compute∇WPSMTL(W,Ω, {Ai
b}mi=1)

Update W̃t+ 1
2

= W̃t

−ηt∇WPSMTL(W,Ω, {Ai
b}mi=1)

W̃t+1 = min(1,

√
2m ln(2)/λ

∥W̃
t+ 1

2
∥F

)W̃t+ 1
2

end for
end for
Update W = W̃T+1

Update Ω = (W⊤W)
1
2

Tr((W⊤W)
1
2)

end for
Output: W and Ω

In addition, we also rely on the stochastic alter-
nating method to optimize the proposed MTL-LR
method. Differently, we need to remove all the terms
related to unlabeled data, i.e., discarding the Lapla-
cian regularization term from the objective function
and gradient.

4 Experiments

In this section, we evaluate the proposed multi-
task learning methods MTL-LR and SMTL-LLR
for review spam detection, and demonstrate the im-
proved effectiveness of the methods over other well-
established baselines.

4.1 Data Sets

Due to big challenge in manually recognizing de-
ceptive reviews, there are limited benchmark opin-
ion spam data in this field. We used three ground
truth data sets from the review domains, doctor2,

2https://www.ratemds.com

hotel3, and restaurant4, respectively, to evaluate the
proposed methods, which were created by following
the similar rules used in (Ott et al., 2011). Then, for
each ground truth review data set, we randomly col-
lected a large number of unlabeled reviews (10,000),
which were written about the same entities or do-
main. Table 2 shows some data statistics, where the
last column computes the ratio of labeled reviews to
unlabeled ones.

Spam/Nonspam Unlabeled Ratio
Doctor 200/200 10,000 4.0%
Hotel 300/300 10,000 6.0%
Restaurant 200/200 10,000 4.0%

Table 2: Some statistics of review data sets.

4.2 Experimental Setup

We followed previous work (Mihalcea and Strappa-
rava, 2009; Ott et al., 2011), and leveraged text un-
igram and bigram term-frequency features to train
our models for review spam detection. This problem
setting is quite useful, for example, when user be-
havior data are sparse or even not available in prac-
tical applications.

Supervised classification models, such as logis-
tic regression (LR) and support vector machines
(SVM), have been used to identify fake review
spam (Jindal and Liu, 2008; Ott et al., 2011). We
compared our methods with the two models. Semi-
supervised positive-unlabeled (PU) learning was
employed for review spam detection, then we chose
one representative PU learning method (Liu et al.,
2002) to evaluate our models. We did not compare
our methods with the two-view co-training method,
which was used for fake review detection (Li et
al., 2011), because the reviewer view data are not
available in the ground truth review sets. Instead,
we selected a well-known semi-supervised trans-
ductive SVM (TSVM) (Joachims, 1999) to evaluate
our models. Different from the proposed methods,
we trained each of above baselines in a single do-
main, because they are single-task learning methods.
Moreover, we also compared our methods with one
well-established multi-task learning baseline MTRL
(Zhang and Yeung, 2010), which has not been used

3https://www.tripadvisor.com
4http://www.yelp.com

1823

for review spam detection problem.
It is important to specify appropriate values for

the parameters in the proposed methods. In our
setting, we used the learning rates ηt that asymp-
totically decrease with iteration numbers (Bottou,
2012). Following previous work (Ott et al., 2011;
Chen and Chen, 2015), we conducted five-fold
cross-validation experiments, and determined the
values of the regularization and hyper parameters via
a grid-search method.

4.3 Experimental Results

Table 3 reports the spam and nonspam review detec-
tion accuracy of our methods SMTL-LLR and MTL-
LR against all other baseline methods. In terms
of 5% significance level, the differences between
SMTL-LLR and the baseline methods are consid-
ered to be statistically significant.

Doctor Hotel Restaurant Average
SMTL-LLR 85.4% 88.7% 87.5% 87.2%
MTL-LR 83.1% 86.7% 85.7% 85.2%
MTRL 82.0% 85.4% 84.7% 84.0%
TSVM 80.6% 84.2% 83.8% 82.9%
LR 79.8% 83.5% 83.1% 82.1%
SVM 79.0% 83.5% 82.9% 81.8%
PU 68.5% 75.4% 74.0% 72.6%

Table 3: Spam and nonspam review detection results in
the doctor, hotel, and restaurant review domains.

Under symmetric multi-task learning setting, our
methods SMTL-LLR and MTL-LR outperform all
other baselines for identifying spam reviews from
nonspam ones. MTL-LR achieves the average ac-
curacy of 85.2% across the three domains, which is
3.1% and 3.4% better than LR and SVM trained in
the single task learning setting, and 1.2% higher than
MTRL. Training with a large quantity of unlabeled
review data in addition to labeled ones, SMTL-LLR
improves the performance of MTL-LR, and achieves
the best average accuracy of 87.2% across the do-
mains, which is 3.2% better than that of MTRL, and
is 4.3% better than TSVM, a semi-supervised sin-
gle task learning model. PU gives the worst perfor-
mance, because learning only with partially labeled
positive review data (spam) and unlabeled data may
not generalize as well as other methods.

4.4 Performance versus Unlabeled Data Size
Figure 1 plots SMTL-LLR accuracy versus unla-
beled data sizes from 0 to 10,000, where 0 corre-
sponds to using only labeled data to build the model,
i.e., MTL-LR. Note that we first randomly sampled
2,000 unlabeled reviews to build the first set, and
then created the second set by appending another
randomly selected set of 2,000 reviews to the pre-
vious one. We repeated the process until all the un-
labeled review data sets were created.

Figure 1: Accuracy versus Unlabeled Data Size.

We observed that learning from unlabeled reviews
does help to boost the performance of MTL-LR,
which was trained with labeled data alone. The
performance of SMTL-LLR improves when training
with more and more unlabeled review data. This is
because the useful patterns learned from unlabeled
data perhaps supports SMTL-LLR to generalize bet-
ter. But continuing to learn from much more unla-
beled reviews may even harm the performance. One
explanation is that appending more unlabeled data
may also incur noisy information to learning pro-
cess. Interestingly, the performance of SMTL-LLR
keeps increasing on the doctor domain, when train-
ing with more and more unlabeled reviews up to
10,000. From above observations, we conclude that
an elaborately selected set of high-quality unlabeled
review data may help SMTL-LLR to learn better.

4.5 Task Correlation
Based on the covariance matrix (Ω) learned from the
review spam detection tasks, we obtained the corre-
lation between each pair of tasks for doctor, hotel,
and restaurant domains, as shown in Table 4. The re-
view spam detection tasks are highly correlated with
each other for hotel and restaurant domains (0.772).

1824

This is reasonable due to the large amount of com-
monality shared between the two domains. We can
see that the tasks are also positively correlated be-
tween hotel and doctor, as well as between doctor
and restaurant domains.

Doctor Hotel Restaurant
Doctor 1.0 0.688 0.638
Hotel 0.688 1.0 0.772
Restaurant 0.638 0.772 1.0

Table 4: Task correlations.

4.6 Shared Text Features among Tasks

Table 5 lists top weighted shared text features among
the review spam detection tasks for doctor, hotel,
and restaurant domains. Generally, review spam-
mers demonstrate similar motivations when creat-
ing deceptive review spam, i.e., promoting their own
products/services or defaming those of their com-
petitors. Though different aspects or entities can
be commented on across different domains, we find
that many features or expressions are indeed shared
among the three review domains. As we know,
deceptive reviewers normally write up reviews for
making money, thus they prefer choosing exagger-
ated language in their lies, no matter which domains
they are working with. As shown in the first row
for spam category, they tend to exaggerate their sen-
timents using the words like “definitely”, “sure”,
“highly”, and so on.

In contrast, truthful reviewers contribute reviews
for sharing their true feelings or personal anecdotes.
They are willing to write up detailed factual expe-
riences, for example, about the doctors they visited
or delicious foods they enjoyed. Their reviews thus
tend to contain language patterns in past tense, such
as “went”, “did”, and “took” shown in the second
row.

5 Conclusions

We have coped with the problem of detecting de-
ceptive review spam. Given the limited labeled re-
view data for individual domains, we formulated
it as a multi-task learning problem. We first de-
veloped a multi-task learning method via logistic
regression (MTL-LR), which allows to boost the

Labels Features
Spam staff, friendly,comfortable, really,

right, experience, best, way, amazing,
check, away, staff friendly, definitely,
sure, highly recommend

Nonspam good, just, like, went, did, people,
excellent, took, wonderful, things,
day, fantastic, know, going, nice

Table 5: Top weighted shared text features for
spam/nonspam category across the three review domains.

learning for one task by sharing the knowledge con-
tained in the training signals of other related tasks.
To leverage the unlabeled data, we introduced a
graph Laplacian regularizer into each base model,
and proposed a semi-supervised multi-task learning
model via Laplacian regularized logistic regression
(SMTL-LLR). Moreover, to deal with the optimiza-
tion problem, we developed a stochastic alternating
method. Experimental results on real-world review
data demonstrated the superiority of SMTL-LLR
over several well-established baseline methods.

For future work, we plan to create much more
ground truth review data from other review domains
and different applications like forums or microblogs,
and further test our proposed models for deceptive
opinion spam detection. We also plan to incorporate
our model into a practical opinion mining system, in
this way, more reliable opinion and sentiment anal-
ysis results can be then expected.

References
Andreas Argyriou, Theodoros Evgeniou, and Massimil-

iano Pontil. 2006. Multi-task feature learning. In
Proceedings of the Twentieth Annual Conference on
Neural Information Processing Systems, pages 41–48,
Vancouver, British Columbia, Canada.

Bart Bakker and Tom Heskes. 2003. Task clustering and
gating for bayesian multitask learning. The Journal of
Machine Learning Research, 4:83–99.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In Proceed-
ings of the eleventh annual conference on Computa-
tional learning theory, pages 92–100.

Léon Bottou. 1997. Stochastic gradient descent tricks.
In Neural Networks: Tricks of the Trade, pages 421–
436.

Rich Caruana. 1997. Multitask learning. In Machine
Learning, pages 41–75.

1825

Yu-Ren Chen and Hsin-Hsi Chen. 2015. Opinion spam
detection in web forum: A real case study. In Proceed-
ings of the 24th International Conference on World
Wide Web, pages 173–183, Republic and Canton of
Geneva, Switzerland.

Francesco De Comite, Francois Denis, Remi Gilleron,
and Fabien Letouzey. 1999. Positive and Unla-
beled Examples Help Learning. In Proceedings of the
Tenth International Conference on Algorithmic Learn-
ing Theory, Lecture Notes in Artificial Intelligence,
pages 219–230, Tokyo, Japan. Springer Verlag.

Theodoros Evgeniou and Massimiliano Pontil. 2004.
Regularized multi–task learning. In Proceedings of
the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 109–
117, New York, NY, USA.

Song Feng, Ritwik Banerjee, and Yejin Choi. 2012. Syn-
tactic stylometry for deception detection. In Proceed-
ings of the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers - Volume 2,
pages 171–175.

D. Hernandez, R. Guzman, M. Montes-y-Gomez, and P.
Rosso 2013. Using PU-learning to detect deceptive
opinion spam. In Proceedings of the 4th Workshop
on Computational Approaches to Subjectivity, Senti-
ment and Social Media Analysis, pages 38–45, At-
lanta, Georgia, USA.

Steven C. H. Hoi, Rong Jin, and Michael R. Lyu. 2006.
Large-scale text categorization by batch mode active
learning. In Proceedings of the 15th International
Conference on World Wide Web, pages 633–642, New
York, NY, USA.

Nitin Jindal and Bing Liu. 2008. Opinion spam and anal-
ysis. In Proceedings of the International Conference
on Web Search and Data Mining, pages 219–230, Palo
Alto, California, USA.

Thorsten Joachims. 1999. Transductive inference for
text classification using support vector machines. In
Proceedings of the Sixteenth International Conference
on Machine Learning, pages 200–209, San Francisco,
CA, USA.

Fangtao Li, Minlie Huang, Yi Yang, and Xiaoyan Zhu.
2011. Learning to identify review spam. In IJCAI
Proceedings-International Joint Conference on Artifi-
cial Intelligence, page 2488.

Jiwei Li, Myle Ott, Claire Cardie, and Eduard H. Hovy.
2014. Towards a general rule for identifying decep-
tive opinion spam. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics, pages 1566–1576, Baltimore, MD, USA.

Ee-Peng Lim, Viet-An Nguyen, Nitin Jindal, Bing Liu,
and Hady Wirawan Lauw. 2010. Detecting product

review spammers using rating behaviors. In Proceed-
ings of the 19th ACM International Conference on In-
formation and Knowledge Management, pages 939–
948.

Bing Liu, Wee Sun Lee, Philip S Yu, and Xiaoli Li. 2002.
Partially supervised classification of text documents.
In Proceedings of the Nineteenth International Con-
ference on Machine Learning, pages 387–394.

Jun Liu, Shuiwang Ji, and Jieping Ye. 2009. Multi-task
feature learning via efficient l 2, 1-norm minimization.
In Proceedings of the twenty-fifth conference on uncer-
tainty in artificial intelligence, pages 339–348. AUAI
Press.

Rada Mihalcea and Carlo Strapparava. 2009. The lie
detector: Explorations in the automatic recognition
of deceptive language. In Proceedings of the ACL-
IJCNLP 2009 Conference Short Papers, pages 309–
312, Stroudsburg, PA, USA.

Thomas P. Minka. 2003. A comparison of numerical
optimizers for logistic regression. Technical report,
CMU Technical Report.

Arjun Mukherjee, Bing Liu, and Natalie Glance. 2012.
Spotting fake reviewer groups in consumer reviews. In
Proceedings of the 21st International Conference on
World Wide Web, pages 191–200.

Arjun Mukherjee, Abhinav Kumar, Bing Liu, Junhui
Wang, Meichun Hsu, Malu Castellanos, and Riddhi-
man Ghosh. 2013a. Spotting opinion spammers us-
ing behavioral footprints. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 632–640.

Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T. Han-
cock. 2011. Finding deceptive opinion spam by any
stretch of the imagination. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume
1, pages 309–319, Portland, Oregon.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345–1359, October.

S. Thrun and J. O’Sullivan. 1996. Discovering struc-
ture in multiple learning tasks: The TC algorithm. In
L. Saitta, editor, Proceedings of the 13th International
Conference on Machine Learning, San Mateo, CA.
Morgen Kaufmann.

Guan Wang, Sihong Xie, Bing Liu, and Philip S. Yu.
2012. Identify online store review spammers via so-
cial review graph. ACM Trans. Intell. Syst. Technol.,
3(4):61:1–61:21, September.

Yu Zhang and Dit-Yan Yeung. 2010. A convex formula-
tion for learning task relationships in multi-task learn-
ing. In Proceedings of the Twenty-Sixth Conference on
Uncertainty in Artificial Intelligence, pages 733–442,
Catalina Island, CA, USA.

1826

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1827–1837,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Regularizing Text Categorization with Clusters of Words

Konstantinos Skianis François Rousseau

LIX, École Polytechnique, France
kskianis@lix.polytechnique.fr

Michalis Vazirgiannis

Abstract

Regularization is a critical step in supervised
learning to not only address overfitting, but
also to take into account any prior knowledge
we may have on the features and their de-
pendence. In this paper, we explore state-
of-the-art structured regularizers and we pro-
pose novel ones based on clusters of words
from LSI topics, word2vec embeddings and
graph-of-words document representation. We
show that our proposed regularizers are faster
than the state-of-the-art ones and still improve
text classification accuracy. Code and data are
available online1.

1 Introduction

Harnessing the full potential in text data has always
been a key task for the NLP and ML communities.
The properties hidden under the inherent high di-
mensionality of text are of major importance in tasks
such as text categorization and opinion mining.

Although simple models like bag-of-words man-
age to perform well, the problem of overfitting still
remains. Regularization as proven in Chen and
Rosenfeld (2000) is of paramount importance in
Natural Language Processing and more specifically
language modeling, structured prediction, and clas-
sification. In this paper we build upon the work of
Yogatama and Smith (2014b) who introduce prior
knowledge of data as a regularization term. One of
the most popular structured regularizers, the group
lasso (Yuan and Lin, 2006), was proposed to avoid
large L2 norms for groups of weights.

1https://goo.gl/mKqvro

In this paper, we propose novel linguistic struc-
tured regularizers that capitalize on the clusters
learned from texts using the word2vec and graph-of-
words document representation, which can be seen
as group lasso variants. The extensive experiments
we conducted demonstrate these regularizers can
boost standard bag-of-words models on most cases
tested in the task of text categorization, by imposing
additional unused information as bias.

2 Background & Notation

We place ourselves in the scenario where we con-
sider a prediction problem, in our case text catego-
rization, as a loss minimization problem, i. e. we
define a loss function L(x,θ, y) that quantifies the
loss between the prediction hθ,b(x) of a classifier
parametrized by a vector of feature weights θ and a
bias b, and the true class label y ∈ Y associated with
the example x ∈ X . Given a training set of N data
points {(xi, yi)}i=1...N , we want to find the optimal
set of feature weights θ∗ such that:

θ∗ = argmin
θ

N∑

i=1

L(xi,θ, yi)

︸ ︷︷ ︸
empirical risk

(1)

In the case of logistic regression with binary predic-
tions (Y = {−1,+1}), hθ,b(x) = θ>x + b and
L(x,θ, y) = e−yhθ,b(x) (log loss).

2.1 Regularization

Only minimizing the empirical risk can lead to over-
fitting, that is, the model no longer learns the un-
derlying pattern we are trying to capture but fits the

1827

noise contained in the training data and thus results
in poorer generalization (e. g., lower performances
on the test set). For instance, along with some fea-
ture space transformations to obtain non-linear de-
cision boundaries in the original feature space, one
could imagine a decision boundary that follows ev-
ery quirk of the training data. Additionally, if two
hypothesis lead to similar low empirical risks, one
should select the “simpler” model for better general-
ization power, simplicity assessed using some mea-
sure of model complexity.

Loss+Penalty Regularization takes the form of
additional constraints to the minimization problem,
i. e. a budget on the feature weights, which are of-
ten relaxed into a penalty term Ω(θ) controlled via
a Lagrange multiplier λ. We refer to the book of
Boyd and Vandenberghe (2004) for the theory be-
hind convex optimization. Therefore, the overall
expected risk (Vapnik, 1991) is the weighted sum
of two components: the empirical risk and a reg-
ularization penalty term, expression referred to as
“Loss+Penalty" by Hastie et al. (2009). Given a
training set of N data points {(xi, yi)}i=1...N , we
now want to find the optimal set of feature weights
θ∗ such that:

θ∗ = argmin
θ

N∑

i=1

L(xi,θ, yi)

︸ ︷︷ ︸
empirical risk

+ λΩ(θ)

︸ ︷︷ ︸
penalty term︸ ︷︷ ︸

expected risk

(2)

L1 and L2 regularization The two most used
penalty terms are known as L1 regularization, a. k. a.
lasso (Tibshirani, 1996), and L2 regularization,
a. k. a. ridge (Hoerl and Kennard, 1970) as they cor-
respond to penalizing the model with respectively
the L1 and L2 norm of the feature weight vector θ:

θ∗ = argmin
θ

N∑

i=1

L(xi,θ, yi) + λ

p∑

j=1

|θj | (3)

θ∗ = argmin
θ

N∑

i=1

L(xi,θ, yi) + λ

p∑

j=1

θj
2 (4)

Prior on the feature weights L1 (resp. L2) reg-
ularization can be interpreted as adding a Laplacian
(resp. Gaussian) prior on the feature weight vector.
Indeed, given the training set, we want to find the

most likely hypothesis h∗ ∈ H, i. e. the one with
maximum a posteriori probability:

h∗ = argmax
h∈H

(
P(h|{(xi, yi)}i=1...N)

)

= argmax
h∈H

(
P({yi}i|{xi}i, h)P(h|{xi}i)

P({yi}i|{xi}i)

)

= argmax
h∈H

(
P({yi}i|{xi}i, h)P(h|{xi}i)

)

= argmax
h∈H

(
P({yi}i|{xi}i, h)P(h)

)
(5)

= argmax
h∈H

(
N∏

i=1

(
P(yi|xi, h)

)
P(h)

)
(6)

= argmax
h∈H

(
N∑

i=1

(
logP(yi|xi, h)

)
+ logP(h)

)

= argmin
h∈H

N∑

i=1

(
− logP(yi|xi, h)

)

︸ ︷︷ ︸
empirical risk

− logP(h)

︸ ︷︷ ︸
penalty term

For the derivation, we assumed that the hypothesis
h does not depend on the examples alone (Eq. 5)
and that the N training labeled examples are drawn
from an i.i.d. sample (Eq. 6). In that last form, we
see that the loss function can be interpreted as a neg-
ative log-likelihood and the regularization penalty
term as a negative log-prior over the hypothesis.
Therefore, if we assume a multivariate Gaussian
prior on the feature weight vector of mean vector 0
and covariance matrix Σ = σ2I (i. e. independent
features of same prior standard deviation σ), we do
obtain the L2 regularization:

P(h) =
1√

(2π)p|Σ|
e−

1
2
θ>Σ−1θ (7)

⇒ − logP(h) =
1

2σ2
θ>Iθ +

p

2
log(2πσ)

argmax
= λ‖θ‖2 2, λ =

1

2σ2
(8)

And similarly, if we assume a multivariate Lapla-
cian prior on the feature weight vector (i. e. θi ∼
Laplace(0, 1

λ)), we obtain L1-regularization. In
practice, in both cases, the priors basically mean that
we expect weights around 0 on average. The main
difference between L1 and L2 regularization is that
the Laplacian prior will result in explicitly setting
some feature weights to 0 (feature sparsity) while
the Gaussian prior will only result in reducing their
values (shrinkage).

1828

2.2 Structured regularization
In L1 and L2 regularizations, features are considered
as independent, which makes sense without any ad-
ditional prior knowledge. However, similar features
have similar weights in the case of linear classifiers
– equal weights for redundant features in the ex-
treme case – and therefore, if we have some prior
knowledge on the relationships between features, we
should include that information for better general-
ization, i. e. include it in the regularization penalty
term. Depending on how the similarity between fea-
tures is encoded, e. g., through sets, trees (Kim and
Xing, 2010; Liu and Ye, 2010; Mairal et al., 2010) or
graphs (Jenatton et al., 2010), the penalization term
varies but in any case, we take into account the struc-
ture between features, hence the “structured regular-
ization” terminology. It should not be confused with
“structured prediction” where this time the outcome
is a structured object as opposed to a scalar (e. g., a
class label) classically.

Group lasso Bakin (1999) and later Yuan and Lin
(2006) proposed an extension of L1 regularization
to encourage groups of features to either go to zero
(as a group) or not (as a group), introducing group
sparsity in the model. To do so, they proposed to
regularize with the L1,2 norm of the feature weight
vector:

Ω(θ) = λ
∑

g

λg‖θg‖2 (9)

where θg is the subset of feature weights restricted
to group g. Note that the groups can be overlapping
(Jacob et al., 2009; Schmidt and Murphy, 2010; Je-
natton et al., 2011; Yuan et al., 2011) even though it
makes the optimization harder.

2.3 Learning
In our case we use a logistic regression loss function
in order to integrate our regularization terms easily.

L(x,θ, y) = log(1 + exp(−yθTx)) (10)

It is obvious that the framework can be extended to
other loss functions (e. g., hinge loss).

For the case of structured regularizers, there exist
a plethora of optimization methods such group lasso.
Since our tasks involves overlapping groups, we se-
lect the method of Yogatama and Smith (2014b).

Algorithm 1 ADMM for overlapping group-lasso
Require: augmented Lagrangian variable ρ, regulariza-

tion strengths λglas and λlas
1: while update in weights not small do

2: θ = argmin
θ

Ωlas(θ)+L(θ)+ ρ
2

V∑
i=1

Ni(θi−µi)2

3: for g = 1 to G do
4: vg = prox

Ωglas,
λg
ρ

(zg)

5: end for
6: u = u+ ρ(v−Mθ)
7: end while

Their method uses the alternating directions method
of multipliers (Hestenes, 1969; Powell, 1969).

Now given the lasso penalty for each feature and
the group lasso regularizer, the problem becomes:

min
θ,v

Ωlas(θ) + Ωglas(v) +
D∑

d=1

L(xd,θ, yd) (11)

so that v = Mθ, where v is a copy-vector of θ. The
copy-vector v is needed because the group-lasso reg-
ularizer contains overlaps between the used groups.
M is an indicator matrix of size L × V , where L is
the sum of the total sizes of all groups, and its ones
show the link between the actual weights θ and their
copies v. Following Yogatama and Smith (2014b)
a constrained optimization problem is formed, that
can be transformed to an augmented Lagrangian
problem:

Ωlas(θ) + Ωglas(v) + L(θ) + u>(v−Mθ)

+
ρ

2
‖v−Mθ‖22

(12)

Essentially, the problem becomes the iterative up-
date of θ, v and u:

min
θ

Ωlas(θ)+L(θ)+u>Mθ+
ρ

2
‖v−Mθ‖22 (13)

min
v

Ωglas(v) + u>v +
ρ

2
‖v−Mθ‖22 (14)

u = u + ρ(v−Mθ) (15)

Convergence Yogatama and Smith (2014b)
proved that ADMM for sparse overlapping group
lasso converges. It is also shown that a good
approximate solution is reached in a few tens of
iterations. Our experiments confirm this as well.

1829

3 Structured Regularization in NLP

In recent efforts there are results to identify useful
structures in text that can be used to enhance the ef-
fectiveness of the text categorization in a NLP con-
text. Since the main regularization approach we
are going to use are variants of the group lasso,
we are interested on prior knowledge in terms of
groups/clusters that can be found in the training text
data. These groups could capture either semantic, or
syntactic structures that affiliate words to communi-
ties. In our work, we study both semantic and syn-
tactic properties of text data, and incorporate them in
structured regularizer. The grouping of terms is pro-
duced by either LSI or clustering in the word2vec or
graph-of-words space.

3.1 Statistical regularizers
In this section, we present statistical regularizers,
i. e. with groups of words based on co-occurrences,
as opposed to syntactic ones (Mitra et al., 1997).

Network of features Sandler et al. (2009) intro-
duced regularized learning with networks of fea-
tures. They define a graph G whose edges are non-
negative with larger weights indicating greater sim-
ilarity. Conversely, a weight of zero means that two
features are not believed a priori to be similar. Pre-
vious work (Ando and Zhang, 2005; Raina et al.,
2006; Krupka and Tishby, 2007) shows such sim-
ilarities can be inferred from prior domain knowl-
edge and statistics computed on unlabeled data.

The weights of G are mapped in a matrix P ,
where Pij ≥ 0 gives the weight of the directed edge
from vertex i to vertex j. The out-degree of each
vertex is constrained to sum to one,

∑
j Pij = 1, so

that no feature “dominates" the graph.

Ωnetwork(θ) = λnet
∑

θ>kMθk (16)

whereM = α(I−P)>(I−P)+βI . The matrix M
is symmetric positive definite, and therefore it pos-
sesses a Bayesian interpretation in which the weight
vector θ, is a priori normally distributed with mean
zero and covariance matrix 2M−1. However, pre-
liminary results show poorer performance compared
to structured regularizers in larger datasets.

Sentence regularizer Yogatama and Smith
(2014b) proposed to define groups as the sentences

in the training dataset. The main idea is to define
a group dd,s for every sentence s in every training
document d so that each group holds weights for
occurring words in its sentence. Thus a word can be
a member of one group for every distinct (training)
sentence it occurs in. The regularizer is:

Ωsen(θ) =
D∑

d=1

Sd∑

s=1

λd,s‖θd,s‖2 (17)

where Sd is the number of sentences in document d.
Since modern text datasets typically contain thou-

sands of sentences and many words appear in more
than one sentence, the sentence regularizer could
potentially lead to thousands heavily overlapping
groups. As stated in the work of Yogatama and
Smith (2014b), a rather important fact is that the reg-
ularizer will force all the weights of a sentence, if it
is recognized as irrelevant. Respectively, it will keep
all the weights of a relevant sentence, even though
the group contains unimportant words. Fortunately,
the problem can be resolved by adding a lasso regu-
larization (Friedman et al., 2010).

3.2 Semantic regularizers
In this section, we present semantic regularizers
that define groups based on how semantically close
words are.

LDA regularizer Yogatama and Smith (2014a)
considered topics as another type of structure. It is
obvious that textual data can contain a huge num-
ber of topics and especially topics that overlap each
other. Again the main idea is to penalize weights
for words that co-occur in the same topic, instead of
treating the weight of each word separately.

Having a training corpus, topics can be easily ex-
tracted with the help of the latent Dirichlet allocation
(LDA) model (Blei et al., 2003). In our experiments,
we form a group by extracting the n most probable
words in a topic. We note that the extracted topics
can vary depending the text preprocessing methods
we apply on the data.

LSI regularizer Latent Semantic Indexing (LSI)
can also be used in order to identify topics or groups
and thus discover correlation between terms (Deer-
wester et al., 1990). LSI uses singular value de-
composition (SVD) on the document-term matrix to

1830

2

2

2
1

2

22

2

2

22 2

2 2
2

1
1

1

1
1

1

1

1

1

2

1
1

1
1

●

●

●
●

●

●

●

●
●

●

●

●

●

method

solut

system
linear

algebra

equat

m−dimension

lambda

matric

propos

numer

special

kindA method for solution of systems of linear
algebraic equations with m-dimensional lambda
matrices. A system of linear algebraic equations
with m-dimensional lambda matrices is
considered. The proposed method of searching
for the solution of this system lies in reducing it
to a numerical system of a special kind.

Figure 1: A Graph-of-words example.

identify latent variables that link co-occurring terms
with documents. The main basis behind LSI is that
words being used in the same contexts (i. e. the doc-
uments) tend to have similar meanings. We used
LSI as a baseline and compare it with other stan-
dard baselines as well as other proposed structured
regularizers. In our work we keep the top 10 words
which contribute the most in a topic.

The regularizer for both LDA and LSI is:

ΩLDA,LSI(θ) =
K∑

k=1

λ‖θk‖2 (18)

where K is the number of topics.

3.3 Graphical regularizers
In this section we present our proposed regularizers
based on graph-of-words and word2vec. Essentially
the word2vec space can be seen as a large graph
where nodes represent terms and edges similarities
between them.

Graph-of-words regularizer Following the idea
of the network of features, we introduce a simpler
and faster technique to identify relationships be-
tween features. We create a big collection graph
from the training documents, where the nodes cor-
respond to terms and edges correspond to co-
occurrence of terms in a sliding window. We present
a toy example of a graph-of-words in Figure 1.

A critical advantage of graph-of-words is that it
easily encodes term dependency and term order (via

edge direction). The strength of the dependence be-
tween two words can also be captured by assigning
a weight to the edge that links them.

Graph-of-words was originally an idea of Mihal-
cea and Tarau (2004) and Erkan and Radev (2004)
who applied it to the tasks of unsupervised keyword
extraction and extractive single document summa-
rization. Rousseau and Vazirgiannis (2013) and
Malliaros and Skianis (2015) showed it performs
well in the tasks of information retrieval and text cat-
egorization. Notably, the former effort ranked nodes
based on a modified version of the PageRank algo-
rithm.

Community detection on graph-of-words Our
goal is to identify groups or communities of words.
Having constructed the collection-level graph-of-
words, we can now apply community detection al-
gorithms (Fortunato, 2010).

In our case we use the Louvain method, a commu-
nity detection algorithm for non-overlapping groups
described in the work of Blondel et al. (2008). Es-
sentially it is a fast modularity maximization ap-
proach, which iteratively optimizes local communi-
ties until we reach optimal global modularity given
some perturbations to the current community state.
The regularizer becomes:

Ωgow(θ) =

C∑

c=1

λ‖θc‖2 (19)

where c ranges over the C communities. Thus θc
corresponds to the sub-vector of θ such that the cor-
responding features are present in the community c.
Note that in this case we do not have overlapping
groups, since we use a non-overlapping version of
the algorithm.

As we observe that the collection-level graph-of-
words does not create well separated communities of
terms, overlapping community detection algorithms,
like the work of Xie et al. (2013) fail to identify
“good" groups and do not offer better results.

Word2vec regularizer Mikolov et al. (2013) pro-
posed the word2vec method for learning continu-
ous vector representations of words from large text
datasets. Word2vec manages to capture the ac-
tual meaning of words and map them to a multi-
dimensional vector space, giving the possibility of

1831

applying vector operations on them. We introduce
another novel regularizer method, by applying un-
supervised clustering algorithms on the word2vec
space.

Clustering on word2vec Word2vec contains mil-
lions of words represented as vectors. Since
word2vec succeeds in capturing semantic similarity
between words, semantically related words tend to
group together and create large clusters that can be
interpreted as “topics".

In order to extract these groups, we use a fast
clustering algorithm such as K-Means (Macqueen,
1967) and especially Minibatch K-means. The reg-
ularizer is:

Ωword2vec(θ) =
K∑

k=1

λ‖θk‖2 (20)

whereK is the number of clusters we extracted from
the word2vec space.

Clustering these semantic vectors is a very inter-
esting area to study and could be a research topic by
itself. The actual clustering output could vary as we
change the number of clusters we are trying to iden-
tify. In this paper we do not focus on optimizing the
clustering process.

4 Experiments

We evaluated our structured regularizers on several
well-known datasets for the text categorization task.
Table 1 summarizes statistics about the ten datasets
we used in our experiments.

4.1 Datasets

Topic categorization. From the 20 Newsgroups2

dataset, we examine four binary classification tasks.
We end up with binary classification problems,
where we classify a document according to two
related categories: comp.sys: ibm.pc.hardware
vs. mac.hardware; rec.sport: baseball vs.
hockey; sci: med vs. space and alt.atheism vs.
soc.religion.christian. We use the 20NG dataset
from Python.

Sentiment analysis. The sentiment analysis
datasets we examined include movie reviews

2http://qwone.com/~jason/20Newsgroups/

dataset train dev test # words # sents

20
N

G

science 949 238 790 25787 16411
sports 957 240 796 21938 14997

religion 863 216 717 18822 18853
comp. 934 234 777 16282 10772

Se
nt

im
en

t

vote 1175 257 860 19813 43563
movie 1600 200 200 43800 49433
books 1440 360 200 21545 13806
dvd 1440 360 200 21086 13794

electr. 1440 360 200 10961 10227
kitch. 1440 360 200 9248 8998
Table 1: Descriptive statistics of the datasets

(Pang and Lee, 2004; Zaidan and Eisner, 2008)3,
floor speeches by U.S. Congressmen deciding
“yea"/“nay" votes on the bill under discussion
(Thomas et al., 2006)3 and product reviews from
Amazon (Blitzer et al., 2007)4.

4.2 Experimental setup

As features we use unigram frequency concatenated
with an additional unregularized bias term. We re-
produce standard regularizers like lasso, ridge, elas-
tic and state-of-the-art structured regularizers like
sentence, LDA as baselines and compare them with
our proposed methods.

For LSI, LDA and word2vec we use the gensim
package (Řehůřek and Sojka, 2010) in Python. For
the learning part we used Matlab and specifically
code by Schmidt et al. (2007).

We split the training set in a stratified manner to
retain the percentage of classes. We use 80% of the
data for training and 20% for validation.

All the hyperparameters are tuned on the develop-
ment dataset, using accuracy as the evaluation crite-
rion. For lasso and ridge regularization, we choose
λ from {10−2, 10−1, 1, 10, 102}. For elastic net,
we perform grid search on the same set of values
as ridge and lasso experiments for λrid and λlas.
For the LDA, LSI, sentence, graph-of-words (GoW),
word2vec regularizers, we perform grid search on
the same set of values as ridge and lasso experi-
ments for the ρ, λglas, λlas parameters. In the case
we get the same accuracy on the development data,
the model with the highest sparsity is selected. For

3http://www.cs.cornell.edu/~ainur/data.
html

4http://www.cs.jhu.edu/~mdredze/
datasets/sentiment/

1832

dataset no reg. lasso ridge elastic
group lasso

LDA LSI sentence GoW word2vec
20

N
G

science 0.946 0.916 0.954 0.954 0.968 0.968* 0.942 0.967* 0.968*

sports 0.908 0.907 0.925 0.920 0.959 0.964* 0.966 0.959* 0.946*

religion 0.894 0.876 0.895 0.890 0.918 0.907* 0.934 0.911* 0.916*

computer 0.846 0.843 0.869 0.856 0.891 0.885* 0.904 0.885* 0.911*

Se
nt

im
en

t

vote 0.606 0.643 0.616 0.622 0.658 0.653 0.656 0.640 0.651
movie 0.865 0.860 0.870 0.875 0.900 0.895 0.895 0.895 0.890
books 0.750 0.770 0.760 0.780 0.790 0.795 0.785 0.790 0.800
dvd 0.765 0.735 0.770 0.760 0.800 0.805* 0.785 0.795* 0.795*

electr. 0.790 0.800 0.800 0.825 0.800 0.815 0.805 0.820 0.815
kitch. 0.760 0.800 0.775 0.800 0.845 0.860* 0.855 0.840 0.855*

Table 2: Accuracy results on the test sets. Bold font marks the best performance for a dataset. * indicates statistical significance

of improvement over lasso at p < 0.05 using micro sign test for one of our models LSI, GoW and word2vec (underlined).

dataset no reg. lasso ridge elastic
group lasso

LDA LSI sentence GoW word2vec

20
N

G

science 100 1 100 63 19 20 86 19 21
sports 100 1 100 5 60 11 6.4 55 44

religion 100 1 100 3 94 31 99 10 85
computer 100 2 100 7 40 35 77 38 18

Se
nt

im
en

t

vote 100 1 100 8 15 16 13 97 13
movie 100 1 100 59 72 81 55 90 62
books 100 3 100 14 41 74 72 90 99
dvd 100 2 100 28 64 8 8 58 64

electr. 100 4 100 6 10 8 43 8 9
kitch. 100 5 100 79 73 44 27 75 46

Table 3: Fraction (in %) of non-zero feature weights in each model for each dataset: the smaller, the more compact the model.

LDA we set the number of topics to 1000 and we
keep the 10 most probable words of each topic as
a group. For LSI we keep 1000 latent dimensions
and we select the 10 most significant words per
topic. For the clustering process on word2vec we ran
Minibatch-Kmeans for max 2000 clusters. For each
word belonging to a cluster, we also keep the top 5
or 10 nearest words so that we introduce overlapping
groups. The intuition behind this is that words can
be part of multiple “concepts" or topics, thus they
can belong to many clusters.

4.3 Results

In Table 2 we report the results of our experiments
on the aforementioned datasets, and we distinguish
our proposed regularizers LSI, GoW, word2vec with
underlining. Our results are inline and confirm that

of (Yogatama and Smith, 2014a) showing the advan-
tages of using structured regularizers in the text cat-
egorization task. The group based regularizers per-
form systematically better than the baseline ones.

We observe that the word2vec clustering based
regularizers performs very well - achieving best per-
formance for three out of the ten data sets while it is
quite fast with regards to execution time as it appears
in Table 3 (i. e. it is four to ten times faster than the
sentence based one).

The LSI based regularization, proposed for the
first time in this paper, performs surprisingly well
as it achieves the best performance for three of the
ten datasets. This is somehow interpreted by the
fact that this method extracts the inherent dimen-
sions that best represent the different semantics of
the documents - as we see as well in the anecdotal

1833

dataset GoW word2vec

20
N

G
science 79 691
sports 137 630

religion 35 639
computer 95 594

Table 4: Number of groups.

dataset lasso ridge elastic group lasso
LDA LSI sentence GoW word2vec

20
N

G

science 10 1.6 1.6 15 11 76 12 19
sports 12 3 3 7 20 67 5 9

religion 12 3 7 10 4 248 6 20
computer 7 1.4 0.8 8 6 43 5 10

Table 5: Time (in seconds) for learning with best hyperparameters.

= 0

piscataway combination jil@donuts0.uucp
jamie reading/seeing chambliss

left-handedness abilities lubin
acad sci obesity page erythromycin bottom

6= 0

and space the launch health for use that
medical you

space cancer and nasa
hiv health shuttle for tobacco that

cancer that research center space
hiv aids are use theory

keyboard data telescope available are from
system information space ftp

Table 6: Examples with LSI regularizer.

= 0

village town
edc fashionable trendy trendy fashionable
points guard guarding
crown title champion champions

6= 0

numbness tingling dizziness fevers
laryngitis bronchitis undergo undergoing

undergoes undergone healed
mankind humanity civilization planet
nasa kunin lang tao kay kong

Table 7: Examples with word2vec regularizer.

examples in Table 6, 7, 8. This method proves as
well very fast as it appears in Table 5 (i.e. it is three
to sixty times faster than the sentence based one).

The GoW based regularization although very fast,
did not outperform the other methods (while it has a
very good performance in general). It remains to
be seen whether a more thorough parameter tuning
and community detection algorithm selection would
improve further the accuracy of the method.

In Table 3 we present the feature space sizes re-
tained by each of the regularizers for each dataset.
As expected the lasso regularizer sets the vast major-
ity of the features’ weights to zero, and thus a very
sparse feature space is generated. This fact has as
a consequence the significant decrease in accuracy
performance. Our proposed structured regularizers

= 0

islands inta spain galapagos canary originated
anodise advertises jewelry mercedes benzes

diamond trendy
octave chanute lillienthal

6= 0

vibrational broiled relieving succumb
spacewalks dna nf-psychiatry itself

commented usenet golded insects alternate
self-consistent retrospect

Table 8: Examples with graph-of-words regularizer.

managed to perform better in most of the cases, in-
troducing more sparse models compared to the state-
of-the-art regularizers.

4.4 Time complexity

Although certain types of structured regularizers
improve significantly the accuracy and address
the problem of overfitting, they require a notable
amount of time in the learning process.

As seen in Yogatama and Smith (2014b), a con-
siderable disadvantage is the need of search for
the optimal hyperparameters: λglas, λlasso , and ρ,
whereas standard baselines like lasso and ridge only
have one hyperparameter and elastic net has two.

Parallel grid search can be critical for finding the
optimal set of hyperparameters, since there is no de-
pendency on each other, but again the process can
be very expensive. Especially for the case of the
sentence regularizer, the process can be extremely
slow due to two factors. First, the high number of
sentences in text data. Second, sentences consist of
heavily overlapping groups, that include words reap-
pearing in one or more sentences. On the contrary,
as it appears on Table 4, the number of clusters in the
clustering based regularizers is significantly smaller
than that of the sentences - and definitely controlled
by the designer - thus resulting in much faster com-
putation. The update of v still remains time consum-
ing for small datasets, even with parallelization.

Our proposed structured regularizers are consid-
erably faster in reaching convergence, since they of-

1834

fer a smaller number of groups with less overlapping
between words. For example, on the computer sub-
set of the 20NG dataset, learning models with the
best hyperparameter value(s) for lasso, ridge, and
elastic net took 7, 1.4, and 0.8 seconds, respectively,
on an Intel Xeon CPU E5-1607 3.00 GHz machine
with 4 cores and 128GB RAM. Given the best hyper-
parameter values the LSI regularizer takes 6 seconds
to converge, the word2vec regularizer takes 10 sec-
onds to reach convergence, the graph-of-words takes
4 seconds while the sentence regularizer requires 43
seconds. Table 5 summarizes required learning time
on 20NG datasets.

We also need to consider the time needed to ex-
tract the groups. For word2vec, Minibatch K-means
requires 15 minutes to cluster the pre-trained vectors
by Google. The clustering is executed only once.
Getting the clusters of words that belong to the vo-
cabulary of each dataset requires 20 minutes, but can
be further optimized. Finding also the communities
in the graph-of-words approach with the Louvain al-
gorithm, is very fast and requires a few minutes de-
pending on the size and structure of the graph.

In Tables 6, 7, 8 we show examples of our pro-
posed regularizers-removed and -selected groups (in
v) in the science subset of the 20NG dataset. Words
with weights (in w) of magnitude greater than 10−3

are highlighted in red (sci.med) and blue (sci.space).

5 Conclusion & Future Work

This paper proposes new types of structured regular-
izers to improve not only the accuracy but also the
efficiency of the text categorization task. We mainly
focused on how to find and extract semantic and syn-
tactic structures that lead to sparser feature spaces
and therefore to faster learning times. Overall, our
results demonstrate that linguistic prior knowledge
in the data can be used to improve categorization
performance for baseline bag-of-words models, by
mining inherent structures. We only considered lo-
gistic regression because of its interpretation for L2
regularizers as Gaussian prior on the feature weights
and following Sandler et al. (2009), we considered
a non-diagonal covariance matrix for L2 based on
word similarity before moving to group lasso as pre-
sented in the paper. We are not expecting a signif-
icant change in results with different loss functions

as the proposed regularizers are not log loss specific.
Future work could involve a more thorough in-

vestigation on how to create and cluster graphs, i. e.
covering weighted and/or signed cases. Finding bet-
ter clusters in the word2vec space is also a criti-
cal part. This is not only restricted in finding the
best number of clusters but what type of clusters
we are trying to extract. Gaussian Mixture Models
(McLachlan and Basford, 1988) could be applied in
order to capture overlapping groups at the cost of
high complexity. Furthermore, topical word embed-
dings (Liu et al., 2015) can be considered for reg-
ularization. This approach could enhance the reg-
ularization on topic specific datasets. Additionally,
we plan on exploring alternative regularization algo-
rithms diverging from the group-lasso method.

References
Rie Kubota Ando and Tong Zhang. 2005. A framework

for learning predictive structures from multiple tasks
and unlabeled data. Journal of Machine Learning Re-
search, 6:1817–1853.

Sergey Bakin. 1999. Adaptive regression and model
selection in data mining problems. Ph.D., The Aus-
tralian National University, Canberra, Australia, May.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet Allocation. Journal of Ma-
chine Learning Research, 3:993–1022.

John Blitzer, Mark Dredze, and Fernando Pereira. 2007.
Biographies, bollywood, boomboxes and blenders:
Domain adaptation for sentiment classification. In
Proceedings of the 45th Annual Meeting of the Asso-
ciation of Computational Linguistics, ACL ’07, pages
440–447. ACL.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lam-
biotte, and Etienne Lefebvre. 2008. Fast un-
folding of communities in large networks. Jour-
nal of Statistical Mechanics: Theory and Experiment,
2008(10):P10008.

Stephen Boyd and Lieven Vandenberghe. 2004. Convex
Optimization. Cambridge University Press, New York,
NY, USA.

Stanley F. Chen and Ronald Rosenfeld. 2000. A survey
of smoothing techniques for ME models. IEEE Trans-
actions on Speech and Audio Processing, 8(1):37–50.

Scott Deerwester, Susan T. Dumais, George W. Furnas,
Thomas K. Landauer, and Richard Harshman. 1990.
Indexing by latent semantic analysis. Journal of the
American Society for Information Science, 41(6):391–
407.

1835

Günes Erkan and Dragomir R. Radev. 2004. LexRank:
graph-based lexical centrality as salience in text sum-
marization. Journal of Artificial Intelligence Re-
search, 22(1):457–479.

Santo Fortunato. 2010. Community detection in graphs.
Physics reports, 486(3):75–174.

Jerome H. Friedman, Trevor Hastie, and Robert Tibshi-
rani. 2010. A note on the group lasso and a sparse
group lasso. Technical report, Department of Statis-
tics, Stanford University.

Trevor Hastie, Robert Tibshirani, and Jerome H. Fried-
man. 2009. The elements of statistical learning, vol-
ume 2. Springer.

Magnus R. Hestenes. 1969. Multiplier and gradient
methods. Journal of Optimization Theory and Appli-
cations, 4:303—-320.

Arthur E. Hoerl and Robert W. Kennard. 1970. Ridge
regression: Biased estimation for nonorthogonal prob-
lems. Technometrics, 12(1):55–67.

Laurent Jacob, Guillaume Obozinski, and Jean-Philippe
Vert. 2009. Group Lasso with Overlap and Graph
Lasso. In Proceedings of the 26th International Con-
ference on Machine Learning, ICML ’09, pages 433–
440.

Rodolphe Jenatton, Julien Mairal, Francis Bach, and
Guillaume Obozinski. 2010. Proximal methods for
sparse hierarchical dictionary learning. In Proceed-
ings of the 27th International Conference on Machine
Learning, ICML ’10, pages 487–494.

Rodolphe Jenatton, Jean-Yves Audibert, and Francis
Bach. 2011. Structured variable selection with
sparsity-inducing norms. Journal of Machine Learn-
ing Research, 12:2777–2824.

Seyoung Kim and Eric P. Xing. 2010. Tree-guided group
lasso for multi-task regression with structured sparsity.
In Proceedings of the 27th International Conference
on Machine Learning, ICML ’10, pages 543–550.

Eyal Krupka and Naftali Tishby. 2007. Incorporating
Prior Knowledge on Features into Learning. In Pro-
ceedings of the 11th International Conference on Arti-
ficial Intelligence and Statistics, volume 2 of AISTATS
’07, pages 227–234.

Jun Liu and Jieping Ye. 2010. Moreau-Yosida Regular-
ization for Grouped Tree Structure Learning. In Ad-
vances in Neural Information Processing Systems 23,
NIPS ’10, pages 1459–1467.

Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong
Sun. 2015. Topical word embeddings. In Proceed-
ings of the 29th national conference on Artificial intel-
ligence, pages 2418–2424.

J. Macqueen. 1967. Some methods for classification and
analysis of multivariate observations. In In 5-th Berke-
ley Symposium on Mathematical Statistics and Proba-
bility, pages 281–297.

Julien Mairal, Rodolphe Jenatton, Francis Bach, and
Guillaume Obozinski. 2010. Network flow algorithms
for structured sparsity. In Advances in Neural Infor-
mation Processing Systems 23, NIPS ’10, pages 1558–
1566.

Fragkiskos D. Malliaros and Konstantinos Skianis. 2015.
Graph-based term weighting for text categorization.
In Proceedings of the 2015 IEEE/ACM International
Conference on Advances in Social Networks Analysis
and Mining 2015, pages 1473–1479.

G.J. McLachlan and K.E. Basford. 1988. Mixture Mod-
els: Inference and Applications to Clustering. Marcel
Dekker, New York.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into texts. In Proceedings of the 2004 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP ’04, pages 404–411.

Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of Workshop
at International Conference on Learning Representa-
tions, ICLR ’13.

Mandar Mitra, Chris Buckley, Amit Singhal, and Claire
Cardie. 1997. An Analysis of Statistical and Syntactic
Phrases. In Proceedings of the 5th International Con-
ference on Computer-Assisted Information Retrieval,
volume 97 of RIAO ’97, pages 200–214.

Bo Pang and Lilian Lee. 2004. A sentimental educa-
tion: sentiment analysis using subjectivity summariza-
tion based on minimum cuts. In Proceedings of the
42nd Annual Meeting on Association for Computa-
tional Linguistics, ACL ’04, pages 271–278.

M. J. D. Powell. 1969. A method for nonlinear con-
straints in minimization problems. R. Fletcher editor,
Optimization, pages 283—-298.

Rajat Raina, Andrew Y. Ng, and Daphne Koller. 2006.
Constructing Informative Priors Using Transfer Learn-
ing. In Proceedings of the 23rd International Con-
ference on Machine Learning, ICML ’06, pages 713–
720.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In Pro-
ceedings of the LREC 2010 Workshop on New Chal-
lenges for NLP Frameworks, pages 45–50.

François Rousseau and Michalis Vazirgiannis. 2013.
Graph-of-word and tw-idf: New approach to ad hoc
ir. In Proceedings of the 22nd ACM international con-
ference on Information and knowledge management,
CIKM ’13, pages 59–68.

Ted Sandler, John Blitzer, Partha P. Talukdar, and Lyle H.
Ungar. 2009. Regularized learning with networks of
features. In Advances in Neural Information Process-
ing Systems 22, NIPS ’09, pages 1401–1408.

1836

Mark W. Schmidt and Kevin Murphy. 2010. Convex
structure learning in log-linear models: Beyond pair-
wise potentials. In Proceedings of the 13th Interna-
tional Conference on Artificial Intelligence and Statis-
tics, AISTATS ’10, pages 709–716. JMLR Workshop
and Conference Proceedings.

Mark W. Schmidt, Glenn Fung, and Rómer Rosales.
2007. Fast optimization methods for L1 regulariza-
tion: A comparative study and two new approaches.
In Proceedings of the 18th European Conference on
Machine Learning, ECML ’07, pages 286–297.

Matt Thomas, Bo Pang, and Lillian Lee. 2006. Get
out the vote: Determining support or opposition from
Congressional floor-debate transcripts. In Proceed-
ings of the 2006 Conference on Empirical Methods
in Natural Language Processing, EMNLP ’06, pages
327–335.

Robert Tibshirani. 1996. Regression shrinkage and se-
lection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), pages 267–288.

Vladimir Naumovich Vapnik. 1991. Principles of Risk
Minimization for Learning Theory. In Advances in
Neural Information Processing Systems 4, NIPS ’91,
pages 831–838.

Jierui Xie, Stephen Kelley, and Boleslaw K. Szyman-
ski. 2013. Overlapping community detection in net-

works: The state-of-the-art and comparative study.
ACM Computing Surveys, 45(4):43:1–43:35.

Dani. Yogatama and Noah A. Smith. 2014a. Linguistic
structured sparsity in text categorization. In Proceed-
ings of the 52nd Annual Meeting of the Association for
Computational Linguistics, ACL ’14, pages 786–796.

Dani Yogatama and Noah A. Smith. 2014b. Making the
most of bag of words: Sentence regularization with al-
ternating direction method of multipliers. In Proceed-
ings of the 31st International Conference on Machine
Learning, volume 32 of ICML ’14, pages 656–664.

Ming Yuan and Yi Lin. 2006. Model selection and es-
timation in regression with grouped variables. Jour-
nal of the Royal Statistical Society. Series B (Statistical
Methodology), 68(1):49–67.

Lei Yuan, Jun Liu, and Jieping Ye. 2011. Efficient
methods for overlapping group lasso. In Advances in
Neural Information Processing Systems 24, NIPS ’11,
pages 352–360.

Omar Zaidan and Jason Eisner. 2008. Modeling annota-
tors: A generative approach to learning from annotator
rationales. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing,
EMNLP ’08, pages 31–40.

1837

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1838–1848,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Deep Reinforcement Learning with a Combinatorial Action Space for
Predicting Popular Reddit Threads

Ji He∗, Mari Ostendorf∗, Xiaodong He†, Jianshu Chen†, Jianfeng Gao†, Lihong Li†, Li Deng†
∗Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA

{jvking, ostendor}@uw.edu
†Microsoft Research, Redmond, WA 98052, USA

{xiaohe, jianshuc, jfgao, lihongli, deng}@microsoft.com

Abstract

We introduce an online popularity prediction
and tracking task as a benchmark task for rein-
forcement learning with a combinatorial, nat-
ural language action space. A specified num-
ber of discussion threads predicted to be pop-
ular are recommended, chosen from a fixed
window of recent comments to track. Novel
deep reinforcement learning architectures are
studied for effective modeling of the value
function associated with actions comprised
of interdependent sub-actions. The proposed
model, which represents dependence between
sub-actions through a bi-directional LSTM,
gives the best performance across different ex-
perimental configurations and domains, and it
also generalizes well with varying numbers of
recommendation requests.

1 Introduction

This paper is concerned with learning policies for
sequential decision-making tasks, where a system
takes actions given options characterized by natu-
ral language with the goal of maximizing a long-
term reward. More specifically, we consider tasks
with a combinatorial action space, where each ac-
tion is a set of multiple interdependent sub-actions.
The problem of a combinatorial natural language ac-
tion space arises in many applications. For example,
in real-time news feed recommendation, a user may
want to read diverse topics of interest, and an ac-
tion (i.e. recommendation) from the computer agent
would consist of a set of news articles that are not all
similar in topics (Yue and Guestrin, 2011). In adver-
tisement placement, an action is a selection of sev-

eral ads to display, and bundling with complemen-
tary products might receive higher click-through-
rate than displaying all similar popular products.

In this work, we consider Reddit popularity pre-
diction, which is similar to newsfeed recommenda-
tion but different in two respects. First, our goal
is not to make recommendations based on an indi-
vidual’s preferences, but instead based on the antic-
ipated long-term interest level of a broad group of
readers from a target community. Second, we try to
predict rather than detect popularity. Unlike individ-
ual interests, community interest level is not often
immediately clear; there is a time lag before the level
of interest starts to take off. Here, the goal is for the
recommendation system to identify and track writ-
ten documents (e.g. news articles, comments in dis-
cussion forum threads, or scientific articles) in real
time – attempting to identify hot updates before they
become hot to keep the reader at the leading edge.
The premise is that the user’s bandwidth is limited,
and only a limited number of things can be recom-
mended out of several possibilities. In our experi-
mental work, we use discussion forum text, where
the recommendations correspond to recent posts or
comments, assessing interest based on community
response as observed in “likes” or other positive re-
actions to those comments. For training purposes,
we can use community response measured at a time
much later than the original post or publication. This
problem is well-suited to the reinforcement learn-
ing paradigm, since the reward (the level of com-
munity uptake or positive response) is not immedi-
ately known, so the system needs to learn a mecha-
nism for estimating future reactions. Different from

1838

typical reinforcement learning, the action space is
combinatorial since an action corresponds to a set of
comments (sub-actions) chosen from a larger set of
candidates. A sub-action is a written comment (or
document, for another variant of this task).

Two challenges associated with this problem in-
clude the potentially high computational complexity
of the combinatorial action space and the develop-
ment of a framework for estimating the long-term
reward (the Q-value in reinforcement learning) from
a combination of sub-actions characterized by nat-
ural language. Here, we focus on the second prob-
lem, exploring different deep neural network archi-
tectures in an effort to efficiently account for the po-
tential redundancy and/or temporal dependency of
different sub-actions in relation to the state space.
We sidestep the computational complexity issue (for
now) by working with a task where the number of
combinations is not too large and by further reduc-
ing costs by random sampling.

There are two main contributions in this paper.
First, we propose a novel reinforcement learning
task with both states and combinatorial actions de-
fined by natural language,1 which is introduced in
section 2. This task, which is based on comment
popularity prediction using data from the Reddit dis-
cussion forum, can serve as a benchmark in social
media recommendation and trend spotting. The sec-
ond contribution is the development of a novel deep
reinforcement learning architecture for handling a
combinatorial action space associated with natural
language. Prior work related to both the task and
deep reinforcement learning is reviewed in section 3,
Details for the new models and baseline architec-
tures are described in section 4. Experimental re-
sults in section 5 show the proposed methods outper-
form baseline models and that a bidirectional LSTM
is effective for characterizing the combined utility of
sub-actions. A brief summary of findings and open
questions are in section 6.

2 Popularity Prediction and Tracking

Our experiments are based on Reddit2, one of the
world’s largest public discussion forums. On Red-

1Simulator code and Reddit discussion identifiers are re-
leased at https://github.com/jvking/reddit-RL-
simulator

2http://www.reddit.com

Figure 1: A snapshot of the top of a Reddit discussion tree,

where karma scores are shown in red boxes.

dit, registered users initiate a post and people re-
spond with comments, either to the original post or
one of its associated comments. Together, the com-
ments and the original post form a discussion tree,
which grows as new comments are contributed. It
has been show that discussions tend to have a hier-
archical topic structure (Weninger et al., 2013), i.e.
different branches of the discussion reflect narrow-
ing of higher level topics. Reddit discussions are
grouped into different domains, called subreddits,
according to different topics or themes. Depending
on the popularity of the subreddit, a post can receive
hundreds of comments.

Comments (and posts) are associated with posi-
tive and negative votes (i.e., likes and dislikes) from
registered users that are combined to get a karma
score, which can be used as a measure for popularity.
An example of the top of a Reddit discussion tree is
given in Figure 1. The scores in red boxes mark the
current karma (popularity) of each comment, and it
is quite common that a lower karma comment (e.g.
“Yeah, politics aside, this one looks much cooler”,
compared to “looks more like zom-bama”) will lead
to more children and popular comments in the fu-
ture (e.g. “true dat”). Note that the karma scores
are dynamic, changing as readers react to the evolv-
ing discussion and eventually settling down as the
discussion trails off. In a real-time comment recom-
mendation system, the eventual karma of a comment
is not immediately available, so prediction of pop-
ularity is based on the text in the comment in the
context of prior comments in the subtree and other
comments in the current time window.

1839

Popularity prediction and tracking in the Reddit
setting is used in this paper for studying reinforce-
ment learning to model long-term rewards in a com-
binatorial action space. At each time step, the state
corresponds to the collection of comments previ-
ously recommended. The system aims at automat-
ically picking a few lines of the discussion to follow
from the new set of comments in a given window,
which is a combinatorial action. Thread popular-
ity tracking can be thought of as a proxy task for
news or scientific article recommendation. It has the
advantages that “documents” (comments) are rela-
tively short and that the long-term reward can be
characterized by Reddit voting scores, which makes
this task easier to work with for algorithm develop-
ment than these larger related tasks.

In this work, we only consider new comments as-
sociated with the threads of the discussion that we
are currently following to limit the number of pos-
sible sub-actions at each time step and with the as-
sumption that prior context is needed to interpret the
comments. In other words, the new recommendation
should focus on comments that are in the subtrees of
previously recommended comments. (A variant re-
laxing this restriction is suggested in the conclusion
section.) Typically, one would expect some inter-
dependencies between comments made in the same
window if they fall under the same subtree, because
they correspond to a reply to the same parent. In
addition, there may be some temporal dependency,
since one sub-action may be a comment on the other.
These dependencies will affect the combined utility
of the sub-actions.

According to our experiments, the performance is
significantly worse when we learn a myopic policy
compared to reinforcement learning with the same
feature set. This shows that long-term dependency
indeed matters, as illustrated in Figure 1. This serves
as a justification that reinforcement learning is an
appropriate approach for modeling popularity of a
discussion thread.

3 Related Work

There is a large body of work on reinforcement
learning. Among those of most interest here are
deep reinforcement learning methods that leverage
neural networks because of their success in handling

large discrete state/action spaces. Early work such
as TD-gammon used a neural network to approxi-
mate the state value function (Tesauro, 1995). Re-
cent advances in deep learning (LeCun et al., 2015;
Deng and Yu, 2014; Hinton et al., 2012; Krizhevsky
et al., 2012; Sordoni et al., 2015) inspired significant
progress by combining deep learning with reinforce-
ment learning (Mnih et al., 2015; Silver et al., 2016;
Lillicrap et al., 2016; Duan et al., 2016). In natu-
ral language processing, reinforcement learning has
been applied successfully to dialogue systems that
generate natural language and converse with a hu-
man user (Scheffler and Young, 2002; Singh et al.,
1999; Wen et al., 2016). There has also been in-
terest in mapping text instructions to sequences of
executable actions and extracting textual knowledge
to improve game control performance (Branavan et
al., 2009; Branavan et al., 2011).

Recently, Narasimhan et al. (2015) studied the
task of text-based games with a deep Q-learning
framework. He et al. (2016) proposed to use a sepa-
rate deep network for handling natural language ac-
tions and to model Q-values via state-action interac-
tion. Nogueira and Cho (2016) have also proposed
a goal-driven web navigation task for language-
based sequential decision making. Narasimhan et
al. (2016) applied reinforcement learning for acquir-
ing and incorporating external evidence to improve
information extraction accuracy. The study that we
present with Reddit popularity tracking differs from
these other text-based reinforcement learning tasks
in that the language in both state and action spaces
is unconstrained and quite rich.

Dulac-Arnold et al. (2016) also investigated a
problem of large discrete action spaces. A Wolper-
tinger architecture is proposed to reduce computa-
tional complexity of evaluating all actions. While a
combinatorial action space can be large and discrete,
their method does not directly apply in our case, be-
cause the possible actions are changing over differ-
ent states. In addition, our work differs in that its fo-
cus is on modeling the combined action-value func-
tion rather than on reducing computational com-
plexity. Other work that targets a structured action
space includes: an actor-critic algorithm, where ac-
tions can have real-valued parameters (Hausknecht
and Stone, 2016); and the factored Markov Decision
Process (MDP) (Guestrin et al., 2001; Sallans and

1840

Hinton, 2004), with certain independence assump-
tions between a next-state component and a sub-
action. As for a bandits setting, Yue and Guestrin
(2011) considered diversification of multi-item rec-
ommendation, but their methodology is limited to
using linear approximation with hand-crafted fea-
tures.

The task explored in our paper – detecting and
tracking popular threads in a discussion – is some-
what related to topic detection and tracking (Allan,
2012; Mathioudakis and Koudas, 2010), but it dif-
fers in that the goal is not to track topics based
on frequency, but rather based on reader response.
Thus, our work is more closely related to popu-
larity prediction for social media and online news.
These studies have explored a variety of definitions
(or measurements) of popularity, including: the vol-
ume of comments in response to blog posts (Yano
and Smith, 2010) and news articles (Tasgkias et al.,
2009; Tatar et al., 2011), the number of Twitter
shares of news articles (Bandari et al., 2012), the
number of reshares on Facebook (Cheng et al., 2014)
and retweets on Twitter (Suh et al., 2010; Hong et
al., 2011; Tan et al., 2014; Zhao et al., 2015), the
rate of posts related to a source rumor (Lukasik et
al., 2015), and the difference in the number of reader
up and down votes on posts and comments in Reddit
discussion forums (Lakkaraju et al., 2013; Jaech et
al., 2015). An advantage of working with the Red-
dit data is that both positive and negative reactions
are accounted for in the karma score. Of the prior
work on Reddit, the task explored here is most simi-
lar to (Jaech et al., 2015) in that it involves choosing
relatively high karma comments (or threads) from a
time-limited set rather than directly predicting com-
ment (or post) karma. Prior work on popularity
prediction used supervised learning; this is the first
work that frames tracking hot topics in social media
with deep reinforcement learning.

4 Characterizing a combinatorial action
space

4.1 Notation

In this sequential decision making problem, at each
time step t, the agent receives a text string that de-
scribes the state st ∈ S (i.e., “state-text”) and picks
a text string that describes the action at ∈ A (i.e.,

“action-text”), where S and A denote the state and
action spaces, respectively. Here, we assume at is
chosen from a set of given candidates. In our case
both S and A are described by natural language.
Given the state-text and action-texts, the agent aims
to select the best action in order to maximize its
long-term reward. Then the environment state is up-
dated st+1 = s′ according to a probability p(s′|s, a),
and the agent receives a reward rt+1 for that partic-
ular transition. We define the action-value function
(i.e. the Q-function) Q(s, a) as the expected return
starting from s and taking the action a:

Q(s, a) = E

{
+∞∑

l=0

γlrt+1+l|st = s, at = a

}

where γ ∈ (0, 1) denotes a discount factor. The
Q-function associated with an optimal policy can
be found by the Q-learning algorithm (Watkins and
Dayan, 1992):

Q(st, at)← Q(st, at)+

ηt ·
(
rt+1 + γ ·max

a
Q(st+1, a)−Q(st, at)

)

where ηt is a learning rate parameter.
The set of comments that are being tracked at time

step t is denoted as Mt. All previously tracked com-
ments, as well as the post (root node of the tree), is
considered as state st (st = {M0,M1, · · · ,Mt}),
and we initialize s0 = M0 to be the post. An
action is taken when a total of N new comments
{ct,1, ct,2, · · · , ct,N} appear as nodes in the subtree
of Mt, and the agent picks a set of K comments to
be tracked in the next time step t+1. Thus we have:

at = {c1t , c2t , · · · , cKt }, cit ∈ {ct,1, ct,2, · · · , ct,N}
and cit 6= cjt if i 6= j (1)

and Mt+1 = at. At the same time, by taking ac-
tion at at state st, the reward rt+1 is the accumulated
karma scores, i.e. sum over all comments in Mt+1.
Note that the reward signal is used in online train-
ing, while at model deployment (testing stage), the
scores are only used as an evaluation metric.

Following the reinforcement learning tradition,
we call tracking of a single discussion tree from start
(root node post) to end (no more new comments ap-
pear) an episode. We also randomly partition all

1841

discussion trees into separate training and testing
sets, so that texts seen by the agent in training and
testing are from the same domain but different dis-
cussions. For each episode, depending on whether
training/testing, the simulator randomly picks a dis-
cussion tree, and presents the agent with the current
state and N new comments.

4.2 Q-function alternatives

With the real-time setting, it is clear that action at
will affect the next state st+1 and furthermore the
future expected reward. The action at consists of K
comments (sub-actions), making modeling Q-values
Q(st, at) difficult. To handle a large state space,
Mnih et al. (2015) proposed a Deep Q-Network
(DQN). In case of a large action space, we may
use both state and action representations as input to
a deep neural network. It is shown that the Deep
Reinforcement Relevance Network (DRRN, Figure
2(b)), i.e. two separate deep neural networks for
modeling state embedding and action embedding,
performs better than per-action DQN (PA-DQN in
Figure 2(a)), as well as other DQN variants for deal-
ing with natural language action spaces (He et al.,
2016).

Our baseline models include Linear, PA-
DQN and DRRN. We concatenate the K sub-
actions/comments to form the action representation.
The Linear and PA-DQN (Figure 2(a)) take as input
a concatenation of state and action representations,
and model a single Q-value Q(st, at) using linear or
DNN function approximations. The DRRN consists
of a pair of DNNs, one for the state-text embedding
and the other for action-text embeddings, which
are then used to compute Q(st, at) via a pairwise
interaction function (Figure 2(b)).

One simple alternative approach by utilizing this
combinatorial structure is to compute an embedding
for each sub-action cit. We can then model the value
in picking a particular sub-action, Q(st, c

i
t), through

a pairwise interaction between the state and this sub-
action. Q(st, c

i
t) represents the expected accumu-

lated future rewards by including this sub-action.
The agent then greedily picks the top-K sub-actions
with highest values to achieve the highest Q(st, at).
In this approach, we are assuming the long-term re-
wards associated with sub-actions are independent
of each other. More specifically, greedily picking

the top-K sub-actions is equivalent to maximizing
the following action-value function:

Q(st, at) =

K∑

i=1

Q(st, c
i
t) (2)

while satisfying (1). We call this proposed method
DRRN-Sum, and its architecture is shown in Figure
2(c). Similarly as in DRRN, we use two networks
to embed state and actions separately. However, for
different sub-actions, we keep the network param-
eters tied. We also use the same top layer dimen-
sion and the same pairwise interaction function for
all sub-actions.

In the case of a linear additive interaction, such
as an inner product or bilinear operation, Equation
(2) is equivalent to computing the interaction be-
tween the state embedding and an action embed-
ding, where the action embedding is obtained lin-
early by summing over K sub-action embeddings.
When sub-actions have strong correlation, this in-
dependence assumption is invalid and can result in
a poor estimation of Q(st, at). For example, most
people are interested in the total information stored
in the combined action at. Due to content redun-
dancy in the sub-actions c1t , c

2
t , · · · , cKt , we expect

Q(st, at) to be smaller than
∑

iQ(st, c
i
t).

To come up with a general model for handling a
combinatorial action-value function, we further pro-
pose the DRRN-BiLSTM (Figure 2(d)). In this ar-
chitecture, we use a DNN to generate an embedding
for each comment. Then a Bidirectional Long Short-
Term Memory (Graves and Schmidhuber, 2005) is
used to combine a sequence of K comment embed-
dings. As the Bidirectional LSTM has a larger ca-
pacity due to its nonlinear structure, we expect it
will capture more details on how the embeddings for
the sub-actions combine into an action embedding.
Note that both of our proposed methods (DRRN-
Sum and DRRN-BiLSTM) can handle a varying
value ofK, while for the DQN and DRRN baselines,
we need to use a fixed K in training and testing.

5 Experiments

5.1 Datasets and Experimental Configurations

Our data consists of 5 subreddits (askscience,
askmen, todayilearned, worldnews, nfl) with diverse

1842

𝑠௧ 𝑐௧ଵ 𝑐௧ଶ 𝑐௧ଷ

𝑎௧

ℎଵ

ℎଶ

𝑄௧(𝑠, 𝑎)

𝑠௧ 𝑐௧ଵ 𝑐௧ଶ 𝑐௧ଷ

𝑎௧

ℎଵ,௦

ℎଶ,௦

𝑄௧(𝑠, 𝑎)

ℎଵ,

ℎଶ,

pairwise interaction function
(e.g. inner product)

(a) Per-action DQN

𝑠௧ 𝑐௧ଵ 𝑐௧ଶ 𝑐௧ଷ

𝑎௧

ℎଵ

ℎଶ

𝑄௧(𝑠, 𝑎)

𝑠௧ 𝑐௧ଵ 𝑐௧ଶ 𝑐௧ଷ

𝑎௧

ℎଵ,௦

ℎଶ,௦

𝑄௧(𝑠, 𝑎)

ℎଵ,

ℎଶ,

pairwise interaction function
(e.g. inner product)

(b) DRRN

𝑠௧ 𝑐௧ଵ 𝑐௧ଶ 𝑐௧ଷ

𝑎௧

ℎଵ,௦

ℎଶ,௦

𝑄௧(𝑠, 𝑎)

ℎଵ,ଵ

ℎଶ,ଵ

pairwise interaction function
(e.g. inner product)

ℎଵ,ଶ

ℎଶ,ଶ

ℎଵ,ଷ

ℎଶ,ଷ

𝑄௧(𝑠, 𝑐)
summation

(c) DRRN-Sum

𝑠௧ 𝑐௧ଵ 𝑐௧ଶ 𝑐௧ଷ

𝑎௧

ℎଵ,௦

ℎଶ,௦

𝑄௧(𝑠, 𝑎)

ℎଵ,ଵ

ℎଶ,ଵ

pairwise interaction function
(e.g. inner product)

ℎଵ,ଶ

ℎଶ,ଶ

ℎଵ,ଷ

ℎଶ,ଷ

ℎଷ,

bidirectional LSTM

bidirectional LSTM

ℎ௧ିଵ ℎ௧ ℎ௧ାଵ

ℎ௧ିଵ ℎ௧ ℎ௧ାଵ

output

input

(d) DRRN-BiLSTM

Figure 2: Different deep Q-learning architectures

topics and genres. In our experiments, in order to
have long enough discussion threads, we filter out
discussion trees with fewer than 100 comments. For
each subreddit, we randomly partition 90% of the
data for online training, and 10% of the data for test-
ing (deployment). The basic subreddit statistics are
shown in Table 1. We report the random policy per-
formances and heuristic upper bound performances
(averaged over 10,000 episodes) in Table 2 and Ta-
ble 3.3 The upper bound performances are obtained
using stabilized karma scores and offline constructed
tree structure. The mean and standard deviation are
obtained by 5 independent runs.

In all our experiments we set N = 10. Explicitly
representing all N -choose-K actions requires a lot
of memory and does not scale up. We therefore use
a variant of Q-learning: when taking the max over

3Upper bounds are estimated by greedily searching through
each discussion tree to find K max karma discussion threads
(overlapped comments are counted only once). This upper
bound may not be attainable in a real-time setting.

Subreddit # Posts (in k) # Comments (in M)
askscience 0.94 0.32
askmen 4.45 1.06
todayilearned 9.44 5.11
worldnews 9.88 5.99
nfl 11.73 6.12

Table 1: Basic statistics of filtered subreddit data sets

Subreddit Random Upper bound
askscience 321.3 (7.0) 2109.0 (16.5)
askmen 132.4 (0.7) 651.4 (2.8)
todayilearned 390.3 (5.7) 2679.6 (30.1)
worldnews 205.8 (4.5) 1853.4 (44.4)
nfl 237.1 (1.4) 1338.2 (13.2)

Table 2: Mean and standard deviation of random and upper-

bound performance (with N = 10,K = 3) across different

subreddits.

1843

K Random Upper bound
2 201.0 (2.1) 1991.3 (2.9)
3 321.3 (7.0) 2109.0 (16.5)
4 447.1 (10.8) 2206.6 (8.2)
5 561.3 (18.8) 2298.0 (29.1)

Table 3: Mean and standard deviation of random and upper-

bound performance on askscience, with N = 10 and K =

2, 3, 4, 5.

possible next-actions, we instead randomly subsam-
ple m′ actions and take the max over them. We set
m′ = 10 throughout our experiments. This heuristic
technique works well in our experiments.

For text preprocessing we remove punctuation
and lowercase capital letters. For each state st and
comment cit, we use a bag-of-words representation
with the same vocabulary in all networks. The vo-
cabulary contains the most frequent 5,000 words; the
out-of-vocabulary rate is 7.1%.

In terms of the Q-learning agent, fully-connected
neural networks are used for text embeddings. The
network has L = 2 hidden layers, each with
20 nodes, and model parameters are initialized
with small random numbers. ε-greedy is used for
exploration-exploitation, and we keep ε = 0.1
throughout online training and testing. We pick the
discount factor γ = 0.9. During online training, we
use experience replay (Lin, 1992) and the memory
size is set to 10,000 tuples of (st, at, rt+1, st+1). For
each experience replay, 500 episodes are generated
and stored in a first-in-first-out fashion, and multi-
ple epochs are trained for each model. Minibatch
stochastic gradient descent is implemented with a
batch size of 100. The learning rate is kept constant:
ηt = 0.000001.

The proposed methods are compared with three
baseline models: Linear, per-action DQN (PA-
DQN), and DRRN. For both Linear and PA-DQN,
the state and comments are concatenated as an in-
put. For the DRRN, the state and comments are sent
through two separate deep neural networks. How-
ever, in our baselines, we do not explicitly model
how values associated with each comment are com-
bined to form the action value. For the DRRN
baseline and proposed methods (DRRN-Sum and
DRRN-BiLSTM), we use an inner product as the
pairwise interaction function.

0 5 10 15
Number of replays

300

400

500

600

700

800

900

R
ew

ar
ds

Random
Linear
PA-DQN
DRRN
DRRN-Sum
DRRN-BiLstm

Figure 3: Learning curves of baselines and proposed methods

on “askscience”

5.2 Experimental Results

In Figure 3 we provide learning curves of differ-
ent models on the askscience subreddit during on-
line learning. In this experiment, we set N =
10,K = 3. Each curve is obtained by averaging
over 3 independent runs, and the error bars are also
shown. All models start with random performance,
and converge after approximately 15 experience re-
plays. The DRRN-Sum converges as fast as baseline
models, with better converged performance. DRRN-
BiLSTM converges slower than other methods, but
with the best converged performance.

After we train all the models on the training set,
we fix the model parameters and apply (deploy) on
the test set, where the models predict which action
to take but no reward is shown until evaluation. The
test performance is averaged over 1000 episodes,
and we report mean and standard deviation over 5
independent runs.

On askscience, we try multiple settings with N =
10, K = 2, 3, 4, 5 and the results are shown in Ta-
ble 4. Both DRRN-Sum and DRRN-BiLSTM con-
sistently outperform baseline methods. The DRRN-
BiLSTM performs better with larger K, probably
due to the greater chance of redundancy in combin-
ing more sub-actions.

We also perform online training and test across
different subreddits. With N = 10,K = 3, the
test performance gains over the linear baseline are
shown in Figure 4. Again, the test performance is

1844

K Linear PA-DQN DRRN DRRN-Sum DRRN-BiLSTM
2 553.3 (2.8) 556.8 (14.5) 553.0 (17.5) 569.6 (18.4) 573.2 (12.9)
3 656.2 (22.5) 668.3 (19.9) 694.9 (15.5) 704.3 (20.1) 711.1 (8.7)
4 812.5 (23.4) 818.0 (29.9) 828.2 (27.5) 829.9 (13.2) 854.7 (16.0)
5 861.6 (28.3) 884.3 (11.4) 921.8 (10.7) 942.3 (19.1) 980.9 (21.1)

Table 4: On askscience, average karma scores and standard deviation of baselines and proposed methods (with N = 10)

0

20

40

60

80

100

120

140

askscience askmen todayilearned worldnews nfl

A
ve

ra
ge

 r
ew

ar
d

 (
K

ar
m

a
sc

o
re

s)

Linear PA-DQN DRRN DRRN-Sum DRRN-BiLSTM

Figure 4: Average karma score gains over the linear baseline and standard deviation across different subreddits (withN = 10,K =

3).

K DRRN-Sum DRRN-BiLSTM
2 538.5 (18.9) 551.2 (10.5)
4 819.1 (14.7) 829.9 (11.1)
5 921.6 (15.6) 951.3 (15.7)

Table 5: On askscience, average karma scores and standard de-

viation of proposed methods trained with K = 3 and test with

different K’s

averaged over 1000 episodes, and we report mean
and standard deviation over 5 independent runs. The
findings are consistent with those for askscience.
Since different subreddits may have very different
karma scores distributions and language style, this
suggests the algorithms apply to different text gen-
res.

In actual model deployment, a possible scenario
is that users may have different requests. For exam-
ple, a user may ask the agent to provide K = 2 dis-
cussion threads on one day, due to limited reading
time, and ask the agent to provide K = 5 discus-
sion threads on the other day. For the baseline mod-
els (Linear, PA-DQN, DRRN), we will need to train
separate models for different K’s. The proposed
methods (DRRN-Sum and DRRN-BiLSTM), on the
other hand, can easily handle a varying K. To test
whether the performance indeed generalizes well,

we train proposed models on askscience with N =
10,K = 3 and test them with N = 10,K ∈ 2, 4, 5,
as shown in Table 5. Compared to the proposed
models that are specifically trained for these K’s
(Table 4), the generalized test performance indeed
degrades, as expected. However, in many cases, our
proposed methods still outperform all three base-
lines (Linear, PA-DQN and DRRN) that are trained
specifically for these K’s. This shows that the pro-
posed methods can generalize to varying K’s even
if it is trained on a particular value of K.

In Table 6, we show an anecdotal example with
state and sub-actions. The two sub-actions are
strongly correlated and have redundant information.
By combining the second sub-action compared to
choosing just the first sub-action alone, DRRN-Sum
and DRRN-BiLSTM predict 86% and 26% relative
increase in action-value, respectively. Since these
two sub-actions are highly redundant, we hypothe-
size DRRN-BiLSTM is better than DRRN-Sum at
capturing interdependency between sub-actions.

6 Conclusion

In this paper we introduce a new reinforcement
learning task associated with predicting and tracking
popular threads on Reddit. The states and actions

1845

State text (partially shown)
Are there any cosmological phenomena that we
strongly suspect will occur, but the universe just isn’t
old enough for them to have happened yet?
Comments (sub-actions) (partially shown)
[1] White dwarf stars will eventually stop emitting light
and become black dwarfs. [2] Yes, there are quite a few,
such as: White dwarfs will cool down to black dwarfs.

Table 6: An example state and its sub-actions

are all described by natural language so the task is
useful for language studies. We then develop novel
deep Q-learning architectures to better model the
state-action value function with a combinatorial ac-
tion space. The proposed DRRN-BiLSTM method
not only performs better across different experimen-
tal configurations and domains, but it also general-
izes well for scenarios where the user can request
changes in the number tracked.

This work represents a first step towards address-
ing the popularity prediction and tracking problem.
While performance of the system beats several base-
lines, it still falls far short of the oracle result. Prior
work has shown that timing is an important factor
in predicting popularity (Lampe and Resnick, 2004;
Jaech et al., 2015), and all the proposed models
would benefit from incorporating this information.
Another variant might consider short-term reactions
to a comment, if any, in the update window. It
would also be of interest to explore implementations
of backtracking in the sub-action space (incurring a
cost), in order to recommend comments that were
not selected earlier but have become highly popular.
Lastly, it will be important to study principled solu-
tions for handling the computational complexity of
the combinatorial action space.

References

J. Allan. 2012. Topic detection and tracking: event-
based information organization, volume 12. Springer
Science & Business Media.

Roja Bandari, Sitaram Asur, and Bernardo Huberman.
2012. The pulse of news in social media: forecasting
popularity. In Proc. Int. AAAI Conf. Web and Social
Media (ICWSM).

S.R.K. Branavan, H. Chen, L. Zettlemoyer, and R. Barzi-
lay. 2009. Reinforcement learning for mapping in-
structions to actions. In Proc. of the Joint Conference

of the 47th Annual Meeting of the ACL and the 4th
IJCNLP, pages 82–90, August.

S.R.K. Branavan, D. Silver, and R. Barzilay. 2011.
Learning to win by reading manuals in a Monte-Carlo
framework. In Proc. of the Annual Meeting of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, pages 268–277. Asso-
ciation for Computational Linguistics.

Justin Cheng, Lada Adamic, P. Alex Dow, Jon Kleinberg,
and Jure Leskovec. 2014. Can cascades be predicted?
In Proc. Int. Conf. World Wide Web (WWW).

L. Deng and D. Yu. 2014. Deep learning: Methods and
applications. Foundations and Trends in Signal Pro-
cessing, 7(3–4):197–387.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and
P. Abbeel. 2016. Benchmarking deep reinforcement
learning for continuous control. In Proceedings of the
33rd International Conference on Machine Learning
(ICML).

G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag,
T. Lillicrap, and J. Hunt. 2016. Deep reinforcement
learning in large discrete action spaces. arXiv preprint
arXiv:1512.07679.

A. Graves and J. Schmidhuber. 2005. Framewise
phoneme classification with bidirectional LSTM and
other neural network architectures. Neural Networks,
18(5):602–610.

C. Guestrin, D. Koller, and R. Parr. 2001. Multiagent
planning with factored MDPs. In NIPS, volume 1,
pages 1523–1530.

M. Hausknecht and P. Stone. 2016. Deep reinforcement
learning in parameterized action space. In Interna-
tional Conference on Learning Representations.

J. He, J. Chen, X. He, J. Gao, L. Li, L. Deng, and M. Os-
tendorf. 2016. Deep reinforcement learning with a
natural language action space. In Proc. Annu. Meeting
Assoc. for Computational Linguistics (ACL).

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N.
Sainath, and B. Kingsbury. 2012. Deep neural net-
works for acoustic modeling in speech recognition:
The shared views of four research groups. IEEE Sig-
nal Process. Mag., 29(6):82–97.

Liangjie Hong, Ovidiu Dan, and Brian Davison. 2011.
Predicting popular messages in Twitter. In Proc. Int.
Conf. World Wide Web (WWW), pages 57–58.

A. Jaech, V. Zayats, H. Fang, M. Ostendorf, and H. Ha-
jishirzi. 2015. Talking to the crowd: What do people
react to in online discussions? In Proc. of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 2026–2031, September.

A. Krizhevsky, I. Sutskever, and G. Hinton. 2012. Im-
agenet classification with deep convolutional neural
networks. In NIPS, pages 1097–1105.

1846

Himabindu Lakkaraju, Julian McAuley, and Jure
Leskovec. 2013. What’s in a name? Understanding
the interplay between titles, content, and communities
in social media. In Proc. Int. AAAI Conf. Web and So-
cial Media (ICWSM).

C. Lampe and P. Resnick. 2004. Slash(dot) and burn:
distributed moderation in a large online conversation
space. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 543–
550.

Y. LeCun, Y. Bengio, and G. Hinton. 2015. Deep learn-
ing. Nature, 521(7553):436–444.

T. P Lillicrap, J. J Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra. 2016. Continu-
ous control with deep reinforcement learning. In In-
ternational Conference on Learning Representations.

L-J Lin. 1992. Self-improving reactive agents based on
reinforcement learning, planning and teaching. Ma-
chine Learning, 8(3–4):293–321.

Michal Lukasik, Trevor Cohn, and Kalina Bontcheva.
2015. Point process modelling of rumour dynamics
in social media. In Proc. Annu. Meeting Assoc. for
Computational Linguistics (ACL).

M. Mathioudakis and N. Koudas. 2010. Twittermonitor:
trend detection over the twitter stream. In Proceedings
of the 2010 ACM SIGMOD International Conference
on Management of data, pages 1155–1158. ACM.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A Rusu, J. Ve-
ness, M. G Bellemare, A. Graves, M. Riedmiller, A. K
Fidjeland, G. Ostrovski, et al. 2015. Human-level
control through deep reinforcement learning. Nature,
518(7540):529–533.

K. Narasimhan, T. Kulkarni, and R. Barzilay. 2015. Lan-
guage understanding for text-based games using deep
reinforcement learning. In Proc. of the 2015 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1–11, September.

K. Narasimhan, A. Yala, and R. Barzilay. 2016. Im-
proving information extraction by acquiring external
evidence with reinforcement learning. arXiv preprint
arXiv:1603.07954.

R. Nogueira and K. Cho. 2016. Webnav: A new large-
scale task for natural language based sequential deci-
sion making. arXiv preprint arXiv:1602.02261.

B. Sallans and G. E Hinton. 2004. Reinforcement learn-
ing with factored states and actions. The Journal of
Machine Learning Research, 5:1063–1088.

K. Scheffler and S. Young. 2002. Automatic learning
of dialogue strategy using dialogue simulation and re-
inforcement learning. In Proc. of the second Inter-
national Conference on Human Language Technology
Research, pages 12–19.

D. Silver, A. Huang, C. J Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, et al. 2016. Master-
ing the game of Go with deep neural networks and tree
search. Nature, 529(7587):484–489.

S. P Singh, M. J Kearns, D. J Litman, and M. A Walker.
1999. Reinforcement learning for spoken dialogue
systems. In NIPS, pages 956–962.

A. Sordoni, M. Galley, M. Auli, C. Brockett, Y. Ji,
M. Mitchell, J.-Y. Nie, J. Gao, and B. Dolan. 2015.
A neural network approach to context-sensitive gen-
eration of conversational responses. In NAACL-HLT
2015.

B. Suh, L. Hong, P. Pirolli, and E. H. Chi. 2010. Want to
be retweeted? Large scale analytics on factors impact-
ing retweet in twitter network. In Proc. IEEE Inter.
Conf. on Social Computing (SocialCom), pages 177–
184.

Chenhao Tan, Lillian Lee, and Bo Pang. 2014. The ef-
fect of wording on message propagation: Topic- and
author-controlled natural experiments on Twitter. In
Proc. Annu. Meeting Assoc. for Computational Lin-
guistics (ACL), pages 175–186.

Manos Tasgkias, Wouter Weerkamp, and Maarten de Ri-
jke. 2009. Predicting the volume of comments on on-
line news stories. In Proc. CIKM, pages 1765–1768.

Alexandru Tatar, Jeremie Leguay, Panayotis Antoniadis,
Arnaud Limbourg, Marcelo Dias de Amorim, and
Serge Fdida. 2011. Predicting the polularity of online
articles based on user comments. In Proc. Inter. Conf.
on Web Intelligence, Mining and Semantics (WIMS),
pages 67:1–67:8.

G. Tesauro. 1995. Temporal difference learning and TD-
gammon. Communications of the ACM, 38(3):58–68.

C. JCH Watkins and P. Dayan. 1992. Q-learning. Ma-
chine learning, 8(3-4):279–292.

T.-H. Wen, M. Gasic, N. Mrksic, L. M Rojas-Barahona,
P.-H. Su, S. Ultes, D. Vandyke, and S. Young. 2016. A
network-based end-to-end trainable task-oriented dia-
logue system. arXiv preprint arXiv:1604.04562.

T. Weninger, X. A. Zhu, and J. Han. 2013. An explo-
ration of discussion threads in social news sites: A case
study of the reddit community. In Advances in So-
cial Networks Analysis and Mining (ASONAM), 2013
IEEE/ACM International Conference on, pages 579–
583. IEEE.

Tae Yano and Noah A. Smith. 2010. What’s worthy of
comment? Content and comment volume in political
blogs. In Proc. Int. AAAI Conf. Weblogs and Social
Media (ICWSM).

Y. Yue and C. Guestrin. 2011. Linear submodular ban-
dits and their application to diversified retrieval. In
Advances in Neural Information Processing Systems,
pages 2483–2491.

1847

Qingyuan Zhao, Murat A. Erdogdu, Hera Y. He, Anand
Rajaraman, and Jure Leskovec. 2015. SEISMIC: A
self-exciting point process model for predicting Tweet
popularity. In Proc. ACM SIGKDD Conf. Knowledge
Discovery and Data Mining.

1848

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1849–1859,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Non-Literal Text Reuse in Historical Texts:
An Approach to Identify Reuse Transformations and

its Application to Bible Reuse

Maria Moritz1, Andreas Wiederhold2, Barbara Pavlek3, Yuri Bizzoni4, and Marco Büchler1

1Institute of Computer Science, University of Göttingen
2Institute for Educational Science, University of Göttingen

3Minds and Traditions Research Group, Max Planck Institute for the Science of Human History, Jena
4Department of Philosophy, Linguistics, Theory of Science, University of Gothenburg

Abstract

Text reuse refers to citing, copying or allud-
ing text excerpts from a text resource to a
new context. While detecting reuse in con-
temporary languages is well supported—given
extensive research, techniques, and corpora—
automatically detecting historical text reuse is
much more difficult. Corpora of historical lan-
guages are less documented and often encom-
pass various genres, linguistic varieties, and
topics. In fact, historical text reuse detection is
much less understood and empirical studies are
necessary to enable and improve its automation.
We present a linguistic analysis of text reuse in
two ancient data sets. We contribute an auto-
mated approach to analyze how an original text
was transformed into its reuse, taking linguis-
tic resources into account to understand how
they help characterizing the transformation. It
is complemented by a manual analysis of a
subset of the reuse. Our results show the limi-
tations of approaches focusing on literal reuse
detection. Yet, linguistic resources can effec-
tively support understanding the non-literal text
reuse transformation process. Our results sup-
port practitioners and researchers working on
understanding and detecting historical reuse.

1 Introduction

The computational detection of historical text reuse—
including citations, quotations or allusions —can
be applied in many respects. It can help tracing
down historical content (a.k.a., lines of transmis-
sion), which is essential to the field of textual crit-
icism (Büchler et al., 2012). In the context of mas-
sive digitization projects, it can identify relationships

between text excerpts referring to the same source.
Specifically, detecting copies of the same historical
text that have diverged over time (manuscript studies,
a.k.a., Stemma Codicum) is an important task.

Although much work exists in the field of nat-
ural language processing (NLP), many new chal-
lenges arise when processing historical text. The
most important challenges are the absence of support-
ing tools and methods, including an agreement on
a common orthography, standardization of variants,
and a wide range of clean, digitized text (Piotrowski,
2012; Geyken and Gloning, 2014; Zitouni, 2014).
Typical statistical approaches from the field of NLP
are difficult to apply to historically transferred texts,
since these often cover a large timespan and, thus,
comprise many different writing styles, text variants
or even reuse styles (Büchler, 2013). Our long-term
goal is to conceive robust text reuse detection tech-
niques for historical texts. To this end, we need to
improve the quantitative empirical understanding of
such reuse accompanied by qualitative empirical stud-
ies. However, only few such works exist.

We study less- and non-literal text reuse of Bible
verses in Ancient Greek and Latin texts. Our focus is
on understanding how the reuse instances are trans-
formed from the original verses. We identify opera-
tions that characterize how words are changed—e.g.,
synonymized, capitalized or part-of-speech (PoS) in-
formation changed. Since our approach uses external
linguistic resources, including Ancient Greek Word-
Net (AGWN) (Bizzoni et al., 2014; Minozzi, 2009)
and various lemma lists, we also show how such
resources can help detecting reuse and where the lim-
itations are. We complement the automated approach

1849

with a qualitative manual analysis. We contribute:

• an automated approach to characterize how text
is transformed between reuse and original,
• an application of the approach to two text

datasets where reuse was manually identified,
• empirical data based on the automated approach,

complemented by a manual identification.

Our resulting datasets1 with rich information about
the reuse transformation (e.g., PoS and morphology
changes, and words becoming synonyms or hyper-
onyms, among others) can be used as a benchmark for
future reuse detection and classification approaches.

2 Related Work

We first discuss why existing reuse detection ap-
proaches are not applicable to historical texts, and
then present works trying to address this problem.
Historical Text Reuse and Plagiarism Detection.
Büchler (2013) combines state-of-the-art NLP tech-
niques to address reuse detection scenarios for histor-
ical texts, ranging from near copies to text excerpts
with a minimum overlap. He uses the commonly used
method fingerprinting, which selects n-grams from
an upfront pre-segmentized corpus. While his ap-
proach can discover historical and modern text reuse
language-independently, it requires a minimum text
similarity—typically at least two common features.

Recognizing modified reuse is difficult in general.
Alzahrani et al. (2012) study plagiarism detection
techniques: n-gram-, syntax-, and semantics-based
approaches. As soon as reused text is slightly modi-
fied (e.g., words changed) most systems fail. Barrón-
Cedeño et al. (2013) conduct experiments on para-
phrasing, observing that complex paraphrasing along
with a high paraphrasing density challenges plagia-
rism detection, and that lexical substitution is the
most frequent technique for plagiarizing. The Ara-
PlagDet (Bensalem et al., 2015) initiative focuses
on the evaluation of plagiarism detection methods
for Arabic texts. Eight methods were submitted and
turned out to work with a high accuracy on exter-
nal plagiarism detection but did not achieve usable
results for intrinsic plagiarism detection.
Corpora. Huge parallel corpora of modern lan-
guages are used in fields such as paraphrase gen-

1https://bitbucket.org/mariamoritz/emnlp

eration and detection, typically used to train statis-
tical models (Zhao et al., 2009; Madnani and Dorr,
2010). However, such corpora hardly exist for his-
torical languages or are copyrighted, such as the
TLG digital library (Pantelia, 2014). Especially in
the field of modern reuse investigation, aligned cor-
pora are often used, providing a rich source of para-
phrasal sentence pairs in one, sometimes multiple
languages. One of such is the Microsoft Research
Paraphrase Corpus (MSRP), which contains 5801
manually evaluated, paraphrasal sentence pairs in En-
glish (Dolan and Brockett, 2005). Ganitkevitch et
al. (2013) present a paraphrase database with over
200 million English paraphrase pairs and 196 million
Spanish paraphrases. Each paraphrase pair comes
with measures, such as a paraphrase probability score.
In ancient literature, efforts are made to collect Bib-
lical reuse. One of such is the collection of Ancinet
Greek and Latin quotations based on the the Vetus
Latina series and the Novum Testamentum Graecum
Editio Critica Maior (Houghton, 2013a; Houghton,
2013b). It contains more than 150,000 Latin citations
and about 87,000 Ancient Greek Bible references.
Historical Text Processing in General. Efforts
to automatically process ancient texts are made
around the Perseus Digital Library project (Crane,
1985), among others. For example, Bamman (2008)
presents the discovery of textual allusions in a col-
lection of Classical poetry, using measures such as
token similarity, n-grams or syntactic similarity. This
allows finding at least the most similar candidates
within a closed library. Some works have focused on
text reuse in Biblical Greek text. Lee (2007) investi-
gate reuse among the Gospels of the New Testament,
aimed at aligning similar sentences. Using source
alternation patterns, among others, the approach uses
cosine similarity, source verse proximity, and source
verse order. Focusing on high recall, the detection of
Homeric quotations in Athenaeus’ Deipnosophistai’
was investigated by Büchler et al. (2012), searching
for distinctive words within reuse.

While the approaches above rely on string or fea-
ture similarity, Bamman (2011b) attempts to process
the semantic space using word-sense disambigua-
tion (Patwardhan et al., 2003; Agirre and Edmonds,
2007). Using a bilingual sense inventory and training
set, they classify up to 72 % of word senses correctly.
Utilizing Linguistic Resources. Word nets support

1850

identifying word relationships. Jing (1998) investi-
gates issues that come with using WordNet (Miller
et al., 1990) for language generation. Among others,
these comprise issues arising from the adaption of a
general lexicon to a specific domain. These were en-
countered by using a domain corpus and an ontology
to prune WordNet to a certain domain.

In our work, we are interested in using linguistic
resources (word nets and lemma lists) together with
PoS information to model the transformation process
of reuse, specifically on an ancient language text to
find limitations when applied to non-literal text reuse.

3 Methodology

Our study addresses two main research questions:
RQ1. What is the extent of non-literal reuse in our
datasets? This analysis provides a baseline for the
following characterizations of the non-literal reuse.
RQ2. How is the non-literally reused text modified
in our datasets? We study kinds and frequencies of
semantic, lexical, and morphological changes. We
develop an automated approach to identify the reuse
transformation, and complement it with a manual,
qualitative analysis. We formulate two sub-questions:
RQ2.1. How can linguistic resources support the
discovery of non-literal reuse? We conjecture that
non-literal reuse is difficult to capture automatically
(especially due to domain- or author-specific words),
but that taking linguistic resources into account helps.
We analyze the coverage of words in lemma lists and
a synset database, and investigate how useful they
are for understanding the reuse transformations.
RQ2.2. What are the limitations of an automated
classification approach relying on linguistic re-
sources? Our manual analysis investigates the reuse
in its full richness, to understand the limitations of
the automated approach and identify further charac-
teristics of the reuse in our datasets.

3.1 Study Design

Our study comprises the following main steps. First
(RQ1), we identify and characterize the literal and
non-literal overlap in reuse instances. Second (to-
wards RQ2), we define operations reflecting literal
reuse, replacements (inspired by semantic relation-
ships, such as synonyms and hyperonyms, supported
by AGWN), and morphological changes (e.g., when

mapping words contain the same cognate). Our oper-
ations are based on a one-word-replacement to better
quantify the results. Third (RQ2.1), we develop an
algorithm that identifies operations by first looking
for morphological changes between a word from the
reuse and its corresponding candidate from the Bible
verse and, in case of no success, by seeking for a
semantic relation. We apply it to our two datasets
and investigate the relationships of affected words
and the literal share. We quantify occurrences of op-
erations and calculate two measures suplem (lemma
support) and supAGWN (AGWN support) to assess
the resources’ coverage for our approach. Fourth
(RQ2.2), we manually analyze a smaller sample of
our reuse datasets, using further operations, to under-
stand the full richness of the reuse.

3.2 Datasets

We use the following two text sources, both reusing
content from Bible verses. As a ground truth of the
reuse, we use manually annotated versions of both,
provided to us by Mellerin (2014) and the Biblindex
project (Mellerin, 2016; Vinzent et al., 2013).

Our first dataset comes from the primary source
text of “Salvation for the Rich” from the An-
cient Greek writer Clement of Alexandria (Clément
d’Alexandrie, 2011), a well-known author in Bibli-
cal literature (Cosaert, 2008). The Biblindex team
annotated 128 text passages as Bible reuse instances,
adding a footnote with Bible verse pointers to each.
We select a total of 95 out of these 128, following
four criteria: (i) reuse should not consist of an exact
literal copy of a Bible verse (skipping six instances),
(ii) reuse should be recognizable by our expert (skip-
ping ten instances), (iii) the reference frame should
be within five Bible verses (comparable with sen-
tences) to avoid too much noise in our data to ensure
a comparable length to the original Bible verse (skip-
ping nine instances), and (iv) reuse instances should
not exceed a length of 40 tokens (1–2 sentences),
again to cut the long tail and avoid too much noise
(skipping eight instances). Sometimes one reuse in-
stance pointed to different Bible verses or one text
passage contained more than one reuse instance, thus,
we come up with 199 verse-reuse-pairs. The excerpts
point to a total of 15 Bible books.

Our second dataset are extracts from a total of
14 volumes of twelve works and two work collec-

1851

Jer

23 24
si occultabitur vir in absconditis et ego non videbo eum dicit

Dominus numquid non caelum et terram ego impleo ait Dominus

(Can anyone hide himself in secret places that I will not see him?

Said the lord. Do not I fill heaven and earth? Said the Lord)
literal et terram ego impleo (and I fill the earth)

Mk

10 30
Ἤρξατο λέγειν ὁ Πέτρος αὐτῷ, Ἰδοὺ ἡμεῖς ἀφήκαμεν πάντα καὶ

ἠκολουθήκαμέν σοι. (Peter began to say to him: See, we left

everything and followed you.)
literal ἡμεῖς ἀϕήκαμεν πάντα καὶ ἠκολουθήσαμέν σοι (we left everything

and followed you)

Prv

18 3
impius cum in profundum venerit peccatorum contemnit sed

sequitur eum ignominia et obprobrium (When the wicked man is

come into the depth of sins, also contempt comes but ignominy and

reproach follow him)
more

literal
Impius , cum venerit in profundum malorum , contemnit (When

the wicked man is come into the depth of evil)
1Cor

13 13
νυνὶ δὲ μένει πίστις , ἐλπίς , ἀγάπη , τὰ τρία ταῦτα μείζων δὲ

τούτων ἡ ἀγάπη (And now remain faith, hope, love, these three; but

the greatest of those is love.)
less

literal
πίστει καὶ ἐλπίδι καὶ ἀγάπῃ (faith, and hope, and love - in dative

case)
less

literal
ἀγάπην , πίστιν , ἐλπίδα (love, faith, hope - in accusative case)

less

literal
μένει δὲ τὰ τρία ταῦτα , πίστις , ἐλπίς , ἀγάπη · μείζων δὲ ἐν

τούτοις ἡ ἀγάπη (and remain these three, faith, hope, love; but the

greatest among them is love)

Mt

12 35
ὁ ἀγαθὸς ἄνθρωπος ἐκ τοῦ ἀγαθοῦ θησαυροῦ ἐκβάλλει ἀγαθά , καὶ

ὁ πονηρὸς ἄνθρωπος ἐκ τοῦ πονηροῦ θησαυροῦ ἐκβάλλει πονηρά .

(A good man out of good storage brings out good things , and an

evil man out of the evil storage brings evil things .)
non-

literal
Ψυχῆς , τὰ δὲ ἐκτός , κἂν μὲν ἡ ψυχὴ χρῆται καλῶς , καλὰ καὶ

ταῦτα δοκεῖ , ἐὰν δὲ πονηρῶς , πονηρά , ὁ κελεύων ἀπαλλοτριοῦν

τὰ ὑπάρχοντα ([are whitin the] soul, and some are out, and if the

soul uses them good, those things are also thought of as good, but if

[they are used as] bad, [they are thought of as] bad; he who

commands the renouncement of possessions)

Figure 1: Examples of reuse

tions from the Latin writer Bernard of Clairvaux. We
again use Biblindex’ extracted Bible reuse, which of-
fers over 1,100 reuse instances in alphabetical order.
We follow the same selection criteria as for Greek
and—starting top-down and dropping only two—we
obtain 162 Bible-verse reuse-pairs, which is similar
to the number of Greek reuse instances. Specifi-
cally, since those reuse instances come from several
different primary source works, they point to a to-
tal of 31 Bible books. We use the Bible editions
from Biblindex, specifically, the data based on Septu-
agint (Rahlfs, 1935b), Greek New testament (Aland
and Aland, 1966), and Biblia sacra juxta vulgatam
versionem (Weber R., 1969 1994 2007).

Fig. 1 shows reuse examples, illustrating the wide
range of literalness in our data, comprising literal (all
tokens overlap), less literal (important tokens over-
lap), and non-literal (no content word tokens overlap)
reuse. For example, Clement’s reuse ranges from in-
troducing the overall topic by citing multiple verses,
to supporting his argumentation. Specifically, Mk
10 30 is a fully literal reuse from a passage that dis-
cusses the problem of rich men in heaven. Clement
uses this episode as a main point in his essay. Later
he refers to 1Cor 13 13, he again refers to how hard
it would be for rich men to enter heaven, explaining
that salvation is independent of “external things,” but
depends on the “virtue of the soul,” mentioning faith,

Algorithm 1: Reuse classification algorithm
/* Executed for each reuse instance and its corresponding

Bible verse. morph(x) returns the part-of-speech
and/or case of x. repl case and repl pos are masked to
repl morph for clarity reasons. checkm(x,y) returns
NOPmorph(morph(x),morph(y)) if morph(x) equals morph(y)
and repl morph(morph(x),morph(y)) otherwise. */

input :L← set of word-lemma pairs obtained from the lemma resources
input :S ← set of synsets from AGWN; each synset contains an id and a parent id
input :T ← list of words of reuse instance (containing part-of-speech information)
input :B ← list of words of Bible verse (containing part-of-speech information)
output :OP ← list of sets containing up to 3 parameterized operations
s1, s2← any two synsets∈ S.
tmp op← temporary variable which presents the absence of a relation but not of a
lemma.
for t in T do

for b in B do
if t=b then
OP ← OP ∪ (NOP (t, b), checkm(morph(t),morph(b)))
break

else if lowerCase(t) = b then
OP ← OP ∪ (lower(t, b), checkm(morph(t),morph(b)))
break

else if lowerCase(b) = t then
OP ← OP ∪ (upper(t, b), checkm(morph(t),morph(b)))
break

else if t ∈ L and b ∈ L then
/* lemma found for original (b) and reuse word (t) */
if lemma(t) = lemma(b) then
OP ← OP ∪ (lem(t, b), checkm(morph(t),morph(b)))
break

else if t ∈ s1 and b ∈ s2 and s1 ∈ S and s2 ∈ S then
if s1 = s2 then
/* t is synonym of b */
OP ← OP ∪ (repl syn(t, b)) break

else if id(s1) = parent id(s2) then
/* t is hyperonym of b */
OP ← OP ∪ (repl hypo(t, b)) break

else if parent id(s1) = id(s2) then
/* t is hyperonym of b */
OP ← OP ∪ (hyper(t, b)) break

else if parent id(s1) = parent id(s2) then
/* synset of t and synset of b both have the same

synset as parent */
OP ← OP ∪ (repl cohypo(t, b)) break

else
tmp op← (no rel found(t, b))

end
if tmp op then
OP ← OP ∪ tmp op

else
OP ← OP ∪ (lemma missing(t))

end
return OP

hope, and love, the key words in the original verse.

3.3 PoS Tagging

The automated and the manual approach also take
PoS information into account to understand the
reuse transformation. Following the Greek morphol-
ogy tagging system of Perseus (Bamman and Crane,
2011a), which maps PoS and case information to sin-
gle characters2, we manually PoS-tag the 199 reuse
instances of Ancient Greek and the 162 of Latin, as
well as the original Bible verses. Since Latin and
Ancinet Greek PoS-taggers lack available implemen-
tations, appropriate trained models or simply accu-

2http://nlp.perseus.tufts.edu/syntax/
treebank/agdt/1.7/docs/README.txt

1852

lemma coverage1 AGWN coverage2 total3

corpus lem. syn. hyper. hypo. co-hypo.
C

LT
K

Greek Bible4 3238 1906 1422 1185 1422 4776
Clement5 739 326 231 175 231 2189
Latin Bible4 2473 1241 905 863 905 2618
Bernard5 1219 643 471 455 471 1335

B
ib

lin
de

x Greek Bible4 752 103 58 67 58 4776
Clement5 455 54 24 33 24 2189
Latin Bible4 2473 1365 1057 1023 1057 2618
Bernard5 1219 701 531 520 531 1335

S
B

LG
N

T
&

LX
X

Greek Bible4 4718 3385 2616 2092 2616 4776
Clement5 1297 824 582 421 582 2189
Latin Bible4,6 n/a n/a n/a n/a n/a 2618
Bernard5,6 n/a n/a n/a n/a n/a 1335

co
m

bi
ne

d Greek Bible4 4723 3449 2684 2156 2684 4776
Clement5 1548 899 653 495 653 2189
Latin Bible4 2473 1378 1057 1023 1057 2618
Bernard5 1219 706 531 520 531 1335

1 number of tokens found by lemma resource
2 number of lemmatized tokens covered by AGWN
3 number of tokens in original and reuse
4 original 5 reuse 6 no support for Latin

Table 1: Coverage of tokens by language resources

racy (Crane, 1991; vor der Brück et al., 2015), we
perform this step manually to assure high accuracy.
We also assign cases for the classes noun, article, ad-
jective, and pronoun. We introduce b to represent the
Latin ablative case, which does not exist in Greek.

3.4 Automated Approach

Our approach is to model the transformation process
in terms of parameterized operations applied to the
words in the reuse instance in order to obtain the
original words. These operations use linguistic re-
sources, such as lemma lists of classical Greek and
Biblical Koine, and a synset database. For each trans-
formation, we create the set of operations necessary
to transform the reuse instance to its original.
Linguistic Resources. We investigate the following
lemma lists to look up lemmatized forms of words—a
prerequisite for looking up synsets: Classical Lan-
guage Tool Kit (CLTK) (Johnson et al., 2014 2016)
provides Ancient Greek and Latin lemma lists for
953,907 Greek and 270,228 Latin words. Biblin-
dex’ Lemma Lists contain entries for 65,537 Biblical
Greek and 315,021 Latin words. SBLGNT&LXX
refers to the Greek New Testament of the Society of
Biblical Literature (SBLGNT)3 and the Septuaginta

3Logos Bible Software, Sbl new testament, 2014 http:
//sblgnt.com/about/

(LXX), a translation of the Old Testament (Rahlfs,
1935a)4 from the Center for Computer Analysis of
Texts at UPenn. We acknowledge code-page cor-
rections by M. Munson. SBLGNT&LXX provide
59,510 word-lemma-pairs.

We use AGWN (Bizzoni et al., 2014), which also
contains Latin WordNet (Minozzi, 2009), to identify
synsets (sets of synonyms) as well as hyperonyms,
hyponyms, and co-hyponyms. From the wordnets’
98,950 synsets 33,910 synsets contain Ancient Greek
and 27,126 synsets contain Latin words.
Coverage. Table 1 shows the coverage of each re-
source for our datasets. In the lower part of it we
merge all lemma resources into one set of word-
lemma pairs. The table shows that CLTK covers
the Bible data better than the Hellenistic Greek as
used in Clement of Alexandria, an author from 2nd
century AD, writing in an archaic style with Biblical
vocabulary, while also being influenced by Classi-
cal Greek. We also check the coverage of lemmata
stemming from the same source (Biblindex) as our
reuse. To increase the coverage for Greek, we consult
SBLGNT&LXX, which in fact increases it. To not
miss important information, we integrate all of the
resources’ data into our approach. For every lemma
of a word we check the semantic relations in AGWN.
We experimented with different ways of looking up
lemmas and found that lower-casing all Latin tokens
improved the success. For Greek, it had the opposite
effect, which indicates that the Greek text contains
more entities that are not available in lowercase in
the lemma lists, so we did not change in that case.5

Operations and Classification. We define replace-
ment operations using words and PoS as parame-
ters, to transform a reuse instance back into the
Bible verse it originates from. Table 2 lists the op-
erations for the computational approach. We in-
troduce the operations NOPmorph, repl pos, and
repl case for words having the same cognate, and
lemma missing(reuse word) when a word is not

4CATSS LXX is prepared by the Thesaurus Linguae Grae-
cae project directed by T. Brunner at UC Irvine, with further
verification and adaptation by CATSS towards conformity with
the individual Göttingen editions which appeared since 1935.
LXXM is morphologically analyzed text of CATSS LXX pre-
pared by CATSS led by R. Kraft (Philadelphia team)

5Often, the decision on whether to represent a word in upper
or lower case letters is made by the editor, thus, our decision is
affected by the edition we use for our research.

1853

operation description example

NOP(reuse word, orig word) Original and reuse word are equal. NOP(maledictus,maledictus)
upper(reuse word, orig word) Word is lowercase in reuse and uppercase in original. upper(kai,Kai) - in Greek
lower(reuse word, orig word) Word is uppercase in reuse and lowercase in original. lower(Gloriam,gloriam)
lem(reuse word, orig word) Lemmatization leads to equality of reuse and original. lem(penetrat,penetrabit)
repl syn(reuse word, orig word) Reuse word replaced with a synonym to match original word. repl syn(magnificavit,glorificavit)
repl hyper(reuse word, orig word) Word in bible verse is a hyperonym of the reused word. hyper(cupit,habens)
repl hypo(reuse word, orig word) Word in bible verse is a hyponym of the reused word. hypo(dederit,tollet)
repl co-hypo(reuse word, orig word) Reused word and original have the same hyperonym. repl co-hypo(magnificavit,fecit)

NOPmorph(reuse tags, orig tags) Case or PoS did not change between reused and original word. NOPmorph(na,na)
repl pos(reuse tag, orig tag) Reuse and original contain the same cognate, but PoS changed. repl pos(n,a)
repl case(reuse tag, orig tag) Reuse and original have the same cognate, but the case changed repl case(g,d) - cases genitive, dative

lemma missing(reuse word, orig word) Lemma unknown for reuse or original word lemma missing(tentari, inlectus)
no rel found(reuse wword, orig word) Relation for reuse or original word not found in AGWN no rel found(gloria,arguitur)

Table 2: Operation list for the automated approach

known to any of our lemma resources as well as
no rel found(reuse word, orig word) when the rela-
tionship between a reuse word and each potential
word from the original is not covered by AGWN.

Algorithm 1 shows our approach to classify the
reuse transformation by identifying the operations.
For each reuse token, we identify the first applicable
operation matching the foremost Bible verse word (it-
erating the verse) in the following order: exact word
match (NOP: no operation), case changed to upper
or lower. Thereafter, we look up the lemma and re-
turn lem if the lemma of the reused word matches
the lemma of the original. For these four, we also
check the morphology, in addition returning whether
the original has the same PoS and case (NOPmorph)
or whether PoS changed (repl pos), case changed
(repl case), or both. So up to three operations can be
returned per word. Finally, we check for synonyms
(repl syn), hyperonyms (hyper), hyponyms (hypo),
and co-hyponyms (repl co-hypo), but do not check
morphology. If a Bible verse word is used as a match,
it is not used again for any other word from the reuse.

3.5 Qualitative Approach

To obtain a deeper understanding of the limitations of
linguistic resources for our purpose, two graduate stu-
dents (one Latinist, one Classical Archeologist) man-
ually analyze 100 Greek and 60 Latin reuse instances
with their expert knowledge, using an extended set
of operations. It comprises ins(word) (insert a word)
and del(word) (delete a word)—two operations we ig-
nore in the automated approach where we focuse on
the coverage of the resources. It also has a richer set

of replacement operations: those from the upper part
of Table 2 (without upper and lower), and instead of
only using repl case when a cognate stays the same,
we refine it and assign all changing morphological
categories from Perseus’ tag set for any “relativeness”
between two words (e.g., repl case a g).

4 Results

We now present the results for our research questions
in Sec. 4.1–4.3, which are summarized and further
interpreted in Sec. 4.4.

4.1 Literal Share of the Reuse (RQ1)

We obtain a first understanding of the reuse by look-
ing at the percentage of overlapping words between
reuse instance and original Bible verse. We measure
the longest common substring based on word tokens.
Fig. 2 shows the distributions, distinguishing between
a lemmatized and non-lemmatized word comparison.

While lemmatizing words before comparison has
only a small impact, we observe differences between
the datasets. In our Latin dataset, the overlap is sig-
nificantly higher than in the Greek dataset Sec. 3.2.
25 % (upper quartile) of Bernard’s reuse instances
have 50 % or more tokens overlap with their original,
which is only the case for less than 25 % in Clement’s
Greek data. Still, large overlaps of up to 75 % (top

non-lem. lem. non-lem. lem.
0

0.5

1

left: Greek, right: LatinFigure 2: Ratios of literal overlaps between reuse
instance and original (left: Greek, right: Latin)

1854

unclass. literal nonlit. unclass. literal nonlit.
0

0.5

1

left: Greek, right: LatinFigure 3: Ratios of unclassified, literal, and non-liter-
al words in reuse instances (left: Greek, right: Latin)

whisker) in our Greek and up to around 90 % in our
Latin dataset exist—so a small fraction of the reuse
contains literal parts Sec. 3.2.

For a more precise understanding of the literalness,
we group operations into literal (NOP, upper, lower,
lem), non-literal (repl syn, repl hyper, repl hypo,
repl co-hypo), and unclassified (no rel found and
lemma missing). Within each reuse instance, we cal-
culate their relative occurrence using the results of
the automated approach (explained shortly). Fig. 3
shows the distribution of these relative occurrences
for all reuse instances. It confirms Fig. 2 by show-
ing a higher rate of literalness for Latin compared to
Greek. In summary, it also shows that the Latin reuse
can be better classified by our approach, which takes
the lemma lists and AGWN into account.

4.2 Automated Approach (RQ2.1)

Table 3 shows the total number of operations identi-
fied for the transformation from reuse instances to
the Greek and Latin originals. For 987 (45 %) out of
2189 words in the Greek instances and for 893 (67 %)
out of 1335 words in the Latin instances, we were
able to identify at least one operation, which already
indicates to what extent the resources are helpful.

Fig. 4 visualizes the distribution of the frequencies
(y-axis) of each operation (x-axis) together with the
distribution of the operations’ positions in the reuse
instances (z-axis). The latter is calculated as the rela-
tive position p ∈ [0..1] of an operation with respect to
the length of the reuse instance. It indicates that most
operation types are distributed over the whole reuse

NOP upper lower lem syn hyper hypo co-hypo

Occ. Greek 337 6 0 356 153 20 14 101
Occ. Latin 587 0 44 102 60 14 28 68

NOPmorph repl pos repl case no rel found lem missing

Occ. Greek 420 49 258 563 639
Occ. Latin 617 46 75 347 85

Table 3: Absolute numbers of operations identified
automatically

NOP
up

pe
r

low
er lem

rep
l sy

n

rep
l hy

pe
r

rep
l hy

po

rep
l co

-hy
po

NOPmorp
h

rep
l po

s

rep
l ca

se

no
rel

lem
miss

ing 0
0.5

10
2
4

functions

reuse lengthlo
g(

#
fu

nc
tio

ns
us

ed
)

(a) Greek

NOP
up

pe
r

low
er lem

rep
l sy

n

rep
l hy

pe
r

rep
l hy

po

rep
l co

-hy
po

NOPmorp
h

rep
l po

s

rep
l ca

se

no
rel

lem
miss

ing 0
0.5

10
2
4

functions

reuse lengthlo
g(

#
fu

nc
tio

ns
us

ed
)

(b) Latin

Figure 4: Occurrence of operations in reuse in-
stances. X-axis: operations; Y-axis: relative position
within reuse instances. Z-axis: natural logarithm of
number of operations. Values are smoothed by spline
interpolation. The order of operations is arbitrary.

length without a particular trend in both datasets. We
only encounter a frequent use of upper at the first
position in Latin, which means that Bernard often
starts his Biblical references with literal Bible words.

After having checked the overall coverage of the
linguistic resources for all tokens (cf. Sec. 3.4),
we now specifically investigate to what extent the
resources support identifying the reuse transforma-
tion for the non-literal reuse using our approach.
We introduce the measures suplem and supAGWN
to calculate how often looking up a lemma or
subsequently a synset element was successful.
This is easy based on our operations. Let Occ(o)
be the number of occurrences of an operation
o, obtained from Table 3. The operations that
successfully looked up a lemma (before consulting
AGWN) are lem success={lem, syn, repl hyper,
repl hypo, repl co-hypo, no rel found}. Now recall
that lem missing represents the case when a reuse
token was not found in the lemma resources. Then
suplem =

∑
Occ(o) o∈lem success∑

Occ(o) o∈lem success∪{lem missing} . We obtain
a suplem of 0.65 for the Greek reuse and 0.88 for the
Latin reuse. Similarly, the operations that success-
fully looked up from AGWN are agwn success={syn,

1855

operation Greek Latin operation Greek Latin

repl syn 78 (40.6%) 91 (40.4%) repl gender 6 (3.1%) 1 (0.4%)
repl ant 1 (0.5%) 0 repl mood 11 (5.7%) 12 (5.3%)
repl hyper 3 (1.6%) 0 repl number 17 (8.9%) 17 (7.6%)
repl hypo 11 (5.7%) 0 repl person 5 (2.6%) 14 (6.2%)
lem 1 (0.5%) 2 (0.9%) repl pos 18 (9.4%) 33 (14.7%)
repl co-hypo 0 1 (0.4%) repl tense 3 (1.6%) 9 (4.0%)
repl case 38 (19.8%) 36 (16%) repl voice 0 8 (3.6%)

Table 4: Numbers of replacement operations identi-
fied for the manual reuse transformation.

repl hyper, repl hypo, repl co-hypo}, with
no rel found representing a failed lookup. Then:

supAGWN =
∑

Occ(o) o∈agwn success∑
Occ(o) o∈agwn success∪{no rel found} . We

obtain supAGWN of 0.34 for Greek and 0.33 for Latin.
These values can be interpreted as follows. The

lemma resources for genre- and time-specific text
work well for less-literal reuse, but the resources for
semantic relationships (synset databases) show a lack
of support and need further development.

4.3 Qualitative Approach (RQ2.2)

We manually identify the transformation operations
for 60 reuse instances of the Ancient Greek data and
for 100 of the Latin data. Here, NOPs cover 9.3 %,
insertions 49.8 %, and deletions cover 30.5 % in the
Greek data. NOPs cover 26.1 %, insertions 49.7 %,
and deletions 11.9 % in the Latin data.

Table 4 shows the ratios of the various repl oper-
ations based on the remaining 10.4 % and 12.2 %.
Similar to the automated approach, we observe a
strong use of synonyms and other semantic-level op-
erations, and also a certain portion of switching mor-
phological categories, which indicates para-phrasal
reuse. In the Greek data, PoS changes cover about
9%, out of which a participle became a verb (7 times)
and vice-versa (5 times). In our Latin data, PoS
changes represent 15% of replacements: often a pro-
noun changed to a noun (6 times) and a participle
became a verb (12 times). Case changes are shown
in Table 5. Significantly often, an ablative became
an accusative, because often changing prepositions
expect different cases, or an accusative was replaced
by an ablative or nominative, because para-phrasal
expression changed.

We encounter exceptions that prevent applying the
operations. In the Greek data, one word is replaced

operation Greek Latin operation Greek Latin

repl case a b 0 6 repl case g a 5 2
repl case a n 9 4 repl case g n 4 2
repl case b a 0 10 repl case n a 7 5
repl case d a 0 2 repl case n d 3 0
repl case d g 3 0 repl case v g 0 2
repl case d n 5 0

Table 5: Numbers of case replacements

with its antonym6; once, a synonym also changes its
PoS. Four times, more than one morphological cate-
gory changes, twice an auxiliary is deleted, and five
times inserted. We find one writing variance (lem),
and three times a synonym is replaced by a multi-
word expression. In the Latin data, in 16 cases a
synonym is replaced and morphological information
changed. Seven times, more than one morphological
parameter changes for the same cognate. Eight times,
an auxiliary is inserted or deleted, and twice, a writ-
ing variance is encountered. A synonym is replaced
by more than one word five times. In one case, a
reuse is too paraphrasal for any word to match se-
mantic relationships (e.g., judged calmly—Bernard
vs. fake friend - Sal 12 18).

4.4 Summary and Discussion
RQ1. The reuse is significantly non-literal and only
lemmatizing words does not help discovering it. Our
results show that reuse in two substantial histor-
ical texts requires techniques beyond simple pre-
processing (e.g., stemming or lemmatizing), which
explains why plagiarism-detection systems fail when
paraphrases are used (Alzahrani et al., 2012). Bible
verses are often used to justify an author’s claim, so
only relevant parts of the Bible verse are reused. In
the reuse the Bible verse is modified to better fit the
syntactical and semantic context of an author’s new
text, as shown in Tables 4 and 5.
RQ2.1. The results from our automated approach
are encouraging, showing the feasibility of extending
reuse-detection techniques with linguistic resources.
Yet, it is not clear which precision and recall could
be achieved and how existing techniques need to be
adapted and calibrated. This investigation is beyond
the scope of this study and subject to our future work.

The linguistic resources support the automated
6Translation: “the God, the good (one)” (Clement) vs. “none

is good but the God” (Bible).

1856

non-lem. lem.
0

0.5

1

LatinFigure 5: Ratios of literal overlaps in the whole Latin
dataset

approach, but only for about one third of the lookups.
The manually identified exceptions show that finding
a connection between original verse and reuse can be
difficult when there is only a vague semantic one.
RQ2.2. Our results show that the automated ap-
proach cannot capture the richness of the manual
approach. Especially from the exceptions, it is clear
that less-literal reuse does not only need information
from a word’s semantic environment, but also that
it needs to be identified by looser relations, such as
co-hyponyms, multi-to-multi-word associations or
implicit meanings, which can be hidden in structural
or more broader expert knowledge.

5 Threats to Validity

External Validity. We enhance the external valid-
ity of our work by focusing on Bible verses—one
of the oldest, most conveyed, and cited sources of
Ancient Greek, offering a vast amount of primary
source text and also coming with a long history of
scholars studying it. Clement of Alexandria is known
for his retelling of biblical excerpts (Clemens, 1905
1909; Freppel, 1865), providing an interesting base
for reuse investigation. The french abbot Bernard
of Clairvaux (Smith, 2010) is equally known for his
influence to the Cistercian order and his work in
biblical studies. Furthermore, the chosen lemma re-
sources are the most extensive ones existing for An-
cient Greek and Latin. We chose the AGWN, since it
is freely available, offering one of the largest synset
database for Ancient Greek and Latin.
Internal Validity. A threat is that our ground truth
has mistakes, as the PoS tagging was done by one
author only and relied on a manual post-correction.
The selection criteria in Sec. 3.2 were chosen to en-
sure quality and comparability. Extreme outliers in
the length of the reuse instance or source (multiple
Bible verses) are cut-off. For Greek, 33 are cut-off,
as opposed to Latin, where our sample is significantly
smaller than the whole population that we have. To
automatically check whether the sample has similar

characteristics with respect to the literal reuse, we
create Fig. 5. It shows the overlap of the whole 1128
instances of Bernard’s extracted reuse, which when
compared to Fig. 2 (right) supports the representa-
tiveness of our sample. Last, we can only derive
operation replacements when a word token was cov-
ered by the lemma sources, contained in AGWN, and
when there actually exists a relation between two
words. Also, our authors’ vocabulary can differ in
terms of domain knowledge, personal idiolect, and
age of the Biblical vocabulary.

6 Conclusion

We presented a study of historical—and mostly non-
literal—text reuse. We automatically and manually
characterize the reuse and identify to what extent ex-
isting linguistic resources are able to cover non-literal
text reuse. Our results show the potential as well as
the necessity to develop robust techniques and to ex-
tend linguistic resources for analyzing and detecting
such reuse. Our results can help to enhance para-
phrase generation to model automatic ways on how
small text portions can be rephrased. Considering the
effects of syntactic rearrangement of reuse can also
support such efforts. A smarter automated approach
for deriving an original text excerpt would be learn-
ing so-called edit scripts (Kehrer, 2014; Chawathe
et al., 1996), which more precisely identify opera-
tions an author performed on a text to transform it
into another version. Whether learning edit scripts
on such intricate transformations is possible is an
open question and valuable future research. Finally,
analyzing further languages and data sets helps to
further complete our findings.

Acknowledgments
We thank Laurence Mellerin for providing the
datasets we used, and for valuable advice on its con-
tent. Our work is funded by the German Federal Min-
istry of Education and Research (grant 01UG1509).

References
[Agirre and Edmonds2007] Eneko Agirre and Philip Ed-

monds. 2007. Word Sense Disambiguation - Algo-
rithms and Applications. Springer Netherlands.

[Aland and Aland1966] Kurt Aland and Barbara Aland,
editors. 1966. The Greek New Testament. Deutsche
Bibelgesellschaft-United Bible Societies, 27 edition.

1857

[Alzahrani et al.2012] Salha M. Alzahrani, Naomie Salim,
and Ajith Abraham. 2012. Understanding plagiarism
linguistic patterns, textual features, and detection meth-
ods. Trans. Sys. Man Cyber Part C, 42(2):133–149.

[Bamman and Crane2008] David Bamman and Gregory
Crane. 2008. The logic and discovery of textual allu-
sion. In LaTeCH (Language Technology for Cultural
Heritage Data), Marrakech Morocco. LREC.

[Bamman and Crane2011a] David Bamman and Gregory
Crane. 2011a. The ancient greek and latin depen-
dency treebanks. In Caroline Sporleder, Antal van den
Bosch, & Kalliopi Zervanou (Eds) Language technol-
ogy for cultural heritage: Selected papers from the
LaTeCH Workshop Series, pages 79–98, Berlin, Ger-
many. Springer-Verlag.

[Bamman and Crane2011b] David Bamman and Gregory
Crane. 2011b. Measuring historical word sense varia-
tion. In Proceedings of the 11th ACM/IEEE-CS Joint
Conference on Digital libraries (JCDL 2011), pages
1–10. ACM Digital Library.

[Barrón-Cedeño et al.2013] Alberto Barrón-Cedeño,
Marta Vila, M.Antònia Martı́, and Paolo Rosso.
2013. Plagiarism meets paraphrasing: Insights for
the next generation in automatic plagiarism detection.
Computational Linguistic, 39(4):917–947.

[Bensalem et al.2015] Imene Bensalem, Imene Boukhalfa,
Paolo Rosso, Lahsen Abouenour, Kareem Darwish,
and Salim Chikhi. 2015. Overview of the AraPlagDet
PAN@FIRE2015 Shared Task on Arabic Plagiarism
Detection. In FIRE 2015 Working Notes Papers, 4-6
December, Gandhinagar, India, December.

[Bizzoni et al.2014] Yuri Bizzoni, Federico Boschetti,
Harry Diakoff, Riccardo Del Gratta, Monica Mona-
chini, and Gregory Crane. 2014. The making of an-
cient greek wordnet. In Proceedings of the Ninth In-
ternational Conference on Language Resources and
Evaluation (LREC’14), Reykjavik, Iceland. European
Language Resources Association (ELRA).

[Büchler et al.2012] Marco Büchler, Gregory Crane,
Maria Moritz, and Alison Babeu. 2012. Increasing
recall for text re-use in historical documents to support
research in the humanities. In Theory and Practice of
Digital Libraries, Lecture Notes in Computer Science,
volume 7489, pages 95–100. Springer, Berlin Heidel-
berg.

[Büchler2013] Marco Büchler. 2013. Informationstech-
nische Aspekte des Historical Text Re-use (English:
Computational Aspects of Historical Text Re-use. Ph.D.
thesis, Leipzig University, Germany.

[Chawathe et al.1996] Sudarshan S Chawathe, Anand Ra-
jaraman, Hector Garcia-Molina, and Jennifer Widom.
1996. Change detection in hierarchically structured
information. In ACM SIGMOD Record, volume 25,
pages 493–504. ACM.

[Clemens1905 1909] Titus Flavius Clemens. 1905-1909.
Werke (in greek). In Otto Stählin, editor, Die Griechis-
chen Christlichen Schrifteller, Berlin, v. 12, 15, 27.
Leipzig.

[Clément d’Alexandrie2011] Clément d’Alexandrie, 2011.
Quel riche peut-être sauvé. éditions du Cerf, Paris,
sources chrtiennes 537 edition.

[Cosaert2008] Carl P. Cosaert. 2008. The Text of the
Gospels in Clement of Alexandria. New Testament
in the Greek Fathers. Society of Biblical Literature.

[Crane1985] Gregory Crane. 1985. Perseus digital
library. http://www.perseus.tufts.edu/
hopper/.

[Crane1991] Gregory Crane. 1991. Generating and pars-
ing classical greek. Literary and Linguistic Computing,
6(4):243–245.

[Dolan and Brockett2005] Bill Dolan and Chris Brockett.
2005. Automatically constructing a corpus of senten-
tial paraphrases. In Third International Workshop on
Paraphrasing (IWP2005). Asia Federation of Natural
Language Processing.

[Freppel1865] Charles-Emile Freppel. 1865. Clement
d’Alexandrie.

[Ganitkevitch et al.2013] Juri Ganitkevitch, Benjamin Van
Durme, and Chris Callison-Burch. 2013. PPDB: The
paraphrase database. In Proceedings of NAACL-HLT,
pages 758–764, Atlanta, Georgia. Association for Com-
putational Linguistics.

[Geyken and Gloning2014] Alexander Geyken and
Thomas Gloning. 2014. A living text archive
of 15th-19th century german: Corpus strategies,
technology, organization. In Corpus Linguistics and
Interdisciplinary Perspectives on Language - CLIP.
Narr Tbingen.

[Houghton2013a] H.A.G. Houghton. 2013a. Patristic ev-
idence in the new edition of the vetus latina iohannes.
In L. Mellerin and H.A.G. Houghton, editors, Bibli-
cal Quotations in Patristic Texts (Studia Patristica 54),
pages 69–85. Peeters, Leuven.

[Houghton2013b] H.A.G. Houghton. 2013b. The use of
the latin fathers for new testament textual criticism. In
B.D. Ehrman and M.W. Holmes, editors, The Text of the
New Testament in Contemporary Research. Essays on
the Status Quaestionis second edition. NTTSD., pages
375–405. Brill, Leiden.

[Jing1998] Hongyan Jing. 1998. Usage of wordnet in
natural language generation. In Proceedings of the
Workshop on Usage of WordNet in Natural Language
Processing Systems (COLING-ACL’98). Columbia Uni-
versity Academic Commons.

[Johnson et al.2014 2016] Kyle P. Johnson, Patrick J.
Burns, Luke Hollis, Martı́n Pozzi, Amit Shilo, Stephen
Margheim, Gitter Badger, and Eamonn Bell. 2014–
2016. Cltk: The classical language toolkit. https:

1858

//github.com/cltk/cltk. DOI 10.5281/zen-
odo.44555 v0.1.32.

[Kehrer2014] Timo Kehrer. 2014. Generierung konsisten-
zerhaltender editierskripte im kontext der modellver-
sionierung. In Wilhelm Hasselbring and Nils Chris-
tian Ehmke, editors, Software Engineering 2014,
Fachtagung des GI-Fachbereichs Softwaretechnik, 25.
Februar - 28. Februar 2014, Kiel, Deutschland, volume
227 of LNI, pages 57–58. GI.

[Lee2007] John Lee. 2007. A computational model of
text reuse in ancient literary texts. In Proceedings of
the 45th Annual Meeting of the Association of Com-
putational Linguistics, Prague, Czech Republic, pages
472–479. Association for Computational Linguistics.

[Madnani and Dorr2010] Nitin Madnani and Bonnie J.
Dorr. 2010. Generating phrasal and sentential para-
phrases: A survey of data-driven methods. Comput.
Linguist., 36(3):341–387, September.

[Mellerin2014] Laurence Mellerin. 2014. New ways of
searching with biblindex, the online index of biblical
quotations in early christian literature. In Claire Cli-
vaz, Andrew Gregory, and David Hamidovic, editors,
Digital Humanities in Biblical, Early Jewish and Early
Christian Studies, chapter 11, pages 175–192. Brill,
Leiden.

[Mellerin2016] Laurence Mellerin. 2016. Biblindex.
http://www.biblindex.mom.fr/.

[Miller et al.1990] George A. Miller, Richard Beckwith,
Christiane Fellbaum, Derek Gross, and Katherine J.
Miller. 1990. Introduction to wordnet: An on-line
lexical database. International Journal of Lexicography
(special issue), 3(4):235–312.

[Minozzi2009] Stefano Minozzi, 2009. Innsbrucker
Beitrge zur Sprachwissenschaft, volume 137, chapter
The Latin WordNet Project, pages 707–716. Institut
fr Sprachen und Literaturen der Universitt Innsbruck,
Innsbruck.

[Pantelia2014] Maria Pantelia. 2014. Thesaurus linguae
graecae. http://stephanus.tlg.uci.edu/
index.php.

[Patwardhan et al.2003] Siddharth Patwardhan, Satanjeev
Banerjee, and Ted Pedersen, 2003. Computational
Linguistics and Intelligent Text Processing: 4th Inter-
national Conference (CICLing), chapter Using Mea-
sures of Semantic Relatedness for Word Sense Disam-
biguation, pages 241–257. Springer Berlin Heidelberg,
Berlin, Heidelberg.

[Piotrowski2012] Michael Piotrowski. 2012. Natural Lan-
guage Processing for Historical Texts (Synthesis Lec-
tures on Human Language Technologies). Morgan &
Claypool Publishers.

[Rahlfs1935a] Alfred Rahlfs, editor. 1935a. Septuaginta.
Württembergische Bibelanstalt, 9 edition. 1971.

[Rahlfs1935b] Alfred Rahlfs, editor. 1935b. Septuaginta,
id est Vetus Testamentum Graece juxta LXX interpretes.
Rahlfs. 2 vol., 1950.

[Smith2010] William Smith. 2010. Catholic Church Mile-
stones: People and Events That Shaped the Institutional
Church. Indianapolis: Left Coast.

[Vinzent et al.2013] M. Vinzent, L. Mellerin, and H.A.G.
Houghton, editors. 2013. Biblical Quotations in Patris-
tic Texts (Studia Patristica 54). Theory and Applica-
tions of Natural Language Processing. Peeters, Leuven.

[vor der Brück et al.2015] Tim vor der Brück, Steffen
Eger, and Alexander Mehler. 2015. Lexicon-assisted
tagging and lemmatization in latin: A comparison of
six taggers and two lemmatization models. In Pro-
ceedings of the 9th SIGHUM Workshop on Language
Technology for Cultural Heritage, Social Sciences, and
Humanities (LaTeCH), pages 105–113, Beijing, China,
July. Association for Computational Linguistics.

[Weber R.1969 1994 2007] Gribomont J. Weber R., Fis-
cher B., editor. 1969, 1994, 2007. Biblia sacra juxta
vulgatam versionem. Deutsche Bibelgesellschaft.

[Zhao et al.2009] Shiqi Zhao, Xiang Lan, Ting Liu, and
Sheng Li. 2009. Application-driven statistical para-
phrase generation. In Proceedings of the Joint Con-
ference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP: Volume 2 - Volume
2, ACL ’09, pages 834–842, Stroudsburg, PA, USA.
Association for Computational Linguistics.

[Zitouni2014] Imed Zitouni. 2014. Natural language pro-
cessing of semitic languages.

1859

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1860–1870,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

A Graph Degeneracy-based Approach to Keyword Extraction ∗

Antoine J.-P. Tixier1, Fragkiskos D. Malliaros1,2, Michalis Vazirgiannis1
1Computer Science Laboratory, École Polytechnique, Palaiseau, France

2Department of Computer Science and Engineering, UC San Diego, La Jolla, CA, USA{
anti5662,fmalliaros,mvazirg

}
@lix.polytechnique.fr

Abstract

We operate a change of paradigm and hy-
pothesize that keywords are more likely to be
found among influential nodes of a graph-of-
words rather than among its nodes high on
eigenvector-related centrality measures. To
test this hypothesis, we introduce unsuper-
vised techniques that capitalize on graph de-
generacy. Our methods strongly and sig-
nificantly outperform all baselines on two
datasets (short and medium size documents),
and reach best performance on the third one
(long documents).

1 Introduction

Keyword extraction is a central task in NLP. It finds
applications from information retrieval (notably web
search) to text classification, summarization, and vi-
sualization. In this study, we focus on the task of
unsupervised single-document keyword extraction.
Following (Mihalcea and Tarau, 2004), we concen-
trate on keywords only, letting the task of keyphrase
reconstruction as a post-processing step.

More precisely, while we capitalize on a graph
representation of text like several previous ap-
proaches, we deviate from them by making the as-
sumption that keywords are not found among pres-
tigious nodes (or more generally, nodes high on
eigenvector-related centrality metrics), but rather
among influential nodes. Those nodes may not have
many important connections (like their prestigious
counterparts), but they are ideally placed at the core

∗This research is supported in part by the OpenPaaS::NG
project.

of the network. In other words, this switches the
objective from capturing the quality and quantity of
single node connections, to taking into account the
density and cohesiveness of groups of nodes. To op-
erate this change of paradigm, we propose several
algorithms that leverage the concept of graph degen-
eracy (Malliaros et al., 2016a).

Our contributions are threefold: (1) we propose
new unsupervised keyword extraction techniques
that reach state-of-the art performance, (2) we ap-
ply the K-truss algorithm to the task of keyword ex-
traction for the first time, and (3) we report new in-
sights on the interplay between window size, graph-
of-words structure, and performance.

2 Graph-of-Words Representation

Many ways of encoding text as a graph have been
explored in order to escape the very limiting term-
independence assumption made by the traditional
vector space model. In this study, we adopt the sem-
inal Graph-of-Words representation (GoW) of (Mi-
halcea and Tarau, 2004), for its simplicity, high his-
torical success, and above all because it was recently
used in several approaches that reached very good
performance on various tasks such as information
retrieval (Rousseau and Vazirgiannis, 2013), doc-
ument classification (Malliaros and Skianis, 2015;
Rousseau et al., 2015), event detection (Meladianos
et al., 2015), and keyword extraction (Rousseau and
Vazirgiannis, 2015).

While sophisticated variants of the GoW model
would be worth exploring (edge weights based on
mutual information or word embeddings, adaptive
window size, etc.), we aim here at making a bet-

1860

●

●

●

●

●

●

●

●

●

●

●

●

●

●

mathemat

aspect

computer−aid

share

trade

problem

statist

analysi

price

probabilist

characterist

seri

method

model

Edge weights

1
2
3
4
5

Core numbers

8
9
10
11

●

●

●

inf

shells

di
ffe

re
nc

e
in

 s
he

ll
si

ze
s

−
6

 −

4

 −
2

 0

 2

(10 − 11) (9 − 10) (8 − 9)

●

●

●

●

0.
38

0.
42

0.
46

0.
50

dens

k−cores

de
ns

ity

11 10 9 8

●

● ● ●

● ●
●

● ●
●

●

●

● ●

2 4 6 8 10 12 14

70
90

11
0

13
0TR

nodes

TR
 s

co
re

s

elbow
top 33%

Mathematical aspects of computer-aided share
trading. We consider problems of statistical
analysis of share prices and propose probabilistic
characteristics to describe the price series. We
discuss three methods of mathematical modelling
of price series with given probabilistic
characteristics.

Core numbers TR scores
P R F1 P R F1

MAIN 0.86 0.55 0.67 ELB 1 0.18 0.31
INF 0.83 0.91 0.87

PER 1 0.45 0.63DENS 0.88 0.64 0.74

mathemat 11 price .1359

price 11 share .0948

probabilist 11 .0906

characterist 11 .0870

seri 11 .0860

method 11 mathemat .0812

model 11 analysi .0633

share 10 statist .0595

trade 9 method .0569

problem 9 problem .0560

statist 9 trade .0525

analysi 9 model .0493

aspect 8 computer-aid .0453

computer-aid 8 aspect .0417

MAIN

INF

DENS

ELB

probabilist

characterist

seri

CR scores
P R F1

ELB 0.90 0.82 0.86

PER 1 0.45 0.63

mathemat 128

price 120

analysi 119

share 118

probabilist 112

characterist 112

statist 108

trade 97

problem 97

seri 94

method 85

computer-aid 76

model 66

aspect 65

PER

ELB

PER

(a)

(c)

(b)

●

●
●

● ●
●

●
●

● ●
●

●
●

●

2 4 6 8 10 12 14

0.
04

0.
08

0.
12

CR
elbow
top 33%

nodes

C
R

 s
co

re
s

Figure 1: (a) Graph-of-words (W = 8) for document #1512 of Hulth2003 decomposed with k-core (non-(nouns and
adjectives) in italic). (b) Keywords extracted by each proposed and baseline method (human assigned keywords in

bold). (c) Selection criterion of each method except main (does not apply).

ter use of an existing representation of text, not at
proposing a new one. This is why, to demonstrate
the additional skill brought by our proposed meth-
ods, we stick to the basic GoW framework.

As shown in Figure 1 (a), the GoW representation
of (Mihalcea and Tarau, 2004) encodes a piece of
text as an undirected graph where nodes are unique
nouns and adjectives in the document, and where
there is an edge between two nodes if the terms they
represent co-occur within a window of predeter-
mined sizeW that is slided over the entire document
from start to finish, overspanning sentences. Fur-
thermore, edges are assigned integer weights match-
ing co-occurrence counts. This fully statistical ap-
proach is based on the Distributional Hypothesis
(Harris, 1954), that is, on the premise that the re-
lationship between words can be determined by the
frequency with which they share local contexts of
occurrence.

3 Graph Degeneracy

The concept of graph degeneracy was introduced
by (Seidman, 1983) with the k-core decomposition
technique and was first applied to the study of cohe-
sion in social networks. Here, we consider it as an
umbrella term also encompassing the K-truss algo-
rithm (Cohen, 2008). In what follows, G(V,E) is a
graph with |V | nodes and |E| edges. Note that for
graphs-of-words, the nodes V are labeled according
to the unique terms they represent.

3.1 k-core subgraph
A core of order k (or k-core) of G is a maximal con-
nected subgraph of G in which every vertex v has
at least degree k (Seidman, 1983). If the edges are
unweighted, the degree of v is simply equal to the
count of its neighbors, while in the weighted case,
the degree of v is the sum of the weights of its in-
cident edges. Note that with the definition of GoW
previously given, node degrees (and thus, k) are in-
tegers in both cases since edge weights are integers.

1861

As shown in Figure 2 (a), the k-core decomposi-
tion ofG is the set of all its cores from 0 (G itself) to
kmax (its main core). It forms a hierarchy of nested
subgraphs whose cohesiveness and size respectively
increase and decrease with k (Seidman, 1983). The
main core ofG is a coarse approximation of its dens-
est subgraph (Wang and Cheng, 2012), and should
be seen as a seedbed within which it is possible to
find more cohesive subgraphs (Seidman, 1983). Fi-
nally, the core number of a node is the highest order
of a k-core subgraph that contains this node.

3.2 K-truss subgraph
K-truss is a triangle-based extension of k-core in-
troduced by (Cohen, 2008). More precisely, the K-
truss subgraph ofG is its largest subgraph where ev-
ery edge belongs to at least K−2 triangles. In other
words, every edge in the K-truss joins two vertices
that have at least K − 2 common neighbors. Com-
pared to k-core, K-truss thus does not iteratively
prune nodes out based on the number of their direct
links, but also based on the number of their shared
connections. This more accurately captures cohe-
siveness.

As a result, the K-trusses are smaller and denser
subgraphs than the k-cores, and the maximal K-
truss of G better approximates its densest subgraph.
In essence, and as illustrated in Figure 2 (b), the
K-trusses can be viewed as the essential parts of
the k-cores, i.e., what is left after the less cohesive
elements have been filtered out (Wang and Cheng,
2012). By analogy with k-core, the K-truss de-
composition of G is the set of all its K-trusses from
K = 2 to Kmax, and the truss number of an edge
is the highest order of a truss the edge belongs to.
By extension, we define the truss number of a node
as the maximum truss number of its incident edges.

3.3 k-shell
Depending on context, we will refer to the k-shell as
the part of the k-core (or truss) that is not included
in the (k + 1)-core (or truss).

3.4 Graph degeneracy and spreading influence
In social networks, it has been shown that the best
spreaders (i.e., the nodes able to propagate informa-
tion to a large portion of the network at minimal time
and cost) are not necessarily the highly connected

individuals (i.e., the hubs), but rather those located
at the core of the network (i.e., forming dense and
cohesive subgraphs with other central nodes), as in-
dicated by graph degeneracy algorithms (Kitsak et
al., 2010). Put differently, the spreading influence
of a node is related to its structural position within
the graph (density and cohesiveness) rather than to
its prestige (random walk-based degree). More re-
cently, (Malliaros et al., 2016b) found that the truss
number is an even better indicator of spreading in-
fluence than the core number. Motivated by these
findings, we posit that taking cohesiveness into ac-
count with the core and truss decomposition of a
graph-of-words could improve keyword extraction
performance. That way, by analogy with the notion
of influential spreaders in social networks, we hy-
pothesize that influential words in graphs-of-words
will act as representative keywords.

3.5 Complexity
(Batagelj and Zaveršnik, 2002) proposed O(|V | +
|E|) and O(|E| log |V |) time algorithms for k-core
decomposition in the unweighted (resp. weighted)
case. These algorithms are both O(|V |) in space.
Computing the K-truss decomposition is more ex-
pensive, and requires O(|E|1.5) time and O(|V | +
|E|) space (Wang and Cheng, 2012). Finally, build-
ing a graph-of-words is linear in time and space:
O(|V |W) and O(|V |+ |E|), respectively.

4 Related Work and Point of Departure

TextRank. One of the most popular approaches to
the task of unsupervised single-document keyword
extraction is TextRank (Mihalcea and Tarau, 2004),
or TR in what follows. In TR, the nodes of graphs-
of-words are ranked based on a modified version of
the PageRank algorithm taking edge weights into ac-
count, and the top p% vertices are kept as keywords.
Limitations. TR has proven successful and has
been widely used and adapted. However, PageR-
ank, which is based on the concept of random walks
and is also related to eigenvector centrality, tends
to favor nodes with many important connections
regardless of any cohesiveness consideration. For
undirected graphs, it was even shown that PageR-
ank values are proportional to node degrees (Grol-
musz, 2015). While well suited to the task of

1862

3-core

2-core

1-core

Core number c = 1 Core number c = 2 Core number c = 3

Main k-core subgraph
Main K-truss subgraph

a) b)

*
**

Figure 2: (a) k-core decomposition illustrative example. Note that while nodes * and ** have same degree (3), node
** makes a more influential spreader as it lies in a higher core than node *. (b) k-core versus K-truss. The main

K-truss subgraph can be considered as the core of the main core.

prestige-based ranking in the Web and social net-
works (among other things), PageRank may thus
not be ideal for keyword extraction. Indeed, a fun-
damental difference when dealing with text is the
paramount importance of cohesiveness: keywords
need not only to have many important connections
but also to form dense substructures with these con-
nections. Actually, most of the time, keywords are
n-grams (Rousseau and Vazirgiannis, 2015). There-
fore, we hypothesize that keywords are more likely
to be found among the influential spreaders of a
graph-of-words – as extracted by degeneracy-based
methods – rather than among the nodes high on
eigenvector-related centrality measures.

Topical vs. network coherence. Note that, un-
like a body of work that tackled the task of key-
word extraction and document summarization from
a topical coherence perspective (Celikyilmaz and
Hakkani-Tür, 2011; Chen et al., 2012; Christensen
et al., 2013), we deal here with network coherence,
a purely graph theoretic notion orthogonal to topical
coherence.

Graph degeneracy. The aforementioned limita-
tion of TR motivated the use of graph degeneracy to
not only extract central nodes, but also nodes form-
ing dense subgraphs. More precisely, (Rousseau and
Vazirgiannis, 2015) applied both unweighted and

weighted k-core decomposition on graphs-of-words
and retained the members of the main cores as key-
words. Best results were obtained in the weighted
case, with small main cores yielding good precision
but low recall, and significantly outperforming TR.
As expected, (Rousseau and Vazirgiannis, 2015) ob-
served that cores exhibited the desirable property of
containing “long-distance n-grams”.

In addition to superior quantitative performance,
another advantage of degeneracy-based techniques
(compared to TR, which extracts a constant percent-
age of nodes) is adaptability. Indeed, the size of
the main core (and more generally, of every level in
the hierarchy) depends on the structure of the graph-
of-words, which by nature is uniquely tailored to
the document at hand. Consequently, the distribu-
tion of the number of extracted keywords matches
more closely that of the human assigned keywords
(Rousseau and Vazirgiannis, 2015).
Limitations. Nevertheless, while (Rousseau and
Vazirgiannis, 2015) made great strides, it suffers the
following limitations: (1) k-core is good but not
best in capturing cohesiveness; (2) retaining only
the main core (or truss) is suboptimal, as one cannot
expect all the gold standard keywords to be found
within a unique subgraph – actually, many valu-
able keywords live in lower levels of the hierarchy
(see Figure 1); and (3) the coarseness of the k-core

1863

decomposition implies to work at a high granular-
ity level (selecting or discarding a large group of
words at a time), which diminishes the flexibility of
the extraction process and negatively impacts perfor-
mance.

Research objectives. To address the aforemen-
tioned limitations, we investigate in this study (1)
the use of K-truss to get a finer-grained hierarchy of
more cohesive subgraphs, in order to filter unwanted
words out of the upper levels and improve flexibil-
ity; (2) the automated selection of the best level in
the core (or truss) hierarchy to increase recall while
preserving most of the precision; and (3) the conver-
sion of node core (or truss) numbers into ranks, to
decrease granularity from the subgraph to the node
level, while still leveraging the valuable cohesive-
ness information captured by degeneracy.

5 Proposed Methods

In what follows, we introduce the strategies we de-
vised to implement our research objectives.

5.1 Density
With the underlying assumption that keywords are
found in cohesive subgraphs-of-words and are not
all contained in the main core (or truss), an intu-
itive, straightforward stopping criterion when going
down the core (or truss) hierarchy is a density-based
one. More precisely, it may be advantageous to go
down the hierarchy as long as the desirable cohesive-
ness properties of the main core or truss are main-
tained, and to stop when these properties are lost.
This strategy is more formally detailed in Algorithm
1, where G(V,E) is a graph-of-words, levels corre-
sponds to the vector of the nlevels unique k-core (or
truss) numbers of V sorted in decreasing order, and
the density of G is defined as:

density(G) =
|E|

|V | (|V | − 1)
(1)

As can be seen in Figure 1 (c) and as detailed in
Algorithm 2, the elbow is determined as the most
distant point from the line joining the first and last
point of the curve. When all points are aligned, the
top level is retained (i.e., main core or truss). When
there are only two levels, the one giving the highest
density is returned.

Algorithm 1: dens method
Input : core (or truss) decomposition of G
Output: set of keywords

1 D← empty vector of length nlevels
2 for n← 1 to nlevels do
3 D[n]← density(levels[n]-core (or truss))
4 end
5 kbest ← levels[elbow(n,D[n])]
6 return kbest-core (or truss) of G as keywords

Algorithm 2: elbow
Input : set of |S| ≥ 2 points

S =
{
(x0, y0), ..., (x|S|, y|S|)

}

Output: xelbow
1 line←

{
(x0, y0); (x|S|, y|S|)

}

2 if |S| > 2 then
3 distance← empty vector of length |S|
4 s← 1
5 for (x, y) in S do
6 distance[s]← distance from (x, y) to

line
7 s← s+ 1

8 end
9 if ∃!s | distance[s] = max(distance) then

10 xelbow ← x | (x, y) is most distant from
line

11 else
12 xelbow ← x0
13 end
14 else
15 xelbow ← x | y is maximum
16 end
17 return xelbow

5.2 Inflexion
The Inflexion method (inf in what follows) is an
empirically-grounded heuristic that relies on detect-
ing changes in the variation of shell sizes (where size
denotes the number of nodes). Recall from subsec-
tion 3.3 than the k-shell is the part of the k-core
(or truss) that does not survive in the (k + 1)-core
(or truss), that is, the subgraph of G induced by the
nodes with core (or truss) number exactly equal to
k. In simple terms, the inf rule-of-thumb consists
in going down the hierarchy as long as the shells in-

1864

crease in size, and stopping otherwise. More pre-
cisely, inf is implemented as shown in Algorithm
3, by computing the consecutive differences in size
across the shells and selecting the first positive point
before the drop into the negative half (see Figure 1c).
If no point satisfies this requirement, the main core
(or truss) is extracted.

Algorithm 3: inf method
Input : core (or truss) decomposition of G
Output: set of keywords

1 CD← empty vector of length n− 1
2 for n← 1 to (nlevels − 1) do
3 kl ← levels[n+ 1]; ku ← levels[n]
4 CD[n]←size

(
kl−shell

)
−size

(
ku−shell

)

5 end
6 if ∃n | (CD[n+ 1] < 0 ∧ CD[n] > 0) then
7 nbest ← n
8 else
9 nbest ← 1

10 end
11 kbest ← levels[nbest]
12 return kbest-core (or truss) as keywords

Note that both dens and inf enjoy the same
adaptability as the main core retention method of
(Rousseau and Vazirgiannis, 2015) explained in Sec-
tion 4, since the sizes of all the subgraphs in the hi-
erarchy suit the structure of the graph-of-words.

5.3 CoreRank
Techniques based on retaining the kbest-core (or
truss), such as dens and inf previously described, are
better than retaining only the top level but lack flex-
ibility, in that they can only select an entire batch
of nodes at a time. This is suboptimal, because of
course not all the nodes in a given group are equally
good. To address this issue, our proposed CoreRank
method (CR in what follows) converts nodes core
(or truss) numbers into scores, ranks nodes in de-
creasing order of their scores, and selects the top p%
nodes (CRP) or the nodes before the elbow in the
scores curve (CRE). Note that for simplicity, we still
refer to the technique as CR even when dealing with
truss numbers.

Flexibility is obviously improved by decreasing
granularity from the subgraph level to the node

level. However, to avoid going back to the lim-
itations of TR (absence of cohesiveness consider-
ations), it is crucial to decrease granularity while
retaining as much of the desirable information en-
coded by degeneracy as possible. To accomplish this
task, we followed (Bae and Kim, 2014) and assigned
to each node the sum of the core (or truss) numbers
of its neighbors.

Our CRE method is outlined in Algorithm 4,
where N(v) denotes the set of neighbors of vertex
v, and number(v) is the core (or truss) number of
v. CRP implements the exact same strategy, the only
difference being nbest ← round(|V | ∗ percentage)
at step 8 (where percentage is a real number be-
tween 0 and 1).

Algorithm 4: CRE method
Input : core (or truss) decomposition of G
Output: set of keywords

1 CR← empty vector of length |V |
2 for n← 1 to |V | do
3 v ← V [n]
4 CR[n]←∑

u∈N(v) number(u)

5 name(CR[n])← label(v)

6 end
7 sort CR in decreasing order
8 nbest ← elbow(n,CR[n])
9 return names(CR[1 : nbest]) as keywords

6 Experimental Setup

6.1 Baseline methods
TextRank (TR). We used as our first benchmark the
system of (Mihalcea and Tarau, 2004) discussed in
Section 4. For the sake of fair comparison with our
CRE and CRP methods, we considered two variants
of TR that respectively retain nodes based on both
the elbow (TRE) and percentage criteria (TRP).
Main. Our second baseline is the main core re-
tention technique of (Rousseau and Vazirgiannis,
2015), also described in Section 4. This method is
referred to as main in the remainder of this paper.

6.2 Datasets
To evaluate performance, we used three standard,
publicly available datasets featuring documents of

1865

various types and sizes. Figure 3 shows the distribu-
tions of document size and manually assigned key-
words for each dataset.

The Hulth20031 (Hulth, 2003) dataset contains
abstracts drawn from the Inspec database of physics
and engineering papers. Following our baselines, we
used the 500 documents in the validation set and the
“uncontrolled” keywords assigned by human anno-
tators. The mean document size is 120 words and
on average, 21 keywords (in terms of unigrams) are
available for each document.

We also used the training set of Marujo20121,
containing 450 web news stories of about 440 words
on average, covering 10 different topics from art and
culture to business, sport, and technology (Marujo et
al., 2012). For each story, the keyphrases assigned
by at least 9 out of 10 Amazon Mechanical Turk-
ers are provided as gold standard. After splitting the
keyphrases into unigrams, this makes for an aver-
age of 68 keywords per document, which is much
higher than for the two other datasets, even the one
comprising long documents (Semeval, see next).

The Semeval2 dataset (Kim et al., 2010) offers
parsed scientific papers collected from the ACM
Digital Library. More precisely, we used the 100
articles in the test set and the corresponding author-
and-reader-assigned keyphrases. Each document is
approximately 1,860 words in length and is associ-
ated with about 24 keywords.

Notes. In Marujo2012, the keywords were as-
signed in an extractive manner, but many of them
are verbs. In the two other datasets, keywords were
freely chosen by human coders in an abstractive way
and as such, some of them are not present in the orig-
inal text. On these datasets, reaching perfect recall is
therefore impossible for our methods (and the base-
lines), which by definition all are extractive.

6.3 Implementation
Before constructing the graphs-of-words and pass-
ing them to the keyword extraction methods, we per-
formed the following pre-processing steps:

Stopwords removal. Stopwords from the
1https://github.com/snkim/

AutomaticKeyphraseExtraction
2https://github.com/boudinfl/centrality_

measures_ijcnlp13/tree/master/data

0
50

0
15

00
25

00
0

50
0

15
00

25
00

document size (in words)

0
20

40
60

80
10

0
14

0
0

20
40

60
80

10
0

14
0

number of manually
assigned keywords

Hulth2003 SemevalMarujo2012Hulth2003 SemevalMarujo2012

Figure 3: Basic dataset statistics.

SMART information retrieval system3 were dis-
carded.

Part-of-Speech tagging and screening using the
openNLP (Hornik, 2015) R (R Core Team, 2015)
implementation of the Apache OpenNLP Maxent
POS tagger. Then, following (Mihalcea and Tarau,
2004), only nouns and adjectives were kept. For
Marujo2012, as many gold standard keywords are
verbs, this step was skipped (note that we did exper-
iment with and without POS-based screening but got
better results in the second case).

Stemming with the R SnowballC package
(Bouchet-Valat, 2014) (Porter’s stemmer). Gold
standard keywords were also stemmed.

After pre-processing, graphs-of-words (as de-
scribed in Section 2) were constructed for each doc-
ument and various window sizes (from 3, increasing
by 1, until a plateau in scores was reached). We used
the R igraph package (Csardi and Nepusz, 2006)
to write graph building and weighted k-core imple-
mentation code. For K-truss, we used the C++ im-
plementation offered by (Wang and Cheng, 2012).

Finally, for TRP and CRP, we retained the
top 33% keywords on Hulth2003 and Marujo2012
(short and medium size documents), whereas on Se-
meval (long documents), we retained the top 15 key-
words. This is consistent with our baselines. In-
deed, the number of manually assigned keywords in-
creases with document size up to a certain point, and
stabilizes afterwards.

The code of the implementation and the datasets
can be found here4.

3http://jmlr.org/papers/volume5/
lewis04a/a11-smart-stop-list/english.stop

4https://github.com/Tixierae/EMNLP_2016

1866

5
1

0
1

5
2

0
2

5

3 4 5 6 7 8 9 10 12 14

4
6

8
1

2
1

6

Hulth 2003

1311

11
1
3

C
or

e
nu

m
be

r
Tr

us
s

nu
m

be
r

●●●

●●

●●

●
●●●●●

●
●●●●●

●

●●●
●

●

●●●●

●

●

●

●●
●●

●

●

●

●

●●●●

●

●

●

●●
●●
●

●

●

●●●
●●

●
●

●

●●●

●●●

●●

0
5

0
0

0
1

0
0

0
0

2
0

0
0

0

3 4 5 6 7 8 9 10 11 12 13 14

Figure 4: Triangle count versus window size
(Hulth2003).

7 Experimental Results

7.1 Evaluation
We computed the standard precision, recall, and F-1
measures for each document and averaged them at
the dataset level (macro-averaging).

7.2 Precision/Recall trade-off
As shown in Figure 5, our methods dens and inf
outperform the baselines by a wide margin on the
datasets containing small and medium size docu-
ments (Hulth2003 and Marujo2012). As expected,
this superiority is gained from a drastic improve-
ment in recall, for a comparatively lower precision
loss. TR and main exhibit higher precision than
recall, which is in accordance with (Rousseau and
Vazirgiannis, 2015). The same observation can be
made for our CR method. For TR, the unbalance
is more severe on the Hulth2003 and Marujo2012
datasets (short/medium documents) when the elbow
method is used (TRE), probably because it tends to
retain only a few nodes. However, on Semeval (long
documents), using the elbow method (TRE) gives
the best trade-off between precision and recall. For
CR, still on Semeval, using the elbow method (CRE)
even gives better recall than precision.

Overall, compared to the baselines, the unbalance
between precision and recall for our methods is less
extreme or equivalent. On the Marujo2012 dataset
for instance, our proposed inf method is almost per-
fectly balanced and ranks second (significantly bet-
ter than all baselines).

7.3 Impact of window size
The performance of k-core does not dramatically
increase with window size, while K-truss exhibits

precision recall F1-score
dens 48.79 72.78 56.09*

inf 48.96 72.19 55.98*
CRP 61.53 38.73 45.75
CRE 65.33 37.90 44.11

main† 51.95 54.99 50.49
TRP† 65.43 41.37 48.79
TRE† 71.34 36.44 45.77

Table 1: Hulth2003, K-truss, W = 11.
*statistical significance at p < 0.001 with respect to all baselines.

†baseline systems.

precision recall F1-score
dens 47.62 71.46 52.94*

inf 53.88 57.54 49.10*
CRP 54.88 36.01 40.75
CRE 63.17 25.77 34.41

main† 64.05 34.02 36.44
TRP† 55.96 36.48 41.44
TRE† 65.50 21.32 30.68

Table 2: Marujo2012, k-core, W = 13.
*statistical significance at p < 0.001 with respect to all baselines.

†baseline systems.

a surprising “cold start” behavior and only begins
to kick-in for sizes greater than 4-5. A possible
explanation is that the ability of K-truss (which
is triangle-based) to extract meaningful information
from a graph depends, up to a certain point, on
the amount of triangles in the graph. In the case
of graph-of-words, the number of triangles is pos-
itively correlated with window size (see Figure 4).
It also appears that document size (i.e., graph-of-
words structure) is responsible for a lot of perfor-
mance variability. Specifically, on longer docu-
ments, performance plateaus at higher window sizes.

7.4 Best models comparison
For each dataset, we retained the degeneracy tech-
nique and window size giving the absolute best per-
formance in F1-score, and compared all methods un-
der these settings (see Tables 1–3). We tested for
statistical significance in macro-averaged F1 scores
using the non-parametric version of the t-test, the
Mann-Whitney U test5.

On Hulth2003 and Marujo2012 (short and
medium size documents), our methods dens and inf
strongly and significantly outperform all baselines,
with respective absolute improvements of more than
5.5% with respect to the best performing baseline

5https://stat.ethz.ch/R-manual/R-
devel/library/stats/html/wilcox.test.html

1867

4 6 8 10 12 14

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

PR
EC

IS
IO
N

●
●

● ● ● ●
● ● ● ● ● ●

4 6 8 10 12 14

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

● ● ● ● ● ● ● ● ● ● ● ●

4 6 8 10 12 14

0.
40

0.
45

0.
50

0.
55

0.
60

window size

●
●

● ●
● ● ● ● ● ● ● ●

k−truss
Hulth 2003

● ●
● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ● ●

0.
40

0.
45

0.
50

0.
55

0.
60

4 6 8 10 12 14

window size

4 6 8 10 12 14

4 6 8 10 12 14

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

k−core
R
EC

A
LL

F1
 S
C
O
R
E

5 10 15 20

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

● ●
● ● ● ●

● ● ● ● ● ● ● ● ●
●

●
●

5 10 15 20

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

● ●
● ● ● ●

● ● ● ● ● ● ● ● ●
●

●
●

5 10 15 20

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

k−truss
Marujo 2012k−core

window sizewindow size

TRP ● TRE maininf CRP CREdens

Semeval
k−trussk−core

5 10 15 20

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

window sizewindow size

Figure 5: Impact of window size on performance.

precision recall F1-score
dens 8.44 79.45 15.06

inf 17.70 65.53 26.68
CRP 49.67 32.88 38.98*
CRE 25.82 58.80 34.86

main† 25.73 49.61 32.83
TRP† 47.93 31.74 37.64
TRE† 33.87 46.08 37.55

Table 3: Semeval, K-truss, W = 20.
*statistical significance at p < 0.001 w.r.t. main. †baseline systems.

(main). On Semeval, which features larger pieces
of text, our CRP technique improves on TRP, the
best performing baseline, by more than 1 %, altough
the difference is not statistically significant. How-
ever, CRP is head and shoulders above main, with an
absolute gain of 6%. This suggests that converting
the cohesiveness information captured by degener-
acy into ranks may be valuable for large documents.

Finally, the poor performance of the dens and inf
methods on Semeval (Table 3) might be explained
by the fact that these methods are only capable of
selecting an entire batch of nodes (i.e., subgraph-
of-words) at a time. This lack of flexibility seems
to become a handicap on long documents for which

the graphs-of-words, and thus the subgraphs corre-
sponding to the k-core (or truss) hierarchy levels, are
very large. This analysis is consistent with the ob-
servation that conversely, approaches that work at a
finer granularity level (node level) prove superior on
long documents, such as our proposed CRP method
which reaches best performance on Semeval.

8 Conclusion and Future Work

Our results provide empirical evidence that spread-
ing influence may be a better “keywordness” met-
ric than eigenvector (or random walk)-based crite-
ria. Our CRP method is currently very basic and
leveraging edge weights/direction or combining it
with other scores could yield better results. Also,
more meaningful edge weights could be obtained
by merging local co-occurrence statistics with exter-
nal semantic knowledge offered by pre-trained word
embeddings (Wang et al., 2014). The direct use of
density-based objective functions could also prove
valuable.

1868

References
Joonhyun Bae and Sangwook Kim. 2014. Identifying

and ranking influential spreaders in complex networks
by neighborhood coreness. Physica A: Statistical Me-
chanics and its Applications, 395:549–559.

Vladimir Batagelj and Matjaž Zaveršnik. 2002. General-
ized cores. arXiv preprint cs/0202039.

Milan Bouchet-Valat, 2014. SnowballC: Snowball stem-
mers based on the C libstemmer UTF-8 library. R
package version 0.5.1.

Asli Celikyilmaz and Dilek Hakkani-Tür. 2011. Discov-
ery of topically coherent sentences for extractive sum-
marization. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pages 491–
499. Association for Computational Linguistics.

Yun-Nung Chen, Yu Huang, Hung-Yi Lee, and Lin-Shan
Lee. 2012. Unsupervised two-stage keyword extrac-
tion from spoken documents by topic coherence and
support vector machine. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 5041–5044. IEEE.

Janara Christensen, Stephen Soderland Mausam, Stephen
Soderland, and Oren Etzioni. 2013. Towards coher-
ent multi-document summarization. In HLT-NAACL,
pages 1163–1173. Citeseer.

Jonathan Cohen. 2008. Trusses: Cohesive subgraphs
for social network analysis. National Security Agency
Technical Report, page 16.

Gabor Csardi and Tamas Nepusz. 2006. The igraph soft-
ware package for complex network research. Inter-
Journal, Complex Systems:1695.

Vince Grolmusz. 2015. A note on the pagerank of
undirected graphs. Information Processing Letters,
115(6):633–634.

Zellig S Harris. 1954. Distributional structure. Word,
10(2-3):146–162.

Kurt Hornik, 2015. openNLP: Apache OpenNLP Tools
Interface. R package version 0.2-5.

Anette Hulth. 2003. Improved automatic keyword ex-
traction given more linguistic knowledge. In Proceed-
ings of the 2003 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 216–
223. Association for Computational Linguistics.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and Timo-
thy Baldwin. 2010. Semeval-2010 task 5: Automatic
keyphrase extraction from scientific articles. In Pro-
ceedings of the 5th International Workshop on Seman-
tic Evaluation, pages 21–26. Association for Compu-
tational Linguistics.

Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin,
Fredrik Liljeros, Lev Muchnik, H Eugene Stanley, and

Hernán A Makse. 2010. Identification of influen-
tial spreaders in complex networks. Nature Physics,
6(11):888–893.

Fragkiskos D Malliaros and Konstantinos Skianis. 2015.
Graph-based term weighting for text categorization.
In Proceedings of the 2015 IEEE/ACM International
Conference on Advances in Social Networks Analysis
and Mining, pages 1473–1479. ACM.

Fragkiskos D. Malliaros, Apostolos N. Papadopoulos,
and Michalis Vazirgiannis. 2016a. Core decompo-
sition in graphs: concepts, algorithms and applica-
tions. In Proceedings of the 19th International Confer-
ence on Extending Database Technology, EDBT, pages
720–721.

Fragkiskos D Malliaros, Maria-Evgenia G Rossi, and
Michalis Vazirgiannis. 2016b. Locating influen-
tial nodes in complex networks. Scientific Reports,
6:19307.

Luis Marujo, Anatole Gershman, Jaime Carbonell,
Robert Frederking, and Jo ao P. Neto. 2012. Su-
pervised topical key phrase extraction of news stories
using crowdsourcing, light filtering and co-reference
normalization. In Proceedings of LREC 2012. ELRA.

Polykarpos Meladianos, Giannis Nikolentzos, François
Rousseau, Yannis Stavrakas, and Michalis Vazirgian-
nis. 2015. Degeneracy-based real-time sub-event de-
tection in twitter stream. In Ninth International AAAI
Conference on Web and Social Media (ICWSM).

Rada Mihalcea and Paul Tarau. 2004. TextRank: bring-
ing order into texts. In Proceedings of the 2004 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational
Linguistics.

R Core Team, 2015. R: A Language and Environment
for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria.

François Rousseau and Michalis Vazirgiannis. 2013.
Graph-of-word and tw-idf: new approach to ad hoc
ir. In Proceedings of the 22nd ACM international con-
ference on Conference on Information & Knowledge
Management (CIKM), pages 59–68. ACM.

François Rousseau and Michalis Vazirgiannis. 2015.
Main core retention on graph-of-words for single-
document keyword extraction. In Advances in Infor-
mation Retrieval, pages 382–393. Springer.

François Rousseau, Emmanouil Kiagias, and Michalis
Vazirgiannis. 2015. Text categorization as a graph
classification problem. In ACL, volume 15, page 107.

Stephen B Seidman. 1983. Network structure and mini-
mum degree. Social networks, 5(3):269–287.

Jia Wang and James Cheng. 2012. Truss decomposition
in massive networks. Proceedings of the VLDB En-
dowment, 5(9):812–823.

1869

Rui Wang, Wei Liu, and Chris McDonald. 2014. Corpus-
independent generic keyphrase extraction using word
embedding vectors. In Software Engineering Research
Conference, page 39.

1870

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1871–1881,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Predicting the Relative Difficulty of Single Sentences
With and Without Surrounding Context

Elliot Schumacher
Carnegie Mellon University

eschumac@cs.cmu.edu

Maxine Eskenazi
Carnegie Mellon University

max@cs.cmu.edu

Gwen Frishkoff
University of Oregon

gfrishkoff@gmail.com

Kevyn Collins-Thompson
University of Michigan

kevynct@umich.edu

Abstract

The problem of accurately predicting rela-
tive reading difficulty across a set of sen-
tences arises in a number of important natu-
ral language applications, such as finding and
curating effective usage examples for intelli-
gent language tutoring systems. Yet while
significant research has explored document-
and passage-level reading difficulty, the spe-
cial challenges involved in assessing aspects
of readability for single sentences have re-
ceived much less attention, particularly when
considering the role of surrounding passages.
We introduce and evaluate a novel approach
for estimating the relative reading difficulty of
a set of sentences, with and without surround-
ing context. Using different sets of lexical and
grammatical features, we explore models for
predicting pairwise relative difficulty using lo-
gistic regression, and examine rankings gener-
ated by aggregating pairwise difficulty labels
using a Bayesian rating system to form a final
ranking. We also compare rankings derived
for sentences assessed with and without con-
text, and find that contextual features can help
predict differences in relative difficulty judg-
ments across these two conditions.

1 Introduction

The reading difficulty, or readability, of a text is
an estimate of linguistic complexity and is typically
based on lexical and syntactic features, such as text
length, word frequency, and grammatical complex-
ity (Collins-Thompson and Callan, 2004; Schwarm
and Ostendorf, 2005; Kidwell et al., 2011; Kanungo
and Orr, 2009). Such estimates are often expressed

as age- or grade-level measures and are useful for
a range of educational and research applications.
For example, instructors often wish to select stories
or books that are appropriately matched to student
grade level.

Many measures have been designed to calculate
readability at the document level (e.g., for web
pages, articles, or books) (Collins-Thompson and
Callan, 2004; Schwarm and Ostendorf, 2005), as
well as the paragraph or passage level (Kidwell et
al., 2011; Kanungo and Orr, 2009). However, much
less work has attempted to characterize the readabil-
ity of single sentences (Pilán et al., 2014). This
problem is challenging because single sentences
provide less data than is typically required for re-
liable estimates, particularly for measures that rely
on aggregate statistics.

The absence of reliable single-sentence estimates
points to a gap in natural language processing (NLP)
research. Single sentences are used in a variety of
experimental and NLP applications: for example,
in studies of reading comprehension. Because read-
ability estimates have been shown to predict a sub-
stantial portion of variance in comprehension of dif-
ferent texts, it would be useful to have measures of
single-sentence readability. Thus, one aim of the
current study was to estimate the relative readabil-
ity of single sentences with a high degree of accu-
racy. To our knowledge, general-purpose methods
for computing such estimates for native language
(L1) readers have not been developed, and thus our
goal was to develop a method that would character-
ize sentence-level difficulty for that group.

The second aim is to compare the readability of
single sentences in isolation with the readability of

1871

these same sentences embedded in a larger context
(e.g., paragraph, passage, or document). When a
single sentence is extracted from a text, it is likely to
contain linguistic elements, such as anaphora (e.g.,
“he” or “the man”), that are semantically or syn-
tactically dependent on surrounding context. Not
surprisingly, sentences that contain these contextual
dependencies take more effort to comprehend: an
anaphoric noun phrase, or NP (e.g., “he”), automati-
cally triggers the need to resolve reference, typically
by understanding the link between the anaphor and
a full NP from a previous sentence (e.g., “John” or
“The man that I introduced you to at the party last
night” (Perfetti and Frishkoff, 2008). In general,
studies have shown a link between reading com-
prehension and the presence of such cross-sentence
relationships in the text (McNamara, 2001; Lieder-
holm et al., 2000; Voss and Silfies, 1996). This im-
plies that the very notion of readability at the sen-
tence level may depend on context as well as word-
and sentence-level features. Therefore, it is impor-
tant to compare readability estimates for single sen-
tences that occur in isolation with those that occur
within a larger passage, particularly if the target sen-
tence contains coreferences, implied meanings, or
other dependencies with its context.

To address these aims, the present study first con-
ducted two crowdsourcing experiments. In the first,
‘sentence-only’ experiment, workers were asked to
judge which of two “target” sentences they thought
was more difficult. In the second, ‘sentence-in-
passage’ experiment, another group of workers was
presented with the same target sentences that were
used in the first experiment. However, in the second
experiment, target sentences were embedded in their
original contexts.

Next, we analyzed these judgments of relative
readability for each condition (sentence-only ver-
sus sentence-in-passage) by developing models for
predicting pairwise relative difficulty of sentences.
These models used a rich representation of target
sentences based on a combination of lexical, syntac-
tic, and discourse features. Significant differences
were found in readability judgments for sentences
with and without their surrounding context. This
demonstrates that discourse-level features (i.e., fea-
tures related to coherence and cohesion) can affect
the readability of single sentences.

2 Related Work

Recent approaches to estimating readability have
used a variety of linguistic features and predic-
tion models (Collins-Thompson, 2014). The Lex-
ile Framework (Stenner, 1996) uses word frequency
estimates in a large corpus as a proxy for lexi-
cal difficulty, and sentence length as a grammati-
cal feature. Methods based on statistical machine
learning, such as the reading difficulty measures de-
veloped by Collins-Thompson and Callan (Collins-
Thompson and Callan, 2004) and (Schwarm and Os-
tendorf, 2005) used a feature set based on language
models. Later work (Heilman et al., 2008) incorpo-
rated grammatical features by parsing the sentences
in a text, and creating subtrees of one- to three-level
depth as separate features. Such features allow more
detailed, direct analysis of the sentence structure it-
self instead of traditional proxies for syntactic com-
plexity likes sentence length. The linguistic features
proposed in these works capture specific aspects of
language difficulty applied at the document level,
whereas our work investigates the effectiveness of
these feature types for characterizing aspects of dif-
ficulty at the sentence level.

Methods have been proposed to measure the read-
ability of shorter portions of text (e.g. typically less
than 100 words), including sentences. The approach
most similar to ours is the prediction of relative sen-
tence difficulty (with associated readability ranking)
for the deaf introduced by Inui et al. (2001). That
work focused on effective morphosyntactic features
for that target population with an SVM binary clas-
sifier, whereas our approach (1) is intended for a
broader population of L1 learners and thus explores
the effectiveness of adding a rich, lexically-derived
feature set, (2) uses a logistic regression model to es-
timate class probabilities and interprets the results of
that model, compared to applying an SVM without
interpretation to obtain a binary label, (3) examines
differences in predicting sentence difficulty both in
and out of passage context, and (4) creates and uses a
new dataset based on a crowdsourced approach, us-
ing hundreds of non-experts to gather thousands of
pairwise preferences, compared to a questionnaire
deployed to a small number of experts. In other do-
mains, a model was proposed to predict the read-
ability of short web summaries in Kanungo and Orr
2009. In Kidwell et al. (2011), , a set of Age of

1872

Acquisition estimates for individual words, repre-
senting the lexical component of difficulty, was used
to predict the grade levels of passages. Some ap-
proaches have explored the classification of specific
aspects of sentences, as opposed to reading difficulty
classification. For example, (Pilán et al., 2014) clas-
sified individual sentences that would be understood
by second-language learners. Another work (Kil-
garriff et al., 2008) identified sentences that would
be good dictionary examples by looking for specific
desirable features. Davenport et al. 2014 used a
traditional method of readability (Flesch-Kincaid),
within the larger context of exploring relationships
between the difficulty of tweets in a geographic area
and demographics. Research in text simplification
has applied sentence-level models of difficulty as
part of simplification-based optimization objectives.
For example, Woodsend and Lapata (2011) use word
and syllable count as proxy features for sentence dif-
ficulty when implicitly comparing different simpli-
fied variants of a sentence.

Other approaches have considered the relation-
ship of reading difficulty to structures within in the
whole text. These relationships can include the num-
ber of coreferences present in a text. Coh-Metrix
(Graesser et al., 2011) measures text cohesiveness,
accounting for both the reading difficulty of the text
and other lexical and syntactic measures as well as
a measure of prior knowledge needed for compre-
hension, and the genre of the text. Coh-Metrix uses
co-reference detection as a factor in the cohesive-
ness of a text, typically at the document or passage
level. Such cohesiveness factors account for the dif-
ficulty of constructing the mental representation of
texts with more complex internal structure. TextE-
valuator (Sheehan et al., 2013; Sheehan et al., 2014)
is designed to help educators select materials for in-
struction. The tool includes several components in
its evaluation of text, including narrativity, style, and
cohesion, beyond traditional difficulty and is again
at the whole document level. This approach illus-
trates that the difficulty of a text relies on the rela-
tionships within it. This motivates the need to con-
sider context when measuring difficulty.

Generating reading difficulty rankings of longer
texts from pairwise preferences has been performed
in other contexts. Tanaka-Ishii et al. (2010) explored
an approach for sorting texts by readability based on

pairwise preferences. Later, Chen et al. (2013) also
proposed a model to obtain passage readability rank-
ing by aggregating pairwise comparisons made by
crowdworkers. In De Clercq et al.(2014), pairwise
judgments of whole passages were obtained from
crowdworkers and were found to give comparable
results in aggregate to those obtained from experts.
A pairwise ranking of text readability was created in
Pitler and Nenkova (2008) in which readability was
defined by subjective questions asked to the reader
after finishing the article, such as “How well-written
is this article?”. All of the above previous work was
focused on ordering longer text passages, not single
sentences as we do here.

Finally, research in the Machine Translation field
has explored pairwise prediction of the best transla-
tion between two sentence options. For example, in
Song and Cohn (2011), a pairwise prediction model
was built using n-gram precision and recall, as well
as function, content, and word counts. However, un-
like pairwise prediction of difficulty, the prediction
is done with respect to a reference sentence, or set
of reference sentences.

3 Data Collection and Processing

We now describe methods used to create our dataset
of sentences, to collect pairwise assessments of dif-
ficulty, and to aggregate these pairwise preferences
into a complete ranking.

3.1 Data Set

The study sentences were drawn from a corpus com-
bining the American National Corpus (Reppen et
al., 2005), the New York Times Corpus (Sandhaus,
2008), and the North American News Text Corpus
(McClosky et al., 2008). The domain of these cor-
pora is largely news text, but also includes other top-
ics, such as travel guides and other non-fiction. In to-
tal, this database contains 60,663,803 sentences that
served as initial candidates. Sentences were filtered
out that didn’t include one of the 70 target words
that the third author selected for a study on teach-
ing vocabulary to 8-14 year-old students. Other sen-
tences were removed based on length, keeping only
sentences of between 6 and 20 words. Some sen-
tences were removed due to the presence of one or
more rare words. Finally, sentences were annotated
with the surrounding document reading level, us-

1873

ing a lexical readability model (Collins-Thompson
and Callan, 2004).The data set gathered by (Collins-
Thompson and Callan, 2004) was used in order to
add to the amount of lower-level reading material in
the collected corpora.

With these sentences, two crowdsourced tasks
were prepared to gather pairwise assessments of sen-
tence reading difficulty. In one task, the sentences
were presented alone, outside of their original pas-
sage context. In the other task, the same sentences
were presented within their original passage context.
The objective was to generate two sets of pairwise
comparisons of the readability of a sentence. In to-
tal, 120 sentence pairs were used for the first task
and 120 passage pairs were used for the second.
Each sentence was compared to five others, which
created 300 comparisons in each task. The five sen-
tences matched to each sentence were selected to en-
sure that pairs with a range of document level differ-
ences would be created. Within each type of pair, a
random pair was selected.

There were several constraints when generating
pairs for comparison. To allow for sentences to be
taken from documents with a range of reading lev-
els, sentences were selected evenly from documents
at each reading level. From the twelve standard U.S.
grade levels used in readability, each document was
considered to be part of a bin consisting of two ad-
jacent grade levels, such as grades 1 and 2, for ex-
ample. Sentences were selected evenly from those
bins.

Each sentence needed sufficient context to ensure
there would be equivalent context for each item that
would be compared, so only passages of sufficient
size were included. To ensure passages were of
similar length, only passages that had between 136
and 160 words were included. Contexts having at
least two sentences before and after the sentence
in question were strongly preferred. Each selected
sentence was paired with one sentence from each
of the other grade level bins. For example, a sen-
tence from grade 1 would be paired with one sen-
tence each from grade 3-4, 5-6, 7-8, 9-10, and 11-
12. Finally, each pair of sentences was presented in
AB and BA order. For each pair, there were seven
worker decisions. There were 296 unique workers
for the sentence-only task, and 355 for the sentence-
in-passage task.

3.2 Crowdsourcing

Both of these tasks were carried out on the Crowd-
flower platform. The workers were first given in-
structions for each task, which included a descrip-
tion of the general purpose of the task. In the
sentence-only task, workers were asked to select
which of the two sentences was more difficult. In
the sentence-within-passage task, workers were sim-
ilarly asked to decide which underlined sentence
was more difficult. The instructions for the latter re-
quested that the workers make their judgment only
on the sentence, not on the whole context. In both
tasks, there was an option for “I don’t know or can’t
decide”. The workers were asked to make their deci-
sion based on the vocabulary and grammatical struc-
ture of the sentences. Finally, examples for each task
were provided with explanations for each answer.

For each task, at least 40 gold standard ques-
tions were created from pairs of sentences that were
judged to be sufficiently distinct from one another
so that they could easily be answered correctly. For
the sentence-in-passage task, several gold standard
questions were written to verify that the instruc-
tions were being followed, since it was possible that
a worker might judge the sentences based on the
quality of the passage alone. These gold examples
consisted of an easier sentence in a difficult pas-
sage compared with a difficult sentence within an
easy passage. For each task, the worker saw three
questions, including one gold standard question. A
worker needed to maintain an 85% accuracy rating
on gold standard questions to continue, and needed
to spend at least 25 seconds per page, which con-
tained 3 questions each.

A weighted disagreement rate was calculated for
each worker. If a worker’s response to a ques-
tion differed from the most frequent answer to that
question, the percentage of agreement was counted
against the worker. If a worker, for the sentence-
only task, had a disagreement rate (the weighted
disagreement penalty divided by the total questions
they answered) of 15% or higher, their contribution
was removed from the data set (or 17% or higher for
the sentence in passage task). The agreement for the
sentence-in-passage task is lower than the sentence-
only task (88.93% and 90.33% respectively), so the
permitted disagreement level is higher for that task.
This resulted in the removal of 5.7% and 4.5% of

1874

pairwise judgments, respectively. For each ques-
tion, there was an optional text form to allow work-
ers to submit feedback. The sentence-only task paid
11 cents per page, and the sentence-in-passage task
paid 22 cents per page.

3.3 Ranking Generation

Each task resulted in 4,200 pairwise preference
judgments, excluding gold-standard answers. To
aggregate these pairwise preferences into an over-
all ranking of sentences, we use a simple, publicly
available approach evaluated by Chen et al. as be-
ing competitive with their own Crowd-BT aggre-
gation method: the Microsoft Trueskill algorithm
(Herbrich et al., 2007). Trueskill is a Bayesian skill
rating system that generalized the well-known Elo
rating system, in that it generates a ranking from
pairwise decisions. As Trueskill’s ranking algorithm
depends on the order in which the samples are pro-
cessed, we report the ranking as an average of 50
runs.

The judgments were not aggregated for each com-
parison. Instead, each of the judgments was treated
individually. This allows Trueskill to consider the
degree of agreement between workers, since a sen-
tence judgment that has high agreement reflects a
larger difference in ranking than one that has lower
agreement. Each sentence was considered a player,
and the winner between two, A or B, was the sen-
tence considered most difficult. If a worker chose
“I don’t know or can’t tell”, it was considered a
draw. The prediction resulting in “I don’t know or
can’t tell” is rare; 2.2% of decisions in the sentence
only task resulted in a draw, and 2.0% for sentences
within passages. After processing each of the judg-
ments, a rating can be built of sentences, ranked
from least difficult to most difficult. We can com-
pare the resulting rankings for the sentence-only task
and the sentence-in-passage task to see the effect of
context on relative sentence difficulty.

4 Modeling Pairwise Relative Difficulty

Our first step in exploring relative difficulty order-
ing for a set of sentences was to develop a model
that could accurately predict relative difficulty for a
single pair of sentences, corresponding to the pair-
wise judgements of relative difficulty we gathered
from the crowd. We did this for both the sentence-

only and the sentence-in-passage tasks. In predict-
ing a pairwise judgment for the sentence-only task,
the model uses only the sentence texts. In the model
for the sentence-in-passage task, the Stanford De-
terministic Coreference Resolution System (Raghu-
nathan et al., 2010) is used to find coreference chains
within the passage. From these coreference chains,
sentences with references to and from the target sen-
tence can be identified. If any additional sentences
are found, these are used in a separate feature set
that is included in the model; for all possible fea-
tures, they are calculated for the target sentence, and
separately for the additional sentence set.

Prior to training the final model, feature selec-
tion was done on random splits of the training data.
Training data was used to fit a Random Forest Clas-
sifier, and based on the resulting classifier, the most
important variables were selected using sklearn’s
feature importance method. The top 2% of the fea-
tures (or 1% for the sentence-in-passage with coref-
erence, since the feature set size is doubled) were se-
lected automatically. This resulted in a feature size
of 40-50 features. We implemented our models us-
ing scikit-learn (Pedregosa et al., 2011) in Python.

The resulting features were used to train a Logis-
tic Regression model. While other prediction mod-
els such as Support Vector Machines have been ap-
plied to relative readability prediction (Inui and Ya-
mamoto, 2001), we chose Logistic Regression due
to its ability to provide estimates of class prob-
abilities (which may be important for reliability
when deploying a system that recommends high-
quality items for learners), its connection to the
Rasch psychometric model used with reading as-
sessments (Ehara et al., 2012), and the interpretable
nature of the resulting parameter weights. Since a
given feature has a value for sentence A and B, if a
feature was selected for only Sentence A or B, the
feature for the other sentence was also added. We
used the NLTK library (Bird et al., 2009) to tokenize
the sentence for feature processing.

At the sentence level, the familiarity of the words
is a significant factor to consider in any judgment of
difficulty. The grammatical structure of a sentence
is also important to consider: if the sentence uses
a more familiar structure, it is likely to be consid-
ered less difficult than a sentence with more unusual
structure. We thus identified two groups of potential

1875

features: lexical and grammatical, described below.

4.1 Lexical Features

For lexical features, based partly on the work of
(Song and Cohn 2011) we included the percentage
of non-stop words (using NLTK list), the total num-
ber of words and the total number of characters as
features. We included the percentage of words in
the text found in the Revised Dale-Chall word list
(Dale and Chall, 2000) to capture the presence of
more difficult words in the sentence.

Because sentences that contain rarer sequences of
words are likely to be more difficult, and the likeli-
hood of the sentence based on a large corpus should
reflect this, we included the n-gram likelihood of
each sentence, over each of 1-5 n-grams, as a fea-
ture. The Microsoft WebLM service (Wang et al.,
2010) was used to calculate the n-gram likelihood.

In the field of psycholinguistics, Age of Acquisi-
tion (AoA) refers to the age at which a word is first
learned by a child. A database of 51,715 words col-
lected by (Kuperman et al., 2012) provides a rich re-
source for use in reading difficulty measures. With
this dataset, we computed several additional fea-
tures: the average, maximum, and standard devia-
tion of the aggregated AoA for all words in a sen-
tence that were present in the database. Since the
data set also includes the number of syllables in each
word, and as (Kincaid et al., 1975) proposes that
words with more syllables are more difficult, we also
included the average and maximum syllable count as
potential features.

4.2 Syntactic Features

We parsed each sentence in the data set using the
BLLIP Parser (Charniak and Johnson, 2005), which
includes a pre-trained model built on the Wall Street
Journal Corpus. This provided both a syntactic tree
and part of speech tags for the sentence. As Part of
Speech tagging is often used as a high-level linguis-
tic feature, we computed percentages for each PoS
tag present, since the percentages might vary be-
tween difficult sentences and easier sentences. The
percentage for each Part of Speech tag is defined as
the number of times a certain tag occurred, divided
by the total tags. The diversity of part of speech tags
was used since this might vary between difficult and
easier sentences.

Using the syntactic tree provided by the parser,
we obtained the likelihood of the parse, and the like-
lihood produced by the re-ranker, as syntactic fea-
tures. If a sentence parse has a comparatively high
likelihood, it is likely to be a more common struc-
ture and thus more likely to be easier to read. The
length and height of the parse were also included as
features, since each of these could reflect the diffi-
culty of the parse. Including the entire parse of the
sentence would create too much sparsity since syn-
tactic parses vary highly from sentence to sentence.
Therefore, as was done in (Heilman et al., 2008),
subtrees of depth one to three were created from the
syntactic parse, and were added as features. This
creates a smaller feature set, and one that can poten-
tially model specific grammatical structures that are
associated with a specific level of difficulty.

5 Pairwise Difficulty Prediction Results

The performance of the logistic regression models
trained with different feature sets, for each task, is
shown in Table 1. We reported the mean and stan-
dard deviation of the accuracy of each model over
200 randomly selected training and testing splits.
Each test set consisted of 20% of the data, and con-
tained 60 aggregate pairs, all of which are sentences
(24 in total) that were not present in the training
data. The test sets for the sentence-in-passage and
sentence-only task contain the same sentence pairs,
but the individual judgements are different.

For comparison, an oracle is included that repre-
sents the accuracy a model would achieve if it made
the optimal prediction for each aggregate pair. Due
to disagreement within the crowd, the oracle cannot
reach 100% accuracy. For example, for some pair
A and B, if 10 workers selected A as the more diffi-
cult sentence, and 4 workers selected B, the oracle’s
prediction for that pair would be that that A is more
difficult. The judgments of the four workers that se-
lected B would be counted as inaccurate, since the
feature set is the same for the judgments with A and
the judgments with B. Therefore, the oracle repre-
sents the highest accuracy a model can achieve, con-
sistent with the provided labels, using the features
provided.

Examining the results in Table 1, we find the best
performing configuration, Model B, used all features
as candidates. The exact number of features selected

1876

Sentence Only In Passage, With Coref In Passage, No Coref
Model Acc. S.D. p-value Acc. S.D. p-value Acc. S.D. p-value

Oracle (A) 90.13% 2.71% — 87.81% 1.84% — 87.81% 1.84% —
All Features (B) 84.69% 3.46% 0.01 ↓ 81.66% 3.17% 0.005 ↓ 81.91% 3.27% ← 0.04

AoA + Parse L. (C) 84.33% 3.13% 0.001 ↓ 81.27% 3.93% 0.001 ↓ 80.84% 3.61% ← 0.001
AoA (D) 79.62% 2.71% 0.001 ↓ 79.72% 2.86% 0.001 ↓ 78.99% 2.58% ← 0.001

Strat. Random 50.28% 1.68% — 50.31% 2.01% — 50.31% 2.01% —
Table 1: Mean and standard deviation of accuracy on 200 randomized samples of 20% held out data. ‘With coref’ indicates
coreference features were used. The arrow indicates which immediately adjacent accuracy result is used for p-value comparison,
e.g. Model B sentence-only is compared to model C sentence-only, and model B passage, no coref is compared to model B passage,
with coref.

varied depending on the task. However, the simplest
model, the Age of Acquisition model (D) consisting
of the average, standard deviation, and maximum
AoA features (sentence-only: 6 features, sentence-
in-passage: 12 features) performed well, achieving
over 78% accuracy on all tasks, showing that most
of the relative difficulty signal at the sentence level
can be captured with a few lexical difficulty features.
The Age of Acquisition + Parse Likelihood model
(C) consists of all Age of Acquisition features, plus
the likelihood of the parse (sentence-only: 10 fea-
tures, sentence-in-passage: 20 features)1.

To assess the contribution of different features to
the model prediction, feature group importances are
reported in Table 2. As features for a given group
are often highly correlated with each other, such as
in Age of Acquisition, the importance is calculated
for feature groups. Based on the method described
for Model B, each feature group is removed from
consideration in the model, and the resulting error
rate from Model B is used to calculate an importance
measure. The most important feature is normalized
to have a value of 1.0, with the rest being relative to
the difference in error rate from the original model,
averaged across splits.

These prediction results show that relative reading
difficulty can be predicted for sentence pairs with
high accuracy, even with fairly simple feature sets.
In particular, the results for AoA model D, which
uses a small number of targeted features, are com-
petitive with the best model B that relies on a much
larger feature set. The addition of coreference fea-
tures did result in small but significant changes in the

1The p-value for each accuracy measurement compares its
significance, using a paired t-test, to the neighboring model
in the direction of the arrow. For example, the sentence-only
Model B is compared to sentence-only Model A.

Sentence Only Sentence in Passage (with Coref)
Feature Imp. Feature Imp.

Age of Acq. 1.00 Age of Acq. 1.00
Part of Speech 0.28 Syllables 0.27

Syn. Score 0.22 Part of Speech 0.23
Syn. Other 0.21 Syn. Tree 0.18
Syllables 0.19 Dale Chall 0.17
Ngram L. 0.19 Content Word % 0.17
Word Len. 0.17 Word Len. 0.16
Dale Chall 0.16 Syn. Other 0.16

Content Word % 0.15 Syn. Score 0.12
Syn. Tree 0.12 Ngram L. 0.10

Table 2: Relative feature importance for Model B. Feature im-
portance is the increase in absolute error with a specific feature
group removed, averaged across cross-validation folds used for
Table 1, and normalized relative to the most informative fea-
ture. For Sentence in Passage, feature groups include corefer-
ence features.

Value
Avg. Abs. Diff 9.3
Avg. Abs. Std Dev 7.7
Pearson’s correlation 0.94*
Spearman’s correlation 0.94*

Table 3: Comparison of rankings generated with and without
passage. Asterisk * indicates p < 0.0001.

% Diff Pearson p-val. Spearman p-val.
Reranker -0.33 0.0002 -0.29 0.001
Parser -0.33 0.0002 -0.28 0.002

Table 4: Correlation between difference in rank and percentage
difference in features.

accuracy of the sentence-in-passage task, although
in one case the accuracy was reduced with corefer-
ence features.

6 Ranking Results

Using the pairwise aggregation method described
in Sec. 3.3, we ranked sentences by relative dif-
ficulty for both sentence-only and sentence-in-
passage tasks. By observing how the overall rank or-

1877

Sentence Sentence-In-Passage
All Gold Only All Gold Only

Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman
AoA Avg 0.6971 0.7151 0.7366 0.7598 0.7155 0.7356 0.6220 0.6482
AoA Std Dev 0.6366 0.6596 0.7074 0.7385 0.6779 0.7023 0.5742 0.5825
AoA Max 0.7084 0.6814 0.8036 0.7877 0.7408 0.7155 0.6215 0.6127
Parser L. -0.4942 -0.5297 -0.4605* 0.4920 -0.4172 -0.4465 -0.5099 -0.5157
Reranker L. -0.4923 -0.5280 -0.4574* -0.4751 -0.4139 -0.4450 -0.4969 -0.4879*

Table 5: Sentence-Only and Sentence-In-Passage Ranking Correlation with Individual Features. Gold indicates only gold-standard
questions were used to build ranking. All correlations have p < 0.0001 except those with an asterisk *, which have p < 0.001.

dering of sentences changes across these conditions,
we can identify differences in how workers judged
the relative difficulty of sentences with and without
context.

6.1 Rank Differences

We report differences in ranking in terms of mean
and standard deviation of the absolute difference in
rank index of each sentence across the two rank-
ings, along with Pearson’s coefficient and Spear-
man’s rank order coefficients. Comparisons between
the rankings for each task are shown in Table 3.

In comparing crowd-generated rankings for the
sentence-only and sentence-in-passage task, the re-
sults show a statistically significant aggregate dif-
ference in how the crowd ranks sentence difficulty
with and without the surrounding passage. While
the correlation between the two rankings is high,
and the average normalized change in rank posi-
tion is 7.7%, multiple sentences exhibited a large
change in ranking. For example, the sentence ‘As
a result, the police had little incentive to make con-
cessions.’ was ranked significantly easier when pre-
sented out of context than when presented in context
(rank change: -30 positions). For that example, the
surrounding passage explained the complex political
environment referred to indirectly in that sentence.

6.2 Feature Correlation with Rank Differences

To examine why sentences may be ranked as more
or less difficult, depending on the context, we exam-
ined the correlation between a sentence’s change in
rank (Sentence-Only Ranking minus the Sentence-
in-Passage ranking) and the normalized difference in
feature values between the sentence representation
and the remaining context representation. We found
that percentage change in parser and reranker like-
lihoods had the most significant correlation (-0.33)

with ranking change, as shown in Table 4.
To interpret this result, note that the parser and

reranker likelihood represent the probability the
parser and reranker models assign to the syntactic
parse produced by the sentence. In other words, they
are a measure of how likely it is that the sentence
structure occurs, based on the model’s training data.
If the difficulty of the sentence-in-passage is ranked
higher than the sentence alone, this correlates with
the target sentence having a syntactic structure with
higher likelihood than the average of the surround-
ing sentence structures. This means that if a sen-
tence that has a frequently-seen syntactic structure is
in a passage with sentences that have less common
structures, the sentence within the passage is more
likely to be judged as more difficult. The reverse is
also true: if a sentence that has a more unusual syn-
tactic structure is in a passage with sentences with
more familiar structures, the sentence without the
surrounding passage is more likely to be ranked as
more difficult.

We also examined the rank correlation of crowd-
generated rankings with rankings produced by sort-
ing sentences based on the value of individual fea-
tures. In addition to the full rankings, we con-
structed a ranking produced only by the gold stan-
dard examples, denoted Gold Only and included this
in the comparison. The gold standard questions con-
sist of examples constructed by the authors to have a
clear relative difficulty result. The rank correlations
are shown in Table 5 for both tasks.

The reasons for discrepancies in relative diffi-
culty assessment between the sentence-only and
sentence-in-passage conditions require further ex-
ploration. While the correlation between the per-
centage change in probability of the parse and the
difference in ranking is significant, it is not large.
It does indicate that despite judges being explicitly

1878

Crowd
Pearson Spearman

Expert label 0.85 0.84
Document-based label 0.70 0.70

Table 6: Correlation between sentence readability labels
and crowd-generated ranking, for expert (sentence-level) and
document-based labels (from document readability prediction).
All correlations have p < 0.0001.

told to only consider the sentence, the properties of
the surrounding passage may indeed influence the
perceived relative difficulty of the sentence.

6.3 Review of Data

The pairwise prediction results indicate that a large
proportion of the crowdsourced pair orderings can
be decided using vocabulary features, due to the
strong performance of the Age of Acquisition fea-
tures. To identify the relative importance of vocab-
ulary and syntax in our data, we reviewed each pair
and judged whether the sentence’s syntax or vocab-
ulary, or the combination of both, were needed to
correctly predict the more difficult sentence. For
many pairs, either syntax or vocabulary could be
used to correctly predict the more difficult sentence
since each factor indicated the same sentence was
more difficult. We found that 19% of pairs had only
a vocabulary distinction, and 65% of pairs could
be judged correctly either by vocabulary or syntax.
Therefore, 84% of pairs could be judged using vo-
cabulary, which explains the high performance of
the Age of Acquisition features.

The level of a sentence’s source document was
used as a proxy for the sentence’s grade level when
building the pairs. To build a sentence-level gold
standard for this dataset, we asked a teacher with a
Master of Education with a Reading Specialist fo-
cus and 30 years of experience in elementary and
high school reading instruction, to identify the grade
level of each sentence. This expert was asked to as-
sign either a single grade level or a range of levels to
each of the 120 sentences. From this, an expert rank-
ing was created, using the midpoint of each expert-
assigned range. The correlation between the expert
sentence ranking and the crowd ranking can be seen
in Table 6, reinforcing the finding that crowdsourced
judgments can provide an accurate ranking of diffi-
culty (De Clercq et al., 2014).

7 Conclusion

Using a rich sentence representation based on lex-
ical and syntactic features leveraged from previous
work on document-level readability, we introduced
and evaluated several models for predicting the rel-
ative reading difficulty of single sentences, with and
without surrounding context. We found that while
the best prediction performance was obtained by us-
ing all feature classes, simpler representations based
on lexical features such as Age of Acquisition norms
were effective. The accuracy achieved by the best
prediction model came within 6% of the oracle ac-
curacy for both tasks.

Many of the features identified had a high correla-
tion with the rankings produced by the crowd. This
indicates that these features can be used to build a
model of sentence difficulty. With the rankings built
from crowdsourced judgments on sentence diffi-
culty, small but significant differences were found in
how sentences are ranked with and without the sur-
rounding passages. This result suggests that prop-
erties of the surrounding passage of a sentence can
change the perceived difficulty of a sentence.

In future work, we plan to increase the number
of sentences in our data set, so that additional more
fine-grained features might be considered. For ex-
ample, weights for lexical features could be more
accurately estimated with more data. Our use of the
crowd-based labels was intended to reduce noise in
the ranking analysis, but we also intend to use the
pairwise predictions produced by the logistic model
as the input to the aggregation model, so that rank-
ings can be obtained for previously unseen sentences
in operational settings. Another goal is to obtain ab-
solute difficulty labels for sentences by calibrating
ordinal ranges based on the relative ranking. Finally,
we are interested in the contribution of context in un-
derstanding the meaning of an unknown word.

Acknowledgments

We thank the anonymous reviewers for their sug-
gestions, and Ann Schumacher for serving as grade
level annotator. This work was supported in part by
Dept. of Education grant R305A140647 to the Uni-
versity of Michigan. Any opinions, findings, conclu-
sions or recommendations expressed in this material
are the authors’, and do not necessarily reflect those
of the sponsors.

1879

References

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python. ” O’Reilly Me-
dia, Inc.”.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and maxent discriminative rerank-
ing. In Proceedings of the 43rd Annual Meeting on As-
sociation for Computational Linguistics, pages 173–
180. Association for Computational Linguistics.

Xi Chen, Paul N Bennett, Kevyn Collins-Thompson, and
Eric Horvitz. 2013. Pairwise ranking aggregation in
a crowdsourced setting. In Proceedings of the sixth
ACM international conference on Web search and data
mining, pages 193–202. ACM.

Kevyn Collins-Thompson and James P Callan. 2004. A
language modeling approach to predicting reading dif-
ficulty. In HLT-NAACL, pages 193–200.

Kevyn Collins-Thompson. 2014. Computational assess-
ment of text readability: a survey of current and future
research. International Journal of Applied Linguistics,
165(2):97–135.

Edgar Dale and Jeanne S Chall. 2000. Readability
revisited: The new dale-chall readability formula.
http://opi.mt.gov/Pub/RTI/Forms/
School/Choteau/The\%20Dale-Chall\
%20Word\%20List.doc. Accessed: 2016-5-10.

James R. A. Davenport and Robert DeLine. 2014. The
readability of tweets and their geographic correlation
with education. CoRR, abs/1401.6058.

Orphée De Clercq, Veronique Hoste, Bart Desmet, Philip
Van Oosten, Martine De Cock, and Lieve Macken.
2014. Using the crowd for readability prediction. Nat-
ural Language Engineering, 20(03):293–325.

Yo Ehara, Issei Sato, Hidekazu Oiwa, and Hiroshi Nak-
agawa. 2012. Mining words in the minds of sec-
ond language learners: Learner-specific word diffi-
culty. In COLING 2012, 24th International Confer-
ence on Computational Linguistics, Proceedings of the
Conference: Technical Papers, 8-15 December 2012,
Mumbai, India, pages 799–814.

Arthur C Graesser, Danielle S McNamara, and Jonna M
Kulikowich. 2011. Coh-metrix providing multi-
level analyses of text characteristics. Educational Re-
searcher, 40(5):223–234.

Michael Heilman, Kevyn Collins-Thompson, and Max-
ine Eskenazi. 2008. An analysis of statistical mod-
els and features for reading difficulty prediction. In
Proceedings of the Third Workshop on Innovative Use
of NLP for Building Educational Applications, EANL
’08, pages 71–79, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Ralf Herbrich, Tom Minka, and Thore Graepel. 2007.
Trueskill(tm): A bayesian skill rating system. In Ad-
vances in Neural Information Processing Systems 20,
pages 569–576. MIT Press, January.

Kentaro Inui and Satomi Yamamoto. 2001. Corpus-
based acquisition of sentence readability ranking mod-
els for deaf people. In Proceedings of the Sixth Nat-
ural Language Processing Pacific Rim Symposium,
November 27-30, 2001, Hitotsubashi Memorial Hall,
National Center of Sciences, Tokyo, Japan, pages 159–
166.

Tapas Kanungo and David Orr. 2009. Predicting the
readability of short web summaries. In Proceedings
of the Second ACM International Conference on Web
Search and Data Mining, pages 202–211. ACM.

Paul Kidwell, Guy Lebanon, and Kevyn Collins-
Thompson. 2011. Statistical estimation of word
acquisition with application to readability predic-
tion. Journal of the American Statistical Association,
106(493):21–30.

Adam Kilgarriff, Milos Husák, Katy McAdam, Michael
Rundell, and Pavel Rychlỳ. 2008. Gdex: Automat-
ically finding good dictionary examples in a corpus.
In Proceedings of the XIII EURALEX International
Congress (Barcelona, 15-19 July 2008), pages 425–
432.

J Peter Kincaid, Robert P Fishburne Jr, Richard L Rogers,
and Brad S Chissom. 1975. Derivation of new
readability formulas (automated readability index, fog
count and flesch reading ease formula) for navy en-
listed personnel. Technical report, DTIC Document.

Victor Kuperman, Hans Stadthagen-Gonzalez, and Marc
Brysbaert. 2012. Age-of-acquisition ratings for
30,000 english words. Behavior Research Methods,
44(4):978–990.

Tracy Liederholm, Michelle Gaddy Everson, Paul
van den Broek, Maureen Mischinski, Alex Crittenden,
and Jay Samuels. 2000. Effects of causal text revi-
sions on more-and less-skilled readers’ comprehension
of easy and difficult texts. Cognition and Instruction,
pages 525–556.

David McClosky, Eugene Charniak, and Mark Johnson.
2008. Bllip north american news text, complete. Lin-
guistic Data Consortium.

Danielle S McNamara. 2001. Reading both high-
coherence and low-coherence texts: Effects of text se-
quence and prior knowledge. Canadian Journal of
Experimental Psychology/Revue canadienne de psy-
chologie expérimentale, 55(1):51.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.

1880

Journal of Machine Learning Research, 12:2825–
2830.

Charles Perfetti and Gwen A. Frishkoff. 2008. The
neural bases of text and discourse processing. In
B. Stemmer and H. A. Whitaker (Eds.) Handbook of
the Neuroscience of Language, pages 165–174. Cam-
bridge:MA, Elsevier.

Ildikó Pilán, Elena Volodina, and Richard Johansson.
2014. Rule-based and machine learning approaches
for second language sentence-level readability. In Pro-
ceedings of the Ninth Workshop on Innovative Use of
NLP for Building Educational Applications.

Emily Pitler and Ani Nenkova. 2008. Revisiting read-
ability: A unified framework for predicting text qual-
ity. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP
’08, pages 186–195, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Karthik Raghunathan, Heeyoung Lee, Sudarshan Ran-
garajan, Nathanael Chambers, Mihai Surdeanu, Dan
Jurafsky, and Christopher Manning. 2010. A multi-
pass sieve for coreference resolution. In Proceedings
of the 2010 Conference on Empirical Methods in Natu-
ral Language Processing, pages 492–501. Association
for Computational Linguistics.

Randi Reppen, Nancy Ide, and Keith Suderman. 2005.
American national corpus (anc) second release. Lin-
guistic Data Consortium.

Evan Sandhaus. 2008. The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia,
6(12):e26752.

Sarah E Schwarm and Mari Ostendorf. 2005. Read-
ing level assessment using support vector machines
and statistical language models. In Proceedings of
the 43rd Annual Meeting on Association for Compu-
tational Linguistics, pages 523–530. Association for
Computational Linguistics.

Kathleen M Sheehan, Michael Flor, and Diane Napoli-
tano. 2013. A two-stage approach for generating un-
biased estimates of text complexity. In Proceedings
of the Workshop on Natural Language Processing for
Improving Textual Accessibility, pages 49–58.

Kathleen M Sheehan, Irene Kostin, Diane Napolitano,
and Michael Flor. 2014. The textevaluator tool. The
Elementary School Journal, 115(2):184–209.

Xingyi Song and Trevor Cohn. 2011. Regression and
ranking based optimisation for sentence level machine
translation evaluation. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
123–129. Association for Computational Linguistics.

A Jackson Stenner. 1996. Measuring reading compre-
hension with the lexile framework.

Kumiko Tanaka-Ishii, Satoshi Tezuka, and Hiroshi Ter-
ada. 2010. Sorting texts by readability. Comput. Lin-
guist., 36(2):203–227, June.

James Voss and Laurie Silfies. 1996. Learning from his-
tory text: The interaction of knowledge and compre-
hension skill with text structure. Cognition and In-
struction, 14(1):45–68.

Kuansan Wang, Christopher Thrasher, Evelyne Viegas,
Xiaolong Li, and Paul Hsu. 2010. An overview of
microsoft web n-gram corpus and applications. June.

Kristian Woodsend and Mirella Lapata. 2011. Learning
to simplify sentences with quasi-synchronous gram-
mar and integer programming. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing, EMNLP ’11, pages 409–420,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

1881

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1882–1891,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

A Neural Approach to Automated Essay Scoring

Kaveh Taghipour and Hwee Tou Ng
Department of Computer Science
National University of Singapore

13 Computing Drive
Singapore 117417

{kaveh, nght}@comp.nus.edu.sg

Abstract

Traditional automated essay scoring systems
rely on carefully designed features to evaluate
and score essays. The performance of such
systems is tightly bound to the quality of the
underlying features. However, it is laborious
to manually design the most informative fea-
tures for such a system. In this paper, we de-
velop an approach based on recurrent neural
networks to learn the relation between an es-
say and its assigned score, without any fea-
ture engineering. We explore several neural
network models for the task of automated es-
say scoring and perform some analysis to get
some insights of the models. The results show
that our best system, which is based on long
short-term memory networks, outperforms a
strong baseline by 5.6% in terms of quadratic
weighted Kappa, without requiring any fea-
ture engineering.

1 Introduction

There is a recent surge of interest in neural networks,
which are based on continuous-space representation
of the input and non-linear functions. Hence, neural
networks are capable of modeling complex patterns
in data. Moreover, since these methods do not de-
pend on manual engineering of features, they can be
applied to solve problems in an end-to-end fashion.
SENNA (Collobert et al., 2011) and neural machine
translation (Bahdanau et al., 2015) are two notable
examples in natural language processing that oper-
ate without any external task-specific knowledge. In
this paper, we report a system based on neural net-
works to take advantage of their modeling capacity

and generalization power for the automated essay
scoring (AES) task.

Essay writing is usually a part of the student as-
sessment process. Several organizations, such as
Educational Testing Service (ETS)1, evaluate the
writing skills of students in their examinations. Be-
cause of the large number of students participat-
ing in these exams, grading all essays is very time-
consuming. Thus, some organizations have been us-
ing AES systems to reduce the time and cost of scor-
ing essays.

Automated essay scoring refers to the process of
grading student essays without human interference.
An AES system takes as input an essay written for
a given prompt, and then assigns a numeric score to
the essay reflecting its quality, based on its content,
grammar, and organization. Such AES systems are
usually based on regression methods applied to a set
of carefully designed features. The process of fea-
ture engineering is the most difficult part of building
AES systems. Moreover, it is challenging for hu-
mans to consider all the factors that are involved in
assigning a score to an essay.

Our AES system, on the other hand, learns the
features and relation between an essay and its score
automatically. Since the system is based on recur-
rent neural networks, it can effectively encode the
information required for essay evaluation and learn
the complex patterns in the data through non-linear
neural layers. Our system is among the first AES
systems based on neural networks designed with-
out any hand-crafted features. Our results show
that our system outperforms a strong baseline and

1https://www.ets.org

1882

achieves state-of-the-art performance in automated
essay scoring. In order to make it easier for other re-
searchers to replicate our results, we have made the
source code of our system publicly available2.

The rest of this paper is organized as follows. Sec-
tion 2 gives an overview of related work in the liter-
ature. Section 3 describes the automated essay scor-
ing task and the evaluation metric used in this paper.
We provide the details of our approach in Section
4, and present and discuss the results of our experi-
mental evaluation in Section 5. Finally, we conclude
the paper in Section 6.

2 Related Work

There exist many automated essay scoring systems
(Shermis and Burstein, 2013) and some of them are
being used in high-stakes assessments. e-rater (At-
tali and Burstein, 2004) and Intelligent Essay As-
sessor (Foltz et al., 1999) are two notable examples
of AES systems. In 2012, a competition on auto-
mated essay scoring called ‘Automated Student As-
sessment Prize’ (ASAP)3 was organized by Kaggle
and sponsored by the Hewlett Foundation. A com-
prehensive comparison of AES systems was made
in the ASAP competition. Although many AES sys-
tems have been developed to date, they have been
built with hand-crafted features and supervised ma-
chine learning algorithms.

Researchers have devoted a substantial amount of
effort to design effective features for automated es-
say scoring. These features can be as simple as es-
say length (Chen and He, 2013) or more compli-
cated such as lexical complexity, grammaticality of a
text (Attali and Burstein, 2004), or syntactic features
(Chen and He, 2013). Readability features (Zesch
et al., 2015) have also been proposed in the liter-
ature as another source of information. Moreover,
text coherence has also been exploited to assess the
flow of information and argumentation of an essay
(Chen and He, 2013). A detailed overview of the
features used in AES systems can be found in (Zesch
et al., 2015). Moreover, some attempts have been
made to address different aspects of essay writing
independently. For example, argument strength and
organization of essays have been tackled by some

2https://github.com/nusnlp/nea
3https://www.kaggle.com/c/asap-aes

researchers through designing task-specific features
for each aspect (Persing et al., 2010; Persing and Ng,
2015).

Our system, however, accepts an essay text as
input directly and learns the features automatically
from the data. To do so, we have developed a
method based on recurrent neural networks to score
the essays in an end-to-end manner. We have ex-
plored a variety of neural network models in this pa-
per to identify the most suitable model. Our best
model is a long short-term memory neural network
(Hochreiter and Schmidhuber, 1997) and is trained
as a regression method. Similar recurrent neural net-
work approaches have recently been used success-
fully in a number of other NLP tasks. For exam-
ple, Bahdanau et al. (2015) have proposed an atten-
tive neural approach to machine translation based on
gated recurrent units (Cho et al., 2014). Neural ap-
proaches have also been used for syntactic parsing.
In (Vinyals et al., 2015), long short-term memory
networks have been used to obtain parse trees by
using a sequence-to-sequence model and formulat-
ing the parsing task as a sequence generation prob-
lem. Apart from these examples, recurrent neural
networks have also been used for opinion mining (Ir-
soy and Cardie, 2014), sequence labeling (Ma and
Hovy, 2016), language modeling (Kim et al., 2016;
Sundermeyer et al., 2015), etc.

3 Automated Essay Scoring

In this section, we define the automated essay scor-
ing task and the evaluation metric used for assessing
the quality of AES systems.

3.1 Task Description

Automated essay scoring systems are used in evalu-
ating and scoring student essays written based on a
given prompt. The performance of these systems is
assessed by comparing their scores assigned to a set
of essays to human-assigned gold-standard scores.
Since the output of AES systems is usually a real-
valued number, the task is often addressed as a su-
pervised machine learning task (mostly by regres-
sion or preference ranking). Machine learning algo-
rithms are used to learn the relationship between the
essays and reference scores.

1883

3.2 Evaluation Metric
The output of an AES system can be compared
to the ratings assigned by human annotators using
various measures of correlation or agreement (Yan-
nakoudakis and Cummins, 2015). These measures
include Pearson’s correlation, Spearman’s correla-
tion, Kendall’s Tau, and quadratic weighted Kappa
(QWK). The ASAP competition adopted QWK as
the official evaluation metric. Since we use the
ASAP data set for evaluation in this paper, we also
use QWK as the evaluation metric in our experi-
ments.

Quadratic weighted Kappa is calculated as fol-
lows. First, a weight matrix W is constructed ac-
cording to Equation 1:

Wi,j =
(i− j)2
(N − 1)2

(1)

where i and j are the reference rating (assigned by
a human annotator) and the hypothesis rating (as-
signed by an AES system), respectively, and N is
the number of possible ratings. A matrix O is cal-
culated such that Oi,j denotes the number of essays
that receive a rating i by the human annotator and
a rating j by the AES system. An expected count
matrix E is calculated as the outer product of his-
togram vectors of the two (reference and hypothe-
sis) ratings. The matrix E is then normalized such
that the sum of elements in E and the sum of ele-
ments in O are the same. Finally, given the matrices
O and E, the QWK score is calculated according to
Equation 2:

κ = 1−
∑

i,j Wi,jOi,j∑
i,j Wi,jEi,j

(2)

In our experiments, we compare the QWK score
of our system to well-established baselines. We
also perform a one-tailed paired t-test to determine
whether the obtained improvement is statistically
significant.

4 A Recurrent Neural Network Approach

Recurrent neural networks are one of the most suc-
cessful machine learning models and have attracted
the attention of researchers from various fields.
Compared to feed-forward neural networks, recur-
rent neural networks are theoretically more powerful

and are capable of learning more complex patterns
from data. Therefore, we have mainly focused on
recurrent networks in this paper. This section gives
a description of the recurrent neural network archi-
tecture that we have used for the essay scoring task
and the training process.

4.1 Model Architecture

The neural network architecture that we have used in
this paper is illustrated in Figure 1. We now describe
each layer in our neural network in detail.

Lookup Table Layer: The first layer of our
neural network projects each word into a dLT di-
mensional space. Given a sequence of words
W represented by their one-hot representations
(w1,w2, · · · ,wM), the output of the lookup table
layer is calculated by Equation 3:

LT (W) = (E.w1,E.w2, · · · ,E.wM) (3)

where E is the word embeddings matrix and will be
learnt during training.

Convolution Layer: Once the dense represen-
tation of the input sequence W is calculated, it is
fed into the recurrent layer of the network. How-
ever, it might be beneficial for the network to ex-
tract local features from the sequence before apply-
ing the recurrent operation. This optional charac-
teristic can be achieved by applying a convolution
layer on the output of the lookup table layer. In
order to extract local features from the sequence,
the convolution layer applies a linear transformation
to all M windows in the given sequence of vec-
tors4. Given a window of dense word representa-
tions x1,x2, · · · ,xl, the convolution layer first con-
catenates these vectors to form a vector x̄ of length
l.dLT and then uses Equation 4 to calculate the out-
put vector of length dc:

Conv(x̄) = W.x̄ + b (4)

In Equation 4, W and b are the parameters of the
network and are shared across all windows in the
sequence.

4The number of input vectors and the number of output vec-
tors of the convolution layer are the same because we pad the
sequence to avoid losing border windows.

1884

w1 w2 wM-1 wM...

...

w3

...

... Lookup table layer

Convolution layer

Recurrent layer

Mean over time

Score Linear layer with Sigmoid activation

Figure 1: The convolutional recurrent neural network architecture.

The convolution layer can be seen as a function
that extracts feature vectors from n-grams. Since
this layer provides n-gram level information to the
subsequent layers of the neural network, it can po-
tentially capture local contextual dependencies in
the essay and consequently improve the perfor-
mance of the system.

Recurrent Layer: After generating embeddings
(whether from the convolution layer or directly from
the lookup table layer), the recurrent layer starts pro-
cessing the input to generate a representation for the
given essay. This representation should ideally en-
code all the information required for grading the es-
say. However, since the essays are usually long,
consisting of hundreds of words, the learnt vector
representation might not be sufficient for accurate
scoring. For this reason, we preserve all the inter-
mediate states of the recurrent layer to keep track
of the important bits of information from process-
ing the essay. We experimented with basic recur-
rent units (RNN) (Elman, 1990), gated recurrent
units (GRU) (Cho et al., 2014), and long short-term
memory units (LSTM) (Hochreiter and Schmidhu-
ber, 1997) to identify the best choice for our task.
Since LSTM outperforms the other two units, we
only describe LSTM in this section.

Long short-term memory units are modified re-
current units that can cope with the problem of van-
ishing gradients more effectively (Pascanu et al.,
2013). LSTMs can learn to preserve or forget the

information required for the final representation. In
order to control the flow of information during pro-
cessing of the input sequence, LSTM units make use
of three gates to discard (forget) or pass the informa-
tion through time. The following equations formally
describe the LSTM function:

it = σ(Wi.xt + Ui.ht−1 + bi)

ft = σ(Wf .xt + Uf .ht−1 + bf)

c̃t = tanh(Wc.xt + Uc.ht−1 + bc)

ct = it ◦ c̃t + ft ◦ ct−1
ot = σ(Wo.xt + Uo.ht−1 + bo)

ht = ot ◦ tanh(ct)

(5)

xt and ht are the input and output vectors at time t,
respectively. Wi, Wf , Wc, Wo, Ui, Uf , Uc, and
Uo are weight matrices and bi, bf , bc, and bo are
bias vectors. The symbol ◦ denotes element-wise
multiplication and σ represents the sigmoid func-
tion.

Mean over Time: The outputs of the recurrent
layer, H = (h1,h2, · · · ,hM), are fed into the
mean-over-time layer. This layer receives M vec-
tors of length dr as input and calculates an average
vector of the same length. This layer’s function is
defined in Equation 6:

MoT (H) = 1

M

M∑

t=1

ht (6)

1885

The mean-over-time layer is responsible for aggre-
gating the variable number of inputs into a fixed
length vector. Once this vector is calculated, it is
fed into the linear layer to be mapped into a score.

Instead of taking the mean of the intermediate re-
current layer states ht, we could use the last state
vector hM to compute the score and remove the
mean-over-time layer. However, as we will show
in Section 5.2, it is much more effective to use the
mean-over-time layer and take all recurrent states
into account.

Linear Layer with Sigmoid Activation: The
linear layer maps its input vector generated by the
mean-over-time layer to a scalar value. This map-
ping is simply a linear transformation of the in-
put vector and therefore, the computed value is not
bounded. Since we need a bounded value in the
range of valid scores for each prompt, we apply a
sigmoid function to limit the possible scores to the
range of (0, 1). The mapping of the linear layer after
applying the sigmoid activation function is given by
Equation 7:

s(x) = sigmoid(w.x + b) (7)

where x is the input vector (MoT (H)), w is the
weight vector, and b is the bias value.

We normalize all gold-standard scores to [0, 1]
and use them to train the network. However, dur-
ing testing, we rescale the output of the network to
the original score range and use the rescaled scores
to evaluate the system.

4.2 Training
We use the RMSProp optimization algorithm
(Dauphin et al., 2015) to minimize the mean squared
error (MSE) loss function over the training data.
Given N training essays and their corresponding
normalized gold-standard scores s∗i , the model com-
putes the predicted scores si for all training essays
and then updates the network parameters such that
the mean squared error is minimized. The loss func-
tion is shown in Equation 8:

MSE(s, s∗) =
1

N

N∑

i=1

(si − s∗i)2 (8)

Additionally, we make use of dropout regularization
to avoid overfitting. We also clip the gradient if the

norm of the gradient is larger than a threshold.
We do not use any early stopping methods. In-

stead, we train the neural network model for a fixed
number of epochs and monitor the performance of
the model on the development set after each epoch.
Once training is finished, we select the model with
the best QWK score on the development set.

5 Experiments

In this section, we describe our experimental setup
and present the results. Moreover, an analysis of the
results and some discussion are provided in this sec-
tion.

5.1 Setup
The dataset that we have used in our experiments is
the same dataset used in the ASAP competition run
by Kaggle (see Table 1 for some statistics). We use
quadratic weighted Kappa as the evaluation metric,
following the ASAP competition. Since the test set
used in the competition is not publicly available, we
use 5-fold cross validation to evaluate our systems.
In each fold, 60% of the data is used as our train-
ing set, 20% as the development set, and 20% as the
test set. We train the model for a fixed number of
epochs and then choose the best model based on the
development set. We tokenize the essays using the
NLTK5 tokenizer, lowercase the text, and normalize
the gold-standard scores to the range of [0, 1]. Dur-
ing testing, we rescale the system-generated normal-
ized scores to the original range of scores and mea-
sure the performance.

Prompt #Essays Avg length Scores
1 1,783 350 2–12
2 1,800 350 1–6
3 1,726 150 0–3
4 1,772 150 0–3
5 1,805 150 0–4
6 1,800 150 0–4
7 1,569 250 0–30
8 723 650 0–60
Table 1: Statistics of the ASAP dataset.

In order to evaluate the performance of our sys-
tem, we compare it to a publicly available open-
source6 AES system called ‘Enhanced AI Scor-

5http://www.nltk.org
6https://github.com/edx/ease

1886

ing Engine’ (EASE). This system is the best open-
source system that participated in the ASAP com-
petition, and was ranked third among all 154 par-
ticipating teams. EASE is based on hand-crafted
features and regression methods. The features that
are extracted by EASE can be categorized into four
classes:

• Length-based features

• Parts-of-Speech (POS)

• Word overlap with the prompt

• Bag of n-grams

After extracting the features, a regression algorithm
is used to build a model based on the training data.
The details of the features and the results of using
support vector regression (SVR) and Bayesian linear
ridge regression (BLRR) are reported in (Phandi et
al., 2015). We use these two regression methods as
our baseline systems.

Our system has several hyper-parameters that
need to be set. We use the RMSProp optimizer with
decay rate (ρ) set to 0.9 to train the network and we
set the base learning rate to 0.001. The mini-batch
size is 32 in our experiments7 and we train the net-
work for 50 epochs. The vocabulary is the 4,000
most frequent words in the training data and all other
words are mapped to a special token that represents
unknown words. We regularize the network by us-
ing dropout (Srivastava et al., 2014) and we set the
dropout probability to 0.5. During training, the norm
of the gradient is clipped to a maximum value of
10. We set the word embedding dimension (dLT) to
50 and the output dimension of the recurrent layer
(dr) to 300. If a convolution layer is used, the win-
dow size (l) is set to 3 and the output dimension of
this layer (dc) is set to 50. Finally, we initialize the
lookup table layer using pre-trained word embed-
dings8 released by Zou et al. (2013). Moreover, the
bias value of the linear layer is initialized such that
the network’s output before training is almost equal
to the average score in the training data.

7To create mini-batches for training, we pad all essays in a
mini-batch using a dummy token to make them have the same
length. To eliminate the effect of padding tokens during train-
ing, we mask them to prevent the network from miscalculating
the gradients.

8http://ai.stanford.edu/∼wzou/mt

We have performed several experiments to iden-
tify the best model architecture for our task. These
architectural choices are summarized below:

• Convolutional vs. recurrent neural network

• RNN unit type (basic RNN, GRU, or LSTM)

• Using mean-over-time over all recurrent states
vs. using only the last recurrent state

• Using mean-over-time vs. an attention mecha-
nism

• Using a recurrent layer vs. a convolutional re-
current layer

• Unidirectional vs. bidirectional LSTM

We have used 8 Tesla K80 GPUs to perform our ex-
periments in parallel.

5.2 Results and Discussion
In this section, we present the results of our eval-
uation by comparing our system to the above-
mentioned baselines (SVR and BLRR). Table 2
(rows 1 to 4) shows the QWK scores of our sys-
tems on the eight prompts from the ASAP dataset9.
This table also contains the results of our statistical
significance tests. The baseline score that we have
used for hypothesis testing is underlined and the sta-
tistically significant improvements (p < 0.05) over
the baseline are marked with ‘*’. It should be noted
that all neural network models in Table 2 are unidi-
rectional and include the mean-over-time layer. Ex-
cept for the CNN model, convolution layer is not
included in the networks.

According to Table 2, all model variations are able
to learn the task properly and perform competitively
compared to the baselines. However, LSTM per-
forms significantly better than all other systems and
outperforms the baseline by a large margin (4.1%).
However, basic RNN falls behind other models and
does not perform as accurately as GRU or LSTM.

9To aggregate the QWK scores of all prompts, Fisher trans-
formation was used in the ASAP competition before averaging
QWK scores. However, we found that applying Fisher trans-
formation only slightly changes the scores. (If we apply this
method to aggregate QWK scores, our best ensemble system
(row 7, Table 2) would obtain a QWK score of 0.768.) There-
fore we simply take the average of QWK scores across prompts.

1887

ID Systems Prompts
1 2 3 4 5 6 7 8 Avg QWK

1 CNN 0.797 0.634 0.646 0.767 0.746 0.757 0.746 0.687 0.722
2 RNN 0.687 0.633 0.552 0.744 0.732 0.757 0.743 0.553 0.675
3 GRU 0.616 0.591 0.668 0.787 0.795 0.800 0.752 0.573 0.698
4 LSTM 0.775 0.687 0.683 0.795 0.818 0.813 0.805 0.594 0.746*

5 CNN (10 runs) 0.804 0.656 0.637 0.762 0.752 0.765 0.750 0.680 0.726*

6 LSTM (10 runs) 0.808 0.697 0.689 0.805 0.818 0.827 0.811 0.598 0.756*

7 (5) + (6) 0.821 0.688 0.694 0.805 0.807 0.819 0.808 0.644 0.761*

8 EASE (SVR) 0.781 0.621 0.630 0.749 0.782 0.771 0.727 0.534 0.699
9 EASE (BLRR) 0.761 0.606 0.621 0.742 0.784 0.775 0.730 0.617 0.705

Table 2: The QWK scores of the various neural network models and the baselines. The baseline for the statistical significance tests

is underlined and statistically significant improvements (p < 0.05) are marked with ‘*’.

This behaviour is probably because of the relatively
long sequences of words in essays. GRU and LSTM
have been shown to ‘remember’ sequences and long-
term dependencies much more effectively and there-
fore, we believe this is the reason behind RNN’s rel-
atively poor performance.

Additionally, we perform some experiments to
evaluate ensembles of our systems. We create vari-
ants of our network by training with different ran-
dom initializations of the parameters. To combine
these models, we simply take the average of the
scores predicted by these networks. This approach
is shown to improve performance by reducing the
variance of the model and therefore make the predic-
tions more accurate. Table 2 (rows 5 and 6) shows
the results of CNN and LSTM ensembles over 10
runs. Moreover, we combine CNN ensembles and
LSTM ensembles together to make the predictions
(row 7).

As shown in Table 2, ensembles of models always
lead to improvements. We obtain 0.4% and 1.0%
improvement from CNN and LSTM ensembles, re-
spectively. However, our best model (row 7 in Table
2) is the ensemble of 10 instances of CNN models
and 10 instances of LSTM models and outperforms
the baseline BLRR system by 5.6%.

It is possible to use the last state of the recurrent
layer to predict the score instead of taking the mean
over all intermediate states. In order to observe the
effects of this architectural choice, we test the net-
work with and without the mean-over-time layer.
The results of this experiment are presented in Ta-
ble 3, clearly showing that the neural network fails
to learn the task properly in the absence of the mean-

over-time layer. When the mean-over-time layer is
not used in the model, the network needs to effi-
ciently encode the whole essay into a single state
vector and then use it to predict the score. How-
ever, when the mean-over-time layer is included, the
model has direct access to all intermediate states
and can recall the required intermediate information
much more effectively and therefore is able to pre-
dict the score more accurately.

Systems Avg QWK
LSTM 0.746*

LSTM w/o MoT 0.540
LSTM+attention 0.731*

CNN+LSTM 0.708
BLSTM 0.699
EASE (SVR) 0.699
EASE (BLRR) 0.705

Table 3: The QWK scores of LSTM neural network vari-

ants. The baseline for the statistical significance tests is un-

derlined and statistically significant improvements (p < 0.05)

are marked with ‘*’.

Additionally, we experiment with three other neu-
ral network architectures. Instead of using mean-
over-time to average intermediate states, we use
an attention mechanism (Bahdanau et al., 2015) to
compute a weighted sum of the states. In this case,
we calculate the dot product of the intermediate
states and a vector trained by the neural network,
and then apply a softmax operation to obtain the
normalized weights. Another alternative is to add a
convolution layer before feeding the embeddings to
the recurrent LSTM layer (CNN+LSTM) and eval-
uate the model. We also use a bidirectional LSTM
model (BLSTM), in which the sequence of words

1888

is processed in both directions and the intermediate
states generated by both LSTM layers are merged
and then fed into the mean-over-time layer. The re-
sults of testing these architectures are summarized
in Table 3.

The attention mechanism significantly improves
the results compared to LSTM without mean-over-
time, but it does not perform as well as LSTM with
mean-over-time. The other two architectural choices
do not lead to further improvements over the LSTM
neural network. This observation is in line with the
findings of some other researchers (Kadlec et al.,
2015) and is probably because of the relatively small
number of training examples compared to the capac-
ity of the models.

We have also compared the accuracy of our best
system (shown as ‘AES’) with human performance,
presented in Table 4. To do so, we calculate the
agreement (QWK scores) between our system and
each of the two human annotators separately (‘AES
- H1’ and ‘AES - H2’), as well as the agreement be-
tween the two human annotators (‘H1 - H2’). Ac-
cording to Table 4, the performance of our system on
average is very close to human annotators. In fact,
for some of the prompts, the agreement between our
system and the human annotators is even higher than
the agreement between human annotators. In gen-
eral, we can conclude that our method is just below
the upper limit and approaching human-level perfor-
mance.

We also compare our system to a recently pub-
lished automated essay scoring method based on
neural networks (Alikaniotis et al., 2016). Instead of
performing cross validation, Alikaniotis et al. (2016)
partition the ASAP dataset into two parts by using
80% of the data for training and the remaining 20%
for testing. For comparison, we also carry out an
experiment on the same training and test data used
in (Alikaniotis et al., 2016). Following how QWK
scores are computed in Alikaniotis et al. (2016), in-
stead of calculating QWK for each prompt sepa-
rately and averaging them, we calculate the QWK
score for the whole test set, by setting the minimum
score to 0 and the maximum score to 60. Using
this evaluation setup, our LSTM system achieves a
QWK score of 0.987, higher than the QWK score
of 0.96 of the best system in (Alikaniotis et al.,
2016). In this way of calculating QWK scores, since

Figure 2: Score variations per timestamp. All scores are nor-

malized to the range of [0, 1].

the majority of the test essays have a much smaller
score range (see Table 1) compared to [0, 60], the
differences between the system-predicted scores and
the gold-standard scores will be small most of the
time. For example, more than 55% of the essays
in the test set have a score range of [0, 3] or [0, 4]
and therefore, for these prompts, the differences be-
tween human-assigned gold-standard scores and the
scores predicted by an AES system will be small in
the range of [0, 60]. For this reason, in contrast to
prompt-specific QWK calculation, the QWK scores
are much higher in this evaluation setting and far
exceed the QWK score for human agreement when
computed in a prompt-specific way (see Table 4).

Interpreting neural network models and the inter-
actions between nodes is not an easy task. However,
it is possible to gain an insight of a network by an-
alyzing the behavior of particular nodes. In order
to understand how our neural network assigns the
scores, we monitor the score variations while test-
ing the model. Figure 2 displays the score variations
for three essays after processing each word (at each
timestamp) by the neural network. We have selected
a poorly written essay, a well written essay, and an
average essay with normalized gold-standard scores
of 0.2, 0.8, and 0.6, respectively.

According to Figure 2, the network learns to take
essay length into account and assigns a very low
score to all short essays with fewer than 50 words,
regardless of the content. This pattern recurs for
all essays and is not specific to the three selected
essays in Figure 2. However, if an essay is long
enough, the content becomes more important and
the AES system starts discriminating well written

1889

Description Prompts
1 2 3 4 5 6 7 8 Avg QWK

AES - H1 0.750 0.684 0.662 0.759 0.751 0.791 0.731 0.607 0.717
AES - H2 0.767 0.690 0.632 0.762 0.769 0.775 0.752 0.530 0.710
H1 - H2 0.721 0.812 0.769 0.851 0.753 0.776 0.720 0.627 0.754

Table 4: Comparison with human performance. H1 and H2 denote human rater 1 and human rater 2, respectively, and AES refers

to our best system (ensemble of CNN and LSTM models).

essays from poorly written ones. As shown in Fig-
ure 2, the model properly assigns a higher score to
the well written essay 2, while giving lower scores
to the other essays. This observation confirms that
the model successfully learns the required features
for automated essay scoring. While it is difficult to
associate different parts of the neural network model
with specific features, it is clear that appropriate in-
dicators of essay quality are being learnt, including
essay length and essay content.

6 Conclusion

In this paper, we have proposed an approach based
on recurrent neural networks to tackle the task of au-
tomated essay scoring. Our method does not rely on
any feature engineering and automatically learns the
representations required for the task. We have ex-
plored a variety of neural network model architec-
tures for automated essay scoring and have achieved
significant improvements over a strong open-source
baseline. Our best system outperforms the baseline
by 5.6% in terms of quadratic weighted Kappa. Fur-
thermore, an analysis of the network has been per-
formed to get an insight of the recurrent neural net-
work model and we show that the method effectively
utilizes essay content to extract the required infor-
mation for scoring essays.

Acknowledgments

This research is supported by Singapore Ministry
of Education Academic Research Fund Tier 2 grant
MOE2013-T2-1-150. We are also grateful to the
anonymous reviewers for their helpful comments.

References
Dimitrios Alikaniotis, Helen Yannakoudakis, and Marek

Rei. 2016. Automatic text scoring using neural net-
works. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics.

Yigal Attali and Jill Burstein. 2004. Automated essay
scoring with e-rater R© v. 2.0. Technical report, Educa-
tional Testing Service.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of the
3rd International Conference on Learning Represen-
tations.

Hongbo Chen and Ben He. 2013. Automated essay
scoring by maximizing human-machine agreement.
In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using RNN encoder–decoder for statistical ma-
chine translation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of Machine Learning Research, 12:2493–
2537.

Yann N. Dauphin, Harm de Vries, and Yoshua Bengio.
2015. Equilibrated adaptive learning rates for non-
convex optimization. In Advances in Neural Informa-
tion Processing Systems 28.

Jeffrey L. Elman. 1990. Finding structure in time. Cog-
nitive Science, 14(2):179–211.

Peter W Foltz, Darrell Laham, and Thomas K Landauer.
1999. The Intelligent Essay Assessor: Applications to
educational technology. Interactive Multimedia Elec-
tronic Journal of Computer-Enhanced Learning.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Ozan Irsoy and Claire Cardie. 2014. Opinion mining
with deep recurrent neural networks. In Proceedings
of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing.

Rudolf Kadlec, Martin Schmid, and Jan Kleindienst.
2015. Improved deep learning baselines for Ubuntu
corpus dialogs. In Proceesings of the NIPS 2015

1890

Workshop on Machine Learning for Spoken Language
Understanding and Interaction.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional LSTM-CNNs-CRF.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural net-
works. In Proceedings of the 30th International Con-
ference on Machine Learning.

Isaac Persing and Vincent Ng. 2015. Modeling argument
strength in student essays. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing.

Isaac Persing, Alan Davis, and Vincent Ng. 2010. Mod-
eling organization in student essays. In Proceedings of
the 2010 Conference on Empirical Methods in Natural
Language Processing.

Peter Phandi, Kian Ming A. Chai, and Hwee Tou Ng.
2015. Flexible domain adaptation for automated essay
scoring using correlated linear regression. In Proceed-
ings of the 2015 Conference on Empirical Methods in
Natural Language Processing.

Mark D. Shermis and Jill Burstein, editors. 2013. Hand-
book of Automated Essay Evaluation: Current Appli-
cations and New Directions. Routledge.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929–1958.

Martin Sundermeyer, Hermann Ney, and Ralf Schlüter.
2015. From feedforward to recurrent LSTM neural
networks for language modeling. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
23(3):517–529.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar
as a foreign language. In Advances in Neural Informa-
tion Processing Systems 28.

Helen Yannakoudakis and Ronan Cummins. 2015. Eval-
uating the performance of automated text scoring sys-
tems. In Proceedings of the Tenth Workshop on Inno-
vative Use of NLP for Building Educational Applica-
tions.

Torsten Zesch, Michael Wojatzki, and Dirk Scholten-
Akoun. 2015. Task-independent features for auto-
mated essay grading. In Proceedings of the Tenth

Workshop on Innovative Use of NLP for Building Ed-
ucational Applications.

Will Y. Zou, Richard Socher, Daniel Cer, and Christo-
pher D. Manning. 2013. Bilingual word embeddings
for phrase-based machine translation. In Proceedings
of the 2013 Conference on Empirical Methods in Nat-
ural Language Processing.

1891

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1892–1900,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Non-uniform Language Detection in Technical Writing
Weibo Wang1, Abidalrahman Moh’d1, Aminul Islam2

Axel J. Soto3, and Evangelos E. Milios1

1Faculty of Computer Science, Dalhousie University, Canada
{weibo,amohd,eem}@cs.dal.ca

2School of Computing and Informatics, University of Louisiana at Lafayette, USA
aminul@louisiana.edu

3School of Computer Science, University of Manchester, UK
axel.soto@manchester.ac.uk

Abstract

Technical writing in professional environ-
ments, such as user manual authoring, re-
quires the use of uniform language. Non-
uniform language detection is a novel task,
which aims to guarantee the consistency for
technical writing by detecting sentences in a
document that are intended to have the same
meaning within a similar context but use dif-
ferent words or writing style. This paper pro-
poses an approach that utilizes text similarity
algorithms at lexical, syntactic, semantic and
pragmatic levels. Different features are ex-
tracted and integrated by applying a machine
learning classification method. We tested our
method using smart phone user manuals, and
compared its performance against the state-of-
the-art methods in a related area. The experi-
ments demonstrate that our approach achieves
the upper bound performance for this task.

1 Introduction

Technical writing, such as creating device operation
manuals and user guide handbooks, is a special writ-
ing task that requires accurate text to describe a cer-
tain product or operation. To avoid ambiguity and
bring accurate and straightforward understanding to
readers, technical writing requires consistency in the
use of terminology and uniform language (Farkas,
1985). There are always demands from modern in-
dustries to improve the quality of technical docu-
ments in cost-efficient ways.

Non-uniform Language Detection (NLD) aims to
avoid inner-inconsistency and ambiguity of techni-
cal content by identifying non-uniform sentences.

Such sentences are intended to have the same mean-
ing or usage within a similar context but use differ-
ent words or writing style. However, even though
non-uniform sentences tend to have similar word-
ing, similar sentence pairs do not necessarily indi-
cate a non-uniform language instance. For example,
here are four similar sentence pairs cited from the
iPhone user manual (Apple Inc., 2015), where only
two pairs are true non-uniform language instances:

(1) tap the screen to show the controls.
tap the screen to display the controls.

(2) tap the screen to show the controls.
tap the screen to display the controls.

(3) if the photo hasn’t been downloaded yet, tap
the download notice first.
if the video hasn’t been downloaded yet, tap
the download notice first.

(4) you can also turn blue tooth on or off in con-
trol center.
you can also turn wi-fi and blue tooth on or
off in control center.

As we can see above, the pattern of difference
within each sentence pair could be between one
word and one word, or one word and multiple words,
or one sentence having extra words or phrases that
the other sentence does not have. Each pattern could
be a true or false non-uniform language instance
depending on the content and context. The word
’show’ and ’display’ are synonyms in Example (1).
Both sentences convey the same meaning, so they
are an instance of non-uniform language. In Exam-
ple (2), even though ’enter’ and ’write’ are not syn-
onyms, since the two sentences describe the same

1892

operation, they should be considered as non-uniform
language as well. In Example (3), even though the
only different words between the sentences, ’photo’
and ’video’, are both media contents, because they
are different objects, they should not be regarded
as non-uniform language. In Example (4), it is a
false candidate because each sentence mentions dif-
ferent functions. However, the two sentences are un-
equal in length, thus it is hard to know what the ex-
tra phrase ’wi-fi and’ should be compared against.
Therefore, it is challenging to distinguish true and
false occurrences of non-uniform cases based on text
similarity algorithms only, and finer grained analy-
ses need to be applied. To address the problem of
NLD, this paper proposes a methodology for detect-
ing non-uniform language within a technical docu-
ment at the sentence level. A schematic diagram of
our approach is shown in Figure 1.

Start Text
Content

Stage 1:
Similar

Sentence
Detector

Candidate
Sentence

Pairs

Stage 2:
Sentence

Pair
Analysis

Independent
Features

Stage 3:
Classification

Non-uniform
Language
Sentence

Pairs

End

Figure 1: Schematic diagram of our approach

It is worth to mention that NLD is similar to Pla-
giarism Detection and Paraphrase Detection (PD) as
all these tasks aim to capture similar sentences with
the same meaning (Das and Smith, 2009). However,
the goal of authors in plagiarism and paraphrasing
is to change as many words as possible to increase
the differences between texts, whereas in technical
writing, the authors try to avoid such differences, but
they do not always succeed and thus NLD solutions
are needed. Cases of plagiarism and paraphrasing
with high lexical differences will be typically clas-
sified as NLD negative, and cases with low lexical
differences will be typically classified as NLD pos-
itive. While true positive cases for both NLD and
PD can exist, there are not likely to happen in prac-

tice since textual differences in PD tend to be much
higher than in NLD.

To address the NLD task, Natural Language Pro-
cessing (NLP) techniques at lexical, syntactic, se-
mantic, and pragmatic levels are utilized. Our ap-
proach also integrates resources such as Part-of-
Speech (POS) tagger (Bird et al., 2009), Word-
Net (Miller et al., 1990), Google Tri-gram Method
(GTM) (Islam et al., 2012; Mei et al., 2015), and
Flickr1. Analyses from different perspectives are
applied, and the results are regarded as independent
features that are finally integrated by applying a clas-
sification method based on Support Vector Machine
(SVM). A ground truth dataset created from three
smart phone user manuals is used for evaluation, and
it is made publicly available2. The experiments on
this dataset demonstrate that the proposed solution
to the NLD task is the most efficient method to date,
and the final result is close to the upper bound per-
formance.

2 Related Work

NLD is closely related to PD, which aims to de-
tect sentences that have essentially the same mean-
ing. However, paraphrase is a restatement using
different words to make it appear different from
the original text. PD techniques cannot perform
well on the NLD task as they focus on variations
at a coarser granularity. We reviewed studies in
the PD area, and found the Recursive Auto-Encoder
(RAE) (Socher et al., 2011), and the Semantic Text
Similarity (STS) (Islam and Inkpen, 2008) to be
the state-of-the-art methods using supervised and
unsupervised-based PD, respectively. However, all
the four examples provided in the introduction sec-
tion would be recognized as paraphrases by these
analyzers, even though only two of the pairs are real
non-uniform language cases. Thus, state-of-the-art
PD techniques are unable to make accurate judg-
ments on these instances since PD do not address
the necessary level of detail for the NLD task.

Another related area to NLD is near-duplicate text
detection. It focuses on short text such as mobile
phone short messages, or tweets, which are intended
to have the same meaning but differ in terms of in-

1Flickr: https://www.flickr.com/
2The resource is available at: https://goo.gl/6wRchr

1893

formal abbreviations, transliterations, and network
languages (Gong et al., 2008). The detection and
elimination of near-duplicate text is of great im-
portance for other text language processing such as
clustering, opinion mining, and topic detection (Sun
et al., 2013). However, the studies in this area focus
on reducing the comparison time in large scale text
databases and creating informal abbreviation corpus,
rather than exploring the text similarity methods.
Basic similarity methods, such as Longest Common
Substring (LCS) are utilized, but they are not suffi-
cient to address the NLD task as LCS captures the
matching words and their order between texts and
using LCS alone will give high recall and low preci-
sion for the NLD task. For the following NLD neg-
ative example, LCS returns a high similarity score:

(5) If the photo hasn’t been downloaded yet, tap
the download notice first.
If the music hasn’t been downloaded yet, tap
the download notice first.

Examples of this type are common in technical writ-
ing, so other features are needed besides LCS to rec-
ognize NLD positives.

There is a research domain named near-duplicate
document detection, which seems literally related to
NLD, but also represents a different task. It focuses
on documents that are identical in terms of written
content but differ in a small portion of the docu-
ment such as advertisements, counters and times-
tamps (Manku et al., 2007). Such documents are
important to be identified for web crawling and the
automatic collection of digital libraries. Since this
area focuses on the variations between two docu-
ments, especially the variations on metadata, rather
than the written content within one document, their
proposed solutions are not a good fit for the NLD
tasks.

3 Non-uniform Language Detection

As we have shown in Figure 1, a framework consist-
ing of three stages is proposed to address the NLD
task. The first stage extracts candidate sentence
pairs that have high text similarity within a docu-
ment. The second stage performs comprehensive
analyses on each candidate sentence pair. The anal-
yses are performed at lexical, syntactical, semantic,
and pragmatic levels, where multiple NLP resources

such as POS tagger, WordNet, GTM, and Flickr are
utilized. The final stage integrates all the analysis
results by applying a classification method based on
SVM to classify the candidate sentence pairs as true
or false cases of non-uniform language.

3.1 Stage 1: Similar Sentences Detection

To extract the candidate sentence pairs, three text
similarity algorithms are combined and applied at
the sentence level. GTM is an unsupervised corpus-
based approach for measuring semantic relatedness
between texts. LCS focuses on the word order of
sentences. Cosine Similarity provides bag-of-word
similarity. GTM, LCS, and Cosine Similarity are
used to filter out the pairs based on semantics, sen-
tence structure, and word frequency, respectively.

The filtering thresholds were set by running ex-
periments at the sentence level on the iPhone user
manual (Apple Inc., 2015). Algorithm 1 is used to
set the filtering threshold for each average sentence
length3.

We utilize a sentence detector and a tokenizer4 to
divide the text of the manual into a sentence set of
n sentence pairs (Line 2). We separately run Algo-
rithm 1 three times to set the threshold sets for GTM,
LCS, and Cosine. The thresholds are set based on
the lengths of both sentences of a sentence pair. The
average length starts from 2 and is increased by one
once the threshold for the current length is set. We
discovered that once the sentence length goes above
10, the thresholds vary little. Therefore, we stop the
algorithm when the threshold for pairs of average
length equal to 10 is found (Line 6).

For each different average length, the algorithm
starts by asking the user to input an initial similar-
ity threshold and an increasing step value (Line 4-
5). An initial threshold range is generated based on
the user setting. The lower bound of the range is T
and the upper bound of the range is T+Step (Line
9-10). Then the algorithm would loop over all the
sentence pairs (Line 11-20) and add the pairs within
the current threshold range into set C (Line 14-16).

3See the Example (4) in Section 1, where two sentences
within one sentence pair could be unequal in length, thus we
compute the average length to represent the length of each can-
didate pair.

4OpenNLP: https://opennlp.apache.org/
documentation/1.5.3/manual/opennlp.html

1894

Input : User Manual
Output: Threshold-Length_List [(T1, L1), ...]

1 begin
2 S[n]←− SentenceDetector(User Manual)
3 L←− 2 /*Initial average length of a sentence pair*/
4 T ←−Similarity threshold
5 Step←−Threshold increasing step
6 while (L ≤ 10) do
7 C ←− ∅ /*Initialize the output sentence container.*/
8 do
9 Tlow ←− T

10 Tup ←− T + Step
11 for (i=0; i<n; i++) do
12 for (j=0; j<n; j++) do
13 AvgL←− (S[i] + S[j])/2
14 if AvgL ∈ [L− 1, L) then
15 if (Tlow ≤ Sim(S[i], S[j])) and

(Sim(S[i], S[j]) ≤ Tup) then
16 C add←− (S[i], S[j])
17 end
18 end
19 end
20 end
21 T ←−T+Step
22 while (Check(C)=True) /*Checked by human,
23 True when all the sentence pairs are not instances of

non-uniform language.*/ ;

24 Threshold-Length_List add←− (Tlow, L)
25 L++;
26 end
27 end

Algorithm 1: Setting similarity thresholds

The similarity of sentence pairs above the previous
threshold and below the current threshold are cap-
tured and analyzed (Line 15-16). If they consist of
all false non-uniform language candidates, we repeat
the loop with a higher threshold to filter more false
candidates. Once we discover that a true candidate is
filtered by the current thresholds, we stop increasing
and set the prior value as the threshold to maximize
the recall ratio. The whole experiment is repeated
for different sentence pair lengths. The final thresh-
olds for different similarity methods are shown in
Figure 2.

To filter the sentence pairs, we applied the thresh-
olds of the three text similarity algorithms. For ex-
ample, assume there are two sentences of nine-word
length on average. The similarity scores of this pair
have to be above all the GTM, LCS and Cosine
thresholds (which are 0.943, 0.836, and 0.932, ac-
cording to Figure 2) to make it a candidate instance.

By applying the thresholds shown in Figure 2,
candidate pairs could be detected in reasonable scale
in terms of the size of the corpus, and achieve good

Figure 2: Candidate filtering thresholds

recall ratio as well. As for precision, around 40% of
the candidates are true non-uniform language cases,
where the remaining candidates are supposed to be
filtered in the second stage.

3.2 Stage 2: Sentence Pair Analysis
In this stage, we aim to determine for the two sen-
tences of a candidate pair whether they describe the
same object or operation using different words or
writing style (i.e., true non-uniform language) or
they just appear similar but actually have different
intended meanings, by using the following features.

3.2.1 Part-of-Speech Tagging Analysis
POS tags are added for each candidate pair using

NLTK (Bird et al., 2009) tagger to gain a grammati-
cal view over the sentences.

As Table 1 shows, some differences in sentence
content can be captured using POS tags, but some
cannot. Thus, it is necessary to make further syntac-
tic and semantic analysis to distinguish true candi-
dates from false ones.

We categorized the different POS tags into the fol-
lowing groups shown in Table 2. The different POS
tags are mapped to different categories, which are
then used as one more feature of the sentence pair
representation.

3.2.2 Character N-gram Analysis
In the character N-gram analysis, the relatedness

between the different words of each candidate pair
is calculated in terms of character unigram, bigram

1895

Candidate Sentence Pair with POS Tag Ground Truth

Link
/NNP

your
/PRP

device
/NN

to
/TO

iTunes
/NNS

stores
/NNS

True

Link
/NNP

your
/PRP

device
/NN

to
/TO

iTunes
/NNS

store
/NN

Candidate

go
/VB

to
/TO

settings
/NNS

>
/SYS

general
/JJ

>
/SYS

accessibility
/NN

>
/SYS

audio
/NN False

go
/VB

to
/TO

settings
/NNS

>
/SYS

general
/JJ

>
/SYS

accessibility
/NN

>
/SYS

video
/NN Candidate

Hold
/VB

the
/DT

power
/NN

button
/NN

for
/IN

two
/NN

seconds
/NNS

to
/TO

shutdown
/NN

the
/DT

device
/NN True

Hold
/VB

the
/DT

power
/NN

button
/NN

for
/IN

two
/NN

seconds
/NNS

to
/TO

shut
/VBN

down
/RB

the
/DT

device
/NN Candidate

Hold
/VB

the
/DT

power
/NN

button
/NN

for
/IN

two
/NN

seconds
/NNS

to
/TO

turn
/VBN

off
/IN

the
/DT

device
/NN True

Hold
/VB

the
/DT

power
/NN

button
/NN

for
/IN

two
/NN

seconds
/NNS

to
/TO

shut
/VBN

down
/RB

the
/DT

device
/NN Candidate

Table 1: POS analysis on candidate sentence pairs

Label Description Example
1 Equal length, same POS tag /NN vs. /NN, /VB vs. /VB
2 Equal length, plural noun with singular noun /NN vs. /NNS
3 Equal length, different POS /NN vs. /VB
4 Unequal length, extra article /NN vs. /DT/NN
5 Unequal length, extra conjunction /NN vs. /CC/NN
6 Unequal length, extra adjective /NN vs. /JJ/NN
7 Other POS tag types. /NN vs. N/A

Table 2: POS tag categorizing

and trigram similarity. The character N-gram fre-
quencies with a window size from 1 to 3 is firstly
calculated. Then, the N-gram distance based on the
frequencies is calculated using the Common N-gram
distance (CNG) (Kešelj and Cercone, 2004):

d(f1, f2) = ∑
n∈dom(f1)∪dom(f2)

(
f1(n)− f2(n)

f1(n)+ f2(n)
2

)2 (1)

where dom(fi) is the domain of function fi. In
the equation above, n represents a certain N-gram
unit. fi(n) represents the frequency of n in sen-
tence i (i=1,2). If n does not appear in sentence i,
fi(n)=0. The lower bound of the N-gram distance is
0 (when the two units to be compared are exactly the
same). The higher the value of N-gram distance, the
larger the difference, thus there is no upper bound.
CNG was demonstrated to be a robust measure of
dissimilarity for character N-grams in different do-
mains (Wołkowicz and Kešelj, 2013).

3.2.3 WordNet Lexical Relation Analysis

For a given candidate sentence pair, if the differ-
ent wordingF are synonymous to each other, there is
a high likelihood that the two sentences try to convey
the same meaning but using different expressions.
On the other hand, if the different parts of a candi-
date pair are not related at the lexical level, then it
is reasonable to assume that this pair is describing
different objects/actions and thus they might not be
instances of non-uniform language.

WordNet is utilized here to analyze the lexical re-
lationship within each candidate pair to determine
whether they are synonyms to each other. To per-
form this analysis, we only used synset informa-
tion from WordNet, and we only considered words
as synonyms if they belong to a same synset. The
rationale is that a similar sentence pair tends to be
an instance of non-uniform language if the differ-
ent words are synonyms, rather than having other

1896

relationships such as hypernymy, hyponymy, and
antonymy. Therefore, we do not deem necessary to
include these relationships into our analysis. For ex-
ample, given a similar sentence pair:

(6) if the photo hasn’t been downloaded yet, tap
the download notice first.
if the video hasn’t been downloaded yet, tap
the download notice first.

The sentence pair above is not a non-uniform lan-
guage instance. However, the relatedness score be-
tween ‘photo’ and ‘video’ given by Wu-Palmer met-
ric (Wu and Palmer, 1994) using WordNet is 0.6,
which is fairly high compared to a random word
pair. Yet we do not know how these words are re-
lated, e.g., “photo is a kind of video”, ”photo is a
part of video”, or ”photo and video are examples of
media content”. Thus, we might make wrong judg-
ments based on such a similarity score. However,
using synset information, we know that these words
are not synonyms and thus probably not suggesting a
non-uniform language instance. Therefore, we con-
sidered as one more feature of our classifier whether
mismatching words belong to the same synset.

3.2.4 GTM Word Relatedness Analysis
Besides text similarity, GTM also measures se-

mantic relatedness between words. To find the re-
latedness between a pair of words, GTM takes into
account all the trigrams that start and end with the
given pair of words and then normalizes their mean
frequency using unigram frequency of each of the
words as well as the most frequent unigram in the
Google Web 1T N-gram corpus (Brants and Franz,
2006), and extends the word relatedness method to
measure document relatedness.

3.2.5 Flickr Related Concept Analysis
In some cases, word to word relatedness exists

that goes beyond dictionary definitions, such as
metonymy, in which a thing or concept is called not
by its own name but rather by the name of some-
thing associated in meaning with that thing or con-
cept (Kövecses and Radden, 1998). Metonymy de-
tection is actually a task at the pragmatic level of
NLP area, which can be appied for NLD in techni-
cal writing.

Flickr is a popular photo sharing website that sup-
ports time and location metadata and user tagging

for each photo. Since the tags are added by humans
and aim to describe or comment on a certain photo,
the tags are somehow related from a human perspec-
tive. As a result, Flickr becomes a large online re-
source with the potential to find metonymy relation-
ships in text.

Flickr made available statistical information
about their dataset that can be used to query related
concepts of a certain word or phrase online. We
utilized this resource to detect whether the different
parts within a candidate sentence pair are related at
the pragmatic level. A boolean value that indicates
metonymy relationship is obtained and regarded as
another feature of our sentence pair representation
for our NLD analysis. Table 3 gives some examples
of relatedness that could be discovered in this stage.

Different Content Is Metonymy
aeroplane, A380 True
film, hollywood True
apple, iPhone True

audio, grayscale False
Table 3: Example of analysis using Flickr

3.3 Stage 3: SVM Classification

All the metrics described above are regarded as fea-
tures of our candidate sentence pairs. To make
a comprehensive judgment based on these dif-
ferent signals, a classification method based on
SVM (Vladimir and Vapnik, 1995) is applied. We
implemented the SVM classification using "e1071"
package5 in R.

Using our labeled corpus, we trained an SVM
model on 61.5% of the data and used the remaining
for testing.

4 Experiments and Evaluation

In this section, we present the dataset, experimental
work and results, including results using other base-
line methods for comparative purposes.

4.1 Experiment Data

We downloaded smart phone user manuals of
iPhone (Apple Inc., 2015), LG (LG, 2009) and Sam-
sung (Samsung, 2011), which are available online

5https://cran.r-project.org/web/packages/e1071/

1897

as three raw datasets. Then, we performed Stage 1
three times on the three different datasets, and iden-
tified 325 candidate sentence pairs (650 sentences)
as part of Stage 1, which is considered as our can-
didate dataset. Before applying the sentence anal-
ysis and classification stages, each candidate sen-
tence pair in the dataset was labeled by three differ-
ent annotators as true or false. Then the ground truth
for each instance is generated by annotators’ voting.
The annotators worked separately to label the sen-
tence pairs. Cases of disagreement were sent again
to the annotators to double-check their judgement.
Some statistics from the manuals are shown in Table
4.

Data
Source

Data Volume
(Pages)

Candidate Pairs
(True, False)

iPhone 196 208 (102, 106)
LG 274 54 (16, 38)

Samsung 190 63 (32, 31)
Table 4: Experiment data distribution

To prepare for the SVM based classification stage,
we split the dataset into a training set DStrain, and a
testing set DStest. Considering that the data distri-
bution is nearly balanced in terms of true and false
instances, DStrain was formed by randomly select-
ing 200 instances from the dataset and the remaining
125 instances were used for DStest.

4.2 Evaluation Methods and Results

The performance of each annotator against the ma-
jority voting is evaluated in terms of Precision, Re-
call, Accuracy, and F-measure. These results along
with the number of true/ false, positive/ negative
cases for each annotator are presented in Table 5.

Parameters Expert 1 Expert 2 Expert 3
True-positive 130 99 125
True-negative 161 164 166
False-positive 20 51 25
False-negative 14 11 9

Precision 86.67 66.00 83.33
Recall 90.27 90.00 93.28

Accuracy 89.54 80.92 89.54
F-Measure 88.43 76.15 88.03

Table 5: Evaluation of annotators performance

To measure the agreement among annotators, the
Fleiss’ Kappa test (Fleiss and Cohen, 1973) is used.
Fleiss’ Kappa is an extension of Cohen’s Kappa (Co-
hen, 1968). Unlike Cohen’s Kappa, which only
measures the agreement between two annotators,
Fleiss’ Kappa measures the agreement among three
or more annotators. In our case, we have 3 anno-
tators (the annotator number n is 3), each annotator
labeled 325 candidate pairs (the subject volume N is
325), each candidate pair is labeled either 0 or 1 (the
value of category k is 2). The final Fleiss’ Kappa
Value is 0.545, which indicates a moderate agree-
ment level (0.41-0.60) based on the Kappa Interpre-
tation Model (Fleiss and Cohen, 1973). In other
words, the performance of the annotators reveal that
the NLD task is not simple, since there are many
cases that are ambiguous and hard to make accurate
judgments on, even for humans.

As Table 5 shows, the best performance of an-
notators is highlighted and regarded as the upper
bound performance (UB) of the NLD task on our
dataset. The state-of-the-art unsupervised PD sys-
tem named STS (Islam and Inkpen, 2008), as well
as the state-of-the-art supervised PD system named
RAE (Socher et al., 2011), are utilized to generate
the baselines of the NLD task. STS uses the simi-
larity score of 0.5 as the threshold to evaluate their
method in the PD task. RAE applies supervised
learning to classify a pair as a true or false instance
of paraphrasing. These approaches are utilized on
our evaluation as baselines for the NLD task.

After defining the upper bound and baseline
performances, we evaluated our proposed method,
which we name as Non-uniform Language Detect-
ing System (NLDS), by training the SVM classifier
on DStrain, and then performing classification using
the SVM classifier on DStest. The result is shown in
Table 6 as the NLDS method. The first row presents
the upper bound performance and the following two
rows present the baseline performances.

To assess the importance of each feature utilized
in the proposed framework, we performed a feature
ablation study (Cohen and Howe, 1988) on N-gram,
POS analysis, lexical analysis (GTM and WordNet),
and Flickr, separately on the DStest dataset. The re-
sults are listed in Table 6.

A series of cross-validation and Student’s t-tests
are applied after running NLDS, STS, RAE, and UB

1898

Method R(%) P (%) A(%) F1(%)
UB 92.38 86.67 89.54 88.43
STS 100 46.15 46.15 63.16
RAE 100 46.40 46.40 63.39

Uni-gram 11.11 35.29 52.80 16.90
Bi-gram 44.44 61.54 64.00 51.61
Tri-gram 50.00 62.79 65.60 55.67

POS 77.78 72.77 78.40 76.52
Lexical 85.18 59.74 68.80 70.23
Flickr 48.96 94.00 74.00 64.38
NLDS 80.95 96.22 88.80 87.93

Table 6: Evaluation of NLDS

methods on the F-measure metric. The tests reveal
that the performance of NLDS is significantly bet-
ter than STS and RAE, no significant differences
could be found between UB and NLDS. These re-
sults demonstrate that NLDS would represent an ef-
fective approach for NLD that is on pair with anno-
tator judgement and overcomes state-of-the-art ap-
proaches for related tasks.

4.3 Discussion

As Table 6 shows, the PD systems STS and RAE re-
gard all the test cases as true non-uniform language
cases, so the recall ratio is 1 but the precision is low.

It is worth noting that by using character N-gram
analysis alone, it is not possible to obtain good re-
sults. This is because the character N-gram analysis
using a probabilistic method is unable to capture any
difference or relatedness in the meaning, while the
NLD task relies heavily on discovering such relat-
edness. The reason we applied the N-gram analysis
is to use it as a supplementary method to catch dif-
ferences such as between ‘shut down’ (two words)
and ‘shutdown’ (one word), or some spelling errors.

POS analysis provides a syntactic perspec-
tive for the text instances. For instances,
‘then(/RB)’ versus ‘and(/CC)’, and ‘store(/NN)’
versus ‘stores(/NNS)’, the differences can be re-
flected in POS tags. Yet, POS analysis alone
could not capture the difference between words such
as ‘writing(/VBG)’ versus ‘entering(/VBG)’ since
they share the same POS tag. These features make
POS analysis outperform the character N-gram anal-
ysis, but not semantic-based approaches.

Lexical analysis (GTM and WordNet) achieves

the best recall ratio since it can provide semantic re-
latedness, which is the most important aspect for the
NLD task. Flickr is utilized as a supplementary re-
source to provide pragmatic relatedness.

By combining the different types of analyses
above, the differences of each sentence pair are an-
alyzed at different NLP levels and thus, the relat-
edness and difference from structural, grammati-
cal, syntactic, semantic and pragmatic perspectives
can be captured and integrated by the classification
method.

5 Conclusions

This paper proposes NLDS to detect non-uniform
language for technical writings at sentence level.
Text, stream-based, and word similarity algorithms
at the lexical, syntactic, semantic, and pragmatic
levels are integrated through an SVM-based classi-
fication method. To evaluate the proposed method,
three annotators manually labeled all the candidate
instances identified in Stage 1. Then we assigned
the ground truth for each instance pair by annota-
tors’ voting. Fleiss’ Kappa test is applied to reflect
the difference of human judgments and thus to re-
veal the difficulty of this task.

We also evaluated each annotator against the
ground truth, and defined the best performance of
human as the upper bound performance for this task.
With the generated ground truth, a series of experi-
ments using our implemented system were carried
out with different smart phone user manuals data.
We evaluated the results by comparing the outcome
of the classifier with the results using each single
feature, as well as the state-of-the-art PD methods.

Considering the different annotators’ judgments
as reflected by Fleiss’ Kappa Value, the NLD task is
fairly difficult. Yet, the performance of our system
is close to human performance. The experiments re-
veal that our solution is the most effective method to
date and the performance is close to the upper bound
that we defined. As for future work, we would apply
deeper analysis on true non-uniform language pairs
to indicate which sentence of the pair fits better with
the style and language of the rest of the document.
We would then provide a semi-automatic correction
function to facilitate authors with the task of remov-
ing non-uniform language occurrences.

1899

Acknowledgments

This research work was supported by Innovatia Inc.
and NSERC. We are thankful to our colleagues An-
drew Albert, David Crowley, and Erika Allen who
proposed and defined this NLD task, and provided
expertise that contributed on the preparation of this
paper.

References

Apple Inc. 2015. iPhone User Guide For iOS 8.4 Soft-
ware. https://manuals.info.apple.com/
MANUALS/1000/MA1565/en_US/iphone_
user_guide.pdf.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python. " O’Reilly Me-
dia, Inc.".

Thorsten Brants and Alex Franz. 2006. Web 1T 5-gram
Version 1.

Paul R Cohen and Adele E Howe. 1988. How evalua-
tion guides AI research: The message still counts more
than the medium. AI magazine, 9(4):35.

Jacob Cohen. 1968. Weighted kappa: Nominal scale
agreement provision for scaled disagreement or partial
credit. Psychological bulletin, 70(4):213.

Dipanjan Das and Noah A Smith. 2009. Paraphrase iden-
tification as probabilistic quasi-synchronous recogni-
tion. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th Inter-
national Joint Conference on Natural Language Pro-
cessing of the AFNLP: Volume 1-Volume 1, pages 468–
476. Association for Computational Linguistics.

David K Farkas. 1985. The concept of consistency in
writing and editing. Journal of Technical Writing and
Communication, 15(4):353–364.

Joseph L Fleiss and Jacob Cohen. 1973. The equiva-
lence of weighted kappa and the intraclass correlation
coefficient as measures of reliability. Educational and
psychological measurement.

Caichun Gong, Yulan Huang, Xueqi Cheng, and Shuo
Bai. 2008. Detecting near-duplicates in large-scale
short text databases. In Advances in Knowledge Dis-
covery and Data Mining, pages 877–883. Springer.

Aminul Islam and Diana Inkpen. 2008. Semantic
text similarity using corpus-based word similarity and
string similarity. ACM Transactions on Knowledge
Discovery from Data (TKDD), 2(2):10.

Aminul Islam, Evangelos Milios, and Vlado Kešelj.
2012. Text similarity using google tri-grams. In
Advances in Artificial Intelligence, pages 312–317.
Springer.

Vlado Kešelj and Nick Cercone. 2004. CNG method
with weighted voting. In Ad-hoc Authorship Attri-
bution Competition. Proceedings 2004 Joint Interna-
tional Conference of the Association for Literary and
Linguistic Computing and the Association for Comput-
ers and the Humanities (ALLC/ACH 2004), Göteborg,
Sweden.

Zoltán Kövecses and Günter Radden. 1998. Metonymy:
Developing a cognitive linguistic view. Cognitive Lin-
guistics (includes Cognitive Linguistic Bibliography),
9(1):37–78.

LG. 2009. LG600G User Guide. https:
//www.tracfone.com/images/en/phones/
TFLG600G/manual.pdf.

Gurmeet Singh Manku, Arvind Jain, and Anish
Das Sarma. 2007. Detecting near-duplicates for web
crawling. In Proceedings of the 16th international
conference on World Wide Web, pages 141–150. ACM.

Jie Mei, Xinxin Kou, Zhimin Yao, Andrew Rau-Chaplin,
Aminul Islam, Abidalrahman Moh’d, and Evange-
los E. Milios. 2015. Efficient computation of
co-occurrence based word relatedness. DemoURL:
http://ares.research.cs.dal.ca/gtm/.

George A Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine J Miller. 1990. In-
troduction to wordnet: An on-line lexical database*.
International journal of lexicography, 3(4):235–244.

Samsung. 2011. Samsung 010505d5 cell
phone user manual. http://cellphone.
manualsonline.com/manuals/mfg/
samsung/010505d5.html?p=53.

Richard Socher, Eric H. Huang, Jeffrey Pennington, An-
drew Y. Ng, and Christopher D. Manning. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In Advances in Neural Infor-
mation Processing Systems 24.

Yifang Sun, Jianbin Qin, and Wei Wang. 2013. Near
duplicate text detection using frequency-biased signa-
tures. In Web Information Systems Engineering–WISE
2013, pages 277–291. Springer.

Vapnik N Vladimir and V Vapnik. 1995. The nature of
statistical learning theory.

Jacek Wołkowicz and Vlado Kešelj. 2013. Evaluation
of n-gram-based classification approaches on classical
music corpora. In Mathematics and computation in
music, pages 213–225. Springer.

Zhibiao Wu and Martha Palmer. 1994. Verbs se-
mantics and lexical selection. DemoURL:http:
//ws4jdemo.appspot.com/?mode=w&s1=
&w1=photo&s2=&w2=video.

1900

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1901–1911,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Adapting Grammatical Error Correction Based on the Native Language
of Writers with Neural Network Joint Models

Shamil Chollampatt1 and Duc Tam Hoang2 and Hwee Tou Ng1,2

1NUS Graduate School for Integrative Sciences and Engineering
2Department of Computer Science
National University of Singapore

shamil@u.nus.edu, {hoangdt,nght}@comp.nus.edu.sg

Abstract
An important aspect for the task of grammat-
ical error correction (GEC) that has not yet
been adequately explored is adaptation based
on the native language (L1) of writers, despite
the marked influences of L1 on second lan-
guage (L2) writing. In this paper, we adapt
a neural network joint model (NNJM) using
L1-specific learner text and integrate it into
a statistical machine translation (SMT) based
GEC system. Specifically, we train an NNJM
on general learner text (not L1-specific) and
subsequently train on L1-specific data using
a Kullback-Leibler divergence regularized ob-
jective function in order to preserve gener-
alization of the model. We incorporate this
adapted NNJM as a feature in an SMT-based
English GEC system and show that adapta-
tion achieves significant F0.5 score gains on
English texts written by L1 Chinese, Russian,
and Spanish writers.

1 Introduction

Grammatical error correction (GEC) deals with the
automatic correction of errors (spelling, grammar,
and collocation errors), particularly in non-native
written text. The native language (L1) background
of the writer has a noticeable influence on the er-
rors made in second language (L2) writing, and con-
sidering this factor can potentially improve the per-
formance of GEC systems. For example, consider
the following sentence written by a Finnish writer
(Jarvis and Odlin, 2000): “When they had escaped
in the police car they sat under the tree.” The prepo-
sition in appears to be grammatically correct. How-
ever, in the given context, the preposition ‘from’ is

the correct choice in place of the preposition ‘in’.
Finnish learners of English tend to overgeneralize
the use of the preposition ‘in’. Knowledge of L1
makes the correction more probable whenever the
preposition in appears in texts written by Finnish
writers. Similarly, Chinese learners of English tend
to make frequent verb tense and verb form errors,
since Chinese lacks verb inflection (Shaughnessy,
1977). The cross-linguistic influence of L1 on L2
writing is a highly complex phenomenon, and the er-
rors made by learners cannot be directly attributed to
the similarities or differences between the two lan-
guages. As Ortega (2009) points out, learners seem
to operate on two complementary principles: “what
works in L1 may work in L2 because human lan-
guages are fundamentally alike; but if it sounds too
L1-like, it will probably not work in L2”. In this
paper, we follow a data-driven approach to model
these influences and adapt GEC systems using L2
texts written by writers of the same L1 background.

The two most popular approaches for grammat-
ical error correction are the classification approach
(Dahlmeier et al., 2012; Rozovskaya et al., 2014)
and the statistical machine translation (SMT) ap-
proach (Chollampatt et al., 2016; Junczys-Dowmunt
and Grundkiewicz, 2014). The SMT approach has
emerged as a popular paradigm for GEC because
of its ability to learn text transformations from ill-
formed to well-formed text enabling it to correct
a wide variety of errors including complex errors
that are difficult to handle for the classification ap-
proach (Rozovskaya and Roth, 2016). The phrase-
based SMT approach has been used in state-of-
the-art GEC systems (Rozovskaya and Roth, 2016;

1901

Chollampatt et al., 2016; Hoang et al., 2016). The
SMT approach does not model error types specifi-
cally, nor does it require linguistic analysis like pars-
ing and part-of-speech (POS) tagging. We adopt
a phrase-based SMT approach to GEC in this pa-
per. Additionally, we implement and incorporate a
neural network joint model (NNJM) (Devlin et al.,
2014) as a feature in our SMT-based GEC system.
It is easy to integrate an NNJM into the SMT de-
coding framework as it uses a fixed-window context
and it has shown to improve SMT-based GEC (Chol-
lampatt et al., 2016). We adapt the NNJM to L1-
specific data (i.e., English text written by writers of
a particular L1) and obtain significant improvements
over the baseline which uses an unadapted NNJM.
Adaptation is done by using the unadapted NNJM
trained on general domain data (i.e., not L1-specific)
using a log likelihood objective function with self-
normalization (Devlin et al., 2014) as the starting
point, and training for subsequent iterations using
the smaller L1-specific in-domain data with a mod-
ified objective function which includes a Kullback-
Leibler (KL) divergence regularization term. This
modified objective function prevents overfitting on
the smaller in-domain data and preserves the gener-
alization capability of the NNJM. We show that this
method of adaptation works on very small and high-
quality L1-specific data as well (50–100 essays).

In summary, the two major contributions of this
paper are as follows. (1) This is the first work that
performs L1-based adaptation for GEC using the
SMT approach and covering all error types. (2)
We introduce a novel method of NNJM adaptation
and demonstrate that this method can work with in-
domain data that are much smaller than the general
domain data.

2 Related Work

In the past decade, there has been increasing atten-
tion on GEC in English, mainly due to the growing
number of English as second language (ESL) learn-
ers around the world. The popularity of this prob-
lem grew further through Helping Our Own (HOO)
(Dale and Kilgarriff, 2011; Dale et al., 2012) and
CoNLL shared tasks (Ng et al., 2013; Ng et al.,
2014). The majority of the published work on GEC
aimed at building classifiers or rule-based systems

for specific error types and combined them to build
hybrid systems (Dahlmeier et al., 2012; Rozovskaya
et al., 2014).

The cross-linguistic influences between L1 and
L2 have been mainly used for the task of native lan-
guage identification (Massung and Zhai, 2016). It
has also been used in typology prediction (Berzak et
al., 2014) and predicting error distributions in ESL
data (Berzak et al., 2015). L1-based adaptation has
previously shown to improve GEC for specific error
types using the classification approach. Rozovskaya
and Roth (2010) used an approach to correct prepo-
sition errors by restricting the candidate corrections
to those observed in L1-specific data. They further
added artificial training data that mimic the error fre-
quency in L1-specific text to improve accuracy. In
their later work, Rozovskaya and Roth (2011) fo-
cused on L1-based adaptation for preposition and
article correction, by modifying the prior probabil-
ities in the naı̈ve Bayes classifier during decision
time based on L1-specific ESL learner text. Both
approaches use native data for training, but rely on
non-native L1-specific text to introduce artificial er-
rors or to modify the prior probabilities. Dahlmeier
and Ng (2011) implemented a system to correct col-
location errors, by adding paraphrases derived from
L1 into the confusion set. Specifically, they use a
bilingual L1-L2 corpus, to obtain L2 paraphrases,
which are likely to be translated to the same phrase
in L1. There is no prior work on L1-based adap-
tation for GEC using the machine translation ap-
proach, which is a one of the most popular ap-
proaches for GEC.

With the availability of large-scale error corrected
data (Mizumoto et al., 2011), the statistical machine
translation (SMT) approach to GEC became popu-
lar and was employed in state-of-the-art GEC sys-
tems. Comparison of the classification approach
and the machine translation approach can be found
in (Rozovskaya and Roth, 2016) and (Susanto et
al., 2014). Recently, an end-to-end neural machine
translation framework was proposed for GEC (Yuan
and Briscoe, 2016), which was shown to achieve
competitive results. Neural network joint models
have shown to be improve SMT-based GEC sys-
tems (Chollampatt et al., 2016) due to their ability
to model words and phrases in a continuous space,
access to larger contexts from source side, and abil-

1902

ity to learn non-linear mappings from input to out-
put. In this paper, we exploit the advantages of
the SMT approach and neural network joint mod-
els (NNJMs) by adapting an NNJM based on the
L1 background of the writers and integrating it into
the SMT framework. We perform KL divergence
regularized adaptation to prevent overfitting on the
smaller in-domain data. KL divergence regulariza-
tion was previously used by Yu et al. (2013) for
speaker adaptation. Joty et al. (2015) proposed an-
other NNJM adaptation method, which uses a regu-
larized objective function that encourages a network
trained on general-domain data to be closer to an in-
domain NNJM. Other adaptation techniques used in
SMT include mixture modeling (Foster and Kuhn,
2007; Moore and Lewis, 2010; Sennrich, 2012) and
alternative decoding paths (Koehn and Schroeder,
2007).

3 A Machine Translation Framework for
Grammatical Error Correction

We formulate GEC as a translation task from a pos-
sibly erroneous input sentence to a corrected sen-
tence. We use the popular phrase-based SMT sys-
tem, Moses (Koehn et al., 2007), which employs a
log linear model to find the best correction hypothe-
sis T ∗ given an input sentence S:

T ∗ = argmax
T

P (T |S) = argmax
T

N∑

i=1

µifi(T, S)

where µi and fi(T, S) are the ith feature weight and
feature function, respectively. We use the standard
features in Moses, without any re-ordering mod-
els. The two main components of an SMT system
are the translation model (TM) and the language
model (LM). The TM (typically, a phrase table), re-
sponsible for generating hypotheses, is trained using
parallel data, i.e., learner-written sentences (source
data) and their corresponding corrected sentences
(target data). It also scores the hypotheses us-
ing features like forward and inverse phrase trans-
lation probabilities and lexical weights. The LM
is trained on well-formed text and ensures the flu-
ency of the corrected output. The feature weights
µi are computed by minimum error rate training
(MERT), optimizing the F0.5 measure (Junczys-
Dowmunt and Grundkiewicz, 2014) using a devel-

opment set. The F0.5 measure computed using
the MaxMatch scorer (Dahlmeier and Ng, 2012) is
the standard evaluation metric for GEC used in the
CoNLL-2014 shared task (Ng et al., 2014), weight-
ing precision twice as much as recall.

Apart from the TM and the n-gram LM, we add
a neural network joint model (NNJM) (Devlin et
al., 2014) as a feature, following Chollampatt et al.
(2016), who reported that NNJM improves the per-
formance of a state-of-the-art SMT-based GEC sys-
tem. Unlike Recurrent Neural Networks (RNNs)
and Long Short Term Memory networks (LSTMs),
NNJMs have a feed-forward architecture which re-
lies on a fixed context. This makes it easy to inte-
grate NNJMs into a machine translation decoder as
a feature. The feature value is given by logP (T |S),
which is the sum of the log probabilities of individ-
ual target words in the hypothesis T given the con-
text:

logP (T |S) ≈
|T |∑

i=1

logP (ti|hi) (1)

where |T | is the number of words in the target
hypothesis (corrected sentence), ti is the ith target
word, and hi is the context of ti. The context hi
consists of n−1 previous target words andm source
words surrounding the source word that is aligned to
the target word ti.

Each dimension in the output layer of the neural
network (Chollampatt et al., 2016) gives the proba-
bility of a word t in the output vocabulary given its
context h:

P (y = t|h) =
exp(Ut(h))

Z(h)
=

exp(Ut(h))∑
t′∈Vo

exp(Ut′(h))

whereUt(h) is the unnormalized output score before
the softmax, and Vo is the output vocabulary.

The neural network parameters which include the
weights, biases, and embedding matrices are trained
using back propagation with stochastic gradient de-
scent (LeCun et al., 1998). Instead of using the noise
contrastive estimation (NCE) loss as done in (Chol-
lampatt et al., 2016), we use the log likelihood ob-
jective function with a self-normalization term sim-
ilar to Devlin et al. (2014):

L =
1

N

N∑

i=1

[
log p(y = ti|hi)− α log2(Z(hi))

]

(2)

1903

where N is the number of training instances, and ti
is the target word in the ith training instance. Each
training instance consists of a target word t and its
context h. α is the self-normalization coefficient
which we set to 0.1, following Devlin et al. (2014).
The training can be done efficiently on GPUs. We
adapt this NNJM using L1-specific learner text using
a Kullback-Leibler divergence regularized objective
function as described in Section 4.

4 KL Divergence Regularized Adaptation

We first train an NNJM with the general-domain
data (the erroneous and corrected texts, not consider-
ing the L1 of the writers) as described in the previous
section. Let pGD(y|h) be the probability distribu-
tion estimated by the general-domain NNJM. Start-
ing from this NNJM, subsequent iterations of train-
ing are done using the L1-specific in-domain data
alone. The in-domain data consists of the erroneous
texts written by writers of a specific L1 and their cor-
responding corrected texts. This adaptive training is
done using a modified objective function having a
regularization term K, which is used to minimize
the KL divergence between pGD(y|h) and the net-
work’s output probability distribution p(y|h) (Yu et
al., 2013):

K =
1

N

N∑

i=1

Vo∑

j=1

pGD(y = tj |hi) log p(y = tj |hi)

The term K will prevent the estimated probability
distribution from deviating too much from that of
the general domain NNJM during training. Our final
objective function for the adaptation step is a linear
combination of the terms in L andK, with a regular-
ization weight λ and a self-normalization coefficient
α:

L′ =λK + (1− λ)
1

N

N∑

i=1

log p(y = ti|hi)

− α 1

N

N∑

i=1

log2(Z(hi))

We integrate the unadapted NNJM and adapted
NNJM independently into our SMT-based GEC sys-
tem in order to compare the effect of adaptation.

5 Other Adaptation Methods

We compare our method against two other adapta-
tion methods previously used in SMT.

Translation Model Interpolation: Following
Sennrich (2012), we linearly interpolate the fea-
tures in two phrase tables, one trained on in-
domain data (L1-specific learner text) and the other
on out-of-domain data. The interpolation weights
are set by minimization of perplexity using phrase
pairs extracted from our in-domain development set.
The lexical weights are re-computed from the lex-
ical counts and the interpolation weights are re-
normalized if a phrase pair exists only in one of the
phrase tables.

Neural Domain Adaptation Model: Joty et al.
(2015) proposed an adaptation of NNJM for SMT.
They first train an NNJM using in-domain data,
and then perform regularized adaptation on the gen-
eral domain data (concatenation of in-domain and
out-of-domain data) which restricts the model from
drifting away from the in-domain NNJM. Specifi-
cally, they add a regularization term J to the objec-
tive function in their adaptive training step:

J =
1

N

N∑

i=1

pID(y = ti|hi) log p(y = ti|hi)

where pID(y|h) id probability distribution estimated
by the in-domain NNJM.

NDAM has the following drawbacks compared to
our method: (1) Regularization is done using proba-
bilities of the target words alone and not on the entire
probability distribution over all words, leading to a
weak regularization. (2) If the in-domain data is too
small, the probability distribution learnt by the in-
domain NNJM will be overfitted. Therefore, encour-
aging adaptation to be closer to this probability dis-
tribution may not yield a good model. Our method,
on the other hand, can utilize in-domain data of very
small sizes to fine tune a general NNJM. (3) Their
method requires retraining of the model on complete
training data in order to adapt to each domain. On
the contrary, our method can adapt a single general
model to different domains using small in-domain
data, leading to a considerable reduction in training
time.

We re-implement their method by incorporating
this regularization term into the log likelihood objec-

1904

tive function with self-normalization, L (Equation
2), during adaptive training.

6 Data and Evaluation

The training data consist of two corpora: the NUS
Corpus of Learner English (NUCLE) (Dahlmeier
et al., 2013) and the Lang-8 Learner Corpora v2
(Mizumoto et al., 2011). We extract texts written
by learners who learn only English from Lang-8. A
language identification tool langid.py1 (Lui and
Baldwin, 2011) is then used to obtain purely English
sentences. In addition, we remove noisy source-
target sentence pairs in Lang8 where the ratio of the
lengths of the source and target sentences is outside
[0.5, 2.0], or their word overlap ratio is less than 0.2.
A sentence pair where the source or target sentence
has more than 80 words is also removed from both
NUCLE and Lang-8. The statistics of the data after
pre-processing are shown in Table 1.

Corpus #sents #src tokens #tgt tokens

NUCLE 57,063 1,156,460 1,151,278
LANG-8 2,048,654 24,649,768 25,912,707

CONCAT 2,105,717 25,806,228 27,063,985

Table 1: Statistics of training data

We obtain L1-specific in-domain data for adapta-
tion based on the L1 information provided in Lang-
8. Adaptation is performed on English texts writ-
ten by learners of three different L1 backgrounds:
Chinese, Russian, and Spanish. The statistics of the
in-domain data from Lang-8 for each L1 are given
in Table 2. For each L1, its out-of-domain data
are obtained by excluding the L1-specific in-domain
data (from Table 2) from the combined training data
(CONCAT).

L1 #sents #src tokens #tgt tokens

Chinese 260,872 3,521,336 3,688,098
Russian 43,488 566,517 596,692
Spanish 19,357 292,257 309,236

Table 2: Statistics of L1-specific data in Lang-8

We use the publicly available CLC-FCE (Yan-
nakoudakis et al., 2011) corpus to obtain the de-

1https://github.com/saffsd/langid.py

velopment and test data. The FCE corpus contains
1,244 scripts written by 1,244 distinct candidates sit-
ting the Cambridge ESOL First Certificate in En-
glish (FCE) examination in 2000 and 2001. The
corpus identifies the L1 of each writer. We extract
the scripts written by Chinese, Russian, and Span-
ish native writers. We split the data for each L1
into two roughly equal parts based on the number of
scripts, of which one part is used as the development
data and other part is used as the test data. Splitting
based on the number of scripts ensures that there is
no overlap between the writers of the development
and test data, as each script is written by a unique
learner. The details of the FCE dataset correspond-
ing to each L1 are given in Table 3.

#scripts #sents #src
tokens

#tgt
tokens #errors

L1: Chinese

DEV 33 1,041 15,424 15,601 1,751
TEST 33 1,078 15,640 15,816 1,487

L1: Russian

DEV 41 1,125 17,021 17,267 1,782
TEST 42 1,263 18,738 18,920 1,934

L1: Spanish

DEV 100 2,281 41,375 41,681 4,133
TEST 100 2,431 41,557 42,035 4,237

Table 3: Statistics of the FCE dataset for each L1

For evaluation, we use the F0.5 measure, com-
puted by the M2scorer v3.2 (Dahlmeier and Ng,
2012), as our evaluation metric. The error annota-
tions in FCE are converted to the format required
by the M2scorer. The statistics of error annotations
after converting to this format are given in Table 3.
To deal with the instability of parameter tuning in
SMT, we perform five runs of tuning and calculate
the statistical significance by stratified approximate
randomization test, as recommended by (Clark et
al., 2011).

7 Experiments and Results

7.1 Baseline SMT-based GEC system
We use Moses (Version 3) to build all our SMT-
based GEC systems. The phrase table of the base-
line system (SCONCAT) is trained using the complete

1905

L1: Chinese L1: Russian L1: Spanish
P R F0.5 P R F0.5 P R F0.5

SIN 50.03 16.11 35.09 38.11 16.99 30.52 43.40 12.74 29.28
SOUT 49.88 17.34 36.23 54.78 21.15 41.54 57.18 16.10 37.83
SCONCAT 51.72 17.56 37.23 54.17 21.70 41.62 55.45 16.93 38.09
SCONCAT + NNJMBASELINE 50.47 18.75 37.63 55.22 21.73 42.15 58.30 16.42 38.60
NNJM adaptation using KL divergence regularization
SCONCAT + NNJMADAPTED 56.02 17.59 38.90 55.71 22.53 43.03 59.05 16.77 39.24
SCONCAT + NNJMADAPTED (FCE) 53.82 18.60 38.91 56.03 22.46 43.13 58.88 16.95 39.38
Comparison to other adaptation techniques
TMINT + NNJMBASELINE 55.70 17.18 38.38 54.97 21.90 42.21 58.32 16.44 38.59
SCONCAT + NDAM 56.56 16.76 38.31 54.60 22.03 42.11 58.28 16.64 38.83
TMINT + NNJMADAPTED 55.89 17.62 38.81 56.30 21.75 42.70 57.04 16.97 38.73
Using smaller general domain data
SCONCAT + NNJMSMALL-BASELINE 53.29 17.47 37.75 55.34 20.87 41.55 58.05 16.46 38.55
SCONCAT + NDAMSMALL 53.89 17.36 37.87 55.29 21.09 41.70 56.82 16.69 38.36
SCONCAT + NNJMSMALL-ADAPTED 52.41 17.40 37.37 56.03 21.17 42.09 58.34 16.79 39.01

Table 4: Precision (P), recall (R), and F0.5 of L1-based adaptation of GEC systems. All results are averaged over 5 runs of tuning

and evaluation.

training data. We use two 5-gram language models
(LMs) trained using KenLM (Heafield et al., 2013).
One LM is trained on the English Wikipedia (about
1.78 billion tokens) and another on the target side of
the complete training data. The system is tuned us-
ing MERT, optimizing the F0.5 measure on the L1-
specific development data in Table 2.

For comparison, we show two other baselines SIN

and SOUT, where the phrase tables for each L1 are
trained on the in-domain data only (Table 2) and the
out-of-domain data only, respectively. The results
of the above baseline GEC systems on L1 Chinese,
Russian, and Spanish FCE test data are summarized
in Table 4. We enhance the baseline SCONCAT with an
NNJM feature, as described in following subsection.

7.2 NNJM Adaptation

We implement NNJM in Python using the deep
learning library Theano2 (Bergstra et al., 2010) in
order to use the massively parallel processing power
of GPUs for training. We first train an NNJM
(NNJMBASELINE) with complete training data for 10
epochs. The source context window size is set to 5
and the target context window size is set to 4, mak-
ing it a (5+5)-gram joint model. Training is done
using stochastic gradient descent with a mini-batch

2http://deeplearning.net/software/theano

size of 128 and learning rate of 0.1. To speed up
training and decoding, a single hidden layer neural
network is used with an input embedding dimen-
sion of 192 and 512 hidden units. We use a self-
normalization coefficient of 0.1. We pick 16,000 and
32,000 most frequent words on the source and tar-
get sides as our source context vocabulary and target
context vocabulary, respectively. The output vocab-
ulary is set to be the same as the target vocabulary.
The vocabulary is selected from the complete train-
ing data, and not based on the L1-specific in-domain
data. We add the self-normalized NNJM as a fea-
ture to our baseline GEC system, SCONCAT to build a
stronger baseline. This is referred to as SCONCAT +
NNJMBASELINE in Table 4.

We perform adaptation on NNJMBASELINE by
training for 10 additional epochs using the in-
domain training data alone. We use the same hyper-
parameters, network structure, and vocabulary, but
with the KL-divergence regularized objective func-
tion (regularization weight λ = 0.5). We train
the adapted NNJM (NNJMADAPTED) specific to each
L1. We integrate these to our baseline GEC system,
and the adapted systems are referred to as SCONCAT

+ NNJMADAPTED in Table 4. The results are aver-
aged over five runs of tuning and evaluation. Our
evaluation shows that each adapted system SCONCAT

1906

+ NNJMADAPTED outperforms every baseline system
(SIN, SOUT, SCONCAT, and SCONCAT + NNJMBASELINE)
significantly on all three L1s (p < 0.01).

7.3 Comparison to Other Adaptation
Techniques

We compare our method to two different adapta-
tion techniques described in Section 5: Translation
Model Interpolation (TMINT) (Sennrich, 2012) and
Neural Domain Adaptation Model (NDAM) (Joty
et al., 2015)3. The optimization of interpolation
weights for TMINT is done using the L1-specific
FCE development data. NDAM is trained on the
complete training data (CONCAT) for 10 epochs by
regularizing using an in-domain NNJM also trained
for 10 epochs on L1-specific in-domain data from
Lang-8. For NDAM, we use the same vocabulary
and hyperparameters as our NNJMs.

The results are shown in the rows TMINT +
NNJMBASELINE and SCONCAT + NDAM in Table
4. Our evaluation shows that for L1 Russian
and L1 Spanish, our adapted system SCONCAT

+ NNJMADAPTED significantly outperforms both
TMINT + NNJMBASELINE and SCONCAT + NDAM (p <
0.01), but the improvement is not statistically signif-
icant for L1 Chinese.

Our evaluation also shows that the combination
of TMINT and adapted NNJM is similar (for L1 Chi-
nese and Russian) or worse (for Spanish) in perfor-
mance compared to SCONCAT + NNJMADAPTED. This
is because NNJMADAPTED by itself is a translation
model adaptation (because it considers source and
target side contexts) and hence using TMINT along
with it does not bring in any newer information and
may even hurt the performance when the in-domain
data is very small (in the case of Spanish).

7.4 Effect of Adaptation Data
We also perform adaptation on the L1-specific FCE
development set in Table 3 (which is also our de-
velopment data for the GEC systems), instead of the
in-domain data from Lang-8 in Table 2. Our neu-
ral network overfits easily on the FCE development
set due to its much smaller size. Hence, we per-
form adaptive training for only 2 epochs on top of
NNJMBASELINE. The results are shown in the row

3We use the NDAMv1 (Joty et al., 2015) trained using the
log likelihood objective function with self-normalization.

SCONCAT + NNJMADAPTED (FCE) in Table 4. Although
the FCE development data is much smaller in size
than the L1-specific in-domain data from Lang-8,
we observe similar improvements on all three L1s.
This is likely due to the similarity of the devel-
opment and test sets, which are obtained from the
same FCE corpus. These experiments show that
smaller high-quality L1-specific error annotated data
(1,000–2,000 sentences) similar to the target data
can be used for adaptation to give competitive re-
sults compared to using much larger in-domain data
(20,000–250,000 sentences) from other sources.

We perform experiments with smaller general do-
main data. In order to do this, we select a sub-
set of CONCAT composed of the in-domain data
of the three L1s along with 300,000 sentences ran-
domly selected from the rest of CONCAT. This cor-
pus is referred to as SMALL-CONCAT (623,717 sen-
tences and 7,990,659 source tokens). We perform
both KL-divergence regularized NNJM adaptation
(NNJMSMALL-ADAPTED) as well as Neural Domain
Adaptation Model (Joty et al., 2015) (NDAMSMALL)
and compare them to NNJM trained with SMALL-
CONCAT (NNJMSMALL-BASELINE). We use these
NNJMs with our SCONCAT baseline. The results
are summarized in Table 4. When the ratio be-
tween in-domain data and general domain data is
high, both adaptation methods do not significantly
improve over an unadapted NNJM. In the case of
L1 Spanish, KL-divergence regularized adaptation
significantly outperforms the unadapted NNJM and
NDAM as the size of in-domain data is smaller.

7.5 Effect of Regularization

To analyze the effect of regularization when smaller
data are used, we vary the regularization weight λ in
our objective function (Section 4). The results are
shown in Figure 1. λ = 0 corresponds to no reg-
ularization and training completely depends on the
in-domain data apart from using the general NNJM
as a starting point. On the other hand, setting λ = 1
forces the distribution learnt by the network to be
similar to that of the unadapted model. We see that
having no regularization (λ = 0) fails on all three
L1s, due to overfitting on the smaller in-domain
data. However, the effect of varying regularization
is more significant on L1 Russian and Spanish, as
the general NNJM has seen much smaller in-domain

1907

L1: Chinese L1: Russian L1: Spanish
36

37

38

39

40

41

42

43

44

F
0.

5

λ=0.00

λ=0.25

λ=0.50

λ=0.75

λ=1.00

Figure 1: Effect of regularization for SCONCAT +

NNJMADAPTED (FCE)

data compared to L1 Chinese.

7.6 Evaluation on Benchmark Dataset

We also evaluate our system on the benchmark
CoNLL-2014 shared task (Ng et al., 2014) test set
for GEC in English. The CoNLL-2014 shared task
consists of 1,312 sentences with two annotators. We
also perform evaluation on the extension of CoNLL-
2014 test set (Bryant and Ng, 2015), which contains
eight additional sets of annotations over the two sets
of annotations provided in the original test set. Fol-
lowing the settings of the CoNLL-2014 shared task,
we tune our unadapted baseline system and the L1-
adapted systems on the CoNLL-2013 shared task
test set consisting of 1,381 test sentences. The re-
sults are summarized in Table 5.

We find that only the systems adapted based on L1
Chinese improves over the unadapted baseline sys-
tem (SCONCAT + NNJMBASELINE). When the smaller-
sized, high-quality FCE data is used for adaptation
the margin of improvement is higher. This could be
due to large proportion of Chinese learner written
text in CoNLL-2014 test set, as the essays are writ-
ten by the students of National University of Sin-
gapore comprising mostly of native Chinese speak-
ers. Adaptation to L1 Russian and Spanish, does not
help the system on CoNLL-2014 test set. We also
compare our baseline SMT-based system with other
state-of-the-art GEC systems. Our baseline system
which is SMT-based, achieves the best F0.5 score
compared to other systems using the SMT approach
alone, making it a competitive SMT-based GEC
baseline. Overall, (Rozovskaya and Roth, 2016)

System CoNLL-2014
ST 10ANN

SCONCAT + NNJMBASELINE 42.80 59.14
Adaptation based on L1 Chinese
SCONCAT + NNJMADAPTED 43.06 59.27
SCONCAT + NNJMADAPTED (FCE) 44.27 60.36
Adaptation based on L1 Russian
SCONCAT + NNJMADAPTED 42.73 58.90
SCONCAT + NNJMADAPTED (FCE) 42.12 58.30
Adaptation based on L1 Spanish
SCONCAT + NNJMADAPTED 41.88 58.32
SCONCAT + NNJMADAPTED (FCE) 42.36 58.54
Best Published Results
Rozovskaya and Roth (2016)

(classifiers + spelling + SMT) 47.40 -
(SMT) 39.48 -

Chollampatt et al. (2016) (SMT) 41.75 57.19
Shared Task Teams
CAMB (classifiers, rules, SMT) 37.33 54.26
CUUI (classifiers) 36.79 51.79
AMU (SMT) 35.01 50.17

Table 5: ST denotes F0.5 scores on the shared task test set and

10ANN denotes the F0.5 scores on the extended test set with 10

sets of annotations.

achieves the best F0.5 score (47.40) after adding clas-
sifier components, spelling checker, punctuation and
capitalization correction components in a pipeline
with their SMT-based system. However, their SMT-
based system alone achieves an F0.5 score of 39.48
only.

8 Discussion and Error Analysis

Our results show that L1-based adaptation of the
NNJM using L1-specific in-domain data from Lang-
8 significantly improves the F0.5 score of the GEC
system on the three L1s by 1.27 (Chinese), 0.88
(Russian), and 0.64 (Spanish). We observe simi-
lar gains when smaller in-domain development data
from FCE is used for adaptation. These results show
that adaptation based on L1 is beneficial for targeted
error correction based on the native language of the
writers. Our results also show that the proposed
method of NNJM adaptation is scalable to differ-
ent sizes of in-domain and general domain data and
outperforms other methods of adaptation like phrase
table interpolation (Sennrich, 2012) and Neural Do-
main Adaptation Model (NDAM) (Joty et al., 2015).

We perform error analysis on four error types

1908

Error type ∆ F0.5
Chinese Russian Spanish

verb form/tense +0.394 +0.298 -0.124
determiner +2.892 +2.440 +1.648
preposition +0.084 +2.010 +1.806
noun number +0.130 -0.706 +0.822
all +0.400 +1.068 +0.586

Table 6: Differences between per error type F0.5 scores of sys-

tem and baseline for the three L1s

which are difficult for non-native learners of En-
glish.

We compare the outputs produced by our adapted
system: SCONCAT + NNJMADAPTED and the baseline:
SCONCAT + NNJMBASELINE. We perform per error
type quantitative analysis of our results by observ-
ing the difference in the per error type F0.5 scores
averaged over five runs of tuning and evaluation of
baseline and system. Computing per error type F0.5
scores is difficult for SMT-based GEC systems, as
the error types for corrections proposed by the SMT-
based GEC system cannot be determined trivially.
To overcome this difficulty, we attempt to determine
the error type of the proposed corrections by match-
ing them to the available human annotations (the
source/target phrase without the surrounding con-
text) in the complete FCE dataset (1,244 scripts).
We select those sentences from the test data where
the error type of every correction proposed by the
baseline and the system can be determined. This
process selects 928, 1102, and 2179 sentences for
L1 Chinese, Russian, and Spanish, respectively. The
differences in per error type F0.5 scores between sys-
tem and baseline are shown in Table 6. For Chinese,
the largest gain in F0.5 is observed for determiner er-
rors. Determiner errors are frequent in our L1 Chi-
nese FCE test set (10.02%) . Moreover, we see that
adaptation improves verb form errors by approxi-
mately 0.4% F0.5. Verb form errors are the most fre-
quent error type in our L1 Chinese test set (14.46%).
Also, the highest gain for L1 Russian comes from
determiner errors which is the most frequent error
type in our FCE test data for L1 Russian (13.55%).
Similarly, the highest gain for L1 Spanish comes
from preposition errors which is the most frequent
error type for L1 Spanish (12.51%).

From a practical standpoint, the adapted system
can be used as an educational aid in English classes

of local students in non-English-speaking countries,
where all the students share the same L1 and their
L1 is known in advance. The adapted system can
give focused feedback to learners by correcting mis-
takes frequently made by learners having the same
L1. Also, NNJM adaptation proposed in this paper
can be done using a small number of essays (50–100
essays) in a relatively short time (20–30 minutes),
making it easy to adapt GEC systems in practice.

9 Conclusion

In this paper, we perform NNJM adaptation using
L1-specific learner text with a KL divergence reg-
ularized objective function. We integrate adapta-
tion into an SMT-based GEC system. The systems
with adapted NNJMs outperform unadapted base-
lines significantly. We also demonstrate the neces-
sity for regularization when adapting on smaller in-
domain data. Our method of adaptation performs
better compared to other adaptation methods, espe-
cially when smaller in-domain data is used. Our re-
sults show that adapting GEC systems for learners
of similar L1 background gives significant improve-
ment and can be adopted in practice to improve GEC
systems.

Acknowledgments

We thank Kaveh Taghipour for insightful comments
and discussions throughout this work. We are also
grateful to the anonymous reviewers for their feed-
back which helped in revising and improving the pa-
per. This research is supported by Singapore Min-
istry of Education Academic Research Fund Tier 2
grant MOE2013-T2-1-150.

References
James Bergstra, Olivier Breuleux, Frédéric Bastien, Pas-

cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio. 2010. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for Scientific
Computing Conference.

Yevgeni Berzak, Roi Reichart, and Boris Katz. 2014.
Reconstructing native language typology from foreign
language usage. In Proceedings of the 19th Confer-
ence on Computational Natural Language Learning.

Yevgeni Berzak, Roi Reichart, and Boris Katz. 2015.
Contrastive analysis with predictive power: Typology

1909

driven estimation of grammatical error distributions in
ESL. In Proceedings of the 19th Conference on Com-
putational Natural Language Learning.

Christopher Bryant and Hwee Tou Ng. 2015. How far
are we from fully automatic high quality grammatical
error correction? In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing.

Shamil Chollampatt, Kaveh Taghipour, and Hwee Tou
Ng. 2016. Neural network translation models for
grammatical error correction. In Proceedings of the
25th International Joint Conference on Artificial Intel-
ligence.

Jonathan H Clark, Chris Dyer, Alon Lavie, and Noah A
Smith. 2011. Better hypothesis testing for statisti-
cal machine translation: Controlling for optimizer in-
stability. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Hu-
man Language Technologies.

Daniel Dahlmeier and Hwee Tou Ng. 2011. Correct-
ing semantic collocation errors with L1-induced para-
phrases. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better evalu-
ation for grammatical error correction. In Proceedings
of the 2012 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies.

Daniel Dahlmeier, Hwee Tou Ng, and Eric Jun Feng Ng.
2012. NUS at the HOO 2012 shared task. In Proceed-
ings of the 7th Workshop on the Innovative Use of NLP
for Building Educational Applications.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
English: The NUS corpus of learner English. In Pro-
ceedings of the Eighth Workshop on Innovative Use of
NLP for Building Educational Applications.

Robert Dale and Adam Kilgarriff. 2011. Helping our
own: The HOO 2011 pilot shared task. In Proceedings
of the 13th European Workshop on Natural Language
Generation.

Robert Dale, Ilya Anisimoff, and George Narroway.
2012. HOO 2012: A report on the preposition and
determiner error correction shared task. In Proceed-
ings of the Seventh Workshop on Building Educational
Applications Using NLP.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas
Lamar, Richard Schwartz, and John Makhoul. 2014.
Fast and robust neural network joint models for statis-
tical machine translation. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics.

George Foster and Roland Kuhn. 2007. Mixture-model
adaptation for SMT. In Proceedings of the Second
Workshop on Statistical Machine Translation.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H. Clark,
and Philipp Koehn. 2013. Scalable modified Kneser-
Ney language model estimation. In Proceedings of the
51st Annual Meeting of the Association for Computa-
tional Linguistics.

Duc Tam Hoang, Shamil Chollampatt, and Hwee Tou
Ng. 2016. Exploiting n-best hypotheses to improve
an SMT approach to grammatical error correction. In
Proceedings of the 25th International Joint Confer-
ence on Artificial Intelligence.

Scott Jarvis and Terence Odlin. 2000. Morphological
type, spatial reference, and language transfer. Studies
in Second Language Acquisition, 22:535–556.

Shafiq Joty, Hassan Sajjad, Nadir Durrani, Kamla Al-
Mannai, Ahmed Abdelali, and Stephan Vogel. 2015.
How to avoid unwanted pregnancies: Domain adapta-
tion using neural network models. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2014. The AMU system in the CoNLL-2014 shared
task: Grammatical error correction by data-intensive
and feature-rich statistical machine translation. In
Proceedings of the Eighteenth Conference on Compu-
tational Natural Language Learning: Shared Task.

Philipp Koehn and Josh Schroeder. 2007. Experiments in
domain adaptation for statistical machine translation.
In Proceedings of the Second Workshop on Statistical
Machine Translation.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Proceed-
ings of the 45th Annual Meeting of the Association
for Computational Linguistics (Interactive Poster and
Demonstration Sessions).

Yann LeCun, Leon Bottou, Genevieve Orr, and Klaus
Müller. 1998. Efficient backprop. Neural Networks:
Tricks of the Trade, pages 9–50.

Marco Lui and Timothy Baldwin. 2011. Cross-domain
feature selection for language identification. In Pro-
ceedings of the 5th International Joint Conference on
Natural Language Processing.

Sean Massung and Chengxiang Zhai. 2016. Non-native
text analysis: A survey. Natural Language Engineer-
ing, 22:163–186.

Tomoya Mizumoto, Mamoru Komachi, Masaaki Nagata,
and Yuji Matsumoto. 2011. Mining revision log of

1910

language learning SNS for automated Japanese error
correction of second language learners. In Proceed-
ings of the Fifth International Joint Conference on
Natural Language Processing.

Robert C. Moore and William Lewis. 2010. Intelligent
selection of language model training data. In Proceed-
ings of the 48th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 shared task on grammatical error correction. In
Proceedings of the Seventeenth Conference on Com-
putational Natural Language Learning: Shared Task.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Natural
Language Learning: Shared Task.

Lourdes Ortega. 2009. Understanding Second Language
Acquisition. Hodder Education.

Alla Rozovskaya and Dan Roth. 2010. Generating
confusion sets for context-sensitive error correction.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing.

Alla Rozovskaya and Dan Roth. 2011. Algorithm selec-
tion and model adaptation for ESL correction tasks. In
Proceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics.

Alla Rozovskaya and Dan Roth. 2016. Grammatical er-
ror correction: Machine translation and classifiers. In
Proceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics.

Alla Rozovskaya, Kai-Wei Chang, Mark Sammons, Dan
Roth, and Nizar Habash. 2014. The Illinois-Columbia
system in the CoNLL-2014 shared task. In Proceed-
ings of the Eighteenth Conference on Computational
Natural Language Learning: Shared Task.

Rico Sennrich. 2012. Perplexity minimization for trans-
lation model domain adaptation in statistical machine
translation. In Proceedings of the 13th Conference of
the European Chapter of the Association for Compu-
tational Linguistics.

Mina Shaughnessy. 1977. Errors and Expectations.
New York: Oxford University Press.

Raymond Hendy Susanto, Peter Phandi, and Hwee Tou
Ng. 2014. System combination for grammatical error
correction. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically

grading ESOL texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies.

Dong Yu, Kaisheng Yao, Hang Su, Gang Li, and Frank
Seide. 2013. KL-divergence regularized deep neu-
ral network adaptation for improved large vocabulary
speech recognition. In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing.

Zheng Yuan and Ted Briscoe. 2016. Grammatical error
correction using neural machine translation. In Pro-
ceedings of the 15th Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics.

1911

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1912–1917,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Orthographic Syllable as basic unit for SMT between Related Languages

Anoop Kunchukuttan, Pushpak Bhattacharyya
Center For Indian Language Technology,

Department of Computer Science & Engineering
Indian Institute of Technology Bombay

{anoopk,pb}@cse.iitb.ac.in

Abstract

We explore the use of the orthographic syl-
lable, a variable-length consonant-vowel se-
quence, as a basic unit of translation between
related languages which use abugida or alpha-
betic scripts. We show that orthographic sylla-
ble level translation significantly outperforms
models trained over other basic units (word,
morpheme and character) when training over
small parallel corpora.

1 Introduction

Related languages exhibit lexical and structural sim-
ilarities on account of sharing a common ances-
try (Indo-Aryan, Slavic languages) or being in pro-
longed contact for a long period of time (Indian sub-
continent, Standard Average European linguistic ar-
eas) (Bhattacharyya et al., 2016). Translation be-
tween related languages is an important requirement
due to substantial government, business and social
communication among people speaking these lan-
guages. However, most of these languages have few
parallel corpora resources, an important requirement
for building good quality SMT systems.
Modelling the lexical similarity among related

languages is the key to building good-quality SMT
systems with limited parallel corpora. Lexical sim-
ilarity implies that the languages share many words
with the similar form (spelling/pronunciation) and
meaning e.g. blindness is andhapana in Hindi,
aandhaLepaNaa in Marathi. These words could
be cognates, lateral borrowings or loan words from
other languages. Translation for such words can be

achieved by sub-word level transformations. For in-
stance, lexical similarity can be modelled in the stan-
dard SMT pipeline by transliteration of words while
decoding (Durrani et al., 2010) or post-processing
(Nakov and Tiedemann, 2012; Kunchukuttan et al.,
2014).
A different paradigm is to drop the notion of

word boundary and consider the character n-gram
as the basic unit of translation (Vilar et al., 2007;
Tiedemann, 2009a). Such character-level SMT
bas been explored for closely related languages
likeBulgarian-Macedonian, Indonesian-Malaywith
modest success, with the short context of unigrams
being a limiting factor (Tiedemann, 2012). The
use of character n-gram units to address this limi-
tation leads to data sparsity for higher order n-grams
and provides little benefit (Tiedemann and Nakov,
2013).
In this work, we present a linguistically moti-

vated, variable length unit of translation — ortho-
graphic syllable (OS)—which provides more con-
text for translation while limiting the number of ba-
sic units. The OS consists of one or more conso-
nants followed by a vowel and is inspired from the
akshara, a consonant-vowel unit, which is the funda-
mental organizing principle of Indic scripts (Sproat,
2003; Singh, 2006). It can be thought of as an ap-
proximate syllable with the onset and nucleus, but
no coda. While true syllabification is hard, ortho-
graphic syllabification can be easily done. Atreya et
al. (2016) and Ekbal et al. (2006) have shown that
the OS is a useful unit for transliteration involving
Indian languages.
We show that orthographic syllable-level trans-

1912

lation significantly outperforms character-level and
strong word-level and morpheme-level baselines
over multiple related language pairs (Indian as well
as others). Character-level approaches have been
previously shown to work well for language pairs
with high lexical similarity. Ourmajor finding is that
OS-level translation outperforms other approaches
even when the language pairs have relatively less
lexical similarity or belong to different language
families (but have sufficient contact relation).

2 Orthographic Syllabification

The orthographic syllable is a sequence of one or
more consonants followed by a vowel, i.e a C+V
unit. We describe briefly procedures for ortho-
graphic syllabification of Indian scripts and non-
Indic alphabetic scripts. Orthographic syllabifica-
tion cannot be done for languages using logographic
and abjad scripts as these scripts do not have vowels.

Indic Scripts: Indic scripts are abugida scripts,
consisting of consonant-vowel sequences, with a
consonant core (C+) and a dependent vowel (ma-
tra). If no vowel follows a consonant, an implicit
schwa vowel [IPA: ə] is assumed. Suppression of
schwa is indicated by the halanta character follow-
ing a consonant. This script design makes for a
straightforward syllabification process as shown in
the following example. e.g. लक्षमी

(
lakShamI

CV CCV CV

)
is

segmented as ल क्ष मी
(

la kSha mI
CV CCV CV

)
. There are two

exceptions to this scheme: (i) Indic scripts distin-
guish between dependent vowels (vowel diacritics)
and independent vowels, and the latter will consti-
tute an OS on its own. e.g. मुम्बई (mumbaI) →
मु म्ब ई (mu mba I) (ii) The characters anusvaara
and chandrabindu are part of the OS to the left if
they represents nasalization of the vowel/consonant
or start a new OS if they represent a nasal consonant.
Their exact role is determined by the character fol-
lowing the anusvaara.

Non-Indic Alphabetic Scripts: We use a simpler
method for the alphabetic scripts used in our experi-
ments (Latin and Cyrillic). The OS is identified by a
C+V+ sequence. e.g. lakshami→la ksha mi, mum-
bai→mu mbai. The OS could contains multiple ter-
minal vowel characters representing long vowels (oo
in cool) or diphthongs (ai inmumbai). A vowel start-

Basic Unit Example Transliteration

Word घरासमोरचा gharAsamoracA
Morph Segment घरा समोर चा gharA samora cA
Orthographic Syllable घ रा स मो र चा gha rA sa mo racA
Character unigram घ र ◌ा स म ◌ो र च ◌ा gha r A sa m o ra c A
Character 3-gram घरा समो रचा gharA samo rcA

something that is in front of home: ghara=home, samora=front, cA=of

Table 1: Various translation units for aMarathi word

ing a word is considered to be an OS.

3 Translation Models

We compared the orthographic syllable level model
(O) with models based on other translation units that
have been reported in previous work: word (W),
morpheme (M), unigram (C) and trigram characters.
Table 1 shows examples of these representations.
The first step to build these translation systems is

to transform sentences to the correct representation.
Each word is segmented as the per the unit of rep-
resentation, punctuations are retained and a special
word boundary marker character (_) is introduced
to indicate word boundaries as shown here:

W: राजू , घराबाहेर जाऊ नको .
O: रा जू _ , _ घ रा बा हे र _ जा ऊ _ न को _ .

For all units of representation, we trained phrase-
based SMT (PBSMT) systems. Since related lan-
guages have similar word order, we used distance
based distortionmodel andmonotonic decoding. For
character and orthographic syllable level models, we
use higher order (10-gram) languages models since
data sparsity is a lesser concern due to small vocabu-
lary size (Vilar et al., 2007). As suggested by Nakov
and Tiedemann (2012), we used word-level tuning
for character and orthographic syllable level models
by post-processing n-best lists in each tuning step to
calculate the usual word-based BLEU score.
While decoding, the word and morpheme level

systems will not be able to translate OOV words.
Since the languages involved share vocabulary, we
transliterate the untranslated words resulting in the
post-edited systems WX and MX corresponding to
the systems W and M respectively. Following de-
coding, we used a simple method to regenerate
words from sub-word level units: Since we represent
word boundaries using a word boundary marker, we

1913

IA→IA DR→DR IA→DR
ben-hin 52.30 mal-tam 39.04 hin-mal 33.24
pan-hin 67.99 tel-mal 39.18 DR→IA
kok-mar 54.51 mal-hin 33.24

IA: Indo-Aryan, DR: Dravidian

Table 2: Language pairs used in experiments along
with Lexical Similarity between them, in terms of
LCSR between training corpus sentences

simply concat the output units between consecutive
occurrences of the marker character.

4 Experimental Setup

Languages: Our experiments primarily concen-
trated on multiple language pairs from the two ma-
jor language families of the Indian sub-continent
(Indo-Aryan branch of Indo-European and Dravid-
ian). These languages have been in contact for a
long time, hence there are many lexical and gram-
matical similarities among them, leading to the sub-
continent being considered a linguistic area (Eme-
neau, 1956). Specifically, there is overlap between
the vocabulary of these languages to varying de-
grees due to cognates, language contact and loan-
words from Sanskrit (throughout history) and En-
glish (in recent times). Table 2 lists the languages
involved in the experiments and provides an indica-
tion of the lexical similarity between them in terms
of the Longest Common Subsequence Ratio (LCSR)
(Melamed, 1995) between the parallel training sen-
tences at character level. All these language have
a rich inflectional morphology with Dravidian lan-
guages, and Marathi and Konkani to some degree,
being agglutinative. kok-mar and pan-hin have a
high degree of lexical similarity.

Dataset: We used the multilingual ILCI corpus for
our experiments (Jha, 2012), consisting of a mod-
est number of sentences from tourism and health
domains. The data split is as follows – training:
44,777, tuning 1K, test: 2K sentences. Language
models for word-level systems were trained on the
target side of training corpora plus monolingual cor-
pora from various sources [hin: 10M (Bojar et al.,
2014), tam: 1M (Ramasamy et al., 2012), mar: 1.8M
(news websites), mal: 200K (Quasthoff et al., 2006)
sentences]. We used the target language side of the

parallel corpora for character, morpheme and OS
level LMs.

System details: PBSMT systems were trained us-
ing the Moses system (Koehn et al., 2007), with the
grow-diag-final-and heuristic for extracting phrases,
and Batch MIRA (Cherry and Foster, 2012) for tun-
ing (default parameters). We trained 5-gram LMs
withKneser-Ney smoothing for word andmorpheme
level models and 10-gram LMs for character and
OS level models. We used the BrahmiNet translit-
eration system (Kunchukuttan et al., 2015) for post-
editing, which is based on the transliteration Mod-
ule in Moses (Durrani et al., 2014). We used un-
supervised morphological segmenters trained with
Morfessor (Virpioja et al., 2013) for obtaining mor-
pheme representations. The unsupervised morpho-
logical segmenters were trained on the ILCI corpus
and the Leipzig corpus (Quasthoff et al., 2006).The
morph-segmenters and our implementation of ortho-
graphic syllabification are made available as part of
the Indic NLP Library1.

Evaluation: We use BLEU (Papineni et al., 2002)
and Le-BLEU (Virpioja and Grönroos, 2015) for
evaluation. Le-BLEU does fuzzy matches of words
and hence is suitable for evaluating SMT systems
that perform transformation at the sub-word level.

5 Results and Discussion

This section discusses the results on Indian and non-
Indian languages and cross-domain translation.

Comparison of Translation Units: Table 3 com-
pares the BLEU scores for various translation sys-
tems. The orthographic syllable level system is
clearly better than all other systems. It signifi-
cantly outperforms the character-level system (by
46% on an average). The character-based system
is competitive only for highly lexically similar lan-
guage pairs like pan-hin and kok-mar. The sys-
tem also outperforms two strong baselines which ad-
dress data sparsity: (a) a word-level system with
transliteration of OOV words (10% improvement),
(b) amorph-level systemwith transliteration of OOV
words (5% improvement). The OS-level representa-
tion is more beneficial when morphologically rich

1http://anoopkunchukuttan.github.io/indic_nlp_library

1914

W WX M MX C O

ben-hin 31.23 32.79 32.17 32.32 27.95 33.46
pan-hin 68.96 71.71 71.29 71.42 71.26 72.51
kok-mar 21.39 21.90 22.81 22.82 19.83 23.53

mal-tam 6.52 7.01 7.61 7.65 4.50 7.86
tel-mal 6.62 6.94 7.86 7.89 6.00 8.51

hin-mal 8.49 8.77 9.23 9.26 6.28 10.45

mal-hin 15.23 16.26 17.08 17.30 12.33 18.50

Table 3: Results - ILCI corpus (% BLEU). The
reported scores are:- W: word-level, WX : word-level fol-
lowed by transliteration of OOV words, M: morph-level, MX :
morph-level followed by transliteration of OOVmorphemes,C:
character-level,O: orthographic syllable. The values marked in
bold indicate the best scores for the language pair.

C O M W

ben-hin 0.71 0.63 0.58 0.40
pan-hin 0.72 0.70 0.64 0.50
kok-mar 0.74 0.68 0.63 0.64

mal-tam 0.77 0.71 0.56 0.46
tel-mal 0.78 0.65 0.52 0.45

hin-mal 0.79 0.59 0.46 -0.02

mal-hin 0.71 0.61 0.45 0.37

Table 4: Pearson’s correlation coefficient between lex-
ical similarity and translation accuracy (both in terms of
LCSR at character level). This was computed over the
test set between: (ii) sentence level lexical similarity be-
tween source and target sentences and (ii) sentence level
translation match between hypothesis and reference.

languages are involved in translation. Significantly,
OS-level translation is also the best system for trans-
lation between languages of different language fam-
ilies. The Le-BLEU scores also show the same trend
as BLEU scores, but we have not reported it due to
space limits. There are a very small number of un-
translated OSes, which we handled by simple map-
ping of untranslated characters from source to tar-
get script. This barely increased translation accuracy
(0.02% increase in BLEU score).

Why is OS better than other units?: The im-
proved performance of OS level representation can
be attributed to the following factors:
One, the number of basic translation units is

limited and small compared to word-level and

WX MX C O

ben-hin Corpus not available
pan-hin 61.56 59.75 58.07 58.48
kok-mar 19.32 18.32 17.97 19.65

mal-tam 5.88 6.02 4.12 5.88
tel-mal 3.19 4.07 3.11 3.77

hin-mal 5.20 6.00 3.85 6.26

mal-hin 9.68 11.44 8.42 13.32

Table 5: Results: Agricuture Domain (% BLEU)

morpheme-level representations. For word-level
representation, the number of translation units can
increase with corpus size, especially for morpholog-
ically rich languages which leads to many OOVs.
Thus, OS-level units address data sparsity.
Two, while character level representation too

does not suffer from data sparsity, we observe
that the translation accuracy is highly correlated
to lexical similarity (Table 4). The high corre-
lation of character-level system and lexical simi-
larity explains why character-level translation per-
forms nearly as well other methods for language
pairs which have high lexical similarity, but per-
forms badly otherwise. On the other hand, the OS-
level representation has lesser correlation with lexi-
cal similarity and sits somewhere between character-
level and word/morpheme level systems. Hence it is
able to make generalizations beyond simple char-
acter level mappings. We observed that OS-level
representation was able to correctly generate words
whose translations are not cognate with the source
language. This is an important property since func-
tion words and suffixes tend to be less similar lexi-
cally across languages.
Can improved translation performance be ex-

plained by longer basic translation units? To ver-
ify this, we trained translation systemswith character
trigrams as basic units. We chose trigrams since the
average length of the OS was 3-5 characters for the
languages we tested with. The translation accuracies
were far less than even unigram representation. The
number of unique basic units was about 8-10 times
larger than orthographic syllables, thus making data
sparsity an issue again. So, improved translation per-
formance cannot be attributed to longer n-gram
units alone.

1915

10 15 20 25 30 35 40 45
25

26

27

28

29

30

31

32

33

34

%
BL

EU

(a) Language Pair: ben-hin
C
M

O
W

10 15 20 25 30 35 40 45
Training set size (in thousands of sentences)

10

12

14

16

18

%
BL

EU

(b) Language Pair: mal-hin

C
M

O
W

Figure 1: Effect of training data size on translation
accuracy for different basic units

Corpus Stats Lex-Sim W C O

bul-mac (150k,1k,2k) 62.85 21.20 20.61 21.38
dan-swe (150k,1k,2k) 63.39 35.13 35.36 35.46
may-ind (137k,1k,2k) 73.54 61.33 60.50 61.24

Table 6: Translation among non-Indic languages
(%BLEU). Corpus Stats show (train,tune,test) split

Robustness to Domain Change: We also tested
the translation models trained on tourism & health
domains on an agriculture domain test set of 1000
sentences. In this cross-domain translation scenario
too, the OS level model outperforms most units of
representation. The only exceptions are the pan-hin
and tel-mal language pairs for the systemMX (accu-
racies of the OS-level system are within 10% of the
MX system). Since the word level model depends on
coverage of the lexicon, it is highly domain depen-
dent, whereas the sub-word units are not. So, even
unigram-level models outperform word-level mod-
els in a cross-domain setting.

Experiments with non-Indian languages: Ta-
ble 6 shows the corpus statistics and our re-
sults for translation between some related non-Indic
language pairs (Bulgarian-Macedonian, Danish-

Swedish, Malay-Indonesian). OS level representa-
tion outperforms character and word level represen-
tation, though the gains are not as significant as In-
dic language pairs. This could be due to short length
of sentences in training corpus [OPUS movie sub-
titles (Tiedemann, 2009b)] and high lexical similar-
ity between the language pairs. Further experiments
between less lexically related languages on general
parallel corpora will be useful.

Effect of training data size: For different train-
ing set sizes, we trained SMT systems with vari-
ous representation units (Figure 1 shows the learning
curves for two language pairs). BPE levelmodels are
consistently better than word as well as morph-level
models, and are competitive or better than OS level
models. Note that bn-hi is a relatively morpholog-
ically simpler language where BPE is just compet-
itive with OS over the complete dataset too as dis-
cussed earlier.

6 Conclusion & Future Work

We focus on the task of translation between re-
lated languages. This aspect of MT research is im-
portant to make available translation technologies
to language pairs with limited parallel corpus, but
huge potential translation requirements. We pro-
pose the use of the orthographic syllable, a variable-
length, linguistically motivated, approximate sylla-
ble, as a basic unit for translation between related
languages. We show that it significantly outper-
forms other units of representation, over multiple
language pairs, spanning different language families,
with varying degrees of lexical similarity and is ro-
bust to domain changes too. This opens up the possi-
bility of further exploration of sub-word level trans-
lation units e.g. segments learnt using byte pair en-
coding (Sennrich et al., 2016).

Acknowledgments

We thank Arjun Atreya for inputs regarding ortho-
graphic syllables. We thank the Technology De-
velopment for Indian Languages (TDIL) Programme
and the Department of Electronics & Information
Technology, Govt. of India for their support.

1916

References
Arjun Atreya, Swapnil Chaudhari, Pushpak Bhat-
tacharyya, and Ganesh Ramakrishnan. 2016. Value
the vowels: Optimal transliteration unit selection for
machine. InUnpublished, private communication with
authors.

Pushpak Bhattacharyya, Mitesh Khapra, and Anoop
Kunchukuttan. 2016. Statistical machine translation
between related languages. In NAACL Tutorials.

Ondřej Bojar, Vojtěch Diatka, Pavel Rychlý, Pavel
Straňák, Vít Suchomel, Aleš Tamchyna, and Daniel
Zeman. 2014. HindEnCorp – Hindi-English and
Hindi-only Corpus for Machine Translation. In Pro-
ceedings of the 9th International Conference on Lan-
guage Resources and Evaluation.

Colin Cherry and George Foster. 2012. Batch tuning
strategies for statistical machine translation. In Pro-
ceedings of the 2012Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies.

Nadir Durrani, Hassan Sajjad, Alexander Fraser, and Hel-
mut Schmid. 2010. Hindi-to-Urdu machine transla-
tion through transliteration. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics.

Nadir Durrani, Hieu Hoang, Philipp Koehn, and Hassan
Sajjad. 2014. Integrating an unsupervised translitera-
tion model into Statistical Machine Translation. EACL
2014.

Asif Ekbal, Sudip Kumar Naskar, and Sivaji Bandy-
opadhyay. 2006. A modified joint source-channel
model for transliteration. In Proceedings of the COL-
ING/ACL on Main conference poster sessions.

Murray B Emeneau. 1956. India as a lingustic area. Lan-
guage.

Girish Nath Jha. 2012. The TDIL program and the Indian
Language Corpora Initiative. In Language Resources
and Evaluation Conference.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, et al. 2007. Moses: Open source toolkit for
Statistical Machine Translation. In Proceedings of the
45th Annual Meeting of the ACL on Interactive Poster
and Demonstration Sessions.

Anoop Kunchukuttan, Ratish Pudupully, Rajen Chatter-
jee, AbhijitMishra, and PushpakBhattacharyya. 2014.
The IIT Bombay SMT System for ICON 2014 Tools
contest. In NLP Tools Contest at ICON 2014.

Anoop Kunchukuttan, Ratish Puduppully, and Pushpak
Bhattacharyya. 2015. Brahmi-Net: A transliteration
and script conversion system for languages of the In-
dian subcontinent.

I Dan Melamed. 1995. Automatic evaluation and uni-
form filter cascades for inducing n-best translation lex-
icons. In Third Workshop on Very Large Corpora.

Preslav Nakov and Jörg Tiedemann. 2012. Combin-
ing word-level and character-level models for machine
translation between closely-related languages. In Pro-
ceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Short Papers-Volume
2.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic evalu-
ation of machine translation. In Association for Com-
putational Linguistics.

Uwe Quasthoff, Matthias Richter, and Christian Bie-
mann. 2006. Corpus portal for search in monolingual
corpora. In Proceedings of the fifth international con-
ference on language resources and evaluation.

Loganathan Ramasamy, Ondřej Bojar, and Zdeněk
Žabokrtský. 2012. Morphological Processing for
English-Tamil Statistical Machine Translation. In
Proceedings of the Workshop on Machine Translation
and Parsing in Indian Languages.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Automatic evaluation and uniform filter cas-
cades for inducing n-best translation lexicons. In ACL.

Anil Kumar Singh. 2006. A computational phonetic
model for Indian language scripts. In Constraints on
Spelling Changes: Fifth International Workshop on
Writing Systems.

Richard Sproat. 2003. A formal computational analysis
of Indic scripts. In International symposium on indic
scripts: past and future, Tokyo.

Jörg Tiedemann and Preslav Nakov. 2013. Analyzing the
use of character-level translation with sparse and noisy
datasets. In RANLP.

Jörg Tiedemann. 2009a. Character-based PBSMT for
closely related languages. In Proceedings of the 13th
Conference of the European Association for Machine
Translation.

Jörg Tiedemann. 2009b. News from opus-a collection of
multilingual parallel corpora with tools and interfaces.
In Recent advances in natural language processing.

Jörg Tiedemann. 2012. Character-based pivot translation
for under-resourced languages and domains. In EACL.

David Vilar, Jan-T Peter, and Hermann Ney. 2007. Can
we translate letters? In Proceedings of the Second
Workshop on Statistical Machine Translation.

Sami Virpioja and Stig-Arne Grönroos. 2015. Lebleu:
N-gram-based translation evaluation score formorpho-
logically complex languages. InWMT 2015.

Sami Virpioja, Peter Smit, Stig-Arne Grönroos, Mikko
Kurimo, et al. 2013. Morfessor 2.0: Python imple-
mentation and extensions for morfessor baseline.

1917

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1918–1923,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Neural Generation of Regular Expressions from Natural Language
with Minimal Domain Knowledge

Nicholas Locascio
CSAIL, MIT
njl@mit.edu

Karthik Narasimhan
CSAIL, MIT

karthikn@mit.edu

Eduardo DeLeon
CSAIL, MIT

edeleon4@mit.edu

Nate Kushman
Microsoft

nate@kushman.org

Regina Barzilay
CSAIL, MIT

regina@csail.mit.edu

Abstract
This paper explores the task of translating nat-
ural language queries into regular expressions
which embody their meaning. In contrast to
prior work, the proposed neural model does
not utilize domain-specific crafting, learning
to translate directly from a parallel corpus.
To fully explore the potential of neural mod-
els, we propose a methodology for collecting
a large corpus1 of regular expression, natural
language pairs. Our resulting model achieves
a performance gain of 19.6% over previous
state-of-the-art models.

1 Introduction

This paper explores the task of translating natu-
ral language text queries into regular expressions
which embody their meaning. Regular expressions
are built into many application interfaces, yet most
users of these applications have difficulty writing
them (Friedl, 2002). Thus a system for automat-
ically generating regular expressions from natural
language would be useful in many contexts. Fur-
thermore, such technologies can ultimately scale to
translate into other formal representations, such as
program scripts (Raza et al., 2015).

Prior work has demonstrated the feasibility of this
task. Kushman and Barzilay (2013) proposed a
model that learns to perform the task from a parallel
corpus of regular expressions and the text descrip-
tions. To account for the given representational dis-
parity between formal regular expressions and natu-
ral language, their model utilizes a domain specific

1The corpus and code used in this paper is available at https:
//github.com/nicholaslocascio/deep-regex

component which computes the semantic equiva-
lence between two regular expressions. Since their
model relies heavily on this component, it cannot
be readily applied to other formal representations
where such semantic equivalence calculations are
not possible.

In this paper, we reexamine the need for such spe-
cialized domain knowledge for this task. Given the
same parallel corpus used in Kushman and Barzi-
lay (2013), we use an LSTM-based sequence to se-
quence neural network to perform the mapping. Our
model does not utilize semantic equivalence in any
form, or make any other special assumptions about
the formalism. Despite this and the relatively small
size of the original dataset (824 examples), our neu-
ral model exhibits a small 0.1% boost in accuracy.

To further explore the power of neural networks,
we created a much larger public dataset, NL-RX.
Since creation of regular expressions requires spe-
cialized knowledge, standard crowd-sourcing meth-
ods are not applicable here. Instead, we employ
a two-step generate-and-paraphrase procedure that
circumvents this problem. During the generate
step, we use a small but expansive manually-crafted
grammar that translates regular expression into nat-
ural language. In the paraphrase step, we rely on
crowd-sourcing to paraphrase these rigid descrip-
tions into more natural and fluid descriptions. Using
this methodology, we have constructed a corpus of
10,000 regular expressions, with corresponding ver-
balizations.

Our results demonstrate that our sequence to se-
quence model significantly outperforms the domain
specific technique on the larger dataset, reaching a

1918

gain of 19.6% over of the state-of-the-art technique.

2 Related Work

Regular Expressions from Natural Language
There have been several attempts at generating reg-
ular expressions from textual descriptions. Early re-
search into this task used rule-based techniques to
create a natural language interface to regular expres-
sion writing (Ranta, 1998). Our work, however,
is closest to Kushman and Barzilay (2013). They
learned a semantic parsing translation model from a
parallel dataset of natural language and regular ex-
pressions. Their model used a regular expression-
specific semantic unification technique to disam-
biguate the meaning of the natural language descrip-
tions. Our method is similar in that we require only
description and regex pairs to learn.r However, we
treat the problem as a direct translation task without
applying any domain-specific knowledge.

Neural Machine Translation Recent advances in
neural machine translation (NMT) (Bahdanau et al.,
2014; Devlin et al., 2014) using the framework of se-
quence to sequence learning (Sutskever et al., 2014)
have demonstrated the effectiveness of deep learn-
ing models at capturing and translating language se-
mantics. In particular, recurrent neural networks
augmented with attention mechanisms (Luong et
al., 2015) have proved to be successful at handling
very long sequences. In light of these successes, we
chose to model regular expression generation as a
neural translation problem.

3 Regex Generation as Translation

We use a Recurrent Neural Network (RNN) with at-
tention (Mnih et al., 2014) for both encoding and
decoding (Figure 1).

Let W = w1, w2...wm be the input text descrip-
tion where each wi is a word in the vocabulary. We
wish to generate the regex R = r1, r2, ...rn where
each ri is a character in the regex.

We use Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997)
cells in our model, the transition equations for

which can be summarized as:

it = σ(U (i)xt + V (i)ht−1 + b(i)),

ft = σ(U (f)xt + V (f)ht−1 + b(f)),

ot = σ(U (o)xt + V (o)ht−1 + b(o))

zt = tanh(U (z)xt + V (z)ht−1 + b(z))

ct = it � zt + ft � ct−1
ht = ot � tanh(ct)

(1)

where σ represents the sigmoid function and� is el-
ementwise multiplication. it refers to the input gate,
ft is the forget gate, and ot is the output gate at each
time step. The U and V variables are weight matri-
ces for each gate while the b variables are the bias
parameters. The input xt is a word (wt) for the en-
coder and the previously generated character rt−1
for the decoder.

The attention mechanism is essentially a ‘soft’
weighting over the encoder’s hidden states during
decoding:

αt(e) =
exp(score(ht, he))∑
e′ exp(score(ht, he′))

where he is a hidden state in the encoder and score
is the scoring function. We use the general attention
matrix weight (as described in (Luong et al., 2015))
for our scoring function. The outputs of the decoder
rt are generated using a final softmax layer.

Our model is six layers deep, with one word em-
bedding layer, two encoder layers, two decoder lay-
ers, and one dense output layer. Our encoder and de-
coder layers use a stacked LSTM architecture with
a width of 512 nodes. We use a global attention
mechanism (Bahdanau et al., 2014), which consid-
ers all hidden states of the encoder when comput-
ing the model’s context vector. We perform standard
dropout during training (Srivastava et al., 2014) after
every LSTM layer with dropout probability equal to
0.25. We train for 20 epochs, utilizing a minibatch
size of 32, and a learning-rate of 1.0. The learning
rate is decayed by a factor 0.5 if evaluation perplex-
ity does not increase.

4 Creating a Large Corpus of Natural
Language / Regular Expression Pairs

Previous work in regular expression generation has
used fairly small datasets for training and evaluation.

1919

Figure 1: Deep-Regex Encoder-Decoder setup. Blue
cells represent the encoder and the green ones represent
the decoder.

Non-Terminals
x & y→ x and y x | y→ x or y ∼(x)→ not x

.*x.*y→ x followed by y .*x.*→ contains x x{N,} → x, N or more times
x& y& z→ x and y and z x | y | z→ x or y or z x{1,N} → x, at most N times

x.*→ starts with x .*x→ ends with x \b x\b→ words with x
(x)+→ x, at least once (x)*→ x, zero or more times x→ only x

Terminals
[AEIOUaeiou]→ a vowel [0-9]→ a number word→ the string ‘word’

[A-Z]→ an uppercase letter [a-z]→ a lowercase letter . → a character

Table 1: Regex→ Synthetic Grammar for Data Genera-
tion

In order to fully utilize the power of neural transla-
tion models, we create a new large corpus of regular
expression, natural language pairs titled NL-RX.

The challenge in collecting such corpora is that
typical crowdsourcing workers do not possess the
specialized knowledge to write regular expressions.
To solve this, we employ a two-step generate-and-
paraphrase procedure to gather our data. This tech-
nique is similar to the methods used by Wang et al.
(2015) to create a semantic parsing corpus.

In the generate step, we generate regular expres-
sion representations from a small manually-crafted
grammar (Table 1). Our grammar includes 15 non-
terminal derivations and 6 terminals and of both
basic and high-level operations. We identify these
via frequency analysis of smaller datasets from pre-
vious work (Kushman and Barzilay, 2013). Ev-
ery grammar rule has associated verbalizations for
both regular expressions and language descriptions.
We use this grammar to stochastically generate reg-
ular expressions and their corresponding synthetic
language descriptions. This generation process is
shown in Figure 2.

While the automatically generated descriptions
are semantically correct, they do not exhibit rich-
ness and variability of human-generated descrip-
tions. To obtain natural language (non-synthetic)
descriptions, we perform the paraphrase step. In
this step, Mechanical Turk (Amazon, 2003) human
workers paraphrase the generated synthetic descrip-

Figure 2: Process for generating Synthetic Descriptions
from Regular Expressions. Grammar rules from Table 1
are applied to a node’s children and the resulting string is
passed to the node’s parent.

Synthetic: lines not words with starting with a capital letter
Paraphrased: lines that do not contain words that begin

with a capital letter
Regex: ∼ (\b([A-Z])(.*)\b)

Table 2: NL-RX Text Descriptions and Regular Expres-
sion

tions into the fluent verbalizations.

NL-RX Using the procedure described above, we
create a new public dataset (NL-RX) comprising of
10,000 regular expressions and their corresponding
natural language descriptions. Table 2 shows an ex-
ample from our dataset.

Our data collection procedure enables us to create
a substantially larger and more varied dataset than
previously possible. Employing standard crowd-
source workers to paraphrase is more cost-efficient
and scalable than employing professional regex pro-
grammers, enabling us to create a much larger
dataset. Furthermore, our stochastic generation of
regular expressions from a grammar results in a
more varied dataset because it is not subject to the
bias of human workers who, in previous work, wrote
many duplicate examples (see Results).

Corpora Statistics Our seed regular expression
grammar (Table 1), covers approximately 85% of
the original KB13 regular expressions. Addition-
ally, NL-RX contains exact matches with 30.1% of
the original KB13 dataset regular expressions. This
means that 248 of the 824 regular expressions in the

1920

Verbalization Frequency
’the word x’ 12.6%
’x before y’ 9.1%

’x or y’ 7.7%
’x, at least once’ 6.2%

’a vowel’ 5.3%
Table 3: Top Frequent Verbalizations from NL-RX

KB13 dataset were also in our dataset. The aver-
age length of regular expressions in NL-RX is 25.9
characters, the average in the KB13 dataset is 19.7
characters. We also computed the grammar break-
down of our NL-RX. The top 5 occurring terminals
in our generated regular expressions are those cor-
responding with the verbalizations shown in Table
3.

Crowdsourcing details We utilize Mechanical
Turk for our crowdsource workers. A total of 243
workers completed the 10,000 tasks, with an average
task completion time of 101 seconds. The workers
proved capable of handling complex and awkward
phrasings, such as the example in Table 2, which is
one of the most difficult in the set.

We applied several quality assurance measures on
the crowdsourced data. Firstly, we ensured that our
workers performing the task were of high quality, re-
quiring a record of 97% accuracy over at least 1000
other previous tasks completed on Mechanical Turk.
In addition, we ran automatic scripts that filtered out
bad submissions (e.g. submissions shorter than 5
characters). In all, we rejected 1.1% of submissions,
which were resubmitted for another worker to com-
plete. The combination of these measures ensured a
high quality dataset, and we confirmed this by per-
forming a manual check of 100 random examples.
This manual check determined that approximately
89% of submissions were a correct interpretation,
and 97% were written in fluent English.

5 Experiments

Datasets We split the 10,000 regexp and descrip-
tion pairs in NL-RX into 65% train, 10% dev, and
25% test sets.

In addition, we also evaluate our model on
the dataset used by Kushman and Barzilay (2013)
(KB13), although it contains far fewer data points

(824). We use the 75/25 train/test split used in their
work in order directly compare our performance to
theirs.

Training We perform a hyper-parameter grid-
search (on the dev set), to determine our model
hyper-parameters: learning-rate = 1.0, encoder-
depth = 2, decoder-depth = 2, batch size = 32,
dropout = 0.25. We use a Torch (Collobert et al.,
2002) implementation of attention sequence to se-
quence networks from (Kim, 2016). We train our
models on the train set for 20 epochs, and choose
the model with the best average loss on the dev set.

Evaluation Metric To accurately evaluate our
model, we perform a functional equality check
called DFA-Equal. We employ functional equality
because there are many ways to write equivalent reg-
ular expressions. For example, (a|b) is functionally
equivalent to (b|a), despite their string representa-
tions differing. We report DFA-Equal accuracy as
our model’s evaluation metric, using Kushman and
Barzilay (2013)’s implementation to directly com-
pare our results.

Baselines We compare our model against two
baselines:

BoW-NN: BoW-NN is a simple baseline that is
a Nearest Neighbor classifier using Bag Of Words
representation for each natural language description.
For a given test example, it finds the closest cosine-
similar neighbor from the training set and uses the
regexp from that example for its prediction.

Semantic-Unify: Our second baseline, Semantic-
Unify, is the previous state-of-the-art model from
(Kushman and Barzilay, 2013), explained above. 2

6 Results

Our model significantly outperforms the baselines
on the NL-RX dataset and achieves comparable per-
formance to Semantic Unify on the KB13 dataset
(Table 4). Despite the small size of KB13, our
model achieves state-of-the-art results on this very
resource-constrained dataset (824 examples). Using
NL-RX, we investigate the impact of training data
size on our model’s accuracy. Figure 3 shows how

2We trained and evaluated Semantic-Unify in consultation
with the original authors.

1921

Models NL-RX-Synth NL-RX-Turk KB13
Dev Test Dev Test Test

BoW NN 31.7% 30.6% 18.2% 16.4% 48.5%
Semantic-Unify 41.2% 46.3% 39.5% 38.6% 65.5%

Deep-RegEx 85.75% 88.7% 61.2% 58.2% 65.6%

Table 4: DFA-Equal accuracy on different datasets.
KB13: Dataset from Kushman and Barzilay(2013), NL-
RX-Synth: NL Dataset with original synthetic descrip-
tions, NL-RX-Turk: NL Dataset with Mechanical Turk
paraphrased descriptions. Best scores are in bold.

Figure 3: Our model’s performance, like many deep
learning models, increases significantly with larger
datasets. String-Equal:Accuracy on direct string match,
DFA-Equal:Accuracy using the DFA-Equal evaluation.

our model’s performance improves as the number of
training examples grows.

Differences in Datasets Keeping the previous
section in mind, a seemingly unusual finding is
that the model’s accuracy is higher for the smaller
dataset, KB13, than for the larger dataset, NL-RX-
Turk. On further analysis, we learned that the KB13
dataset is a much less varied and complex dataset
than NL-RX-Turk. KB13 contains many dupli-
cates, with only 45% of its regular expressions be-
ing unique. This makes the translation task easier
because over half of the correct test predictions will
be exact repetitions from the training set. In con-
trast, NL-RX-Turk does not suffer from this vari-
ance problem and contains 97% unique regular ex-
pressions. The relative easiness of the KB13 dataset
is further illustrated by the high performance of the
Nearest-Neighbor baselines on the KB13 dataset.

7 Conclusions

In this paper we demonstrate that generic neu-
ral architectures for generating regular expressions
outperform customized, heavily engineered mod-
els. The results suggest that this technique can
be employed to tackle more challenging problems
in broader families of formal languages, such as
mapping between language description and program
scripts. We also have created a large parallel corpus
of regular expressions and natural language queries
using typical crowd-sourcing workers, which we
make available publicly.

Acknowledgments

We thank the anonymous reviewers for their helpful
feedback and suggestions.

References
[Amazon2003] Amazon. 2003. Mechanical turk. https:

//mturk.com.
[Bahdanau et al.2014] Dzmitry Bahdanau, Kyunghyun

Cho, and Yoshua Bengio. 2014. Neural machine
translation by jointly learning to align and translate.
CoRR, abs/1409.0473.

[Collobert et al.2002] Ronan Collobert, Samy Bengio,
and Johnny Marithoz. 2002. Torch: A modular ma-
chine learning software library. https://torch.ch.

[Devlin et al.2014] Jacob Devlin, Rabih Zbib,
Zhongqiang Huang, Thomas Lamar, Richard M
Schwartz, and John Makhoul. 2014. Fast and robust
neural network joint models for statistical machine
translation. In ACL (1), pages 1370–1380. Citeseer.

[Friedl2002] Jeffrey EF Friedl. 2002. Mastering regular
expressions. ” O’Reilly Media, Inc.”.

[Hochreiter and Schmidhuber1997] Sepp Hochreiter and
Jürgen Schmidhuber. 1997. Long short-term memory.
Neural computation, 9(8):1735–1780.

[Kim2016] Yoon Kim. 2016. Seq2seq-attn. https://
github.com/harvardnlp/seq2seq-attn.

[Kushman and Barzilay2013] Nate Kushman and Regina
Barzilay. 2013. Using semantic unification to gener-
ate regular expressions from natural language. North
American Chapter of the Association for Computa-
tional Linguistics (NAACL).

[Luong et al.2015] Thang Luong, Hieu Pham, and
Christopher D. Manning. 2015. Effective approaches
to attention-based neural machine translation. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages

1922

1412–1421, Lisbon, Portugal, September. Association
for Computational Linguistics.

[Mnih et al.2014] Volodymyr Mnih, Nicolas Heess, Alex
Graves, et al. 2014. Recurrent models of visual atten-
tion. In Advances in Neural Information Processing
Systems, pages 2204–2212.

[Ranta1998] Aarne Ranta. 1998. A multilingual natural-
language interface to regular expressions. In Pro-
ceedings of the International Workshop on Finite State
Methods in Natural Language Processing, pages 79–
90. Association for Computational Linguistics.

[Raza et al.2015] Mohammad Raza, Sumit Gulwani, and
Natasa Milic-Frayling. 2015. Compositional program
synthesis from natural language and examples. In-
ternational Joint Conference on Artificial Intelligence
(IJCAI).

[Srivastava et al.2014] Nitish Srivastava, Geoffrey Hin-
ton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A simple way to pre-
vent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958.

[Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V Le. 2014. Sequence to sequence learning with
neural networks. In Advances in neural information
processing systems, pages 3104–3112.

[Wang et al.2015] Yushi Wang, Jonathan Berant, and
Percy Liang. 2015. Building a semantic parser
overnight. Association for Computational Linguistics
(ACL).

1923

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1924–1929,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Supervised Keyphrase Extraction as Positive Unlabeled Learning

Lucas Sterckx∗, Cornelia Caragea†, Thomas Demeester∗, Chris Develder∗
∗Ghent University – iMinds, Ghent, Belgium

{lusterck,tdmeeste,cdvelder}@intec.ugent.be
†University of North Texas, Texas, USA

cornelia.caragea@unt.edu

Abstract

The problem of noisy and unbalanced train-
ing data for supervised keyphrase extraction
results from the subjectivity of keyphrase as-
signment, which we quantify by crowdsourc-
ing keyphrases for news and fashion magazine
articles with many annotators per document.
We show that annotators exhibit substantial
disagreement, meaning that single annotator
data could lead to very different training sets
for supervised keyphrase extractors. Thus, an-
notations from single authors or readers lead
to noisy training data and poor extraction per-
formance of the resulting supervised extractor.
We provide a simple but effective solution to
still work with such data by reweighting the
importance of unlabeled candidate phrases in
a two stage Positive Unlabeled Learning set-
ting. We show that performance of trained
keyphrase extractors approximates a classi-
fier trained on articles labeled by multiple an-
notators, leading to higher average F1scores
and better rankings of keyphrases. We ap-
ply this strategy to a variety of test collec-
tions from different backgrounds and show
improvements over strong baseline models.

1 Introduction

Keyphrase extraction is the task of extracting a se-
lection of phrases from a text document to concisely
summarize its contents. Applications of keyphrases
range from summarization (D’Avanzo et al., 2004)
to contextual advertisement (Yih et al., 2006) or sim-
ply as aid for navigation through large text corpora.

Existing work on automatic keyphrase extraction
can be divided in supervised and unsupervised ap-

proaches. While unsupervised approaches are do-
main independent and do not require labeled train-
ing data, supervised keyphrase extraction allows for
more expressive feature design and is reported to
outperform unsupervised methods on many occa-
sions (Kim et al., 2012; Caragea et al., 2014). A
requirement for supervised keyphrase extractors is
the availability of labeled training data. In literature,
training collections for supervised keyphrase extrac-
tion are generated in different settings. In these col-
lections, keyphrases for text documents are either
supplied by the authors or their readers. In the first
case, authors of academic papers or news articles as-
sign keyphrases to their content to enable fast index-
ing or to allow for the discovery of their work in
electronic libraries (Frank et al., 1999; Hulth, 2003;
Bulgarov and Caragea, 2015). Other collections are
created by crowdsourcing (Marujo et al., 2012) or
based on explicit deliberation by a small group of
readers (Wan and Xiao, 2008). A minority of test
collections provide multiple opinions per document,
but even then the amount of opinions per document
is kept minimal (Nguyen and Kan, 2007).

The traditional procedure for supervised
keyphrase extraction is reformulating the task
as a binary classification of keyphrase candidates.
Supervision for keyphrase extraction faces several
shortcomings. Candidate phrases (generated in a
separate candidate generation procedure), which
are not annotated as keyphrases, are seen as
non-keyphrase and are used as negative training
data for the supervised classifiers. First, on many
occasions these negative phrases outnumber true
keyphrases many times, creating an unbalanced

1924

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Users Agree

0.0

0.1

0.2

0.3

0.4

0.5

0.6
F
ra
ct
io
n
 o
f
K
e
yp
h
ra
se
s

Online News
Lifestyle Magazines

Figure 1: This plot shows the fraction of all
keyphrases from the training set agreed upon versus
the fraction of all annotators.

training set (Frank et al., 1999; Kim et al., 2012).
Second, as Frank et al. (1999) noted: authors do
not always choose keyphrases that best describe the
content of their paper, but they may choose phrases
to slant their work a certain way, or to maximize
its chance of being noticed by searchers. Another
problem is that keyphrases are inherently subjective,
i.e., keyphrases assigned by one annotator are not
the only correct ones (Nguyen and Kan, 2007).
These assumptions have consequences for training,
developing and evaluating supervised models.
Unfortunately, a large collection of annotated
documents by reliable annotators with high overlap
per document is missing, making it difficult to study
disagreement between annotators or the resulting
influence on trained extractors, as well as to provide
a reliable evaluation setting. In this paper, we
address these problems by creating a large test
collection of articles with many different opinions
per article, evaluate the effect on extraction per-
formance, and present a procedure for supervised
keyphrase extraction with noisy labels.

2 Noisy Training Data for Supervised
Keyphrase Extraction

A collection of online news articles and lifestyle
magazine articles was presented to a panel of 357
annotators of various ages and backgrounds, (se-

Figure 2: Effect of overlap on extraction perfor-
mance.

lected and managed by iMinds - Living Labs1) who
were trained to select a limited number of short
phrases that concisely reflect the documents’ con-
tents. No prior limits or constraints were set on the
amount, length, or form of the keyphrases. Each
document was presented multiple times to different
users. Each user was assigned with 140 articles, but
was not required to finish the full assignment. The
constructed training collections have on average six
and up to ten different opinions per article.

We visualize the agreement on single keyphrases
in Figure 1, which shows the fraction of annotated
keyphrases versus agreement by the complete set of
readers. Agreement on keyphrases appears low, as
a large fraction of all keyphrases assigned to doc-
uments (>50%) are only assigned by single annota-
tors. We note that different sets of keyphrases by dif-
ferent annotators are the result of the subjectiveness
of the task, of different interpretations by the anno-
tators of the document, but also because of seman-
tically equivalent keyphrases being annotated in dif-
ferent forms, e.g., “Louis Michel” vs. “Prime Min-
ister Louis Michel” or “Traffic Collision” vs. “Car
Accident”.

The observation in Figure 1 has important con-
sequences for training models on keyphrases anno-
tated by a single annotator, since other annotators
may have chosen some among the ones that the sin-

1https://www.iminds.be/en/
succeed-with-digital-research/
proeftuinonderzoek/

1925

gle selected annotator did not indicate (and hence
these should not be used as negative training data).

A single annotator assigning keyphrases to 100
documents results on average in a training set with
369 positive training instances and 4,981 negative
training instances generated by the candidate ex-
tractor. When assigning these 100 documents to 9
other annotators, the amount of positive instances in-
creases to 1,258 keyphrases, which means that labels
for 889 keyphrase candidates, or 17% of the original
negative candidates when training on annotations by
a single annotator, can be considered noise and rela-
beled. As a result, ratios of positive to negative data
also change drastically. We visualize the effect of
using training data from multiple annotators per doc-
ument in Figure 2. Classifiers trained on the aggre-
gated training collection with multiple opinions (us-
ing all assigned keyphrases at least once as positive
training data) perform better on held-out test collec-
tions containing only keyphrases of high agreement
(assigned by > 2 annotators).

When using keyphrases from many different an-
notators per document, the amount of positive can-
didates increases and as a result, the Macro Average
F1 (MAF1) of the corresponding classifier. We de-
tail our experimental setup and supervised classifier
in Section 4.

3 Reweighting Keyphrase Candidates

Observations described in Section 2 indicate that
unlabeled keyphrase candidates are not reliable as
negative examples by default. A more suitable as-
sumption is to treat supervised keyphrase extraction
as Positive Unlabeled Learning, i.e., an incomplete
set of positive examples is available as well as a set
of unlabeled examples, of which some are positive
and others negative. This topic has received much
attention as it knows many applications (Ren et al.,
2014; du Plessis et al., 2014), but has not been linked
to supervised keyphrase extraction. We base our ap-
proach on work by Elkan and Noto (2008) and mod-
ify the supervised extractor by assigning individual
weights to training examples. Instead of assuming
the noise to be random, we assign weights depend-
ing on the document and the candidate.

By reweighting importance of training samples,
we seek to mimic the case of multiple annotators, to

Feature Definition
Head match headkeyphrase == headcandidate

Extent match extentkeyphrase == extentcandidate

Substring headkeyphrase substring of headcandidate

Alias acronym(headkeyphrase) == headcandidate

Table 1: String relation features for coreference res-
olution

model the uncertainty of negative keyphrase candi-
dates, based only on annotations by a single annota-
tor. In a first stage, we train a classifier on the single
annotator data and use predictions on the negative or
unlabeled candidates, to reweigh training instances.
The reweighted training collection is then used to
train a second classifier to predict a final ranking or
the binary labels of the keyphrase candidates.

Positive examples are given unit weight and unla-
beled examples are duplicated; one copy of each un-
labeled keyphrase candidate x is made positive with
weight w(x) = P (keyphrase|x, s = 0) and the
other copy is made negative with weight 1 − w(x)
with s indicating whether x is labeled or not.

Instead of assigning this weight as a constant fac-
tor of the predictions by the initial classifier as in
Elkan and Noto (2008), we found that two modifica-
tions allow improving the weight estimate, w(x) ≤
1. We normalize probabilities P (keyphrase, x, s =
0) to candidates not included in the initial set
of keyphrases per document. Next to this self-
predicted probability, we include a simple mea-
sure indicating pairwise coreference between unla-
beled candidates and known keyphrases in a func-
tion Coref(candidate, keyphrase) ∈ {0, 1}, re-
turning 1 if one of the binary indicator features, pre-
sented in (Bengtson and Roth, 2008) and shown in
Table 1, is present. In this description, the term
head means the head noun phrase of a candidate or
keyphrase and the extent is the largest noun phrase
headed by the head noun phrase. The self-predicted
probability is summed with the output of the coref-
erence resolver and the final weight becomes:

w(x) =min

(
1,

P (keyphrase|x)
max(x′,s=0)∈d P (keyphrase|x′)

.

+ max
∀keyphrase∈d

Coref(x, keyphrase)
)

(1)

with d being a document from the training collec-
tion.

1926

Test Collections
Name Online News Lifestyle Magazines WWW KDD Inspec
Type Sports Articles Fashion, Lifestyle WWW Paper Abstracts KDD Paper Abstracts Paper Abstracts
Documents 1,259 2,202 1,895 1,011 500
Keyphrases 19,340 29,970 3,922 1,966 4,913
� Keyphrases/User 5.7 4.7 / / /
� Keyphrases/Document 15.4 13.7 2.0 1.8 9.8
� Tokens/Document 332 284 164 195 134
� Candidate Keyphrases/Doc. 52 49 47 54 34
1/2/3/3+ -gram distribution (%) 55/27/9/9 58/25/9/8 63/27/8/2 60/28/9/3 13/53/25/9

Table 2: Description of test collections.

Method Online News Lifestyle Magazines WWW KDD Inspec
MAF1 P@5 MAF1 P@5 MAF1 P@5 MAF1 P@5 MAF1 P@5

Single Annotator .364 .416 .294 .315 .230 .189 .266 .200 .397 .432
Multiple Annotators .381 .426 .303 .327 / / / / / /
Self Training .366 .417 .301 .317 .236 .190 .269 .196 .401 .434
Reweighting (Elkan and Noto, 2008) .364 .417 .297 .313 .238 .189 .275 .201 .401 .429
Reweighting +Norm +Coref .374 .419 .305 .322 .245 .194 .275 .200 .402 .434

Table 3: Mean average F1score per document and precision for five most confident keyphrases on different
test collections.

4 Experiments and Results

Hasan and Ng (2010) have shown that techniques
for keyphrase extraction are inconsistent and need
to be tested across different test collections. Next
to our collections with multiple opinions (On-
line News and Lifestyle Magazines), we apply the
reweighting strategy on test collections with sets
of author-assigned keyphrases: two sets from Cite-
Seer abstracts from the World Wide Web Conference
(WWW) and Knowledge Discovery and Data Min-
ing (KDD), similar to the ones used in (Bulgarov
and Caragea, 2015). The Inspec dataset is a collec-
tion of 2,000 abstracts commonly used in keyphrase
extraction literature, where we use the ground truth
phrases from controlled vocabulary (Hulth, 2003).
Descriptive statistics of these test collections are
given in Table 2.

We use a rich feature set consisting of statis-
tical, structural, and semantic properties for each
candidate phrase, that have been reported as ef-
fective in previous studies on supervised extrac-
tors (Frank et al., 1999; Hulth, 2003; Kim and
Kan, 2009): (i) term frequency, (ii) number of
tokens in the phrase, (iii) length of the longest
term in the phrase, (iv) number of capital letters
in the phrase, (v) the phrase’s POS-tags, (vi) rel-
ative position of first occurrence, (vii) span (rela-
tive last occurrence minus relative first occurrence),
(viii) TF*IDF (IDF’s trained on large background

collections from the same source) and (ix) Topical
Word Importance, a feature measuring the similar-
ity between the word-topic topic-document distribu-
tions presented in (Sterckx et al., 2015), with topic
models trained on background collections from a
corresponding source of content.

As classifier we use gradient boosted decision
trees implemented in the XGBoost package (Chen
and Guestrin, 2016). During development, this clas-
sifier consistently outperformed Naive Bayes and
linear classifiers like logistic regression or support
vector machines.

We compare the reweighting strategy with uni-
form reweighting and strategies to counter the im-
balance or noise of the training collections, such as
subsampling, weighting unlabeled training data as in
(Elkan and Noto, 2008), and self-training in which
only confident initial predictions are used as positive
and negative data. For every method, global thresh-
olds are chosen to optimize the macro averaged F1

per document (MAF1). Next to the threshold sensi-
tive F1, we report on ranking quality using the Pre-
cision@5 metric.

Results are shown in Table 3 with five-fold cross-
validation. To study the effect of reweighting, we
limit training collections during folds to 100 docu-
ments for each test collection. Our approach consis-
tently improves on single annotator trained classi-
fiers, on one occasion even outperforming a training
collection with multiple opinions. Compensating for

1927

imbalance and noise tends to have less effect when
the ratio of keyphrases versus candidates is high (as
for Inspec) or training collection is very large. When
the amount of training documents increases, the ra-
tio of noisy versus true negative labels drops.

5 Conclusion

It has been suggested that keyphrase annotation
is highly subjective. We present two data sets
where we purposely gathered multiple annotations
of the same document, as to quantify the lim-
ited overlap between keyphrases selected by differ-
ent annotators. We suggest to treat non-selected
phrases as unlabeled rather than negative training
data. We further show that using multiple anno-
tations leads to more robust automatic keyphrase
extractors, and propose reweighting of single an-
notator labels based on probabilities from a first-
stage classifier. This reweighting approach outper-
forms other single-annotator state-of-the-art auto-
matic keyphrase extractors on different test collec-
tions, when we normalize probabilities per docu-
ment and include co-reference indicators.

Acknowledgments
The authors like to thank the anonymous review-
ers for their helpful comments. The research
presented in this article relates to STEAMER
(http://www.iminds.be/en/projects/
2014/07/12/steamer), a MiX-ICON project
facilitated by iMinds Media and funded by IWT and
Innoviris.

References
[Bengtson and Roth2008] Eric Bengtson and Dan Roth.

2008. Understanding the value of features for coref-
erence resolution. In 2008 Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP
2008, Proceedings of the Conference, 25-27 October
2008, Honolulu, Hawaii, USA, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 294–303.

[Bulgarov and Caragea2015] Florin Adrian Bulgarov and
Cornelia Caragea. 2015. A comparison of super-
vised keyphrase extraction models. In Proceedings of
the 24th International Conference on World Wide Web
Companion, WWW 2015, Florence, Italy, May 18-22,
2015 - Companion Volume, pages 13–14.

[Caragea et al.2014] Cornelia Caragea, Florin Adrian
Bulgarov, Andreea Godea, and Sujatha Das Gollapalli.

2014. Citation-enhanced keyphrase extraction from
research papers: A supervised approach. In Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1435–
1446, Doha, Qatar, October. Association for Compu-
tational Linguistics.

[Chen and Guestrin2016] Tianqi Chen and Carlos
Guestrin. 2016. Xgboost: A scalable tree boosting
system. CoRR, abs/1603.02754.

[D’Avanzo et al.2004] Ernesto D’Avanzo, Bernardo
Magnini, and Alessandro Vallin. 2004. Keyphrase
extraction for summarization purposes: The LAKE
system at DUC-2004. In Proceedings of the 2004
DUC.

[du Plessis et al.2014] Marthinus Christoffel du Plessis,
Gang Niu, and Masashi Sugiyama. 2014. Analysis
of learning from positive and unlabeled data. In Ad-
vances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Que-
bec, Canada, pages 703–711.

[Elkan and Noto2008] Charles Elkan and Keith Noto.
2008. Learning classifiers from only positive and unla-
beled data. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, Las Vegas, Nevada, USA, August
24-27, 2008, pages 213–220.

[Frank et al.1999] Eibe Frank, Gordon W. Paynter, Ian H.
Witten, Carl Gutwin, and Craig G. Nevill-manning.
1999. Domain specific keyphrase extraction. In Pro-
ceedings of the 16th International Joint Conference on
AI, pages 668–673.

[Hasan and Ng2010] Kazi Saidul Hasan and Vincent Ng.
2010. Conundrums in unsupervised keyphrase extrac-
tion: Making sense of the state-of-the-art. In Proceed-
ings of the 23rd COLING, COLING 2010, pages 365–
373, Stroudsburg, PA, USA.

[Hulth2003] Anette Hulth. 2003. Improved automatic
keyword extraction given more linguistic knowledge.
In Proceedings of the 2003 conference on Empirical
methods in natural language processing, pages 216–
223.

[Kim and Kan2009] Su Nam Kim and Min-Yen Kan.
2009. Re-examining automatic keyphrase extraction
approaches in scientific articles. In Proceedings of the
workshop on multiword expressions: Identification, in-
terpretation, disambiguation and applications, pages
9–16. Association for Computational Linguistics.

[Kim et al.2012] Su Nam Kim, Olena Medelyan, Min-
Yen Kan, and Timothy Baldwin. 2012. Automatic
keyphrase extraction from scientific articles. Lan-
guage Resources and Evaluation, 47(3):723–742, De-
cember.

1928

[Marujo et al.2012] Luis Marujo, Anatole Gershman,
Jaime Carbonell, Robert Frederking, and Jo ao P. Neto.
2012. Supervised topical key phrase extraction of
news stories using crowdsourcing, light filtering and
co-reference normalization. In Proceedings of LREC
2012. ELRA.

[Nguyen and Kan2007] Thuy Dung Nguyen and Min-Yen
Kan. 2007. Key phrase extraction in scientific publi-
cations. In Proceeding of International Conference on
Asian Digital Libraries, pages 317–326.

[Ren et al.2014] Yafeng Ren, Donghong Ji, and Hong-
bin Zhang. 2014. Positive unlabeled learning for
deceptive reviews detection. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 488–498.

[Sterckx et al.2015] Lucas Sterckx, Thomas Demeester,
Johannes Deleu, and Chris Develder. 2015. Topi-
cal word importance for fast keyphrase extraction. In
Proceedings of the 24th International Conference on
World Wide Web Companion, pages 121–122. Interna-
tional World Wide Web Conferences Steering Com-
mittee.

[Wan and Xiao2008] Xiaojun Wan and Jianguo Xiao.
2008. Single document keyphrase extraction using
neighborhood knowledge. In Proceedings of the 23rd
National Conference on Artificial Intelligence - Vol-
ume 2, AAAI 2008, pages 855–860.

[Yih et al.2006] Wen-tau Yih, Joshua Goodman, and Vi-
tor R. Carvalho. 2006. Finding advertising keywords
on web pages. In Proceedings of the 15th Interna-
tional Conference on World Wide Web, WWW ’06,
pages 213–222, New York, NY, USA. ACM.

1929

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1930–1935,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning to Answer Questions from Wikipedia Infoboxes

Alvaro Morales
CSAIL MIT

alvarom@mit.edu

Varot Premtoon
CSAIL MIT

varot@mit.edu

Cordelia Avery
CSAIL MIT

cavery@mit.edu

Sue Felshin
CSAIL MIT

sfelshin@mit.edu

Boris Katz
CSAIL MIT

boris@mit.edu

Abstract

A natural language interface to answers on the
Web can help us access information more ef-
ficiently. We start with an interesting source
of information—infoboxes in Wikipedia that
summarize factoid knowledge—and develop a
comprehensive approach to answering ques-
tions with high precision. We first build a
system to access data in infoboxes in a struc-
tured manner. We use our system to construct
a crowdsourced dataset of over 15,000 high-
quality, diverse questions. With these ques-
tions, we train a convolutional neural network
model that outperforms models that achieve
top results in similar answer selection tasks.

1 Introduction

The goal of open-domain question answering is to
provide high-precision access to information. With
many sources of knowledge on the Web, selecting
the right answer to a user’s question remains chal-
lenging. Wikipedia contains over five million arti-
cles in its English version. Providing a natural lan-
guage interface to answers in Wikipedia is an impor-
tant step towards more effective information access.

Many Wikipedia articles have an infobox, a table
that summarizes key information in the article in the
form of attribute–value pairs like “Narrated by: Fred
Astaire”. This data source is appealing for question
answering because it covers a broad range of facts
that are inherently relevant: a human editor manually
highlighted this information in the infobox.

Although many infoboxes appear to be similar,
they are only semi-structured—few attributes have

Q Who took over after Nelson Mandela?
A Succeeded by: Thabo Mbeki

Q Who designed Central Park?
A Architect: Frederick Law Olmsted

Q Where did Oscar Wilde earn his degree?
A Alma mater: Trinity College, Dublin

Q What does Intel do?
A Industry: Semiconductors

Table 1: Example questions and answers with little lexical

overlap from the INFOBOXQA dataset.

consistent value types across articles, infobox tem-
plates do not mandate which attributes must be
included, and editors are allowed to add article-
specific attributes. Infobox-like tables are very com-
mon on the Web. Since it is infeasible to incorporate
every such source into structured knowledge bases
like Freebase (Bollacker et al., 2008), we need tech-
niques that do not rely on ontology or value type
information.

We focus on the answer selection problem, where
the goal is to select the best answer out of a given
candidate set of attribute–value pairs from infoboxes
corresponding to a named entity in the question. Ta-
ble 1 illustrates how questions from users may have
little lexical overlap with the correct attribute–value
pair. Answer selection is an important subtask in
building an end-to-end question answering system.

Our work has two main contributions: (1) We
compiled the INFOBOXQA dataset, a crowdsourced
corpus of over 15,000 questions with answers from

1930

infoboxes in 150 articles in Wikipedia. Unlike ex-
isting answer selection datasets with answers from
knowledge bases or long-form text, INFOBOXQA
targets tabular data that is not augmented with value
types or linked to an ontology. (2) We built a multi-
channel convolutional neural network (CNN) model
that achieves the best results on INFOBOXQA com-
pared to other neural network models in the answer
selection task.

2 The INFOBOXQA dataset

Infoboxes are designed to be human-readable, not
machine-interpretable. This allowed us to devise a
crowdsourced assignment where we ask participants
to generate questions from infoboxes. With little to
no training, humans can form coherent questions out
of terse, potentially ambiguous attribute–value pairs.

Wikipedia does not provide a way to access spe-
cific information segments; its API returns the entire
article. We first worked on the data access problem
and developed a system called WikipediaBase to ro-
bustly extract attribute–value pairs from infoboxes.
Inspired by Omnibase (Katz et al., 2002), we or-
ganize infoboxes in an object–attribute–value data
model, where an object (Lake Titicaca) has an at-
tribute (“Surface area”) with a value (8,372 km2).
Attributes are grouped by infobox class (for in-
stance, the film class contains attributes like “Di-
rected by” and “Cinematography”). The data model
allowed us to extend WikipediaBase to information
outside of infoboxes. We implemented methods for
accessing images, categories, and article sections.

We then created a question-writing assignment
where participants see infoboxes constructed using
data from WikipediaBase. These infoboxes visually
resembled the original ones in Wikipedia but were
designed to control for variables. To prevent parti-
cipants from only generating questions for attributes
at the top of the table, the order of attributes was
randomly shuffled. To ensure that the task could
be completed in a reasonable amount of time, in-
foboxes were partitioned into assignments with up
to ten attributes. A major goal of this data collec-
tion was to gather question paraphrases. For each
attribute, we asked participants to write two ques-
tions. It is likely that at least one of the questions
will use words from the attribute, but requiring an

Total questions 15266
Total attributes 762
Average questions per attribute 20.0
Average answers per question 17.8
Table 2: Statistics of the INFOBOXQA dataset.

additional question encouraged them to think of al-
ternative phrasings.

Every infobox in the experiment included a pic-
ture to help disambiguate the article. For instance,
the cover image for “Grand Theft Auto III” (in con-
cert with the values in the infobox) makes it reason-
ably clear that the assignment is about a video game
and not a type of crime. We asked participants to
include an explicit referent to the article title in each
question (e.g., “Where was Albert Einstein born?”
instead of “Where was he born?”).

We analyzed the occurrences of infobox attributes
in Wikipedia and found that they fit a rapidly-
decaying exponential distribution with a long tail of
attributes that occur in few articles. This distribution
means that with a carefully chosen subset of articles
we can achieve a large coverage of frequently ap-
pearing attributes. We developed a greedy approx-
imation algorithm that selects a subset of infobox
classes, picks a random sample of articles in the
class, and chooses three representative articles that
contain the largest quantity of attributes. 150 articles
from 50 classes were selected, covering roughly half
of common attributes found in Wikipedia.

The dataset contains example questions qi, with
an attribute–value pair (ai, vi) that answers the ques-
tion. To generate negative examples for the an-
swer selection task, we picked every other tuple
(aj , vj); 8j 6= i from the infobox that contains
the correct answer. If we know that a question
asks about a specific entity, we must consider ev-
ery attribute in the entity’s infobox as a possible an-
swer. In INFOBOXQA, candidate answers are just
attribute–value pairs with no type information. Be-
cause of this, every attribute in the infobox is indis-
tinguishable a priori, and is thus in the candidate set.
Not having type information makes the task harder
but also more realistic. Table 2 shows statistics of
INFOBOXQA. The dataset is available online.1

1http://groups.csail.mit.edu/infolab/infoboxqa/

1931

3 Model description

Deep learning models for answer selection assume
that there is a high similarity between question and
answer representations (Yu et al., 2014). Instead of
comparing them directly, the main intuition in our
model is to use the attribute as an explicit bridge
to facilitate the match between question and an-
swer. Consider the question “Who replaced Dwight
D. Eisenhower?”, with answer “Succeeded by: John
F. Kennedy”. Clearly, the attribute “Succeeded by”
plays a crucial role in indicating the match between
the question and the answer. If the question and at-
tribute have certain semantic similarities, and those
similarities match the similarities of the answer and
the attribute, then the answer must be a good match
for the question.

We propose an architecture with three weight-
sharing CNNs, each one processing either the ques-
tion, the attribute, or the answer. We then use an
element-wise product merge layer to compute simi-
larities between the question and attribute, and be-
tween the attribute and answer. We refer to this
model as Tri-CNN. Tri-CNN has five types of layers:
an input layer, a convolution layer, a max-pooling
layer, a merge layer, and a final multi-layer percep-
tron (MLP) scoring layer that solves the answer se-
lection task. We now describe each layer.

Input layer. Let sq be a matrix 2 R|sq |⇥d, where
row i is a d-dimensional word embedding of the i-th
word in the question. Similarly, let sattr and sans

be word embedding matrices for the attribute and
answer, respectively. sq, sattr, and sans are zero-
padded to have the same length. We use pre-trained
GloVe2 embeddings with d = 300 (Pennington et
al., 2014), which we keep adaptable during training.

Convolution layer. We use the multi-channel
CNN architecture of (Kim, 2014) with three weight-
sharing CNNs, one each for sq, sattr, and sans. Dif-
ferent lengths of token substrings (e.g., unigrams or
bigrams) are used as channels. The CNNs share
weights among the three inputs in a Siamese archi-
tecture (Bromley et al., 1993). Weight-sharing al-
lows the model to compute the representation of one
input influenced by the other inputs; i.e., the repre-
sentation of the question is influenced by the repre-
sentations of the attribute and answer.

2http://nlp.stanford.edu/projects/glove/

Figure 1: A schematic of the Tri-CNN model.

We describe the convolution layer with respect to
the input s, which can stand for sq, sattr, or sans.
For each channel h 2 [1...M], a filter w 2 Rh⇥d

is applied to a sliding window of h rows of s to
produce a feature map C. Formally, C is a matrix
where:

C[i, :] = tanh(w · s[i...i + h� 1, :] + b) (1)

and b 2 Rd is the bias. We use wide convolution
to ensure that terminal and non-terminal words are
considered equally when applying the filter w (Blun-
som et al., 2014).

Max-pooling layer. Pooling is used to extract
meaningful features from the output of convolution
(Yin et al., 2015). We apply a max-pooling layer to
the output of each channel h. The result is a vector
ch 2 Rd where

ch[i] = max{C[:, i]} (2)

Max-pooling is applied to all M channels. The re-
sulting vectors ch for h 2 [1...M] are concatenated
into a single vector c.

Merge layer. Our goal is to model the semantic
similarities between the question and the attribute,
and between the answer and the attribute. We com-
pute the element-wise product of the feature vectors

1932

generated by convolution and max-pooling as fol-
lows:

dq,attr = cq � cattr (3)

dans,attr = cans � cattr (4)

where � is the element-wise product operator, such
that dij is a vector. Each element in dij encodes a
similarity in a single semantic aspect between two
feature representations.

MLP scoring layer. We wish to compute a real-
valued similarity between the distance vectors from
the merge layer. Instead of directly computing this
using, e.g., cosine similarity, we follow (Baudiš and
Šedivỳ, 2016) and first project the two distance vec-
tors into a shared embedding space. We compute
element-wise sums and products of the embeddings,
which are then input to a two-layer perceptron.

4 Experiments

We implemented Tri-CNN in the dataset-sts3

framework for semantic text similarity, built on top
of the Keras deep learning library (Chollet, 2015).
The framework aims to unify various sentence
matching tasks, including answer selection, and
provides implementations for variants of sentence-
matching models that achieve state-of-the-art results
on the TREC answer selection dataset (Wang et al.,
2007). We evaluated the performance of various
models in dataset-sts against INFOBOXQA for
the task of answer selection. We report the average
and the standard deviation for mean average preci-
sion (MAP) and mean reciprocal rank (MRR) from
five-fold cross validation. We used 10% of the train-
ing set for validation.

In answer selection, a model learns a function to
score candidate answers; the set of candidate an-
swers is already given. Entity linking is needed to
generate candidate answers and is often treated as a
separate module. For INFOBOXQA, we asked hu-
mans to generate questions from pre-specified in-
foboxes. Given this setup, we already know which
entity the question refers to; we also know that the
question is answerable by the infobox. Entity link-
ing was therefore out of scope in our experiments.
By effectively asking humans to identify the named
entity, our evaluation results are not affected by
noise caused by a faulty entity linking strategy.

3https://github.com/brmson/dataset-sts

Model MAP MRR
Avg SD Avg SD

TF-IDF 0.503 0.004 0.501 0.065
BM-25 0.531 0.007 0.532 0.056
AVG 0.593 0.021 0.609 0.042
RNN 0.685 0.024 0.674 0.028
ATTN1511 0.772 0.016 0.771 0.014
CNN 0.757 0.015 0.754 0.024
Tri-CNN 0.806 0.014 0.781 0.025

Table 3: Results of five-fold cross validation. Our Tri-CNN

model achieves the best results in MAP and MRR.

4.1 Benchmarks

We compare against TF-IDF and BM25 (Robertson
et al., 1995), two models from the information re-
trieval literature that calculate weighted measures of
word co-occurrence between the question and an-
swer. We also experiment with various neural net-
work sentence matching models. AVG is a baseline
model that computes averages of unigram word em-
beddings. CNN is the model most similar to Tri-
CNN, with two CNNs in a Siamese architecture,
one for the question and one for the answer. Max-
pooling is computed on the output of convolution,
and then fed to the output layer directly. RNN com-
putes summary embeddings of the question and an-
swer using bidirectional GRUs (Cho et al., 2014).
ATTN1511 feeds the outputs of the bi-GRU into the
convolution layer. It implements an asymmetric at-
tention mechanism as in (Tan et al., 2015), where the
output of convolution and max-pooling of the ques-
tion is used to re-weight the input to convolution of
the answer. The convolution weights are not shared.
For these neural architectures, we use the same MLP
scoring layer used in Tri-CNN as the output layer
and train using bipartite RankNet loss (Burges et al.,
2005).

4.2 Results

Table 3 summarizes the results of experiments on
INFOBOXQA. The performance of the baselines
indicates that unigram bag-of-words models are
not sufficiently expressive for matching; Tri-CNN
makes use of larger semantic units through its mul-
tiple channels. The attention mechanism and the
combination of an RNN and CNN in ATTN1511
achieves better results than RNN, but still performs

1933

slightly worse than the CNN model with weight-
sharing. The Siamese architecture allows an input’s
representation to be influenced by the other inputs.
The convolution feature maps are thus encoded in
a comparable scheme that is more amenable to a
matching task. Our Tri-CNN model built on top
of this weight-sharing architecture achieves the best
performance. Tri-CNN computes the match by com-
paring the similarities between question–attribute
and answer–attribute, which leads to improved re-
sults over models that compare the question and an-
swer directly.

5 Related work

Deep learning approaches to answer selection have
been successful on the standard TREC dataset and
the more recent WIKIQA corpus (Yang et al., 2015).
Models like (Feng et al., 2015) and (Wang and Ny-
berg, 2015) generate feature representations of ques-
tions and answers using neural networks, comput-
ing the similarity of these representations to select
an answer. Recently, attention mechanisms to influ-
ence the calculation of the representation (Tan et al.,
2015) or to re-weight feature maps before matching
(Santos et al., 2016) have achieved good results. Our
work differs from past approaches in that we use the
attribute as an additional input to the matching task.
Other approaches to question answering over struc-
tured knowledge bases focus on mapping questions
into executable database queries (Berant et al., 2013)
or traversing embedded sub-graphs in vector space
(Bordes et al., 2014).

6 Conclusion

We presented an approach to answering questions
from infoboxes in Wikipedia. We first compiled
the INFOBOXQA dataset, a large and varied corpus
of interesting questions from infoboxes. We then
trained a convolutional neural network model on this
dataset that uses the infobox attribute as a bridge in
matching the question to the answer. Our Tri-CNN
model achieved the best results when compared to
recent CNN and RNN-based architectures. We plan
to test our model’s ability to generalize to other types
of infobox-like tables on the Web. We expect our
methods to achieve good results for sources such as
product descriptions on shopping websites.

Acknowledgments

We thank Andrei Barbu and Yevgeni Berzak for
helpful discussions and insightful comments on this
paper. We also thank Ayesha Bose, Michael Sil-
ver, and the anonymous reviewers for their valu-
able feedback. Federico Mora, Kevin Ellis, Chris
Perivolaropoulos, Cheuk Hang Lee, Michael Silver,
and Mengjiao Yang also made contributions to the
early iterations and current version of Wikipedia-
Base. The work described in this paper has
been supported in part by AFRL contract No.
FA8750-15-C-0010 and in part through funding pro-
vided by the Center for Brains, Minds, and Ma-
chines (CBMM), funded by NSF STC award CCF-
1231216.

References
Petr Baudiš and Jan Šedivỳ. 2016. Sentence pair scor-

ing: Towards unified framework for text comprehen-
sion. arXiv preprint arXiv:1603.06127.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing.

Phil Blunsom, Edward Grefenstette, and Nal Kalchbren-
ner. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A col-
laboratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of
Data, pages 1247–1250. ACM.

Antoine Bordes, Sumit Chopra, and Jason Weston. 2014.
Question answering with subgraph embeddings. arXiv
preprint arXiv:1406.3676.

Jane Bromley, James W Bentz, Léon Bottou, Isabelle
Guyon, Yann LeCun, Cliff Moore, Eduard Säckinger,
and Roopak Shah. 1993. Signature verification using
a “Siamese” time delay neural network. International
Journal of Pattern Recognition and Artificial Intelli-
gence, 7(04):669–688.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,
Matt Deeds, Nicole Hamilton, and Greg Hullender.
2005. Learning to rank using gradient descent. In
Proceedings of the 22nd International Conference on
Machine Learning, pages 89–96. ACM.

1934

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the proper-
ties of neural machine translation: encoder-decoder ap-
proaches. In Eighth Workshop on Syntax, Semantics
and Structure in Statistical Translation (SSST-8).

François Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Minwei Feng, Bing Xiang, Michael R Glass, Lidan
Wang, and Bowen Zhou. 2015. Applying deep learn-
ing to answer selection: A study and an open task.
arXiv preprint arXiv:1508.01585.

Boris Katz, Sue Felshin, Deniz Yuret, Ali Ibrahim,
Jimmy Lin, Gregory Marton, Alton Jerome McFar-
land, and Baris Temelkuran. 2002. Omnibase: Uni-
form access to heterogeneous data for question an-
swering. In Natural Language Processing and Infor-
mation Systems, pages 230–234. Springer.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, 13.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing,
pages 1532–1543.

Stephen E Robertson, Steve Walker, Susan Jones, Miche-
line M Hancock-Beaulieu, and Mike Gatford. 1995.
Okapi at TREC-3. NIST Special Publication SP,
109:109.

Cicero dos Santos, Ming Tan, Bing Xiang, and Bowen
Zhou. 2016. Attentive pooling networks. arXiv
preprint arXiv:1602.03609.

Ming Tan, Bing Xiang, and Bowen Zhou. 2015. LSTM-
based deep learning models for non-factoid answer se-
lection. arXiv preprint arXiv:1511.04108.

Di Wang and Eric Nyberg. 2015. A long short-term
memory model for answer sentence selection in ques-
tion answering. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics.

Mengqiu Wang, Noah A Smith, and Teruko Mitamura.
2007. What is the Jeopardy model? A quasi-
synchronous grammar for QA. In Proceedings of
EMNLP-CoNLL, volume 7, pages 22–32.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
WikiQA: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 2013–2018. Citeseer.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen
Zhou. 2015. ABCNN: Attention-based convolutional
neural network for modeling sentence pairs. arXiv
preprint arXiv:1512.05193.

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and
Stephen Pulman. 2014. Deep Learning for Answer
Sentence Selection. In NIPS Deep Learning Work-
shop, December.

1935

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1936–1942,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Timeline extraction using distant supervision and joint inference

Savelie Cornegruta
Department of Biomedical Engineering

King’s College London, UK
savelie.cornegruta@kcl.ac.uk

Andreas Vlachos
Department of Computer Science

University of Sheffield, UK
a.vlachos@sheffield.ac.uk

Abstract

In timeline extraction the goal is to order all
the events in which a target entity is involved
in a timeline. Due to the lack of explic-
itly annotated data, previous work is primar-
ily rule-based and uses pre-trained temporal
linking systems. In this work, we propose a
distantly supervised approach by heuristically
aligning timelines with documents. The noisy
training data created allows us to learn mod-
els that anchor events to temporal expressions
and entities; during testing, the predictions
of these models are combined to produce the
timeline. Furthermore, we show how to im-
prove performance using joint inference. In
experiments in the SemEval-2015 TimeLine
task we show that our distantly supervised
approach matches the state-of-the-art perfor-
mance while joint inference further improves
on it by 3.2 F-score points.

1 Introduction

Temporal information extraction focuses on extract-
ing relations and events along with the time when
they were true or happened. In this work we focus
on timeline extraction, following the recent SemEval
TimeLine shared task (Minard et al., 2015). The aim
of the task is to extract timelines from multiple doc-
uments consisting of events in which a given target
entity is the main participant. An example timeline
for the entity Steve Jobs extracted from 4 documents
is given in Fig.1.

The development data provided by the TimeLine
shared task does not contain annotations for the var-
ious intermediate processing stages needed, only a

set of documents with annotated event mentions (in-
put) and the timelines extracted for a few target en-
tities (output). No training data was provided, thus
participating systems used rules combined with tem-
poral linking systems trained on related tasks in or-
der to anchor events to temporal expressions and en-
tities to construct the timelines.

We propose a new approach to timeline extraction
that uses the development data provided as distant
supervision to generate noisy training data (Craven
and Kumlien, 1999; Mintz et al., 2009). More
specifically, we heuristically align the target entity
and the timestamps from the timelines with auto-
matically recognized entities and temporal expres-
sions in the documents. This noisy labeled data set
allows us to learn models for the subtasks of an-
choring events to temporal expressions and to en-
tities, without requiring training models on addi-
tional data. Also, we improve the performance us-
ing joint inference for both anchoring subtasks. In
our experiments, we show that our distantly super-
vised approach matches the state-of-the-art perfor-
mance while joint inference further improves on it
by 3.2 F-score points. Our code is publicly available
at http://github.com/savac/timeline.

2 Timeline extraction

The task of timeline extraction given a target entity
and a set of documents can be decomposed as fol-
lows. The initial stages are event mention extraction,
target entity recognition, and temporal expression
identification and resolution. The next stages are an-
choring event mentions to target entities and tempo-
ral expressions. The final stages are event corefer-

1936

Documents:
DocId: 16844, DCT: 2010-06-08, Sentence: 2,3,4,5: Yesterday2010-06-07 , at this year ’s Apple Worldwide Developers Conference (
WWDC) , company CEO Steve JobsSteve Jobs unveiled iPhone 4iPhone 4 , along with the new iOS 4 operating system for Apple mobile
devices . The announcement was long-awaited but not a very big surprise . In April , the technology blog Gizmodo obtained
a prototype of the new phoneiPhone 4 and published details of itiPhone 4 online . While introducing iPhone 4iPhone 4 , at the annual
conference , JobsSteve Jobs started by hinting at the incident , saying , ” Stop me if you ’ve already seen this .

DocId: 17036, DCT: 2010-07-17, Sentence: 6,15: Rather than recall the devices or offer a hardware fix , JobsSteve Jobs said
yesterday2010-07-16 that Apple will offer a free case to anyone who has purchased an iPhone 4iPhone 4. [...] However ,JobsSteve Jobs

admitted that the percentage of calls dropped on the iPhone 4iPhone 4 was slightly greater than the percentage of calls dropped on
the 3GSiPhone 3GS.

DocId: 16900, DCT: 2010-06-16, Sentence: 6: The newest iPhoneiPhone 4 , iPhone 4iPhone 4 was introduced by Apple CEOSteve Jobs

Steve JobsSteve Jobs at the company ’s 2010 Worldwide Developer ’s Conference less than two weeks ago2010-06 .

DocId 16983, 2010-10-23, Sentence 10: In hisSteve Jobs keynote address Wednesday2010-10-20 , JobsSteve Jobs announced the release of
Apple ’s iLife ’11 software suite , which includes the iPhoto , iMovie , and GarageBand programs .

Timeline: Steve Jobs
1 2010-06-07 16844-2-unveiled
1 2010-06-07 16844-5-introducing 16900-11-introduced
1 2010-06-07 16844-5-hinting
1 2010-06-07 16844-5-saying
2 2010-07-16 17036-6-said
2 2010-07-16 17036-15-admitted
3 2010-10-20 16983-10-address
3 2010-10-20 16983-10-announced

Figure 1: Example timeline for target entity Steve Jobs. The input to the system is the documents annotated with event mentions an-

notations and their Document Creation Time (DCT). The event mentions appearing in the timeline are identified by their document

id-sentence index. The annotations for the target entities and temporal expression mentions need to be done by the system.

ence resolution and ordering of the events in a time-
line, which rely largely on their anchoring to tem-
poral expressions. The TimeLine shared task had
two tracks, A and B, the only difference being that
in Track B the event mentions are provided in the
input. We consider this track in this paper and fo-
cus on learning the anchoring of events to temporal
expressions and entities.

The development data provided in the context of
the shared task consisted of documents related to
Apple and gold timelines for six target entities. Eval-
uation was performed by extracting timelines from
three document sets, each related to Airbus, GM and
Stock market respectively. We used the official eval-
uation which is based on the metric introduced by
UzZaman and Allen (2011) which assesses a pre-
dicted timeline versus the gold standard one using
precision, recall and F-score over binary temporal
relations between the events.

3 Distant supervision

In order to generate training data for anchoring event
mentions to target entities and temporal expressions

via distant supervision, we first need to identify
them. For entity recognition we use approximate
string matching combined with the Stanford Coref-
erence Resolution System (Lee et al., 2013). For
temporal expression identification and resolution to
absolute timestamps we use the UWTime temporal
parser (Lee et al., 2014).

Next we generate labeled instances as follows.
For anchoring events to entities, we consider for
each event mention the correct entity mention to be
the nearest mention of the target entity in the same
sentence, and all others to be incorrect. Similarly,
for anchoring events to timestamps, we consider for
each event mention the correct temporal expression
to be the nearest temporal expression that exactly
matches the timestamp according to the timeline
(but not necessarily in the same sentence), and all
others to be incorrect. The datasets generated will
be noisy since correct anchors may be entity men-
tions and temporal expressions that are not the near-
est ones. Further noise is expected due to errors in
the entity recognition and temporal expression iden-
tification and resolution stages.

1937

Features type
Measure distance in tokens between event and
target entity mentions

local

Syntactic dependencies between event and target
entity mentions (extracted from training corpus)

local

Check if subsequent events have the same stem
and are attributed to the same target entity

global

Check if subsequent events are in the same sen-
tence and are attributed to the same target entity

global

Check if subsequent events are both communica-
tion events and are attributed to the same target
entity

global

Table 1: Features to encode dependencies between events and

target entities

4 Event anchoring

After generating training data for anchoring event
mentions to target entities and to temporal expres-
sions with distant supervision, we now proceed to
developing linear models for each of these tasks.

4.1 Classification
Using distant supervision we obtained examples of
correct and incorrect anchoring of event mentions to
entities and temporal expressions. Thus we learn for
each of the two tasks a binary linear classifier of the
form:

score(x, y,w) = w · φ(x, y) (1)

where x is an event mention, y is the anchor (ei-
ther the target entity or the temporal expression)
and w are the parameters to be learned. The fea-
tures extracted by φ represent various distance mea-
sures and syntactic dependencies between the event
mention and the anchor obtained using Stanford
CoreNLP (Manning et al., 2014). The temporal ex-
pression anchoring model also uses a few feature
templates that depend on the timestamp of the tem-
poral expression. The full list of features extracted
by φ are denoted as local in Tables 1 and 2.

4.2 Alignment
The classification approach described is limited to
anchoring each event mention to an entity or a tem-
poral expression in isolation. However it would be
preferable to infer the decisions for each task jointly
at the document level and take into account the de-
pendencies in anchoring different events, e.g. that
consecutive events in text are likely to be anchored

Features type
Measure distance in sentences between event
mention and temporal expression

local

Measure distance in tokens between event men-
tion and temporal expression

local

Syntactic dependencies between event mention
and temporal expression (extracted from training
corpus)

local

Check if temporal expression is before of after
the event mention

local

Check if timestamp is in the future wrt the DCT local
Check if timestamp is undefined (i.e. XX-XX-
XXXX)

local

Check if timestamp is incomplete local
Check if subsequent events and are linked to the
same temporal expression

global

Check if subsequent events have the same stem
and are linked to the same temporal expression

global

Check if subsequent events are in the same sen-
tence and are linked to the same temporal expres-
sion

global

Check if subsequent events are communication
events and are linked to the same temporal ex-
pression

global

Table 2: Features to encode dependencies between events and

temporal expressions

to the same entity, as shown in Figure 2, or to the
same temporal expression. Capturing such depen-
dencies can be crucial when the correct anchor is not
explicitly signalled in the text but can be inferred
considering other relations and/or their ordering in
text (Derczynski, 2013).

Defining our joint model formally, let x be a vec-
tor containing all event mentions in a document and
y be the vector of all anchors (target entity mentions
or temporal expressions) in the same document. The
order of the events in x is as they appear in the doc-
ument. Let z be a vector of the same length as x that
defines the alignment between x and y by containing
pointers to elements in y, thus allowing for multiple
events to share the same anchor. The scoring func-
tion is defined as

score(x,y, z,w) = w · Φ(x,y, z) (2)

where the global feature function Φ, in addition to
the features returned by the local scoring function
(Eq. 1), also returns features taking into account
anchoring predictions across the document. Apart
from features encoding subsequences of anchoring

1938

Documents:
DocId: 17036, DCT: 2010-07-17, Sentence: 9,10,11:
JobsSteve Jobs also said that those who had already purchased
a bumper will receive a full refund for the accessory. For
consumers still dissatisfied with iPhone 4iPhone 4, JobsSteve Jobs

said that the phones can be returned for a refund as well.
JobsSteve Jobs acknowledged that ”a very small percentage of
users” were experiencing antenna issues, but dismissed the
existence of an ”Antennagate,” saying that similar problems
plague all cellular phones and that the iPhoneiPhone 4 issue
”has been blown so out of proportion that it is incredible.”

Figure 2: The correct alignment of events and target entity

mentions is shown with the numbers in brackets denoting the in-

dex of the sentence in which the mention is found. The consec-

utive events acknowledged, dismissed and saying are anchored

to entity Steve Jobs that was only mentioned once in the begin-

ning of the sentence.

predictions, it also makes possible to make them de-
pendent on the events, e.g. a binary indicator encod-
ing whether two consecutive events with the same
stem share the same anchor or not. The full list
of local and global features extracted by Φ are pre-
sented in Tables 1 and 2. Predicting with the scoring
function in Eq.2 amounts to finding the anchoring
sequence vector z that maximizes it. To be able to
perform exact inference efficiently, we impose a first
order Markov assumption and use the Viterbi algo-
rithm (Viterbi, 1967). Similar approaches have been
successful in word alignment for machine transla-
tion (Blunsom and Cohn, 2006).

4.3 Post-processing

During testing, we need to construct the timeline for
each target entity using the events that were pre-
dicted to be anchored to it and the timestamps of
the temporal expressions each event was anchored
to. Thus, we need to perform two additional tasks,

event coreference and ordering. For the former we
define a simple heuristic by which if two mentions
have the same stems and timestamps then they re-
fer to the same event. The only exception is that if
two mentions represent communication events (said,
announced etc.), then they are resolved to different
events when in the same document. We finally order
the events according to their timestamp.

5 Results

We evaluate our system using the setup provided by
the TimeLine task ensuring that the training and val-
idation are performed only using the development
data i.e. the Apple collection. All linear models were
trained with the perceptron update rule (Pedregosa et
al., 2011). We tuned the number of perceptron iter-
ations by performing cross-validation using the de-
velopment data by holding out the timeline for one
target entity and training on the timelines for the re-
maining ones.

In Table 3 we compare the binary classification
model (Our System Binary) against the alignment
model (Our System Alignment) and show that the
latter outperforms the former by a margin of 3.2
points in F-score, achieving a micro F1-score of
28.58 across the three test corpora, thus confirming
the benefits of joint inference. The only corpus in
which joint inference did not help was Stock which
has on average shorter event chains per document
(Minard et al., 2015) and thus renders joint anchor-
ing less likely to be useful.

We now compare our approach to the two par-
ticipants in the TimeLine shared task with two
runs each. The best-performing GPLSIUA team
(Navarro and Saquete, 2015) used the TIPSem tool
developed by Llorens et al. (2010) for temporal rela-
tion processing which extracts events and temporal
expressions and uses a Conditional Random Field
model to anchor them against each other. How-
ever, TIPSem only considers anchoring of events
to temporal expressions that are in the same sen-
tence. GPLSIUA also used the semantic role labeler
from SENNA (Collobert et al., 2011) and Open-
NER and anchored entities to events using a rule-
based approach. The HeidelToul team (Moulahi et
al., 2015) used HeidelTime (Strötgen et al., 2013)
to identify and resolve temporal expressions and de-

1939

Airbus GM Stock Total
System F1 F1 F1 P R F1

GPLSIUA 1 22.35 19.28 33.59 21.73 30.46 25.36
GPLSIUA 2 20.47 16.17 29.90 20.08 26.00 22.66
HeidelToul 1 19.62 7.25 20.37 20.11 14.76 17.03
HeidelToul 2 16.50 10.82 25.89 13.58 28.23 18.34
Our System Binary 17.99 20.97 34.95 25.97 24.79 25.37
Our System Alignment 25.65 26.64 32.35 29.05 28.12 28.58

Table 3: Results for our system and other participants in the SemEval 2015 Task 4: TimeLine.

veloped a target entity mention identification tool
similar to ours using Stanford CoreNLP (Manning
et al., 2014). However, they rely on a rule-based
approach for event anchoring. Our binary model
matches the performance of the best system, and our
alignment model exceeds it by 3.2 F1-score points
across, even though we do not use any off-the-shelf
components developed for temporal relation extrac-
tion. Instead we rely on training data generated with
distant supervision, and UWTime for temporal ex-
pression identification and resolution, for which the
participants also used similar components.

6 Related work

In recent work, Laparra et al. (2015) also consid-
ered anchoring at the document-level in the context
of the Track A of the TimeLine shared task, however
they developed a rule-based approach. The structure
features used in our joint inference approach encode
similar intuitions, but we are learning model weights
using distant supervision so that we can combine
them more flexibly. And even though the noise in the
trainng data generated with distant supervision is a
concern, manual annotation of temporal relations is
known to have low inter-annotator agreement rates1

and thus also likely to be noisy.
Prior to the TimeLine shared task, TempEval

(Verhagen et al., 2007) was the original task that fo-
cused on categorising the relations between events,
temporal expressions and Document Creation Time
using the the TimeML annotation language. The
task classified only the relations between mentions
in the same or consecutive sentences. The two fol-
lowing tasks, TempEval-2 (Verhagen et al., 2010)
and TempEval-3 (UzZaman et al., 2013), added
tasks for event and temporal expression identifica-

1http://www.timeml.org/timebank/
documentation-1.2.html

tion as well as an end-to-end temporal relation pro-
cessing task that was performed on raw text.

Beyond TempEval, McClosky and Manning
(2012) used distant supervision in order to learn how
to extract the temporal bounds for events in the con-
text of the TAC temporal knowledge base population
task (Ji et al., 2011). However they focus on learn-
ing real-world event ordering constraints (e.g. peo-
ple go to school before university) instead of how
events are reported in text.

7 Conclusions

In this paper we proposed a timeline extraction ap-
proach in which we generate noisy training data for
anchoring events to entities and temporal expres-
sions using distant supervision. By learning a binary
classifier we match the state-of-the-art F1-score for
the Track B of the TimeLine shared task. We further
improve this result by 3.2 F1-score points using joint
inference.

Acknowledgments

Part of this work was conducted while both authors
were at University College London. The authors
would like to thank Leon Derczynski for his feed-
back on an earlier version. Andreas Vlachos is sup-
ported by the EU H2020 SUMMA project (grant
agreement number 688139).

References

Phil Blunsom and Trevor Cohn. 2006. Discriminative
word alignment with conditional random fields. In
Proceedings of the 21st International Conference on
Computational Linguistics and the 44th annual meet-
ing of the Association for Computational Linguistics,
pages 65–72. Association for Computational Linguis-
tics.

1940

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch. J.
Mach. Learn. Res., 12:2493–2537, November.

Mark Craven and Johan Kumlien. 1999. Constructing
biological knowledge bases by extracting information
from text sources. In Proceedings of the Seventh Inter-
national Conference on Intelligent Systems for Molec-
ular Biology, pages 77–86. AAAI Press.

Leon Derczynski. 2013. Determining the Types of Tem-
poral Relations in Discourse. Ph.D. thesis, University
of Sheffield.

Heng Ji, Ralph Grishman, and Hoa Trang Dang. 2011.
Overview of the tac 2011 knowledge base population
track. In Proceedings of Text Analysis Conference
(TAC).

Egoitz Laparra, Itziar Aldabe, and German Rigau. 2015.
Document level time-anchoring for timeline extrac-
tion. In ACL.

Heeyoung Lee, Angel Chang, Yves Peirsman, Nathanael
Chambers, Mihai Surdeanu, and Dan Jurafsky. 2013.
Deterministic coreference resolution based on entity-
centric, precision-ranked rules. Comput. Linguist.,
39(4):885–916, December.

Kenton Lee, Yoav Artzi, Jesse Dodge, and Luke Zettle-
moyer. 2014. Context-dependent semantic parsing for
time expressions. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 1437–1447, Balti-
more, Maryland, June. Association for Computational
Linguistics.

Hector Llorens, Estela Saquete, and Borja Navarro.
2010. Tipsem (english and spanish): Evaluating crfs
and semantic roles in tempeval-2. In Proceedings of
the 5th International Workshop on Semantic Evalua-
tion, pages 284–291. Association for Computational
Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Association for Computational Lin-
guistics (ACL) System Demonstrations, pages 55–60.

David McClosky and Christopher D Manning. 2012.
Learning constraints for consistent timeline extrac-
tion. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 873–882. Association for Computational Lin-
guistics.

Anne-Lyse Minard, Manuela Speranza, Eneko Agirre,
Itziar Aldabe, Marieke van Erp, Bernardo Magnini,
German Rigau, and Ruben Urizar. 2015. Semeval-
2015 task 4: Timeline: Cross-document event order-
ing. In Proceedings of the 9th International Workshop

on Semantic Evaluation (SemEval 2015), pages 778–
786, Denver, Colorado, June. Association for Compu-
tational Linguistics.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky.
2009. Distant supervision for relation extraction with-
out labeled data. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP: Volume 2 - Volume 2, ACL
’09, pages 1003–1011, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Bilel Moulahi, Jannik Strötgen, Michael Gertz, and
Lynda Tamine. 2015. Heideltoul: A baseline ap-
proach for cross-document event ordering. In Pro-
ceedings of the 9th International Workshop on Seman-
tic Evaluation (SemEval 2015), pages 825–829, Den-
ver, Colorado, June. Association for Computational
Linguistics.

Borja Navarro and Estela Saquete. 2015. Gplsiua: Com-
bining temporal information and topic modeling for
cross-document event ordering. In Proceedings of the
9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 820–824, Denver, Colorado,
June. Association for Computational Linguistics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–
2830.

Jannik Strötgen, Julian Zell, and Michael Gertz. 2013.
Heideltime: Tuning english and developing spanish
resources for tempeval-3. In Second Joint Conference
on Lexical and Computational Semantics (*SEM), Vol-
ume 2: Proceedings of the Seventh International Work-
shop on Semantic Evaluation (SemEval 2013), pages
15–19, Atlanta, Georgia, USA, June. Association for
Computational Linguistics.

Naushad UzZaman and James F. Allen. 2011. Temporal
evaluation. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Hu-
man Language Technologies: Short Papers - Volume
2, HLT ’11, pages 351–356, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Naushad UzZaman, Hector Llorens, Leon Derczynski,
James Allen, Marc Verhagen, and James Pustejovsky.
2013. Semeval-2013 task 1: Tempeval-3: Evaluat-
ing time expressions, events, and temporal relations.
In Second Joint Conference on Lexical and Compu-
tational Semantics (*SEM), Volume 2: Proceedings of
the Seventh International Workshop on Semantic Eval-
uation (SemEval 2013), pages 1–9, Atlanta, Georgia,

1941

USA, June. Association for Computational Linguis-
tics.

Marc Verhagen, Robert Gaizauskas, Frank Schilder,
Mark Hepple, Graham Katz, and James Pustejovsky.
2007. Semeval-2007 task 15: Tempeval temporal re-
lation identification. In Proceedings of the 4th Interna-
tional Workshop on Semantic Evaluations, pages 75–
80. Association for Computational Linguistics.

Marc Verhagen, Roser Sauri, Tommaso Caselli, and
James Pustejovsky. 2010. Semeval-2010 task 13:
Tempeval-2. In Proceedings of the 5th international
workshop on semantic evaluation, pages 57–62. Asso-
ciation for Computational Linguistics.

Andrew J. Viterbi. 1967. Error bounds for convolutional
codes and an asymptotically optimum decoding algo-
rithm. IEEE Transactions on Information Theory, IT-
13(2):260–269, April.

1942

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1943–1948,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Combining Supervised and Unsupervised Ensembles
for Knowledge Base Population

Nazneen Fatema Rajani and Raymond J. Mooney
Department Of Computer Science
The University of Texas at Austin

nrajani@cs.utexas.edu, mooney@cs.utexas.edu

Abstract

We propose an algorithm that combines su-
pervised and unsupervised methods to ensem-
ble multiple systems for two popular Knowl-
edge Base Population (KBP) tasks, Cold Start
Slot Filling (CSSF) and Tri-lingual Entity Dis-
covery and Linking (TEDL). We demonstrate
that it outperforms the best system for both
tasks in the 2015 competition, several ensem-
bling baselines, as well as a state-of-the-art
stacking approach. The success of our tech-
nique on two different and challenging prob-
lems demonstrates the power and generality of
our combined approach to ensembling.

1 Introduction

Ensembling multiple systems is a well known stan-
dard approach to improving accuracy in several ma-
chine learning applications (Dietterich, 2000). En-
sembles have been applied to parsing (Henderson
and Brill, 1999), word sense disambiguation (Ped-
ersen, 2000), sentiment analysis (Whitehead and
Yaeger, 2010) and information extraction (IE) (Flo-
rian et al., 2003; McClosky et al., 2012). Recently,
using stacking (Wolpert, 1992) to ensemble sys-
tems was shown to give state-of-the-art results on
slot-filling and entity linking for Knowledge Base
Population (KBP) (Viswanathan et al., 2015; Ra-
jani and Mooney, 2016). Stacking uses supervised
learning to train a meta-classifier to combine multi-
ple system outputs; therefore, it requires historical
data on the performance of each system. Rajani and
Mooney (2016) use data from the 2014 iteration of
the KBP competition for training and then test on the

data from the 2015 competition, therefore they can
only ensemble the shared systems that participated
in both years.

However, we would sometimes like to ensem-
ble systems for which we have no historical perfor-
mance data. For example, due to privacy, some com-
panies may be unwilling to share their performance
on arbitrary training sets. Simple methods such as
voting permit “unsupervised” ensembling, and sev-
eral more sophisticated methods have also been de-
veloped for this scenario (Wang et al., 2013). How-
ever, such methods fail to exploit supervision for
those systems for which we do have training data.
Therefore, we present an approach that utilizes su-
pervised and unsupervised ensembling to exploit the
advantages of both. We first use unsupervised en-
sembling to combine systems without training data,
and then use stacking to combine this ensembled
system with other systems with available training
data.

Using this new approach, we demonstrate new
state-of-the-art results on two NIST KBP challenge
tasks: Cold Start Slot-Filling (CSSF)1 and the Tri-
lingual Entity Discovery and Linking (TEDL) (Ji
et al., 2015). Our approach outperforms the best
system as well as other state-of-the-art ensembling
methods on both tasks in the most recent 2015 com-
petition. There is one previous work on ensembling
supervised and unsupervised models using graph-
based consensus maximization (Gao et al., 2009),
however we show that it does not do as well as our
stacking method.

1http://www.nist.gov/tac/2015/KBP/
ColdStart/guidelines.html

1943

2 Overview of KBP Tasks

2.1 Cold Start Slot Filling (CSSF)
The goal of CSSF is to collect information (fills)
about specific attributes (slots) for a set of entities
(queries) from a given corpus. The query entities
can be a person, organization, or geo-political entity
(PER/ORG/GPE). The input is a set of queries along
with a text corpus in which to look for information.
The output is a set of slot fills for each query. Sys-
tems must also provide provenance in the form of
docid:startoffset-endoffset, where docid specifies a
source document and the offsets demarcate the text
in this document supporting the filler. Systems may
also provide a confidence score to indicate their cer-
tainty in the extracted information.

2.2 Tri-lingual Entity Discovery and Linking
(TEDL)

The first step in the TEDL task is to discover all en-
tity mentions in a corpus with English, Spanish and
Chinese documents. The entities can be a person, or-
ganization or geo-political entity (PER/ORG/GPE)
and in 2015 two more entity types were introduced
– facility and location (FAC/LOC). The extracted
mentions are then linked to an existing English KB
(a version of FreeBase) entity via its ID. If there is
no KB entry for an entity, systems are expected to
cluster all the mentions for that entity using a NIL
ID. The output for the task is a set of extracted men-
tions, each with a string, its provenance in the cor-
pus, and a corresponding KB ID if the system could
successfully link the mention, or else a mention clus-
ter with a NIL ID. Systems can also provide a confi-
dence score for each mention.

3 Ensembling Algorithm

Figure 1 illustrates our system which trains a final
meta-classifier for combining multiple systems us-
ing confidence scores and other auxiliary features
depending on the task.

3.1 Supervised Ensembling Approach
For the KBP systems that are common between
years, we use the stacking method of Viswanathan
et al. (2015) for these shared systems.

The meta-classifier makes a binary decision for
each distinct output represented as a key-value pair.

Sup	System	1	

Sup	System	2	

	Sup	System	N	

Unsup	System	1	

Trained		
Meta-classifier	

Auxiliary	Features	

conf	1	

conf	2	

conf	N	

Unsup	System	2	 Aggregated	
conf	

Unsup	System	M	
Accept?	

Constrained	OpBmizaBon	

Figure 1: Illustration of our approach to combine supervised

and unsupervised ensembles.

The function of the key is to provide a handle for ag-
gregating outputs that are common across systems.
For the CSSF task, the key for ensembling multiple
systems is a query along with a slot type, for exam-
ple, per:age of “Barack Obama” and the value is a
computed slot fill. For TEDL, the key is the KB (or
NIL) ID and the value is a mention, that is a spe-
cific reference to an entity in the text. The top half
of Figure 1 illustrates ensembling multiple systems
with historical training data using a supervised ap-
proach.

3.2 Unsupervised Ensembling Approach

Only 38 of the 70 systems that participated in CSSF
2015 also participated in 2014, and only 24 of the 34
systems that participated in TEDL 2015 also partic-
ipated in 2014 EDL. Therefore, many KBP systems
in 2015 were new and did not have past training data.
In fact, some of the new systems performed better
than the shared systems, for example the hltcoe sys-
tem did not participate in 2014 but was ranked 4th in
the 2015 TEDL task (Ji et al., 2015). Thus, for im-
proving recall and performance in general, it is cru-
cial to use systems without historical training data,
which we call unsupervised systems. To achieve
this end, we first ensemble such systems using an
unsupervised technique. Frequently, the confidence
scores provided by systems are not well-calibrated
probabilities. So in order to calibrate the confidence
scores across unsupervised systems, we use the con-
strained optimization approach proposed by Wang
et al. (2013). The idea is to aggregate the raw confi-
dence values produced by individual KBP systems,

1944

to arrive at a single aggregated confidence value for
each key-value pair. The constraints ensure that the
aggregated confidence score is close to the raw score
as well as proportional to the agreement among sys-
tems on a value for a given key. Thus for a given
key, if a system’s value is also produced by multi-
ple other systems, it would have a higher score than
if it were not produced by any other system. The
authors use the inverse ranking of the average pre-
cision previously achieved by individual systems as
the weights in their algorithm. However since we
use this approach for systems with no historical per-
formance data, we use uniform weights across all
unsupervised systems for both the tasks.

We use the slot type for the CSSF task and en-
tity type for the TEDL task to define the constraints
on the values. The output from the constrained op-
timization approach for both tasks is a set of key-
values with aggregated confidence scores across all
unsupervised systems which go directly into the
stacker as shown in the lower half of Figure 1. Us-
ing the aggregation approach as opposed to directly
using the raw confidence scores allows the classifier
to meaningfully compare confidence scores across
multiple systems although they are produced by very
diverse systems.

Another unsupervised ensembling method we
tried in place of the constrained optimization ap-
proach is the Bipartite Graph based Consensus Max-
imization (BGCM) approach of Gao et al. (2009).
BGCM is presented as a way of combining super-
vised and unsupervised models, so we compare it to
our stacking approach to combining supervised and
unsupervised systems, as well as an alternative ap-
proach to ensembling just the unsupervised systems
before passing their output to the stacker. BGCM
performs an optimization over a bipartite graph of
systems and outputs, where the objective function
favors the smoothness of the label assignments over
the graph, as well as penalizing deviations from the
initial labeling provided by supervised models.

3.3 Combining Supervised and Unsupervised

We propose a novel approach to combine the afore-
mentioned supervised and unsupervised methods us-
ing a stacked meta-classifier as the final arbiter for
accepting a given key-value. The outputs from the
supervised and unsupervised systems are fed into

the stacker in a consistent format such that there is a
unique input key-value pair. Most KBP teams sub-
mit multiple variations of their system. Before en-
sembling, we first combine multiple runs of the same
team into one. Of the 38 CSSF systems from 10
teams for which we have 2014 data for training and
the 32 systems from 13 teams that do not have train-
ing data, we combine the runs of each team into one
to ensure diversity of the final ensemble. For the slot
fills that were common between the runs of a given
team, we compute an average confidence value, and
then add any additional fills that are not common
between runs. Thus, we obtained 10 systems (one
for each team) for which we have supervised data
for training stacking. Similarly, we combine the 24
TEDL systems from 6 teams that have 2014 training
data and 10 systems from 4 teams that did not have
training data into one per team. Thus using the no-
tation in Figure 1, for TEDL, N = 6 and M = 4
while for CSSF, N = 10 and M = 13.

The unsupervised method produces aggregated,
calibrated confidence scores which go directly into
our final meta-classifier. We treat this combination
as a single system called the unsupervised ensemble.
We add the unsupervised ensemble as an additional
system to the stacker, thus giving us a total ofN+1,
that is 11 CSSF and 7 TEDL systems. Once we have
extracted the auxiliary features for each of theN su-
pervised systems and the unsupervised ensemble for
both years, we train the stacker on 2014 systems,
and test on the 2015 systems. The unsupervised en-
semble for each year is composed of different sys-
tems, but hopefully the stacker learns to combine a
generic unsupervised ensemble with the supervised
systems that are shared across years. This allows
the stacker to arbitrate the final correctness of a key-
value pair, combining systems for which we have no
historical data with systems for which training data
is available. To learn the meta-classifier, we use an
L1-regularized SVM with a linear kernel (Fan et al.,
2008) (other classifiers gave similar results).

3.4 Post-processing

Once we obtain the decisions on each key-value
pair from the stacker, we perform some final post-
processing. For CSSF, each list-valued slot fill that
is classified as correct is included in the final output.
For single-valued slot fills, if they are multiple fills

1945

Methodology Precision Recall F1
Combined stacking and constrained optimization with auxiliary features 0.4679 0.4314 0.4489

Top ranked SFV system in 2015 (Rodriguez et al., 2015) 0.4930 0.3910 0.4361
Stacking using BGCM instead of constrained optimization 0.5901 0.3021 0.3996

BGCM for combining supervised and unsupervised systems 0.4902 0.3363 0.3989
Stacking with auxiliary features described in (Rajani and Mooney, 2016) 0.4656 0.3312 0.3871

Ensembling approach described in (Viswanathan et al., 2015) 0.5084 0.2855 0.3657
Top ranked CSSF system in 2015 (Angeli et al., 2015) 0.3989 0.3058 0.3462
Oracle Voting baseline (3 or more systems must agree) 0.4384 0.2720 0.3357

Constrained optimization approach described in (Wang et al., 2013) 0.1712 0.3998 0.2397
Table 1: Results on 2015 Cold Start Slot Filling (CSSF) task using the official NIST scorer

Methodology Precision Recall F1
Combined stacking and constrained optimization 0.686 0.624 0.653

Stacking using BGCM instead of constrained optimization 0.803 0.525 0.635
BGCM for combining supervised and unsupervised outputs 0.810 0.517 0.631

Stacking with auxiliary features described in (Rajani and Mooney, 2016) 0.813 0.515 0.630
Ensembling approach described in (Viswanathan et al., 2015) 0.814 0.508 0.625

Top ranked TEDL system in 2015 (Sil et al., 2015) 0.693 0.547 0.611
Oracle Voting baseline (4 or more systems must agree) 0.514 0.601 0.554

Constrained optimization approach 0.445 0.176 0.252
Table 2: Results on 2015 Tri-lingual Entity Discovery and Linking (TEDL) using official NIST scorer and CEAF metric

that were classified as correct for the same query and
slot type, we include the fill with the highest meta-
classifier confidence.

For TEDL, for each entity mention link that is
classified as correct, if the link is a KB cluster ID
then we include it in the final output, but if the link
is a NIL cluster ID then we keep it aside until all
mention links are processed. Thereafter, we resolve
the NIL IDs across systems since NIL ID’s for each
system are unique. We merge NIL clusters across
systems into one if there is at least one common en-
tity mention among them.

4 Experimental Results

All results were obtained using the official NIST
scorers after the competitions ended.2 We compare
to the purely supervised approach of Viswanathan et
al. (2015) using shared systems between 2014 and
2015, and the constrained optimization approach of
Wang et al. (2013) using all 2015 systems. We also
compare to BGCM (Gao et al., 2009) in two ways.

2http://www.nist.gov/tac/2015/KBP/
ColdStart/tools.html,https://github.com/
wikilinks/neleval

First, we use BGCM in place of the constrained op-
timization approach to ensemble unsupervised sys-
tems while keeping the rest of our pipeline the same.
Secondly, we also compare to combining both su-
pervised and unsupervised systems using BGCM in-
stead of stacking. We also include an “oracle” vot-
ing ensembling baseline, which varies the threshold
on the number of systems that must agree to identify
an “oracle” threshold that results in the highest F1
score for 2015. We find that for CSSF a threshold of
3, and for TEDL a threshold of 4, gives us the best
F1 score.

Tables 1 and 2 show CSSF and TEDL results.
Our full system, which combines supervised and un-
supervised ensembling performed the best on both
tasks. TAC-KBP also includes the Slot Filler Val-
idation (SFV) task3 where the goal is to ensem-
ble/filter outputs from multiple slot filling systems.
The top ranked system in 2015 (Rodriguez et al.,
2015) does substantially better than many of the
other ensembling approaches, but it does not do as
well as our best performing system. The purely

3http://www.nist.gov/tac/2015/KBP/
SFValidation/index.html

1946

0	
20000	
40000	
60000	
80000	
100000	
120000	
140000	

Supervised	 Unsupervised	 Combina8on	

TEDL	

Unique	pairs	 Common	pairs	

0	
5000	

10000	
15000	
20000	
25000	
30000	
35000	

Supervised	 Unsupervised	 Combina7on	

CSSF	

Unique	pairs	 Common	pairs	

Figure 2: Total number of unique and common input pairs contributed by the supervised and unsupervised systems to the combi-

nation for the TEDL and CSSF tasks respectively.

supervised approach of Viswanathan et al. (2015)
and the auxiliary features approach of Rajani and
Mooney (2016) performs substantially worse, al-
though still outperforming the top-ranked individual
system in the 2015 competition. These approaches
only use the common systems from 2014, thus ig-
noring approximately half of the systems. The ap-
proach of Wang et al. (2013) performs very poorly
by itself; but when combined with stacking gives a
boost to recall and thus the overall F1. Note that all
our combined methods have a substantially higher
recall. The oracle voting baseline also performs very
poorly indicating that naive ensembling is not ad-
vantageous.

TEDL provides three different approaches to
measuring accuracy: entity discovery, entity linking,
and mention CEAF (Ji et al., 2015). CEAF finds the
optimal alignment between system and gold stan-
dard clusters, then evaluates precision and recall
micro-averaged. We obtained similar results on all
three metrics and only include CEAF. The purely
supervised stacking approach over shared systems
does not do as well as any of our combined ap-
proaches even though it beats the best performing
system (i.e. IBM) in the 2015 competition (Sil et
al., 2015). The relative ranking of the approaches is
similar to those obtained for CSSF, proving that our
approach is very general and improves performance
on two quite different and challenging problems.

Even though it is obvious that the boost in our
recall was because of adding the unsupervised sys-
tems, it isn’t clear how many new key-value pairs
were generated by these systems. We thus evalu-
ated the contribution of the systems ensembled using
the supervised approach and those ensembled using

the unsupervised approach, to the final combination
for both the tasks. Figure 2 shows the number of
unique as well as common key-value pairs that were
contributed by each of the approaches. The unique
pairs are those that were produced by one approach
but not the other and the common pairs are those
that were produced by both approaches. The num-
ber of unique pairs in the combination is the union
of unique pairs in the supervised and unsupervised
approaches. We found that approximately one third
of the input pairs in the combination came from the
unique pairs produced just by the unsupervised sys-
tems for both the TEDL and CSSF tasks. Only about
15% and 22% of the total input pairs were common
between the two approaches for the TEDL and CSSF
tasks respectively. Our findings highlight the impor-
tance of utilizing systems that do not have historical
training data.

5 Conclusion
We presented results on two diverse KBP tasks,
showing that a novel stacking-based approach to en-
sembling both supervised and unsupervised systems
is very promising. The approach outperforms the
top ranked systems from both 2015 competitions as
well as several other ensembling methods, achiev-
ing a new state-of-the-art for both of these impor-
tant, challenging tasks. We found that adding the
unsupervised ensemble along with the shared sys-
tems specifically increased recall substantially.

Acknowledgment

This research was supported by the DARPA DEFT
program under AFRL grant FA8750-13-2-0026.

1947

References
Gabor Angeli, Victor Zhong, Danqi Chen, Arun Cha-

ganty, Jason Bolton, Melvin Johnson Premkumar,
Panupong Pasupat, Sonal Gupta, and Christopher D.
Manning. 2015. Bootstrapped Self Training for
Knowledge Base Population. In Proceedings of the
Eighth Text Analysis Conference (TAC2015).

T. Dietterich. 2000. Ensemble Methods in Machine
Learning. In J. Kittler and F. Roli, editors, First
International Workshop on Multiple Classifier Sys-
tems, Lecture Notes in Computer Science, pages 1–15.
Springer-Verlag.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. 2008. LIBLINEAR: A li-
brary for large linear classification. Journal of Ma-
chine Learning Research, 9:1871–1874.

Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong
Zhang. 2003. Named entity recognition through clas-
sifier combination. In Proceedings of the seventh con-
ference on Natural language learning at HLT-NAACL
2003-Volume 4, pages 168–171. Association for Com-
putational Linguistics.

Jing Gao, Feng Liang, Wei Fan, Yizhou Sun, and Jiawei
Han. 2009. Graph-based consensus maximization
among multiple supervised and unsupervised models.
In Advances in Neural Information Processing Sys-
tems (NIPS2009), pages 585–593.

John C. Henderson and Eric Brill. 1999. Exploiting
Diversity in Natural Language Processing: Combin-
ing Parsers. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP99), pages 187–194, College Park, MD.

Heng Ji, Joel Nothman, Ben Hachey, and Radu Florian.
2015. Overview of TAC-KBP2015 Tri-lingual Entity
Discovery and Linking. In Proceedings of the Eighth
Text Analysis Conference (TAC2015).

David McClosky, Sebastian Riedel, Mihai Surdeanu, An-
drew McCallum, and Christopher D Manning. 2012.
Combining Joint Models for Biomedical Event Extrac-
tion. BMC Bioinformatics.

Ted Pedersen. 2000. A Simple Approach to Build-
ing Ensembles of Naive Bayesian Classifiers for Word
Sense Disambiguation. In North American Chap-
ter of the Association for Computational Linguistics
(NAACL2000), pages 63–69.

Nazneen Fatema Rajani and Raymond J. Mooney. 2016.
Stacking With Auxiliary Features. ArXiv e-prints.

Miguel Rodriguez, Sean Goldberg, and Daisy Zhe Wang.
2015. University of Florida DSR lab system for KBP
slot filler validation 2015. In Proceedings of the
Eighth Text Analysis Conference (TAC2015).

Avirup Sil, Georgiana Dinu, and Radu Florian. 2015.
The IBM systems for trilingual entity discovery and

linking at TAC 2015. In Proceedings of the Eighth
Text Analysis Conference (TAC2015).

Vidhoon Viswanathan, Nazneen Fatema Rajani, Yinon
Bentor, and Raymond J. Mooney. 2015. Stacked
Ensembles of Information Extractors for Knowledge-
Base Population. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics (ACL2015), pages 177–187, Beijing, China, July.

I-Jeng Wang, Edwina Liu, Cash Costello, and Christine
Piatko. 2013. JHUAPL TAC-KBP2013 Slot Filler
Validation System. In Proceedings of the Sixth Text
Analysis Conference (TAC2013).

Matthew Whitehead and Larry Yaeger. 2010. Sentiment
mining using ensemble classification models. In Tarek
Sobh, editor, Innovations and Advances in Computer
Sciences and Engineering. SPRINGER, Berlin.

David H. Wolpert. 1992. Stacked generalization. Neural
Networks, 5:241–259.

1948

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1949–1954,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Character Sequence Models for Colorful Words

Kazuya Kawakami ♠, Chris Dyer♠♣ Bryan R. Routledge♦ Noah A. Smith♥
♠School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

♣Google DeepMind, London, UK
♦Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA
♥Computer Science & Engineering, University of Washington, Seattle, WA, USA

{kkawakam,cdyer}@cs.cmu.edu, routledge@cmu.edu, nasmith@cs.washington.edu

Abstract

We present a neural network architecture to
predict a point in color space from the se-
quence of characters in the color’s name.
Using large scale color–name pairs obtained
from an online color design forum, we eval-
uate our model on a “color Turing test” and
find that, given a name, the colors predicted by
our model are preferred by annotators to color
names created by humans. Our datasets and
demo system are available online at http:
//colorlab.us.

1 Introduction

Color is a valuable vehicle for studying the associa-
tion between words and their nonlinguistic referents.
Perception of color has long been studied in psy-
chology, and quantitative models linking physical
stimuli and psychological perception have been in
place since the 1920s (Broadbent, 2004). Although
perceptually faithful color representations require
only a few dimensions (§2), linguistic expressions
of color often rely on association and figurative lan-
guage. There are, for example, 34,000 examples of
“blue” in our data. The varieties of blue range can
be emotional, descriptive, metaphoric, literal, and
whimsical. Consider these examples (best viewed
in color): murkey blue, blueberry muffin, greeny
blue, and jazzy blue.

This rich variety of descriptive names of colors
provides an ideal way to study linguistic creativity,
its variation, and an important aspect of visual un-
derstanding. This paper uses predictive modeling to
explore the relationship between colors (represented

in three dimensions) and casual, voluntary linguis-
tic descriptions of them by users of a crafting and
design website (§3).1

In this dataset’s creative vocabulary, word-level
representations are so sparse as to be useless, so we
turn to models that build name representations out of
characters (§4). We evaluate our model on a “color
Turing test” and find that, given a name, it tends to
generate a color that humans find matches the name
better than the color that actually inspired the name.
We also investigate the reverse mapping, from colors
to names (§5). We compare a conditional LSTM lan-
guage model used in caption generation (Karpathy
and Fei-Fei, 2014) to a new latent-variable model,
achieving a 10% perplexity reduction.

We expect such modeling to find purchase in
computational creativity applications (Veale and Al-
Najjar, 2015), design and marketing aids (Deng et
al., 2010), and new methods for studying the inter-
face between the human visual and linguistic sys-
tems (Marcus, 1991).

2 Color Spaces

In electronic displays and other products, colors are
commonly represented in RGB space where each
color is embedded in {0, . . . , 255}3, with coordi-
nates corresponding to red, green, and blue levels.
While convenient for digital processing, distances
in this space are perceptually non-uniform. We in-
stead use a different three-dimensional representa-
tion, Lab, which was originally designed so that
Euclidean distances correlate with human-perceived
differences (Hunter, 1958). Lab is also continu-

1http://www.colourlovers.com

1949

Number of pairs Unique names
Train 670,032 476,713
Dev. 53,166 52,753
Test 53,166 52,760
ggplot2 66 66
Paint 956 956

Table 1: Datasets used in this paper. The train/dev./test split of
the COLOURlovers data was random. For ggplot2 and Paint,
we show the number of test instances which are not in Train set.

ous, making it more suitable for the gradient-based
learning used in this paper. The transformation from
RGB to Lab is nonlinear.

3 Task and Dataset

We consider the task of predicting a color in
Lab space given its name. Our dataset is a
collection of user-named colors downloaded from
COLOURlovers,1 a creative community where peo-
ple create and share colors, palettes, and patterns.
Our dataset contains 776,364 pairs with 581,483
unique names. Examples of the color/name pairs
from COLOURlovers are the following: Sugar
Hearts You, Vitamin C, Haunted milk.

We considered two held-out datasets from other
sources; these do not overlap with the training data.
ggplot2: the 141 officially-named colors used in gg-
plot2, a common plotting package for the R pro-
gramming language (e.g., MidnightBlue. Medium-
SeaGreen),2

Paint: The paint manufacturer Sherwin Williams
has 7,750 named colors (e.g., Pompeii Red, Butter
Up).3

4 Names to Colors

Our word-to-color model is used to predict a color
in Lab space given the sequence of characters in
a color’s name, c = 〈c1, c2, . . . , c|c|〉, where each
ci is a character in a finite alphabet. Each charac-
ter ci is represented by learned vector embedding in
R300. To build a color out of the sequence, we use
an LSTM (Hochreiter and Schmidhuber, 1997) with
300 hidden units. The final hidden state is used as a

2http://sape.inf.usi.ch/quick-reference/
ggplot2/colour

3http://bit.ly/PaintColorNames

Model Test ggplot2 Paint
Unigram 1018.35 814.58 351.54
Bigram 977.46 723.61 364.41
RNN 750.26 431.90 305.05
1-layer LSTM 664.11 355.56 303.03
2-layer LSTM 652.49 343.97 274.83

Table 2: MSE in Lab space on held-out datasets.

vector representation h ∈ R300 of the sequence. The
associated color value in Lab space is then defined
to be ŷ = σ(Wh + b), where W ∈ R3×300 and
b ∈ R3 transform h.

This model instantiates the one proposed by Ling
et al. (2015) for learning word embeddings built
from representations of characters.

To learn the parameters of the model (i.e., the pa-
rameters of the LSTMs, the character embeddings,
and W and b), we use reference color labels y
from our training set and minimize squared error,
||y − ŷ||2, averaged across the training set. Learn-
ing is accomplished using backpropagation and the
Adam update rule (Kingma and Ba, 2014).

4.1 Evaluation

We evaluated our model in two ways. First, we
computed mean-squared error on held-out data us-
ing several variants of our model. The baseline
models are linear regression models, which predict
a color from a bag of character unigrams and bi-
grams. We compare an RNN and LSTMs with one
and two layers. Table 2 shows that the two-layer
LSTM achieves lower error than the unigram and
bigram baselines and an RNN. We see the same pat-
tern of results on the out-of-domain test sets.

The Color Turing Test. Our second evaluation at-
tempts to assess whether our model’s associations
are human-like. For this evaluation, we asked hu-
man judges to choose the color better described by
a name from one of our test sets: our model’s pre-
dicted color or the color in the data. For each dataset,
we randomly selected 20 examples. 111 judges
considered each instance.4 Judges were presented
instances in random order and forced to make a
choice between the two and explicitly directed to

4We excluded results from an additional 19 annotators who
made more than one mistake in a color blindness test (Oliver,
1888).

1950

Preference Test ggplot2 Paint
Actual color 43.2% 32.6% 31.0%
Predicted color 56.7% 67.3% 69.0%

Table 3: Summary of color Turing test results.

make an arbitrary choice if neither was better.5 The
test is shown at http://colorlab.us/turk.

Results are shown in Table 3; on the ggplot2 and
Paint datasets, our prediction is preferred to the ac-
tual names in a majority of cases. The Test dataset
from COLOURlovers is a little bit challenging, with
more noisy and creative names; still, in the majority
of cases, our prediction is preferred.

4.2 Visualization and Exploration

To better understand our model, we provide illustra-
tions of its predictions on several kinds of inputs.

Character by character prediction. We consider
how our model reads color names character by char-
acter. Fig. 1 shows some examples, such as blue,
variously modified. The word deep starts dark
brown, but eventually modifies blue to a dark blue.
Our model also performs sensibly on colors named
after things (mint, cream, sand).

Figure 1: Visualization of character-by-character prediction.

Genre and color. We can use our model to inves-
tigate how colors are evoked in text by predicting the
colors of each word in a text. Fig. 3 shows a colored
recipe. Noting that many words are rendered in neu-
tral grays and tans, we investigated how our model
colors words in three corpora: 3,300 English poems
(1800–present), 256 recipes from the CURD dataset

5A preliminary study that allowed a judge to say that there
was no difference led to a similar result.

Figure 2: Distribution of Euclidean distances in Lab from esti-
mated colors of words in each corpus to RGB (128, 128, 128).

(Tasse and Smith, 2008),6 and 6,000 beer reviews.7

For each corpus, we examine the distribution of Eu-
clidean distances of ŷ from the Lab representation of
the “middle” color RGB (128, 128, 128). The Eu-
clidean distances from the mean are measuring the
variance of the color of words in a document. Fig. 2
shows these distributions; recipes and beer reviews
are more “colorful” than poems, under our model’s
learned definition of color.

Figure 3: A recipe from greatist.com.

5 Generating Names from Colors

The first of our two color naming models generates
character sequences conditioned on Lab color rep-
resentations, following other sequence-to-sequence
approaches (Sutskever et al., 2014; Karpathy and
Fei-Fei, 2014). The transformation is as follows:
First, a linear transformation maps the color vector
into 300 dimensions, together comprising the initial

6http://www.cs.cmu.edu/˜ark/CURD/
7http://beeradvocate.com

1951

hidden and memory vectors. Next a character LSTM
is iteratively applied to the hidden, memory, and
next-character vectors, and the next character pro-
duced by applying affine and then softmax functions
to the hidden vector. The model is trained to maxi-
mize conditional likelihood of each character given
its history. We used 300 dimensions for character
embeddings and recurrence weights. The output vo-
cabulary size was 98 without lowercasing.

We also propose a model to capture variations in
color description with latent variables by extending
the variational autoencoder (Kingma and Welling,
2013) to a conditional model. We want to model
the conditional probability of word y and latent vari-
ables z given color x. The latent variable gives the
model capacity to account for the complexity of the
color–word mapping. Since p(y, z | x) = p(z)p(y |
x, z), the variational objective is:

Eqφ(z|x)[− log qφ(z | x) + log pθ(y, z | x)]
= Eqφ(z|x)[− log qφ(z | x) + log pθ(y | x, z)p(z)]

' −DKL(qφ(z | x) || p(z)) +
1

L

L∑

l=1

log pθ(y | x, zl)

The first term regularizes the shape of posterior,
q(z | x), to be close to prior p(z) where it is a
Gaussian distribution, p(z) = N (0, I). The sec-
ond term is the log likelihood of the character se-
quence conditioned on color values. To optimize θ
and φ, we reparameterize the model, we write z in
terms of a mean and variance and samples from a
standard normal distribution, i.e., z = µ + σε with
ε ∼ N (0, I). We predict mean and log variance of
the model with a multi-layer perceptron and initial-
ize the decoder-LSTM with h0 = tanh(Wz + b).
We trained the model with mini-batch size 128 and
Adam optimizer. The sample size L was set to 1.

Evaluation. We evaluated our models by estimat-
ing perplexity on the Test set (Table 1). Our base-
line is a character-level unconditional LSTM lan-
guage model. Conditioning on color improved per-
character perplexity by 7% and the latent variable
gave a further 3%; see Table 4.

A second dataset we evaluate on is the Munroe
Color Corpus8 which contains 2,176,417 color de-
scription for 829 words (i.e., single words have mul-
tiple color descriptions). Monroe et al. (2016) have

8https://blog.xkcd.com/2010/05/03/
color-survey-results/

Model Perplexity
LSTM-LM 5.9
VAE 5.9
color-conditioned LSTM-LM 5.5
color-conditioned VAE 5.3

Table 4: Comparison of language models.

developed word-based (rather character-based) re-
current neural network model.

Our character-based model with 1024 hidden
units achieved 12.48 per-description perplexity,
marginally better than 12.58 obtained with a word-
based neural network model reported in that work.
Thus, we see that modeling color names as se-
quences of characters is wholly feasible. However,
since the corpus only contains color description for
829 words, the model trained on the Munroe Color
Corpus does not provide suitable supervision for
evaluation on our more lexically diverse dataset.

6 Related Work and Discussion

Color is one of the lowest-level visual signals play-
ing an important role in cognition (Wurm et al.,
1993) and behavior (Maier et al., 2008; Lichtenfeld
et al., 2009). It plays a role in human object recog-
nition: to name an object, we first need to encode
visual information such as shape and surface infor-
mation including color and texture. Given a visual
encoding, we search our memory for a structural, se-
mantic and phonological description (Humphreys et
al., 1999). Adding color information to shape signif-
icantly improves naming accuracy and speeds cor-
rect response times (Rossion et al., 2004).

Colors and their names have some association in
our cognition. The Stroop (1935) effect is a well-
known example showing interference of colors and
color terms: when we see a color term printed in a
different color—blue—it takes us longer to name the
word, and we are more prone to naming errors than
when the ink matches—blue (De Houwer, 2003).

Recent evidence suggests that colors and words
are associated in the brain. The brain uses different
regions to perceive various modalities, but process-
ing a color word activates the same brain region as
the color it denotes (del Prado Martı́n et al., 2006;
Simmons et al., 2007).

Closer to NLP, the relationship between visual

1952

stimuli and their linguistic descriptions by humans
has been explored extensively through automatic
text generation from images (Kiros et al., 2014;
Karpathy and Fei-Fei, 2014; Xu et al., 2015). Color
association with word semantics has also been in-
vestigated in several previous papers (Mohammad,
2011; Heer and Stone, 2012; Andreas and Klein,
2014; McMahan and Stone, 2015).

7 Conclusion

In this paper, we introduced a computational model
to predict a point in color space from the sequence
of characters in the color’s name. Using a large set
of color–name pairs obtained from a color design
forum, we evaluate our model on a “color Turing
test” and find that, given a name, the colors pre-
dicted by our model are preferred by annotators to
color names created by humans. We also investi-
gate the reverse mapping, from colors to names. We
compare a conditional LSTM language model to a
new latent-variable model, achieving a 10% perplex-
ity reduction.

Acknowledgments

We thank Lucas Beyer for very helpful comments
and discussions, and we also appreciate all the par-
ticipants of our color Turing test.

References

Jacob Andreas and Dan Klein. 2014. Grounding lan-
guage with points and paths in continuous spaces. In
CoNLL, pages 58–67.

Arthur D. Broadbent. 2004. A critical review of the de-
velopment of the CIE1931 RGB color-matching func-
tions. Color Research & Application, 29(4):267–272.

Jan De Houwer. 2003. On the role of stimulus-response
and stimulus-stimulus compatibility in the Stroop ef-
fect. Memory & Cognition, 31(3):353–359.

Fermı́n Moscoso del Prado Martı́n, Olaf Hauk, and
Friedemann Pulvermüller. 2006. Category specificity
in the processing of color-related and form-related
words: An erp study. Neuroimage, 29(1):29–37.

Xiaoyan Deng, Sam K. Hui, and J. Wesley Hutchin-
son. 2010. Consumer preferences for color com-
binations: An empirical analysis of similarity-based
color relationships. Journal of Consumer Psychology,
20(4):476–484.

Jeffrey Heer and Maureen Stone. 2012. Color naming
models for color selection, image editing and palette
design. In Proc. CHI.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Glyn W. Humphreys, Cathy J. Price, and M. Jane Rid-
doch. 1999. From objects to names: A cognitive neu-
roscience approach. Psychological Research, 62(2-
3):118–130.

Richard S. Hunter. 1958. Photoelectric color difference
meter. Josa, 48(12):985–993.

Andrej Karpathy and Li Fei-Fei. 2014. Deep visual-
semantic alignments for generating image descrip-
tions. arXiv preprint arXiv:1412.2306.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Diederik P. Kingma and Max Welling. 2013.
Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114.

Ryan Kiros, Ruslan Salakhutdinov, and Rich Zemel.
2014. Multimodal neural language models. In Pro-
ceedings of the 31st International Conference on Ma-
chine Learning (ICML-14), pages 595–603.

Stephanie Lichtenfeld, Markus A. Maier, Andrew J. El-
liot, and Reinhard Pekrun. 2009. The semantic red ef-
fect: Processing the word red undermines intellectual
performance. Journal of Experimental Social Psychol-
ogy, 45(6):1273–1276.

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan W
Black. 2015. Character-based neural machine transla-
tion. CoRR, abs/1511.04586.

Markus A. Maier, Andrew J. Elliot, and Stephanie Licht-
enfeld. 2008. Mediation of the negative effect of red
on intellectual performance. Personality and Social
Psychology Bulletin.

Aaron Marcus. 1991. Graphic design for electronic doc-
uments and user interfaces. ACM.

Brian McMahan and Matthew Stone. 2015. A Bayesian
model of grounded color semantics. Transactions of
the Association for Computational Linguistics, 3:103–
115.

Saif Mohammad. 2011. Colourful language: Measuring
word-colour associations. In Proceedings of the 2nd
Workshop on Cognitive Modeling and Computational
Linguistics, pages 97–106. Association for Computa-
tional Linguistics.

Will Monroe, Noah D. Goodman, and Christopher Potts.
2016. Learning to generate compositional color de-
scriptions. In Proc. EMNLP.

Charles A Oliver. 1888. Tests for color-blindness.
Transactions of the American Ophthalmological Soci-
ety, 5:86.

1953

Bruno Rossion, Gilles Pourtois, et al. 2004. Revisiting
snodgrass and vanderwart’s object pictorial set: The
role of surface detail in basic-level object recognition.
PERCEPTION-LONDON-, 33(2):217–236.

W. Kyle Simmons, Vimal Ramjee, Michael S.
Beauchamp, Ken McRae, Alex Martin, and
Lawrence W. Barsalou. 2007. A common neu-
ral substrate for perceiving and knowing about color.
Neuropsychologia, 45(12):2802–2810.

J. Ridley Stroop. 1935. Studies of interference in serial
verbal reactions. Journal of experimental psychology,
18(6):643.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing systems,
pages 3104–3112.

Dan Tasse and Noah A Smith. 2008. Sour cream: To-
ward semantic processing of recipes. Technical report,
Technical Report CMU-LTI-08-005, Carnegie Mellon
University, Pittsburgh, PA.

Tony Veale and Khalid Al-Najjar. 2015. Unweaving the
lexical rainbow: Grounding linguistic creativity in per-
ceptual semantics.

Lee H. Wurm, Gordon E. Legge, Lisa M. Isenberg, and
Andrew Luebker. 1993. Color improves object recog-
nition in normal and low vision. Journal of Exper-
imental Psychology: Human perception and perfor-
mance, 19(4):899.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville,
Ruslan Salakhutdinov, Richard Zemel, and Yoshua
Bengio. 2015. Show, attend and tell: Neural im-
age caption generation with visual attention. arXiv
preprint arXiv:1502.03044.

1954

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1955–1960,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Analyzing the Behavior of Visual Question Answering Models

Aishwarya Agrawal∗, Dhruv Batra†,∗, Devi Parikh†,∗
∗Virginia Tech †Georgia Institute of Technology
{aish, dbatra, parikh}@vt.edu

Abstract

Recently, a number of deep-learning based
models have been proposed for the task of
Visual Question Answering (VQA). The per-
formance of most models is clustered around
60-70%. In this paper we propose system-
atic methods to analyze the behavior of these
models as a first step towards recognizing their
strengths and weaknesses, and identifying the
most fruitful directions for progress. We an-
alyze two models, one each from two ma-
jor classes of VQA models – with-attention
and without-attention and show the similari-
ties and differences in the behavior of these
models. We also analyze the winning entry of
the VQA Challenge 2016.

Our behavior analysis reveals that despite re-
cent progress, today’s VQA models are “my-
opic” (tend to fail on sufficiently novel in-
stances), often “jump to conclusions” (con-
verge on a predicted answer after ‘listening’
to just half the question), and are “stubborn”
(do not change their answers across images).

1 Introduction

Visual Question Answering (VQA) is a recently-
introduced (Antol et al., 2015; Geman et al., 2014;
Malinowski and Fritz, 2014) problem where given
an image and a natural language question (e.g.,
“What kind of store is this?”, “How many people
are waiting in the queue?”), the task is to automati-
cally produce an accurate natural language answer
(“bakery”, “5”). A flurry of recent deep-learning
based models have been proposed for VQA (Antol

et al., 2015; Chen et al., 2015; Yang et al., 2016;
Xu and Saenko, 2016; Jiang et al., 2015; Andreas
et al., 2016a; Wang et al., 2015; Kafle and Kanan,
2016; Lu et al., 2016; Andreas et al., 2016b; Shih
et al., 2016; Kim et al., 2016; Fukui et al., 2016;
Noh and Han, 2016; Ilievski et al., 2016; Wu et
al., 2016; Xiong et al., 2016; Zhou et al., 2015;
Saito et al., 2016). Curiously, the performance of
most methods is clustered around 60-70% (com-
pared to human performance of 83% on open-ended
task and 91% on multiple-choice task) with a mere
5% gap between the top-9 entries on the VQA Chal-
lenge 2016.1 It seems clear that as a first step to
understand these models, to meaningfully compare
strengths and weaknesses of different models, to de-
velop insights into their failure modes, and to iden-
tify the most fruitful directions for progress, it is cru-
cial to develop techniques to understand the behav-
ior of VQA models.

In this paper, we develop novel techniques to
characterize the behavior of VQA models. As con-
crete instantiations, we analyze two VQA models
(Lu et al., 2015; Lu et al., 2016), one each from two
major classes of VQA models – with-attention and
without-attention. We also analyze the winning en-
try (Fukui et al., 2016) of the VQA Challenge 2016.

2 Related Work

Our work is inspired by previous works that diag-
nose the failure modes of models for different tasks.
(Karpathy et al., 2016) constructed a series of ora-
cles to measure the performance of a character level

1http://www.visualqa.org/challenge.html

1955

language model. (Hoiem et al., 2012) provided anal-
ysis tools to facilitate detailed and meaningful inves-
tigation of object detector performance. This paper
aims to perform behavior analyses as a first step to-
wards diagnosing errors for VQA.

(Yang et al., 2016) categorize the errors made by
their VQA model into four categories – model fo-
cuses attention on incorrect regions, model focuses
attention on appropriate regions but predicts incor-
rect answers, predicted answers are different from
labels but might be acceptable, labels are wrong.
While these are coarse but useful failure modes, we
are interested in understanding the behavior of VQA
models along specific dimensions – whether they
generalize to novel instances, whether they listen to
the entire question, whether they look at the image.

3 Behavior Analyses

We analyze the behavior of VQA models along the
following three dimensions –

Generalization to novel instances: We investi-
gate whether the test instances that are incorrectly
answered are the ones that are “novel” i.e., not sim-
ilar to training instances. The novelty of the test in-
stances may be in two ways – 1) the test question-
image (QI) pair is “novel”, i.e., too different from
training QI pairs; and 2) the test QI pair is “famil-
iar”, but the answer required at test time is “novel”,
i.e., answers seen during training are different from
what needs to be produced for the test QI pairs.

Complete question understanding: To investi-
gate whether a VQA model is understanding the in-
put question or not, we analyze if the model ‘listens’
to only first few words of the question or the entire
question, if it ‘listens’ to only question (wh) words
and nouns or all the words in the question.

Complete image understanding: The absence
of a large gap between performance of language-
alone and language + vision VQA models (Antol et
al., 2015) provides evidence that current VQA mod-
els seem to be heavily reliant on the language model,
perhaps not really understanding the image. In order
to analyze this behavior, we investigate whether the
predictions of the model change across images for a
given question.

We present our behavioral analyses on the VQA

dataset (Antol et al., 2015). VQA is a large-
scale free-form natural-language dataset containing
∼0.25M images, ∼0.76M questions, and ∼10M an-
swers, with open-ended and multiple-choice modal-
ities for answering the visual questions. All the ex-
perimental results are reported on the VQA valida-
tion set using the following models trained on the
VQA training set for the open-ended task –

CNN + LSTM based model without-attention
(CNN+LSTM): We use the best performing model
of (Antol et al., 2015) (code provided by (Lu et al.,
2015)), which achieves an accuracy of 54.13% on
the VQA validation set. It is a two channel model
– one channel processes the image (using Convolu-
tional Neural Network (CNN) to extract image fea-
tures) and the other channel processes the question
(using Long Short-Term Memory (LSTM) recurrent
neural network to obtain question embedding). The
image and question features obtained from the two
channels are combined and passed through a fully
connected (FC) layer to obtain a softmax distribu-
tion over the space of answers.

CNN + LSTM based model with-attention
(ATT): We use the top-entry on the VQA challenge
leaderboard (as of June 03, 2016) (Lu et al., 2016),
which achieves an accuracy of 57.02% on the VQA
validation set.2 This model jointly reasons about im-
age and question attention, in a hierarchical fashion.
The attended image and question features obtained
from different levels of the hierarchy are combined
and passed through a FC layer to obtain a softmax
distribution over the space of answers.

VQA Challenge 2016 winning entry (MCB):
This is the multimodal compact bilinear (mcb) pool-
ing model from (Fukui et al., 2016) which won the
real image track of the VQA Challenge 2016. This
model achieves an accuracy of 60.36% on the VQA
validation set.3 In this model, multimodal compact
bilinear pooling is used to predict attention over im-
age features and also to combine the attended image
features with the question features. These combined
features are passed through a FC layer to obtain a
softmax distribution over the space of answers.

2Code available at https://github.com/
jiasenlu/HieCoAttenVQA

3Code available at https://github.com/
akirafukui/vqa-mcb

1956

3.1 Generalization to novel instances

Do VQA models make mistakes because test in-
stances are too different from training ones? To an-
alyze the first type of novelty (the test QI pair is
novel), we measure the correlation between test ac-
curacy and distance of test QI pairs from its k near-
est neighbor (k-NN) training QI pairs. For each
test QI pair we find its k-NNs in the training set
and compute the average distance between the test
QI pair and its k-NNs. The k-NNs are computed
in the space of combined image + question embed-
ding (just before passing through FC layer) for all
the three models (using euclidean distance metric for
the CNN+LSTM model and cosine distance metric
for the ATT and MCB models).

The correlation between accuracy and average
distance is significant (-0.41 at k=504 for the
CNN+LSTM model and -0.42 at k=155 for the
ATT model). A high negative correlation value tells
that the model is less likely to predict correct an-
swers for test QI pairs which are not very similar
to training QI pairs, suggesting that the model is
not very good at generalizing to novel test QI pairs.
The correlation between accuracy and average dis-
tance is not significant for the MCB model (-0.14 at
k=16) suggesting that MCB is better at generalizing
to novel test QI pairs.

We also found that 67.5% of mistakes made by the
CNN+LSTM model can be successfully predicted
by checking distance of test QI pair from its k-NN
training QI pairs (66.7% for the ATT model, 55.08%
for the MCB model). Thus, this analysis not only
exposes a reason for mistakes made by VQA mod-
els, but also allows us to build human-like models
that can predict their own oncoming failures, and
potentially refuse to answer questions that are ‘too
different’ from ones seen in past.

To analyze the second type of novelty (the answer
required at test time is not familiar), we compute the
correlation between test accuracy and the average
distance of the test ground truth (GT) answer with
GT answers of its k-NN training QI pairs. The dis-
tance between answers is computed in the space of

4k=50 leads to highest correlation
5k=15 leads to highest correlation
6k=1 leads to highest correlation

Figure 1: Examples from test set where the
CNN+LSTM model makes mistakes and their cor-
responding nearest neighbor training instances. See
supplementary for more examples.

average Word2Vec (Mikolov et al., 2013) vectors of
answers. This correlation turns out to be quite high
(-0.62) for both CNN+LSTM and ATT models and
significant (-0.47) for the MCB model. A high neg-
ative correlation value tells that the model tends to
regurgitate answers seen during training.

These distance features are also good at pre-
dicting failures – 74.19% of failures can be pre-
dicted by checking distance of test GT answer
with GT answers of its k-NN training QI pairs for
CNN+LSTM model (75.41% for the ATT model,
70.17% for the MCB model). Note that unlike the
previous analysis, this analysis only explains fail-
ures but cannot be used to predict failures (since it
uses GT labels). See Fig. 1 for qualitative examples.

From Fig. 1 (row1) we can see that the test QI
pair is semantically quite different from its k-NN
training QI pairs ({1st, 2nd, 3rd}-NN distances are
{15.05, 15.13, 15.17}, which are higher than the
corresponding distances averaged across all success
cases: {8.74, 9.23, 9.50.}), explaining the mistake.
Row2 shows an example where the model has seen
the same question in the training set (test QI pair is
semantically similar to training QI pairs) but, since it
has not seen “green cone” for training instances (an-
swers seen during training are different from what
needs to be produced for the test QI pair), it is unable
to answer the test QI pair correctly. This shows that
current models lack compositionality: the ability to
combine the concepts of “cone” and “green” (both
of which have been seen in training set) to answer
“green cone” for the test QI pair. This composition-
ality is desirable and central to intelligence.

1957

Figure 2: X-axis shows length of partial question (in %)
fed as input. Y-axis shows percentage of questions for
which responses of these partial questions are the same
as full questions and VQA accuracy of partial questions.

3.2 Complete question understanding

We feed partial questions of increasing lengths
(from 0-100% of question from left to right). We
then compute what percentage of responses do not
change when more and more words are fed.

Fig. 2 shows the test accuracy and percentage of
questions for which responses remain same (com-
pared to entire question) as a function of partial
question length. We can see that for 40% of the
questions, the CNN+LSTM model seems to have
converged on a predicted answer after ‘listening’ to
just half the question. This shows that the model
is listening to first few words of the question more
than the words towards the end. Also, the model has
68% of the final accuracy (54%) when making pre-
dictions based on half the original question. When
making predictions just based on the image, the ac-
curacy of the model is 24%. The ATT model seems
to have converged on a predicted answer after listen-
ing to just half the question more often (49% of the
time), achieving 74% of the final accuracy (57%).
The MCB model converges on a predicted answer
after listening to just half the question 45% of the
time, achieving 67% of the final accuracy (60%).
See Fig. 3 for qualitative examples.

We also analyze the change in responses of the
model’s predictions (see Fig. 4), when words of a
particular part-of-the-speech (POS) tag are dropped
from the question. The experimental results indi-
cate that wh-words effect the model’s decisions the
most (most of the responses get changed on drop-
ping these words from the question), and that pro-
nouns effect the model’s decisions the least.

Figure 3: Examples where the CNN+LSTM model does
not change its answer after first few question words. On
doing so, it is correct for some cases (the extreme left ex-
ample) and incorrect for other cases (the remaining three
examples). See supplementary for more examples.

Figure 4: Percentage of questions for which responses
remain same (compared to entire question) as a function
of POS tags dropped from the question.

3.3 Complete image understanding

Does a VQA model really ‘look’ at the image? To
analyze this, we compute the percentage of the time
(say X) the response does not change across im-
ages (e.g.,, answer for all images is “2”) for a given
question (e.g., “How many zebras?”) and plot his-
togram of X across questions (see Fig. 5). We do
this analysis for questions occurring for atleast 25
images in the VQA validation set, resulting in to-
tal 263 questions. The cumulative plot indicates that
for 56% questions, the CNN+LSTM model outputs
the same answer for at least half the images. This is
fairly high, suggesting that the model is picking the
same answer no matter what the image is. Promis-
ingly, the ATT and MCB models (that do not work
with a holistic entire-image representation and pur-
portedly pay attention to specific spatial regions in
an image) produce the same response for at least half
the images for fewer questions (42% for the ATT
model, 40% for the MCB model).

Interestingly, the average accuracy (see the VQA
accuracy plots in Fig. 5) for questions for which
the models produce same response for >50% and
<55% of the images is 56% for the CNN+LSTM

1958

Figure 5: Histogram of percentage of images for which
model produces same answer for a given question and
its comparison with test accuracy. The cumulative plot
shows the % of questions for which model produces same
answer for atleast x % of images.

model (60% for the ATT model, 73% for the MCB
model) which is more than the respective average
accuracy on the entire VQA validation set (54.13%
for the CNN+LSTM model, 57.02% for the ATT
model, 60.36% for the MCB model). Thus, pro-
ducing the same response across images seems to be
statistically favorable. Fig. 6 shows examples where
the CNN+LSTM model predicts the same response
across images for a given question. The first row
shows examples where the model makes errors on
several images by predicting the same answer for all
images. The second row shows examples where the
model is always correct even if it predicts the same
answer across images. This is so because questions
such as “What covers the ground?” are asked for
an image in the VQA dataset only when ground is
covered with snow (because subjects were looking
at the image while asking questions about it). Thus,
this analysis exposes label biases in the dataset. La-
bel biases (in particular, for “yes/no” questions) have
also been reported in (Zhang et al., 2016).

4 Conclusion

We develop novel techniques to characterize the be-
havior of VQA models, as a first step towards under-
standing these models, meaningfully comparing the
strengths and weaknesses of different models, devel-
oping insights into their failure modes, and identify-
ing the most fruitful directions for progress. Our be-
havior analysis reveals that despite recent progress,
today’s VQA models are “myopic” (tend to fail on
sufficiently novel instances), often “jump to conclu-
sions” (converge on a predicted answer after ‘listen-
ing’ to just half the question), and are “stubborn”

Figure 6: Examples where the predicted answers do not
change across images for a given question. See supple-
mentary for more examples.

(do not change their answers across images), with
attention based models being less “stubborn” than
non-attention based models.

As a final thought, we note that the somewhat
pathological behaviors exposed in the paper are in
some sense “correct” given the model architectures
and the dataset being trained on. Ignoring optimiza-
tion error, the maximum-likelihood training objec-
tive is clearly intended to capture statistics of the
dataset. Our motive is simply to better understand
current generation models via their behaviors, and
use these observations to guide future choices – do
we need novel model classes? or dataset with dif-
ferent biases? etc. Finally, it should be clear that
our use of anthropomorphic adjectives such as “stub-
born”, “myopic” etc. is purely for pedagogical rea-
sons – to easily communicate our observations to our
readers. No claims are being made about today’s
VQA models being human-like.

Acknowledgements

We would like to thank the EMNLP reviewers for
valuable feedback and Yash Goyal for sharing his
code. This work was supported in part by: NSF
CAREER awards, ARO YIP awards, ICTAS Junior
Faculty awards, Google Faculty Research awards,
awarded to both DB and DP, ONR grant N00014-14-
1-0679, AWS in Education Research grant, NVIDIA
GPU donation, awarded to DB, Paul G. Allen
Family Foundation Allen Distinguished Investiga-
tor award, ONR YIP and Alfred P. Sloan Fellow-
ship, awarded to DP. The views and conclusions
contained herein are those of the authors and should
not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or
implied, of the U.S. Government or any sponsor.

1959

References

[Andreas et al.2016a] Jacob Andreas, Marcus Rohrbach,
Trevor Darrell, and Dan Klein. 2016a. Deep com-
positional question answering with neural module net-
works. In CVPR. 1

[Andreas et al.2016b] Jacob Andreas, Marcus Rohrbach,
Trevor Darrell, and Dan Klein. 2016b. Learning to
compose neural networks for question answering. In
NAACL. 1

[Antol et al.2015] Stanislaw Antol, Aishwarya Agrawal,
Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C. Lawrence Zitnick, and Devi Parikh. 2015.
Vqa: Visual question answering. In ICCV. 1, 2

[Chen et al.2015] Kan Chen, Jiang Wang, Liang-Chieh
Chen, Haoyuan Gao, Wei Xu, and Ram Nevatia.
2015. ABC-CNN: an attention based convolutional
neural network for visual question answering. CoRR,
abs/1511.05960. 1

[Fukui et al.2016] Akira Fukui, Dong Huk Park, Daylen
Yang, Anna Rohrbach, Trevor Darrell, and Marcus
Rohrbach. 2016. Multimodal compact bilinear pool-
ing for visual question answering and visual ground-
ing. In EMNLP. 1, 2

[Geman et al.2014] Donald Geman, Stuart Geman, Neil
Hallonquist, and Laurent Younes. 2014. A Visual Tur-
ing Test for Computer Vision Systems. In PNAS. 1

[Hoiem et al.2012] Derek Hoiem, Yodsawalai Chod-
pathumwan, and Qieyun Dai. 2012. Diagnosing error
in object detectors. In ECCV. 2

[Ilievski et al.2016] Ilija Ilievski, Shuicheng Yan, and
Jiashi Feng. 2016. A focused dynamic atten-
tion model for visual question answering. CoRR,
abs/1604.01485. 1

[Jiang et al.2015] Aiwen Jiang, Fang Wang, Fatih Porikli,
and Yi Li. 2015. Compositional memory for visual
question answering. CoRR, abs/1511.05676. 1

[Kafle and Kanan2016] Kushal Kafle and Christopher
Kanan. 2016. Answer-type prediction for visual ques-
tion answering. In CVPR. 1

[Karpathy et al.2016] Andrej Karpathy, Justin Johnson,
and Fei-Fei Li. 2016. Visualizing and understanding
recurrent networks. In ICLR Workshop. 1

[Kim et al.2016] Jin-Hwa Kim, Sang-Woo Lee, Dong-
Hyun Kwak, Min-Oh Heo, Jeonghee Kim, Jung-Woo
Ha, and Byoung-Tak Zhang. 2016. Multimodal resid-
ual learning for visual QA. In NIPS. 1

[Lu et al.2015] Jiasen Lu, Xiao Lin, Dhruv Batra,
and Devi Parikh. 2015. Deeper lstm and nor-
malized cnn visual question answering model.
https://github.com/VT-vision-lab/
VQA_LSTM_CNN. 1, 2

[Lu et al.2016] Jiasen Lu, Jianwei Yang, Dhruv Batra, and
Devi Parikh. 2016. Hierarchical question-image co-
attention for visual question answering. In NIPS. 1,
2

[Malinowski and Fritz2014] Mateusz Malinowski and
Mario Fritz. 2014. A Multi-World Approach to
Question Answering about Real-World Scenes based
on Uncertain Input. In NIPS. 1

[Mikolov et al.2013] Tomas Mikolov, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013. Efficient estima-
tion of word representations in vector space. In ICLR.
3

[Noh and Han2016] Hyeonwoo Noh and Bohyung Han.
2016. Training recurrent answering units with joint
loss minimization for vqa. CoRR, abs/1606.03647. 1

[Saito et al.2016] Kuniaki Saito, Andrew Shin, Yoshi-
taka Ushiku, and Tatsuya Harada. 2016. Dualnet:
Domain-invariant network for visual question answer-
ing. CoRR, abs/1606.06108. 1

[Shih et al.2016] Kevin J. Shih, Saurabh Singh, and Derek
Hoiem. 2016. Where to look: Focus regions for visual
question answering. In CVPR. 1

[Wang et al.2015] Peng Wang, Qi Wu, Chunhua Shen,
Anton van den Hengel, and Anthony R. Dick. 2015.
Explicit knowledge-based reasoning for visual ques-
tion answering. CoRR, abs/1511.02570. 1

[Wu et al.2016] Qi Wu, Peng Wang, Chunhua Shen, An-
ton van den Hengel, and Anthony R. Dick. 2016.
Ask me anything: Free-form visual question answer-
ing based on knowledge from external sources. In
CVPR. 1

[Xiong et al.2016] Caiming Xiong, Stephen Merity, and
Richard Socher. 2016. Dynamic memory networks
for visual and textual question answering. In ICML. 1

[Xu and Saenko2016] Huijuan Xu and Kate Saenko.
2016. Ask, attend and answer: Exploring question-
guided spatial attention for visual question answering.
In ECCV. 1

[Yang et al.2016] Zichao Yang, Xiaodong He, Jianfeng
Gao, Li Deng, and Alexander J. Smola. 2016. Stacked
attention networks for image question answering. In
CVPR. 1, 2

[Zhang et al.2016] Peng Zhang, Yash Goyal, Douglas
Summers-Stay, Dhruv Batra, and Devi Parikh. 2016.
Yin and Yang: Balancing and answering binary visual
questions. In CVPR. 5

[Zhou et al.2015] Bolei Zhou, Yuandong Tian, Sainbayar
Sukhbaatar, Arthur Szlam, and Rob Fergus. 2015.
Simple baseline for visual question answering. CoRR,
abs/1512.02167. 1

1960

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1961–1966,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Improving LSTM-based Video Description
with Linguistic Knowledge Mined from Text

Subhashini Venugopalan
UT Austin

vsub@cs.utexas.edu

Lisa Anne Hendricks
UC Berkeley

lisa anne@berkeley.edu

Raymond Mooney
UT Austin

mooney@cs.utexas.edu

Kate Saenko
Boston University
saenko@bu.edu

Abstract

This paper investigates how linguistic knowl-
edge mined from large text corpora can aid the
generation of natural language descriptions of
videos. Specifically, we integrate both a neu-
ral language model and distributional seman-
tics trained on large text corpora into a recent
LSTM-based architecture for video descrip-
tion. We evaluate our approach on a collection
of Youtube videos as well as two large movie
description datasets showing significant im-
provements in grammaticality while modestly
improving descriptive quality.

1 Introduction

The ability to automatically describe videos in nat-
ural language (NL) enables many important appli-
cations including content-based video retrieval and
video description for the visually impaired. The
most effective recent methods (Venugopalan et al.,
2015a; Yao et al., 2015) use recurrent neural net-
works (RNN) and treat the problem as machine
translation (MT) from video to natural language.
Deep learning methods such as RNNs need large
training corpora; however, there is a lack of high-
quality paired video-sentence data. In contrast, raw
text corpora are widely available and exhibit rich
linguistic structure that can aid video description.
Most work in statistical MT utilizes both a language
model trained on a large corpus of monolingual tar-
get language data as well as a translation model
trained on more limited parallel bilingual data. This
paper explores methods to incorporate knowledge
from language corpora to capture general linguistic
regularities to aid video description.

This paper integrates linguistic information into
a video-captioning model based on Long Short
Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) RNNs which have shown state-of-the-art
performance on the task. Further, LSTMs are also
effective as language models (LMs) (Sundermeyer
et al., 2010). Our first approach (early fusion) is
to pre-train the network on plain text before train-
ing on parallel video-text corpora. Our next two ap-
proaches, inspired by recent MT work (Gulcehre et
al., 2015), integrate an LSTM LM with the existing
video-to-text model. Furthermore, we also explore
replacing the standard one-hot word encoding with
distributional vectors trained on external corpora.

We present detailed comparisons between the ap-
proaches, evaluating them on a standard Youtube
corpus and two recent large movie description
datasets. The results demonstrate significant im-
provements in grammaticality of the descriptions
(as determined by crowdsourced human evaluations)
and more modest improvements in descriptive qual-
ity (as determined by both crowdsourced human
judgements and standard automated comparison to
human-generated descriptions). Our main contribu-
tions are 1) multiple ways to incorporate knowledge
from external text into an existing captioning model,
2) extensive experiments comparing the methods on
three large video-caption datasets, and 3) human
judgements to show that external linguistic knowl-
edge has a significant impact on grammar.

2 LSTM-based Video Description

We use the successful S2VT video description
framework from Venugopalan et al. (2015a) as our

1961

Knowledge from
Text Corpora

cat
dog

car

Figure 1: The S2VT architecture encodes a sequence of frames

and decodes them to a sentence. We propose to add knowledge

from text corpora to enhance the quality of video description.

underlying model and describe it briefly here. S2VT
uses a sequence to sequence approach (Sutskever
et al., 2014; Cho et al., 2014) that maps an input
~x = (x1, ... , xT) video frame feature sequence to a
fixed dimensional vector and then decodes this into
a sequence of output words ~y = (y1, ... , yN).

As shown in Fig. 1, it employs a stack of two
LSTM layers. The input ~x to the first LSTM layer
is a sequence of frame features obtained from the
penultimate layer (fc7) of a Convolutional Neural
Network (CNN) after the ReLu operation. This
LSTM layer encodes the video sequence. At each
time step, the hidden control state ht is provided as
input to a second LSTM layer. After viewing all the
frames, the second LSTM layer learns to decode this
state into a sequence of words. This can be viewed
as using one LSTM layer to model the visual fea-
tures, and a second LSTM layer to model language
conditioned on the visual representation. We modify
this architecture to incorporate linguistic knowledge
at different stages of the training and generation pro-
cess. Although our methods use S2VT, they are
sufficiently general and could be incorporated into
other CNN-RNN based captioning models.

3 Approach

Existing visual captioning models (Vinyals et al.,
2015; Donahue et al., 2015) are trained solely on text
from the caption datasets and tend to exhibit some
linguistic irregularities associated with a restricted
language model and a small vocabulary. Here, we
investigate several techniques to integrate prior lin-
guistic knowledge into a CNN/LSTM-based net-
work for video to text (S2VT) and evaluate their ef-
fectiveness at improving the overall description.

Early Fusion. Our first approach (early fusion), is
to pre-train portions of the network modeling lan-
guage on large corpora of raw NL text and then
continue “fine-tuning” the parameters on the paired
video-text corpus. An LSTM model learns to esti-
mate the probability of an output sequence given an
input sequence. To learn a language model, we train
the LSTM layer to predict the next word given the
previous words. Following the S2VT architecture,
we embed one-hot encoded words in lower dimen-
sional vectors. The network is trained on web-scale
text corpora and the parameters are learned through
backpropagation using stochastic gradient descent.1

The weights from this network are then used to ini-
tialize the embedding and weights of the LSTM lay-
ers of S2VT, which is then trained on video-text
data. This trained LM is also used as the LSTM LM
in the late and deep fusion models.

Late Fusion. Our late fusion approach is similar
to how neural machine translation models incorpo-
rate a trained language model during decoding. At
each step of sentence generation, the video caption
model proposes a distribution over the vocabulary.
We then use the language model to re-score the fi-
nal output by considering the weighted average of
the sum of scores proposed by the LM as well as the
S2VT video-description model (VM). More specif-
ically, if yt denotes the output at time step t, and if
pVM and pLM denote the proposal distributions of
the video captioning model, and the language mod-
els respectively, then for all words y′ ∈ V in the
vocabulary we can recompute the score of each new
word, p(yt = y′) as:

α · pVM (yt = y′) + (1− α) · pLM (yt = y′) (1)

Hyper-parameter α is tuned on the validation set.

Deep Fusion. In the deep fusion approach (Fig. 2),
we integrate the LM a step deeper in the genera-
tion process by concatenating the hidden state of the
language model LSTM (hLMt) with the hidden state
of the S2VT video description model (hVM

t) and
use the combined latent vector to predict the out-
put word. This is similar to the technique proposed
by Gulcehre et al. (2015) for incorporating language
models trained on monolingual corpora for machine
translation. However, our approach differs in two

1The LM was trained to achieve a perplexity of 120

1962

Vid-LSTM

SoftMax

LM Re-Score

yt

Vid-LSTM

LM

yt-1

Vid-LSTM

LM

(a) Late Fusion (b) Deep Fusion

yt

Figure 2: Illustration of our late and deep fusion ap-
proaches to integrate an independently trained LM to aid
video captioning. The deep fusion model learns jointly
from the hidden representations of the LM and S2VT
video-to-text model (Vid-LSTM), whereas the late fusion
re-scores the softmax output of the video-to-text model.

key ways: (1) we only concatenate the hidden states
of the S2VT LSTM and language LSTM and do not
use any additional context information, (2) we fix
the weights of the LSTM language model but train
the full video captioning network. In this case, the
probability of the predicted word at time step t is:

p(yt|~y<t, ~x) ∝ exp(Wf(hVM
t , hLMt) + b) (2)

where ~x is the visual feature input, W is the weight
matrix, and b the biases. We avoid tuning the LSTM
LM to prevent overwriting already learned weights
of a strong language model. But we train the full
video caption model to incorporate the LM outputs
while training on the caption domain.

Distributional Word Representations. The
S2VT network, like most image and video cap-
tioning models, represents words using a 1-of-N
(one hot) encoding. During training, the model
learns to embed “one-hot” words into a lower
500d space by applying a linear transformation.
However, the embedding is learned only from
the limited and possibly noisy text in the caption
data. There are many approaches (Mikolov et
al., 2013; Pennington et al., 2014) that use large
text corpora to learn vector-space representations
of words that capture fine-grained semantic and
syntactic regularities. We propose to take advantage
of these to aid video description. Specifically, we
replace the embedding matrix from one-hot vectors
and instead use 300-dimensional GloVe vectors
(Pennington et al., 2014) pre-trained on 6B tokens
from Gigaword and Wikipedia 2014. In addition
to using the distributional vectors for the input, we

also explore variations where the model predicts
both the one-hot word (trained on the softmax loss),
as well as predicting the distributional vector from
the LSTM hidden state using Euclidean loss as the
objective. Here the output vector (yt) is computed
as yt = (Wght + bg), and the loss is given by:

L(yt, wglove) = ‖(Wght + bg)− wglove‖2 (3)

where ht is the LSTM output, wglove is the word’s
GloVe embedding and W , b are weights and biases.
The network then essentially becomes a multi-task
model with two loss functions. However, we use
this loss only to influence the weights learned by the
network, the predicted word embedding is not used.

Ensembling. The overall loss function of the
video-caption network is non-convex, and difficult
to optimize. In practice, using an ensemble of net-
works trained slightly differently can improve per-
formance (Hansen and Salamon, 1990). In our work
we also present results of an ensemble by averaging
the predictions of the best performing models.

4 Experiments

Datasets. Our language model was trained on
sentences from Gigaword, BNC, UkWaC, and
Wikipedia. The vocabulary consisted of 72,700
most frequent tokens also containing GloVe embed-
dings. Following the evaluation in Venugopalan et
al. (2015a), we compare our models on the Youtube
dataset (Chen and Dolan, 2011), as well as two large
movie description corpora: MPII-MD (Rohrbach et
al., 2015) and M-VAD (Torabi et al., 2015).

Evaluation Metrics. We evaluate performance
using machine translation (MT) metrics ME-
TEOR (Denkowski and Lavie, 2014) and BLEU
(Papineni et al., 2002) to compare the machine-
generated descriptions to human ones. For the
movie corpora which have just a single description
we use only METEOR which is more robust.

Human Evaluation. We also obtain human judge-
ments using Amazon Turk on a random subset of
200 video clips for each dataset. Each sentence was
rated by 3 workers on a Likert scale of 1 to 5 (higher
is better) for relevance and grammar. No video was
provided during grammar evaluation. For movies,
due to copyright, we only evaluate on grammar.

1963

Model METEOR B-4 Relevance Grammar

S2VT 29.2 37.0 2.06 3.76
Early Fusion 29.6 37.6 - -
Late Fusion 29.4 37.2 - -
Deep Fusion 29.6 39.3 - -
Glove 30.0 37.0 - -

Glove+Deep
- Web Corpus 30.3 38.1 2.12 4.05*
- In-Domain 30.3 38.8 2.21* 4.17*

Ensemble 31.4 42.1 2.24* 4.20*

Table 1: Youtube dataset: METEOR and BLEU@4 in %,
and human ratings (1-5) on relevance and grammar. Best
results in bold, * indicates significant over S2VT.

4.1 Youtube Video Dataset Results

Comparison of the proposed techniques in Table 1
shows that Deep Fusion performs well on both ME-
TEOR and BLEU; incorporating Glove embeddings
substantially increases METEOR, and combining
them both does best. Our final model is an ensem-
ble (weighted average) of the Glove, and the two
Glove+Deep Fusion models trained on the external
and in-domain COCO (Lin et al., 2014) sentences.
We note here that the state-of-the-art on this dataset
is achieved by HRNE (Pan et al., 2015) (METEOR
33.1) which proposes a superior visual processing
pipeline using attention to encode the video.

Human ratings also correlate well with the ME-
TEOR scores, confirming that our methods give a
modest improvement in descriptive quality. How-
ever, incorporating linguistic knowledge signifi-
cantly2 improves the grammaticality of the results,
making them more comprehensible to human users.

Embedding Influence. We experimented multiple
ways to incorporate word embeddings: (1) GloVe in-
put: Replacing one-hot vectors with GloVe on the
LSTM input performed best. (2) Fine-tuning: Ini-
tializing with GloVe and subsequently fine-tuning
the embedding matrix reduced validation results by
0.4 METEOR. (3) Input and Predict. Training the
LSTM to accept and predict GloVe vectors, as de-
scribed in Section 3, performed similar to (1). All
scores reported in Tables 1 and 2 correspond to the
setting in (1) with GloVe embeddings only as input.

2Using the Wilcoxon Signed-Rank test, results were signifi-
cant with p < 0.02 on relevance and p < 0.001 on grammar.

Model MPII-MD M-VAD
METEOR Grammar METEOR Grammar

S2VT† 6.5 2.6 6.6 2.2
Early Fusion 6.7 - 6.8 -
Late Fusion 6.5 - 6.7 -
Deep Fusion 6.8 - 6.8 -
Glove 6.7 3.9* 6.7 3.1*
Glove+Deep 6.8 4.1* 6.7 3.3*

Table 2: Movie Corpora: METEOR (%) and human
grammar ratings (1-5, higher is better). Best results in
bold, * indicates significant over S2VT.

Figure 3: Two frames from a clip. Models generate visu-
ally relevant sentences but differ from groundtruth (GT).

4.2 Movie Description Results

Results on the movie corpora are presented in Ta-
ble 2. Both MPII-MD and M-VAD have only a sin-
gle ground truth description for each video, which
makes both learning and evaluation very challeng-
ing (E.g. Fig.3). METEOR scores are fairly low
on both datasets since generated sentences are com-
pared to a single reference translation. S2VT† is a
re-implementation of the base S2VT model with the
new vocabulary and architecture (embedding dimen-
sion). We observe that the ability of external lin-
guistic knowledge to improve METEOR scores on
these challenging datasets is small but consistent.
Again, human evaluations show significant (with
p < 0.0001) improvement in grammatical quality.

5 Related Work

Following the success of LSTM-based models on
Machine Translation (Sutskever et al., 2014; Bah-
danau et al., 2015), and image captioning (Vinyals
et al., 2015; Donahue et al., 2015), recent video de-
scription works (Venugopalan et al., 2015b; Venu-
gopalan et al., 2015a; Yao et al., 2015) propose
CNN-RNN based models that generate a vector rep-
resentation for the video and “decode” it using an
LSTM sequence model to generate a description.
Venugopalan et al. (2015b) also incorporate exter-
nal data such as images with captions to improve

1964

video description, however in this work, our focus
is on integrating external linguistic knowledge for
video captioning. We specifically investigate the use
of distributional semantic embeddings and LSTM-
based language models trained on external text cor-
pora to aid existing CNN-RNN based video descrip-
tion models.

LSTMs have proven to be very effective language
models (Sundermeyer et al., 2010). Gulcehre et
al. (2015) developed an LSTM model for machine
translation that incorporates a monolingual language
model for the target language showing improved re-
sults. We utilize similar approaches (late fusion,
deep fusion) to train an LSTM for translating video
to text that exploits large monolingual-English cor-
pora (Wikipedia, BNC, UkWac) to improve RNN
based video description networks. However, unlike
Gulcehre et al. (2015) where the monolingual LM is
used only to tune specific parameters of the transla-
tion network, the key advantage of our approach is
that the output of the monolingual language model is
used (as an input) when training the full underlying
video description network.

Contemporaneous to us, Yu et al. (2015), Pan et
al. (2015) and Ballas et al. (2016) propose video de-
scription models focusing primarily on improving
the video representation itself using a hierarchical
visual pipeline, and attention. Without the attention
mechanism their models achieve METEOR scores
of 31.1, 32.1 and 31.6 respectively on the Youtube
dataset. The interesting aspect, as demonstrated in
our experiments (Table 1), is that the contribution of
language alone is considerable and only slightly less
than the visual contribution on this dataset. Hence,
it is important to focus on both aspects to generate
better descriptions.

6 Conclusion

This paper investigates multiple techniques to in-
corporate linguistic knowledge from text corpora to
aid video captioning. We empirically evaluate our
approaches on Youtube clips as well as two movie
description corpora. Our results show significant
improvements on human evaluations of grammar
while modestly improving the overall descriptive
quality of sentences on all datasets. While the pro-
posed techniques are evaluated on a specific video-
caption network, they are generic and can be ap-

Figure 4: Representative frames from clips in the movie de-

scription corpora. S2VT is the baseline model, Glove indicates

the model trained with input Glove vectors, and Glove+Deep

uses input Glove vectors with the Deep Fusion approach. GT

indicates groundtruth sentence.

plied to many captioning models. The code and
models are shared on http://vsubhashini.
github.io/language_fusion.html.

Acknowledgements

This work was supported by NSF awards IIS-
1427425 and IIS-1212798, and ONR ATL Grant
N00014-11-1-010, and DARPA under AFRL grant
FA8750-13-2-0026. Raymond Mooney and Kate
Saenko also acknowledge support from a Google
grant. Lisa Anne Hendricks is supported by the Na-
tional Defense Science and Engineering Graduate
(NDSEG) Fellowship.

1965

References
[Bahdanau et al.2015] Dzmitry Bahdanau, Kyunghyun

Cho, and Yoshua Bengio. 2015. Neural machine
translation by jointly learning to align and translate.
ICLR.

[Ballas et al.2016] Nicolas Ballas, Li Yao, Chris Pal, and
Aaron C. Courville. 2016. Delving deeper into con-
volutional networks for learning video representations.
ICLR.

[Chen and Dolan2011] David Chen and William Dolan.
2011. Collecting highly parallel data for paraphrase
evaluation. In ACL.

[Cho et al.2014] Kyunghyun Cho, Bart van Merriënboer,
Dzmitry Bahdanau, and Yoshua Bengio. 2014. On
the properties of neural machine translation: Encoder–
decoder approaches. Syntax, Semantics and Structure
in Statistical Translation, page 103.

[Denkowski and Lavie2014] Michael Denkowski and
Alon Lavie. 2014. Meteor universal: Language
specific translation evaluation for any target language.
In EACL.

[Donahue et al.2015] Jeff Donahue, Lisa Anne Hen-
dricks, Sergio Guadarrama, Marcus Rohrbach, Sub-
hashini Venugopalan, Kate Saenko, and Trevor Dar-
rell. 2015. Long-term recurrent convolutional net-
works for visual recognition and description. In
CVPR.

[Gulcehre et al.2015] C. Gulcehre, O. Firat, K. Xu,
K. Cho, L. Barrault, H.C. Lin, F. Bougares,
H. Schwenk, and Y. Bengio. 2015. On using mono-
lingual corpora in neural machine translation. arXiv
preprint arXiv:1503.03535.

[Hansen and Salamon1990] L. K. Hansen and P. Sala-
mon. 1990. Neural network ensembles. IEEE TPAMI,
12(10):993–1001, Oct.

[Hochreiter and Schmidhuber1997] Sepp Hochreiter and
Jürgen Schmidhuber. 1997. Long short-term memory.
Neural computation, 9(8).

[Lin et al.2014] Tsung-Yi Lin, Michael Maire, Serge Be-
longie, James Hays, Pietro Perona, Deva Ramanan, Pi-
otr Dollár, and C Lawrence Zitnick. 2014. Microsoft
coco: Common objects in context. In ECCV.

[Mikolov et al.2013] Tomas Mikolov, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013. Efficient estimation
of word representations in vector space. NIPS.

[Pan et al.2015] Pingbo Pan, Zhongwen Xu, Yi Yang, Fei
Wu, and Yueting Zhuang. 2015. Hierarchical recur-
rent neural encoder for video representation with ap-
plication to captioning. CVPR.

[Papineni et al.2002] Kishore Papineni, Salim Roukos,
Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine transla-
tion. In ACL.

[Pennington et al.2014] Jeffrey Pennington, Richard
Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. Proceedings
of the Empiricial Methods in Natural Language
Processing (EMNLP 2014), 12:1532–1543.

[Rohrbach et al.2015] Anna Rohrbach, Marcus
Rohrbach, Niket Tandon, and Bernt Schiele. 2015. A
dataset for movie description. In CVPR.

[Sundermeyer et al.2010] M. Sundermeyer, R. Schluter,
and H. Ney. 2010. Lstm neural networks for language
modeling. In INTERSPEECH.

[Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V. Le. 2014. Sequence to sequence learning
with neural networks. In NIPS.

[Torabi et al.2015] Atousa Torabi, Christopher Pal, Hugo
Larochelle, and Aaron Courville. 2015. Using de-
scriptive video services to create a large data source
for video annotation research. arXiv:1503.01070v1.

[Venugopalan et al.2015a] S. Venugopalan, M. Rohrbach,
J. Donahue, R. Mooney, T. Darrell, and K. Saenko.
2015a. Sequence to sequence - video to text. ICCV.

[Venugopalan et al.2015b] Subhashini Venugopalan, Hui-
juan Xu, Jeff Donahue, Marcus Rohrbach, Raymond
Mooney, and Kate Saenko. 2015b. Translating videos
to natural language using deep recurrent neural net-
works. In NAACL.

[Vinyals et al.2015] Oriol Vinyals, Alexander Toshev,
Samy Bengio, and Dumitru Erhan. 2015. Show and
tell: A neural image caption generator. CVPR.

[Yao et al.2015] Li Yao, Atousa Torabi, Kyunghyun Cho,
Nicolas Ballas, Christopher Pal, Hugo Larochelle, and
Aaron Courville. 2015. Describing videos by exploit-
ing temporal structure. ICCV.

[Yu et al.2015] Haonan Yu, Jiang Wang, Zhiheng Huang,
Yi Yang, and Wei Xu. 2015. Video paragraph cap-
tioning using hierarchical recurrent neural networks.
CVPR.

1966

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1967–1972,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Representing Verbs with Rich Contexts: an Evaluation on Verb Similarity

Emmanuele Chersoni
Aix-Marseille University

emmanuelechersoni@gmail.com

Enrico Santus
The Hong Kong Polytechnic University

esantus@gmail.com

Alessandro Lenci
University of Pisa

alessandro.lenci@unipi.it

Philippe Blache
Aix-Marseille University

philippe.blache@univ-amu.fr

Chu-Ren Huang
The Hong Kong Polytechnic University

churen.huang@polyu.edu.hk

Abstract

Several studies on sentence processing sug-
gest that the mental lexicon keeps track of the
mutual expectations between words. Current
DSMs, however, represent context words as
separate features, thereby loosing important
information for word expectations, such as
word interrelations. In this paper, we present
a DSM that addresses this issue by defining
verb contexts as joint syntactic dependencies.
We test our representation in a verb similarity
task on two datasets, showing that joint con-
texts achieve performances comparable to sin-
gle dependencies or even better. Moreover,
they are able to overcome the data sparsity
problem of joint feature spaces, in spite of the
limited size of our training corpus.

1 Introduction

Distributional Semantic Models (DSMs) rely on the
Distributional Hypothesis (Harris, 1954; Sahlgren,
2008), stating that words occurring in similar con-
texts have similar meanings. On such theoretical
grounds, word co-occurrences extracted from cor-
pora are used to build semantic representations in the
form of vectors, which have become very popular in
the NLP community. Proximity between word vec-
tors is taken as an index of meaning similarity, and
vector cosine is generally adopted to measure such
proximity, even though other measures have been
proposed (Weeds et al., 2004; Santus et al., 2016).

Most of DSMs adopt a bag-of-words approach,
that is they turn a text span (i.e., a word window or a
parsed sentence) into a set of words and they regis-
ter separately the co-occurrence of each word with a
given target. The problem with this approach is that
valuable information concerning word interrelations
in a context gets lost, because words co-occurring
with a target are treated as independent features.
This is why works like Ruiz-Casado et al. (2005),
Agirre et al. (2009) and Melamud et al. (2014) pro-
posed to introduce richer contexts in distributional
spaces, by using entire word windows as features.
These richer contexts proved to be helpful to seman-
tically represent verbs, which are characterized by
highly context-sensitive meanings, and complex ar-
gument structures. In fact, two verbs may share in-
dependent words as features despite being very dis-
similar from the semantic point of view. For instance
kill and heal share the same object nouns in The doc-
tor healed the patient and the The poison killed the
patient, but are highly different if we consider their
joint dependencies as a single context. Nonetheless,
richer contexts like these suffer from data sparsity,
therefore requiring either larger corpora or complex
smoothing processes.

In this paper, we propose a syntactically savvy no-
tion of joint contexts. To test our representation,
we implement several DSMs and we evaluate them
in a verb similarity task on two datasets. The re-
sults show that, even using a relatively small corpus,
our syntactic joint contexts are robust with respect to

1967

data sparseness and perform similarly or better than
single dependencies in a wider range of parameter
settings.

The paper is organized as follows. In Section
2, we provide psycholinguistic and computational
background for this research, describing recent mod-
els based on word windows. In Section 3, we de-
scribe our reinterpretation of joint contexts with syn-
tactic dependencies. Evaluation settings and results
are presented in Section 4.

2 Related Work

A number of studies in sentence processing sug-
gests that verbs activate expectations on their typ-
ical argument nouns and vice versa (McRae et al.,
1998; McRae et al., 2005) and nouns do the same
with other nouns occurring as co-arguments in the
same events (Hare et al., 2009; Bicknell et al.,
2010). Experimental subjects seem to exploit a rich
event knowledge to activate or inhibit dynamically
the representations of the potential arguments. This
phenomenon, generally referred to as thematic fit
(McRae et al., 1998), supports the idea of a mental
lexicon arranged as a web of mutual expectations.

Some past works in computational linguistics
(Baroni and Lenci, 2010; Lenci, 2011; Sayeed and
Demberg, 2014; Greenberg et al., 2015) modeled
thematic fit estimations by means of dependency-
based or of thematic roles-based DSMs. However,
these semantic spaces are built similarly to tradi-
tional DSMs as they split verb arguments into sepa-
rate vector dimensions. By using syntactic-semantic
links, they encode the relation between an event and
each of its participants, but they do not encode di-
rectly the relation between participants co-occurring
in the same event.

Another trend of studies in the NLP community
aimed at the introduction of richer contextual fea-
tures in DSMs, mostly based on word windows. The
first example was the composite-feature model by
Ruiz-Casado et al. (2005), who extracted word win-
dows through a Web Search engine. A composite
feature for the target word watches is Alicia always
____ romantic movies, extracted from the sentence I
heard that Alicia always watches romantic movies
with Antony (the placeholder represents the target
position). Thanks to this approach, Ruiz-Casado and

colleagues achieved 82.50 in the TOEFL synonym
detection test, outperforming Latent Semantic Anal-
ysis (LSA; see Landauer et al. (1998)) and several
other methods.

Agirre et al. (2009) adopted an analogous ap-
proach, relying on a huge learning corpus (1.6 Ter-
aword) to build composite-feature vectors. Their
model outperformed a traditional DSM on the sim-
ilarity subset of the WordSim-353 test set (Finkel-
stein et al., 2001).

Melamud et al. (2014) introduced a probabilistic
similarity scheme for modeling the so-called joint
context. By making use of the Kneser-Ney language
model (Kneser and Ney, 1995) and of a probabilis-
tic distributional measure, they were able to over-
come data sparsity, outperforming a wide variety of
DSMs on two similarity tasks, evaluated on Verb-
Sim (Yang and Powers, 2006) and on a set of 1,000
verbs extracted from WordNet (Fellbaum, 1998).
On the basis of their results, the authors claimed that
composite-feature models are particularly advanta-
geous for measuring verb similarity.

3 Syntactic joint contexts

A joint context, as defined in Melamud et al. (2014),
is a word window of order n around a target word.
The target is replaced by a placeholder, and the value
of the feature for a word w is the probability of w
to fill the placeholder position. Assuming n=3, a
word like love would be represented by a collection
of contexts such as the new students ____ the school
campus. Such representation introduces data sparse-
ness, which has been addressed by previous studies
either by adopting huge corpora or by relying on n-
gram language models to approximate the probabil-
ities of long sequences of words.

However, features based on word windows do not
guarantee to include all the most salient event par-
ticipants. Moreover, they could include unrelated
words, also differentiating contexts describing the
same event (e.g. consider Luis ____ the red ball and
Luis ____ the blue ball).

For these reasons, we introduce the notion of syn-
tactic joint contexts, further abstracting from linear
word windows by using dependencies. Each feature
of the word vector, in our view, should correspond to
a typical verb-argument combination, as an approx-

1968

imation to our knowledge about typical event par-
ticipants. In the present study, we are focusing on
verbs because verb meaning is highly context sen-
sitive and include information about complex argu-
ment configurations. Therefore, verb representation
should benefit more from the introduction of joint
features (Melamud et al., 2014).

The procedure for defining of our representations
is the following:

• we extract a list of verb-argument dependencies
from a parsed corpus, and for each target verb
we extract all the direct dependencies from the
sentence of occurrence. For instance, in Fi-
nally, the dictator acknowledged his failure, we
will have: target = ’acknowledge-v’; subject =
’dictator-n’; and object = ’failure-n’.

• for each sentence, we generate a joint context
feature by joining all the dependencies for the
grammatical relations of interest. From the ex-
ample above, we would generate the feature
dictator-n.subj+____+failure-n.obj.

For our experiments, the grammatical relations
that we used are subject, object and complement,
where complement is a generic relation grouping to-
gether all dependencies introduced by a preposition.
Our distributional representation for a target word
is a vector of syntatic joint contexts. For instance,
the word vector for the verb to begin would include
features like {jury-n.subj+____+deliberation-n.obj,
operation-n.subj+____+on-i_thursday-n.comp,
recruit-n.subj+____+training-n.obj+on-i_street-
n.comp ...}. The value of each joint feature will be
the frequency of occurrence of the target verb with
the corresponding argument combination, possibly
weighted by some statistical association measure.

4 Evaluation

4.1 Corpus and DSMs

We trained our DSMs on the RCV1 corpus, which
contains approximately 150 million words (Lewis et
al., 2004). The corpus was tagged with the tagger
described in Dell’Orletta (2009) and dependency-
parsed with DeSR (Attardi et al., 2009). RCV1
was chosen for two reasons: i) to show that our
joint context-based representation can deal with data

sparseness even with a training corpus of limited
size; ii) to allow a comparison with the results re-
ported by Melamud et al. (2014).

All DSMs adopt Positive Pointwise Mutual Infor-
mation (PPMI; Church and Hanks (1990)) as a con-
text weighting scheme and vary according to three
main parameters: i) type of contexts; ii) number of
dimensions; iii) application of Singular Value De-
composition (SVD; see Landauer et al. (1998)).

For what concerns the first parameter, we devel-
oped three types of DSMs: a) traditional bag-of-
words DSMs, where the features are content words
co-occurring with the target in a window of width
2; b) dependency-based DSMs, where the features
are words in a direct dependency relation with the
target; c) joint context-based DSMs, using the joint
features described in the previous section. The sec-
ond parameter refers instead to the number of con-
texts that have been used as vector dimensions. Sev-
eral values were explored (i.e. 10K, 50K and 100K),
selecting the contexts according to their frequency.
Finally, the third parameter concerns the application
of SVD to reduce the matrix. We report only the
results for a number k of latent dimensions ranging
from 200 to 400, since the performance drops sig-
nificantly out of this interval.

4.2 Similarity Measures

As a similarity measure, we used vector cosine,
which is by far the most popular in the existing lit-
erature (Turney et al., 2010). Melamud et al. (2014)
have proposed the Probabilistic Distributional Simi-
larity (PDS), based on the intuition that two words,
w1 and w2, are similar if they are likely to occur in
each other’s contexts. PDS assigns a high similarity
score when both p(w1| contexts of w2) and p(w2|
contexts of w1) are high. We tried to test variations
of this measure with our representation, but we were
not able to achieve satisfying results. Therefore, we
report here only the scores with the cosine.

4.3 Datasets

The DSMs are evaluated on two test sets: Verb-
Sim (Yang and Powers, 2006) and the verb subset
of SimLex-999 (Hill et al., 2015). The former in-
cludes 130 verb pairs, while the latter includes 222
verb pairs.

1969

Both datasets are annotated with similarity judge-
ments, so we measured the Spearman correlation be-
tween them and the scores assigned by the model.
The VerbSim dataset allows for comparison with
Melamud et al. (2014), since they also evaluated
their model on this test set, achieving a Spearman
correlation score of 0.616 and outperforming all the
baseline methods.

The verb subset of SimLex-999, at the best of
our knowledge, has never been used as a benchmark
dataset for verb similarity. The SimLex dataset is
known for being quite challenging: as reported by
Hill et al. (2015), the average performances of simi-
larity models on this dataset are much lower than on
alternative benchmarks like WordSim (Finkelstein et
al., 2001) and MEN (Bruni et al., 2014).

We exclude from the evaluation datasets all the
target words occurring less than 100 times in our
corpus. Consequently, we cover 107 pairs in the
VerbSim dataset (82.3, the same of Melamud et al.
(2014)) and 214 pairs in the SimLex verbs dataset
(96.3).

4.4 Results
Table 1 reports the Spearman correlation scores for
the vector cosine on our DSMs. At a glance, we
can notice the discrepancy between the results ob-
tained in the two datasets, as SimLex verbs confirms
to be very difficult to model. We can also recog-
nize a trend related to the number of contexts, as
the performance tends to improve when more con-
texts are taken into account (with some exceptions).
Single dependencies and joint contexts perform very
similarly, and no one has a clear edge on the other.
Both of them outperform the bag-of-words model
on the VerbSim dataset by a nice margin, whereas
the scores of all the model types are pretty much the
same on SimLex verbs. Finally, it is noteworthy that
the score obtained on VerbSim by the joint context
model with 100K dimensions goes very close to the
result reported by Melamud et al. (2014) (0.616).

Table 2 and Table 3 report the results of the mod-
els with SVD reduction. Independently of the num-
ber of dimensions k, the joint contexts almost always
outperform the other model types. Overall, the per-
formance of the joint contexts seems to be more sta-
ble across several parameter configurations, whereas
bag-of-words and single dependencies are subject to

bigger drops. Exceptions can be noticed only for
the VerbSim dataset, and only with a low number
of dimensions. Finally, the correlation coefficients
for the two datasets seem to follow different trends,
as the models with a higher number of contexts per-
form better on SimLex verbs, while the opposite is
true for the VerbSim dataset.

On the VerbSim dataset, both single dependencies
and joint contexts have again a clear advantage over
bag-of-words representations Although they achieve
a similar performance with 10K contexts, the corre-
lation scores of the former decrease more quickly
as the number of contexts increases, while the latter
are more stable. Moreover, joint contexts are able to
outperform single dependencies.
On SimLex verbs, all the models are very close and
– differently from the previous dataset – the higher-
dimensional DSMs are the better performing ones.
Though differences are not statistically significant,
joint context are able to achieve top scores over the
other models.1

More in general, the best results are obtained with
SVD reduction and k=200. The joint context-based
DSM with 10K dimensions and k = 200 achieves
0.65, which is above the result of Melamud et al.
(2014), although the difference between the two cor-
relation scores is not significant. As for SimLex
verbs, the best result (0.283) is obtained by the joint
context DSM with 100K dimensions and k = 200.

Model VerbSim SimLex verbs
Bag-of-Words-10K 0.385 0.085

Single - 10k 0.561 0.090
Joint - 10k 0.568 0.105

Bag-of-Words-50K 0.478 0.095
Single - 50k 0.592 0.115
Joint - 50k 0.592 0.105

Bag-of-Words-100K 0.488 0.114
Single - 100k 0.587 0.132
Joint - 100k 0.607 0.114

Table 1: Spearman correlation scores for VerbSim and for the

verb subset of SimLex-999. Each model is identified by the type

and by the number of features of the semantic space.

1p-values computed with Fisher’s r-to-z transformation
comparing correlation coefficients between the joint context-
DSMs and the other models on the same parameter settings.

1970

Model k = 200 k = 300 k = 400
Bag-of-Words-10K 0.457 0.445 0.483

Single - 10k 0.623 0.647 0.641
Joint - 10k 0.650 0.636 0.635

Bag-of-Words-50K 0.44 0.453 0.407
Single - 50k 0.492 0.486 0.534
Joint - 50k 0.571 0.591 0.613

Bag-of-Words-100K 0.335 0.324 0.322
Single - 100k 0.431 0.413 0.456
Joint - 100k 0.495 0.518 0.507

Table 2: Spearman correlation scores for VerbSim, after the

application of SVD with different values of k.

Model k = 200 k = 300 k = 400
Bag-of-Words-10K 0.127 0.113 0.111

Single - 10k 0.168 0.172 0.165
Joint - 10k 0.190 0.177 0.181

Bag-of-Words-50K 0.196 0.191 0.21
Single - 50k 0.218 0.228 0.222
Joint - 50k 0.256 0.250 0.227

Bag-of-Words-100K 0.222 0.18 0.16
Single - 100k 0.225 0.218 0.199
Joint - 100k 0.283 0.256 0.222

Table 3: Spearman correlation scores for the verb subset of

SimLex-999, after the application of SVD with different values

of k.

4.5 Conclusions

In this paper, we have presented our proposal for a
new type of vector representation based on joint fea-
tures, which should emulate more closely the gen-
eral knowledge about event participants that seems
to be the organizing principle of our mental lexicon.
A core issue of previous studies was the data sparse-
ness challenge, and we coped with it by means of a
more abstract, syntactic notion of joint context.

The models using joint dependencies were able
at least to perform comparably to traditional,
dependency-based DSMs. In our experiments, they
even achieved the best correlation scores across sev-
eral parameter settings, especially after the applica-
tion of SVD. We want to emphasize that previous
works such as Agirre et al. (2009) already showed
that large word windows can have a higher discrimi-
native power than indipendent features, but they did
it by using a huge training corpus. In our study, joint
context-based representations derived from a small
corpus such as RCV1 are already showing competi-
tive performances. This result strengthens our belief

that dependencies are a possible solution for the data
sparsity problem of joint feature spaces.

We also believe that verb similarity might not be
the best task to show the usefulness of joint con-
texts for semantic representation. The main goal of
the present paper was to show that joint contexts
are a viable option to exploit the full potential of
distributional information. Our successful tests on
verb similarity prove that syntactic joint contexts do
not suffer of data sparsity and are also able to beat
other types of representations based on independent
word features. Moreover, syntactic joint contexts are
much simpler and more competitive with respect to
window-based ones.
The good performance in the verb similarity task
motivates us to further test syntactic joint contexts
on a larger range of tasks, such as word sense dis-
ambiguation, textual entailment and classification of
semantic relations, so that they can unleash their full
potential. Moreover, our proposal opens interest-
ing perspectives for computational psycholinguis-
tics, especially for modeling those semantic phe-
nomena that are inherently related to the activation
of event knowledge (e.g. thematic fit).

Acknowledgments

This paper is partially supported by HK PhD Fellow-
ship Scheme, under PF12-13656. Emmanuele Cher-
soni’s research is funded by a grant of the University
Foundation A*MIDEX.

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana

Kravalova, Marius Paşca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distributional
and wordnet-based approaches. In Proceedings of the
2009 conference of the NAACL-HLT, pages 19–27. As-
sociation for Computational Linguistics.

Giuseppe Attardi, Felice Dell’Orletta, Maria Simi, and
Joseph Turian. 2009. Accurate dependency parsing
with a stacked multilayer perceptron. In Proceedings
of EVALITA, 9.

Marco Baroni and Alessandro Lenci. 2010. Distribu-
tional memory: A general framework for corpus-based
semantics. Computational Linguistics, 36(4):673–
721.

Klinton Bicknell, Jeffrey L Elman, Mary Hare, Ken
McRae, and Marta Kutas. 2010. Effects of event

1971

knowledge in processing verbal arguments. Journal
of Memory and Language, 63(4):489–505.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Intell.
Res.(JAIR), 49(1-47).

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicogra-
phy. Computational linguistics, 16(1):22–29.

Felice Dell’Orletta. 2009. Ensemble system for part-of-
speech tagging. In Proceedings of EVALITA, 9.

Christiane Fellbaum. 1998. WordNet. Wiley Online Li-
brary.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2001. Placing search in context: The con-
cept revisited. In Proceedings of the 10th international
conference on World Wide Web, pages 406–414. ACM.

Clayton Greenberg, Asad Sayeed, and Vera Demberg.
2015. Improving unsupervised vector-space thematic
fit evaluation via role-filler prototype clustering. In
Proceedings of the 2015 conference of the NAACL-
HLT, Denver, USA.

Mary Hare, Michael Jones, Caroline Thomson, Sarah
Kelly, and Ken McRae. 2009. Activating event knowl-
edge. Cognition, 111(2):151–167.

Zellig S Harris. 1954. Distributional structure. Word,
10(2-3):146–162.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Acous-
tics, Speech, and Signal Processing, 1995. ICASSP-
95., 1995 International Conference on, volume 1,
pages 181–184. IEEE.

Thomas K Landauer, Peter W Foltz, and Darrell Laham.
1998. An introduction to latent semantic analysis.
Discourse processes, 25(2-3):259–284.

Alessandro Lenci. 2011. Composing and updating
verb argument expectations: A distributional semantic
model. In Proceedings of the 2nd Workshop on Cog-
nitive Modeling and Computational Linguistics, pages
58–66. Association for Computational Linguistics.

David D Lewis, Yiming Yang, Tony G Rose, and Fan Li.
2004. Rcv1: A new benchmark collection for text cat-
egorization research. The Journal of Machine Learn-
ing Research, 5:361–397.

Ken McRae, Michael J Spivey-Knowlton, and Michael K
Tanenhaus. 1998. Modeling the influence of the-
matic fit (and other constraints) in on-line sentence
comprehension. Journal of Memory and Language,
38(3):283–312.

Ken McRae, Mary Hare, Jeffrey L Elman, and Todd Fer-
retti. 2005. A basis for generating expectancies for
verbs from nouns. Memory & Cognition, 33(7):1174–
1184.

Oren Melamud, Ido Dagan, Jacob Goldberger, Idan
Szpektor, and Deniz Yuret. 2014. Probabilistic mod-
eling of joint-context in distributional similarity. In
CoNLL, pages 181–190.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Maria Ruiz-Casado, Enrique Alfonseca, and Pablo
Castells. 2005. Using context-window overlapping
in synonym discovery and ontology extension. In Pro-
ceedings of RANLP, pages 1–7.

Magnus Sahlgren. 2008. The distributional hypothesis.
Italian Journal of Linguistics, 20(1):33–54.

Enrico Santus, Emmanuele Chersoni, Alessandro Lenci,
Chu-Ren Huang, and Philippe Blache. 2016. Testing
APSyn against Vector Cosine on Similarity Estima-
tion. In Proceedings of the Pacific Asia Conference on
Language, Information and Computing (PACLIC 30).

Asad Sayeed and Vera Demberg. 2014. Combining un-
supervised syntactic and semantic models of thematic
fit. In Proceedings of the first Italian Conference on
Computational Linguistics (CLiC-it 2014).

Peter D Turney, Patrick Pantel, et al. 2010. From fre-
quency to meaning: Vector space models of semantics.
Journal of artificial intelligence research, 37(1):141–
188.

Julie Weeds, David Weir, and Diana McCarthy. 2004.
Characterising measures of lexical distributional simi-
larity. In Proceedings of the 20th international confer-
ence on Computational Linguistics, page 1015. Asso-
ciation for Computational Linguistics.

Dongqiang Yang and David MW Powers. 2006. Verb
similarity on the taxonomy of WordNet. Masaryk Uni-
versity.

1972

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1973–1978,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Speed-Accuracy Tradeoffs in Tagging
with Variable-Order CRFs and Structured Sparsity

Tim Vieira∗ and Ryan Cotterell∗ and Jason Eisner
Department of Computer Science

Johns Hopkins University
{timv,ryan.cotterell,jason}@cs.jhu.edu

Abstract

We propose a method for learning the structure
of variable-order CRFs, a more flexible variant
of higher-order linear-chain CRFs. Variable-
order CRFs achieve faster inference by in-
cluding features for only some of the tag n-
grams. Our learning method discovers the
useful higher-order features at the same time
as it trains their weights, by maximizing an
objective that combines log-likelihood with a
structured-sparsity regularizer. An active-set
outer loop allows the feature set to grow as
far as needed. On part-of-speech tagging in 5
randomly chosen languages from the Universal
Dependencies dataset, our method of shrink-
ing the model achieved a 2–6x speedup over a
baseline, with no significant drop in accuracy.

1 Introduction

Conditional Random Fields (CRFs) (Lafferty et al.,
2001) are a convenient formalism for sequence label-
ing tasks common in NLP. A CRF defines a feature-
rich conditional distribution over tag sequences (out-
put) given an observed word sequence (input).

The key advantage of the CRF framework is the
flexibility to consider arbitrary features of the input,
as well as enough features over the output structure to
encourage it to be well-formed and consistent. How-
ever, inference in CRFs is fast only if the features
over the output structure are limited. For example,
an order-k CRF (or “k-CRF” for short, with k > 1
being “higher-order”) allows expressive features over
a window of k+1 adjacent tags (as well as the input),
and then inference takes time O(n·|Y |k+1), where
Y is the set of tags and n is the length of the input.

How large does k need to be? Typically k = 2
works well, with big gains from 0→ 1 and modest
∗Equal contribution

0 1000 2000 3000 4000 5000

Number of Tag String Features

91

92

93

94

95

96

97

98

A
cc

ur
ac

y

0-CRF
1-CRF 2-CRF

Bulgarian
Norwegian
Hindi
Slovenian
Basque

Figure 1: Speed-accuracy tradeoff curves on test data
for the 5 languages. Large dark circles represent the k-
CRFs of ascending orders along x-axis (marked on for
Slovenian). Smaller triangles each represent a VoCRF
discovered by sweeping the speed parameters γ. We find
faster models at similar accuracy to the best k-CRFs (§5).

gains from 1→2 (Fig. 1). Small k may be sufficient
when there is enough training data to allow the model
to attend to many fine-grained features of the input
(Toutanova et al., 2003; Liang et al., 2008). For ex-
ample, when predicting POS tags in morphologically-
rich languages, certain words are easily tagged based
on their spelling without considering the context
(k=0). In fact, such languages tend to have a more
free word order, making tag context less useful.

We investigate a hybrid approach that gives the
accuracy of higher-order models while reducing run-
time. We build on variable-order CRFs (Ye et al.,
2009) (VoCRF), which support features on tag sub-
sequences of mixed orders. Since only modest gains
are obtained from moving to higher-order models,
we posit that only a small fraction of the higher-order
features are necessary. We introduce a hyperparam-
eter γ that discourages the model from using many
higher-order features (= faster inference) and a hy-
perparameter λ that encourages generalization. Thus,
sweeping a range of values for γ and λ gives rise to a

1973

number of operating points along the speed-accuracy
curve (triangle points in Fig. 1).

We present three contributions: (1) A simplified
exposition of VoCRFs, including an algorithm for
computing gradients that is asymptotically more ef-
ficient than prior art (Cuong et al., 2014). (2) We
develop a structure learning algorithm for discover-
ing the essential set of higher-order dependencies so
that inference is fast and accurate. (3) We investigate
the effectiveness of our approach on POS tagging
in five diverse languages. We find that the amount
of required context for accurate prediction is highly
language-dependent. In all languages, however, our
approach meets the accuracy of fixed-order models
at a fraction of the runtime.

2 Variable-Order CRFs

An order-k CRF (k-CRF, for short) is a conditional
probability distribution of the form

pθ(y |x)= 1
Zθ(x)

exp
(∑n+1

t=1 θ
>f(x, t, yt−k . . . yt)

)

where n is the length of the input x, θ ∈Rd is the
model parameter, and f is an arbitrary user-defined
function that computes a vector in Rd of features of
the tag substring s = yt−k . . . yt when it appears at
position t of input x. We define yi to be a distin-
guished boundary tag # when i /∈ [1, n].

A variable-order CRF or VoCRF is a refinement of
the k-CRF, in which f may not always depend on all
k + 1 of the tags that it has access to. The features
of a particular tag substring s may sometimes be
determined by a shorter suffix of s.

To be precise, a VoCRF specifies a finite set
W ⊂ Y ∗ that is sufficient for feature computation
(where Y ∗ denotes the set of all tag sequences).1 The
VoCRF’s featurization function f(x, t, s) is then de-
fined as f ′(x, t,w(s)) where f ′ can be any function
andw(s) ∈ Y ∗ is the longest suffix of s that appears
in W (or ε if none exists). The full power of a k-
CRF can be obtained by specifyingW = Y k+1, but
smallerW will in general allow speedups.

To support our algorithms, we define W to be
the closure of W under prefixes and last-character
substitution. Formally,W is the smallest nonempty
superset ofW such that if hy ∈ W for some h ∈ Y ∗
1The constructions given in this section assume thatW does not
contain ε nor any sequence having ## as a proper prefix.

Algorithm 1 FORWARD: Compute logZθ(x).

α(·, ·) = 0; α(0,#) = 1 . initialization
for t = 1 to n+ 1 :

if t = n+ 1 then Yt = {#} else yt = Y \{#}
for h ∈ H, yt ∈ Yt :
h′ = NEXT(h, yt)
z = exp

(
θ>f ′(x, t,w(hyt))

)

α(t,h′) += α(t−1,h) · z
Z =

∑
h∈H α(n+ 1,h) . sum over final states

return logZ

Algorithm 2 GRADIENT: Compute∇θ logZθ(x).
β(·, ·) = 0; ∆ = 0
β(n+ 1,h) = 1 for all h ∈ H . initialization
for t = n+ 1 downto 1 :

for h ∈ H, yt ∈ Yt :
h′ = NEXT(h, yt)
z = exp

(
θ>f ′(x, t,w(hyt))

)

∆ += f ′(x, t,w(hyt))·α(t−1,h)·z ·β(t,h′)
β(t−1,h) += z · β(t,h′)

return ∆/Z

and y ∈ Y , then h ∈ W and also hy′ ∈ W for all
y′ ∈ Y . This implies that we can factorW asH×Y ,
whereH ⊂ Y ∗ is called the set of histories.

We now define NEXT(h, y) to return the longest
suffix of hy that is inH (which may be hy itself, or
even ε). We may regard NEXT as the transition func-
tion of a deterministic finite-state automaton (DFA)
with state setH and alphabet Y . If this DFA is used to
read any tag sequence y ∈ Y ∗, then the arc that reads
yt comes from a state h such that hyt is the longest
suffix of s = yt−k . . . yt that appears in W—and
thus w(hyt) = w(s) ∈ W and provides sufficient
information to compute f(x, t, s).2

For a given x of length n and given parameters θ,
the log-normalizer logZθ(x)—which will be needed
to compute the log-probability in eq. (1) below—can
be found in time O(|W|n) by dynamic program-
ming. Concise pseudocode is in Alg. 1. In effect, this

2Our DFA construction is essentially that of Cotterell and Eisner
(2015, Appendix B.5). However, Appendix B of that paper also
gives a construction that obtains an even smaller DFA by using
failure arcs (Allauzen et al., 2003), which remove the require-
ment thatW be closed under last-character substitution. This
would yield a further speedup to our Alg. 1 (replacing it with
the efficient backward algorithm in footnote 16 of that paper)
and similarly to our Alg. 2 (by differentiating the new Alg. 1).

1974

runs the forward algorithm on the lattice of taggings
given by length-n paths through the DFA.

For finding the parameters θ that minimize eq. (1)
below, we want the gradient ∇θ logZθ(x). By
applying algorithmic differentiation to Alg. 1, we
obtain Alg. 2, which uses back-propagation to
compute the gradient (asymptotically) as fast as
Alg. 1 and |H| times faster than Cuong et al. (2014)’s
algorithm—a significant speedup since |H| is often
quite large (up to 300 in our experiments). Algs. 1–2
together effectively run the forward-backward
algorithm on the lattice of taggings.3

It is straightforward to modify Alg. 1 to obtain
a Viterbi decoder that finds the most-likely tag se-
quence under pθ(· | x). It is also straightforward to
modify Alg. 2 to compute the marginal probabilities
of tag substrings occurring at particular positions.

3 Structured Sparsity and Active Sets

We begin with a k-CRF model whose feature vector
f(x, t, yt−k . . . yt) is partitioned into non-stationary
local features f (1)(x, t, yt) and stationary higher-
order features f (2)(yt−k . . . yt). Specifically, f (2)

includes an indicator feature for each tag string w ∈
Y ∗ with 1 ≤ |w| ≤ k + 1, where f (2)w (yt−k . . . yt)
is 1 ifw is a suffix of yt−k . . . yt and is 0 otherwise.4

To obtain the advantages of a VoCRF, we merely
have to choose a sparse weight vector θ. The set
W can then be defined to be the set of strings in
Y ∗ whose features have nonzero weight. Prior work
(Cuong et al., 2014) has left the construction ofW to
domain experts or “one size fits all” strategies (e.g.,
k-CRF). Our goal is to choose θ—and thusW—so
that inference is accurate and fast.

Our approach is to modify the usual L2-
regularized log-likelihood training criterion with a
carefully defined runtime penalty scaled by a param-
eter γ to balance competing objectives: likelihood on
the data {(x(i),y(i))}mi=1 vs. efficiency (smallW).

−
m∑

i=1

log pθ(y
(i) |x(i))︸ ︷︷ ︸

loss

+ λ||θ||22︸ ︷︷ ︸
generalization

+ γR(θ)︸ ︷︷ ︸
runtime

(1)

Recall that the runtime of inference on a given
sentence is proportional to the size ofW , the closure
3Eisner (2016) explains the connection between algorithmic
differentiation and the forward-backward algorithm.

4Extensions to richer sets of higher-order features are possible,
such as conjunctions with properties of the words at position t.

ε

N V

NN NV VN VV
GV

G"

Figure 2: A visual depiction of the tree-structured group
lasso penalty. Each node represents a tag string feature.
The group indexed by a node’s tag string is defined as the
set of features that are proper descendants of the node.
For example, the lavender box indicates the largest group
Gε and the aubergine box indicates a smaller group GV.
To avoid clutter, not all groups are marked.

ofW under prefixes and last-character replacement.
(Any tag strings in W\W can get nonzero weight
without increasing runtime.) Thus,R(θ) would ide-
ally measure |W|, or proportionately, |H|. Experi-
mentally, we find that |W| has > 99% Pearson cor-
relation with wallclock time, making it an excellent
proxy for wallclock time while being more replicable.

We relax this regularizer to a convex function—
a tree-structured group lasso objective (Yuan and
Lin, 2006; Nelakanti et al., 2013). For each string
h ∈ Y ∗, we have a group Gh consisting of the in-
dicator features (in f (2)) for all strings w ∈ W that
have h as a proper prefix. Fig. 2 gives a visual depic-
tion. We now defineR(θ) =∑h∈Y ∗ ||θGh ||2. This
penalty encourages each group of weights to remain
all at zero (thereby conserving runtime, in our setting,
because it means that h does not need to be added
to H). Once a single weight in a group becomes
nonzero, the “initial inertia” induced by the group
lasso penalty is overcome, and other features in the
group can be more cheaply adjusted away from zero.

Although eq. (1) is now convex, directly optimiz-
ing it would be expensive for large k, since θ then
contains very many parameters. We thus use a heuris-
tic optimization algorithm, the active set method
(Schmidt, 2010), which starts with a low-dimensional
θ and incrementally adds features to the model. This
also frees us from needing to specify a limit k. Rather,
W grows until further extensions are unhelpful, and
then implicitly k = maxw∈W |w| − 1.

The method defines f (2) to include indicator fea-
tures for all tag sequences w in an active setWactive.
Thus, θ(2) is always a vector of |Wactive| real numbers.
Initially, we takeWactive = Y and θ = 0. At each

1975

active set iteration, we fully optimize eq. (1) to obtain
a sparse θ and a setW = {w ∈ Wactive | θ(2)w 6= 0}
of features that are known to be “useful.”5 We then
update Wactive to {wy | w ∈ W, y ∈ Y }, so that
it includes single-tag extensions of these useful fea-
tures; this expands θ to consider additional features
that plausibly might prove useful. Finally, we com-
plete the iteration by updatingWactive to its closure
Wactive, simply because this further expansion of the
feature set will not slow down our algorithms. When
eq. (1) is re-optimized at the next iteration, some of
these newly added features in Wactive may acquire
nonzero weights and thus enterW , allowing further
extensions. We can halt onceW no longer changes.

As a final step, we follow common practice by
running “debiasing” (Martins et al., 2011a), where
we fix our f (2) feature set to be given by the finalW ,
and retrain θ without the group lasso penalty term.

In practice, we optimized eq. (1) using the online
proximal gradient algorithm SPOM (Martins et al.,
2011b) and Adagrad (Duchi et al., 2011) with η =
0.01 and 15 inner epochs. We limited to 3 active set
iterations, and as a result, our finalW contained at
most tag trigrams.

4 Related Work

Our paper can be seen as transferring methods of
Cotterell and Eisner (2015) to the CRF setting.
They too used tree-structured group lasso and active
set to select variable-order n-gram features W for
globally-normalized sequence models (in their case,
to rapidly and accurately approximate beliefs during
message-passing inference). Similarly, Nelakanti et
al. (2013) used tree-structured group lasso to regu-
larize a variable-order language model (though their
focus was training speed). Here we apply these tech-
niques to conditional models for tagging.

Our work directly builds on the variable-order CRF
of Cuong et al. (2014), with a speedup in Alg. 2, but
our approach also learns the VoCRF structure. Our
method is also related to the generative variable-order
tagger of Schütze and Singer (1994).

Our static feature selection chooses a single model
that permits fast exact marginal inference, similar to
learning a low-treewidth graphical model (Bach and

5Each gradient computation in this inner optimization takes time
O(|Wactive|n), which is especially fast at early iterations.

Jordan, 2001; Elidan and Gould, 2008). This con-
trasts with recent papers that learn to do approximate
1-best inference using a sequence of models, whether
by dynamic feature selection within a greedy infer-
ence algorithm (Strubell et al., 2015), or by gradually
increasing the feature set of a 1-best global inference
algorithm and pruning its hypothesis space after each
increase (Weiss and Taskar, 2010; He et al., 2013).

Schmidt (2010) explores the use of group lasso
penalties and the active set method for learning
the structure of a graphical model, but does not
consider learning repeated structures (in our setting,
W defines a structure that is reused at each position).
Steinhardt and Liang (2015) jointly modeled the
amount of context to use in a variable-order model
that dynamically determines how much context to
use in a beam search decoder.

5 Experiments6

Data: We conduct experiments on multilingual POS
tagging. The task is to label each word in a sen-
tence with one of |Y |=17 labels. We train on five
typologically-diverse languages from the Universal
Dependencies (UD) corpora (Petrov et al., 2012):
Basque, Bulgarian, Hindi, Norwegian and Slovenian.
For each language, we start with the original train /
dev / test split in the UD dataset, then move random
sentences from train into dev until the dev set has
3000 sentences. This ensures more stable hyperpa-
rameter tuning. We use these new splits below.

Eval: We train models with (λ, γ) ∈ {10−4 ·
m, 10−3 ·m, 10−2 ·m}×{0, 0.1 ·m, 0.2 ·m, . . . ,m},
where m is the number of training sentences. To tag
a dev or test sentence, we choose its most probable
tag sequence. For each of several model sizes, Ta-
ble 1 selects the model of that size that achieved the
highest per-token tagging accuracy on the dev set,
and reports that model’s accuracy on the test set.

Features: Recall from §3 that our features include
non-stationary zeroth-order features f (1) as well as
the stationary features based onW . For f (1)(x, t, yt)
we consider the following language-agnostic proper-
ties of (x, t):
• The identities of the tokens xt−3, ..., xt+3,

and the token bigrams (xt+1, xt), (xt, xt−1),
6Code and data are available at the following URLs:
http://github.com/timvieira/vocrf
http://universaldependencies.org

1976

k-CRF (|W| = 17k+1) VoCRF at different model sizes |W| (which is proportional to runtime)

0 (17) 1 (289) 2 (4913) ≤ 34 ≤ 85 ≤ 170 ≤ 340 ≤ 850 ≤ 1700 ≤ 2550 ≤ 3400 ≤ 4250 ≤ 5100

Ba 91.611,2 92.350 92.490 92.250,2 92.250,2 92.380 92.340 92.440 92.440 92.440 92.540 92.540 92.540

Bu 96.481,2 97.110,2 97.290,1 96.750,1,2 96.780,1,2 96.990,1,2 97.080,2 97.180,1 97.250,1 97.340,1 97.340,1 97.340,1 97.340,1

Hi 95.961,2 96.220 96.210 95.971,2 96.220 96.220 96.260 96.130 96.130 96.240 96.240 96.240 96.240

No 96.001,2 96.640 96.660 96.071,2 96.260,1,2 96.410 96.600 96.620 96.640 96.670 96.640 96.640 96.640

Sl 94.461,2 95.410,2 95.620,1 94.821,2 95.180,2 95.360,2 95.390,2 95.390,2 95.690,1 95.690,1 95.690,1 95.690,1 95.670,1

Table 1: Part-of-speech tagging with Universal Tags: This table shows test results on 5 languages at different target
runtimes. Each row’s best results are in boldface, where ties in accuracy are broken in favor of faster models. Superscript
k indicates that the accuracy is significantly different from the k-CRF (paired permutation test, p < 0.05) and this
superscript is in blue/red if the accuracy is higher/lower than the k-CRF. In all cases, we find a VoCRF (underlined) that
is about as accurate as the 2-CRF (i.e., not significantly less accurate) and far faster, since the 2-CRF has |W| = 4913.
Fig. 1 plots the Pareto frontiers.

(xt−1, xt+1). We use special boundary symbols
for tokens at positions beyond the start or end
of the sentence.
• Prefixes and suffixes of xt, up to 4 characters

long, that occur ≥ 5 times in the training data.
• Indicators for whether xt is all caps, is

lowercase, or has a digit.
• Word shape of xt, which maps the token string

into the following character classes (uppercase,
lowercase, number) with punctuation unmod-
ified (e.g., VoCRF-like⇒ AaAAA-aaaa, $5,432.10
⇒ $8,888.88).

For efficiency, we hash these properties into 222 bins.
The f (1) features are obtained by conjoining these
bins with yt (Weinberger et al., 2009): e.g., there is
a feature that returns 0 unless yt = NOUN, in which
case it counts the number of bin 1234567’s properties
that (x, t) has. (The f (2) features are not hashed.)

Results: Our results are presented in Fig. 1 and
Table 1. We highlight two key points: (i) Across all
languages we learned a tagger about as accurate as
a 2-CRF, but much faster. (ii) The size of the set
W required is highly language-dependent. For many
languages, learning a full k-CRF is wasteful; our
method resolves this problem.

In each language, the fastest “good” VoCRF is
rather faster than the fastest “good” k-CRF (where
“good” means statistically indistinguishable from the
2-CRF). These two systems are underlined; the un-
derlined VoCRF systems are smaller than the under-
lined k-CRF systems (for the 5 languages respec-
tively) by factors of 1.9, 6.4, 3.4, 1.9, and 2.9. In
every language, we learn a VoCRF with |W| ≤ 850
that is not significantly worse than a 2-CRF with

|W| = 173 = 4913.
We also notice an interesting language-dependent

effect, whereby certain languages require a small
number of tag strings in order to perform well.
For example, Hindi has a competitive model that
ignores the previous tag yt−1 unless it is in
{NOUN, VERB, ADP, PROPN}: thus the stationary fea-
tures are 17 unigrams plus 4× 17 bigrams, for a total
of |W| = 85. At the other extreme, the Slavic lan-
guages Slovenian and Bulgarian seem to require more
expressive models over the tag space, remembering
as many as 98 useful left-context histories (unigrams
and bigrams) for the current tag. An interesting direc-
tion for future research would be to determine which
morpho-syntactic properties of a language tend to
increase the complexity of tagging.

6 Conclusion

We presented a structured sparsity approach for struc-
ture learning in VoCRFs, which achieves the accu-
racy of higher-order CRFs at a fraction of the runtime.
Additionally, we derive an asymptotically faster al-
gorithm for the gradients necessary to train a VoCRF
than prior work. Our method provides an effective
speed-accuracy tradeoff for POS tagging across five
languages—confirming that significant speed-ups are
possible with little-to-no loss in accuracy.

Acknowledgments: This material is based in part on
research sponsored by DARPA under agreement num-
ber FA8750-13-2-0017 (DEFT program) and the Na-
tional Science Foundation under Grant No. 1423276.
The second author was funded by a DAAD Long-
term research grant and an NDSEG fellowship.

1977

References
Cyril Allauzen, Mehryar Mohri, and Brian Roark. 2003.

Generalized algorithms for constructing statistical lan-
guage models. In Proceedings of ACL, pages 40–47.

F. R. Bach and M. I. Jordan. 2001. Thin junction trees. In
NIPS, pages 569–576.

Ryan Cotterell and Jason Eisner. 2015. Penalized expec-
tation propagation for graphical models over strings. In
NAACL-HLT, pages 932–942.

Nguyen Viet Cuong, Nan Ye, Wee Sun Lee, and Hai Leong
Chieu. 2014. Conditional random field with high-order
dependencies for sequence labeling and segmentation.
JMLR, 15(1):981–1009.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 12:2121–2159.

Jason Eisner. 2016. Inside-outside and forward-backward
algorithms are just backprop. In Proceedings of the
EMNLP 16 Workshop on Structured Prediction for NLP,
Austin, TX, November.

G. Elidan and S. Gould. 2008. Learning bounded
treewidth Bayesian networks. In NIPS, pages 417–424.

He He, Hal Daumé III, and Jason Eisner. 2013. Dynamic
feature selection for dependency parsing. In EMNLP,
pages 1455–1464.

John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In
ICML, pages 282–289.

Percy Liang, Hal Daumé III, and Dan Klein. 2008. Struc-
ture compilation: trading structure for features. In
ICML, pages 592–599.

André F. T. Martins, Noah A. Smith, Pedro M. Q. Aguiar,
and Mário A. T. Figueiredo. 2011a. Structured sparsity
in structured prediction. In EMNLP, pages 1500–1511.

André F. T. Martins, Noah A. Smith, Eric P. Xing, Pe-
dro M. Q. Aguiar, and Mário A.T. Figueiredo. 2011b.
Online learning of structured predictors with multiple
kernels. In AISTATS, pages 507–515.

Anil Nelakanti, Cedric Archambeau, Julien Mairal, Fran-
cis Bach, and Guillaume Bouchard. 2013. Structured
penalties for log-linear language models. In EMNLP,
pages 233–243.

Slav Petrov, Dipanjan Das, and Ryan T. McDonald. 2012.
A universal part-of-speech tagset. In LREC, pages
2089–2096.

Mark Schmidt. 2010. Graphical Model Structure Learn-
ing with `1-Regularization. Ph.D. thesis, University of
British Columbias.

Hinrich Schütze and Yoram Singer. 1994. Part-of-speech
tagging using a variable memory Markov model. In
ACL, pages 181–187.

Jacob Steinhardt and Percy Liang. 2015. Reified context
models. In ICML, pages 1043–1052.

Emma Strubell, Luke Vilnis, Kate Silverstein, and Andrew
McCallum. 2015. Learning dynamic feature selection
for fast sequential prediction. In ACL, pages 146–155.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In ACL,
pages 173–180.

Kilian Weinberger, Anirban Dasgupta, John Langford,
Alex Smola, and Josh Attenberg. 2009. Feature hash-
ing for large scale multitask learning.

David J. Weiss and Benjamin Taskar. 2010. Structured
prediction cascades. In AISTATS, pages 916–923.

Nan Ye, Wee S. Lee, Hai L. Chieu, and Dan Wu. 2009.
Conditional random fields with high-order features for
sequence labeling. In NIPS, pages 2196–2204.

Ming Yuan and Yi Lin. 2006. Model selection and esti-
mation in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical
Methodology), 68(1):49–67.

1978

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1979–1985,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning Robust Representations of Text

Yitong Li Trevor Cohn Timothy Baldwin
Department of Computing and Information Systems

The University of Melbourne, Australia
yitongl4@student.unimelb.edu.au, {tcohn,tbaldwin}@unimelb.edu.au

Abstract

Deep neural networks have achieved remark-
able results across many language processing
tasks, however these methods are highly sen-
sitive to noise and adversarial attacks. We
present a regularization based method for lim-
iting network sensitivity to its inputs, inspired
by ideas from computer vision, thus learning
models that are more robust. Empirical evalua-
tion over a range of sentiment datasets with a
convolutional neural network shows that, com-
pared to a baseline model and the dropout
method, our method achieves superior perfor-
mance over noisy inputs and out-of-domain
data.1

1 Introduction

Deep learning has achieved state-of-the-art results
across a range of computer vision (Krizhevsky et al.,
2012), speech recognition (Graves et al., 2013) and
natural language processing tasks (Bahdanau et al.,
2015; Kalchbrenner et al., 2014; Yih et al., 2014;
Bitvai and Cohn, 2015). However, deep models are
often overconfident for noisy test instances, making
them susceptible to adversarial attacks (Nguyen et
al., 2015; Tabacof and Valle, 2016). Goodfellow et
al. (2014) argued that the primary cause of neural
networks’ vulnerability to adversarial perturbation
is their linear nature, due to neural models being
intentionally designed to behave in a mostly linear
manner to facilitate optimization. Fawzi et al. (2015)
provided a theoretical framework for analyzing the

1Implementation available at https://github.com/
lrank/Robust-Representation.

robustness of classifiers to adversarial perturbations,
and also showed linear models are usually not robust
to adversarial noise.

In this work, we present a regularization method
which makes deep learning models more robust to
noise, inspired by Rifai et al. (2011). The intuition
behind the approach is to stabilize predictions by
minimizing the ability of features to perturb predic-
tions, based on high-order derivatives. Rifai et al.
(2011) introduced contractive auto-encoders based
on similar ideas, using the Frobenius norm of the
Jacobian matrix as a penalty term to extract robust
features. Further, Gu and Rigazio (2014) intro-
duced deep contractive networks, generalizing this
idea to a feed-forward neural network. Also related,
Martens (2010) investigated a second-order optimiza-
tion method based on Hessian-free approach for train-
ing deep auto-encoders. Where our proposed ap-
proach differs is that we train models using first-order
derivatives of the training loss as part of a regular-
ization term, necessitating second-order derivatives
for computing the gradient. We empirically demon-
strate the effectiveness of the model over text corpora
with increasing amounts of artificial masking noise,
using a range of sentiment analysis datasets (Pang
and Lee, 2008) with a convolutional neural network
model (Kim, 2014). In this, we show that our method
is superior to dropout (Srivastava et al., 2014) and a
baseline method using MAP training.

2 Training for Robustness

Our method introduces a regularization term during
training to ensure model robustness. We develop our
approach based on a general class of parametric mod-

1979

els, with the following structure. Let x be the input,
which is a sequence of (discrete) words, represented
by a fixed-size vector of continuous values, h. A
transfer function takes h as input and produces an
output distribution, ypred. Training proceeds using
stochastic gradient descent to minimize a loss func-
tion L, measuring the difference between ypred and
the truth ytrue.

The purpose of our work is to learn neural models
which are more robust to strange or invalid inputs.
When small perturbations are applied on x, we want
the prediction ypred to remain stable. Text can be
highly variable, allowing for the same information
to be conveyed with different word choice, different
syntactic structures, typographical errors, stylistic
changes, etc. This is a particular problem in transfer
learning scenarios such as domain adaptation, where
the inputs in distinct domains are drawn from related,
but different, distributions. A good model should be
robust to these kinds of small changes to the input,
and produce reliable and stable predictions.

Next we discuss methods for learning models
which are robust to variations in the input, before
providing details of the neural network model used
in our experimental evaluation.

2.1 Conventional Regularization and Dropout
Conventional methods for learning robust models in-
clude l1 and l2 regularization (Ng, 2004), and dropout
(Srivastava et al., 2014). In fact, Wager et al. (2013)
showed that the dropout regularizer is first-order
equivalent to an l2 regularizer applied after scaling
the features. Dropout is also equivalent to “Follow
the Perturbed Leader” (FPL) which perturbs expo-
nential numbers of experts by noise and then predicts
with the expert of minimum perturbed loss for online
learning robustness (van Erven et al., 2014). Given
its popularity in deep learning, we take dropout to be
a strong baseline in our evaluation.

The key idea behind dropout is to randomly zero
out units, along with their connections, from the net-
work during training, thus limiting the extent of co-
adaptation between units. We apply dropout on the
representation vector h, denoted ĥ = dropoutβ(h),
where β is the dropout rate. Similarly to our proposed
method, training with dropout requires gradient based
search for the minimizer of the loss L.

We also use dropout to generate noise in the test

data as part of our experimental simulations, as we
will discuss later.

2.2 Robust Regularization
Our method is inspired by the work on adversarial
training in computer vision (Goodfellow et al., 2014).
In image recognition tasks, small distortions that are
indiscernible to humans can significantly distort the
predictions of neural networks (Szegedy et al., 2014).
An intuitive explanation of our regularization method
is, when noise is applied to the data, the variation of
the output is kept lower than the noise. We adapt this
idea from Rifai et al. (2011) and develop the Jacobian
regularization method.

The proposed regularization method works as fol-
lows. Conventional training seeks to minimise the
difference between ytrue and ypred. However, in or-
der to make our model robust against noise, we also
want to minimize the variation of the output when
noise is applied to the input. This is to say, when
perturbations are applied to the input, there should
be as little perturbation in the output as possible. For-
mally, the perturbations of output can be written as
py = M(x+px)−M(x), where x is the input, px is
the vector of perturbations applied to x, M expresses
the trained model, py is the vector of perturbations
generated by the model, and the output distribution
y = M(x). Therefore

lim
px→0

py = lim
px→0

(
M(x + px)−M(x)

)
=
∂y

∂x
· px ,

and distance

(
lim

px→0
py/px,0

)
=

∥∥∥∥
∂y

∂x

∥∥∥∥
F

.

In other words, minimising local noise sensitivity is
equivalent to minimising the Frobenius norm of the
Jacobean matrix of partial derivatives of the model
outputs wrt its inputs.

To minimize the effect of perturbation noise, our
method involves an additional term in the loss func-
tion, in the form of the derivative of loss L with
respect to hidden layer h. Note that while in princi-
ple we could consider robustness to perturbations in
the input x, the discrete nature of x adds additional
mathematical complications, and thus we defer this
setting for future work. Combining the elements, the
new loss function can be expressed as

L = L+ λ ·
∥∥∥∥
∂L

∂h

∥∥∥∥
2

, (1)

1980

where λ is a weight term, and distance takes the form
of the l2 norm. The training objective in Equation (1)
supports gradient optimization, but note that it re-
quires the calculation of second-order derivatives of
L during back propagation, arising from the ∂L/∂h
term. Henceforth we refer to this method as robust
regularization.

2.3 Convolutional Network

For the purposes of this paper, we focus exclusively
on convolutional neural networks (CNNs), but stress
that the method is compatible with other neural ar-
chitectures and other types of parametric models (not
just deep neural networks). The CNN used in this
research is based on the model proposed by Kim
(2014), and is outlined below.

Let S be the sentence, consisting of n words
{w1, w2, · · · , wn}. A look-up table is applied to S,
made up of word vectors ei ∈ Rm corresponding to
each word wi, where m is the word vector dimen-
sionality. Thus, sentence S can be represented as
a matrix ES ∈ Rm×n by concatenating the word
vectors ES =

⊕n
i=1 ewi .

A convolutional layer combined with a number of
wide convolutional filters is applied to ES. Specif-
ically, the k-th convolutional filter operator filterk
involves a weight vector wk ∈ Rm×t, which works
on every tk-sized window of ES, and is accom-
panied by a bias term b ∈ R. The filter oper-
ator is followed by the non-linear function F , a
rectified linear unit, ReLU, followed by a max-
pooling operation, to generate a hidden activation
hk = MaxPooling(F (filterk(ES;wk, b)). Multi-
ple filters with different window sizes are used to
learn different local properties of the sentence. We
concatenate all the hidden activations hk to form a
hidden layer h, with size equal to the number of fil-
ters. Details of parameter settings can be found in
Section 3.2.

The feature vector h is fed into a final softmax
layer with a linear transform to generate a probability
distribution over labels

ypred = softmax(w · h + b) ,

where w and b are parameters. Finally, the
model minimizes the loss of the cross-entropy be-
tween the ground-truth and the model prediction,

L = CrossEntropy(ytrue,ypred), for which we use
stochastic gradient descent.

3 Datasets and Experimental Setups

We experiment on the following datasets,2 following
Kim (2014):
• MR: Sentence polarity dataset (Pang and Lee,

2008)3

• Subj: Subjectivity dataset (Pang and Lee,
2005)3

• CR: Customer review dataset (Hu and Liu,
2004)4

• SST: Stanford Sentiment Treebank, using the
3-class configuration (Socher et al., 2013)5

In each case, we evaluate using classification accu-
racy.

3.1 Noisifying the Data

Different to conventional evaluation, we corrupt the
test data with noise in order to evaluate the robust-
ness of our model. We assume that when dealing
with short text such as Twitter posts, it is common
to see unknown words due to typos, abbreviations
and sociolinguistic marking of different types (Han
and Baldwin, 2011; Eisenstein, 2013). To simulate
this, we apply word-level dropout noise to each doc-
ument, by randomly replacing words by a unique
sentinel symbol.6 This is applied to each word with
probability α ∈ {0, 0.1, 0.2, 0.3}.

We also experimented with adding different levels
of Gaussian noise to the sentence embeddings ES,
but found the results to be largely consistent with
those for word dropout noise, and therefore we have
omitted these results from the paper.

To directly test the robustness under a more real-
istic setting, we additionally perform cross-domain
evaluation, where we train a model on one dataset

2For datasets where there is no pre-defined training/test split,
we evaluate using 10-fold cross validation. Refer to Kim (2014)
for more details on the datasets.

3 https://www.cs.cornell.edu/people/pabo/
movie-review-data/

4http://www.cs.uic.edu/˜liub/FBS/
sentiment-analysis.html

5http://nlp.stanford.edu/sentiment/
6This was to avoid creating new n-grams which would oc-

cur when symbols are deleted from the input. Masking tokens
instead results in partially masked n-grams as input to the con-
volutional filters.

1981

Dataset MR Subj

Word dropout rate (α) 0 0.1 0.2 0.3 0 0.1 0.2 0.3

Baseline 80.5 79.4 77.9 76.5 93.1 92.0 90.9 89.8

0.3 80.3 79.5 78.1 76.7 92.7 92.0 90.9 89.5
Dropout (β) 0.5 80.3 79.0 78.0 76.5 93.0 92.0 91.1 89.9

0.7 80.3 79.3 78.3 76.8 92.8 91.9 90.9 89.8

10−3 80.5 79.4 78.3 76.7 93.0 92.2 91.1 89.8
Robust 10−2 80.8 79.3 78.4 77.0 93.0 92.2 91.0 90.0
Regularization (λ) 10−1 80.4 78.8 77.8 77.0 92.7 91.9 91.0 89.8

1 79.3 77.1 76.1 75.5 91.7 91.1 90.1 89.3

Dropout + Robust β = 0.5, λ = 10−2 80.6 79.9 78.6 77.3 93.0 92.2 91.2 90.1

Dataset CR SST

Word dropout rate (α) 0 0.1 0.2 0.3 0 0.1 0.2 0.3

Baseline 83.2 82.3 80.4 77.9 84.1 82.3 80.3 77.8

0.3 83.3 82.1 80.3 78.9 84.2 82.3 80.2 78.0
Dropout (β) 0.5 83.2 82.4 81.0 79.3 84.2 82.4 80.5 78.2

0.7 83.2 82.2 80.7 78.8 83.9 82.5 80.9 78.2

10−3 83.3 82.6 81.4 79.5 84.5 82.8 81.4 78.8
Robust 10−2 83.4 82.5 81.6 79.3 84.2 82.4 80.7 78.6
Regularization (λ) 10−1 83.3 82.7 82.0 79.6 82.5 81.5 79.7 77.6

1 82.9 81.4 79.8 79.0 82.2 80.9 79.1 77.3

Dropout + Robust β = 0.5, λ = 10−2 83.3 82.5 81.5 79.7 84.3 82.6 80.8 79.1

Table 1: Accuracy (%) with increasing word-level dropout across the four datasets. For each dataset, we apply four levels of noise

α = {0, 0.1, 0.2, 0.3}; the best result for each combination of α and dataset is indicated in bold. The Baseline model is a simple

CNN model without regularization. The last model combines dropout and our method with fixed parameters β and λ as indicated.

and apply it to another. For this, we use the pairing
of MR and CR, where the first dataset is based on
movie reviews and the second on product reviews,
but both use the same label set. Note that there is a
significant domain shift between these corpora, due
to the very nature of the items reviewed.

3.2 Word Vectors and Hyper-parameters

To set the hyper-parameters of the CNN, we follow
the guidelines of Zhang and Wallace (2015), setting
word embeddings to m = 300 dimensions and ini-
tialising based on word2vec pre-training (Mikolov et
al., 2013). Words not in the pre-trained vector table
were initialized randomly by the uniform distribution
U([−0.25, 0.25)m). The window sizes of filters (t)
are set to 3, 4, 5, with 128 filters for each size, result-
ing in a hidden layer dimensionality of 384 = 128×3.
We use the Adam optimizer (Kingma and Ba, 2015)
for training.

4 Results and Discussions

The results for word-level dropout noise are pre-
sented in Table 1. In general, increasing the word-
level dropout noise leads to a drop in accuracy for all
four datasets, however the relative dropoff in accu-
racy for Robust Regularization is less than for Word
Dropout, and in 15 out of 16 cases (four noise levels
across the four datasets), our method achieves the
best result. Note that this includes the case of α = 0,
where the test data is left in its original form, which
shows that Robust Regularization is also an effective
means of preventing overfitting in the model.

For each dataset, we also evaluated based on the
combination of Word Dropout and Robust Regu-
larization using the fixed parameters β = 0.5 and
λ = 10−2, which are overall the best individual set-
tings. The combined approach performs better than
either individual method for the highest noise levels
tested across all datasets. This indicates that Robust

1982

Train/Test MR/CR CR/MR

Baseline 67.5 61.0

0.3 71.6 62.2
Dropout (β) 0.5 71.0 62.1

0.7 70.9 62.0

10−3 70.8 61.6
Robust 10−2 71.1 62.5
Regularization (λ) 10−1 72.0 62.2

1 71.8 62.3

Dropout + Robust β = 0.5, λ = 10−2 72.0 62.4

Table 2: Accuracy under cross-domain evaluation; the best

result for each dataset is indicated in bold.

Regularization acts in a complementary way to Word
Dropout.

Table 2 presents the results of the cross-domain
experiment, whereby we train a model on MR and
test on CR, and vice versa, to measure the robust-
ness of the different regularization methods in a more
real-world setting. Once again, we see that our regu-
larization method is superior to word-level dropout
and the baseline CNN, and the techniques combined
do very well, consistent with our findings for syn-
thetic noise.

4.1 Running Time

Our method requires second-order derivatives, and
thus is a little slower at training time. Figure 1 is a
plot of the training and test accuracy at varying points
during training over SST.

We can see that the runtime till convergence is only
slightly slower for Robust Regularization than stan-
dard training, at roughly 30 minutes on a two-core
CPU (one fold) with standard training vs. 35–40 min-
utes with Robust Regularization. The convergence
time for Robust Regularization is comparable to that
for Word Dropout.

5 Conclusions

In this paper, we present a robust regularization
method which explicitly minimises a neural model’s
sensitivity to small changes in its hidden representa-
tion. Based on evaluation over four sentiment analy-
sis datasets using convolutional neural networks, we
found our method to be both superior and comple-
mentary to conventional word-level dropout under
varying levels of noise, and in a cross-domain evalu-

0.75

0.8

0 1000 2000 3000 4000 5000
Time [sec]

Te
st

A
cc

ur
ac

y
[%

]

baseline dropout dropout+robust reg robust reg

Figure 1: Time–accuracy evaluation over the different combi-

nations of Word Dropout (dropout) and Robust Regularization

(robust reg) over SST, without injecting noise.

ation.
For future work, we plan to apply our regular-

ization method to other models and tasks to deter-
mine how generally applicable our method is. Also,
we will explore methods for more realistic linguistic
noise, such as lexical, syntactic and semantic noise,
to develop models that are robust to the kinds of data
often encountered at test time.

Acknowledgments

We are grateful to the anonymous reviewers for their
helpful feedback and suggestions. This work was
supported by the Australian Research Council (grant
numbers FT130101105 and FT120100658). Also,
we would like to thank the developers of Tensorflow
(Abadi et al., 2015), which was used for the experi-
ments in this paper.

References

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,

1983

Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. Tensor-
Flow: Large-scale machine learning on heterogeneous
systems. Technical report, Google Research.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
2015. Neural machine translation by jointly learning to
align and translate. In Proceedings of the International
Conference on Learning Representations.

Zsolt Bitvai and Trevor Cohn. 2015. Non-linear text
regression with a deep convolutional neural network.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Short Papers), pages 180–185.

Jacob Eisenstein. 2013. What to do about bad language
on the internet. In Proceedings of the 2013 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 359–369.

Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. 2015.
Analysis of classifiers’ robustness to adversarial pertur-
bations. arXiv preprint arXiv:1502.02590.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adversarial
examples. In Proceedings of the International Confer-
ence on Learning Representations.

Alan Graves, Abdel-rahman Mohamed, and Geoffrey Hin-
ton. 2013. Speech recognition with deep recurrent
neural networks. In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing, pages 6645–6649.

Shixiang Gu and Luca Rigazio. 2014. Towards deep neu-
ral network architectures robust to adversarial examples.
In Proceedings of the NIPS 2014 Deep Learning and
Representation Learning Workshop.

Bo Han and Timothy Baldwin. 2011. Lexical normalisa-
tion of short text messages: Makn sens a #twitter. In
Proceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 368–378.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 168–177.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics, pages 655–665.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014

Conference on Empirical Methods in Natural Language
Processing, pages 1746–1751.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings of
the International Conference on Learning Representa-
tions.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
2012. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information
Processing Systems 25, pages 1097–1105.

James Martens. 2010. Deep learning via Hessian-free
optimization. In Proceedings of the 27th International
Conference on Machine Learning, pages 735–742.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems
26, pages 3111–3119.

Andrew Y. Ng. 2004. Feature selection, L1 vs. L2 regu-
larization, and rotational invariance. In Proceedings of
the Twenty-first International Conference on Machine
Learning.

Anh Nguyen, Jason Yosinski, and Jeff Clune. 2015. Deep
neural networks are easily fooled: High confidence pre-
dictions for unrecognizable images. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of the 43rd
Annual Meeting on Association for Computational Lin-
guistics, pages 115–124.

Bo Pang and Lillian Lee. 2008. Opinion mining and senti-
ment analysis. Foundations and Trends in Information
Retrieval, 2(1-2):1–135.

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot,
and Yoshua Bengio. 2011. Contractive auto-encoders:
Explicit invariance during feature extraction. In Pro-
ceedings of the 28th International Conference on Ma-
chine Learning, pages 833–840.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages 1631–
1642.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. 2014. Dropout:
A simple way to prevent neural networks from overfit-
ting. Journal of Machine Learning Research, 15:1929–
1958.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob

1984

Fergus. 2014. Intriguing properties of neural net-
works. In Proceedings of the International Conference
on Learning Representations.

Pedro Tabacof and Eduardo Valle. 2016. Exploring the
space of adversarial images. In Proceedings of the
IEEE International Joint Conference on Neural Net-
works.

Tim van Erven, Wojciech Kotłowski, and Manfred K. War-
muth. 2014. Follow the leader with dropout pertur-
bations. In Proceedings of the 27th Conference on
Learning Theory, pages 949–974.

Stefan Wager, Sida Wang, and Percy S. Liang. 2013.
Dropout training as adaptive regularization. In Ad-
vances in Neural Information Processing Systems 26,
pages 351–359.

Wen-tau Yih, Xiaodong He, and Christopher Meek. 2014.
Semantic parsing for single-relation question answer-
ing. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Short
Papers), pages 643–648.

Ye Zhang and Byron Wallace. 2015. A sensitivity analysis
of (and practitioners’ guide to) convolutional neural
networks for sentence classification. arXiv preprint
arXiv:1510.03820.

1985

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1986–1991,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Modified Dirichlet Distribution: Allowing Negative Parameters to Induce
Stronger Sparsity∗

Kewei Tu
School of Information Science and Technology

ShanghaiTech University, Shanghai, China
tukw@shanghaitech.edu.cn

Abstract

The Dirichlet distribution (Dir) is one of the
most widely used prior distributions in statis-
tical approaches to natural language process-
ing. The parameters of Dir are required to be
positive, which significantly limits its strength
as a sparsity prior. In this paper, we propose
a simple modification to the Dirichlet distribu-
tion that allows the parameters to be negative.
Our modified Dirichlet distribution (mDir) not
only induces much stronger sparsity, but also
simultaneously performs smoothing. mDir is
still conjugate to the multinomial distribution,
which simplifies posterior inference. We in-
troduce two simple and efficient algorithms
for finding the mode of mDir. Our experi-
ments on learning Gaussian mixtures and un-
supervised dependency parsing demonstrate
the advantage of mDir over Dir.

1 Dirichlet Distribution

The Dirichlet distribution (Dir) is defined over prob-
ability vectors x = 〈x1, . . . , xn〉 with positive pa-
rameter vector α = 〈α1, . . . , αn〉:

Dir(x;α) =
1

B(α)

n∏

i=1

xαi−1
i

where the normalization factor B(α) is the multi-
variate beta function. When the elements in α are
larger than one, Dir can be used as a smoothness
prior that prefers more uniform probability vectors,
with larger α values inducing more smoothness.

∗This work was supported by the National Natural Science
Foundation of China (61503248).

When the elements inα are less than one, Dir can be
seen as a sparsity prior that prefers sparse probabil-
ity vectors, with smaller α values inducing stronger
sparsity. To better understand its sparsity preference,
we take the logarithm of Dir:

log Dir(x;α) =
n∑

i=1

(αi − 1) log xi + constant

Since αi − 1 is negative, the closer xi is to zero,
the higher the log probability becomes. The coef-
ficient αi − 1 controls the strength of the sparsity
preference. However, αi is required to be positive
in Dir because otherwise the normalization factor
becomes divergent. Consequently, the strength of
the sparsity preference is upper bounded. This be-
comes problematic when a strong prior is needed,
for instance, when the training dataset is large rela-
tive to the model size (e.g., in unsupervised learning
of an unlexicalized probabilistic grammar) and thus
the likelihood may dominate the posterior without a
strong prior.

2 Modified Dirichlet Distribution

We make a simple modification to the Dirichlet dis-
tribution that allows the parameters in α to become
negative. To handle the divergent normalization fac-
tor, we require that each xi must be lower bounded
by a small positive constant ε. Our modified Dirich-
let distribution (mDir) is defined as follows.

mDir(x;α, ε) =

{
0 if ∃i, xi < ε

1
Z(α,ε)

∏n
i=1 x

αi−1
i otherwise

where we require 0 < ε ≤ 1
n and do not require

αi to be positive. With fixed values of α and ε, the

1986

unnormalized probability density is always bounded
and hence the normalization factor Z(α, ε) is finite.

It is easy to show that mDir is still conjugate to the
multinomial distribution. Similar to Dir, mDir can
be used as a smoothness/sparsity prior depending on
the values of α. Because α is no longer required
to be positive, we can achieve very strong sparsity
preference by using a highly negative vector of α.
Note that here we no longer achieve sparsity in its
strict sense; instead, by sparsity we mean most ele-
ments in x reach their lower bound ε. Parameter ε
can thus be seen as a smoothing factor that prevents
any element in x to become too small. Therefore,
with proper parameters, mDir is able to simultane-
ously achieve sparsity and smoothness. This can be
useful in many applications where one wants to learn
a sparse multinomial distribution in an iterative way
without premature pruning of components.

2.1 Finding the Mode
If ∀i, αi − 1 ≤ 0, then the mode of mDir can be
shown to be:

xi =

{
1− (n− 1)ε if i = arg maxi αi
ε otherwise

Otherwise, we can find the mode with Algorithm 1.
The algorithm first lets xi = ε if αi ≤ 1 and other-
wise lets xi be proportional to αi − 1. It then looks
for variables in x that are less than ε, increases them
to ε, and renormalizes the rest of the variables. The
renormalization may decrease some additional vari-
ables below ε, so the procedure is repeated until all
the variables are larger than or equal to ε.

Theorem 1. If ∃i, αi > 1, then Algorithm 1 cor-
rectly finds a mode of mDir(x;α, ε).

Proof. First, we can show that for any i such that
αi ≤ 1, we must have xi = ε at the mode. This is
because if xi > ε, then we can increase the probabil-
ity density by first decreasing xi to ε (hence increas-
ing xαi−1

i), and then increasing some other variable
xj with αj > 1 to satisfy the normalization condi-
tion (hence also increasing xαj−1

j). This is consis-
tent with the output of the algorithm.

Once we fix the value to ε for any variable xi
s.t. αi ≤ 1, the log probability density function
becomes strictly concave on the simplex specified
by the linear constraints

∑
i xi = 1 and xi ≥ ε.

Algorithm 1 Mode-finding of mDir(x;α, ε)

1: S ← {i|αi ≤ 1}
2: T ← ∅
3: repeat
4: T ← T

⋃
S

5: for i ∈ T do
6: xi ← ε
7: end for
8: z ←∑

i/∈T (αi − 1)
9: for i /∈ T do

10: xi ← αi−1
z × (1− ε|T |)

11: end for
12: S ← {i|xi < ε}
13: until S = ∅
14: return 〈x1, . . . , xn〉

The strict concavity can be proved by showing that
the log probability density function is twice differ-
entiable and the Hessian is negative definite at any
point of the simplex.

With a concave function and linear constraints,
the KKT conditions are sufficient for optimality. We
need to show that the output of the algorithm satis-
fies the following KKT conditions:

• Stationarity: ∀i, αi−1
xi

= −µi + λ

• Primal feasibility: ∀i, xi ≥ ε and
∑

i xi = 1

• Dual feasibility: ∀i, µi ≥ 0

• Complementary slackness: ∀i, µi(xi − ε) = 0

Let x(k)i and T (k) be the values of xi and T after
k iterations of the algorithm. Suppose the algorithm
terminates after K iterations. So the output of the
algorithm is 〈x(K)

1 , . . . , x
(K)
n 〉, which we will prove

satisfies the KKT conditions.
For any i s.t. x(K)

i > ε, we set µi = 0 and λ =
αi−1
x
(K)
i

to satisfy all the conditions involving x(K)
i .

For any j s.t. x(K)
j = ε, suppose x(k)j < ε, i.e., xj

falls below ε in iteration k and is set to ε afterwards.
Pick some i s.t. i /∈ T (K). After iteration k and k+1
respectively, we have:

x
(k)
i

αi − 1
=

1− ε‖T (k)‖ −∑j′∈T (k+1)\T (k) x
(k)
j′∑

j′ /∈T (k+1) αj′ − 1

x
(k+1)
i

αi − 1
=

1− ε‖T (k+1)‖∑
j′ /∈T (k+1) αj′ − 1

1987

Algorithm 2 Fast mode-finding of mDir(x;α, ε)

1: 〈αk1 , . . . , αkn〉 ← 〈α1, . . . , αn〉 in ascending order
2: sn ← αkn − 1
3: for i = n− 1, . . . , 1 do
4: si = si+1 + αki − 1 . So si =

∑
j≥i(αkj − 1)

5: end for
6: t← 0
7: for i = 1, . . . , n do
8: xki ←

αki
−1
si
× (1− ε t)

9: if xki < ε then
10: xki ← ε , t← t+ 1
11: end if
12: end for
13: return 〈x1, . . . , xn〉

Because for any j′ ∈ T (k+1)\T (k) we have x(k)j′ < ε,
from the two equations above we can deduce that
x
(k)
i > x

(k+1)
i , i.e., xi monotonically decreases over

iterations. Therefore,

(αj − 1)× x
(K)
i

αi − 1
< (αj − 1)× x

(k)
i

αi − 1
= x

(k)
j < ε

So we get

αj − 1

ε
<
αi − 1

x
(K)
i

= λ

So we set µj = λ − αj−1
ε and all the conditions

involving x(K)
j are also satisfied. The proof is now

complete.

The worst-case time complexity of Algorithm 1
is O(n2), but in practice when ε is small, the algo-
rithm almost always terminates after only one iter-
ation, leading to linear running time. We also pro-
vide a different mode-finding algorithm with better
worst-case time complexity Θ(n log n) (Algorithm
2). It differs from Algorithm 1 in that the elements
of α are first sorted, so we can finish computing x
in one pass. It can be more efficient than Algorithm
1 when both ε and n are larger. Its correctness can
be proved in a similar way to that of Algorithm 1.

2.2 Related Distribution

The closest previous work to mDir is the pseudo-
Dirichlet distribution (Larsson and Ugander, 2011).
It also allows negative parameters to achieve
stronger sparsity. However, the pseudo-Dirichlet

distribution is no longer conjugate to the multino-
mial distribution. Consequently, its maximum a pos-
teriori inference becomes complicated and has no
time-complexity guarantee.

3 Learning Mixtures of Gaussians

We first evaluate mDir in learning mixtures of Gaus-
sians from synthetic data. The ground-truth model
contains two bivariate Gaussian components with
equal mixing probabilities (Figure 5(a)). From the
ground-truth we sampled two training datasets of 20
and 200 data points. We then tried to fit a Gaussian
mixture model with five components.

Three approaches were tested: maximum like-
lihood estimation using expectation-maximization
(denoted by EM), which has no sparsity preference;
mean-field variational Bayesian inference with a Dir
prior over the mixing probabilities (denoted by VB-
Dir), which is the most frequently used inference
approach for Dir with α < 1; maximum a posteri-
ori estimation using expectation-maximization with
a mDir prior over the mixing probabilities (denoted
by EM-mDir). The Dir and mDir priors that we used
are both symmetric, i.e., all the elements in vectorα
have the same value, denoted by α. For mDir, we
set ε = 10−5. We ran each approach under each
parameter setting for 300 times with different ran-
dom initialization and then reported the average re-
sults. During learning, we pruned a Gaussian com-
ponent whenever its covariance matrix becomes nu-
merically singular (which means the component is
estimated from only one or two data samples).

Figure 1–4 show the average test set log likeli-
hood and the effective numbers of mixture compo-
nents of the models learned with different values of
parameter α from 20 and 200 samples respectively.
For VB-Dir, we show the results with the α value as
low as 10−5. Further decreasing α did not improve
the results. It can be seen that both VB-Dir and
EM-mDir can achieve better test set likelihood and
lower effective numbers of components than EM
with proper α values. EM-mDir outperforms VB-
Dir even with positive α values, and its performance
is further boosted when α becomes negative. The
improvement of EM-mDir when α becomes neg-
ative is smaller in the 20-sample case than in the
200-sample case. This is because when the train-

1988

‐1.448

‐1.446

‐1.444
0 0.5 1 1.5

EM‐mDir VB‐Dir EM

Figure 1: Test set log likelihood vs. the value of α (20 training

samples)

‐1.448

‐1.446

‐1.444
0 0.5 1 1.5

EM‐mDir VB‐Dir EM

Figure 2: Effective number of components vs. the value of α

(20 training samples)

ing dataset is small, a small positive α value may
already be sufficient in inducing enough sparsity.

Figure 5(b)–(e) show the typical models learned
by VB-Dir and EM-mDir. When the training dataset
is small, both Dir and mDir are effective sparsity
priors that help prune unnecessary mixture compo-
nents, though mDir can be more effective with a neg-
ative α value. When the training dataset is large,
however, the Dir prior is overwhelmed by the like-
lihood in posterior inference and cannot effectively
prune mixture components. On the other hand, with
a highly negative α value, mDir is still effective as a
sparsity prior.

4 Unsupervised Dependency Parsing

Unsupervised dependency parsing aims to learn a
dependency grammar from unannotated text. Pre-
vious work has shown that sparsity regularization
improves the performance of unsupervised depen-
dency parsing (Johnson et al., 2007; Gillenwater et
al., 2010). In our experiments, we tried to learn a
dependency model with valence (DMV) (Klein and
Manning, 2004) from the Wall Street Journal cor-
pus, with section 2-21 for training and section 23

‐1.448

‐1.446

‐1.444
0 0.5 1 1.5

EM‐mDir VB‐Dir EM

Figure 3: Test set log likelihood vs. the value of α (200 training

samples)

‐1.448

‐1.446

‐1.444
0 0.5 1 1.5

EM‐mDir VB‐Dir EM

Figure 4: Effective number of components vs. the value of α

(200 training samples)

for testing. Following previous work, we used sen-
tences of length ≤ 10 with punctuation stripped off.
Since DMV is an unlexicalized model, the number
of dependency rules is small relative to the training
corpus size. This suggests that a strong prior can
be helpful in counterbalancing the influence of the
training data.

We tested six approaches. With a mDir prior,
we tried EM, hard EM, and softmax-EM with σ =
0.5 (Tu and Honavar, 2012) (denoted by EM-mDir,
HEM-mDir, SEM-mDir). With a Dir prior, we tried
variational inference, hard variational inference, and
softmax variational inference with σ = 0.5 (Tu
and Honavar, 2012) (denoted by VB-Dir, HVB-Dir,
SVB-Dir). Again, we used symmetric Dir and mDir
priors. For mDir, we set ε = 10−4 by default.

Figure 6 shows the directed accuracy of parsing
the test corpus using the learned dependency mod-
els. It can be seen that with positive α values, Dir
and mDir have very similar accuracy under the stan-
dard, hard and softmax versions of inference respec-
tively. With negative α values, the accuracy of EM-
mDir decreases; but for HEM-mDir and SEM-mDir,
the accuracy is significantly improved with moder-

1989

0 1 2 3
0

0.5

1

1.5

2

2.5

3

(a) Ground-truth

0 1 2 3
0

0.5

1

1.5

2

2.5

3

(b) VB-Dir, α = 10−5

0 1 2 3
0

0.5

1

1.5

2

2.5

3

(c) EM-mDir, α = −2
0 1 2 3

0

0.5

1

1.5

2

2.5

3

(d) VB-Dir, α = 10−5

0 1 2 3
0

0.5

1

1.5

2

2.5

3

(e) EM-mDir, α = −30
Figure 5: The ground-truth model and four typical models learned by VB-Dir and EM-mDir. (b),(c): 20 training samples. (d),(e):

200 training samples.

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1 1.2

EM‐mDir HEM‐mDir SEM‐mDir VB‐Dir HVB‐Dir SVB‐Dir
r

0.4

0.45

0.5

0.55

0.6

0.65

‐70 ‐60 ‐50 ‐40 ‐30 ‐20 ‐10 0
0.4

0.45

0.5

0.55

0.6

0.65

0 0.25 0.5 0.75 1

Figure 6: Parsing accuracy vs. the value of α

ately negative α values. HEM-mDir consistently
produces accuracy around 0.63 with a large range of
α values (from -10 to -40), which is on a par with the
best published results in learning the original DMV
model (Cohen and Smith, 2009; Gillenwater et al.,
2010; Berg-Kirkpatrick et al., 2010), even though
these previous approaches employed more sophis-
ticated features and advanced regularization tech-
niques than ours.

Figure 7 shows the degree of sparsity of the
learned dependency grammars. We computed the
percentage of dependency rules with probabilities
below 10−3 to measure the degree of sparsity. It can
be seen that even with positive α values, mDir leads
to significantly more sparse grammars than Dir does.
With negative values of α, mDir can induce even
more sparsity.

Figure 8 plots the parsing accuracy with different
values of parameter ε in mDir (α is set to -20). The
best accuracy is achieved when ε is neither too large
nor too small. This is because if ε is too large, the
probabilities of dependency rules become too uni-
form to be discriminative. On the other hand, if ε
is too small, then the probabilities of many depen-
dency rules may become too small in the early stages
of learning and never be able to recover. Similar ob-
servation was made by Johnson et al. (2007) when

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1 1.2

EM‐mDir HEM‐mDir SEM‐mDir VB‐Dir HVB‐Dir SVB‐Dir

Dir

0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9

‐70 ‐60 ‐50 ‐40 ‐30 ‐20 ‐10 0
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0 0.25 0.5 0.75 1

Figure 7: Sparsity of the learned grammars vs. the value of α

r

0.4

0.45

0.5

0.55

0.6

0.65

1.E‐08 1.E‐06 1.E‐04 1.E‐02

EM‐mDir HEM‐mDir SEM‐mDir

Figure 8: Parsing accuracy vs. the value of ε

doing maximum a posteriori estimation with a Dir
prior (hence with ε = 0).

5 Conclusion

We modify the Dirichlet distribution to allow nega-
tive values of parameterα so that it induces stronger
sparsity when used as a prior of a multinomial
distribution. A second parameter ε is introduced
which prevents divergence of the normalization fac-
tor and also acts as a smoothing factor. Our modified
Dirichlet distribution (mDir) is still conjugate to the
multinomial distribution. We propose two efficient
algorithms for finding the mode of mDir. Our ex-
periments on learning Gaussian mixtures and unsu-
pervised dependency parsing show the advantage of
mDir over the Dirichlet distribution.

1990

References
Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté,

John DeNero, and Dan Klein. 2010. Painless unsu-
pervised learning with features. In Human Language
Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 582–590. Association for
Computational Linguistics.

Shay B. Cohen and Noah A. Smith. 2009. Shared logis-
tic normal distributions for soft parameter tying in un-
supervised grammar induction. In HLT-NAACL, pages
74–82.

Jennifer Gillenwater, Kuzman Ganchev, João Graça, Fer-
nando Pereira, and Ben Taskar. 2010. Sparsity in de-
pendency grammar induction. In ACL ’10: Proceed-
ings of the ACL 2010 Conference Short Papers, pages
194–199, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Mark Johnson, Thomas L. Griffiths, and Sharon Goldwa-
ter. 2007. Bayesian inference for pcfgs via markov
chain monte carlo. In HLT-NAACL, pages 139–146.

Dan Klein and Christopher D. Manning. 2004. Corpus-
based induction of syntactic structure: Models of de-
pendency and constituency. In Proceedings of ACL.

Martin O Larsson and Johan Ugander. 2011. A concave
regularization technique for sparse mixture models. In
Advances in Neural Information Processing Systems,
pages 1890–1898.

Kewei Tu and Vasant Honavar. 2012. Unambiguity reg-
ularization for unsupervised learning of probabilistic
grammars. In Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learn-
ing, pages 1324–1334. Association for Computational
Linguistics.

1991

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1992–1997,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Gated Word-Character Recurrent Language Model

Yasumasa Miyamoto
Center for Data Science

New York University
yasumasa.miyamoto@nyu.edu

Kyunghyun Cho
Courant Institute of

Mathematical Sciences
& Centre for Data Science

New York University
kyunghyun.cho@nyu.edu

Abstract

We introduce a recurrent neural network lan-
guage model (RNN-LM) with long short-
term memory (LSTM) units that utilizes both
character-level and word-level inputs. Our
model has a gate that adaptively finds the op-
timal mixture of the character-level and word-
level inputs. The gate creates the final vec-
tor representation of a word by combining
two distinct representations of the word. The
character-level inputs are converted into vec-
tor representations of words using a bidirec-
tional LSTM. The word-level inputs are pro-
jected into another high-dimensional space by
a word lookup table. The final vector rep-
resentations of words are used in the LSTM
language model which predicts the next word
given all the preceding words. Our model
with the gating mechanism effectively utilizes
the character-level inputs for rare and out-of-
vocabulary words and outperforms word-level
language models on several English corpora.

1 Introduction

Recurrent neural networks (RNNs) achieve state-of-
the-art performance on fundamental tasks of natural
language processing (NLP) such as language model-
ing (RNN-LM) (Józefowicz et al., 2016; Zoph et al.,
2016). RNN-LMs are usually based on the word-
level information or subword-level information such
as characters (Mikolov et al., 2012), and predictions
are made at either word level or subword level re-
spectively.

In word-level LMs, the probability distribution
over the vocabulary conditioned on preceding words

is computed at the output layer using a softmax func-
tion. 1 Word-level LMs require a predefined vocab-
ulary size since the computational complexity of a
softmax function grows with respect to the vocab-
ulary size. This closed vocabulary approach tends
to ignore rare words and typos, as the words do not
appear in the vocabulary are replaced with an out-
of-vocabulary (OOV) token. The words appearing
in vocabulary are indexed and associated with high-
dimensional vectors. This process is done through a
word lookup table.

Although this approach brings a high degree of
freedom in learning expressions of words, infor-
mation about morphemes such as prefix, root, and
suffix is lost when the word is converted into an
index. Also, word-level language models require
some heuristics to differentiate between the OOV
words, otherwise it assigns the exactly same vector
to all the OOV words. These are the major limita-
tions of word-level LMs.

In order to alleviate these issues, we introduce
an RNN-LM that utilizes both character-level and
word-level inputs. In particular, our model has a gate
that adaptively choose between two distinct ways to
represent each word: a word vector derived from the
character-level information and a word vector stored
in the word lookup table. This gate is trained to
make this decision based on the input word.

According to the experiments, our model with the
gate outperforms other models on the Penn Treebank
(PTB), BBC, and IMDB Movie Review datasets.
Also, the trained gating values show that the gating
mechanism effectively utilizes the character-level

1softmax function is defined as f(xi) = exp xi∑
k
exp xk

.

1992

information when it encounters rare words.

Related Work Character-level language models that
make word-level prediction have recently been pro-
posed. Ling et al. (2015a) introduce the compo-
sitional character-to-word (C2W) model that takes
as input character-level representation of a word
and generates vector representation of the word us-
ing a bidirectional LSTM (Graves and Schmidhu-
ber, 2005). Kim et al. (2015) propose a convolu-
tional neural network (CNN) based character-level
language model and achieve the state-of-the-art per-
plexity on the PTB dataset with a significantly fewer
parameters.

Moreover, word–character hybrid models have
been studied on different NLP tasks. Kang et
al. (2011) apply a word–character hybrid language
model on Chinese using a neural network language
model (Bengio et al., 2003). Santos and Zadrozny
(2014) produce high performance part-of-speech
taggers using a deep neural network that learns
character-level representation of words and asso-
ciates them with usual word representations. Bo-
janowski et al. (2015) investigate RNN models that
predict characters based on the character and word
level inputs. Luong and Manning (2016) present
word–character hybrid neural machine translation
systems that consult the character-level information
for rare words.

2 Model Description

The model architecture of the proposed word–
character hybrid language model is shown in Fig. 1.

Word Embedding At each time step t, both the
word lookup table and a bidirectional LSTM take
the same word wt as an input. The word-level input
is projected into a high-dimensional space by a word
lookup table E ∈ R|V |×d, where |V | is the vocabu-
lary size and d is the dimension of a word vector:

xword
wt

= E>wwt , (1)

where wwt ∈ R|V | is a one-hot vector whose i-th el-
ement is 1, and other elements are 0. The character–
level input is converted into a word vector by us-
ing a bidirectional LSTM. The last hidden states of
forward and reverse recurrent networks are linearly

Figure 1: The model architecture of the gated word-character
recurrent language model. wt is an input word at t. xword

wt
is

a word vector stored in the word lookup table. xchar
wt

is a word
vector derived from the character-level input. gwt is a gating
value of a word wt. ŵt+1 is a prediction made at t.

combined:

xchar
wt

= Wfhf
wt

+Wrhr
wt

+ b, (2)

where hf
wt ,h

r
wt
∈ Rd are the last states of

the forward and the reverse LSTM respectively.
Wf ,Wr ∈ Rd×d and b ∈ Rd are trainable param-
eters, and xchar

wt
∈ Rd is the vector representation of

the word wt using a character input. The generated
vectors xword

wt
and xchar

wt
are mixed by a gate gwt as

gwt = σ
(
v>g x

word
wt

+ bg

)

xwt = (1− gwt)x
word
wt

+ gwtx
char
wt

,
(3)

where vg ∈ Rd is a weight vector, bg ∈ R is
a bias scalar, σ(·) is a sigmoid function. This gate
value is independent of a time step. Even if a word
appears in different contexts, the same gate value
is applied. Hashimoto and Tsuruoka (2016) apply
a very similar approach to compositional and non-
compositional phrase embeddings and achieve state-
of-the-art results on compositionality detection and
verb disambiguation tasks.

Language Modeling The output vector xwt is used
as an input to a LSTM language model. Since the
word embedding part is independent from the lan-
guage modeling part, our model retains the flexibil-
ity to change the architecture of the language model-
ing part. We use the architecture similar to the non-
regularized LSTM model by Zaremba et al. (2014).

1993

PTB BBC IMDB
Model Validation Test Validation Test Validation Test

Gated Word & Char, adaptive 117.49 113.87 78.56 87.16 71.99 72.29
Gated Word & Char, adaptive (Pre-train) 117.03 112.90 80.37 87.51 71.16 71.49
Gated Word & Char, g = 0.25 119.45 115.55 79.67 88.04 71.81 72.14
Gated Word & Char, g = 0.25 (Pre-train) 117.01 113.52 80.07 87.99 70.60 70.87
Gated Word & Char, g = 0.5 126.01 121.99 89.27 94.91 106.78 107.33
Gated Word & Char, g = 0.5 (Pre-train) 117.54 113.03 82.09 88.61 109.69 110.28
Gated Word & Char, g = 0.75 135.58 135.00 105.54 111.47 115.58 116.02
Gated Word & Char, g = 0.75 (Pre-train) 179.69 172.85 132.96 136.01 106.31 106.86
Word Only 118.03 115.65 84.47 90.90 72.42 72.75
Character Only 132.45 126.80 88.03 97.71 98.10 98.59
Word & Character 125.05 121.09 88.77 95.44 77.94 78.29
Word & Character (Pre-train) 122.31 118.85 84.27 91.24 80.60 81.01
Non-regularized LSTM (Zaremba, 2014) 120.7 114.5 - - - -

Table 1: Validation and test perplexities on Penn Treebank (PTB), BBC, IMDB Movie Reviews datasets.

One step of LSTM computation corresponds to

ft = σ (Wfxwt +Ufht−1 + bf)

it = σ (Wixwt +Uiht−1 + bi)

c̃t = tanh (Wc̃xwt +Uc̃ht−1 + bc̃)

ot = σ (Woxwt +Uoht−1 + bo)

ct = ft � ct−1 + it � c̃t

ht = ot � tanh (ct) ,

(4)

where Ws,Us ∈ Rd×d and bs ∈ Rd for s ∈
{f, i, c̃, o} are parameters of LSTM cells. σ(·) is
an element-wise sigmoid function, tanh(·) is an
element-wise hyperbolic tangent function, and � is
an element-wise multiplication.

The hidden state ht is affine-transformed fol-
lowed by a softmax function:

Pr (wt+1 = k|w<t+1) =
exp

(
v>k ht + bk

)
∑

k′ exp
(
v>k′ht + bk′

) ,
(5)

where vk is the k-th column of a parameter matrix
V ∈ Rd×|V | and bk is the k-th element of a bias
vector b ∈ Rd. In the training phase, we minimizes
the negative log-likelihood with stochastic gradient
descent.

3 Experimental Settings

We test five different model architectures on the
three English corpora. Each model has a unique
word embedding method, but all models share the
same LSTM language modeling architecture, that

has 2 LSTM layers with 200 hidden units, d = 200.
Except for the character only model, weights in the
language modeling part are initialized with uniform
random variables between -0.1 and 0.1. Weights of
a bidirectional LSTM in the word embedding part
are initialized with Xavier initialization (Glorot and
Bengio, 2010). All biases are initialized to zero.

Stochastic gradient decent (SGD) with mini-batch
size of 32 is used to train the models. In the first k
epochs, the learning rate is 1. After the k-th epoch,
the learning rate is divided by l each epoch. k man-
ages learning rate decay schedule, and l controls
speed of decay. k and l are tuned for each model
based on the validation dataset.

As the standard metric for language modeling,
perplexity (PPL) is used to evaluate the model per-
formance. Perplexity over the test set is computed
as PPL = exp

(
− 1

N

∑N
i=1 log p(wi|w<i)

)
, where N

is the number of words in the test set, and p(wi|w<i)

is the conditional probability of a word wi given all
the preceding words in a sentence. We use Theano
(2016) to implement all the models. The code for
the models is available from https://github.com/
nyu-dl/gated_word_char_rlm.

3.1 Model Variations

Word Only (baseline) This is a traditional word-
level language model and is a baseline model for our
experiments.

Character Only This is a language model where
each input word is represented as a character se-

1994

Train Validation test

PTB # Sentences 42k 3k 4k
Word 888k 70k 79k

BBC # Sentences 37k 2k 2k
Word 890k 49k 53k

IMDB # Sentences 930k 153k 152k
Word 21M 3M 3M

Table 2: The size of each dataset.

quence similar to the C2W model in (Ling et al.,
2015a). The bidirectional LSTMs have 200 hidden
units, and their weights are initialized with Xavier
initialization. In addition, the weights of the forget,
input, and output gates are scaled by a factor of 4.
The weights in the LSTM language model are also
initialized with Xavier initialization. All biases are
initialized to zero. A learning rate is fixed at 0.2.

Word & Character This model simply concate-
nates the vector representations of a word con-
structed from the character input xchar

wt
and the word

input xword
wt

to get the final representation of a word
xwt , i.e.,

xwt =
[
xchar
wt

;xword
wt

]
. (6)

Before being concatenated, the dimensions of xchar
wt

and xword
wt

are reduced by half to keep the size of xwt

comparably to other models.

Gated Word & Character, Fixed Value This
model uses a globally constant gating value to com-
bine vector representations of a word constructed
from the character input xchar

wt
and the word input

xword
wt

as

xwt = (1− g)xword
wt

+ gxchar
wt

, (7)

where g is some number between 0 and 1. We
choose g = {0.25, 0.5, 0.75}.
Gated Word & Character, Adaptive This model
uses adaptive gating values to combine vector repre-
sentations of a word constructed from the character
input xchar

wt
and the word input xword

wt
as the Eq (3).

3.2 Datasets
Penn Treebank We use the Penn Treebank Corpus
(Marcus et al., 1993) preprocessed by Mikolov et
al. (2010). We use 10k most frequent words and
51 characters. In the training phase, we use only
sentences with less than 50 words.

BBC We use the BBC corpus prepared by Greene
& Cunningham (2006). We use 10k most frequent
words and 62 characters. In the training phase, we
use sentences with less than 50 words.

IMDB Movie Reviews We use the IMDB Move
Review Corpus prepared by Maas et al. (2011). We
use 30k most frequent words and 74 characters. In
the training phase, we use sentences with less than
50 words. In the validation and test phases, we use
sentences with less than 500 characters.

3.3 Pre-training

For the word–character hybrid models, we applied
a pre-training procedure to encourage the model
to use both representations. The entire model is
trained only using the word-level input for the first
m epochs and only using the character-level input in
the next m epochs. In the first m epochs, a learn-
ing rate is fixed at 1, and a smaller learning rate
0.1 is used in the next m epochs. After the 2m-th
epoch, both the character-level and the word-level
inputs are used. We use m = 2 for PTB and BBC,
m = 1 for IMDB.

Lample et al. (2016) report that a pre-trained
word lookup table improves performance of their
word & character hybrid model on named entity
recognition (NER). In their method, word embed-
dings are first trained using skip-n-gram (Ling et
al., 2015b), and then the word embeddings are fine-
tuned in the main training phase.

4 Results and Discussion

4.1 Perplexity

Table 1 compares the models on each dataset. On
the PTB and IMDB Movie Review dataset, the gated
word & character model with a fixed gating value,
gconst = 0.25, and pre-training achieves the lowest
perplexity . On the BBC datasets, the gated word
& character model without pre-training achieves the
lowest perplexity.

Even though the model with fixed gating value
performs well, choosing the gating value is not clear
and might depend on characteristics of datasets such
as size. The model with adaptive gating values does
not require tuning it and achieves similar perplexity.

1995

(a) Gated word & character. (b) Gated word & character with pre-taining.

Figure 2: A log-log plot of frequency ranks and gating values trained in the gated word & character models with/without pre-
training.

4.2 Values of Word–Character Gate

The BBC and IMDB datasets retain out-of-
vocabulary (OOV) words while the OOV words
have been replaced by <unk> in the Penn Treebank
dataset. On the BBC and IMDB datasets, our model
assigns a significantly high gating value on the un-
known word token UNK compared to the other words.

We observe that pre-training results the different
distributions of gating values. As can be seen in
Fig. 2 (a), the gating value trained in the gated word
& character model without pre-training is in general
higher for less frequent words, implying that the re-
current language model has learned to exploit the
spelling of a word when its word vector could not
have been estimated properly. Fig. 2 (b) shows that
the gating value trained in the gated word & charac-
ter model with pre-training is less correlated with the
frequency ranks than the one without pre-training.
The pre-training step initializes a word lookup table
using the training corpus and includes its informa-
tion into the initial values. We hypothesize that the
recurrent language model tends to be word–input–
oriented if the informativeness of word inputs and
character inputs are not balanced especially in the
early stage of training.

Although the recurrent language model with or
without pre-training derives different gating values,
the results are still similar. We conjecture that the
flexibility of modulating between word-level and
character-level representations resulted in a better
language model in multiple ways.

Overall, the gating values are small. However,

this does not mean the model does not utilize the
character-level inputs. We observed that the word
vectors constructed from the character-level inputs
usually have a larger L2 norm than the word vec-
tors constructed from the word-level inputs do. For
instance, the mean values of L2 norm of the 1000
most frequent words in the IMDB training set are
52.77 and 6.27 respectively. The small gate values
compensate for this difference.

5 Conclusion

We introduced a recurrent neural network language
model with LSTM units and a word–character gate.
Our model was empirically found to utilize the
character-level input especially when the model en-
counters rare words. The experimental results sug-
gest the gate can be efficiently trained so that the
model can find a good balance between the word-
level and character-level inputs.

Acknowledgments

This work is done as a part of the course DS-
GA 1010-001 Independent Study in Data Science
at the Center for Data Science, New York Univer-
sity. KC thanks the support by Facebook, Google
(Google Faculty Award 2016) and NVidia (GPU
Center of Excellence 2015-2016). YM thanks Ken-
taro Hanaki, Israel Malkin, and Tian Wang for their
helpful feedback. KC and YM thanks the anony-
mous reviewers for their insightful comments and
suggestions.

1996

References
[Bengio et al.2003] Yoshua Bengio, Réjean Ducharme,

Pascal Vincent, and Christian Janvin. 2003. A neu-
ral probabilistic language model. Journal of Machine
Learning Research, 3:1137–1155.

[Bojanowski et al.2015] Piotr Bojanowski, Armand
Joulin, and Tomas Mikolov. 2015. Alternative struc-
tures for character-level rnns. CoRR, abs/1511.06303.

[dos Santos and Zadrozny2014] Cícero Nogueira dos
Santos and Bianca Zadrozny. 2014. Learning
character-level representations for part-of-speech
tagging. In Proceedings of the 31th International
Conference on Machine Learning, ICML 2014,
Beijing, China, 21-26 June 2014, pages 1818–1826.

[Glorot and Bengio2010] Xavier Glorot and Yoshua Ben-
gio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of
the Thirteenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2010, Chia La-
guna Resort, Sardinia, Italy, May 13-15, 2010, pages
249–256.

[Graves and Schmidhuber2005] Alex Graves and Jürgen
Schmidhuber. 2005. Framewise phoneme classifica-
tion with bidirectional LSTM and other neural network
architectures. Neural Networks, 18(5-6):602–610.

[Greene and Cunningham2006] Derek Greene and
Padraig Cunningham. 2006. Practical solutions to the
problem of diagonal dominance in kernel document
clustering. In Machine Learning, Proceedings of the
Twenty-Third International Conference (ICML 2006),
Pittsburgh, Pennsylvania, USA, June 25-29, 2006,
pages 377–384.

[Hashimoto and Tsuruoka2016] Kazuma Hashimoto and
Yoshimasa Tsuruoka. 2016. Adaptive joint learning
of compositional and non-compositional phrase em-
beddings. CoRR, abs/1603.06067.

[Józefowicz et al.2016] Rafal Józefowicz, Oriol Vinyals,
Mike Schuster, Noam Shazeer, and Yonghui Wu.
2016. Exploring the limits of language modeling.
CoRR, abs/1602.02410.

[Kang et al.2011] Moonyoung Kang, Tim Ng, and Long
Nguyen. 2011. Mandarin word-character hybrid-
input neural network language model. In INTER-
SPEECH 2011, 12th Annual Conference of the In-
ternational Speech Communication Association, Flo-
rence, Italy, August 27-31, 2011, pages 625–628.

[Kim et al.2015] Yoon Kim, Yacine Jernite, David Son-
tag, and Alexander M. Rush. 2015. Character-aware
neural language models. CoRR, abs/1508.06615.

[Lample et al.2016] Guillaume Lample, Miguel Balles-
teros, Sandeep Subramanian, Kazuya Kawakami, and
Chris Dyer. 2016. Neural architectures for named en-
tity recognition. CoRR, abs/1603.01360.

[Ling et al.2015a] Wang Ling, Tiago Luís, Luís Marujo,
Rámon Fernandez Astudillo, Silvio Amir, Chris Dyer,
Alan W Black, and Isabel Trancoso. 2015a. Finding
function in form: Compositional character models for
open vocabulary word representation. EMNLP.

[Ling et al.2015b] Wang Ling, Yulia Tsvetkov, Silvio
Amir, Ramon Fermandez, Chris Dyer, Alan W. Black,
Isabel Trancoso, and Chu-Cheng Lin. 2015b. Not
all contexts are created equal: Better word represen-
tations with variable attention. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portu-
gal, September 17-21, 2015, pages 1367–1372.

[Luong and Manning2016] Minh-Thang Luong and
Christopher D. Manning. 2016. Achieving open
vocabulary neural machine translation with hybrid
word-character models. CoRR, abs/1604.00788.

[Maas et al.2011] Andrew L. Maas, Raymond E. Daly,
Peter T. Pham, Dan Huang, Andrew Y. Ng, and
Christopher Potts. 2011. Learning word vectors for
sentiment analysis. In The 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, Proceedings of the Con-
ference, 19-24 June, 2011, Portland, Oregon, USA,
pages 142–150.

[Marcus et al.1993] Mitchell P. Marcus, Beatrice San-
torini, and Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of english: The penn tree-
bank. Computational Linguistics, 19(2):313–330.

[Mikolov et al.2010] Tomas Mikolov, Martin Karafiát,
Lukás Burget, Jan Cernocký, and Sanjeev Khudan-
pur. 2010. Recurrent neural network based language
model. In INTERSPEECH 2010, 11th Annual Confer-
ence of the International Speech Communication As-
sociation, Makuhari, Chiba, Japan, September 26-30,
2010, pages 1045–1048.

[Mikolov et al.2012] Tomas Mikolov, Ilya Sutskever,
Anoop Deoras, Hai-Son Le, and Stefan Kombrink.
2012. Subword language modeling with neural net-
works.

[Theano Development Team2016] Theano Development
Team. 2016. Theano: A Python framework for fast
computation of mathematical expressions. arXiv e-
prints, abs/1605.02688, May.

[Zaremba et al.2014] Wojciech Zaremba, Ilya Sutskever,
and Oriol Vinyals. 2014. Recurrent neural network
regularization. CoRR, abs/1409.2329.

[Zoph et al.2016] Barret Zoph, Ashish Vaswani, Jonathan
May, and Kevin Knight. 2016. Simple, fast
noise-contrastive estimation for large rnn vocabularies.
NAACL.

1997

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1998–2004,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Unsupervised Word Alignment by Agreement Under ITG Constraint

Hidetaka Kamigaito1

kamigaito@lr.pi.titech.ac.jp
Akihiro Tamura2

akihiro.tamura@nict.go.jp

Hiroya Takamura1

takamura@pi.titech.ac.jp
Manabu Okumura1

oku@pi.titech.ac.jp
Eiichiro Sumita2

eiichiro.sumita@nict.go.jp
1Tokyo Institute of Technology

2National Institute of Information and Communication Technology

Abstract

We propose a novel unsupervised word align-
ment method that uses a constraint based on
Inversion Transduction Grammar (ITG) parse
trees to jointly unify two directional mod-
els. Previous agreement methods are not
helpful for locating alignments with long dis-
tances because they do not use any syntactic
structures. In contrast, the proposed method
symmetrizes alignments in consideration of
their structural coherence by using the ITG
constraint softly in the posterior regulariza-
tion framework (Ganchev et al., 2010). The
ITG constraint is also compatible with word
alignments that are not covered by ITG parse
trees. Hence, the proposed method is ro-
bust to ITG parse errors compared to other
alignment methods that directly use an ITG
model. Compared to the HMM (Vogel et al.,
1996), IBM Model 4 (Brown et al., 1993),
and the baseline agreement method (Ganchev
et al., 2010), the experimental results show
that the proposed method significantly im-
proves alignment performance regarding the
Japanese-English KFTT and BTEC corpus,
and in translation evaluation, the proposed
method shows comparable or statistical sig-
nificantly better performance on the Japanese-
English KFTT and IWSLT 2007 corpus.

1 Introduction

Word alignment is an important component of sta-
tistical machine translation (SMT) systems such as
phrase-based SMT (Koehn et al., 2003) and hier-
archical phrase-based SMT (Chiang, 2007). In ad-
dition, word alignment is utilized for multi-lingual

tasks other than SMT, such as bilingual lexicon ex-
traction (Liu et al., 2013). The most conventional
approaches to word alignment are the IBM models
(Brown et al., 1993) and the HMM model (Vogel et
al., 1996), which align each source word to a sin-
gle target word (i.e., directional models). In these
models, bidirectional word alignments are tradition-
ally induced by combining the Viterbi alignments in
each direction using heuristics (Och and Ney, 2003).
Matusov et al. (2004) exploited a symmetrized pos-
terior probability for bidirectional word alignments.
In these methods, each directional model is indepen-
dently trained.

Previous researches have improved bidirectional
word alignments by jointly training two directional
models to agree with each other (Liang et al., 2006;
Graça et al., 2008; Ganchev et al., 2010). Such
a constraint on the agreement in a training phase
is one of the most effective approaches to word
alignment. However, none of the previous agree-
ment constraints have taken into account syntactic
structures. Therefore, they have difficulty recover-
ing the alignments with long distances, which fre-
quently occur, especially in grammatically different
language pairs.

Some unsupervised word alignment models such
as DeNero and Klein (2007) and Kondo et al. (2013),
have been based on syntactic structures. In particu-
lar, it has been proven that Inversion Transduction
Grammar (ITG) (Wu, 1997), which captures struc-
tural coherence between parallel sentences, helps in
word alignment (Zhang and Gildea, 2004; Zhang
and Gildea, 2005). However, ITG has not been in-
troduced into an agreement constraint so far.

1998

We propose an alignment method that uses an
ITG constraint to encourage agreement between two
directional models in consideration of their struc-
tural coherence. Our ITG constraint is based on the
Viterbi alignment decided by a bracketing ITG parse
tree, and used as a soft constraint in the posterior
regularization framework (Ganchev et al., 2010). In
addition, our ITG constraint works also on word
alignments that are not covered by ITG parse trees,
as a standard symmetric constraint. Hence, the pro-
posed method is robust to ITG parse errors com-
pared to an alignment method that uses an ITG di-
rectly in model training (e.g., Zhang and Gildea
(2004, 2005)).

Word alignment evaluations show that the pro-
posed method achieves significant gains in F-
measure and alignment error rate (AER) on the
KFTT (Neubig, 2011) and the BTEC Japanese-
English (Ja-En) corpus (Takezawa et al., 2002). Ma-
chine translation evaluations show that our con-
straint significantly outperforms or is comparable to
the baseline symmetric constraint (Ganchev et al.,
2010) in BLEU on the KFTT Ja-En and IWSLT
2007 Ja-En corpus (Fordyce, 2007).

2 ITG Constraint in the Posterior
Regularization Framework

2.1 Overview
The proposed method introduces an ITG con-
straint into the posterior regularization framework
(Ganchev et al., 2010) in model training. The pro-
posed model is trained as follows, where agreement
constraints are imposed in the E-step of the EM al-
gorithm1:
E-step:
1. Calculate a source-to-target posterior probability
−→pθ(z|x) and a target-to-source posterior probabil-
ity←−pθ(z|x) for each bilingual sentence x = {f , e}
under the current model parameters θ, where z de-
notes an alignment in a sentence pair x. In particu-
lar, zi,j=1, if fi is aligned to ej (otherwise zi,j=0).
2. Repeat the following steps for all sentence pairs
in the training data.
(a) Find the Viterbi alignment z∗ through ITG pars-
ing (see Section 2.2). Here, z∗i,j=1, if fi is aligned

1Step 1 in the E and M steps can be performed in the same
way as in Ganchev et al. (2010).

to ej (otherwise z∗i,j=0).
(b) Symmetrize−→pθ(z|x) and←−pθ(z|x) under the con-
straint of z∗ (see Section 2.3 and 2.4).
M-step:
1. Estimate all parameters θ based on the
symmetrized posterior probabilities −→qλ(z|x) and
←−qλ(z|x) (see Section 2.3 and 2.4).

2.2 ITG Parsing

In this section, we present our ITG parsing method,
which uses bracketing ITG (Wu, 1997). The rules
of the bracketing ITG are as follows: A → ⟨Y/Z⟩,
A→ [Y/Z], A→ fi/ej , A→ fi/ϵ, and A→ ϵ/ej ,
where A, Y , and Z are non-terminal symbols, fi and
ej are terminal strings, ϵ is a null symbol, ⟨⟩ denotes
the inversion of two phrase positions, and [] denotes
the reversion of two phrase positions.

In general, a bracketing ITG has O(|f |3|e|3) time
complexity for parsing a sentence pair {f , e}, where
|f | and |e| are the lengths of f and e. For ef-
ficient ITG parsing, we use the two-step parsing
approach (Xiao et al., 2012), which has been pro-
posed to induce Synchronous Context Free Gram-
mar (SCFG) using n-best pruning2 with time com-
plexity O(|f |3). Because ITG is a kind of SCFG,
this method can be adopted for our ITG parsing. Our
two-step parsing first parses a bilingual sentence in
the bottom up manner, and then derives the Viterbi
alignment z∗ in the top down manner.

To parse a bilingual sentence x = {f , e}, we de-
fine the probability for each ITG rule. The probabil-
ity of a rule A→ fi/ej is defined as:

P (A→ fi/ej) =
−→p θ(zi,j = 1|x) +←−p θ(zi,j = 1|x)

2
.

We provide a constant value pnull
3 both to P (A →

ϵ/ej) and P (A → fi/ϵ). To reduce computa-
tional cost, the probabilities of phrasal rules P (A→
⟨Y/Z⟩) and P (A → [Y/Z]) are not trained, which
are set to 0.5 following Saers et al. (2012). In
addition to the probability of each ITG rule, we
must provide a probability to an one-to-many align-
ment because the two step parsing approach must
pre-compute probabilities for all one-to-many align-
ments in the first step. An one-to-many alignment

2We set n to 30 in our experiments.
3We set pnull to 10−5.

1999

can be decomposed to a rule A → fi/ej and some
A→ ϵ/ej rules under the ITG form. We select a set
of rules with the highest probability for an one-to-
many alignment using Viterbi algorithm, which has
a complexity of O(|e|).

2.3 Previous Agreement Constraint
This section provides an overview of the previ-
ous agreement constraint proposed by Ganchev et
al. (2010), which is our baseline. In the poste-
rior regularization framework, source-to-target and
target-to-source posterior probabilities −→p θ(z|x)
and ←−p θ(z|x) are replaced with −→q λ(z|x) and
←−q λ(z|x), defined as follows:

−→q λ(z|x) = −→p θ(z|x) · exp(−λ·φagree(x,z))/Z−→q ,
←−q λ(z|x) =←−p θ(z|x) · exp(−λ·φagree(x,z))/Z←−q ,

where Z−→q is a normalization term for∑
z
−→q λ(z|x) = 1 (Z←−q is analogous) and λ

is a vector of weight parameters that controls the
balance between two directional posterior prob-
abilities. Here, φagree is a feature of agreement
constraint, which assigns each alignment direction
to a sign (i.e., +1 or -1). In particular, φagree is
defined as follows:

φ
agree
i,j (x, z) =

⎧
⎪⎨
⎪⎩

+1 (z ∈ ←−Z) ∧ (zi,j=1),
−1 (z ∈ −→Z) ∧ (zi,j=1),

0 otherwise,

where
−→
Z and

←−
Z are sets of possible alignments

generated by source-to-target and target-to-source
alignment models, respectively. So that −→q λi,j

(zi,j=
1|x) and ←−q λi,j

(zi,j =1|x) become equal probabil-
ities for each i, j (i.e., −→q λ(z|x) and ←−q λ(z|x) are
symmetrical), the agreement constraint is defined as
follows:

∀i, ∀j,−→q λi,j (zi,j=1|x)−←−q λi,j (zi,j=1|x) = 0. (1)

To satisfy the constraint (1), each λi,j is updated by
a stochastic gradient descent in the E-step of EM al-
gorithm.

2.4 Proposed ITG Constraint
This section presents the proposed ITG constraint
based on the Viterbi alignment z∗, which has pre-
viously been identified by the bracketing ITG pars-
ing. The ITG constraint uses a feature φITG instead

of φagree:

φITG
i,j (x, z)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
←−
Y (i, j)∧(z∗i,j=1)∧(δi,j(x, z)<0),

+1
←−
Y (i, j)∧(z∗i,j=1)∧(δi,j(x, z)>0),

−1
−→
Y (i, j)∧(z∗i,j=1)∧(δi,j(x, z)<0),

0
−→
Y (i, j)∧(z∗i,j=1)∧(δi,j(x, z)>0),

+1
←−
Y (i, j)∧(z∗i,j ̸=1),

−1
−→
Y (i, j)∧(z∗i,j ̸=1),

0 otherwise,

where
←−
Y (i, j) = (z ∈ ←−Z) ∧ (zi,j =1),

−→
Y (i, j) =

(z ∈ −→Z) ∧ (zi,j =1), and δi,j(x, z) = −→p θ(zi,j =
1|x) − ←−p θ(zi,j =1|x). Similarly to φagree, φITG is
imposed on −→q λi,j

(zi,j =1|x) and ←−q λi,j
(zi,j =1|x)

under the constraint (1). If z∗i,j ̸= 1, our feature
φITG

i,j operates similarly to φ
agree
i,j according to the

last three rules. If z∗i,j =1, φITG adjusts probabili-
ties of alignments −→q λi,j

(zi,j=1|x) and←−q λi,j
(zi,j=

1|x) by increasing the lower probability without
decreasing the higher probability according to the
first four rules. For example, when z∗i,j = 1 and
−→q λi,j

(zi,j = 1|x) is larger than ←−q λi,j
(zi,j = 1|x),

←−q λi,j
(zi,j=1|x) is increased until←−q λi,j

(zi,j=1|x)
equals −→q λi,j

(zi,j=1|x) according to the second and
fourth rules. When z∗i,j =1 and ←−q λi,j

(zi,j =1|x) is
larger than −→q λi,j

(zi,j=1|x), −→q λi,j
(zi,j=1|x) is in-

creased until ←−q λi,j
(zi,j =1|x) equals −→q λi,j

(zi,j =
1|x) according to the first and third rules. As a re-
sult, probabilities of word alignments in z∗ tend to
be higher than those of the other alignments.

Task Corpus Train Dev Test
Word Hansard 1.13M 37 447

Alignment KFTT 330k 653 582
BTEC 10k 0 10k

Machine KFTT 330k 1.17k 1.16k
Translation IWSLT2007 40k 2.5k 489

Table 1: The numbers of parallel sentences for each data set.

3 Evaluation

We compared our proposed ITG constraint (itg) with
the baseline agreement constraint (Ganchev et al.,
2010) (sym) on word alignment and machine trans-
lation tasks. In word alignment evaluations, we used
the French-English (Fr-En) Hansard Corpus (Mihal-
cea and Pedersen, 2003), Ja-En KFTT4 (Neubig,

4We used the cleaned dataset distributed on the KFTT offi-
cial web site (http://www.phontron.com/kftt/index.html).

2000

Hansard Fr-En KFTT Ja-En BTEC Ja-En
Method F-measure AER F-measure AER F-measure AER
HMM+none 0.7900 0.0646 0.4623 0.5377 0.4425 0.5575
HMM+sym 0.7923 0.0597 0.4678 0.5322 0.4534 0.5466
HMM+itg 0.7869 0.0629 0.4690 0.5310 0.4499 0.5501
IBM Model 4+none 0.7780 0.0775 0.5379 0.4621 0.4454 0.5546
IBM Model 4+sym 0.7800 0.0693 0.5545 0.4455 0.4761 0.5239
IBM Model 4+itg 0.7791 0.0710 0.5613 0.4387 0.4809 0.5191

Table 2: Word alignment performance.

Method KFTT Ja-En IWSLT2007 Ja-En
HMM+none 18.9 46.4
HMM+sym 18.9 46.3
HMM+itg 19.2 47.0

IBM Model 4+none 18.8 46.7†

IBM Model 4+sym 19.3† 45.9
IBM Model 4+itg 19.4 46.7

Table 3: Machine translation performance.

2011), and Ja-En BTEC Corpus (Takezawa et al.,
2002). We used the first 10K sentence pairs in the
training data for the IWSLT 2007 translation task,
which were manually annotated with word align-
ment (Chooi-Ling et al., 2010), as the BTEC Cor-
pus. In translation evaluations, we used the KFTT
and Ja-En IWSLT 2007 translation tasks5.

Table 1 shows each corpus size. In each training
data set, all words were lowercased and sentences
with over 80 words on either side were removed.

3.1 Word Alignment Evaluation

We measured the performance of word alignment
with AER and F-measure (Och and Ney, 2003). We
used only sure alignments for calculating F-measure
(Fraser and Marcu, 2007)6. We introduced itg and
sym into the HMM and IBM Model 4. Training is
bootstrapped from IBM Model 1, followed by HMM
and IBM Model 4. All models were trained with five
consecutive iterations. In the many-to-many align-
ment extraction, we used the filtering method (Ma-
tusov et al., 2004), where a threshold is optimized on
the corresponding AER of the baseline model (i.e.,
HMM+sym or IBM Model 4+sym)7.

5BTEC Corpus is a subset of IWSLT 2007. To uniform
tokenization, we retokenized all Japanese sentences both in
IWSLT 2007 and BTEC Corpus using ChaSen (Asahara and
Matsumoto, 2000).

6Since there exists no distinction for sure-possible align-
ments in the KFTT and BTEC data sets, we treat all alignments
of them as sure alignments.

7We tried values from 0.1 to 1.0 at an interval of 0.1.

Table 2 shows the results of word alignment eval-
uations8, where none denotes that the model has
no constraint. In KFTT and BTEC Corpus, itg
achieved significant improvement against sym and
none on IBM Model 4 (p ≤ 0.05)9. However, in the
Hansard Corpus, itg shows no improvement against
sym. This indicates that capturing structural coher-
ence by itg yields a significant benefit to word align-
ment in a linguistically different language pair such
as Ja-En. For example, some function words appear
more than once in both a source and target sentence,
and they are not symmetrically aligned with each
other, especially in regards to the Ja-En language
pair. Although the baseline methods tend to be un-
able to align such long-distance word pairs, the pro-
posed method can correctly catch them because itg
can determine the relation of long-distance words.
We discuss more details about the effectiveness of
the ITG constraint in Section 4.1.

3.2 Translation Evaluation
We measured translation performance with BLEU
(Papineni et al., 2002). All language models are
5-gram and trained using SRILM (Stolcke and oth-
ers, 2002) on target side sentences in the training
data. When extracting phrases, we apply the method
proposed by Matusov et al. (2004), where many-to-
many alignments are generated based on the aver-
ages of the posterior probabilities from two direc-
tional models10.

We used the Moses phrase-based SMT systems
(Koehn et al., 2007) for decoding. We set the
distortion-limit parameter to infinite11, and other pa-

8The values in bold indicate the best score.
9The statistical significance test was performed by the paired

bootstrap resampling (Koehn, 2004).
10The posterior thresholds were decided in the same way as

the word alignment evaluation.
11This setting is generally used for Ja-En translation tasks

(Murakami et al., 2007).

2001

Figure 1: Word alignment examples on the BTEC corpus.

rameters as default settings. Parameter tuning was
conducted by 100-best batch MIRA (Cherry and
Foster, 2012) with 25 iterations.

Table 3 shows the average BLEU of five differ-
ent tunings12. In both KFTT and IWSLT 2007, itg
achieved significant improvement against both none
and sym on HMM model. On IBM Model4, itg sig-
nificantly outperforms none and is comparable to
sym in KFTT, while itg significantly outperforms
sym and is comparable to none in IWSLT 2007.

4 Discussion

4.1 Effects of ITG Constraints on Word
Alignment and Translation

We discuss the effect of our ITG constraint on word
alignment and machine translation. As described
in Section 2, the ITG constraint is imposed in the
E-step of the EM algorithm, not in decoding steps.
Therefore, for the sentences that are not contained in
the training corpus, the word alignments are calcu-
lated using the emission, transition and fertility ta-
bles trained with the constraint. It means that the ef-
fects of the constraint are implicitly reflected in the
alignment results. On the other hand, the effects of
the constraint are directly reflected in the machine
translation results because the phrase tables are ex-
tracted from the posterior probabilities calculated in
training steps. Therefore, our ITG constraint has a
potential to achieve a large improvement of machine
translation performance relative to an improvement
of alignment performance, such as IBM Model 4+itg

12The values in bold represent the best score, and † indicates
that the comparisons are not significant over the corresponding
model (i.e., HMM+itg or IBM Model 4+itg) according to the
bootstrap resampling test (p ≤ 0.05). We used multeval (Clark
et al., 2011) for significance testing.

vs. IBM Model 4+sym on the BTEC corpus. We
would like to improve our model by imposing our
ITG constraint on decoding steps in future.

4.2 Comparison between Symmetric and ITG
Constraint

In KFTT, itg is comparable to sym on IBM Model
4 in machine translation; however, itg achieved sig-
nificant improvement in terms of word alignment,
which follows the previous reports that better word
alignment does not always result in better transla-
tion (Ganchev et al., 2008; Yang et al., 2013). On
the other hand, in BTEC, itg outperforms sym both
on word alignment and machine translation. Fig-
ure 1 shows that IBM Model 4+sym often generates
wrong gappy alignments such as “ga (Ja)-I (En)”
and “ga (Ja)-my (En)”. These wrong alignments
disturb the phrase extraction, because excessively
long phrase pairs are extracted by bridging the gaps
in wrong alignments or simply no phrase pairs are
extracted from wrong gappy alignments. Conse-
quently, the phrase table generated by IBM Model
4+sym tend to be sparse and contain longer phrase
pairs than the one generated by IBM Model 4+itg.

5 Conclusions

We have proposed a novel alignment method that
uses an ITG constraint based on bracketing ITG
parse trees as a soft constraint of the posterior reg-
ularization framework. Due to the ITG constraint,
the proposed method can symmetrize two direc-
tional alignments based on their structural coher-
ence. Our evaluations have shown that the proposed
ITG constraint significantly improves the baseline
word alignment performance on the Ja-En KFTT
and BTEC corpus, and significantly improves, or at
least keeps, the baseline machine translation perfor-
mance of KFTT and the Ja-En IWSLT 2007 task.
This indicates that the proposed method yields a sig-
nificant benefit to linguistically different language
pairs.

In future work, we plan to incorporate a phrasal
ITG (Cherry and Lin, 2007) instead of a bracketing
ITG to efficiently handle many-to-many alignments.

2002

References
Masayuki Asahara and Yuji Matsumoto. 2000. Extended

models and tools for high-performance part-of-speech
tagger. In Proceedings of the 18th conference on Com-
putational linguistics-Volume 1, pages 21–27. Associ-
ation for Computational Linguistics.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathematics
of statistical machine translation: Parameter estima-
tion. Computational Linguistics, 19(2):263–311.

Colin Cherry and George Foster. 2012. Batch Tuning
Strategies for Statistical Machine Translation. In Pro-
ceedings of the 2012 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 427–
436, Montréal, Canada, June. Association for Compu-
tational Linguistics.

Colin Cherry and Dekang Lin. 2007. Inversion Trans-
duction Grammar for Joint Phrasal Translation Mod-
eling. In Proceedings of SSST, NAACL-HLT 2007 /
AMTA Workshop on Syntax and Structure in Statisti-
cal Translation, pages 17–24, Rochester, New York,
April. Association for Computational Linguistics.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2):201–228.

Goh Chooi-Ling, Watanabe Taro, Yamamoto Hirofumi,
and Sumita Eiichiro. 2010. Constraining a generative
word alignment model with discriminative output.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and Noah A.
Smith. 2011. Better Hypothesis Testing for Statis-
tical Machine Translation: Controlling for Optimizer
Instability. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies, pages 176–181, Port-
land, Oregon, USA, June. Association for Computa-
tional Linguistics.

John DeNero and Dan Klein. 2007. Tailoring Word
Alignments to Syntactic Machine Translation. In Pro-
ceedings of the 45th Annual Meeting of the Association
of Computational Linguistics, pages 17–24, Prague,
Czech Republic, June. Association for Computational
Linguistics.

Cameron S Fordyce. 2007. Overview of the IWSLT
2007 evaluation campaign. In Proceedings of the In-
ternational Workshop on Spoken Language Transla-
tion 2007, pages 1–12.

Alexander Fraser and Daniel Marcu. 2007. Measuring
word alignment quality for statistical machine transla-
tion. Computational Linguistics, 33(3):293–303.

Kuzman Ganchev, João V. Graça, and Ben Taskar. 2008.
Better Alignments = Better Translations? In Pro-
ceedings of ACL-08: HLT, pages 986–993, Colum-
bus, Ohio, June. Association for Computational Lin-
guistics.

Kuzman Ganchev, Joao Graca, Jennifer Gillenwater, and
Ben Taskar. 2010. Posterior regularization for struc-
tured latent variable models. The Journal of Machine
Learning Research, 11:2001–2049.

Joao V Graça, Kuzman Ganchev, and Ben Taskar. 2008.
Expectation Maximization and Posterior Constraints.
In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis,
editors, Advances in Neural Information Processing
Systems 20, pages 569–576. Curran Associates, Inc.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguis-
tics on Human Language Technology-Volume 1, pages
48–54. Association for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open Source
Toolkit for Statistical Machine Translation. In Pro-
ceedings of the 45th Annual Meeting of the Associ-
ation for Computational Linguistics Companion Vol-
ume Proceedings of the Demo and Poster Sessions,
pages 177–180, Prague, Czech Republic, June. Asso-
ciation for Computational Linguistics.

Philipp Koehn. 2004. Statistical Significance Tests for
Machine Translation Evaluation. In Dekang Lin and
Dekai Wu, editors, Proceedings of the 2004 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 388–395, Barcelona, Spain, July. Asso-
ciation for Computational Linguistics.

Shuhei Kondo, Kevin Duh, and Yuji Matsumoto. 2013.
Hidden Markov Tree Model for Word Alignment. In
Proceedings of the Eighth Workshop on Statistical Ma-
chine Translation, pages 503–511, Sofia, Bulgaria,
August. Association for Computational Linguistics.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by Agreement. In Proceedings of the Human
Language Technology Conference of the NAACL, Main
Conference, pages 104–111, New York City, USA,
June. Association for Computational Linguistics.

Xiaodong Liu, Kevin Duh, and Yuji Matsumoto. 2013.
Topic models + word alignment = a flexible frame-
work for extracting bilingual dictionary from compara-
ble corpus. In Proceedings of the Seventeenth Confer-
ence on Computational Natural Language Learning,
pages 212–221, Sofia, Bulgaria, August. Association
for Computational Linguistics.

Evgeny Matusov, Richard Zens, and Hermann Ney.
2004. Symmetric Word Alignments for Statistical
Machine Translation. In Proceedings of COLING
2004, the 20th International Conference on Compu-

2003

tational Linguistics, pages 219–225, Geneva, Switzer-
land, Aug 23–Aug 27. COLING.

Rada Mihalcea and Ted Pedersen. 2003. An Evaluation
Exercise for Word Alignment. In Rada Mihalcea and
Ted Pedersen, editors, Proceedings of the HLT-NAACL
2003 Workshop on Building and Using Parallel Texts:
Data Driven Machine Translation and Beyond, pages
1–10.

Jin’ichi Murakami, Tokuhisa Masato, and Satoru Ikehara.
2007. Statistical machine translation using large j/e
parallel corpus and long phrase tables. In Proceedings
of the International Workshop on Spoken Language
Translation 2007, pages 151–155.

Graham Neubig. 2011. The Kyoto free translation task.
http://www.phontron.com/kftt.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a Method for Automatic Eval-
uation of Machine Translation. In Proceedings of 40th
Annual Meeting of the Association for Computational
Linguistics, pages 311–318, Philadelphia, Pennsylva-
nia, USA, July. Association for Computational Lin-
guistics.

Markus Saers, Karteek Addanki, and Dekai Wu. 2012.
From Finite-State to Inversion Transductions: To-
ward Unsupervised Bilingual Grammar Induction.
In Proceedings of COLING 2012, the 24th Inter-
national Conference on Computational Linguistics,
pages 2325–2340, Mumbai, India, December. The
COLING 2012 Organizing Committee.

Andreas Stolcke et al. 2002. SRILM-an extensible lan-
guage modeling toolkit. In Proceedings International
Conference on Spoken Language Processing, pages
257–286, November.

Toshiyuki Takezawa, Eiichiro Sumita, Fumiaki Sugaya,
Hirofumi Yamamoto, and Seiichi Yamamoto. 2002.
Toward a Broad-coverage Bilingual Corpus for Speech
Translation of Travel Conversations in the Real World.
In Proceedings of the Third International Conference
on Language Resources and Evaluation (LREC’02),
pages 147–152.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
1996. HMM-based word alignment in statistical trans-
lation. In Proceedings of the 16th conference on Com-
putational Linguistics-Volume 2, pages 836–841. As-
sociation for Computational Linguistics.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–403.

Xinyan Xiao, Deyi Xiong, Yang Liu, Qun Liu, and
Shouxun Lin. 2012. Unsupervised Discriminative In-

duction of Synchronous Grammar for Machine Trans-
lation. In Proceedings of COLING 2012, the 24th
International Conference on Computational Linguis-
tics, pages 2883–2898, Mumbai, India, December. The
COLING 2012 Organizing Committee.

Nan Yang, Shujie Liu, Mu Li, Ming Zhou, and Neng-
hai Yu. 2013. Word Alignment Modeling with Con-
text Dependent Deep Neural Network. In Proceed-
ings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 166–175, Sofia, Bulgaria, August. Association
for Computational Linguistics.

Hao Zhang and Daniel Gildea. 2004. Syntax-Based
Alignment: Supervised or Unsupervised? In Proceed-
ings of COLING 2004, the 20th International Confer-
ence on Computational Linguistics, pages 418–424,
Geneva, Switzerland, Aug 23–Aug 27. COLING.

Hao Zhang and Daniel Gildea. 2005. Stochastic Lexical-
ized Inversion Transduction Grammar for Alignment.
In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL’05),
pages 475–482, Ann Arbor, Michigan, June. Associa-
tion for Computational Linguistics.

2004

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2005–2010,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Training with Exploration Improves a Greedy Stack LSTM Parser

Miguel Ballesteros♦ Yoav Goldberg♣ Chris Dyer♠ Noah A. Smith♥
♦NLP Group, Pompeu Fabra University, Barcelona, Spain

♣Computer Science Department, Bar-Ilan University, Ramat Gan, Israel
♠Google DeepMind, London, UK

♥Computer Science & Engineering, University of Washington, Seattle, WA, USA
miguel.ballesteros@upf.edu, yoav.goldberg@gmail.com,

cdyer@google.com, nasmith@cs.washington.edu

Abstract

We adapt the greedy stack LSTM dependency
parser of Dyer et al. (2015) to support a
training-with-exploration procedure using dy-
namic oracles (Goldberg and Nivre, 2013) in-
stead of assuming an error-free action his-
tory. This form of training, which accounts for
model predictions at training time, improves
parsing accuracies. We discuss some modifi-
cations needed in order to get training with ex-
ploration to work well for a probabilistic neu-
ral network dependency parser.

1 Introduction

Natural language parsing can be formulated as a se-
ries of decisions that read words in sequence and in-
crementally combine them to form syntactic struc-
tures; this formalization is known as transition-
based parsing, and is often coupled with a greedy
search procedure (Yamada and Matsumoto, 2003;
Nivre, 2003; Nivre, 2004; Nivre, 2008). The lit-
erature on transition-based parsing is vast, but all
works share in common a classification component
that takes into account features of the current parser
state1 and predicts the next action to take condi-
tioned on the state. The state is of unbounded size.

Dyer et al. (2015) presented a parser in which the
parser’s unbounded state is embedded in a fixed-
dimensional continuous space using recurrent neu-
ral networks. Coupled with a recursive tree com-
position function, the feature representation is able

1The term “state” refers to the collection of previous de-
cisions (sometimes called the history), resulting partial struc-
tures, which are typically stored in a stack data structure, and
the words remaining to be processed.

to capture information from the entirety of the state,
without resorting to locality assumptions that were
common in most other transition-based parsers. The
use of a novel stack LSTM data structure allows the
parser to maintain a constant time per-state update,
and retain an overall linear parsing time.

The Dyer et al. parser was trained to maximize
the likelihood of gold-standard transition sequences,
given words. At test time, the parser makes greedy
decisions according to the learned model. Although
this setup obtains very good performance, the train-
ing and testing conditions are mismatched in the fol-
lowing way: at training time the historical context of
an action is always derived from the gold standard
(i.e., perfectly correct past actions), but at test time,
it will be a model prediction.

In this work, we adapt the training criterion so
as to explore parser states drawn not only from the
training data, but also from the model as it is be-
ing learned. To do so, we use the method of Gold-
berg and Nivre (2012; 2013) to dynamically chose
an optimal (relative to the final attachment accuracy)
action given an imperfect history. By interpolating
between algorithm states sampled from the model
and those sampled from the training data, more ro-
bust predictions at test time can be made. We show
that the technique can be used to improve the strong
parser of Dyer et al.

2 Parsing Model and Parameter Learning

Our departure point is the parsing model described
by Dyer et al. (2015). We do not describe the model
in detail, and refer the reader to the original work. At
each stage t of the parsing process, the parser state is

2005

encoded into a vector pt, which is used to compute
the probability of the parser action at time t as:

p(zt | pt) =
exp

(
g>ztpt + qzt

)
∑

z′∈A(S,B) exp
(
g>z′pt + qz′

) , (1)

where gz is a column vector representing the (out-
put) embedding of the parser action z, and qz is a
bias term for action z. The set A(S,B) represents
the valid transition actions that may be taken in the
current state. Since pt encodes information about all
previous decisions made by the parser, the chain rule
gives the probability of any valid sequence of parse
transitions z conditional on the input:

p(z | w) =

|z|∏

t=1

p(zt | pt). (2)

The parser is trained to maximize the conditional
probability of taking a “correct” action at each pars-
ing state. The definition of what constitutes a “cor-
rect” action is the major difference between a static
oracle as used by Dyer et al. (2015) and the dynamic
oracle explored here.

Regardless of the oracle, our training implemen-
tation constructs a computation graph (nodes that
represent values, linked by directed edges from each
function’s inputs to its outputs) for the negative log
probability for the oracle transition sequence as a
function of the current model parameters and uses
forward- and backpropagation to obtain the gradi-
ents respect to the model parameters (Lecun et al.,
1998, section 4).

2.1 Training with Static Oracles
With a static oracle, the training procedure com-
putes a canonical reference series of transitions for
each gold parse tree. It then runs the parser through
this canonical sequence of transitions, while keep-
ing track of the state representation pt at each step t,
as well as the distribution over transitions p(zt | pt)
which is predicted by the current classifier for the
state representation. Once the end of the sentence is
reached, the parameters are updated towards maxi-
mizing the likelihood of the reference transition se-
quence (Equation 2), which equates to maximizing
the probability of the correct transition, p(zgt | pt),
at each state along the path.

2.2 Training with Dynamic Oracles
In the static oracle case, the parser is trained to
predict the best transition to take at each parsing
step, assuming all previous transitions were cor-
rect. Since the parser is likely to make mistakes at
test time and encounter states it has not seen dur-
ing training, this training criterion is problematic
(Daumé III et al., 2009; Ross et al., 2011; Gold-
berg and Nivre, 2012; Goldberg and Nivre, 2013,
inter alia). Instead, we would prefer to train the
parser to behave optimally even after making a mis-
take (under the constraint that it cannot backtrack
or fix any previous decision). We thus need to in-
clude in the training examples states that result from
wrong parsing decisions, together with the optimal
transitions to take in these states. To this end we
reconsider which training examples to show, and
what it means to behave optimally on these training
examples. The framework of training with explo-
ration using dynamic oracles suggested by Goldberg
and Nivre (2012; 2013) provides answers to these
questions. While the application of dynamic oracle
training is relatively straightforward, some adapta-
tions were needed to accommodate the probabilistic
training objective. These adaptations mostly follow
Goldberg (2013).

Dynamic Oracles. A dynamic oracle is the com-
ponent that, given a gold parse tree, provides the
optimal set of possible actions to take for any valid
parser state. In contrast to static oracles that derive
a canonical state sequence for each gold parse tree
and say nothing about states that deviate from this
canonical path, the dynamic oracle is well defined
for states that result from parsing mistakes, and they
may produce more than a single gold action for a
given state. Under the dynamic oracle framework,
an action is said to be optimal for a state if the best
tree that can be reached after taking the action is no
worse (in terms of accuracy with respect to the gold
tree) than the best tree that could be reached prior to
taking that action.

Goldberg and Nivre (2013) define the arc-
decomposition property of transition systems, and
show how to derive efficient dynamic oracles for
transition systems that are arc-decomposable.2 Un-
fortunately, the arc-standard transition system does

2Specifically: for every parser configuration p and group of

2006

not have this property. While it is possible to com-
pute dynamic oracles for the arc-standard system
(Goldberg et al., 2014), the computation relies on
a dynamic programming algorithm which is polyno-
mial in the length of the stack. As the dynamic ora-
cle has to be queried for each parser state seen during
training, the use of this dynamic oracle will make the
training runtime several times longer. We chose in-
stead to switch to the arc-hybrid transition system
(Kuhlmann et al., 2011), which is very similar to
the arc-standard system but is arc-decomposable and
hence admits an efficient O(1) dynamic oracle, re-
sulting in only negligible increase to training run-
time. We implemented the dynamic oracle to the
arc-hybrid system as described by Goldberg (2013).

Training with Exploration. In order to expose
the parser to configurations that are likely to result
from incorrect parsing decisions, we make use of the
probabilistic nature of the classifier. During training,
instead of following the gold action, we sample the
next transition according to the output distribution
the classifier assigns to the current configuration.
Another option, taken by Goldberg and Nivre, is to
follow the one-best action predicted by the classifier.
However, initial experiments showed that the one-
best approach did not work well. Because the neural
network classifier becomes accurate early on in the
training process, the one-best action is likely to be
correct, and the parser is then exposed to very few
error states in its training process. By sampling from
the predicted distribution, we are effectively increas-
ing the chance of straying from the gold path during
training, while still focusing on mistakes that receive
relatively high parser scores. We believe further for-
mal analysis of this method will reveal connections
to reinforcement learning and, perhaps, other meth-
ods for learning complex policies.

Taking this idea further, we could increase the
number of error-states observed in the training pro-
cess by changing the sampling distribution so as
to bias it toward more low-probability states. We
do this by raising each probability to the power of
α (0 < α ≤ 1) and re-normalizing. This trans-

arcs A, if each arc in A can be derived from p, then a valid
tree structure containing all of the arcs in A can also be derived
from p. This is a sufficient condition, but whether it is necessary
is unknown; hence the question of an efficient, O(1) dynamic
oracle for the augmented system is open.

formation keeps the relative ordering of the events,
while shifting probability mass towards less frequent
events. As we show below, this turns out to be very
beneficial for the configurations that make use of
external embeddings. Indeed, these configurations
achieve high accuracies and sharp class distributions
early on in the training process.

The parser is trained to maximize the likelihood of
a correct action zg at each parsing state pt according
to Equation 1. When using the dynamic oracle, a
state pt may admit multiple correct actions zg =
{zgi , . . . , zgk}. Our objective in such cases is the
marginal likelihood of all correct actions,3

p(zg | pt) =
∑

zgi∈zg
p(zgi | pt). (3)

3 Experiments

Following the same settings of Chen and Manning
(2014) and Dyer et al (2015) we report results4 in
the English PTB and Chinese CTB-5. Table 1 shows
the results of the parser in its different configura-
tions. The table also shows the best result obtained
with the static oracle (obtained by rerunning Dyer et
al. parser) for the sake of comparison between static
and dynamic training strategies.

English Chinese
Method UAS LAS UAS LAS
Arc-standard (Dyer et al.) 92.40 90.04 85.48 83.94
Arc-hybrid (static) 92.08 89.80 85.66 84.03
Arc-hybrid (dynamic) 92.66 90.43 86.07 84.46
Arc-hybrid (dyn., α = 0.75) 92.73 90.60 86.13 84.53
+ pre-training:
Arc-standard (Dyer et al.) 93.04 90.87 86.85 85.36
Arc-hybrid (static) 92.78 90.67 86.94 85.46
Arc-hybrid (dynamic) 93.15 91.05 87.05 85.63
Arc-hybrid (dyn., α = 0.75) 93.56 91.42 87.65 86.21

Table 1: Dependency parsing: English (SD) and Chinese.

The score achieved by the dynamic oracle for En-
glish is 93.56 UAS. This is remarkable given that
the parser uses a completely greedy search proce-
dure. Moreover, the Chinese score establishes the
state-of-the-art, using the same settings as Chen and
Manning (2014).

3A similar objective was used by Riezler et al (2000), Char-
niak and Johnson (2005) and Goldberg (2013) in the context of
log-linear probabilistic models.

4The results on the development sets are similar and only
used for optimization and validation.

2007

Catalan Chinese Czech English German Japanese Spanish
Method UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
Arc-standard, static + PP 89.60 85.45 79.68 75.08 77.96 71.06 91.12 88.69 88.09 85.24 93.10 92.28 89.08 85.03
+ pre-training – – 82.45 78.55 – – 91.59 89.15 88.56 86.15 – – 90.76 87.48
Arc-hybrid, dyn. + PP 90.45 86.38 80.74 76.52 85.68 79.38 91.62 89.23 89.80 87.29 93.47 92.70 89.53 85.69
+ pre-training – – 83.54 79.66 – – 92.22 89.87 90.34 88.17 – – 91.09 87.95
Y’15 – – – – 85.2 77.5 90.75 88.14 89.6 86.0 – – 88.3 85.4
A’16 + pre-training 91.24 88.21 81.29 77.29 85.78 80.63 91.44 89.29 89.12 86.95 93.71 92.85 91.01 88.14
A’16-beam 92.67 89.83 84.72 80.85 88.94 84.56 93.22 91.23 90.91 89.15 93.65 92.84 92.62 89.95

Table 2: Dependency parsing results. The dynamic oracle uses α = 0.75 (selected on English; see Table 1). PP refers to pseudo-

projective parsing. Y’15 and A’16 are beam = 1 parsers from Yazdani and Henderson (2015) and Andor et al. (2016), respectively.

A’16-beam is the parser with beam larger than 1 by Andor et al. (2016). Bold numbers indicate the best results among the greedy

parsers.

The error-exploring dynamic-oracle training al-
ways improves over static oracle training control-
ling for the transition system, but the arc-hybrid sys-
tem slightly under-performs the arc-standard system
when trained with static oracle. Flattening the sam-
pling distribution (α = 0.75) is especially beneficial
when training with pretrained word embeddings.

In order to be able to compare with similar greedy
parsers (Yazdani and Henderson, 2015; Andor et
al., 2016)5 we report the performance of the parser
on the multilingual treebanks of the CoNLL 2009
shared task (Hajič et al., 2009). Since some of the
treebanks contain nonprojective sentences and arc-
hybrid does not allow nonprojective trees, we use
the pseudo-projective approach (Nivre and Nilsson,
2005). We used predicted part-of-speech tags pro-
vided by the CoNLL 2009 shared task organizers.
We also include results with pretrained word em-
beddings for English, Chinese, German, and Span-
ish following the same training setup as Dyer et
al. (2015); for English and Chinese we used the
same pretrained word embeddings as in Table 1, for
German we used the monolingual training data from
the WMT 2015 dataset and for Spanish we used the
Spanish Gigaword version 3. See Table 2.

4 Related Work

Training greedy parsers on non-gold outcomes, fa-
cilitated by dynamic oracles, has been explored by
several researchers in different ways (Goldberg and
Nivre, 2012; Goldberg and Nivre, 2013; Gold-
berg et al., 2014; Honnibal et al., 2013; Honnibal
and Johnson, 2014; Gómez-Rodrı́guez et al., 2014;

5We report the performance of these parsers in the most
comparable setup, that is, with beam size 1 or greedy search.

Björkelund and Nivre, 2015; Tokgöz and Eryiğit,
2015; Gómez-Rodrı́guez and Fernández-González,
2015; Vaswani and Sagae, 2016). More gener-
ally, training greedy search systems by paying atten-
tion to the expected classifier behavior during test
time has been explored under the imitation learning
and learning-to-search frameworks (Abbeel and Ng,
2004; Daumé III and Marcu, 2005; Vlachos, 2012;
He et al., 2012; Daumé III et al., 2009; Ross et al.,
2011; Chang et al., 2015). Directly modeling the
probability of making a mistake has also been ex-
plored for parsing (Yazdani and Henderson, 2015).
Generally, the use of RNNs to conditionally predict
actions in sequence given a history is spurring in-
creased interest in training regimens that make the
learned model more robust to test-time prediction er-
rors. Solutions based on curriculum learning (Ben-
gio et al., 2015), expected loss training (Shen et al.,
2015), and reinforcement learning have been pro-
posed (Ranzato et al., 2016). Finally, abandoning
greedy search in favor of approximate global search
offers an alternative solution to the problems with
greedy search (Andor et al., 2016), and has been an-
alyzed as well (Kulesza and Pereira, 2007; Finley
and Joachims, 2008), including for parsing (Martins
et al., 2009).

5 Conclusions

Dyer et al. (2015) presented stack LSTMs and used
them to implement a transition-based dependency
parser. The parser uses a greedy learning strat-
egy which potentially provides very high parsing
speed while still achieving state-of-the-art results.
We have demonstrated that improvement by training
the greedy parser on non-gold outcomes; dynamic

2008

oracles improve the stack LSTM parser, achieving
93.56 UAS for English, maintaining greedy search.

Acknowledgments

This work was sponsored in part by the U. S. Army
Research Laboratory and the U. S. Army Research
Office under contract/grant number W911NF-10-
1-0533, and in part by NSF CAREER grant IIS-
1054319. Miguel Ballesteros was supported by
the European Commission under the contract num-
bers FP7-ICT-610411 (project MULTISENSOR)
and H2020-RIA-645012 (project KRISTINA). Yoav
Goldberg is supported by the Intel Collaborative
Research Institute for Computational Intelligence
(ICRI-CI), a Google Research Award and the Israeli
Science Foundation (grant number 1555/15).

References

Pieter Abbeel and Andrew Y. Ng. 2004. Apprenticeship
learning via inverse reinforcement learning. In Proc.
of ICML.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Proc. of
ACL.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for
sequence prediction with recurrent neural networks.
arXiv:1506.03099.

Anders Björkelund and Joakim Nivre. 2015. Non-
deterministic oracles for unrestricted non-projective
transition-based dependency parsing. In Proc. of
IWPT.

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal,
Hal Daume, and John Langford. 2015. Learning to
search better than your teacher. In Proc. of ICML.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and MaxEnt discriminative rerank-
ing. In Proc. of ACL.

Danqi Chen and Christopher D. Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In Proc. of EMNLP.

Hal Daumé III and Daniel Marcu. 2005. Learning as
search optimization: Approximate large margin meth-
ods for structured prediction. In Proc. of ICML.

Hal Daumé III, John Langford, and Daniel Marcu. 2009.
Search-based structured prediction. Machine Learn-
ing, 75:297–325.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proc. of ACL.

T. Finley and T. Joachims. 2008. Training structural
SVMs when exact inference is intractable. In In Proc.
of ICML.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic
oracle for arc-eager dependency parsing. In Proc. of
COLING.

Yoav Goldberg and Joakim Nivre. 2013. Training
deterministic parsers with non-deterministic oracles.
Transactions of the Association for Computational
Linguistics, 1:403–414.

Yoav Goldberg, Francesco Sartorio, and Giorgio Satta.
2014. A tabular method for dynamic oracles in
transition-based parsing. Transactions of the associ-
ation for Computational Linguistics, 2.

Yoav Goldberg. 2013. Dynamic-oracle transition-based
parsing with calibrated probabilistic output. In Proc.
of IWPT.

Carlos Gómez-Rodrı́guez and Daniel Fernández-
González. 2015. An efficient dynamic oracle for
unrestricted non-projective parsing. In Proc. of ACL.

Carlos Gómez-Rodrı́guez, Francesco Sartorio, and Gior-
gio Satta. 2014. A polynomial-time dynamic oracle
for non-projective dependency parsing. In Proc. of
EMNLP.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 shared task: Syntactic and semantic dependen-
cies in multiple languages. In Proc. of CoNLL.

He He, Hal Daumé III, and Jason Eisner. 2012. Imitation
learning by coaching. In NIPS.

Matthew Honnibal and Mark Johnson. 2014. Joint in-
cremental disfluency detection and dependency pars-
ing. Transactions of the Association for Computa-
tional Linguistics, 2:131–142.

Matthew Honnibal, Yoav Goldberg, and Mark Johnson.
2013. A non-monotonic arc-eager transition system
for dependency parsing. In Proc. of CoNLL.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Proc. of
ACL.

A. Kulesza and F. Pereira. 2007. Structured learning
with approximate inference. In NIPS.

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

2009

André F. T. Martins, Noah A. Smith, and Eric P. Xing.
2009. Polyhedral outer approximations with applica-
tion to natural language parsing. In Proc. of ICML.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-projective
dependency parsing. In Proc. of ACL.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In Proc. of IWPT.

Joakim Nivre. 2004. Incrementality in deterministic de-
pendency parsing. In Proceedings of the Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together.

Joakim Nivre. 2008. Algorithms for deterministic incre-
mental dependency parsing. Computational Linguis-
tics, 34(4):513–553.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and
Wojciech Zaremba. 2016. Sequence level training
with recurrent neural networks. In Proc. of ICLR.

Stefan Riezler, Detlef Prescher, Jonas Kuhn, and Mark
Johnson. 2000. Lexicalized stochastic modeling of
constraint-based grammars using log-linear measures
and em training. In Proc. of ACL.

Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bag-
nell. 2011. A reduction of imitation learning and
structured prediction to no-regret online learning. In
Proc. of AISTAT.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2015. Minimum
risk training for neural machine translation. In Proc.
of ACL.

Alper Tokgöz and Gülşen Eryiğit. 2015. Transition-
based dependency DAG parsing using dynamic ora-
cles. In Proc. of ACL SRW.

Ashish Vaswani and Kenji Sagae. 2016. Efficient struc-
tured inference for transition-based parsing with neu-
ral networks and error states. Transactions of the As-
sociation for Computational Linguistics, 4:183–196.

Andreas Vlachos. 2012. An investigation of imitation
learning algorithms for structured prediction. In Proc.
of the European Workshop on Reinforcement Learn-
ing.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical
dependency analysis with support vector machines. In
Proc. of IWPT.

Majid Yazdani and James Henderson. 2015. Incre-
mental recurrent neural network dependency parser
with search-based discriminative training. In Proc. of
CoNLL.

2010

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2011–2016,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Capturing Argument Relationships for Chinese Semantic Role Labeling

Lei Sha, Tingsong Jiang, Sujian Li, Baobao Chang, Zhifang Sui
Key Laboratory of Computational Linguistics, Ministry of Education

School of Electronics Engineering and Computer Science, Peking University
Collaborative Innovation Center for Language Ability, Xuzhou 221009 China
shalei, tingsong, lisujian, chbb, szf@pku.edu.cn

Abstract
In this paper, we capture the argument rela-
tionships for Chinese semantic role labeling
task, and improve the task’s performance with
the help of argument relationships. We split
the relationship between two candidate argu-
ments into two categories: (1) Compatible ar-
guments: if one candidate argument belongs
to a given predicate, then the other is more
likely to belong to the same predicate; (2) In-
compatible arguments: if one candidate argu-
ment belongs to a given predicate, then the
other is less likely to belong to the same predi-
cate. However, previous works did not explic-
itly model argument relationships. We use a
simple maximum entropy classifier to capture
the two categories of argument relationships
and test its performance on the Chinese Propo-
sition Bank (CPB). The experiments show that
argument relationships is effective in Chinese
semantic role labeling task.

1 Introduction

Semantic Role Labeling (SRL) is defined as the task
to recognize arguments for a given predicate and as-
sign semantic role labels to them. Because of it-
s ability to encode semantic information, there has
been an increasing interest in SRL on many lan-
guages (Gildea and Jurafsky, 2002; Sun and Juraf-
sky, 2004). Figure 1 shows an example in Chinese
Proposition Bank (CPB) (Xue and Palmer, 2003),
which is a Chinese corpus annotated with semantic
role labels.

Previous works of Chinese SRL include feature-
based approaches and neural network based ap-
proaches. Feature-based approaches often extract a

large number of handcrafted features from the sen-
tence, and feed these features to statistical classifiers
such as CRF, MaxEnt and SVM (Sun and Jurafsky,
2004; Xue, 2008; Ding and Chang, 2008; Ding and
Chang, 2009; Sun, 2010). Neural network based
approaches usually take Chinese SRL as sequence
labeling task and use bidirectional recurrent neural
network (RNN) with long-short-term memory (LST-
M) to solve the problem (Wang et al., 2015).

However, both of the above two kinds of ap-
proaches identify each candidate argument separate-
ly without considering the relationship between ar-
guments. We define two categories of argument re-
lationships here: (1) Compatible arguments: if one
candidate argument belongs to a given predicate,
then the other is more likely to belong to the same
predicate; (2) Incompatible arguments: if one can-
didate argument belongs to a given predicate, then
the other is less likely to belong to the same pred-
icate. For example, in Figure 1, the word “	
û”(foreign businessman) and “è�”(entrepreneur)
tend to be compatible arguments when the predi-
cate word is “Ý]”(invest). On the other hand, “è
�”(entrepreneur) and “5½”(rule) are not likely to
belong to the same predicate “Ý]”(invest).

In this paper, we propose to use a quadratic opti-
mization method to explicitly model the relationship
between candidate arguments to improve the perfor-
mance of Chinese SRL. We train a maximum en-
tropy classifier, and then use the classifier to predict
argument relationships between any two candidate
arguments in a sentence. Experiments show that ar-
gument relationships can greatly improve the perfor-
mance of Chinese SRL.

2011

保护 外商 投资 企业 合法 权益 六 项 规定

protect foreign businessman invest entrepreneur legal profit six item rule
POS: VV NN VV NN JJ NN CD M NN
SRL: O S-ARG0 rel S-arg1 O O O O O

Word:

Figure 1: A sentence with semantic roles labeled from CPB. “rel” represents the predicate, English translation: “Six rules to protect

foreign businessman’s legal profits when investing entrepreneurs”

2 Related Work

Semantic Role Labeling (SRL) task was first pro-
posed by Gildea and Jurafsky (2002). Previous ap-
proaches on Chinese SRL can be classified into two
categories: (1) feature-based approaches (2) neural
network based approaches.

Among feature-based approaches, Sun and Juraf-
sky (2004) did the preliminary work on Chinese SR-
L without any large semantically annotated corpus
and produced promising results. Xue and Palmer
(2003) proposed Chinese Proposition Bank (CPB),
which leads to more complete and systematic re-
search on Chinese SRL (Xue and Palmer, 2005;
Xue, 2008; Ding and Chang, 2009). Sun et al.
(2009) extended the work of Chen et al. (2006), per-
formed Chinese SRL with shallow parsing, which
took partial parses as inputs. Yang and Zong (2014)
proposed multi-predicate SRL, which showed im-
provements both on English and Chinese Proposi-
tion Bank.

Neural network based approaches are free of
handcrafted features, Collobert and Weston (2008)
proposed a convolutional neural network for SRL.
Their approach achieved competitive performance
on English SRL without requiring task specific fea-
ture. Wang et al. (2015) proposed a bidirectional
LSTM-RNN for Chinese SRL.

However, most of the aforementioned approaches
did not take the compatible arguments and incom-
patible arguments into account. Inspired by Sha et
al. (2016), our approach model the two argumen-
t relationships explicitly to achieve a better perfor-
mance on Chinese SRL.

3 Capturing the Relationship Between
Arguments

We found that there are two typical relationships be-
tween candidate arguments: (1) Compatible argu-
ments: if one candidate argument belongs to one

event, then the other is more likely to belong to the
same event; (2) incompatible arguments: if one can-
didate argument belongs to one event, then the other
is less likely to belong to the same event.

We trained a maximum entropy classifier to pre-
dict the relationship between two candidate argu-
ments. We choose the following features:

1. PREDICATE: the predicate in the current sen-
tence

2. ARGUMENT DISTANCE: the distance between
the two candidate arguments in the sentence

3. Whether the two candidate arguments occur on
the same side of the predicate

4. PARENT DEPENDENCY DISTANCE: the dis-
tance between the two candidate arguments’
parents in the dependency parse tree

5. PARENT POS: if the two candidate arguments
share the same parent, take the common paren-
t’s POS tag as a feature

6. Whether the two candidate arguments occur on
the same side of the common parent if the two
candidate arguments share the same parent

All the words in one sentence except for the predi-
cate are candidate arguments. The word pairs in the
ground truth Chinese SRL annotation (training data)
are extracted as training data. The training examples
are generated as follows: For an candidate argument
pair, if both of them are labeled as semantic roles,
we take it as positive example. For each positive ex-
ample, we randomly exchange one of the arguments
with an irrelevant argument1 to get a negative exam-
ple.

1an irrelevant argument is in the same sentence with the
predicate, but it is not labeled as semantic role

2012

Sentence: 保护 外商 投资 企业 合法 ...

Protect
Foreign

businessman
invest Entrepreneur legal

Predicate given

Bidirectional LSTM-RNN

Output:
1L 2L 3L 4L

Figure 2: The bidirectional LSTM-RNN architecture.

The chinese sentences should be segmented to
chinese words first. For a sentence with n+1 word-
s, we denote C ∈ Rn×n as the argument relation-
ship matrix. In the testing procedure, the maximum
entropy classifier is used to predict the relationship
between argument i and argument j as Cij .

When the output of the maximum entropy clas-
sifier is around 0.5, it is not easy to figure out
whether it is the first relationship or the second,
we call this kind of information “uncertain infor-
mation”(unclear relationship). For a better perfor-
mance, we strengthen the certain information and
weaken the uncertain information. We transform the
result of maximum entropy classifier as follows:

C(i, j) =

1 0.8 < MaxEnt(i, j) ≤ 1.0

0 0.2 ≤MaxEnt(i, j) ≤ 0.8

−1 0.0 ≤MaxEnt(i, j) < 0.2

(1)

We set two thresholds, if the output of the maximum
entropy classifier is larger than 0.8, we set Ci,j = 1
(compatible arguments), if the output is lower than
0.2, we set Ci,j = −1 (incompatible arguments),
otherwise, we set Ci,j = 0 (unclear relationship).
The threshold 0.8 and 0.2 are tuned by development
set.

4 Quadratic Optimization Method (QOM)

4.1 Post-processing Module of Bidirectional
LSTM-RNN

Our quadratic optimization method is a post-
processing module of bidirectional LSTM-
RNN(Wang et al., 2015). The simplified ar-
chitecture of bidirectional LSTM-RNN is shown as
Figure 2.

Each dimension of the output vector Li ∈
RnL , i = 1 · · ·n corresponds to the score of a cer-
tain semantic role label. nL represents the number
of semantic role labels. Then we normalize Li over
semantic roles as Eq 2 shows.

L̃i = Normalize(Li) (2)

Each dimension of L̃i represents the probability of a
certain semantic role label.

Let PArg ∈ Rn be a probability vector, each di-
mension of which represents the probability that the
current word has a semantic role as is shown in Eq 3.
PRole ∈ Rn is another probability vector, each di-
mension represents the probability of the most likely
semantic role the current word may be labeled as is
shown in Eq 4.

PArg(i) =
∑

j

L̃i(j)[label(j) 6= ’0’] (3)

PRole(i) = max
j
L̃i(j) (4)

where [·] equals to 1 if the inner statement is true and
0 otherwise. label(j) 6= ’0’ means the j-th word is
not labeled with semantic role.

4.2 Quadratic Optimization
We use a n-dim vector X to represent the identifica-
tion result of candidate arguments. Each entry of X
is 0 or 1, 0 represents “noArg”, 1 represents “arg”.
X can be assigned by maximizing E(X) as defined
by Eq 5.

X = argmax
X

E(X)

E(X) = λ1X
TCX + λ2X

TParg

+ (1− λ1 − λ2)XTProle

(5)

Here, XTCX means to add up all the relationship
value if the two arguments are identified. Hence, the
more the identified arguments are related, the larger
the value XTCX is. XTParg is the sum of all cho-
sen arguments probability. XTProle is the sum of all
the classified roles’ probability.

Eq 5 means that, while we should select the se-
mantic role with a larger probability, the argument
relationship evaluation should also as large as possi-
ble.

2013

We use Beam Search method (Algorithm 1) to
search for the optimal assignment X . The hyper-
parameters λ1 and λ2 can be chosen according to
development set.

Input: Argument relationship matrix: C
the argument probabilities required by P arg

sum

the role probabilities required by P role
sum

Data: K: Beam size
n: Number of candidate arguments

Output: The best assignment X
Set beam B ← [ε] ;
for i← 1 · · ·n do

buf← {z′ ◦ l|z′ ∈ B, l ∈ {0, 1}};
B ← [ε] ;
while j ← 1 · · ·K do

xbest = argmaxx∈buf E(x);
B ← B ∪ {xbest};
buf←buf−{xbest};

end
end
Sort B descendingly according to E(X);
return B[0];

Algorithm 1: Beam Search decoding algorithm
for SRL. ◦ means to concatenate an element to
the end of a vector.

5 Experiment

We conduct experiments to compare our model
with previous landmark methods on the benchmark
dataset CPB for Chinese SRL. We use Wang et al.
(2015)’s model as baseline. The result reveals that
our quadratic optimization method can further im-
prove the result of bidirectional LSTM-RNN.

5.1 Experiment Settings

We conduct experiments on the standard benchmark
dataset CPB 1.02. We follow the same data set-
ting as previous work (Xue, 2008; Sun et al., 2009),
which divided the dataset into three parts: 648
files (from chtb 081.fid to chtb 899.fid)
are used as the training set. The developmen-
t set includes 40 files, from chtb 041.fid to
chtb 080.fid. The test set includes 72 files,

2https://catalog.ldc.upenn.edu/LDC2005T23

Method F1(%)
Xue (2008) 71.90
Collobert and Weston (2008) 74.05
Sun et al. (2009) 74.12
Yang and Zong (2014) 75.31
Wang et al. (2015) 77.21
QOM - stengthen 76.24
QOM - feature 4,5,6 77.52
QOM 77.69
Table 1: Results comparison on CPB dataset.

which are chtb 001.fid to chtb 040.fid,
and chtb 900.fid to chtb 931.fid.

The training dataset of the argument relation-
ship matrix contains 1.6M cases (736K positive and
864K negative) which are randomly generated ac-
cording to the ground truth in the training docu-
ments. We use Stanford Parser3 for dependency
parsing.

We tuned the coefficients λ1 and λ2 of Eq 5 on the
development set, and finally we set λ1 = 0.10 and
λ2 = 0.45.

5.2 Chinese SRL Performance
Table 1 shows our SRL performance compared
to previous landmark results. We can see that
with quadratic optimization method as the post-
processing module, our approach (QOM) outper-
forms Wang et al. (2015) by a large margin (Wilcox-
on Signed Rank Test, p < 0.05). We also did some
ablation test, in Table 1, “QOM - stengthen” is the
result when we do not strengthen the argument re-
lationship matrix. We can see that the uncertain in-
formation is very harmful to the performance, which
worsen the accuracy for about 1%. “QOM - feature
4,5,6” is the performance when we do not use the
dependency features when capturing the argument
relationships since Wang et al. (2015) didn’t use any
dependency feature. We can see that event without
dependency feature, our method still can outperform
Wang et al. (2015)’s result.

Figure 3 visualizes the candidate argument re-
lationship matrix. From this graph, we captured
the compatible arguments (“	ûforeign businessman”
and “è �entrepreneur”), incompatible arguments
(“�item” and “	ûforeign businessman”), (“5½rule”

3http://nlp.stanford.edu/software/lex-parser.shtml

2014

Chinese �o 	û è� Ü{ �Ã 8 � 5½

English translation protect foreign businessman entrepreneur legal profit six item rule
Figure 3: The Visualization of argument relationship Matrix, Left is the origin matrix. Right is the strengthened matrix. In the

origin matrix, we can directly see the argument relationship we captured (the darker green means stronger relationship, lighter

green means weaker relationship). After strengthening, on the right, the words with strong relationship are classified as compatible

arguments (the black squares), weak relationship are classified as incompatible arguments (the white squares). Others (the grey

squares) are unclear relationship.

and “	 ûforeign businessman”). Therefore, “	
ûforeign businessman” and “è�entrepreneur” should be
the roles of “Ý]invest” simultaneously , (“�item”,
“ 	 ûforeign businessman”) and (“5 ½rule”, “	
ûforeign businessman”) should not be the roles of “Ý
]invest” simultaneously.

6 Conclusion

In this paper, we propose to use a quadratic opti-
mization method based on two kinds of argumen-
t relationships to improve the performance of Chi-
nese SRL. We first train a maximum entropy clas-
sifier to capture the compatible arguments and in-
compatible arguments. Then we use quadratic op-
timization to improve the result of bidirectional
LSTM-RNN(Wang et al., 2015). The experimen-
t has proved the effectiveness of our approach. This
method can also be used in other probabilistic meth-
ods.

Acknowledgements

We would like to thank our three anonymous re-
viewers for their helpful advice on various as-
pects of this work. This research was sup-
ported by the National Key Basic Research
Program of China (No.2014CB340504) and the
National Natural Science Foundation of China

(No.61375074,61273318). The contact author for
this paper is Baobao Chang and Zhifang Sui.

References
Wenliang Chen, Yujie Zhang, and Hitoshi Isahara. 2006.

An empirical study of chinese chunking. In Proceed-
ings of the COLING/ACL on Main conference poster
sessions, pages 97–104. Association for Computation-
al Linguistics.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of the 25th international conference on Machine learn-
ing, pages 160–167. ACM.

Weiwei Ding and Baobao Chang. 2008. Improving chi-
nese semantic role classification with hierarchical fea-
ture selection strategy. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 324–333. Association for Computation-
al Linguistics.

Weiwei Ding and Baobao Chang. 2009. Word based
chinese semantic role labeling with semantic chunk-
ing. International Journal of Computer Processing Of
Languages, 22(02n03):133–154.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling of semantic roles. Computational linguistics,
28(3):245–288.

Lei Sha, Jing Liu, Chin-Yew Lin, Sujian Li, Baobao
Chang, and Zhifang Sui. 2016. Rbpb: Regularization-
based pattern balancing method for event extraction.

2015

In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1224–1234, Berlin, Germany,
August. Association for Computational Linguistics.

Honglin Sun and Daniel Jurafsky. 2004. Shallow seman-
tic parsing of chinese. In Proceedings of NAACL-HLT,
volume 2004.

Weiwei Sun, Zhifang Sui, Meng Wang, and Xin Wang.
2009. Chinese semantic role labeling with shallow
parsing. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing:
Volume 3-Volume 3, pages 1475–1483. Association for
Computational Linguistics.

Weiwei Sun. 2010. Improving chinese semantic role la-
beling with rich syntactic features. In Proceedings of
the ACL 2010 Conference Short Papers, pages 168–
172. Association for Computational Linguistics.

Zhen Wang, Tingsong Jiang, Baobao Chang, and Zhi-
fang Sui. 2015. Chinese semantic role labeling with
bidirectional recurrent neural networks. In Proc. of
the 2015 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1626–1631.

Nianwen Xue and Martha Palmer. 2003. Annotating the
propositions in the penn chinese treebank. In Proceed-
ings of the second SIGHAN workshop on Chinese lan-
guage processing-Volume 17, pages 47–54. Associa-
tion for Computational Linguistics.

Nianwen Xue and Martha Palmer. 2005. Automatic se-
mantic role labeling for chinese verbs. In IJCAI, vol-
ume 5, pages 1160–1165. Citeseer.

Nianwen Xue. 2008. Labeling chinese predicates with
semantic roles. Computational linguistics, 34(2):225–
255.

Haitong Yang and Chengqing Zong. 2014. Multi-
predicate semantic role labeling. In EMNLP, pages
363–373.

2016

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2017–2021,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

BrainBench:
A Brain-Image Test Suite for Distributional Semantic Models

Haoyan Xu
University of Victoria
Victoria, BC, Canada
exu@uvic.ca

Brian Murphy
Queen’s University Belfast

Belfast, Northern Ireland, UK
brian.murphy@qub.ac.uk

Alona Fyshe
University of Victoria
Victoria, BC, Canada
afyshe@uvic.ca∗

Abstract

The brain is the locus of our language abil-
ity, and so brain images can be used to ground
linguistic theories. Here we introduce Brain-
Bench, a lightweight system for testing dis-
tributional models of word semantics. We
compare the performance of several models,
and show that the performance on brain-image
tasks differs from the performance on behav-
ioral tasks. We release our benchmark test as
part of a web service.

1 Introduction

There is active debate over how we should test se-
mantic models. In fact, in 2016 there was an en-
tire workshop dedicated to the testing of semantic
representations (RepEval, 2016). Several before us
have argued for the usage of brain data to test se-
mantic models (Anderson et al., 2013; Murphy et al.,
2012; Anderson et al., 2015), as a brain image repre-
sents a snapshot of one person’s own semantic rep-
resentation. Still, testing semantic models against
brain imaging data is rarely done by those not in-
timately involved in psycholinguistics or neurolin-
guistics. This may be due to a lack of familiarity
with neuroimaging methods and publicly available
datasets.

We present the first iteration of BrainBench,
a new system that makes it easy to test seman-
tic models using brain imaging data (Available
at http://www.langlearnlab.cs.uvic.
ca/brainbench/). Our system has methodology
that is similar to popular tests based on behavioral

∗Corresponding Author

data (see Section 2.2), and has the additional benefit
of being fast enough to offer as a web service.

2 The Tasks

Here we outline the set of tasks we used to evaluate
several popular Distributional Semantic (DS) mod-
els.

2.1 Brain Image Data

For BrainBench we use two brain image datasets
collected while participants viewed 60 concrete
nouns with line drawings (Mitchell et al., 2008; Su-
dre et al., 2012). One dataset was collected us-
ing fMRI (Functional Magnetic Resonance Imag-
ing) and one with MEG (Magnetoencephalography).
Each dataset has 9 participants, but the participants
sets are disjoint, thus there are 18 unique partici-
pants in all. Though the stimuli is shared across the
two experiments, as we will see, MEG and fMRI are
very different recording modalities and thus the data
are not redundant.

fMRI measures the change in blood oxygen levels
in the brain, which varies according to the amount
of work being done by a particular brain area. An
fMRI image is a 3D volume of the brain where each
point in the volume (called a voxel) represents brain
activity at a particular place in the brain. In the fMRI
dataset used here, each voxel represents a 3mm x
3mm x 5mm area of the brain. Each of the 60 words
was presented 6 times in random order, for a total of
360 brain images. The number of voxels depends on
the size and shape of a person’s brain, but there are
around 20,000 voxels per participant in this dataset.

MEG measures the magnetic field caused by

2017

many neurons firing in the same direction at the
same time. This signal is very weak, and so must
be measured in a magnetically shielded room. The
MEG machine is essentially a large helmet with 306
sensors that measure aspects of the magnetic fields
at different locations in the brain. A MEG brain im-
age is the time signals recorded from each of these
sensors. Here, the sampling rate is 200 Hz. For each
word, the MEG recording is 800ms long resulting in
306 × 160 data points. Each of the words was pre-
sented 20 times (in random order) for a total of 1200
brain images. For simplicity we will use the term
“brain image feature” to refer to both fMRI voxels
and MEG sensor/time points.

A non-trivial portion of our participants’ brain ac-
tivity may be driven by the low-level visual proper-
ties of the word/line-drawing stimulus, rather than
by semantics. As there is a possibility of confound-
ing visual properties with semantic properties, we
have attempted to remove the activity attributable to
visual properties from the brain images. In total we
have 11 visual features which include things like the
length of the word, the number of white pixels, and
features of the line drawing (Sudre et al., 2012). To
remove the visual stimulus’ contribution to the sig-
nal, we train a regression model that predicts the sig-
nal in each brain image feature as a function of the
11 visual features. We then subtract the predicted
value from the observed value of the brain image
feature. This process is known as “partialling out”
an effect. Thus, the signal that remains in the brain
image will not be correlated with the visual stimuli,
and should only be related to the semantics of the
word itself (or noise).

Brain images are quite noisy, so we used the
methodology from Mitchell et al. (2008) to select
the most stable brain image features for each of the
18 participants. The stability metric assigns a high
score to features that show strong self-correlation
over presentations of the same word. We noticed
that tuning the number of features to keep made lit-
tle or no difference in the absolute ordering of the
different DS models. Thus, we use the optimal num-
ber of features averaged over all 6 DS models de-
scribed in Section 3: the top 13% of MEG sen-
sor/time points, and 3% of fMRI voxels. Finally,
we average all brain images corresponding to repe-
titions of the same word.

2.2 Behavioral Tasks

We include, for comparison, four popular word vec-
tor evaluation benchmarks.

MEN This dataset contains 3,000 word pairs, such
that each word appears frequently in two separate
corpora. Human participants were presented with
two word pairs and asked to choose the word pair
that was more related, resulting in a ranking of re-
latedness amongst word pairs (Bruni and Baroni,
2013).

SimLex-999 A word pairing task meant to specifi-
cally target similarity rather than the more broad “re-
latedness” (Hill et al., 2015).

WS-353-[SIM|REL] A set of 353 word pairs with
relatedness ratings (Finkelstein et al., 2002). This
dataset was subsequently split into sets where the
pairs denote similarity and relatedness, named WS-
353-SIM and WS-353-REL, respectively (Agirre et
al., 2009).

3 Distributional Models

We test six semantic models against both the fMRI
and behavioral datasets. The six models are:

Skip-gram: A neural network trained to predict
the words before and after the current word, given
the current word. We selected a model with 300
dimensions trained on the Google news corpus
(Mikolov et al., 2013).

Glove: A regression-based model that combines
global context information (term-document cooc-
currence) with local information (small windows of
word-word cooccurrence) (Pennington et al., 2014).
This 300-dimensional model was trained on the
Wikipedia and Gigaword 5 corpora combined.

RNN: A recurrent neural network with 640-
dimensional hidden vectors. These models are
trained to predict the next word in a sequence
and have the ability to encode (theoretically) in-
finitely distant contextual information (Mikolov et
al., 2011). The model was trained on broadcast news
transcriptions.

Global: A neural network model that incorporates
global and local information, like that of the Glove

2018

model (Huang et al., 2012). This model is our
smallest, with dimension 50, and was trained on
Wikipedia.

Cross-lingual: A tool that projects distributional
representations from multiple language into a shared
representational space (Faruqui and Dyer, 2014).
Here we use the German-English model (512 dimen-
sions), trained on the WMT-2011 corpus.

Non-distributional: This model is based solely
on hand-crafted linguistic resources (Faruqui and
Dyer, 2015). Several resources like WordNet (Fell-
baum, 1998) and FrameNet (Baker et al., 1998) are
combined to make very sparse word vector repre-
sentations. Due to their sparsity, these vectors are of
very high dimension (171, 839). This is a particu-
larly interesting model because it is not built from a
corpus (unlike every other model in this list).

Note that we are not aiming to compare the good-
ness of any of these distributional models, as they
are trained on different corpora with different algo-
rithms. Instead, we wish to compare the patterns of
performance on behavioral benchmarks to that of a
brain-image based task.

4 Methodology

Each of the behavioral tasks included here assigns a
similarity score to word pairs. For each DS model
we calculate the correlation between the vectors for
every pair of words in the behavioral datasets. We
then calculate the correlation between the DS vector
correlations and the behavioral scores.

We follow a very similar methodology for the
brain image datasets. Let us represent each DS
model with a matrixX ∈ Rw×p wherew is the num-
ber of words for which we have brain images (here
w = 60), and p is the number of dimensions in a
particular DS model. From X we calculate the cor-
relation between each pair of word vectors, resulting
in a matrix CDS ∈ Rw×w.

Let us represent each participant’s brain images
with a matrix Y ∈ Rw×v where v is the number of
selected brain image features. From this matrix we
calculate the correlation between each pair of brain
images, resulting in a matrix CBI ∈ Rw×w (BI for
brain image). This final representation is similar to
the behavioral tasks above, but now we have a simi-

larity measure for every pair of words in our dataset.
Here is where the evaluation for brain imaging

tasks differs from the behavioral tasks. Instead of
measuring the correlation between CBI and CDS ,
as is done in Representational Similarity Analysis
(RSA) (Kriegeskorte et al., 2008), we use the test-
ing methodology from Mitchell et al. (2008), which
we will refer to as the 2 vs. 2 test. The 2 vs. 2 test
was developed to help detect statistically significant
predictions on brain imaging data, and, compared to
RSA, can better differentiate the performance of a
model from chance. We perform a 2 vs. 2 test for all
pairs of CDS and CBI (that is, for every pair of DS
model and fMRI/MEG participant).

For each 2 vs. 2 test we select the same two words
(rows) w1, w2 from CDS and CBI . We omit the
columns which correspond to the correlation to w1

and w2, as they contain a perfect signal for the 2
vs. 2 test. We now have four vectors, CDS(w1),
CDS(w2), CBI(w1) and CBI(w2), all of length
w − 2. We compute the correlation (corr) between
vectors derived from CDS and CBI to see if:

corr(CDS(w1), CBI(w1)) + corr(CDS(w2), CBI(w2))

(the correlation of correctly matched rows: w1 to w1

and w2 to w2) is greater than:

corr(CDS(w1), CBI(w2)) + corr(CDS(w2), CBI(w1))

(the correlation of incorrectly matched rows). If the
correctly matched rows are more similar than incor-
rectly matched rows, then the 2 vs. 2 test is consid-
ered correct. We perform the 2 vs. 2 test for all pos-
sible pairs of words, for 1770 tests in total. The 2 vs.
2 accuracy is the percentage of 2 vs. 2 tests correct.
Chance is 50%.

Our process of computing 2 vs. 2 accuracy over
rows of a correlation matrix is different than the
original methodology for these datasets (Mitchell et
al., 2008; Sudre et al., 2012). Previous work trained
regression models that took brain images as input
and predicted the dimensions of a DS model as out-
put. Training these regression models for all 1770
pairs of words takes hours to complete, whereas the
test we suggest here is much faster, and the correla-
tion matrices CBI can be computed ahead of time.
This makes the tests fast enough to offer as a web
service. We hope our web offering will remove bar-
riers to the wider adoption of brain-based tests from
within the computational linguistics community.

2019

Figure 1: Performance of Distributional Semantic
models on the brain-image datasets.

Figure 2: Performance of Distributional Semantic
models on several benchmark behavioral tasks.

5 Results

Figure 1 shows the results for each of the DS mod-
els against the fMRI and MEG datasets. On aver-
age, the Skip-gram, Glove and Cross-lingual mod-
els perform quite well, whereas the multi-layer NNs
(RNN, Global) perform less well. The one DS
model to be built from hand-crafted resources (Non-
distributional) performs poorly on both brain image
tests.

As previously mentioned, we are not claiming to
show that any one of the DS models is better than
any other. Indeed, that would be comparing apples
to oranges, as each DS model is trained with a differ-
ent algorithm on a different corpus. Instead, notice
that the pattern of performance for the fMRI task is
remarkably similar to the pattern on the MEN behav-
ioral task. This is interesting given that our dataset
contains only 60 words and the MEN dataset con-
tains > 700. On the MEG data, the Cross-lingual
model performs best, and its performance pattern is
unlike any of the behavioral tasks in Figure 2. The
averaged BrainBench results are most similar to the
results for WS-353-REL. However, averaging the re-
sults together may be misleading, as the fMRI and
MEG result patterns are different.

6 Discussion

There are some caveats about the analyses herein.
Firstly, the brain-based tests include only 60 con-
crete nouns, so they will necessarily favor distri-
butional models with good noun representations,
regardless of the representations of other parts of
speech. We are currently working with various re-
search groups to expand the number of brain-image

datasets included in this benchmark to have a more
diverse test base. The behavioral benchmarks were
not reduced to include only the 60 words for which
we have brain data, because this would have ren-
dered the benchmarks essentially useless, as very
rarely are a pair of the 60 words from the brain im-
age data scored as a pair in the behavioral bench-
marks.

7 Conclusion

We have presented our new system, BrainBench,
which is a fast and lightweight alternative to pre-
vious methods for comparing DS models to brain
images. Our proposed methodology is more similar
to well-known behavioral tasks, as BrainBench also
uses the similarity of words as a proxy for mean-
ing. We hope that this contribution will bring brain
imaging tests “to the masses” and encourage discus-
sion around the testing of DS models against brain
imaging data.

References

[Agirre et al.2009] Eneko Agirre, Enrique Alfonseca,
Keith Hall, Jana Kravalova, Marius Pas, and Aitor
Soroa. 2009. A Study on Similarity and Relatedness
Using Distributional and WordNet-based Approaches.
In Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the ACL,
pages 19–27.

[Anderson et al.2013] Andrew J Anderson, Elia Bruni,
Ulisse Bordignon, Massimo Poesio, and Marco Ba-
roni. 2013. Of words , eyes and brains : Correlat-
ing image-based distributional semantic models with
neural representations of concepts. In Proceedings of

2020

the Conference on Empirical Methods on Natural Lan-
guage Processing.

[Anderson et al.2015] Andrew James Anderson, Elia
Bruni, Alessandro Lopopolo, Massimo Poesio, and
Marco Baroni. 2015. Reading visually embodied
meaning from the brain: Visually grounded compu-
tational models decode visual-object mental imagery
induced by written text. NeuroImage, 120:309–322.

[Baker et al.1998] Collin F. Cf Baker, Charles J. Fillmore,
and John B. Lowe. 1998. The Berkeley FrameNet
Project. In Proceedings of the 36th annual meeting
on Association for Computational Linguistics -, vol-
ume 1, page 86. Association for Computational Lin-
guistics.

[Bruni and Baroni2013] Elia Bruni and Marco Baroni.
2013. Multimodal Distributional Semantics. Journal
of Artificial Intelligence Research, 48.

[Faruqui and Dyer2014] Manaal Faruqui and Chris Dyer.
2014. Improving vector space word representations
using multilingual correlation. Proceedings of the
European Association for Computational Linguistics,
pages 462–471.

[Faruqui and Dyer2015] Manaal Faruqui and Chris Dyer.
2015. Non-distributional Word Vector Representa-
tions. Acl-2015, pages 464–469.

[Fellbaum1998] Christiane Fellbaum. 1998. WordNet:
An Electronic Lexical Database. MIT Press, Cam-
bridge, MA.

[Finkelstein et al.2002] Lev Finkelstein, Evgeniy
Gabrilovich, Yossi Matias, Ehud Rivlin, Zach
Solan, Gadi Wolfman, and Eytan Ruppin. 2002.
Placing search in context: the concept revisited. ACM
Transactions on Information Systems, 20(1):116–131.

[Hill et al.2015] Felix Hill, Roi Reichart, and Anna Ko-
rhonen. 2015. SimLex-999: Evaluating Semantic
Models with (Genuine) Similarity Estimation. Com-
putational Linguistics, 41(4):665–695.

[Huang et al.2012] Eric H Huang, Richard Socher,
Christopher D Manning, and Andrew Ng. 2012.
Improving word representations via global context
and multiple word prototypes. Proceedings of the 50th
Annual Meeting of the Association for Computational
Linguistics: Long Papers-Volume 1, pages 873–882.

[Kriegeskorte et al.2008] Nikolaus Kriegeskorte, Marieke
Mur, and Peter Bandettini. 2008. Representational
similarity analysis - connecting the branches of sys-
tems neuroscience. Frontiers in systems neuroscience,
2(November):4, jan.

[Mikolov et al.2011] Tomáš Mikolov, Stefan Kombrink,
Anoop Deoras, Lukáš Burget, and Jan Černocký.
2011. RNNLM — Recurrent Neural Network Lan-
guage Modeling Toolkit. In Proceedings of Auto-
matic Speech Recognition and Understanding (ASRU),
pages 1–4.

[Mikolov et al.2013] Tomas Mikolov, Greg Corrado, Kai
Chen, and Jeffrey Dean. 2013. Efficient Estimation of
Word Representations in Vector Space. Proceedings of
the International Conference on Learning Representa-
tions (ICLR 2013), pages 1–12.

[Mitchell et al.2008] Tom M Mitchell, Svetlana V
Shinkareva, Andrew Carlson, Kai-Min Chang, Vi-
cente L Malave, Robert A Mason, and Marcel Adam
Just. 2008. Predicting human brain activity associated
with the meanings of nouns. Science (New York, N.Y.),
320(5880):1191–5, may.

[Murphy et al.2012] Brian Murphy, Partha Talukdar, and
Tom Mitchell. 2012. Selecting Corpus-Semantic
Models for Neurolinguistic Decoding. In First Joint
Conference on Lexical and Computational Semantics
(*SEM), pages 114–123, Montreal, Quebec, Canada.

[Pennington et al.2014] Jeffrey Pennington, Richard
Socher, and Christopher D Manning. 2014. GloVe
: Global Vectors for Word Representation. In Con-
ference on Empirical Methods in Natural Language
Processing, Doha, Qatar.

[RepEval2016] RepEval. 2016. RepEval workshop,
ACL. https://sites.google.com/site/
repevalacl16/.

[Sudre et al.2012] Gustavo Sudre, Dean Pomerleau, Mark
Palatucci, Leila Wehbe, Alona Fyshe, Riitta Salmelin,
and Tom Mitchell. 2012. Tracking Neural Coding of
Perceptual and Semantic Features of Concrete Nouns.
NeuroImage, 62(1):463–451, may.

2021

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2022–2027,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Evaluating Induced CCG Parsers on Grounded Semantic Parsing

Yonatan Bisk1∗ Siva Reddy2∗ John Blitzer3 Julia Hockenmaier4 Mark Steedman2

1ISI, University of Southern California
2ILCC, School of Informatics, University of Edinburgh

3Google, Mountain View
4Department of Computer Science, University of Illinois at Urbana-Champaign
ybisk@isi.edu, siva.reddy@ed.ac.uk, blitzer@google.com,

juliahmr@illinois.edu, steedman@inf.ed.ac.uk,

Abstract

We compare the effectiveness of four differ-
ent syntactic CCG parsers for a semantic slot-
filling task to explore how much syntactic su-
pervision is required for downstream seman-
tic analysis. This extrinsic, task-based evalua-
tion also provides a unique window into the se-
mantics captured (or missed) by unsupervised
grammar induction systems.

1 Introduction

The past several years have seen significant progress
in unsupervised grammar induction (Carroll and
Charniak, 1992; Yuret, 1998; Klein and Manning,
2004; Spitkovsky et al., 2010; Garrette et al., 2015;
Bisk and Hockenmaier, 2015). But how useful are
unsupervised syntactic parsers for downstream NLP
tasks? What phenomena are they able to capture,
and where would additional annotation be required?
Instead of standard intrinsic evaluations – attachment
scores that depend strongly on the particular anno-
tation styles of the gold treebank – we examine the
utility of unsupervised and weakly supervised parsers
for semantics. We perform an extrinsic evaluation of
unsupervised and weakly supervised CCG parsers on
a grounded semantic parsing task that will shed light
on the extent to which these systems recover seman-
tic information. We focus on English to perform a
direct comparison with supervised parsers (although
unsupervised or weakly supervised approaches are
likely to be most beneficial for domains or languages
where supervised parsers are not available).

∗Equal contribution

Specifically, we evaluate different parsing scenar-
ios with varying amounts of supervision. These are
designed to shed light on the question of how well
syntactic knowledge correlates with performance on
a semantic evaluation. We evaluate the following sce-
narios (all of which assume POS-tagged input): 1) no
supervision; 2) a lexicon containing words mapped
to CCG categories; 3) a lexicon containing POS tags
mapped to CCG categories; 4) sentences annotated
with CCG derivations (i.e., fully supervised). Our
evaluation reveals which constructions are problem-
atic for unsupervised parsers (and annotation efforts
should focus on). Our results indicate that unsuper-
vised syntax is useful for semantics, while a simple
semi-supervised parser outperforms a fully unsuper-
vised approach, and could hence be a viable option
for low resource languages.

2 CCG Intrinsic Evaluations

CCG (Steedman, 2000) is a lexicalized formalism in
which words are assigned syntactic types, also known
as supertags, encoding subcategorization informa-
tion. Consider the sentence Google acquired Nest
in 2014, and its CCG derivations shown in Figure 1.
In (a) and (b), the supertag of acquired, (S\NP)/NP,
indicates that it has two arguments, and the preposi-
tional phrase in 2014 is an adjunct, whereas in (c) the
supertag ((S\NP)/PP)/NP indicates acquired has
three arguments including the prepositional phrase.
In (a) and (b), depending on the supertag of in, the
derivation differs. When trained on labeled treebanks,
(a) is preferred. However note that all these deriva-
tions could lead to the same semantics (e.g., to the
logical form in Equation 1). Without syntactic su-

2022

Google acquired Nest in 2014

NP (S\NP)/NP NP ((S\NP)\(S\NP))/NP NP
> >

S\NP (S\NP)\(S\NP)
<

S\NP
<

S

(a) in 2014 modifies acquired Nest

Google acquired Nest in 2014

NP (S\NP)/NP NP (S\S)/NP NP
> >

S\NP S\S
<

S
<

S

(b) in 2014 modifies Google acquired Nest

Google acquired Nest in 2014

NP ((S\NP)/PP)/NP NP PP/NP NP
> >

(S\NP)/PP PP
>

S\NP
<

S

(c) acquired Google takes the argument in 2014

Figure 1: Example of multiple valid derivations that can be grounded to the same Freebase logical form (Eq.
1) even though they differ dramatically in performance under parsing metrics (5, 4, or 3 “correct” supertags).

pervision, there may not be any reason for the parser
to prefer one analysis over the other. One proce-
dure to evaluate unsupervised induction methods has
been to compare the assigned supertags to treebanked
supertags, but this evaluation does not consider that
multiple derivations could lead to the same semantics.
This problem is also not solved by evaluating syntac-
tic dependencies. Moreover, while many dependency
standards agree on the head direction of simple con-
stituents (e.g., noun phrases) they disagree on the
most semantically useful ones (e.g., coordination and
relative clauses).1

3 Our Proposed Evaluation

The above syntax-based evaluation metrics conceal
the real performance differences and their effect on
downstream tasks. Here we propose an extrinsic
evaluation where we evaluate our ability to convert
sentences to Freebase logical forms starting via CCG
derivations. Our motivation is that most sentences
can only have a single realization in Freebase, and
any derivation that could lead to this realization is
potentially a correct derivation. For example, the
Freebase logical form for the example sentence in
Figure 1 is shown below, and none of its derivations
are penalized if they could result in this logical form.

λe. business.acquisition(e)

∧ acquiring company(e,GOOGLE)

∧ company acquired(e,NEST)

∧ date(e, 2014)

(1)

Since grammar induction systems are traditionally
trained on declarative sentences, we would ideally
require declarative sentences paired with Freebase
logical forms. But such datasets do not exist in the
Freebase semantic parsing literature (Cai and Yates,
2013; Berant et al., 2013). To alleviate this prob-

1Please see Bisk and Hockenmaier (2013) for more details.

lem, and yet perform Freebase semantic parsing, we
propose an entity slot-filling task.

Entity Slot-Filling Task. Given a declarative sen-
tence containing mentions of Freebase entities, we
randomly remove one of the mentions to create a
blank slot. The task is to fill this slot by translating
the declarative sentence into a Freebase query. Con-
sider the following sentence where the entity Nest
has been removed:
Google acquired which was founded in Palo Alto

To correctly fill in the blank, one has to query Free-
base for the entities acquired by Google (constraint 1)
and founded in Palo Alto (constraint 2). If either of
those constraints are not applied, there will be many
entities as answers. For each question, we execute a
single Freebase query containing all the constraints
and retrieve a list of answer entities. From this list,
we pick the first entity as our predicted answer, and
consider the prediction as correct if the gold answer
is the same as the predicted answer.

4 Sentences to Freebase Logical Forms

CCG provides a clean interface between syntax
and semantics, i.e. each argument of a words syn-
tactic category corresponds to an argument of the
lambda expression that defines its semantic interpre-
tation (e.g., the lambda expression corresponding
to the category (S\NP)/NP of the verb acquired
is λf.λg.λe.∃x.∃y.acquired(e) ∧ f(x) ∧ g(y) ∧
arg1(e, y)∧arg2(e, x)), and the logical form for the
complete sentence can be constructed by composing
word level lambda expressions following the syntac-
tic derivation (Bos et al., 2004). In Figure 2 we show
two syntactic derivations for the same sentence, and
the corresponding logical forms and equivalent graph
representations derived by GRAPHPARSER (Reddy
et al., 2014). The graph representations are possi-
ble because GRAPHPARSER assumes access to co-
indexations of input CCG categories. We provide

2023

Google acquired 〈blank〉 which was founded inPA

NP (S\NP)/NP NP (NP\NP)/(S\NP) S\NP
>

NP\NP
<

NP
>

S\NP
<

S

e2 Palo Alto

target x e1 Google
acquired.

arg2
acquired.

arg1

fo
un

de
d.

in
.a
rg
1

founded.
in.arg2

target(x)

^ founded.in.arg1(e2, x) ^ founded.in.arg2(e2, Palo Alto)

^ acquired.arg1(e1, Google) ^ acquired.arg2(e1, x)

λe1.∃xe2. TARGET(x) ∧ acquired(e1) ∧ arg1(e1,Google) ∧ arg2(e1, x) ∧ founded(e2) ∧ arg2(e2, x) ∧ in(e2,PaloAlto)

Google acquired 〈blank〉 which was founded inPA

NP (S\NP)/NP NP ((S\NP)\(S\NP))/(S\NP) S\NP
> >

S\NP (S\NP)\S\NP
<

S\NP
<

S

Palo Alto e2

target x e1 Google
acquired.

arg2
acquired.

arg1

fo
u
n
d
ed

.
in

.arg
1

founded.
in.arg2

λe1.∃xe2. TARGET(x) ∧ acquired(e1) ∧ arg1(e1,Google) ∧ arg2(e1, x) ∧ founded(e2) ∧ arg2(e2,Google) ∧ in(e2,PaloAlto)

Figure 2: The lexical categories for which determine the relative clause attachment and therefore the resulting
ungrounded logical form. The top derivation correctly executes a query to retrieve companies founded in
Palo Alto and acquired by Google. The bottom incorrectly asserts that Google was founded in Palo Alto.

co-indexation for all induced categories, including
multiple co-indexations when an induced category
is ambiguous. For example, (S\N)/(S\N) refers to
either (Sx\Ny)/(Sx\Ny) indicating an auxiliary verb
or (Sx\Ny)/(Sz\Ny) indicating a control verb. Ini-
tially, the predicates in the expression/graph will be
based entirely on the surface form of the words in
the sentence. This is the “ungrounded” semantic
representation.

Our next step is to convert these ungrounded
graphs to Freebase graphs.2 Like Reddy et al. (2014),
we treat this problem as a graph matching problem.
Using GRAPHPARSER we retrieve all the Freebase
graphs that are isomorphic to the ungrounded graph,
and select only the graphs that could correctly pre-
dict the blank slot, as candidate graphs. Using these
candidate graphs, we train a structured perceptron
that learns to rank grounded graphs for a given un-
grounded graph.3 We use ungrounded predicate and
Freebase predicate alignments as our features.

5 Experiments

5.1 Training and Evaluation Datasets

Our dataset SPADES (Semantic PArsing of
DEclarative Sentences) is constructed from the
declarative sentences collected by Reddy et al. (2014)
from CLUEWEB09 (Gabrilovich et al., 2013) based
on the following constraints: 1) There exists at least

2Note that there is one-to-one correspondence between Free-
base graphs and Freebase logical forms.

3Please see Section 4.3 of Reddy et al. (2016) for details.

Sentences Tokens Types Entities

Train 79,247 685,922 69,095 37,606
Dev 4,763 41,102 9,306 4,358
Test 9,309 80,437 15,180 7,431

Table 1: SPADES Corpus Statistics

one isomorphic Freebase graph to the ungrounded
representation of the input sentence; 2) There are no
variable nodes in the ungrounded graph (e.g., Google
acquired a company is discarded whereas Google
acquired the company Nest is selected). We split this
data into training (85%), development (5%) and test-
ing (10%) sentences (Table 1). We introduce empty
slots into these sentences by randomly removing an
entity. SPADES can be downloaded at http://
github.com/sivareddyg/graph-parser.

There has been other recent interest in similar
datasets for sentence completion (Zweig et al., 2012)
and machine reading (Hermann et al., 2015), but un-
like other corpora our data is tied directly to Freebase
and requires the execution of a semantic parse to cor-
rectly predict the missing entity. This is made more
explicit by the fact that one third of the entities in
our test set are never seen during training, so without
a general approach to query creation and execution
there is a limit on a system’s performance.

5.2 Our Models

We use different CCG parsers varying in the amounts
of supervision. For the UNSUPERVISED scenario,
we use Bisk and Hockenmaier (2015)’s parser which

2024

CCGbank (Syntax) Slot Filling (Semantics)
LF1 UF1 2 3 4 Overall

Sentences ∼6K ∼3K ∼600 ∼10K

Bag-of-Words – – 50.8 36.8 20.9 45.2

Sy
nt

ax
UNSUPERVISED 37.1 64.2 41.6 30.4 24.5 37.3
SEMI-SUPERVISED-POS 53.0 68.5 45.9 33.7 29.1 41.4
SEMI-SUPERVISED-WORD 53.5 68.9 46.8 38.2 28.3 43.2
SUPERVISED 84.2 91.0 49.3 42.0 30.9 46.1

Table 2: Syntactic and semantic evaluation of the parsing models. Left: Simplified labeled F1 and undirected
unlabeled F1 on CCGbank, Section 23. Right: Slot filling performance (by number of entities per sentence).

exploits a small set of universal rules to automatically
induce and weight a large set of lexical categories.
For the semi-supervised, we explore two options –
SEMI-SUPERVISED-WORD and SEMI-SUPERVISED-
POS. We use Bisk et al. in both settings but we con-
strain its lexicon manually rather than inducing it
from scratch. In the former, we restrict the top 200
words in English to occur only with the CCG cat-
egories that comprise 95% of the occurrences of a
word’s use in Section 22 of WSJ/CCGbank. In the
latter, we restrict the POS tags instead of words. For
the SUPERVISED scenario, we use EasyCCG (Lewis
and Steedman, 2014) trained on CCGbank.

Finally, in order to further demonstrate the amount
of useful information being learned by our parsers,
we present a competitive Bag-of-Words baseline,
which is a perceptron classifier that performs “se-
mantic parsing” by predicting either a Freebase or a
null relation between the empty slot and every other
entity in the sentence, using the words in the sentence
as features. This naive approach is competitive on
simple sentences with only two entities, rivaling even
the fully supervised parser, but falters as complexity
increases.

5.3 Results and Discussion
Our primary focus is a comparison of intrinsic syn-
tactic evaluation with our extrinsic semantic evalu-
ation. To highlight the differences we present Sec-
tion 23 parsing performance for our four models (Ta-
ble 2). Dependency performance is evaluated on both
the simplified labeled F1 of Bisk and Hockenmaier
(2015) and Undirected Unlabeled F1.

Despite the supervised parser performing almost
twice as well as the semi-supervised parsers on CCG-
bank LF1 (53 vs 84), in our semantic evaluation we

see a comparatively small gain in performance (43
vs 46). It is interesting that such weakly supervised
models are able to achieve over 90% of the perfor-
mance of a fully supervised parser. To explore this
further, we break down the semantics performance
of all our models by the number of entities in a sen-
tence. Each sentence has two, three, or four entities,
one of which will be dropped for prediction. The
more entities there are in a sentence, the more likely
the models are to misanalyze a relation leading to
their making the wrong prediction. These results are
presented on the right side of Table 2. There are
still notable discrepancies in performance, which we
analyze more closely in the next section.

Another interesting result is the drop in perfor-
mance by the Bag-of-Words Model. As the number
of entities in the sentence increase, the model weak-
ens, performing worse than the unsupervised parser
on sentences with four entities. It becomes non-trivial
for it to isolate which entities and relations should
be used for prediction. This seems to indicate that
the unsupervised grammar is capturing more useful
syntactic/semantic information than what is available
from the words alone. Ensemble systems that incor-
porate syntax and a Bag-of-Words baseline may yield
even better performance.

5.4 The Benefits of Annotation
The performance of SEMI-SUPERVISED-POS and
SEMI-SUPERVISED-WORD suggests that when re-
sources are scarce, it is beneficial to create a even a
small lexicon of CCG categories. We analyze this
further in Figure 3. Here we show how performance
changes as a function of the number of labeled lexical
types. Our values range from 0 to 1000 lexical types.
We see syntactic improvements of 16pts and seman-

2025

Table 1

Annotated Words Syntax Semantics

0 37.1 37.3

100 48.49 40.9

200 53.5 43.2

500 53.36 42.4

1000 49.87 42.4

F1

15

30

45

60

of Annotated Lexical Types
0 100 200 500 1000

Syntax
Semantics

�1

Figure 3: When our word based lexicon grows past 200
lexical types the semantic performance plateaus and the
syntax begins to degrade. This is presumably due to the
use of rare categories coupled with domain differences.

tic gains of 6pts with 200 words, before performance
degrades. It is possible that increasing annotation
may only benefit fully supervised models. Finally,
when computing the most frequent lexical types we
excluded commas. We found a 3pt performance drop
when restricting commas to the category , (they are
commonly conj in our data). Additional in-domain
knowledge might further improve performance.

5.5 Common Errors

Bisk and Hockenmaier (2015) performed an in-depth
analysis of the types of categories learned and cor-
rectly used by their models (the same models as this
paper). Their analysis was based on syntactic eval-
uation against CCGbank. In particular, they found
the most egregious “semantic” errors to be the mis-
use of verb chains, possessives and PP attachment
(bottom of Table 3). Since we now have access to
a purely semantic evaluation, we can therefore ask
whether these errors exist here, and how common
they are. We do this analysis in two steps. First,
we manually analyzed parses for which the unsuper-
vised model failed to predict the correct semantics,
but where the supervised parser succeeded. The top
of Table 3 presents several of the most common rea-
sons for failure. These mistakes were more mundane
(e.g. incorrect use of a conjunction) than failures to
use complex CCG categories or analyze attachments.

Second, we can compare grammatical decisions
made by the semi-supervised and unsupervised
parsers against EasyCCG on sentences they suc-
cessfully grounded. Bisk and Hockenmaier (2015)
found that their unsupervised parser made mistakes
on many very simple categories. We found the same

Error Example

Pr
ev

al
en

t Incorrect conjunction Stockholm, Sweden
Appositive , a chemist ,
Introductory clauses In Frankfurt, ...
Reduced relatives ... , established in 1909, ...

B
&

H
15 Verb chains is also headquartered

Possessive Anderson ’s Foundation
PP Attachment of the foundation in Vancouver

Table 3: Causes of semantic grounding errors with exam-
ples not previously isolated via intrinsic evaluation.

result. When evaluating our parsers against the tree-
bank we found the unsupervised model only correctly
predicted transitive verbs 20% of the time and ad-
verbs 39% of the time. In contrast, on our data, we
produced the correct transitive category (according
to EasyCCG) 65% of the time, and the correct adverb
68% of the time. These correct parsing decisions also
lead to improved performance across many other cat-
egories (e.g. prepositions). This is likely due to our
corpus containing simpler constructions. In contrast,
auxiliary verbs, relative clauses, and commas still
proved difficult or harder than in the treebank. This
implies that future work should tailor the annotation
effort to their specific domain rather than relying on
guidance solely from the treebank.

6 Conclusion

Our goal in this paper was to present the first seman-
tic evaluation of induced grammars in order to better
understand their utility and strengths. We showed
that induced grammars are learning more semanti-
cally useful structure than a Bag-of-Words model.
Furthermore, we showed how minimal syntactic su-
pervision can provide substantial gains in semantic
evaluation. Our ongoing work explores creating a
syntax-semantics loop where each benefits the other
with no human (annotation) in the loop.

Acknowledgments

This paper is partly based on work that was done
when the first and second authors were interns at
Google, and on work that that was supported by NSF
grant 1053856 to JH, and a Google PhD Fellowship
to SR.

2026

References
Jonathan Berant, Andrew Chou, Roy Frostig, and Percy

Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1533–1544, Seattle, Washington,
USA, October.

Yonatan Bisk and Julia Hockenmaier. 2013. An HDP
Model for Inducing Combinatory Categorial Grammars.
Transactions of the Association for Computational Lin-
guistics, pages 75–88.

Yonatan Bisk and Julia Hockenmaier. 2015. Probing
the linguistic strengths and limitations of unsupervised
grammar induction. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics, Beijing,China, July.

Johan Bos, Stephen Clark, Mark Steedman, James R Cur-
ran, and Julia Hockenmaier. 2004. Wide-coverage
semantic representations from a CCG parser. In Pro-
ceedings of the 20th international conference on Com-
putational Linguistics, page 1240.

Qingqing Cai and Alexander Yates. 2013. Semantic pars-
ing freebase: Towards open-domain semantic parsing.
In Second Joint Conference on Lexical and Computa-
tional Semantics (*SEM), Volume 1: Proceedings of
the Main Conference and the Shared Task: Semantic
Textual Similarity, pages 328–338, Atlanta, Georgia,
USA, June.

Glenn Carroll and Eugene Charniak. 1992. Two Experi-
ments on Learning Probabilistic Dependency Gram-
mars from Corpora. Working Notes of the Work-
shop Statistically-Based NLP Techniques, pages 1–15,
March.

Evgeniy Gabrilovich, Michael Ringgaard, and Amarnag
Subramanya. 2013. FACC1: Freebase annotation of
ClueWeb corpora, Version 1 (Release date 2013-06-26,
Format version 1, Correction level 0), June.

Dan Garrette, Chris Dyer, Jason Baldridge, and Noah A
Smith. 2015. Weakly-Supervised Grammar-Informed
Bayesian CCG Parser Learning. In Proceedings of the
Association for the Advancement of Artificial Intelli-
gence.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems 28, pages 1693–1701.

Dan Klein and Christopher D Manning. 2004. Corpus-
Based Induction of Syntactic Structure: Models of De-
pendency and Constituency. In Proceedings of the
42nd Meeting of the Association for Computational
Linguistics (ACL’04), Main Volume, pages 478–485,
Barcelona, Spain, July.

Mike Lewis and Mark Steedman. 2014. A* CCG Parsing
with a Supertag-factored Model. In Proceedings of the
2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 990–1000, Doha,
Qatar, October.

Siva Reddy, Mirella Lapata, and Mark Steedman.
2014. Large-scale Semantic Parsing without Question-
Answer Pairs. Transactions of the Association for Com-
putational Linguistics, pages 1–16, June.

Siva Reddy, Oscar Täckström, Michael Collins, Tom
Kwiatkowski, Dipanjan Das, Mark Steedman, and
Mirella Lapata. 2016. Transforming Dependency
Structures to Logical Forms for Semantic Parsing.
Transactions of the Association for Computational Lin-
guistics, 4:127–140.

Valentin I Spitkovsky, Hiyan Alshawi, and Daniel Juraf-
sky. 2010. From Baby Steps to Leapfrog: How “Less
is More” in Unsupervised Dependency Parsing. In Hu-
man Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Association
for Computational Linguistics, pages 751–759, Los
Angeles, California, June.

Mark Steedman. 2000. The Syntactic Process. The MIT
Press, September.

Deniz Yuret. 1998. Discovery of Linguistic Relations
Using Lexical Attraction. Ph.D. thesis, Massachusetts
Institute of Technology.

Geoffrey Zweig, John C. Platt, Christopher Meek, Christo-
pher J.C. Burges, Ainur Yessenalina, and Qiang Liu.
2012. Computational approaches to sentence comple-
tion. In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 601–610, Jeju Island, Korea, July.

2027

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2028–2034,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Vector-space models for PPDB paraphrase ranking in context

Marianna Apidianaki
LIMSI, CNRS, Université Paris-Saclay

91403 Orsay, France
marianna.apidianaki@limsi.fr

Abstract

The PPDB is an automatically built database
which contains millions of paraphrases in dif-
ferent languages. Paraphrases in this resource
are associated with features that serve to their
ranking and reflect paraphrase quality. This
context-unaware ranking captures the seman-
tic similarity of paraphrases but cannot serve
to estimate their adequacy in specific con-
texts. We propose to use vector-space se-
mantic models for selecting PPDB paraphrases
that preserve the meaning of specific text frag-
ments. This is the first work that addresses the
substitutability of PPDB paraphrases in con-
text. We show that vector-space models of
meaning can be successfully applied to this
task and increase the benefit brought by the
use of the PPDB resource in applications.

1 Introduction

Paraphrases are alternative ways to convey the same
information and can improve natural language pro-
cessing by making systems more robust to lan-
guage variability and unseen words. The paraphrase
database (PPDB) (Ganitkevitch et al., 2013) contains
millions of automatically acquired paraphrases in
21 languages associated with features that serve to
their ranking. In PPDB’s most recent release (2.0),
such features include natural logic entailment rela-
tions, distributional and word embedding similari-
ties, formality and complexity scores, and scores as-
signed by a supervised ranking model (Pavlick et al.,
2015b). These features serve to identify good qual-
ity paraphrases but do not say much about their sub-
stitutability in context.

To judge the adequacy of paraphrases for specific
instances of words or phrases, the surrounding con-
text needs to be considered. This can be done using
vector-space models of semantics which calculate
the meaning of word occurrences in context based
on distributional representations (Mitchell and La-
pata, 2008; Erk and Padó, 2008; Dinu and Lapata,
2010; Thater et al., 2011). These models capture the
influence of the context on the meaning of a target
word through vector composition. More precisely,
they represent the contextualised meaning of a target
word w in context c by a vector obtained by com-
bining the vectors of w and c using some operation
such as component-wise multiplication or addition
(Thater et al., 2011). We use this kind of represen-
tations to rank the PPDB paraphrases in context and
retain the ones that preserve the semantics of spe-
cific text fragments. We evaluate the vector-based
ranking models on data hand-annotated with lexical
variants and compare the obtained ranking to confi-
dence estimates available in the PPDB, highlighting
the importance of context filtering for paraphrase se-
lection.

2 Context-based paraphrase ranking

2.1 Paraphrase substitutability

The PPDB1 provides millions of lexical, phrasal and
syntactic paraphrases in 21 languages – acquired
by applying bi- and multi-lingual pivoting on par-
allel corpora (Bannard and Callison-Burch, 2005) –
and is largely exploited in applications (Denkowski
and Lavie, 2010; Sultan et al., 2014; Faruqui et al.,

1http://paraphrase.org/#/download

2028

2015). PPDB paraphrases come into packages of dif-
ferent sizes (going from S to XXXL): smaller pack-
ages contain high-precision paraphrases while larger
ones aim for high coverage. Until now, pivot para-
phrases have been used as equivalence sets (i.e. all
paraphrases available for a word are viewed as se-
mantically equivalent) and their substitutability in
context has not yet been addressed.

Substitutability might be restrained by several
factors which make choosing the appropriate para-
phrase for a word or phrase in different contexts a
non-trivial task. In case of polysemous words, para-
phrases describe different meanings and can lead
to erroneous semantic mappings if substituted in
texts (Apidianaki et al., 2014; Cocos and Callison-
Burch, 2016). Even when paraphrases capture the
same general sense, they are hardly ever equiva-
lent synonyms and generally display subtle differ-
ences in meaning, connotation or usage (Edmonds
and Hirst, 2002). Stylistic variation might also be
present within paraphrase sets and substituting para-
phrases that differ in terms of complexity and for-
mality can result in a change in style (Pavlick and
Nenkova, 2015). To increase paraphrase applicabil-
ity in context, Pavlick et al. (2015a) propose to ex-
tract domain-specific pivot paraphrases by biasing
the parallel training data used by the pivot method
towards a specific domain. This customised model
greatly improves paraphrase quality for the target
domain but does not allow to rank and filter the
paraphrases already in the PPDB according to spe-
cific contexts. To our knowledge, this is the first
work that addresses the question of in-context sub-
stitutability of PPDB paraphrases. We show how ex-
isting substitutability models can be applied to this
task in order to increase the usefulness of this large-
scale resource in applications.

2.2 Vector-space models of paraphrase
adequacy

Vector-based models of meaning determine a grad-
ual concept of semantic similarity which does not
rely on a fixed set of dictionary senses. They are
used for word sense discrimination and induction
(Schütze, 1998; Turney and Pantel, 2010) and can
capture the contextualised meaning of words and
phrases (Mitchell and Lapata, 2008; Erk and Padó,
2008; Thater et al., 2011). Vector composition meth-

ods build representations that go beyond individual
words to obtain word meanings in context. Some
models use explicit sense representations while oth-
ers modify the basic meaning vector of a target word
with information from the vectors of the words in its
context. In the framework proposed by Dinu and
Lapata (2010), for example, word meaning is rep-
resented as a probability distribution over a set of
latent senses reflecting the out-of-context likelihood
of each sense, and the contextualised meaning of a
word is modeled as a change in the original sense
distribution.2 Reisinger and Mooney (2010) pro-
pose a multi-prototype vector-space model of mean-
ing which produces multiple “sense-specific” vec-
tors for each word, determined by clustering the con-
texts in which the word appears (Schütze, 1998).
The cluster centroids serve as prototype vectors de-
scribing a word’s senses and the meaning of a spe-
cific occurrence is determined by choosing the vec-
tor that minimizes the distance to the vector repre-
senting the current context. On the contrary, Thater
et al. (2011) use no explicit sense representation.
Their models allow the computation of vector repre-
sentations for individual uses of words, characteris-
ing the specific meaning of a target word in its sen-
tential context. When used for paraphrase ranking,
these models derive a contextualised vector for a tar-
get word by reweighting the components of its basic
meaning vector on the basis of the context of oc-
currence.3 Paraphrase candidates for a target word
are then ranked according to the cosine similarity
of their basic vector representation to the contextu-
alised vector of the target.4

3 Experimental Set-up

Data In our experiments, we use the COINCO cor-
pus (Kremer et al., 2014), a subset of the “Man-
ually Annotated Sub-Corpus” MASC (Ide et al.,
2010) which comprises more than 15K word in-

2The latent senses are induced using non-negative matrix
factorization (NMF) (Lee and Seung, 2001) and latent Dirichlet
allocation (LDA) (Blei et al., 2003).

3Depending on the model, the vector combination function
might be addition or multiplication of vector elements.

4Thater et al.’s (2011) models delivered best results in para-
phrase ranking on the CoInCo corpus (Kremer et al., 2014) and
the SEMEVAL-2007 Lexical Substitution dataset (McCarthy
and Navigli, 2007).

2029

|P|> 1 |P| ≥ 1
PPDB # Instances # Lemmas Avg |P| # Instances

S 2146 560 2.67 5573
M 3716 855 2.92 7771
L 6228 1394 3.57 10100

XL 13344 2822 10.33 14060
XXL 14507 3308 185.09 14593

Table 1: Number of COINCO instances and distinct lemmas

covered by each PPDB package.

stances manually annotated with single and multi-
word substitutes. The manual annotations serve to
evaluate the performance of the vector-space models
on the task of ranking PPDB paraphrases. For each
annotated English target word (noun, verb, adjective
or adverb) in COINCO, we collect the lexical para-
phrases (P = {p1, p2, ..., pn}) available for the word
in each PPDB package (from S to XXL).5 We do not
filter by syntactic label as annotations often include
substitutes of different grammatical categories. Ta-
ble 1 shows the number of COINCO tokens with
paraphrases in each PPDB package and the average
size of the retained paraphrase sets. The larger the
size of the resource, the greater the coverage of tar-
get words in COINCO. The last column of the table
gives the total number of instances covered, includ-
ing the ones with only one paraphrase. In the rank-
ing experiments, we focus on lemmas having more
than one paraphrase in the PPDB.6

Methodology We follow the methodology proposed
in Kremer et al. (2014) to explore the extent to
which vector-based models can select appropriate
paraphrases for words in context. Given a target
word w in a sentential context and a set of para-
phrases P extracted for w from a PPDB package, the
task is to rank the elements in P according to their
adequacy as paraphrases of w in the given context.

We carry out experiments with three versions of
the Thater et al. (2011) ranking model: (a) a
syntactically structured model (Syn.Vec) that uses
vectors recording co-occurrences based on depen-
dency triples, explicitly recording syntactic role in-

5Since the XXL package covers almost all annotated in-
stances in COINCO (14,507 out of 15,629) and there are 185.09
paraphrases in average for each instance, we exclude the XXXL

package from these experiments.
6We retain paraphrases of the lemmatised forms of the tar-

get words but these unsupervised ranking models can be easily
applied to the whole PPDB resource and in different languages.

formation within the vectors; (b) a syntactically fil-
tered model (Filter.Vec) using dependency-based co-
occurrence information without explicitly represent-
ing the syntactic role in the vector representations,
as in Padó and Lapata (2007); (c) a bag of words
model (Bow.Vec) using a window of ± 5 words.
Co-occurrence counts were extracted from the En-
glish Gigaword corpus7 analysed with Stanford de-
pendencies (de Marneffe et al., 2006). The syntactic
model vectors are based on dependency triples that
occur at least 5 times in the corpus and have a PMI
score of at least 2. The same thresholds apply to
the bag of words model where the frequency thresh-
old defines the minimum number of times that two
words have been observed in the same context win-
dow. The task of the vector-space models for each
target word instance is to rank the contents of the
corresponding paraphrase set (which contains all the
substitution candidates available for the target in the
PPDB) so that the actual substitutes are ranked higher
than the rest. For example, newspaper, manuscript
and document are good paraphrase candidates for
paper but we would expect newspaper to be ranked
higher than the other two in this sentence: “the pa-
per’s local administrator”.

A contextualised vector is derived from the ba-
sic meaning vector of a target word w by reinforc-
ing its dimensions that are licensed by the context
of the specific instance under consideration. In the
Bow.Vec model, the context is made up of 5 words
before and after the target while in the syntactic
models, it corresponds to the target’s direct syntac-
tic dependents. The contextualised vector for w is
obtained through vector addition and contains infor-
mation about the context words. Paraphrase can-
didates are ranked according to the cosine similar-
ity between the contextualised vector of the target
word and the basic meaning vectors of the candi-
dates. Following Kremer et al. (2014), we com-
pare the resulting ranked list to the COINCO gold
standard annotation (the paraphrase set of the tar-
get instance) using Generalised Average Precision
(GAP) (Kishida, 2005) and annotation frequency as
weights. GAP scores range between 0 and 1: a
score of 1 indicates a perfect ranking in which all
correct substitutes precede all incorrect ones, and

7http://catalog.ldc.upenn.edu/LDC2003T05

2030

PPDB Bow.Vec Syn.Vec Filter.Vec Google AGiga Ppdb1 Ppdb2 Parprob Random (5)

|P
|>

1

S 0.91 0.91 0.91 0.78 0.86 0.66 0.83 0.66 0.78
M 0.91 0.91 0.92 0.79 0.87 0.68 0.84 0.68 0.79
L 0.90 0.90 0.91 0.78 0.85 0.66 0.83 0.66 0.77

XL 0.78 0.79 0.79 0.58 0.67 0.44 0.66 0.43 0.58
XXL 0.53 0.56 0.57 0.27 0.36 0.12 0.58 0.12 0.27

|P
|≥

1

S 0.97 0.97 0.97 0.91 0.95 0.87 0.93 0.87 0.91
M 0.96 0.96 0.96 0.90 0.94 0.85 0.92 0.85 0.90
L 0.94 0.94 0.94 0.87 0.91 0.79 0.90 0.79 0.86

XL 0.79 0.80 0.80 0.60 0.69 0.47 0.68 0.46 0.60
XXL 0.54 0.56 0.58 0.28 0.37 0.13 0.59 0.14 0.28

Table 2: Average GAP scores for the contextual models, five paraphrase adequacy methods and the random ranking baseline against

the gold COINCO annotations. Scores reported for different sizes of the PPDB (from S to XXL).

correct high-weight substitutes precede low-weight
ones. For calculating the GAP score, we assign a
very low score (0.001) to paraphrases that are not
present in COINCO for a target word (i.e. not pro-
posed by the annotators).

4 Results

The average GAP scores obtained by the three
vector-space models (Bow.Vec, Syn.Vec and Fil-
ter.Vec) are shown in Table 2. The upper part of the
table reports scores obtained for words with more
than one paraphrase in the PPDB (|P|> 1) while the
lower part gives the scores for all words.

We compare the GAP scores to five different
rankings reflecting paraphrase quality in the PPDB

(Pavlick et al., 2015b). We retain the following
scores: 1. AGigaSim captures the distributional
similarity of a phrase e1 and its paraphrase e2 com-
puted according to contexts observed in the Anno-
tated Gigaword corpus (Napoles et al., 2011); 2.
GoogleNgramSim reflects the distributional simi-
larity of e1 and e2 computed according to contexts
observed in the Google Ngram corpus (Brants and
Franz, 2006); 3. ParProb: the paraphrase proba-
bility of e2 given the original phrase e1 (Bannard
and Callison-Burch, 2005); 4. Ppdb1: the heuris-
tic scoring used for ranking in the original release
of the PPDB (Ganitkevitch et al., 2013); 5. Ppdb2:
the improved ranking of English paraphrases avail-
able in PPDB 2.0. The results are also compared to
the output of a baseline where the paraphrases are
randomly ranked. The reported baseline figures are
PPDB package-specific since a different paraphrase
set is retained from each package, and correspond

to averages over 5 runs. The quality of the rank-
ing produced by the baseline clearly decreases as the
size of the PPDB resource increases due to the higher
number of retained paraphrases which makes rank-
ing harder.

The results in the upper part of the table show
that the vector-space models provide a better rank-
ing than the PPDB estimates and largely outperform
the random baseline. The three models perform
similarly on this ranking task according to average
GAP with the syntactically-informed models getting
slightly higher scores. Differences between Syn.Vec
and Filter.Vec, as well as between Bow.Vec and the
syntactic models, are highly significant in the XL

and XXL packages (p-value < 0.001) as computed
with approximate randomisation (Padó, 2006). In
the L package, the difference between Syn.Vec and
Filter.Vec is significant (p < 0.05) and the one be-
tween Bow.Vec and Filter.Vec is highly significant.
Finally, in the M package, only the difference be-
tween Bow.Vec and Filter.Vec is significant (p <
0.05), while Syn.Vec and Filter.Vec seem to deal
similarly well with the contents of this package.

Two PPDB ranking methods, AGiga and Ppdb2,
obtain good results. AgigaSim reflects the distribu-
tional similarity of the paraphrases in the Annotated
Gigaword corpus (Napoles et al., 2011). As noted
by Kremer et al. (2014), the whole-document an-
notation in COINCO faces the natural skewed dis-
tribution towards predominant senses which favors
non-contextualised baseline models. The good per-
formance of Ppdb2 is due to the use of a super-
vised scoring model trained on human judgments
of paraphrase quality. The human judgments were

2031

used to fit a regression to the features available in
PPDB 1.0 plus numerous new features including co-
sine word embedding similarity, lexical overlap fea-
tures, WordNet features and distributional similarity
features.8 The small difference observed between
the Ppdb2 and the syntactic models score in the
XXL package is highly significant. For the moment,
Ppdb2 scores are available in the PPDB only for En-
glish. Since the vector-space methodology is unsu-
pervised and language independent, it could be eas-
ily applied to paraphrase ranking in other languages.
The performance of the models remains high with
the XL package which contains paraphrase sets of
reasonable size (about 10 paraphrases per word) and
ensures a high coverage, and lowers in XXL which
contains 185 paraphrases in average per word (cf.
Table 1). To use this package more efficiently, one
could initially reduce the number of erroneous para-
phrases on the basis of the Ppdb2 score which pro-
vides a good ranking of the XXL package contents
before applying the vector-based models.

The increase in GAP score observed when words
with one paraphrase are considered shows that these
paraphrases are often correct. Here too, the contex-
tual models provide a better ranking than the out-of-
context scores and outperform the random baseline.
As in the previous case, the Ppdb2 score is slightly
higher in the XXL package.

5 Conclusion

We have shown that vector-based models of seman-
tics can be successfully applied to in-context ranking
of PPDB paraphrases. Allowing for better context-
informed substitutions, they can be used to filter
PPDB paraphrases on the fly and select variants pre-
serving the correct semantics of words and phrases
in texts. This processing would be beneficial to nu-
merous applications that need paraphrase support
(e.g. summarisation, query reformulation and lan-
guage learning), providing a practical means for ex-
ploiting the extensive multilingual knowledge avail-
able in the PPDB resource.

This study opens up many avenues for future
work. Although tested on English, the proposed
methodology can be applied to all languages in the

8The features used for computing the paraphrase ranking in
PPDB 2.0 are described in detail in Pavlick et al. (2015b).

PPDB even to the ones that do not dispose of a de-
pendency parser (as shown by the high performance
of the Bow.Vec models).

An ideal testbed for evaluation in a real applica-
tion and on multiple languages is offered by MT
evaluation. The METEOR-NEXT metric (Denkowski
and Lavie, 2010) provides a straightforward frame-
work for testing as it already exploits PPDB para-
phrases for capturing sense correspondences be-
tween text fragments. In its current version, the met-
ric views paraphrases as equivalent classes which
can lead to erroneous sense mappings due to seman-
tic distinctions present in the paraphrase sets. We
have recently showed that the context-based filtering
of semantic variants improves METEOR’s correlation
with human judgments of translation quality (Marie
and Apidianaki, 2015). We believe that a context-
based paraphrase ranking mechanism will enhance
correct substitutions and further improve the met-
ric. Last but not least, the paraphrase vectors can be
used for mapping the contents of the PPDB resource
to other multilingual resources for which vector rep-
resentations are available (Camacho-Collados et al.,
2015a; Camacho-Collados et al., 2015b). The in-
terest of mapping paraphrases in the vector space
to concepts found in existing semantic resources
is twofold: it would permit to analyse the seman-
tics of the paraphrases by putting them into corre-
spondence with explicit concept representations and
would serve to enrich other semantic resources (e.g.
BabelNet synsets) with semantically similar para-
phrases.

Handling phrasal paraphrases is another natural
extension of this work. We consider using a vector
space model of semantic composition to calculate
the meaning of longer candidate paraphrases (Dinu
et al., 2013; Paperno et al., 2014) and select appro-
priate substitutes for phrases in context.

Acknowledgments

We would like to thank Stefan Thater for sharing the
vector-space models, Benjamin Marie for his sup-
port with the paraphrase ranking models and the
anonymous reviewers for their valuable comments
and suggestions.

2032

References
Marianna Apidianaki, Emilia Verzeni, and Diana Mc-

Carthy. 2014. Semantic Clustering of Pivot Para-
phrases. In Proceedings of LREC, Reykjavik, Iceland.

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with Bilingual Parallel Corpora. In Proceed-
ings of ACL, pages 597–604, Ann Arbor, Michigan,
USA.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022.

Thorsten Brants and Alex Franz. 2006. The Google
Web 1T 5-gram Corpus Version 1.1. LDC2006T13,
Philadelphia.

José Camacho-Collados, Mohammad Taher Pilehvar, and
Roberto Navigli. 2015a. Nasari: a novel approach to
a semantically-aware representation of items. In Pro-
ceedings of the 2015 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 567–
577, Denver, Colorado, May–June.

José Camacho-Collados, Mohammad Taher Pilehvar, and
Roberto Navigli. 2015b. A unified multilingual se-
mantic representation of concepts. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume
1: Long Papers), pages 741–751, Beijing, China, July.

Anne Cocos and Chris Callison-Burch. 2016. Clustering
paraphrases by word sense. In The 2016 Conference
of the North American Chapter of the Association for
Computational Linguistics (NAACL 2016), San Diego,
California, USA.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed de-
pendency parses from phrase structure parses. In To
appear at LREC-06.

Michael Denkowski and Alon Lavie. 2010. METEOR-
NEXT and the METEOR Paraphrase Tables: Im-
proved Evaluation Support for Five Target Languages.
In Proceedings of WMT/MetricsMATR, pages 339–
342, Uppsala, Sweden.

Georgiana Dinu and Mirella Lapata. 2010. Measuring
distributional similarity in context. In Proceedings of
the 2010 Conference on Empirical Methods in Natural
Language Processing, pages 1162–1172, Cambridge,
MA, October.

Georgiana Dinu, Nghia The Pham, and Marco Baroni.
2013. Dissect - distributional semantics composition
toolkit. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics: System
Demonstrations, pages 31–36, Sofia, Bulgaria, Au-
gust.

Philip Edmonds and Graeme Hirst. 2002. Near-
Synonymy and Lexical Choice. Computational Lin-
guistics, 28(2):105–144.

Katrin Erk and Sebastian Padó. 2008. A Structured
Vector Space Model for Word Meaning in Context.
In Proceedings of EMNLP, pages 897–906, Honolulu,
Hawaii.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris
Dyer, Eduard Hovy, and Noah A. Smith. 2015.
Retrofitting word vectors to semantic lexicons. In Pro-
ceedings of the 2015 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 1606–
1615, Denver, Colorado.

Juri Ganitkevitch, Benjamin VanDurme, and Chris
Callison-Burch. 2013. PPDB: The Paraphrase
Database. In Proceedings of NAACL, Atlanta, Geor-
gia, USA.

Nancy Ide, Collin Baker, Christiane Fellbaum, and Re-
becca Passonneau. 2010. The manually annotated
sub-corpus: A community resource for and by the peo-
ple. In Proceedings of the ACL 2010 Conference Short
Papers, pages 68–73, Uppsala, Sweden.

Kazuaki Kishida. 2005. Property of average precision
and its generalization: An examination of evaluation
indicator for information retrieval experiments. Tech-
nical report, Technical Report NII-2005-014E.

Gerhard Kremer, Katrin Erk, Sebastian Padó, and Stefan
Thater. 2014. What Substitutes Tell Us - Analysis of
an ”All-Words” Lexical Substitution Corpus. In Pro-
ceedings of EACL, pages 540–549, Gothenburg, Swe-
den.

Daniel D. Lee and H. Sebastian Seung. 2001. Algo-
rithms for non-negative matrix factorization. In Ad-
vances in Neural Information Processing Systems 13
(NIPS 2000), pages 556–562. MIT Press.

Benjamin Marie and Marianna Apidianaki. 2015.
Alignment-based sense selection in METEOR and the
RATATOUILLE recipe. In Proceedings of WMT,
pages 385–391, Lisbon, Portugal.

Diana McCarthy and Roberto Navigli. 2007. Semeval-
2007 task 10: English lexical substitution task. In
Proceedings of the Fourth International Workshop on
Semantic Evaluations (SemEval-2007), pages 48–53,
Prague, Czech Republic.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
Models of Semantic Composition. In Proceedings of
ACL/HLT, pages 236–244, Columbus, Ohio, USA.

Courtney Napoles, Chris Callison-Burch, Juri Ganitke-
vitch, and Benjamin Van Durme. 2011. Paraphras-
tic sentence compression with a character-based met-
ric: Tightening without deletion. In Proceedings of
the Workshop on Monolingual Text-To-Text Genera-
tion, pages 84–90, Portland, Oregon.

2033

Sebastian Pado and Mirella Lapata. 2007. Dependency-
based construction of semantic space models. Compu-
tational Linguistics, 33(2):161–199.

Sebastian Padó, 2006. User’s guide to sigf: Signifi-
cance testing by approximate randomisation.

Denis Paperno, Nghia The Pham, and Marco Baroni.
2014. A practical and linguistically-motivated ap-
proach to compositional distributional semantics. In
Proceedings of the 52nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers), pages 90–99, Baltimore, Maryland, June.

Ellie Pavlick and Ani Nenkova. 2015. Inducing lexical
style properties for paraphrase and genre differentia-
tion. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 218–224, Denver, Colorado.

Ellie Pavlick, Juri Ganitkevitch, Tsz Ping Chan, Xuchen
Yao, Benjamin Van Durme, and Chris Callison-Burch.
2015a. Domain-Specific Paraphrase Extraction. In
Proceedings of ACL/IJCNLP, pages 57–62, Beijing,
China.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch,
Benjamin Van Durme, and Chris Callison-Burch.
2015b. PPDB 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. In Proceedings of ACL/IJCNLP,
pages 425–430, Beijing, China.

Joseph Reisinger and Raymond J. Mooney. 2010. Multi-
prototype vector-space models of word meaning. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 109–
117, Los Angeles, California.

Hinrich Schütze. 1998. Automatic Word Sense Discrim-
ination. Computational Linguistics, 24:97–123.

Md Arafat Sultan, Steven Bethard, and Tamara Sumner.
2014. Dls@cu: Sentence similarity from word align-
ment. In Proceedings of the 8th International Work-
shop on Semantic Evaluation (SemEval 2014), pages
241–246, Dublin, Ireland, August.

Stefan Thater, Hagen Fürstenau, and Manfred Pinkal.
2011. Word Meaning in Context: A Simple and Effec-
tive Vector Model. In Proceedings of IJCNLP, pages
1134–1143, Chiang Mai, Thailand.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of semantics.
Journal of Artificial Intelligence Research, 37(1):141–
188.

2034

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2035–2041,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Interpreting Neural Networks to Improve Politeness Comprehension

Malika Aubakirova
University of Chicago

aubakirova@uchicago.edu

Mohit Bansal
UNC Chapel Hill

mbansal@cs.unc.edu

Abstract

We present an interpretable neural network ap-
proach to predicting and understanding polite-
ness in natural language requests. Our mod-
els are based on simple convolutional neural
networks directly on raw text, avoiding any
manual identification of complex sentiment
or syntactic features, while performing bet-
ter than such feature-based models from pre-
vious work. More importantly, we use the
challenging task of politeness prediction as a
testbed to next present a much-needed under-
standing of what these successful networks are
actually learning. For this, we present sev-
eral network visualizations based on activa-
tion clusters, first derivative saliency, and em-
bedding space transformations, helping us au-
tomatically identify several subtle linguistics
markers of politeness theories. Further, this
analysis reveals multiple novel, high-scoring
politeness strategies which, when added back
as new features, reduce the accuracy gap be-
tween the original featurized system and the
neural model, thus providing a clear quantita-
tive interpretation of the success of these neu-
ral networks.

1 Introduction

Politeness theories (Brown and Levinson, 1987; Gu,
1990; Bargiela-Chiappini, 2003) include key com-
ponents such as modality, indirection, deference,
and impersonalization. Positive politeness strate-
gies focus on making the hearer feel good through
offers, promises, and jokes. Negative politeness
examples include favor seeking, orders, and re-
quests. Differentiating among politeness types is a
highly nontrivial task, because it depends on fac-
tors such as a context, relative power, and culture.

Danescu-Niculescu-Mizil et al. (2013) proposed a
useful computational framework for predicting po-
liteness in natural language requests by designing
various lexical and syntactic features about key po-
liteness theories, e.g., first or second person start vs.
plural. However, manually identifying such polite-
ness features is very challenging, because there ex-
ist several complex theories and politeness in natu-
ral language is often realized via subtle markers and
non-literal cues.

Neural networks have been achieving high perfor-
mance in sentiment analysis tasks, via their ability
to automatically learn short and long range spatial
relations. However, it is hard to interpret and ex-
plain what they have learned. In this paper, we first
propose to address politeness prediction via sim-
ple CNNs working directly on the raw text. This
helps us avoid the need for any complex, manually-
defined linguistic features, while still performing
better than such featurized systems. More impor-
tantly, we next present an intuitive interpretation of
what these successful neural networks are learning,
using the challenging politeness task as a testbed.

To this end, we present several visualization
strategies: activation clustering, first derivative
saliency, and embedding space transformations,
some of which are inspired by similar strategies in
computer vision (Erhan et al., 2009; Simonyan et
al., 2014; Girshick et al., 2014), and have also been
recently adopted in NLP for recurrent neural net-
works (Li et al., 2016; Kádár et al., 2016). The neu-
ron activation clustering method not only rediscov-
ers and extends several manually defined features
from politeness theories, but also uncovers multi-
ple novel strategies, whose importance we measure
quantitatively. The first derivative saliency tech-
nique allows us to identify the impact of each phrase

2035

on the final politeness prediction score via heatmaps,
revealing useful politeness markers and cues. Fi-
nally, we also plot lexical embeddings before and af-
ter training, showing how specific politeness mark-
ers move and cluster based on their polarity. Such
visualization strategies should also be useful for un-
derstanding similar state-of-the-art neural network
models on various other NLP tasks.

Importantly, our activation clusters reveal two
novel politeness strategies, namely indefinite pro-
nouns and punctuation. Both strategies display
high politeness and top-quartile scores (as defined
by Danescu-Niculescu-Mizil et al. (2013)). Also,
when added back as new features to the original fea-
turized system, they improve its performance and re-
duce the accuracy gap between the featurized system
and the neural model, thus providing a clear, quan-
titative interpretation of the success of these neural
networks in automatically learning useful features.

2 Related Work

Danescu-Niculescu-Mizil et al. (2013) presented
one of the first useful datasets and computational ap-
proaches to politeness theories (Brown and Levin-
son, 1987; Goldsmith, 2007; Kádár and Haugh,
2013; Locher and Watts, 2005), using manually de-
fined lexical and syntactic features. Substantial pre-
vious work has employed machine learning models
for other sentiment analysis style tasks (Pang et al.,
2002; Pang and Lee, 2004; Kennedy and Inkpen,
2006; Go et al., 2009; Ghiassi et al., 2013). Recent
work has also applied neural network based mod-
els to sentiment analysis tasks (Chen et al., 2011;
Socher et al., 2013; Moraes et al., 2013; Dong et
al., 2014; dos Santos and Gatti, 2014; Kalchbrenner
et al., 2014). However, none of the above methods
focused on visualizing and understanding the inner
workings of these successful neural networks.

There have been a number of visualization tech-
niques explored for neural networks in computer vi-
sion (Krizhevsky et al., 2012; Simonyan et al., 2014;
Zeiler and Fergus, 2014; Samek et al., 2016; Ma-
hendran and Vedaldi, 2015). Recently in NLP, Li et
al. (2016) successfully adopt computer vision tech-
niques, namely first-order saliency, and present rep-
resentation plotting for sentiment compositionality
across RNN variants. Similarly, Kádár et al. (2016)

analyze the omission scores and top-k contexts of
hidden units of a multimodal RNN. Karpathy et al.
(2016) visualize character-level language models.
We instead adopt visualization techniques for CNN
style models for NLP1 and apply these to the chal-
lenging task of politeness prediction, which often
involves identifying subtle and non-literal sociolin-
guistic cues. We also present a quantitative interpre-
tation of the success of these CNNs on the politeness
prediction task, based on closing the performance
gap between the featurized and neural models.

3 Approach

3.1 Convolutional Neural Networks

We use one convolutional layer followed by a pool-
ing layer. For a sentence v1:n (where each word vi
is a d-dim vector), a filter m applied on a window of
t words, produces a convolution feature ci = f(m ∗
vi:i+t−1 + b), where f is a non-linear function, and
b is a bias term. A feature map c ∈ Rn−t+1 is ap-
plied on each possible window of words so that c =
[c1, ..., cn−t+1]. This convolutional layer is then fol-
lowed by a max-over-pooling operation (Collobert
et al., 2011) that gives C = max{c} of the partic-
ular filter. To obtain multiple features, we use mul-
tiple filters of varying window sizes. The result is
then passed to a fully-connected softmax layer that
outputs probabilities over labels.

4 Experimental Setup

4.1 Datasets

We used the two datasets released by Danescu-
Niculescu-Mizil et al. (2013): Wikipedia (Wiki)
and Stack Exchange (SE), containing community re-
quests with politeness labels. Their ‘feature devel-
opment’ was done on the Wiki dataset, and SE was
used as the ‘feature transfer’ domain. We use a sim-
pler train-validation-test split based setup for these
datasets instead of the original leave-one-out cross-
validation setup, which makes training extremely
slow for any neural network or sizable classifier.2

1The same techniques can also be applied to RNN models.
2The result trends and visualizations using cross-validation

were similar to our current results, in preliminary experiments.
We will release our exact dataset split details.

2036

4.2 Training Details

Our tuned hyperparameters values (on the dev set of
Wiki) are a mini-batch size of 32, a learning rate of
0.001 for the Adam (Kingma and Ba, 2015) opti-
mizer, a dropout rate of 0.5, CNN filter windows of
3, 4, and 5 with 75 feature maps each, and ReLU as
the non-linear function (Nair and Hinton, 2010). For
convolution layers, we use valid padding and strides
of all ones. We followed Danescu-Niculescu-Mizil
et al. (2013) in using SE only as a transfer domain,
i.e., we do not re-tune any hyperparameters or fea-
tures on this domain and simply use the chosen val-
ues from the Wiki setting. The split and other train-
ing details are provided in the supplement.

5 Results

Table 1 first presents our reproduced classification
accuracy test results (two labels: positive or nega-
tive politeness) for the bag-of-words and linguistic
features based models of Danescu-Niculescu-Mizil
et al. (2013) (for our dataset splits) as well as the
performance of our CNN model. As seen, without
using any manually defined, theory-inspired linguis-
tic features, the simple CNN model performs better
than the feature-based methods.3

Next, we also show how the linguistic features
baseline improves on adding our novelly discovered
features (plus correcting some exising features), re-
vealed via the analysis in Sec. 6. Thus, this reduces
the gap in performance between the linguistic fea-
tures baseline and the CNN, and in turn provides a
quantitative reasoning for the success of the CNN
model. More details in Sec. 6.

6 Analysis and Visualization

We present the primary interest and contribution of
this work: performing an important qualitative and
quantitative analysis of what is being learned by our
neural networks w.r.t. politeness strategies.4

6.1 Activation Clusters

Activation clustering is a non-parametric approach
(adopted from Girshick et al. (2014)) of computing

3For reference, human performance on the original task
setup of Danescu-Niculescu-Mizil et al. (2013) was 86.72% and
80.89% on the Wiki and SE datasets, respectively.

4We only use the Wiki train/dev sets for all analysis.

Model Wiki SE
Bag-of-Words 80.9% 64.6%
Linguistic Features 82.6% 65.2%
With Discovered Features 83.8% 65.7%
CNN 85.8% 66.4%

Table 1: Accuracy Results on Wikipedia and Stack Exchange.

each CNN unit’s activations on a dataset and then
analyzing the top-scoring samples in each cluster.
We keep track of which neurons get maximally acti-
vated for which Wikipedia requests and analyze the
most frequent requests in each neuron’s cluster, to
understand what each neuron reacts to.

6.1.1 Rediscovering Existing Strategies
We find that the different activation clusters of

our neural network automatically rediscover a num-
ber of strategies from politeness theories considered
in Danescu-Niculescu-Mizil et al. (2013) (see Table
3 in their paper). We present a few such strate-
gies here with their supporting examples, and the
rest (e.g., Gratitude, Greeting, Positive Lexicon, and
Counterfactual Modal) are presented in the supple-
ment. The majority politeness label of each category
is indicated by (+) and (-).
Deference (+) A way of sharing the burden of a
request placed on the addressee. Activation cluster
examples: {“nice work so far on your rewrite...”;
“hey, good work on the new pages...”}
Direct Question (-) Questions imposed on the
converser in a direct manner with a demand of a fac-
tual answer. Activation cluster examples: {“what’s
with the radio , and fist in the air?”; “what level
warning is appropriate?”}

6.1.2 Extending Existing Strategies
We also found that certain activation clusters de-

picted interesting extensions of the politeness strate-
gies given in previous work.
Gratitude (+) Our CNN learns a special shade
of gratitude, namely it distinguishes a cluster con-
sisting of the bigram thanks for. Activation cluster
examples: {“thanks for the good advice.”; “thanks
for letting me know.”}
Counterfactual Modal (+) Sentences with Would
you/Could you get grouped together as expected; but
in addition, the cluster contains requests with Do
you mind as well as gapped 3-grams like Can you ...
please?, which presumably implies that the combi-

2037

0 50 100 150 200 250 300
due

to

certain

edits

the

page

alignment

has

changed

.

could

you

please

help

?

True label 1; Predicted 1

0 50 100 150 200 250 300
that

sounds
fine

,
but

why
would

you
want

somebody
who

knows
nothing

about
the

show
to

write
them

?
if

you
are

informed
about

it
,

would
n't

you
be
a

good
person

to
do
it
?

True label 0; Predicted 0

0 50 100 150 200 250 300
hey

thanks
for

reassessing
the

<
url
>

article
to
b

class
.

so
what

's
need

to
be

done
to

make
it

ga
?

True label 1; Predicted 1

Figure 1: Saliency heatmaps for correctly classified sentences.

nation of a later please with future-oriented variants
can/will in the request gives a similar effect as the
conditional-oriented variants would/could. Activa-
tion cluster examples: {can this be reported ... grid,
please?”; do you mind having another look?”}

6.1.3 Discovering Novel Strategies
In addition to rediscovering and extending polite-

ness strategies mentioned in previous work, our net-
work also automatically discovers some novel acti-
vation clusters, potentially corresponding to new po-
liteness strategies.
Indefinite Pronouns (-) Danescu-Niculescu-
Mizil et al. (2013) distinguishes requests with first
and second person (plural, starting position, etc.).
However, we find activations that also react to in-
definite pronouns such as something/somebody. Ac-
tivation cluster examples: {“am i missing something
here?”; “wait for anyone to discuss it.”}
Punctuation (-) Though non-characteristic in
direct speech, punctuation appears to be an impor-
tant special marker in online communities, which in
some sense captures verbal emotion in text. E.g.,
one of our neuron clusters gets activated on ques-
tion marks “???” and one on ellipsis “...”. Activa-
tion cluster examples: {“now???”; “original arti-
cle????”; “helllo?????”}5

In the next section, via saliency heatmaps, we will
further study the impact of indefinite pronouns in the
final-decision making of the classifier. Finally, in
Sec. 6.4, we will quantitatively show how our newly
discovered strategies help directly improve the accu-
racy performance of the linguistic features baseline
and achieve high politeness and top-quartile scores
as per Danescu-Niculescu-Mizil et al. (2013).

5More examples are given in the supplement.

6.2 First Derivative Saliency

Inspired from neural network visualization in com-
puter vision (Simonyan et al., 2014), the first deriva-
tive saliency method indicates how much each input
unit contributes to the final decision of the classifier.
If E is the input embedding, y is the true label, and
Sy(E) is the neural network output, then we con-
sider gradients ∂Sy(E)

∂e . Each image in Fig. 1 is a
heatmap of the magnitudes of the derivative in abso-
lute value with respect to each dimension.

The first heatmap gets signals from please (Please
strategy) and could you (Counterfactual Modal strat-
egy), but effectively puts much more mass on help.
This is presumably due to the nature of Wikipedia
requests such that the meaning boils down to ask-
ing for some help that reduces the social distance.
In the second figure, the highest emphasis is put on
why would you, conceivably used by Wikipedia ad-
ministrators as an indicator of questioning. Also,
the indefinite pronoun somebody makes a relatively
high impact on the decision. This relates back to the
activation clustering mentioned in the previous sec-
tion, where indefinite pronouns had their own clus-
ter. In the third heatmap, the neural network does not
put much weight on the greeting-based start hey, be-
cause it instead focuses on the higher polarity6 grati-
tude part after the greeting, i.e., on the words thanks
for. This will be further connected in Sec. 6.3.

6.3 Embedding Space Transformations

We selected key words from Danescu-Niculescu-
Mizil et al. (2013) and from our new activation clus-
ters (Sec. 6.1) and plotted (via PCA) their embed-

6See Table 3 of Danescu-Niculescu-Mizil et al. (2013) for
polarity scores of the various strategies.

2038

Strategy Politeness In top quartile Examples
21. Indefinite Pronouns -0.13 39% am i missing something here?
22. Punctuation -0.71 62% helllo?????

Table 2: Extending Table 3 of Danescu-Niculescu-Mizil et al. (2013) with our novelly discovered politeness strategies.

-1.5

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1 1.5

could

would

please

could

something

would

revert
something

why

what great

great
appreciate

thanks
thanks

hi

appreciatewhat

can

can

please

revert

hiwhy

Figure 2: Projection before (red) and after (blue) training.

ding space positions before and after training, to
help us gain insights into specific sentiment trans-
formations. Fig. 2 shows that the most positive keys
such as hi, appreciate, and great get clustered even
more tightly after training. The key thanks gets a no-
tably separated position on a positive spectrum, sig-
nifying its importance in the NN’s decision-making
(also depicted via the saliency heatmaps in Sec. 6.2).

The indefinite pronoun something is located near
direct question politeness strategy keys why and
what. Please, as was shown by Danescu-Niculescu-
Mizil et al. (2013), is not always a positive word be-
cause its sentiment depends on its sentence position,
and it moves further away from a positive key group.
Counterfactual Modal keys could and would as well
as can of indicative modal get far more separated
from positive keys. Moreover, after the training, the
distance between could and would increases but it
gets preserved between can and would, which might
suggest that could has a far stronger sentiment.

6.4 Quantitative Analysis
In this section, we present quantitative measures of
the importance and polarity of the novelly discov-
ered politeness strategies in the above sections, as
well how they explain some of the improved perfor-
mance of the neural model.

In Table 3 of Danescu-Niculescu-Mizil et al.
(2013), the pronoun politeness strategy with the
highest percentage in top quartile is 2nd Person
(30%). Our extension Table 2 shows that our nov-
elly discovered Indefinite Pronouns strategy repre-
sents a higher percentage (39%), with a politeness
score of -0.13. Moreover, our Punctuation strategy
also turns out to be a top scoring negative politeness
strategy and in the top three among all strategies (af-
ter Gratitude and Deference). It has a score of -0.71,
whereas the second top negative politeness strategy
(Direct Start) has a much lower score of -0.43.

Finally, in terms of accuracies, our newly dis-
covered features of Indefinite Pronouns and Punc-
tuation improved the featurized system of Danescu-
Niculescu-Mizil et al. (2013) (see Table 1).7 This
reduction of performance gap w.r.t. the CNN par-
tially explains the success of these neural models in
automatically learning useful linguistic features.

7 Conclusion

We presented an interpretable neural network ap-
proach to politeness prediction. Our simple CNN
model improves over previous work with manually-
defined features. More importantly, we then under-
stand the reasons for these improvements via three
visualization techniques and discover some novel
high-scoring politeness strategies which, in turn,
quantitatively explain part of the performance gap
between the featurized and neural models.

Acknowledgments

We would like to thank the anonymous reviewers for
their helpful comments. This work was supported
by an IBM Faculty Award, a Bloomberg Research
Grant, and an NVIDIA GPU donation to MB.

7Our NN visualizations also led to an interesting feature cor-
rection. In the ’With Discovered Features’ result in Table 1, we
also removed the existing pronoun features (#14-18) based on
the observation that those had weaker activation and saliency
contributions (and lower top-quartile %) than the new indefi-
nite pronoun feature. This correction and adding the two new
features contributed∼50-50 to the total accuracy improvement.

2039

References
Francesca Bargiela-Chiappini. 2003. Face and polite-

ness: new (insights) for old (concepts). Journal of
pragmatics, 35(10):1453–1469.

Penelope Brown and Stephen C Levinson. 1987. Polite-
ness: Some universals in language usage, volume 4.
Cambridge university press.

Long-Sheng Chen, Cheng-Hsiang Liu, and Hui-Ju Chiu.
2011. A neural network based approach for sentiment
classification in the blogosphere. Journal of Informet-
rics, 5(2):313–322.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Cristian Danescu-Niculescu-Mizil, Moritz Sudhof, Dan
Jurafsky, Jure Leskovec, and Christopher Potts. 2013.
A computational approach to politeness with applica-
tion to social factors. In Proceedings of ACL.

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming
Zhou, and Ke Xu. 2014. Adaptive recursive neural
network for target-dependent twitter sentiment classi-
fication. In Proceedings of ACL, pages 49–54.

Cı́cero Nogueira dos Santos and Maira Gatti. 2014. Deep
convolutional neural networks for sentiment analysis
of short texts. In Proceedings of COLING, pages 69–
78.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and
Pascal Vincent. 2009. Visualizing higher-layer fea-
tures of a deep network. University of Montreal, 1341.

M Ghiassi, J Skinner, and D Zimbra. 2013. Twitter
brand sentiment analysis: A hybrid system using n-
gram analysis and dynamic artificial neural network.
Expert Systems with applications, 40(16):6266–6282.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jiten-
dra Malik. 2014. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Pro-
ceedings of CVPR, pages 580–587.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1:12.

Daena J Goldsmith. 2007. Brown and levinsons polite-
ness theory. Explaining communication: Contempo-
rary theories and exemplars, pages 219–236.

Yueguo Gu. 1990. Politeness phenomena in modern chi-
nese. Journal of pragmatics, 14(2):237–257.

Dániel Z Kádár and Michael Haugh. 2013. Understand-
ing politeness. Cambridge University Press.

Akos Kádár, Grzegorz Chrupała, and Afra Alishahi.
2016. Representation of linguistic form and func-
tion in recurrent neural networks. arXiv preprint
arXiv:1602.08952.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of ACL.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2016.
Visualizing and understanding recurrent networks. In
Proceedings of ICLR Workshop.

Alistair Kennedy and Diana Inkpen. 2006. Sentiment
classification of movie reviews using contextual va-
lence shifters. Computational intelligence, 22(2):110–
125.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings of
ICLR.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
2012. Imagenet classification with deep convolutional
neural networks. In Proceedings of NIPS, pages 1097–
1105.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models in
NLP. In Proceedings of NAACL.

Miriam A Locher and Richard J Watts. 2005. Polite-
ness theory and relational work. Journal of Politeness
Research. Language, Behaviour, Culture, 1(1):9–33.

Aravindh Mahendran and Andrea Vedaldi. 2015. Un-
derstanding deep image representations by inverting
them. In Proceedings of CVPR, pages 5188–5196.
IEEE.

Rodrigo Moraes, Joao Francisco Valiati, and Wilson
P GaviãO Neto. 2013. Document-level senti-
ment classification: An empirical comparison between
svm and ann. Expert Systems with Applications,
40(2):621–633.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified lin-
ear units improve restricted boltzmann machines. In
Proceedings of ICML, pages 807–814.

Bo Pang and Lillian Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. In Proceedings of ACL, page
271.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using ma-
chine learning techniques. In Proceedings of EMNLP,
pages 79–86.

Wojciech Samek, Alexander Binder, Grégoire Montavon,
Sebastian Bach, and Klaus-Robert Müller. 2016.
Evaluating the visualization of what a deep neural net-
work has learned. IEEE Transactions on Neural Net-
works and Learning Systems.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2014. Deep inside convolutional networks:
Visualising image classification models and saliency
maps. In Proceedings of ICLR Workshop.

2040

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of EMNLP.

Matthew D Zeiler and Rob Fergus. 2014. Visualizing
and understanding convolutional networks. In Pro-
ceedings of ECCV, pages 818–833. Springer.

2041

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2042–2047,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Does ‘well-being’ translate on Twitter?

Laura K. Smith1 Salvatore Giorgi1 Rishi Solanki2 Johannes C. Eichstaedt1
H. Andrew Schwartz3 Muhammad Abdul-Mageed4 Anneke Buffone1 and Lyle H. Ungar5

1Department of Psychology, University of Pennsylvania
2Electrical and Systems Engineering, University of Pennsylvania

3Computer Science, Stony Brook University
4Library, Archival and Information Studies, University of British Columbia

5Computer and Information Science, University of Pennsylvania
lasm@sas.upenn.edu, sgiorgi@sas.upenn.edu

Abstract

We investigate whether psychological well-
being translates across English and Span-
ish Twitter, by building and comparing
source language and automatically translated
weighted lexica in English and Spanish. We
find that the source language models perform
substantially better than the machine trans-
lated versions. Moreover, manually correct-
ing translation errors does not improve model
performance, suggesting that meaningful cul-
tural information is being lost in translation.
Further work is needed to clarify when au-
tomatic translation of well-being lexica is ef-
fective and how it can be improved for cross-
cultural analysis.

1 Introduction

Interest in sentiment analysis spans academic and
commercial domains, with wide-ranging applica-
tions (Pang and Lee, 2008; Liu, 2012). While the
majority of tools for sentiment analysis have been
developed for English text, ideally sentiment and
emotion could be analyzed across many languages.
Does one need to build models for each language of
interest, or can models be applied cross-culturally?
More generally, how do cultures differ in the lan-
guage they use to express sentiment and feeling?

Sentiment in resource-poor languages has com-
monly been assessed by first translating text into En-
glish and then applying an English sentiment model
(Mohammad et al., 2016). This approach is eco-
nomical and efficient, as building each model of in-
terest in every target language is resource-intensive.
Yet it is not clear how much culturally specific

information and accuracy are lost in the transla-
tion process, and specifically how this varies across
languages, cultures, linguistic content, and corpora
(e.g., social media vs. news). While extensive work
has demonstrated that automatic machine transla-
tion (MT) methods are competitive when translat-
ing opinion in news and blogs, less research has ex-
amined the translation of sentiment on social me-
dia, and specifically on Twitter, known for its re-
striction of individual exchanges to short samples of
text (140 characters) and informal language. More-
over, research has not focused on translating subjec-
tive well-being specifically.

Beyond sentiment, this paper investigates how ex-
pressions of personal well-being translate between
English and Spanish on Twitter. We have English
and Spanish speakers annotate Tweets in their na-
tive language for five components of subjective well-
being (positive emotion, engagement, positive re-
lationships, meaning, and accomplishment) (Selig-
man, 2011). We then compare how well models
trained and tested in the same language compare
to (a) models developed in one language, and then
translated (using Google Translate) to the other lan-
guage (e.g., how well English models translated to
Spanish work on Spanish Tweets) and (b) how well
models developed in one language work on Tweets
translated from another language (e.g., how well En-
glish models work on Tweets translated from Span-
ish to English).

2 Related Work

There is a vast literature on sentiment analysis which
space precludes us from surveying; see (Liu, 2012)

2042

for an excellent overview. A small but rapidly grow-
ing camp is developing methods to estimate per-
sonality and emotion, asking “how does she feel?”
rather than “how much does she like the product?”
(Mohammad and Kiritchenko, 2015; Park et al.,
2014). In social media, the well-being of individuals
as well as communities has been studied, on various
platforms such as Facebook and Twitter (Bollen et
al., 2011; Schwartz et al., 2013; Eichstaedt et al.,
2015; Schwartz et al., 2016).

2.1 Translating sentiment

Past work has, on the whole, regarded state-of-the-
art automatic translation for sentiment analysis opti-
mistically. In assessing statistical MT, (Balahur and
Turchi, 2012) found that modern SMT systems can
produce reliable training data for languages other
than English. Comparative evaluations between En-
glish and Romanian (Mihalcea et al., 2007) and En-
glish and both Spanish and Romanian (Banea et al.,
2008) based on the English MPQA sentiment data
suggest that, in spite of word ambiguity in either
the source or target language, automatic translation
is a viable alternative to the construction of mod-
els in target languages. Wan (2008) shows that it
is useful to improve a system in a target language
(Chinese) by applying ensemble methods exploit-
ing sentiment-specific data and lexica from the tar-
get language and a source language (English). More
recent work has examined how sentiment changes
with translation between English and Arabic, also
finding that automatic translation of English texts
yields competitive results (Abdul-Mageed and Diab,
2014; Mohammad et al., 2016). However, translated
texts tend to lose sentiment information such that the
translated data is more neutral than the source lan-
guage (Salameh et al., 2015).

It is less obvious how well expressions of emo-
tion or subjective well-being translate between lan-
guages and cultures; the words for liking a phone
or TV may be more similar across cultures than the
ones for finding life and relationships satisfying, or
work meaningful and engaging.

2.2 Well-being

In contrast to classic sentiment analysis, well-being
is not restricted to positive and negative emo-
tion. In 2011, the psychologist Martin Selig-

man proposed PERMA (Seligman, 2011), a five-
dimensional model of well-being where ‘P’ stands
for positive emotion, ‘E’ is engagement, ‘R’ is pos-
itive relationships, ‘M’ is meaning, and ‘A’ is a
sense of accomplishment. PERMA is of interest to
this translation context because while the ‘P’ dimen-
sion maps relatively cleanly onto traditional con-
ceptions of sentiment (i.e., positive and negative
emotion), PERMA also includes social and cogni-
tive components which may be expressed with more
variation across languages and cultures. In recent
work, Schwartz et al. (2016) developed an English
PERMA model using Facebook data. In this pa-
per, we adopt a similar method when building our
message-level models over Tweets.

Governments around the world are increasingly
dedicating resources to the measurement of well-
being to complement traditional economic indica-
tors such as gross domestic product. Being able to
measure well-being across regions is not only be-
coming more important for institutions and policy-
makers, but also for private sector entities that want
to assess and promote the well-being of their orga-
nizations and customers. This raises the importance
of translation, given that resources for the measure-
ment of well-being are disproportionately available
in English.

3 Methods

We collected Spanish data using the Twitter API,
gathering 15.3 million geolocated Tweets between
September and November 2015 using a lati-
tude/longitude bounding box around Spain. This set
was reduced to messages containing only Spanish
using the Language Identification (LangID) Python
package (Lui and Baldwin, 2012). We restricted to
messages with an 80% or higher Spanish confidence
score as given by LangID. This resulted in 6.1 mil-
lion Tweets from 290,000 users. We selected 5,100
random messages from this set for annotation. En-
glish Tweets were similarly collected using the Twit-
ter API, restricted to the US, and filtered to be (pri-
marily) in English.

3.1 Annotating message-level data

Amazon’s Mechanical Turk (MTurk) was used to
annotate the 5,000 random English (American)

2043

Tweets1. CrowdFlower, an online crowdsourcing
platform similar to MTurk, but more widely used
in Europe, was used to annotate our 5,100 random
Spanish Tweets1. As the Tweets exclusively came
from Spain, raters were restricted to fluent Spanish
speakers who live in Spain.

On both MTurk and CrowdFlower, separate anno-
tation tasks were set up for each of the 10 PERMA
components (positive and negative dimensions for
the 5 components). Workers were given the defini-
tion of the PERMA construct, directions on how to
perform the task, and were presented with an exam-
ple annotation task. During the task workers were
asked to indicate “to what extent does this message
express” the construct in question on a scale from 1
(“Not at all”) to 7 (“Extremely”). Directions were
presented in English for the English task, and in
Spanish for the Spanish task. The Spanish instruc-
tions were translated manually from English by a
bilingual English-Spanish speaker and verified by an
additional bilingual speaker.

In the English task, two raters assessed each mes-
sage. If the raters disagreed by more than 3 points,
a rating was obtained from a third rater. It proved
more difficult to get raters for the Spanish task, even
on CrowdFlower. In some cases we were unable to
obtain even a single annotation for a given Tweet and
PERMA component.

3.2 Developing weighted lexica

Tweets were tokenzied using an emoticon-aware to-
kenizer, ‘happy fun tokenizer’1. We then extracted
unigrams and bigrams from each corpus, yielding
vocabularies of 5,430 and 4,697 ‘words’ in English
and Spanish, respectively. The presence/absence of
these unigrams and bigrams in each Tweet were used
as features in Lasso (L1 penalized regression) (Tib-
shirani, 1996) models to predict the average anno-
tation score for each of the crowdsourced PERMA
labels. Separate models, each consisting of regres-
sion weights for each term in the lexicon, were built
for each of the ten (five positive and five nega-
tive) PERMA components in both English and Span-
ish1. Each model was validated using 10-fold cross
validation, with Pearson correlations averaged over
the 10 positive/negative PERMA components. Re-

1 Available at www.wwbp.org.

sults are presented in Table 1. The models were
then transformed into a predictive lexicon using the
methods described in (Sap et al., 2014), where the
weights in the lexicon were derived from the above
Lasso regression model.

Model r
Spanish 0.36
English 0.36

Table 1: Performance as measured by Pearson r correlation av-

eraged over the 10 positive/negative PERMA components using

10-fold cross validation.

3.3 Translating the models
We used Google Translate to translate both the orig-
inal English and Spanish Tweets and the words in
the models. We also created versions of the trans-
lated models in which we manually corrected appar-
ent translation errors for 25 terms with the largest
regression coefficients for each of the 10 PERMA
components (the top 250 terms for each model).

3.4 Comparative evaluation
We evaluated how well the different models
worked, computing the Pearson correlations be-
tween message-level PERMA scores predicted from
the different models and the ground-truth annota-
tions. Lexica were built on 80% of the messages
and then evaluated on the remaining 20%. Figure
1 shows test accuracies. Comparing the English
and Spanish source language and machine translated
models, we observe substantially better performance
when models were built over the same language they
are applied to, i.e., using models built in Spanish to
predict on Spanish Tweets. Translating the mod-
els (e.g., translating an English model to Spanish
and using it on Spanish Tweets) or translating the
Tweets (e.g., translating Spanish Tweets to English
and using an English model) work substantially less
well, with translating the Tweets giving marginally
better performance than translating the models. Fi-
nally, we translate both the model and Tweets, giv-
ing slightly better performance than translating the
Tweets alone. Complete PERMA lexica were then
built over the entire message sets for public release.

3.5 Error Analysis
To quantify the errors in translation, we took the
25 top-weighted words in each component of the

2044

Figure 1: Performance (Pearson r correlation) between ground-

truth annotations and predicted lexica scores averaged over the

10 PERMA components.

PERMA lexicon (250 terms total) and manually
translated them with the help of a native Spanish
speaker. The manual translations were then com-
pared against the automatic translations. Out of the
top 25 words we calculated the percentage of cor-
rect automatic translations (when manual and auto-
matic translations matched) and averaged the per-
centages across positive and negative PERMA com-
ponents. The average percentage of correct transla-
tions is listed in Table 2 as correct trans.

These correctly translated terms were then com-
pared to the terms in the opposite source model (i.e.,
after translating English PERMA to Spanish, we
compared the translations with Spanish PERMA).
We calculated the percentage of the top 250 trans-
lated words missing in the 250 top words of the
source lexicon for each PERMA component and av-
eraged over the 10 components. This value is re-
ported in Table 2 as missing terms. For terms that
appeared in both the translated and source lexica we
compared their respective weights, calculating both
percentage of terms in which the weights were of
different signs and percentage of terms with sub-
stantially different weights. Again, these percent-
ages were averaged over the 10 PERMA compo-
nents. Percentages are reported in Table 2 as opp
sign and weight diff, respectively. To be considered
“substantially different” the two weights must differ
by a factor of 2. It is worth noting that at no point
were the translated and source weights equal (within
a tolerance of 10−5).

We then looked at the errors term by term. Out of
the 500 terms considered (top 250 words per source

source
lang

correct
trans

missing
terms

opp
sign

weight
diff

English 83% 81% 0.5% 6.9%
Spanish 74% 91% 0.0% 4.8%

Table 2: Summary of translation errors. Percentages are av-

eraged over the 10 PERMA components. Source lang is the

language of the model which was translated, correct trans is the

percentage of correct automatically translated words, missing

terms is the percentage of correct automatic translations within

the 250 top terms that did not appear in the top 250 words of

other source model, opp sign is the percentage of terms whose

sign switched between models, and weight diff is the percent-

age of terms whose weights between the two models were off

by a factor of two.

PERMA term weight
(en)

weight
(es)

%
chg

POS M
(en)

mundo*
(world) 0.42 -0.18 143

NEG A
(en)

odio**
(hate) 0.29 2.19 87

NEG M
(en)

nadie***
(no one) 0.23 0.24 4.2

NEG R
(es)

sad**
(triste) 1.70 0.0012 100

NEG P
(es)

hate***
(odio) 1.81 1.75 3.3

Table 3: Examples of specific errors. Error types are denoted

by asterisks: * denotes a change in sign, ** denotes the largest

change in weight and *** denotes the smallest change in weight

per source model. Language listed under each PERMA cate-

gory is the language of the source model that was translated.

The % chg column is percentage change relative to the larger

weight. For clarity, under each term we include its translation.

language) only one term weight changed signs be-
tween models: “mundo” (world). The weight for
this term in the translated English to Spanish model
was 0.42 whereas the weight in the Spanish model
was -0.18, amounting to a 140% change. Next, for
each source model we report terms with the largest
and smallest differences in weight. These terms and
weights are reported in Table 3. The language ab-
breviation (“en” or “es”) listed under each PERMA
component is used to denote the source language we
translated from. For example, (en) indicates that
we started with English PERMA, translated it into
Spanish and then compared to Spanish PERMA.

2045

4 Discussion

The difference in performance between source and
machine translated models can be attributed to a few
main problems. First, the translation might be in-
accurate (e.g., from our corpus, “te” is not in fact
“tea”). We manually corrected translation errors in
the prediction models with the help of a native Span-
ish speaker, but found that translation error accounts
for marginal discrepancy between the source lan-
guage and machine translated models.

A second source of errors are translations which
are technically accurate, yet do not translate cultur-
ally. For instance, even though “andaluces” trans-
lated correctly into “Andalusians,” “Andalusia” (an
autonomous community in Spain) does not invoke
the same cultural meaning in English as it does for
Spaniards. A machine would be hard-pressed to
translate “Andalusia” into a relevant region within
the U.S. that might invoke similar popular sentiment.
Although Spanish and American people share some
holidays, musicians, and sports heroes, many of
these differ (e.g., “Iker Casillas” is not well known
in the U.S. and “La selectividad” may be similar to
the “SATs,” but this is not captured in MT).

A third source of error stems from cultural dif-
ferences, with certain topics resonating differently
cross-culturally. For instance, when comparing the
highest weighted positive terms across PERMA, re-
ligious language (e.g., “god,” “blessed”) appears in
English but not Spanish, fitting with the popular no-
tion that Americans are more religious than Euro-
peans. Spanish PERMA’s positive emotion com-
ponent contains multiple highly weighted instances
of laughter; none have high weights in the English
model. Highly weighted English negative emo-
tion terms are marked by general aggression (e.g.,
“kill,” “stupid”) whereas the highest weighted Span-
ish terms include derogatory terms for disliked peo-
ple (e.g., “douchebag,” “fool”). The American posi-
tive relationship component is marked by words like
“friend” and “friends,” while “sister” is weighted
more highly in Spanish PERMA.

Note that this is fundamentally a problem of do-
main adaptation rather than MT, as our error analy-
sis revealed that the majority of top-weighted terms
were exclusive to one source model. Different cul-
tures use different words (or at least vastly different

word frequencies) when revealing the same kind of
well-being. Exploring where the sentiment around a
similar concept diverges across languages can pro-
vide insight to researchers studying cross-cultural
variation.

4.1 Limitations

This work has significant limitations. First, the En-
glish and Spanish annotation processes, though kept
as similar as possible, were not identical; annota-
tions were gathered on different platforms, and due
to our difficulty in recruiting Spanish raters, our total
annotations per message varied across tasks. Addi-
tionally, the models were built over relatively small
corpora of 5,000 English Tweets and 5,100 Span-
ish Tweets. These Tweets came from different time
periods, which may further reduce similarity be-
tween the Spanish and English corpora. Finally, our
method does not account for the presence of various
sub-cultures within the United States and Spain.

5 Conclusion

In this work, we investigated how well expressions
of subjective well-being translate across English and
Spanish Twitter, finding that the source language
models performed substantially better than the ma-
chine translated versions. Moreover, manually cor-
recting translation errors in the top 250 terms of the
lexica did not improve model performance, suggest-
ing that meaningful cultural information was lost in
translation.

Our findings suggest that further work is
needed to understand when automatic translation of
language-based models will lead to competitive sen-
timent translation on social media and how such
translations can be improved. Cultural differences
seem more important than language differences, at
least for the tasks we studied here. We expect that
language indicators of personality and emotion will
similarly translate poorly, but that remains to be
studied.

Acknowledgments

The authors acknowledge support from the Temple-
ton Religion Trust (grant TRT-0048) and Bioibérica.

2046

References

Muhammad Abdul-Mageed and Mona T Diab. 2014.
Sana: A large scale multi-genre, multi-dialect lexicon
for arabic subjectivity and sentiment analysis. In Pro-
ceedings of the 9th edition of the Language Resources
and Evaluation Conference, LREC, pages 1162–1169.

Alexandra Balahur and Marco Turchi. 2012. Multilin-
gual sentiment analysis using machine translation? In
Proceedings of the 3rd Workshop on Computational
Approaches to Subjectivity and Sentiment Analysis,
WASSA, pages 52–60.

Carmen Banea, Rada Mihalcea, Janyce Wiebe, and
Samer Hassan. 2008. Multilingual subjectivity analy-
sis using machine translation. In Proceedings of the
2008 Conference on Empirical Methods in Natural
Language Processing, EMNLP, pages 127–135.

Johan Bollen, Huina Mao, and Alberto Pepe. 2011.
Modeling public mood and emotion: Twitter sentiment
and socio-economic phenomena. In Proceedings of
the Fifth International Conference on Weblogs and So-
cial Media, ICWSM, pages 450–453.

Johannes C Eichstaedt, H Andrew Schwartz, Margaret L
Kern, Gregory Park, Darwin R Labarthe, Raina M
Merchant, et al. 2015. Psychological language on
twitter predicts county-level heart disease mortality.
Psychological Science, 26(2):159–169.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis lectures on human language technolo-
gies, 5(1):1–167.

Marco Lui and Timothy Baldwin. 2012. langid. py: An
off-the-shelf language identification tool. In Proceed-
ings of the ACL 2012 system demonstrations, ACL,
pages 25–30.

Rada Mihalcea, Carmen Banea, and Janyce Wiebe. 2007.
Learning multilingual subjective language via cross-
lingual projections. In Proceedings of the 45th Annual
Meeting of the Association for Computational Linguis-
tics, ACL, pages 976–983.

Saif M Mohammad and Svetlana Kiritchenko. 2015. Us-
ing hashtags to capture fine emotion categories from
tweets. Computational Intelligence, 31(2):301–326.

Saif M Mohammad, Mohammad Salameh, and Svetlana
Kiritchenko. 2016. How translation alters sentiment.
Journal of Artificial Intelligence Research, 55:95–130.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and Trends in Infor-
mation Retrieval, 2(1–2):1–135.

Greg Park, H Andrew Schwartz, Johannes C Eichstaedt,
Margaret L Kern, David J Stillwell, Michal Kosinski,
et al. 2014. Automatic personality assessment through
social media language. Journal of Personality and So-
cial Psychology, 108:934–952.

Mohammad Salameh, Saif M Mohammad, and Svetlana
Kiritchenko. 2015. Sentiment after translation: A
case-study on arabic social media posts. In Proceed-
ings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, NAACL, pages
767–777.

Maarten Sap, Greg Park, Johannes C Eichstaedt, Mar-
garet L Kern, David J Stillwell, Michal Kosinski, et al.
2014. Developing age and gender predictive lexica
over social media. In Proceedings of the 2014 Con-
ference on Empirical Methods In Natural Language
Processing, EMNLP, pages 1146–1151.

H Andrew Schwartz, Johannes C Eichstaedt, Margaret L
Kern, Lukasz Dziurzynski, Richard E Lucas, Megha
Agrawal, et al. 2013. Characterizing geographic vari-
ation in well-being using tweets. In Proceedings of the
7th International AAAI Conference on Weblogs and
Social Media, ICWSM.

H Andrew Schwartz, Maarten Sap, Margaret L Kern,
Johannes C Eichstaedt, Adam Kapelner, Megha
Agrawal, et al. 2016. Predicting individual well-being
through the language of social media. In Biocom-
puting 2016: Proceedings of the Pacific Symposium,
pages 516–527.

Martin EP Seligman. 2011. Flourish. Free Press, New
York, NY.

Robert Tibshirani. 1996. Regression shrinkage and se-
lection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), pages 267–288.

Xiaojun Wan. 2008. Using bilingual knowledge and en-
semble techniques for unsupervised Chinese sentiment
analysis. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing,
EMNLP, pages 553–561.

2047

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2048–2053,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Beyond Canonical Texts: A Computational Analysis of Fanfiction

Smitha Milli
Computer Science Division

University of California, Berkeley
smilli@berkeley.edu

David Bamman
School of Information

University of California, Berkeley
dbamman@berkeley.edu

Abstract

While much computational work on fiction
has focused on works in the literary canon,
user-created fanfiction presents a unique op-
portunity to study an ecosystem of liter-
ary production and consumption, embodying
qualities both of large-scale literary data (55
billion tokens) and also a social network (with
over 2 million users). We present several em-
pirical analyses of this data in order to illus-
trate the range of affordances it presents to re-
search in NLP, computational social science
and the digital humanities. We find that fan-
fiction deprioritizes main protagonists in com-
parison to canonical texts, has a statistically
significant difference in attention allocated to
female characters, and offers a framework for
developing models of reader reactions to sto-
ries.

1 Introduction

The development of large-scale book collections—
such as Project Gutenberg, Google Books, and the
HathiTrust—has given rise to serious effort in the
analysis and computational modeling of fiction (Mo-
hammad, 2011; Elsner, 2012; Bamman et al., 2014;
Jockers, 2015; Chaturvedi et al., 2015; Vala et al.,
2015; Iyyer et al., 2016). Of necessity, this work
often reasons over historical texts that have been in
print for decades, and where the only relationship
between the author and the readers is mediated by
the text itself. In this work, we present a computa-
tional analysis of a genre that defines an alternative
relationship, blending aspects of literary production,

consumption, and communication in a single, vi-
brant ecosystem: fanfiction.

Fanfiction is fan-created fiction based on a previ-
ously existing, original work of literature. For clarity
we will use the term CANON to refer to the original
work on which a fanfiction story is based (e.g. Harry
Potter) and the term STORY to refer to a single fan-
authored story for some canon.

Although stories are based on an original canoni-
cal work and feature characters from the canon, fans
frequently alter and reinterpret the canon—changing
its setting, playing out an alternative ending, adding
an original character, exploring a minor character
more deeply, or modifying the relationships between
characters (Barnes, 2015; Van Steenhuyse, 2011;
Thomas, 2011).

In this work, we present an empirical analysis of
this genre, and highlight several unique affordances
this data presents for contemporary research in NLP,
computational social science, and the digital human-
ities. Our work is the first to apply computational
methods to fanfiction; in presenting this analysis, we
hope to excite other work in this area.

2 Fanfiction data

Our data, collected between March–April 2016,
originates from fanfiction.net.1 In this data,
AUTHORS publish stories serially (one chapter at a
time); REVIEWERS comment on those chapters.

A summary of data is presented in table 1. The
scale of this data is large for text; at 55 billion to-

1While terms of service prohibit our release of this data,
tools to collect and process it can be found here: http:
//github.com/smilli/fanfiction.

2048

Figure 1: Difference in percent character mentions between fanfiction and canon for Pride and Prejudice
(left) and Sherlock Holmes (right).

kens, it is over 50 times larger than the BookCorpus
(Zhu et al., 2015) and over 10% the size of Google
Books (at 468B tokens).

The dataset is predominantly written in English
(88%), but also includes 317,011 stories in Span-
ish, 148,475 in French, 102,439 in Indonesian, and
73,575 in Portuguese. In total, 44 different lan-
guages are represented.

Type Num of Type
Canons 9,246
Stories 5,983,038
Tokens 55,264,185,653
Reviews 159,914,877
Users 2,093,601

–Authors 1,364,729
–Reviewers 1,438,721

Languages 44

Table 1: Summary of the fanfiction.net corpus

3 Analysis of fanfiction

3.1 Differences between canons and fanfiction
The systematic ways in which fanfiction stories dif-
fer from their canonical works can give insight into
the characteristics of a story that are desired by fans
but may be missing from the mainstream canon.
We investigate two questions: 1.) Is there a differ-
ence between the characters emphasized in fanfic-
tion compared to the original canon? And 2.) Is
gender presented differently in these two sources?

Character differences. In order to explore the
differing attention to character, we consider fanfic-
tion from ten canons whose original texts appear in
Project Gutenberg; we selected the ten canons from
unique authors with the most fanfiction stories as-
sociated with them.2 To extract and compare char-
acters, we run BookNLP (Bamman et al., 2014) on
both the canonical work and the top 100 stories (by
number of reviews) from each canon, and pair char-
acters across canon/fanfiction with the same name.

To measure how the importance of individual
characters varies between canon and fanfiction, we
calculate the change in the percent of all character
mentions a character has in the canon to the aver-
age percent of character mentions that same charac-
ter has in fanfiction.

Across all canons we find that the most prominent
character in the canon had at most a small increase
in percent character mentions, while less prominent
characters received large increases. The results for
two illustrative examples, Pride and Prejudice and
Sherlock Holmes, are shown in Figure 1. The per-
cent of character mentions for the main protagonists
(Elizabeth and Holmes) decreases in fanfiction, but
the secondary characters of Mr. Darcy and Watson

2Les Miserables (3996 fanfiction stories), Sherlock Holmes
(3283), Pride and Prejudice (3084), Peter Pan (2431), Alice
in Wonderland (1446), Anne of Green Gables (620), Jane Eyre
(331), Little Women (286), The Scarlet Pimpernel (255), and the
Secret Garden (222).

2049

Labels Terms

Author encouragement

read story one reading chapters time best ever review long
update please love soon story amazing really hope continue writing
chapter great good keep really work story job forward awesome
ca wait next chapter see na happens gon great read
like well really story love chapter way one see interesting

Requests for story would like know get think going could something really even

Emotional reactions

wow better beautiful getting fight adorable keeps team birthday tears
oh god yes man yay damn hell dear yeah got
poor lol cute howl evil bad hate baby feel lord
xd loved funny love haha sweet lol ah cute aww

Table 2: Top 10 terms in the 10 manually grouped LDA topics.

show a large increase. These findings confirm the
results of Xu et al. (2011), who find a greater in-
crease in mentions of Mr. Darcy relative to Elizabeth
in a different corpus of Pride and Prejudice fanfic-
tion, and supports claims that fanfiction authors may
delve deeper into characters that receive less atten-
tion in the canon (Jwa, 2012; Thomas, 2011).

Gender differences. Fanfiction has a predom-
inantly female authorship and readership base
(Barnes, 2015); these stories often oppose tradi-
tional gender norms present in the canon and show-
case stronger female characters (Handley, 2012;
Scodari and Felder, 2000; Leow, 2011; Busse,
2009).

In order to test whether fanfiction allocates more
attention to female characters than canonical stories,
we compare the percent of mentions of male and fe-
male characters using the same collection of stories
from Gutenberg canons as above. 40.1% of charac-
ter mentions in the canons are to women; in fanfic-
tion, this ratio increases to 42.4%. This effect size is
small (2.3% absolute difference), but in a bootstrap
hypothesis test of the difference (using 106 boot-
strapped samples), the difference is highly signifi-
cant (p < 0.001), suggesting that fanfiction does in-
deed devote more attention to female characters.

3.2 Interaction between users

A unique characteristic of this data is the chapter-by-
chapter reader reviews; any user can leave a review
for a chapter of a story. Authors are also frequently
reviewers of other stories (Thomas, 2011), forming
an ecosystem with qualities of a social network.

709,849 authors in this data (52%) are also re-

viewers; if we define a network node to be a user
and edge to be a reviewing relationship (a directed
edge exists from A ! B if A reviews one of B’s
works), this network contains 9.3M such directed
edges, with an average outdegree of 13.2 and inde-
gree of 15.6 (each author on average reviews for 13
other authors, and is reviewed by 16).

To explore the content of these reviews computa-
tionally, we sampled one story with more than 500
reviews from 500 different canons and ran Latent
Dirichlet Allocation (Blei et al., 2003) with 10 topics
on the text of the reviews (excluding names as stop-
words). This is an exploratory analysis, but can give
insight into the broad functions of reader responses
in this domain.

Table 2 presents the results, grouping the topics
into three exploratory categories: positive encour-
agement and pleas for updates, requests to the author
about the progression of the story, and emotional re-
actions to the story. Prior studies that have examined
the role of reviews as a form of interaction between
the reader and the author have documented the first
two categories extensively (Campbell et al., 2016;
Magnifico et al., 2015; Lammers and Marsh, 2015;
Black, 2006). However, despite a significant portion
of the reviews consisting of the reader’s emotional
responses to the story, the way in which readers use
reviews as a means of emotional engagement with
the story itself has yet to be examined in such detail.

3.3 Predicting reader responses to character

The presence of reader reviews accompanying each
fanfiction chapter presents a unique opportunity to
develop a predictive model of how readers respond
to text—given the text of a chapter, can we predict

2050

I hate Mr. Darcy!

… Mr. Darcy walked off; and Elizabeth
remained with no very cordial feelings toward
him …

Fiction text

Reader response Response label

negative

Figure 2: Illustration of data for predicting reader
responses. Here we are using features derived only
from FICTION TEXT to predict the RESPONSE LA-
BEL.

how readers will react?
To test the feasibility of this task, we focus on

reader responses to character. A RESPONSE to a
character is operationalized as a sentence from a
reader review mentioning that character and no other
characters. We create an annotated dataset by ran-
domly sampling a single character with at least 10
reader responses from each of the 500 stories de-
scribed in §3.2. From this set, we randomly select
exactly 10 responses for each character, to yield a
total of 5,000 reader responses.

We then present these 5,000 responses to annota-
tors on Amazon Mechanical Turk, and ask them to
judge the sentiment toward the character expressed
in the response as either positive, negative, neutral,
or not applicable (in the case of character recog-
nition errors). The overall agreement rate among
annotators for this classification task is moderate
(Fleiss’ = 0.438), in part due to the difficulty of
assessing the responders’ attitudes from short text;
while some responses wear their sentiment on their
sleeve (I knew I hated Brandon!), others require
more contextual knowledge to judge (Ah Link or
Akira appears!).

In order to create a higher-precision subset we se-
lect responses with only unanimous positive or neg-
ative votes from 3 different annotators, yielding a
total dataset of 1,069 response labels. We divide the
dataset into 80% training/development and 20% for

a held-out test (with no overlap in stories between
training and test).

We also bootstrap additional semi-supervised data
by training a sentiment classifier on the unigrams of
the reader responses in the training data (with a 3-
class accuracy of 75%; compared to majority base-
line of 49.7%), predicting the sentiment label for all
responses in the dataset, and selecting examples that
a.) have 95% prediction confidence and b.) whose
stories do not appear in the training or test data. We
sample selected examples to respect the label dis-
tribution in the training data, yielding an additional
25,000 data points to supplement learning.

Our core task is to use only the text of the story
(and not the reader response) to predict the corre-
sponding response sentiment label in order to un-
derstand what aspects of the story (and a character’s
role within it) readers are reacting to. We experiment
with several features to represent the characters:

• AGENT, PATIENT, PREDICATIVE, POSSESSIVE

relations for each character (as output by
BookNLP), both in the specific chapter and in
the book overall (under the rationale that read-
ers are responding to the actions that characters
take).

• Unigrams spoken by the character, both in the
chapter and in the book overall.

• Character gender.
• Character’s frequency in the book (binary indi-

cators of the decile of their frequency of men-
tion).

• Skip-gram representations trained on 4.1B
words of fanfiction text (200-dimensional,
grouped into 1000 clusters using k-means clus-
tering); these cluster identities form additional
binary features by replacing the lexical indica-
tors for the text features above.

We perform model selection using tenfold cross-
validation on the training data alone, training `2-
regularized logistic regression on one partition of
the data, tuning the `2 regularization parameter on
another, and assessing performance on a third (note
none of the test data described above is seen during
this stage).

A majority class (all-positive) baseline on the
training data results in an accuracy rate of 75.6%;

2051

only syntactic features yield a significant improve-
ment, achieving an accuracy rate of 80.5%.

Table 3 lists the most informative features for pre-
dicting negatively-assessed characters. While these
characteristic features have face validity and offer
promise for understanding character in more depth,
we do not see similar improvements in accuracy on
the truly held-out test data (run once before sub-
mission); this same feature set achieves an accuracy
rate of 70.4% (compared to a majority baseline on
the test data of 71.4%). Part of this may be due to
the sample size of the test data (n = 199); a boot-
strap 95% confidence interval (Berg-Kirkpatrick et
al., 2012) places the accuracy in the range [0.648,
0.754]. However, this more likely constitutes a neg-
ative result that reflects the inherent difficulty of the
task; while syntactic features point to a real sig-
nal that readers are reacting to when writing their
responses, literary character is of course far more
complex, and more sophisticated representations of
character—and of the readers who react to them—
are likely warranted for real predictive performance
on this task.

agent patient predicative possessive
hissed hate pregnant phone
sneered done human state
shoved see afraid tone
glared hated stubborn face
paused asked person spot
respond face boy plan
caught pissed angry wand
scowled blame stupid pain
walked shocked free emotions
had used mother chakra

Table 3: Syntactic features most predictive of a
negatively-assessed character.

4 Conclusion

In blending aspects of large-scale literary data and
social network structure, fanfiction publication con-
stitutes a vibrant ecosystem with ample textual ev-
idence for the production and consumption of liter-
ary texts. In this work, we have briefly illustrated
three aspects of this data that have the potential to
yield interesting insight—the relationship between
fanfiction stories and their original source material,

the social network structure of authors and their re-
spondents, and the possibility of predicting reader
responses from serially published text. Many ques-
tions remain; in providing a quantitative description
of this dataset, we hope to highlight its potential for
analysis, and encourage other work in this domain.

Acknowledgments

We thank Cecilia Aragon and our anonymous re-
viewers for their helpful comments. This work is
made possible by the use of computing resources
from Berkeley Research Computing.

References

David Bamman, Ted Underwood, and Noah A. Smith.
2014. A Bayesian mixed effects model of literary
character. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 370–379, Baltimore,
Maryland, June. Association for Computational Lin-
guistics.

Jennifer L Barnes. 2015. Fanfiction as imaginary play:
What fan-written stories can tell us about the cognitive
science of fiction. Poetics, 48:69–82.

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein.
2012. An empirical investigation of statistical sig-
nificance in NLP. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, EMNLP-CoNLL ’12, pages 995–
1005, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

RW Black. 2006. Not just the OMG standard: reader
feedback and language, literacy, and culture in online
fanfiction. In Annual Meeting of The American Ed-
ucational Research Association, San Francisco, vol-
ume 10.

David M. Blei, Andrew Ng, and Michael Jordan. 2003.
Latent dirichlet allocation. JMLR, 3:993–1022.

Kristina Busse. 2009. In focus: Fandom and feminism:
gender and the politics of fan production. Cinema
Journal, 48(4):104–108.

Julie Campbell, Cecilia Aragon, Katie Davis, Sarah
Evans, Abigail Evans, and David Randall. 2016.
Thousands of positive reviews: Distributed mentor-
ing in online fan communities. In Proceedings of the
19th ACM Conference on Computer-Supported Coop-
erative Work & Social Computing, CSCW ’16, pages
691–704, New York, NY, USA. ACM.

2052

Snigdha Chaturvedi, Shashank Srivastava, Hal Daume,
and Chris Dyer. 2015. Modeling dynamic relation-
ships between characters in literary novels.

Micha Elsner. 2012. Character-based kernels for novel-
istic plot structure. In EACL.

Christine Handley. 2012. Distressing damsels: narra-
tive critique and reinterpretation in star wars fanfiction.
Fan Culture: Theory/Practice, Newcastle upon Tyne:
Cambridge Scholars Publishing, pages 97–118.

Mohit Iyyer, Anupam Guha, Snigdha Chaturvedi, Jordan
Boyd-Graber, and Hal Daumé III. 2016. Feuding fam-
ilies and former friends: Unsupervised learning for dy-
namic fictional relationships. In North American As-
sociation for Computational Linguistics.

Matthew Jockers. 2015. Revealing senti-
ment and plot arcs with the syuzhet package.
http://www.matthewjockers.net/2015/
02/02/syuzhet/.

Soomin Jwa. 2012. Modeling L2 writer voice: Discour-
sal positioning in fanfiction writing. Computers and
Composition, 29(4):323–340.

Jayne C Lammers and Valerie L Marsh. 2015. Go-
ing public: An adolescent’s networked writing on fan-
fiction.net. Journal of Adolescent & Adult Literacy,
59(3):277–285.

Hui Min Annabeth Leow. 2011. Subverting the canon
in feminist fan fiction. Transformative Works and Cul-
tures, 7.

Alecia Marie Magnifico, Jen Scott Curwood, and Jayne C
Lammers. 2015. Words on the screen: broadening
analyses of interactions among fanfiction writers and
reviewers. Literacy, 49(3):158–166.

Saif Mohammad. 2011. From once upon a time to hap-
pily ever after: Tracking emotions in novels and fairy
tales. CoRR, abs/1309.5909.

Christine Scodari and Jenna L Felder. 2000. Creating a
pocket universe: Shippers, fan fiction, and the X-Files
online. Communication Studies, 51(3):238–257.

Bronwen Thomas. 2011. What is fanfiction and why are
people saying such nice things about it? Storyworlds:
A Journal of Narrative Studies, 3(1):1–24.

Hardik Vala, David Jurgens, Andrew Piper, and Derek
Ruths. 2015. Mr. Bennet, his coachman, and the
Archbishop walk into a bar but only one of them gets
recognized: On the difficulty of detecting characters
in literary texts. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 769–774, Lisbon, Portugal, September.
Association for Computational Linguistics.

Veerle Van Steenhuyse. 2011. The writing and read-
ing of fan fiction and transformation theory. CLCWeb:
Comparative Literature and Culture, 13(4):4.

Jun Xu. 2011. Austen’s fans and fans’ Austen. Journal
of Literary Semantics, 40(1):81–97.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. CoRR, abs/1506.06724.

2053

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2054–2059,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Using Syntactic and Semantic Context to Explore Psychodemographic
Differences in Self-reference

Masoud Rouhizadeh†§, Lyle Ungar§, Anneke Buffone§, H Andrew Schwartz†§
†Stony Brook University, §University of Pennsylvania

mrouhizadeh@gmail.com, ungar@cis.upenn.edu, buffonea@sas.upenn.edu, has@cs.stonybrook.edu

Abstract

Psychological analysis of language has repeat-
edly shown that an individual’s rate of men-
tioning 1st person singular pronouns predicts
a wealth of important demographic and psy-
chological factors. However, these analy-
ses are performed out of context — syntac-
tic and semantic — which may change the
magnitude or even direction of such relation-
ships. In this paper, we put “pronouns in their
context”, exploring the relationship between
self-reference and age, gender, and depres-
sion depending on syntactic position and ver-
bal governor. We find that pronouns are over-
all more predictive when taking dependency
relations and verb semantic categories into ac-
count, and, the direction of the relationship
can change depending on the semantic class
of the verbal governor.

1 Introduction

Approximately 1 in 18 English words on Face-
book are first-person singular pronouns.1 Extensive
work in psychological analyses of language has con-
sistently found strong relation between first-person
pronoun use and psychological attributes of individ-
uals (Kendall, 1998; Pennebaker and Stone, 2003;
Pennebaker, 2011; Twenge et al., 2012; Oishi et
al., 2013; Carey et al., 2015). Although such find-
ings have been replicated extensively, little is known
about how the syntactic or semantic context of the
pronouns may affect their relationship with human
traits. Usage in subject or object position may

1Within the study dataset, 5.45% of all words from self-
identified English speakers were first-person pronouns.

vary, and the type of verb governing the reference
may further change its relationship. For instance,
while younger individuals are more likely to use 1st-
person singular pronouns overall, older individuals
may be more likely to use them as the subject of so-
cial verbs.

In this study we dive deep into this one type of
word which makes up a large portion of our daily
lives. We first look at the relationship between first
person singular pronouns and age, gender, and de-
pression. We then consider the syntactic position of
the pronoun and its occurrence in the subject and
direct object position. Next, we explore the self-
referenced use of verbs compared to their general
use across different semantic categories, followed
by an examination of the rate of 1st-person singular
pronoun as the subject and the object with different
verb categories.

We ultimately show that pronoun relationships
with human outcomes can change drastically de-
pending on their syntactic position and the category
of their verbal governor. To be more specific, our
contributions include: (a) taking the role of context
into account in the psychological analysis of per-
sonal pronouns, (b) distributional clustering of verbs
using Canonical Correlation Analysis (CCA), and
(c) exploring the integration of verbal semantic cat-
egories in the analysis of pronouns. Utilizing verb
categories instead of actual verbs, enables general-
ization and less sparsity in the semantic comparison
of the contexts in which personal pronouns are used.

2054

2 Background

A wealth of studies have explored pronoun use with
regard to age, gender, and personality types. In
fact, a whole book, “The Secret Life of Pronouns”
has been dedicated summarizing such studies which
have built up over several decades of work (Pen-
nebaker, 2011). 2

We could not come close to a full survey of such
work, but rather list some of the most notable and
recent results for outcomes related to those of this
study. Pennebaker et. al. (2003) and Chung & Pen-
nebaker (2007) found that the use of self-references
(i.e. ‘I’, ‘me’) decreases over age. Pennebaker et.
al. (2003), and Argamon et. al. (2007) showed that
females use significantly more first-person singular
personal pronouns compared to males. Bucci and
Freedman (1981), Weintraub (1981), and Zimmer-
mann et. al. (2013) found that first-person singu-
lar pronouns are positively correlated with depres-
sive symptoms. These analyses do not take the role
of syntactic and semantic context into consideration
which may indicate interesting information about
psychological factors.

3 Method

Data Set: Facebook Status Updates. Our dataset
consists of the status updates of 74,867 Facebook
users who volunteered to share their posts in the
“MyPersonality” application (Kosinski et al., 2013),
sent between January 2009 and October 2011. The
users met the following criteria: (a) have English as
a primary language, (b) indicated their gender and
age, (c) be less than 65 years old (due to data spar-
sity beyond this age), and (d) have at least 1,000
words in their status updates (in order to accurately
estimate language usage rates). This dataset con-
tains 309 million words within 15.4 million sta-
tus updates. All users completed a 100-item per-
sonality questionnaire (an International Personality
Item Pool (IPIP) proxy to the NEO-PI-R (Goldberg,
1999). User-level degree of depression (DDep) was
estimated as the average response to seven depres-
sion facet items (nested within the larger Neuroti-

2To quantify the pervasiveness of pronoun studies in so-
cial science, we consider the citation count, via Google Scholar
(July, 2016), to works mentioning “pronoun” by one of the top
researchers, James W. Pennebaker, which number over 10,000.

cism item pool of the questionnaire) (Schwartz et al.,
2014).

Dependency Features. We used dependency an-
notations in order to determine the syntactic func-
tion of personal pronouns i.e. subject (S) and di-
rect object (DO). We obtained dependency parses
of our corpus using Stanford Parser (Socher et al.,
2013) that provides universal dependencies in (re-
lation, head, dependent) triples. In the next step,
we extracted the words in in the nominal subject
(“nsubj") and direct object (“dobj") positions in-
cluding nsubj 1st-person singular pronoun “I", and
dobj 1st-person singular pronoun “me". We also ex-
tracted the corresponding verbs for each of the nom-
inal subjects, and direct object words.

Verb categorization. In order to integrate the ver-
bal semantic categories in the syntactic analysis of
pronouns, we utilize two verb categorization meth-
ods (a) linguistically-driven Levin’s Verb Classes,
and (b) empirically-driven verb clustering based on
CCA.

Levin’s verb classes (Levin, 1993) includes
around 3100 English verbs classified into 47 top
level, 193 second and third level classes. This clas-
sification is based on Levin’s hypothesis that the
syntactic behavior of a verb is influenced by its se-
mantic properties, indicating that identifying sets of
verbs with comparable behavior at the syntax level
will lead to coherent clusters of semantically similar
verbs. In this paper we used all of the 193 second
and third level Levin’s classes (Lev). As an alter-
native way, we also used the 50 top most frequent
sub-classes in our social media data (LevTop).

To derive empirically driven clusters we use
Canonical Correlation Analysis (CCA), a multi-
view dimensionality reduction technique. CCA has
previously been used in word clustering methods
such as multi-view learning of word embeddings
(Dhillon et al., 2011), or multilingual word em-
beddings (Ammar et al., 2016). The advantage
of a multi-view technique is that we can leverage
both the subject and object context. More pre-
cisely, we performed sparse CCA on matrix x that
includes 5k by 10k verb-by-nominal-subject (nsubj)
co-occurrences, and matrix z that includes 5k by 10k
verb-by-direct-object (dobj) co-occurrences. The
output of CCA is a subject by component matrix

2055

Gender Age Dep
Feature Set (AUC) (MSE) (MSE)

P (1p) .512 78.9 90.1
P (1p|r) .589 76.4 90.3
P (1p|r, c), Lev .660 70.0 89.8
P (1p|r, c), Lev & sent .695 68.3 89.1
P (1p|r, c), LevTop .660 71.5 89.8
P (1p|r, c), LevTop & sent .669 69.0 89.3
P (1p|r, c), CCA-D .634 73.4 90.3
P (1p|r, c), CCA-D & sent .649 71.5 89.7
P (1p|r, c), CCA-KM .632 72.6 90.3
P (1p|r, c), CCA-KM & sent .645 70.9 89.9

Table 1: Area under the ROC curve (AUC) for gender
(higher is better), and Mean Square Error (MSE) for age
and depression prediction (lower is better), and the pre-
diction using 1st-per pronoun use overall, in subject and
object position, and given verb categories.

(u: subject-view), and object by component matrix
(v: object-view). We then build matrix S by multi-
plying x by u and matrix O by multiplying z by v
to get the verbs by CCA-components from subject-
view, and verbs by object components from object-
view respectively. In order to cluster verbs from
direct CCA components, we use the average score
of subject-view and object-view components, assign-
ing verbs to those components for which they have
a non-zero absolute weight (CCA-D). Sparse CCA
zeros-out verbs from multiple components so as to
assign verbs to components, but we also explore
normal CCA and cluster the verbs using k-means
(k = 30) clustering from the z-scaled values of S
and O matrices (CCA-KM).

Both Levin’s and CCA-based verb classes are de-
rived from syntactic behavior. As a result, they often
do not distinguish antonyms. For instance, Levin’s
“admire" verb class contains both ‘love’ and ‘hate".
Building on research showing positive and negative
emotions differ across age and gender (Schwartz et
al., 2013), we integrate valence information in our
verb clustering. We used positive and negative sen-
timent scores from EmoLex word-emotion associa-
tion lexicon (Mohammad and Turney, 2013), divid-
ing each of our clusters into positive, negative, and
neutral sub-classes.

Analysis. We explore the use of 1st-person singu-
lar pronouns across age and gender in different syn-
tactic and semantic contexts. Features are encoded
as the mean from maximum likelihood estimation

Verb Clusters r
1st person singular pronoun use -.17

1st person singular nominal subject
thank, celebrate, welcome, greet, applaud .09
shake, freeze, melt, collect, bend, twist, squeeze .08
hate, fear, regret, dislike, despise, dread, tolerate -.16
write, draw, type, print, scratch, plot, sketch -.10

1st person singular direct object
join, pool, merge .05
deny, suspect .04
hate, fear, regret, dislike, despise, dread, tolerate -.09
bore, worry, scare, bother, annoy, disappoint -.08

Table 2: Linear regression coefficient of age and 1st per-
son pronoun use in different verb clusters.

over the probability of mentioning a first person sin-
gular pronoun in a given context.

(a) The overall usage first person singular pro-
noun:

P (1p) = P (PN = 1p)

(b) The probability of using first person singular
pronoun in the nsubj, and the dobj positions:

P (1p|r) = P (PN = 1p | rel = r)

where rel ∈ {nsubj, dobj}.
(c) The probability of using first person singular

pronoun in the nsubj, and the dobj positions of a
given verb category:

P (1p|r, c) = P (PN = 1p | rel = r, vcat = c)

where rel ∈ {nsubj, dobj} and vcat is the set of all
verb categories being considered.

4 Evaluation

The goal of our work is to expand the knowledge
of how the first-person singular pronoun, one of the
most common word types in English, is related to
who we are – our demographics and psychological
states. We work toward this goal in an empirical
fashion, by first replicating known general relation-
ships of 1st-person singular pronouns with gender,
age, and depression, exploring how their use in dif-
ferent syntactic positions, and, finally, by looking at
relationships within specific semantic contexts ac-
cording to the verb classes described earlier.

2056

Verb Clusters β
1st person singular pronoun use .11

1st person singular nominal subject
love, enjoy, respect, adore, cherish, admire .29
miss, like, appreciate, trust, support, value .28
destroy -.08
kick, shoot, slap, smash, shove, slam -.07

1st person singular direct object
make, blow, roll, hack, cast .22
hold, handle, grasp, clutch, wield, grip .18
hit, kick, strike, slap, smash, smack, bang, butt -.10
add, mix, connect, link, combine, blend -.04

Table 3: Logistic regression coefficient between gender
and 1st person singular pronoun use in different verb
clusters (positive is female).

Replication. We use standardized linear and lo-
gistic regression to correlate gender, age, and de-
pression with P (1p) (first-person singular pronoun
use). We control for age in the case of gender, gen-
der in the case of age, and both gender and age
in the case of depression by including them as co-
variates in the regression and reporting the unique
coefficient for the variable in question. Logistic re-
gression is used for gender, since it is binary, while
linear regression is used for the continuous age and
depression variables. Confirming past results, we
found significant relationships between first-person
pronoun usage and gender (β = .11, p < .001),
age (r = −0.17, p < .001), and depression score
(r = −0.06, p < .01).

Syntactic Context. Taking dependency relation-
ships into account (P (1p|r)), we observed shifts
in the magnitude of correlations. Specifically, we
found significant negative correlations between age
and using 1st-person singular pronoun in the subject
(r = −0.12, p < .001), and the object positions
(r = −0.17, p < .001). For gender we found a sig-
nificant positive correlation between being female
and the probability of using 1st-person singular pro-
noun (r = 0.11, p < .001), and 1st-person singular
pronoun in subject position (r = 0.16, p < .001).
For depression a significant positive correlation be-
tween with P (1p) (r = 0.06, p < .05), and using
1st-person singular pronoun in the subject position
(r = 0.07, p < .05).

Syntactic and Semantic Context. Table 1 reports
the area under the ROC curve (AUC) for gen-
der prediction and the Mean Square Error (MSE)
for predicting age and depression based on P (1p),
P (1p|r), and P (1p|r, c), driven from various cate-
gorization approaches. We used AUC since it can
capture more differences in performance by evalu-
ating the class probabilities of test instances rather
than just finding whether it was right or wrong. We
applied 10-fold cross-validation with a linear-SVM
in the case of gender, and ridge-regression in the
case of depression. The obtained results reveal a
consistent pattern: in gender, age, and depression
prediction all the features that take context into ac-
count outperform P (1p) which is the vastly reported
measure of self-reference in the literature. This sug-
gests that there is more information to be gained by
utilization syntactic and semantic context. In other
words, we can achieve a more meaningful, deeper
insight into the relationship of subject and object po-
sition of the first person in different contexts, reveal-
ing a more complex, and more insightful set of rela-
tions.

We achieve the best performance by utilizing verb
categories. We first observe that integrating sen-
timent helps in nearly all verb categorization ap-
proaches. Next, we see that while both CCA and
Levin verb clusters yield improvement in predic-
tion accuracy, our performance gains using the data-
driven CCA-based verb clustering are not as large as
that from Levin’s linguistically-driven classes.

While we believe our features can improve pre-
diction accuracy, that is not the primary application
of social science research. Rather, it is correlating
the behavior of referencing the self with psycholog-
ical conditions, like depression, in order to gain hu-
man insights. In the case of correlating behavior
with a psychological measure, Pearson coefficients
above .1 are considered noteworthy and above .3
are considered approaching a “correlational upper-
bound" (Meyer et al., 2001).

Tables 2, 3, and 4 show the most predictive fea-
tures, using the best performing clustering method
(i.e. Levin & Sentiment). Note that in the case of
age and gender, we see that not only does the mag-
nitude of the relationship change, but it’s possible
that the direction can completely change.

For example, while males are less likely to

2057

Verb Clusters r
1st person singular pronoun use .06

1st person singular nominal subject
cry, worry, suffer, fear, bother, ache, mourn, anger .11
scare, annoy, confuse, depress, upset, disappoint .11

1st person singular direct object
kill, murder, slay, slaughter, butcher .09
scare, annoy, confuse, depress, upset, disappoint .07

Table 4: Linear regression coefficient of depression score
and 1st person singular pronoun use in different verb
clusters.

use first-person singular pronouns overall, they are
much more likely to use them as the subject of ag-
gressive physical contact verbs like “kick", “shoot",
“slap", and “smash", suggesting men are more likely
to express themselves as agents of aggressive con-
tact. On the other hand, women use first-person sin-
gulars in the social sphere, particularly in an affilia-
tive context. They assert themselves as agents of em-
powering and encouraging others (e.g. “love", “en-
joy", “cherish", “admire") and faith in others (e.g.
“trust", “value", “support", “respect").

5 Conclusion

We have shown that the well-studied link be-
tween the first-person singular pronoun and human
psycho-demographics is largely dependent on its
syntactic and semantic context. Many theories and
conclusions are built on such relationships, but here
we show these relationships depend on verbal con-
text; correlations can shrink, grow, and even change
directions depending on the verbs governing the pro-
noun. For example, while the usage of 1st person
singular pronoun decreases over age, it increases if
it is used as the subject of verbs such as “thank", and
“celebrate", or as the object of verbs such as “join".
Similarly, while females tend to use 1st person sin-
gular pronouns more than males, they use them less
often as the subject of “destroy” verbs or as the ob-
ject of “hit” and “kick” verbs.

By integrating syntactic dependency relationships
along with semantic classes of verbs, we can cap-
ture more nuanced linguistic relationships with hu-
man factors. Beyond pronouns, we ultimately aim
to expand the regimen of open-vocabulary tech-
niques available for the analysis of psychologically-
relevant outcomes.

Acknowledgments

The authors acknowledge the support from Temple-
ton Religion Trust, grant TRT-0048.

References
Waleed Ammar, George Mulcaire, Yulia Tsvetkov, Guil-

laume Lample, Chris Dyer, and Noah A Smith. 2016.
Massively multilingual word embeddings. arXiv
preprint arXiv:1602.01925.

Shlomo Argamon, Moshe Koppel, James W Pennebaker,
and Jonathan Schler. 2007. Mining the blogosphere:
Age, gender and the varieties of self-expression. First
Monday, 12(9).

Wilma Bucci and Norbert Freedman. 1981. The lan-
guage of depression. Bulletin of the Menninger Clinic,
45(4):334.

Angela L Carey, Melanie S Brucks, Albrecht CP Küfner,
Nicholas S Holtzman, Mitja D Back, M Brent Don-
nellan, James W Pennebaker, Matthias R Mehl, et al.
2015. Narcissism and the use of personal pronouns re-
visited. Journal of personality and social psychology,
109(3):e1.

Cindy Chung and James W Pennebaker. 2007. The psy-
chological functions of function words. Social com-
munication, pages 343–359.

Paramveer S. Dhillon, Dean Foster, and Lyle Ungar.
2011. Multi-view learning of word embeddings via
cca. In Advances in Neural Information Processing
Systems (NIPS), volume 24.

Lewis R Goldberg. 1999. A broad-bandwidth, public do-
main, personality inventory measuring the lower-level
facets of several five-factor models. Personality psy-
chology in Europe, 7(1):7–28.

Lori Kendall. 1998. Meaning and identity in âĂIJcy-
berspaceâĂİ: The performance of gender, class, and
race online. Symbolic interaction, 21(2):129–153.

Michal Kosinski, David Stillwell, and Thore Graepel.
2013. Private traits and attributes are predictable from
digital records of human behavior. Proceedings of the
National Academy of Sciences, 110(15):5802–5805.

Beth Levin. 1993. English verb classes and alternations:
A preliminary investigation. University of Chicago
press.

Gregory J Meyer, Stephen E Finn, Lorraine D Eyde,
Gary G Kay, Kevin L Moreland, Robert R Dies,
Elena J Eisman, Tom W Kubiszyn, and Geoffrey M
Reed. 2001. Psychological testing and psychological
assessment: A review of evidence and issues. Ameri-
can psychologist, 56(2):128.

Saif M Mohammad and Peter D Turney. 2013. Crowd-
sourcing a word–emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

2058

Shigehiro Oishi, Jesse Graham, Selin Kesebir, and
Iolanda Costa Galinha. 2013. Concepts of happiness
across time and cultures. Personality and Social Psy-
chology Bulletin, 39(5):559–577.

James W Pennebaker and Lori D Stone. 2003. Words of
wisdom: language use over the life span. Journal of
personality and social psychology, 85(2):291.

James W Pennebaker. 2011. The secret life of pronouns.
New Scientist, 211(2828):42–45.

H Andrew Schwartz, Johannes C Eichstaedt, Margaret L
Kern, Lukasz Dziurzynski, Stephanie M Ramones,
Megha Agrawal, Achal Shah, Michal Kosinski, David
Stillwell, Martin EP Seligman, et al. 2013. Per-
sonality, gender, and age in the language of social
media: The open-vocabulary approach. PloS one,
8(9):e73791.

H Andrew Schwartz, Johannes Eichstaedt, Margaret L
Kern, Gregory Park, Maarten Sap, David Stillwell,
Michal Kosinski, and Lyle Ungar. 2014. Towards as-
sessing changes in degree of depression through face-

book. In Proceedings of the Workshop on Compu-
tational Linguistics and Clinical Psychology: From
Linguistic Signal to Clinical Reality, pages 118–125.
Citeseer.

Richard Socher, John Bauer, Christopher D Manning, and
Andrew Y Ng. 2013. Parsing with compositional vec-
tor grammars. In ACL (1), pages 455–465.

Jean M Twenge, W Keith Campbell, and Brittany Gen-
tile. 2012. Male and female pronoun use in us books
reflects womenâĂŹs status, 1900–2008. Sex roles,
67(9-10):488–493.

Walter Weintraub. 1981. Verbal behavior: Adaptation
and psychopathology. Springer Publishing Company.

Johannes Zimmermann, Markus Wolf, Astrid Bock,
Doris Peham, and Cord Benecke. 2013. The way we
refer to ourselves reflects how we relate to others: As-
sociations between first-person pronoun use and inter-
personal problems. Journal of research in personality,

47(3):218–225.

2059

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2060–2065,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning to Identify Metaphors from a Corpus of Proverbs

Gözde Özbal† and Carlo Strapparava† and Serra Sinem Tekiroğlu† and Daniele Pighin‡
†FBK-Irst, Trento, Italy, ‡Google - Zürich, Switzerland

gozbalde@gmail.com, {strappa, tekiroglu}@fbk.eu, biondo@google.com

Abstract

In this paper, we experiment with a re-
source consisting of metaphorically annotated
proverbs on the task of word-level metaphor
recognition. We observe that existing feature
sets do not perform well on this data. We
design a novel set of features to better cap-
ture the peculiar nature of proverbs and we
demonstrate that these new features are signif-
icantly more effective on the metaphorically
dense proverb data.

1 Introduction

Recent years have seen a growing attention to-
wards attempts to understand figurative language in
text (Steen et al., 2010, Shutova and Teufel, 2010,
Turney et al., 2011, Neuman et al., 2013, Klebanov
et al., 2015). Recently, Özbal et al. (2016) published
a resource consisting of 1,054 proverbs annotated
with metaphors at the word and sentence level, mak-
ing it possible for the first time to test existing mod-
els for metaphor detection on such data. More than
in other genres, such as news, fiction and essays, in
proverbs metaphors can resolve a significant amount
of the figurative meaning (Faycel, 2012). The rich-
ness of proverbs in terms of metaphors is very fas-
cinating from a linguistic and cultural point of view.
Due to this richness, proverbs constitute a challeng-
ing benchmark for existing computational models of
metaphoricity.

In this paper, we devise novel feature sets es-
pecially tailored to cope with the peculiarities of
proverbs, which are generally short and figuratively
rich. To the best of our knowledge, this is the

first attempt to design a word-level metaphor rec-
ognizer specifically tailored to such metaphorically
rich data. Even though some of the resources that we
use (e.g., imageability and concreteness) have been
used for this task before, we propose new ways of
encoding this information, especially with respect to
the density of the feature space and the way that the
context of each word is modeled. On the proverb
data, the novel features result in compact models
that significantly outperform existing features de-
signed for word-level metaphor detection in other
genres (Klebanov et al., 2014), such as news and es-
says. By also testing the new features on these other
genres, we show that their generalization power is
not limited to proverbs.

2 Background

In this section we provide a brief overview of the
efforts of the NLP community to build metaphor
datasets and utilize them to develop computational
techniques for metaphor processing. Steen et al.
(2010) construct the Amsterdam Metaphor Cor-
pus (VUAMC) by annotating a subset of BNC
Baby1. Linguistic metaphors in VUAMC are an-
notated by utilizing the Metaphor Annotation Pro-
cedure (MIP) proposed by Group (2007). VUAMC
contains 200,000 words in sentences sampled from
various genres (news, fiction, academic, and conver-
sations) and 13.6% of the words are annotated as
metaphoric (Shutova, 2010). Another metaphor an-
notation study following the MIP procedure is con-
ducted by Shutova and Teufel (2010). A subset of

1http://www.natcorp.ox.ac.uk/corpus/
babyinfo.html

2060

the British National Corpus (BNC) (Burnard, 2000)
is annotated to reveal word-level verb metaphors
and to determine the conceptual mappings of the
metaphorical verbs.

Turney et al. (2011) introduce an algorithm to
classify word-level metaphors expressed by an ad-
jective or a verb based on their concreteness levels
in association with the nouns they collocate. Sim-
ilarly, Neuman et al. (2013) extend the concrete-
ness model with a selectional preference approach
to detect metaphors formed of concrete concepts.
They focus on three types of metaphors: i) IS-A,
ii) verb-noun, iii) adjective-noun. Rather than re-
stricting the identification task to a particular POS
or metaphoric structure, Hovy et al. (2013) aim to
recognize any word-level metaphors given an un-
restricted text, and they create a corpus containing
sentences where one target token for each sentence
is annotated as metaphorical or literal. They use
SVM and CRF models with dependency tree-kernels
to capture the anomalies in semantic patterns. Kle-
banov et al. (2014) propose a supervised approach
to predict the metaphoricity of all content words in a
running text. Their model combines unigram, topic
model, POS and concreteness features and it is eval-
uated on VUAMC and a set of essays written for a
large-scale assessment of college graduates. Follow-
ing this study, Klebanov et al. (2015) improve their
model by re-weighting the training examples and re-
designing the concreteness features.

The experiments in this paper are carried out on
PROMETHEUS (Özbal et al., 2016), a dataset con-
sisting of 1,054 English proverbs and their equiv-
alents in Italian. Proverbs are annotated with word-
level metaphors, overall metaphoricity, meaning and
century of first appearance. For our experiments, we
only use the word-level annotations on the English
data.

3 Word-level metaphor detection

Similarly to Klebanov et al. (2014), we classify each
content word (i.e., adjective, noun, verb or adverb)
appearing in a proverb as being used metaphorically
or not. Out of 1,054 proverbs in PROMETHEUS, we
randomly sample 800 for training, 127 for develop-
ment and 127 for testing. We carry out the develop-
ment of new features on the development set; then

we compare the performance of different feature sets
using 10-fold cross validation on the combination of
the development and training data. Finally, we test
the most meaningful configurations on the held-out
test data. As a baseline, we use a set of features
very similar to the one proposed by Klebanov et al.
(2014). To obtain results more easily comparable
with Klebanov et al. (2014), we use the same clas-
sifier, i.e., logistic regression, in the implementation
bundled with the scikit-learn package (Pedregosa et
al., 2011). For all the experiments, we adjust the
weight of the examples proportionally to the inverse
of the class frequency.

3.1 Baseline features (B)
Unigrams (uB): Klebanov et al. (2014) use all con-
tent word forms as features without stemming or
lemmatization. To reduce sparsity, we consider lem-
mas along with their POS tag.
Part-of-speech (pB): The coarse-grained part-of-
speech (i.e., noun, adjective, verb or adverb) of con-
tent words2.
Concreteness (cB): We extract the concreteness
features from the resource compiled by Brysbaert et
al. (2014). Similarly to Klebanov et al. (2014), the
mean concreteness ratings, ranging from 1 to 5, are
binned in 0.25 increments. We also add a binary fea-
ture which encodes the information about whether
the lemma is found in the resource.
Topic models (tB): We use Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003) using Gibbs sampling
for parameter estimation and inference (Griffiths,
2002). We run LDA on the full British National Cor-
pus (Consortium and others, 2001) to estimate 100
topics, using 2000 Gibbs sampling iterations, and
keeping the first 1000 words for each topic. As topic
model features for a lemma, we use the conditional
probability of the topic given the lemma for each of
the 100 topics generated by LDA. Besides, we use a
binary feature that encodes whether the lemma ex-
ists in the LDA model.

3.2 Novel features (N)
We introduce five feature sets that capture other as-
pects of the data which we consider to be meaningful
for the peculiar characteristics of proverbs.

2Klebanov et al. (2014) consider the Penn Treebank tagset
generated by Stanford POS tagger.

2061

Imageability (i) and Concreteness (c): Imageabil-
ity and concreteness of the metaphor constituents
were found to be highly effective in metaphor iden-
tification by several studies in the literature (Turney
et al., 2011, Broadwell et al., 2013, Neuman et al.,
2013, Tsvetkov et al., 2014). We obtain the image-
ability and concreteness scores of each lemma from
the resource constructed by Tsvetkov et al. (2014),
as it accounts for both dimensions. The imageabil-
ity (concreteness) feature set contains the following
four features:
• Has score: A binary feature that indicates

whether the lemma exists in the relevant re-
source.
• Score value: The imageability (concreteness)

score of the lemma.
• Average sentence score: The average image-

ability (concreteness) score of the other lem-
mas in the sentence.
• Score difference: The difference between Av-

erage sentence score and Score value.
The last two features take the context of the target
lemma into account and encode the intuition that
metaphorical lemmas often have higher imageability
(concreteness) than the rest of the sentence (Broad-
well et al., 2013).
Metaphor counts (m): This feature set consists of
three features. The first two features encode the
number of times a lemma-POS pair is used as a
metaphor and a non-metaphor in the data. The third
feature evaluates to the difference between these
counts3.
Standard domains (ds) and normalized domains
(dn): These features reflect our intuition that there
is a strong prior for some domains to be used as
a source for metaphors. This notion is backed by
the analysis of PROMETHEUS carried out by Özbal
et al. (2016). We also expect that words which are
clearly out of context with respect to the rest of the
sentence are more likely to be used as metaphors.
The correlation between word and sentence domains
described below aims to model such phenomenon.
For each lemma-POS pair, we collect the domain
information from WordNet Domains4 (Magnini et
al., 2002, Bentivogli et al., 2004) for the standard

3 Counts are estimated on training folds. To reduce over-
fitting, lemmas are randomly sampled with a probability of 2/3.

4We always select the first sense of the lemma-POS.

Feature sets C P R F

B# 0.9 0.666 0.832 0.738
N∗ 0.6 0.785 0.884 0.833
B ∪N∗ 0.6 0.798 0.875 0.834

N \ i∗ 0.6 0.788 0.886 0.833
N \ c∗ 0.6 0.782 0.888 0.831
N \m∗# 0.6 0.780 0.824 0.799
N \ d∗s 1.0 0.787 0.842 0.815
N \ d∗n 1.0 0.789 0.884 0.832
N \ (ds ∪ dn)# 1.0 0.746 0.704 0.724
N \ s∗ 1.0 0.776 0.909 0.836

(N \ (ds ∪ dn)) ∪ t#B 0.6 0.751 0.705 0.724

Table 1: Cross-validation performance on the proverb training

and development data. The meta-parameter C is the inverse of

the regularization strength. ∗: significantly different from B

with p < .001; #: s.d. from N with p < .001.

domains feature set, which consists of 167 features
(1 real valued, 166 binary). It includes a binary in-
dicator set to 1 if the lemma is found in WordNet
Domains. A domain vector consisting of 164 binary
indicators mark the domains to which the lemma be-
longs. Then, we compute a sentence domain vector
by summing the vectors for all the other lemmas in
the sentence, and we encode the Pearson correlation
coefficient between the two vectors (lemma and sen-
tence) as a real valued feature. Finally, a binary fea-
ture accounts for the cases in which no other lemma
in the sentence has associated domain information.

The same process is repeated for the normalized
domains. For normalization, we use a reduced set
of domains (43 distinct domains) by considering the
middle level of the WordNet Domains hierarchy. For
instance, VOLLEY or BASKETBALL domains are
mapped to the SPORT domain. Normalization al-
ready proved to be beneficial in tasks such as word
sense disambiguation (Gliozzo et al., 2004). It al-
lows for a good level of abstraction without losing
relevant information and it helps to overcome data
sparsity. The set of normalized domain features (dn)
consists of 46 features (45 binary, 1 real valued).

Dense signals (s): This set includes three binary
features which summarize the concreteness, image-
ability and metaphor count feature sets. The first
(second) feature is set to 1 if the imageability (con-
creteness) of the lemma is higher than the average

2062

Features P R F

B# 0.75 0.70 0.73
N∗ 0.86 0.83 0.85
N \ s∗ 0.82 0.87 0.85
B ∪N∗ 0.87 0.85 0.86

Table 2: Performance on the proverb test data. ∗: significantly

different from B with p < .001. #: significantly different from

N with p < .001.

Genre Features C P R F

News
B 1.0 0.475 0.742 0.576
N 1.0 0.576 0.479 0.522
B ∪N 1.0 0.615 0.539 0.574

Academic
B 0.6 0.489 0.733 0.568
N 0.6 0.572 0.494 0.511
B ∪N 1.0 0.539 0.648 0.569

Conversation
B 0.6 0.292 0.799 0.416
N 0.6 0.304 0.626 0.393
B ∪N 1.0 0.299 0.731 0.406

Fiction
B 0.6 0.349 0.695 0.460
N 0.6 0.430 0.418 0.421
B ∪N 0.6 0.409 0.551 0.465

Table 3: Cross-validation performance on VUAMC. B is al-

ways significantly different from N (p < .001), and B ∪ N is

always significantly different from both B and N (p < .001).

imageability (concreteness) of the rest of the sen-
tence. The third feature is set to 1 if the lemma was
observed more frequently as a metaphor than not, as
estimated on training data.

3.3 Results

Table 1 shows the results of the 10-fold cross valida-
tion on the English proverb data. The value reported
in the column labeled C is the optimal inverse of
regularization strength, determined via grid-search
in the interval [0.1, 1.0] with a step of 0.1. Using
only baseline features (B) we measure an average F1
score of 0.738. The performance goes up to 0.833
when the novel features are used in isolation (N)
(statistically significant with p < 0.001). We believe
that the difference in performance is at least in part
due to the sparser B features requiring more data
to be able to generalize. But most importantly, un-
like B, N accounts for the context and the peculiar-
ity of the target word with respect to the rest of the
sentence. The combination of the two feature sets

(B ∪N) very slightly improves over N (0.834), but
the difference is not significant. The second block of
rows in Table 1 presents a summary of the ablation
tests that we conducted to assess the contribution of
the different feature groups. Each lowercase letter
indicates one of the feature sets introduced in the
previous section. All configurations reported, except
N \ (ds ∪ dn), significantly outperform B. In two
cases, N \m andN \ (ds∪dn), there is a significant
loss of performance with respect to N . The worst
performance is observed when all the domain fea-
tures are removed (i.e., N \ (ds∪dn)). These results
suggest that the prior knowledge about the domain
of a word and the frequency of its metaphorical use
are indeed strong predictors of a word metaphoricity
in context. The fact thatN \dn andN \ds do not re-
sult in the same loss of performance asN \(ds∪dn)
indicates that both dn and ds are adequately expres-
sive to model the figuratively rich proverb data. In
one case (i.e., N \ s), the F1 measure is slightly
higher than N , even though the difference does not
appear to be statistically significant. Our intuition is
that each of the three binary indicators is a very good
predictor of metaphoricity per se, and due to the rel-
atively small size of the data the classifier may tend
to over-fit on these features. As another configura-
tion, the last row shows the results obtained by re-
placing our domain features ds and dn with the topic
features t from B. With this experiment, we aim to
understand the extent to which the two features are
interchangeable. The results are significantly worse
than N , which is a further confirmation of the suit-
ability of the domain features to model the proverbs
dataset.

We then evaluated the best configuration from the
cross-fold validation (N \ s) and the three feature
sets B, N and B ∪ N on the held-out test data.
The results of this experiment reported in Table 2
are similar to the cross-fold evaluation, and in this
case the contribution of N features is even more ac-
centuated. Indeed, the absolute F1 of N and B ∪N
is slightly higher on test data, while the f-measure of
B decreases slightly. This might be explained by the
low-dimensionality of N , which makes it less prone
to overfitting the training data. On test data, N \ s
is not found to outperform N . Interestingly, N \ s
is the only configuration having higher recall than
precision. As shown by the feature ablation experi-

2063

ments, one of the main reasons for the performance
difference between N and B is the ability of the for-
mer to model domain information. This finding can
be further confirmed by inspecting the cases where
B misclassifies metaphors that are correctly detected
by N . Among these, we can find several examples
including words that belong to domains often used
as a metaphor source, such as “grist” (domain: “gas-
tronomy”) in “All is grist that comes to the mill”,
or “horse” (domain: “animals”) in “You can take a
horse to the water , but you can’t make him drink”.

Finally, Table 3 shows the effect of the different
feature sets on VUAMC used by Klebanov et al.
(2014). We use the same 12-fold data split as Kle-
banov et al. (2014), and also in this case we per-
form a grid-search to optimize the meta-parameter
C of the logistic regression classifier. The best value
of C identified for each genre and feature set is
shown in the column labeled C. On this data, N
features alone are significantly outperformed by B
(p < 0.01). On the other hand, for the genres
“academic” and “fiction”, combining N and B fea-
tures improves classification performance over B,
and the difference is always statistically significant.
Besides, the addition ofN always leads to more bal-
anced models, by compensating for the relatively
lower precision of B. Due to the lack of a separate
test set, as in the original setup by Klebanov et al.
(2014), and to the high dimensionality of B’s lex-
icalized features, we cannot rule out over-fitting as
an explanation for the relatively good performance
of B on this benchmark. It should also be noted that
the results reported in (Klebanov et al., 2014) are not
the same, due to the mentioned differences in the im-
plementation of the features and possibly other dif-
ferences in the experimental setup (e.g., data filter-
ing, pre-processing and meta-parameter optimiza-
tion). In particular, our implementation of the B
features performs better than reported by Klebanov
et al. (2014) on all four genres, namely: 0.52 vs.
0.51 for “news”, 0.51 vs. 0.28 for “academic”, 0.39
vs. 0.28 for “conversation” and 0.42 vs. 0.33 for
“fiction”.

Even though the evidence is not conclusive, these
results suggest that the insights derived from the
analysis of PROMETHEUS and captured by the fea-
ture set N can also be applied to model word-level
metaphor detection across very different genres. In

particular, we believe that our initial attempt to en-
code context and domain information for metaphor
detection deserves further investigation.

4 Conclusion

We designed a novel set of features inspired by the
analysis of PROMETHEUS, and used it to train and
test models for word-level metaphor detection. The
comparison against a strong set of baseline features
demonstrates the effectiveness of the novel features
at capturing the metaphoricity of words for proverbs.
In addition, the novel features show a positive con-
tribution for metaphor detection on “fiction” and
“academic” genres. The experimental results also
highlight the peculiarities of PROMETHEUS, which
stands out as an especially dense, metaphorically
rich resource for the investigation of the linguistic
and computational aspects of figurative language.

References

Luisa Bentivogli, Pamela Forner, Bernardo Magnini, and
Emanuele Pianta. 2004. Revising the Wordnet Do-
mains Hierarchy: Semantics, Coverage and Balanc-
ing. In Proceedings of the Workshop on Multilingual
Linguistic Ressources, pages 101–108. Association for
Computational Linguistics.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent Dirichlet Allocation. The Journal of Ma-
chine Learning Research, 3:993–1022.

George Aaron Broadwell, Umit Boz, Ignacio Cases,
Tomek Strzalkowski, Laurie Feldman, Sarah Taylor,
Samira Shaikh, Ting Liu, Kit Cho, and Nick Webb.
2013. Using Imageability and Topic Chaining to Lo-
cate Metaphors in Linguistic Corpora. In Social Com-
puting, Behavioral-Cultural Modeling and Prediction,
pages 102–110. Springer.

Marc Brysbaert, Amy Beth Warriner, and Victor Kuper-
man. 2014. Concreteness Ratings for 40 Thousand
Generally Known English Word Lemmas. Behavior
Research Methods, 46(3):904–911.

Lou Burnard. 2000. Reference guide for the British Na-
tional Corpus (World Edition).

BNC Consortium et al. 2001. The British National Cor-
pus, version 2 (BNC World). Distributed by Oxford
University Computing Services.

Dahklaoui Faycel. 2012. Food Metaphors in Tunisian
Arabic Proverbs. Rice Working Papers in Linguistics
3/1.

2064

Alfio Gliozzo, Carlo Strapparava, and Ido Dagan. 2004.
Unsupervised and Supervised Exploitation of Seman-
tic Domains in Lexical Disambiguation. Computer
Speech & Language, 18(3):275–299.

Tom Griffiths. 2002. Gibbs Sampling in the Generative
Model of Latent Dirichlet Allocation.

Pragglejaz Group. 2007. MIP: A Method for Identifying
Metaphorically Used Words in Discourse. Metaphor
and Symbol, 22(1):1–39.

Dirk Hovy, Shashank Srivastava, Sujay Kumar Jauhar,
Mrinmaya Sachan, Kartik Goyal, Huiying Li, Whit-
ney Sanders, and Eduard Hovy. 2013. Identi-
fying Metaphorical Word Use with Tree Kernels.
Meta4NLP 2013, page 52.

Beata Beigman Klebanov, Chee Wee Leong, Michael
Heilman, and Michael Flor. 2014. Different Texts,
Same Metaphors: Unigrams and Beyond. In Proceed-
ings of the Second Workshop on Metaphor in NLP,
pages 11–17.

Beata Beigman Klebanov, Chee Wee Leong, and Michael
Flor. 2015. Supervised Word-Level Metaphor Detec-
tion: Experiments with Concreteness and Reweighting
of Examples. NAACL HLT 2015, page 11.

Bernardo Magnini, Carlo Strapparava, Giovanni Pezzulo,
and Alfio Gliozzo. 2002. The Role of Domain Infor-
mation in Word Sense Disambiguation. Natural Lan-
guage Engineering, 8(04):359–373.

Yair Neuman, Dan Assaf, Yohai Cohen, Mark Last,
Shlomo Argamon, Newton Howard, and Ophir
Frieder. 2013. Metaphor Identification in Large Texts
Corpora. PloS one, 8(4):e62343.

Gözde Özbal, Carlo Strapparava, and Serra Sinem
Tekiroğlu. 2016. PROMETHEUS: A Corpus of
Proverbs Annotated with Metaphors. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC 2016), Paris,
France, may. European Language Resources Associa-
tion (ELRA).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12:2825–
2830.

Ekaterina Shutova and Simone Teufel. 2010. Metaphor
Corpus Annotated for Source-Target Domain Map-
pings. In LREC, volume 2, pages 2–2.

Ekaterina Shutova. 2010. Automatic Metaphor Interpre-
tation as a Paraphrasing Task. In Human Language
Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 1029–1037. Association
for Computational Linguistics.

Gerard J Steen, Aletta G Dorst, J Berenike Herrmann,
Anna A Kaal, and Tina Krennmayr. 2010. Metaphor
in Usage. Cognitive Linguistics, 21(4):765–796.

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman, Eric
Nyberg, and Chris Dyer. 2014. Metaphor Detection
with Cross-Lingual Model Transfer. In Proceedings of
the 52nd Annual Meeting of the Association for Com-
putational Linguistics, pages 248–258. Association for
Computational Linguistics.

Peter D Turney, Yair Neuman, Dan Assaf, and Yohai Co-
hen. 2011. Literal and Metaphorical Sense Identi-
fication through Concrete and Abstract Context. In
Proceedings of the 2011 Conference on the Empirical
Methods in Natural Language Processing, pages 680–
690.

2065

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2066–2070,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

An Embedding Model for Predicting Roll-Call Votes

Peter E. Kraft Hirsh Jain Alexander M. Rush
School of Engineering and Applied Science, Harvard University

{pkraft, hirshjain}@college.harvard.edu, srush@seas.harvard.edu

Abstract

We develop a novel embedding-based model
for predicting legislative roll-call votes from
bill text. The model introduces multidimen-
sional ideal vectors for legislators as an alter-
native to single dimensional ideal point mod-
els for quantitatively analyzing roll-call data.
These vectors are learned to correspond with
pre-trained word embeddings which allows us
to analyze which features in a bill text are most
predictive of political support. Our model is
quite simple, while at the same time allowing
us to successfully predict legislator votes on
specific bills with higher accuracy than past
methods.

1 Introduction

Quantitative analysis of political data can contribute
to our understanding of governments. One impor-
tant source of such data is roll-call votes, records
of how legislators vote on bills. Analysis of roll-call
data can reveal interesting information about legisla-
tors (such as political leanings and ideological clus-
ters) and can also allow prediction of future votes
(Clinton, 2012).

Previous work on analyzing roll-call votes has
chiefly involved positioning congresspeople on ideal
point models. Ideal point models assume all legisla-
tors and bills can be plotted as single points in one-
dimensional “political space.” The closer a particu-
lar bill’s position is to a particular congressperson’s,
the more utility the congressperson is expected to
derive from the bill. Initial work on ideal point
models focused on using them to test theories about
legislative behavior, such as predicting that the rel-
ative differences between ideal points of congress-

people of different parties, and thus party polar-
ization, would increase over time (McCarty, 2001).
Ideal point models are often created using Bayesian
techniques over large amounts of roll-call data (Clin-
ton et al., 2004; Jackman, 2001). However, these
models are not used to make predictions. They are
trained using the complete vote matrix for the bill,
which indicates how each congressperson voted on
each bill. Therefore, they cannot say anything about
how congresspeople will vote on a new bill, as until
some congresspeople have voted on the bill its ideal
point is not known.

We target this vote prediction problem: given the
text of a bill and a congressperson, can we indepen-
dently predict how each congressperson will vote on
the bill? The first prior attempt at this task was made
by Gerrish and Blei (2011) who create an ideal point
topic model which integrates a topic model similar to
LDA for the bill text with an ideal point model for
the congresspeople. They use variational inference
to approximate the posterior distribution of the top-
ics and ideal points, predicting with a linear model.
Gerrish and Blei (2012) further extend this work
with an issue-adjusted model, a similar model that
modifies congressperson ideal points based on top-
ics identified with labeled LDA, but which cannot
be used for predictions. Further work in a similar
vein includes Wang et al. (2013), who introduced
temporal information to a graphical model for pre-
dicting Congressional votes, and Kim et al. (2014),
who used sparse factor analysis to estimate Senato-
rial ideal points from bill text and the votes of party
leadership.

In this work we revisit this task with a simple
bilinear model that learns multidimensional embed-
dings for both legislators and bills, combining them

2066

to make vote predictions. We represent a bill as
the average of its word embeddings. We represent
legislators as ideal vectors, trained end-to-end for
vote prediction. These ideal vectors serve as a use-
ful, easy-to-train, multidimensional representation
of legislator ideology that does not rely on elaborate
statistical models or any further assumptions about
legislator behavior. Finally, we train our model by
optimizing a cross-entropy objective instead of the
posterior of a topic model. The final model achieves
high accuracy at predicting roll-call votes.

2 Model

Our goal is to predict roll-call votes by learning from
the texts of bills and from past votes. Our input con-
sists of a congressperson c and the set B of unique
words in a bill. Our output y is whether that the con-
gressperson voted yea or nay on the bill. We train
on the full set of congressional votes on a number of
bills. At test time, we supply entirely new bills and
predict how each congressperson will vote on each
new bill.

We propose a simple bilinear model that uses
low-dimensional embeddings to model each word in
our dictionary and each congressperson. We rep-
resent each bill using its word embeddings in or-
der to capture the multivariate relationships between
words and their meanings (Collobert et al., 2011;
Mikolov et al., 2013). The model is trained to
synthesize information about each congressperson’s
voting record into a multidimensional ideal vector.
At test time, the model combines the embedding rep-
resentation of a new bill with the trained ideal vector
of a congressperson and generates a prediction for
how the congressperson will vote on the bill.

Let ew ∈ Rdword be the pretrained embedding for
a word w. We initialize to the GloVe embeddings
with dword = 50 (Pennington et al., 2014), then
jointly train them with the model. To represent a
bill, we average over the embeddings of the set B of
words in the bill.

To represent a congressperson, we introduce an-
other set of embeddings vc ∈ Rdemb for each con-
gressperson c. The embeddings act as the ideal vec-
tor for each legislator. Unlike the word embeddings,
we initialize these randomly.

The full model takes in a bill and a congressper-

Congress # Bills House Senate Pres

106 557 R R Clinton
107 505 R D2 Bush
108 607 R R Bush
109 579 R R Bush
110 854 D D Bush
111 965 D D Obama

Table 1: Dataset details for 106-111th Congress.

son. It applies an affine transformation, represented
by a matrix W ∈ Rdemb×dword and bias b ∈ Rdemb ,
to map the bill representation into the space of the
ideal vectors, and then uses a dot-product to provide
a yea/nay score.

p(y = yea|B, c) = σ((W

(∑

w∈B
ew/|B|

)
+b) ·vc)

The full model is simply trained to minimize the
negative log-likelihood of the training set, and re-
quires no additional meta-information (such as party
affiliation) or additional preprocessing of the bills
during training- or test-time.

3 Experimental Setup

Data Following past work, our dataset is derived
from the Govtrack database.1 Specifically, our
dataset consists of all votes on the full-text (not
amendments) of bills or resolutions from the 106th-
111th Congress, six of the most recent Congresses
for which bill texts are readily available. Details of
each these congresses are shown in Table 1.

To create our dataset, we first find a list of all votes
on the full text of bills, and create a matrix of how
each congressperson voted on each bill, which will
be used in training and in testing. In accordance with
previous work, we only consider yes-or-no votes and
omit abstentions and “present” votes (Gerrish and
Blei, 2011). We then simply collect the set of words
used in each bill. Overall, our dataset consists of
4067 bills and over a million unique yes-or-no votes.

1https://www.govtrack.us/
2Mostly. Republicans controlled the 107th Senate for five

months between the inauguration of Dick Cheney as vice-
president in January of 2001 and the defection of Jim Jeffords
in June.

2067

Congress YEA GB IDP EMB

106 83.0 - 79.5 84.9
107 85.9 - 85.8 89.7
108 87.1 - 85.0 91.9
109 83.5 - 81.5 88.4
110 82.7 - 80.8 92.1
111 86.0 - 85.7 93.4
Avg 84.5 89.0 83.1 90.6

Table 2: Main results comparing predictive accu-
racy of our model EMB with a several baselines (de-
scribed in the text) on the 106th-111th Congress.

Model We tested prediction accuracy of the
average-of-embeddings model, EMB, by running it
for ten epochs at a learning rate of η = 0.1 and demb

set to 10. Hyperparameters were tuned on a held-
out section of the 107th Congress. We ran on each
of the 106th to 111th Congresses individually using
five-fold cross-validation.

Baselines We compare our results to three differ-
ent baselines. The first, YEA, is a majority class
baseline which assumes all legislators vote yea.
The second, IDP, is our model with demb set to 1
to simulate a simple ideal point model. The third,
GB, is Gerrish and Blei’s reported predictive accu-
racy of 89 % on average from the 106th to 111th
Congresses, which is to the extent of our knowledge
the best predictive accuracy on roll-call votes yet
achieved in the literature. Gerrish and Blei report
on the same data set using cross-validation and like
us train and test on each congress individually, but
do not split out results into individual congresses.

4 Experiments and Analysis

Predictive Results The main predictive experi-
mental results are shown in Table 2. We see that
EMB performs substantially better than YEA on all
six Congresses. It has a weighted average of 90.6%
on an 84.5% baseline, compared to Gerrish and
Blei’s 89% on an identical dataset. IDP, however,
actually does worse than the baseline, demonstrat-
ing that the bulk of our gain in prediction accu-
racy comes from using ideal vectors instead of ideal
points. To further test this hypothesis, we experi-
mented with replacing word embeddings with LDA

Congress EMB

106 0.524
107 0.546
108 0.595
109 0.628
110 0.728
111 0.737
Avg 0.645

Table 3: Minority class F1 Scores of our model EMB

on the 106th-111th Congress.

and obtained an accuracy of 89.5%, in between GB
and EMB. This indicates that the word embeddings
are also responsible for part, but not all, of the accu-
racy improvement. We also report minority class F1
scores for EMB in Table 3, finding an overall average
F1 score of 0.645.

Ideal Vectors Beyond predictive accuracy, one of
the most interesting features of the model is that it
produces ideal vectors as its complete representa-
tion of congresspeople. These vectors are much eas-
ier to compute than standard ideal points, which re-
quire relatively complex and computationally inten-
sive statistical models (Jackman, 2001). Addition-
ally unlike ideal point models, which tend to contain
many assumptions about legislative behavior, ideal
vectors arise naturally from raw data and bill text
(Clinton et al., 2004).

In Figure 1, we show the ideal vectors for the
111th Congress. We use PCA to project the vec-
tors down to two dimensions. This graph displays
several interesting patterns in agreement with theo-
ries of legislative behavior. For example, political
scientists theorize that the majority party in a legis-
lature will display more unity in roll-call votes be-
cause they decide what gets voted on and only allow
a vote on a bill if they can unify behind it and pass
it, while that bill may divide the other party (Car-
rubba et al., 2006; Carrubba et al., 2008). On this
graph, in accordance with that prediction, the ma-
jority Democrats are more clustered than the minor-
ity Republicans. We observe similar trends in the
ideal vectors of the other Congresses. Moreover,
the model lets us examine the positions of individual
congresspeople. In the figure, the 34 Democrats who

2068

Figure 1: PCA projection of the ideal vectors for
111th Congress, both House and Senate. Republi-
cans shown in red, Democrats who voted for Afford-
able Care Act (ACA) in blue, Democrats who voted
against ACA in yellow, and independents in green.

voted against the Affordable Care Act (ACA, bet-
ter known as Obamacare) are shown in yellow. The
ACA was a major Democratic priority and point of
difference between the two parties. The Democrats
who voted against it tended to be relatively conser-
vative and closer to the Republicans. The model
picks up on this distinction.

Furthermore, since our model maps individual
words and congresspeople to the same vector space,
we can use it to determine how words (and by proxy
issues) unite or divide congresspeople and parties.
In Figure 2, we show the scaled probabilities that
congresspeople will vote for a bill containing only
the word “enterprise” versus one containing only
the word “science” in the 110th Congress. The
word “enterprise,” denoting pro-business legislation,
neatly divides the parties. Both are for it, but Repub-
licans favor it more. More interestingly, the word
“science” creates division within the parties, as nei-
ther was at the time more for science funding than
the other but both contained congresspeople with
varying levels of support for it. An ideal point model
would likely capture the “enterprise” dimension, but
not the “science” one, and would not be able to dis-
tinguish between libertarians like Ron Paul (R-TX)
who are against both “corporate welfare” and gov-
ernment science funding, conservative budget hawks
like Jeff Flake (R-AZ) who favor business but are
skeptical of government funding of science, and es-

Figure 2: Relative likelihood of congresspeople in
the 110th Congress voting for a bill containing only
the word “Enterprise” versus only the word “Sci-
ence.” Coordinates are sigmoids of dot products of
congressperson vectors with normalized word vec-
tors.

tablishment Republicans like Kevin McCarthy (R-
CA) who support both. Indeed, ideal point models
are known to perform poorly at describing ideolog-
ically idiosyncratic figures like Ron Paul (Gerrish
and Blei, 2011). Providing the ability to explore
multiple dimensions of difference between legisla-
tors will be extremely helpful for political scientists
analyzing the dynamics of legislatures.

Lexical Properties Finally, as with topic model-
ing approaches, we can use our model to analyze
the relationships between congresspeople or parties
and individual words in bills. For example, Ta-
ble 4 shows the ten words closest by cosine simi-
larity to each party’s average congressperson (stop
words omitted) for the 110th Congress. The Demo-
cratic list mostly contains words relating to govern-
ing and regulating, such as “consumer,” “state,” and
“educational,” likely because the Democrats were
at the time the majority party with the responsibil-
ity for passing large governmental and regulatory
bills like budgets. The Republican list is largely
concerned with the military, with words like “vet-
erans,” “service,” and “executive,” probably because
of the importance at the time of the wars in Iraq and
Afghanistan, started by a Republican president.

2069

Democrats Republicans

economic veterans
exchange head

state opportunities
carrying provided

government promote
higher service

congress identified
consumer information

educational record
special executive

Table 4: Top ten words by cosine similarity for each
party in the 110th Congress with stop words re-
moved.

5 Conclusion

We have developed a novel model for predicting
Congressional roll-call votes. This new model
provides a new and interesting way of analyz-
ing the behavior of parties and legislatures. It
achieves predictive accuracies around 90.6% on av-
erage and outperforms any prior model of roll-call
voting. We also introduce the idea of ideal vec-
tors as a fast, simple, and multidimensional al-
ternative to ideal point models for analyzing the
actions of individual legislators and testing theo-
ries about their behavior. Our code and datasets
are available online at https://github.com/
kraftp/roll_call_predictor.

References

Clifford J Carrubba, Matthew Gabel, Lacey Murrah,
Ryan Clough, Elizabeth Montgomery, and Rebecca
Schambach. 2006. Off the record: Unrecorded leg-
islative votes, selection bias and roll-call vote analysis.
British Journal of Political Science, 36(04):691–704.

Clifford Carrubba, Matthew Gabel, and Simon Hug.
2008. Legislative voting behavior, seen and unseen:
A theory of roll-call vote selection. Legislative Stud-
ies Quarterly, 33(4):543–572.

Joshua Clinton, Simon Jackman, and Douglas Rivers.
2004. The statistical analysis of roll call data. Ameri-
can Political Science Review, 98(02):355–370.

Joshua D Clinton. 2012. Using roll call estimates to test
models of politics. Annual Review of Political Science,
15:79–99.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Sean Gerrish and David M Blei. 2011. Predicting leg-
islative roll calls from text. In Proceedings of the 28th
international conference on machine learning (icml-
11), pages 489–496.

Sean Gerrish and David M Blei. 2012. How they
vote: Issue-adjusted models of legislative behavior. In
Advances in Neural Information Processing Systems,
pages 2753–2761.

Simon Jackman. 2001. Multidimensional analysis of
roll call data via bayesian simulation: Identification,
estimation, inference, and model checking. Political
Analysis, 9(3):227–241.

In Song Kim, John Londregan, and Marc Ratkovic. 2014.
Voting, speechmaking, and the dimensions of conflict
in the us senate. In Annual Meeting of the Midwest
Political Science Association.

Nolan McCarty. 2001. The hunt for party discipline in
congress. In American Political Science Association,
volume 95, pages 673–687. Cambridge Univ Press.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space word
representations. In HLT-NAACL, pages 746–751.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP, volume 14, pages 1532–1543.

Eric Wang, Esther Salazar, David Dunson, Lawrence
Carin, et al. 2013. Spatio-temporal modeling of legis-
lation and votes. Bayesian Analysis, 8(1):233–268.

2070

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2071–2076,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Natural Language Model Re-usability for Scaling to Different Domains

Young-Bum Kim, Alexandre Rochette and Ruhi Sarikaya
Microsoft Corporation, Redmond, WA

ybkim,alrochet,ruhi.sarikaya@microsoft.com

Abstract

Natural language understanding is the core
of the human computer interactions. How-
ever, building new domains and tasks that
need a separate set of models is a bottle-
neck for scaling to a large number of do-
mains and experiences. In this paper, we
propose a practical technique that addresses
this issue in a web-scale language understand-
ing system: Microsoft’s personal digital as-
sistant Cortana. The proposed technique uses
a constrained decoding method with a uni-
versal slot tagging model sharing the same
schema as the collection of slot taggers built
for each domain. The proposed approach al-
lows reusing of slots across different domains
and tasks while achieving virtually the same
performance as those slot taggers trained per
domain fashion.

1 Introduction

Recently there has been tremendous investment into
the personal digital assistants by big technology
companies (Sarikaya, 2015; Sarikaya et al., 2016).
Apple’s SIRI, Google Now, Microsoft’s Cortana and
Amazon’s Alexa are examples of such systems. Nat-
ural language understanding (Gupta et al., 2006; Tur
and De Mori, 2011)is at the core of these systems
providing natural communication between the user
and the agent. These systems support a number of
scenarios including creating reminders, setting up
alarms, note taking, scheduling meetings, finding
and consuming entertainment (i.e. movie, music,
games), finding places of interest and getting driv-
ing directions to them. The domains supported by

these systems are on the order of tens (not in hun-
dreds) and adding new domains and experiences is
a scaling problem that has not been solved yet (Tur,
2006; Jeong and Lee, 2009; El-Kahky et al., 2014;
Kim et al., 2015d).

The primary reason behind this is that each do-
main requires potentially a new schema, intents
and slots extracted from the natural language query.
That, in turn requires collecting and annotating new
data, which is the most expensive step in terms of
time and money, and building a new set of domain
specific models to support the new domains and sce-
narios. Slot modeling in particular is the most de-
manding component in terms of the difficulty of an-
notation and modeling.

In this study, we propose a new approach that re-
duces the cost of scaling natural language under-
standing to a large number of domains and expe-
riences without significantly sacrificing the accu-
racy. The approach consists of a universal slot tag-
ging method and a runtime technique called con-
strained decoding that performs the decoding ac-
cording a specific schema. The proposed approach,
heavily enables reusing existing slot modeling data
that are collected and annotated for potentially dif-
ferent domains and applications, for building new
domains and applications. The new domains can be
expressed in terms of existing semantic schema.

The rest of the paper is organized as follows. In
the next section, we talk about universal slot mod-
eling. In section 3, we present the constrained de-
coding technique. We describe the experimental set
up, results and analysis in section 4 followed by the
conclusions and future directions in section 5.

2071

2 Universal Slot Tagging

The first step is to build a universal slot tagger, a sin-
gle model that can handle all the domains an agent
(e.g. Cortana) can support. In Table 1, we show a
subset of the domains that are supported by Cortana
for experimentation purposes.

2.1 Universal Slot Tagger Training

To train the universal slot tagger, we consider two
simple and intuitive approaches: Binary and All-in-
one.

Suppose we have a combined k slots across do-
mains and also have access to the labeled data, Bi-
nary approach trains k binary classifier one for each
slot type. For each binary slot tagger targeting a spe-
cific slot type, the labeled data is programatically
mapped to create a new labeled data set, where only
the target label is kept while all the other labels are
mapped “other” label. All-in-one approach simply
trains a single model by aggregating queries across
all domains.

2.2 Slot Tagging Ambiguity

Universal slot tagging model has an advantage,
which can share schema across all domains used
for training time. In spite of the advantage, there
are ambiguity problems caused by combining all do-
mains (and the underlying data) into a single model.
The problems can be grouped into two categories:

• Imbalanced training data distribution: The
amount of training data varies across domains.
Universal slot model may have bias towards
predicting the slots in domains with larger
training data. For example, slots with less train-
ing data (e.g. app name in MEDIACONTROL
domain could be overwhelmed by slots with
large training data (e.g. place name in PLACES
domain).

• Domain-specific schema: In practice, the do-
mains the system handles are not constructed
at the same time. They are designed for dif-
ferent application back-ends, requirements and
scenarios at different points in time. In other
words, the semantic schema for a domain is de-
signed without considering other domains. In

Figure 1: Constrained Lattice: Disabling nodes and transition

while decoding the lattice to honor given constraints of domain

schema.

ALARM domain, the slot indicating time is sub-
divided into sub-slots such as start time repre-
senting starting time, duration representing du-
ration for an alarm. In contrast, in PLACES do-
main, there is only a single slot indicating time
(time).

3 Constrained Decoding

Slot tagging is considered as a sequence learning
problem (Deoras and Sarikaya, 2013; Li et al.,
2009; Xu and Sarikaya, 2014; Celikyilmaz et al.,
2015; Kim et al., 2015b; Kim et al., 2015c; Kim
et al., 2015a). In sequence learning, given a sam-
ple query x1 . . . xn, the decoding problem is to find
the most likely slot sequence among all the possible
sequences, y1 . . . yn:

f(x1 . . . xn) = argmax
y1...yn

p(x1 . . . xn, y1 . . . yn)

Here, we assume that output space in training is
same as those in test time.

However, in our problem, output (slot) space in
test time can be different from those in training
time. At test time, we may observe different slot se-
quences than what is observed in the training time.

This is not an issue for the Binary approach, since
we can use the output of the selected taggers needed
for the new domain. We simply use general decod-
ing approach with each of the selected taggers. Note

2072

that a given query is run as many times as the num-
bers of slot types covered in a given domain.

For All-in-One technique, we consider two possi-
ble approaches: Post-Filter and Constrained Decod-
ing. With Post-Filter, we simply provide the best
hypothesis generated by the slot tagger that meets
the domain schema constraints, by computing the
full n-best of slots and filtering out the slot types
that do not meet the target domain schema. With
Constrained Decoding, given a schema ỹ ⊂ y for
the target domain, we first define a constrained lat-
tice lattice Y(x, ỹ) = Y(x1, ỹ)× . . .×Y(xn, ỹ), as
shown in Figure 1. Then, we perform the decoding
in the constrained lattice:

f(x1 . . . xn, ỹ) = argmax
Y(x,ỹ)

p(x1 . . . xn, y1 . . . yn)

4 Experiments

In this section, we conducted a series of experiments
to evaluate the proposed techniques on datasets ob-
tained from real usage.

4.1 Experimental Setup

To test the effectiveness of the proposed approach,
we apply it to a suite of 16 Cortana domains for
slot tagging tasks. The data statistics and short
descriptions are shown in Table 1. As the ta-
ble indicates, the domains have different granu-
larity and diverse semantics. Note that we keep
domain-specific slots such as alarm state, but there
are enough shared labels across domains. For exam-
ple, ALARM domain, there are 6 shared slots among
8 slots. There are 62 slots appearing more than one
domain. Especially, some basic slots such as time,
date,place name,person name,location and product
appear in most domains.

4.2 Slot Taggers

In all our experiments, we trained Conditional Ran-
dom Fields (CRFs)(Lafferty et al., 2001) and used
n-gram features up to n = 3, regular expression,
lexicon features, and Brown Clusters (Brown et al.,
1992). With these features, we compare the follow-
ing methods for slot tagging1:

1For parameter estimation, we used L-BFGS (Liu and No-
cedal, 1989) with 100 as the maximum iteration count and 1.0
for the L2 regularization parameter.

• In-domain: Train a domain specific model us-
ing the domain specific data covering the slots
supported in that domain.

• Binary: Train a binary classifier for each slot
type, combine the slots needed for a given do-
main schema.

• Post: Train a single model with all domain data,
take the one-best parse of the tagger and filter-
out slots outside the domain schema.

• Const: Train a single model with all domain
data and then perform constrained decoding us-
ing a domain specific schema.

4.3 Results
For the first scenario, we assume that test domain
semantic schema is a subset of training domain
schema. The results of this scenario are shown in
Table 2. We consider In-domain as a plausible up-
per bound on the performance, yielding 94.16% of
F1 on average. First, Binary has the lowest perfor-
mance of 75.85%. We believe that when we train
a binary classifier for each slot type, the other slots
that provide valuable contextual information for the
slot sequence are ignored. This leads to degradation
in tagging accuracy. Post improves F1 scores across
domains, resulting into 86.50% F1 on average. Note
that this technique does not handle ambiguities and
data distribution mismatch due to combining mul-
tiple domain specific data with different data sizes.
Finally, Const lead to consistent gains across all do-
mains, achieving 93.36%, which almost matches the
In-domain performance. The reason why Const per-
forms better than Binary is that Const constrains the
best path search to the target domain schema. It does
not consider the schema elements that are outside
the target domain schema. By doing so, it addresses
the training data distribution issue as well as overlap
on various schema elements.

For the second scenario, we consider a new set
of test domains not covered in the training set, as
shown in Table 3. The amount of training data for
the test domains are limited (< 5K). These domains
lack training data for the location and app name
slots. When we use universal slot tagger with con-
strained decoding Const yields 94.30%. On average,
Const increases F1-score by 1.41 percentage points,

2073

#slots
#shared

slots
#train #test Description

ALARM 8 6 160K 16K Set alarms
CALENDAR 21 17 100K 10K Set meeting in calendar

COMM. 21 14 700K 70K Make a call&send msg
MYSTUFF 20 16 24K 2.5K find&open a document
ONDEVICE 10 8 227K 24k Set up a phone

PLACES 31 22 478K 45K Find location & info
REMIND 17 13 153K 14K Remind to-do list

WEATHER 9 5 281K 26K Ask weather
TRANSIT 16 16 0 2k Ask bus schedule & info

MEDIACONT. 15 15 0 10k Set up a music player
ENTERTAIN. 18 12 130k 13k Find&play movie&music
ORDERFOOD 15 15 2.5k 2k Order food

RESERVATIONS 21 19 3k 2k Reserve restaurant
TAXI 17 17 0 2k Book a cab

EVENTS 7 7 2k 1k Book an event ticket
SHOWTIMES 15 15 2k 1k Book a movie ticket

Table 1: The overview of data we used and descriptions.

Domain In-domain Binary Post Const
ALARM 96.24 76.49 91.86 95.33

CALENDAR 91.79 75.62 80.58 90.19
COMM. 95.06 84.17 88.19 94.76
ENTER. 96.05 85.39 90.42 95.84

MYSTUFF 88.34 51.3 80.6 87.51
ONDEVICE 97.65 70.16 77.8 96.43

PLACES 92.39 75.27 87.63 91.36
REMIND 91.53 72.67 88.98 91.1

WEATHER 98.37 91.56 92.45 97.73
Average 94.16 75.85 86.50 93.36

Table 2: Performance for universal models.

Domain In-domain Const
ORDERFOOD 93.62 95.63

RESERVATIONS 93.03 94.58
EVENTS 92.82 94.28

SHOWTIMES 92.07 92.69
Average 92.89 94.30

Table 3: Performance for prototype domains.

TAXI TRANSIT MEDIAC. AVG.
Const 90.86 99.5 93.08 94.48

Table 4: Results across new domains.

corresponding a 20% decrease in relative error. We
believe that universal slot tagger learns to tag these
slots from data available in PLACES and ENTER-

TAINMENT domains.
For the last scenario shown in Table 4, we assume

that we do not have training data for the test do-
mains. The Const performs reasonably well, yield-
ing 94.48% on average. Interestingly, for the TRAN-
SIT domain, we can get almost perfect tagging per-
formance of 99.5%. Note that all tags in TRANSIT
and TAXI domains are fully covered by our universal
models, but the MEDIACONTROL domain is par-
tially covered.

4.4 Discussion

By using the proposed technique, we maximize
the reuse of existing data labeled for different do-
mains and applications. The proposed technique
allows mixing and matching of slots across differ-
ent domains to create new domains. For exam-
ple, we can tag the slots in the SHOWTIMES do-
main, which involves finding a movie to watch by
using movie titles, actor names from the ENTER-
TAINMENT domain, and the location of the the-
ater by using location, place name slots from the
PLACES domain. If the new domain needs some
new slots that are not covered by the universal tag-
ger, then some examples queries could be annotated
and added to the universal slot tagger training data to
retrain the models. Instead of maintaining a separate

2074

slot tagger for each domain, one needs to maintain a
single slot tagger. The new slots added can be used
by future domains and applications.

5 Conclusions

We proposed a solution for scaling domains and ex-
periences potentially to a large number of use cases
by reusing existing data labeled for different do-
mains and applications. The universal slot tagging
coupled with constrained decoding achieves almost
as good a performance as those slot taggers built in
a domain specific fashion. This approach enables
creation of virtual domains through any combina-
tion of slot types covered in the universal slot tagger
schema, reducing the need to collect and annotate
the same slot types multiple times for different do-
mains. One of the future directions of research is to
extend the same idea to the intent modeling, where
we can re-use intent data built for different applica-
tions and domains for a new domain. Also, we plan
to extend the constrained decoding idea to slot tag-
ging with neural networks (Kim et al., 2016), which
achieved gains over CRFs.

References

Peter F Brown, Peter V Desouza, Robert L Mercer, Vin-
cent J Della Pietra, and Jenifer C Lai. 1992. Class-
based n-gram models of natural language. Computa-
tional linguistics, 18(4):467–479.

Asli Celikyilmaz, Dilek Hakkani-Tur, Panupong Pasupat,
and Ruhi Sarikaya. 2015. Enriching word embed-
dings using knowledge graph for semantic tagging in
conversational dialog systems. AAAI - Association
for the Advancement of Artificial Intelligence, Jan-
uary.

Anoop Deoras and Ruhi Sarikaya. 2013. Deep belief
network markov model sequence classification spoken
language understanding. In Interspeech.

Ali El-Kahky, Xiaohu Liu, Ruhi Sarikaya, Gokhan Tur,
Dilek Hakkani-Tur, and Larry Heck. 2014. Extending
domain coverage of language understanding systems
via intent transfer between domains using knowledge
graphs and search query click logs. In 2014 IEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 4067–4071. IEEE.

Narendra Gupta, Gokhan Tur, Dilek Hakkani-Tur, Srini-
vas Bangalore, Giuseppe Riccardi, and Mazin Gilbert.
2006. The at&t spoken language understanding sys-

tem. IEEE Transactions on Audio, Speech, and Lan-
guage Processing, 14(1):213–222.

Minwoo Jeong and Gary Geunbae Lee. 2009. Multi-
domain spoken language understanding with transfer
learning. Speech Communication, 51(5):412–424.

Young-Bum Kim, Minwoo Jeong, Karl Stratos, and Ruhi
Sarikaya. 2015a. Weakly supervised slot tagging with
partially labeled sequences from web search click logs.
In Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-
HLT), pages 84–92. Association for Computational
Linguistics.

Young-Bum Kim, Karl Stratos, Xiaohu Liu, and Ruhi
Sarikaya. 2015b. Compact lexicon selection with
spectral methods. In Proceedings of Association for
Computational Linguistics (ACL), pages 806–811. As-
sociation for Computational Linguistics.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2015c. Pre-training of hidden-unit crfs. In Proceed-
ings of the Association for Computational Linguistics
(ACL), pages 192–198. Association for Computational
Linguistics.

Young-Bum Kim, Karl Stratos, Ruhi Sarikaya, and Min-
woo Jeong. 2015d. New transfer learning techniques
for disparate label sets. In ACL. Association for Com-
putational Linguistics.

Young-Bum Kim, Karl Stratos, Minjoon Seo, and Ruhi
Sarikaya. 2016. Domainless adaptation by con-
strained decoding on a schema lattice. In Proceedings
of the International Conference on Computational Lin-
guistics (Coling). Association for Computational Lin-
guistics.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In ICML, pages 282–289.

Xiao Li, Ye-Yi Wang, and Alex Acero. 2009. Extracting
structured information from user queries with semi-
supervised conditional random fields. In Proceedings
of the 32nd international ACM SIGIR conference on
Research and development in information retrieval.

Dong C Liu and Jorge Nocedal. 1989. On the lim-
ited memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503–528.

Ruhi Sarikaya, Paul Crook, Alex Marin, Minwoo Jeong,
Jean-Philippe Robichaud, Asli Celikyilmaz, Young-
Bum Kim, Alexandre Rochette, Omar Zia Khan, Xi-
uahu Liu, Daniel Boies, Tasos Anastasakos, Zhalleh
Feizollahi, Nikhil Ramesh, Hisami Suzuki, Roman
Holenstein, Elizabeth Krawczyk, and Vasiliy Radoste.
2016. An overview of end-to-end language under-
standing and dialog management for personal digital

2075

assistants. In IEEE Workshop on Spoken Language
Technology.

Ruhi Sarikaya. 2015. The technology powering personal
digital assistants. Keynote at Interspeech, Dresden,
Germany.

Gokhan Tur and Renato De Mori. 2011. Spoken lan-
guage understanding: Systems for extracting semantic
information from speech. John Wiley & Sons.

Gokhan Tur. 2006. Multitask learning for spoken
language understanding. In In Proceedings of the
ICASSP, Toulouse, France.

Puyang Xu and Ruhi Sarikaya. 2014. Targeted feature
dropout for robust slot filling in natural language un-
derstanding. In ISCA - International Speech Commu-
nication Association, September.

2076

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2077–2083,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Leveraging Sentence-level Information with Encoder LSTM
for Semantic Slot Filling

Gakuto Kurata
IBM Research

gakuto@jp.ibm.com

Bing Xiang
IBM Watson

bingxia@us.ibm.com

Bowen Zhou
IBM Watson

zhou@us.ibm.com

Mo Yu
IBM Watson

yum@us.ibm.com

Abstract

Recurrent Neural Network (RNN) and one
of its specific architectures, Long Short-Term
Memory (LSTM), have been widely used for
sequence labeling. Explicitly modeling out-
put label dependencies on top of RNN/LSTM
is a widely-studied and effective extension.
We propose another extension to incorpo-
rate the global information spanning over
the whole input sequence. The proposed
method, encoder-labeler LSTM, first encodes
the whole input sequence into a fixed length
vector with the encoder LSTM, and then uses
this encoded vector as the initial state of an-
other LSTM for sequence labeling. With this
method, we can predict the label sequence
while taking the whole input sequence in-
formation into consideration. In the experi-
ments of a slot filling task, which is an es-
sential component of natural language under-
standing, with using the standard ATIS cor-
pus, we achieved the state-of-the-art F1-score
of 95.66%.

1 Introduction

Natural language understanding (NLU) is an essen-
tial component of natural human computer interac-
tion and typically consists of identifying the intent of
the users (intent classification) and extracting the as-
sociated semantic slots (slot filling) (De Mori et al.,
2008). We focus on the latter semantic slot filling
task in this paper.

Slot filling can be framed as a sequential label-
ing problem in which the most probable semantic
slot labels are estimated for each word of the given

word sequence. Slot filling is a traditional task and
tremendous efforts have been done, especially since
the 1980s when the Defense Advanced Research
Program Agency (DARPA) Airline Travel Informa-
tion System (ATIS) projects started (Price, 1990).
Following the success of deep learning (Hinton et
al., 2006; Bengio, 2009), Recurrent Neural Net-
work (RNN) (Elman, 1990; Jordan, 1997) and one
of its specific architectures, Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997),
have been widely used since they can capture tem-
poral dependencies (Yao et al., 2013; Yao et al.,
2014a; Mesnil et al., 2015). The RNN/LSTM-based
slot filling has been extended to be combined with
explicit modeling of label dependencies (Yao et al.,
2014b; Liu and Lane, 2015).

In this paper, we extend the LSTM-based slot
filling to consider sentence-level information. In
the field of machine translation, an encoder-decoder
LSTM has been gaining attention (Sutskever et al.,
2014), where the encoder LSTM encodes the global
information spanning over the whole input sentence
in its last hidden state. Inspired by this idea, we pro-
pose an encoder-labeler LSTM that leverages the en-
coder LSTM for slot filling. First, we encode the in-
put sentence into a fixed length vector by the encoder
LSTM. Then, we predict the slot label sequence by
the labeler LSTM whose hidden state is initialized
with the encoded vector by the encoder LSTM. With
this encoder-labeler LSTM, we can predict the la-
bel sequence while taking the sentence-level infor-
mation into consideration.

The main contributions of this paper are two-
folds:

2077

1. Proposed an encoder-labeler LSTM to leverage
sentence-level information for slot filling.

2. Achieved the state-of-the-art F1-score of
95.66% in the slot filling task of the standard
ATIS corpus.

2 Proposed Method

We first revisit the LSTM for slot filling and enhance
this to explicitly model label dependencies. Then we
explain the proposed encoder-labeler LSTM.

2.1 LSTM for Slot Filling

Figure 1(a) shows a typical LSTM for slot filling and
we call this as labeler LSTM(W) where words are fed
to the LSTM (Yao et al., 2014a).

Slot filling is a sequential labeling task to map a
sequence of T words xT

1 to a sequence of T slot
labels yT

1 . Each word xt is represented with a V
dimensional one-hot-vector where V is the vocabu-
lary size and is transferred to de dimensional con-
tinuous space by the word embedding matrix E ∈
Rde×V as Ext. Instead of simply feeding Ext into
the LSTM, Context Window is a widely used tech-
nique to jointly consider k preceding and succeeding
words as Ext+k

t−k ∈ Rde(2k+1). The LSTM has the
architecture based on Jozefowicz et al. (2015) that
does not have peephole connections and yields the
hidden state sequence hT

1 . For each time step t, the
posterior probabilities for each slot label are calcu-
lated by the softmax layer over the hidden state ht.
The word embedding matrix E, LSTM parameters,
and softmax layer parameters are estimated to mini-
mize the negative log likelihood over the correct la-
bel sequences with Back-Propagation Through Time
(BPTT) (Williams and Peng, 1990).

2.2 Explicit Modeling of Label Dependency

A shortcoming of the labeler LSTM(W) is that it
does not consider label dependencies. To explic-
itly model label dependencies, we introduce a new
architecture, labeler LSTM (W+L), as shown in Fig-
ure 1(b), where the output label of previous time step
is fed to the hidden state of current time step, jointly
with words, as Mesnil et al. (2015) and Liu and Lane
(2015) tried with RNN. For model training, one-hot-
vector of ground truth label of previous time step is

fed to the hidden state of current time step and for
evaluation, left-to-right beam search is used.

2.3 Encoder-labeler LSTM for Slot Filling

We propose two types of the encoder-labeler LSTM
that uses the labeler LSTM(W) and the labeler
LSTM(W+L). Figure 1(d) shows the encoder-
labeler LSTM(W). The encoder LSTM, to the left
of the dotted line, reads through the input sentence
backward. Its last hidden state contains the en-
coded information of the input sentence. The la-
beler LSTM(W), to the right of the dotted line, is
the same with the labeler LSTM(W) explained in
Section 2.1, except that its hidden state is initialized
with the last hidden state of the encoder LSTM. The
labeler LSTM(W) predicts the slot label conditioned
on the encoded information by the encoder LSTM,
which means that slot filling is conducted with tak-
ing sentence-level information into consideration.
Figure 1(e) shows the encoder-labeler LSTM(W+L),
which uses the labeler LSTM(W+L) and predicts
the slot label considering sentence-level information
and label dependencies jointly.

Model training is basically the same as with the
baseline labeler LSTM(W), as shown in Section 2.1,
except that the error in the labeler LSTM is propa-
gated to the encoder LSTM with BPTT.

This encoder-labeler LSTM is motivated by the
encoder-decoder LSTM that has been applied to ma-
chine translation (Sutskever et al., 2014), grapheme-
to-phoneme conversion (Yao and Zweig, 2015), text
summarization (Nallapati et al., 2016) and so on.
The difference is that the proposed encoder-labeler
LSTM accepts the same input sequence twice while
the usual encoder-decoder LSTM accepts the in-
put sequence once in the encoder. Note that the
LSTMs for encoding and labeling are different in the
encoder-labeler LSTM, but the same word embed-
ding matrix is used both for the encoder and labeler
since the same input sequence is fed twice.

2.4 Related Work on Considering
Sentence-level Information

Bi-directional RNN/LSTM have been proposed to
capture sentence-level information (Mesnil et al.,
2015; Zhou and Xu, 2015; Vu et al., 2016). While
the bi-directional RNN/LSTM model the preced-
ing and succeeding contexts at a specific word and

2078

O O O O

toneed a SeattleticketI

O B-ToCity

(a) Labeler LSTM(W).

O O O O

OO O OO

O B-ToCity

toneed a SeattleticketI

(b) Labeler LSTM(W+L).
Encoder (backward) LSTM Decoder LSTM

to needa I

O O O O

Seattle ticket OO O OO

O B-ToCity

(c) Encoder-decoder LSTM.

to needa I

O O O O

Seattle ticket toneed a SeattleticketI

O B-ToCity

Encoder LSTM (backward) Labeler LSTM(W)

(d) Encoder-labeler LSTM(W).

to needa I

O O O O

Seattle ticket OO O OO

O B-ToCity

toneed a SeattleticketI

Encoder LSTM (backward) Labeler LSTM(W+L)

(e) Encoder-labeler LSTM(W+L).

Figure 1: Neural network architectures for slot filling. Input sentence is “I need a ticket to Seattle”. “B-ToCity” is slot label for

specific meaning and “O”is slot label without specific meaning. “” is beginning symbol for slot sequence.

Sentence

Slots

show

O

flights

O

from

O

Boston

B-FromCity

to

O

New

B-ToCity

York

I-ToCity

today

B-Date

Figure 2: Example of ATIS sentence and annotated slots.

don’t explicitly encode the whole sentence, our
proposed encoder-labeler LSTM explicitly encodes
whole sentence and predicts slots conditioned on the
encoded information.

Another method to consider the sentence-level in-
formation for slot filling is the attention-based ap-
proach (Simonnet et al., 2015). The attention-based
approach is novel in aligning two sequences of dif-
ferent length. However, in the slot filling task where
the input and output sequences have the same length
and the input word and the output label has strong
relations, the effect of introducing “soft” attention
might become smaller. Instead, we directly fed the
input word into the labeler part with using context
window method as explained in Section 2.3.

3 Experiments

We report two sets of experiments. First we use the
standard ATIS corpus to confirm the improvement
by the proposed encoder-labeler LSTM and com-
pare our results with the published results while dis-
cussing the related works. Then we use a large-scale
data set to confirm the effect of the proposed method
in a realistic use-case.

3.1 ATIS Experiment
3.1.1 Experimental Setup

We used the ATIS corpus, which has been widely
used as the benchmark for NLU (Price, 1990; Dahl
et al., 1994; Wang et al., 2006; Tur et al., 2010).
Figure 2 shows an example sentence and its seman-

tic slot labels in In-Out-Begin (IOB) representation.
The slot filling task was to predict the slot label se-
quences from input word sequences.

The performance was measured by the F1-score:
F1 = 2×Precision×Recall

Precision+Recall , where precision is the ra-
tio of the correct labels in the system’s output and
recall is the ratio of the correct labels in the ground
truth of the evaluation data (van Rijsbergen, 1979).

The ATIS corpus contains the training data of
4,978 sentences and evaluation data of 893 sen-
tences. The unique number of slot labels is 127 and
the vocabulary size is 572. In the following exper-
iments, we randomly selected 80% of the original
training data to train the model and used the remain-
ing 20% as the heldout data (Mesnil et al., 2015).
We reported the F1-score on the evaluation data with
hyper-parameters that achieved the best F1-score on
the heldout data.

For training, we randomly initialized parame-
ters in accordance with the normalized initializa-
tion (Glorot and Bengio, 2010). We used ADAM
for learning rate control (Kingma and Ba, 2014) and
dropout for generalization with a dropout rate of
0.5 (Srivastava et al., 2014; Zaremba et al., 2014).

3.1.2 Improvement by Encoder-labeler LSTM
We conducted experiments to compare the labeler

LSTM(W) (Section 2.1), the labeler LSTM(W+L)
(Section 2.2), and the encoder-labeler LSTM (Sec-
tion 2.3). As for yet another baseline, we tried the
encoder-decoder LSTM as shown in Figure 1(c)1.

For all architectures, we set the initial learn-
ing rate to 0.001 (Kingma and Ba, 2014) and

1Length of the output label sequence is equal to that of the
input word sequence in a slot filling task. Therefore, ending
symbol for slot sequence is not necessary.

2079

the dimension of word embeddings to de = 30.
We changed the number of hidden units in the
LSTM, dh ∈ {100, 200, 300}2, and the size of
the context window, k ∈ {0, 1, 2}3. We used
backward encoding for the encoder-decoder LSTM
and the encoder-labeler LSTM as suggested in
Sutskever et al. (2014). For the encoder-decoder
LSTM, labeler LSTM(W+L), and encoder-labeler
LSTM(W+L), we used the left-to-right beam search
decoder (Sutskever et al., 2014) with beam sizes of
1, 2, 4, and 8 for evaluation where the best F1-score
was reported. During 100 training epochs, we re-
ported the F1-score on the evaluation data with the
epoch when the F1-score for the heldout data was
maximized. Table 1 shows the results.

The proposed encoder-labeler LSTM(W) and
encoder-labeler LSTM(W+L) both outperformed
the labeler LSTM(W) and labeler LSTM(W+L),
which confirms the novelty of considering sentence-
level information with the encoder LSTM by our
proposed method.

Contrary to expectations, F1-score by the
encoder-labeler LSTM(W+L) was not improved
from that by the encoder-labeler LSTM(W). A pos-
sible reason for this is the propagation of label pre-
diction errors. We compared the label prediction ac-
curacy for the words after the first label prediction
error in the evaluation sentences and confirmed that
the accuracy deteriorated from 84.0% to 82.6% by
using pthe label dependencies.

For the encoder-labeler LSTM(W) which was bet-
ter than the encoder-labeler LSTM(W+L), we tried
the deep architecture of 2 LSTM layers (Encoder-
labeler deep LSTM(W)). We also trained the cor-
responding labeler deep LSTM(W). As in Table 1,
we obtained improvement from 94.91% to 95.47%
by the proposed encoder-labeler deep LSTM(W),
which was statistically significant at the 90% level.

Lastly, F1-score by the encoder-decoder LSTM
was worse than other methods as shown in the first
row of Table 1. Since the slot label is closely related
with the input word, the encoder-decoder LSTM was
not an appropriate approach for the slot filling task.

2When using deep architecture later in this section, dh was
tuned for each layer.

3In our preliminary experiments with using the labeler
LSTM(W), F1-scores deteriorated with k ≥ 3.

F1-score
(c) Encoder-decoder LSTM 80.11
(a) Labeler LSTM(W) 94.80
(d) Encoder-labeler LSTM(W) 95.29
(b) Labeler LSTM(W+L) 94.91
(e) Encoder-labeler LSTM(W+L) 95.19

Labeler Deep LSTM(W) 94.91
Encoder-labeler Deep LSTM(W) 95.47

Table 1: Experimental results on ATIS slot filling task. Left-

most column corresponds to Figure 1. Lines with bold fonts

use proposed encoder-labeler LSTM. [%]

3.1.3 Comparison with Published Results
Table 2 summarizes the recently published results

on the ATIS slot filling task and compares them with
the results from the proposed methods.

Recent research has been focusing on RNN and
its extensions. Yao et al. (2013) used RNN and out-
performed methods that did not use neural networks,
such as SVM (Raymond and Riccardi, 2007) and
CRF (Deng et al., 2012). Mesnil et al. (2015) tried
bi-directional RNN, but reported degradation com-
paring with their single-directional RNN (94.98%).
Yao et al. (2014a) introduced LSTM and deep
LSTM and obtained improvement over RNN. Peng
and Yao (2015) proposed RNN-EM that used an ex-
ternal memory architecture to improve the memory
capability of RNN.

Many studies have been also conducted to explic-
itly model label dependencies. Xu and Sarikaya
(2013) proposed CNN-CRF that explicitly models
the dependencies of the output from CNN. Mesnil et
al. (2015) used hybrid RNN that combined Elman-
type and Jordan-type RNNs. Liu and Lane (2015)
used the output label for the previous word to model
label dependencies (RNN-SOP).

Vu et al. (2016) recently proposed to use ranking
loss function over bi-directional RNNs with achiev-
ing 95.47% (R-biRNN) and reported 95.56% by en-
semble (5×R-biRNN).

By comparing with these methods, the main dif-
ference of our proposed encoder-labeler LSTM is
the use of encoder LSTM to leverage sentence-level
information 4.

4Since Simonnet et al. (2015) did not report the experimen-
tal results on ATIS, we could not experimentally compare our
result with their attention-based approach. Theoretical compar-
ison is available in Section 2.4.

2080

F1-score
RNN (Yao et al., 2013) 94.11
CNN-CRF (Xu and Sarikaya, 2013) 94.35
Bi-directional RNN (Mesnil et al., 2015) 94.73
LSTM (Yao et al., 2014a) 94.85
RNN-SOP (Liu and Lane, 2015) 94.89
Hybrid RNN (Mesnil et al., 2015) 95.06
Deep LSTM (Yao et al., 2014a) 95.08
RNN-EM (Peng and Yao, 2015) 95.25
R-biRNN (Vu et al., 2016) 95.47
5×R-biRNN (Vu et al., 2016) 95.56
Encoder-labeler LSTM(W) 95.40
Encoder-labeler Deep LSTM(W) 95.66
Table 2: Comparison with published results on ATIS slot filling

task. F1-scores by proposed method are improved from Table 1

due to sophisticated hyper-parameters. [%]

For our encoder-labeler LSTM(W) and encoder-
labeler deep LSTM(W), we further conducted
hyper-parameter search with a random search strat-
egy (Bergstra and Bengio, 2012). We tuned the di-
mension of word embeddings, de ∈ {30, 50, 75},
number of hidden states in each layer, dh ∈
{100, 150, 200, 250, 300}, size of context window,
k ∈ {0, 1, 2}, and initial learning rate sampled from
uniform distribution in range [0.0001, 0.01]. To the
best of our knowledge, the previously published
best F1-score was 95.56%5 (Vu et al., 2016). Our
encoder-labeler deep LSTM(W) achieved 95.66%
F1-score, outperforming the previously published
F1-score as shown in Table 2.

Note some of the previous results used whole
training data for model training while others used
randomly selected 80% of data for model training
and the remaining 20% for hyper-parameter tuning.
Our results are based on the latter setup.

3.2 Large-scale Experiment

We prepared a large-scale data set by merging
the MIT Restaurant Corpus and MIT Movie Cor-

5There are other published results that achieved better F1-
scores by using other information on top of word features.
Vukotic et al. (2015) achieved 96.16% F1-score by using the
named entity (NE) database when estimating word embeddings.
Yao et al. (2013) and Yao et al. (2014a) used NE features in ad-
dition to word features and obtained improvement with both the
RNN and LSTM upto 96.60% F1-score. Mesnil et al. (2015)
also used NE features and reported F1-score of 96.29% with
RNN and 96.46% with Recurrent CRF.

pus (Liu et al., 2013a; Liu et al., 2013b; Spoken
Laungage Systems Group, 2013) with the ATIS cor-
pus. Since users of the NLU system may pro-
vide queries without explicitly specifying their do-
main, building one NLU model for multiple do-
mains is necessary. The merged data set contains
30,229 training and 6,810 evaluation sentences. The
unique number of slot labels is 191 and the vocab-
ulary size is 16,049. With this merged data set, we
compared the labeler LSTM(W) and the proposed
encoder-labeler LSTM(W) according to the exper-
imental procedure explained in Section 3.1.2. The
labeler LSTM(W) achieved the F1-score of 72.80%
and the encoder-labeler LSTM(W) improved it to
74.41%, which confirmed the effect of the proposed
method in large and realistic data set 6.

4 Conclusion

We proposed an encoder-labeler LSTM that can
conduct slot filling conditioned on the encoded
sentence-level information. We applied this method
to the standard ATIS corpus and obtained the state-
of-the-art F1-score in a slot filling task. We also
tried to explicitly model label dependencies, but it
was not beneficial in our experiments, which should
be further investigated in our future work.

In this paper, we focused on the slot labeling in
this paper. Previous papers reported that jointly
training the models for slot filling and intent classi-
fication boosted the accuracy of both tasks (Xu and
Sarikaya, 2013; Shi et al., 2015; Liu et al., 2015).
Leveraging our encoder-labeler LSTM approach in
joint training should be worth trying.

Acknowledgments

We are grateful to Dr. Yuta Tsuboi, Dr. Ryuki
Tachibana, and Mr. Nobuyasu Itoh of IBM Re-
search - Tokyo for the fruitful discussion and their
comments on this and earlier versions of the paper.
We thank Dr. Ramesh M. Nallapati and Dr. Cicero
Nogueira dos Santos of IBM Watson for their valu-
able suggestions. We thank the anonymous review-
ers for their valuable comments.

6The purpose of this experiment is to confirm the effect of
the proposed method. The absolute F1-scores can not be com-
pared with the numbers in Liu et al. (2013b) since the capitaliza-
tion policy and the data size of the training data were different.

2081

References
Yoshua Bengio. 2009. Learning deep architectures for

AI. Foundations and trends R⃝ in Machine Learning,
2(1):1–127.

James Bergstra and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. The Journal
of Machine Learning Research, 13(1):281–305.

Deborah A Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the ATIS
task: The ATIS-3 corpus. In Proc. HLT, pages 43–48.

Renato De Mori, Frédéric Bechet, Dilek Hakkani-Tur,
Michael McTear, Giuseppe Riccardi, and Gokhan Tur.
2008. Spoken language understanding. IEEE Signal
Processing Magazine, 3(25):50–58.

Li Deng, Gokhan Tur, Xiaodong He, and Dilek Hakkani-
Tur. 2012. Use of kernel deep convex networks and
end-to-end learning for spoken language understand-
ing. In Proc. SLT, pages 210–215.

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive science, 14(2):179–211.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proc. AISTATS, pages 249–256.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh.
2006. A fast learning algorithm for deep belief nets.
Neural computation, 18(7):1527–1554.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Michael I Jordan. 1997. Serial order: A parallel dis-
tributed processing approach. Advances in psychol-
ogy, 121:471–495.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever.
2015. An empirical exploration of recurrent network
architectures. In Proc. ICML, pages 2342–2350.

Diederik Kingma and Jimmy Ba. 2014. ADAM: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Bing Liu and Ian Lane. 2015. Recurrent neural net-
work structured output prediction for spoken language
understanding. In Proc. NIPS Workshop on Machine
Learning for Spoken Language Understanding and In-
teractions.

Jingjing Liu, Panupong Pasupat, Scott Cyphers, and
James Glass. 2013a. Asgard: A portable architecture
for multilingual dialogue systems. In Proc. ICASSP,
pages 8386–8390.

Jingjing Liu, Panupong Pasupat, Yining Wang, Scott
Cyphers, and James Glass. 2013b. Query understand-
ing enhanced by hierarchical parsing structures. In
Proc. ASRU, pages 72–77.

Chunxi Liu, Puyang Xu, and Ruhi Sarikaya. 2015. Deep
contextual language understanding in spoken dialogue
systems. In Proc. INTERSPEECH, pages 120–124.

Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua
Bengio, Li Deng, Dilek Hakkani-Tur, Xiaodong He,
Larry Heck, Gokhan Tur, Dong Yu, et al. 2015. Us-
ing recurrent neural networks for slot filling in spoken
language understanding. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 23(3):530–
539.

Ramesh Nallapati, Bowen Zhou, Ça glar Gulçehre, and
Bing Xiang. 2016. Abstractive text summarization us-
ing sequence-to-sequence RNNs and beyond. In Proc.
CoNLL.

Baolin Peng and Kaisheng Yao. 2015. Recurrent neural
networks with external memory for language under-
standing. arXiv preprint arXiv:1506.00195.

Patti Price. 1990. Evaluation of spoken language sys-
tems: The ATIS domain. In Proc. DARPA Speech and
Natural Language Workshop, pages 91–95.

Christian Raymond and Giuseppe Riccardi. 2007. Gen-
erative and discriminative algorithms for spoken lan-
guage understanding. In Proc. INTERSPEECH, pages
1605–1608.

Yangyang Shi, Kaisheng Yao, Hu Chen, Yi-Cheng Pan,
Mei-Yuh Hwang, and Baolin Peng. 2015. Contextual
spoken language understanding using recurrent neural
networks. In Proc. ICASSP, pages 5271–5275.

Edwin Simonnet, Camelin Nathalie, Deléglise Paul, and
Estève Yannick. 2015. Exploring the use of attention-
based recurrent neural networks for spoken language
understanding. In Proc. NIPS Workshop on Machine
Learning for Spoken Language Understanding and In-
teractions.

Spoken Laungage Systems Group. 2013. The
MIT Restaurant Corpus and The MIT Movie
Corpus. https://groups.csail.mit.edu/
sls/downloads/, MIT Computer Science and Ar-
tificial Intelligence Laboratory.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
In Proc. NIPS, pages 3104–3112.

Gokhan Tur, Dilek Hakkani-Tur, and Larry Heck. 2010.
What is left to be understood in ATIS? In Proc. SLT,
pages 19–24.

Cornelis Joost van Rijsbergen. 1979. Information Re-
trieval. Butterworth.

2082

Ngoc Thang Vu, Pankaj Gupta, Heike Adel, and Hin-
rich Schütze. 2016. Bi-directional recurrent neural
network with ranking loss for spoken language under-
standing. In Proc. ICASSP, pages 6060–6064.

Vedran Vukotic, Christian Raymond, and Guillaume
Gravier. 2015. Is it time to switch to word embedding
and recurrent neural networks for spoken language un-
derstanding? In Proc. INTERSPEECH, pages 130–
134.

Ye-Yi Wang, Alex Acero, Milind Mahajan, and John
Lee. 2006. Combining statistical and knowledge-
based spoken language understanding in conditional
models. In Proc. COLING-ACL, pages 882–889.

Ronald J Williams and Jing Peng. 1990. An effi-
cient gradient-based algorithm for on-line training of
recurrent network trajectories. Neural Computation,
2(4):490–501.

Puyang Xu and Ruhi Sarikaya. 2013. Convolutional neu-
ral network based triangular CRF for joint intent detec-
tion and slot filling. In Proc. ASRU, pages 78–83.

Kaisheng Yao and Geoffrey Zweig. 2015. Sequence-to-
sequence neural net models for grapheme-to-phoneme
conversion. Proc. INTERSPEECH, pages 3330–3334.

Kaisheng Yao, Geoffrey Zweig, Mei-Yuh Hwang,
Yangyang Shi, and Dong Yu. 2013. Recurrent neu-
ral networks for language understanding. In Proc. IN-
TERSPEECH, pages 2524–2528.

Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Geof-
frey Zweig, and Yangyang Shi. 2014a. Spoken lan-
guage understanding using long short-term memory
neural networks. In Proc. SLT, pages 189–194.

Kaisheng Yao, Baolin Peng, Geoffrey Zweig, Dong Yu,
Xiaolong Li, and Feng Gao. 2014b. Recurrent con-
ditional random field for language understanding. In
Proc. ICASSP, pages 4077–4081.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329.

Jie Zhou and Wei Xu. 2015. End-to-end learning of se-
mantic role labeling using recurrent neural networks.
In Proc. ACL, pages 1127–1137.

2083

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2084–2089,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

AMR-to-text generation as a Traveling Salesman Problem

Linfeng Song1, Yue Zhang3, Xiaochang Peng1, Zhiguo Wang2 and Daniel Gildea1

1Department of Computer Science, University of Rochester, Rochester, NY 14627
2IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

3Singapore University of Technology and Design

Abstract

The task of AMR-to-text generation is to gen-
erate grammatical text that sustains the seman-
tic meaning for a given AMR graph. We at-
tack the task by first partitioning the AMR
graph into smaller fragments, and then gener-
ating the translation for each fragment, before
finally deciding the order by solving an asym-
metric generalized traveling salesman prob-
lem (AGTSP). A Maximum Entropy classifier
is trained to estimate the traveling costs, and a
TSP solver is used to find the optimized solu-
tion. The final model reports a BLEU score of
22.44 on the SemEval-2016 Task8 dataset.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic formalism en-
coding the meaning of a sentence as a rooted, di-
rected graph. Shown in Figure 1, the nodes of
an AMR graph (e.g. “boy”, “go-01” and “want-
01”) represent concepts, and the edges (e.g. “ARG0”
and “ARG1”) represent relations between concepts.
AMR jointly encodes a set of different semantic phe-
nomena, which makes it useful in applications like
question answering and semantics-based machine
translation. AMR has served as an intermediate
representation for various text-to-text NLP applica-
tions, such as statistical machine translation (SMT)
(Jones et al., 2012).

The task of AMR-to-text generation is to gener-
ate grammatical text containing the same semantic
meaning as a given AMR graph. This task is im-
portant yet also challenging since each AMR graph

want-01

boy

go-01

ARG1

ARG0

ARG0

Figure 1: AMR graph for “The boy wants to go”.

usually has multiple corresponding sentences, and
syntactic structure and function words are abstracted
away when transforming a sentence into AMR (Ba-
narescu et al., 2013). There has been work deal-
ing with text-to-AMR parsing (Flanigan et al., 2014;
Wang et al., 2015; Peng et al., 2015; Vanderwende
et al., 2015; Pust et al., 2015; Artzi et al., 2015). On
the other hand, relatively little work has been done
on AMR-to-text generation. One recent exception
is Flanigan et al. (2016), who first generate a span-
ning tree for the input AMR graph, and then apply
a tree transducer to generate the sentence. Here, we
directly generate the sentence from an input AMR
by treating AMR-to-text generation as a variant of
the traveling salesman problem (TSP).

Given an AMR as input, our method first cuts
the graph into several rooted and connected frag-
ments (sub-graphs), and then finds the translation
for each fragment, before finally generating the sen-
tence for the whole AMR by ordering the transla-
tions. To cut the AMR and translate each fragment,
we match the input AMR with rules, each consisting
of a rooted, connected AMR fragment and a corre-
sponding translation. These rules serve in a similar
way to rules in SMT models. We learn the rules by a
modified version of the sampling algorithm of Peng

2084

et al. (2015), and use the rule matching algorithm of
Cai and Knight (2013).

For decoding the fragments and synthesizing the
output, we define a cut to be a subset of matched
rules without overlap that covers the AMR, and an
ordered cut to be a cut with the rules being or-
dered. To generate a sentence for the whole AMR,
we search for an ordered cut, and concatenate trans-
lations of all rules in the cut. TSP is used to traverse
different cuts and determine the best order. Intu-
itively, our method is similar to phrase-based SMT,
which first cuts the input sentence into phrases, then
obtains the translation for each source phrase, before
finally generating the target sentence by ordering the
translations. Although the computational cost of our
method is low, the initial experiment is promising,
yielding a BLEU score of 22.44 on a standard bench-
mark.

2 Method

We reformulate the problem of AMR-to-text gener-
ation as an asymmetric generalized traveling sales-
man problem (AGTSP), a variant of TSP.

2.1 TSP and its variants
Given a non-directed graph GN with n cities, sup-
posing that there is a traveling cost between each
pair of cities, TSP tries to find a tour of the minimal
total cost visiting each city exactly once. In contrast,
the asymmetric traveling salesman problem (ATSP)
tries to find a tour of the minimal total cost on a di-
rected graph, where the traveling costs between two
nodes are different in each direction. Given a di-
rected graph GD with n nodes, which are clustered
into m groups, the asymmetric generalized traveling
salesman problem (AGTSP) tries to find a tour of the
minimal total cost visiting each group exactly once.

2.2 AMR-to-text Generation as AGTSP
Given an input AMR A, each node in the AGTSP
graph can be represented as (c, r), where c is a con-
cept in A and r = (Asub, Tsub) is a rule that con-
sists of an AMR fragment containing c and a trans-
lation of the fragment. We put all nodes containing
the same concept into one group, thereby translating
each concept in the AMR exactly once.

To show a brief example, consider the AMR in
Figure 1 and the following rules,

ns (b,r4)
(w,r3)

(w,r1) (g,r2)

(g,r3)
ne

Figure 2: An example AGTSP graph

r1 (w/want-01) ||| wants
r2 (g/go-01) ||| to go
r3 (w/want-01 :ARG1 g/go-01) ||| wants to go
r4 (b/boy) ||| The boy

We build an AGTSP graph in Figure 2, where each
circle represents a group and each tuple (such as
(b, r4)) represents a node in the AGTSP graph. We
add two nodes ns and ne representing the start and
end nodes respectively. Each belongs to a specific
group that only contains that node, and a tour al-
ways starts with ns and ends with ne. Legal moves
are shown in black arrows, while illegal moves are
shown in red. One legal tour is ns → (b, r4) →
(w, r3) → (g, r3) → ne. The order in which nodes
within a rule are visited is arbitrary; for a rule with
N concepts, the number of visiting orders is O(N !).
To reduce the search space, we enforce the breadth
first order by setting costs to zero or infinity. In our
example, the traveling cost from (w, r3) to (g, r3) is
0, while the traveling cost from (g, r3) to (w, r3) is
infinity. Traveling from (g, r2) to (w, r3) also has
infinite cost, since there is overlap on the concept
“w/want-01” between them.

The traveling cost is calculated by Algorithm 1.
We first add ns and ne serving the same function
as Figure 2. The traveling cost from ns directly to
ne is infinite, since a tour has to go through other
nodes before going to the end. On the other hand,
the traveling cost from ne to ns is 0 (Lines 3-4), as
a tour always goes back to the start after reaching
the end. The traveling cost from ns to ni = (ci, ri)
is the model score only if ci is the first node of the
AMR fragment of ri, otherwise the traveling cost
is infinite (Lines 6-9). Similarly, the traveling cost
from ni to ne is the model score only if ci is the last
node of the fragment of ri. Otherwise, it is infinite
(Lines 10-13). The traveling cost from ni = (ci, ri)
to nj = (cj , rj) is 0 if ri and rj are the same rule
and cj is the next node of ci in the AMR fragment of
ri (Lines 16-17).

A tour has to travel through an AMR fragment be-

2085

Data: Nodes in AGTSP graph G
Result: Traveling Cost Matrix T

1 ns ← (“<s>”,“<s>”);
2 ne ← (“</s>”,“</s>”);
3 T[ns][ne]←∞;
4 T[ne][ns]← 0;
5 for ni ← (ci, ri) in G do
6 if ci = ri.frag.first then
7 T[ns][ni]←ModelScore(ns,ni);
8 else
9 T[ns][ni]←∞;

10 if ci = ri.frag.last then
11 T[ni][ne]←ModelScore(ni,ne);
12 else
13 T[ni][ne]←∞;
14 for ni ← (ci, ri) in G do
15 for nj ← (cj , rj) in G do
16 if ri = rj and ri.frag.next(ci) = cj then
17 T[ni][nj]← 0
18 else if ri.frag ∩ rj .frag = ∅ and ci =

ri.frag.last and cj = rj .frag.first then
19 T[ni][nj]←ModelScore(ni,nj)
20 else
21 T[ni][nj]←∞

Algorithm 1: Traveling cost algorithm

fore jumping to another fragment. We choose the
breadth-first order of nodes within the same rule,
which is guaranteed to exist, as each AMR fragment
is rooted and connected. Costs along the breadth-
first order within a rule ri are set to 0, while other
costs with a rule are infinite.

If ri is not equal to rj , then the traveling cost
is the model score if there is no overlap between
ri and rj’s AMR fragment and it moves from ri’s
last node to rj’s first node (Lines 18-19), other-
wise the traveling cost is infinite (Lines 20-21). All
other cases are illegal and we assign infinite travel-
ing cost. We do not allow traveling between overlap-
ping nodes, whose AMR fragments share common
concepts. Otherwise the traveling cost is evaluated
by a maximum entropy model, which will be dis-
cussed in detail in Section 2.4.

2.3 Rule Acquisition

We extract rules from a corpus of (sentence, AMR)
pairs using the method of Peng et al. (2015). Given

an aligned (sentence, AMR) pair, a phrase-fragment
pair is a pair ([i, j], f), where [i, j] is a span of the
sentence and f represents a connected and rooted
AMR fragment. A fragment decomposition forest
consists of all possible phrase-fragment pairs that
satisfy the alignment agreement for phrase-based
MT (Koehn et al., 2003). The rules that we use for
generation are the result of applying an MCMC pro-
cedure to learn a set of likely phrase-fragment pairs
from the forests containing all possible pairs. One
difference from the work of Peng et al. (2015) is
that, while they require the string side to be tight
(does not include unaligned words on both sides),
we expand the tight phrases to incorporate unaligned
words on both sides. The intuition is that they do
text-to-AMR parsing, which often involves discard-
ing function words, while our task is AMR-to-text
generation, and we need to be able to fill in these un-
aligned words. Since incorporating unaligned words
will introduce noise, we rank the translation candi-
dates for each AMR fragment by their counts in the
training data, and select the top N candidates.1

We also generate concept rules which directly use
a morphological string of the concept for transla-
tion. For example, for concept “w/want-01” in Fig-
ure 1, we generate concept rules such as “(w/want-
01) ||| want”, “(w/want-01) ||| wants”, “(w/want-01)
||| wanted” and “(w/want-01) ||| wanting”. The al-
gorithm (described in section 2.2) will choose the
most suitable one from the rule set. It is similar to
most MT systems in creating a translation candidate
for each word, besides normal translation rules. It
is easy to guarantee that the rule set can fully cover
every input AMR graph.

Some concepts (such as “have-rel-role-91”) in an
AMR graph do not contribute to the final translation,
and we skip them when generating concept rules.
Besides that, we use a verbalization list2 for concept
rule generation. For rule “VERBALIZE peacekeep-
ing TO keep-01 :ARG1 peace”, we will create a con-
cept rule “(k/keep-01 :ARG1 (p/peace)) ||| peace-
keeping” if the left-hand-side fragment appears in
the target graph.

1Our code for grammar induction can be downloaded from
https://github.com/xiaochang13/AMR-generation

2http://amr.isi.edu/download/lists/verbalization-list-
v1.06.txt

2086

2.4 Traveling cost
Considering an AGTSP graph whose nodes are clus-
tered into m groups, we define the traveling cost for
a tour T in Equation 1:

cost(ns, ne) = −
m∑

i=0

log p(“yes”|nTi , nTi+1) (1)

where nT0 = ns, nTm+1 = ne and each nTi (i ∈
[1 . . .m]) belongs to a group that is different from
all others. Here p(“yes”|nj , ni) represents a learned
score for a move from nj to ni. The choices be-
fore nTi are independent from choosing nTi+1 given
nTi because of the Markovian property of the TSP
problem. Previous methods (Zaslavskiy et al., 2009)
evaluate traveling costs p(nTi+1 |nTi) by using a lan-
guage model. Inevitably some rules may only cover
one translation word, making only bigram language
models naturally applicable. Zaslavskiy et al. (2009)
introduces a method for incorporating a trigram lan-
guage model. However, as a result, the number of
nodes in the AGTSP graph grows exponentially.

To tackle the problem, we treat it as a local binary
(“yes” or “no”) classification problem whether we
should move to nj from ni. We train a maximum
entropy model, where p(“yes”|ni, nj) is defined as:

p(“yes”|ni, nj) =
1

Z(ni, nj)
exp
[k∑

i=1

λifi(“yes”, ni, nj)
]

(2)

The model uses 3 real-valued features: a language
model score, the word count of the concatenated
translation from ni to nj , and the length of the short-
est path from ni’s root to nj’s root in the input AMR.
If either ni or nj is the start or end node, we set the
path length to 0. Using this model, we can use what-
ever N-gram we have at each time. Although lan-
guage models favor shorter translations, word count
will balance the effect, which is similar to MT sys-
tems. The length of the shortest path is used as a
feature because the concepts whose translations are
adjacent usually have lower path length than others.

3 Experiments

3.1 Setup
We use the dataset of SemEval-2016 Task8 (Mean-
ing Representation Parsing), which contains 16833

System Dev Test
PBMT 13.13 16.94
OnlyConceptRule 13.15 14.93
OnlyInducedRule 17.68 18.09
OnlyBigramLM 17.19 17.75
All 21.12 22.44
JAMR-gen 23.00 23.00

Table 1: Main results.

training instances, 1368 dev instances and 1371
test instances. Each instance consists of an AMR
graph and a sentence representing the same mean-
ing. Rules are extracted from the training data, and
hyperparameters are tuned on the dev set. For tuning
and testing, we filter out sentences that have more
than 30 words, resulting in 1103 dev instances and
1055 test instances. We train a 4-gram language
model (LM) with gigaword (LDC2011T07), and use
BLEU (Papineni et al., 2002) as the evaluation met-
ric. To solve the AGTSP, we use Or-tool3.

Our graph-to-string rules are reminiscent of
phrase-to-string rules in phrase-based MT (PBMT).
We compare our system to a baseline (PBMT) that
first linearizes the input AMR graph by breadth first
traversal, and then adopts the PBMT system from
Moses4 to translate the linearized AMR into a sen-
tence. To traverse the children of an AMR con-
cept, we use the original order in the text file. The
MT system is trained with the default setting on the
same dataset and LM. We also compare with JAMR-
gen5 (Flanigan et al., 2016), which is trained on the
same dataset but with a 5-gram LM from gigaword
(LDC2011T07).

To evaluate the importance of each module in our
system, we develop the following baselines: Only-
ConceptRule uses only the concept rules, OnlyIn-
ducedRule uses only the rules induced from the frag-
ment decomposition forest, OnlyBigramLM uses
both types of rules, but the traveling cost is evalu-
ated by a bigram LM trained with gigaword.

3.2 Results

The results are shown in Table 1. Our method
(All) significantly outperforms the baseline (PBMT)

3https://developers.google.com/optimization/
4http://www.statmt.org/moses/
5https://github.com/jflanigan/jamr/tree/Generator

2087

(w / want-01
:ARG0 (b / boy)
:ARG1 (b2 / believe-01

:ARG0 (g / girl)
:ARG1 b))

Ref: the boy wants the girl to believe him
All: a girl wanted to believe him
JAMR-gen: boys want the girl to believe

Table 2: Case study.

on both the dev and test sets. PBMT does not
outperform OnlyBigramLM and OnlyInducedRule,
demonstrating that our rule induction algorithm is
effective. We consider rooted and connected frag-
ments from the AMR graph, and the TSP solver
finds better solutions than beam search, as consis-
tent with Zaslavskiy et al. (2009). In addition, On-
lyInducedRule is significantly better than OnlyCon-
ceptRule, showing the importance of induced rules
on performance. This also confirms the reason that
All outperforms PBMT. This result confirms our ex-
pectation that concept rules, which are used for ful-
filling the coverage of an input AMR graph in case
of OOV, are generally not of high quality. More-
over, All outperforms OnlyBigramLM showing that
our maximum entropy model is stronger than a bi-
gram language model. Finally, JAMR-gen outper-
forms All, while JAMR-gen uses a higher order lan-
guage model than All (5-gram VS 4-gram).

For rule coverage, around 31% AMR graphs and
84% concepts in the development set are covered by
our induced rules extracted from the training set.

3.3 Analysis and Discussions

We further analyze All and JAMR-gen with an ex-
ample AMR and show the AMR graph, the refer-
ence, and results in Table 2. First of all, both All
and JAMR-gen outputs a reasonable translation con-
taining most of the meaning from the AMR. On the
other hand, All fails to recognize “boy” as the sub-
ject. The reason is that the feature set does not in-
clude edge labels, such as “ARG0” and “ARG1”.
Finally, neither All and JAMR-gen can handle the
situation when a re-entrance node (such as “b/boy”
in example graph of Table 2) need to be translated
twice. This limitation exists for both works.

4 Related Work

Our work is related to prior work on AMR (Ba-
narescu et al., 2013). There has been a list of work
on AMR parsing (Flanigan et al., 2014; Wang et al.,
2015; Peng et al., 2015; Vanderwende et al., 2015;
Pust et al., 2015; Artzi et al., 2015), which predicts
the AMR structures for a given sentence. On the re-
verse direction, Flanigan et al. (2016) and our work
here study sentence generation from a given AMR
graph. Different from Flanigan et al. (2016) who
map a input AMR graph into a tree before lineariza-
tion, we apply synchronous rules consisting of AMR
graph fragments and text to directly transfer a AMR
graph into a sentence. In addition to AMR parsing
and generation, there has also been work using AMR
as a semantic representation in machine translation
(Jones et al., 2012).

Our work also belongs to the task of text genera-
tion (Reiter and Dale, 1997). There has been work
on generating natural language text from a bag of
words (Wan et al., 2009; Zhang and Clark, 2015),
surface syntactic trees (Zhang, 2013; Song et al.,
2014), deep semantic graphs (Bohnet et al., 2010)
and logical forms (White, 2004; White and Rajku-
mar, 2009). We are among the first to investigate
generation from AMR, which is a different type of
semantic representation.

5 Conclusion

In conclusion, we showed that a TSP solver with a
few real-valued features can be useful for AMR-to-
text generation. Our method is based on a set of
graph to string rules, yet significantly better than
a PBMT-based baseline. This shows that our rule
induction algorithm is effective and that the TSP
solver finds better solutions than beam search.

Acknowledgments

We are grateful for the help of Jeffrey Flanigan, Lin
Zhao, and Yifan He. This work was funded by
NSF IIS-1446996, and a Google Faculty Research
Award. Yue Zhang is funded by NSFC61572245
and T2MOE201301 from Singapore Ministry of Ed-
ucation.

2088

References
Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.

Broad-coverage CCG semantic parsing with AMR. In
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP-15), pages 1699–1710.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186.

Bernd Bohnet, Leo Wanner, Simon Mill, and Alicia
Burga. 2010. Broad coverage multilingual deep sen-
tence generation with a stochastic multi-level real-
izer. In Proceedings of the 23rd International Con-
ference on Computational Linguistics (COLING-10),
pages 98–106.

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation
metric for semantic feature structures. In Proceedings
of the 51st Annual Meeting of the Association for Com-
putational Linguistics (ACL-13), pages 748–752.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris
Dyer, and Noah A. Smith. 2014. A discriminative
graph-based parser for the abstract meaning represen-
tation. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (ACL-
14), pages 1426–1436.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and Jaime
Carbonell. 2016. Generation from abstract mean-
ing representation using tree transducers. In Proceed-
ings of the 2016 Meeting of the North American chap-
ter of the Association for Computational Linguistics
(NAACL-16), pages 731–739.

Bevan Jones, Jacob Andreas, Daniel Bauer, Karl Moritz
Hermann, and Kevin Knight. 2012. Semantics-
based machine translation with hyperedge replacement
grammars. In Proceedings of the International Con-
ference on Computational Linguistics (COLING-12),
pages 1359–1376.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of the 2003 Meeting of the North American chap-
ter of the Association for Computational Linguistics
(NAACL-03), pages 48–54.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Conference of the Association for Com-
putational Linguistics (ACL-02), pages 311–318.

Xiaochang Peng, Linfeng Song, and Daniel Gildea.
2015. A synchronous hyperedge replacement gram-
mar based approach for AMR parsing. In Proceedings

of the Nineteenth Conference on Computational Natu-
ral Language Learning (CoNLL-15), pages 731–739.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel
Marcu, and Jonathan May. 2015. Parsing English into
abstract meaning representation using syntax-based
machine translation. In Conference on Empirical
Methods in Natural Language Processing (EMNLP-
15), pages 1143–1154.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57–87.

Linfeng Song, Yue Zhang, Kai Song, and Qun Liu.
2014. Joint morphological generation and syntactic
linearization. In Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI-14), pages 1522–
1528.

Lucy Vanderwende, Arul Menezes, and Chris Quirk.
2015. An AMR parser for English, French, German,
Spanish and Japanese and a new AMR-annotated cor-
pus. In Proceedings of the 2015 Meeting of the North
American chapter of the Association for Computa-
tional Linguistics (NAACL-15), pages 26–30.

Stephen Wan, Mark Dras, Robert Dale, and Cécile Paris.
2009. Improving grammaticality in statistical sentence
generation: Introducing a dependency spanning tree
algorithm with an argument satisfaction model. In
Proceedings of the 12th Conference of the European
Chapter of the ACL (EACL-09), pages 852–860.

Chuan Wang, Nianwen Xue, and Sameer Pradhan. 2015.
A transition-based algorithm for AMR parsing. In
Proceedings of the 2015 Meeting of the North Ameri-
can chapter of the Association for Computational Lin-
guistics (NAACL-15), pages 366–375.

Michael White and Rajakrishnan Rajkumar. 2009. Per-
ceptron reranking for CCG realization. In Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP-09), pages 410–419.

Michael White. 2004. Reining in CCG chart realiza-
tion. In International Conference on Natural Lan-
guage Generation (INLG-04), pages 182–191.

Mikhail Zaslavskiy, Marc Dymetman, and Nicola Can-
cedda. 2009. Phrase-based statistical machine trans-
lation as a traveling salesman problem. In Proceed-
ings of the 47th Annual Meeting of the Association for
Computational Linguistics (ACL-09), pages 333–341.

Yue Zhang and Stephen Clark. 2015. Discriminative
syntax-based word ordering for text generation. Com-
putational Linguistics, 41(3):503–538.

Yue Zhang. 2013. Partial-tree linearization: Generalized
word ordering for text synthesis. In Proceedings of
the International Joint Conference on Artificial Intelli-
gence (IJCAI-13), pages 2232–2238.

2089

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2090–2095,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning to Capitalize with Character-Level Recurrent Neural Networks:
An Empirical Study

Raymond Hendy Susanto† and Hai Leong Chieu‡ and Wei Lu†
†Singapore University of Technology and Design

‡DSO National Laboratories
{raymond susanto,luwei}@sutd.edu.sg

chaileon@dso.org.sg

Abstract

In this paper, we investigate case restoration
for text without case information. Previous
such work operates at the word level. We pro-
pose an approach using character-level recur-
rent neural networks (RNN), which performs
competitively compared to language model-
ing and conditional random fields (CRF) ap-
proaches. We further provide quantitative and
qualitative analysis on how RNN helps im-
prove truecasing.

1 Introduction

Natural language texts (e.g., automatic speech tran-
scripts or social media data) often come in non-
standard forms, and normalization would typically
improve the performance of downstream natural lan-
guage processing (NLP) applications. This paper in-
vestigates a particular sub-task in text normalization:
case restoration or truecasing. Truecasing refers to
the task of restoring case information (uppercase or
lowercase) of characters in a text corpus. Case infor-
mation is important for certain NLP tasks. For ex-
ample, Chieu and Ng (2002) used unlabeled mixed
case text to improve named entity recognition (NER)
on uppercase text.

The task often presents ambiguity: consider the
word “apple” in the sentences “he bought an apple”
and “he works at apple”. While the former refers to
a fruit (hence, it should be in lowercase), the latter
refers to a company name (hence, it should be cap-
italized). Moreover, we often need to recover the
case information for words that are previously un-
seen by the system.

In this paper, we propose the use of character-
level recurrent neural networks for truecasing. Pre-
vious approaches for truecasing are based on word
level approaches which assign to each word one
of the following labels: all lowercase, all upper-
case, initial capital, and mixed case. For mixed
case words, an additional effort has to be made
to decipher exactly how the case is mixed (e.g.,
MacKenzie). In our approach, we propose a gen-
erative, character-based recurrent neural network
(RNN) model, allowing us to predict exactly how
cases are mixed in such words.

Our main contributions are: (i) we show that
character-level approaches are viable compared to
word-level approaches, (ii) we show that character-
level RNN has a competitive performance compared
to character-level CRF, and (iii) we provide our
quantitative and qualitative analysis on how RNN
helps improve truecasing.

2 Related Work

Word-based truecasing The most widely used
approach works at the word level. The simplest ap-
proach converts each word to its most frequently
seen form in the training data. One popular ap-
proach uses HMM-based tagging with an N-gram
language model, such as in (Lita et al., 2003; Nebhi
et al., 2015). Others used a discriminative tagger,
such as MEMM (Chelba and Acero, 2006) or CRF
(Wang et al., 2006). Another approach uses statisti-
cal machine translation to translate uncased text into
a cased one. Interestingly, no previous work oper-
ated at the character level. Nebhi et al. (2015) in-
vestigated truecasing in tweets, where truecased cor-

2090

pora are less available.

Recurrent neural networks Recent years have
shown a resurgence of interest in RNN, particularly
variants with long short-term memory (Hochreiter
and Schmidhuber, 1997) or gated recurrent units
(Cho et al., 2014). RNN has shown an impressive
performance in various NLP tasks, such as machine
translation (Cho et al., 2014; Luong et al., 2015),
language modeling (Mikolov et al., 2010; Kim et
al., 2016), and constituency parsing (Vinyals et al.,
2015). Nonetheless, understanding the mechanism
behind the successful applications of RNN is rarely
studied. In this work, we take a closer look at our
trained model to interpret its internal mechanism.

3 The Truecasing Systems

In this section, we describe the truecasing systems
that we develop for our empirical study.

3.1 Word-Level Approach

A word-level approach truecases one word at a time.
The first system is a tagger based on HMM (Stol-
cke, 2002) that translates an uncased sequence of
words to a corresponding cased sequence. An N-
gram language model trained on a cased corpus is
used for scoring candidate sequences. For decoding,
the Viterbi algorithm (Rabiner, 1989) computes the
highest scoring sequence.

The second approach is a discriminative classifier
based on linear chain CRF (Lafferty et al., 2001).
In this approach, truecasing is treated as a sequence
labeling task, labelling each word with one of the
following labels: all lowercase, all uppercase, initial
capital, and mixed case. For our experiments, we
used the truecaser in Stanford’s NLP pipeline (Man-
ning et al., 2014). Their model includes a rich set
of features (Finkel et al., 2005), such as surrounding
words, character N-grams, word shape, etc.

Dealing with mixed case Both approaches re-
quire a separate treatment for mixed case words.
In particular, we need a gazetteer that maps each
word to its mixed case form – either manually cre-
ated or statistically collected from training data. The
character-level approach is motivated by this: In-
stead of treating them as a special case, we train our
model to capitalize a word character by character.

3.2 Character-Level Approach

A character-level approach converts each character
to either uppercase or lowercase. In this approach,
mixed case forms are naturally taken care of, and
moreover, such models would generalize better to
unseen words. Our third system is a linear chain
CRF that makes character-level predictions. Simi-
lar to the word-based CRF, it includes surrounding
words and character N-grams as features.

Finally, we propose a character-level approach us-
ing an RNN language model. RNN is particularly
useful for modeling sequential data. At each time
step t, it takes an input vector xt and previous hid-
den state ht−1, and produces the next hidden state
ht. Different recurrence formulations lead to differ-
ent RNN models, which we will describe below.

Long short-term memory (LSTM) is an archi-
tecture proposed by Hochreiter and Schmidhuber
(1997). It augments an RNN with a memory cell
vector ct in order to address learning long range
dependencies. The content of the memory cell is
updated additively, mitigating the vanishing gradi-
ent problem in vanilla RNNs (Bengio et al., 1994).
Read, write, and reset operations to the memory cell
are controlled by input gate i, output gate o, and for-
get gate f . The hidden state is computed as:

it = σ(Wiht−1 + Uixt) (1)
ot = σ(Woht−1 + Uoxt) (2)
ft = σ(Wfht−1 + Ufxt) (3)
gt = tanh(Wght−1 + Ugxt) (4)
ct = ft � ct−1 + it � gt (5)
ht = ot � tanh(ct) (6)

where σ and tanh are element-wise sigmoid and hy-
perbolic tangent functions, and Wj and Uj are pa-
rameters of the LSTM for j ∈ {i, o, f, g}.

Gated recurrent unit (GRU) is a gating mech-
anism in RNN that was introduced by Cho et al.
(2014). They proposed a hidden state computation
with reset and update gates, resulting in a simpler
LSTM variant:

rt = σ(Wrht−1 + Urxt) (7)
zt = σ(Wzht−1 + Uzxt) (8)

h̃t = tanh(Wh(rt � ht−1) + Uhxt) (9)

ht = (1− zt)� ht−1 + zt � h̃t (10)

2091

EN-Wikipedia EN-WSJ EN-Reuters DE-ECI
Acc. P R F1 Acc. P R F1 Acc. P R F1 Acc. P R F1

Word-based Approach
LM (N = 3) 94.94 89.34 84.61 86.91 95.59 91.56 78.79 84.70 94.57 93.49 79.43 85.89 95.67 97.84 87.74 92.51
LM (N = 5) 94.93 89.42 84.41 86.84 95.62 91.72 78.79 84.77 94.66 93.92 79.47 86.09 95.68 97.91 87.70 92.53
CRF-WORD 96.60 94.96 87.16 90.89 97.64 93.12 90.41 91.75 96.58 93.91 87.19 90.42 96.09 98.41 88.73 93.32
Chelba and Acero (2006) n/a 97.10 - - - n/a n/a

Character-based Approach
CRF-CHAR 96.99 94.60 89.27 91.86 97.00 94.17 84.46 89.05 97.06 94.63 89.12 91.80 98.26 96.95 96.59 96.77
LSTM-SMALL 96.95 93.05 90.59 91.80 97.83 93.99 90.92 92.43 97.37 93.08 92.63 92.86 98.70 97.52 97.39 97.46
LSTM-LARGE 97.41 93.72 92.67 93.19 97.72 93.41 90.56 91.96 97.76 94.08 93.50 93.79 99.00 98.04 97.98 98.01
GRU-SMALL 96.46 92.10 89.10 90.58 97.36 92.28 88.60 90.40 97.01 92.85 90.84 91.83 98.51 97.15 96.96 97.06
GRU-LARGE 96.95 92.75 90.93 91.83 97.27 90.86 90.20 90.52 97.12 92.02 92.07 92.05 98.35 96.86 96.79 96.82

Table 2: Truecasing performance in terms of precision (P), recall (R), and F1. All improvements of the best performing character-based systems
(bold) over the best performing word-based systems (underlined) are statistically significant using sign test (p < 0.01). All improvements of the
best performing RNN systems (italicized) over CRF-CHAR are statistically significant using sign test (p < 0.01).

At each time step, the conditional probability dis-
tribution over next characters is computed by linear
projection of ht followed by a softmax:

P (xt = k|x1:t−1) =
exp(wkht)∑|V |
j=1 exp(wjht)

(11)

where wk is the k-th row vector of a weight matrix
W . The probability of a sequence of characters x1:T
is defined as:

P (x1:T) =

T∏

t=1

P (xt|x1:t−1) (12)

Similar to the N-gram language modeling approach
we described previously, we need to maximize
Equation 12 in order to decode the most probable
cased sequence. Instead of Viterbi decoding, we ap-
proximate this using a beam search.

4 Experiments and Results

4.1 Datasets and Tools
Our approach is evaluated on English and German
datasets. For English, we use a Wikipedia corpus
from (Coster and Kauchak, 2011), WSJ corpus (Paul
and Baker, 1992), and the Reuters corpus from the
CoNLL-2003 shared task on named entity recogni-
tion (Tjong Kim Sang and De Meulder, 2003). For
German, we use the ECI Multilingual Text Corpus
from the same shared task. Each corpus is tok-
enized.1 The input test data is lowercased. Table 1
shows the statistics of each corpus split into training,
development, and test sets.

We use SRILM (Stolcke, 2002) for N-gram lan-
guage model training (N ∈ {3, 5}) and HMM de-
coding. The word-based CRF models are trained us-
ing the CRF implementation in Stanford’s CoreNLP

1News headlines, which are all in uppercase, are discarded.

Corpus Split #words #chars

EN-Wiki
train 2.9M 16.1M
dev 294K 1.6M
test 32K 176K

EN-WSJ
train 1.9M 10.5M
dev 101K 555K
test 9K 48K

EN-Reuters
train 3.1M 16.8M
dev 49K 264K
test 44K 231K

DE-ECI
train 2.8M 18M
dev 51K 329K
test 52K 327K

Table 1: Statistics of the data.

3.6.0 (Finkel et al., 2005). We use a recommended
configuration for training the truecaser.We use CRF-
Suite version 0.12 (Okazaki, 2007) to train the
character-based CRF model. Our feature set in-
cludes character N-grams (N ∈ {1, 2, 3}) and word
N-grams (N ∈ {1, 2}) surrounding the current char-
acter. We tune the `2 regularization parameter λ us-
ing a grid search where λ ∈ {0.01, 0.1, 1, 10}.

We use an open-source character RNN imple-
mentation.2 We train a SMALL model with 2 lay-
ers and 300 hidden nodes, and a LARGE model
with 3 layers and 700 hidden nodes. We also vary
the hidden unit type (LSTM/GRU). The network
is trained using truncated backpropagation for 50
time steps. We use a mini-batch stochastic gradient
descent with batch size 100 and RMSprop update
(Tieleman and Hinton, 2012). We use dropout reg-
ularization (Srivastava et al., 2014) with 0.25 prob-
ability. We choose the model with the smallest val-
idation loss after 30 epochs. For decoding, we set
beam size to 10. The experimental settings are re-
ported in more depth in the supplementary materi-
als. Our system and code are publicly available at
http://statnlp.org/research/ta/.

2https://github.com/karpathy/char-rnn

2092

(a) Samples from EN-Wiki

(b) Samples from DE-ECI

Figure 1: Cells that are sensitive to lowercased and capitalized words. Text color represents activations (−1 ≤ tanh(ct) ≤ 1): positive is blue,
negative is red. Darker color corresponds to greater magnitude.

4.2 Results

Table 2 shows the experiment results in terms of pre-
cision, recall, and F1. Most previous work did not
evaluate their approaches on the same dataset. We
compare our work to (Chelba and Acero, 2006) us-
ing the same WSJ sections for training and evalua-
tion on 2M word training data. Chelba and Acero
only reported error rate, and all our RNN and CRF
approaches outperform their results in terms of error
rate.

First, the word-based CRF approach gives up
to 8% relative F1 increase over the LM approach.
Other than WSJ, moving to character level further
improves CRF by 1.1-3.7%, most notably on the
German dataset. Long compound nouns are com-
mon in the German language, which generates many
out-of-vocabulary words. Thus, we hypothesize that
character-based approach improves generalization.
Finally, the best F1 score for each dataset is achieved
by the RNN variants: 93.19% on EN-Wiki, 92.43%
on EN-WSJ, 93.79% on EN-Reuters, and 98.01% on
DE-ECI.

We highlight that different features are used in
CRF-WORD and CRF-CHAR. CRF-CHAR only
includes simple features, namely character and word
N-grams and sentence boundary indicators. In con-
trast, CRF-WORD contains a richer feature set that
is predefined in Stanford’s truecaser. For instance,
it includes word shape, in addition to neighboring
words and character N-grams. It also includes more
feature combinations, such as the concatenation of
the word shape, current label, and previous label.
Nonetheless, CRF-CHAR generally performs better
than CRF-WORD. Potentially, CRF-CHAR can be
improved further by using larger N-grams. The de-
cision to use simple features is for optimizing the
training speed. Consequently, we are able to dedi-
cate more time for tuning the regularization weight.

Training a larger RNN model generally improves
performance, but it is not always the case due to
possible overfitting. LSTM seems to work better
than GRU in this task. The GRU models have 25%
less parameters. In terms of training time, it took
12 hours to train the largest RNN model on a sin-
gle Titan X GPU. For comparison, the longest train-
ing time for a single CRF-CHAR model is 16 hours.
Training LM and CRF-WORD is much faster: 30
seconds and 5.5 hours, respectively, so there is a
speed-accuracy trade-off.

5 Analysis

5.1 Visualizing LSTM Cells
An interesting component of LSTM is its memory
cells, which is supposed to store long range depen-
dency information. Many of these memory cells are
not human-interpretable, but after introspecting our
trained model, we find a few memory cells that are
sensitive to case information. In Figure 1, we plot
the memory cell activations at each time step (i.e.,
tanh(ct)). We can see that these cells activate differ-
ently depending on the case information of a word
(towards -1 for uppercase and +1 for lowercase).

5.2 Case Category and OOV Performance

Corpus Lower Cap. Upper Mixed OOV
EN-Wiki 79.91 18.67 0.91 0.51 2.40
EN-WSJ 84.28 13.06 2.63 0.03 3.11
EN-Reuters 78.36 19.80 1.53 0.31 5.37
DE-ECI 68.62 29.15 1.02 1.21 4.01

Table 3: Percentage distribution of the case categories and OOV words

In this section, we analyze the system perfor-
mance on each case category. First, we report the
percentage distribution of the case categories in each
test set in Table 3. For both languages, the most fre-
quent case category is lowercase, followed by capi-
talization, which generally applies to the first word

2093

EN-Wiki EN-WSJ EN-Reuters DE-ECI

0.2

0.4

0.6

0.8
.66 .67

.53 .52

.18

.67

.16

.04

.74
.67 .69

.87
.82

.67

.8

.93

ac
cu

ra
cy

(a) Mixed case
EN-Wiki EN-WSJ EN-Reuters DE-ECI

0.8

0.9

1

.85

.77

.8

.89.89
.9

.89

.92
.9

.83

.9

.97

.93
.91

.95

.99

ac
cu

ra
cy

(b) Capitalized

EN-Wiki EN-WSJ EN-Reuters DE-ECI

0.8

0.85

0.9
.88

.9

.77

.88

.91
.92

.85

.92

.9 .9

.77

.88
.87

.89

.82

.89

ac
cu

ra
cy

(c) Uppercase

LM CRF-Word CRF-Char RNN

EN-Wiki EN-WSJ EN-Reuters DE-ECI

0.2

0.4

0.6

0.8

.33 .32

.39

.21

.55

.76

.68

.37

.71 .73

.81 .82.82 .84
.9 .91

ac
cu

ra
cy

(d) OOV

Figure 2: Accuracy on mixed case (a), capitalized (b), uppercase (c), and OOV words (d).

in the sentence and proper nouns. The uppercase
form, which is often found in abbreviations, occurs
more frequently than mixed case for English, but the
other way around for German.

Figure 2 (a) shows system accuracy on mixed
case words. We choose the best performing LM
and RNN for each dataset. Character-based ap-
proaches have a better performance on mixed case
words than word-based approaches, and RNN gen-
erally performs better than CRF. In CRF-WORD,
surface forms are generated after label prediction.
This is more rigid compared to LM, where the sur-
face forms are considered during decoding.

In addition, we report system accuracy on capi-
talized words (first letter uppercase) and uppercase
words in Figure 2 (b) and (c), respectively. RNN
performs the best on capitalized words. On the other
hand, CRF-WORD performs the best on uppercase.
We believe this is related to the rare occurrences of
uppercase words during training, as shown in Ta-
ble 3. Although mixed case occurs more rarely in
general, there are important clues, such as charac-
ter prefix. CRF-CHAR and RNN have comparable
performance on uppercase. For instance, there are
only 2 uppercase words in WSJ that were predicted

differently between CRF-CHAR and RNN. All sys-
tems perform equally well (∼99% accuracy) on low-
ercase. Overall, RNN has the best performance.

Last, we present results on out-of-vocabulary
(OOV) words with respect to the training set. The
statistics of OOV words is given in Table 3. The sys-
tem performance across datasets is reported in Fig-
ure 2 (d). We observe that RNN consistently per-
forms better than the other systems, which shows
that it generalizes better to unseen words.

6 Conclusion

In this work, we conduct an empirical investiga-
tion of truecasing approaches. We have shown that
character-level approaches work well for truecasing,
and that RNN performs competitively compared to
language modeling and CRF. Future work includes
applications in informal texts, such as tweets and
short messages (Muis and Lu, 2016).

Acknowledgments

We would also like to thank the anonymous review-
ers for their helpful comments. This work is sup-
ported by MOE Tier 1 grant SUTDT12015008.

2094

References
Yoshua Bengio, Patrice Simard, and Paolo Frasconi.

1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE Transactions on Neural
Networks, 5(2):157–166.

Ciprian Chelba and Alex Acero. 2006. Adaptation of
maximum entropy capitalizer: Little data can help a
lot. Computer Speech & Language, 20(4):382–399.

Hai Leong Chieu and Hwee Tou Ng. 2002. Teaching a
weaker classifier: Named entity recognition on upper
case text. In Proceedings of ACL, pages 481–488.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using RNN encoder–decoder for statistical ma-
chine translation. In Proceedings of EMNLP, pages
1724–1734.

William Coster and David Kauchak. 2011. Simple En-
glish Wikipedia: A new text simplification task. In
Proceedings of ACL-HLT, pages 665–669.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by Gibbs sam-
pling. In Proceedings of ACL, pages 363–370.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2016.
Visualizing and understanding recurrent networks. In
Proceedings of ICLR.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Proceedings of AAAI.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In Proceedings of ICML, pages 282–289.

Lucian Vlad Lita, Abe Ittycheriah, Salim Roukos, and
Nanda Kambhatla. 2003. tRuEcasIng. In Proceed-
ings of ACL, pages 152–159.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings of
EMNLP, pages 1412–1421.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of ACL Sys-
tem Demonstrations, pages 55–60.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. In Proceedings of
INTERSPEECH, pages 1045–1048.

Aldrian Obaja Muis and Wei Lu. 2016. Weak semi-
Markov CRFs for noun phrase chunking in informal
text. In Proceedings of NAACL.

Kamel Nebhi, Kalina Bontcheva, and Genevieve Gorrell.
2015. Restoring capitalization in #tweets. In Proceed-
ings of WWW Companion, pages 1111–1115.

Naoaki Okazaki. 2007. CRFsuite: A fast implementa-
tion of conditional random fields (CRFs).

Douglas B Paul and Janet M Baker. 1992. The design
for the Wall Street Journal-based CSR corpus. In Pro-
ceedings of the Workshop on Speech and Natural Lan-
guage, pages 357–362.

Lawrence R Rabiner. 1989. A tutorial on hidden Markov
models and selected applications in speech recogni-
tion. Proceedings of the IEEE, 77(2):257–286.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929–1958.

Andreas Stolcke. 2002. SRILM-an extensible language
modeling toolkit. In Proceedings of ICSLP, pages
901–904.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running aver-
age of its recent magnitude. COURSERA: Neural Net-
works for Machine Learning, 4(2).

Erik F Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In Proceedings
of CoNLL, pages 142–147.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Proceedings of NIPS,
pages 2755–2763.

Wei Wang, Kevin Knight, and Daniel Marcu. 2006.
Capitalizing machine translation. In Proceedings of
NAACL-HLT, pages 1–8.

2095

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2096–2102,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

The Effects of the Content of FOMC Communications on US Treasury Rates

Christopher Rohlfs1 and Sunandan Chakraborty2 and Lakshminarayanan Subramanian2

1Morgan Stanley
2New York University

New York, USA
Christopher.Rohlfs@morganstanley.com, Sunandan@cims.nyu.edu, lakshmi@cims.nyu.edu

Abstract

This study measures the effects of Federal
Open Market Committee text content on the
direction of short- and medium-term interest
rate movements. Because the words relevant
to short- and medium-term interest rates differ,
we apply a supervised approach to learn dis-
tinct sets of topics for each dependent variable
being examined. We generate predictions with
and without controlling for factors relevant to
interest rate movements, and our prediction
results average across multiple training-test
splits. Using data from 1999-2016, we achieve
93% and 64% accuracy in predicting Target
and Effective Federal Funds Rate movements
and 38%-40% accuracy in predicting longer
term Treasury Rate movements. We obtain
lower but comparable accuracies after control-
ling for other macroeconomic and market fac-
tors.

1 Introduction

This study uses the verbal content of Federal Open
Market Committee (FOMC) public communications
to predict the directions of interest rate movements
on the days those communications are released. The
FOMC, who determines government policies rel-
evant to interest rates, meets roughly eight times
a year and releases a statement after each meet-
ing. The FOMC is known to be an important
mover of markets, and economic research has found
that equity and interest rate markets tend to move
when FOMC communications are released (Farka
and Fleissig, 2012; Gürkaynak et al., 2005; Mueller,
2015; Rosa, 2011) that the policy actions alone do

not explain these responses (and thus the content
of the text must be responsible) (Gürkaynak et al.,
2005), and that the directions of market movements
coincide with a human-coded measure of the sen-
timent expressed in the texts (Rosa, 2011). Writ-
ers in the finance industry and in the popular press
have also examined word clouds of FOMC min-
utes (Cofnas, 2010; Durden, 2011) and have dis-
cussed the market implications of the total number
of words included in FOMC minutes (Fitz-gerald,
2014; Kennedy, 2014; Wynne, 2013).

A growing body of research applies NLP meth-
ods to understand the market effects from the con-
tents of these texts. Researchers have applied La-
tent Semantic Analysis (LSA) to describe the key
topics covered in FOMC minutes, obtaining insights
into the FOMC’s deliberation process (Hansen et al.,
2015; Fligstein et al., 2014; Schonhardt, 2013). Ad-
ditionally, researchers have used NLP-derived mea-
sures of the content of FOMC minutes to predict
equity and interest rate volatilities; (Boukus and
Rosenberg, 2006) use LSA-defined topics in a re-
gression context, and (Zadeh and Zollman, 2009)
apply a dependency-based measure of text content to
an expert-classified set of financially relevant words
and then use both regression and SVM to predict
volatility. Papers have found temporary effects of
the sentiments from company-specific news articles
and message board postings on stock prices and
volatility, company earnings, and trading volumes,
using dictionary-based sentiment measures (Davis et
al., 2012; Tetlock, 2007; Tetlock et al., 2007; Tet-
lock, 2011) as well as sentiment measures that are
trained on a human-classified subsample (Antweiler

2096

and Frank, 2004, 2006; Das and Chen, 2007).1 Stud-
ies have found temporary effects even when infor-
mation is “stale” (Tetlock, 2011) and also that short-
sales precede negative news (Fox et al., 2009/2010).
Researchers also find that the readability of corpo-
rate filings is positively associated with earnings and
the precision of analysts’ forecasts about the com-
pany (Li, 2008; Lehavy et al., 2011).

The current study builds upon this literature by
examining a somewhat different question than pre-
vious researchers do and by applying a different set
of techniques that are particularly well-suited for
measuring the market effects of texts. Rather than
examine the texts’ effects on volatility, which in-
creases in response to both positive and negative
sentiments, we predict the direction in which interest
rates move, which is the focus of market participants
as well as the FOMC texts themselves.2 The ques-
tion we ask is also somewhat different than that ex-
amined in the literature because we analyze the rel-
atively short FOMC statements that are released im-
mediately following the meetings—and contain the
key market-moving content (Gürkaynak et al., 2005;
Mueller, 2015)—rather than on the lengthier min-
utes that have more text to analyze but are only re-
leased after the key information from the statements
has been available for three weeks.

In addition to making contributions specific to our
application, this study highlights methods that are
particularly useful for measuring the market effects
of text content. FOMC communications are known
to provide distinct information about short- versus
medium- or long-term policies (Gürkaynak et al.,
2005). We consequently use MedLDA (Zhu et al,
2009), a supervised topic model, to learn separately
the sets of words that are most predictive of move-
ments in short- and medium-term interest rates3

Through this supervised topic model, we generate

1While not examining market data, (Chua et al., 2009)
also examines the problem of classifying sentiment in message
board postings.

2A related study has applied LDA to measure the impacts
on returns and volatility of communications from the Bank of
Canada (Hendry and Madeley, 2010).

3Other classification methods that we attempted but found to
be less effective include regression of rate movements on word
count, logit estimation on the frequencies of the most common
words, and k-nearest neighbor estimation using a word2vec
similarity measure (Mikolov, 2013).

topics, based upon context (which words appear to-
gether) as well as co-movement with the outcome
variables being studied. Hence, the varies depending
upon which dependent variable is being considered.
Second, we address possible bias from one impor-
tant set of omitted variables—releases of macroeco-
nomic data, as discussed by (Rosa, 2011)—by esti-
mating specifications in which we control for those
factors separately and predict whether interest rates
moved more or less than would be expected based
upon the latest data on the macroeconomic environ-
ment. By examining an immediate market response
to the publication of text and controlling for poten-
tial confounding factors, this study demonstrates one
way in which NLP approaches, in addition to their
value in classifying text content, can be applied to
estimate statements’ causal effects. We control for
the effects of macroeconomic data and time-specific
factors like day-of-week effects and time trends us-
ing only observations from non-FOMC dates, so that
we do not lose degrees of freedom in our estima-
tion. Third, unlike Boukus and Rosenberg (2006)
and Hendry and Madeley (2010) but similarly to
Zadeh and Zollman (2009), we split the sample into
training and test sets in order to limit overfitting in
our predicted values. Zadeh and Zollman (2009)
use data from 1967-2000 as a training set, and then
they test their model on data from 2001-2008. Given
the importance of context in predicting interest rate
movements, we instead restrict our sample to ob-
servations from meetings from May 1999 to May
20164. Because autocorrelation in our dependent
variables is relatively limited, we treat the observa-
tions as independent and, among observations in our
sample, average our test performance across multi-
ple training-test splits.

2 Market Effects of Text Content

2.1 Overview of Text Content

FOMC statements contain information about many
aspects of the economy, including interest rates, the
money supply, inflation, unemployment, and eco-
nomic growth. These communications are highly
repetitive, often containing nearly identical sen-
tences and sentence structures from previous meet-

4May 1999 was the date of the last major redesign of the
FOMC statements

2097

ings. Slight changes in the wordings are known to
have major effects on markets (Gürkaynak et al.,
2005).
Pre-processing of text: In order to convert the text
into a format that can be easily processed, we per-
form several cleaning operations to the texts. Non-
alphabetic characters are removed, and the texts are
converted to lower case. Each document is separated
into a bag of words, and common words (e.g., mr
and federal) and stop words are deleted using the
stopwords list from nltk.corpus in Python. Words
are stemmed using the Porter stemming algorithm
(stem from stemming.porter2 in Python), and one-
letter words are dropped.

2.2 MedLDA
LDA (Latent Dirichlet Allocation) (Blei et al.,
2003) is an unsupervised model, whereas super-
vised topic model (sLDA) (Blei and McAuliffe,
2007) introduces a response variable to LDA for
each document. Max-Entropy Discrimination LDA
(MedLDA) (Zhu et al, 2009) is max-margin variant
of the supervised topic models. MedLDA can be
built for both regression and classification prediction
tasks. In this study we employed the model built for
classification task. For classification, the response
variables y are discrete having values {1, 0,−1} de-
noting the movements of the interest rates. Hence,
we consider the multi-class classification version of
the MedLDA. It is defined based on a Support Vector
Machine (SVM), which integrates the max-margin
principle with an underlying LDA model for top-
ics. Formally, the probabiltiies associated with max-
entropy discrimination topic models (MedTM) can
be generally defined as:

mindL(q(H)) +KL(q(Γ)||pp(Γ)) + U(ξ) (1)

where H are hidden variables (e.g., (θ, z) in LDA);
are the parameters of the model pertaining to the pre-
diction task (e.g., η in sLDA); Γ are the parameters
of the underlying topic model (e.g., the Dirichlet pa-
rameter α); and L is a variational upper bound of
the negative log likelihood associated with the un-
derlying topic model. U is a convex function over
slack variables. For the general MedTM model, we
can develop a similar variational EM-algorithm as
for the MedLDA.

We apply the MedLDA model on the FOMC
documents and considering the interest rates as the
response variables (y) to compute topics that are
closely related to variations in the interest rates.
Eventually these topics are used to classify changes
in the rates using the max-margin classifier embed-
ded in the MedLDA model.

2.3 Controlling for Macroeconomic
Information

In addition to these text-based data, we supply our
classifier with “control” variables describing the
latest releases of macroeconomic variables. The
macroeconomic data considered in this analysis are
three of the most important measures of US eco-
nomic health: the Consumer Price Index (CPI) used
to measure inflation, Unemployment, and real an-
nualized growth in the US Gross Domestic Product
(GDP). The values for all three of these statistics are
publicly released on a monthly basis. The CPI and
Unemployment numbers are measured on a monthly
basis and are typically not updated from their ini-
tially released values. The CPI data are typically re-
leased between 15 and 20 days after the end of the
month, and the Unemployment data are typically re-
leased 6 to 10 days after the end of the month. GDP
is measured on a quarterly basis, and three estimates
are provided: “advance,” “preliminary” or “second,”
and “final” or “third,” which are released about one,
two, and three months after the end of the quarter, re-
spectively. The final GDP numbers are occasionally
revised in later releases. Our release date data and
some of the macroeconomic statistics were obtained
from direct requests to the U.S. Bureau of Economic
Analysis (B. of Econ. An. (a), 2015; B. of Econ.
An. (b), 2015) and the U.S. Bureau of Labor Stats
(B. of Lab. Stat. (a), 2015; B. of Lab. Stat. (d),
2009). Additional data on the GDP and unemploy-
ment numbers released were obtained from public
sources (Econ. Anal. (c), 1989; Fed. Res. (a), 15).

If macroeconomic information is released on the
same day as an FOMC communication, it is possi-
ble that this release could influence both the content
of the FOMC statement as well as the interest rate
movements that day. To avoid that possibility, we
implement a modified MedLDA approach using a
dependent variable that is “purged” of these poten-
tially confounding influences. In some of our speci-

2098

Table 1: Accuracy of Medlda Classifier after purging out of control for statements between 1999 and May, 2016 [K (topics) = 20]

Outcome variable MedLDA Baseline (Random Chance)5

None Linear Interactions None Linear Interactions
Target Fed Funds Rate 0.9321 0.9160 0.8954 0.6849 0.6849 0.6849
Effective Fed Funds Rate 0.6421 0.4479 0.5112 0.4589 0.4658 0.4658
Median Treasury Rate 0.4209 0.3803 0.4012 0.4589 0.4247 0.4247
Average Treasury Rate 0.3803 0.4611 0.3924 0.4726 0.4041 0.4041

fications, we first regress the interest rate movements
of interest on these macroeconomic indicators. Our
main set of controls includes the latest values for the
most recent two values of the unemployment rate,
GDP growth rate, and CPI inflation rate and their
changes, a daily time trend, and year, month, and
day-of-the-week dummies. Some specifications use
this set, and others add the full set of two-way inter-
actions across these different variables. For both the
main and the interacted set, we regress the change
in the rate of interest on the full set of controls for
the full set of non-FOMC dates from May 1999
through May 2016. Hence, we estimate the rela-
tionship between interest rate movements and the re-
leases of macroeconomic data using dates in which
FOMC statements or minutes were not released. Us-
ing the coefficients from these regressions, we gen-
erate residuals of interest rate movements for the
FOMC dates and then create indicators for whether
the residual was positive or negative for that interest
rate movement on that FOMC date.

3 Empirical Results

We randomly split the data, containing 146 data
points (FOMC statements and corresponding move-
ments in the interest rates from May 1999 through
May 2016) into a a 80-20% train-test set split to
compute the accuracy of the model to predict the
movement. For each experiment, we varied the
number of topics (K) to see which value of K is
giving the best accuracy. In most cases, the best ac-
curacy is given by K = 20. The results presented in
Table 1 shows the average accuracies of predicting
the movements of the interest rates after purging the
outcome variables out of control. The presented ac-
curacies are the results of 20 fold validation. When
no controls are used, our accuracy is 93% and 64%

for the Target and Effective Federal Funds Rates
(both better than random chance) and 42% and 38%
for the Median and Average Treasury Rates6 The
specifications with control variables have similar but
somewhat lower accuracy rates. Hence, our text-
mining approach is comparable in effectiveness at
measuring whether interest rates moved more or less
than expected, after controlling for the economic en-
vironment, than it is at predicting the raw directions
of movement. MedLDA model is compared against
a simple baseline. The baseline is the accuracy, if the
interest rate movements are randomly guessed from
the prior distribution of each of the interest rates un-
der the different controls. For the Target and Ef-
fective rates, the MedLDA model outperforms the
baseline with a great margin and for the Median and
Average rate, the performance is slightly poorer.

The high target rate prediction accuracy suggests
that the MedLDA model can effectively associate
the text contents of the meetings with the move-
ments in the rate, even though the numeric values
are dropped from the text. Similar arguments can be
applied to the effective rate prediction. On the other
hand, treasury rates are not directly connected to the
text of the FOMC statements, so the factors influenc-
ing these rates are not present or mentioned in the
text. Thus, to have a better prediction accuracies for
these variables information from other sources are
necessary which is beyond the scope of this paper.
However, the present FOMC meeting might give an
indication to future FOMC plans and thus, to the

5Our random chance baseline is a classifier that always se-
lects the most likely of the three outcomes (increase, decrease,
or no change) based upon their frequencies in the full dataset.

6Median Treasury Rate is the median of the -1, 0, and 1 clas-
sifications among the movements of the 3m, 1y, 3y, 5y, and 10y
Treasury Rates. Average Treasury Rate is the -1/0/1 classifica-
tion of the average of those rates.

2099

treasury rates. Hence, the prediction accuracies are
not much worse than the baseline.

4 Conclusion

This study measures the effects of text-based infor-
mation released by the FOMC on daily interest rate
movements. We used the medLDA model on a set
of 146 docs and obtain accuracies of 93% and 64%
in predicting the Federal Funds Target Rate and the
Effective Rate.

References

Werner Antweiler and Murray Z. Frank. Is all that talk
just noise? The information content of internet stock
message boards. J Fin 59(3). Jun 2004.

Werner Antweiler and Murray Z. Frank. Do US stock
markets typically overreact to corporate news sto-
ries? Unpublished manuscript. Aug 2006. Available
at SSRN: http://ssrn.com/abstract=878091

David M. Blei and Jon D. McAuliffe. Supervised topic
models. In NIPS, 2007.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. La-
tent dirichlet allocation. J. Mach. Learn. Res., 3:993–
1022, Mar. 2003.

Bloomberg. Daily historical time-series of Federal Funds
Target Rate and Futures prices for Federal Funds Rate
and US Treasuries. March 25, 2016.

Ellyn Boukus and Joshua V. Rosenberg. The in-
formation content of FOMC minutes. 2006
http://ssrn.com/abstract=922312

Christopher C. Chua, Maria Milosavljevic, and James R.
Curran. A sentiment detection engine for internet stock
message boards. Proceedings of the Australasian Lan-
guage Technology Association Workshop. Dec 2009.

Abe Cofnas. Sentiment indicators: renko, price break,
kagi, point & figure —what they are and how to use
them to trade. Hoboken, NJ: Wiley. 2010.

Deborah J. Danker and Matthew M. Luecke. Background
on FOMC meeting minutes. Federal Reserve Bulletin
91(2). Spr 2005.

Sanjiv R. Das and Mike Y. Chen. Yahoo! for Amazon:
sentiment extraction from small talk on the web. Man-
agement Science 53(9). Sep 2007.

Angela K. Davis, Jeremy M. Piger, and Lisa M. Sedor.
Beyond the numbers: measuring the information con-
tent of earnings press release language. Contemporary
Accounting Research, 29(3). Fall 2012.

Tyler Durden. FOMC minutes word cloud and
key word count. Zero Hedge. Aug 30, 2011.
http://www.zerohedge.com/news/fomc-minutes-
word-cloud-and-key-word
-count

Mira Farka and Adrian R. Fleissig. The effect of FOMC
statements on asset prices. Intl Rev Appl Econ 26(3).
May 2012.

Keith Fitz-gerald. The huge economic indicator every-
one misses. Money Morning. Mar 25, 2014. Avail-
able at: http://moneymorning.com/2014/03/25/huge-
economic-indicator-everyone-misses/

Neil Fligstein, Jonah Stuart Brundage, and Michael
Schultz. “Why the Federal Reserve failed to see the fi-
nancial crisis of 2008: the role of ‘macroeconomics’ as
a sense making and cultural frame.” University of Cal-
ifornia, Berkeley Institute for Research on Labor and
Employment (IRLE) Working Paper 111-14. Septem-
ber 2014.

Merritt B. Fox, Lawrence R. Glosten, and Paul C. Tet-
lock. Short selling and the news: a preliminary report
on an empirical study. NY Law Sch Rev 54. 2009/2010.

Refet S. Gürkaynak, Brian Sack, and Eric T. Swanson.
Do actions speak louder than words? The response of
asset prices to monetary policy actions and statements.
Intl J Central Banking 1(1). May 2005.

Stephen Hansen, Michael McMahon, and Andrea Prat.
Transparency and deliberation within the FOMC:
a computational linguistics approach. Unpublished
manuscript. Feb 2015.

Scott Hendry and Alison Madeley. Text mining and the
information content of Bank of Canada communica-
tions. Bank of Canada Working Paper 2010-31. Nov
2010.

Simon Kennedy. Word inflation accelerating at Fed justi-
fies investor confusion. Bloomberg. Sep 18, 2014.

Reuven Lehavy, Feng Li, and Kenneth Merkley. The ef-
fect of annual report readability on analyst following
and the properties of their earnings forecasts. Account-
ing Rev 86(3). May 2011.

Feng Li. Annual report readability, current earnings, and
earnings persistence. J Accounting and Econ 45(2-3).
Aug 2008.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. “Distributed representations of words and
phrases and their compositionality.” Advances in Neu-
ral Information Processing Systems, 2013, pp. 3111-9.

Philippe Mueller, Alireza Tahbaz-Salehi, and Andrea
Vedolin. “Exchange rates and monetary policy uncer-
tainty.” Unpublished manuscript, December 2015.

2100

Akin Oyedele. This is how often the Fed talks about
employment and inflation. Business Insider. Feb 18,
2015. http://www.businessinsider.com/fomc-minutes-
on-unemployment-and-
inflation-2015-2

Prattle Analytics. prattle-analytics.com. 2014.

Carlo Rosa. Words that shake traders: the stock markets
reaction to central bank communication in real time. J
Empirical Finance 18(5). Dec 2011.

Cheryl Schonhardt-Bailey. Deliberating American mone-
tary policy: a textual analysis. Cambridge, MA: MIT
Press. Nov 2013.

Paul C. Tetlock. Giving content to investor sentiment: the
role of media in the stock market. J Fin 62(3):1139-68.
Jun 2007.

Paul C. Tetlock. All the news that’s fit to reprint: do in-
vestors react to stale information? Rev Fin Stud 24(5).
May 2011.

Paul C. Tetlock, Maytal Saar-Tsechansky, and Sofus
Macskassy. More than words: quantifying language to
measure firms’ fundamentals. J Fin 63(3) Jun 2008.

United States. Bureau of Economic Analysis, 2015.
“GDP releases 1968 forward.”

United States. Bureau of Economic Analysis, 2015.
“GDP-GDI vintage history.”

United States. Bureau of Economic Analysis, 1989-2015.
Survey of Current Business (all months).

United States. Bureau of Labor Statistics, 2015. “CPI re-
lease dates 2009-2014.”

United States. Bureau of Labor Statistics, 2015. “Release
day and time for the Employment Situation news re-
lease 1966-present.”

United States. Bureau of Labor Statistics, 2015. “Season-
ally adjusted unemployment rate as published, 1957-
present.”

United States. Bureau of Labor Statistics, 2009. “CPI re-
lease dates 1953-2008.”

.S. Department of the Treasury. Daily Treasury yield
curve rates, 1990-2015. Accessed on 3 Apr 2015.
Available at: http://www.treasury.gov/resource-
center/data-chart-center/interest-rates/

United States. Federal Reserve Bank of St. Louis, 2015.
“Consumer Price Index for all urban consumers: all
items, index 1982-1984=100, monthly, seasonally ad-
justed.”

U.S. Federal Reserve Bank. About the FOMC.
http://www.federalreserve.gov/monetarypolicy.fomc.htm.
2015.

U.S. Federal Reserve Bank of St. Louis. Federal Reserve
Economic Data. Accessed on 3 Apr 2015. Available
at: http://research.stlouisfed.org/fred2/

U.S. Federal Reserve System Board of Gov-
ernors. Federal Open Market Commit-
tee. Accessed Apr 2015. Available at:
http://www.federalreserve.gov/monetarypolicy/fomc.htm

U.S. Federal Reserve System Board of Governors.
The Federal Reserve System purposes and functions.
Washington, DC: Board of Governors of the Federal
Reserve System. Jun 2005.

Mark A. Wynne. A short history of FOMC communica-
tion. Economic Letter 8(8), Federal Reserve Bank of
Dallas. Sep 2013.

Reza Bosagh Zadeh and Andreas Zollman. Predicting
market volatility from Federal Reserve Board meeting
minutes. Unpublished manuscript. 2009.

Jun Zhu, Amr Ahmed, and Eric P. Xing. Medlda: Max-
imum margin supervised topic models for regression
and classification. ICML ’09:1257-64, 2009.

United States. Bureau of Economic Analysis, 2015.
“GDP releases 1968 forward.”

United States. Bureau of Economic Analysis, 2015.
“GDP-GDI vintage history.”

United States. Bureau of Economic Analysis, 1989-2015.
Survey of Current Business (all months).

United States. Bureau of Labor Statistics, 2015. “CPI re-
lease dates 2009-2014.”

United States. Bureau of Labor Statistics, 2015. “Release
day and time for the Employment Situation news re-
lease 1966-present.”

United States. Bureau of Labor Statistics, 2015. “Season-
ally adjusted unemployment rate as published, 1957-
present.”

United States. Bureau of Labor Statistics, 2009. “CPI re-
lease dates 1953-2008.”

United States. Federal Reserve Bank of St. Louis, 2015.
“Consumer Price Index for all urban consumers: all
items, index 1982-1984=100, monthly, seasonally ad-
justed.”

U.S. Department of the Treasury. Daily Treasury
yield curve rates, 1990-2015. Accessed on 3 Apr
2015. Available at: http://www.treasury.gov/resource-
center/data-chart-center/interest-rates/

U.S. Federal Reserve Bank. About the FOMC.
http://www.federalreserve.gov/monetarypolicy.fomc.htm.
2015.

U.S. Federal Reserve Bank of St. Louis. Federal Reserve
Economic Data. Accessed on 3 Apr 2015. Available
at: http://research.stlouisfed.org/fred2/

2101

U.S. Federal Reserve System Board of Gov-
ernors. Federal Open Market Commit-
tee. Accessed Apr 2015. Available at:
http://www.federalreserve.gov/monetarypolicy/fomc.htm

2102

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2103–2108,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning to refine text based recommendations

Youyang Gu and Tao Lei and Regina Barzilay and Tommi Jaakkola
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
{yygu,taolei,regina,tommi}@csail.mit.edu

Abstract

We propose a text-based recommendation en-
gine that utilizes recurrent neural networks to
flexibly map textual input into continuous vec-
tor representations tailored to the recommen-
dation task. Here, the text objects are doc-
uments such as Wikipedia articles or ques-
tion and answer pairs. As neural models re-
quire substantial training time, we introduce
a sequential component so as to quickly ad-
just the learned metric over objects as addi-
tional evidence accrues. We evaluate the ap-
proach on recommending Wikipedia descrip-
tions of ingredients to their associated product
categories. We also exemplify the sequential
metric adjustment on retrieving similar Stack
Exchange AskUbuntu questions. 1

1 Introduction

Modern recommender problems involve complex
objects, often described in textual form. In order
to learn to predict how disparate objects may go to-
gether, it is helpful to first map them into a common
representation where they are easily compared, re-
gardless of their origin. Neural models are partic-
ularly well-suited for this task as continuous vec-
tor representations of objects can be tailored in a
flexible way to the desired task. While these mod-
els have been shown to be effective across NLP
tasks (Sutskever et al., 2014; Andreas et al., 2016;
Hermann et al., 2015), they take considerable time
to learn and are therefore ill-suited to be adjusted
rapidly as additional evidence accumulates.

1The code/data is available at https://github.com/
youyanggu/rcnn.

We cast our text-to-text recommendation problem
in two phases. In the first phase, flexible neural text-
to-vector mappings are learned from currently avail-
able data. Such mappings are optimized to function
well in a collaborative filtering setting. For exam-
ple, in the context of recommending food product
categories for ingredients based on their Wikipedia
pages, the continuous vectors are adjusted so that
their inner product directly reflects the degree of as-
sociation between the objects. Once learned, the
mapping can be applied to any previously unseen
text to yield the corresponding vector representation,
and therefore also used for predicting associations.
In the second phase, we no longer adjust text-to-
vector mappings but rather parameterize and learn
how the vectors are compared. For example, we can
optimize the metric separately for each new ingredi-
ent based on a few category observations for that in-
gredient. The goal of this second phase is to specif-
ically boost the accuracy when the neural baseline
(unaware of the new evidence) would otherwise not
perform well.

Our approach builds on the recent work on recur-
rent convolutional models to obtain text-to-vector
mappings (Lei et al., 2015; Lei et al., 2016). This
architecture is particularly well suited for noisy
Wikipedia pages as it can learn to omit and high-
light different parts of the text, as needed. The ad-
ditional sequential component is a regularized logis-
tic regression model (for ingredient-product predic-
tion) or a ranking model (for question retrieval). We
demonstrate the accuracy of the baseline neural rec-
ommender and the gains from the second sequential
phase in both of these tasks.

2103

2 Related Work

A great deal of recent effort has gone into devel-
oping flexible neural models for text and their use
across variety of NLP tasks. This includes build-
ing vector representations for sentences and docu-
ments (Le and Mikolov, 2014), convolutional neu-
ral network models of text (Collobert and Weston,
2008; Zhang and LeCun, 2015), non-consecutive
variants of CNNs (Lei et al., 2015), and compo-
sitional architectures (Socher et al., 2013), among
many others. Our work is most closely related to
the use of such models for question retrieval (Lei et
al., 2016) but differs, in particular, in terms of our
two-phase collaborative filtering formulation and
the ingredient mapping task from Wikipedia pages
(cf.(Sutskever et al., 2011; Song and Roth, 2015)).

3 Recommender Problems

We explore two recommender problems in this
work. In the first problem, we are given a food in-
gredient, and our goal is to predict which product
categories it could appear in. Both ingredients and
product categories are provided in terms of natural
language descriptions via their associated Wikipedia
pages. For example, if given “tomato”, we would
predict “canned foods” as one likely category for the
ingredient. A small number of categories appear as
targets for each ingredient.

We also consider the task of predicting questions
that are similar to the one provided as a query. The
purpose is to facilitate effective question answer-
ing by retrieving related past questions (and the as-
sociated answers that are available). For this we
use Stack Exchange’s AskUbuntu question retrieval
dataset used in recent work (dos Santos et al., 2015;
Lei et al., 2016)

4 Approach

We explain our approach in terms of the first task:
predicting product categories from ingredients. Col-
laborative predictions are made by mapping each in-
gredient into a vector representation and comparing
that representation with an analogous one for prod-
uct categories. We train these vectors in an end-to-
end manner to function well as part of the collab-
orative task. The vector representations are based

on Wikipedia pages that are available for most in-
gredients and categories in our problem. Rather
than derive the vector from the entire article (which
can be long), we only use the top summary section.
For the AskUbuntu question-answering dataset, we
make use of both the title and the question body.

We use a recurrent neural network (RNN) model
to map each text description into a vector represen-
tation. Our model builds on the recurrent convo-
lutional neural network model of (Lei et al., 2016)
used to train the AskUbuntu question representa-
tions. We describe below a modified version used
for ingredient-product category prediction.

Let v✓(x) 2 Rd be the parameterized RNN map-
ping of text x into a vector representation, where d
is the dimension of the hidden representation. Let xi

and zp be the Wikipedia pages for ingredient i 2 I
and product category p 2 P , respectively. We use
the same parameters ✓ to generate the representa-
tions for both ingredients and product categories due
to their overall similarity. Thus v✓(xi) is the vector
representation for ingredient i and v✓(zp) is the vec-
tor representation for product category p for an RNN
model with parameters ✓. We train the RNN model
to predict each association Yip = 1 as a binary pre-
diction task, i.e.,

P (Yip = 1|✓) = �(v✓(zp) · v✓(xi)), (1)

where � is the sigmoid function �(t) = (1 +
exp(�t))�1. The formulation is akin to a binary
collaborative filtering task where user/item feature
vectors are produced by the RNN. The parameters
✓ can be learned by back-propagating log-likelihood
of the binary 0/1 predictions back to ✓.

4.1 Sequential learning

Our RNN model, once trained, will be able to map
any new ingredient and product category (their text
descriptions) into vectors, and make a binary predic-
tion of whether the two go together. However, train-
ing the model takes considerable time and cannot be
easily adjusted in the face of new evidence, e.g., a
few positive and negative categories for a previously
unseen ingredient. Since RNN features are global
(affecting the mapping from text to features for all
ingredients/products), it is not clear how the adjust-
ments made in light of additional information about

2104

a specific new ingredient will impact predictions for
other ingredients. We propose a sequential approach
that is instead local, tailored to the new ingredient.

In order to sequentially adjust the model predic-
tions with new evidence, we introduce parameters
w = [w1, . . . , wd], wj 2 R+ that modify the com-
parison of ingredient and category vectors. Specifi-
cally, the association is predicted by

P (Yip = 1|✓, w) = �{v✓(zp)
T diag(w)v✓(xi)},

(2)
where diag(w) is a diagonal matrix with the entries
specified by w. We assume that, at this stage, the
RNN parameters ✓ and therefore the vector repre-
sentations v✓(zp) and v✓(xi) are nonadjustable. We
will only update weights w in response to each new
observation, separately for each ingredient. The ob-
servations can both be positive (Y = 1) and negative
(Y = 0).

Because we expect a new input may only have
a small number of observations, it is important to
properly regularize the weights as to avoid over-
fitting. We append the log-likelihood objective with
a regularizer

reg(w) =
�

2

dX

j=1

(wj � 1)2 (3)

where � is the overall regularization parameter. Note
that for large values of �, the regularizer keeps the
parameters at the default values wj = 1 correspond-
ing to the baseline RNN collaborative predictions,
unmodified by the new evidence.

In the context of predicting similar questions, we
use a modified binary formulation where the goal
is to classify each triplet of questions (x, z1, z2) in
terms of whether z1 is closer to the query than z2. In
this ranking model, the probability that z1 is closer
is given by

�
⇣
(v✓(z1)� v✓(z2))

T diag(w)v✓(x)
⌘
, (4)

The parameters w are again trained from ob-
served additional triplet relations in the AskUbuntu
dataset. The parameters w are regularized as in the
ingredient-product category setup.

The sequential part can therefore be viewed as a
content recommendation task which is tailored to

the specific query (e.g., ingredient) using features
from previously trained RNNs. It assumes addi-
tional feedback in order to adjust the feature com-
parison using the introduced weights w.

5 Experimental Setup and Results

Ingredients: We use the FoodEssentials LabelAPI2

and Rapid Alert System for Food and Feed (RASFF)3

databases to extract 5439 ingredients and the prod-
uct categories they appear in. On average, each in-
gredient appears in 16.3 product categories (out of
131 categories). We leverage Mechanical Turk to
link each ingredient to the appropriate Wikipedia ar-
ticle. From the 5439 ingredients, there are 1680
unique Wikipedia articles. Each ingredient sum-
mary description has a median of 169 tokens.
AskUbuntu: The dataset consists of 167k questions
and 16k user-marked similar question pairs taking
from a 2014 dump of AskUbuntu website.

5.1 Training, development, and test sets

Ingredients: We take the set of unique Wikipedia
articles and randomly split them into training, de-
velopment, and test sets (60/20/20). We then assign
the ingredients to the appropriate data set based on
their Wikipedia articles. This is to ensure that the ar-
ticles of the ingredients used in the development and
test sets are not seen in training.
AskUbuntu: We take 8000 human annotated ques-
tion pairs as our development and test sets. There are
200 query questions in each set. Each query ques-
tion is paired with 20 candidate questions which are
annotated as similar or non-similar. We evaluate by
ranking these candidate questions.

5.2 Sequential scenario

Ingredients: Let n be the total number of labeled
positive categories for the ingredient. We provide
min(20, n/2) positive categories for the sequential
model to train. We also include k negative cat-
egories, where k is selected using the validation
set. We evaluate the performance on the remaining
n �min(20, n/2) positive categories as well as on
the negative categories not included in training.

2http://developer.foodessentials.com/
3http://ec.europa.eu/food/safety/rasff/index en.htm

2105

Ingredient Wikipedia article Prediction 1 Prediction 2 Prediction 3
oatmeal Oatmeal cereal (0.564) snack, energy & granola bars (0.196) breads & buns (0.039)
watermelon juice Watermelon fruit & vegetable juice (0.352) ice cream & frozen yogurt (0.205) yogurt (0.064)
jasmine rice Jasmine rice flavored rice dishes (0.294) rice (0.237) herbs & spices (0.062)
shrimp extract Shrimp (food) fish & seafood (0.491) frozen dinners (0.128) frozen appetizers (0.113)
meatball Meatball pizza (0.180) breakfast sandwiches (0.128) frozen dinners (0.120)
polysorbate 80 Polysorbate 80 chewing gum & mints (0.531) candy (0.092) baking decorations (0.049)
ketchup Ketchup ketchup (0.461) salad dressing & mayonnaise (0.049) other cooking sauces (0.044)
benzoic acid Benzoic acid powdered drinks (0.062) fruit & vegetable juice (0.051) candy (0.045)

Table 1: The three most likely food product category predictions generated by the baseline RNN model on eight unseen ingredients.

The number in parenthesis represents the probability provided by the model.

AskUbuntu: We use the difference vectors in Equa-
tion 4 to compute the loss and sequentially update
the feature weights w. Let n be the total number of
labeled positive examples (similar questions). We
select up to n/2 positive and negative examples.
From the n2/4 possible pairs, we select the 20 most
informative pairs for training.

While we use the loss function commonly used
for binary classification during training, we ulti-
mately want to frame our question as a ranking prob-
lem. Therefore, after iterating through the initial
observations, we compute the mean average preci-
sion (MAP) over the remaining (unseen) ingredi-
ents/questions and compare it to the MAP of the
baseline RNN model on the same unseen examples.

5.3 Hyperparameters

RNN: We use Adam (Kingma and Ba, 2015) as the
optimization method with the default setting sug-
gested by the authors. We use a hidden dimension
of d = 50 for the ingredients and d = 400 for the
AskUbuntu questions. Additional parameters such
as dropout (Hinton et al., 2012), hidden layers, regu-
larization, stopping criteria, batch size, and learning
rate is tuned on the development set.
Word Vectors: For the ingredient/product pre-
diction task, we used the GloVe pre-trained vec-
tors (Common Crawl, 42 billion tokens, 300-
dimensional) (Pennington et al., 2014). The word
vectors for the AskUbuntu vectors are pre-trained
using the AskUbuntu and Wikipedia corpora.
Sequential: We utilize the bounded limited-
memory BFGS algorithm (L-BFGS-B) (Byrd et al.,
1995) to solve for the optimal feature weights with
bounds wj 2 [0.01, 2]. We tuned the the constraint
bounds and the regularization parameter � on the de-
velopment set.

Figure 1: Box plot of the mean absolute mean average preci-

sion (MAP) improvement of the sequential model on the ingre-

dients dataset (top) and AskUbuntu questions (bottom). They

are divided into five quintiles based on the baseline RNN MAP

score. The model shows gains in cases where the baseline RNN

model’s performance is poor or mediocre. The number of data

points in each of the five quintiles of the ingredients dataset

are, respectively: 131, 210, 240, 135, 191. For the AskUbuntu

dataset, they are: 15, 26, 32, 40, 41.

2106

Ing / Dev Ing / Test AskUbuntu / Dev AskUbuntu / Test
Mean MAP gain (percent) 0.0525 (30.9%) 0.0492 (26.5%) 0.0246 (8.2%) 0.0224 (7.5%)
Mean # positive observations 8.6 9.1 3.2 2.9

Table 2: We show the mean absolute improvement in the mean average precision (MAP) over the unobserved data points for each

ingredient/question. The percent improvement shown is an average percent improvement across the ingredients/questions. They

are the average of 100 runs per ingredient and 20 runs per AskUbuntu question.

Model Validation set Test set
Random 0.150 / 0.120 0.158 / 0.129
Baseline 0.320 / 0.291 0.331 / 0.300
MLP 0.432 / 0.390 0.459 / 0.416
RNN 0.476 / 0.422 0.478 / 0.426

Table 3: Results of the RNN model on the ingredient dataset,

averaged across 5 runs. The two metrics shown are the mean

average precision (MAP) and precision at N (P@N), where N

is the total number of positive examples. The random model

generates a random ranking of food categories for each ingredi-

ent. The baseline model uses the mean occurrence distribution

of the food categories for all ingredients to rank the predictions.

The multilayer perceptron model (MLP) is a three-layer neural

network trained on the hierarchical properties of the input in-

gredients (extracted from the UMLS Metathesaurus). The RNN

model outperforms all other baselines.

5.4 Results
Table 1 and 3 shows our results from using RNN
to predict likely food product categories from
Wikipedia text descriptions of ingredients.

We show the gains of the sequential update model
in Table 2. We are able to generate consistent im-
provements in the MAP after seeing half of the ob-
servations. Box plots of the test set MAP improve-
ments can be seen in Figure 1. For the ingredi-
ents prediction task, the sequential model offers the
greatest improvements when the baseline RNN has
low MAP. In the AskUbuntu questions, on the other
hand, the positive effect is greatest when the base-
line MAP is around 0.5.

There are three possible reasons for the difference
in performance between the two tasks:

• The mean number of positive observations in
the AskUbuntu task is 2.9, compared to 9.1
observations in the ingredients task (Table 2).
This is a key factor in determining the sequen-
tial model’s ability to tune for the optimal pa-

rameters. Having access to more annotated
data would likely result in an increase in per-
formance.

• Owing to the complexity of information en-
coded, the vectors for the AskUbuntu task are
of dimension of 400 as opposed to 50 in the in-
gredients task. As a result, the sequential model
would require more feedback to find near opti-
mal weights w.

• We hypothesize that the sequential model leads
to the most increased performance when the
baseline model is mediocre. This is espe-
cially highlighted in the AskUbuntu task, as ex-
tremely poor performance indicate a complete
mismatch of questions, while an exceptional
performance leaves little room for additional
improvement.

6 Conclusion

We demonstrated a text-based neural recommender
approach to predict likely food products from a
given ingredient as well as other similar questions
from a given AskUbuntu question. We then ex-
tended this model to an online stream of new data,
which improves over the off-line trained version for
both of the two tasks tested. This sequential process
improves model performance while requiring mini-
mal additional training time and resources.

7 Acknowledgments

We thank the MIT NLP group and the reviewers for
their helpful comments. The work was partially sup-
ported by the U.S. Food & Drug Administration, and
by Google Faculty Award (Barzilay and Jaakkola).
Any opinions, findings, conclusions, or recommen-
dations expressed in the paper are those of the au-
thors alone, and do not necessarily reflect the views
of the funding organizations.

2107

References
Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and

Dan Klein. 2016. Learning to compose neural net-
works for question answering. Proceedings of the
North American Chapter of the Association for Com-
putational Linguistics (NAACL 2016).

Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou
Zhu. 1995. A limited memory algorithm for bound
constrained optimization. SIAM Journal on Scientific
and Statistical Computing, 16(5):1190–1208.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. International
Conference on Machine Learning (ICML 2008).

Cicero dos Santos, Luciano Barbosa, Dasha Bogdanova,
and Bianca Zadrozny. 2015. Learning hybrid rep-
resentations to retrieve semantically equivalent ques-
tions. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers), pages
694–699, Beijing, China, July. Association for Com-
putational Linguistics.

Karl Moritz Hermann, Tomas Kocisky, Edward Gren-
fenstette, Lasse Espeholt, Will Kay, Mustafa Suley-
man, and Phil Blunsom. 2015. Teaching machines
to read and comprehend. Advances in Neural Infor-
mation Processing Systems (NIPS 2015).

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R. Salakhutdinov.
2012. Improving neural networks by preventing
co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Diederik P Kingma and Jimmy Lei Ba. 2015. Adam:
A method for stochastic optimization. International
Conference on Learning Representation (ICLR 2015).

Quoc V. Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. International
Conference on Machine Learning (ICML 2014).

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2015.
Molding cnns for text: non-linear, non-consecutive
convolutions. Proceedings of the Empiricial Methods
in Natural Language Processing (EMNLP 2015).

Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi
Jaakkola, Katerina Tymoshenko, Alessandro Mos-
chitti, and Lluis Marquez. 2016. Semi-supervised
question retrieval with recurrent convolutions. Pro-
ceedings of the North American Chapter of the Asso-
ciation for Computational Linguistics (NAACL 2016).

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. Proceedings of the Empiricial Methods in
Natural Language Processing (EMNLP 2014).

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
Empirical Methods in Natural Language Processing
(EMNLP 2013).

Yangqiu Song and Dan Roth. 2015. Unsupervised sparse
vector densification for short text similarity. Proceed-
ings of the North American Chapter of the Association
for Computational Linguistics (NAACL 2015).

Ilya Sutskever, James Martens, and Geoffrey Hinton.
2011. Generating text with recurrent neural network.
Proceedings of the International Conference on Ma-
chine Learning (ICML 2011).

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
Advances in Neural Information Processing Systems
(NIPS 2014).

Xiang Zhang and Yann LeCun. 2015. Text understand-
ing from scratch. arXiv preprint arXiv:1502.01710.

2108

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2109–2115,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

There’s No Comparison: Reference-less Evaluation Metrics
in Grammatical Error Correction

Courtney Napoles,1 Keisuke Sakaguchi,1 and Joel Tetreault2

1Center for Language and Speech Processing, Johns Hopkins University
2Grammarly

{napoles,keisuke}@cs.jhu.edu, joel.tetreault@grammarly.com

Abstract

Current methods for automatically evaluating
grammatical error correction (GEC) systems
rely on gold-standard references. However,
these methods suffer from penalizing gram-
matical edits that are correct but not in the
gold standard. We show that reference-less
grammaticality metrics correlate very strongly
with human judgments and are competitive
with the leading reference-based evaluation
metrics. By interpolating both methods, we
achieve state-of-the-art correlation with hu-
man judgments. Finally, we show that GEC
metrics are much more reliable when they are
calculated at the sentence level instead of the
corpus level. We have set up a CodaLab site
for benchmarking GEC output using a com-
mon dataset and different evaluation metrics.

1 Introduction

Grammatical error correction (GEC) has been evalu-
ated by comparing the changes made by a system to
the corrections made in gold-standard annotations.
Following the recent shared tasks in this field (e.g.,
Ng et al. (2014)), several papers have critiqued GEC
metrics and proposed new methods. Existing met-
rics depend on gold-standard corrections and there-
fore have a notable weakness: systems are penalized
for making corrections that do not appear in the ref-
erences.1 For example, the following output has low
metric scores even though three appropriate correc-
tions were made to the input:

1We refer to the gold-standard corrections as references be-
cause gold standard suggests just one accurate correction.

However , people now can contact communicate
with anyone people all over the world who can use
computers at any time , and there is no time delay of
messages .

These changes (in red) were not seen in the refer-
ences and therefore the metrics GLEU and M2 (de-
scribed in §2) score this output worse than 75% of
15,000 other generated sentences.

While grammaticality-based, reference-less met-
rics have been effective in estimating the quality
of machine translation (MT) output, the utility of
such metrics has not been investigated previously for
GEC. We hypothesize that such methods can over-
come this weakness in reference-based GEC met-
rics. This paper has four contributions: 1) We de-
velop three grammaticality metrics that are com-
petitive with current reference-based measures and
correlate very strongly with human judgments. 2)
We achieve state-of-the-art performance when in-
terpolating a leading reference-based metric with a
grammaticality metric. 3) We identify an interest-
ing result that the mean of sentence-level scores is
substantially better for evaluating systems than the
system-level score. 4) We release code for two
grammaticality metrics and establish an online plat-
form for evaluating GEC output.

2 Prior work

To our knowledge, this is the first work to evalu-
ate GEC without references. Within MT, this task
is called quality estimation. MT output is evalu-
ated by its fluency, or adherence to accepted con-
ventions of grammaticality and style, and adequacy,
which is the input’s meaning conveyed in the output.

2109

Quality estimation targets fluency by estimating the
amount of post-editing needed by the output. This
has been the topic of recent shared tasks, e.g. Bojar
et al. (2015). Specia et al. (2010) evaluated the qual-
ity of translations using sentence-level features from
the output but not the references, predicting discrete
and continuous scores. A strong baseline, QuEst,
uses support vector regression trained over 17 fea-
tures extracted from the output (Specia et al., 2013).
Most closely related to our work, Parton et al. (2011)
applied features from Educational Testing Service’s
e-rater R© (Attali and Burstein, 2006) to evaluate MT
output with a ranking SVM, without references, and
improved performance by including features derived
from MT metrics (BLEU, TERp, and METEOR).

Within the GEC field, recent shared tasks have
prompted the development and scrutiny of new met-
rics for evaluating GEC systems. The Helping Our
Own shared tasks evaluated systems using precision,
recall, and F-score against annotated gold-standard
corrections (Dale and Kilgarriff, 2011; Dale et al.,
2012). The subsequent CoNLL Shared Tasks on
GEC (Ng et al., 2013; Ng et al., 2014) were scored
with the MaxMatch metric (M2), which captures
word- and phrase-level edits by calculating the F-
score over an edit lattice (Dahlmeier and Ng, 2012).
Felice and Briscoe (2015) identified shortcomings of
M2 and proposed I-measure to address these issues.
I-measure computes the accuracy of a token-level
alignment between the original, generated, and gold-
standard sentences. These precision- and recall-
based metrics measure fluency and adequacy by pe-
nalizing inappropriate changes, which alter mean-
ing or introduce other errors. Changes consistent
with the annotations indicate improved fluency and
no change in meaning.

Unlike these metrics, GLEU scores output by pe-
nalizing n-grams found in the input and output but
not the reference (Napoles et al., 2015). Like BLEU
(Papineni et al., 2002), GLEU captures both fluency
and adequacy with n-gram overlap. Recent work has
shown that GLEU has the strongest correlation with
human judgments compared to the GEC metrics de-
scribed above (Sakaguchi et al., 2016). These GEC
metrics are all defined at the corpus level, mean-
ing that the statistics are accumulated over the en-
tire output and then used to calculate a single system
score.

3 Explicitly evaluating grammaticality

GLEU, I-measure, and M2 are calculated based
on comparison to reference corrections. These
Reference-Based Metrics (RBMs) credit corrections
seen in the references and penalize systems for ig-
noring errors and making bad changes (changing a
span of text in an ungrammatical way or introduc-
ing errors to grammatical text). However, RBMs
make two strong assumptions: that the annotations
in the references are correct and that they are com-
plete. We argue that these assumptions are invalid
and point to a deficit in current evaluation practices.
In GEC, the agreement between raters can be low
due to the challenging nature of the task (Bryant and
Ng, 2015; Rozovskaya and Roth, 2010; Tetreault
and Chodorow, 2008), indicating that annotations
may not be correct or complete.

An exhaustive list of all possible corrections
would be time-consuming, if not impossible. As a
result, RBMs penalize output that has a valid correc-
tion that is not present in the references or that ad-
dresses an error not corrected in the references. The
example in §1 has low GLEU and M2 scores, even
though the output addresses two errors (GLEU=0.43
and M2 = 0.00, in the bottom half and quartile of 15k
system outputs, respectively).

To address these concerns, we propose three met-
rics to evaluate the grammaticality of output without
comparing to the input or a gold-standard sentence
(Grammaticality-Based Metrics, or GBMs). We ex-
pect GBMs to score sentences, such as our example
in §1, more highly. The first two metrics are scored
by counting the errors found by existing grammat-
ical error detection tools. The error count score is
simply calculated: 1 − # errors

tokens . Two different tools
are used to count errors: e-rater R©’s grammatical
error detection modules (ER) and Language Tool
(Miłkowski, 2010) (LT). We choose these because,
while e-rater R© is a large-scale, robust tool that de-
tects more errors than Language Tool,2 it is propri-
etary whereas Language Tool is publicly available
and open sourced.

For our third method, we estimate a grammat-
icality score with a linguistic feature-based model
(LFM), which is our implementation of Heilman et

2In the data used for this work, e-rater R© detects approxi-
mately 15 times more errors than Language Tool.

2110

al. (2014).3 The LFM score is a ridge regression
over a variety of linguistic features related to gram-
maticality, including the number of misspellings,
language model scores, OOV counts, and PCFG and
link grammar features. It has been shown to effec-
tively assess the grammaticality of learner writing.
LFM predicts a score for each sentence while ER
and LT, like the RBMs, can be calculated with ei-
ther sentence- or document-level statistics. To be
consistent with LFM, for all metrics in this work
we score each sentence individually and report the
system score as the mean of the sentence scores.
We discuss the effects of modifying metrics from a
corpus-level to a sentence-level in §5.

Consistent with our hypothesis, ER and LT score
the §1 example in the top quartile of outputs and
LFM ranks it in the top half.

3.1 A hybrid metric

The obvious deficit of GBMs is that they do not mea-
sure the adequacy of generated sentences, so they
could easily be manipulated with grammatical out-
put that is unrelated to the input. An ideal GEC
metric would measure both the grammaticality of a
generated sentence and its meaning compared to the
original sentence, and would not necessarily need
references. The available data of scored system out-
puts are insufficient for developing a new metric due
to their limited size, thus we turn to interpolation to
develop a sophisticated metric that jointly captures
grammaticality and adequacy.

To harness the advantage of RBMs (adequacy)
and GBMs (fluency), we build combined metrics,
interpolating each RBM with each GBM. For a sen-
tence of system output, the interpolated score (SI) of
the GBM score (SG) and RBM score (SR) is com-
puted as follows:

SI = (1− λ)SG + λSR

All values of SG and SR are in the interval [0, 1], ex-
cept for I-measure, which falls between [−1, 1], and
the distribution varies for each metric.4 The system
score is the average SI of all generated sentences.

3Our implementation is slightly modified in that it does not
use features from the PET HPSG parser.

4Mean scores are GLEU 0.52 ± 0.21, M2 0.21 ± 0.34, IM
0.10±0.30, ER 0.91±0.10, LFM 0.50±0.16, LT 1.00±0.01.

Metric Spearman’s ρ Pearson’s r
GLEU 0.852 0.838
ER 0.852 0.829
LT 0.808 0.811
I-measure 0.769 0.753
LFM 0.780 0.742
M2 0.648 0.641

Table 1: Correlation between the human and metric rankings.

4 Experiments

To assess the proposed metrics, we apply the RBMs,
GBMs, and interpolated metrics to score the out-
put of 12 systems participating in the CoNLL-2014
Shared Task on GEC (Ng et al., 2014). Recent works
have evaluated RBMs by collecting human rankings
of these system outputs and comparing them to the
metric rankings (Grundkiewicz et al., 2015; Napoles
et al., 2015). In this section, we compare each met-
ric’s ranking to the human ranking of Grundkiewicz
et al. (2015, Table 3c). We use 20 references for
scoring with RBMs: 2 original references, 10 ref-
erences collected by Bryant and Ng (2015), and
8 references collected by Sakaguchi et al. (2016).
The motivations for using 20 references are twofold:
the best GEC evaluation method uses these 20 ref-
erences with the GLEU metric (Sakaguchi et al.,
2016), and work in machine translation shows that
more references are better for evaluation (Finch et
al., 2004). Due to the low agreement discussed in §3,
having more references can be beneficial for evalu-
ating a system when there are multiple viable ways
of correcting a sentence. Unlike previous GEC eval-
uations, all metrics reported here use the mean of the
sentence-level scores for each system.

Results are presented in Table 1. The error-count
metrics, ER and LT, have stronger correlation than
all RBMs except for GLEU, which is the current
state of the art. GLEU has the strongest correlation
with the human ranking (ρ = 0.852, r = 0.838), fol-
lowed closely by ER, which has slightly lower Pear-
son correlation (r = 0.829) but equally as strong
rank correlation, which is arguably more important
when comparing different systems. I-measure and
LFM have similar strength correlations, and M2 is
the lowest performing metric, even though its corre-
lation is still strong (ρ = 0.648, r = 0.641).

Next we compare the interpolated scores with the
human ranking, testing 101 different values of λ

2111

ranked by Spearman’s rank coefficient (ρ) ranked by Pearson’s correlation coefficient (r)
ER LFM LT ER LFM LT

no intrpl. 0.852 (0) 0.780 (0) 0.808 (0) no intrpl. 0.829 (0) 0.742 (0) 0.811 (0)
GLEU 0.852 (1) 0.885 (0.03) 0.874 (0.27) 0.857 (0.04) 0.838 (1) 0.867 (0.27) 0.845 (0.84) 0.867 (0.09)
I-m. 0.769 (1) 0.874 (0.19) 0.863 (0.37) 0.852 (0.01) 0.753 (1) 0.837 (0.02) 0.791 (0.22) 0.828 (0.01)
M2 0.648 (1) 0.868 (0.01) 0.852 (0.05) 0.808 (0.00) 0.641 (1) 0.829 (0.00) 0.754 (0.04) 0.811 (0.00)

Table 2: Oracle correlations between interpolated metrics and the human rankings. The λ value for each metric is in parentheses.

GLEU Intrpl.
rank rank Output sentence

1 2 Genectic testing is a personal decision ,
with the knowledge that there is a possi-
blity that one could be a carrier or not .

2 3 Genectic testing is a personal decision ,
the kowledge that there is a possiblity that
one could be a carrier or not .

3 1 Genetic testing is a personal decision ,
with the knowledge that there is a possi-
bility that one could be a carrier or not .

Table 3: An example of system outputs ranked by GLEU and
GLEU interpolated with ER. Words in italics are misspelled.

[0,1] to find the oracle value. Table 2 shows the
correlations between the human judgments and the
oracle interpolated metrics. Correlations of interpo-
lated metrics are the upper bound and the correla-
tions of uninterpolated metrics (in the first column
and first row) are the lower bound. Interpolating
GLEU and IM with GBMs has stronger correlation
than any uninterpolated metric (i.e. λ = 0 or 1),
and the oracle interpolation of ER and GLEU mani-
fests the strongest correlation with the human rank-
ing (ρ = 0.885, r = 0.867).5 M2 has the weakest
correlation of all uninterpolated metrics and, when
combined with GBMs, three of the interpolated met-
rics have λ = 0, meaning the interpolated score is
equivalent to the GBM and M2 does not contribute.

Table 3 presents an example of how interpolation
can help evaluation. The top two sentences ranked
by GLEU have misspellings that were not corrected
in the NUCLE references. Interpolating with a GBM
rightly ranks the misspelled output below the cor-
rected output.

Since these experiments use a large number of
references (20), we determine how different refer-
ence sizes affect the interpolated metrics by system-

5To verify that these metrics cannot be gamed, we interpo-
lated GBMs with RBMs scored against randomized references,
and got scores 15% lower than un-gamed scores, on average.

0 5 10 15 20
Number of References

0.80

0.82

0.84

0.86

0.88

Sp
ea

rm
an

's
ρ

ER
GLEU
GLEU+ER

Figure 1: The mean correlation of oracle interpolated GLEU
and ER scores across different reference sizes, compared to the
uninterpolated metrics. Bars indicate a 95% confidence interval.

atically increasing the number of references from 1
to 20 and randomly choosing n references to use as
a gold standard when calculating the RBM scores,
repeating 10 times for each value n (Figure 1). The
correlation is nearly as strong with 3 and 20 refer-
ences (ρ = 0.884 v. 0.885), and interpolating with
just 1 reference is nearly as good (0.878) and im-
proves over any uninterpolated metric.

We acknowledge that using GBMs is in effect us-
ing GEC systems to score other GEC systems. In-
terestingly, we find that even if the GBMs are im-
perfect, they still boost performance of the RBMs.
GBMs have been trained to recognize errors in dif-
ferent contexts and, conversely, can identify cor-
rect grammatical constructions in diverse contexts,
where the RBMs only recognize corrections made
that appear in the gold standards, which are limited.
Therefore GBMs can make a nice complement to
shortcomings that RBMs may have.

5 Sentence-level evaluation

In the course of our experiments, we noticed that
I-measure and GLEU have stronger correlations
with the expert human ranking when using the

2112

Corpus Sentence
Metric ρ r ρ r

GLEU 0.725 0.724 0.852 0.838
I-m. -0.055∗ 0.061 0.769 0.753
M2 0.692 0.617 0.648 0.641

Table 4: Correlation with human ranking when using corpus-
and sentence-level metrics. ∗ indicates a significant difference
from the corresponding sentence-level correlation (p < 0.05).7

mean sentence-level score (Table 4).6 Most no-
tably, I-measure does not correlate at all as a corpus-
level metric but has a very strong correlation at the
sentence-level (specifically, ρ improves from -0.055
to 0.769). This could be because corpus-level statis-
tics equally distribute counts of correct annotations
over all sentences, even those where the output ne-
glects to make any necessary corrections. Sentence-
level statistics would not average the correct counts
over all sentences in this same way. As a result,
a corpus-level statistic may over-estimate the qual-
ity of system output. Deeper investigation into this
phenomenon is needed to understand why the mean
sentence-level scores do better.

6 Summary

We have identified a shortcoming of reference-based
metrics: they penalize changes made that do not ap-
pear in the references, even if those changes are ac-
ceptable. To address this problem, we developed
metrics to explicitly measure grammaticality with-
out relying on reference corrections and showed that
the error-count metrics are competitive with the best
reference-based metric. Furthermore, by interpolat-
ing RBMs with GBMs, the system ranking has even
stronger correlation with the human ranking. The
ER metric, which was derived from counts of er-
rors detected using e-rater R©, is nearly as good as
the state-of-the-art RBM (GLEU) and the interpo-
lation of these metrics has the strongest reported
correlation with the human ranking (ρ = 0.885,
r = 0.867). However, since e-rater R© is not widely
available to researchers, we also tested a metric us-
ing Language Tool, which does nearly as well when
interpolated with GLEU (ρ = 0.857, r = 0.867).

6The correlations in Table 4 differ from what was reported in
Grundkiewicz et al. (2015) and Napoles et al. (2015) due to the
references and sentence-level computation used in this work.

7Significance is found by applying a two-tailed t-test to the
Z-scores attained using Fisher’s z-transformation.

Two important points should be noted: First, due
to the small sample size (12 system outputs), none
of the rankings significantly differ from one another
except for the corpus-level I-measure. Secondly,
GLEU and the other RBMs already have strong to
very strong correlation with the human judgments,
which makes it difficult for any combination of met-
rics to perform substantially higher. The best unin-
terpolated and interpolated metrics use an extremely
large number of references (20), however Figure 1
shows that interpolating GLEU using just one ref-
erence has stronger correlation than any uninterpo-
lated metric. This supports the use of interpolation
to improve GEC evaluation in any setting.

This work is the first exploration into applying
fluency-based metrics to GEC evaluation. We be-
lieve that, for future work, fluency measures could
be further improved with other methods, such as us-
ing existing GEC systems to detect errors, or even
using an ensemble of systems to improve coverage
(indeed, ensembles have been useful in the GEC task
itself (Susanto et al., 2014)). There is also recent
work from the MT community, such as the use of
confidence bounds (Graham and Liu, 2016) or un-
certainty measurement (Beck et al., 2016), which
could be adopted by the GEC community.

Finally, in the course of our experiments, we de-
termined that metrics calculated on the sentence-
level is more reliable for evaluating GEC output, and
we suggest that the GEC community adopt this mod-
ification to better assess systems.

To facilitate GEC evaluation, we have set up an
online platform8 for benchmarking system output on
the same set of sentences evaluated using different
metrics and made the code for calculating LT and
LFM available.9

Acknowledgments

We would like to thank Matt Post, Martin Chodorow,
and the three anonymous reviews for their comments
and feedback. We also thank Educational Testing
Service for providing e-rater R© output. This material
is based upon work partially supported by the NSF
GRF under Grant No. 1232825.

8https://competitions.codalab.org/
competitions/12731

9https://github.com/cnap/
grammaticality-metrics

2113

References
Yigal Attali and Jill Burstein. 2006. Automated essay

scoring with e-rater R© v. 2. The Journal of Technology,
Learning and Assessment, 4(3).

Daniel Beck, Lucia Specia, and Trevor Cohn. 2016.
Exploring prediction uncertainty in machine transla-
tion quality estimation. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 208–218, Berlin, Germany,
August. Association for Computational Linguistics.

Ondřej Bojar, Christian Buck, Chris Callison-Burch,
Christian Federmann, Barry Haddow, Philipp Koehn,
Christof Monz, Matt Post, Radu Soricut, and Lucia
Specia. 2013. Findings of the 2013 Workshop on
Statistical Machine Translation. In Proceedings of the
Eighth Workshop on Statistical Machine Translation,
pages 1–44, Sofia, Bulgaria, August. Association for
Computational Linguistics.

Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and Aleš Tam-
chyna. 2014. Findings of the 2014 Workshop on Sta-
tistical Machine Translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12–58, Baltimore, Maryland, USA, June. As-
sociation for Computational Linguistics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Barry Haddow, Matthias Huck, Chris Hokamp, Philipp
Koehn, Varvara Logacheva, Christof Monz, Matteo
Negri, Matt Post, Carolina Scarton, Lucia Specia, and
Marco Turchi. 2015. Findings of the 2015 Workshop
on Statistical Machine Translation. In Proceedings of
the Tenth Workshop on Statistical Machine Transla-
tion, pages 1–46, Lisbon, Portugal, September. Asso-
ciation for Computational Linguistics.

Christopher Bryant and Hwee Tou Ng. 2015. How far
are we from fully automatic high quality grammatical
error correction? In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 697–707, Beijing, China, July. Association for
Computational Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Matt Post, Radu Soricut, and Lucia Specia. 2012.
Findings of the 2012 Workshop on Statistical Machine
Translation. In Proceedings of the Seventh Work-
shop on Statistical Machine Translation, pages 10–
51, Montréal, Canada, June. Association for Compu-
tational Linguistics.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-

ceedings of the 2012 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 568–
572, Montréal, Canada, June. Association for Compu-
tational Linguistics.

Robert Dale and Adam Kilgarriff. 2011. Helping our
own: The HOO 2011 pilot shared task. In Proceedings
of the Generation Challenges Session at the 13th Eu-
ropean Workshop on Natural Language Generation,
pages 242–249, Nancy, France, September. Associa-
tion for Computational Linguistics.

Robert Dale, Ilya Anisimoff, and George Narroway.
2012. HOO 2012: A report on the preposition and
determiner error correction shared task. In Proceed-
ings of the Seventh Workshop on Building Educational
Applications Using NLP, pages 54–62, Montréal,
Canada, June. Association for Computational Linguis-
tics.

Mariano Felice and Ted Briscoe. 2015. Towards a
standard evaluation method for grammatical error de-
tection and correction. In Proceedings of the 2015
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 578–
587, Denver, Colorado, June. Association for Compu-
tational Linguistics.

Andrew M. Finch, Yasuhiro Akiba, and Eiichiro Sumita.
2004. How does automatic machine translation eval-
uation correlate with human scoring as the number
of reference translations increases? In Proceedings
of the Fourth International Conference on Language
Resources and Evaluation, LREC 2004, May 26-28,
2004, Lisbon, Portugal.

Yvette Graham and Qun Liu. 2016. Achieving accurate
conclusions in evaluation of automatic machine trans-
lation metrics. In Proceedings of the 2016 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1–10, San Diego, California, June. As-
sociation for Computational Linguistics.

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and
Edward Gillian. 2015. Human evaluation of gram-
matical error correction systems. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 461–470, Lisbon, Portu-
gal, September. Association for Computational Lin-
guistics.

Michael Heilman, Aoife Cahill, Nitin Madnani, Melissa
Lopez, Matthew Mulholland, and Joel Tetreault. 2014.
Predicting grammaticality on an ordinal scale. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 174–180, Baltimore, Maryland, June.
Association for Computational Linguistics.

2114

Marcin Miłkowski. 2010. Developing an open-source,
rule-based proofreading tool. Software: Practice and
Experience, 40(7):543–566.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and
Joel Tetreault. 2015. Ground truth for grammatical
error correction metrics. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short Pa-
pers), pages 588–593, Beijing, China, July. Associa-
tion for Computational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 Shared Task on grammatical error correction. In
Proceedings of the Seventeenth Conference on Com-
putational Natural Language Learning: Shared Task,
pages 1–12, Sofia, Bulgaria, August. Association for
Computational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 Shared Task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Natural
Language Learning: Shared Task, pages 1–14, Balti-
more, Maryland, June. Association for Computational
Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of 40th
Annual Meeting of the Association for Computational
Linguistics, pages 311–318, Philadelphia, Pennsylva-
nia, USA, July. Association for Computational Lin-
guistics.

Kristen Parton, Joel Tetreault, Nitin Madnani, and Mar-
tin Chodorow. 2011. E-rating machine translation.
In Proceedings of the Sixth Workshop on Statistical
Machine Translation, pages 108–115. Association for
Computational Linguistics.

Alla Rozovskaya and Dan Roth. 2010. Annotating ESL
errors: Challenges and rewards. In Proceedings of the
NAACL HLT 2010 Fifth Workshop on Innovative Use
of NLP for Building Educational Applications, pages
28–36, Los Angeles, California, June. Association for
Computational Linguistics.

Keisuke Sakaguchi, Courtney Napoles, Matt Post, and
Joel Tetreault. 2016. Reassessing the goals of gram-
matical error correction: Fluency instead of grammat-
icality. Transactions of the Association for Computa-
tional Linguistics, 4:169–182.

Lucia Specia, Dhwaj Raj, and Marco Turchi. 2010. Ma-
chine translation evaluation versus quality estimation.
Machine translation, 24(1):39–50.

Lucia Specia, Kashif Shah, Jose G.C. de Souza, and
Trevor Cohn. 2013. QuEst – a translation quality esti-

mation framework. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguis-
tics: System Demonstrations, pages 79–84, Sofia, Bul-
garia, August. Association for Computational Linguis-
tics.

Raymond Hendy Susanto, Peter Phandi, and Hwee Tou
Ng. 2014. System combination for grammatical er-
ror correction. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 951–962, Doha, Qatar, October.
Association for Computational Linguistics.

Joel Tetreault and Martin Chodorow. 2008. Native judg-
ments of non-native usage: Experiments in preposi-
tion error detection. In Coling 2008: Proceedings of
the workshop on Human Judgements in Computational
Linguistics, pages 24–32, Manchester, UK, August.
Coling 2008 Organizing Committee.

2115

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2116–2121,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Cultural Shift or Linguistic Drift? Comparing Two
Computational Measures of Semantic Change

William L. Hamilton, Jure Leskovec, Dan Jurafsky
Department of Computer Science, Stanford University, Stanford CA, 94305

wleif,jure,jurafsky@stanford.edu

Abstract

Words shift in meaning for many reasons,
including cultural factors like new technolo-
gies and regular linguistic processes like sub-
jectification. Understanding the evolution of
language and culture requires disentangling
these underlying causes. Here we show how
two different distributional measures can be
used to detect two different types of seman-
tic change. The first measure, which has been
used in many previous works, analyzes global
shifts in a word’s distributional semantics; it
is sensitive to changes due to regular pro-
cesses of linguistic drift, such as the semantic
generalization of promise (“I promise.”→“It
promised to be exciting.”). The second mea-
sure, which we develop here, focuses on local
changes to a word’s nearest semantic neigh-
bors; it is more sensitive to cultural shifts, such
as the change in the meaning of cell (“prison
cell” → “cell phone”). Comparing measure-
ments made by these two methods allows re-
searchers to determine whether changes are
more cultural or linguistic in nature, a distinc-
tion that is essential for work in the digital hu-
manities and historical linguistics.

1 Introduction

Distributional methods of embedding words in vec-
tor spaces according to their co-occurrence statis-
tics are a promising new tool for diachronic seman-
tics (Gulordava and Baroni, 2011; Jatowt and Duh,
2014; Kulkarni et al., 2014; Xu and Kemp, 2015;
Hamilton et al., 2016). Previous work, however,
does not consider the underlying causes of seman-

tic change or how to distentangle different types of
change.

We show how two computational measures can
be used to distinguish between semantic changes
caused by cultural shifts (e.g., technological ad-
vancements) and those caused by more regular pro-
cesses of semantic change (e.g., grammaticalization
or subjectification). This distinction is essential for
research on linguistic and cultural evolution. Detect-
ing cultural shifts in language use is crucial to com-
putational studies of history and other digital hu-
manities projects. By contrast, for advancing histor-
ical linguistics, cultural shifts amount to noise and
only the more regular shifts matter.

Our work builds on two intuitions: that dis-
tributional models can highlight syntagmatic ver-
sus paradigmatic relations with neighboring words
(Schutze and Pedersen, 1993) and that nouns are
more likely to undergo changes due to irregular cul-
tural shifts while verbs more readily participate in
regular processes of semantic change (Gentner and
France, 1988; Traugott and Dasher, 2001). We use
this noun vs. verb mapping as a proxy to compare
our two measures’ sensitivities to cultural vs. lin-
guistic shifts. Sensitivity to nominal shifts indi-
cates a propensity to capture irregular cultural shifts
in language, such as those due to technological ad-
vancements (Traugott and Dasher, 2001). Sensitiv-
ity to shifts in verbs (and other predicates) indicates
a propensity to capture regular processes of linguis-
tic drift (Gentner and France, 1988; Kintsch, 2000;
Traugott and Dasher, 2001).

The first measure we analyze is based upon
changes to a word’s local semantic neighborhood;

2116

lesbian homosexual

heterosexual
queer

woman

gay
(1990s)

hispanic

daft

witty

brilliant

merry

gay
(1900s)

frolicsome

joyous

Global measure of change Local neighborhood measure of change

Figure 1: Two different measures of semantic change. With the global measure of change, we measure how far a word has
moved in semantic space between two time-periods. This measure is sensitive to subtle shifts in usage and also global effects due
to the entire semantic space shifting. For example, this captures how actually underwent subjectification during the 20th century,
shifting from uses in objective statements about the world (“actually did try”) to subjective statements of attitude (“I actually agree”;
see Traugott and Dasher, 2001 for details). In contrast, with the local neighborhood measure of change, we measure changes in a
word’s nearest neighbors, which captures drastic shifts in core meaning, such as gay’s shift in meaning over the 20th century.

we show that it is more sensitive to changes in the
nominal domain and captures changes due to unpre-
dictable cultural shifts. Our second measure relies
on a more traditional global notion of change; we
show that it better captures changes, like those in
verbs, that are the result of regular linguistic drift.

Our analysis relies on a large-scale statistical
study of six historical corpora in multiple lan-
guages, along with case-studies that illustrate the
fine-grained differences between the two measures.

2 Methods

We use the diachronic word2vec embeddings con-
structed in our previous work (Hamilton et al., 2016)
to measure how word meanings change between
consecutive decades.1 In these representations each
word wi has a vector representation w(t) (Turney
and Pantel, 2010) at each time point, which captures
its co-occurrence statistics for that time period. The
vectors are constructed using the skip-gram with
negative sampling (SGNS) algorithm (Mikolov et
al., 2013) and post-processed to align the semantic
spaces between years. Measuring the distance be-
tween word vectors for consecutive decades allows
us to compute the rate at which the different words

1http://nlp.stanford.edu/projects/histwords/.
This URL also links to detailed dataset descriptions and the code
needed to replicate the experiments in this paper.

change in meaning (Gulordava and Baroni, 2011).
We analyzed the decades from 1800 to 1990 using

vectors derived from the Google N-gram datasets
(Lin et al., 2012) that have large amounts of his-
torical text (English, French, German, and English
Fiction). We also used vectors derived from the Cor-
pus of Historical American English (COHA), which
is smaller than Google N-grams but was carefully
constructed to be genre balanced and contains word
lemmas as well as surface forms (Davies, 2010). We
examined all decades from 1850 through 2000 using
the COHA dataset and used the part-of-speech tags
provided with the corpora.

2.1 Measuring semantic change

We examine two different ways to measure semantic
change (Figure 1).

Global measure
The first measure analyzes global shifts in a

word’s vector semantics and is identical to the mea-
sure used in most previous works (Gulordava and
Baroni, 2011; Jatowt and Duh, 2014; Kim et al.,
2014; Hamilton et al., 2016). We simply take
a word’s vectors for two consecutive decades and
measure the cosine distance between them, i.e.

dG(w
(t)
i , w

(t+1)
i) = cos-dist(w(t)

i ,w
(t+1)
i). (1)

2117

English (All) English (Fic.) German French COHA (word) COHA (lemma)

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

(V
er

b
-n

ou
n)

ch
an

ge

Global measure
Local measure

Figure 2: The global measure is more sensitive to semantic changes in verbs while the local neighborhood measure is more
sensitive to noun changes. Examining how much nouns change relative to verbs (using coefficients from mixed-model regressions)
reveals that the two measures are sensitive to different types of semantic change. Across all languages, the local neighborhood
measure always assigns relatively higher rates of change to nouns (i.e., the right/green bars are lower than the left/blue bars for all
pairs), though the results vary by language (e.g., French has high noun change-rates overall). 95% confidence intervals are shown.

Local neighborhood measure
The second measure is based on the intuition that

only a word’s nearest semantic neighbors are rele-
vant. For this measure, we first find word wi’s set of
k nearest-neighbors (according to cosine-similarity)
within each decade, which we denote by the ordered
set Nk(w

(t)
i). Next, to measure the change between

decades t and t + 1, we compute a “second-order”
similarity vector for w(t)

i from these neighbor sets
with entries defined as

s(t)(j) = cos-sim(w
(t)
i ,w

(t)
j)

∀wj ∈ Nk(w
(t)
i) ∪Nk(w

(t+1)
i), (2)

and we compute an analogous vector for w(t+1)
i .

The second-order vector, s
(t)
i , contains the cosine

similarity of wi and the vectors of all wi’s near-
est semantic neighbors in the the time-periods t and
t + 1. Working with variants of these second-order
vectors has been a popular approach in many recent
works, though most of these works define these vec-
tors against the full vocabulary and not just a word’s
nearest neighbors (del Prado Martin and Brendel,
2016; Eger and Mehler, 2016; Rodda et al., 2016).

Finally, we compute the local neighborhood
change as

dL(w
(t)
i , w

(t+1)
i) = cos-dist(s(t)i , s

(t+1)
i). (3)

This measures the extent to which wi’s similarity
with its nearest neighbors has changed.

The local neighborhood measure defined in (3)
captures strong shifts in a word’s paradigmatic re-
lations but is less sensitive to global shifts in syntag-
matic contexts (Schutze and Pedersen, 1993). We

Dataset # Nouns # Verbs

Google English All 5299 2722
Google English Fic. 4941 3128
German 5443 1844
French 2310 4992
COHA (Word) 4077 1267
COHA (Lemma) 3389 783

Table 1: Number of nouns and verbs tested in each dataset.

used k = 25 in all experiments (though we found
the results to be consistent for k ∈ [10, 50]).

2.2 Statistical methodology

To test whether nouns or verbs change more accord-
ing to our two measures of change, we build on
our previous work and used a linear mixed model
approach (Hamilton et al., 2016). This approach
amounts to a linear regression where the model also
includes “random” effects to account for the fact that
the measurements for individual words will be cor-
related across time (McCulloch and Neuhaus, 2001).

We ran two regressions per datatset: one with the
global dG values as the dependent variables (DVs)
and one with the local neighborhood dL values. In
both cases we examined the change between all con-
secutive decades and normalized the DVs to zero-
mean and unit variance. We examined nouns/verbs
within the top-10000 words by frequency rank and
removed all words that occurred <500 times in
the smaller COHA dataset. The independent vari-
ables are word frequency, the decade of the change
(represented categorically), and variable indicating

2118

Word 1850s context 1990s context

actually “...dinners which you have actually eaten.” “With that, I actually agree.”
must “O, George, we must have faith.” “Which you must have heard ten years ago...”
promise “I promise to pay you...’ “...the day promised to be lovely.”

gay “Gay bridals and other merry-makings of men.” “...the result of gay rights demonstrations.”
virus “This young man is...infected with the virus.” “...a rapidly spreading computer virus.”
cell “The door of a gloomy cell...” “They really need their cell phones.”

Table 2: Example case-studies of semantic change. The first three words are examples of regular linguistic shifts, while the latter
three are examples of words that shifted due to exogenous cultural factors. Contexts are from the COHA data (Davies, 2010).

actually must promise gay virus cell

−0.3

−0.1

0.1

0.3

G
lo

ba
l-

lo
ca

lc
ha

ng
e

Regular linguistic shifts Irregular cultural shifts

Figure 3: The global measure captures classic examples of linguistic drift while the local measure captures example cultural
shifts. Examining the semantic distance between the 1850s and 1990s shows that the global measure is more sensitive to regular
shifts (and vice-versa for the local measure). The plot shows the difference between the measurements made by the two methods.

whether a word is a noun or a verb (proper nouns
are excluded, as in Hamilton et al., 2016).2

3 Results

Our results show that the two seemingly related
measures actually result in drastically different no-
tions of semantic change.

3.1 Nouns vs. verbs

The local neighborhood measure assigns far higher
rates of semantic change to nouns across all lan-
guages and datasets while the opposite is true for
the global distance measure, which tends to assign
higher rates of change to verbs (Figure 2).

We focused on verbs vs. nouns since they are
the two major parts-of-speech and previous research
has shown that verbs are more semantically mutable
than nouns and thus more likely to undergo linguis-
tic drift (Gentner and France, 1988), while nouns
are far more likely to change due to cultural shifts
like new technologies (Traugott and Dasher, 2001).
However, some well-known regular linguistic shifts
include rarer parts of speech like adverbs (included
in our case studies below). Thus we also confirmed

2Frequency was included since it is known to strongly influ-
ence the distributional measures (Hamilton et al., 2016).

that the differences shown in Figure 2 also hold
when adverbs and adjectives are included along with
the verbs. This modified analysis showed analogous
significant trends, which fits with previous research
arguing that adverbial and adjectival modifiers are
also often the target of regular linguistic changes
(Traugott and Dasher, 2001).

The results of this large-scale regression analy-
sis show that the local measure is more sensitive to
changes in the nominal domain, a domain in which
change is known to be driven by cultural factors.
In contrast, the global measure is more sensitive to
changes in verbs, along with adjectives and adverbs,
which are known to be the targets of many regular
processes of linguistic change (Traugott and Dasher,
2001; Hopper and Traugott, 2003)

3.2 Case studies

We examined six case-study words grouped into two
sets. These case studies show that three examples of
well-attested regular linguistic shifts (set A) changed
more according to the global measure, while three
well-known examples of cultural changes (set B)
change more according to the local neighborhood
measure. Table 2 lists these words with some rep-
resentative historical contexts (Davies, 2010).

2119

Set A contains three words that underwent at-
tested regular linguistic shifts detailed in Traugott
and Dasher (2001): actually, must, and promise.
These three words represent three different types of
regular linguistic shifts: actually is a case of subjec-
tification (detailed in Figure 1); must shifted from
a deontic/obligation usage (“you must do X”) to a
epistemic one (“X must be the case”), exemplifying
a regular pattern of change common to many modal
verbs; and promise represents the class of shift-
ing “performative speech acts” that undergo rich
changes due to their pragmatic uses and subjectifi-
cation (Traugott and Dasher, 2001). The contexts
listed in Table 2 exemplify these shifts.

Set B contains three words that were selected
because they underwent well-known cultural shifts
over the last 150 years: gay, virus, and cell.
These words gained new meanings due to uses in
community-specific vernacular (gay) or technolog-
ical advances (virus, cell). The cultural shifts un-
derlying these changes in usage — e.g., the devel-
opment of the mobile “cell phone” — were unpre-
dictable in the sense that they were not the result of
regularities in human linguistic systems.

Figure 3 shows how much the meaning of these
word changed from the 1850s to the 1990s according
to the two different measures on the English Google
data. We see that the words in set A changed more
when measurements were made using the global
measure, while the opposite holds for set B.

4 Discussion

Our results show that our novel local neighborhood
measure of semantic change is more sensitive to
changes in nouns, while the global measure is more
sensitive to changes in verbs. This mapping aligns
with the traditional distinction between irregular cul-
tural shifts in nominals and more regular cases of
linguistic drift (Traugott and Dasher, 2001) and is
further reinforced by our six case studies.

This finding emphasizes that researchers must de-
velop and use measures of semantic change that
are tuned to specific tasks. For example, a cul-
tural change-point detection framework would be
more successful using our local neighborhood mea-
sure, while an empirical study of grammaticalization
would be better off using the traditional global dis-

tance approach. Comparing measurements made by
these two approaches also allows researchers to as-
sess the extent to which semantic changes are lin-
guistic or cultural in nature.

Acknowledgements
The authors thank C. Manning, V. Prabhakaran,
S. Kumar, and our anonymous reviewers for their
helpful comments. This research has been sup-
ported in part by NSF CNS-1010921, IIS-1149837,
IIS-1514268 NIH BD2K, ARO MURI, DARPA
XDATA, DARPA SIMPLEX, Stanford Data Sci-
ence Initiative, SAP Stanford Graduate Fellowship,
NSERC PGS-D, Boeing, Lightspeed, and Volkswa-
gen.

References
Mark Davies. 2010. The Corpus of Historical

American English: 400 million words, 1810-2009.
http://corpus.byu.edu/coha/.

Fermin Moscoso del Prado Martin and Christian Brendel.
2016. Case and Cause in Icelandic: Reconstructing
Causal Networks of Cascaded Language Changes. In
Proc. ACL.

Steffen Eger and Alexander Mehler. 2016. On the
Linearity of Semantic Change: Investigating Meaning
Variation via Dynamic Graph Models. In Proc. ACL.

Dedre Gentner and Ilene M. France. 1988. The verb
mutability effect: Studies of the combinatorial seman-
tics of nouns and verbs. Lexical ambiguity resolution:
Perspectives from psycholinguistics, neuropsychology,
and artificial intelligence, pages 343–382.

Kristina Gulordava and Marco Baroni. 2011. A distribu-
tional similarity approach to the detection of semantic
change in the Google Books Ngram corpus. In Proc.
GEMS 2011 Workshop on Geometrical Models of Nat-
ural Language Semantics, pages 67–71. Association
for Computational Linguistics.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky.
2016. Diachronic Word Embeddings Reveal Statisti-
cal Laws of Semantic Change. In Proc. ACL.

Paul J Hopper and Elizabeth Closs Traugott. 2003.
Grammaticalization. Cambridge University Press,
Cambridge, UK.

Adam Jatowt and Kevin Duh. 2014. A framework for
analyzing semantic change of words across time. In
Proc. 14th ACM/IEEE-CS Conf. on Digital Libraries,
pages 229–238. IEEE Press.

Yoon Kim, Yi-I. Chiu, Kentaro Hanaki, Darshan Hegde,
and Slav Petrov. 2014. Temporal analysis of lan-
guage through neural language models. arXiv preprint
arXiv:1405.3515.

2120

Walter Kintsch. 2000. Metaphor comprehension: A
computational theory. Psychon. Bull. Rev., 7(2):257–
266.

Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and
Steven Skiena. 2014. Statistically significant detec-
tion of linguistic change. In Proc. 24th WWW Conf.,
pages 625–635.

Yuri Lin, Jean-Baptiste Michel, Erez Lieberman Aiden,
Jon Orwant, Will Brockman, and Slav Petrov. 2012.
Syntactic annotations for the google books ngram cor-
pus. In Proc. ACL System Demonstrations.

Charles E McCulloch and John M Neuhaus. 2001. Gen-
eralized linear mixed models. Wiley-Interscience,
Hoboken, NJ.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
NIPS.

Martina Rodda, Marco Senaldi, and Alessandro Lenci.
2016. Panta rei: Tracking Semantic Change with Dis-
tributional Semantics in Ancient Greek. In Italian
Conference of Computational Linguistics.

Hinrich Schutze and Jan Pedersen. 1993. A vector model
for syntagmatic and paradigmatic relatedness. In Proc.
9th Annu. Conf. of the UW Centre for the New OED
and Text Research, pages 104–113. Citeseer.

Elizabeth Closs Traugott and Richard B Dasher. 2001.
Regularity in Semantic Change. Cambridge Univer-
sity Press, Cambridge, UK.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of semantics.
J. Artif. Intell. Res., 37(1):141–188.

Yang Xu and Charles Kemp. 2015. A computational
evaluation of two laws of semantic change. In Proc.
37th Annu. Conf. Cogn. Sci. Soc.

2121

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2122–2132,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

How NOT To Evaluate Your Dialogue System: An Empirical Study of
Unsupervised Evaluation Metrics for Dialogue Response Generation

Chia-Wei Liu1∗, Ryan Lowe1∗, Iulian V. Serban2∗, Michael Noseworthy1∗,
Laurent Charlin1, Joelle Pineau1

1 School of Computer Science, McGill University
{chia-wei.liu,ryan.lowe,michael.noseworthy}@mail.mcgill.ca

{lcharlin, jpineau}@cs.mcgill.ca
2 DIRO, Université de Montréal

iulian.vlad.serban@umontreal.ca

Abstract

We investigate evaluation metrics for dialogue
response generation systems where supervised
labels, such as task completion, are not avail-
able. Recent works in response generation
have adopted metrics from machine transla-
tion to compare a model’s generated response
to a single target response. We show that
these metrics correlate very weakly with hu-
man judgements in the non-technical Twitter
domain, and not at all in the technical Ubuntu
domain. We provide quantitative and quali-
tative results highlighting specific weaknesses
in existing metrics, and provide recommenda-
tions for future development of better auto-
matic evaluation metrics for dialogue systems.

1 Introduction

An important aspect of dialogue response generation
systems, which are trained to produce a reasonable
utterance given a conversational context, is how to
evaluate the quality of the generated response. Typi-
cally, evaluation is done using human-generated su-
pervised signals, such as a task completion test or a
user satisfaction score (Walker et al., 1997; Möller
et al., 2006; Kamm, 1995), which are relevant when
the dialogue is task-focused. We call models opti-
mized for such supervised objectives supervised di-
alogue models, while those that do not are unsuper-
vised dialogue models.

This paper focuses on unsupervised dialogue re-
sponse generation models, such as chatbots. These

∗Denotes equal contribution.

models are receiving increased attention, partic-
ularly using end-to-end training with neural net-
works (Serban et al., 2016; Sordoni et al., 2015;
Vinyals and Le, 2015). This avoids the need to col-
lect supervised labels on a large scale, which can
be prohibitively expensive. However, automatically
evaluating the quality of these models remains an
open question. Automatic evaluation metrics would
help accelerate the deployment of unsupervised re-
sponse generation systems.

Faced with similar challenges, other natural lan-
guage tasks have successfully developed automatic
evaluation metrics. For example, BLEU (Papineni
et al., 2002a) and METEOR (Banerjee and Lavie,
2005) are now standard for evaluating machine
translation models, and ROUGE (Lin, 2004) is often
used for automatic summarization. These metrics
have recently been adopted by dialogue researchers
(Ritter et al., 2011; Sordoni et al., 2015; Li et al.,
2015; Galley et al., 2015b; Wen et al., 2015; Li
et al., 2016). However these metrics assume that
valid responses have significant word overlap with
the ground truth responses. This is a strong assump-
tion for dialogue systems, where there is significant
diversity in the space of valid responses to a given
context. This is illustrated in Table 1, where two rea-
sonable responses are proposed to the context, but
these responses do not share any words in common
and do not have the same semantic meaning.

In this paper, we investigate the correlation be-
tween the scores from several automatic evaluation
metrics and human judgements of dialogue response
quality, for a variety of response generation models.
We consider both statistical word-overlap similar-

2122

Context of Conversation
Speaker A: Hey John, what do you want to do tonight?
Speaker B: Why don’t we go see a movie?
Ground-Truth Response
Nah, I hate that stuff, let’s do something active.
Model Response
Oh sure! Heard the film about Turing is out!

Table 1: Example showing the intrinsic diversity
of valid responses in a dialogue. The (reasonable)
model response would receive a BLEU score of 0.

ity metrics such as BLEU, METEOR, and ROUGE,
and word embedding metrics derived from word
embedding models such as Word2Vec (Mikolov et
al., 2013). We find that all metrics show either
weak or no correlation with human judgements, de-
spite the fact that word overlap metrics have been
used extensively in the literature for evaluating dia-
logue response models (see above, and Lasguido et
al. (2014)). In particular, we show that these metrics
have only a small positive correlation on the chitchat
oriented Twitter dataset, and no correlation at all on
the technical Ubuntu Dialogue Corpus. For the word
embedding metrics, we show that this is true even
though all metrics are able to significantly distin-
guish between baseline and state-of-the-art models
across multiple datasets. We further highlight the
shortcomings of these metrics using: a) a statisti-
cal analysis of our survey’s results; b) a qualitative
analysis of examples from our data; and c) an explo-
ration of the sensitivity of the metrics.

Our results indicate that a shift must be made in
the research community away from these metrics,
and highlight the need for a new metric that corre-
lates more strongly with human judgement.

2 Related Work

We focus on metrics that are model-independent,
i.e. where the model generating the response does
not also evaluate its quality; thus, we do not con-
sider word perplexity, although it has been used to
evaluate unsupervised dialogue models (Serban et
al., 2015). This is because it is not computed on
a per-response basis, and cannot be computed for
retrieval models. Further, we only consider met-
rics that can be used to evaluate proposed responses
against ground-truth responses, so we do not con-
sider retrieval-based metrics such as recall, which

has been used to evaluate dialogue models (Schatz-
mann et al., 2005; Lowe et al., 2015). We also do not
consider evaluation methods for supervised evalua-
tion methods.1

Several recent works on unsupervised dialogue
systems adopt the BLEU score for evaluation. Rit-
ter et al. (2011) formulate the unsupervised learning
problem as one of translating a context into a candi-
date response. They use a statistical machine trans-
lation (SMT) model to generate responses to various
contexts using Twitter data, and show that it outper-
forms information retrieval baselines according to
both BLEU and human evaluations. Sordoni et al.
(2015) extend this idea using a recurrent language
model to generate responses in a context-sensitive
manner. They also evaluate using BLEU, however
they produce multiple ground truth responses by re-
trieving 15 responses from elsewhere in the corpus,
using a simple bag-of-words model. Li et al. (2015)
evaluate their proposed diversity-promoting objec-
tive function for neural network models using BLEU
score with only a single ground truth response. A
modified version of BLEU, deltaBLEU (Galley et
al., 2015b), which takes into account several human-
evaluated ground truth responses, is shown to have a
weak to moderate correlation to human judgements
using Twitter dialogues. However, such human an-
notation is often infeasible to obtain in practice. Gal-
ley et al. (2015b) also show that, even with sev-
eral ground truth responses available, the standard
BLEU metric does not correlate strongly with hu-
man judgements.

There has been significant previous work that
evaluates how well automatic metrics correlate with
human judgements in in both machine translation
(Callison-Burch et al., 2010; Callison-Burch et al.,
2011; Bojar et al., 2014; Graham et al., 2015)
and natural language generation (NLG) (Stent et
al., 2005; Cahill, 2009; Reiter and Belz, 2009; Es-
pinosa et al., 2010). There has also been work
criticizing the usefulness of BLEU in particular for
machine translation (Callison-Burch et al., 2006).
While many of the criticisms in these works apply
to dialogue generation, we note that generating di-
alogue responses conditioned on the conversational

1Evaluation methods in the supervised setting have been
well studied, see (Walker et al., 1997; Möller et al., 2006; Joki-
nen and McTear, 2009).

2123

context is in fact a more difficult problem. This is
because most of the difficulty in automatically eval-
uating language generation models lies in the large
set of correct answers. Dialogue response genera-
tion given solely the context intuitively has a higher
diversity (or entropy) than translation given text in
a source language, or surface realization given some
intermediate form (Artstein et al., 2009).

3 Evaluation Metrics

Given a dialogue context and a proposed response,
our goal is to automatically evaluate how appropri-
ate the proposed response is to the conversation. We
focus on metrics that compare it to the ground truth
response of the conversation. In particular, we inves-
tigate two approaches: word based similarity met-
rics and word-embedding based similarity metrics.

3.1 Word Overlap-based Metrics

We first consider metrics that evaluate the amount
of word-overlap between the proposed response and
the ground-truth response. We examine the BLEU
and METEOR scores that have been used for ma-
chine translation, and the ROUGE score that has
been used for automatic summarization. While these
metrics have been shown to correlate with human
judgements in their target domains (Papineni et al.,
2002a; Lin, 2004), they have not been thoroughly
investigated for dialogue systems.2

We denote the ground truth response as r (thus we
assume that there is a single candidate ground truth
response), and the proposed response as r̂. The j’th
token in the ground truth response r is denoted by
wj , with ŵj denoting the j’th token in the proposed
response r̂.

BLEU. BLEU (Papineni et al., 2002a) analyzes
the co-occurrences of n-grams in the ground truth
and the proposed responses. It first computes an
n-gram precision for the whole dataset (we assume
that there is a single candidate ground truth response

2To the best of our knowledge, only BLEU has been eval-
uated in the dialogue system setting quantitatively by Galley
et al. (2015a) on the Twitter domain. However, they carried
out their experiments in a very different setting with multiple
ground truth responses, which are rarely available in practice,
and without providing any qualitative analysis of their results.

per context):

Pn(r, r̂) =

∑
k min(h(k, r), h(k, r̂i))∑

k h(k, ri)

where k indexes all possible n-grams of length n and
h(k, r) is the number of n-grams k in r.3 To avoid
the drawbacks of using a precision score, namely
that it favours shorter (candidate) sentences, the au-
thors introduce a brevity penalty. BLEU-N, where
N is the maximum length of n-grams considered, is
defined as:

BLEU-N := b(r, r̂) exp(
N∑

n=1

βn logPn(r, r̂))

βn is a weighting that is usually uniform, and b(·) is
the brevity penalty. The most commonly used ver-
sion of BLEU uses N = 4. Modern versions of
BLEU also use sentence-level smoothing, as the ge-
ometric mean often results in scores of 0 if there is
no 4-gram overlap (Chen and Cherry, 2014). Note
that BLEU is usually calculated at the corpus-level,
and was originally designed for use with multiple
reference sentences.

METEOR. The METEOR metric (Banerjee and
Lavie, 2005) was introduced to address several
weaknesses in BLEU. It creates an explicit align-
ment between the candidate and target responses.
The alignment is based on exact token matching,
followed by WordNet synonyms, stemmed tokens,
and then paraphrases. Given a set of alignments, the
METEOR score is the harmonic mean of precision
and recall between the proposed and ground truth
sentence.

ROUGE. ROUGE (Lin, 2004) is a set of evalua-
tion metrics used for automatic summarization. We
consider ROUGE-L, which is a F-measure based on
the Longest Common Subsequence (LCS) between
a candidate and target sentence. The LCS is a set of
words which occur in two sentences in the same or-
der; however, unlike n-grams the words do not have
to be contiguous, i.e. there can be other words in be-
tween the words of the LCS.

3Note that the min in this equation is calculating the num-
ber of co-occurrences of n-gram k between the ground truth re-
sponse r and the proposed response r̂, as it computes the fewest
appearances of k in either response.

2124

3.2 Embedding-based Metrics

An alternative to using word-overlap based metrics
is to consider the meaning of each word as defined
by a word embedding, which assigns a vector to
each word. Methods such as Word2Vec (Mikolov et
al., 2013) calculate these embeddings using distribu-
tional semantics; that is, they approximate the mean-
ing of a word by considering how often it co-occurs
with other words in the corpus.4 These embedding-
based metrics usually approximate sentence-level
embeddings using some heuristic to combine the
vectors of the individual words in the sentence. The
sentence-level embeddings between the candidate
and target response are compared using a measure
such as cosine distance.

Greedy Matching. Greedy matching is the one
embedding-based metric that does not compute
sentence-level embeddings. Instead, given two se-
quences r and r̂, each token w ∈ r is greedily
matched with a token ŵ ∈ r̂ based on the cosine
similarity of their word embeddings (ew), and the
total score is then averaged across all words:

G(r, r̂) =

∑
w∈r; maxŵ∈r̂ cos sim(ew, eŵ)

|r|

GM(r, r̂) =
G(r, r̂) +G(r̂, r)

2

This formula is asymmetric, thus we must average
the greedy matching scores G in each direction.
This was originally introduced for intelligent tutor-
ing systems (Rus and Lintean, 2012). The greedy
approach favours responses with key words that are
semantically similar to those in the ground truth re-
sponse.

Embedding Average. The embedding average
metric calculates sentence-level embeddings using
additive composition, a method for computing the
meanings of phrases by averaging the vector repre-
sentations of their constituent words (Foltz et al.,
1998; Landauer and Dumais, 1997; Mitchell and
Lapata, 2008). This method has been widely used
in other domains, for example in textual similarity

4To maintain statistical independence between the task and
each performance metric, it is important that the word embed-
dings used are trained on corpora which do not overlap with the
task corpus.

tasks (Wieting et al., 2015). The embedding aver-
age, ē, is defined as the mean of the word embed-
dings of each token in a sentence r:

ēr =

∑
w∈r ew

|∑w′∈r ew′ |
.

To compare a ground truth response r and retrieved
response r̂, we compute the cosine similarity be-
tween their respective sentence level embeddings:
EA := cos(ēr, ēr̂).

Vector Extrema. Another way to calculate
sentence-level embeddings is using vector ex-
trema (Forgues et al., 2014). For each dimension
of the word vectors, take the most extreme value
amongst all word vectors in the sentence, and use
that value in the sentence-level embedding:

erd =

{
maxw∈r ewd if ewd > |minw′∈r ew′d|
minw∈r ewd otherwise

where d indexes the dimensions of a vector; ewd is
the d’th dimensions of ew (w’s embedding). The
min in this equation refers to the selection of the
largest negative value, if it has a greater magnitude
than the largest positive value.

Similarity between response vectors is again com-
puted using cosine distance. Intuitively, this ap-
proach prioritizes informative words over common
ones; words that appear in similar contexts will be
close together in the vector space. Thus, common
words are pulled towards the origin because they
occur in various contexts, while words carrying im-
portant semantic information will lie further away.
By taking the extrema along each dimension, we are
thus more likely to ignore common words.

4 Dialogue Response Generation Models

In order to determine the correlation between au-
tomatic metrics and human judgements of response
quality, we obtain response from a diverse range of
response generation models in the recent literature,
including both retrieval and generative models.

4.1 Retrieval Models
Ranking or retrieval models for dialogue systems
are typically evaluated based on whether they can
retrieve the correct response from a corpus of pre-
defined responses, which includes the ground truth

2125

Ubuntu Dialogue Corpus Twitter Corpus
Embedding Greedy Vector Embedding Greedy Vector
Averaging Matching Extrema Averaging Matching Extrema

R-TFIDF 0.536 ± 0.003 0.370 ± 0.002 0.342 ± 0.002 0.483 ± 0.002 0.356 ± 0.001 0.340 ± 0.001
C-TFIDF 0.571 ± 0.003 0.373 ± 0.002 0.353 ± 0.002 0.531 ± 0.002 0.362 ± 0.001 0.353 ± 0.001
DE 0.650 ± 0.003 0.413 ± 0.002 0.376 ± 0.001 0.597 ± 0.002 0.384 ± 0.001 0.365 ± 0.001
LSTM 0.130 ± 0.003 0.097 ± 0.003 0.089 ± 0.002 0.593 ± 0.002 0.439 ± 0.002 0.420 ± 0.002
HRED 0.580 ± 0.003 0.418 ± 0.003 0.384 ± 0.002 0.599 ± 0.002 0.439 ± 0.002 0.422 ± 0.002

Table 2: Models evaluated using the vector-based evaluation metrics, with 95% confidence intervals.

response to the conversation (Schatzmann et al.,
2005). Such systems can be evaluated using recall or
precision metrics. However, when deployed in a real
setting these models will not have access to the cor-
rect response given an unseen conversation. Thus,
in the results presented below we remove one occur-
rence of the ground-truth response from the corpus
and ask the model to retrieve the most appropriate
response from the remaining utterances. Note that
this does not mean the correct response will not ap-
pear in the corpus at all; in particular, if there ex-
ists another context in the dataset with an identical
ground-truth response, this will be available for se-
lection by the model.

We then evaluate each model by comparing the
retrieved response to the ground truth response of
the conversation. This closely imitates real-life de-
ployment of these models, as it tests the ability of
the model to generalize to unseen contexts.

TF-IDF. We consider a simple Term Frequency
- Inverse Document Frequency (TF-IDF) retrieval
model (Lowe et al., 2015). TF-IDF is a statis-
tic that intends to capture how important a given
word is to some document, which is calculated as:
tfidf(w, c, C) = f(w, c)× log N

|{c∈C:w∈c}| , where C
is the set of all contexts in the corpus, f(w, c) indi-
cates the number of times word w appeared in con-
text c, N is the total number of dialogues, and the
denominator represents the number of dialogues in
which the word w appears.

In order to apply TF-IDF as a retrieval model for
dialogue, we first compute the TF-IDF vectors for
each context and response in the corpus. We then
return the response with the largest cosine similar-
ity in the corpus, either between the input context
and corpus contexts (C-TFIDF), or between the in-
put context and corpus responses (R-TFIDF).

Dual Encoder. Next we consider the recurrent
neural network (RNN) based architecture called the
Dual Encoder (DE) model (Lowe et al., 2015). The
DE model consists of two RNNs which respectively
compute the vector representation of an input con-
text and response, c, r ∈ Rn. The model then cal-
culates the probability that the given response is the
ground truth response given the context, by taking
a weighted dot product: p(r is correct|c, r,M) =
σ(cTMr + b) where M is a matrix of learned pa-
rameters and b is a bias. The model is trained using
negative sampling to minimize the cross-entropy er-
ror of all (context, response) pairs. To our knowl-
edge, our application of neural network models to
large-scale retrieval in dialogue systems is novel.

4.2 Generative Models

In addition to retrieval models, we also consider gen-
erative models. In this context, we refer to a model
as generative if it is able to generate entirely new
sentences that are unseen in the training set.

LSTM language model. The baseline model is an
LSTM language model (Hochreiter and Schmidhu-
ber, 1997) trained to predict the next word in the
(context, response) pair. During test time, the model
is given a context, encodes it with the LSTM and
generates a response using a greedy beam search
procedure (Graves, 2013).

HRED. Finally we consider the Hierarchical Re-
current Encoder-Decoder (HRED) (Serban et al.,
2015). In the traditional Encoder-Decoder frame-
work, all utterances in the context are concatenated
together before encoding. Thus, information from
previous utterances is far outweighed by the most
recent utterance. The HRED model uses a hier-
archy of encoders; each utterance in the context
passes through an ‘utterance-level’ encoder, and the

2126

Twitter Ubuntu
Metric Spearman p-value Pearson p-value Spearman p-value Pearson p-value
Greedy 0.2119 0.034 0.1994 0.047 0.05276 0.6 0.02049 0.84
Average 0.2259 0.024 0.1971 0.049 -0.1387 0.17 -0.1631 0.10
Extrema 0.2103 0.036 0.1842 0.067 0.09243 0.36 -0.002903 0.98
METEOR 0.1887 0.06 0.1927 0.055 0.06314 0.53 0.1419 0.16
BLEU-1 0.1665 0.098 0.1288 0.2 -0.02552 0.8 0.01929 0.85
BLEU-2 0.3576 < 0.01 0.3874 < 0.01 0.03819 0.71 0.0586 0.56
BLEU-3 0.3423 < 0.01 0.1443 0.15 0.0878 0.38 0.1116 0.27
BLEU-4 0.3417 < 0.01 0.1392 0.17 0.1218 0.23 0.1132 0.26
ROUGE 0.1235 0.22 0.09714 0.34 0.05405 0.5933 0.06401 0.53
Human 0.9476 < 0.01 1.0 0.0 0.9550 < 0.01 1.0 0.0

Table 3: Correlation between each metric and human judgements for each response. Correlations shown in
the human row result from randomly dividing human judges into two groups.

Spearman p-value Pearson p-value
BLEU-1 0.1580 0.12 0.2074 0.038
BLEU-2 0.2030 0.043 0.1300 0.20

Table 4: Correlation between BLEU metric and
human judgements after removing stopwords and
punctuation for the Twitter dataset.

Mean score
∆w <= 6 ∆w >= 6 p-value

(n=47) (n=53)
BLEU-1 0.1724 0.1009 < 0.01
BLEU-2 0.0744 0.04176 < 0.01
Average 0.6587 0.6246 0.25
METEOR 0.2386 0.2073 < 0.01
Human 2.66 2.57 0.73

Table 5: Effect of differences in response length
for the Twitter dataset, ∆w = absolute difference in
#words between a ground truth response and pro-
posed response

output of these encoders is passed through another
‘context-level’ encoder, which enables the handling
of longer-term dependencies.

4.3 Conclusions from an Incomplete Analysis

When evaluation metrics are not explicitly corre-
lated to human judgement, it is possible to draw
misleading conclusions by examining how the met-
rics rate different models. To illustrate this point,
we compare the performance of selected models ac-
cording to the embedding metrics on two different
domains: the Ubuntu Dialogue Corpus (Lowe et
al., 2015), which contains technical vocabulary and
where conversations are often oriented towards solv-

ing a particular problem, and a non-technical Twitter
corpus collected following the procedure of Ritter
et al. (2010). We consider these two datasets since
they cover contrasting dialogue domains, i.e. tech-
nical help vs casual chit-chat, and because they are
amongst the largest publicly available corpora, mak-
ing them good candidates for building data-driven
dialogue systems.

Results on the proposed embedding metrics are
shown in Table 2. For the retrieval models, we ob-
serve that the DE model significantly outperforms
both TFIDF baselines on all metrics across both
datasets. Further, the HRED model significantly
outperforms the basic LSTM generative model in
both domains, and appears to be of similar strength
as the DE model. Based on these results, one might
be tempted to conclude that there is some infor-
mation being captured by these metrics, that sig-
nificantly differentiates models of different qual-
ity. However, as we show in the next section,
the embedding-based metrics correlate only weakly
with human judgements on the Twitter corpus, and
not at all on the Ubuntu Dialogue Corpus. This
demonstrates that metrics that have not been specif-
ically correlated with human judgements on a new
task should not be used to evaluate that task.

5 Human Correlation Analysis

Data Collection. We conducted a human survey
to determine the correlation between human judge-
ments on the quality of responses, and the score as-
signed by each metric. We aimed to follow the pro-
cedure for the evaluation of BLEU (Papineni et al.,

2127

(a) Twitter

(b) Ubuntu

Figure 1: Scatter plots showing the correlation between metrics and human judgements on the Twitter
corpus (a) and Ubuntu Dialogue Corpus (b). The plots represent BLEU-2 (left), embedding average (center),
and correlation between two randomly selected halves of human respondents (right).

2002a). 25 volunteers from the Computer Science
department at the author’s institution were given a
context and one proposed response, and were asked
to judge the response quality on a scale of 1 to 5.5;
a 1 indicates that the response is not appropriate or
sensible given the context, and a 5 indicates that the
response is very reasonable. Out of the 25 respon-
dents, 23 had Cohen’s kappa scores κ > 0.2 w.r.t.
the other respondents, which is a standard measure
for inter-rater agreement (Cohen, 1968). The 2 re-
spondents with κ < 0.2, indicating slight agree-
ment, were excluded from the analysis below. The
median κ score was approximately 0.55, roughly in-
dicating moderate to strong annotator agreement.

Each volunteer was given 100 questions per
dataset. These questions correspond to 20 unique
contexts, with 5 different responses: one utterance

5Studies asking humans to evaluate text often rate different
aspects separately, such as ‘adequacy’, ‘fluency’ and ‘informa-
tiveness’ of the text (Hovy, 1999; Papineni et al., 2002b) Our
evaluation focuses on adequacy. We did not consider fluency
because 4 out of the 5 proposed responses to each context were
generated by a human. We did not consider informativeness be-
cause in the domains considered, it is not necessarily important
(in Twitter), or else it seems to correlate highly with adequacy
(in Ubuntu).

randomly drawn from elsewhere in the test set, the
response selected from each of the TF-IDF, DE, and
HRED models, and a response written by a human
annotator. These were chosen as they cover the
range of qualities almost uniformly (see Figure 1).

Survey Results. We present correlation results be-
tween the human judgements and each metric in Ta-
ble 3. We compute the Pearson correlation, which
estimates linear correlation, and Spearman correla-
tion, which estimates any monotonic correlation.

The first observation is that in both domains the
BLEU-4 score, which has previously been used to
evaluate unsupervised dialogue systems, shows very
weak if any correlation with human judgement. In
fact we found that the BLEU-3 and BLEU-4 scores
were near-zero for a majority of response pairs; for
BLEU-4, only four examples had a score > 10−9.
Despite this, they still correlate with human judge-
ments on the Twitter Corpus at a rate similar to
BLEU-2. This is because of the smoothing con-
stant, which gives a tiny weight to unigrams and bi-
grams despite the absence of higher-order n-grams.
BLEU-3 and BLEU-4 behave as a scaled, noisy ver-
sion of BLEU-2; thus, if one is to evaluate dialogue

2128

Context of Conversation
A: dearest! question. how many thousands of people
can panaad occupy?
B: @user panaad has <number> k seat capacity while rizal
has <number> k thats why they choose rizal i think .
Ground Truth Response
A: now i know about the siting capacity . thanks for the
info @user great evening.
Proposed Response
A: @user makes sense. thanks!

Context of Conversation
A: never felt more sad than i am now
B: @user aww why ?
A: @user @user its a long story ! sure you wanna know
it ? bahaha and thanks for caring btw <heart>
Ground Truth Response
A: @user i don ’t mind to hear it i ’ve got all day and
youre welcome <number>
Proposed Response
A: @user i know , i ’m just so happy for you ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Figure 2: Examples where the metrics rated the response poorly and humans rated it highly (left), and the
converse (right). Both responses are given near-zero score by BLEU-N for N> 1. While no metric will
perform perfectly on all examples, we present these examples to provide intuition on how example-level
errors become aggregated into poor correlation to human judgements at the corpus-level.

responses with BLEU, we recommend the choice of
N = 2 over N = 3 or 4. Note that using a test cor-
pus larger than the size reported in this paper may
lead to stronger correlations for BLEU-3 and BLEU-
4, due to a higher number of non-zero scores.

It is interesting to note that, while some of the em-
bedding metrics and BLEU show small positive cor-
relation in the non-technical Twitter domain, there
is no metric that significantly correlates with hu-
mans on the Ubuntu Dialogue Corpus. This is likely
because the correct Ubuntu responses contain spe-
cific technical words that are less likely to be pro-
duced by our models. Further, it is possible that re-
sponses in the Ubuntu Dialogue Corpus have intrin-
sically higher variability (or entropy) than Twitter
when conditioned on the context, making the eval-
uation problem significantly more difficult.

Figure 1 illustrates the relationship between met-
rics and human judgements. We include only the
best performing metric using word-overlaps, i.e. the
BLEU-2 score (left), and the best performing met-
ric using word embeddings, i.e. the vector average
(center). These plots show how weak the correlation
is: in both cases, they appear to be random noise.
It seems as though the BLEU score obtains a pos-
itive correlation because of the large number of re-
sponses that are given a score of 0 (bottom left cor-
ner of the first plot). This is in stark contrast to the
inter-rater agreement, which is plotted between two
randomly sampled halves of the raters (right-most
plots). We also calculated the BLEU scores after
removing stopwords and punctuation from the re-
sponses. As shown in Table 4, this weakens the cor-

relation with human judgements for BLEU-2 com-
pared to the values in Table 3, and suggests that
BLEU is sensitive to factors that do not change the
semantics of the response.

Finally, we examined the effect of response length
on the metrics, by considering changes in scores
when the ground truth and proposed response had
a large difference in word counts. Table 4 shows
that BLEU and METEOR are particularly sensitive
to this aspect, compared to the Embedding Average
metric and human judgement.

Qualitative Analysis. In order to determine
specifically why the metrics fail, we examine qual-
itative samples where there is a disagreement be-
tween the metrics and human rating. Although these
only show inconsistencies at the example-level, they
provide some intuition as to why the metrics don’t
correlate with human judgements at the corpus-
level. We present in Figure 2 two examples where all
of the embedding-based metrics and BLEU-1 score
the proposed response significantly differently than
the humans.

The left of Figure 2 shows an example where
the embedding-based metrics score the proposed re-
sponse lowly, while humans rate it highly. It is
clear from the context that the proposed response
is reasonable – indeed both responses intend to ex-
press gratitude. However, the proposed response
has a different wording than the ground truth re-
sponse, and therefore the metrics are unable to sep-
arate the salient words from the rest. This sug-
gests that the embedding-based metrics would ben-

2129

efit from a weighting of word saliency.
The right of the figure shows the reverse scenario:

the embedding-based metrics score the proposed re-
sponse highly, while humans do not. This is most
likely due to the frequently occurring ‘i’ token, and
the fact that ‘happy’ and ‘welcome’ may be close
together in the embedding space. However, from
a human perspective there is a significant semantic
difference between the responses as they pertain to
the context. Metrics that take into account the con-
text may be required in order to differentiate these
responses. Note that in both responses in Figure 2,
there are no overlapping n-grams greater than un-
igrams between the ground truth and proposed re-
sponses; thus, all of BLEU-2,3,4 would assign a
score near 0 to the response.

6 Discussion

We have shown that many metrics commonly used
in the literature for evaluating unsupervised dialogue
systems do not correlate strongly with human judge-
ment. Here we elaborate on important issues arising
from our analysis.

Constrained tasks. Our analysis focuses on rela-
tively unconstrained domains. Other work, which
separates the dialogue system into a dialogue plan-
ner and a natural language generation component
for applications in constrained domains, may find
stronger correlations with the BLEU metric. For ex-
ample, Wen et al. (2015) propose a model to map
from dialogue acts to natural language sentences and
use BLEU to evaluate the quality of the generated
sentences. Since the mapping from dialogue acts to
natural language sentences has lower diversity and
is more similar to the machine translation task, it
seems likely that BLEU will correlate better with
human judgements. However, an empirical inves-
tigation is still necessary to justify this.

Incorporating multiple responses. Our correla-
tion results assume that only one ground truth re-
sponse is available given each context. Indeed, this
is the common setting in most of the recent literature
on training end-to-end conversation models. There
has been some work on using a larger set of auto-
matically retrieved plausible responses when evalu-
ating with BLEU (Galley et al., 2015b). However,

there is no standard method for doing this in the lit-
erature. Future work should examine how retriev-
ing additional responses affects the correlation with
word-overlap metrics.

Searching for suitable metrics. While we pro-
vide evidence against existing metrics, we do not
yet provide good alternatives for unsupervised eval-
uation. Despite the poor performance of the word
embedding-based metrics in this survey, we believe
that metrics based on distributed sentence represen-
tations hold the most promise for the future. This
is because word-overlap metrics will simply require
too many ground-truth responses to find a significant
match for a reasonable response, due to the high di-
versity of dialogue responses. As a simple example,
the skip-thought vectors of Kiros et al. (2015) could
be considered. Since the embedding-based metrics
in this paper only consist of basic averages of vectors
obtained through distributional semantics, they are
insufficiently complex for modeling sentence-level
compositionality in dialogue. Instead, these metrics
can be interpreted as calculating the topicality of a
proposed response (i.e. how on-topic the proposed
response is, compared to the ground-truth).

All of the metrics considered in this paper directly
compare a proposed response to the ground-truth,
without considering the context of the conversation.
However, metrics that take into account the context
could also be considered. Such metrics could come
in the form of an evaluation model that is learned
from data. This model could be either a discrim-
inative model that attempts to distinguish between
model and human responses, or a model that uses
data collected from the human survey in order to
provide human-like scores to proposed responses.
Finally, we must consider the hypothesis that learn-
ing such models from data is no easier than solving
the problem of dialogue response generation. If this
hypothesis is true, we must concede and always use
human evaluations together with metrics that only
roughly approximate human judgements.

References
R. Artstein, S. Gandhe, J. Gerten, A. Leuski, and D.

Traum. 2009. Semi-formal evaluation of conversa-
tional characters. In Languages: From Formal to Nat-
ural, pages 22–35. Springer.

2130

S. Banerjee and A. Lavie. 2005. METEOR: An auto-
matic metric for mt evaluation with improved corre-
lation with human judgments. In Proceedings of the
ACL workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion.

O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn,
J. Leveling, C. Monz, P. Pecina, M. Post, H. Saint-
Amand, et al. 2014. Findings of the 2014 workshop
on statistical machine translation. In Proceedings of
the Ninth Workshop on Statistical Machine Transla-
tion, pages 12–58. Association for Computational Lin-
guistics Baltimore, MD, USA.

A. Cahill. 2009. Correlating human and automatic
evaluation of a german surface realiser. In Proceed-
ings of the ACL-IJCNLP 2009 Conference Short Pa-
pers, pages 97–100. Association for Computational
Linguistics.

C. Callison-Burch, M. Osborne, and P. Koehn. 2006.
Re-evaluation the role of bleu in machine translation
research. In EACL, volume 6, pages 249–256.

C. Callison-Burch, P. Koehn, C. Monz, K. Peterson, M.
Przybocki, and O. F. Zaidan. 2010. Findings of the
2010 joint workshop on statistical machine translation
and metrics for machine translation. In Proceedings of
the Joint Fifth Workshop on Statistical Machine Trans-
lation and MetricsMATR, pages 17–53. Association
for Computational Linguistics.

C. Callison-Burch, P. Koehn, C. Monz, and O. F. Zaidan.
2011. Findings of the 2011 workshop on statistical
machine translation. In Proceedings of the Sixth Work-
shop on Statistical Machine Translation, pages 22–64.
Association for Computational Linguistics.

B. Chen and C. Cherry. 2014. A systematic comparison
of smoothing techniques for sentence-level bleu. ACL
2014, page 362.

J. Cohen. 1968. Weighted kappa: Nominal scale
agreement provision for scaled disagreement or partial
credit. Psychological bulletin, 70(4):213.

D. Espinosa, R. Rajkumar, M. White, and S. Berleant.
2010. Further meta-evaluation of broad-coverage sur-
face realization. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 564–574. Association for Compu-
tational Linguistics.

P. W. Foltz, W. Kintsch, and T. K. Landauer. 1998. The
measurement of textual coherence with latent semantic
analysis. Discourse processes, 25(2-3):285–307.

G. Forgues, J. Pineau, J.-M. Larcheveque, and R. Trem-
blay. 2014. Bootstrapping dialog systems with word
embeddings.

M. Galley, C. Brockett, A. Sordoni, Y. Ji, M. Auli, C.
Quirk, M. l, J. Gao, and B. Dolan. 2015a. deltaBLEU:

A discriminative metric for generation tasks with in-
trinsically diverse targets. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics and the International Joint Conference on
Natural Language Processing (Short Papers).

M. Galley, C. Brockett, A. Sordoni, Y. Ji, M. Auli, C.
Quirk, M. Mitchell, J. Gao, and B. Dolan. 2015b.
deltableu: A discriminative metric for generation
tasks with intrinsically diverse targets. arXiv preprint
arXiv:1506.06863.

Y. Graham, N. Mathur, and T. Baldwin. 2015. Accurate
evaluation of segment-level machine translation met-
rics. In Proc. of NAACL-HLT, pages 1183–1191. Cite-
seer.

A. Graves. 2013. Generating sequences with recurrent
neural networks. arXiv preprint arXiv:1308.0850.

S. Hochreiter and J. Schmidhuber. 1997. Long short-
term memory. Neural Computation, 9(8):1735–1780.

E. Hovy. 1999. Toward finely differentiated evaluation
metrics for machine translation. In Proceedings of the
Eagles Workshop on Standards and Evaluation.

K. Jokinen and M. McTear. 2009. Spoken Dialogue Sys-
tems. Morgan Claypool.

C. Kamm. 1995. User interfaces for voice applica-
tions. Proceedings of the National Academy of Sci-
ences, 92(22):10031–10037.

R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Ur-
tasun, A. Torralba, and S. Fidler. 2015. Skip-thought
vectors. In Advances in Neural Information Process-
ing Systems, pages 3276–3284.

T. K. Landauer and S. T. Dumais. 1997. A solution to
plato’s problem: The latent semantic analysis theory
of acquisition, induction, and representation of knowl-
edge. Psychological review, 104(2):211.

N. Lasguido, S. Sakti, G. Neubig, T. Tomoki, and S.
Nakamura. 2014. Utilizing human-to-human conver-
sation examples for a multi domain chat-oriented di-
alog system. IEICE TRANSACTIONS on Information
and Systems, 97(6):1497–1505.

J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan.
2015. A diversity-promoting objective function
for neural conversation models. arXiv preprint
arXiv:1510.03055.

J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. 2016.
A persona-based neural conversation model. arXiv
preprint arXiv:1603.06155.

C.-Y. Lin. 2004. Rouge: A package for automatic eval-
uation of summaries. In Text summarization branches
out: Proceedings of the ACL-04 workshop, volume 8.

R. Lowe, N. Pow, I. V. Serban, and J. Pineau. 2015. The
ubuntu dialogue corpus: A large dataset for research
in unstructured multi-turn dialogue systems. In SIG-
DIAL.

2131

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. 2013. Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–
3119.

J. Mitchell and M. Lapata. 2008. Vector-based models
of semantic composition. In ACL, pages 236–244.

S. Möller, R. Englert, K. Engelbrecht, V. Hafner, A.
Jameson, A. Oulasvirta, A. Raake, and N. Reithinger.
2006. MeMo: towards automatic usability evaluation
of spoken dialogue services by user error simulations.
In INTERSPEECH.

K. Papineni, S. Roukos, T. Ward, and W. Zhu. 2002a.
BLEU: a method for automatic evaluation of machine
translation. In Proceedings of the 40th annual meeting
on Association for Computational Linguistics (ACL).

K. Papineni, S. Roukos, T. Ward, J. Henderson, and F.
Reeder. 2002b. Corpus-based comprehensive and
diagnostic MT evaluation: Initial Arabic, Chinese,
French, and Spanish results. In Proceedings of the
second international conference on Human Language
Technology Research, pages 132–137.

E. Reiter and A. Belz. 2009. An investigation into the
validity of some metrics for automatically evaluating
natural language generation systems. Computational
Linguistics, 35(4):529–558.

A. Ritter, C. Cherry, and B. Dolan. 2010. Unsupervised
modeling of twitter conversations. In North American
Chapter of the Association for Computational Linguis-
tics (NAACL).

A. Ritter, C. Cherry, and W. B. Dolan. 2011. Data-
driven response generation in social media. In Pro-
ceedings of the conference on empirical methods in
natural language processing, pages 583–593. Associ-
ation for Computational Linguistics.

V. Rus and M. Lintean. 2012. A comparison of greedy
and optimal assessment of natural language student
input using word-to-word similarity metrics. In Pro-
ceedings of the Seventh Workshop on Building Ed-
ucational Applications Using NLP, pages 157–162,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

J. Schatzmann, K. Georgila, and S. Young. 2005. Quan-
titative evaluation of user simulation techniques for
spoken dialogue systems. In 6th Special Interest
Group on Discourse and Dialogue (SIGDIAL).

I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J.
Pineau. 2015. Building End-To-End Dialogue Sys-
tems Using Generative Hierarchical Neural Networks.
In AAAI Conference on Artificial Intelligence.

I. V. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau,
A. Courville, and Y. Bengio. 2016. A hierarchical
latent variable encoder-decoder model for generating
dialogues. arXiv preprint arXiv:1605.06069.

A. Sordoni, M. Galley, M. Auli, C. Brockett, Y. Ji, M.
Mitchell, J. Nie, J. Gao, and B. Dolan. 2015. A
neural network approach to context-sensitive genera-
tion of conversational responses. In Conference of the
North American Chapter of the Association for Com-
putational Linguistics (NAACL-HLT 2015).

A. Stent, M. Marge, and M. Singhai. 2005. Evaluating
evaluation methods for generation in the presence of
variation. In International Conference on Intelligent
Text Processing and Computational Linguistics, pages
341–351. Springer.

O. Vinyals and Q. Le. 2015. A neural conversational
model. arXiv preprint arXiv:1506.05869.

M. Walker, D. Litman, C. Kamm, and A. Abella. 1997.
Paradise: A framework for evaluating spoken dialogue
agents. In Proceedings of the eighth conference on Eu-
ropean chapter of the Association for Computational
Linguistics, pages 271–280. ACL.

T.-H. Wen, M. Gasic, N. Mrksic, P.-H. Su, D. Vandyke,
and S. Young. 2015. Semantically conditioned lstm-
based natural language generation for spoken dialogue
systems. arXiv preprint arXiv:1508.01745.

J. Wieting, M. Bansal, K. Gimpel, and K. Livescu. 2015.
Towards universal paraphrastic sentence embeddings.
CoRR, abs/1511.08198.

2132

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2133–2143,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Addressee and Response Selection for Multi-Party Conversation

Hiroki Ouchi
Nara Institute of Science and Technology
ouchi.hiroki.nt6@is.naist.jp

Yuta Tsuboi
IBM Research - Tokyo
yutat@jp.ibm.com

Abstract

To create conversational systems working in
actual situations, it is crucial to assume that
they interact with multiple agents. In this
work, we tackle addressee and response se-
lection for multi-party conversation, in which
systems are expected to select whom they ad-
dress as well as what they say. The key chal-
lenge of this task is to jointly model who is
talking about what in a previous context. For
the joint modeling, we propose two model-
ing frameworks: 1) static modeling and 2) dy-
namic modeling. To show benchmark results
of our frameworks, we created a multi-party
conversation corpus. Our experiments on the
dataset show that the recurrent neural network
based models of our frameworks robustly pre-
dict addressees and responses in conversations
with a large number of agents.

1 Introduction

Short text conversation (STC) has been gaining pop-
ularity: given an input message, predict an appropri-
ate response in a single-round, two-party conversa-
tion (Wang et al., 2013; Shang et al., 2015). Model-
ing STC is simpler than modeling a complete con-
versation, but instantly helps applications such as
chat-bots and automatic short-message replies (Ji et
al., 2014).

Beyond two-party conversations, there is also a
need for modeling multi-party conversation, a form
of conversation with several interlocutors convers-
ing with each other (Traum, 2003; Dignum and
Vreeswijk, 2003; Uthus and Aha, 2013). For exam-
ple, in the Ubuntu Internet Relay Chat (IRC), sev-

Figure 1: Addressee and response selection for multi-party

conversation. A SYSTEM is required to select an appropriate

addressee from the interlocutors in the conversational context

and an appropriate response from the fixed set of candidates.

eral users cooperate to find a solution for a techni-
cal issue contributed by another user. Each agent
might have one part of the solution, and these pieces
have to be combined through conversation in order
to come up with the whole solution.

A unique issue of such multi-party conversations
is addressing, a behavior whereby interlocutors in-
dicate to whom they are speaking (Jovanović and
Akker, 2004; Akker and Traum, 2009). In face-
to-face communication, the basic clue for speci-
fying addressees is turning one’s face toward the
addressee. In contrast, in voice-only or text-
based communication, the explicit declaration of ad-
dressee’s names is more common.

In this work, we tackle addressee and response
selection for multi-party conversation: given a con-
text, predict an addressee and response. As Fig-
ure 1 shows, a system is required to select an ad-
dressee from the agents appearing in the previous
context and a response from a fixed set of candidate
responses (Section 3).

2133

The key challenge for predicting appropriate ad-
dressees and responses is to jointly capture who
is talking about what at each time step in a con-
text. For jointly modeling the speaker-utterance in-
formation, we present two modeling frameworks:
1) static modeling and 2) dynamic modeling (Sec-
tion 5). While speakers are represented as fixed
vectors in the static modeling, they are represented
as hidden state vectors that dynamically change
with time steps in the dynamic modeling. In prac-
tice, our models trained for the task can be applied
to retrieval-based conversation systems, which re-
trieves candidate responses from a large-scale repos-
itory with the matching model and returns the high-
est scoring one with the ranking model (Wang et al.,
2013; Ji et al., 2014; Wang et al., 2015). Our trained
models work as the ranking model and allow the
conversation system to produce addressees as well
as responses.

To evaluate the trained models, we provide a cor-
pus and dataset. By exploiting Ubuntu IRC Logs1,
we build a large-scale multi-party conversation cor-
pus, and create a dataset from it (Section 6). Our
experiments on the dataset show the models instanti-
ated by the static and dynamic modeling outperform
a strong baseline. In particular, the model based on
the dynamic modeling robustly predicts appropriate
addressees and responses even if the number of in-
terlocutors in a conversation increases.2

We make three contributions in this work:

1. We formalize the task of addressee and re-
sponse selection for multi-party conversation.

2. We present modeling frameworks and the per-
formance benchmarks for the task.

3. We build a large-scale multi-party conversation
corpus and dataset for the task.

2 Related Work

This work follows in the footsteps of Ritter et al.
(2011), who tackled the response generation prob-
lem: given a context, generate an appropriate re-
sponse. While previous response generation ap-

1http://irclogs.ubuntu.com/
2Our code, corpus, and dataset are publicly available at

https://github.com/hiroki13/response-ranking

proaches utilize statistical models on top of heuris-
tic rules or templates (Levin et al., 2000; Young et
al., 2010; Walker et al., 2003), they apply statistical
machine translation based techniques without such
heuristics, which leads to recent work utilizing the
SMT-based techniques with neural networks (Shang
et al., 2015; Vinyals and Le, 2015; Sordoni et al.,
2015; Serban et al., 2016).

As another popular approach, retrieval-based
techniques are used to retrieve candidate responses
from a repository and return the highest scoring one
with the ranking model (Ji et al., 2014; Wang et al.,
2015; Hu et al., 2014; Wang et al., 2013; Lu and Li,
2013). Stemming from this approach, the next utter-
ance classification (NUC) task has been proposed, in
which a system is required to select an appropriate
response from a fixed set of candidates (Lowe et al.,
2015; Kadlec et al., 2015). The NUC is regarded as
focusing on the ranking problem of retrieval-based
system, since it omits the candidate retrieving step.
The merit of NUC is that it allows us to easily evalu-
ate the model performance on the basis of accuracy.

Our proposed addressee and response selection
task is an extension of the NUC. We generalize the
task by integrating the addressee detection, which
has been regarded as a problematic issue in multi-
party conversation (Traum, 2003; Jovanović and
Akker, 2004; Uthus and Aha, 2013). Basically,
the addressee detection has been tackled in the
spoken/multimodal dialog system research, and the
models largely rely on acoustic signal or gaze infor-
mation (Jovanović et al., 2006; Akker and Traum,
2009; Ravuri and Stolcke, 2014). This current work
is different from such previous work in that our mod-
els predict addressees with only textual information.

For predicting addressees or responses, how the
context is encoded is crucial. In single-round con-
versation, a system is expected to encode only one
utterance as a context (Ritter et al., 2011; Wang et
al., 2013). In contrast, in multi-turn conversation,
a system is expected to encode multiple utterances
(Shang et al., 2015; Lowe et al., 2015). Very re-
cently, individual personalities have been encoded
as distributed embeddings used for response genera-
tion in two-party conversation (Li et al., 2016). Our
work is different from that work in that our proposed
personality-independent representation allows us to
handle new agents unseen in the training data.

2134

Type Notation

Input
Responding Agent ares

Context C
Candidate Responses R

Output
Addressee a ∈ A(C)

Response r ∈ R

Table 1: Notations for the ARS task.

3 Addressee and Response Selection

We propose and formalize the task of addressee and
response selection (ARS) for multi-party conversa-
tion. The ARS task assumes the situation where a
responding agent gives a response to an addressee
following a context.3

Notation
Table 1 shows the notations for the formalization.
We denote vectors with bold lower-case (e.g. xt, h),
matrices with bold upper-case (e.g. W, Ha), scalars
with italic lower-case or upper-case (e.g. am, Q),
and sets with bold italic lower-case or cursive upper-
case (e.g. x, C) letters.

Formalization
Given an input conversational situation x, an ad-
dressee a and a response r are predicted:

GIVEN : x = (ares, C, R)

PREDICT : a, r

where ares is a responding agent, C is a context and
R is a set of candidate responses. The context C is
a sequence of previous utterances up to the current
time step T :

C = (ua1,1, · · · ,uaT ,T)

where uat,t is an utterance given by an agent at at a
time step t. Each utterance uat,t is a sequence of Nt

tokens:

uat,t = (wat,t,1, · · · , wat,t,Nt)

where wat,t,n is a token index in the vocabulary V .
3In actual situations, responses can be addressed to multiple

agents. In this work, we assume the situation where one specific
agent can be the addressee of a response.

To predict an addressee a as a target output, we
select an agent from a set of the agents appearing in
a context A(C). Note that a ground-truth addressee
is always included in A(C). To predict an appropri-
ate response r, we select a response from a set of
candidate responses R, which consists of Q candi-
dates:

R = {r1, · · · , rQ}

rq = (wq,1, · · · , wq,Nq)

where rq is a candidate response, which consists of
Nq tokens, and wq,n is an token index in the vocab-
ulary V .

4 Dual Encoder Models

Our proposed models are extensions of the dual
encoder (DE) model in (Lowe et al., 2015). The
DE model consists of two recurrent neural networks
(RNN) that respectively compute the vector repre-
sentation of an input context and candidate response.

A generic RNN, with input xt ∈ Rdw and recur-
rent state ht ∈ Rdh , is defined as:

ht = f(ht−1,xt) = π(Whht−1 + Wxxt) (1)

where π is a non-linear function, Wx ∈ Rdh×dw is a
parameter matrix for xt, Wh ∈ Rdh×dh is a param-
eter matrix for ht−1, and the recurrence is seeded
with the 0 vector, i.e. h0 = 0. The recurrent state
ht acts as a compact summary of the inputs seen up
to time step t.

In the DE model, each word vector of the con-
text C and the response rq is consumed by each
RNN, and is then summarized into the context vec-
tor hc ∈ Rdh and the response vector hq ∈ Rdh . Us-
ing these vectors, the model calculates the probabil-
ity that the given candidate response is the ground-
truth response given the context as follows:

Pr(y(rq) = 1|C, rq) = σ(hT
c W hq) (2)

where y is a binary function mapping from rq to
{0, 1}, in which 1 represents the ground-truth sam-
ple and 0 represents the false one, σ is the logistic
sigmoid function, and W ∈ Rdh×dh is a parameter
matrix. As extensions of this model, we propose our
multi-party encoder models.

2135

5 Multi-Party Encoder Models

For capturing multi-party conversational streams,
we jointly encode who is speaking what at each time
step. Each agent and its utterance are integrated into
the hidden states of an RNN.

We present two multi-party modeling frame-
works: (i) static modeling and (ii) dynamic mod-
eling, both of which jointly utilize agent and ut-
terance representation for encoding multiple-party
conversation. What distinguishes the models is that
while the agent representation in the static modeling
framework is fixed, the one in the dynamic modeling
framework changes along with each time step t in a
conversation.

Modeling Frameworks

As an instance of the static modeling, we propose a
static model to capture the speaking-orders of agents
in conversation. As an instance of the dynamic mod-
eling, we propose a dynamic model using an RNN
to track agent states. Note that the agent represen-
tations are independent of each personality (unique
user). The personality-independent representation
allows us to handle new agents unseen in the training
data.

Formally, similar to Eq. 2, both of the models
calculate the probability that the addressee ap or re-
sponse rq is the ground-truth given the input x:

Pr(y(ap) = 1|x) = σ ([ares ; hc]
T Wa ap) (3)

Pr(y(rq) = 1|x) = σ ([ares ; hc]
T Wr hq) (4)

where y is a binary function mapping from ap or
rq to {0, 1}, in which 1 represents the ground-truth
sample and 0 represents the false one. The func-
tion σ is the logistic sigmoid function. ares ∈ Rda

is a responding agent vector, ap ∈ Rda is a candi-
date addressee vector, hc ∈ Rdh is a context vector,
hq ∈ Rdh is a candidate response vector. These vec-
tors are respectively defined in each model. Wa ∈
R(da+dh)×dh is a parameter matrix for the addressee
selection probability, and Wr ∈ R(da+dh)×dh is a
parameter matrix for the response selection proba-
bility. These model parameters are learned during
training.

On the basis of Eqs. 3 and 4, a resulting addressee

Figure 2: Illustrative example of our static model.

and response are selected as follows:

â = argmax
ap∈A(C)

Pr(y(ap) = 1|x) (5)

r̂ = argmax
rq∈R

Pr(y(rq) = 1|x) (6)

where â is the highest probability addressee of a set
of agents in the context A(C), and r̂ is the highest
probability response of a set of candidate responses
R.

5.1 A Static Model

In the static model, agent matrix A is defined for the
agent vectors in Eqs. 3 and 4. This agent matrix can
be defined arbitrarily. We define the agent matrix A
on the basis of agents’ speaking orders. Intuitively,
the agents that spoke in recent time steps are more
likely to be an addressee. Our static model captures
such property.

The static model is shown in Figure 2. First,
agents in the context A(C) and a responding agent
ares are sorted in descending order based on each
latest speaking time. Then the order is assigned as
an agent index am ∈ (1, · · · , |A(C)|) to each agent.
In the table shown in Figure 2, the responding agent
(represented as SYSTEM) has the agent index 1 be-
cause he spoke at the most recent time step t = 6.
Similarly, User 1 has the index 2 because he spoke
at the second most recent time step t = 5, and User
2 has the index 3 because he spoke at the third t = 3.

Each speaking-order index am is associated with
the am-th column of the agent matrix A:

am = A[∗, am]

2136

Figure 3: Illustrative example of our dynamic model.

Similarly, a responding agent vector ares and a can-
didate addressee vector ap in Eqs. 3 and 4 are re-
spectively extracted from A, i.e. ares = A[∗, ares]
and ap = A[∗, ap].

Consuming the agent vectors, an RNN updates its
hidden state. For example, at the time step t = 1 in
Figure 2, the agent vector a1 of User 1 is extracted
from A on the basis of agent index 2 and then con-
sumed by the RNN. Then, the RNN consumes each
word vector w of User 1’s utterance. By consum-
ing the agent vector before word vectors, the model
can capture which agent speaks the utterance. The
last state of the RNN is regarded as hc. As the tran-
sition function f of RNN (Eq. 1), we use the Gated
Recurrent Unit (GRU) (Cho et al., 2014; Chung et
al., 2014).

For the candidate response vector hq, each word
vector (wq,1, · · · ,wq,Nq) in the response rq is sum-
marized with the RNN. Using these vectors ares, ap,
hc, and hq, we predict a next addressee and response
with the Eqs. 3 and 4.

5.2 A Dynamic Model

In the static model, agent representation A is a
fixed matrix that does not change in a conversational
stream. In contrast, in the dynamic model, agent
representation At tracks each agent’s hidden state
which dynamically changes with time steps t.

Figure 3 shows the overview of the dynamic
model. Initially, we set a zero matrix as initial agent
state A0, and each column vector of the agent matrix
corresponds to an agent hidden state vector. Then,
each agent state is updated by consuming the utter-

ance vector at each time step. Note that the states
of the agents that are not speaking at the time are
updated by zero vectors.

Formally, each column of At corresponds to an
agent state vector:

am,t = At[∗, am]

where an agent state vector am,t of an agent am at a
time step t is the am-th column of the agent matrix
At.

Each vector of the matrix is updated at each time
step, as shown in Figure 3. An agent state vector
am,t ∈ Rda for each agent am at each time step t is
recurrently computed:

am,t = g(am,t−1,um,t), am,0 = 0

where um,t ∈ Rdw is a summary vector of an ut-
terance of an agent am and computed with an RNN.
As the transition function g, we use the GRU. For
example, at a time step t = 2 in Figure 3, the agent
state vector a1,2 is influenced by its utterance vector
u1,2 and updated from the previous state a1,1.

The agent matrix updated up to the time step T is
denoted as AT , which is max-pooled and used as a
summarized context vector:

hc = max
i

AT [i]

The agent matrix AT is also used for a responding
agent vector ares and a candidate addressee vector
ap, i.e. ares = AT [∗, ares] and ap = AT [∗, ap]. rq

is summarized into a response vector hq in the same
way as the static model.

5.3 Learning

We train the model parameters by minimizing the
joint loss function:

L(θ) = α La(θ) + (1 − α) Lr(θ) +
λ

2
||θ||2

where La is the loss function for the addressee selec-
tion, Lr is the loss function for the response selec-
tion, α is the hyper-parameter for the interpolation,
and λ is the hyper-parameter for the L2 weight de-
cay.

2137

Figure 4: The flow of the corpus and dataset creation. From the

original logs, we extract addressee IDs and add them to the cor-

pus. As the dataset, we add candidate responses and the labels.

For addressee and response selection, we use the
cross-entropy loss functions:

La(θ) = −
∑

n

[log Pr(y(a+) = 1|x)

+ log (1 − Pr(y(a−) = 1|x)]

Lr(θ) = −
∑

n

[log Pr(y(r+) = 1|x)

+ log (1 − Pr(y(r−) = 1|x)]

where x is the input set for the task, i.e. x =
(ares, C, R), a+ is a ground-truth addressee, a− is a
false addressee, r+ is a ground-truth response, and
r− is a false response. As a false addressee a−,
we pick up and use the addressee with the high-
est probability from the set of candidate addressees
except the ground-truth one (A(C) \ a+). As a
false response, we randomly pick up and use a re-
sponse from the set of candidate responses except
the ground-truth one (R \ r+).

6 Corpus and Dataset

Our goal is to provide a multi-party conversation
corpus/dataset that can be used over a wide range
of conversation research, such as turn-taking model-
ing (Raux and Eskenazi, 2009) and disentanglement
modeling (Elsner and Charniak, 2010), as well as for
the ARS task. Figure 4 shows the flow of the cor-
pus and dataset creation process. We firstly crawl
Ubuntu IRC Logs and preprocess the obtained logs.

Corpus Dataset
Train Dev Test

No. of Docs 7355 6,606 367 382
No. of Utters 2.4 M 2.1 M 13.2 k 15.1 k
No. of Words 27.0 M 23.8 M 1.5 M 1.7 M
No. of Samples - 665.6 k 45.1 k 51.9 k
Avg. W. / U. 11.1 11.1 11.2 11.3
Avg. A. / D. 26.8 26.3 30.68 32.1

Table 2: Statistics of the corpus and dataset. “Docs” is docu-

ments, “Utters” is utterances, “W. / U.” is the number of words

per utterance, “A. / D.” is the number of agents per document.

Then, from the logs, we extract and add addressee
information to the corpus. In the final step, we set
candidate responses and labels as the dataset. Table
2 shows the statistics of the corpus and dataset.

6.1 Ubuntu IRC Logs

The Ubuntu IRC Logs is a collection of logs from
Ubuntu-related chat rooms. In each chat room, a
number of users chat on and discuss various topics,
mainly related to technical support with Ubuntu is-
sues.

The logs are put together into one file per day for
each room. Each file corresponds to a document
D. In a document, one line corresponds to one log
given by a user. Each log consists of three items
(Time, UserID, Utterance). Using such informa-
tion, we create a multi-party conversation corpus.

6.2 The Multi-Party Conversation Corpus

To pick up only the documents written in En-
glish, we use a language detection library (Nakatani,
2010). Then, we remove the system logs from each
document and leave only user logs. For segmenting
the words in each utterance, we use a word tokenizer
(TreebankWordTokenizer) of the Natural
Language Toolkit4. Using the preprocessed docu-
ments, we create a corpus, whose row consists of
the three items (UserID, Addressee, Utterance).

First, the IDs of the users in a document are col-
lected into the user ID list by referring to the UserID
in each log. Then, as the addressee user ID, we ex-
tract the first word of each utterance. In the Ubuntu
IRC Logs, users follow the name mention conven-
tion (Uthus and Aha, 2013), in which they express

4http://www.nltk.org/

2138

their addressee by mentioning the addressee’s user
ID at the beginning of the utterance. By exploiting
the name mentions, if the first word of each utter-
ance is identical to a user ID in the user ID list, we
extract the addressee ID and then create a table con-
sisting of (UsetID, Addressee, Utterance). In
the case that addressee IDs are not explicitly men-
tioned at the beginning of the utterance, we do not
extract anything.

6.3 The ARS Dataset

By exploiting the corpus, we create a dataset for
the ARS task. If the line of the corpus includes
an addressee ID, we regard it as a sample for the
task. As the ground truth addressees and responses,
we straightforwardly use the obtained addressee IDs
and the preprocessed utterances.

As false responses, we sample utterances else-
where within a document. This document-within
sampling method makes the response selection task
more difficult than the random sampling method5.
One reason for this is that common or similar top-
ics in a document are often discussed and the used
words tend to be similar, which makes the word-
based features for the task less effective. We par-
titioned the dataset randomly into a training set
(90%), a development set (5%) and a test set (5%).

7 Experiments

We provide performance benchmarks of our learn-
ing architectures on the addressee and response se-
lection (ARS) task for multi-party conversation.

7.1 Experimental Setup

Datasets
We use the created dataset for the experiments. The
number of candidate responses RES-CAND (|R|) is
set to 2 or 10.

Evaluation Metrics
We evaluate performance by accuracies on
three aspects: addressee-response pair selection
(ADR-RES), addressee selection (ADR), and re-
sponse selection (RES). In the addressee-response
pair selection, we regard the answer as correct if
both the addressee and the response are correctly

5Lowe et al. (2015) adopted the random sampling method.

selected. In the addressee/response selection, we re-
gard the answer as correct if the addressee/response
is correctly selected.

Optimization
The models are trained by backpropagation through
time (Werbos, 1990; Graves and Schmidhuber,
2005). For the backpropagation, we use stochastic
gradient descent (SGD) with a mini-batch training
method. The mini-batch size is set to 128. The
hyper-parameter α for the interpolation between the
two loss functions (Section 5.3) is set to 0.5. For the
L2 weight decay, the hyper-parameter λ is selected
from {0.001, 0.0005, 0.0001}.

Parameters of the models are randomly ini-
tialized over a uniform distribution with support
[−0.01, 0.01]. To update parameters, we use Adam
(Kingma and Ba, 2014) with the default setting sug-
gested by the authors. As the word embeddings,
we used the 300 dimension vectors pre-trained by
GloVe6 (Pennington et al., 2014). To avoid over-
fitting, the word vectors are fixed across all exper-
iments. The hidden dimensions of parameters are
set to dw = 300 and dh = 50 in the both models,
and da is set to 300 in the static model and 50 in the
dynamic model.

To identify the best training epoch and model con-
figuration, we use the early stopping method (Yao et
al., 2007). In this method, if the best accuracy of
ADR-RES on the development set has not been up-
dated for consecutive 5 epochs, training is stopped
and the best performing model is picked up. The
max epochs is set to 30, which is sufficient for con-
vergence.

Implementation Details
For computational efficiency, we limit the length of
a context C as CT−Nc+1:T = (uT−Nc+1, · · · , uT),
where Nc, called context window, is the number
of utterances prior to a time step t. We set Nc to
{5, 10, 15}. In addition, we truncate the utterances
and responses at a maximum of 20 words. For batch
processing, we zero-pad them so that the number of
words is constant. Out-of-vocabulary words are re-
placed with <unk>, whose vector is the averaged
vector over all word vectors.

6http://nlp.stanford.edu/projects/glove/

2139

RES-CAND = 2 RES-CAND = 10
Nc ADR-RES ADR RES ADR-RES ADR RES

Chance - 0.62 1.24 50.00 0.12 1.24 10.00

Baseline
5 36.97 55.73 65.68 16.34 55.73 28.19
10 37.42 55.63 67.79 16.11 55.63 29.48
15 37.13 55.62 67.89 15.44 55.62 29.19

Static
5 46.99 60.39 75.07 21.98 60.26 33.27
10 48.67 60.97 77.75 23.31 60.66 35.91
15 49.27 61.95 78.14 23.49 60.98 36.58

Dynamic
5 49.80 63.19 76.07 23.72 63.28 33.62
10 53.85 66.94 78.16 25.95 66.70 36.14
15 54.88 68.54 78.64 27.19 68.41 36.93

Table 3: Benchmark results: accuracies on addressee-response selection (ADR-RES), addressee selection (ADR), and response

selection (RES). Nc is the context window. Bolded are the best per column.

Baseline Model
We set a baseline using the term frequency-inverse
document frequency (TF-IDF) retrieval model for
the response selection (Lowe et al., 2015). We firstly
compute two TF-IDF vectors, one for a context win-
dow and one for a candidate response. Then, we
compute a cosine similarity for these vectors, and
select the highest scoring candidate response as a
result. For the addressee selection, we adopt a rule-
based method: to determine the agent that gives an
utterance most recently except a responding agent,
which captures the tendency that agents often re-
spond to the other that spoke immediately before.

7.2 Results
Overall Performance
Table 3 shows the empirical benchmark results. The
dynamic model achieves the best results in all the
metrics. The static model outperforms the baseline,
but is inferior to the dynamic model.

In addressee selection (ADR), the baseline model
achieves around 55% in accuracy. This means that if
you select the agents that spoke most recently as an
addressee, the half of them are correct. Compared
with the baseline, our proposed models achieve bet-
ter results, which suggests that the models can se-
lect the correct addressees that spoke at more pre-
vious time steps. In particular, the dynamic model
achieves 68% in accuracy, which is 7 point higher
than the accuracy of static model.

In response selection (RES), our models outper-
form the baseline. Compared with the static model,

Figure 5: Accuracies in addressee-response selection using dif-

ferent amount of samples for training.

the dynamic model achieves around 0.5 point higher
in accuracy.

Effects of the Context Window
In response selection, a performance boost of our
proposed models is observed for the context win-
dow Nc = 10 over Nc = 5. Comparing the results
of the models with the context window Nc = 10 and
Nc = 15, the performance is improved but relatively
small, which suggests that the performance almost
reaches the convergence. In addressee selection, the
performance improvements of the static model with
the broader context window is limited. In contrast,
in the dynamic model, a steady performance boost
is observed, yielding an increase of over 5 points be-
tween Nc = 15 and Nc = 5,

2140

No. of Agents 2-5 6-10 11-15 16-20 21-30 31-100 101-305
No. of Samples 3731 5962 5475 4495 5619 7956 18659

ADR-RES
Baseline 52.13 43.51 39.98 42.96 39.70 36.55 29.22

Static 64.17 55.92 50.72 53.04 48.69 49.61 42.86
Dynamic 66.90 57.73 54.32 55.64 51.61 55.88 52.14

ADR
Baseline 84.94 70.82 62.14 65.52 58.89 51.28 41.47

Static 86.33 74.37 66.12 68.54 63.43 59.24 50.99
Dynamic 87.64 76.48 69.99 72.21 66.90 66.78 62.11

RES
Baseline 60.71 61.24 64.51 65.58 67.93 71.66 71.38

Static 73.60 73.45 74.54 75.95 75.17 81.50 81.60
Dynamic 75.64 74.12 75.53 75.17 76.05 81.96 81.81

Table 4: Performance comparison for different numbers of agents appearing in the context. The numbers are accuracies on the test

set with the number of candidate responses CAND-RES = 2 and the context window Nc = 15.

Effects of the Sample Size
Figure 5 shows the accuracy curves of addressee-
response selection (ADR-RES) for different train-
ing sample sizes. We use 1/2, 1/4, and 1/8 of
the whole training samples for training. The results
show that as the amount of the data increases, the
performance of our models are improved and grad-
ually approaches the convergence. Remarkably, the
performance of the dynamic models using the 1/8
samples is comparable to that of the static model us-
ing the whole samples.

Effects of the Number of Participants
To shed light on the relationship between the model
performance and the number of agents in multi-party
conversation, we investigate the effect of the num-
ber of agents participating in each context. Table 4
compares the performance of the models for differ-
ent numbers of agents in a context.

In addressee selection, the performance of all
models gradually gets worse as the number of agents
in the context increases. However, compared with
the baseline, our proposed models suppress the per-
formance degradation. In particular, the dynamic
model predicts correct addressees most robustly.

In response selection, unexpectedly, the perfor-
mance of all the models gets better as the number
of agents increases. Detailed investigation on the in-
teraction between the number of agents and the re-
sponse selection complexity is an interesting line of
future work.

8 Conclusion

We proposed addressee and response selection for
multi-party conversation. Firstly, we provided the
formal definition of the task, and then created a cor-
pus and dataset. To present benchmark results, we
proposed two modeling frameworks, which jointly
model speakers and their utterances in a context.
Experimental results showed that our models of the
frameworks outperform a baseline.

Our future objective to tackle the task of predict-
ing whether to respond to a particular utterance. In
this work, we assume that the situations where there
is a specific addressee that needs an appropriate re-
sponse and a system is required to respond. In actual
multi-party conversation, however, a system some-
times has to wait and listen to the conversation that
other participants are engaging in without needless
interruption. Hence, the prediction of whether to
respond in a multi-party conversation would be an
important next challenge.

Acknowledgments

We thank Graham Neubig, Yuya Taguchi, Ryosuke
Kohita, Ander Martinez, the members of the NAIST
Computational Linguistics Laboratory, the members
of IBM Research - Tokyo, Long Duong, and the re-
viewers for their helpful comments.

2141

References
Rieks Akker and David Traum. 2009. A comparison of

addressee detection methods for multiparty conversa-
tions. In Workshop on the Semantics and Pragmatics
of Dialogue.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using rnn encoder–decoder for statistical ma-
chine translation. In Proceedings of EMNLP, pages
1724–1734.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv: 1412.3555.

Frank PM Dignum and Gerard AW Vreeswijk. 2003. To-
wards a testbed for multi-party dialogues. Advances in
Agent Communication, pages 212–230.

Micha Elsner and Eugene Charniak. 2010. Disentan-
gling chat. Computational Linguistics, pages 389–
409.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5):602–610.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen.
2014. Convolutional neural network architectures for
matching natural language sentences. In Proceedings
of NIPS, pages 2042–2050.

Zongcheng Ji, Zhengdong Lu, and Hang Li. 2014. An
information retrieval approach to short text conversa-
tion. arXiv preprint arXiv: 1408.6988.

Natasa Jovanović and op den Rieks Akker. 2004.
Towards automatic addressee identification in multi-
party dialogues. In Proceedings of SIGDIAL.

Natasa Jovanović, op den Rieks Akker, and Anton Ni-
jholt. 2006. Addressee identification in face-to-face
meetings. In Proceedings of EACL.

Rudolf Kadlec, Martin Schmid, and Jan Kleindiest.
2015. Improved deep learning baselines for ubuntu
corpus dialogs. arXiv preprint arXiv: 1510.03753.

Diederik P. Kingma and Jimmy Lei Ba. 2014. Adam:
A method for stochastic optimization. arXiv preprint
arXiv: 1412.6980.

Esther Levin, Roberto Pieraccini, and Wieland Eckert.
2000. A stochastic model of human-machine interac-
tion for learning dialog strategies. IEEE Transactions
on Speech and Audio Processing, pages 11–23.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A persona-based neural conver-
sation model. In Proceedings of ACL.

Ryan Lowe, Nissan Pow, Iulian V. Serban, and Joelle
Pineau. 2015. The ubuntu dialogue corpus: A large

dataset for research in unstructured multi-turn dia-
logue systems. In Proceedings of SIGDIAL, pages
285–294.

Zhengdong Lu and Hang Li. 2013. A deep architec-
ture for matching short texts. In Proceedings of NIPS,
pages 1367–1375.

Shuyo Nakatani. 2010. Language detection library for
java.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of EMNLP, pages 1532–
1543.

Antoine Raux and Maxine Eskenazi. 2009. A finite-state
turn-taking model for spoken dialog systems. In Pro-
ceedings of NAACL, pages 629–637.

Suman V Ravuri and Andreas Stolcke. 2014. Neural net-
work models for lexical addressee detection. In Pro-
ceedings of INTERSPEECH, pages 298–302.

Alan Ritter, Colin Cherry, and William B. Dolan. 2011.
Data-driven response generation in social media. In
Proceedings of EMNL, pages 583–593.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016. Build-
ing end-to-end dialogue systems using generative hi-
erarchical neural network models. In Proceedings of
AAAI, pages 3776–3783.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neu-
ral responding machine for short-text conversation. In
Proceedings of ACL/IJCNLP, pages 1577–1586.

Alessandro Sordoni, Michel Galley, Michael Auli, Chris
Brockett, Yangfeng Ji, Margaret Mitchell, Jian-Yun
Nie, Jianfeng Gao, and Bill Dolan. 2015. A
neural network approach to context-sensitive genera-
tion of conversational responses. In Proceedings of
NAACL/HLT, pages 196–205.

David Traum. 2003. Issues in multiparty dialogues. Ad-
vances in Agent communication, pages 201–211.

David C Uthus and David W Aha. 2013. Multipartic-
ipant chat analysis: A survey. Artificial Intelligence,
pages 106–121.

Oriol Vinyals and V. Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv: 1506.05869.

Marilyn A Walker, Rashmi Prasad, and Amanda Stent.
2003. A trainable generator for recommendations
in multimodal dialog. In Proceedings of INTER-
SPEECH. Citeseer.

Hao Wang, Zhengdong Lu, Hang Li, and Enhong Chen.
2013. A dataset for research on short-text conversa-
tions. In Proceedings of EMNLP, pages 935–945.

Mingxuan Wang, Zhengdong Lu, Hang Li, and Qun Liu.
2015. Syntax-based deep matching of short texts. In
Proceedings of IJCAI, pages 1354–1361.

2142

Paul J Werbos. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto.
2007. On early stopping in gradient descent learning.
Constructive Approximation, 26(2):289–315.

Steve Young, Milica Gašić, Simon Keizer, François
Mairesse, Jost Schatzmann, Blaise Thomson, and Kai
Yu. 2010. The hidden information state model: A
practical framework for pomdp-based spoken dialogue
management. Computer Speech & Language, pages
150–174.

2143

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2144–2152,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Nonparametric Bayesian Models for Spoken Language Understanding

Kei Wakabayashi
Tsukuba University, 1-2 Kasuga,
Tsukuba, Ibaraki 305-8550, Japan

kwakaba@slis.tsukuba.ac.jp

Johane Takeuchi, Kotaro Funakoshi
and Mikio Nakano

Honda Research Institute Japan Co., Ltd.
8-1 Honcho, Wako, Saitama 351-0188, Japan

{johane.takeuchi,funakoshi,nakano}
@jp.honda-ri.com

Abstract

In this paper, we propose a new generative ap-
proach for semantic slot filling task in spoken
language understanding using a nonparamet-
ric Bayesian formalism. Slot filling is typi-
cally formulated as a sequential labeling prob-
lem, which does not directly deal with the pos-
terior distribution of possible slot values. We
present a nonparametric Bayesian model in-
volving the generation of arbitrary natural lan-
guage phrases, which allows an explicit cal-
culation of the distribution over an infinite set
of slot values. We demonstrate that this ap-
proach significantly improves slot estimation
accuracy compared to the existing sequential
labeling algorithm.

1 Introduction

Spoken language understanding (SLU) refers to the
challenge of recognizing a speaker’s intent from a
natural language utterance, which is typically de-
fined as a slot filling task. For example, in the ut-
terance “Remind me to call John at 9am tomorrow”,
the specified information {“time”: “9am tomor-
row”} and {“subject”: “to call John”} should be
extracted. The term slot refers to a variable such as
the time or subject that is expected to be filled with
a value provided through the user’s utterance.

The slot filling task is typically formulated as a
sequential labeling problem as shown in Figure 1.
This labeling scheme naturally represents the recog-
nition of arbitrary phrases that appear in the tran-
scription of an utterance. Formally speaking, when
we assume a given set of slots {s1, ..., sM} and de-
note the corresponding slot values by {vs1 , ..., vsM }

where vsi ∈ Vsi , the domain of each slot value Vsi is
an infinite set of word sequences. In this paper, we
use the term arbitrary slot filling task to refer to this
implicit problem statement, which inherently under-
lies the sequential labeling formulation.

In contrast, a different line of work has explored
the case where Vsi is provided as a finite set of possi-
ble values that can be handled by a backend system
(Henderson, 2015). We refer to this type of task as
a categorical slot filling task. In this case, the slot
filling task is regarded as a classification problem
that explicitly considers a value-based prediction, as
shown in Figure 2. From this point of view, we can
say that a distribution of slot values is actually con-
centrated in a small set of typical phrases, even in
the arbitrary slot filling task, because users basically
know what kind of function is offered by the system.

To reflect this observation, in this paper we ex-
plore the value-based formulation approach for arbi-
trary slot filling tasks. Unlike the sequential labeling
formulation, which is basically position-based label
prediction, our method directly estimates the poste-
rior distribution over an infinite set of possible val-
ues for each slot Vsi . The distribution is represented
by using a Dirichlet process (Gershman and Blei,
2012), which is a nonparametric Bayesian formal-
ism that generates a categorical distribution for any
space. We demonstrate that this approach improves
estimation accuracy in the arbitrary slot filling task
compared with conventional sequential labeling ap-
proach.

The rest of this paper is organized as follows. In
Section 2, we review the existing approaches for
categorical and arbitrary slot filling tasks and intro-

2144

!! !! !! !! "#$%&'! !! !! "#()'(! *#()'(! !!

+,-! .//0+12! 3/)! (!)'4$(5)(1$! +1! $6'! 3'1! 7+8/1! ()'(!

Figure 1: sequential labeling formulation for slot filling tasks.

!"#!$%%&!'(!)%*!+!*,-.+/*+'.!!'!.0,!),'!1!2%'!+*,+!

P(restaurant | u) = 0.96

P(pub | u) = 0.03

P(None | u) = 0.01

...

P(fen_ ditton | u) = 0.98

P(girton | u) = 0.005

P(None | u) = 0.01

...

P(italian | u) = 0.005

P(mexican | u) = 0.01

P(None | u) = 0.85

...

!"#"!

34.53,6! 34+*,+6! 34)%%16!

Figure 2: Value-based formulation. The posterior probabilities

of values for each slot are explicitly computed.

duce related work. In Section 3, we present our
nonparametric Bayesian formulation, the hierarchi-
cal Dirichlet process slot model (HDPSM), which
directly models an infinite set of slot values. On the
basis of the HDPSM, we develop a generative utter-
ance model that allows us to compute the posterior
probability of slot values in Section 4. In Section 5,
we introduce a two-stage slot filling algorithm that
consists of a candidate generation step and a candi-
date ranking step using the proposed model. In Sec-
tion 6, we show the experimental results for multiple
datasets in different domains to demonstrate that the
proposed algorithm performs better than the base-
line sequential labeling method. We conclude in
Section 7 with a brief summary.

2 Related Work

The difference between the categorical and arbitrary
slot filling approaches has not been explicitly dis-
cussed in a comparative manner to date. In this sec-
tion, we review existing work for both approaches.

For the categorical slot filling approach, various
algorithms that directly model the distribution of
slot values have been proposed, including generative
models (Williams, 2010), maximum entropy linear
classifiers (Metallinou et al., 2013), and neural net-
works (Ren et al., 2014). However, none of these
models are applicable for predicting a variable that
ranges over an infinite set, and it is not straightfor-
ward to extend them suitably. In particular, a dis-
criminative approach is not applicable for arbitrary
slot filling tasks because it requires a fixed finite set
of slot values to take statistics.

The arbitrary slot filling approach is a natural
application of shallow semantic parsing (Gildea,
2002), which is naturally formulated as a sequen-
tial labeling problem. Various sequential labeling
algorithms have been applied to this task, including
support vector machines, conditional random fields
(CRF) (Lafferty et al., 2001; Hahn et al., 2011), and
deep neural networks (Mesnil et al., 2015; Xu and
Sarikaya, 2013). Vukotic et al. (2015) reported that
the CRF is still the most accurate, rapid, and stable
method among them. Because the focus of this pa-
per is arbitrary slot filling tasks, we use CRFs as our
baseline method.

In this paper, we apply nonparametric Bayesian
models (Gershman and Blei, 2012) to represent
the distribution over arbitrary phrases for each slot.
The effectiveness of this phrase modeling approach
has been examined in various applications including
morphological analysis (Goldwater et al., 2011) and
infinite vocabulary topic models (Zhai and Boyd-
graber, 2013). Our method can be regarded as an
application of this idea, although it is not straight-
forward to integrate it with the utterance generation
process, as we explain later.

Consequently, our proposed method is catego-
rized as a generative approach. There are many ad-
vantages inherent in generative approaches that have
been examined, including unsupervised SLU (Chen
et al., 2015), automatic feature extraction (Tur et
al., 2013), and integration with syntactic modeling
(Lorenzo et al., 2013). Another convenient prop-
erty of generative models is that prior knowledge
can be integrated in an intuitive way (Raymond et
al., 2006). This often leads to better performance
with less training data compared with discriminative
models trained completely from scratch (Komatani
et al., 2010).

3 Hierarchical Dirichlet Process Slot
Model

In this section, we present a nonparametric Bayesian
formulation that directly models the distribution
over an infinite set of possible values for each slot.
Let S = {s1, ..., sMS

} be a given set of slots and
MS be the number of slots. We define each slot si
as a random variable ranging over an infinite set of

2145

letter sequences V , which is represented as follows:

V = {b1, ..., bL|bι ∈ C,L ≥ 0}

where C is a set of characters including the blank
character and any other character that potentially ap-
pears in the transcription of an utterance. Conse-
quently, we regard the set of slots S as also being a
random variable that ranges over VMS . The objec-
tive of this section is to develop the formulation of
the probabilistic distribution p(S).

3.1 Dirichlet Process

We apply the Dirichlet process (DP) to model both
the distribution for an individual slot pi(si) and the
joint distribution p(S). In this subsection, we review
the definition and key properties of DP with general
notation for the target distribution G over the do-
main X . In the DP for the prior of pi(si) that is
described in Section 3.2, the domain X corresponds
to a set of slot values V , e.g., “fen ditton”, “new
chesterton”, and None. In the DP for p(S) presented
in Section 3.3, X indicates a set of tuples of slot val-
ues VMS , e.g., (“restaurant”, “new chesterton”, “fast
food”) and (“restaurant”, “fen ditton”, None).

The DP is a probabilistic distribution over the dis-
tribution G. DP is parameterized by α0 and G0,
where α0 > 0 is a concentration parameter and G0

is a base distribution over X . If G is drawn from
DP (α0, G0) (i.e., G ∼ DP (α0, G0)), then the fol-
lowing Dirichlet distributed property holds for any
partition of X denoted by {A1, ..., AL}:

(G(A1), ..., G(AL)) ∼ Dir(α(A1), ..., α(AL))

where α(A) = α0G0(A), which is known as the
base measure of DP.

Ferguson (1973) proved an important property
of a posterior distribution of repeated i.i.d. sam-
ples x1:N = {x1, ..., xN} drawn from G ∼
DP (α0, G0). Consider a countably infinite set of
atoms φ = {φ1, φ2, ...} that are independently
drawn from G0. Let ci ∈ N be the assignment of an
atom for sample xi, which is generated by a sequen-
tial draw with the following conditional probability:

p(cN+1 = k|c1:N) =
{

nk
N+α0 k ≤ K
α0

N+α0 k = K + 1

where nk is the number of times that the kth atom
appears in c1:N and K is the number of different
atoms in c1:N . Given the assignment c1:N , the pre-
dictive distribution of xN+1 ∈ X is represented in
the following form:

P (xN+1 = θ|c1:N ,φ1:K , α
0, G0)

=
K∑

k=1

nk
N + α0

δ(φk, θ) +
α0

N + α0
G0(θ)

The base distribution possibly generates an iden-
tical value for different atoms, such as (φ1 = “fen
ditton”, φ2 = “new chesterton”, φ3 = “fen ditton”).
The assignment ci is an auxiliary variable to indi-
cate which of these atoms is assigned to the ith data
point xi; when xi = “fen ditton”, ci can be 1 or 3.
The posterior distribution above depends on the fre-
quency of atom nk, not on the frequency of θ itself.
The atoms φ and the assignment c are latent vari-
ables that should be determined at runtime.

3.2 Individual Slot Model
First we formulate the distribution for an individ-
ual slot as pi(si) ∼ DP (α0

i , G
0
i) where G0

i is a
base distribution over the set of phrases V . 1 We
define G0

i as a generative model that consists of
two-step generation: generation of the phrase length
0 ≤ Li ≤ Lmax using a categorical distribution and
generation of a letter sequence s1:Li using an n-gram
model, as follows:

Li ∼ Categorical(λi)
sιi ∼ p(sιi|sι−n+1:ι−1

i ,ηi)

where λi and ηi are parameters for the categorical
distribution and the n-gram model for slot si, respec-
tively. This explicit modeling of the length helps
avoid the bias toward shorter phrases and leads to
a better distribution, as reported by Zhai and Boyd-
graber (2013). We define G0

i as a joint distribution
of these models:

G0
i (s

1:Li
i) = p(Li|λi)

Li∏

ι=1

p(sιi|sι−n+1:ι−1
i ,ηi) (1)

G0
i potentially generates an empty phrase of Li = 0

to express the case that the slot value vsi is not
1Note that the subscript i for s, p, α0 and G0 indicates the

slot type such as “type”, “area” and “food” in Figure 2.

2146

provided by an utterance. Therefore, the distribu-
tion pi(si) can naturally represent the probability of
None , which is shown in Figure 2.

We consider prior distributions of the parame-
ters λi and ηi to treat the n-gram characteristics of
each slot in a fully Bayesian manner. p(λ) is given
as a Lmax-dimensional symmetric Dirichlet distri-
bution with parameter a. We also define the |C|-
dimensional symmetric Dirichlet distributions with
parameter b for each n-gram context, since given the
context p(sιi|sι−n+1:ι−1

i ,ηi) is just a categorical dis-
tribution that ranges over C. Consider we observe
N phrases si for slot i. Let nLiι be the number of
phrases that have length ι and nγih be the number
of times that letter sι = h appears after context
sι−n+1:ι−1 = γ. The predictive probability of a
phrase is represented as follows:

G0
i (s

1:Li
i |si) =

nLiι + b

N + bC

Li∏

ι=1

nγisιi
+ a

∑
c n

γ
ic + a

∑Lmax

l=1 nLil

3.3 Generative Model for a Set of Slot Values
A naive definition of the joint distribution p(S) is
a product of all slot probabilities

∏MS
i=1 pi(si) for

making an independence assumption. However, the
slot values are generally correlated with each other
(Chen et al., 2015). To obtain more accurate dis-
tribution, we formulate p(S) using another DP that
recognizes a frequent combination of slot values, as
p(S) ∼ DP (α1, G2) where G2 is a base distribu-
tion over VMS . We apply the naive independence
assumption to G2 as follows:

G2(S) =

MS∏

i=1

pi(si)

The whole generation process of S involves two-
layered DPs that share atoms among them. In this
sense, this generative model is regarded as a hierar-
chical Dirichlet process (Teh et al., 2005).

Let G1
i (si) = pi(si) and G3(S) = p(S) for con-

sistent notations. In summary, we define the hierar-
chical Dirichlet process slot model (HDPSM) as a
generative model that has the following generation
process.

G1
i ∼ DP (α0

i , G
0
i)

G3 ∼ DP (α1, G2)

S ∼ G3

3.4 Inference of HDPSM
In a slot filling task, observations of S1:T =
{S1, ..., ST } are available as training data. The in-
ference of HDPSM refers to the estimation of λ, η
and the atom assignments for each DP.

We formulate the HDPSM in a form of the Chi-
nese restaurant franchise process, which is one of the
explicit representations of hierarchical DPs obtained
by marginalizing out the base distributions. Teh et
al. (2005) presents a Gibbs sampler for this repre-
sentation, which involves a repetitive resampling of
atoms and assignment. In our method, we prefer to
adopt a single pass inference, which samples the as-
signment for each observation only once. Our pre-
liminary experiments showed that the quality of in-
ference is not affected because S is observed unlike
the settings in Teh et al. (2005).

We denote the atoms and the atom assignment in
the first level DP DP (α1, G2) by φ1 and c11:N , re-
spectively. The posterior probability of atom assign-
ment for a new observation SN+1 is represented as
follows:

p(c1N+1 = k|c11:N ,φ1, SN+1)

∝
{
n1kδ(φ

1
k, SN+1) k ≤ K

α1G2(SN+1) k = K + 1

where n1k is the number of times that the kth atom
appears in c11:N and K is the number of different
atoms in c11:N .
φ0
i and c0i1:K denote the atoms and the assignment

in the second level DPs DP (α0
i , G

0
i). The second

level DPs assign atoms to each first level atom φ1k,
i.e. the second level atom φ0it is generated only when
a new atom is assigned for SN+1 at the first level.
The posterior probability of atom assignment at the
second level is:

p(c0iK+1 = t|c0i1:K ,φ0
i , sN+1i)

∝
{
n0itδ(φ

0
it, SN+1) t ≤ Ti

α0
iG

0(SN+1) t = Ti + 1

where n0it is the number of times that the tth atom
appears in c0i1:K and Ti is the number of different
atoms in c0i1:K .

The single pass inference procedure is presented
in Algorithm 1. Given the atoms φ and the as-
signments c, the predictive distribution of SN+1 =

2147

Algorithm 1 Single pass inference of HDPSM
Input: A set of observations S1:N

1: Set empty list to c1 and c0i
2: for d = 1 to N do
3: k ∼ p(c1d = k|c11:d−1,φ1, Sd)
4: if k = K + 1 then
5: for i = 1 to MS do
6: ti ∼ p(c0iK+1 = ti|c0i1:K ,φ0

i , sdi)
7: if ti = Ti + 1 then
8: Update nLi and nγi with sdi
9: end if

10: c0K+1 ← ti and φ0iti ← sdi
11: end for
12: end if
13: c1d ← k and φ1k ← S
14: end for

{sN+11, ..., sN+1MS
} is calculated as follows:

P (SN+1|c,φ) =
K∑

k=1

n1k
N + α1

δ(φ1k, SN+1) (2)

+
α1

N + α1

MS∏

i=1

P (sN+1i|c0i ,φ0
i)

P (sN+1i|c0i ,φ0
i) =

Ti∑

t=1

n0it
K + α0

i

δ(φ0it, sN+1i)

+
α0
i

K + α0
i

G0
i (sN+1i|φ0

i)

4 Generative Model for an Utterance

We present a generative utterance model to derive a
slot estimation algorithm given utterance u. Figure 3
presents the basic concept of our generative model.
In the proposed model, we formulate the distribution
of slot values as well as the distribution of non-slot
parts. In Figure 3, the phrases “hi we’re in um” and
“and we need a” should be removed to identify the
slot information. We call these non-slot phrases as
functional fillers because they more or less have a
function to convey information. Identifying the set
of non-slot phrases is equivalent to identifying the
set of slot phrases. Therefore, we define a generative
model of functional fillers in the same way as the slot
values.

!"#$%&'%#"(#)*#+%(#,"-.(#/(,#$%#(%%,#/#'%01/)'/(1!

!"#$2#'%01/)'/(1#

%&$%2#+%(#,"-.(#

'(()2#!"#$%

3-%'/(4%2!

5.(1%(1#67.12!

$+,--,-+2#!"#$%&'%#"(#)#

.,))/$2#/(,#$%#(%%,#/#

$-),-+2#!"#$!

8)(49.(/7#8"77%'2!

Figure 3: The proposed generative utterance model. We at-

tempt to find the best combination of the slot parts and the non-

slot parts (i.e., functional filler parts) by using this model.

4.1 Functional Filler

We assume an utterance u is a concatenation of slot
values S and functional fillers F . A functional filler
is represented as a phrase that ranges over V . To
derive the utterance model, we first formulate a gen-
erative model for functional fillers.

In our observation, the distribution of the func-
tional filler depends on its position in an utterance.
For example, utterances often begin with typical
phrases such as “Hello I’m looking for ...” or “Hi
please find ...”, which can hardly ever appear at other
positions. To reflect this observation, we introduce
a filler slot to separately model the functional fillers
based on a position feature. Specifically, we define
three filler slots: beginning filler f1, which precedes
any slot value, ending filler f3, which appears at the
end of an utterance, and middle filler f2, which is
inserted between slot values. We use the term con-
tent slot to refer to S when we intend to explicitly
distinguish it from a filler slot.

Let F = {f1, f2, f3} be a set of filler slots and
MF = 3 be the number of filler slots. Each slot fi
is a random variable ranging over V and F is a ran-
dom variable over VMF . These notations for filler
slots indicate compatibility to a content slot, which
suggests that we can formulate F using HDPSMs,
as follows:

H1
i ∼ DP (β0i , H0

i)

H3 ∼ DP (β1, H2)

F ∼ H3

where H0
i is an n-gram-based distribution over

V that is defined in an identical way to (1) and
H2(F) =

∏MF
i=1 H

1
i (F).

2148

G
0

G
1

S

u

H
0

H
1

F

M
S

M
F

G
3

H
3

D

Figure 4: Graphical model of the utterance model.

4.2 Utterance Model
Figure 4 presents the graphical model of our utter-
ance model. We assume that an utterance u is built
with phrases provided by S and F . Therefore, the
conditional distribution p(u|S, F) basically involves
a distribution over the permutation of these slot val-
ues with two constraints: f1 is placed first and f3
has to be placed last. In our formulation, we simply
adopt a uniform distribution over all possible permu-
tations.

For training the utterance model, we assume that a
set of annotated utterances is available. Each train-
ing instance consists of utterance u and annotated
slot values S. Given u and S, we assume that the
functional fillers F can be uniquely identified. For
the example in Figure 3, we can identify the sub-
sequence in u that corresponds to each content slot
value of “restaurant” and “fen ditton”. This match-
ing result leads to the identification of filler slot val-
ues. Consequently, a triple (u, S, F) is regarded as
an observation. Because the HDPSMs of the content
slot and of the filler slot are conditionally indepen-
dent given S and F , we can separately apply Algo-
rithm 1 to train each HDPSM.

For slot filling, we examine the posterior proba-
bility of content slot values S given u, which can be
reformed as follows:

P (S|u) ∝
∑

F

P (u|S, F)P (S)P (F)

In this equation, we can remove the summation of F
because filler slot values F are uniquely identified
regarding u and S in our assumption. Additionally,
we approximately regard P (u|S, F) as a constant if
u can be built with S and F . By using these assump-
tions, the posterior probability is reduced to the fol-
lowing formula:

P (S|u) ∝ P (S)P (F) (3)

!"# ! ! ! "#$%&$ '#$%&$ '#$%&$! ! ! ! "#()*&

$%& ! ! ! ! "#$%&$ '#$%&$! ! ! ! "#()*&

'(& ! ! ! ! "#$%&$ '#$%&$! ! "#+,,- '#+,,- !

./ 0&1%& /2 34 +&2 -/((,2 $2- 0& 2&&- $ %&5($3%$2(

!"#

$%&$ 346+&26-/((,2

()*& %&5($3%$2(

+7 ./60&1%&6/2

+8 $2-60&62&&-6$

$%&

$%&$ +&26-/((,2

()*& %&5($3%$2(

+7 ./60&1%&6/2634

+8 $2-60&62&&-6$

'(&

$%&$ +&26-/((,2

+,,- 2&&-6$

+7 ./60&1%&6/2634

+8 $2-60&

+9 %&5($3%$2(

Figure 5: Candidate generation using sequential labeling algo-

rithm. The figure shows the case of N = 3.

where F in this formula is fillers identified given u
and S. Consequently, the proposed method attempts
to find the most likely combination of the slot val-
ues and the non-slot phrases, since all words in an
utterance have to belong to either of them. By using
trained HDPSM (i.e., the posterior given all training
data), P (S) and P (F) can be computed by (2).

5 Candidate Generation

For estimating slot values given u, we adopt a can-
didate generation approach (Williams, 2014) that
leverages another slot filling algorithm to enumer-
ate likely candidates. 2 Specifically, we assume a
candidate generation function g(u) that generates N
candidates {S1, ..., SN} regarding u. Our slot fill-
ing algorithm computes the posterior probability by
(3) for each candidate slot Sj and takes the candi-
date that has the highest posterior probability. In this
estimation process, our utterance model works as a
secondary filter that covers the error of the primary
analysis.

Figure 5 provides an example of candidate gener-
ation by using a sequential labeling algorithm with
IOB tags. The subsequences to which the O tag is
assigned can be regarded as functional fillers. The
values for each filler slot are identified depending on
the position of the subsequence, as the figure shows.

6 Experiments

We evaluate the performance of the proposed gener-
ative model with an experiment using the algorithm

2The direct inference of the generative utterance model is a
topic for near future work. The MCMC method will circumvent
the difficulty of searching the entire candidate space.

2149

name #utterances #slots max. diversity
DSTC 1,441 6 55

Weather 1,442 3 191
Table 1: Datasets in the experiment. Max. diversity refers to

the maximum number of value types that are taken by a slot.

described in Section 5. We adopt a conditional ran-
dom field (CRF) as a candidate generation algorithm
that generates N -best estimation as candidates. For
the CRF, we apply commonly used features includ-
ing unigram and bigram of the surface form and part
of speech of the word. We used CRF++3 as the CRF
implementation.

6.1 Dataset

The performance of our method is evaluated using
two datasets from different languages, as summa-
rized in Table 1. The first dataset is provided by
the third Dialog State Tracking Challenge (Hender-
son, 2015), hereafter referred to as the DSTC corpus.
The DSTC corpus consists of dialogs in the tourist
information domain. In our experiment, we use the
user’s first utterance in each dialog, which typically
describes the user’s query to the system. Utterances
without any slot information are excluded. We man-
ually modified the annotated slot values into “as-
is form” to allow a sequential labeling method to
extract the ground-truth values. This identification
process can be done in a semi-automatic manner that
involves no expert knowledge. We apply the part of
speech tagger in NLTK4 for the CRF application.

The second dataset is a weather corpus consisting
of user utterances in an in-house corpus of human-
machine dialogues in the weather domain. It con-
tains 1,442 questions spoken in Japanese. In this
corpus, the number of value types for each slot is
higher than DSTC, which indicates a more challeng-
ing task. We applied the Japanese morphological
analyzer MeCab (Kudo et al., 2004) to segment the
Japanese text into words before applying CRF.

For both datasets, we examine the effect
of the amount of available annotated utterances
by varying the number of training data in
25, 50, 75, 100, 200, 400, 800, all.

3https://taku910.github.io/crfpp/
4http://www.nltk.org/

#train CRF best HDP N = 5 HDP N = 300

25 0.560 0.706* 0.684*
50 0.709 0.791* 0.765*
75 0.748 0.824* 0.817*
100 0.791 0.845* 0.837*
200 0.839 0.901* 0.876*
400 0.904 0.938* 0.936*
800 0.926 0.953* 0.947*
1296 0.938 0.960* 0.951

Table 2: Slot estimation accuracy for the DSTC corpus. The

asterisk (*) indicates that the accuracy is statistically significant

compared against CRF best (p < 0.005).

#train CRF best HDP N = 5 HDP N = 300

25 0.327 0.452* 0.480*
50 0.379 0.488* 0.499*
75 0.397 0.504* 0.522*
100 0.418 0.501* 0.512*
200 0.493 0.526* 0.531*
400 0.512 0.551* 0.549*
800 0.533 0.555* 0.554*
1297 0.546 0.560* 0.554

Table 3: Slot estimation accuracy for the Japanese weather cor-

pus. An asterisk (*) indicates statistical significance against

CRF best (p < 0.01).

6.2 Evaluation Metrics

The methods are compared in terms of slot estima-
tion accuracy. Let nc be the number of utterances
for which the estimated slot S and the ground-truth
slot Ŝ are perfectly matched, and let ne be the num-
ber of the utterances including an estimation error.
The slot estimation accuracy is simply calculated as
nc

nc+ne
. All evaluation scores are calculated as the

average of 10-fold cross validation. We also conduct
a binomial test to examine the statistical significance
of the improvement in the proposed algorithm com-
pared to the CRF baseline.

6.3 Results

Tables 2 and 3 present the slot estimation accu-
racy for the DSTC corpus and the Japanese weather
corpus, respectively. The baseline (CRF best) is a
method that takes only one best output of CRF for
slot estimation. HDP with N = 5 and N = 300
is the proposed method, where N is the number of
candidates generated by the CRF candidate genera-

2150

utterance estimation by CRF best estimation by HDP N = 5

im looking for a restaurant that type:restaurant (*) type:restaurant,food:fast food
serves fast food
i want a moderate restaurant in area:new chesterton, area:new chesterton,
the new chesterton area type:restaurant, type:restaurant,

food:moderate (*) pricerange:moderate
im looking for a cheap chine pricerange:cheap,type:restaurant, pricerange:cheap,type:restaurant,
chinese takeaway restaurant food:chinese takeaway food:chine chinese takeaway (*)

Table 4: Examples of estimated slot values for the condition of #train is 800. An asterisk (*) indicates misrecognition.

tor. The asterisks (*) beside the HDP accuracy in-
dicate the statistical significance against CRF best,
which is tested using the binomial test.

Results show that our proposed method performs
significantly better than CRF. Especially when the
amount of training data is limited, the proposed
method outperforms the baseline. This property is
attractive for practical speech recognition systems
that offer many different functions. Accurate recog-
nition at an early stage of development allows a
practitioner to launch a service that results in quickly
collecting hundreds of speech examples.

Since we use the CRF as a candidate generator,
we expect that the CRF N-best can rank the correct
answer higher in the candidate list. In fact, the top
five candidates cover almost all of the correct an-
swers. Therefore, the result in the comparison of
N = 5 and N = 300 suggests the stability of the
proposed method against the mostly noisy 295 can-
didates. Because the proposed algorithm makes no
use of the original ranking order, N = 300 is a
harder condition in which to identify the correct an-
swer. Nevertheless, the result shows that the drop in
the performance is limited; the accuracy is still sig-
nificantly better than the baseline. This result sug-
gests that the proposed method is less dependent on
the performance of the candidate generator.

Table 4 presents some examples of the slot val-
ues estimated by CRF best and HDP with N = 5
for the condition where the number of training utter-
ances is 800. The first two are samples where CRF
best failed to predict the correct values. These er-
rors are attributed to infrequent sequential patterns
caused by the less trained expressions “that serves
fast food” and “moderate restaurant” because CRF
is a position-based classifier. The value-based for-
mulation allows the model to learn that the phrase

“fast food” is more likely to be a food name than to
be a functional filler and to reject the candidate.

The third example in Table 4 shows an error
using HDP, which extracted “chine chinese take-
away” which includes a reparandum of disfluency
(Georgila et al., 2010). This error can be attributed
to the fact that this kind of disfluency resembles the
true slot value, which leads to a higher probability
of “chine” in the food slot model compared to in
the functional filler model. Regarding this type of
error, preliminary application of a disfluency detec-
tion method (Zayats et al., 2016) is promising for
improving accuracy.

The execution time for training the proposed
HDP utterance model with 1297 training data in
the Japanese weather corpus was about 0.3 seconds.
This is a good performance since the CRF training
takes about 5.5 seconds. Moreover, the training of
the proposed HDP model is scalable and works in an
online manner because it is a single pass algorithm.
When we have a very large number of training ex-
amples, the bottleneck is the CRF training, which
requires scanning the whole dataset repeatedly.

7 Conclusion

In this paper, we proposed an arbitrary slot fill-
ing method that directly deals with the posterior
probability of slot values by using nonparametric
Bayesian models. We presented a two-stage method
that involves an N-best candidate generation step,
which is typically done using a CRF. Experimental
results show that our method significantly improves
recognition accuracy. This empirical evidence sug-
gests that the value-based formulation is a promis-
ing approach for arbitrary slot filling tasks, which is
worth exploring further in future work.

2151

References
Yun-Nung Chen, William Yang Wang, Anatole Gersh-

man, and Alexander Rudnicky. 2015. Matrix Fac-
torization with Knowledge Graph Propagation for Un-
supervised Spoken Language Understanding. In Proc.
Annual Meeting of the Association for Computational
Linguistics.

Thomas S. Ferguson. 1973. A Bayesian Analysis of
Some Nonparametric Problems. The Annual of Statis-
tics, 1(2):209–230.

Kallirroi Georgila, Ning Wang, and Jonathan Gratch.
2010. Cross-Domain Speech Disfluency Detection. In
Proc. Annual SIGDIAL Meeting on Discourse and Di-
alogue.

Samuel J. Gershman and David M. Blei. 2012. A tu-
torial on Bayesian nonparametric models. Journal of
Mathematical Psychology, 56(1):1–12.

Daniel Gildea. 2002. Automatic labeling of semantic
roles. Computational Linguistics, 28(3):245–288.

Sharon Goldwater, Thomas L. Griffiths, and Mark John-
son. 2011. Producing Power-Law Distributions
and Damping Word Frequencies with Two-Stage Lan-
guage Models. Journal of Machine Learning Re-
search, 12:2335–2382.

Stefan Hahn, Marco Dinarelli, Christian Raymond,
Fabrice Lefevre, Patrick Lehnen, Renato De Mori,
Alessandro Moschitti, Hermann Ney, and Giuseppe
Riccardi. 2011. Comparing stochastic approaches to
spoken language understanding in multiple languages.
IEEE Transactions on Audio, Speech and Language
Processing, 19(6):1569–1583.

Matthew Henderson. 2015. Machine Learning for Dia-
log State Tracking: A Review. In Proc. Workshop on
Machine Learning in Spoken Language Processing.

Kazunori Komatani, Masaki Katsumaru, Mikio Nakano,
Kotaro Funakoshi, Tetsuya Ogata, and Hiroshi G.
Okuno. 2010. Automatic Allocation of Training Data
for Rapid Prototyping. In Proc. International Confer-
ence on Computational Linguistics.

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto.
2004. Applying Conditional Random Fields to
Japanese Morphological Analysis. In Proc. Empirical
Methods in Natural Language Processing.

John Lafferty, Andrew McCallum, and Fernando C N
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In Proc. International Conference on Machine Learn-
ing.

Alejandra Lorenzo, Lina M Rojas-barahona, and
Christophe Cerisara. 2013. Unsupervised structured
semantic inference for spoken dialog reservation tasks.
In Proc. Annual SIGDIAL Meeting on Discourse and
Dialogue.

Gregoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua
Bengio, Li Deng, Dilek Hakkani-Tur, Xiaodong He,
Larry Heck, Gokhan Tur, Dong Yu, and Geoffrey
Zweig. 2015. Using Recurrent Neural Networks
for Slot Filling in Spoken Language Understanding.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 23(3):530–539.

Angeliki Metallinou, Dan Bohus, and Jason Williams.
2013. Discriminative state tracking for spoken dialog
systems. Proc. Annual Meeting of the Association for
Computational Linguistics.

Christian Raymond, Frédéric Béchet, Renato De Mori,
and Géraldine Damnati. 2006. On the use of finite
state transducers for semantic interpretation. Speech
Communication, 48(3-4):288–304.

Hang Ren, Weiqun Xu, and Yonghong Yan. 2014.
Markovian discriminative modeling for dialog state
tracking. In Proc. Annual SIGDIAL Meeting on Dis-
course and Dialogue.

Yee W. Teh, Michael I. Jordan, Matthew J. Beal, and
David M. Blei. 2005. Hierarchical Dirichlet Pro-
cesses. Journal of the American Statistical Associa-
tion, 101:1566–1581.

Gokhan Tur, Asli Celikyilmaz, and Dilek Hakkani-Tur.
2013. Latent Semantic Modeling for Slot Filling in
Conversational Understanding. In Proc. International
Conference on Acoustics, Speech and Signal Process-
ing.

Vedran Vukotic, Christian Raymond, and Guillaume
Gravier. 2015. Is it Time to Switch to Word Em-
bedding and Recurrent Neural Networks for Spoken
Language Understanding? In Proc. Interspeech.

Jason D. Williams. 2010. Incremental partition re-
combination for efficient tracking of multiple dialog
states. In Proc. International Conference on Acous-
tics, Speech and Signal Processing.

Jason D Williams. 2014. Web-style ranking and SLU
combination for dialog state tracking. In Proc. Annual
SIGDIAL Meeting on Discourse and Dialogue.

Puyang Xu and Ruhi Sarikaya. 2013. Convolutional neu-
ral network based triangular CRF for joint intent de-
tection and slot filling. In Proc. IEEE Workshop on
Automatic Speech Recognition and Understanding.

Vicky Zayats, Mari Ostendorf, and Hannaneh Hajishirzi.
2016. Disfluency Detection using a Bidirectional
LSTM. arXiv preprint arXiv:1604.03209.

Ke Zhai and Jordan Boyd-graber. 2013. Online Latent
Dirichlet Allocation with Infinite Vocabulary. In Proc.
International Conference on Machine Learning.

2152

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2153–2162,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Conditional Generation and Snapshot Learning in
Neural Dialogue Systems

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Lina M. Rojas-Barahona,
Pei-Hao Su, Stefan Ultes, David Vandyke, Steve Young

Cambridge University Engineering Department,
Trumpington Street, Cambridge, CB2 1PZ, UK

{thw28,mg436,nm480,lmr46,phs26,su259,djv27,sjy11}@cam.ac.uk

Abstract

Recently a variety of LSTM-based condi-
tional language models (LM) have been ap-
plied across a range of language generation
tasks. In this work we study various model ar-
chitectures and different ways to represent and
aggregate the source information in an end-
to-end neural dialogue system framework. A
method called snapshot learning is also pro-
posed to facilitate learning from supervised
sequential signals by applying a companion
cross-entropy objective function to the condi-
tioning vector. The experimental and analyt-
ical results demonstrate firstly that competi-
tion occurs between the conditioning vector
and the LM, and the differing architectures
provide different trade-offs between the two.
Secondly, the discriminative power and trans-
parency of the conditioning vector is key to
providing both model interpretability and bet-
ter performance. Thirdly, snapshot learning
leads to consistent performance improvements
independent of which architecture is used.

1 Introduction

Recurrent Neural Network (RNN)-based condi-
tional language models (LM) have been shown to
be very effective in tackling a number of real world
problems, such as machine translation (MT) (Cho
et al., 2014) and image caption generation (Karpa-
thy and Fei-Fei, 2015). Recently, RNNs were ap-
plied to task of generating sentences from an ex-
plicit semantic representation (Wen et al., 2015a).
Attention-based methods (Mei et al., 2016) and
Long Short-term Memory (LSTM)-like (Hochreiter

and Schmidhuber, 1997) gating mechanisms (Wen et
al., 2015b) have both been studied to improve gen-
eration quality. Although it is now clear that LSTM-
based conditional LMs can generate plausible nat-
ural language, less effort has been put in compar-
ing the different model architectures. Furthermore,
conditional generation models are typically tested
on relatively straightforward tasks conditioned on
a single source (e.g. a sentence or an image) and
where the goal is to optimise a single metric (e.g.
BLEU). In this work, we study the use of condi-
tional LSTMs in the generation component of neu-
ral network (NN)-based dialogue systems which de-
pend on multiple conditioning sources and optimis-
ing multiple metrics.

Neural conversational agents (Vinyals and Le,
2015; Shang et al., 2015) are direct extensions of
the sequence-to-sequence model (Sutskever et al.,
2014) in which a conversation is cast as a source to
target transduction problem. However, these mod-
els are still far from real world applications be-
cause they lack any capability for supporting domain
specific tasks, for example, being able to interact
with databases (Sukhbaatar et al., 2015; Yin et al.,
2016) and aggregate useful information into their re-
sponses. Recent work by Wen et al. (2016a), how-
ever, proposed an end-to-end trainable neural dia-
logue system that can assist users to complete spe-
cific tasks. Their system used both distributed and
symbolic representations to capture user intents, and
these collectively condition a NN language genera-
tor to generate system responses. Due to the diver-
sity of the conditioning information sources, the best
way to represent and combine them is non-trivial.

2153

In Wen et al. (2016a), the objective function for
learning the dialogue policy and language generator
depends solely on the likelihood of the output sen-
tences. However, this sequential supervision signal
may not be informative enough to learn a good con-
ditioning vector representation resulting in a gener-
ation process which is dominated by the LM. This
can often lead to inappropriate system outputs.

In this paper, we therefore also investigate the use
of snapshot learning which attempts to mitigate this
problem by heuristically applying companion super-
vision signals to a subset of the conditioning vector.
This idea is similar to deeply supervised nets (Lee
et al., 2015) in which the final cost from the out-
put layer is optimised together with the companion
signals generated from each intermediary layer. We
have found that snapshot learning offers several ben-
efits: (1) it consistently improves performance; (2) it
learns discriminative and robust feature representa-
tions and alleviates the vanishing gradient problem;
(3) it appears to learn transparent and interpretable
subspaces of the conditioning vector.

2 Related Work

Machine learning approaches to task-oriented di-
alogue system design have cast the problem as
a partially observable Markov Decision Process
(POMDP) (Young et al., 2013) with the aim of
using reinforcement learning (RL) to train dia-
logue policies online through interactions with real
users (Gašić et al., 2013). In order to make RL
tractable, the state and action space must be care-
fully designed (Young et al., 2010) and the un-
derstanding (Henderson et al., 2014; Mrkšić et al.,
2015) and generation (Wen et al., 2015b; Wen et al.,
2016b) modules were assumed available or trained
standalone on supervised corpora. Due to the under-
lying hand-coded semantic representation (Traum,
1999), the conversation is far from natural and the
comprehension capability is limited. This motivates
the use of neural networks to model dialogues from
end to end as a conditional generation problem.

Interest in generating natural language using NNs
can be attributed to the success of RNN LMs for
large vocabulary speech recognition (Mikolov et
al., 2010; Mikolov et al., 2011). Sutskever et
al. (2011) showed that plausible sentences can be

obtained by sampling characters one by one from
the output layer of an RNN. By conditioning an
LSTM on a sequence of characters, Graves (2013)
showed that machines can synthesise handwriting
indistinguishable from that of a human. Later on,
this idea has been tried in several research fields,
for example, generating image captions by condi-
tioning an RNN on a convolutional neural network
(CNN) output (Karpathy and Fei-Fei, 2015; Xu et
al., 2015); translating a source to a target language
by conditioning a decoder LSTM on top of an en-
coder LSTM (Cho et al., 2014; Bahdanau et al.,
2015); or generating natural language by condition-
ing on a symbolic semantic representation (Wen et
al., 2015b; Mei et al., 2016). Among all these meth-
ods, attention-based mechanisms (Bahdanau et al.,
2015; Hermann et al., 2015; Ling et al., 2016) have
been shown to be very effective improving perfor-
mance using a dynamic source aggregation strategy.

To model dialogue as conditional generation,
a sequence-to-sequence learning (Sutskever et al.,
2014) framework has been adopted. Vinyals and Le
(2015) trained the same model on several conversa-
tion datasets and showed that the model can gener-
ate plausible conversations. However, Serban et al.
(2015b) discovered that the majority of the gener-
ated responses are generic due to the maximum like-
lihood criterion, which was latter addressed by Li
et al. (2016a) using a maximum mutual information
decoding strategy. Furthermore, the lack of a con-
sistent system persona was also studied in Li et al.
(2016b). Despite its demonstrated potential, a ma-
jor barrier for this line of research is data collection.
Many works (Lowe et al., 2015; Serban et al., 2015a;
Dodge et al., 2016) have investigated conversation
datasets for developing chat bot or QA-like general
purpose conversation agents. However, collecting
data to develop goal oriented dialogue systems that
can help users to complete a task in a specific do-
main remains difficult. In a recent work by Wen et
al. (2016a), this problem was addressed by design-
ing an online, parallel version of Wizard-of-Oz data
collection (Kelley, 1984) which allows large scale
and cheap in-domain conversation data to be col-
lected using Amazon Mechanical Turk. An NN-
based dialogue model was also proposed to learn
from the collected dataset and was shown to be able
to assist human subjects to complete specific tasks.

2154

Snapshot learning can be viewed as a special form
of weak supervision (also known as distant- or self
supervision) (Craven and Kumlien, 1999; Snow et
al., 2004), in which supervision signals are heuristi-
cally labelled by matching unlabelled corpora with
entities or attributes in a structured database. It has
been widely applied to relation extraction (Mintz et
al., 2009) and information extraction (Hoffmann et
al., 2011) in which facts from a knowledge base (e.g.
Freebase) were used as objectives to train classifiers.
Recently, self supervision was also used in mem-
ory networks (Hill et al., 2016) to improve the dis-
criminative power of memory attention. Conceptu-
ally, snapshot learning is related to curriculum learn-
ing (Bengio et al., 2009). Instead of learning eas-
ier examples before difficult ones, snapshot learning
creates an easier target for each example. In prac-
tice, snapshot learning is similar to deeply super-
vised nets (Lee et al., 2015) in which companion ob-
jectives are generated from intermediary layers and
optimised altogether with the output objective.

3 Neural Dialogue System

The testbed for this work is a neural network-based
task-oriented dialogue system proposed by Wen et
al. (2016a). The model casts dialogue as a source
to target sequence transduction problem (modelled
by a sequence-to-sequence architecture (Sutskever
et al., 2014)) augmented with the dialogue his-
tory (modelled by a belief tracker (Henderson et
al., 2014)) and the current database search outcome
(modelled by a database operator). The model con-
sists of both encoder and decoder modules. The de-
tails of each module are given below.

3.1 Encoder Module
At each turn t, the goal of the encoder is to produce
a distributed representation of the system action mt,
which is then used to condition a decoder to gen-
erate the next system response in skeletal form1. It
consists of four submodules: intent network, belief
tracker, database operator, and policy network.
Intent Network The intent network takes a se-
quence of tokens1 and converts it into a sentence em-
bedding representing the user intent using an LSTM

1Delexicalisation: slots and values are replaced by generic
tokens (e.g. keywords like Chinese food are replaced by
[v.food] [s.food] to allow weight sharing.

network. The hidden layer of the LSTM at the last
encoding step zt is taken as the representation. As
mentioned in Wen et al. (2016a), this representation
can be viewed as a distributed version of the speech
act (Traum, 1999) used in traditional systems.
Belief Trackers In addition to the intent network,
the neural dialogue system uses a set of slot-based
belief trackers (Henderson et al., 2014; Mrkšić et al.,
2015) to track user requests. By taking each user in-
put as new evidence, the task of a belief tracker is
to maintain a multinomial distribution p over values
v ∈ Vs for each informable slot2 s, and a binary
distribution for each requestable slot2. These prob-
ability distributions ps

t are called belief states of the
system. The belief states ps

t , together with the intent
vector zt, can be viewed as the system’s comprehen-
sion of the user requests up to turn t.
Database Operator Based on the belief states ps

t ,
a DB query is formed by taking the union of the
maximum values of each informable slot. A vector
xt representing different degrees of matching in the
DB (no match, 1 match, ... or more than 5 matches)
is produced by counting the number of matched enti-
ties and expressing it as a 6-bin 1-hot encoding. If xt

is not zero, an associated entity pointer is maintained
which identifies one of the matching DB entities se-
lected at random. The entity pointer is updated if the
current entity no longer matches the search criteria;
otherwise it stays the same.
Policy Network Based on the vectors zt, ps

t , and
xt from the above three modules, the policy network
combines them into a single action vector mt by a
three-way matrix transformation,

mt = tanh(Wzmzt + Wxmxt +
∑

s∈G Ws
pmps

t) (1)

where matrices Wzm, Ws
pm, and Wxm are param-

eters and G is the domain ontology.

3.2 Decoder Module
Conditioned on the system action vector mt pro-
vided by the encoder module, the decoder mod-
ule uses a conditional LSTM LM to generate the
required system output token by token in skeletal
form1. The final system response can then be formed

2Informable slots are slots that users can use to constrain the
search, such as food type or price range; Requestable slots are
slots that users can ask a value for, such as phone number. This
information is specified in the domain ontology.

2155

(a) Language model type LSTM (b) Memory type LSTM (c) Hybrid type LSTM

Figure 1: Three different conditional generation architectures.

by substituting the actual values of the database en-
tries into the skeletal sentence structure.

3.2.1 Conditional Generation Network
In this paper we study and analyse three different
variants of LSTM-based conditional generation ar-
chitectures:
Language Model Type The most straightforward
way to condition the LSTM network on additional
source information is to concatenate the condition-
ing vector mt together with the input word embed-
ding wj and previous hidden layer hj−1,

ij
fj
oj

ĉj

 =

sigmoid
sigmoid
sigmoid
tanh

W4n,3n

mt

wj

hj−1

cj = fj � cj−1 + ij � ĉj

hj = oj � tanh(cj)

where index j is the generation step, n is the hidden
layer size, ij , fj ,oj ∈ [0, 1]n are input, forget, and
output gates respectively, ĉj and cj are proposed cell
value and true cell value at step j, and W4n,3n are
the model parameters. The model is shown in Fig-
ure 1a. Since it does not differ significantly from the
original LSTM, we call it the language model type
(lm) conditional generation network.
Memory Type The memory type (mem) condi-
tional generation network was introduced by Wen et
al. (2015b), shown in Figure 1b, in which the condi-
tioning vector mt is governed by a standalone read-
ing gate rj . This reading gate decides how much in-
formation should be read from the conditioning vec-
tor and directly writes it into the memory cell cj ,

ij
fj
oj

rj

 =

sigmoid
sigmoid
sigmoid
sigmoid

W4n,3n

mt

wj

hj−1

ĉj = tanh
(
Wc(wj ⊕ hj−1)

)

cj = fj � cj−1 + ij � ĉj + rj �mt

hj = oj � tanh(cj)

where Wc is another weight matrix to learn. The
idea behind this is that the model isolates the con-
ditioning vector from the LM so that the model has
more flexibility to learn to trade off between the two.
Hybrid Type Continuing with the same idea as the
memory type network, a complete separation of con-
ditioning vector and LM (except for the gate con-
trolling the signals) is provided by the hybrid type
network shown in Figure 1c,

ij
fj
oj

rj

 =

sigmoid
sigmoid
sigmoid
sigmoid

W4n,3n

mt

wj

hj−1

ĉj = tanh
(
Wc(wj ⊕ hj−1)

)

cj = fj � cj−1 + ij � ĉj

hj = oj � tanh(cj) + rj �mt

This model was motivated by the fact that long-term
dependency is not needed for the conditioning vec-
tor because we apply this information at every step j
anyway. The decoupling of the conditioning vector
and the LM is attractive because it leads to better in-
terpretability of the results and provides the potential
to learn a better conditioning vector and LM.

3.2.2 Attention and Belief Representation
Attention An attention-based mechanism provides
an effective approach for aggregating multiple infor-
mation sources for prediction tasks. Like Wen et al.

2156

(2016a), we explore the use of an attention mecha-
nism to combine the tracker belief states in which
the policy network in Equation 1 is modified as

mj
t = tanh(Wzmzt + Wxmxt +

∑
s∈G α

j
sWs

pmps
t)

where the attention weights αj
s are calculated by,

αj
s = softmax

(
rᵀ tanh

(
Wr · (vt ⊕ ps

t ⊕wt
j ⊕ ht

j−1)
))

where vt = zt + xt and matrix Wr and vector r are
parameters to learn.
Belief Representation The effect of different be-
lief state representations on the end performance are
also studied. For user informable slots, the full belief
state ps

t is the original state containing all categori-
cal values; the summary belief state contains only
three components: the summed value of all categor-
ical probabilities, the probability that the user said
they “don’t care” about this slot and the probabil-
ity that the slot has not been mentioned. For user
requestable slots, on the other hand, the full belief
state is the same as the summary belief state because
the slot values are binary rather than categorical.

3.3 Snapshot Learning
Learning conditional generation models from se-
quential supervision signals can be difficult, because
it requires the model to learn both long-term word
dependencies and potentially distant source encod-
ing functions. To mitigate this difficulty, we in-
troduce a novel method called snapshot learning
to create a vector of binary labels Υj

t ∈ [0, 1]d,
d < dim(mj

t) as the snapshot of the remaining part
of the output sentence Tt,j:|Tt| from generation step
j. Each element of the snapshot vector is an indica-
tor function of a certain event that will happen in the
future, which can be obtained either from the sys-
tem response or dialogue context at training time. A
companion cross entropy error is then computed to
force a subset of the conditioning vector m̂j

t ⊂ mj
t

to be close to the snapshot vector,

Lss(·) = −∑t

∑
j E[H(Υj

t , m̂
j
t)] (2)

whereH(·) is the cross entropy function, Υj
t and m̂j

t

are elements of vectors Υj
t and m̂j

t , respectively. In
order to make the tanh activations of m̂j

t compat-
ible with the 0-1 snapshot labels, we squeeze each

Figure 2: The idea of snapshot learning. The snap-
shot vector was trained with additional supervisions
on a set of indicator functions heuristically labelled
using the system response.

value of m̂j
t by adding 1 and dividing by 2 before

computing the cost.
The indicator functions we use in this work have

two forms: (1) whether a particular slot value (e.g.,
[v.food]1) is going to occur, and (2) whether the sys-
tem has offered a venue3, as shown in Figure 2. The
offer label in the snapshot is produced by checking
the delexicalised name token ([v.name]) in the en-
tire dialogue. If it has occurred, every label in sub-
sequent turns is labelled with 1. Otherwise it is la-
belled with 0. To create snapshot targets for a partic-
ular slot value, the output sentence is matched with
the corresponding delexicalised token turn by turn,
per generation step. At each generation step, the tar-
get is labelled with 0 if that delexicalised token has
been generated; otherwise it is set to 1. However, for
the models without attention, the targets per turn are
set to the same because the condition vector will not
be able to learn the dynamically changing behaviour
without attention.

4 Experiments

Dataset The dataset used in this work was col-
lected in the Wizard-of-Oz online data collection de-
scribed by Wen et al. (2016a), in which the task of
the system is to assist users to find a restaurant in
Cambridge, UK area. There are three informable
slots (food, pricerange, area) that users can use to
constrain the search and six requestable slots (ad-
dress, phone, postcode plus the three informable

3Details of the specific application used in this study are
given in Section 4 below.

2157

Architecture Belief Success(%) SlotMatch(%) T5-BLEU T1-BLEU

Belief state representation
lm full 72.6 / 74.5 52.1 / 60.3* 0.207 / 0.229* 0.216 / 0.238*

lm summary 74.5 / 76.5 57.4 / 61.2* 0.221 / 0.231* 0.227 / 0.240*

Conditional architecture
lm summary 74.5 / 76.5 57.4 / 61.2* 0.221 / 0.231* 0.227 / 0.240*

mem summary 75.5 / 77.5 59.2 / 61.3* 0.222 / 0.232* 0.231 / 0.243*

hybrid summary 76.1 / 79.2 52.4 / 60.6* 0.202 / 0.228* 0.212 / 0.237*

Attention-based model
lm summary 79.4 / 78.2 60.6 / 60.2 0.228 / 0.231 0.239 / 0.241
mem summary 76.5 / 80.2* 57.4 / 61.0* 0.220 / 0.229 0.228 / 0.239
hybrid summary 79.0 / 81.8* 56.2 / 60.5* 0.214 / 0.227* 0.224 / 0.240*

Table 1: Performance comparison of different model architectures, belief state representations, and snapshot
learning. The numbers to the left and right of the / sign are learning without and with snapshot, respectively.
The model with the best performance on a particular metric (column) is shown in bold face. The lm models in
Conditional architecture and Attention-based model are the same models as in Wen et al. (2016a). Statistical
significance was computed using two-tailed Wilcoxon Signed-Rank Test (* p <0.05) to compare models w/
and w/o snapshot learning.

slots) that the user can ask a value for once a restau-
rant has been offered. There are 676 dialogues in the
dataset (including both finished and unfinished dia-
logues) and approximately 2750 turns in total. The
database contains 99 unique restaurants.
Training The training procedure was divided into
two stages. Firstly, the belief tracker parameters
θb were pre-trained using cross entropy errors be-
tween tracker labels and predictions. Having fixed
the tracker parameters, the remaining parts of the
model θ\b are trained using the cross entropy errors
from the generation network LM,

L(θ\b) = −∑t

∑
j H(yt

j ,p
t
j) + λLss(·) (3)

where yt
j and pt

j are output token targets and predic-
tions respectively, at turn t of output step j, Lss(·)
is the snapshot cost from Equation 2, and λ is the
tradeoff parameter in which we set to 1 for all mod-
els trained with snapshot learning. We treated each
dialogue as a batch and used stochastic gradient de-
scent with a small l2 regularisation term to train the
model. The collected corpus was partitioned into
a training, validation, and testing sets in the ratio
3:1:1. Early stopping was implemented based on the
validation set considering only LM log-likelihoods.
Gradient clipping was set to 1. The hidden layer
sizes were set to 50, and the weights were randomly

initialised between -0.3 and 0.3 including word em-
beddings. The vocabulary size is around 500 for
both input and output, in which rare words and
words that can be delexicalised have been removed.

Decoding In order to compare models trained with
different recipes rather than decoding strategies, we
decode all the trained models with the average log
probability of tokens in the sentence. We applied
beam search with a beamwidth equal to 10, the
search stops when an end-of-sentence token is gen-
erated. In order to consider language variability, we
ran decoding until 5 candidates were obtained and
performed evaluation on them.

Metrics We compared models trained with differ-
ent recipes by performing a corpus-based evaluation
in which the model is used to predict each system
response in the held-out test set. Three evaluation
metrics were used: BLEU score (on top-1 and top-
5 candidates) (Papineni et al., 2002), slot matching
rate and objective task success rate (Su et al., 2015).
The dialogue is marked as successful if both: (1)
the offered entity matches the task that was speci-
fied to the user, and (2) the system answered all the
associated information requests (e.g. what is the ad-
dress?) from the user. The slot matching rate is the
percentage of delexicalised tokens (e.g. [s.food] and
[v.area]1) appear in the candidate also appear in the

2158

(a) Hybrid LSTM w/o snapshot learning (b) Hybrid LSTM w/ snapshot learning

Figure 3: Learned attention heat maps over trackers. The first three columns in each figure are informable
slot trackers and the rest are requestable slot trackers. The generation model is the hybrid type LSTM.

reference. We computed the BLEU scores on the
skeletal sentence forms before substituting with the
actual entity values. All the results were averaged
over 10 random initialised networks.
Results Table 1 shows the evaluation results. The
numbers to the left and right of each table cell are the
same model trained w/o and w/ snapshot learning.
The first observation is that snapshot learning con-
sistently improves on most metrics regardless of the
model architecture. This is especially true for BLEU
scores. We think this may be attributed to the more
discriminative conditioning vector learned through
the snapshot method, which makes the learning of
the conditional LM easier.

In the first block belief state representation, we
compare the effect of two different belief represen-
tations. As can be seen, using a succinct represen-
tation is better (summary>full) because the iden-
tity of each categorical value in the belief state does
not help when the generation decisions are done in
skeletal form. In fact, the full belief state representa-
tion may encourage the model to learn incorrect co-
adaptation among features when the data is scarce.

In the conditional architecture block, we com-
pare the three different conditional generation archi-
tectures as described in section 3.2.1. This result
shows that the language model type (lm) and mem-
ory type (mem) networks perform better in terms of
BLEU score and slot matching rate, while the hybrid
type (hybrid) networks achieve higher task success.
This is probably due to the degree of separation be-

Model ij fj rj/oj

hybrid, full 0.567 0.502 0.405
hybrid, summary 0.539 0.540 0.428
+ att. 0.540 0.559 0.459

Table 2: Average activation of gates on test set.

tween the LM and conditioning vector: a coupling
approach (lm, mem) sacrifices the conditioning vec-
tor but learns a better LM and higher BLEU; while
a complete separation (hybrid) learns a better condi-
tioning vector and offers a higher task success.

Lastly, in the attention-based model block we
train the three architectures with the attention mech-
anism and compare them again. Firstly, the char-
acteristics of the three models we observed above
also hold for attention-based models. Secondly, we
found that the attention mechanism improves all
the three architectures on task success rate but not
BLEU scores. This is probably due to the limita-
tions of using n-gram based metrics like BLEU to
evaluate the generation quality (Stent et al., 2005).

5 Model Analysis

Gate Activations We first studied the average ac-
tivation of each individual gate in the models by av-
eraging them when running generation on the test
set. We analysed the hybrid models because their
reading gate to output gate activation ratio (rj/oj)
shows clear tradeoff between the LM and the con-
ditioning vector components. As can be seen in Ta-

2159

(a)

(b)

(c)

Figure 4: Three example responses generated from the hybrid model trained with snapshot and attention.
Each line represents a neuron that detects a particular snapshot event.

ble 2, we found that the average forget gate activa-
tions (fj) and the ratio of the reading gate to the out-
put gate activation (rj/oj) have strong correlations
to performance: a better performance (row 3>row
2>row 1) seems to come from models that can learn
a longer word dependency (higher forget gate ft ac-
tivations) and a better conditioning vector (therefore
higher reading to output gate ratio rj/oj).
Learned Attention We have visualised the
learned attention heat map of models trained with
and without snapshot learning in Figure 3. The at-
tention is on both the informable slot trackers (first
three columns) and the requestable slot trackers (the
other columns). We found that the model trained
with snapshot learning (Figure 3b) seems to pro-
duce a more accurate and discriminative attention
heat map comparing to the one trained without it
(Figure 3a). This may contribute to the better perfor-

mance achieved by the snapshot learning approach.

Snapshot Neurons As mentioned earlier, snap-
shot learning forces a subspace of the condition-
ing vector m̂j

t to become discriminative and in-
terpretable. Three example generated sentences
together with the snapshot neuron activations are
shown in Figure 4. As can be seen, when generat-
ing words one by one, the neuron activations were
changing to detect different events they were as-
signed by the snapshot training signals: e.g. in Fig-
ure 4b the light blue and orange neurons switched
their domination role when the token [v.address]
was generated; the offered neuron is in a high ac-
tivation state in Figure 4b because the system was
offering a venue, while in Figure 4a it is not acti-
vated because the system was still helping the user
to find a venue.

2160

6 Conclusion and Future Work

This paper has investigated different conditional
generation architectures and a novel method called
snapshot learning to improve response generation in
a neural dialogue system framework. The results
showed three major findings. Firstly, although the
hybrid type model did not rank highest on all met-
rics, it is nevertheless preferred because it achieved
the highest task success and also it provided more in-
terpretable results. Secondly, snapshot learning pro-
vided gains on virtually all metrics regardless of the
architecture used. The analysis suggested that the
benefit of snapshot learning mainly comes from the
more discriminative and robust subspace represen-
tation learned from the heuristically labelled com-
panion signals, which in turn facilitates optimisation
of the final target objective. Lastly, the results sug-
gested that by making a complex system more inter-
pretable at different levels not only helps our under-
standing but also leads to the highest success rates.

However, there is still much work left to do. This
work focused on conditional generation architec-
tures and snapshot learning in the scenario of gen-
erating dialogue responses. It would be very help-
ful if the same comparison could be conducted in
other application domains such as machine transla-
tion or image caption generation so that a wider view
of the effectiveness of these approaches can be as-
sessed. Furthermore, removing slot-value delexical-
isation and learning confirmation behaviour in noisy
speech conditions are also main research problems
from the system development prospective.

Acknowledgments

Tsung-Hsien Wen and David Vandyke are supported
by Toshiba Research Europe Ltd, Cambridge Re-
search Laboratory.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and
Jason Weston. 2009. Curriculum learning. In ICML.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
2014. Learning phrase representations using RNN

encoder-decoder for statistical machine translation. In
EMNLP.

Mark Craven and Johan Kumlien. 1999. Constructing
biological knowledge bases by extracting information
from text sources. In ISMB.

Jesse Dodge, Andreea Gane, Xiang Zhang, Antoine Bor-
des, Sumit Chopra, Alexander Miller, Arthur Szlam,
and Jason Weston. 2016. Evaluating prerequi-
site qualities for learning end-to-end dialog systems.
ICLR.

Milica Gašić, Catherine Breslin, Matthew Henderson,
Dongho Kim, Martin Szummer, Blaise Thomson, Pir-
ros Tsiakoulis, and Steve Young. 2013. On-line policy
optimisation of bayesian spoken dialogue systems via
human interaction. In ICASSP.

Alex Graves. 2013. Generating sequences with recurrent
neural networks. arXiv preprint:1308.0850.

Matthew Henderson, Blaise Thomson, and Steve Young.
2014. Word-based dialog state tracking with recurrent
neural networks. In SIGdial.

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In NIPS.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason We-
ston. 2016. The goldilocks principle: Reading chil-
dren’s books with explicit memory representations. In
ICLR.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S. Weld. 2011. Knowledge-
based weak supervision for information extraction of
overlapping relations. In ACL.

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In CVPR.

John F. Kelley. 1984. An iterative design methodology
for user-friendly natural language office information
applications. ACM Transaction on Information Sys-
tems.

Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou
Zhang, and Zhuowen Tu. 2015. Deeply-supervised
nets. In AISTATS.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A diversity-promoting ob-
jective function for neural conversation models. In
NAACL-HLT.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016b. A persona-based neural con-
versation model. arXiv perprint:1603.06155.

Wang Ling, Edward Grefenstette, Karl Moritz Hermann,
Tomás Kociský, Andrew Senior, Fumin Wang, and

2161

Phil Blunsom. 2016. Latent predictor networks for
code generation. arXiv preprint:1603.06744.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015. The ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dia-
logue systems. In SIGdial.

Hongyuan Mei, Mohit Bansal, and Matthew R. Walter.
2016. What to talk about and how? selective gen-
eration using lstms with coarse-to-fine alignment. In
NAACL.

Tomáš Mikolov, Martin Karafit, Lukáš Burget, Jan
Černocký, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In InterSpeech.

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan H.
Černocký, and Sanjeev Khudanpur. 2011. Exten-
sions of recurrent neural network language model. In
ICASSP.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky.
2009. Distant supervision for relation extraction with-
out labeled data. In ACL.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thomson,
Milica Gašić, Pei-Hao Su, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2015. Multi-domain
Dialog State Tracking using Recurrent Neural Net-
works. In ACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation. In ACL.

Iulian Vlad Serban, Ryan Lowe, Laurent Charlin, and
Joelle Pineau. 2015a. A survey of available cor-
pora for building data-driven dialogue systems. arXiv
preprint:1512.05742.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron C. Courville, and Joelle Pineau. 2015b. Hier-
archical neural network generative models for movie
dialogues. In AAAI.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neu-
ral responding machine for short-text conversation. In
ACL.

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. 2004.
Learning syntactic patterns for automatic hypernym
discovery. In NIPS.

Amanda Stent, Matthew Marge, and Mohit Singhai.
2005. Evaluating evaluation methods for generation
in the presence of variation. In CICLing 2005.

Pei-Hao Su, David Vandyke, Milica Gasic, Dongho Kim,
Nikola Mrksic, Tsung-Hsien Wen, and Steve J. Young.
2015. Learning from real users: Rating dialogue suc-
cess with neural networks for reinforcement learning
in spoken dialogue systems. In Interspeech.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and
Rob Fergus. 2015. End-to-end memory networks. In
NIPS.

Ilya Sutskever, James Martens, and Geoffrey E. Hinton.
2011. Generating text with recurrent neural networks.
In ICML.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In NIPS.

David R. Traum, 1999. Foundations of Rational Agency,
chapter Speech Acts for Dialogue Agents. Springer.

Oriol Vinyals and Quoc V. Le. 2015. A neural conversa-
tional model. In ICML Deep Learning Workshop.

Tsung-Hsien Wen, Milica Gašić, Dongho Kim, Nikola
Mrkšić, Pei-Hao Su, David Vandyke, and Steve
Young. 2015a. Stochastic language generation in di-
alogue using recurrent neural networks with convolu-
tional sentence reranking. In SIGdial.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-Hao
Su, David Vandyke, and Steve Young. 2015b. Seman-
tically conditioned lstm-based natural language gener-
ation for spoken dialogue systems. In EMNLP.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-Hao
Su, Stefan Ultes, David Vandyke, and Steve Young.
2016a. A network-based end-to-end trainable task-
oriented dialogue system. arXiv preprint:1604.04562.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-Hao
Su, David Vandyke, and Steve Young. 2016b. Multi-
domain neural network language generation for spo-
ken dialogue systems. In NAACL-HLT.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron C. Courville, Ruslan Salakhutdinov, Richard S.
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual at-
tention. In ICML.

Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao.
2016. Neural enquirer: Learning to query tables. In
IJCAI.

Steve Young, Milica Gašić, Simon Keizer, François
Mairesse, Jost Schatzmann, Blaise Thomson, and Kai
Yu. 2010. The hidden information state model: A
practical framework for pomdp-based spoken dialogue
management. Computer, Speech and Language.

Steve Young, Milica Gašić, Blaise Thomson, and Ja-
son D. Williams. 2013. Pomdp-based statistical spo-
ken dialog systems: A review. Proceedings of IEEE.

2162

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2163–2172,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Relations such as Hypernymy: Identifying and Exploiting Hearst Patterns in
Distributional Vectors for Lexical Entailment

Stephen Roller
Department of Computer Science
The University of Texas at Austin
roller@cs.utexas.edu

Katrin Erk
Department of Linguistics

The University of Texas at Austin
katrin.erk@mail.utexas.edu

Abstract

We consider the task of predicting lexical
entailment using distributional vectors. We
perform a novel qualitative analysis of one
existing model which was previously shown
to only measure the prototypicality of word
pairs. We find that the model strongly learns
to identify hypernyms using Hearst patterns,
which are well known to be predictive of lexi-
cal relations. We present a novel model which
exploits this behavior as a method of fea-
ture extraction in an iterative procedure sim-
ilar to Principal Component Analysis. Our
model combines the extracted features with
the strengths of other proposed models in the
literature, and matches or outperforms prior
work on multiple data sets.

1 Introduction

As the field of Natural Language Processing has de-
veloped, more ambitious semantic tasks are starting
to be addressed, such as Question Answering (QA)
and Recognizing Textual Entailment (RTE). These
systems often depend on the use of lexical resources
like WordNet in order to infer entailments for indi-
vidual words, but these resources are expensive to
develop, and always have limited coverage.

To address these issues, many works have con-
sidered on how lexical entailments can be derived
automatically using distributional semantics. Some
focus mostly on the use of unsupervised techniques,
and study measures which emphasize particular
word relations (Baroni and Lenci, 2011). Many are
based on the Distributional Inclusion Hypothesis,

which states that the contexts in which a hypernym
appears are a superset of its hyponyms’ contexts
(Zhitomirsky-Geffet and Dagan, 2005; Kotlerman et
al., 2010). More recently, a great deal of work has
pushed toward using supervised methods (Baroni et
al., 2012; Roller et al., 2014; Weeds et al., 2014;
Levy et al., 2015; Kruszewski et al., 2015), varying
by their experimental setup or proposed model.

Yet the literature disagrees about which models
are strongest (Weeds et al., 2014; Roller et al.,
2014), or even if they work at all (Levy et al., 2015).
Indeed, Levy et al. (2015) showed that two exist-
ing lexical entailment models fail to account for
similarity between the antecedent and consequent,
and conclude that such models are only learning
to predict prototypicality: that is, they predict that
cat entails animal because animal is usually en-
tailed, and therefore will also predict that sofa en-
tails animal. Yet it remains unclear why such models
make for such strong baselines (Weeds et al., 2014;
Kruszewski et al., 2015; Levy et al., 2015).

We present a novel qualitative analysis of one pro-
totypicality classifier, giving new insight into why
prototypicality classifiers perform strongly in the lit-
erature. We find the model overwhelmingly learns
to identify hypernyms using Hearst patterns avail-
able in the distributional space, like “animals such
as cats” and “animals including cats.” These pat-
terns have long been used to identify lexical rela-
tions (Hearst, 1992; Snow et al., 2004).

We propose a novel model which exploits this be-
havior as a method of feature extraction, which we
call H-feature detectors. Using an iterative proce-
dure similar to Principal Component Analysis, our

2163

model is able to extract and learn using multiple H-
feature detectors. Our model also integrates overall
word similarity and Distributional Inclusion, bring-
ing together strengths of several models in the litera-
ture. Our model matches or outperforms prior work
on multiple data sets. The code, data sets, and model
predictions are made available for future research.1

2 Background

Research on lexical entailment using distributional
semantics has now spanned more than a decade,
and has been approached using both unsupervised
(Weeds et al., 2004; Kotlerman et al., 2010; Lenci
and Benotto, 2012; Santus, 2013) and supervised
techniques (Baroni et al., 2012; Fu et al., 2014;
Roller et al., 2014; Weeds et al., 2014; Kruszewski
et al., 2015; Levy et al., 2015; Turney and Mo-
hammad, 2015; Santus et al., 2016). Most of the
work in unsupervised methods is based on the Dis-
tributional Inclusion Hypothesis (Weeds et al., 2004;
Zhitomirsky-Geffet and Dagan, 2005), which states
that the contexts in which a hypernym appear should
be a superset over its hyponyms’ contexts.

This work focuses primarily on the supervised
works in the literature. Formally, we consider meth-
ods which treat lexical entailment as a supervised
classification problem, which take as input the dis-
tributional vectors for a pair of words, (H, w), and
predict on whether the antecedent w entails the con-
sequent H .2

One of the earliest supervised approaches was
Concat (Baroni et al., 2012). In this work, the con-
catenation of the pair 〈H, w〉was used as input to an
off-the-shelf SVM classifier. At the time, it was very
successful, but later works noted that it had major
problems with lexical memorization (Roller et al.,
2014; Weeds et al., 2014; Levy et al., 2015). That is,
when the training and test sets were carefully con-
structed to ensure they were completely disjoint, it
performed extremely poorly. Nonetheless, Concat is
continually used as a strong baseline in more recent
work (Kruszewski et al., 2015).

1http://github.com/stephenroller/
emnlp2016

2We use the notation w and H for word and hypernym.
These variables refer to either the lexical items, or their dis-
tributional vectors, depending on context.

In response to these issues of lexical memoriza-
tion, alternative models were proposed. Of particu-
lar note are the Diff (Fu et al., 2014; Weeds et al.,
2014) and Asym classifiers (Roller et al., 2014). The
Diff model takes the vector difference H − w as
input, while the Asym model uses both the vector
difference and the squared vector difference as in-
put. Weeds et al. (2014) found that Concat moder-
ately outperformed Diff, while Roller et al. (2014)
found that Asym outperformed Concat. Both Diff
and Asym can also be seen as a form of supervised
Distributional Inclusion Hypothesis, with the vector
difference being analogous to the set-inclusion mea-
sures of some unsupervised techniques (Roller et al.,
2014). All of these works focused exclusively on hy-
pernymy detection, rather than the more general task
of lexical entailment.

Recently, other works have begun to analyze Con-
cat and Diff for their ability to go beyond just hyper-
nymy detection. Vylomova et al. (2016) take an ex-
tensive look at Diff’s ability to model a wide variety
of lexical relations and conclude it is generally ro-
bust, and Kruszewski et al. (2015) have success with
a neural network model based on the Distributional
Inclusion Hypothesis.

On the other hand, Levy et al. (2015) analyze both
Concat and Diff in their ability to detect general lex-
ical entailment on five data sets: two consisting of
only hypernymy, and three covering a wide variety
of other entailing word relations. They find that both
Concat and Diff fail, and analytically show that they
are learning to predict the prototypicality of the con-
sequent H , rather than the relationship between the
antecedent and the consequent, and consider this a
form of lexical memorization. They propose a new
model, Ksim, which addresses their concerns, but
lacks any notion of Distributional Inclusion. In par-
ticular, they argue for directly including the cosine
similarity of w and H as a term in a custom SVM
kernel, in order to determine whether w and H are
related all. Ultimately, Levy et al. (2015) conclude
that distributional vectors may simply be the wrong
tool for the job.

3 Data and Resources

Prior work on lexical entailment relied on a variety
of data sets, each constructed in a different manner.

2164

We focus on four different data sets, each of which
has been used for evaluation in prior work. Two data
sets contain only hypernymy relations, and two con-
sider general lexical entailment.

Our first data set is LEDS, the Lexical Entail-
ment Data Set, originally created by Baroni et al.
(2012). The data set contains 1385 hyponym-
hypernym pairs extracted directly from WordNet,
forming a set of positive examples. Negative exam-
ples were generated by randomly shuffling the orig-
inal set of 1385 pairs. As such, LEDS only contains
examples of hypernymy and random relations.

Another major data set has been BLESS, the
Baroni and Lenci (2011) Evaluation of Semantic
Spaces. The data set contains annotations of word
relations for 200 unambiguous, concrete nouns from
17 broad categories. Each noun is annotated with its
co-hyponyms, meronyms, hypernym and some ran-
dom words. In this work, we treat hypernymy as
positive, and other relations as negative.

These two data sets form our hypernymy data
sets, but we cannot overstate their important differ-
ences: LEDS is balanced, while BLESS contains
mostly negative examples; negatives in BLESS in-
clude both random pairs and pairs exhibiting other
strong semantic relations, while LEDS only contains
random pairs. Furthermore, all of the negative ex-
amples in LEDS are the same lexical items as the
positive items, which has strong implications on the
prototypicality argument of Levy et al. (2015).

The next data set we consider is Medical (Levy et
al., 2014). This data set contains high quality anno-
tations of subject-verb-object entailments extracted
from medical texts, and transformed into noun-noun
entailments by argument alignments. The data con-
tains 12,600 annotations, but only 945 positive ex-
amples encompassing various relations like hyper-
nymy, meronomy, synonymy and contextonymy.3

This makes it one of the most difficult data sets: it is
both domain specific and highly unbalanced.

The final data set we consider is TM14, a varia-
tion on the SemEval 2012 Shared Task of identifying
the degree to which word pairs exhibit various rela-
tions. These relationships include a small amount
of hypernymy, but also many more uncommon rela-

3A term for entailments that occur in some contexts, but do
not cleanly fit in other categories; e.g. hospital entails doctor.

tions (agent-object, cause-effect, time-activity, etc).
Relationships were binarized into (non-)entailing
pairs by Turney and Mohammad (2015). The data
set covers 2188 pairs, 1084 of which are entailing.

These two entailment data sets also contain im-
portant differences, especially in contrast to the hy-
pernymy data sets. Neither contains any random
negative pairs, meaning general semantic similarity
measures should be less useful; And both exhibit a
variety of non-hypernymy relations, which are less
strictly defined and more difficult to model.

3.1 Distributional Vectors

In all experiments, we use a standard, count-based,
syntactic distributional vector space. We use a cor-
pus composed of the concatenation of Gigaword,
Wikipedia, BNC and ukWaC. We preprocess the
corpus using Stanford CoreNLP 3.5.2 (Chen and
Manning, 2014) for tokenization, lemmatization,
POS-tagging and universal dependency parses. We
compute a syntactic distributional space for the 250k
most frequent lemmas by counting their dependency
neighbors across the corpus. We use only the top 1M
most frequent dependency attachments as contexts.
We use CoreNLP’s “collapsed dependencies”, in
which prepositional dependencies are collapsed e.g.
“go to the store” emits the tuples (go, prep:to+store)
and (store, prep:to−1+go). After collecting counts,
vectors are transformed using PPMI, SVD reduced
to 300 dimensions, and normalized to unit length.
The use of collapsed dependencies is very important,
as we will see in Section 4, but other parameters are
reasonably robust.

4 Motivating Analysis

As discussed in Section 2, the Concat classifier is a
classifier trained on the concatenation of the word
vectors, 〈H, w〉. As additional background, we
first review the findings of Levy et al. (2015), who
showed that Concat trained using a linear classifier is
only able to capture notions of prototypicality; that
is, Concat guesses that (animal, sofa) is a positive
example because animal looks like a hypernym.

Formally, a linear classifier like Logistic Regres-
sion or Linear SVM learns a decision hyperplane
represented by a vector p̂. Data points are compared
to this plane with the inner product: those above

2165

the plane (positive inner product) are classified as
entailing, and those below as non-entailing. Cru-
cially, since the input features are the concatenation
of the pair vectors 〈H, w〉, the hyperplane p̂ vec-
tor can be decomposed into separate H and w com-
ponents. Namely, if we rewrite the decision plane
p̂ = 〈Ĥ, ŵ〉, we find that each pair 〈H, w〉 is classi-
fied using:

p̂>〈H, w〉
= 〈Ĥ, ŵ〉>〈H, w〉
= Ĥ>H + ŵ>w.

(1)

This analysis shows that, when the hyperplane p̂ is
evaluated on a novel pair, it lacks any form of direct
interaction between H and w like the inner prod-
uct H>w. Without any interaction terms, the Con-
cat classifier has no way of estimating the relation-
ship between the two words, and instead only makes
predictions based on two independent terms, Ĥ and
ŵ, the prototypicality vectors. Furthermore, the Diff
classifier can be analyzed in the same fashion and
therefore has the same fatal property.

We agree with this prototypicality interpretation,
although we believe it is incomplete: while it places
a fundamental ceiling on the performance of these
classifiers, it does not explain why others have found
them to persist as strong baselines (Weeds et al.,
2014; Roller et al., 2014; Kruszewski et al., 2015;
Vylomova et al., 2016). To approach this ques-
tion, we consider a baseline Concat classifier trained
using a linear model. This classifier should most
strongly exhibit the prototypicality behavior accord-
ing to Equation 1, making it the best choice for anal-
ysis. We first consider the most pessimistic hypothe-
sis: is it only learning to memorize which words are
hypernyms at all?

We train the baseline Concat classifier using Lo-
gistic Regression on each of the four data sets, and
extract the vocabulary words which are most simi-
lar to the Ĥ half of the learned hyperplane p̂. If the
classifier is only learning to memorize the training
data, we would expect items from the data to dom-
inate this list of closest vocabulary terms. Table 1
gives the five most similar words to the learned hy-
perplane, with bold words appearing directly in the
data set.

Interestingly, we notice there are very few bold
words at all in the list. In LEDS, we actually see

LEDS BLESS Medical TM14
material goods item sensitiveness
structure lifeform unlockable tactility
object item succor palate
process equipment team-up stiffness
activity herbivore non-essential content

Table 1: Most similar words to the prototype Ĥ learned by the

Concat model. Bold items appear in the data set.

some hypernyms of data set items that do not even
appear in the data set, and the Medical and TM14
words do not even appear related to the content of
the data sets. Similar results were also found for
Diff and Asym, and both when using Linear SVM
and Logistic Regression. These lists cannot explain
the success of the prototypicality classifiers in prior
work. Instead, we propose an alternative interpreta-
tion of the hyperplane: that of a feature detector for
hypernyms, or an H-feature detector.

4.1 H-Feature Detectors
Recall that distributional vectors are derived from
a matrix M containing counts of how often words
co-occur with the different syntactic contexts. This
co-occurrence matrix is factorized using Singular
Value Decomposition, producing both W , the ubiq-
uitous word-embedding matrix, and C, the context-
embedding matrix (Levy and Goldberg, 2014):

M ≈WC>

Since the word and context embeddings implicitly
live in the same vector space (Melamud et al., 2015),
we can also compare Concat’s hyperplane with the
context matrix C. Under this interpretation, the
Concat model does not learn what words are hy-
pernyms, but rather what contexts or features are in-
dicative of hypernymy. Table 2 shows the syntactic
contexts with the highest cosine similarity to the Ĥ
prototype for each of the different data sets.

This view of Concat as an H-feature detector
produces a radically different perspective on the
classifier’s hyperplane. Nearly all of the features
learned take the form of Hearst patterns (Hearst,
1992; Snow et al., 2004). The most recognizable
and common pattern learned is the “such as” pat-
tern, as in “animals such as cats”. These patterns
have been well known to be indicative of hyper-
nymy for over two decades. Other interesting pat-

2166

LEDS BLESS
nmod:such as+animal nmod:such as+submarine
acl:relcl+identifiable nmod:such as+ship
nmod:of−1+determine nmod:such as+seal
nmod:of−1+categorisation nmod:such as+plane
compound+many nmod:such as+rack
nmod:such as+pot nmod:such as+rope
Medical TM14
nmod:such as+patch amod+desire
nmod:such as+skin amod+heighten
nmod:including+skin nsubj−1+disparate
nmod:such as+tooth nmod:such as+honey
nmod:such as+feather nmod:with−1+body
nmod:including+finger nsubj−1+unconstrained

Table 2: Most similar contexts to the prototype Ĥ learned by

the Concat model.

terns are the “including” pattern (“animals includ-
ing cats”) and “many” pattern (“many animals”).
Although we list only the six most similar context
items for the data sets, we find similar contexts con-
tinue to dominate the list for the next 30-50 items.
Taken together, it is remarkable that the model iden-
tified these patterns using only distributional vectors
and only the positive/negative example pairs. How-
ever, the reader should note these are not true Hearst
patterns: Hearst patterns explicitly relate a hyper-
nym and hyponym using an exact pattern match of
a single co-occurrence. On the other hand, these
H-features are aggregate indicators of hypernymy
across a large corpus.

These learned features are much more inter-
pretable than those found in the analysis of prior
work like Roller et al. (2014) and Levy et al. (2015).
Roller et al. (2014) found no signals of H-features
in their analysis of one classifier, but their model
was focused on bag-of-words distributional vectors,
which perform significantly worse on the task. Levy
et al. (2015) also performed an analysis of lexical
entailment classifiers, and found weak signals like
“such” and “of” appearing as prominent contexts in
their classifier, giving an early hint of H-feature de-
tectors, but not to such an overwhelming degree as
we see in this work. Critically, their analysis fo-
cused on a classifier trained on high-dimensional,
sparse vectors, rather than focusing on context em-
beddings as we do. By using these sparse vectors,
their model was unable to generalize across simi-

lar contexts. Additionally, their model did not make
use of collapsed dependencies, making features like
“such” much weaker signals of entailment and there-
fore less dominant during analysis.

Among these remarkable lists, the LEDS and
TM14 data sets stand out for having much fewer
“such as” patterns compared to BLESS and Medi-
cal. The reason for this is explained by the construc-
tion of the data sets: since LEDS contains the same
words used as both positive and negative examples,
the classifier has a hard time picking out clear sig-
nal. The TM14 data set, however, does not contain
any such negative examples.

We hypothesize the TM14 data set contains too
many diverse and mutually exclusive forms of lex-
ical entailment, like instrument-goal (e.g. “honey”
→ “sweetness”). To test this, we retrained the model
with only hypernymy as positive examples, and all
other relations as negative. We find that “such as”
type patterns become top features, but also some
interesting data specific features, like “retailer of
[clothes]”. Examining the data shows it contains
many consumer goods, like “beverage” or “clothes”,
which explains these features.

5 Proposed Model

As we saw in the previous section, Concat only acts
as a sort of H-feature detector for whether H is a
prototypical hypernym, but does not actually infer
the relationship betweenH andw. Nonetheless, this
is powerful behavior which should still be used in
combination with the insights of other models like
Ksim and Asym. To this end, we propose a novel
model which exploits Concat’s H-feature detector
behavior, extends its modeling power, and adds two
other types of evidence proposed in the literature:
overall similarity, and distributional inclusion.

Our model works through an iterative procedure
similar to Principal Component Analysis (PCA).
Each iteration repeatedly trains a Concat classifier
under the assumption that it acts as an H-feature de-
tector, and then explicitly discards this information
from the distributional vectors. By training a new
H-feature detector on these modified distributional
vectors, we can find additional features indicative of
entailment which were missed by the first classifier.
The entire procedure is iteratively repeated similar

2167

Figure 1: A vector p̂ is used to break x into two orthogonal

components, its projection and the rejection over p̂.

to how in Principal Component Analysis, the second
principal component is computed after the first prin-
cipal component has been removed from the data.

The main insight is that after training some H-
feature detector using Concat, we can remove this
prototype from the distributional vectors through the
use of vector projection. Formally, the vector pro-
jection of x onto a vector p̂, projp̂(x) finds the com-
ponent of x which is in the direction of p̂,

projp̂(x) =
(
x>p̂
‖p̂‖

)
p̂.

Figure 1 gives a geometric illustration of the vector
projection. If x forms the hypotenuse of a right tri-
angle, projp̂(x) forms a leg of the triangle. This also
gives rise to the vector rejection, which is the vec-
tor forming the third leg of the triangle. The vector
rejection is orthogonal to the projection, and intu-
itively, is the original vector after the projection has
been removed:

rejp̂(x) = x− projp̂(x).

Using the vector rejection, we take a learned H-
feature detector p̂, and discard these features from
each of the word vectors. That is, for every data
point 〈H,w〉, we replace it by its vector rejection
and rescale it to unit magnitude:

Hi+1 = rejp̂(H)/‖rejp̂(H)‖
wi+1 = rejp̂(w)/‖rejp̂(w)‖

A new classifier trained on the 〈Hi+1, wi+1〉 data
must now learn a different decision plane than p̂, as
p̂ is no longer present in any data points. This repeti-
tion of the procedure is roughly analogous to learn-
ing the second principal component of the data; we

wish to classify the pairs without using any informa-
tion learned from the previous iteration.

This second classifier must perform strictly worse
than the original, otherwise the first classifier would
have learned this second hyperplane. Nonetheless,
it will be able to learn new H-feature detectors
which the original classifier was unable to capture.
By repeating this process, we can find several H-
feature detectors, p̂1, . . . , p̂n. Although the first, p̂1
is the best possible single H-feature detector, each
additional H-feature detector increases the model’s
representational power (albeit with diminishing re-
turns).

This procedure alone does not address the main
concern of Levy et al. (2015): that these linear clas-
sifiers never actually model any connection between
H and w. To address this, we explicitly compare
H and w by extracting additional information about
how H and w interact with respect to each of the
H-feature detectors. This additional information is
then used to train one final classifier which makes
the final prediction.

Concretely, in each iteration i of the procedure,
we generate a four-valued feature vector Fi, based
on the H-feature detector p̂i. Each feature vector
contains (1) the similarity of Hi and wi (before pro-
jection); (2) the feature p̂i applied to Hi; (3) the H-
feature detector p̂i applied to wi; and (4) the differ-
ence of 2 and 3.

Fi(〈Hi, wi〉, p̂i)
= 〈H>i wi, H

>
i p̂i, w

>
i p̂i, (Hi − wi)

>p̂i〉

These four “meta”-features capture all the bene-
fits of the H-feature detector (slots 2 and 3), while
still addressing Concat’s issues with similarity argu-
ments (slot 1) and distributional inclusion (slot 4).
The final feature’s relation to the DIH comes from
the observation of Roller et al. (2014) that the vec-
tor difference intuitively captures whether the hyper-
nym includes the hyponym.

The union of all the feature vectors F1, . . . , Fn

from repeated iteration form a 4n-dimensional fea-
ture vector which we use as input to one final classi-
fier which makes the ultimate decision. This classi-
fier is trained on the same training data as each of the
individual H-feature detectors, so our iterative pro-
cedure acts only as a method of feature extraction.

2168

For our final classifier, we use an SVM with an
RBF-kernel, though decision trees and other non-
linear classifiers also perform reasonably well. The
nonlinear final classifier can be understood as do-
ing a form of logical reasoning about the four slots:
“animal” is a hypernym of “cat” because (1) they are
similar words where (2) animal looks like a hyper-
nym, but (3) cat does not, and (4) some “animal”
contexts are not good “cat” contexts.

6 Experimental Setup and Evaluation

In our experiments, we use a variation of 20-fold
cross validation which accounts for lexical overlap.
To simplify explanation, we first explain how we
generate splits for training/testing, and then after-
wards introduce validation methodology.

We first pool all the words from the antecedent
(LHS) side of the data into a set, and split these lex-
ical items into 20 distinct cross-validation folds. For
each fold Fi, we then use all pairs (w,H) where
w ∈ Fi as the test set pairs. That is, if “car” is in
the test set fold, then “car → vehicle” and “car 9
truck” will appear as test set pairs. The training set
will then be every pair which does not contain any
overlap with the test set; e.g. the training set will be
all pairs which do not contain “car”, “truck” or “ve-
hicle” as either the antecedent or consequent. This
ensures that both (1) there is zero lexical overlap be-
tween training and testing and (2) every pair is used
as an item in a test fold exactly once. One quirk of
this setup is that all test sets are approximately the
same size, but training sizes vary dramatically.

This setup differs from those of previous works
like Kruszewski et al. (2015) and Levy et al. (2015),
who both use single, fixed train/test/val sets without
lexical overlap. We find our setup has several advan-
tages over fixed sets. First, we find there can be con-
siderable variance if the train/test set is regenerated
with a different random seed, indicating that multi-
ple trials are necessary. Second, fixed setups con-
sistently discard roughly half the data as ineligible
for either training or test, as lexical items appear in
many pairs. Our CV-like setup allows us to evaluate
performance over every item in the data set exactly
once, making a much more efficient and representa-
tive use of the original data set.

Our performance metric is F1 score. This is more

Model LEDS BLESS Medical TM14
Linear Models

Cosine .787 .208 .168 .676
Concat .794 .612 .218 .693
Diff .805 .440 .195 .665
Asym .865 .510 .210 .671
Concat+Diff .801 .604 .224 .703
Concat+Asym .843 .631 .240 .701

Nonlinear Models
RBF .779 .574 .215 .705
Ksim .893 .488 .224 .707
Our model .901 .631 .260 .697

Table 3: Mean F1 scores for each model and data set.

representative than accuracy, as most of the data sets
are heavily unbalanced. We report the mean F1
scores across all cross validation folds.

6.1 Hyperparameter Optimization
In order to handle hyperparameter selection, we ac-
tually generate the test set using fold i, and use
fold i − 1 as a validation set (removing pairs which
would overlap with test), and the remaining 18
folds as training (removing pairs which would over-
lap with test or validation). We select hyperpa-
rameters using grid search. For all models, we
optimize over the regularization parameter C ∈
{10−4, 10−3, . . . , 104}, and for our proposed model,
the number of iterations n ∈ {1, . . . , 6}. All other
hyperparameters are left as defaults provided by
Scikit-Learn (Pedregosa et al., 2011), except for us-
ing balanced class weights. Without balanced class
weights, several of the baseline models learn degen-
erate functions (e.g. always guess non-entailing).

7 Results

We compare our proposed model to several ex-
isting and alternative baselines from the literature.
Namely, we include a baseline Cosine classifier,
which only learns a threshold which maximizes F1
score on the training set; three linear models of prior
work, Concat, Diff and Asym; and the RBF and
Ksim models found to be successful in Kruszewski
et al. (2015) and Levy et al. (2015). We also in-
clude two additional novel baselines, Concat+Diff
and Concat+Asym, which add a notion of Distri-
butional Inclusion into the Concat baseline, but are
still linear models. We cannot include baselines like

2169

Model LEDS BLESS Medical TM14
No Similarity .099 .061 .034 .003
No Detectors -.008 .136 .018 .028
No Inclusion .010 .031 .014 .001

Table 4: Absolute decrease in mean F1 on the development

sets with the different feature types ablated. Higher numbers

indicate greater feature importance.

Ksim+Asym, because Ksim is based on a custom
SVM kernel which is not amenable to combinations.

Table 3 the results across all four data sets for all
of the listed models. Our proposed model improves
significantly4 over Concat in the LEDS, BLESS and
Medical data sets, indicating the benefits of combin-
ing these aspects of similarity and distributional in-
clusion with the H-feature detectors of Concat. The
Concat+Asym classifier also improves over the Con-
cat baseline, further emphasizing these benefits. Our
model performs approximately the same as Ksim
on the LEDS and TM14 data sets (no significant
difference), while significantly outperforming it on
BLESS and Medical data sets.

7.1 Ablation Experiments
In order to evaluate how important each of the vari-
ous F features are to the model, we also performed
an ablation experiment where the classifier is not
given the similarity (slot 1), prototype H-feature de-
tectors (slots 2 and 3) or the inclusion features (slot
4). To evaluate the importance of these features,
we fix the regularization parameter at C = 1, and
train all ablated classifiers on each training fold with
number of iterations n = 1, . . . , 6. Table 4 shows
the decrease (absolute difference) in performance
between the full and ablated models on the develop-
ment sets, so higher numbers indicate greater feature
importance.

We find the similarity feature is extremely impor-
tant in the LEDS, BLESS and Medical data sets,
therefore reinforcing the findings of Levy et al.
(2015). The similarity feature is especially impor-
tant in the LEDS and BLESS data sets, where neg-
ative examples include many random pairs. The
detector features are moderately important for the
Medical and TM14 data sets, and critically impor-
tant on BLESS, where we found the strongest evi-

4Bootstrap test, p < .01.

dence of Hearst patterns in the H-feature detectors.
Surprisingly, the detector features are moderately
detrimental on the LEDS data set, though this can
also be understood in the data set’s construction:
since the negative examples are randomly shuffled
positive examples, the same detector signal will ap-
pear in both positive and negative examples. Finally,
we find the model performs somewhat robustly with-
out the inclusion feature, but still is moderately im-
pactful on three of the four data sets, lending further
evidence to the Distributional Inclusion Hypothesis.
In general, we find all three components are valu-
able sources of information for identifying hyper-
nymy and lexical entailment.

7.2 Analysis by Number of Iterations
In order to evaluate how the iterative feature extrac-
tion affects model performance, we fix the regular-
ization parameter at C = 1, and train our model
fixing the number of iterations to n = {1, . . . , 6}.
We then measure the mean F1 score across the de-
velopment folds and compare to a baseline which
uses only one iteration. Figure 2 shows these results
across all four data sets, with the 0 line set at per-
formance of the n = 1 baseline. Models above 0
benefit from the additional iterations, while models
below do not.

In the figure, we see that the iterative pro-
cedure moderately improves performance LEDS,
while greatly improving the scores of BLESS and
TM14, but on the medical data set, additional it-
erations actually hurt performance. The differing
curves indicate that the optimal number of itera-
tions is very data set specific, and provides differing
amounts of improvement, and therefore should be
tuned carefully. The LEDS and BLESS curves indi-
cate a sort of “sweet spot” behavior, where further
iterations degrade performance.

To gain some additional insight into what is cap-
tured by the various iterations of the feature extrac-
tion procedure, we repeat the procedure from Sec-
tion 4: we train our model on the entire BLESS
data set using a fixed four iterations and regular-
ization parameter. For each iteration, we compare
its learned H-feature detector to the context embed-
dings, and report the most similar contexts for each
iteration in Table 5.

The first iteration is identical to the one in Ta-

2170

LEDS BLESS Medical TM14

−0.02
−0.01

0.00
0.01
0.02
0.03
0.04
0.05
0.06

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Number of iterations

R
el

at
iv

e
F

1

Figure 2: Performance of model on development folds by number of iterations. Plots show the improvement (absolute difference)

in mean F1 over the model fixed at one iteration.

Iteration 1 Iteration 2 Iteration 3 Iteration 4
nmod:such as+submarine nmod:including+animal amod+free-swimming advcl+crown
nmod:such as+ship nmod:including+snail nmod:including−1+thing advcl+victorious
nmod:such as+seal nmod:including+insect nsubj−1+scarcer nsubj+eaters
nmod:such as+plane nmod:such as+crustacean nsubj−1+pupate nsubj+kaine
nmod:such as+rack nmod:such as+mollusc nmod:such as+mollusc nmod:at+finale
nmod:such as+rope nmod:such as+insect nmod:of−1+value nsubj+gowen
nmod:such as+box nmod:such as+animal nmod:as−1+exhibit nsubj+pillman

Table 5: Most similar contexts to the H-feature detector for each iteration of the PCA-like procedure. This model was trained on all

data of BLESS. The first and second iterations contain clear Hearst patterns, while the third and fourth contain some data-specific

and non-obvious signals.

ble 2, as expected. The second iteration includes
many H-features not picked up by the first itera-
tion, mostly those of the form “X including Y”. The
third iteration picks up some data set specific signal,
like “free-swimming [animal]” and “value of [com-
puter]”, and so on. By the fourth iteration, the fea-
tures no longer exhibit any obvious Hearst patterns,
perhaps exceeding the sweet spot we observed in
Figure 2. Nonetheless, we see how multiple iter-
ations of the procedure allows our model to capture
many more useful features than a single Concat clas-
sifier on its own.

8 Conclusion

We considered the task of detecting lexical entail-
ment using distributional vectors of word meaning.
Motivated by the fact that the Concat classifier acts
as a strong baseline in the literature, we proposed a
novel interpretation of the model’s hyperplane. We
found the Concat classifier overwhelmingly acted
as a feature detector which automatically identifies
Hearst Patterns in the distributional vectors.

We proposed a novel model that embraces these

H-feature detectors fully, and extends their model-
ing power through an iterative procedure similar to
Principal Component Analysis. In each iteration of
the procedure, an H-feature detector is learned, and
then removed from the data, allowing us to iden-
tify several different kinds of Hearst Patterns in the
data. Our final model combines these H-feature de-
tectors with measurements of general similarity and
Distributional Inclusion, in order to integrate the
strengths of different models in prior work. Our
model matches or exceeds the performance of prior
work, both on hypernymy detection and general lex-
ical entailment.

Acknowledgments

The authors would like to thank I. Beltagy, Vered
Shwartz, Subhashini Venugopalan, and the review-
ers for their helpful comments and suggestions.
This research was supported by the NSF grant IIS
1523637. We acknowledge the Texas Advanced
Computing Center for providing grid resources that
contributed to these results.

2171

References
Marco Baroni and Alessandro Lenci. 2011. How we

BLESSed distributional semantic evaluation. In Pro-
ceedings of the GEMS 2011 Workshop on GEometrical
Models of Natural Language Semantics, pages 1–10,
Edinburgh, UK.

Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do, and
Chung-chieh Shan. 2012. Entailment above the word
level in distributional semantics. In Proceedings of the
2012 Conference of the European Chapter of the As-
sociation for Computational Linguists, pages 23–32,
Avignon, France.

Danqi Chen and Christopher Manning. 2014. A fast and
accurate dependency parser using neural networks.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, pages 740–
750, Doha, Qatar.

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng
Wang, and Ting Liu. 2014. Learning semantic hi-
erarchies via word embeddings. In Proceedings of
the 2014 Annual Meeting of the Association for Com-
putational Linguistics, pages 1199–1209, Baltimore,
Maryland.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of the
1992 Conference on Computational Linguistics, pages
539–545, Nantes, France.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-Geffet. 2010. Directional distributional
similarity for lexical inference. Natural Language En-
gineering, 16:359–389, 10.

Germán Kruszewski, Denis Paperno, and Marco Baroni.
2015. Deriving Boolean structures from distributional
vectors. Transactions of the Association for Computa-
tional Linguistics, 3:375–388.

Alessandro Lenci and Giulia Benotto. 2012. Identifying
hypernyms in distributional semantic spaces. In The
First Joint Conference on Lexical and Computational
Semantics, pages 75–79, Montréal, Canada.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Ad-
vances in Neural Information Processing Systems,
pages 2177–2185.

Omer Levy, Ido Dagan, and Jacob Goldberger. 2014. Fo-
cused entailment graphs for Open IE propositions. In
Proceedings of the 2014 Conference on Computational
Natural Language Learning, pages 87–97, Ann Arbor,
Michigan.

Omer Levy, Steffen Remus, Chris Biemann, and Ido Da-
gan. 2015. Do supervised distributional methods re-
ally learn lexical inference relations? In Proceedings
of the 2015 North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 970–976, Denver, Colorado.

Oren Melamud, Omer Levy, and Ido Dagan. 2015. A
simple word embedding model for lexical substitution.
In Proceedings of the First Workshop on Vector Space
Modeling for Natural Language Processing, pages 1–
7, Denver, Colorado.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–
2830.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet selective: Supervised distributional hy-
pernymy detection. In Proceedings of the 2014 In-
ternational Conference on Computational Linguistics,
pages 1025–1036, Dublin, Ireland.

Enrico Santus, Alessandro Lenci, Tin-Shing Chiu, Qin
Lu, and Chu-Ren Huang. 2016. Nine features in a
random forest to learn taxonomical semantic relations.
In Proceedings of the Tenth International Conference
on Language Resources and Evaluation, Paris, France.

Enrico Santus. 2013. SLQS: An entropy measure. Mas-
ter’s thesis, University of Pisa.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2004.
Learning syntactic patterns for automatic hypernym
discovery. In Advances in Neural Information Pro-
cessing Systems, pages 1297–1304.

Peter D Turney and Saif M Mohammad. 2015. Ex-
periments with three approaches to recognizing lex-
ical entailment. Natural Language Engineering,
21(03):437–476.

Ekaterina Vylomova, Laura Rimell, Trevor Cohn, and
Timothy Baldwin. 2016. Take and took, gaggle and
goose, book and read: Evaluating the utility of vector
differences for lexical relation learning. In Proceed-
ings of the 54th Annual Meeting of the Association for
Computational Linguistics, pages 1671–1682, Berlin,
Germany, August.

Julie Weeds, David Weir, and Diana McCarthy. 2004.
Characterising measures of lexical distributional simi-
larity. In Proceedings of the 2004 International Con-
ference on Computational Linguistics, pages 1015–
1021, Geneva, Switzerland.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir,
and Bill Keller. 2014. Learning to distinguish hyper-
nyms and co-hyponyms. In Proceedings of the 2014
International Conference on Computational Linguis-
tics, pages 2249–2259, Dublin, Ireland.

Maayan Zhitomirsky-Geffet and Ido Dagan. 2005. The
distributional inclusion hypotheses and lexical entail-
ment. In Proceedings of the 2005 Annual Meeting of
the Association for Computational Linguistics, pages
107–114, Ann Arbor, Michigan.

2172

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2173–2182,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

SimVerb-3500: A Large-Scale Evaluation Set of Verb Similarity

Daniela Gerz1, Ivan Vulić1, Felix Hill1, Roi Reichart2, and Anna Korhonen1

1Language Technology Lab, DTAL, University of Cambridge
2Faculty of Industrial Engineering and Management, Technion, IIT

1{dsg40,iv250,fh295,alk23}@cam.ac.uk
2roiri@ie.technion.ac.il

Abstract

Verbs play a critical role in the meaning of
sentences, but these ubiquitous words have re-
ceived little attention in recent distributional se-
mantics research. We introduce SimVerb-3500,
an evaluation resource that provides human
ratings for the similarity of 3,500 verb pairs.
SimVerb-3500 covers all normed verb types
from the USF free-association database, pro-
viding at least three examples for every Verb-
Net class. This broad coverage facilitates de-
tailed analyses of how syntactic and seman-
tic phenomena together influence human un-
derstanding of verb meaning. Further, with
significantly larger development and test sets
than existing benchmarks, SimVerb-3500 en-
ables more robust evaluation of representation
learning architectures and promotes the devel-
opment of methods tailored to verbs. We hope
that SimVerb-3500 will enable a richer under-
standing of the diversity and complexity of
verb semantics and guide the development of
systems that can effectively represent and in-
terpret this meaning.

1 Introduction

Verbs are famously both complex and variable. They
express the semantics of an event as well the rela-
tional information among participants in that event,
and they display a rich range of syntactic and seman-
tic behaviour (Jackendoff, 1972; Gruber, 1976; Levin,
1993). Verbs play a key role at almost every level of
linguistic analysis. Information related to their predi-
cate argument structure can benefit many NLP tasks
(e.g. parsing, semantic role labelling, information ex-
traction) and applications (e.g. machine translation,

text mining) as well as research on human language
acquisition and processing (Korhonen, 2010). Precise
methods for representing and understanding verb se-
mantics will undoubtedly be necessary for machines
to interpret the meaning of sentences with similar
accuracy to humans.

Numerous algorithms for acquiring word represen-
tations from text and/or more structured knowledge
bases have been developed in recent years (Mikolov
et al., 2013; Pennington et al., 2014; Faruqui et al.,
2015). These representations (or embeddings) typ-
ically contain powerful features that are applicable
to many language applications (Collobert and We-
ston, 2008; Turian et al., 2010). Nevertheless, the
predominant approaches to distributed representation
learning apply a single learning algorithm and repre-
sentational form for all words in a vocabulary. This
is despite evidence that applying different learning
algorithms to word types such as nouns, adjectives
and verbs can significantly increase the ultimate use-
fulness of representations (Schwartz et al., 2015).

One factor behind the lack of more nuanced word
representation learning methods is the scarcity of sat-
isfactory ways to evaluate or analyse representations
of particular word types. Resources such as MEN
(Bruni et al., 2014), Rare Words (Luong et al., 2013)
and SimLex-999 (Hill et al., 2015) focus either on
words from a single class or small samples of differ-
ent word types, with automatic approaches already
reaching or surpassing the inter-annotator agreement
ceiling. Consequently, for word classes such as verbs,
whose semantics is critical for language understand-
ing, it is practically impossible to achieve statistically
robust analyses and comparisons between different

2173

representation learning architectures.
To overcome this barrier to verb semantics re-

search, we introduce SimVerb-3500 – an extensive
intrinsic evaluation resource that is unprecedented
in both size and coverage. SimVerb-3500 includes
827 verb types from the University of South Florida
Free Association Norms (USF) (Nelson et al., 2004),
and at least 3 member verbs from each of the 101
top-level VerbNet classes (Kipper et al., 2008). This
coverage enables researchers to better understand
the complex diversity of syntactic-semantic verb be-
haviours, and provides direct links to other estab-
lished semantic resources such as WordNet (Miller,
1995) and PropBank (Palmer et al., 2005). More-
over, the large standardised development and test sets
in SimVerb-3500 allow for principled tuning of hy-
perparameters, a critical aspect of achieving strong
performance with the latest representation learning
architectures.

In § 2, we discuss previous evaluation resources
targeting verb similarity. We present the new
SimVerb-3500 data set along with our design choices
and the pair selection process in § 3, while the anno-
tation process is detailed in § 4. In § 5 we report the
performance of a diverse range of popular representa-
tion learning architectures, together with benchmark
performance on existing evaluation sets. In § 6, we
show how SimVerb-3500 enables a variety of new
linguistic analyses, which were previously impossi-
ble due to the lack of coverage and scale in existing
resources.

2 Related Work

A natural way to evaluate representation quality is by
judging the similarity of representations assigned to
similar words. The most popular evaluation sets at
present consist of word pairs with similarity ratings
produced by human annotators.1 Nevertheless, we
find that all available datasets of this kind are insuf-
ficient for judging verb similarity due to their small
size or narrow coverage of verbs.

In particular, a number of word pair evaluation
sets are prominent in the distributional semantics

1In some existing evaluation sets pairs are scored for relat-
edness which has some overlap with similarity. SimVerb-3500
focuses on similarity as this is a more focused semantic rela-
tion that seems to yield a higher agreement between human
annotators. For a broader discussion see (Hill et al., 2015).

literature.
Representative examples include RG-65 (Ruben-

stein and Goodenough, 1965) and WordSim-353
(Finkelstein et al., 2002; Agirre et al., 2009) which
are small (65 and 353 word pairs, respectively).
Larger evaluation sets such as the Rare Words evalu-
ation set (Luong et al., 2013) (2034 word pairs) and
the evaluations sets from Silberer and Lapata (2014)
are dominated by noun pairs and the former also fo-
cuses on low-frequency phenomena. Therefore, these
datasets do not provide a representative sample of
verbs (Hill et al., 2015).

Two datasets that do focus on verb pairs to some
extent are the data set of Baker et al. (2014) and
Simlex-999 (Hill et al., 2015). These datasets, how-
ever, still contain a limited number of verb pairs (134
and 222, respectively), making them unrepresentative
of the rich variety of verb semantic phenomena.

In this paper we provide a remedy for this problem
by presenting a more comprehensive and representa-
tive verb pair evaluation resource.

3 The SimVerb-3500 Data Set

In this section, we discuss the design principles be-
hind SimVerb-3500. We first demonstrate that a new
evaluation resource for verb similarity is a necessity.
We then describe how the final verb pairs were se-
lected with the goal to be representative, that is, to
guarantee a wide coverage of two standard semantic
resources: USF and VerbNet.

3.1 Design Motivation

Hill et al. (2015) argue that comprehensive high-
quality evaluation resources have to satisfy the fol-
lowing three criteria: (C1) Representative (the re-
source covers the full range of concepts occurring
in natural language); (C2) Clearly defined (it clearly
defines the annotated relation, e.g., similarity); (C3)
Consistent and reliable (untrained native speakers
must be able to quantify the target relation consis-
tently relying on simple instructions).

Building on the same annotation guidelines as
Simlex-999 that explicitly targets similarity, we en-
sure that criteria C2 and C3 are satisfied. However,
even SimLex, as the most extensive evaluation re-
source for verb similarity available at present, is still
of limited size, spanning only 222 verb pairs and 170

2174

distinct verb lemmas in total. Given that 39 out of the
101 top-level VerbNet classes are not represented at
all in SimLex, while 20 classes have only one mem-
ber verb,2 one may conclude that the criterion C1 is
not at all satisfied with current resources.

There is another fundamental limitation of all
current verb similarity evaluation resources: auto-
matic approaches have reached or surpassed the inter-
annotator agreement ceiling. For instance, while the
average pairwise correlation between annotators on
SL-222 is Spearman’s ρ correlation of 0.717, the
best performing automatic system reaches ρ = 0.727
(Mrkšić et al., 2016). SimVerb-3500 does not inherit
this anomaly (see Tab. 2) and demonstrates that there
still exists an evident gap between the human and
system performance.

In order to satisfy C1-C3, the new SimVerb-3500
evaluation set contains similarity ratings for 3,500
verb pairs, containing 827 verb types in total and
3 member verbs for each top-level VerbNet class.
The rating scale goes from 0 (not similar at all) to
10 (synonymous). We employed the SimLex-999
annotation guidelines. In particular, we instructed
annotators to give low ratings to antonyms, and to
distinguish between similarity and relatedness. Pairs
that are related but not similar (e.g., to snore / to
snooze, to walk / to crawl) thus have a fairly low
rating. Several example pairs are provided in Tab. 1.

3.2 Choice of Verb Pairs and Coverage

To ensure a wide coverage of a variety of syntactico-
semantic phenomena (C1), the choice of verb pairs is
steered by two standard semantic resources available
online: (1) the USF norms data set3 (Nelson et al.,
2004), and (2) the VerbNet verb lexicon4 (Kipper et
al., 2004; Kipper et al., 2008).

The USF norms data set (further USF) is the
largest database of free association collected for En-
glish. It was generated by presenting human subjects
with one of 5, 000 cue concepts and asking them to
write the first word coming to mind that is associated
with that concept. Each cue concept c was normed in

2Note that verbs in VerbNet are soft clustered, and one verb
type may be associated with more than one class. When comput-
ing coverage, we assume that such verbs attribute to counts of
all their associated classes.

3http://w3.usf.edu/FreeAssociation/
4http://verbs.colorado.edu/verb-index/

Pair Rating
to reply / to respond 9.79
to snooze / to nap 8.80
to cook / to bake 7.80
to participate / to join 5.64
to snore / to snooze 4.15
to walk / to crawl 2.32
to stay / to leave 0.17
to snooze / to happen 0.00

Table 1: Example verb pairs from SimVerb-3500.

this way by over 10 participants, resulting in a set of
associates a for each cue, for a total of over 72, 000
(c, a) pairs. For each such pair, the proportion of par-
ticipants who produced associate a when presented
with cue c can be used as a proxy for the strength of
association between the two words.

The norming process guarantees that two words in
a pair have a degree of semantic association which
correlates well with semantic relatedness and simi-
larity. Sampling from the USF set ensures that both
related but non-similar pairs (e.g., to run / to sweat)
as well as similar pairs (e.g., to reply / to respond)
are represented in the final list of pairs. Further, the
rich annotations of the output USF data (e.g., con-
creteness scores, association strength) can be directly
combined with the SimVerb-3500 similarity scores
to yield additional analyses and insight.

VerbNet (VN) is the largest online verb lexicon
currently available for English. It is hierarchical,
domain-independent, and broad-coverage. VN is or-
ganised into verb classes extending the classes from
Levin (1993) through further refinement to achieve
syntactic and semantic coherence among class mem-
bers. According to the official VerbNet guidelines,5

“Verb Classes are numbered according to shared se-
mantics and syntax, and classes which share a top-
level number (9-109) have corresponding semantic
relationships.” For instance, all verbs from the top-
level Class 9 are labelled “Verbs of Putting”, all verbs
from Class 30 are labelled “Verbs of Perception”,
while Class 39 contains “Verbs of Ingesting”.

Among others, three basic types of information
are covered in VN: (1) verb subcategorization frames
(SCFs), which describe the syntactic realization of
the predicate-argument structure (e.g. The window
broke), (2) selectional preferences (SPs), which cap-
ture the semantic preferences verbs have for their

5http://verbs.colorado.edu/verb-index/VerbNet_Guidelines.pdf

2175

arguments (e.g. a breakable physical object broke)
and (3) lexical-semantic verb classes (VCs) which
provide a shared level of abstraction for verbs similar
in their (morpho-)syntactic and semantic properties
(e.g. BREAK verbs, sharing the VN class 45.1, and
the top-level VN class 45).6 The basic overview of
the VerbNet structure already suggests that measur-
ing verb similarity is far from trivial as it revolves
around a complex interplay between various semantic
and syntactic properties.

The wide coverage of VN in SimVerb-3500
assures the wide coverage of distinct verb
groups/classes and their related linguistic phenom-
ena. Finally, VerbNet enables further connections of
SimVerb-3500 to other important lexical resources
such as FrameNet (Baker et al., 1998), WordNet
(Miller, 1995), and PropBank (Palmer et al., 2005)
through the sets of mappings created by the SemLink
project initiative (Loper et al., 2007).7

Sampling Procedure We next sketch the complete
sampling procedure which resulted in the final set of
3500 distinct verb pairs finally annotated in a crowd-
sourcing study (§ 4).
(Step 1) We extracted all possible verb pairs from
USF based on the associated POS tags available as
part of USF annotations. To ensure that semantic
association between verbs in a pair is not accidental,
we then discarded all such USF pairs that had been
associated by 2 or less participants in USF.
(Step 2) We then manually cleaned and simplified
the list of pairs by removing all pairs with multi-word
verbs (e.g., quit / give up), all pairs that contained
the non-infinitive form of a verb (e.g., accomplished /
finished, hidden / find), removing all pairs containing
at least one auxiliary verb (e.g., must / to see, must / to
be). The first two steps resulted in 3,072 USF-based
verb pairs.
(Step 3) After this stage, we noticed that several top-
level VN classes are not part of the extracted set.
For instance, 5 VN classes did not have any member
verbs included, 22 VN classes had only 1 verb, and 6
VN classes had 2 verbs included in the current set.

We resolved the VerbNet coverage issue by sam-
pling from such ’under-represented’ VN classes di-
rectly. Note that this step is not related to USF at

6https://verbs.colorado.edu/verb-index/vn/break-45.1.php
7https://verbs.colorado.edu/semlink/

all. For each such class we sampled additional verb
types until the class was represented by 3 or 4 mem-
ber verbs (chosen randomly).8 Following that, we
sampled at least 2 verb pairs for each previously
’under-represented’ VN class by pairing 2 member
verbs from each such class. This procedure resulted
in 81 additional pairs, now 3,153 in total.
(Step 4) Finally, to complement this set with a sam-
ple of entirely unassociated pairs, we followed the
SimLex-999 setup. We paired up the verbs from the
3,153 associated pairs at random. From these ran-
dom parings, we excluded those that coincidentally
occurred elsewhere in USF (and therefore had a de-
gree of association). We sampled the remaining 347
pairs from this resulting set of unassociated pairs.
(Output) The final SimVerb-3500 data set contains
3,500 verb pairs in total, covering all associated verb
pairs from USF, and (almost) all top-level VerbNet
classes. All pairs were manually checked post-hoc
by the authors plus 2 additional native English speak-
ers to verify that the final data set does not contain
unknown or invalid verb types.

Frequency Statistics The 3,500 pairs consist of
827 distinct verbs. 29 top-level VN classes are rep-
resented by 3 member verbs, while the three most
represented classes cover 79, 85, and 93 member
verbs. 40 verbs are not members of any VN class.

We performed an initial frequency analysis of
SimVerb-3500 relying on the BNC counts available
online (Kilgarriff, 1997).9 After ranking all BNC
verbs according to their frequency, we divided the
list into quartiles: Q1 (most frequent verbs in BNC)
- Q4 (least frequent verbs in BNC). Out of the 827
SimVerb-3500 verb types, 677 are contained in Q1,
122 in Q2, 18 in Q3, 4 in Q4 (to enroll, to hitchhike,
to implode, to whelp), while 6 verbs are not covered
in the BNC list. 2,818 verb pairs contain Q1 verbs,
while there are 43 verb pairs with both verbs not in
Q1. Further empirical analyses are provided in § 6.10

8The following three VN classes are exceptions: (1) Class
56, consisting of words that are dominantly tagged as nouns,
but can be used as verbs exceptionally (e.g., holiday, summer,
honeymoon); (2) Class 91, consisting of 2 verbs (count, matter);
(3) Class 93, consisting of 2 single word verbs (adopt, assume).

9https://www.kilgarriff.co.uk/bnc-readme.html
10Annotations such as VerbNet class membership, relations

between WordNet synsets of each verb, and frequency statistics
are available as supplementary material.

2176

4 Word Pair Scoring

We employ the Prolific Academic (PA) crowdsourc-
ing platform,11 an online marketplace very similar to
Amazon Mechanical Turk and to CrowdFlower.

4.1 Survey Structure
Following the SimLex-999 annotation guidelines, we
had each of the 3500 verb pairs rated by at least 10
annotators. To distribute the workload, we divided
the 3500 pairs into 70 tranches, with 79 pairs each.
Out of the 79 pairs, 50 are unique to one tranche,
while 20 manually chosen pairs are in all tranches to
ensure consistency. The remaining 9 are duplicate
pairs displayed to the same participant multiple times
to detect inconsistent annotations.

Participants see 7-8 pairs per page. Pairs are rated
on a scale of 0-6 by moving a slider. The first page
shows 7 pairs, 5 unique ones and 2 from the con-
sistency set. The following pages are structured the
same but display one extra pair from the previous
page. Participants are explicitly asked to give these
duplicate pairs the same rating. We use them as
quality control so that we can identify and exclude
participants giving several inconsistent answers.

Checkpoint Questions The survey contains three
control questions in which participants are asked to
select the most similar pair out of three choices. For
instance, the first checkpoint is: Which of these pairs
of words is the *most* similar? 1. to run / to jog 2. to
run / to walk 3. to jog / to sweat. One checkpoint oc-
curs right after the instructions and the other two later
in the survey. The purpose is to check that annotators
have understood the guidelines and to have another
quality control measure for ensuring that they are
paying attention throughout the survey. If just one
of the checkpoint questions is answered incorrectly,
the survey ends immediately and all scores from the
annotator in question are discarded.

Participants 843 raters participated in the study,
producing over 65,000 ratings. Unlike other crowd-
sourcing platforms, PA collects and stores detailed
demographic information from the participants up-
front. This information was used to carefully select
the pool of eligible participants. We restricted the
pool to native English speakers with a 90% approval

11https://prolific.ac/ (We chose PA for logistic reasons.)

rate (maximum rate on PA), of age 18-50, born and
currently residing in the US (45% out of 843 raters),
UK (53%), or Ireland (2%). 54% of the raters were
female and 46% male, with the average age of 30.
Participants took 8 minutes on average to complete
the survey containing 79 questions.

4.2 Post-Processing

We excluded ratings of annotators who (a) answered
one of the checkpoint questions incorrectly (75% of
exclusions); (b) did not give equal ratings to dupli-
cate pairs; (c) showed suspicious rating patterns (e.g.,
randomly alternating between two ratings or using
one single rating throughout). The final acceptance
rate was 84%. We then calculated the average of all
ratings from the accepted raters (≥ 10) for each pair.
The score was finally scaled linearly from the 0-6 to
the 0-10 interval as in (Hill et al., 2015).

5 Analysis

Inter-Annotator Agreement We employ two
measures. IAA-1 (pairwise) computes the average
pairwise Spearman’s ρ correlation between any two
raters – a common choice in previous data collec-
tion in distributional semantics (Padó et al., 2007;
Reisinger and Mooney, 2010a; Silberer and Lapata,
2014; Hill et al., 2015).

A complementary measure would smooth individ-
ual annotator effects. For this aim, our IAA-2 (mean)
measure compares the average correlation of a hu-
man rater with the average of all the other raters.
SimVerb-3500 obtains ρ = 0.84 (IAA-1) and ρ = 0.86
(IAA-2), a very good agreement compared to other
benchmarks (see Tab. 2).

Vector Space Models We compare the perfor-
mance of prominent representation models on
SimVerb-3500. We include: (1) unsupervised mod-
els that learn from distributional information in text,
including the skip-gram negative-sampling model
(SGNS) with various contexts (BOW = bag of words;
DEPS = dependency contexts) as in Levy and Gold-
berg (2014), the symmetric-pattern based vectors
by Schwartz et al. (2015), and count-based PMI-
weighted vectors (Baroni et al., 2014); (2) Mod-
els that rely on linguistic hand-crafted resources or
curated knowledge bases. Here, we use sparse bi-
nary vectors built from linguistic resources (Non-

2177

Eval set IAA-1 IAA-2 ALL TEXT

WSIM 0.67 0.65 0.79 0.79
(203) SGNS-BOW SGNS-BOW
SIMLEX 0.67 0.78 0.74 0.56
(999) Paragram+CF SymPat+SGNS

SL-222 0.72 - 0.73 0.58
(222) Paragram+CF SymPat

SIMVERB 0.84 0.86 0.63 0.36
(3500) Paragram+CF SGNS-DEPS

Table 2: An overview of word similarity evaluation benchmarks.

ALL is the current best reported score on each data set across

all models (including the models that exploit curated knowledge

bases and hand-crafted lexical resources, see supplementary

material). TEXT denotes the best reported score for a model

that learns solely on the basis of distributional information. All

scores are Spearman’s ρ correlations.

Distributional, (Faruqui and Dyer, 2015)), and vec-
tors fine-tuned to a paraphrase database (Paragram,
(Wieting et al., 2015)) further refined using linguistic
constraints (Paragram+CF, (Mrkšić et al., 2016)).
Descriptions of these models are in the supplemen-
tary material.

Comparison to SimLex-999 (SL-222) 170 pairs
from SL-222 also appear in SimVerb-3500. The cor-
relation between the two data sets calculated on the
shared pairs is ρ = 0.91. This proves, as expected,
that the ratings are consistent across the two data sets.

Tab. 3 shows a comparison of models’ perfor-
mance on SimVerb-3500 against SL-222. Since the
number of evaluation pairs may influence the results,
we ideally want to compare sets of equal size for a fair
comparison. Picking one random subset of 222 pairs
would bias the results towards the selected pairs, and
even using 10-fold cross-validation we found varia-
tions up to 0.05 depending on which subsets were
used. Therefore, we employ a 2-level 10-fold cross-
validation where new random subsets are picked in
each iteration of each model. The numbers reported
as CV-222 are averages of these ten 10-fold cross-
validation runs. The reported results come very close
to the correlation on the full data set for all models.

Most models perform much better on SL-222, es-
pecially those employing additional databases or lin-
guistic resources. The performance of the best scor-
ing Paragram+CF model is even on par with the
IAA-1 of 0.72. The same model obtains the high-
est score on SV-3500 (ρ = 0.628), with a clear gap
to IAA-1 of 0.84. We attribute these differences in

performance largely to SimVerb-3500 being a more
extensive and diverse resource in terms of verb pairs.

Development Set A common problem in scored
word pair datasets is the lack of a standard split to
development and test sets. Previous works often
optimise models on the entire dataset, which leads to
overfitting (Faruqui et al., 2016) or use custom splits,
e.g., 10-fold cross-validation (Schwartz et al., 2015),
which make results incomparable with others. The
lack of standard splits stems mostly from small size
and poor coverage – issues which we have solved
with SimVerb-3500.

Our development set contains 500 pairs, selected
to ensure a broad coverage in terms of similarity
ranges (i.e., non-similar and highly similar pairs, as
well as pairs of medium similarity are represented)
and top-level VN classes (each class is represented
by at least 1 member verb). The test set includes
the remaining 3,000 verb pairs. The performances of
representation learning architectures on the dev and
test sets are reported in Tab. 3. The ranking of models
is identical on the test and the full SV-3500 set, with
slight differences in ranking on the development set.

6 Evaluating Subsets

The large coverage and scale of SimVerb-3500 en-
ables model evaluation based on selected criteria. In
this section, we showcase a few example analyses.

Frequency In the first analysis, we select pairs
based on their lemma frequency in the BNC corpus
and form three groups, with 390-490 pairs in each
group (Fig. 1). The results from Fig. 1 suggest that
the performance of all models improves as the fre-
quency of the verbs in the pair increases, with much
steeper curves for the purely distributional models
(e.g., SGNS and SymPat). The non-distributional
non data-driven model of Faruqui and Dyer (2015) is
only slightly affected by frequency.

WordNet Synsets Intuitively, representations for
verbs with more diverse usage patterns are more dif-
ficult to learn with statistical models. To examine
this hypothesis, we resort to WordNet (Miller, 1995),
where different semantic usages of words are listed
as so-called synsets. Fig. 2 shows a clear downward
trend for all models, confirming that polysemous

2178

Model SV-3500 CV-222 SL-222 DEV-500 TEST-3000

SGNS-BOW-PW (d=300) 0.274 0.279 0.328 0.333 0.265
SGNS-DEPS-PW (d=300) 0.313 0.314 0.390 0.401 0.304
SGNS-UDEPS-PW (d=300) 0.259 0.262 0.347 0.313 0.250
SGNS-BOW-8B (d=500) 0.348 0.343 0.307 0.378 0.350
SGNS-DEPS-8B (d=500) 0.356 0.347 0.385 0.389 0.351

SYMPAT-8B (d=500) 0.328 0.336 0.544 0.276 0.347

COUNT-SVD (d=500) 0.196 0.200 0.059 0.259 0.186

NON-DISTRIBUTIONAL 0.596 0.596 0.689 0.632 0.600
PARAGRAM (d=25) 0.418 0.432 0.531 0.443 0.433
PARAGRAM (d=300) 0.540 0.528 0.590 0.525 0.537
PARAGRAM+CF (d=300) 0.628 0.625 0.727 0.611 0.624

Table 3: Evaluation of state-of-the representation learning models on the full SimVerb-3500 set (SV-3500), the Simlex-999

verb subset containing 222 pairs (SL-222), cross-validated subsets of 222 pairs from SV-3500 (CV-222), and the SimVerb-3500

development (DEV-500) and test set (TEST-3000).

0.1

0.2

0.3

0.4

0.5

0.6

0.7

[5000,+∞ > [1000, 5000 > [0, 1000 >

S
p
ea
rm

an
’s
ρ

Lemma occurrences in BNC

SGNS-BOW-8B
SGNS-DEPS-8B
SymPat-500-8B
Non-Distributional
PARAGRAM-300
PARAGRAM-300

Figure 1: Subset-based evaluation, where subsets are created

based on the frequency of verb lemmas in the BNC corpus. Each

of the three frequency groups contains 390-490 verb pairs. To

be included in each group it is required that both verbs in a pair

are contained in the same frequency interval (x axis).

verbs are more difficult for current verb representa-
tion models. Nevertheless, approaches which use
additional information beyond corpus co-occurrence
are again more robust. Their performance only drops
substantially for verbs with more than 10 synsets,
while the performance of other models deteriorates al-
ready when tackling verbs with more than 5 synsets.

VerbNet Classes Another analysis enabled by
SimVerb-3500 is investigating the connection be-
tween VerbNet classes and human similarity judg-
ments. We find that verbs in the same top-level Verb-
Net class are often not assigned high similarity score.
Out of 1378 pairs where verbs share the top-level
VerbNet class, 603 have a score lower than 5. Tab. 4
reports scores per VerbNet class. When a verb be-

0.1

0.2

0.3

0.4

0.5

0.6

0.7

[0, 5 > [5, 10 > [10,+∞ >

S
p
ea
rm

an
’s
ρ

Number of WN synsets

SGNS-BOW-8B
SGNS-DEPS-8B
SymPat-500-8B
Non-Distributional
PARAGRAM-300
PARAGRAM-300

Figure 2: Subset-based evaluation, where subsets are created

based on the number of synsets in WordNet (x axis). To be

included in each subset it is required that both verbs in a pair

have the number of synsets in the same interval.

longs to multiple classes, we count it for each class
(see Footnote 2). We run the analysis on the five
largest VN classes, each with more than 100 pairs
with paired verbs belonging to the same class.

The results indicate clear differences between
classes (e.g., Class 31 vs Class 51), and suggest that
further developments in verb representation learning
should also focus on constructing specialised repre-
sentations at the finer-grained level of VN classes.

Lexical Relations SimVerb-3500 contains rela-
tion annotations (e.g., antonyms, synonyms, hyper-
/hyponyms, no relation) for all pairs extracted au-
tomatically from WordNet. Evaluating per-relation
subsets, we observe that some models draw their
strength from good performance across different re-

2179

Model #13 #31 #37 #45 #51

SGNS-BOW-8B 0.210 0.308 0.352 0.270 0.170
SGNS-DEPS-8B 0.289 0.270 0.306 0.238 0.225

SYMPAT-8B (d=500) 0.171 0.320 0.143 0.195 0.113

NON-DISTR 0.571 0.483 0.372 0.501 0.499
PARAGRAM (d=300) 0.571 0.504 0.567 0.531 0.387
PARAGRAM+CF 0.735 0.575 0.666 0.622 0.614

Table 4: Spearman’s ρ correlation between human judgments

and model’s cosine similarity by VerbNet Class. We chose

classes #13 Verbs of Change of Possession, #31 Verbs of Psycho-

logical State, #37 Verbs of Communication, #45 Verbs of Change

of State, and #51 Verbs of Motion as examples. All are large

classes with more than 100 pairs each, and the frequencies of

member verbs are distributed in a similar way.

Model NR SYN HYP

SGNS-BOW-PW (d=300) 0.096 0.288 0.292
SGNS-DEPS-PW (d=300) 0.132 0.290 0.336
SGNS-BOW-8B (d=500) 0.292 0.273 0.338
SGNS-DEPS-8B (d=500) 0.157 0.323 0.378

SYMPAT-8B-DENSE (d=300) 0.225 0.182 0.265
SYMPAT-8B-DENSE (d=500) 0.248 0.260 0.251

NON-DISTRIBUTIONAL 0.126 0.379 0.488
PARAGRAM (d=300) 0.254 0.356 0.439
PARAGRAM+CF (d=300) 0.250 0.417 0.475

Table 5: Spearman’s ρ correlation between human judgments

and model’s cosine similarity based on pair relation type. Re-

lations are based on WordNet, and included in the dataset. The

classes are of different size, 373 pairs with no relation (NR),

306 synonym (SYN) pairs, and 800 hyper/hyponym (HYP) pairs.

Frequencies of member verbs are distributed in a similar way.

lations. Others have low performance on these pairs,
but do very well on synonyms and hyper-/hyponyms.
Selected results of this analysis are in Tab. 5.12

Human Agreement Motivated by the varying per-
formance of computational models regarding fre-
quency and ambiguous words with many synsets,
we analyse what disagreement effects may be cap-
tured in human ratings. We therefore compute the
average standard deviation of ratings per subset:
avgstdd(S) = 1

n

∑
p∈S σ(rp), where S is one subset

of pairs, n is the number of pairs in this subset, p is
one pair, and rp are all human ratings for this pair.

12 Evaluation based on Spearman’s ρ may be problematic
with certain categories, e.g., with antonyms. It evaluates pairs
according to their ranking; for antonyms the ranking is arbitrary -
every antonym pair should have a very low rating, hence they are
not included in Tab. 5. A similar effect occurs with highly ranked
synonyms, but to a much lesser degree than with antonyms.

While the standard deviation of ratings is diverse
for individual pairs, overall the average standard de-
viations per subset are almost identical. For both
the frequency and the WordNet synset analyses it is
around ≈1.3 across all subsets, and with only little
difference for the subsets based on VerbNet. The only
subsets where we found significant variations is the
grouping by relations, where ratings tend to be more
similar especially on antonyms (0.86) and pairs with
no relation (0.92), much less similar on synonyms
(1.34) and all other relations (≈1.4). These findings
suggest that humans are much less influenced by fre-
quency or polysemy in their understanding of verb
semantics compared to computational models.

7 Conclusions

SimVerb-3500 is a verb similarity resource for analy-
sis and evaluation that will be of use to researchers
involved in understanding how humans or machines
represent the meaning of verbs, and, by extension,
scenes, events and full sentences. The size and cover-
age of syntactico-semantic phenomena in SimVerb-
3500 makes it possible to compare the strengths and
weaknesses of various representation models via sta-
tistically robust analyses on specific word classes.

To demonstrate the utility of SimVerb-3500, we
conducted a selection of analyses with existing
representation-learning models. One clear conclu-
sion is that distributional models trained on raw text
(e.g. SGNS) perform very poorly on low frequency
and highly polysemous verbs. This degradation in
performance can be partially mitigated by focusing
models on more principled distributional contexts,
such as those defined by symmetric patterns. More
generally, the finding suggests that, in order to model
the diverse spectrum of verb semantics, we may re-
quire algorithms that are better suited to fast learning
from few examples (Lake et al., 2011), and have
some flexibility with respect to sense-level distinc-
tions (Reisinger and Mooney, 2010b; Vilnis and Mc-
Callum, 2015). In future work we aim to apply such
methods to the task of verb acquisition.

Beyond the preliminary conclusions from these ini-
tial analyses, the benefit of SimLex-3500 will become
clear as researchers use it to probe the relationship
between architectures, algorithms and representation
quality for a wide range of verb classes. Better under-

2180

standing of how to represent the full diversity of verbs
should in turn yield improved methods for encoding
and interpreting the facts, propositions, relations and
events that constitute much of the important informa-
tion in language.

Acknowledgments

This work is supported by the ERC Consolidator
Grant LEXICAL (648909).

References
Eneko Agirre, Enrique Alfonseca, Keith B. Hall, Jana

Kravalova, Marius Pasca, and Aitor Soroa. 2009.
A study on similarity and relatedness using distribu-
tional and WordNet-based approaches. In NAACL-HLT,
pages 19–27.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet project. In ACL-
COLING, pages 86–90.

Simon Baker, Roi Reichart, and Anna Korhonen. 2014.
An unsupervised model for instance level subcatego-
rization acquisition. In EMNLP, pages 278–289.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski.
2014. Don’t count, predict! a systematic comparison of
context-counting vs. context-predicting semantic vec-
tors. In ACL, pages 238–247.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of Artifi-
cial Intelligence Research, 49:1–47.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: deep neu-
ral networks with multitask learning. In ICML, pages
160–167.

Manaal Faruqui and Chris Dyer. 2015. Non-distributional
word vector representations. In ACL, pages 464–469.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris
Dyer, Eduard H. Hovy, and Noah A. Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
NAACL-HLT, pages 1606–1615.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi,
and Chris Dyer. 2016. Problems with evaluation of
word embeddings using word similarity tasks. CoRR,
abs/1605.02276.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud
Rivlin, Zach Solan, Gadi Wolfman, and Eytan Ruppin.
2002. Placing search in context: The concept revisited.
ACM Transactions on Information Systems, 20(1):116–
131.

Jeffrey Gruber. 1976. Lexical structure in syntax and
semantics. North-Holland Pub. Co.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
SimLex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguistics,
41(4):665–695.

Ray S. Jackendoff. 1972. Semantic interpretation in
generative grammar. MIT Press.

Adam Kilgarriff. 1997. Putting frequencies in the dictio-
nary. International Journal of Lexicography, 10(2):135–
155.

Karin Kipper, Benjamin Snyder, and Martha Palmer. 2004.
Extending a verb-lexicon using a semantically anno-
tated corpus. In LREC, pages 1557–1560.

Karin Kipper, Anna Korhonen, Neville Ryant, and Martha
Palmer. 2008. A large-scale classification of English
verbs. Language Resource and Evaluation, 42(1):21–
40.

Anna Korhonen. 2010. Automatic lexical classification:
bridging research and practice. Philosophical Transac-
tions of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 368(1924):3621–
3632.

Brenden M. Lake, Ruslan Salakhutdinov, Jason Gross,
and Joshua B. Tenenbaum. 2011. One shot learning of
simple visual concepts. In CogSci.

Beth Levin. 1993. English verb classes and alternation,
A preliminary investigation. The University of Chicago
Press.

Omer Levy and Yoav Goldberg. 2014. Dependency-based
word embeddings. In ACL, pages 302–308.

Edward Loper, Szu-Ting Yi, and Martha Palmer. 2007.
Combining lexical resources: Mapping between Prop-
Bank and VerbNet. In IWCS.

Thang Luong, Richard Socher, and Christopher Manning.
2013. Better word representations with recursive neural
networks for morphology. In CoNLL, pages 104–113.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word repre-
sentations in vector space. In ICLR: Workshop Papers.

George A. Miller. 1995. Wordnet: A lexical database for
english. Communications of the ACM, 38(11):39–41.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thomson,
Milica Gašić, Lina Maria Rojas-Barahona, Pei-Hao
Su, David Vandyke, Tsung-Hsien Wen, and Steve J.
Young. 2016. Counter-fitting word vectors to linguistic
constraints. In NAACL-HLT, pages 142–148.

Douglas L. Nelson, Cathy L. McEvoy, and Thomas A.
Schreiber. 2004. The University of South Florida free
association, rhyme, and word fragment norms. Be-
havior Research Methods, Instruments, & Computers,
36(3):402–407.

Sebastian Padó, Ulrike Padó, and Katrin Erk. 2007. Flex-
ible, corpus-based modelling of human plausibility
judgements. In EMNLP-CoNLL, pages 400–409.

2181

Martha Palmer, Paul Kingsbury, and Daniel Gildea. 2005.
The Proposition Bank: An annotated corpus of seman-
tic roles. Computational Linguistics, 31(1):71–106.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global vectors for word repre-
sentation. In EMNLP, pages 1532–1543.

Joseph Reisinger and Raymond J. Mooney. 2010a. A
mixture model with sharing for lexical semantics. In
EMNLP, pages 1173–1182.

Joseph Reisinger and Raymond J Mooney. 2010b. Multi-
prototype vector-space models of word meaning. In
NAACL-HTL, pages 109–117.

Herbert Rubenstein and John B Goodenough. 1965. Con-
textual correlates of synonymy. Communications of the
ACM, 8(10):627–633.

Roy Schwartz, Roi Reichart, and Ari Rappoport. 2015.
Symmetric pattern based word embeddings for im-
proved word similarity prediction. In CoNLL, pages
258–267.

Carina Silberer and Mirella Lapata. 2014. Learning
grounded meaning representations with autoencoders.
In ACL, pages 721–732.

Joseph P. Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and general
method for semi-supervised learning. In ACL, pages
384–394.

Luke Vilnis and Andrew McCallum. 2015. Word repre-
sentations via Gaussian embedding. ICLR.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. From paraphrase database to composi-
tional paraphrase model and back. Transactions of the
ACL, 3:345–358.

2182

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2183–2192,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

POLY: Mining Relational Paraphrases from Multilingual Sentences

Adam Grycner
Max-Planck Institute for Informatics

Saarland Informatics Campus
Building E1.4, 66123

Saarbrücken, Germany
agrycner@mpi-inf.mpg.de

Gerhard Weikum
Max-Planck Institute for Informatics

Saarland Informatics Campus
Building E1.4, 66123

Saarbrücken, Germany
weikum@mpi-inf.mpg.de

Abstract

Language resources that systematically orga-
nize paraphrases for binary relations are of
great value for various NLP tasks and have re-
cently been advanced in projects like PATTY,
WiseNet and DEFIE. This paper presents a
new method for building such a resource
and the resource itself, called POLY. Starting
with a very large collection of multilingual
sentences parsed into triples of phrases, our
method clusters relational phrases using prob-
abilistic measures. We judiciously leverage
fine-grained semantic typing of relational ar-
guments for identifying synonymous phrases.
The evaluation of POLY shows significant im-
provements in precision and recall over the
prior works on PATTY and DEFIE. An ex-
trinsic use case demonstrates the benefits of
POLY for question answering.

1 Introduction

Motivation. Information extraction from text typi-
cally yields relational triples: a binary relation along
with its two arguments. Often the relation is ex-
pressed by a verb phrase, and the two arguments are
named entities. We refer to the surface form of the
relation in a triple as a relational phrase. Reposito-
ries of relational phrases are an asset for a variety of
tasks, including information extraction, textual en-
tailment, and question answering.

This paper presents a new method for systemat-
ically organizing a large set of such phrases. We
aim to construct equivalence classes of synonymous
phrases, analogously to how WordNet organizes

unary predicates as noun-centric synsets (aka. se-
mantic types). For example, the following relational
phrases should be in the same equivalence class:
sings in, is vocalist in, voice in denoting a relation
between a musician and a song.

State of the Art and its Limitations. Starting
with the seminal work on DIRT (Lin and Pantel,
2001), there have been various attempts on build-
ing comprehensive resources for relational phrases.
Recent works include PATTY (Nakashole et al.,
2012), WiseNet (Moro and Navigli, 2012) and DE-
FIE (Bovi et al., 2015). Out of these DEFIE is the
cleanest resource. However, the equivalence classes
tend to be small, prioritizing precision over recall.
On the other hand, PPDB (Ganitkevitch et al., 2013)
offers the largest repository of paraphrases. How-
ever, the paraphrases are not relation-centric and
they are not semantically typed. So it misses out on
the opportunity of using types to distinguish iden-
tical phrases with different semantics, for example,
performance in with argument types musician and
song versus performance in with types athlete and
competition.

Our Approach. We start with a large collection
of relational triples, obtained by shallow informa-
tion extraction. Specifically, we use the collection
of Faruqui and Kumar (2015), obtained by com-
bining the OLLIE tool with Google Translate and
projecting multilingual sentences back to English.
Note that the task addressed in that work is relational
triple extraction, which is orthogonal to our problem
of organizing the relational phrases in these triples
into synonymy sets.

We canonicalize the subject and object arguments

2183

of triples by applying named entity disambiguation
and word sense disambiguation wherever possible.
Using a knowledge base of entity types, we can then
infer prevalent type signatures for relational phrases.
Finally, based on a suite of judiciously devised prob-
abilistic distance measures, we cluster phrases in a
type-compatible way using a graph-cut technique.
The resulting repository contains ca. 1 Million rela-
tional phrases, organized into ca. 160,000 clusters.

Contribution. Our salient contributions are: i) a
novel method for constructing a large repository of
relational phrases, based on judicious clustering and
type filtering; ii) a new linguistic resource, coined
POLY, of relational phrases with semantic typing,
organized in equivalence classes; iii) an intrinsic
evaluation of POLY, demonstrating its high quality
in comparison to PATTY and DEFIE; iv) an extrin-
sic evaluation of POLY, demonstrating its benefits
for question answering. The POLY resource is pub-
licly available 1.

2 Method Overview

Our approach consists of two stages: relational
phrase typing and relational phrase clustering. In
Section 3, we explain how we infer semantic types
of the arguments of a relational phrase. In Section
4, we present the model for computing synonyms of
relational phrases (i.e., paraphrases) and organizing
them into clusters.

A major asset for our approach is a large corpus of
multilingual sentences from the work of Faruqui and
Kumar (2015). That dataset contains sentences from
Wikipedia articles in many languages. Each sen-
tence has been processed by an Open Information
Extraction method (Banko et al., 2007), specifically
the OLLIE tool (Mausam et al., 2012), which pro-
duces a triple of surface phrases that correspond to
a relational phrase candidate and its two arguments
(subject and object). Each non-English sentence has
been translated into English using Google Trans-
late, thus leveraging the rich statistics that Google
has obtained from all kinds of parallel multilingual
texts. Altogether, the data from Faruqui and Kumar
(2015) provides 135 million triples in 61 languages
and in English (from the translations of the corre-
sponding sentences). This is the noisy input to our

1www.mpi-inf.mpg.de/yago-naga/poly/

method. Figure 1 shows two Spanish sentences, the
extracted triples of Spanish phrases, the sentences’
translations to English, and the extracted triples of
English phrases.

The figure shows that identical phrases in the for-
eign language - “fue filmado por” - may be trans-
lated into different English phrases: “was shot by”
vs. “was filmed by”, depending on the context
in the respective sentences. This is the main in-
sight that our method builds on. The two resulting
English phrases have a certain likelihood of being
paraphrases of the same relation. However, this is
an uncertain hypotheses only, given the ambiguity
of language, the noise induced by machine transla-
tion and the potential errors of the triple extraction.
Therefore, our method needs to de-noise these input
phrases and quantify to what extent the the relational
phrases are indeed synonymous. We discuss this in
Sections 3 and 4.

3 Relation Typing

This section explains how we assign semantic types
to relational phrases. For example, the relational
phrase wrote could be typed as <author> wrote
<paper>, as one candidate. The typing helps us to
disambiguate the meaning of the relational phrase
and later find correct synonyms. The relational
phrase shot could have synonyms directed or killed
with a gun. However, they represent different senses
of the phrase shot. With semantic typing, we can
separate these two meanings and determine that
<person> shot <person> is a synonym of <per-
son> killed with a gun <person>, whereas <direc-
tor> shot<movie> is a synonym of<director> di-
rected <movie>.

Relation typing has the following steps: argument
extraction, argument disambiguation, argument typ-
ing and type filtering. The output is a set of candi-
date types for the left and right arguments of each
English relational phrase.

3.1 Argument Extraction

For the typing of a relational phrase, we have to de-
termine words in the left and right arguments that
give cues for semantic types. To this end, we iden-
tify named entities, whose types can be looked up in
a knowledge base, and the head words of common

2184

El video fue filmado por el direcor Matthew Rolston. Un segundo video fue filmado por David Fincher.

The video was shot by director Matthew Rolston. A second movie was filmed by David Fincher.

El video fue filmado por el direcor Matthew Rolston Un segundo video fue filmado por David Fincher

arg1 rel arg2 arg1 rel arg2

The video was shot by director Matthew Rolston A second movie was filmed by David Fincher

arg1 rel arg2 arg1 rel arg2

Translation Translation

Figure 1: Multilingual input sentences and triples

noun phrases. As output, we produce a ranked list
of entity mentions and common nouns.

To create this ranking, we perform POS tagging
and noun phrase chunking using Stanford CoreNLP
(Manning et al., 2014) and Apache OpenNLP 2. For
head noun extraction, we use the YAGO Javatools3

and a set of manually crafted regular expressions.
Since the input sentences result from machine trans-
lation, we could not use dependency parsing, be-
cause sentences are often ungrammatical.

Finally, we extract all noun phrases which contain
the same head noun. These noun phrases are then
sorted according to their lengths.

For example, for input phrase contemporary
British director who also created “Inception”, our
method would yield contemporary British director,
British director, director in decreasing order.

3.2 Argument Disambiguation

The second step is responsible for the disambigua-
tion of the noun phrase and named entity candidates.
We use the YAGO3 knowledge base (Mahdisoltani
et al., 2015) for named entities, and WordNet (Fell-
baum, 1998) for noun phrases. We proceed in the
ranking order of the phrases from the first step.

Candidate senses are looked up in YAGO3 and
WordNet, respectively, and each candidate is scored.
The scores are based on:

• Frequency count prior: This is the number of
Wikipedia incoming links for named entities in
YAGO3, or the frequency count of noun phrase
senses in WordNet.

• Wikipedia prior: We increase scores of YAGO3
entities whose URL strings (i.e., Wikipedia ti-
tles) occur in the Wikipedia page from which the
triple was extracted.

2opennlp.apache.org/
3mpi-inf.mpg.de/yago-naga/javatools/

• Translation prior: We boost the scores of senses
whose translations occur in the original input
sentence. For example, the word stage is disam-
biguated as opera stage rather than phase, be-
cause the original German sentence contains the
word Bühne (German word for a concert stage)
and not Phase. The translations of word senses
are obtained from Universal WordNet (de Melo
and Weikum, 2009).

We prefer WordNet noun phrases over YAGO3
named entities since noun phrases have lower type
ambiguity (fewer possible types). The final score of
a sense s is:

score(s) = αfreq(s)+βwiki(s)+γtrans(s) (1)

where freq(s) is the frequency count of s, and
wiki(s) and trans(s) equal maximal frequency
count if the Wikipedia prior and Translation prior
conditions hold (and otherwise set to 0). α, β, γ are
tunable hyper-parameters (set using withheld data).

Finally, from the list of candidates, we generate
a disambiguated argument: either a WordNet synset
or a YAGO3 entity identifier.

3.3 Argument Typing
In the third step of relation typing, we assign can-
didate types to the disambiguated arguments. To
this end, we query YAGO3 for semantic types (incl.
transitive hypernyms) for a given YAGO3 or Word-
Net identifier.

The type system used in POLY consists of a sub-
set of the WordNet noun hierarchy. We restrict our-
selves to 734 types, chosen semi-automatically as
follows. We selected the 1000 most frequent Word-
Net types in YAGO3 (incl. transitive hypernyms).
Redundant and non-informative types were filtered
out by the following technique: all types were or-
ganized into a directed acyclic graph (DAG), and

2185

we removed a type when the frequency count of
some of its children was higher than 80% of the par-
ent’s count. For example, we removed type trainer
since more than 80% of trainers in YAGO3 are also
coaches. In addition, we manually removed a few
non-informative types (e.g. expressive style).

As output, we obtain lists of semantic types for
the two arguments of each relational phrase.

3.4 Type Filtering

In the last step, we filter types one more time. This
time we filter candidate types separately for each
distinct relational phrase, in order to choose the most
suitable specific type signature for each phrase. This
choice is made by type tree pruning.

For each relational phrase, we aggregate all types
of the left arguments and all types of the right ar-
guments, summing up their their frequency counts.
This information is organized into a DAG, based on
type hypernymy. Then we prune types as follows
(similarly to Section 3.3): i) remove a parent type
when the relative frequency count of one of the chil-
dren types is larger than 80% of the parent’s count;
ii) remove a child type when its relative frequency
count is smaller than 20% of the parent’s count.

For each of the two arguments of the relational
phrase we allow only those types which are left after
the pruning. The final output is a set of relational
phrases where each has a set of likely type signatures
(i.e., pairs of types for the relation’s arguments).

4 Relation Clustering

The second stage of POLY addresses the relation
clustering. The algorithm takes semantically typed
relational phrases as input, quantifies the semantic
similarity between relational phrases, and organizes
them into clusters of synonyms. The key insight that
our approach hinges on is that synonymous phrases
have similar translations in a different language. In
our setting, two English phrases are semantically
similar if they were translated from the same rela-
tional phrases in a foreign language and their ar-
gument types agree (see Figure 1 for an example).
Similarities between English phrases are cast into
edge weights of a graph with phrases as nodes. This
graph is then partitioned to obtain clusters.

4.1 Probabilistic Similarity Measures

The phrase similarities in POLY are based on prob-
abilistic measures. We use the notation:

• F : a set of relational phrases from a foreign lan-
guage F

• E: a set of translations of relational phrases from
language F to English

• c(f, e): no. of times of translating relational
phrase f ∈ F into relational phrase e ∈ E

• c(f), c(e): frequency counts for relational
phrase f ∈ F and its translation e ∈ E

• p(e|f) = c(f,e)
c(f) : (estimator for the) probability

of translating f ∈ F into e ∈ E
• p(f |e) = c(f,e)

c(e) : (estimator for the) probability
of e ∈ E being a translation of f ∈ F

We define:

p(e1|e2) =
∑

f

p(e1|f) ∗ p(f |e2) (2)

as the probability of generating relational phrase
e1 ∈ E from phrase e2 ∈ E. Finally we define:

support(e1, e2) =
∑

f∈F
c(f, e1) ∗ c(f, e2) (3)

confidence(e1, e2) =
2

1
p(e1|e2) +

1
p(e2|e1)

(4)

Confidence is the final similarity measure used
in POLY. We use the harmonic mean in Equation
4 to dampen similarity scores that have big differ-
ences in their probabilities in Equation 2. Typically,
pairs e1, e2 with such wide gaps in their probabilities
come from subsumptions, not synonymous phrases.
Finally, we compute the support and confidence for
every pair of English relational phrases which have
a common source phrase of translation. We prune
phrase pairs with low support (below a threshold),
and rank the remaining pairs by confidence.

4.2 Graph Clustering

To compute clusters of relational phrases, we use
modularity-based graph partitioning. Specifically,
we use the partitioning algorithm of Blondel et al.
(2008). The resulting clusters (i.e., subgraphs) are

2186

Cluster of relational phrases
<location> is the heart of <location>
<location> is situated in <location>
<location> is enclosed by <location>
<location> is located amidst <location>
<location> is surrounded by <location>
Table 1: Example of a cluster of relational phrases

then ranked by their weighted graph density multi-
plied by the graph size (Equation 5). The example
of a cluster is shown in Table 1.

∑
(ei,ej)∈E sim(ei, ej)

|V | ∗ |V − 1| ∗ |V | (5)

5 Evaluation

For the experimental evaluation, we primarily chose
triples from the German language (and their English
translations). With about 23 million triples, Ger-
man is the language with the largest number of ex-
tractions in the dataset, and there are about 2.5 mil-
lion distinct relational phrases from the German-to-
English translation. The POLY method is imple-
mented using Apache Spark, so it scales out to han-
dle such large inputs.

After applying the relation typing algorithm, we
obtain around 10 million typed relational phrases.
If we ignored the semantic types, we would have
about 950,000 distinct phrases. On this input data,
POLY detected 1,401,599 pairs of synonyms. The
synonyms were organized into 158,725 clusters.

In the following, we present both an intrinsic eval-
uation and an extrinsic use case. For the intrin-
sic evaluation, we asked human annotators to judge
whether two typed relational phrases are synony-
mous or not. We also studied source languages
other than German. In addition, we compared POLY
against PATTY (Nakashole et al., 2012) and DEFIE
(Bovi et al., 2015) on the relation paraphrasing task.
For the extrinsic evaluation, we considered a sim-
ple question answering system and studied to what
extent similarities between typed relational phrases
can contribute to answering more questions.

5.1 Precision of Synonyms
To assess the precision of the discovered synonymy
among relational phrases (i.e., clusters of para-

Precision Range

Top 250 0.91 0.87− 0.94
Random 0.83 0.78− 0.87

Table 2: Precision of synonym pairs in POLY

phrases), we sampled POLY’s output. We assessed
the 250 pairs of synonyms with the highest similar-
ity scores. We also assessed a sample of 250 pairs of
synonyms, randomly drawn from POLY’s output.

These pairs of synonyms were shown to several
human annotators to check their correctness. Re-
lational phrases were presented by showing the se-
mantic types, the textual representation of the rela-
tional phrase and sample sentences where the phrase
was found. The annotators were asked whether two
relational phrases have the same meaning or not.
They could also abstain.

The results of this evaluation are shown in Ta-
ble 2 with (lower bounds and upper bounds of) the
0.95-confidence Wilson score intervals (Brown et
al., 2001). This evaluation task had good inter-
annotator agreement, with Fleiss’ Kappa around 0.6.
Table 3 shows anecdotal examples of synonymous
pairs of relational phrases.

These results show that POLY’s quality is com-
parable with state-of-the-art baselines resources.
WiseNet (Moro and Navigli, 2012) is reported to
have precision of 0.85 for 30,000 clusters. This is
also the only prior work where the precision of syn-
onymy of semantically typed relational phrases was
evaluated. The other systems did not report that
measure. However, they performed the evaluation
of subsumption, entailment or hypernymy relation-
ships which are related to synonymy. Subsumptions
in PATTY have precision of 0.83 for top 100 and
0.75 for a random sample. Hypernyms in RELLY
are reported to have precision of 0.87 for top 100 and
0.78 for a random sample. DEFIE performed sep-
arate evaluations for hypernyms generated directly
from WordNet (precision 0.87) and hypernyms ob-
tained through a substring generalization algorithm
(precision 0.9).

Typical errors in the paraphrase discovery of
POLY come from incorrect translations or extraction
errors. For example, heard and belongs to were clus-
tered together because they were translated from the

2187

Id Relation phrase Synonymous Relational Phrase
1 <location> is surrounded by <region> <location> is the heart of <region>
2 <artifact> is reminiscent of <time period> <artifact> recalls <time period>
3 <painter> was a participant in <show> <painter> has participated in <show>
4 <group> maintains a partnership with <district> <group> has partnered with <district>
5 <movie> was shot at <location> <movie> was filmed in <location>
6 <person> was shot by <group> <person> was shot dead by <group>
7 <movie> was shot by <film director> <movie> was directed by <film director>

Table 3: Examples of synonyms of semantically typed relational phrases

same semantically ambiguous German word gehört.
An example for extraction errors is that took and
participated in were clustered together because took
was incorrectly extracted from a sentence with the
phrase took part in. Other errors are caused by
swapped order of arguments in a triple (i.e., mis-
takes in detecting passive form) and incorrect argu-
ment disambiguation.

5.2 Comparison to Competitors

To compare POLY with the closest competitors
PATTY and DEFIE, we designed an experiment
along the lines of the evaluation of Information Re-
trieval systems (e.g. TREC benchmarks). First, we
randomly chose 100 semantically typed relational
phrases with at least three words (to focus on the
more interesting multi-word case, rather than single
verbs). These relational phrases had to occur in all
three resources. For every relational phrase we re-
trieved synonyms from all of the systems, forming a
pool of candidates. Next, to remove minor syntactic
variations of the same phrase, the relational phrases
were lemmatized. In addition, we removed all lead-
ing prepositions, modal verbs, and adverbs.

We manually evaluated the correctness of the re-
maining paraphrase candidates for each of the 100
phrases. Precision was computed as the ratio of the
correct synonyms by one system to the number of all
synonyms provided by that system. Recall was com-
puted as the ratio of the number of correct synonyms
by one system to the number of all correct synonyms
in the candidate pool from all three systems.

The results are presented in Table 4. All results
are macro-averaged over the 100 sampled phrases.
We performed a paired t-test for precision and re-
call of POLY against each of the systems and ob-
tained p-values below 0.05. POLY and DEFIE of-

Precision Recall F1

PATTY 0.63 0.32 0.42
DEFIE 0.66 0.32 0.44
POLY 0.79 0.46 0.58

Table 4: Comparison to the competitors

fer much higher diversity of synonyms than PATTY.
However, DEFIE’s synonyms often do not fit the se-
mantic type signature of the given relational phrase
and are thus incorrect. For example, was assumed
by was found to be a synonym of <group> was
acquired by <group>. PATTY, on the other hand,
has higher recall due to its variety of prepositions at-
tached to relational phrases; however, these also in-
clude spurious phrases, leading to lower precision.
For example, succeeded in was found to be a syn-
onym of <person> was succeeded by <leader>.
Overall, POLY achieves much higher precision and
recall than both of these baselines.

5.3 Ablation Study

To evaluate the influence of different components,
we performed an ablation study. We consider ver-
sions of POLY where Wikipedia prior and Trans-
lation prior (Section 3.2) are disregarded (− dis-
ambiguation), where the type system (Section 3.3)
was limited to the 100 most frequent YAGO types
(Type system 100) or to the 5 top-level types from
the YAGO hierarchy (Type system 5), or where the
type filtering parameter (Section 3.4) was set to 70%
or 90% (Type filtering 0.7/0.9). The evaluation was
done on random samples of 250 pairs of synonyms.

Table 5 shows the results with the 0.95-confidence
Wilson score intervals. Without our argument dis-
ambiguation techniques, the precision drops heav-
ily. When weakening the type system, our tech-

2188

Precision Coverage

POLY 0.83 1,401,599

− disambiguation 0.66± 0.06 1,279,941

Type system 100 0.76± 0.05 858,053
Type system 5 0.62± 0.06 236,804

Type filtering 0.7 0.81± 0.05 192,117
Type filtering 0.9 0.73± 0.05 2,061,257

Table 5: Ablation Study

Top 250 Random 250

French 0.93± 0.03 0.85± 0.04
Hindi 0.86± 0.05 0.71± 0.05
Russian 0.85± 0.05 0.77± 0.05

Table 6: Precision of synonyms (other languages)

niques for argument typing and type filtering are pe-
nalized, resulting in lower precision. So we see that
all components of the POLY architecture are essen-
tial for achieving high-quality output. Lowering the
type-filtering threshold yields results with compara-
ble precision. However, increasing the threshold re-
sults in a worse noise filtering procedure.

5.4 Evaluation with Other Languages
In addition to paraphrases derived from German, we
evaluated the relational phrase synonymy derived
from a few other languages with lower numbers of
extractions. We chose French, Hindi, and Russian
(cf. (Faruqui and Kumar, 2015)). The results are
presented in Table 6, again with the 0.95-confidence
Wilson score intervals.

Synonyms derived from French have similar qual-
ity as those from German. This is plausible as one
would assume that French and German have similar
quality in translation to English. Synonyms derived
from Russian and Hindi have lower precision due to
the lower translation quality. The precision for Hindi
is lower, as the Hindi input corpus has much fewer
sentences than for the other languages.

5.5 Extrinsic Evaluation: Question Answering
As an extrinsic use case for the POLY resource, we
constructed a simple Question Answering (QA) sys-
tem over knowledge graphs such as Freebase, and
determined the number of questions for which the

system can find a correct answer. We followed the
approach presented by Fader et al. (2014). The sys-
tem consists of question parsing, query rewriting and
database look-up stages. We disregard the stage of
ranking answer candidates, and merely test whether
the system could return the right answer (i.e., would
return with the perfect ranking).

In the question parsing stage, we use 10 high-
precision parsing operators by Fader et al. (2014),
which map questions (e.g., Who invented papyrus?)
to knowledge graph queries (e.g., (?x, invented, pa-
pyrus)). Additionally, we map question words to se-
mantic types. For example, the word who is mapped
to person, where to location, when to abstract en-
tity and the rest of the question words are mapped to
type entity.

We harness synonyms and hyponyms of relational
phrases to paraphrase the predicate of the query. The
paraphrases must be compatible with the seman-
tic type of the question word. In the end, we use
the original query, as well as found paraphrases, to
query a database of subject, predicate, object triples.
As the knowledge graph for this experiment we used
the union of collections: a triples database from
OpenIE (Fader et al., 2011), Freebase (Bollacker
et al., 2008), Probase (Wu et al., 2012) and NELL
(Carlson et al., 2010). In total, this knowledge graph
contained more than 900 Million triples.

We compared six systems for paraphrasing se-
mantically typed relational phrases:

• Basic: no paraphrasing at all, merely using the
originally generated query.

• DEFIE: using the taxonomy of relational
phrases by Bovi et al. (2015).

• PATTY: using the taxonomy of relational
phrases by Nakashole et al. (2012).

• RELLY: using the subset of the PATTY taxon-
omy with additional entailment relationships be-
tween phrases (Grycner et al., 2015).

• POLY DE: using synonyms of relational
phrases derived from the German language.

• POLY ALL: using synonyms of relational
phrases derived from the 61 languages.

Since DEFIE’s relational phrases are represented by
BabelNet (Navigli and Ponzetto, 2012) word sense
identifiers, we generated all possible lemmas for

2189

each identifier.
We ran the paraphrase-enhanced QA system for

three benchmark sets of questions:

• TREC: the set of questions used for the eval-
uation of information retrieval QA systems
(Voorhees and Tice, 2000)

• WikiAnswers: a random subset of questions
from WikiAnswers (Fader et al., 2013).

• WebQuestions: the set of questions about Free-
base entities (Berant et al., 2013).

From these question sets, we kept only those ques-
tions which can be parsed by one of the 10 question
parsing templates and have a correct answer in the
gold-standard ground truth. In total, we executed
451 questions for TREC, 516 for WikiAnswers and
1979 for WebQuestions.

For every question, each paraphrasing system
generates a set of answers. We measured for how
many questions we could obtain at least one correct
answer. Table 7 shows the results.

The best results were obtained by POLY ALL.
We performed a paired t-test for the results of
POLY DE and POLY ALL against all other sys-
tems. The differences between POLY ALL and
the other systems are statistically significant with p-
value below 0.05.

Additionally, we evaluated paraphrasing systems
which consist of combination of all of the described
datasets and all of the described datasets with-
out POLY. The difference between these two ver-
sions suggest that POLY contains many paraphrases
which are available in none of the competing re-
sources.

TREC WikiAnswers WebQuestions

Basic 193 144 365
DEFIE 197 147 394
RELLY 208 150 424
PATTY 213 155 475
POLY DE 232 163 477
POLY ALL 238 173 530

All 246 176 562
All / POLY 218 157 494

Questions 451 516 1979

Table 7: Number of questions with correct answer.

6 Related Work

Knowledge bases (KBs) contribute to many NLP
tasks, including Word Sense Disambiguation (Moro
et al., 2014), Named Entity Disambiguation (Hof-
fart et al., 2011), Question Answering (Fader et al.,
2014), and Textual Entailment (Sha et al., 2015).
Widely used KBs are DBpedia (Lehmann et al.,
2015), Freebase (Bollacker et al., 2008), YAGO
(Mahdisoltani et al., 2015), Wikidata (Vrandecic
and Krötzsch, 2014) and the Google Knowledge
Vault (Dong et al., 2014). KBs have rich informa-
tion about named entities, but are pretty sparse on
relations. In the latter regard, manually created re-
sources such as WordNet (Fellbaum, 1998), Verb-
Net (Kipper et al., 2008) or FrameNet (Baker et al.,
1998) are much richer, but still face the limitation of
labor-intensive input and human curation.

The paradigm of Open Information Extraction
(OIE) was developed to overcome the weak cover-
age of relations in automatically constructed KBs.
OIE methods process natural language texts to pro-
duce triples of surface forms for the arguments
and relational phrase of binary relations. The first
large-scale approach along these lines, TextRunner
(Banko et al., 2007), was later improved by Re-
Verb (Fader et al., 2011) and OLLIE (Mausam et
al., 2012). The focus of these methods has been on
verbal phrases as relations, and there is little effort
to determine lexical synonymy among them.

The first notable effort to build up a resource
for relational paraphrases is DIRT (Lin and Pantel,
2001), based on Harris’ Distributional Hypothesis to
cluster syntactic patterns. RESOLVER (Yates and
Etzioni, 2009) introduced a probabilistic relational
model for predicting synonymy. Yao et al. (2012)
incorporated latent topic models to resolve the am-
biguity of relational phrases. Other probabilistic ap-
proaches employed matrix factorization for finding
entailments between relations (Riedel et al., 2013;
Petroni et al., 2015) or used probabilistic graphi-
cal models to find clusters of relations (Grycner et
al., 2014). All of these approaches rely on the co-
occurrence of the arguments of the relation.

Recent endeavors to construct large repositories
of relational paraphrases are PATTY, WiseNet and
DEFIE. PATTY (Nakashole et al., 2012) devised
a sequence mining algorithm to extract relational

2190

phrases with semantic type signatures, and orga-
nized them into synonymy sets and hypernymy hier-
archies. WiseNet (Moro and Navigli, 2012) tapped
Wikipedia categories for a similar way of organizing
relational paraphrases. DEFIE (Bovi et al., 2015)
went even further and used word sense disambigua-
tion, anchored in WordNet, to group phrases with
the same meanings.

Translation models have previously been used
for paraphrase detection. Barzilay and McKeown
(2001) utilized multiple English translations of the
same source text for paraphrase extraction. Bannard
and Callison-Burch (2005) used the bilingual pivot-
ing method on parallel corpora for the same task.
Similar methods were performed at a much bigger
scale by the Paraphrase Database (PPDB) project
(Pavlick et al., 2015). Unlike POLY, the focus of
these projects was not on paraphrases of binary rela-
tions. Moreover, POLY considers the semantic type
signatures of relations, which is missing in PPDB.

Research on OIE for languages other than English
has received little attention. Kim et al. (2011) uses
Korean-English parallel corpora for cross-lingual
projection. Gamallo et al. (2012) developed an
OIE system for Spanish and Portuguese using rules
over shallow dependency parsing. The recent work
of Faruqui and Kumar (2015) extracted relational
phrases from Wikipedia in 61 languages using cross-
lingual projection. Lewis and Steedman (2013) clus-
tered semantically equivalent English and French
phrases, based on the arguments of relations.

7 Conclusions

We presented POLY, a method for clustering
semantically typed English relational phrases
using a multilingual corpus, resulting in a repos-
itory of semantically typed paraphrases with
high coverage and precision. Future work in-
cludes jointly processing all 61 languages in
the corpus, rather than considering them pair-
wise, to build a resource for all languages.
The POLY resource is publicly available at
www.mpi-inf.mpg.de/yago-naga/poly/.

References
Collin F. Baker, Charles J. Fillmore, and John B. Lowe.

1998. The Berkeley FrameNet project. In ACL.
Michele Banko, Michael J. Cafarella, Stephen Soderland,

Matthew Broadhead, and Oren Etzioni. 2007. Open
information extraction from the web. In IJCAI.

Colin J. Bannard and Chris Callison-Burch. 2005. Para-
phrasing with bilingual parallel corpora. In ACL.

Regina Barzilay and Kathleen McKeown. 2001. Extract-
ing paraphrases from a parallel corpus. In ACL.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In EMNLP.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lam-
biotte, and Etienne Lefebvre. 2008. Fast un-
folding of communities in large networks. Jour-
nal of Statistical Mechanics: Theory and Experiment,
2008(10):P10008.

Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In SIGMOD.

Claudio Delli Bovi, Luca Telesca, and Roberto Navigli.
2015. Large-scale information extraction from textual
definitions through deep syntactic and semantic analy-
sis. TACL, 3:529–543.

Lawrence D. Brown, T. Tony Cai, and Anirban Dasgupta.
2001. Interval estimation for a binomial proportion.
Statistical Science, 16:101–133.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr
Settles, Estevam R. Hruschka, and Tom M. Mitchell.
2010. Toward an architecture for never-ending lan-
guage learning. In AAAI.

Gerard de Melo and Gerhard Weikum. 2009. Towards
a universal wordnet by learning from combined evi-
dence. In CIKM.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko
Horn, Ni Lao, Kevin Murphy, Thomas Strohmann,
Shaohua Sun, and Wei Zhang. 2014. Knowledge
vault: a web-scale approach to probabilistic knowl-
edge fusion. In KDD.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In EMNLP.

Anthony Fader, Luke S. Zettlemoyer, and Oren Etzioni.
2013. Paraphrase-driven learning for open question
answering. In ACL.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2014. Open question answering over curated and ex-
tracted knowledge bases. In KDD.

Manaal Faruqui and Shankar Kumar. 2015. Multilingual
open relation extraction using cross-lingual projection.
In NAACL.

2191

Christiane Fellbaum, editor. 1998. WordNet: an elec-
tronic lexical database. MIT Press.

Pablo Gamallo, Marcos Garcia, and Santiago Fernández-
Lanza. 2012. Dependency-based open information
extraction. In Proceedings of the Joint Workshop on
Unsupervised and Semi-Supervised Learning in NLP,
ROBUS-UNSUP ’12, pages 10–18, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. In NAACL.

Adam Grycner, Gerhard Weikum, Jay Pujara, James
Foulds, and Lise Getoor. 2014. A unified probabilistic
approach for semantic clustering of relational phrases.
In AKBC ’14: Proceedings of the 2014 Workshop on
Automated Knowledge Base Construction.

Adam Grycner, Gerhard Weikum, Jay Pujara, James R.
Foulds, and Lise Getoor. 2015. RELLY: Inferring hy-
pernym relationships between relational phrases. In
EMNLP.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino,
Hagen Fürstenau, Manfred Pinkal, Marc Spaniol,
Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
2011. Robust disambiguation of named entities in text.
In EMNLP.

Seokhwan Kim, Minwoo Jeong, Jonghoon Lee, and
Gary Geunbae Lee. 2011. A cross-lingual anno-
tation projection-based self-supervision approach for
open information extraction. In IJCNLP.

Karin Kipper, Anna Korhonen, Neville Ryant, and
Martha Palmer. 2008. A large-scale classification of
english verbs. Language Resources and Evaluation,
42:21–40.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N. Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick van Kleef,
Sören Auer, and Christian Bizer. 2015. DBpedia -
a large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web, 6:167–195.

Mike Lewis and Mark Steedman. 2013. Unsuper-
vised induction of cross-lingual semantic relations. In
EMNLP.

Dekang Lin and Patrick Pantel. 2001. DIRT
@SBT@discovery of inference rules from text. In
KDD.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M.
Suchanek. 2015. YAGO3: A knowledge base from
multilingual wikipedias. In CIDR.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In ACL.

Mausam, Michael Schmitz, Stephen Soderland, Robert
Bart, and Oren Etzioni. 2012. Open language learning
for information extraction. In EMNLP.

Andrea Moro and Roberto Navigli. 2012. WiseNet:
building a wikipedia-based semantic network with on-
tologized relations. In CIKM.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity linking meets word sense disam-
biguation: a unified approach. TACL, 2:231–244.

Ndapandula Nakashole, Gerhard Weikum, and Fabian M.
Suchanek. 2012. PATTY: A taxonomy of relational
patterns with semantic types. In EMNLP.

Roberto Navigli and Simone Paolo Ponzetto. 2012. Ba-
belNet: The automatic construction, evaluation and
application of a wide-coverage multilingual semantic
network. Artificial Intelligence, 193:217–250.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch,
Benjamin Van Durme, and Chris Callison-Burch.
2015. PPDB 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. In ACL.

Fabio Petroni, Luciano Del Corro, and Rainer Gemulla.
2015. CORE: Context-aware open relation extraction
with factorization machines. In EMNLP.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M. Marlin. 2013. Relation extraction
with matrix factorization and universal schemas. In
NAACL.

Lei Sha, Sujian Li, Baobao Chang, Zhifang Sui, and
Tingsong Jiang. 2015. Recognizing textual entailment
using probabilistic inference. In EMNLP.

Ellen M. Voorhees and Dawn M. Tice. 2000. Building a
question answering test collection. In SIGIR.

Denny Vrandecic and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commun.
ACM, 57(10):78–85.

Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Qili
Zhu. 2012. Probase: a probabilistic taxonomy for text
understanding. In SIGMOD.

Limin Yao, Sebastian Riedel, and Andrew McCallum.
2012. Unsupervised relation discovery with sense dis-
ambiguation. In ACL.

Alexander Yates and Oren Etzioni. 2009. Unsupervised
methods for determining object and relation synonyms
on the web. Journal of Artificial Intelligence Research,
34(1).

2192

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2193–2203,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Exploiting Sentence Similarities for Better Alignments

Tao Li and Vivek Srikumar
University of Utah

{tli,svivek}@cs.utah.edu

Abstract

We study the problem of jointly aligning sen-
tence constituents and predicting their sim-
ilarities. While extensive sentence similar-
ity data exists, manually generating reference
alignments and labeling the similarities of the
aligned chunks is comparatively onerous. This
prompts the natural question of whether we
can exploit easy-to-create sentence level data
to train better aligners. In this paper, we
present a model that learns to jointly align
constituents of two sentences and also predict
their similarities. By taking advantage of both
sentence and constituent level data, we show
that our model achieves state-of-the-art per-
formance at predicting alignments and con-
stituent similarities.

1 Introduction

The problem of discovering semantic relationships
between two sentences has given birth to several
NLP tasks over the years. Textual entailment (Da-
gan et al., 2013, inter alia) asks about the truth of
a hypothesis sentence given another sentence (or
more generally a paragraph). Paraphrase identifi-
cation (Dolan et al., 2004, inter alia) asks whether
two sentences have the same meaning. Foregoing
the binary entailment and paraphrase decisions, the
semantic textual similarity (STS) task (Agirre et al.,
2012) asks for a numeric measure of semantic equiv-
alence between two sentences. All three tasks have
attracted much interest in the form of shared tasks.

While various approaches have been proposed to
predict these sentence relationships, a commonly
employed strategy (Das and Smith, 2009; Chang et

Gunmen abduct 7 foreign workers

∅ Seven foreign workers kidnapped

EQUI
EQUI

Figure 1: Example constituent alignment. The solid
lines represent aligned constituents (here, both la-
beled equivalent). The chunk Gunmen is unaligned.

al., 2010a) is to postulate an alignment between con-
stituents of the sentences and use this alignment to
make the final prediction (a binary decision or a nu-
meric similarity score). The implicit assumption in
such approaches is that better constituent alignments
can lead to better identification of semantic relation-
ships between sentences.

Constituent alignments serve two purposes. First,
they act as an intermediate representation for pre-
dicting the final output. Second, the alignments help
interpret (and debug) decisions made by the over-
all system. For example, the alignment between the
sentences in Figure 1 can not only be useful to deter-
mine the equivalence of the two sentences, but also
help reason about the predictions.

The importance of this intermediate representa-
tion led to the creation of the interpretable seman-
tic textual similarity task (Agirre et al., 2015a) that
focuses on predicting chunk-level alignments and
similarities. However, while extensive resources ex-
ist for sentence-level relationships, human annotated
chunk-aligned data is comparatively smaller.

In this paper, we address the following question:
can we use sentence-level resources to better pre-

2193

dict constituent alignments and similarities? To an-
swer this question, we focus on the semantic tex-
tual similarity (STS) task and its interpretable vari-
ant. We propose a joint model that aligns con-
stituents and integrates the information across the
aligned edges to predict both constituent and sen-
tence level similarity. The key advantage of model-
ing these two problems jointly is that, during train-
ing, the sentence-level information can provide feed-
back to the constituent-level predictions.

We evaluate our model on the SemEval-2016 task
of interpretable STS. We show that even without the
sentence information, our joint model that uses con-
stituent alignments and similarities forms a strong
baseline. Further, our easily extensible joint model
can incorporate sentence-level similarity judgments
to produce alignments and chunk similarities that are
comparable to the best results in the shared task.

In summary, the contributions of this paper are:

1. We present the first joint model for predicting
constituent alignments and similarities. Our
model can naturally take advantage of the much
larger sentence-level annotations.

2. We evaluate our model on the SemEval-2016
task of interpretable semantic similarity and
show state-of-the-art results.

2 Problem Definition

In this section, we will introduce the notation
used in the paper using the sentences in Figure
1 as a running example. The input to the prob-
lem is a pair of sentences, denoted by x. We
will assume that the sentences are chunked (Tjong
Kim Sang and Buchholz, 2000) into constituents.
We denote the chunks using subscripts. Thus,
the input x consists of two sequences of chunks
s = (s1, s2, · · ·) and t = (t1, t2, · · ·) respec-
tively. In our running example, we have s =
(Gunmen, abduct, seven foreign workers) and t =
(Seven foreign workers, kidnapped).

The output consists of three components:

1. Alignment: The alignment between a pair of
chunks is a labeled, undirected edge that ex-
plains the relation that exists between them.
The labels can be one of EQUI (semantically

equivalent), OPPO (opposite meaning in con-
text), SPE1, SPE2 (the chunk from s is more
specific than the one from t and vice versa),
SIMI (similar meaning, but none of the pre-
vious ones) or REL (related, but none of the
above)1. In Figure 1, we see two EQUI edges.
A chunk from either sentence can be unaligned,
as in the case of the chunk Gunmen.

We will use y to denote the alignment for an
input x. The alignment y consists of a se-
quence of triples of the form (si, tj , l). Here, si
and tj denote a pair of chunks that are aligned
with a label l. For brevity, we will include un-
aligned chunks into this format using a special
null chunk and label to indicate that a chunk is
unaligned. Thus, the alignment for our running
example contain the triple (Gunmen, ∅, ∅).

2. Chunk similarity: Every aligned chunk is as-
sociated with a relatedness score between zero
and five, denoting the range from unrelated
to equivalent. Note that even chunks labeled
OPPO can be assigned a high score because the
polarity is captured by the label rather than the
score. We will denote the chunk similarities us-
ing z, comprising of numeric zi,j,l for elements
of the corresponding alignment y. For an un-
aligned chunk, the corresponding similarity z
is fixed to zero.

3. Sentence similarity: The pair of sentences is
associated with a scalar score from zero to five,
to be interpreted as above. We will use r to
denote the sentence similarity for an input x.

Thus, the prediction problem is the following:
Given a pair of chunked sentences x = (s, t), pre-
dict the alignment y, the alignment similarities z and
the sentence similarity r. Note that this problem def-
inition integrates the canonical semantic textual sim-
ilarity task (only predicting r) and its interpretable
variant (predicting both y and z) into a single task.

1We refer the reader to the guidelines of the task (Agirre et
al., 2015a) for further details on these labels. Also, for simplic-
ity, in this paper, we ignore the factuality and polarity tags from
the interpretable task.

2194

3 Predicting Alignments and Similarities

This section describes our model for predicting
alignments, alignment scores, and the sentence sim-
ilarity scores for a given pair of sentences. We will
assume that learning is complete and we have all the
scoring functions we need and defer discussing the
parameterization and learning to Section 4.

We frame the problem of inference as an instance
of an integer linear program (ILP). We will first see
the scoring functions and the ILP formulation in
Section 3.1. Then, in Section 3.2, we will see how
we can directly read off the similarity scores at both
chunk and sentence level from the alignment.

3.1 Alignment via Integer Linear Programs
We have two kinds of 0-1 inference variables to rep-
resent labeled aligned chunks and unaligned chunks.

We will use the inference variables 1i,j,l to denote
the decision that chunks si and tj are aligned with a
label l. To allow chunks to be unaligned, the vari-
ables 1i,0 and 10,j denote the decisions that si and
tj are unaligned respectively.

Every inference decision is scored by the trained
model. Thus, we have score(i, j, l), score(i, 0)
and score(0, j) for the three kinds of inference
variables respectively. All scores are of the form
A
(
wTΦ (·, s, t)

)
, where w is a weight vector that

is learned, Φ (·, s, t) is a feature function whose ar-
guments include the constituents and labels in ques-
tion, and A is a sigmoidal activation function that
flattens the scores to the range [0, 5]. In all our ex-
periments, we used the function A(x) = 5

1+e−x .
The goal of inference is to find the assignment to

the inference variables that maximizes total score.
That is, we seek to solve

arg max
1∈C

∑

i,j,l

score(i, j, l)1i,j,l

+
∑

i

score(i, 0)1i,0

+
∑

j

score(0, j)10,j (1)

Here 1 represents all the inference variables together
and C denotes the set of all valid assignments to the
variables, defined by the following set of constraints:

1. A pair of chunks can have at most one label.

2. Either a chunk can be unaligned or it should
participate in a labeled alignment with exactly
one chunk of the other sentence.

We can convert these constraints into linear in-
equalities over the inference variables using stan-
dard techniques for ILP inference (Roth and Yih,
2004)2. Note that, by construction, there is a one-
to-one mapping from an assignment to the inference
variables 1 and the alignment y. In the rest of the
paper, we use these two symbols interchangeably,
using 1 referring details of inference and y referring
to the alignment as a sequence of labeled edges.

3.2 From Alignments to Similarities

To complete the prediction, we need to compute the
numeric chunk and sentence similarities given the
alignment y. In each case, we make modeling as-
sumptions about how the alignments and similarities
are related, as described below.

Chunk similarities To predict the chunk similari-
ties, we assume that the label-specific chunk similar-
ities of aligned chunks are the best edge-weights for
the corresponding inference variables. That is, for a
pair of chunks (si, tj) that are aligned with a label
l, the chunk pair similarity zi,j,l is the coefficient as-
sociated with the corresponding inference variable.
If the alignment edge indicates an unaligned chunk,
then the corresponding score is zero. That is,

zi,j,l =

{
A
(
wTΦ (si, tj , l, s, t)

)
if l 6= ∅

0 if l = ∅.
(2)

But can chunk similarities directly be used to find
good alignments? To validate this assumption, we
performed a pilot experiment on the chunk aligned
part of our training dataset. We used the gold stan-
dard chunk similarities as scores of the inference
variables in the integer program in Eq. 1, with the
variables associated with unaligned chunks being
scored zero. We found that this experiment gives
a near-perfect typed alignment F-score of 0.9875.

2While it may be possible to find the score maximizing
alignment in the presence of these constraints using dynamic
programming (say, a variant of the Kuhn-Munkres algorithm),
we model inference as an ILP to allow us the flexibility to ex-
plore more sophisticated output interactions in the future.

2195

The slight disparity is because the inference only al-
lows 1-to-1 matches between chunks (constraint 2),
which does not hold in a small number of examples.

Sentence similarities Given the aligned chunks y,
the similarity between the sentences s and t (i.e., in
our notation, r) is the weighted average of the chunk
similarities (i.e., zi,j,l). Formally,

r =
1

|y|
∑

(si,tj ,l)∈y
αlzi,j,l. (3)

Note that the weights αl depend only on the labels
associated with the alignment edge and are designed
to capture the polarity and strength of the label. Eq.
3 bridges sentence similarities and chunk similari-
ties. During learning, this provides the feedback
from sentence similarities to chunk similarities. The
values of theα’s can be learned or fixed before learn-
ing commences. To simplify our model, we choose
the latter approach . Section 5 gives more details.

Features To complete the description of the
model, we now describe the features that define the
scoring functions. We use standard features from the
STS literature (Karumuri et al., 2015; Agirre et al.,
2015b; Banjade et al., 2015).

For a pair of chunks, we extract the following
similarity features: (1) Absolute cosine similari-
ties of GloVe embeddings (Pennington et al., 2014)
of head words, (2) WordNet based Resnik (Resnik,
1995), Leacock (Leacock and Chodorow, 1998) and
Lin (Lin, 1998) similarities of head words, (3) Jac-
card similarity of content words and lemmas. In
addition, we also add indicators for: (1) the part
of speech tags of the pair of head words, (2) the
pair of head words being present in the lexical large
section of the Paraphrase Database (Ganitkevitch et
al., 2013), (3) a chunk being longer than the other
while both are not named entity chunks, (4) a chunk
having more content words than the other, (5) con-
tents of one chunk being a part of the other, (6) hav-
ing the same named entity type or numeric words,
(7) sharing synonyms or antonyms, (8) sharing con-
junctions or prepositions, (9) the existence of uni-
gram/bigram/trigram overlap, (10) if only one chunk
has a negation, and (11) a chunk having extra con-
tent words that are also present in the other sentence.

For a chunk being unaligned, we conjoin an in-
dicator that the chunk is unaligned with the part of
speech tag of its head word.

3.3 Discussion
In the model proposed above, by predicting the
alignment, we will be able to deterministically cal-
culate both chunk and sentence level similarities.
This is in contrast to other approaches for the STS
task, which first align constituents and then extract
features from alignments to predict similarities in a
pipelined fashion. The joint prediction of alignment
and similarities allows us to address the primary mo-
tivation of the paper, namely using the abundant sen-
tence level data to train the aligner and scorer.

The crucial assumption that drives the joint model
is that the same set of parameters that can discover
a good alignment can also predict similarities. This
assumption – similar to the one made by Chang et al.
(2010b) – and the associated model described above,
imply that the goal of learning is to find parameters
that drive the inference towards good alignments and
similarities.

4 Learning the Alignment Model

Under the proposed model, the alignment directly
predicts the chunk and sentence similarities as well.
We utilize two datasets to learn the model:

1. The alignment dataset DA consists of fully
annotated aligned chunks and respective chunk
similarity scores.

2. The sentence dataset DS that consists of pairs
of sentences where each pair is labeled with a
numeric similarity score between zero and five.

The goal of learning is to use these two datasets
to train the model parameters. Note that unlike stan-
dard multi-task learning problems, the two tasks in
our case are tightly coupled both in terms of their
definition and via the model described in Section 3.

We define three types of loss functions corre-
sponding to the three components of the final out-
put (i.e., alignment, chunk similarity and sentence
similarity). Naturally, for each kind of loss, we as-
sume that we have the corresponding ground truth.
We will denote ground truth similarity scores and
alignments using asterisks. Also, the loss functions

2196

defined below depend on the weight vector w, but
this is not shown to simplify notation.

1. The alignment loss La is a structured loss
function that penalizes alignments that are far
away from the ground truth. We used the struc-
tured hinge loss (Taskar et al., 2004; Tsochan-
taridis et al., 2005) for this purpose.

La(s, t,y∗) = max
y

wTΦ (s, t,y)

+∆ (y,y∗)−wTΦ (s, t,y∗) .

Here, ∆ refers to the Hamming distance be-
tween the alignments.

2. The chunk score loss Lc is designed to pe-
nalize errors in predicted chunk level similar-
ities. To account for cases where chunk bound-
aries may be incorrect, we define this loss as
the sum of squared errors of token similarities.
However, neither our output nor the gold stan-
dard similarities are at the granularity of tokens.
Thus, to compute the loss, we project the chunk
scores zi,j,l for an aligned chunk pair (si, tj , l)
to the tokens that constitute the chunks by
equally partitioning the scores among all pos-
sible internal alignments. In other words, for a
token wi in the chunk si and token wj in chunk
sj , we define token similarity scores as

z(wi, wj , l) =
zi,j,l

N(si,tj)

Here, the normalizing function N is the prod-
uct of the number of tokens in the chunks3.
Note that this definition of the token similarity
scores applies to both predicted and gold stan-
dard similarities. Unaligned tokens are associ-
ated with a zero score.

We can now define the loss for a token pair
(wi, wj) ∈ (s, t) and a label l as the squared
error of their token similarity scores:

l(wi, wj , l) = (z(wi, wj , l)− z∗(wi, wj , l))
2

3Following the official evaluation of the interpretable STS
task, we also experimented with the max(|si|, |tj |) for the nor-
malizer, but we found via cross validation that the product per-
forms better.

The chunk loss score Lc for a sentence pair is
the sum of all the losses over all pairs of tokens
and labels.

Lc(s, t,y,y
∗, z, z∗) =

∑

wi,wj ,l

l(wi, wj , l)

3. The sentence similarity loss Ls provides feed-
back to the aligner by penalizing alignments
that are far away from the ground truth in their
similarity assessments. For a pair of sentences
(s, t), given the ground truth sentence simi-
larity r∗ and the predicted sentence similarity
r (using Equation (3)), the sentence similarity
loss is the squared error:

Ls(s, t, r
∗) = (r − r∗)2 .

Our learning objective is the weighted combina-
tion of the above three components and a `2 regular-
izer on the weight vector. The importance of each
type of loss is controlled by a corresponding hyper-
parameter: λa, λc and λs respectively.

Learning algorithm We have two scenarios to
consider: with only alignment dataset DA, and with
both DA and sentence dataset DS . Note that even
if we train only on the alignment dataset DA, our
learning objective is not convex because the activa-
tion function is sigmoidal (in Section 3.1).

In both cases, we use stochastic gradient descent
with minibatch updates as the optimizer. In the first
scenario, we simply perform the optimization using
the alignment and the chunk score losses. We found
by preliminary experiments on training data that ini-
tializing the weights to one performed best.

Algorithm 1 Learning alignments and similarities,
given alignment dataset DA and sentence similarity
dataset DS . See the text for more details.

1: Initialize all weights to one.
2: w0 ← SGD(DA): Train an initial model
3: Use w0 to predict alignments on examples in
DS . Call this D̂S .

4: w ← SGD(DA ∪ D̂S): Train on both sets of
examples.

5: return w

When we have both DA and DS (Algorithm 1),
we first initialize the model on the alignment data

2197

only. Using this initial model, we hypothesize align-
ments on all examples in DS to get fully labeled ex-
amples. Then, we optimize the full objective (all
three loss terms) on the combined dataset. Because
our goal is to study the impact on the chunk level
predictions, in the full model, the sentence loss does
not play a part on examples from DA.

5 Experiments and Results

The primary research question we seek to answer via
experiments is: Can we better predict chunk align-
ments and similarities by taking advantage of sen-
tence level similarity data?

Datasets We used the training and test data from
the 2016 SemEval shared tasks of predicting seman-
tic textual similarity (Agirre et al., 2016a) and inter-
pretable STS (Agirre et al., 2016b), that is, tasks 1
and 2 respectively. For our experiments, we used the
headlines and images sections of the data. The data
for the interpretable STS task, consisting of manu-
ally aligned and scored chunks, provides the align-
ment datasets for training (DA). The headlines sec-
tion of the training data consists for 756 sentence
pairs, while the images section consists for 750 sen-
tence pairs. The data for the STS task acts as our
sentence level training dataset (DS). For the head-
lines section, we used the 2013 headlines test set
consisting of 750 sentence pairs with gold sentence
similarity scores. For the images section, we used
the 2014 images test set consisting of 750 exam-
ples. We evaluated our models on the official Task 2
test set, consisting of 375 sentence pairs for both the
headlines and images sections. In all experiments,
we used gold standard chunk boundaries if they are
available (i.e., for DA).

Pre-processing We pre-processed the sentences
with parts of speech using the Stanford CoreNLP
toolkit (Manning et al., 2014). Since our setting as-
sumes that we have the chunks as input, we used
the Illinois shallow parser (Clarke et al., 2012) to
extract chunks from DS . We post-processed the
predicted chunks to correct for errors using the fol-
lowing steps: 1. Split on punctuation; 2. Split on
verbs in NP; 3. Split on nouns in VP; 4. Merge
PP+NP into PP; 5. Merge VP+PRT into VP if the
PRT chunk is not a preposition or a subordinating

conjunction; 6. Merge SBAR+NP into SBAR; and
7. Create new contiguous chunks using tokens that
are marked as being outside a chunk by the shal-
low parser. We found that using the above post-
processing rules, improved the F1 of chunk accuracy
from 0.7865 to 0.8130. We also found via cross-
validation that this post-processing improved overall
alignment accuracy. The reader may refer to other
STS resources (Karumuri et al., 2015) for further
improvements along this direction.

Experimental setup We performed stochastic
gradient descent for 200 epochs in our experiments,
with a mini-batch size of 20. We determined the
three λ’s using cross-validation, with different hy-
perparameters for examples fromDA andDS . Table
1 lists the best hyperparameter values. For perform-
ing inference, we used the Gurobi optimizer4.

Setting λa, λc, λs
headlines, DA 100, 0.01, N/A
headlines, DS 0.5, 1, 50
images, DA 100, 0.01, N/A
images, DS 5, 2.5, 50

Table 1: Hyperparameters for the various settings,
chosen by cross-validation. The alignment dataset
do not have a λ associated with the sentence loss.

As noted in Section 3.1, the parameter αl com-
bines chunk scores into sentence scores. To find
these hyper-parameters, we used a set of 426 sen-
tences from the from the headlines training data that
had both sentence and chunk annotation. We sim-
plified the search by assuming that αEqui is always
1.0 and all labels other than OPPO have the same α.
Using grid search over [−1, 1] in increments of 0.1,
we selected α’s that gave us the highest Pearson cor-
relation for sentence level similarities. The best α’s
(with a Pearson correlation of 0.7635) were:

αl =

1, l = EQUI,

−1, l = OPPO,

0.7, otherwise

Results Following the official evaluation for the
SemEval task, we evaluate both alignments and their

4http://www.gurobi.com/

2198

Setting untyped typed
ali score ali score

Baseline 0.8462 0.7610 0.5462 0.5461
Rank 1 0.8194 0.7865 0.7031 0.6960
DA 0.9257 0.8377 0.7350 0.6776
DA +DS 0.9235 0.8591 0.7281 0.6948

(a) Headlines results

Setting untyped typed
ali score ali score

Baseline 0.8556 0.7456 0.4799 0.4799
Rank 1 0.8922 0.8408 0.6867 0.6708
DA 0.8689 0.7905 0.6933 0.6411
DA +DS 0.8738 0.8193 0.7011 0.6769

(b) Imags results

Table 2: F-score for headlines and images datasets. These tables show the result of our systems, baseline
and top-ranked systems. DA is our strong baseline trained on interpretable STS dataset; DA +DS is trained
on interpretable STS as well as STS dataset. The rank 1 system on headlines is Inspire (Kazmi and Schüller,
2016) and UWB (Konopik et al., 2016) on images. Bold are the best scores.

corresponding similarity scores. The typed align-
ment evaluation (denoted by typed ali in the results
table) measures F1 over the alignment edges where
the types need to match, but scores are ignored. The
typed similarity evaluation (denoted by typed score)
is the more stringent evaluation that measures F1 of
the alignment edge labels, but penalizes them if the
similarity scores do not match. The untyped ver-
sions of alignment and scored alignment evaluations
ignore alignment labels. These metrics, based on
Melamed (1997), are tailored for the interpretable
STS task5. We refer the reader to the guidelines of
the task for further details. We report both scores in
Table 2. We also list the performance of the base-
line system (Sultan et al., 2014a) and the top ranked
systems from the 2016 shared task for each dataset6.

By comparing the rows labeledDA andDA +DS

in Table 2 (a) and Table 2 (b), we see that in both the
headlines and the images datasets, adding sentence
level information improves the untyped score, lifting
the stricter typed score F1. On the headlines dataset,
incorporating sentence-level information degrades
both the untyped and typed alignment quality be-
cause we cross-validated on the typed score metric.

The typed score metric is the combination of un-
typed alignment, untyped score and typed align-
ment. From the row DA +DS in Table 2(a), we ob-
serve that the typed score F1 is slightly behind that
of rank 1 system while all other three metrics are
significantly better, indicating that we need to im-
prove our modeling of the intersection of the three
aspects. However, this does not apply to images

5In the SemEval 2016 shared task, the typed score is the
metric used for system ranking.

6http://alt.qcri.org/semeval2016/task2/

dataset where the improvement on the typed score
F1 comes from the typed alignment.

Further, we see that even our base model that
only depends on the alignment data offers strong
alignment F1 scores. This validates the utility of
jointly modeling alignments and chunk similarities.
Adding sentence data to this already strong system
leads to performance that is comparable to or better
than the state-of-the-art systems. Indeed, our final
results would have been ranked first on the images
task and a close second on the headlines task in the
official standings.

The most significant feedback coming from
sentence-level information is with respect to the
chunk similarity scores. While we observed slight
change in the unscored alignment performance, for
both the headlines and the images datasets, we saw
improvements in both scored precision and recall
when sentence level data was used.

6 Analysis and Discussion

In this section, first, we report the results of man-
ual error analysis. Then, we study the ability of our
model to handle data from different domains.

6.1 Error Analysis

To perform a manual error analysis, we selected
40 examples from the development set of the head-
lines section. We classified the errors made by the
full model trained on the alignment and sentence
datasets. Below, we report the four most significant
types of errors:

1. Contextual implication: Chunks that are
meant to be aligned are not synonyms by them-

2199

selves but are implied by the context. For in-
stance, Israeli forces and security forces might
be equivalent in certain contexts. Out of the 16
instances of EQUI being misclassified as SPE,
eight were caused by the features’ inability to
ascertain contextual implications. This also ac-
counted for four out of the 15 failures to iden-
tify alignments.

2. Semantic phrase understanding: These are
the cases where our lexical resources failed, e.
g., ablaze and left burning. This accounted for
ten of the 15 chunk alignment failures and nine
of the 21 labeling errors. Among these, some
errors (four alignment failures and four label-
ing errors) were much simpler than others that
could be handled with relatively simple fea-
tures (e.g. family reunions↔ family unions).

3. Preposition semantics: The inability to ac-
count for preposition semantics accounts for
three of the 16 cases where EQUI is mistaken as
a SPE. Some examples include at 91 ↔ aged
91 and catch fire↔ after fire.

4. Underestimated EQUI score: Ten out of 14
cases of score underestimation happened on
EQUI label.

Our analysis suggests that we need better contex-
tual features and phrasal features to make further
gains in aligning constituents.

6.2 Does the text domain matter?

In all the experiments in Section 5, we used sentence
datasets belonging to the same domain as the align-
ment dataset (either headlines or images). Given
that our model can take advantage of two separate
datasets, a natural question to ask is how the do-
main of the sentence dataset influences overall align-
ment performance. Additionally, we can also ask
how well the trained classifiers perform on out-of-
domain data. We performed a series of experiments
to explore these two questions. Table 3 summarizes
the results of these experiments.

The columns labeled Train and Test of the ta-
ble show the training and test sets used. Each
dataset can be either the headlines section (denoted
by hdln), or the images section (img) or not used

(∅). The last two columns report performance on the
test set. The rows 1 and 5 in the table correspond to
the in-domain settings and match the results of typed
alignment and score in Table 2.

Id Train Test Typed F1
DA DS ali score

1.

hdln

∅
hdln

0.7350 0.6776
2. img 0.6826 0.6347
3. ∅

img
0.6547 0.5989

4. img 0.6161 0.5854
5.

img

∅
img

0.6933 0.6411
6. hdln 0.7033 0.6793
7. ∅

hdln
0.6702 0.6274

8. hdln 0.6672 0.6445

Table 3: F-score for the domain adaptation experi-
ments. This table shows the performance of training
on different dataset combinations.

When the headlines data is tested on the images
section, we see that there is the usual domain adap-
tation problem (row 3 vs row 1) and using target im-
ages sentence data does not help (row 4 vs row 3).
In contrast, even though there is a domain adaptation
problem when we compare the rows 5 and 7, we see
that once again, using headlines sentence data im-
proves the predicted scores (row 7 vs row 8). This
observation can be explained by the fact that the im-
ages sentences are relatively simpler and headlines
dataset can provide richer features in comparison,
thus allowing for stronger feedback from sentences
to constituents.

The next question concerns how the domain of the
sentence dataset DS influences alignment and sim-
ilarity performance. To answer this, we can com-
pare the results in every pair of rows (i.e., 1 vs 2,
3 vs 4, etc.) We see that when the sentence data
from the image data is used in conjunction to the
headlines chunk data, it invariably makes the clas-
sifiers worse. In contrast, the opposite trend is ob-
served when the headlines sentence data augments
the images chunk data. This can once again be
explained by relatively simpler sentence construc-
tions in the images set, suggesting that we can lever-
age linguistically complex corpora to improve align-
ment on simpler ones. Indeed, surprisingly, we ob-
tain marginally better performance on the images set
when we use images chunk level data in conjunction

2200

with the headlines sentence data (row 6 vs the row
labeled DA +DS in the Table 2(b)).

7 Related Work

Aligning words and phrases between pairs of sen-
tences is widely studied in NLP. Machine translation
has a rich research history of using alignments (for
e.g., (Koehn et al., 2003; Och and Ney, 2003)), go-
ing back to the IBM models (Brown et al., 1993).
From the learning perspective, the alignments are
often treated as latent variables during learning, as
in this work where we treated alignments in the sen-
tence level training examples as latent variables. Our
work is also conceptually related to (Ganchev et al.,
2008), which asked whether improved alignment er-
ror implied better translation.

Outside of machine translation, alignments are
employed either explicitly or implicitly for recog-
nizing textual entailment (Brockett, 2007; Chang
et al., 2010a) and paraphrase recognition (Das and
Smith, 2009; Chang et al., 2010a). Additionally,
alignments are explored in multiple ways (tokens,
phrases, parse trees and dependency graphs) as a
foundation for natural logic inference (Chambers et
al., 2007; MacCartney and Manning, 2007; Mac-
Cartney et al., 2008). Our proposed aligner can be
used to aid such applications.

For predicting sentence similarities, in both vari-
ants of the task, word or chunk alignments have ex-
tensively been used (Sultan et al., 2015; Sultan et
al., 2014a; Sultan et al., 2014b; Hänig et al., 2015;
Karumuri et al., 2015; Agirre et al., 2015b; Banjade
et al., 2015, and others). In contrast to these sys-
tems, we proposed a model that is trained jointly to
predict alignments, chunk similarities and sentence
similarities. To our knowledge, this is the first ap-
proach that combines sentence-level similarity data
with fine grained alignments to train a chunk aligner.

8 Conclusion

In this paper, we presented the first joint frame-
work for aligning sentence constituents and pre-
dicting constituent and sentence similarities. We
showed that our predictive model can be trained us-
ing both aligned constituent data and sentence simi-
larity data. Our jointly trained model achieves state-
of-the-art performance on the task of predicting in-

terpretable sentence similarities.

Acknowledgments

The authors wish to thank the anonymous reviewers
and the members of the Utah NLP group for their
valuable comments and pointers to references.

References

[Agirre et al.2012] Eneko Agirre, Mona Diab, Daniel Cer,
and Aitor Gonzalez-Agirre. 2012. SemEval-2012 task
6: A pilot on semantic textual similarity. In *SEM
2012: The First Joint Conference on Lexical and Com-
putational Semantics.

[Agirre et al.2015a] Eneko Agirre, Carmen Banea, Claire
Cardie, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, Weiwei Guo, Iñigo Lopez-Gazpio, Montse
Maritxalar, Rada Mihalcea, German Rigau, Larraitz
Uria, and Janyce Wiebe. 2015a. SemEval-2015 Task
2: Semantic Textual Similarity, English, Spanish and
Pilot on Interpretability. In Proceedings of the 9th In-
ternational Workshop on Semantic Evaluation.

[Agirre et al.2015b] Eneko Agirre, Aitor Gonzalez-
Agirre, Inigo Lopez-Gazpio, Montse Maritxalar,
German Rigau, and Larraitz Uria. 2015b. UBC:
Cubes for English Semantic Textual Similarity and
Supervised Approaches for Interpretable STS. In
Proceedings of the 9th International Workshop on
Semantic Evaluation.

[Agirre et al.2016a] Eneko Agirre, Carmen Banea, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Rada Mi-
halcea, German Rigau, and Janyce Wiebe. 2016a.
SemEval-2016 Task 1: Semantic Textual Similarity,
Monolingual and Cross-lingual Evaluation. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation.

[Agirre et al.2016b] Eneko Agirre, Aitor Gonzalez-
Agirre, Inigo Lopez-Gazpio, Montse Maritxalar, Ger-
man Rigau, and Larraitz Uria. 2016b. SemEval-2016
Task 2: Interpretable Semantic Textual Similarity. In
Proceedings of the 10th International Workshop on
Semantic Evaluation.

[Banjade et al.2015] Rajendra Banjade, Nobal B Niraula,
Nabin Maharjan, Vasile Rus, Dan Stefanescu, Mihai
Lintean, and Dipesh Gautam. 2015. NeRoSim: A
System for Measuring and Interpreting Semantic Tex-
tual Similarity. Proceedings of the 9th International
Workshop on Semantic Evaluation.

[Brockett2007] Chris Brockett. 2007. Aligning the RTE
2006 corpus. Technical Report MSR-TR-2007-77,
Microsoft Research.

2201

[Brown et al.1993] Peter F Brown, Vincent J Della Pietra,
Stephen A Della Pietra, and Robert L Mercer. 1993.
The mathematics of statistical machine translation: Pa-
rameter estimation. Computational Linguistics.

[Chambers et al.2007] Nathanael Chambers, Daniel Cer,
Trond Grenager, David Hall, Chloe Kiddon, Bill Mac-
Cartney, Marie-Catherine De Marneffe, Daniel Ram-
age, Eric Yeh, and Christopher D Manning. 2007.
Learning Alignments and Leveraging Natural Logic.
In Proceedings of the ACL-PASCAL Workshop on Tex-
tual Entailment and Paraphrasing. Association for
Computational Linguistics.

[Chang et al.2010a] Ming-Wei Chang, Dan Goldwasser,
Dan Roth, and Vivek Srikumar. 2010a. Discrimi-
native Learning over Constrained Latent Representa-
tions. In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of
the Association for Computational Linguistics.

[Chang et al.2010b] Ming-Wei Chang, Vivek Srikumar,
Dan Goldwasser, and Dan Roth. 2010b. Structured
Output Learning with Indirect Supervision. In In Pro-
ceedings of the 27th International Conference on Ma-
chine Learning.

[Clarke et al.2012] James Clarke, Vivek Srikumar, Mark
Sammons, and Dan Roth. 2012. An NLP Curator
(or: How I Learned to Stop Worrying and Love NLP
Pipelines). In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC-2012).

[Dagan et al.2013] Ido Dagan, Dan Roth, Mark Sam-
mons, and Fabio M. Zanzotto. 2013. Recognizing
Textual Entailment: Models and Applications. Syn-
thesis Lectures on Human Language Technologies.

[Das and Smith2009] Dipanjan Das and Noah A Smith.
2009. Paraphrase identification as probabilistic quasi-
synchronous recognition. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Lan-
guage Processing.

[Dolan et al.2004] Bill Dolan, Chris Quirk, and Chris
Brockett. 2004. Unsupervised Construction of Large
Paraphrase Corpora: Exploiting Massively Parallel
News Sources. In COLING 2004: Proceedings of the
20th International Conference on Computational Lin-
guistics.

[Ganchev et al.2008] Kuzman Ganchev, Joao V Graça,
and Ben Taskar. 2008. Better Alignments= Better
Translations? Proceedings of ACL-08: HLT.

[Ganitkevitch et al.2013] Juri Ganitkevitch, Benjamin
Van Durme, and Chris Callison-Burch. 2013. PPDB:
The Paraphrase Database. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies.

[Hänig et al.2015] Christian Hänig, Robert Remus, and
Xose De La Puente. 2015. ExB Themis: Extensive
Feature Extraction from Word Alignments for Seman-
tic Textual Similarity. Proceedings of the 9th Interna-
tional Workshop on Semantic Evaluation.

[Karumuri et al.2015] Sakethram Karumuri, Viswanadh
Kumar Reddy Vuggumudi, and Sai Charan Raj Chiti-
rala. 2015. UMDuluth-BlueTeam: SVCSTS-A Multi-
lingual and Chunk Level Semantic Similarity System.
Proceedings of the 9th International Workshop on Se-
mantic Evaluation.

[Kazmi and Schüller2016] Mishal Kazmi and Peter
Schüller. 2016. Inspire at SemEval-2016 Task 2:
Interpretable Semantic Textual Similarity Alignment
based on Answer Set Programming. In Proceedings
of the 10th International Workshop on Semantic
Evaluation, June.

[Koehn et al.2003] Philipp Koehn, Franz Josef Och, and
Daniel Marcu. 2003. Statistical Phrase-Based Trans-
lation. In Proceedings of the 2003 Human Language
Technology Conference of the North American Chap-
ter of the Association for Computational Linguistics.

[Konopik et al.2016] Miloslav Konopik, Ondrej Prazak,
David Steinberger, and Tomáš Brychcı́n. 2016. UWB
at SemEval-2016 Task 2: Interpretable Semantic
Textual Similarity with Distributional Semantics for
Chunks. In Proceedings of the 10th International
Workshop on Semantic Evaluation, June.

[Leacock and Chodorow1998] Claudia Leacock and Mar-
tin Chodorow. 1998. Combining Local Context
and WordNet Similarity for Word Sense Identification.
WordNet: An Electronic Lexical Database.

[Lin1998] Dekang Lin. 1998. An Information-Theoretic
Definition of Similarity. In In Proceedings of the 15th
International Conference on Machine Learning.

[MacCartney and Manning2007] Bill MacCartney and
Christopher D Manning. 2007. Natural Logic for Tex-
tual Inference. In Proceedings of the ACL-PASCAL
Workshop on Textual Entailment and Paraphrasing.

[MacCartney et al.2008] Bill MacCartney, Michel Galley,
and Christopher D Manning. 2008. A Phrase-Based
Alignment Model for Natural Language Inference. In
Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing.

[Manning et al.2014] Christopher D Manning, Mihai Sur-
deanu, John Bauer, Jenny Rose Finkel, Steven
Bethard, and David McClosky. 2014. The Stanford
CoreNLP Natural Language Processing Toolkit. In
Proceedings of 52nd Annual Meeting of the Associa-
tion for Computational Linguistics: System Demon-
strations.

[Melamed1997] Dan Melamed. 1997. Manual Annota-
tion of Translational Equivalence: The Blinker Project.

2202

Technical report, Institute for Research in Cognitive
Science, Philadelphia.

[Och and Ney2003] Franz Josef Och and Hermann Ney.
2003. A Systematic Comparison of Various Statistical
Alignment Models. Computational Linguistics, Vol-
ume 29, Number 1, March 2003.

[Pennington et al.2014] Jeffrey Pennington, Richard
Socher, and Christopher D Manning. 2014. Glove:
Global Vectors for Word Representation. In Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing.

[Resnik1995] Philip Resnik. 1995. Using Information
Content to Evaluate Semantic Similarity in a Taxon-
omy. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence.

[Roth and Yih2004] Dan Roth and Wen-Tau Yih. 2004.
A Linear Programming Formulation for Global Infer-
ence in Natural Language Tasks. In HLT-NAACL 2004
Workshop: Eighth Conference on Computational Nat-
ural Language Learning (CoNLL-2004).

[Sultan et al.2014a] Md Arafat Sultan, Steven Bethard,
and Tamara Sumner. 2014a. Back to Basics for Mono-
lingual Alignment: Exploiting Word Similarity and
Contextual Evidence. Transactions of the Association
of Computational Linguistics.

[Sultan et al.2014b] Md Arafat Sultan, Steven Bethard,
and Tamara Sumner. 2014b. DLS@CU: Sentence
similarity from word alignment. In Proceedings of the
8th International Workshop on Semantic Evaluation.

[Sultan et al.2015] Md Arafat Sultan, Steven Bethard, and
Tamara Sumner. 2015. DLS@CU: Sentence Sim-
ilarity from Word Alignment and Semantic Vector
Composition. In Proceedings of the 9th International
Workshop on Semantic Evaluation.

[Taskar et al.2004] Ben Taskar, Carlos Guestrin, and
Daphne Koller. 2004. Max-Margin Markov Net-
works. In Advances in Neural Information Processing
Systems 16.

[Tjong Kim Sang and Buchholz2000] Erik F Tjong
Kim Sang and Sabine Buchholz. 2000. Introduction
to the CoNLL-2000 shared task: Chunking. In Fourth
Conference on Computational Natural Language
Learning and the Second Learning Language in Logic
Workshop.

[Tsochantaridis et al.2005] Ioannis Tsochantaridis,
Thorsten Joachims, Thomas Hofmann, and Yasemin
Altun. 2005. Large Margin Methods for Structured
and Interdependent Output Variables. Journal of
Machine Learning Research, Volume 6.

2203

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2204–2214,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Bi-directional Attention with Agreement for Dependency Parsing

Hao Cheng Hao Fang
University of Washington
{chenghao,hfang}@uw.edu

Xiaodong He Jianfeng Gao Li Deng
Microsoft Research

{xiaohe,jfgao,deng}@microsoft.com

Abstract

We develop a novel bi-directional attention
model for dependency parsing, which learns
to agree on headword predictions from the for-
ward and backward parsing directions. The
parsing procedure for each direction is for-
mulated as sequentially querying the memory
component that stores continuous headword
embeddings. The proposed parser makes use
of soft headword embeddings, allowing the
model to implicitly capture high-order pars-
ing history without dramatically increasing
the computational complexity. We conduct
experiments on English, Chinese, and 12 other
languages from the CoNLL 2006 shared task,
showing that the proposed model achieves
state-of-the-art unlabeled attachment scores
on 6 languages.1

1 Introduction

Recently, several neural network models have been
developed for efficiently accessing long-term mem-
ory and discovering dependencies in sequential data.
The memory network framework has been studied
in the context of question answering and language
modeling (Weston et al., 2015; Sukhbaatar et al.,
2015), whereas the neural attention model under
the encoder-decoder framework has been applied
to machine translation (Bahdanau et al., 2015) and
constituency parsing (Vinyals et al., 2015b). Both
frameworks learn the latent alignment between the
source and target sequences, and the mechanism of

1Our software and models are available at https://
github.com/hao-cheng/biattdp.

attention over the encoder can be viewed as a soft
operation on the memory. Although already used
in the encoder for capturing global context informa-
tion (Bahdanau et al., 2015), the bi-directional recur-
rent neural network (RNN) has yet to be employed
in the decoder. Bi-directional decoding is expected
to be advantageous over the previously developed
uni-directional counterpart, because the former ex-
ploits richer contextual information. Intuitively, we
can use two separate uni-directional RNNs where
each one constructs its respective attended encoder
context vectors for computing RNN hidden states.
However, the drawback of this approach is that the
decoder would often produce different alignments
resulting in discrepancies for the forward and back-
ward directions. In this paper, we design a training
objective function to enforce attention agreement
between both directions, inspired by the alignment-
by-agreement idea from Liang et al. (2006). Specif-
ically, we develop a dependency parser (BiAtt-DP)
using a bi-directional attention model based on the
memory network. Given that the golden alignment
is observed for dependency parsing in the training
stage, we further derive a simple and interpretable
approximation for the agreement objective, which
makes a natural connection between the latent and
observed alignment cases.

The proposed BiAtt-DP parses a sentence in a
linear order via sequentially querying the memory
component that stores continuous embeddings for
all headwords. In other words, we consider all pos-
sible arcs during the parsing. This formulation is
adopted by graph-based parsers such as the MST-
Parser (McDonald et al., 2005). The consideration

2204

of all possible arcs makes the proposed BiAtt-DP
different from many recently developed neural de-
pendency parsers (Chen and Manning, 2014; Weiss
et al., 2015; Alberti et al., 2015; Dyer et al., 2015;
Ballesteros et al., 2015), which use a transition-
based algorithm by modeling the parsing procedure
as a sequence of actions on buffers. Moreover,
unlike most graph-based parsers which may suffer
from high computational complexity when utilizing
high-order parsing history (McDonald and Pereira,
2006), the proposed BiAtt-DP can implicitly inject
such information into the model while keeping the
computational complexity in the order of O(n2) for
a sentence with n words. This is achieved by feed-
ing the RNN in the query component with a soft
headword embedding, which is computed as the
probability-weighted sum of all headword embed-
dings in the memory component.

To the best of our knowledge, this is the first at-
tempt to apply memory network models to graph-
based dependency parsing. Moreover, it is the
first extension of neural attention models from uni-
direction to multi-direction by enforcing agreement
on alignments. Experiments on English, Chinese,
and 12 languages from the CoNLL 2006 shared task
show the BiAtt-DP can achieve competitive parsing
accuracy with several state-of-the-art parsers. Fur-
thermore, our model achieves the highest unlabeled
attachment score (UAS) on Chinese, Czech, Dutch,
German, Spanish and Turkish.

2 A MemNet-based Dependency Parser

The proposed parser first encodes each word in
a sentence by continuous embeddings using a bi-
directional RNN, and then performs two types of
operations, i.e. 1) headword predictions based on bi-
directional parsing history and 2) the relation pre-
diction conditioned on the current modifier and its
predicted headword both in the embedding space.
In the following, we first present how the token em-
beddings are constructed. Then, the key components
of the proposed parser, i.e. the memory component
and the query component, are discussed in detail.
Lastly, we describe the parsing algorithm using a bi-
directional attention model with agreement.

2.1 Token Embeddings

In the proposed BiAtt-DP, the memory and query
components share the same token embeddings. We
use the notion of additive token embedding as in
(Botha and Blunsom, 2014) to utilize the available
information about the token, e.g., its word form,
lemma, part-of-speech (POS) tag, and morpholog-
ical features. Specifically, the token embedding is
computed as

Eformeformi + Eposeposi + Elemmaelemma
i + · · · ,

where ei’s are one-hot encoding vectors for the i-
th word, and E’s are parameters to be learned that
store the continuous embeddings for corresponding
feature. Note those one-hot encoding vectors have
different dimensions, depending on individual vo-
cabulary sizes, and all E’s have the same first di-
mension but different second dimension. The addi-
tive token embeddings allow us to easily integrate a
variety of information. Moreover, we only need to
make a single decision on the dimensionality of the
token embedding, rather than a combination of deci-
sions on word embeddings and POS tag embeddings
as in concatenated token embeddings used by Chen
and Manning (2014), Dyer et al. (2015) and Weiss
et al. (2015). It reduces the number of model param-
eters to be tuned, especially when lots of different
features are used. In our experiments, the word form
and fine-grained POS tag are always used, whereas
other features are used depending on their availabil-
ity in the dataset. All singleton words, lemmas, and
POS tags are replaced by special tokens.

The additive token embeddings are transformed
into another space before they are used by the mem-
ory and query components, i.e.

xi = LReL
[
P
(
Eformeformi + · · ·

)]
,

where P is the projection matrix and is shared by
the memory and query components as well. The ac-
tivation function of this projection layer is the leaky
rectified linear (LReL) function (Mass et al., 2013)
with 0.1 as the slope of the negative part. In the re-
maining part of the paper, we refer to xi ∈ Rp as the
token embedding for word at position i. Note the
subscript i is substituted by j and t for the memory
and query components, respectively.

2205

2.2 Components

As shown in Figure 1, the proposed BiAtt-DP has
three components, i.e. a memory component, a left-
to-right query component, and a right-to-left query
component. Given a sentence of length n, the parser
first uses a bi-directional RNN to construct n + 1
headword embeddings, m0,m1, . . . ,mn ∈ Re,
with m0 reserved for the ROOT symbol. Each query
component is an uni-directional attention model. In
a query component, a sequence of n modifier em-
beddings q1, . . . ,qn ∈ Rd are constructed recur-
sively by conditioning on all headword embeddings.
To address the vanishing gradient issue in RNNs, we
use the gated recurrent unit (GRU) proposed by Cho
et al. (2014), where an update gate and a reset gate
are employed to control the information flow. We re-
place the hyperbolic tangent function in GRU with
the LReL function, which is faster to compute and
achieves better parsing accuracy in our preliminary
studies. In the following, we refer to headword and
modifier embeddings as memory and query vectors,
respectively.

Memory Component: The proposed BiAtt-DP
uses a bi-directional RNN to obtain the memory vec-
tors. At time step j, the current hidden state vec-
tor hl

j ∈ Re/2 (or hr
j ∈ Re/2) is computed as a

non-linear transformation based on the current in-
put vector xj and the previous hidden state vec-
tor hl

j−1 (or hr
j+1), i.e. hl

j = GRU(hl
j−1,xj) (or

hr
j = GRU(hr

j+1,xj)). Ideally, the recursive nature
of the RNN allows it to capture all context infor-
mation from one-side, and a bi-directional RNN can
thus capture context information from both sides.
We concatenate the hidden layers of the left-to-right
RNN and the right-to-left RNN for the word at posi-
tion j as the memory vector mj =

[
hl
j ;h

r
j

]
. These

memory vectors are expected to encode the words
and their context information in the headword space.

Query Component: For each query component,
we use a single-directional RNN with GRU to obtain
the query vectors qj’s, which are the hidden state
vectors of the RNN. Each qt is used to query the
memory component, returning association scores
st,j’s between the word at position t and the head-

Figure 1: The structure of the BiAtt-DP. The figure only illus-

trates the parsing process at the time step for has. Blue and

yellow circles are memory and query vectors, respectively. Red

and purple circles represent headword probabilities predicted

from corresponding query components. Green circles represent

soft headword embeddings. Black arrowed lines are connec-

tions carrying weight matrices. ⊗ and ⊕ indicate element-wise

multiplication and addition, respectively. For simplicity, we ig-

nore the token embedding xt connected to the RNN hidden lay-

ers mj , ql
t and qr

t .

word at position j for j ∈ {0, · · · , n}, i.e.

st,j = vTφ (Cmj + Dqt) , (1)

where φ(·) is the element-wise hyperbolic tangent
function, and C ∈ Rh×e, D ∈ Rh×d and v ∈ Rh

are model parameters. Then, we can obtain proba-
bilities (aka attention weights), at,0, · · · , at,n, over
all headwords in the sentence by normalizing st,j’s,
using a softmax function

at = softmax(st). (2)

The soft headword embedding is then defined as
m̃t =

∑n
j=1 at,jmj . At each time step t, the

2206

RNN takes the soft headword embedding m̃l
t−1 or

m̃r
t+1 as the input, in addition to the token embed-

ding xt. Formally, for the forward case, the qt can
be computed as qt = GRU (qt−1, [m̃t;xt]). Al-
though the RNN is able to capture long-span con-
text information to some extent, the local context
may very easily dominate the hidden state. There-
fore, this additional soft headword embedding al-
lows the model to access long-span context infor-
mation in a different channel. On the other hand,
by recursively feeding both the query vector and the
soft headword embedding into the RNN, the model
implicitly captures high-order parsing history infor-
mation, which can potentially improve the parsing
accuracy (Yamada and Matsumoto, 2003; McDon-
ald and Pereira, 2006). However, for a graph-based
dependency parser, utilizing parsing history features
is computationally expensive. For example, an k-th
order MSTParser (McDonald and Pereira, 2006) has
O(nk+1) complexity for a sentence of n words. In
contrast, the BiAtt-DP implicitly captures high-order
parsing history while keeping the complexity in the
order of O(n2), i.e. for each direction. we compute
n(n+1) pair-wise probabilities at,j for t = 1, · · · , n
and j = 0, · · · , n.

In this paper, we choose to use soft headword em-
beddings rather than making hard decisions on head-
words. In the latter case, beam search may poten-
tially improve the parsing accuracy at the cost of
higher computational complexity, i.e. O(Bn2) with
a beam width of B. When using soft headword em-
beddings, there is no need to perform beam search.
Moreover, it is straightforward to incorporate pars-
ing history from both directions by using two query
components at the cost of O(2n2), which cannot be
easily achieved when using beam search. The pars-
ing decision can be made directly based on atten-
tion weights from the two query components or fur-
ther rescored by the maximum spanning tree (MST)
search algorithm.

2.3 Parsing by Attention with Agreement

For the bi-directional attention model, the underly-
ing probability distributions alt and art may not agree
with each other. In order to encourage the agree-
ment, we use the mathematically convenient metric,
i.e. the squared Hellinger distance H2

(
alt||art

)
, for

quantifying the distance between these two distri-

butions. For dependency parsing, when the golden
alignment is known during training, we can derive
an upper bound on the latent agreement objective as

H2(alt,a
r
t) ≤ 2

√
D(gt||alt) +D(gt||art),

where D(·||·) is the KL-divergence. The complete
derivation is provided in the Appendix A. During
optimization, we can safely drop the constant scaler
and the square root operation in the upper bound,
leading to the following loss function

D(gt||alt) +D(gt||art) = 2D(gt||alt � art), (3)

where � indicates element-wise multiplication. The
resulting loss function is equivalent to the cross-
entropy loss, which is widely adopted for training
neural networks.

As we can see, the loss function (3) tries to min-
imize the distance between the golden alignment
and the intersection of the two directional attention
alignments at every time step. Therefore, during
inference, the headword prediction for the word at
time step t can be obtained as

argmax
j

log alt,j + log art,j ,

seeking for agreement between both query compo-
nents. This parsing procedure is also similar to
the exhaustive left-to-right modifier-first search al-
gorithm described in (Covington, 2001), but it is en-
hanced by an additional right-to-left search with the
agreement enforcement. Alternatively, we can treat
(log alt,j + log art,j) as a score of the corresponding
arc and then search for the MST to form a depen-
dency parse tree, as proposed in (McDonald et al.,
2005). The MST search is achieved via the Chu-
Liu-Edmonds algorithm (Chu and Liu, 1965; Ed-
monds, 1967), which can be implemented in O(n2)
for dense graphs according to Tarjan (1977). In prac-
tice, the MST search slows down the parsing speed
by 6–10%. However, it forces the parser to produce
a valid tree, and we observe a slight improvement on
parsing accuracy in most cases.

After obtaining each modifier and its soft header
embeddings, we use a single-layer perceptron to pre-
dict the head-modifier relation, i.e.

yt = softmax
(
U
[
m̃l

t; m̃
r
t

]
+ W

[
ql
t; q

r
t

])
, (4)

2207

where yt,1, · · · , yt,m are the probabilities of m pos-
sible relations, and U ∈ Rm×2e and W ∈ Rm×2d

are model parameters.

3 Model Learning

For the t-th word (modifier) wt in a sentence of
length n, let H l

t and Hr
t denote random variables

representing the predicted headword from forward
(left-to-right) and backward (right-to-left) parsing
directions, respectively. Also let Rt denote the ran-
dom variable representing the dependency relation
for wt. The joint probability of headword and rela-
tion predictions can be written as

P (R1:n, H
l
1:n, H

r
1:n|w1:n)

=
n∏

t=1

P (Rt|w1:n)P (H l
t |w1:n)P (Hr

t |w1:n)

=
n∏

t=1

ylt,Rt
· al

t,Hl
t
· art,Hr

t
(5)

where at each time step we assume head-modifier
relations and headwords from both directions are
independent with each other when conditioned on
the global knowledge of the whole sentence. Note
that the long-span context and high-order parsing
history information are injected when we model
P (H l

t |w1:n), P (Hr
t |w1:n) and P (Rt|w1:n), as dis-

cussed in Section 2.2.
As discussed in Section 2.3, the model can be

trained by encouraging attention agreement between
two query components. From (5), we observe that it
is equivalent to maximizing the log-likelihood of the
golden dependency tree (or minimizing the cross-
entropy) for each training sentence, i.e.

n∑

t=1

(
log yt,relationt + log alt,headt + log art,headt

)
,

where at,j and yt,r are defined in (2) and (4), re-
spectively, and relationt and headt are golden
relation and headword labels, respectively. The gra-
dients are computed via the back-propagation algo-
rithm (Rumelhart et al., 1986). Errors of yt come
from the arc labels, whereas there are two source
of errors for at, one from the headword labels and
the other back-propagated from errors of yt. We
use stochastic gradient descent with the Adam al-
gorithm proposed in (Kingma and Ba, 2015). The

learning rate is halved at each iteration once the log-
likelihood of the dev set decreases. The whole train-
ing procedure terminates when the log-likelihood
decreases for the second time. All learning param-
eters except bias terms are initialized randomly ac-
cording to the Gaussian distribution N (0, 10−2). In
our experiments, we tune the initial learning rate
with a step size of 0.0002, and choose the best one
based on the log-likelihood on the dev set at the first
epoch. Empirically, the selected initial learning rates
fall in the range of [0.0004, 0.0010] for hidden layer
size [128, 320], and tend to be larger when using a
smaller hidden layer size, i.e. [0.0016, 0.0034] for
hidden layer size around 80. The training data are
randomly shuffled at every epoch.

4 Experiments

In this section, we present the parsing accuracy of
the proposed BiAtt-DP on 14 languages. We re-
port both UAS and labeled attachment score (LAS),
obtained by the CoNLL-X eval.pl script2 which ig-
nores punctuation symbols. The headword pre-
dictions are made through the MST search, which
slightly improves both UAS and LAS (less than
0.3% absolutely). Overall, the proposed BiAtt-DP
achieves competitive parsing accuracy on all lan-
guages as state-of-the-art parsers, and obtains better
UAS in 6 languages. We also show the impact of
using POS tags and pre-trained word embeddings.
Moreover, different variants of the full model are
compared in this section.

4.1 Data

We work on the English Treebank-3 (PTB) dataset
(Marcus et al., 1999), the Chinese Treebank-5.1
(CTB) dataset (Palmer et al., 2005), and 12 other
languages from the CoNLL 2006 shared task (Buch-
holz and Marsi, 2006). For PTB and CTB datasets,
we use exactly the same setup as in (Chen and Man-
ning, 2014; Dyer et al., 2015). Specifically, we con-
vert the English and Chinese data using the Stan-
ford parser v3.3.0 (de Marneffe et al., 2006) and the
Penn2Malt tool (Zhang and Clark, 2008), respec-
tively.

For English, POS tags are obtained using the
Stanford POS tagger v3.3.0 (Toutanova et al., 2003),

2http://ilk.uvt.nl/conll/software.html

2208

whereas for Chinese, we use gold segmentation and
POS tags. When constructing the token embeddings
for English and Chinese, both the word form and the
POS tag are used. We also initialize Eform by pre-
trained word embeddings3.

For the 12 other languages, we randomly hold out
5% of the training data as the dev set. In addition
to the word form and find-grained POS tags, we use
extra features such as lemmas, coarse-grained POS
tags, and morphemes when they are available in the
dataset. No pre-trained word embeddings are used
for these 12 languages.

4.2 Model Configurations

The hidden layer size is kept the same across all
RNNs in the proposed BiAtt-DP. We also require the
dimension of the token embeddings to be the same
as the hidden layer size. Note that we concatenate
the hidden layers of two RNNs for constructing mj ,
and thus we have e = 2d. The weight matrices C
and D respectively project vectors mj and qt to the
same dimension h, which is equivalent to d. For
English and Chinese, since the dimension of pre-
trained word embeddings are 300, we use 300 × h
as the dimension of embedding parameters E’s. For
the 12 other languages, we use square matrices for
the embedding parameters E’s. For all languages,
We tune the hidden layer size and choose one ac-
cording to UAS on the dev set. The selected hidden
layer sizes for these languages are: 368 (English),
114 (Chinese), 128 (Arabic), 160 (Bulgarian), 224
(Czech), 176 (Danish), 220 (Dutch), 200 (German),
128 (Japanese), 168 (Portuguese), 128 (Slovene),
144 (Spanish), 176 (Swedish), and 128 (Turkish).

4.3 Results

We first compare our parser with state-of-the-art
neural transition-based dependency parsers on PTB
and CTB. For English, we also compare with state-
of-the-art graph-based dependency parsers. The re-
sults are shown in Table 1 and Table 2, respectively.
It can be seen that the BiAtt-DP outperforms all
other graph-based parsers on PTB. Compared with

3For English, we use the dependency-based word embed-
dings at https://goo.gl/tWke3I (Levy and Goldberg,
2014). For Chinese, we pre-train 192-dimension skip-gram em-
beddings (Mikolov et al., 2013) on Chinese Gigawords (Graff
et al., 2005).

Type Method UAS LAS

Trans.

C&M (2014) 91.8 89.6
Dyer et al. (2015) 93.2 90.9
B&N (2012)† 93.33 91.22
Alberti et al. (2015)† 94.23 92.41
Weiss et al. (2015)† 94.26 92.41
Andor et al. (2016)∗ 94.41 92.55

Graph

Bohnet (2010)† 92.88 90.71
Martins et al. (2013)† 92.89 90.55
Z&M (2014)† 93.22 91.02
BiAtt-DP 94.10 91.49

Table 1: Parsing accuracy on PTB test set. Our parser uses

the same POS tagger as C&M (2014) and Dyer et al. (2015),

whereas other parsers use a different POS tagger. Results with

† and ∗ are provided in (Alberti et al., 2015) and (Andor et al.,

2016), respectively.

Dev Test
UAS LAS UAS LAS

C&M (2014) 84.0 82.4 83.9 82.4
Dyer et al. (2015) 87.2 85.9 87.2 85.7
BiAtt-DP 87.7 85.3 88.1 85.7
Table 2: Parsing accuracy on CTB dev and test sets.

the transition-based parsers, it achieves better accu-
racy than Chen and Manning (2014), which uses a
feed-forward neural network, and Dyer et al. (2015),
which uses three stack LSTM networks. Compared
with the integrated parsing and tagging models, the
BiAtt-DP outperforms Bohnet and Nivre (2012) but
has a small gap to Alberti et al. (2015). On CTB,
it achieves best UAS and similar LAS. This may
be caused by that the relation vocabulary size is
relatively smaller than the average sentence length,
which biases the joint objective to be more sensitive
to UAS. The parsing speed is around 50–60 sents/sec
measured on a desktop with Intel Core i7 CPU @
3.33GHz using single thread.

Next, in Table 3 we show the parsing accuracy
of the proposed BiAtt-DP on 12 languages in the
CoNLL 2006 shared task, including comparison
with state-of-the-art parsers. Specifically, we show
UAS of the 3rd-order RBGParser as reported in
(Lei et al., 2014) since it also uses low-dimensional
continuous embeddings. However, there are sev-
eral major differences between the RBGParser and
the BiAtt-DP. First, in (Lei et al., 2014), the low-
dimensional continuous embeddings are derived

2209

Language BiAtt-DP RBGParser Best Published Crossed Uncrossed %Crossed
Arabic 80.34 [68.58] 79.95 81.12 (Ma11) 17.24 80.71 0.58
Bulgarian 93.96 [89.55] 93.50 94.02 (Zh14) 79.59 94.10 0.98
Czech 91.16 [85.14] 90.50 90.32 (Ma13) 81.62 91.63 4.68
Danish 91.56 [85.53] 91.39 92.00 (Zh13) 73.33 91.89 1.80
Dutch 87.15 [82.41] 86.41 86.19 (Ma13) 82.82 87.66 10.48
German 92.71 [89.80] 91.97 92.41 (Ma13) 85.93 92.90 2.70
Japanese 93.44 [90.67] 93.71 93.72 (Ma11) 48.67 94.48 2.26
Portuguese 92.77 [88.44] 91.92 93.03 (Ko10) 73.02 93.28 2.52
Slovene 86.01 [75.90] 86.24 86.95 (Ma11) 60.11 86.99 3.66
Spanish 88.74 [84.03] 88.00 87.98 (Zh14) 50.00 88.77 0.08
Swedish 90.50 [84.05] 91.00 91.85 (Zh14) 45.16 90.78 0.62
Turkish 78.43 [66.16] 76.84 77.55 (Ko10) 38.85 79.71 3.13

Table 3: UAS on 12 languages in the CoNLL 2006 shared task (Buchholz and Marsi, 2006). We also report corresponding LAS

in squared brackets. The results of the 3rd-order RBGParser are reported in (Lei et al., 2014). Best published results on the

same dataset in terms of UAS among (Pitler and McDonald, 2015), (Zhang and McDonald, 2014), (Zhang et al., 2013), (Zhang

and McDonald, 2012), (Rush and Petrov, 2012), (Martins et al., 2013), (Martins et al., 2010), and (Koo et al., 2010). To study the

effectiveness of the parser in dealing with non-projectivity, we follow (Pitler and McDonald, 2015), to compute the recall of crossed

and uncrossed arcs in the gold tree, as well as the percentage of crossed arcs.

from low-rank tensors. Second, the RBGParser
uses combined scoring of arcs by including tradi-
tional features from the MSTParser (McDonald and
Pereira, 2006) / TurboParser (Martins et al., 2013).
Third, the RBGParser employs a third-order parsing
algorithm based on (Zhang et al., 2014), although
it also implements a first-order parsing algorithm,
which achieves lower UAS in general. In Table 3,
we show that the proposed BiAtt-DP outperforms
the RBGParser in most languages except Japanese,
Slovene, and Swedish.

It can be observed from Table 3 that the BiAtt-
DP has highly competitive parsing accuracy as state-
of-the-art parsers. Moreover, it achieves best UAS
for 5 out of 12 languages. For the remaining seven
languages, the UAS gaps between the BiAtt-DP
and state-of-the-art parsers are within 1.0%, except
Swedish. An arguably fair comparison for the BiAtt-
DP is the MSTParser (McDonald and Pereira, 2006),
since the BiAtt-DP replaces the scoring function for
arcs but uses exactly the same search algorithm. Due
to the space limit, we refer readers to (Lei et al.,
2014) for results of the MSTParsers (also shown in
Appendix B). The BiAtt-DP consistently outper-
forms both parser by up to 5% absolute UAS score.

Finally, following (Pitler and McDonald, 2015),
we also analyze the performance of the BiAtt-DP on
both crossed and uncrossed arcs. Since the BiAtt-

DP uses a graph-based non-projective parsing algo-
rithm, it is interesting to evaluate the performance
on crossed arcs, which result in the non-projectivity
of the dependency tree. The last three columns of
Table 3 show the recall of crossed arcs, that of un-
crossed arcs, and the percentage of crossed arcs in
the test set. Pitler and McDonald (2015) reported
numbers on the same data for Dutch, German, Por-
tuguese, and Slovene as in this paper. For these four
languages, the BiAtt-DP achieves better UAS than
that reported in (Pitler and McDonald, 2015). More
importantly, we observe that the improvement on re-
call of crossed arcs (around 10–18% absolutely) is
much more significant than that of uncrossed arcs
(around 1–3% absolutely), which indicates the ef-
fectiveness of the BiAtt-DP in parsing languages
with non-projective trees.

4.4 Ablative Study

Here we try to study the impact of using pre-trained
word embeddings, POS tags, as well as the bi-
directional query components on our model. First
of all, we start from our best model (Model 1 in
Table 4) on English, which uses 300 as the token
embedding dimension and 368 as the hidden layer
size. We keep those model parameter dimensions
unchanged and analyze different factors by compar-
ing the parsing accuracy on PTB dev set.

2210

No. INIT POS L2R R2L UAS LAS
1 X X X X 93.99 91.32
2 X X X 93.36 90.42
3 X X 91.87 87.85
4 X X 92.64 89.66
5 X X 92.47 89.47
6 X X† X† 93.03 90.06

Table 4: Parsing accuracy on PTB dev set for different variants

of the full model. INIT refers to using pre-trained word em-

bddings to initialize Eform. POS refers to using POS tags in

token embeddings. L2R and R2L respectively indicate whether

to use the left-to-right and right-to-left query components. †
means the query component drops soft headword embeddings

when constructing RNN hidden states.

The results are summarized in Table 4. Compar-
ing Models 1–3, it can be observed that without us-
ing pre-trained word embeddings, both UAS and
LAS drop by 0.6%, and without using POS tags
in token embeddings, the numbers further drop by
1.6% in UAS and around 2.6% in LAS. In terms
of query components, using single query compo-
nent (Models 4–5) degrades UAS by 0.7–0.9% and
LAS by around 1.0%, compared with Model 2. For
Model 6, the soft headword embedding is only used
for arc label predictions but not fed into the next hid-
den state, which is around 0.3% worse than Model 2.
This supports the hypothesis about the usefulness of
the parsing history information. We also implement
a variant of Model 6 which produces one at instead
two by using both ql

t and qr
t in (1). It gets 92.44%

UAS and 89.26% LAS, indicating that naively ap-
plying a bi-directional RNN may not be enough.

5 Related Work

Neural Dependency Parsing: Recently de-
veloped neural dependency parsers are mostly
transition-based models, which read words sequen-
tially from a buffer into a stack and incrementally
build a parse tree by predicting a sequence of
transitions (Yamada and Matsumoto, 2003; Nivre,
2003; Nivre, 2004). A feed-forward neural network
is used in (Chen and Manning, 2014), where
they represent the current state with 18 selected
elements such as the top words on the stack and
buffer. Each element is encoded by concatenated
embeddings of words, POS tags, and arc labels.
Their dependency parser achieves improvement

on both accuracy and parsing speed. Weiss et al.
(2015) improve the parser using semi-supervised
structured learning and unlabeled data. The model
is extended to integrate parsing and tagging in
(Alberti et al., 2015). On the other hand, Dyer et
al. (2015) develop the stack LSTM architecture,
which uses three LSTMs to respectively model
the sequences of buffer states, stack states, and
actions. Unlike the transition-based formulation, the
proposed BiAtt-DP directly predicts the headword
and the dependency relation at each time step.
Specifically, there is no explicit representation of
actions or headwords in our model. The model
learns to retrieve the most relevant information from
the input memory to make decisions on headwords
and head-modifier relations.

Graph-based Dependency Parsing: In addition
to the transition-based parsers, another line of re-
search in dependency parsing uses graph-based
models. Graph-based parser usually build a de-
pendency tree from a directed graph and learns to
scoring the possible arcs. Due to this nature, non-
projective parsing can be done straightforwardly by
most graph-based dependency parsers. The MST-
Parser (McDonald et al., 2005) and the TurboParser
(Martins et al., 2010) are two examples of graph-
based parsers. The MSTParser formulates the pars-
ing as searching for the MST, whereas the Tur-
boParser performs approximate variational infer-
ence over a factor graph. The RBGParser pro-
posed in (Lei et al., 2014) can also be viewed
as a graph-based parser, which scores arcs using
low-dimensional continuous features derived from
low-rank tensors as well as features used by MST-
Parser/TurboParser. It also employs a sampler-based
algorithm for parsing (Zhang et al., 2014).

Neural Attention Model: The proposed BiAtt-
DP is closely related to the memory network
(Sukhbaatar et al., 2015) for question answering,
as well as the neural attention models for machine
translation (Bahdanau et al., 2015) and constituency
parsing (Vinyals et al., 2015b). The way we query
the memory component and obtain the soft head-
word embeddings is essentially the attention mech-
anism. However, different from the above studies
where the alignment information is latent, in de-
pendency parsing, the arc between the modifier and

2211

headword is known during training. Thus, we can
utilize these labels for attention weights. The similar
idea is employed by the pointer network in (Vinyals
et al., 2015a), which is used to solve three different
combinatorial optimization problems.

6 Conclusion

In this paper, we develop a bi-directional attention
model by encouraging agreement between the la-
tent attention alignments. Through a simple and in-
terpretable approximation, we make the connection
between latent and observed alignments for train-
ing the model. We apply the bi-directional attention
model incorporating the agreement objective during
training to the proposed memory-network-based de-
pendency parser. The resulting parser is able to im-
plicitly capture the high-order parsing history with-
out suffering from issue of high computational com-
plexity for graph-based dependency parsing.

We have carried out empirical studies over 14
languages. The parsing accuracy of the proposed
model is highly competitive with state-of-the-art de-
pendency parsers. For English, the proposed BiAtt-
DP outperforms all graph-based parsers. It also
achieves state-of-the-art performance in 6 languages
in terms of UAS, demonstrating the effectiveness of
the proposed mechanism of bi-directional attention
with agreement and its use in dependency parsing.

A Upper Bound on H2(p,q)

Here, we use the following definition of squared
Hellinger distance for countable space

H2(p,q) =
1

2

∑

i

(
√
pi −

√
qi)

2

where p,q ∈ ∆k are two k-simplexes. Introducing
g ∈ ∆k, the squared Hellinger distance can be upper
bounded as

H2(p,q) ≤
√

2H(p,q) (6)

≤
√

2 [H(p,g) +H(q,g)] (7)

≤ 2
√
H2(p,g) +H2(q,g) (8)

where (6), (7) and (8) follow the inequalities be-
tween the `1-norm and the `2-norm, the triangle

inequality defined for a metric, and the Cauchy-
Schwarz’s inequality, respectively. Using the rela-
tionship between the KL-divergence and the squared
Hellinger distance, (8) can be further bounded by

2
√
D(g||p) +D(g||q).

B UAS Scores of MSTParsers

Language 1st-order 2nd-order
Arabic 78.30 (2.02) 78.75 (1.57)
Bulgarian 90.98 (3.00) 91.56 (2.42)
Czech 86.18 (4.88) 87.30 (3.76)
Danish 89.84 (1.80) 90.50 (1.14)
Dutch 82.89 (4.54) 84.11 (3.32)
German 89.54 (3.17) 90.14 (2.57)
Japanese 93.38 (0.14) 92.92 (0.60)
Portuguese 89.92 (3.17) 91.08 (2.01)
Slovene 82.09 (4.54) 83.25 (3.38)
Spanish 83.79 (4.59) 84.33 (4.05)
Swedish 88.27 (1.95) 89.05 (1.17)
Turkish 74.81 (3.74) 74.39 (4.16)
Average 85.83 (2.85) 86.45 (2.23)

Table 5: UAS scores of 1st-order and 2-nd order MSTParsers

on 12 languages in the CoNLL 2006 shared task (Buchholz and

Marsi, 2006). We use the numbers reported in (Lei et al., 2014).

Numbers in brackets indicate the absolute improvement of the

proposed BiAtt-DP over the MSTParsers.

References
Chris Alberti, David Weiss, Slav Petrov, and Slav Petrov.

2015. Improved transition-based parsing and tag-
ging with neural networks. In Proc. Conf. Empirical
Methods Natural Language Process. (EMNLP), pages
1354–1359.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally normal-
ized transition-based neural networks. In Proc. Annu.
Meeting Assoc. for Computational Linguistics (ACL).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. Int. Conf.
Learning Representations (ICLR).

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by model-
ing characters instead of words with lstms. In Proc.
Conf. Empirical Methods Natural Language Process.
(EMNLP), pages 349–359.

2212

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Proc.
Conf. Empirical Methods Natural Language Process.
(EMNLP), pages 1455–1465.

Bernd Bohnet. 2010. Very high accurarcy and fast de-
pendency parsing is not a contradiction. In Proc. Int.
Conf. Computational Linguistics (COLING), pages
89–97.

Jan A. Botha and Phil Blunsom. 2014. Composi-
tional morphology for word representations and lan-
guage modelling. In Proc. Int. Conf. Machine Learn-
ing (ICML).

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proc. Conf. Computational Natural Language Learn-
ing (CoNLL), pages 149–164.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In Proc. Conf. Empirical Methods Natural
Language Process. (EMNLP), pages 740–750.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahadanau, Fethhi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statis-
tical machine translation. In Proc. Conf. Empirical
Methods Natural Language Process. (EMNLP), pages
1724–1734.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On the short-
est arborescene of a directed graph. Science Sinica,
14:1396–1400.

Michael A. Covington. 2001. A fundamental algorithm
for dependency parsing. In Proc. Annu. ACM South-
east Conf., pages 95–102.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proc. Int. Conf. Language Resources and Evaluation
(LREC).

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proc. Annu. Meeting Assoc. for Computa-
tional Linguistics (ACL), pages 334–343.

Jack Edmonds. 1967. Optimum branchings. Jour-
nal of Research of the National Bureau of Standards,
718(4):233–240.

David Graff, Ke Chen, Junbo Kong, and Kazuaki
Maeda. 2005. Chinese Gigaword Second Edition
LDC2005T14. Web Download.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proc. Int. Conf.
Learning Representations (ICLR).

Terry Koo, Alexander M. Rush, Michael Collins, Tommi
Jaakkola, and David Sontag. 2010. Dual decompo-
sition for parsing with non-projective head automata.
In Proc. Conf. Empirical Methods Natural Language
Process. (EMNLP), pages 1288–1298.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and
Tommi Jaakkola. 2014. Low-rank tensors for scor-
ing dependency structures. In Proc. Annu. Meeting
Assoc. for Computational Linguistics (ACL), pages
1381–1391.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proc. Annu. Meeting As-
soc. for Computational Linguistics (ACL), pages 302–
308.

Percy Liang, Ben Tasker, and Dan Klein. 2006. Align-
ment by agreement. In Proc. Human Language
Technology Conf. and Conf. North American Chapter
Assoc. for Computational Linguistics (HLT-NAACL),
pages 104–111.

Mitchell Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz, and Ann Taylor. 1999. Treebank-3
LDC99T42. Web Download.

Andrè F. T. Martins, Noah A. Smith, and Eric P. Xing.
2010. Turbo parsers: Dependency parsing by approx-
imate variational inference. In Proc. Conf. Empirical
Methods Natural Language Process. (EMNLP), pages
34–44.

Andrè F. T. Martins, Miguel B. Almeida, and Noah A.
Smith. 2013. Turing on the turbo: Fast third-order
non-projective turbo parsers. In Proc. Annu. Meet-
ing Assoc. for Computational Linguistics (ACL), pages
617–622.

Andrew L. Mass, Awni Y. Hannun, and Andrew Y. Ng.
2013. Rectifier nonlinearities improve neural network
acoustic models. In Proc. Int. Conf. Machine Learning
(ICML).

Ryan McDonald and Fernando Pereira. 2006. On-
line learning of approximate dependency parsing al-
gorithms. In Proc. European Chapter Assoc. for Com-
putational Linguistics (EACL), pages 81–88.

Ryan McDonald, Fernando Pererira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency parsing
using spanning tree algorithms. In Proc. Human Lan-
guage Technology Conf. and Conf. Empirical Meth-
ods Natural Language Process. (HLT/EMNLP), pages
523–530.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. In Proc. Workshop at Int. Conf.
Learning Representations.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In Proc. Int. Conf. Parsing
Technologies (IWPT), pages 149–160.

2213

Joakim Nivre. 2004. Incrementality in deterministic de-
pendency parsing: Bringing engineering and cognition
together. In Proc. Workshop at ACL.

Martha Palmer, Fu-Dong Chiou, Nianwen Xue, and
Tsan-Kuang Lee. 2005. Chinese Treebank 5.0
LDC2005T01. Web Download.

Emily Pitler and Ryan McDonald. 2015. A linear-time
translation system for crossing interval trees. In Proc.
Conf. North American Chapter Assoc. for Computa-
tional Linguistics (NAACL), pages 662–671.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. 1986. Learning representations by back-
propogating errors. Nature, 323(6088):533–536, Oc-
tober.

Alexander M. Rush and Slav Petrov. 2012. Vine prun-
ing for efficient multi-pass dependency parsing. In
Proc. Conf. North American Chapter Assoc. for Com-
putational Linguistics: Human Language Technolo-
gies (NAACL-HLT), pages 498–507.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and
Rob Fergus. 2015. End-to-end memory networks.
In Proc. Annu. Conf. Neural Inform. Process. Syst.
(NIPS), pages 2431–2439.

Robert E. Tarjan. 1977. Finding optimum branchings.
Networks, 7(1):25–35.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proc.
Human Language Technology Conf. and Conf. North
American Chapter Assoc. for Computational Linguis-
tics (HLT-NAACL), pages 173–180.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015a. Pointer networks. In Proc. Annu. Conf. Neural
Inform. Process. Syst. (NIPS), pages 2692–2700.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015b. Gram-
mar as a foreign language. In Proc. Annu. Conf. Neu-
ral Inform. Process. Syst. (NIPS), pages 2755–2763.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In Proc. Annu. Meeting As-
soc. for Computational Linguistics (ACL), pages 323–
333.

Jason Weston, Sumit Chopra, and Antoine Bordes. 2015.
Memory networks. In Proc. Int. Conf. Learning Rep-
resentations (ICLR).

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical
dependency analysis with support vector machine. In
Proc. Int. Conf. Parsing Technologies (IWPT), pages
195–206.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: investigating and combining graph-based and
transition-based depdency parsing using beam-search.

In Proc. Conf. Empirical Methods Natural Language
Process. (EMNLP), pages 562–571.

Hao Zhang and Ryan McDonald. 2012. Generalized
higher-order dependency parsing with cube pruning.
In Proc. Conf. Empirical Methods Natural Language
Process. and Computational Natural Language Learn-
ing (EMNLP-CoNLL), pages 320–331.

Hao Zhang and Ryan McDonald. 2014. Enforcing struc-
tural diversity in cube-pruned dependency parsing. In
Proc. Annu. Meeting Assoc. for Computational Lin-
guistics (ACL), pages 656–661.

Hao Zhang, Liang Huang, Kai Zhao, and Ryan McDon-
ald. 2013. Online learning for inexact hypergraph
search. In Proc. Conf. Empirical Methods Natural
Language Process. (EMNLP), pages 908–913.

Yuan Zhang, Tao Lei, Regina Barzilay, Tommi Jaakkola,
and Amir Golberson. 2014. Steps to excellence: Sim-
ple inference with the refined scoring of dependency
trees. In Proc. Annu. Meeting Assoc. for Computa-
tional Linguistics (ACL), pages 197–207.

2214

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2215–2224,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Anchoring and Agreement in Syntactic Annotations

Yevgeni Berzak
CSAIL MIT

berzak@mit.edu

Yan Huang
Language Technology Lab

DTAL Cambridge University
yh358@cam.ac.uk

Andrei Barbu
CSAIL MIT

andrei@0xab.com

Anna Korhonen
Language Technology Lab

DTAL Cambridge University
alk23@cam.ac.uk

Boris Katz
CSAIL MIT

boris@mit.edu

Abstract

We present a study on two key character-
istics of human syntactic annotations: an-
choring and agreement. Anchoring is a well
known cognitive bias in human decision mak-
ing, where judgments are drawn towards pre-
existing values. We study the influence of
anchoring on a standard approach to creation
of syntactic resources where syntactic annota-
tions are obtained via human editing of tagger
and parser output. Our experiments demon-
strate a clear anchoring effect and reveal un-
wanted consequences, including overestima-
tion of parsing performance and lower qual-
ity of annotations in comparison with human-
based annotations. Using sentences from the
Penn Treebank WSJ, we also report systemat-
ically obtained inter-annotator agreement es-
timates for English dependency parsing. Our
agreement results control for parser bias, and
are consequential in that they are on par with
state of the art parsing performance for En-
glish newswire. We discuss the impact of our
findings on strategies for future annotation ef-
forts and parser evaluations.1

1 Introduction

Research in NLP relies heavily on the availability of
human annotations for various linguistic prediction
tasks. Such resources are commonly treated as de
facto “gold standards” and are used for both training

1The experimental data in this study will be made publicly
available.

and evaluation of algorithms for automatic annota-
tion. At the same time, human agreement on these
annotations provides an indicator for the difficulty
of the task, and can be instrumental for estimating
upper limits for the performance obtainable by com-
putational methods.

Linguistic gold standards are often constructed
using pre-existing annotations, generated by auto-
matic tools. The output of such tools is then man-
ually corrected by human annotators to produce the
gold standard. The justification for this annotation
methodology was first introduced in a set of exper-
iments on POS tag annotation conducted as part of
the Penn Treebank project (Marcus et al., 1993). In
this study, the authors concluded that tagger-based
annotations are not only much faster to obtain, but
also more consistent and of higher quality compared
to annotations from scratch. Following the Penn
Treebank, syntactic annotation projects for various
languages, including German (Brants et al., 2002),
French (Abeillé et al., 2003), Arabic (Maamouri
et al., 2004) and many others, were annotated us-
ing automatic tools as a starting point. Despite the
widespread use of this annotation pipeline, there is,
to our knowledge, little prior work on syntactic an-
notation quality and on the reliability of system eval-
uations on such data.

In this work, we present a systematic study of the
influence of automatic tool output on characteristics
of annotations created for NLP purposes. Our in-
vestigation is motivated by the hypothesis that anno-
tations obtained using such methodologies may be

2215

subject to the problem of anchoring, a well estab-
lished and robust cognitive bias in which human de-
cisions are affected by pre-existing values (Tversky
and Kahneman, 1974). In the presence of anchors,
participants reason relative to the existing values,
and as a result may provide different solutions from
those they would have reported otherwise. Most
commonly, anchoring is manifested as an alignment
towards the given values.

Focusing on the key NLP tasks of POS tagging
and dependency parsing, we demonstrate that the
standard approach of obtaining annotations via hu-
man correction of automatically generated POS tags
and dependencies exhibits a clear anchoring effect –
a phenomenon we refer to as parser bias. Given this
evidence, we examine two potential adverse impli-
cations of this effect on parser-based gold standards.

First, we show that parser bias entails substantial
overestimation of parser performance. In particu-
lar, we demonstrate that bias towards the output of
a specific tagger-parser pair leads to over-estimation
of the performance of these tools relative to other
tools. Moreover, we observe general performance
gains for automatic tools relative to their perfor-
mance on human-based gold standards. Second, we
study whether parser bias affects the quality of the
resulting gold standards. Extending the experimen-
tal setup of Marcus et al. (1993), we demonstrate
that parser bias may lead to lower annotation qual-
ity for parser-based annotations compared to human-
based annotations.

Furthermore, we conduct an experiment on inter-
annotator agreement for POS tagging and depen-
dency parsing which controls for parser bias. Our
experiment on a subset of section 23 of the WSJ
Penn Treebank yields agreement rates of 95.65 for
POS tagging and 94.17 for dependency parsing.
This result is significant in light of the state of the
art tagging and parsing performance for English
newswire. With parsing reaching the level of human
agreement, and tagging surpassing it, a more thor-
ough examination of evaluation resources and eval-
uation methodologies for these tasks is called for.

To summarize, we present the first study to mea-
sure and analyze anchoring in the standard parser-
based approach to creation of gold standards for
POS tagging and dependency parsing in NLP. We
conclude that gold standard annotations that are

based on editing output of automatic tools can lead
to inaccurate figures in system evaluations and lower
annotation quality. Our human agreement experi-
ment, which controls for parser bias, yields agree-
ment rates that are comparable to state of the art
automatic tagging and dependency parsing perfor-
mance, highlighting the need for a more extensive
investigation of tagger and parser evaluation in NLP.

2 Experimental Setup

2.1 Annotation Tasks

We examine two standard annotation tasks in NLP,
POS tagging and dependency parsing. In the POS
tagging task, each word in a sentence has to be cate-
gorized with a Penn Treebank POS tag (Santorini,
1990) (henceforth POS). The dependency parsing
task consists of providing a sentence with a labeled
dependency tree using the Universal Dependencies
(UD) formalism (De Marneffe et al., 2014), accord-
ing to version 1 of the UD English guidelines2. To
perform this task, the annotator is required to specify
the head word index (henceforth HIND) and relation
label (henceforth REL) of each word in the sentence.

We distinguish between three variants of these
tasks, annotation, reviewing and ranking. In the an-
notation variant, participants are asked to conduct
annotation from scratch. In the reviewing variant,
they are asked to provide alternative annotations for
all annotation tokens with which they disagree. The
participants are not informed about the source of the
given annotation, which, depending on the experi-
mental condition can be either parser output or hu-
man annotation. In the ranking task, the participants
rank several annotation options with respect to their
quality. Similarly to the review task, the participants
are not given the sources of the different annotation
options. Participants performing the annotation, re-
viewing and ranking tasks are referred to as annota-
tors, reviewers and judges, respectively.

2.2 Annotation Format

All annotation tasks are performed using a CoNLL
style text-based template, in which each word ap-
pears in a separate line. The first two columns of
each line contain the word index and the word, re-

2http://universaldependencies.org/#en

2216

spectively. The next three columns are designated
for annotation of POS, HIND and REL.

In the annotation task, these values have to be
specified by the annotator from scratch. In the
review task, participants are required to edit pre-
annotated values for a given sentence. The sixth col-
umn in the review template contains an additional
sign, whose goal is to prevent reviewers from
overlooking and passively approving existing anno-
tations. Corrections are specified following this sign
in a space separated format, where each of the exist-
ing three annotation tokens is either corrected with
an alternative annotation value or approved using a
* sign. Approval of all three annotation tokens is
marked by removing the # sign. The example be-
low presents a fragment from a sentence used for the
reviewing task, in which the reviewer approves the
annotations of all the words, with the exception of
“help”, where the POS is corrected from VB to NN
and the relation label xcomp is replaced with dobj.

...
5 you PRP 6 nsubj
6 need VBP 3 ccomp
7 help VB 6 xcomp # NN * dobj
...

The format of the ranking task is exemplified be-
low. The annotation options are presented to the par-
ticipants in a random order. Participants specify the
rank of each annotation token following the vertical
bar. In this sentence, the label cop is preferred over
aux for the word “be” and xcomp is preferred over
advcl for the word “Common”.

...
8 it PRP 10 nsubjpass
9 is VBZ 10 auxpass
10 planed VBN 0 root
11 to TO 15 mark
12 be VB 15 aux-cop | 2-1
13 in IN 15 case
14 Wimbledon NNP 15 compound
15 Common NNP 10 advcl-xcomp | 2-1
...

The participants used basic validation scripts
which checked for typos and proper formatting of
the annotations, reviews and rankings.

2.3 Evaluation Metrics

We measure both parsing performance and inter-
annotator agreement using tagging and parsing eval-
uation metrics. This choice allows for a direct com-
parison between parsing and agreement results. In
this context, POS refers to tagging accuracy. We
utilize the standard metrics Unlabeled Attachment
Score (UAS) and Label Accuracy (LA) to measure
accuracy of head attachment and dependency labels.
We also utilize the standard parsing metric Labeled
Attachment Score (LAS), which takes into account
both dependency arcs and dependency labels. In all
our parsing and agreement experiments, we exclude
punctuation tokens from the evaluation.

2.4 Corpora

We use sentences from two publicly available
datasets, covering two different genres. The first
corpus, used in the experiments in sections 3 and
4, is the First Certificate in English (FCE) Cam-
bridge Learner Corpus (Yannakoudakis et al., 2011).
This dataset contains essays authored by upper-
intermediate level English learners3.

The second corpus is the WSJ part of the Penn
Treebank (WSJ PTB) (Marcus et al., 1993). Since
its release, this dataset has been the most commonly
used resource for training and evaluation of English
parsers. Our experiment on inter-annotator agree-
ment in section 5 uses a random subset of the sen-
tences in section 23 of the WSJ PTB, which is tradi-
tionally reserved for tagging and parsing evaluation.

2.5 Annotators

We recruited five students at MIT as annotators.
Three of the students are linguistics majors and
two are engineering majors with linguistics minors.
Prior to participating in this study, the annotators
completed two months of training. During training,
the students attended tutorials, and learned the an-
notation guidelines for PTB POS tags, UD guide-
lines, as well as guidelines for annotating challeng-
ing syntactic structures arising from grammatical er-
rors. The students also annotated individually six

3The annotation bias and quality results reported in sections
3 and 4 use the original learner sentences, which contain gram-
matical errors. These results were replicated on the error cor-
rected versions of the sentences.

2217

practice batches of 20-30 sentences from the En-
glish Web Treebank (EWT) (Silveira et al., 2014)
and FCE corpora, and resolved annotation disagree-
ments during group meetings.

Following the training period, the students anno-
tated a treebank of learner English (Berzak et al.,
2016) over a period of five months, three of which
as a full time job. During this time, the students
continued attending weekly meetings in which fur-
ther annotation challenges were discussed and re-
solved. The annotation was carried out for sentences
from the FCE dataset, where both the original and
error corrected versions of each sentence were an-
notated and reviewed. In the course of the anno-
tation project, each annotator completed approxi-
mately 800 sentence annotations, and a similar num-
ber of sentence reviews. The annotations and re-
views were done in the same format used in this
study. With respect to our experiments, the exten-
sive experience of our participants and their prior
work as a group strengthen our results, as these char-
acteristics reduce the effect of anchoring biases and
increase inter-annotator agreement.

3 Parser Bias

Our first experiment is designed to test whether ex-
pert human annotators are biased towards POS tags
and dependencies generated by automatic tools. We
examine the common out-of-domain annotation sce-
nario, where automatic tools are often trained on an
existing treebank in one domain, and used to gener-
ate initial annotations to speed-up the creation of a
gold standard for a new domain. We use the EWT
UD corpus as the existing gold standard, and a sam-
ple of the FCE dataset as the new corpus.

Procedure
Our experimental procedure, illustrated in figure

1(a) contains a set of 360 sentences (6,979 tokens)
from the FCE, for which we generate three gold
standards: one based on human annotations and two
based on parser outputs. To this end, for each sen-
tence, we assign at random four of the participants to
the following annotation and review tasks. The fifth
participant is left out to perform the quality ranking
task described in section 4.

The first participant annotates the sentence from
scratch, and a second participant reviews this an-

Turbo RBG

Sentence

Annotators

Judge

Reviewers

Human Gold Turbo Gold RBG Gold

(b) Quality

(a) Bias

Figure 1: Experimental setup for parser bias (a) and annotation

quality (b) on 360 sentences (6,979 tokens) from the FCE. For

each sentence, five human annotators are assigned at random

to one of three roles: annotation, review or quality assessment.

In the bias experiment, presented in section 3, every sentence

is annotated by a human, Turbo parser (based on Turbo tag-

ger output) and RBG parser (based on Stanford tagger output).

Each annotation is reviewed by a different human participant to

produce three gold standards of each sentence: “Human Gold”,

“Turbo Gold” and “RBG Gold”. The fifth annotator performs

a quality assessment task described in section 4, which requires

to rank the three gold standards in cases of disagreement.

notation. The overall agreement of the reviewers
with the annotators is 98.24 POS, 97.16 UAS, 96.3
LA and 94.81 LAS. The next two participants re-
view parser outputs. One participant reviews an an-
notation generated by the Turbo tagger and parser
(Martins et al., 2013). The other participant reviews
the output of the Stanford tagger (Toutanova et al.,
2003) and RBG parser (Lei et al., 2014). The taggers
and parsers were trained on the gold annotations of
the EWT UD treebank, version 1.1. Both parsers use
predicted POS tags for the FCE sentences.

Assigning the reviews to the human annotations
yields a human based gold standard for each sen-
tence called “Human Gold”. Assigning the reviews
to the tagger and parser outputs yields two parser-
based gold standards, “Turbo Gold” and “RBG
Gold”. We chose the Turbo-Turbo and Stanford-
RBG tagger-parser pairs as these tools obtain com-
parable performance on standard evaluation bench-

2218

Turbo RBG
POS UAS LA LAS POS UAS LA LAS

Human Gold 95.32 87.29 88.35 82.29 95.59 87.19 88.03 82.05
Turbo Gold 97.62 91.86 92.54 89.16 96.64 89.16 89.75 84.86
Error Reduction % 49.15 35.96 35.97 38.79 23.81 15.38 14.37 15.65
RBG Gold 96.43 88.65 89.95 84.42 97.76 91.22 91.84 87.87
Error Reduction % 23.72 10.7 13.73 12.03 49.21 31.46 31.83 32.42

Table 1: Annotator bias towards taggers and parsers on 360 sentences (6,979 tokens) from the FCE. Tagging and parsing results

are reported for the Turbo parser (based on the output of the turbo Tagger) and RBG parser (based on the output of the Stanford

tagger) on three gold standards. Human Gold are manual corrections of human annotations. Turbo Gold are manual corrections

of the output of Turbo tagger and Turbo parser. RBG Gold are manual corrections of the Stanford tagger and RBG parser. Error

reduction rates are reported relative to the results obtained by the two tagger-parser pairs on the Human Gold annotations. Note that

(1) The parsers perform equally well on Human Gold. (2) Each parser performs better than the other parser on its own reviews. (3)

Each parser performs better on the reviews of the other parser compared to its performance on Human Gold. The differences in (2)

and (3) are statistically significant with p� 0.001 using McNemar’s test.

marks, while yielding substantially different anno-
tations due to different training algorithms and fea-
ture sets. For our sentences, the agreement be-
tween the Turbo tagger and Stanford tagger is 96.97
POS. The agreement between the Turbo parser and
RBG parser based on the respective tagger outputs
is 90.76 UAS, 91.6 LA and 87.34 LAS.

Parser Specific and Parser Shared Bias
In order to test for parser bias, in table 1 we

compare the performance of the Turbo-Turbo and
Stanford-RBG tagger-parser pairs on our three gold
standards. First, we observe that while these tools
perform equally well on Human Gold, each tagger-
parser pair performs better than the other on its own
reviews. These parser specific performance gaps are
substantial, with an average of 1.15 POS, 2.63 UAS,
2.34 LA and 3.88 LAS between the two conditions.
This result suggests the presence of a bias towards
the output of specific tagger-parser combinations.
The practical implication of this outcome is that a
gold standard created by editing an output of a parser
is likely to boost the performance of that parser in
evaluations and over-estimate its performance rela-
tive to other parsers.

Second, we note that the performance of each of
the parsers on the gold standard of the other parser is
still higher than its performance on the human gold
standard. The average performance gap between
these conditions is 1.08 POS, 1.66 UAS, 1.66 LA
and 2.47 LAS. This difference suggests an annota-
tion bias towards shared aspects in the predictions

of taggers and parsers, which differ from the human
based annotations. The consequence of this obser-
vation is that irrespective of the specific tool that
was used to pre-annotate the data, parser-based gold
standards are likely to result in higher parsing per-
formance relative to human-based gold standards.

Taken together, the parser specific and parser
shared effects lead to a dramatic overall average er-
ror reduction of 49.18% POS, 33.71% UAS, 34.9%
LA and 35.61% LAS on the parser-based gold stan-
dards compared to the human-based gold standard.
To the best of our knowledge, these results are the
first systematic demonstration of the tendency of the
common approach of parser-based creation of gold
standards to yield biased annotations and lead to
overestimation of tagging and parsing performance.

4 Annotation Quality

In this section we extend our investigation to ex-
amine the impact of parser bias on the quality of
parser-based gold standards. To this end, we per-
form a manual comparison between human-based
and parser-based gold standards.

Our quality assessment experiment, depicted
schematically in figure 1(b), is a ranking task. For
each sentence, a randomly chosen judge, who did
not annotate or review the given sentence, ranks dis-
agreements between the three gold standards Human
Gold, Turbo Gold and RBG Gold, generated in the
parser bias experiment in section 3.

Table 2 presents the preference rates of judges

2219

Human Gold Preference % POS HIND REL
Turbo Gold 64.32* 63.96* 61.5*
disagreements 199 444 439
RBG Gold 56.72 61.38* 57.73*
disagreements 201 435 440

Table 2: Human preference rates for a human-based gold stan-

dard Human Gold over the two parser-based gold standards

Turbo Gold and RBG Gold. # disagreements denotes the num-

ber of tokens that differ between Human Gold and the respec-

tive parser-based gold standard. Statistically significant values

for a two-tailed Z test with p < 0.01 are marked with *. Note

that for both tagger-parser pairs, human judges tend to prefer

human-based over parser-based annotations.

for the human-based gold standard over each of the
two parser-based gold standards. In all three eval-
uation categories, human judges tend to prefer the
human-based gold standard over both parser-based
gold standards. This result demonstrates that the ini-
tial reduced quality of the parser outputs compared
to human annotations indeed percolates via anchor-
ing to the resulting gold standards.

The analysis of the quality assessment experi-
ment thus far did not distinguish between cases
where the two parsers agree and where they dis-
agree. In order to gain further insight into the rela-
tion between parser bias and annotation quality, we
break down the results reported in table 2 into two
cases which relate directly to the parser specific and
parser shared components of the tagging and pars-
ing performance gaps observed in the parser bias re-
sults reported in section 3. In the first case, called
“parser specific approval”, a reviewer approves a
parser annotation which disagrees both with the out-
put of the other parser and the Human Gold anno-
tation. In the second case, called “parser shared ap-
proval”, a reviewer approves a parser output which
is shared by both parsers but differs with respect to
Human Gold.

Table 3 presents the judge preference rates for the
Human-Gold annotations in these two scenarios. We
observe that cases in which the parsers disagree are
of substantially worse quality compared to human-
based annotations. However, in cases of agreement
between the parsers, the resulting gold standards do
not exhibit a clear disadvantage relative to the Hu-
man Gold annotations.

This result highlights the crucial role of parser

Human Gold Preference % POS HIND REL
Turbo specific approval 85.42* 78.69* 80.73*
disagreements 48 122 109
RBG specific approval 73.81* 77.98* 77.78*
disagreements 42 109 108
Parser shared approval 51.85 58.49* 51.57
disagreements 243 424 415

Table 3: Breakdown of the Human preference rates for the

human-based gold standard over the parser-based gold stan-

dards in table 2, into cases of agreement and disagreement be-

tween the two parsers. Parser specific approval are cases in

which a parser output approved by the reviewer differs from

both the output of the other parser and the Human Gold anno-

tation. Parser shared approval denotes cases where an approved

parser output is identical to the output of the other parser but dif-

fers from the Human Gold annotation. Statistically significant

values for a two-tailed Z test with p < 0.01 are marked with

*. Note that parser specific approval is substantially more detri-

mental to the resulting annotation quality compared to parser

shared approval.

specific approval in the overall preference of judges
towards human-based annotations in table 2. Fur-
thermore, it suggests that annotations on which mul-
tiple state of the art parsers agree are of sufficiently
high accuracy to be used to save annotation time
without substantial impact on the quality of the re-
sulting resource. In section 7 we propose an annota-
tion scheme which leverages this insight.

5 Inter-annotator Agreement

Agreement estimates in NLP are often obtained in
annotation setups where both annotators edit the
same automatically generated input. However, in
such experimental conditions, anchoring can intro-
duce cases of spurious disagreement as well as spu-
rious agreement between annotators due to align-
ment of one or both participants towards the given
input. The initial quality of the provided annotations
in combination with the parser bias effect observed
in section 3 may influence the resulting agreement
estimates. For example, in Marcus et al. (1993) an-
notators were shown to produce POS tagging agree-
ment of 92.8 on annotation from scratch, compared
to 96.5 on reviews of tagger output.

Our goal in this section is to obtain estimates for
inter-annotator agreement on POS tagging and de-
pendency parsing that control for parser bias, and

2220

as a result, reflect more accurately human agree-
ment on these tasks. We thus introduce a novel
pipeline based on human annotation only, which
eliminates parser bias from the agreement measure-
ments. Our experiment extends the human-based an-
notation study of Marcus et al. (1993) to include
also syntactic trees. Importantly, we include an ad-
ditional review step for the initial annotations, de-
signed to increase the precision of the agreement
measurements by reducing the number of errors in
the original annotations.

Sentence

Scratch

Scratch

reviewed

Figure 2: Experimental setup for the inter-annotator agreement

experiment. 300 sentences (7,227 tokens) from section 23 of

the PTB-WSJ are annotated and reviewed by four participants.

The participants are assigned to the following tasks at random

for each sentence. Two participants annotate the sentence from

scratch, and the remaining two participants review one of these

annotations each. Agreement is measured on the annotations

(“scratch”) as well after assigning the review edits (“scratch re-

viewed”).

For this experiment, we use 300 sentences (7,227
tokens) from section 23 of the PTB-WSJ, the stan-
dard test set for English parsing in NLP. The exper-
imental setup, depicted graphically in figure 2, in-
cludes four participants randomly assigned for each
sentence to annotation and review tasks. Two of the
participants provide the sentence with annotations
from scratch, while the remaining two participants
provide reviews. Each reviewer edits one of the
annotations independently, allowing for correction
of annotation errors while maintaining the indepen-
dence of the annotation sources. We measure agree-
ment between the initial annotations (“scratch”), as
well as the agreement between the reviewed versions
of our sentences (“scratch reviewed”).

The agreement results for the annotations and the
reviews are presented in table 4. The initial agree-

ment rate on POS annotation from scratch is higher
than in (Marcus et al., 1993). This difference is
likely to arise, at least in part, due to the fact that
their experiment was conducted at the beginning
of the annotation project, when the annotators had
a more limited annotation experience compared to
our participants. Overall, we note that the agree-
ment rates from scratch are relatively low. The re-
view round raises the agreement on all the evalua-
tion categories due to elimination of annotation er-
rors present the original annotations.

POS UAS LA LAS
scratch 94.78 93.07 92.3 88.32
scratch reviewed 95.65 94.17 94.04 90.33

Table 4: Inter-annotator agreement on 300 sentences (7,227 to-

kens) from the PTB-WSJ section 23. “scratch” is agreement

on independent annotations from scratch. “scratch reviewed” is

agreement on the same sentences after an additional indepen-

dent review round of the annotations.

Our post-review agreement results are consequen-
tial in light of the current state of the art performance
on tagging and parsing in NLP. For more than a
decade, POS taggers have been achieving over 97%
accuracy with the PTB POS tag set on the PTB-WSJ
test set. For example, the best model of the Stanford
tagger reported in Toutanova et al. (2003) produces
an accuracy of 97.24 POS on sections 22-24 of the
PTB-WSJ. These accuracies are above the human
agreement in our experiment.

With respect to dependency parsing, recent
parsers obtain results which are on par or higher than
our inter-annotator agreement estimates. For exam-
ple, Weiss et al. (2015) report 94.26 UAS and An-
dor et al. (2016) report 94.61 UAS on section 23
of the PTB-WSJ using an automatic conversion of
the PTB phrase structure trees to Stanford depen-
dencies (De Marneffe et al., 2006). These results
are not fully comparable to ours due to differences
in the utilized dependency formalism and the auto-
matic conversion of the annotations. Nonetheless,
we believe that the similarities in the tasks and eval-
uation data are sufficiently strong to indicate that
dependency parsing for standard English newswire
may be reaching human agreement levels.

2221

6 Related Work

The term “anchoring” was coined in a seminal paper
by Tversky and Kahneman (1974), which demon-
strated that numerical estimation can be biased by
uninformative prior information. Subsequent work
across various domains of decision making con-
firmed the robustness of anchoring using both in-
formative and uninformative anchors (Furnham and
Boo, 2011). Pertinent to our study, anchoring bi-
ases were also demonstrated when the participants
were domain experts, although to a lesser degree
than in the early anchoring experiments (Wilson et
al., 1996; Mussweiler and Strack, 2000).

Prior work in NLP examined the influence of
pre-tagging (Fort and Sagot, 2010) and pre-parsing
(Skjærholt, 2013) on human annotations. Our work
introduces a systematic study of this topic using a
novel experimental framework as well as substan-
tially more sentences and annotators. Differently
from these studies, our methodology enables charac-
terizing annotation bias as anchoring and measuring
its effect on tagger and parser evaluations.

Our study also extends the POS tagging exper-
iments of Marcus et al. (1993), which compared
inter-annotator agreement and annotation quality on
manual POS tagging in annotation from scratch and
tagger-based review conditions. The first result re-
ported in that study was that tagger-based editing in-
creases inter-annotator agreement compared to an-
notation from scratch. Our work provides a novel
agreement benchmark for POS tagging which re-
duces annotation errors through a review process
while controlling for tagger bias, and obtains agree-
ment measurements for dependency parsing. The
second result reported in Marcus et al. (1993) was
that tagger-based edits are of higher quality com-
pared to annotations from scratch when evaluated
against an additional independent annotation. We
modify this experiment by introducing ranking as an
alternative mechanism for quality assessment, and
adding a review round for human annotations from
scratch. Our experiment demonstrates that in this
configuration, parser-based annotations are of lower
quality compared to human-based annotations.

Several estimates of expert inter-annotator agree-
ment for English parsing were previously reported.
However, most such evaluations were conducted us-

ing annotation setups that can be affected by an
anchoring bias (Carroll et al., 1999; Rambow et
al., 2002; Silveira et al., 2014). A notable excep-
tion is the study of Sampson and Babarczy (2008)
who measure agreement on annotation from scratch
for English parsing in the SUSANNE framework
(Sampson, 1995). The reported results, however,
are not directly comparable to ours, due to the use
of a substantially different syntactic representation,
as well as a different agreement metric. Their study
further suggests that despite the high expertise of the
annotators, the main source of annotation disagree-
ments was annotation errors. Our work alleviates
this issue by using annotation reviews, which reduce
the number of erroneous annotations while main-
taining the independence of the annotation sources.
Experiments on non-expert dependency annotation
from scratch were previously reported for French,
suggesting low agreement rates (79%) with an ex-
pert annotation benchmark (Gerdes, 2013).

7 Discussion

We present a systematic study of the impact of an-
choring on POS and dependency annotations used
in NLP, demonstrating that annotators exhibit an an-
choring bias effect towards the output of automatic
annotation tools. This bias leads to an artificial boost
of performance figures for the parsers in question
and results in lower annotation quality as compared
with human-based annotations.

Our analysis demonstrates that despite the adverse
effects of parser bias, predictions that are shared
across different parsers do not significantly lower the
quality of the annotations. This finding gives rise
to the following hybrid annotation strategy as a po-
tential future alternative to human-based as well as
parser-based annotation pipelines. In a hybrid anno-
tation setup, human annotators review annotations
on which several parsers agree, and complete the re-
maining annotations from scratch. Such a strategy
would largely maintain the annotation speed-ups of
parser-based annotation schemes. At the same time,
it is expected to achieve annotation quality compa-
rable to human-based annotation by avoiding parser
specific bias, which plays a pivotal role in the re-
duced quality of single-parser reviewing pipelines.

Further on, we obtain, to the best of our knowl-

2222

edge for the first time, syntactic inter-annotator
agreement measurements on WSJ-PTB sentences.
Our experimental procedure reduces annotation er-
rors and controls for parser bias. Despite the de-
tailed annotation guidelines, the extensive experi-
ence of our annotators, and their prior work as a
group, our experiment indicates rather low agree-
ment rates, which are below state of the art tagging
performance and on par with state of the art parsing
results on this dataset. We note that our results do
not necessarily reflect an upper bound on the achiev-
able syntactic inter-annotator agreement for English
newswire. Higher agreement rates could in princi-
ple be obtained through further annotator training,
refinement and revision of annotation guidelines, as
well as additional automatic validation tests for the
annotations. Nonetheless, we believe that our esti-
mates reliably reflect a realistic scenario of expert
syntactic annotation.

The obtained agreement rates call for a more ex-
tensive examination of annotator disagreements on
parsing and tagging. Recent work in this area has
already proposed an analysis of expert annotator dis-
agreements for POS tagging in the absence of anno-
tation guidelines (Plank et al., 2014). Our annota-
tions will enable conducting such studies for annota-
tion with guidelines, and support extending this line
of investigation to annotations of syntactic depen-
dencies. As a first step towards this goal, we plan
to carry out an in-depth analysis of disagreement
in the collected data, characterize the main sources
of inconsistent annotation and subsequently formu-
late further strategies for improving annotation ac-
curacy. We believe that better understanding of hu-
man disagreements and their relation to disagree-
ments between humans and parsers will also con-
tribute to advancing evaluation methodologies for
POS tagging and syntactic parsing in NLP, an im-
portant topic that has received only limited attention
thus far (Schwartz et al., 2011; Plank et al., 2015).

Finally, since the release of the Penn Treebank in
1992, it has been serving as the standard benchmark
for English parsing evaluation. Over the past few
years, improvements in parsing performance on this
dataset were obtained in small increments, and are
commonly reported without a linguistic analysis of
the improved predictions. As dependency parsing
performance on English newswire may be reaching

human expert agreement, not only new evaluation
practices, but also more attention to noisier domains
and other languages may be in place.

Acknowledgments

We thank our terrific annotators Sebastian Garza,
Jessica Kenney, Lucia Lam, Keiko Sophie Mori and
Jing Xian Wang. We are also grateful to Karthik
Narasimhan and the anonymous reviewers for valu-
able feedback on this work. This material is based
upon work supported by the Center for Brains,
Minds, and Machines (CBMM) funded by NSF STC
award CCF-1231216. This work was also supported
by AFRL contract No. FA8750-15-C-0010 and by
ERC Consolidator Grant LEXICAL (648909).

References
Anne Abeillé, Lionel Clément, and François Toussenel.

2003. Building a treebank for french. In Treebanks,
pages 165–187. Springer.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally normal-
ized transition-based neural networks. In Proceedings
of ACL, pages 2442–2452.

Yevgeni Berzak, Jessica Kenney, Carolyn Spadine,
Jing Xian Wang, Lucia Lam, Keiko Sophie Mori, Se-
bastian Garza, and Boris Katz. 2016. Universal de-
pendencies for learner english. In Proceedings of ACL,
pages 737–746.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang
Lezius, and George Smith. 2002. The tiger treebank.
In Proceedings of the workshop on treebanks and lin-
guistic theories, volume 168.

John Carroll, Guido Minnen, and Ted Briscoe. 1999.
Corpus annotation for parser evaluation. arXiv
preprint cs/9907013.

Marie-Catherine De Marneffe, Bill MacCartney, Christo-
pher D Manning, et al. 2006. Generating typed de-
pendency parses from phrase structure parses. In Pro-
ceedings of LREC, volume 6, pages 449–454.

Marie-Catherine De Marneffe, Timothy Dozat, Natalia
Silveira, Katri Haverinen, Filip Ginter, Joakim Nivre,
and Christopher D Manning. 2014. Universal stan-
ford dependencies: A cross-linguistic typology. In
Proceedings of LREC, pages 4585–4592.

Karën Fort and Benoı̂t Sagot. 2010. Influence of pre-
annotation on pos-tagged corpus development. In Pro-
ceedings of the fourth linguistic annotation workshop,
pages 56–63.

2223

Adrian Furnham and Hua Chu Boo. 2011. A literature
review of the anchoring effect. The Journal of Socio-
Economics, 40(1):35–42.

Kim Gerdes. 2013. Collaborative dependency annota-
tion. DepLing 2013, 88.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and
Tommi Jaakkola. 2014. Low-rank tensors for scoring
dependency structures. In Proceedings of ACL, vol-
ume 1, pages 1381–1391.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and
Wigdan Mekki. 2004. The penn arabic treebank:
Building a large-scale annotated arabic corpus. In
NEMLAR conference on Arabic language resources
and tools, volume 27, pages 466–467.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of english: The penn treebank. Computational lin-
guistics, 19(2):313–330.

André FT Martins, Miguel Almeida, and Noah A Smith.
2013. Turning on the turbo: Fast third-order non-
projective turbo parsers. In Proceedings of ACL, pages
617–622.

Thomas Mussweiler and Fritz Strack. 2000. Numeric
judgments under uncertainty: The role of knowledge
in anchoring. Journal of Experimental Social Psychol-
ogy, 36(5):495–518.

Barbara Plank, Dirk Hovy, and Anders Søgaard. 2014.
Linguistically debatable or just plain wrong? In Pro-
ceedings of ACL: Short Papers, pages 507–511.

Barbara Plank, Héctor Martı́nez Alonso, Željko Agić,
Danijela Merkler, and Anders Søgaard. 2015. Do de-
pendency parsing metrics correlate with human judg-
ments? In Proceedings of CoNLL.

Owen Rambow, Cassandre Creswell, Rachel Szekely,
Harriet Taber, and Marilyn A Walker. 2002. A depen-
dency treebank for english. In Proceedings of LREC.

Geoffrey Sampson and Anna Babarczy. 2008. Def-
initional and human constraints on structural anno-
tation of english. Natural Language Engineering,
14(04):471–494.

Geoffrey Sampson. 1995. English for the computer: Su-
sanne corpus and analytic scheme.

Beatrice Santorini. 1990. Part-of-speech tagging guide-
lines for the penn treebank project (3rd revision).
Technical Reports (CIS).

Roy Schwartz, Omri Abend, Roi Reichart, and Ari Rap-
poport. 2011. Neutralizing linguistically problematic
annotations in unsupervised dependency parsing eval-
uation. In Proceedings of ACL, pages 663–672.

Natalia Silveira, Timothy Dozat, Marie-Catherine
De Marneffe, Samuel R Bowman, Miriam Connor,
John Bauer, and Christopher D Manning. 2014. A
gold standard dependency corpus for english. In Pro-
ceedings of LREC, pages 2897–2904.

Arne Skjærholt. 2013. Influence of preprocessing on
dependency syntax annotation: speed and agreement.
LAW VII & ID.

Kristina Toutanova, Dan Klein, Christopher D Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Pro-
ceedings of NAACL, pages 173–180.

Amos Tversky and Daniel Kahneman. 1974. Judgment
under uncertainty: Heuristics and biases. Science,
185(4157):1124–1131.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural net-
work transition-based parsing. In Proceedings of ACL,
pages 323–333.

Timothy D Wilson, Christopher E Houston, Kathryn M
Etling, and Nancy Brekke. 1996. A new look
at anchoring effects: basic anchoring and its an-
tecedents. Journal of Experimental Psychology: Gen-
eral, 125(4):387.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of ACL, pages
180–189.

2224

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2225–2229,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Tense Manages to Predict Implicative Behavior in Verbs

Ellie Pavlick
University of Pennsylvania

epavlick@seas.upenn.edu

Chris Callison-Burch
University of Pennsylvania
ccb@cis.upenn.edu

Abstract

Implicative verbs (e.g. manage) entail their
complement clauses, while non-implicative
verbs (e.g. want) do not. For example, while
managing to solve the problem entails solving
the problem, no such inference follows from
wanting to solve the problem. Differentiat-
ing between implicative and non-implicative
verbs is therefore an essential component of
natural language understanding, relevant to
applications such as textual entailment and
summarization. We present a simple method
for predicting implicativeness which exploits
known constraints on the tense of implicative
verbs and their complements. We show that
this yields an effective, data-driven way of
capturing this nuanced property in verbs.

1 Overview

Understanding language requires the ability to per-
form basic inference– to make conclusions about
what is likely true or false based on what is said. For
example, given the sentence She fixed the bug, we
should almost certainly infer that the bug is fixed.
However, rather than stating plainly that She fixed
the bug, one might instead say:

(1a) She managed to fix the bug before midnight.

(1b) She happened to fix the bug while refactoring.

In either case, the hearer should still infer that the
bug is fixed. But it is not as easy as always inferring
that embedded clauses are true. By changing only
one word, these sentence no longer give a clear indi-
cation as to whether or not the bug has been fixed:

(2a) She wanted to fix the bug before midnight.

(2b) She planned to fix the bug while refactoring.

Implicative verbs, like those in (1), give rise to en-
tailments, while non-implicative verbs, like those in
(2), do not. It is therefore vital to natural language
understanding to differentiate between clauses that
are embedded under implicatives, which we can of-
ten infer to be either true or false, and those which
are embedded under non-implicatives, for which
such inferences cannot be made. In this paper, we
exploit a known linguistic property of implicative
verbs– that their complement clause is constrained
to be in the same tense as the main clause– in or-
der to predict the tendency of verbs to behave im-
plicatively. We show that our method almost per-
fectly separates non-implicatives from implicatives
in a small hand-labeled dataset, and that it provides
strong signal for predicting entailments in sentences
involving implicative verbs.

2 Implicative Verbs

Some English verbs can take infinitival comple-
ments, meaning they can appear in constructions of
the form VB∗1 to VB2, where VB∗1 is the “main” verb
(which can be conjugated1) and VB2 is the “com-
plement” verb (which is in infinitive form). Exam-
ples (1a)-(2b) illustrate verbs taking infinitive com-
plements.

Implicative verbs are a special subclass2 of such
verbs which give rise to entailments involving their

1Here, * indicates that VB1 can match any verb form, e.g.
VB, VBD, VBP, etc. VB2 can only match the base form VB.

2We note that factive verbs represent another special class of
verbs which can take infinitival complements. Unlike implica-

2225

Is the main verb Is the complement
Example

negated? entailed?
Implicative − Yes I managed to solve the problem. ⇒ I solved the problem.
Implicative + No I did not manage to solve the problem. ⇒ I did not solve the problem.
Implicative − No I failed to solve the problem. ⇒ I did not solve the problem.
Implicative + Yes I did not fail to solve the problem. ⇒ I solved the problem.
Non-Impl. − Unknown I wanted to solve the problem. 6⇒ I solved the problem.
Non-Impl. + Unknown I did not want to solve the problem. 6⇒ I did not solve the problem.

Table 1: Implicative verbs give rise to entailments involving their complement clauses. Non-implicatives entail neither the truth

nor the falsity of their complements, and thus the truth/falsity of the complement is unaffected by negation of the main clause.

complement clauses. Individual implicatives can
differ in the entailments they generate: e.g. while
manage entails the truth of its complement, fail en-
tails the falsity of its complement (failed to solve the
problem⇒ didn’t solve the problem). Despite these
differences, however, implicatives represent a coher-
ent class of verbs in that they permit some inference
to be made about their complements, and this infer-
ence is sensitive to the context (positive/negated) of
the main clause. This contrasts with non-implicative
verbs, like want, which do not permit any inference
regarding their complements, and for which the truth
of the complement is unaffected by negation in the
main clause (Table 1).

The method described in this paper aims to sep-
arate implicatives from non-implicatives (manage
vs. want), rather than to differentiate between
types implicatives (manage vs. fail). Making this
implicative/non-implicative distinction is a neces-
sary first step toward handling inferences involving
embedded clauses, and one that, to date, has only
been performed using manually-constructed word
lists (MacCartney, 2009; Recasens et al., 2013).

2.1 Tense Constraints on Complement Clauses

Karttunen (1971) observed that, in sentences in-
volving implicatives, the tense of the main verb
must necessarily match the tense of the complement
clause. For example, (3), in which the main clause
and the complement are both in the past tense, is ac-
ceptable but (4), in which the complement is in the
future, is clearly not. For non-implicatives, however,

tives, factives presuppose, rather than entail, their complements.
E.g. both I was/was not glad to solve the problem entail I solved
the problem. We do not address factives here, as factives rarely
take infinitival complements: more often, they take “that” com-
plements (e.g. know that, realize that). Factives that do take
infinitival complements are mostly phrasal (e.g. be glad to).

no such constraint exists: (6) is perfectly felicitous.

(3) I managed to solve the problem last night.

(4) #I managed to solve the problem tomorrow.

(5) I planned to solve the problem last night.

(6) I planned to solve the problem tomorrow.

We exploit this property to predict implicativeness–
whether the truth of a verb’s complement can be
inferred– by observing the verb’s usage in practice.

3 Method

We hypothesize that, given a large corpus, we should
be able to distinguish implicative verbs from non-
implicative verbs by observing how often the main
verb tense agrees/disagrees with the tense of the
complement clause. Unfortunately, verbs in infini-
tival complement clauses are not conjugated, and so
are not necessarily marked for tense. We therefore
use the Stanford Temporal Tagger (TT) (Chang and
Manning, 2012) in order to identify time-referring
expressions (e.g. tomorrow or last night) and resolve
them to either past, present, or future tense.

We find all sentences containing VB∗1 to VB2

constructions in the Annotated Gigaword corpus
(Napoles et al., 2012). We run the the TT over all
of the sentences in order to identify time-referring
expressions. We only consider sentences in which
a time-referring expression appears and is in a di-
rect dependency relationship with the complement
verb (VB2). We provide the TT with the document
publication dates,3 which are used to resolve each
time mention to a specific calendar date and time.
We then map these time expressions coarsely to ei-
ther past, present, or future tense by comparing the

3Provided as metadata in the Annotated Gigaword.

2226

resolved time to the document creation time. Be-
cause of the fact that days were often not resolved
correctly, or at all, we eventually throw away sen-
tences in which the complement clause is labeled as
present tense, as these are rarely true references to
the present, and rather the result of incorrect time
resolution, or implicit future references (e.g. I am
going to solve the problem today implies the future
as in later today, but this is not captured by the TT).
We also assign the main clause to past, present, or
future tense by using the fine-grained POS tag and a
set of heuristics (for example, to check for modals).4

We assign a tense agreement score to each
verb v as follows. Let S be the set of all VB∗1
to VB2 constructions in which VB∗1 = v. Then
tense agreement is simply 1

|S| × |{s ∈ S |
complement tense = main tense}|, i.e. the fraction
of constructions in S in which the tenses of the main
and complement clauses agree. We expect implica-
tive verbs to occur mostly in agreeing constructions,
and thus have high tense agreement, while non-
implicatives may occur in both agreeing and non-
agreeing constructions, and thus should have lower
tense agreement. Note that while in theory, implica-
tives should never appear in non-agreeing construc-
tions, the time annotation process is very imprecise,
and thus we do not expect perfect results.

4 Evaluation

Recreating list from Karttunen (1971). Kart-
tunen (1971) provides a short illustrative list of 7
known implicatives5 and 8 non-implicatives (shown
in Table 2). As a first evaluation, we test whether
tense agreement can accurately separate the verbs
in this list, such that the implicatives are assigned
higher agreement scores than the non-implicatives.
Table 2 shows that this is indeed the case. Tense
agreement almost perfectly divides the list, with
implicative verbs appearing above non-implicative
verbs in all cases. The one exception is decide
(reportedly non-implicative), which appears above
dare (reportedly implicative). This error, however,

4Full set of heuristics in supplementary material.
5The original list had 8 implicatives, but we omit remember

since, in our data, it occurred almost exclusively with recur-
ring time expressions, which we were not able to map to a spe-
cific date/time and thus tense, e.g. consumers must remember
to make payments every 14 days.

seems understandable: while decide is not strictly
implicative in the way manage is, it is often used as
an implicative. E.g. the sentence I decided to leave
would likely be taken to mean I left.

venture to 1.00 try to 0.42
forget to 0.80 agree to 0.34
manage to 0.79 promise to 0.22
bother to 0.61 want to 0.14
happen to 0.59 intend to 0.12
get to 0.52 plan to 0.10
decide to 0.45 hope to 0.03
dare to 0.44

Table 2: Tense agreement scores for known implicatives (bold)

and non-implicatives listed in Karttunen (1971). Ranking by

tense agreement almost perfectly divides the two classes.

Predicting Entailment. Our interest is not in dis-
tinguishing implicatives from non-implicatives for
its own sake, but rather to predict, based on the main
verb, whether the truth of the complement can be in-
ferred. We therefore conduct a second evaluation to
assess how well tense agreement predicts this entail-
ment property. We design our evaluation following
the recognizing textual entailment (RTE) task (Da-
gan et al., 2006), in which two sentences are given,
a premise p and a hypothesis h, and the goal is to
determine whether p reasonably entails h. To con-
struct our p/h pairs, we take all the verbs extracted
in Section 3 which appear in at least 50 tense-labeled
sentences. For each of these verbs, we choose 3 ran-
dom sentences in which the verb appears as VB∗1 in
a VB∗1 to VB2 construction.6 From each sentence,
we extract the complement clause by deleting VB∗1 to
from the sentence, and conjugating VB2 to match the
tense of VB∗1. We then use the original sentence as p
and the extracted complement as h: e.g. a p/h pair
might look like I get to interact with fellow profes-
sors/I interact with fellow professors. We ask 5 in-
dependent annotators on Amazon Mechanical Turk
to read each p and then determine whether h is true,
false, or unclear given p.7 We take the majority an-
swer as the true label. We expect that implicative
verbs should lead to judgements which are decid-
edly true or false while non-implicatives should lead

6These sentences can come from anywhere in the Gigaword
corpus, they are not required to contain time expressions.

7Full annotation guidelines in supplementary material.

2227

(0.14) UFJ wants to merge with Mitsubishi, a combination that’d surpass Citigroup as the world’s biggest bank.
6⇒ The merger of Japanese Banks creates the world’s biggest bank.

(0.55) After graduating, Gallager chose to accept a full scholarship to play football for Temple University.
⇒ Gallager attended Temple University.

(0.68) Wilkins was allowed to leave in 1987 to join French outfit Paris Saint-Germain.
⇒Wilkins departed Milan in 1987.

Table 3: Examples from the RTE3 dataset (Giampiccolo et al., 2007) which require recognizing implicative behavior, even in verbs

that are not implicative by definition. The tendency of certain verbs (e.g. be allowed) to behave as de facto implicatives is captured

surprisingly well by the tense agreement score (shown in parentheses).

to mostly judgements of unclear.
Figure 1 shows that these expectations hold.

When a verb with low tense agreement appeared as
the main verb of a sentence, the truth of the comple-
ment could only be inferred 30% of the time. When
a verb with high tense agreement appeared as the
main verb, the truth of the complement could be in-
ferred 91% of the time. This difference is significant
at p < 0.01. That is, tense agreement provides a
strong signal for identifying non-implicative verbs,
and thus can help systems avoid false-positive en-
tailment judgements, e.g. incorrectly inferring that
wanting to merge⇒ merging (Table 3).

Figure 1: Whether or not complement is entailed for main verbs

with varying levels of tense agreement. Verbs with high tense

agreement yield more definitive judgments (true/false). Each

bar represents aggregated judgements over approx. 20 verbs.

Interestingly, tense agreement accurately mod-
els verbs that are not implicative by definition, but
which nonetheless tend to behave implicatively in
practice. For example, our method finds high tense
agreement for choose to and be allowed to, which
are often used to communicate, albeit indirectly, that
their complements did in fact happen. To convince
ourselves that treating such verbs as implicatives
makes sense in practice, we manually look through

the RTE3 dataset (Giampiccolo et al., 2007) for ex-
amples containing high-scoring verbs according to
our method. Table 3 shows some example inferences
that hinge precisely on recognizing these types of de
facto implicatives.

5 Discussion and Related Work

Language understanding tasks such as RTE (Clark
et al., 2007; MacCartney, 2009) and bias detection
(Recasens et al., 2013) have been shown to require
knowledge of implicative verbs, but such knowledge
has previously come from manually-built word lists
rather than from data. Nairn et al. (2006) and Mar-
tin et al. (2009) describe automatic systems to han-
dle implicatives, but require hand-crafted rules for
each unique verb that is handled. The tense agree-
ment method we present offers a starting point for
acquiring such rules from data, and is well-suited
for incorporating into statistical systems. The clear
next step is to explore similar data-driven means for
learning the specific behaviors of individual implica-
tive verbs, which has been well-studied from a the-
oretical perspective (Karttunen, 1971; Nairn et al.,
2006; Amaral et al., 2012; Karttunen, 2012). An-
other interesting extension concerns the role of tense
in word representations. While currently, tense is
rarely built directly into distributional representa-
tions of words (Mikolov et al., 2013; Pennington et
al., 2014), our results suggest it may offer important
insights into the semantics of individual words. We
leave this question as a direction for future work.

6 Conclusion

Differentiating between implicative and non-
implicative verbs is important for discriminating
inferences that can and cannot be made in natural
language. We have presented a data-driven method

2228

that captures the implicative tendencies of verbs
by exploiting the tense relationship between the
verb and its complement clauses. This method
effectively separates known implicatives from
known non-implicatives, and, more importantly,
provides good predictive signal in an entailment
recognition task.

Acknowledgments

We would like to thank Florian Schwartz for valu-
able discussions. This research was supported by
a Facebook Fellowship, and by gifts from the Al-
fred P. Sloan Foundation, Google, and Facebook.
This material is based in part on research sponsored
by the NSF grant under IIS-1249516 and DARPA
under number FA8750-13-2-0017 (the DEFT pro-
gram). The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental pur-
poses. The views and conclusions contained in this
publication are those of the authors and should not
be interpreted as representing official policies or en-
dorsements of DARPA and the U.S. Government.

References
Patricia Amaral, Valeria de Paiva, Cleo Condoravdi, and

Annie Zaenen. 2012. Where’s the meeting that was
cancelled? existential implications of transitive verbs.
In Proceedings of the 3rd Workshop on Cognitive As-
pects of the Lexicon, pages 183–194, Mumbai, India,
December. The COLING 2012 Organizing Commit-
tee.

Angel X Chang and Christopher D Manning. 2012. Su-
time: A library for recognizing and normalizing time
expressions. In LREC, pages 3735–3740.

Peter Clark, Phil Harrison, John Thompson, William
Murray, Jerry Hobbs, and Christiane Fellbaum. 2007.
On the role of lexical and world knowledge in rte3. In
Proceedings of the ACL-PASCAL Workshop on Textual
Entailment and Paraphrasing, pages 54–59, Prague,
June. Association for Computational Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognizing textual entailment
challenge. In Machine Learning Challenges. Evalu-
ating Predictive Uncertainty, Visual Object Classifica-
tion, and Recognising Tectual Entailment, pages 177–
190. Springer.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
Bill Dolan. 2007. The third PASCAL recognising tex-
tual entailment challenge. In Proceedings of the ACL-

PASCAL workshop on textual entailment and para-
phrasing, pages 1–9.

Lauri Karttunen. 1971. Implicative verbs. Language,
pages 340–358.

Lauri Karttunen. 2012. Simple and phrasal implicatives.
In *SEM 2012: The First Joint Conference on Lexi-
cal and Computational Semantics – Volume 1: Pro-
ceedings of the main conference and the shared task,
and Volume 2: Proceedings of the Sixth International
Workshop on Semantic Evaluation (SemEval 2012),
pages 124–131, Montréal, Canada, 7-8 June. Associa-
tion for Computational Linguistics.

Bill MacCartney. 2009. Natural language inference.
Ph.D. thesis, Citeseer.

Fabienne Martin, Dennis Spohr, and Achim Stein. 2009.
Disambiguation of polysemous verbs for rule-based
inferencing. In Proceedings of the Eight International
Conference on Computational Semantics, pages 222–
234, Tilburg, The Netherlands, January. Association
for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Rowan Nairn, Cleo Condoravdi, and Lauri Karttunen.
2006. Computing relative polarity for textual infer-
ence. Inference in Computational Semantics (ICoS-5),
pages 20–21.

Courtney Napoles, Matthew Gormley, and Benjamin
Van Durme. 2012. Annotated gigaword. In Pro-
ceedings of the Joint Workshop on Automatic Knowl-
edge Base Construction and Web-scale Knowledge Ex-
traction (AKBC-WEKEX), pages 95–100, Montréal,
Canada, June. Association for Computational Linguis-
tics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Marta Recasens, Cristian Danescu-Niculescu-Mizil, and
Dan Jurafsky. 2013. Linguistic models for analyzing
and detecting biased language. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1650–1659, Sofia, Bulgaria, August. Association for
Computational Linguistics.

2229

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2230–2235,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Who did What: A Large-Scale Person-Centered Cloze Dataset

Takeshi Onishi Hai Wang Mohit Bansal Kevin Gimpel David McAllester
Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA

{tonishi,haiwang,mbansal,kgimpel,mcallester}@ttic.edu

Abstract

We have constructed a new “Who-did-What”
dataset of over 200,000 fill-in-the-gap (cloze)
multiple choice reading comprehension prob-
lems constructed from the LDC English Gi-
gaword newswire corpus. The WDW dataset
has a variety of novel features. First, in con-
trast with the CNN and Daily Mail datasets
(Hermann et al., 2015) we avoid using article
summaries for question formation. Instead,
each problem is formed from two indepen-
dent articles — an article given as the pas-
sage to be read and a separate article on the
same events used to form the question. Sec-
ond, we avoid anonymization — each choice
is a person named entity. Third, the problems
have been filtered to remove a fraction that are
easily solved by simple baselines, while re-
maining 84% solvable by humans. We report
performance benchmarks of standard systems
and propose the WDW dataset as a challenge
task for the community.1

1 Introduction

Researchers distinguish the problem of general
knowledge question answering from that of read-
ing comprehension (Hermann et al., 2015; Hill et
al., 2016). Reading comprehension is more diffi-
cult than knowledge-based or IR-based question an-
swering in two ways. First, reading comprehen-
sion systems must infer answers from a given un-
structured passage rather than structured knowledge
sources such as Freebase (Bollacker et al., 2008)

1Available at tticnlp.github.io/who did what

or the Google Knowledge Graph (Singhal, 2012).
Second, machine comprehension systems cannot ex-
ploit the large level of redundancy present on the
web to find statements that provide a strong syntac-
tic match to the question (Yang et al., 2015). In con-
trast, a machine comprehension system must use the
single phrasing in the given passage, which may be
a poor syntactic match to the question.

In this paper, we describe the construction of a
new reading comprehension dataset that we refer
to as “Who-did-What”. Two typical examples are
shown in Table 1.2 The process of forming a prob-
lem starts with the selection of a question article
from the English Gigaword corpus. The question is
formed by deleting a person named entity from the
first sentence of the question article. An information
retrieval system is then used to select a passage with
high overlap with the first sentence of the question
article, and an answer choice list is generated from
the person named entities in the passage.

Our dataset differs from the CNN and Daily Mail
comprehension tasks (Hermann et al., 2015) in that
it forms questions from two distinct articles rather
than summary points. This allows problems to be
derived from document collections that do not con-
tain manually-written summaries. This also reduces
the syntactic similarity between the question and
the relevant sentences in the passage, increasing the
need for deeper semantic analysis.

To make the dataset more challenging we selec-
tively remove problems so as to suppress four simple

2The passages here only show certain salient portions of the
passage. In the actual dataset, the entire article is given. The
correct answers are (3) and (2).

2230

Passage: Britain’s decision on Thursday to drop extradition proceedings against Gen. Augusto Pinochet and allow him
to return to Chile is understandably frustrating ... Jack Straw, the home secretary, said the 84-year-old former dictator’s
ability to understand the charges against him and to direct his defense had been seriously impaired by a series of strokes.
... Chile’s president-elect, Ricardo Lagos, has wisely pledged to let justice run its course. But the outgoing government of
President Eduardo Frei is pushing a constitutional reform that would allow Pinochet to step down from the Senate and retain
parliamentary immunity from prosecution. ...

Question: Sources close to the presidential palace said that Fujimori declined at the last moment to leave the country and
instead he will send a high level delegation to the ceremony, at which Chilean President Eduardo Frei will pass the mandate
to XXX.

Choices: (1) Augusto Pinochet (2) Jack Straw (3) Ricardo Lagos

Passage: Tottenham won 2-0 at Hapoel Tel Aviv in UEFA Cup action on Thursday night in a defensive display which
impressed Spurs skipper Robbie Keane. ... Keane scored the first goal at the Bloomfield Stadium with Dimitar Berbatov,
who insisted earlier on Thursday he was happy at the London club, heading a second. The 26-year-old Berbatov admitted the
reports linking him with a move had affected his performances ... Spurs manager Juande Ramos has won the UEFA Cup in
the last two seasons ...

Question: Tottenham manager Juande Ramos has hinted he will allow XXX to leave if the Bulgaria striker makes it clear he
is unhappy.

Choices: (1) Robbie Keane (2) Dimitar Berbatov

Table 1: Sample reading comprehension problems from our dataset.

baselines — selecting the most mentioned person,
the first mentioned person, and two language model
baselines. This is also intended to produce problems
requiring deeper semantic analysis.

The resulting dataset yields a larger gap between
human and machine performance than existing ones.
Humans can answer questions in our dataset with
an 84% success rate compared to the estimates of
75% for CNN (Chen et al., 2016) and 82% for the
CBT named entities task (Hill et al., 2016). In spite
of this higher level of human performance, various
existing readers perform significantly worse on our
dataset than they do on the CNN dataset. For ex-
ample, the Attentive Reader (Hermann et al., 2015)
achieves 63% on CNN but only 55% on Who-did-
What and the Attention Sum Reader (Kadlec et al.,
2016) achieves 70% on CNN but only 59% on Who-
did-What.

In summary, we believe that our Who-did-What
dataset is more challenging, and requires deeper se-
mantic analysis, than existing datasets.

2 Related Work

Our Who-did-What dataset is related to several re-
cently developed datasets for machine comprehen-
sion. The MCTest dataset (Richardson et al., 2013)
consists of 660 fictional stories with 4 multiple
choice questions each. This dataset is too small

to train systems for the general problem of reading
comprehension.

The bAbI synthetic question answering dataset
(Weston et al., 2016) contains passages describing a
series of actions in a simulation followed by a ques-
tion. For this synthetic data a logical algorithm can
be written to solve the problems exactly (and, in fact,
is used to generate ground truth answers).

The Children’s Book Test (CBT) dataset, created
by Hill et al. (2016), contains 113,719 cloze-style
named entity problems. Each problem consists of 20
consecutive sentences from a children’s story, a 21st
sentence in which a word has been deleted, and a list
of ten choices for the deleted word. The CBT dataset
tests story completion rather than reading compre-
hension. The next event in a story is often not de-
termined — surprises arise. This may explain why
human performance is lower for CBT than for our
dataset — 82% for CBT vs. 84% for Who-did-What.
The 16% error rate for humans on Who-did-What
seems to be largely due to noise in problem forma-
tion introduced by errors in named entity recogni-
tion and parsing. Reducing this noise in future ver-
sions of the dataset should significantly improve hu-
man performance. Another difference compared to
CBT is that Who-did-What has shorter choice lists
on average. Random guessing achieves only 10%
on CBT but 32% on Who-did-What. The reduction

2231

in the number of choices seems likely to be responsi-
ble for the higher performance of an LSTM system
on Who-did-What – contextual LSTMs (the atten-
tive reader of Hermann et al., 2015) improve from
44% on CBT (as reported by Hill et al., 2016) to
55% on Who-did-What.

Above we referenced the comprehension datasets
created from CNN and Daily Mail articles by Her-
mann et al. (2015). The CNN and Daily Mail
datasets together consist of 1.4 million questions
constructed from approximately 300,000 articles.
Of existing datasets, these are the most similar to
Who-did-What in that they consist of cloze-style
question answering problems derived from news ar-
ticles. As discussed in Section 1, our Who-did-What
dataset differs from these datasets in not being de-
rived from article summaries, in using baseline sup-
pression, and in yielding a larger gap between ma-
chine and human performance. The Who-did-What
dataset also differs in that the person named entities
are not anonymized, permitting the use of external
resources to improve performance while remaining
difficult for language models due to suppression.

3 Dataset Construction

We now describe the construction of our Who-did-
What dataset in more detail. To generate a problem
we first generate the question by selecting a random
article — the “question article” — from the Giga-
word corpus and taking the first sentence of that ar-
ticle — the “question sentence” — as the source of
the cloze question. The hope is that the first sentence
of an article contains prominent people and events
which are likely to be discussed in other independent
articles. To convert the question sentence to a cloze
question, we first extract named entities using the
Stanford NER system (Finkel et al., 2005) and parse
the sentence using the Stanford PCFG parser (Klein
and Manning, 2003).

The person named entities are candidates for dele-
tion to create a cloze problem. For each per-
son named entity we then identify a noun phrase
in the automatic parse that is headed by that per-
son. For example, if the question sentence is “Pres-
ident Obama met yesterday with Apple Founder
Steve Jobs” we identify the two person noun
phrases “President Obama” and “Apple Founder

Steve Jobs”. When a person named entity is selected
for deletion, the entire noun phrase is deleted. For
example, when deleting the second named entity,
we get “President Obama met yesterday with XXX”
rather than “President Obama met yesterday with
Apple founder XXX”. This increases the difficulty
of the problems because systems cannot rely on de-
scriptors and other local contextual cues. About
700,000 question sentences are generated from Gi-
gaword articles (8% of the total number of articles).

Once a cloze question has been formed we se-
lect an appropriate article as a passage. The ar-
ticle should be independent of the question arti-
cle but should discuss the people and events men-
tioned in the question sentence. To find a passage
we search the Gigaword dataset using the Apache
Lucene information retrieval system (McCandless et
al., 2010), using the question sentence as the query.
The named entity to be deleted is included in the
query and required to be included in the returned
article. We also restrict the search to articles pub-
lished within two weeks of the date of the question
article. Articles containing sentences too similar to
the question in word overlap and phrase matching
near the blanked phrase are removed. We select the
best matching article satisfying our constraints. If
no such article can be found, we abort the process
and move on to a new question.

Given a question and a passage we next form the
list of choices. We collect all person named enti-
ties in the passage except unblanked person named
entities in the question. Choices that are subsets
of longer choices are eliminated. For example the
choice “Obama” would be eliminated if the list also
contains “Barack Obama”. We also discard ambigu-
ous cases where a part of a blanked NE appears in
multiple candidate answers, e.g., if a passage has
“Bill Clinton” and “Hillary Clinton” and the blanked
phrase is “Clinton”. We found this simple corefer-
ence rule to work well in practice since news arti-
cles usually employ full names for initial mentions
of persons. If the resulting choice list contains fewer
than two or more than five choices, the process is
aborted and we move on to a new question.3

After forming an initial set of problems we then

3The maximum of five helps to avoid sports articles contain-
ing structured lists of results.

2232

remove “duplicated” problems. Duplication arises
because Gigaword contains many copies of the same
article or articles where one is clearly an edited ver-
sion of another. Our duplication-removal process
ensures that no two problems have very similar ques-
tions. Here, similarity is defined as the ratio of the
size of the bag of words intersection to the size of
the smaller bag.

In order to focus our dataset on the most interest-
ing problems, we remove some problems to suppress
the performance of the following simple baselines:

• First person in passage: Select the person that ap-
pears first in the passage.
• Most frequent person: Select the most frequent

person in the passage.
• n-gram: Select the most likely answer to fill the

blank under a 5-gram language model trained on
Gigaword minus articles which are too similar to
one of the questions in word overlap and phrase
matching.
• Unigram: Select the most frequent last name us-

ing the unigram counts from the 5-gram model.

To minimize the number of questions removed we
solve an optimization problem defined by limiting
the performance of each baseline to a specified target
value while removing as few problems as possible,
i.e.,

max
α(C)

∑

C∈{0,1}|b|
α(C)|T (C)| (1)

subject to

∀i
∑

C:Ci=1

α(C)|T (C)|
N

≤ k

N =
∑

C∈{0,1}|b|
α(C)|T (C)| (2)

where T (C) is the subset of the questions solved by
the subset C of the suppressed baselines, α(C) is a
keeping rate for question set T (C), Ci = 1 indicates
the i-th baseline is in the subset, |b| is the number of
baselines, N is a total number of questions, and k
is the upper bound for the baselines after suppres-
sion. We choose k to yield random performance for
the baselines. The performance of the baselines be-
fore and after suppression is shown in Table 2. The
suppression removed 49.9% of the questions.

Accuracy
Baseline Before After

First person in passage 0.60 0.32
Most frequent person 0.61 0.33
n-gram 0.53 0.33
Unigram 0.43 0.32
Random∗ 0.32 0.32

Table 2: Performance of suppressed baselines. ∗Random per-

formance is computed as a deterministic function of the number

of times each choice set size appears. Many questions have only

two choices and there are about three choices on average.

relaxed train valid test
train

questions 185,978 127,786 10,000 10,000
avg. # choices 3.5 3.5 3.4 3.4
avg. # tokens 378 365 325 326
vocab. size 347,406 308,602

Table 3: Dataset statistics.

Table 3 shows statistics of our dataset after sup-
pression. We split the final dataset into train, vali-
dation, and test by taking the validation and test to
be a random split of the most recent 20,000 prob-
lems as measured by question article date. In this
way there is very little overlap in semantic subject
matter between the training set and either validation
or test. We also provide a larger “relaxed” training
set formed by applying less baseline suppression (a
larger value of k in the optimization). The relaxed
training set then has a slightly different distribution
from the train, validation, and test sets which are all
fully suppressed.

4 Performance Benchmarks

We report the performance of several systems to
characterize our dataset:

• Word overlap: Select the choice c inserted to
the question q which is the most similar to any
sentence s in the passage, i.e., CosSim(bag(c +
q),bag(s)).
• Sliding window and Distance baselines (and their

combination) from Richardson et al. (2013).
• Semantic features: NLP feature based system

from Wang et al. (2015).

2233

• Attentive Reader: LSTM with attention mecha-
nism (Hermann et al., 2015).
• Stanford Reader: An attentive reader modified

with a bilinear term (Chen et al., 2016).
• Attention Sum (AS) Reader: GRU with a point-

attention mechanism (Kadlec et al., 2016).
• Gated-Attention (GA) Reader: Attention Sum

Reader with gated layers (Dhingra et al., 2016).

Table 4 shows the performance of each system on
the test data. For the Attention and Stanford Read-
ers, we anonymized the Who-did-What data by re-
placing named entities with entity IDs as in the CNN
and Daily Mail datasets.

We see consistent reductions in accuracy when
moving from CNN to our dataset. The Attentive
and Stanford Reader drop by up to 10% and the AS
and GA readers drop by up to 17%. The ranking of
the systems also changes. In contrast to the Atten-
tive/Stanford readers, the AS/GA readers explicitly
leverage the frequency of the answer in the passage,
a heuristic which appears beneficial for the CNN
and Daily Mail tasks. Our suppression of the most-
frequent-person baseline appears to more strongly
affect the performance of these latter systems.

5 Conclusion

We presented a large-scale person-centered cloze
dataset whose scalability and flexibility is suitable
for neural methods. This dataset is different in a va-
riety of ways from existing large-scale cloze datasets
and provides a significant extension to the training
and test data for machine comprehension.

Acknowledgments

We thank NVIDIA Corporation for donating GPUs
used in this research.

References
[Bollacker et al.2008] Kurt Bollacker, Colin Evans,

Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: a collaboratively created graph
database for structuring human knowledge. In Pro-
ceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1247–1250.

[Chen et al.2016] Danqi Chen, Jason Bolton, and Christo-
pher D. Manning. 2016. A thorough examination of

System WDW CNN

Word overlap 0.47 –
Sliding window 0.48 –
Distance 0.46 –
Sliding window + Distance 0.51 –
Semantic features 0.52 –
Attentive Reader 0.53 0.63I

Attentive Reader (relaxed train) 0.55
Stanford Reader 0.64 0.73II

Stanford Reader (relaxed train) 0.65
AS Reader 0.57 0.70III

AS Reader (relaxed train) 0.59
GA Reader 0.57 0.74IV

GA Reader (relaxed train) 0.60
Human Performance 84/100 0.75+II

Table 4: System performance on test set. Human performance

was computed by two annotators on a sample of 100 questions.

Result marked I is from (Hermann et al., 2015), results marked

II are from (Chen et al., 2016), result marked III is from

(Kadlec et al., 2016), and result marked IV is from (Dhingra

et al., 2016).

the CNN/Daily Mail reading comprehension task. In
Proceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers), pages 2358–2367.

[Dhingra et al.2016] Bhuwan Dhingra, Hanxiao Liu,
William W. Cohen, and Ruslan Salakhutdinov.
2016. Gated-attention readers for text comprehension.
CoRR, abs/1606.01549.

[Finkel et al.2005] Jenny Rose Finkel, Trond Grenager,
and Christopher Manning. 2005. Incorporating non-
local information into information extraction systems
by Gibbs sampling. In Proceedings of the 43rd An-
nual Meeting on Association for Computational Lin-
guistics, pages 363–370.

[Hermann et al.2015] Karl Moritz Hermann, Tomás Ko-
ciský, Edward Grefenstette, Lasse Espeholt, Will Kay,
Mustafa Suleyman, and Phil Blunsom. 2015. Teach-
ing machines to read and comprehend. In Advances in
Neural Information Processing Systems, pages 1684–
1692.

[Hill et al.2016] Felix Hill, Antoine Bordes, Sumit
Chopra, and Jason Weston. 2016. The Goldilocks
principle: Reading children’s books with explicit
memory representations. In Proceedings of Interna-
tional Conference on Learning Representations.

[Kadlec et al.2016] Rudolf Kadlec, Martin Schmid,
Ondřej Bajgar, and Jan Kleindienst. 2016. Text

2234

understanding with the attention sum reader network.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 908–918.

[Klein and Manning2003] Dan Klein and Christopher D.
Manning. 2003. Accurate unlexicalized parsing. In
Proceedings of the 41st Annual Meeting on Associa-
tion for Computational Linguistics - Volume 1, pages
423–430.

[McCandless et al.2010] Michael McCandless, Erik
Hatcher, and Otis Gospodnetic. 2010. Lucene in
Action, Second Edition. Manning Publications Co.

[Richardson et al.2013] Matthew Richardson, Christo-
pher J.C. Burges, and Erin Renshaw. 2013. MCTest:
A challenge dataset for the open-domain machine
comprehension of text. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 193–203.

[Singhal2012] Amit Singhal. 2012. Introducing the
knowledge graph: things, not strings. Official Google
blog.

[Wang et al.2015] Hai Wang, Mohit Bansal, Kevin Gim-
pel, and David McAllester. 2015. Machine compre-
hension with syntax, frames, and semantics. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers), pages 700–706.

[Weston et al.2016] Jason Weston, Antoine Bordes, Sumit
Chopra, and Tomas Mikolov. 2016. Towards AI-
complete question answering: A set of prerequisite toy
tasks. In Proceedings of International Conference on
Learning Representations.

[Yang et al.2015] Yi Yang, Wen-tau Yih, and Christopher
Meek. 2015. WIKIQA: A challenge dataset for open-
domain question answering. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 2013–2018.

2235

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2236–2242,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Building compositional semantics and higher-order inference system
for a wide-coverage Japanese CCG parser

Koji Mineshima1

mineshima.koji@ocha.ac.jp
Ribeka Tanaka1

tanaka.ribeka@is.ocha.ac.jp

Pascual Martı́nez-Gómez2

pascual.mg@aist.go.jp
Yusuke Miyao3

yusuke@nii.ac.jp
Daisuke Bekki1

bekki@is.ocha.ac.jp

1Ochanomizu University
Tokyo, Japan

2AIST
Tokyo, Japan

3National Institute of Informatics
The Graduate University for Advanced Studies

Tokyo, Japan

Abstract

This paper presents a system that compo-
sitionally maps outputs of a wide-coverage
Japanese CCG parser onto semantic represen-
tations and performs automated inference in
higher-order logic. The system is evaluated
on a textual entailment dataset. It is shown
that the system solves inference problems that
focus on a variety of complex linguistic phe-
nomena, including those that are difficult to
represent in the standard first-order logic.

1 Introduction

Logic-based semantic representations have played
an important role in the study of semantic parsing
and inference. For English, several methods have
been proposed to map outputs of parsers based on
syntactic theories like CCG (Steedman, 2000) onto
logical formulas (Bos, 2015). Output formulas have
been used in various tasks, including Question An-
swering (Lewis and Steedman, 2013) and Recog-
nizing Textual Entailment (RTE) (Bos and Markert,
2005; Beltagy et al., 2013; Bjerva et al., 2014).

Syntactic and semantic parsing for Japanese, by
contrast, has been dominated by chunk-based de-
pendency parsing and semantic role labelling (Kudo
and Matsumoto, 2002; Kawahara and Kurohashi,
2011; Hayashibe et al., 2011). Recently, the method
of inducing wide-coverage CCG resources for En-
glish (Hockenmaier and Steedman, 2007) has been
applied to Japanese and a robust CCG parser based
on it has been developed (Uematsu et al., 2015).
However, building a method to map CCG trees in
Japanese onto logical formulas is not a trivial task,

mainly due to the differences in syntactic structures
between English and Japanese (Section 3).

There are two primary contributions of this pa-
per. First, based on an in-depth analysis of the
syntax-semantics interface in Japanese, we present
the first system that compositionally derives seman-
tic representations for a wide-coverage Japanese
CCG parser. Output representations are formulas
in higher-order logic (HOL) combined with Neo-
Davidsonian Event Semantics (Parsons, 1990). Sec-
ond, we demonstrate the capacity of HOL for textual
entailment. We evaluate the system on a Japanese
textual entailment dataset (Kawazoe et al., 2015), a
dataset constructed in a similar way to the FraCaS
dataset for English (Cooper et al., 1994; MacCartney
and Manning, 2007). Although it is usually thought
that HOL is unfeasible for practical applications, the
results show that the entire system is able to perform
efficient logical inference on complex linguistic phe-
nomena such as generalized quantifiers and inten-
sional modifiers — phenomena that pose challenges
to the standard first-order-logic-based approaches.

2 Background and system overview

This section provides a brief overview of the en-
tire system as applied to RTE, a task of determin-
ing whether a given text (T) entails, contradicts, or
is just consistent with, a given hypothesis (H). In
logic-based approaches, the meanings of T and H
are represented by logical formulas; whether the en-
tailment relation holds is typically determined by
checking whether T → H is a theorem in a logical
system with the help of a knowledge base.

Currently, first-order logic (FOL) is the most pop-

2236

ular logical system used for RTE (Bos and Mark-
ert, 2005; Lewis and Steedman, 2013; Bjerva et al.,
2014). One advantage of systems based on FOL is
that practical general-purpose theorem provers and
model-builders are available. However, a drawback
is that there are linguistic phenomena that cannot be
represented in the standard FOL; a typical example
is a generalized quantifier such as most (Barwise and
Cooper, 1981). Accordingly, it has been standard in
formal semantics of natural language to use HOL
as a representation language (Montague, 1974). Al-
though HOL does not have general-purpose theorem
provers, there is room for developing an automated
reasoning system specialized for natural language
inference. In general, a higher-order representation
makes the logical structure of a sentence more ex-
plicit than a first-order encoding does and hence can
simplify the process of proof search (Miller and Na-
dathur, 1986). Recently, based on the evaluation on
the FraCaS dataset (Cooper et al., 1994), Mineshima
et al. (2015) showed that a higher-order inference
system outperformed the Boxer/Nutcracker’s first-
order system (Bos, 2008) in both speed and ac-
curacy. Likewise, Abzianidze (2015) developed a
higher-order prover based on natural logic tableau
system and showed that it achieved high accuracy
comparable to state-of-the-art results on the SICK
dataset (Marelli et al., 2014).

There are three main steps in our pipeline. The
focus of this paper is on the last two components.
1. Syntactic parsing Input sentences are mapped
onto CCG trees. We use a Japanese CCG parser
Jigg (Noji and Miyao, 2016)1, a statistical parser
based on Japanese CCGbank (Uematsu et al., 2015).
2. Semantic parsing CCG derivation trees are
compositionally mapped onto semantic representa-
tions in HOL. The compositional mapping is imple-
mented via simply typed λ-calculus in the standard
way (Bos, 2008; Martı́nez-Gómez et al., 2016).
3. Logical inference Theorem proving in HOL
is performed to check for entailment and contra-
diction. Axioms and proof-search procedures are
largely language-independent, so we use the higher-
order inference system of Mineshima et al. (2015)2

and adapt it for our purpose.

1https://github.com/mynlp/jigg
2https://github.com/mynlp/ccg2lambda

Syntactic category Semantic representation
NP λNF.∃x(N(Base, x) ∧ F (x))

S\NPga λQK.Q(λI.I, λx.∃v(K(Base, v) ∧ (Nom(v) = x)))

S\NPga\NPo λQ2Q1K.Q1(λI.I, λx1.Q2(λI.I, λx2.∃v(K(Base, v)
∧ (Nom(v) = x1) ∧ (Acc(v) = x2))))

S/S λSK.S(λJv.K(λv′.(J(v′) ∧ Base(v′)), v))

NP/NP λQNF.Q(λGx.N(λy.(Base(y) ∧ G(y)), x), F)

Table 1: Examples of semantic templates. Base is the position

in which the base form of a word appears.

3 Compositional Semantics and HOL

3.1 CCG and semantic lexicon
Combinatory Categorial Grammar (CCG) (Steed-
man, 2000) is a lexicalized grammar formalism
suitable for implementing a compositional mapping
from syntax to semantics. A syntactic category of
CCG is either a basic category such as S and NP
or a functional category of the form X/Y or X\Y.
The meaning of a sentence is computed from a small
number of combinatory rules and the meanings of
constituent words. In addition to standard combi-
natory rules, the Japanese CCG parser uses a small
number of unary type-shifting rules (e.g., the rel-
ativization rule that changes the category S\NP to
NP/NP), to which suitable meaning composition
rules are given.

We follow the standard method of building a
semantic lexicon in CCG-based logical seman-
tics (Bos, 2008). There are two kinds of lexical en-
tries: (1) semantic templates that are schematic en-
tries assigned to syntactic categories, possibly with
syntactic features and (2) lexical entries directly as-
signed to a limited number of logical and functional
expressions. Lexical entries can be sensitive to a
POS tag, a surface form, and other information con-
tained in the parser output. Table 1 shows semantic
templates for main syntactic categories. More de-
tails will be provided in Section 3.2 and 3.3.

We use a language of standard higher-order logic
(simple type theory) (Carpenter, 1997) as a represen-
tation language. Expressions in HOL are assigned
semantic types. We use three basic types: E (En-
tity), Ev (Event), and Prop (Proposition). Thus, the
semantic types of expressions in our system are de-
fined by the rule

T ::= E | Ev | Prop | T1 ⇒ T2

where T1 ⇒ T2 is a function type.
First-order language can be taken as a fragment

of this system; apart from logical connectives and

2237

NP • = ((E⇒Prop)⇒E⇒Prop)⇒(E⇒Prop)⇒Prop

S• = ((Ev⇒Prop)⇒Ev⇒Prop)⇒Prop

(C1/C2)• = (C1\C2)• = C2• ⇒C1•

Figure 1: The mapping from syntactic categories to semantic

types. ⇒ is right-associative.

quantifiers, all primitive expressions in first-order
logic are confined to constant symbols of type E and
predicates of type E ⇒ Prop, E ⇒ E ⇒ Prop, and
so on. Thus, adopting higher-order language does
not lead to the loss of the expressive power of first-
order language.

The Japanese CCG parser simplifies the standard
CCG and uses two basic categories, S and NP. Ac-
cordingly, a mapping (·)• from syntactic categories
to semantic types can be defined as in Figure 1.
Keeping the correspondence between syntactic cat-
egories and semantic types in the semantic lexicon
guarantees that a well-formed formula is compo-
sitionally derived from the meaning assignment to
each leaf of a CCG derivation tree.

3.2 Semantic composition for VPs
To model a semantics for VPs in Japanese, we adopt
Neo-Davidsonian Event Semantics (Parsons, 1990;
Jurafsky and Martin, 2009), which is widely used
in the NLP field. For instance, the sentence (1) is
analyzed as having the logical form in (2):

(1) ジョン
John

が
NOM

ゆっくり
slowly

歩い
walk

た。
PAST

‘John walked slowly’

(2) ∃v(walk(v) ∧ (Nom(v)= john) ∧ slow(v) ∧ Past(v))

In this approach, verbs are analyzed as 1-place pred-
icates over events; arguments and adjuncts of VPs
are also analyzed as event predicates. This seman-
tic uniformity is suitable to handling Japanese syn-
tactic structures in which the arguments of a VP
is often implicit and thus the argument-adjunct dis-
tinction is less transparent than languages like En-
glish (Pietroski, 2005). As is seen in (2), we adopt
the unique-role requirement for case markers (Carl-
son, 1984); for instance, the nominative case marker
does not denote the relation Nom(v, x), as in the
event semantics in Boxer (Bos, 2008), but the func-
tion Nom(v)=x. This treatment allows us to make
use of logical properties of equality and hence is
more suited to theorem-proving in our setting.

To derive a semantic representation in event se-
mantics compositionally, we adopt the composi-
tional semantics of VPs in Champollion (2015) and
analyze VPs themselves as introducing existential
quantification over events. To derive the correct
meaning for VP modifiers, the semantic type of a
verb is raised so that the verb takes a modifier as
argument but not vice versa. Figures 2 and 3 give
example derivations.

VP modifiers such as slowly license an inference
from John walked slowly to John walked, an infer-
ence correctly captured by the formula in (2). In En-
glish and Japanese, however, there are intensional
VP modifiers that do not license this inference pat-
tern. Thus, the sentence John almost walked does
not entail John walked (Dowty, 1979). While it is
not easy to provide a desirable analysis in first-order
language (Hobbs, 1985), HOL gives a perspicuous
representation:

(3) ∃v(almost(walk, v)∧ (Nom(v)= john)∧Past(v))

Here, almost is a higher-order predicate having the
semantic type (Ev ⇒ Prop) ⇒ Ev ⇒ Prop. The
meaning assignment to VP modifiers of category
S/S in Table 1 is for extensional modifiers; an
intensional modifier is assigned the representation
λSK.S(λJv.K(Base(J), v)) in the lexical entry,
which results in a representation as in (3).

3.3 Semantic composition for NPs

The quantificational structure of an NP plays a cru-
cial role in capturing basic entailment patterns such
as monotonicity inference. In the case of English,
quantificational structures are specified by the type
of determiners (e.g. a, the, every, some, no); to-
gether with the category distinction between N and
NP, which is supported in English CCGbank (Hock-
enmaier and Steedman, 2007), one can provide a
correct representation for NPs.

By contrast, Japanese is a classifier language,
where NPs freely occur without determiners in ar-
gument position (Chierchia, 1998). For example, the
subject in (4) appears in argument position without
accompanying any determiner.

(4) 小さな
small

犬
dog
が
NOM

吠え
bark

た。
PAST

‘A small dog barked’

2238

小さな (small)
NP/NP

λQNF.Q(λGx.N(λy.(small(y) ∧ G(y)), x), F)

犬 (dog)
NP

λNF.∃x(N(dog, x) ∧ F (x))

NP
λNF.∃x.(N(λy.(small(y) ∧ dog(y)), x) ∧ F (x))

> が (NOM)
NPga\NP

λQ.Q

NPga

λNF.∃x(N(λy.(small(y) ∧ dog(y)), x) ∧ F (x))

<

吠え (bark)
S\NPga

λQK.Q(λI.I, λx.∃v(K(bark, v)
∧ (Nom(v) = x)))

た (PAST)
S\S

λSK.S(λJv.K(λv′.(J(v′)
∧ Past(v′)), v))

S\NPga

λQK.Q(λI.I, λx.∃v(K(λv′.(bark(v′)
∧ Past(v′)), v) ∧ (Nom(v) = x)))

<B

S
λK.∃x(small(x) ∧ dog(x) ∧ ∃v(K(λv′.(bark(v′) ∧ Past(v′)), v) ∧ (Nom(v) = x)))

< PERIOD
S\S

λV.V (λI.I)

S
∃x(small(x) ∧ dog(x) ∧ ∃v(bark(v) ∧ Past(v) ∧ (Nom(v) = x)))

<

Figure 2: A CCG derivation tree for the sentence “A small dog barked”.

ほとんどの (Most)
NP/NP

λQNF.Most(λx.Q(λG.N(λy.(G(y)
∧ y = x)), λx.⊤), F)

車 (car)
NP

λNF.∃z(N(car, z)
∧ F (z))

NP
λNF.Most(λx.∃z(N(λy.(car(y)

∧ y = x)), z) ∧ ⊤), F)

> が (NOM)
NPga\NP

λQ.Q

NPga

λNF.Most(λx.∃z(N(λy.(car(y)
∧ y = x)), z) ∧ ⊤), F)

<

ゆっくり (slowly)
S/S

λSK.S(λJv.K(λv′.J(v′)
∧ slow(v′), v))

動い (move)
S\NPga

λQK.Q(λI.I, λx.∃v(K(move, v)
∧ (Nom(v) = x)))

た (PAST)
S\S

λSK.S(λJv.K(λv′.(J(v′)
∧ Past(v′)), v))

S\NPga

λQK.Q(λI.I, λx.∃v(K(λv′.(move(v′)
∧ Past(v′)), v) ∧ (Nom(v) = x)))

<B

S\NPga

λQK.Q(λI.I, λx.∃v(K(λv′.(move(v′) ∧ Past(v′) ∧ slow(v′)), v) ∧ (Nom(v) = x)))

>Bx

S
λK.Most(λx.∃z(car(z) ∧ z = x ∧ ⊤), λx.∃v(K(λv′.(move(v′) ∧ Past(v′) ∧ slow(v′)), v) ∧ (Nom(v) = x)))

< PERIOD
S\S

λV.V (λI.I)

S
Most(λx.∃z(car(z) ∧ z = x ∧ ⊤), λx.∃v(move(v) ∧ Past(v) ∧ slow(v) ∧ (Nom(v) = x)))

<

Figure 3: A CCG derivation tree for the sentence “Most cars moved slowly”. ⊤ denotes the tautology.

Bekki (2010) provides a comprehensive CCG gram-
mar for Japanese that adopts the N-NP distinction
and analyzes Japanese bare NPs as accompanying
the null determiner. The Japanese CCGbank, by
contrast, simplifies Bekki’s (2010) grammar and
avoids the use of the null determiner; it does not
use the category N and takes all NPs in Japanese to
have the syntactic category NP. This discrepancy in
NP-structure between English and Japanese poses a
challenge to the standard approach to building com-
positional semantics.

To provide a compositional semantics adapted for
the Japanese CCG, we take NPs themselves as in-
troducing quantification over individuals, along the
same lines as the semantics for VPs. The semantic
type of NPs needs to be raised so that they take NP-
modifiers as argument (cf. the template for NP in Ta-
ble 1). Figure 2 shows a derivation for the sentence
in (4), where the adjective small modifies the NP dog
to form a bare NP small dog. It should be noted
that the predicate small(x) is correctly inserted in-
side the scope of the existential quantification intro-
duced by the NP dog. The so-called privative adjec-
tives (e.g. fake and former) are analyzed in the same
way as intensional VP modifiers.

Following the analysis in Mineshima et al. (2015),
we analyze non-first-order generalized quantifier
most as having the higher-order logical form

Most(F,G), where Most has the type of general-
ized quantifier (E ⇒ Prop) ⇒ (E ⇒ Prop) ⇒ Prop.
Figure 3 shows an example derivation for a sentence
containing a generalized quantifier most. Our sys-
tem also handles floating quantifiers in Japanese.

4 Experiments

We evaluate our system3 on Japanese Semantics test
suite (JSeM)4 (Kawazoe et al., 2015), a Japanese
dataset for textual entailment designed in a simi-
lar way to the FraCaS dataset for English. These
datasets focus on the types of logical inferences that
do not require world knowledge. JSeM has Japanese
translations of FraCaS problems and an extended set
of problems focusing on Japanese syntax and se-
mantics. Each problem has one or more premises,
followed by a hypothesis. There are three types of
answer: yes (entailment), no (contradiction), and un-
known (neutral). Each problem is annotated with the
types of inference (logical entailment, presupposi-
tion, etc.) and of linguistic phenomena.

We evaluate the system on 523 problems in the
dataset. We focus on problems tagged with one
of the five phenomena: generalized quantifier, plu-

3The system will be available at https://github.
com/mynlp/ccg2lambda.

4http://researchmap.jp/community-inf/
JSeM/?lang=english

2239

Section #Problem Gold System SLC
Quantifier 337 92.3 78.0 88.4
Plural 41 68.3 56.1 51.2
Adjective 65 67.7 63.1 44.6
Verb 36 77.8 75.0 55.5
Attitude 44 88.6 86.4 75.0

Total 523 86.0 75.0 76.7

Table 2: Accuracy on each section of JSeM.

Acc. Prec. Rec. Time
Gold parses 86.0 94.9 81.3 3.30s

w/o HOL axioms 69.8 93.3 56.5 2.47s
System parses 75.0 92.7 65.4 3.58s
SLC 76.7 77.5 79.3 n/a
Most common class (yes) 56.8 56.8 85.6 n/a

Table 3: Accuracy, precision, recall, and average proof time.

ral, adjective, verb, and attitude. We use problems
whose inference type is logical entailment, exclud-
ing anaphora and presupposition. We use Kuromoji5

for morphological analysis. To focus on the evalua-
tion of semantic parsing and inference, we use gold
syntactic parses, which show an upper bound on the
performance of the semantic component. Gold syn-
tactic parses are manually selected from n-best out-
puts of the CCG parser. For the higher-order infer-
ence system, we use the axioms presented in Mi-
neshima et al. (2015) adapted with the necessary
modification for our event semantics.

Given premises P1, ... , Pn and a hypothesis H, the
system outputs yes (P1 ∧· · ·∧Pn →H is proved), no
(P1 ∧· · ·∧Pn →¬H is proved), or unknown (neither
is proved in a fixed proof-search space).6 We set a
30 seconds timeout for each inference run; the sys-
tem outputs unknown after it. The current semantic
lexicon has 36 templates and 113 lexical entries.

Table 2 and 3 show the results. The system with
gold syntactic parses achieved 86% accuracy on the
total 523 problems, with high precision and reason-
able speed. There was no timeout.7 The accuracy
dropped to 70% when ablating HOL axioms (Table
3). SLC refers to the performance of a supervised
learning classifier8 based on 5-fold cross-validation
for each section. Although direct comparison is not

5http://www.atilika.org/
6Note that natural-logic-based systems (MacCartney and

Manning, 2008) do not handle multi-premised problems.
7Our pipeline was run single-threaded on Ubuntu Linux 64

bits with a CPU at 2.67GHz.
8We used NTCIR RITE baseline tools (http://www.cl.

ecei.tohoku.ac.jp/rite2/doku.php).

Section #Problem Gold System M15
Quantifier 335 92.5 78.2 78.4
Plural 38 65.8 52.6 66.7
Adjective 21 57.1 47.6 68.2
Verb 9 66.7 66.7 62.5
Attitude 14 78.6 78.6 76.9

Total 417 87.3 74.1 73.3

Table 4: The results on a subset of JSeM that is a translation of

FraCaS. M15 refers to the accuracy of Mineshima et al. (2015)

on the corresponding sections of FraCaS.

possible, our system with gold parses outperforms it
for all sections.

Out of the 523 problems, 417 are Japanese trans-
lations of the FraCaS problems. Table 4 shows a
comparison between the performance of our system
on this subset of the JSeM problems and the perfor-
mance of the RTE system for English in Mineshima
et al. (2015) on the corresponding problems in the
FraCaS dataset. Mineshima et al. (2015) used sys-
tem parses of the English C&C parser (Clark and
Curran, 2007). The total accuracy of our system is
comparable to that of Mineshima et al. (2015).

Most errors we found are due to syntactic parse
errors caused by the CCG parser, where no cor-
rect syntactic parses were found in n-best responses.
Comparison between gold parses and system parses
shows that correct syntactic disambiguation im-
proves performance.

5 Conclusion

To our knowledge, this study provides the first se-
mantic parsing system based on CCG that compo-
sitionally maps real texts in Japanese onto logical
forms. We have also demonstrated the capacity of
HOL for textual entailment. The evaluation on JSeM
showed that our system performs efficient logical in-
ference on various semantic phenomena, including
those that challenge the standard FOL. The attrac-
tiveness of a logic-based system is that it is highly
modular and can be extended with other components
such as a robust knowledge base (Lewis and Steed-
man, 2013; Beltagy et al., 2013; Bjerva et al., 2014).
Such an extension will be a focus of future work.

Acknowledgments We are grateful to the three
anonymous reviewers for their helpful comments
and suggestions. This research has been supported
by the JST CREST program.

2240

References
Lasha Abzianidze. 2015. A tableau prover for natural

logic and language. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2492–2502.

Jon Barwise and Robin Cooper. 1981. Generalized quan-
tifiers and natural language. Linguistics and Philoso-
phy, 4(2):159–219.

Daisuke Bekki. 2010. A Formal Theory of Japanese
Grammar: The Conjugation System, Syntactic Struc-
tures, and Semantic Composition. Kuroshio. (In
Japanese).

Islam Beltagy, Cuong Chau, Gemma Boleda, Dan Gar-
rette, Katrin Erk, and Raymond Mooney. 2013. Mon-
tague meets Markov: Deep semantics with probabilis-
tic logical form. In 2nd Joint Conference on Lexi-
cal and Computational Semantics: Proceeding of the
Main Conference and the Shared Task, pages 11–21.

Johannes Bjerva, Johan Bos, Rob van der Goot, and
Malvina Nissim. 2014. The Meaning Factory: Formal
semantics for recognizing textual entailment and deter-
mining semantic similarity. In Proceedings of the 8th
International Workshop on Semantic Evaluation (Se-
mEval 2014), pages 642–646.

Johan Bos and Katja Markert. 2005. Recognising textual
entailment with logical inference. In Proceedings of
the conference on Human Language Technology and
Empirical Methods in Natural Language Processing,
pages 628–635.

Johan Bos. 2008. Wide-coverage semantic analysis with
Boxer. In Proceedings of the 2008 Conference on Se-
mantics in Text Processing, pages 277–286.

Johan Bos. 2015. Open-domain semantic parsing with
Boxer. In Proceedings of the 20th Nordic Conference
of Computational Linguistics, pages 301–304.

Greg Carlson. 1984. Thematic roles and their role in
semantic interpretation. Linguistics, 22(3):259–280.

Bob Carpenter. 1997. Type-Logical Semantics. MIT
press.

Lucas Champollion. 2015. The interaction of composi-
tional semantics and event semantics. Linguistics and
Philosophy, 38(1):31–66.

Gennaro Chierchia. 1998. Reference to kinds across lan-
guage. Natural Language Semantics, 6(4):339–405.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG and
log-linear models. Computational Linguistics,
33(4):493–552.

Robin Cooper, Richard Crouch, Jan van Eijck, Chris Fox,
Josef van Genabith, Jan Jaspers, Hans Kamp, Manfred
Pinkal, Massimo Poesio, Stephen Pulman, et al. 1994.
FraCaS — a framework for computational semantics.
Deliverable, D16.

David Dowty. 1979. Word Meaning and Montague
Grammar. Springer.

Yuta Hayashibe, Mamoru Komachi, and Yuji Matsumoto.
2011. Japanese predicate argument structure analysis
exploiting argument position and type. In Proceedings
of IJCNLP 2011, pages 201–209.

Jerry R. Hobbs. 1985. Ontological promiscuity. In Pro-
ceedings of the 23rd annual meeting on Association
for Computational Linguistics, pages 60–69.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: a corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. Compu-
tational Linguistics, 33(3):355–396.

Daniel Jurafsky and James H. Martin. 2009. Speech and
Language Processing. Prentice-Hall, Inc.

Daisuke Kawahara and Sadao Kurohashi. 2011. Genera-
tive modeling of coordination by factoring parallelism
and selectional preferences. In Proceedings of IJC-
NLP 2011, pages 456–464.

Ai Kawazoe, Ribeka Tanaka, Koji Mineshima, and
Daisuke Bekki. 2015. An inference problem set for
evaluating semantic theories and semantic processing
systems for Japanese. In Proceedings of LENLS12,
pages 67–73.

Taku Kudo and Yuji Matsumoto. 2002. Japanese de-
pendency analysis using cascaded chunking. In Pro-
ceedings of the 6th Conference on Natural Language
Learning, pages 63–69.

Mike Lewis and Mark Steedman. 2013. Combining
distributional and logical semantics. Transactions of
the Association for Computational Linguistics, 1:179–
192.

Bill MacCartney and Christopher D. Manning. 2007.
Natural logic for textual inference. In Proceedings
of the ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing, pages 193–200.

Bill MacCartney and Christopher D. Manning. 2008.
Modeling semantic containment and exclusion in nat-
ural language inference. In Proceedings of the 22nd
International Conference on Computational Linguis-
tics, pages 521–528.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014. A SICK cure for the evaluation of composi-
tional distributional semantic models. In Proceedings
of LREC2014, pages 216–223.

Pascual Martı́nez-Gómez, Koji Mineshima, Yusuke
Miyao, and Daisuke Bekki. 2016. ccg2lambda: a
compositional semantics system. In Proceedings of
ACL 2016 System Demonstrations, pages 85–90.

Dale Miller and Gopalan Nadathur. 1986. Some uses
of higher-order logic in computational linguistics. In
Proceedings of the 24th annual meeting on Associa-
tion for Computational Linguistics, pages 247–256.

2241

Koji Mineshima, Pascual Martı́nez-Gómez, Yusuke
Miyao, and Daisuke Bekki. 2015. Higher-order log-
ical inference with compositional semantics. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2055–
2061.

Richard Montague. 1974. Formal Philosophy: Selected
Papers. Yale University Press New Haven.

Hiroshi Noji and Yusuke Miyao. 2016. Jigg: a frame-
work for an easy natural language processing pipeline.
In Proceedings of ACL 2016 System Demonstrations,
pages 103–108.

Terence Parsons. 1990. Events in the Semantics of En-
glish. MIT Press.

Paul Pietroski. 2005. Events and Semantic Architecture.
Oxford University Press.

Mark Steedman. 2000. The Syntactic Process. MIT
Press.

Sumire Uematsu, Takuya Matsuzaki, Hiroki Hanaoka,
Yusuke Miyao, and Hideki Mima. 2015. Integrat-
ing multiple dependency corpora for inducing wide-
coverage Japanese CCG resources. ACM Transac-
tions on Asian and Low-Resource Language Informa-
tion Processing, 14(1):1–24.

2242

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2243–2248,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning to Generate Compositional Color Descriptions

Will Monroe,1 Noah D. Goodman,2 and Christopher Potts3

Departments of 1Computer Science, 2Psychology, and 3Linguistics
Stanford University, Stanford, CA 94305

wmonroe4@cs.stanford.edu, {ngoodman, cgpotts}@stanford.edu

Abstract

The production of color language is essential
for grounded language generation. Color de-
scriptions have many challenging properties:
they can be vague, compositionally complex,
and denotationally rich. We present an effec-
tive approach to generating color descriptions
using recurrent neural networks and a Fourier-
transformed color representation. Our model
outperforms previous work on a conditional
language modeling task over a large corpus
of naturalistic color descriptions. In addition,
probing the model’s output reveals that it can
accurately produce not only basic color terms
but also descriptors with non-convex denota-
tions (“greenish”), bare modifiers (“bright”,
“dull”), and compositional phrases (“faded
teal”) not seen in training.

1 Introduction

Color descriptions represent a microcosm of
grounded language semantics. Basic color terms
like “red” and “blue” provide a rich set of seman-
tic building blocks in a continuous meaning space;
in addition, people employ compositional color de-
scriptions to express meanings not covered by ba-
sic terms, such as “greenish blue” or “the color of
the rust on my aunt’s old Chevrolet” (Berlin and
Kay, 1991). The production of color language is
essential for referring expression generation (Krah-
mer and Van Deemter, 2012) and image captioning
(Kulkarni et al., 2011; Mitchell et al., 2012), among
other grounded language generation problems.

We consider color description generation as a
grounded language modeling problem. We present

Color Top-1 Sample

(83, 80, 28) “green” “very green”
(232, 43, 37) “blue” “royal indigo”
(63, 44, 60) “olive” “pale army green”
(39, 83, 52) “orange” “macaroni”

Table 1: A selection of color descriptions sampled from our
model that were not seen in training. Color triples are in HSL.
Top-1 shows the model’s highest-probability prediction.

an effective new model for this task that uses a long
short-term memory (LSTM) recurrent neural net-
work (Hochreiter and Schmidhuber, 1997; Graves,
2013) and a Fourier-basis color representation in-
spired by feature representations in computer vision.

We compare our model with LUX (McMahan and
Stone, 2015), a Bayesian generative model of color
semantics. Our model improves on their approach
in several respects, which we demonstrate by exam-
ining the meanings it assigns to various unusual de-
scriptions: (1) it can generate compositional color
descriptions not observed in training (Fig. 3); (2) it
learns correct denotations for underspecified modi-
fiers, which name a variety of colors (“dark”, “dull”;
Fig. 2); and (3) it can model non-convex denota-
tions, such as that of “greenish”, which includes
both greenish yellows and blues (Fig. 4). As a result,
our model also produces significant improvements
on several grounded language modeling metrics.

2 Model formulation

Formally, a model of color description generation is
a probability distribution S(d | c) over sequences of

2243

c

<s> light blue

</s>light blue

LSTM

FC

softmax

c

light blue

FC

FC
softmax

f f f f

d0 d1 d2

Figure 1: Left: sequence model architecture; right: atomic-
description baseline. FC denotes fully connected layers.

tokens d conditioned on a color c, where c is repre-
sented as a 3-dimensional real vector in HSV space.1

Architecture Our main model is a recurrent neu-
ral network sequence decoder (Fig. 1, left panel).
An input color c = (h, s, v) is mapped to a rep-
resentation f (see Color features, below). At each
time step, the model takes in a concatenation of f
and an embedding for the previous output token di,
starting with the start token d0 = <s>. This con-
catenated vector is passed through an LSTM layer,
using the formulation of Graves (2013). The out-
put of the LSTM at each step is passed through a
fully-connected layer, and a softmax nonlinearity is
applied to produce a probability distribution for the
following token.2 The probability of a sequence is
the product of probabilities of the output tokens up
to and including the end token </s>.

We also implemented a simple feed-forward neu-
ral network, to demonstrate the value gained by
modeling descriptions as sequences. This architec-
ture (atomic; Fig. 1, right panel) consists of two
fully-connected hidden layers, with a ReLU nonlin-
earity after the first and a softmax output over all
full color descriptions seen in training. This model
therefore treats the descriptions as atomic symbols
rather than sequences.

Color features We compare three representations:

• Raw: The original 3-dimensional color vectors,
in HSV space.

1HSV: hue-saturation-value. The visualizations and tables
in this paper instead use HSL (hue-saturation-lightness), which
yields somewhat more intuitive diagrams and differs from HSV
by a trivial reparameterization.

2Our implementation uses Lasagne (Dieleman et al., 2015),
a neural network library based on Theano (Al-Rfou et al., 2016).

• Buckets: A discretized representation, dividing
HSV space into rectangular regions at three res-
olutions (90×10×10, 45×5×5, 1×1×1) and
assigning a separate embedding to each region.

• Fourier: Transformation of HSV vectors into
a Fourier basis representation. Specifically, the
representation f of a color (h, s, v) is given by

f̂jk` = exp [−2πi (jh∗ + ks∗ + `v∗)]

f =
[
Re{f̂} Im{f̂}

]
j, k, ` = 0..2

where (h∗, s∗, v∗) = (h/360, s/200, v/200).

The Fourier representation is inspired by the use of
Fourier feature descriptors in computer vision appli-
cations (Zhang and Lu, 2002). It is a nonlinear trans-
formation that maps the 3-dimensional HSV space
to a 54-dimensional vector space. This representa-
tion has the property that most regions of color space
denoted by some description are extreme along a
single direction in Fourier space, thus largely avoid-
ing the need for the model to learn non-monotonic
functions of the color representation.

Training We train using Adagrad (Duchi et al.,
2011) with initial learning rate η = 0.1, hidden layer
size and cell size 20, and dropout (Hinton et al.,
2012) with a rate of 0.2 on the output of the LSTM
and each fully-connected layer. We identified these
hyperparameters with random search, evaluating on
a held-out subset of the training data.

We use random normally-distributed initialization
for embeddings (σ = 0.01) and LSTM weights (σ =
0.1), except for forget gates, which are initialized to
a constant value of 5. Dense weights use normalized
uniform initialization (Glorot and Bengio, 2010).

3 Experiments

We demonstrate the effectiveness of our model us-
ing the same data and statistical modeling metrics as
McMahan and Stone (2015).

Data The dataset used to train and evaluate our
model consists of pairs of colors and descriptions
collected in an open online survey (Munroe, 2010).
Participants were shown a square of color and asked
to write a free-form description of the color in
a text box. McMahan and Stone filtered the re-
sponses to normalize spelling differences and ex-
clude spam responses and descriptions that occurred

2244

Model Feats. Perp. AIC Acc.

atomic raw 28.31 1.08×106 28.75%
atomic buckets 16.01 1.31×106 38.59%
atomic Fourier 15.05 8.86×105 38.97%
RNN raw 13.27 8.40×105 40.11%
RNN buckets 13.03 1.26×106 39.94%
RNN Fourier 12.35 8.33×105 40.40%

HM buckets 14.41 4.82×106 39.40%
LUX raw 13.61 4.13×106 39.55%
RNN Fourier 12.58 4.03×106 40.22%

Table 2: Experimental results. Top: development set; bottom:
test set. AIC is not comparable between the two splits. HM and
LUX are from McMahan and Stone (2015). We reimplemented
HM and re-ran LUX from publicly available code, confirming
all results to the reported precision except perplexity of LUX,
for which we obtained a figure of 13.72.

very rarely. The resulting dataset contains 2,176,417
pairs divided into training (1,523,108), development
(108,545), and test (544,764) sets.

Metrics We quantify model effectiveness with the
following evaluation metrics:

• Perplexity: The geometric mean of the recip-
rocal probability assigned by the model to the
descriptions in the dataset, conditioned on the
respective colors. This expresses the same ob-
jective as log conditional likelihood. We follow
McMahan and Stone (2015) in reporting per-
plexity per-description, not per-token as in the
language modeling literature.

• AIC: The Akaike information criterion
(Akaike, 1974) is given by AIC = 2` + 2k,
where ` is log likelihood and k is the total
number of real-valued parameters of the model
(e.g., weights and biases, or bucket proba-
bilities). This quantifies a tradeoff between
accurate modeling and model complexity.

• Accuracy: The percentage of most-likely de-
scriptions predicted by the model that exactly
match the description in the dataset (recall@1).

Results The top section of Table 2 shows devel-
opment set results comparing modeling effective-
ness for atomic and sequence model architectures

and different features. The Fourier feature transfor-
mation generally improves on raw HSV vectors and
discretized embeddings. The value of modeling de-
scriptions as sequences can also be observed in these
results; the LSTM models consistently outperform
their atomic counterparts.

Additional development set experiments (not
shown in Table 2) confirmed smaller design choices
for the recurrent architecture. We evaluated a model
with two LSTM layers, but we found that the model
with only one layer yielded better perplexity. We
also compared the LSTM with GRU and vanilla re-
current cells; we saw no significant difference be-
tween LSTM and GRU, while using a vanilla recur-
rent unit resulted in unstable training. Also note that
the color representation f is input to the model at ev-
ery time step in decoding. In our experiments, this
yielded a small but significant improvement in per-
plexity versus using the color representation as the
initial state.

Test set results appear in the bottom section. Our
best model outperforms both the histogram baseline
(HM) and the improved LUX model of McMahan
and Stone (2015), obtaining state-of-the-art results
on this task. Improvements are highly significant
on all metrics (p < 0.001, approximate permutation
test, R = 10,000 samples; Padó, 2006).

4 Analysis

Given the general success of LSTM-based mod-
els at generation tasks, it is perhaps not surprising
that they yield good raw performance when applied
to color description. The color domain, however,
has the advantage of admitting faithful visualiza-
tion of descriptions’ semantics: colors exist in a 3-
dimensional space, so a two-dimensional visualiza-
tion can show an acceptably complete picture of an
entire distribution over the space. We exploit this
to highlight three specific improvements our model
realizes over previous ones.

We construct visualizations by querying the
model for the probability S(d | c) of the same de-
scription for each color in a uniform grid, summing
the probabilities over the hue dimension (left cross-
section) and the saturation dimension (right cross-
section), normalizing them to sum to 1, and plotting
the log of the resulting values as a grayscale image.

2245

0

20

40

60

80

100

Li
g
h
tn
e
ss

0 20 40 60 80 100

Saturation

"light"

0

20

40

60

80

100

Li
g
h
tn
e
ss

0 20 40 60 80 100

Saturation

"bright"

0

20

40

60

80

100

Li
g
h
tn
e
ss

0 20 40 60 80 100

Saturation

"dark"

0

20

40

60

80

100

Li
g
h
tn
e
ss

0 20 40 60 80 100

Saturation

"dull"

Figure 2: Conditional likelihood of bare modifiers according to
our generation model as a function of color. White represents
regions of high likelihood. We omit the hue dimension, as these
modifiers do not express hue constraints.

Formally, each visualization is a pair of functions
(L,R), where

L(s, `) = log

[∫
dh S(d | c = (h, s, `))∫

dc′ S(d | c′)

]

R(h, `) = log

[∫
ds S(d | c = (h, s, `))∫

dc′ S(d | c′)

]

The maximum value of each function is plotted as
white, the minimum value is black, and intermediate
values linearly interpolated.

Learning modifiers Our model learns accurate
meanings of adjectival modifiers apart from the full
descriptions that contain them. We examine this in
Fig. 2, by plotting the probabilities assigned to the
bare modifiers “light”, “bright”, “dark”, and “dull”.
“Light” and “dark” unsurprisingly denote high and
low lightness, respectively. Less obviously, they
also exclude high-saturation colors. “Bright”, on the
other hand, features both high-lightness colors and
saturated colors—“bright yellow” can refer to the
prototypical yellow, whereas “light yellow” cannot.
Finally, “dull” denotes unsaturated colors in a vari-
ety of lightnesses.

Compositionality Our model generalizes to com-
positional descriptions not found in the training set.
Fig. 3 visualizes the probability assigned to the

0

20

40

60

80

100

Li
g
h
tn
e
ss

0 20 40 60 80 100

Saturation
0 60 120 180 240 300

Hue

"faded"

0

20

40

60

80

100

Li
g
h
tn
e
ss

0 20 40 60 80 100

Saturation
0 60 120 180 240 300

Hue

"teal"

0

20

40

60

80

100

Li
g
h
tn
e
ss

0 20 40 60 80 100

Saturation
0 60 120 180 240 300

Hue

"faded teal"

Figure 3: Conditional likelihood of “faded”, “teal”, and “faded
teal”. The two meaning components can be seen in the two
cross-sections: “faded” denotes a low saturation value, and
“teal” denotes hues near the center of the spectrum.

0

20

40

60

80

100

Li
g
h
tn
e
ss

0 20 40 60 80 100

Saturation
0 60 120 180 240 300

Hue

"greenish"

0

20

40

60

80

100

Li
g
h
tn
e
ss

0 20 40 60 80 100

Saturation
0 60 120 180 240 300

Hue

"greenish"

Figure 4: Conditional likelihood of “greenish” as a function of
color. The distribution is bimodal, including greenish yellows
and blues but not true greens. Top: LUX; bottom: our model.

novel utterance “faded teal”, along with “faded” and
“teal” individually. The meaning of “faded teal” is
intersective: “faded” colors are lower in saturation,
excluding the colors of the rainbow (the V on the
right side of the left panel); and “teal” denotes col-
ors with a hue near 180° (center of the right panel).

Non-convex denotations The Fourier feature
transformation and the nonlinearities in the model
allow it to capture a rich set of denotations. In partic-
ular, our model addresses the shortcoming identified
by McMahan and Stone (2015) that their model can-
not capture non-convex denotations. The description

2246

Color Top-1 Sample

(36, 86, 63) “orange” “ugly”
(177, 85, 26) “teal” “robin’s”
(29, 45, 71) “tan” “reddish green”
(196, 27, 71) “grey” “baby royal”

Table 3: Error analysis: some color descriptions sampled from
our model that are incorrect or incomplete.

“greenish” (Fig. 4) has such a denotation: “green-
ish” specifies a region of color space surrounding,
but not including, true greens.

Error analysis Table 3 shows some examples of
errors found in samples taken from the model. The
main type of error the system makes is ungrammati-
cal descriptions, particularly fragments lacking a ba-
sic color term (e.g., “robin’s”). Rarer are grammati-
cal but meaningless compositions (“reddish green”)
and false descriptions. When queried for its single
most likely prediction, argmaxd S(d | c), the result
is nearly always an acceptable, “safe” description—
manual inspection of 200 such top-1 predictions did
not identify any errors.

5 Conclusion and future work

We presented a model for generating composi-
tional color descriptions that is capable of produc-
ing novel descriptions not seen in training and sig-
nificantly outperforms prior work at conditional lan-
guage modeling.3 One natural extension is the
use of character-level sequence modeling to capture
complex morphology (e.g., “-ish” in “greenish”).
Kawakami et al. (2016) build character-level mod-
els for predicting colors given descriptions in addi-
tion to describing colors. Their model uses a Lab-
space color representation and uses the color to ini-
tialize the LSTM instead of feeding it in at each time
step; they also focus on visualizing point predictions
of their description-to-color model, whereas we ex-
amine the full distributions implied by our color-to-
description model.

Another extension we plan to investigate is mod-
eling of context, to capture how people describe col-
ors differently to contrast them with other colors via

3We release our code at https://github.com/
stanfordnlp/color-describer.

pragmatic reasoning (DeVault and Stone, 2007; Gol-
land et al., 2010; Monroe and Potts, 2015).

Acknowledgments

We thank Jiwei Li, Jian Zhang, Anusha Balakrish-
nan, and Daniel Ritchie for valuable advice and
discussions. This research was supported in part
by the Stanford Data Science Initiative, NSF BCS
1456077, and NSF IIS 1159679.

References

Hirotugu Akaike. 1974. A new look at the statistical
model identification. IEEE Transactions on Automatic
Control, 19(6):716–723.

Rami Al-Rfou, Guillaume Alain, Amjad Almahairi,
Christof Angermueller, Dzmitry Bahdanau, Nicolas
Ballas, et al. 2016. Theano: A Python framework for
fast computation of mathematical expressions. arXiv
preprint arXiv:1605.02688.

Brent Berlin and Paul Kay. 1991. Basic color terms:
Their universality and evolution. University of Cali-
fornia Press.

David DeVault and Matthew Stone. 2007. Managing
ambiguities across utterances in dialogue. In Ron Art-
stein and Laure Vieu, editors, Proceedings of DECA-
LOG 2007: Workshop on the Semantics and Pragmat-
ics of Dialogue.

Sander Dieleman, Jan Schlüter, Colin Raffel, Eben Ol-
son, Søren Kaae Sønderby, Daniel Nouri, et al. 2015.
Lasagne: First release.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In AISTATS.

Dave Golland, Percy Liang, and Dan Klein. 2010. A
game-theoretic approach to generating spatial descrip-
tions. In EMNLP.

Alex Graves. 2013. Generating sequences with recurrent
neural networks. arXiv preprint arXiv:1308.0850.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R. Salakhutdinov.
2012. Improving neural networks by preventing
co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

2247

Kazuya Kawakami, Chris Dyer, Bryan Routledge, and
Noah A. Smith. 2016. Character sequence models
for colorful words. In EMNLP.

Emiel Krahmer and Kees Van Deemter. 2012. Compu-
tational generation of referring expressions: A survey.
Computational Linguistics, 38(1):173–218.

Girish Kulkarni, Visruth Premraj, Sagnik Dhar, Siming
Li, Yejin Choi, Alexander C. Berg, et al. 2011. Baby
talk: Understanding and generating image descrip-
tions. In CVPR.

Brian McMahan and Matthew Stone. 2015. A Bayesian
model of grounded color semantics. Transactions of
the Association for Computational Linguistics, 3:103–
115.

Margaret Mitchell, Xufeng Han, Jesse Dodge, Alyssa
Mensch, Amit Goyal, Alex Berg, et al. 2012. Midge:
Generating image descriptions from computer vision
detections. In EACL.

Will Monroe and Christopher Potts. 2015. Learning in
the Rational Speech Acts model. In Proceedings of the
20th Amsterdam Colloquium.

Randall Munroe. 2010. Color survey results. Online at
http://blog.xkcd.com/2010/05/03/color-surveyresults.

Sebastian Padó, 2006. User’s guide to sigf:
Significance testing by approximate randomisa-
tion. http://www.nlpado.de/~sebastian/
software/sigf.shtml.

Dengsheng Zhang and Guojun Lu. 2002. Shape-based
image retrieval using generic Fourier descriptor. Sig-
nal Processing: Image Communication, 17(10):825–
848.

2248

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2249–2255,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

A Decomposable Attention Model for Natural Language Inference

Ankur P. Parikh
Google

New York, NY

Oscar Täckström
Google

New York, NY

Dipanjan Das
Google

New York, NY

Jakob Uszkoreit
Google

Mountain View, CA

{aparikh,oscart,dipanjand,uszkoreit}@google.com

Abstract

We propose a simple neural architecture for nat-
ural language inference. Our approach uses at-
tention to decompose the problem into subprob-
lems that can be solved separately, thus making
it trivially parallelizable. On the Stanford Natu-
ral Language Inference (SNLI) dataset, we ob-
tain state-of-the-art results with almost an order
of magnitude fewer parameters than previous
work and without relying on any word-order in-
formation. Adding intra-sentence attention that
takes a minimum amount of order into account
yields further improvements.

1 Introduction
Natural language inference (NLI) refers to the prob-
lem of determining entailment and contradiction re-
lationships between a premise and a hypothesis. NLI
is a central problem in language understanding (Katz,
1972; Bos and Markert, 2005; van Benthem, 2008;
MacCartney and Manning, 2009) and recently the
large SNLI corpus of 570K sentence pairs was cre-
ated for this task (Bowman et al., 2015). We present
a new model for NLI and leverage this corpus for
comparison with prior work.

A large body of work based on neural networks
for text similarity tasks including NLI has been pub-
lished in recent years (Hu et al., 2014; Rocktäschel
et al., 2016; Wang and Jiang, 2016; Yin et al., 2016,
inter alia). The dominating trend in these models is
to build complex, deep text representation models,
for example, with convolutional networks (LeCun et
al., 1990, CNNs henceforth) or long short-term mem-
ory networks (Hochreiter and Schmidhuber, 1997,

LSTMs henceforth) with the goal of deeper sen-
tence comprehension. While these approaches have
yielded impressive results, they are often computa-
tionally very expensive, and result in models having
millions of parameters (excluding embeddings).

Here, we take a different approach, arguing that
for natural language inference it can often suffice to
simply align bits of local text substructure and then
aggregate this information. For example, consider
the following sentences:

• Bob is in his room, but because of the thunder
and lightning outside, he cannot sleep.

• Bob is awake.

• It is sunny outside.

The first sentence is complex in structure and it
is challenging to construct a compact representation
that expresses its entire meaning. However, it is fairly
easy to conclude that the second sentence follows
from the first one, by simply aligning Bob with Bob
and cannot sleep with awake and recognizing that
these are synonyms. Similarly, one can conclude
that It is sunny outside contradicts the first sentence,
by aligning thunder and lightning with sunny and
recognizing that these are most likely incompatible.

We leverage this intuition to build a simpler and
more lightweight approach to NLI within a neural
framework; with considerably fewer parameters, our
model outperforms more complex existing neural ar-
chitectures. In contrast to existing approaches, our
approach only relies on alignment and is fully com-
putationally decomposable with respect to the input
text. An overview of our approach is given in Fig-
ure 1. Given two sentences, where each word is repre-

2249

sented by an embedding vector, we first create a soft
alignment matrix using neural attention (Bahdanau
et al., 2015). We then use the (soft) alignment to
decompose the task into subproblems that are solved
separately. Finally, the results of these subproblems
are merged to produce the final classification. In ad-
dition, we optionally apply intra-sentence attention
(Cheng et al., 2016) to endow the model with a richer
encoding of substructures prior to the alignment step.

Asymptotically our approach does the same total
work as a vanilla LSTM encoder, while being triv-
ially parallelizable across sentence length, which can
allow for considerable speedups in low-latency set-
tings. Empirical results on the SNLI corpus show that
our approach achieves state-of-the-art results, while
using almost an order of magnitude fewer parameters
compared to complex LSTM-based approaches.

2 Related Work
Our method is motivated by the central role played by
alignment in machine translation (Koehn, 2009) and
previous approaches to sentence similarity modeling
(Haghighi et al., 2005; Das and Smith, 2009; Chang
et al., 2010; Fader et al., 2013), natural language
inference (Marsi and Krahmer, 2005; MacCartney
et al., 2006; Hickl and Bensley, 2007; MacCartney
et al., 2008), and semantic parsing (Andreas et al.,
2013). The neural counterpart to alignment, atten-
tion (Bahdanau et al., 2015), which is a key part
of our approach, was originally proposed and has
been predominantly used in conjunction with LSTMs
(Rocktäschel et al., 2016; Wang and Jiang, 2016) and
to a lesser extent with CNNs (Yin et al., 2016). In
contrast, our use of attention is purely based on word
embeddings and our method essentially consists of
feed-forward networks that operate largely indepen-
dently of word order.

3 Approach
Let a = (a1, . . . , a`a) and b = (b1, . . . , b`b) be
the two input sentences of length `a and `b, re-
spectively. We assume that each ai, bj ∈ Rd

is a word embedding vector of dimension d and
that each sentence is prepended with a “NULL”
token. Our training data comes in the form of
labeled pairs {a(n),b(n),y(n)}Nn=1, where y(n) =

(y
(n)
1 , . . . , y

(n)
C) is an indicator vector encoding the

label and C is the number of output classes. At test

 H ()+ +…+=ŷ

in
the

park
alice

plays

so
m

eo
ne

pl
ay

in
g

m
us

ic

ou
ts

id
e

flute
a

solo
G (,)

G (,)

park outside

alice someone

flute+ 
solo music

…

G (,)=

=

=
flute music

F (,)

Figure 1: Pictoral overview of the approach, showing the Attend

(left), Compare (center) and Aggregate (right) steps.

time, we receive a pair of sentences (a,b) and our
goal is to predict the correct label y.

Input representation. Let ā = (ā1, . . . , ā`a) and
b̄ = (b̄1, . . . , b̄`b) denote the input representation of
each fragment that is fed to subsequent steps of the
algorithm. The vanilla version of our model simply
defines ā := a and b̄ := b. With this input rep-
resentation, our model does not make use of word
order. However, we discuss an extension using intra-
sentence attention in Section 3.4 that uses a minimal
amount of sequence information.

The core model consists of the following three
components (see Figure 1), which are trained jointly:

Attend. First, soft-align the elements of ā and b̄
using a variant of neural attention (Bahdanau et al.,
2015) and decompose the problem into the compari-
son of aligned subphrases.

Compare. Second, separately compare each
aligned subphrase to produce a set of vectors
{v1,i}`ai=1 for a and {v2,j}`bj=1 for b. Each v1,i is
a nonlinear combination of ai and its (softly) aligned
subphrase in b (and analogously for v2,j).

Aggregate. Finally, aggregate the sets {v1,i}`ai=1

and {v2,j}`bj=1 from the previous step and use the
result to predict the label ŷ.

3.1 Attend
We first obtain unnormalized attention weights eij ,
computed by a function F ′, which decomposes as:

eij := F ′(āi, b̄j) := F (āi)
TF (b̄j) . (1)

This decomposition avoids the quadratic complexity
that would be associated with separately applying F ′

`a × `b times. Instead, only `a + `b applications of
F are needed. We take F to be a feed-forward neural
network with ReLU activations (Glorot et al., 2011).

2250

These attention weights are normalized as follows:

βi :=

`b∑

j=1

exp(eij)∑`b
k=1 exp(eik)

b̄j ,

αj :=

`a∑

i=1

exp(eij)∑`a
k=1 exp(ekj)

āi . (2)

Here βi is the subphrase in b̄ that is (softly) aligned
to āi and vice versa for αj .

3.2 Compare
Next, we separately compare the aligned phrases
{(āi, βi)}`ai=1 and {(b̄j , αj)}`bj=1 using a function G,
which in this work is again a feed-forward network:

v1,i := G([āi, βi]) ∀i ∈ [1, . . . , `a] ,

v2,j := G([b̄j , αj]) ∀j ∈ [1, . . . , `b] . (3)

where the brackets [·, ·] denote concatenation. Note
that since there are only a linear number of terms in
this case, we do not need to apply a decomposition
as was done in the previous step. Thus G can jointly
take into account both āi, and βi.

3.3 Aggregate
We now have two sets of comparison vectors
{v1,i}`ai=1 and {v2,j}`bj=1. We first aggregate over
each set by summation:

v1 =

`a∑

i=1

v1,i , v2 =

`b∑

j=1

v2,j . (4)

and feed the result through a final classifier H , that
is a feed forward network followed by a linear layer:

ŷ = H([v1,v2]) , (5)

where ŷ ∈ RC represents the predicted (unnormal-
ized) scores for each class and consequently the pre-
dicted class is given by ŷ = argmaxiŷi.

For training, we use multi-class cross-entropy loss
with dropout regularization (Srivastava et al., 2014):

L(θF , θG, θH) =
1

N

N∑

n=1

C∑

c=1

y(n)c log
exp(ŷc)∑C

c′=1 exp(ŷc′)
.

Here θF , θG, θH denote the learnable parameters of
the functions F, G and H, respectively.

3.4 Intra-Sentence Attention (Optional)
In the above model, the input representations are
simple word embeddings. However, we can augment
this input representation with intra-sentence attention
to encode compositional relationships between words
within each sentence, as proposed by Cheng et al.
(2016). Similar to Eqs. 1 and 2, we define

fij := Fintra(ai)
TFintra(aj) , (6)

where Fintra is a feed-forward network. We then cre-
ate the self-aligned phrases

a′i :=

`a∑

j=1

exp(fij + di−j)∑`a
k=1 exp(fik + di−k)

aj . (7)

The distance-sensitive bias terms di−j ∈ R provides
the model with a minimal amount of sequence infor-
mation, while remaining parallelizable. These terms
are bucketed such that all distances greater than 10
words share the same bias. The input representation
for subsequent steps is then defined as āi := [ai, a

′
i]

and analogously b̄i := [bi, b
′
i].

4 Computational Complexity
We now discuss the asymptotic complexity of our
approach and how it offers a higher degree of par-
allelism than LSTM-based approaches. Recall that
d denotes embedding dimension and ` means sen-
tence length. For simplicity we assume that all hid-
den dimensions are d and that the complexity of
matrix(d× d)-vector(d× 1) multiplication is O(d2).

A key assumption of our analysis is that ` < d,
which we believe is reasonable and is true of the
SNLI dataset (Bowman et al., 2015) where ` < 80,
whereas recent LSTM-based approaches have used
d ≥ 300. This assumption allows us to bound the
complexity of computing the `2 attention weights.

Complexity of LSTMs. The complexity of an
LSTM cell is O(d2), resulting in a complexity of
O(`d2) to encode the sentence. Adding attention as
in Rocktäschel et al. (2016) increases this complexity
to O(`d2 + `2d).

Complexity of our Approach. Application of a
feed-forward network requires O(d2) steps. Thus,
the Compare and Aggregate steps have complexity
O(`d2) and O(d2) respectively. For the Attend step,

2251

Method Train Acc Test Acc #Parameters

Lexicalized Classifier (Bowman et al., 2015) 99.7 78.2 –

300D LSTM RNN encoders (Bowman et al., 2016) 83.9 80.6 3.0M
1024D pretrained GRU encoders (Vendrov et al., 2015) 98.8 81.4 15.0M
300D tree-based CNN encoders (Mou et al., 2015) 83.3 82.1 3.5M
300D SPINN-PI encoders (Bowman et al., 2016) 89.2 83.2 3.7M

100D LSTM with attention (Rocktäschel et al., 2016) 85.3 83.5 252K
300D mLSTM (Wang and Jiang, 2016) 92.0 86.1 1.9M
450D LSTMN with deep attention fusion (Cheng et al., 2016) 88.5 86.3 3.4M

Our approach (vanilla) 89.5 86.3 382K
Our approach with intra-sentence attention 90.5 86.8 582K

Table 1: Train/test accuracies on the SNLI dataset and number of parameters (excluding embeddings) for each approach.

Method N E C

Bowman et al. (2016) 80.6 88.2 85.5
Wang and Jiang (2016) 81.6 91.6 87.4
Our approach (vanilla) 83.6 91.3 85.8
Our approach w/ intra att. 83.7 92.1 86.7

Table 2: Breakdown of accuracy with respect to classes on SNLI

development set. N=neutral, E=entailment, C=contradiction.

F is evaluated O(`) times, giving a complexity of
O(`d2). Each attention weight eij requires one dot
product, resulting in a complexity of O(`2d).

Thus the total complexity of the model is O(`d2 +
`2d), which is equal to that of an LSTM with atten-
tion. However, note that with the assumption that
` < d, this becomes O(`d2) which is the same com-
plexity as a regular LSTM. Moreover, unlike the
LSTM, our approach has the advantage of being par-
allelizable over `, which can be useful at test time.

5 Experiments

We evaluate our approach on the Stanford Natural
Language Inference (SNLI) dataset (Bowman et al.,
2015). Given a sentences pair (a,b), the task is to
predict whether b is entailed by a, b contradicts a,
or whether their relationship is neutral.

5.1 Implementation Details

The method was implemented in TensorFlow (Abadi
et al., 2015).

Data preprocessing: Following Bowman et al.
(2015), we remove examples labeled “–” (no gold
label) from the dataset, which leaves 549,367 pairs

for training, 9,842 for development, and 9,824 for
testing. We use the tokenized sentences from the
non-binary parse provided in the dataset and prepend
each sentence with a “NULL” token. During training,
each sentence was padded up to the maximum length
of the batch for efficient training (the padding was
explicitly masked out so as not to affect the objec-
tive/gradients). For efficient batching in TensorFlow,
we semi-sorted the training data to first contain ex-
amples where both sentences had length less than
20, followed by those with length less than 50, and
then the rest. This ensured that most training batches
contained examples of similar length.

Embeddings: We use 300 dimensional GloVe
embeddings (Pennington et al., 2014) to represent
words. Each embedding vector was normalized to
have `2 norm of 1 and projected down to 200 di-
mensions, a number determined via hyperparameter
tuning. Out-of-vocabulary (OOV) words are hashed
to one of 100 random embeddings each initialized
to mean 0 and standard deviation 1. All embeddings
remain fixed during training, but the projection ma-
trix is trained. All other parameter weights (hidden
layers etc.) were initialized from random Gaussians
with mean 0 and standard deviation 0.01.

Each hyperparameter setting was run on a sin-
gle machine with 10 asynchronous gradient-update
threads, using Adagrad (Duchi et al., 2011) for opti-
mization with the default initial accumulator value of
0.1. Dropout regularization (Srivastava et al., 2014)
was used for all ReLU layers, but not for the final
linear layer. We additionally tuned the following
hyperparameters and present their chosen values in

2252

ID Sentence 1 Sentence 2 DA (vanilla) DA (intra att.) SPINN-PI mLSTM Gold

A
Two kids are standing in the ocean hugging
each other.

Two kids enjoy their day at the beach. N N E E N

B
A dancer in costumer performs on stage while
a man watches.

the man is captivated N N E E N

C They are sitting on the edge of a fountain The fountain is splashing the persons seated. N N C C N

D Two dogs play with tennis ball in field. Dogs are watching a tennis match. N C C C C

E
Two kids begin to make a snowman on a sunny
winter day.

Two penguins making a snowman. N C C C C

F
The horses pull the carriage, holding people
and a dog, through the rain.

Horses ride in a carriage pulled by a dog. E E C C C

G
A woman closes her eyes as she plays her
cello.

The woman has her eyes open. E E E E C

H
Two women having drinks and smoking
cigarettes at the bar.

Three women are at a bar. E E E E C

I A band playing with fans watching. A band watches the fans play E E E E C

Table 3: Example wins and losses compared to other approaches. DA (Decomposable Attention) refers to our approach while

SPINN-PI and mLSTM are previously developed methods (see Table 1).

parentheses: network size (2-layers, each with 200
neurons), batch size (4), 1 dropout ratio (0.2) and
learning rate (0.05–vanilla, 0.025–intra-attention).
All settings were run for 50 million steps (each step
indicates one batch) but model parameters were saved
frequently as training progressed and we chose the
model that did best on the development set.

5.2 Results

Results in terms of 3-class accuracy are shown in
Table 1. Our vanilla approach achieves state-of-the-
art results with almost an order of magnitude fewer
parameters than the LSTMN of Cheng et al. (2016).
Adding intra-sentence attention gives a considerable
improvement of 0.5 percentage points over the ex-
isting state of the art. Table 2 gives a breakdown of
accuracy on the development set showing that most
of our gains stem from neutral, while most losses
come from contradiction pairs.

Table 3 shows some wins and losses. Examples A-
C are cases where both variants of our approach are
correct while both SPINN-PI (Bowman et al., 2016)
and the mLSTM (Wang and Jiang, 2016) are incor-
rect. In the first two cases, both sentences contain
phrases that are either identical or highly lexically
related (e.g. “Two kids” and “ocean / beach”) and our
approach correctly favors neutral in these cases. In
Example C, it is possible that relying on word-order
may confuse SPINN-PI and the mLSTM due to how
“fountain” is the object of a preposition in the first
sentence but the subject of the second.

The second set of examples (D-F) are cases where

116 or 32 also work well and are a bit more stable.

our vanilla approach is incorrect but mLSTM and
SPINN-PI are correct. Example F requires sequen-
tial information and neither variant of our approach
can predict the correct class. Examples D-E are in-
teresting however, since they don’t require word or-
der information, yet intra-attention seems to help.
We suspect this may be because the word embed-
dings are not fine-grained enough for the algorithm
to conclude that “play/watch” is a contradiction, but
intra-attention, by adding an extra layer of composi-
tion/nonlinearity to incorporate context, compensates
for this.

Finally, Examples G-I are cases that all methods
get wrong. The first is actually representative of many
examples in this category where there is one critical
word that separates the two sentences (close vs open
in this case) and goes unnoticed by the algorithms.
Examples H requires inference about numbers and
Example I needs sequence information.

6 Conclusion
We presented a simple attention-based approach to
natural language inference that is trivially paralleliz-
able. The approach outperforms considerably more
complex neural methods aiming for text understand-
ing. Our results suggest that, at least for this task,
pairwise comparisons are relatively more important
than global sentence-level representations.

Acknowledgements
We thank Slav Petrov, Tom Kwiatkowski, Yoon Kim,
Erick Fonseca, Mark Neumann for useful discussion
and Sam Bowman and Shuohang Wang for providing
us their model outputs for error analysis.

2253

References
[Abadi et al.2015] Martı́n Abadi, Ashish Agarwal, Paul

Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, et al. 2015. TensorFlow: Large-scale machine
learning on heterogeneous systems. Software available
from tensorflow. org.

[Andreas et al.2013] Jacob Andreas, Andreas Vlachos,
and Stephen Clark. 2013. Semantic parsing as ma-
chine translation. In Proceedings of ACL.

[Bahdanau et al.2015] Dzmitry Bahdanau, Kyunghyun
Cho, and Yoshua Bengio. 2015. Neural machine trans-
lation by jointly learning to align and translate. In
Proceedings of ICLR.

[Bos and Markert2005] Johan Bos and Katja Markert.
2005. Recognising textual entailment with logical in-
ference. In Proceedings of EMNLP.

[Bowman et al.2015] Samuel R. Bowman, Gabor Angeli,
Christopher Potts, and Christopher D. Manning. 2015.
A large annotated corpus for learning natural language
inference. In Proceedings of EMNLP.

[Bowman et al.2016] Samuel R. Bowman, Jon Gauthier,
Abhinav Rastogi, Raghav Gupta, Christopher D. Man-
ning, and Christopher Potts. 2016. A fast unified model
for parsing and sentence understanding. In Proceedings
of ACL.

[Chang et al.2010] Ming-Wei Chang, Dan Goldwasser,
Dan Roth, and Vivek Srikumar. 2010. Discrimina-
tive learning over constrained latent representations. In
Proceedings of HLT-NAACL.

[Cheng et al.2016] Jianpeng Cheng, Li Dong, and Mirella
Lapata. 2016. Long short-term memory-networks for
machine reading. In Proceedings of EMNLP.

[Das and Smith2009] Dipanjan Das and Noah A. Smith.
2009. Paraphrase identification as probabilistic quasi-
synchronous recognition. In Proceedings of ACL-
IJCNLP.

[Duchi et al.2011] John Duchi, Elad Hazan, and Yoram
Singer. 2011. Adaptive subgradient methods for online
learning and stochastic optimization. The Journal of
Machine Learning Research, 12:2121–2159.

[Fader et al.2013] Anthony Fader, Luke S Zettlemoyer,
and Oren Etzioni. 2013. Paraphrase-driven learning
for open question answering. In Proceedings of ACL.

[Glorot et al.2011] Xavier Glorot, Antoine Bordes, and
Yoshua Bengio. 2011. Deep sparse rectifier neural
networks. In Proceedings of AISTATS.

[Haghighi et al.2005] Aria D. Haghighi, Andrew Y. Ng,
and Christopher D. Manning. 2005. Robust textual
inference via graph matching. In Proceedings of HLT-
NAACL.

[Hickl and Bensley2007] Andrew Hickl and Jeremy Bens-
ley. 2007. A discourse commitment-based framework

for recognizing textual entailment. In Proceedings of
the ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing. Association for Computational Linguis-
tics.

[Hochreiter and Schmidhuber1997] Sepp Hochreiter and
Jürgen Schmidhuber. 1997. Long short-term memory.
Neural computation, 9(8):1735–1780.

[Hu et al.2014] Baotian Hu, Zhengdong Lu, Hang Li, and
Qingcai Chen. 2014. Convolutional neural network
architectures for matching natural language sentences.
In Advances in NIPS.

[Katz1972] Jerrold J. Katz. 1972. Semantic theory.
Harper & Row.

[Koehn2009] Philipp Koehn. 2009. Statistical machine
translation. Cambridge University Press.

[LeCun et al.1990] Y. LeCun, B. Boser, J.S. Denker,
D. Henderson, R.E. Howard, W. Hubbard, and L.D.
Jackel. 1990. Handwritten digit recognition with a
back-propagation network. In Advances in NIPS.

[MacCartney and Manning2009] Bill MacCartney and
Christopher D. Manning. 2009. An extended model of
natural logic. In Proceedings of the IWCS.

[MacCartney et al.2006] Bill MacCartney, Trond
Grenager, Marie-Catherine de Marneffe, Daniel Cer,
and Christopher D Manning. 2006. Learning to
recognize features of valid textual entailments. In
Proceedings of HLT-NAACL.

[MacCartney et al.2008] Bill MacCartney, Michel Galley,
and Christopher D Manning. 2008. A phrase-based
alignment model for natural language inference. In
Proceedings of EMNLP.

[Marsi and Krahmer2005] Erwin Marsi and Emiel Krah-
mer. 2005. Classification of semantic relations by
humans and machines. In Proceedings of the ACL
workshop on Empirical Modeling of Semantic Equiva-
lence and Entailment.

[Mou et al.2015] Lili Mou, Men Rui, Ge Li, Yan Xu,
Lu Zhang, Rui Yan, and Zhi Jin. 2015. Natural lan-
guage inference by tree-based convolution and heuristic
matching. In Proceedings of ACL (short papers).

[Pennington et al.2014] Jeffrey Pennington, Richard
Socher, and Christopher D. Manning. 2014. GloVe:
Global vectors for word representation. In Proceedings
of EMNLP.

[Rocktäschel et al.2016] Tim Rocktäschel, Edward
Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ,
and Phil Blunsom. 2016. Reasoning about entailment
with neural attention. In Proceedings of ICLR.

[Srivastava et al.2014] Nitish Srivastava, Geoffrey Hinton,
Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. 2014. Dropout: A simple way to prevent neural
networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958.

2254

[van Benthem2008] Johan van Benthem. 2008. A brief
history of natural logic. College Publications.

[Vendrov et al.2015] Ivan Vendrov, Ryan Kiros, Sanja Fi-
dler, and Raquel Urtasun. 2015. Order-embeddings of
images and language. In Proceedings of ICLR.

[Wang and Jiang2016] Shuohang Wang and Jing Jiang.
2016. Learning natural language inference with LSTM.
In Proceedings of NAACL.

[Yin et al.2016] Wenpeng Yin, Hinrich Schütze, Bing Xi-
ang, and Bowen Zhou. 2016. ABCNN: Attention-
based convolutional neural network for modeling sen-
tence pairs. In Transactions of the Association of Com-
putational Linguistics.

2255

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2256–2262,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Deep Reinforcement Learning for Mention-Ranking Coreference Models

Kevin Clark
Computer Science Department

Stanford University
kevclark@cs.stanford.edu

Christopher D. Manning
Computer Science Department

Stanford University
manning@cs.stanford.edu

Abstract

Coreference resolution systems are typically
trained with heuristic loss functions that re-
quire careful tuning. In this paper we in-
stead apply reinforcement learning to directly
optimize a neural mention-ranking model for
coreference evaluation metrics. We experi-
ment with two approaches: the REINFORCE
policy gradient algorithm and a reward-
rescaled max-margin objective. We find the
latter to be more effective, resulting in a sig-
nificant improvement over the current state-
of-the-art on the English and Chinese portions
of the CoNLL 2012 Shared Task.

1 Introduction

Coreference resolution systems typically operate by
making sequences of local decisions (e.g., adding
a coreference link between two mentions). How-
ever, most measures of coreference resolution per-
formance do not decompose over local decisions,
which means the utility of a particular decision is
not known until all other decisions have been made.

Due to this difficulty, coreference systems are
usually trained with loss functions that heuristically
define the goodness of a particular coreference deci-
sion. These losses contain hyperparameters that are
carefully selected to ensure the model performs well
according to coreference evaluation metrics. This
complicates training, especially across different lan-
guages and datasets where systems may work best
with different settings of the hyperparameters.

To address this, we explore using two variants of
reinforcement learning to directly optimize a coref-
erence system for coreference evaluation metrics. In

particular, we modify the max-margin coreference
objective proposed by Wiseman et al. (2015) by in-
corporating the reward associated with each coref-
erence decision into the loss’s slack rescaling. We
also test the REINFORCE policy gradient algorithm
(Williams, 1992).

Our model is a neural mention-ranking model.
Mention-ranking models score pairs of mentions for
their likelihood of coreference rather than compar-
ing partial coreference clusters. Hence they operate
in a simple setting where coreference decisions are
made independently. Although they are less expres-
sive than entity-centric approaches to coreference
(e.g., Haghighi and Klein, 2010), mention-ranking
models are fast, scalable, and simple to train, caus-
ing them to be the dominant approach to coreference
in recent years (Durrett and Klein, 2013; Wiseman
et al., 2015). Having independent actions is partic-
ularly useful when applying reinforcement learning
because it means a particular action’s effect on the
final reward can be computed efficiently.

We evaluate the models on the English and Chi-
nese portions of the CoNLL 2012 Shared Task. The
REINFORCE algorithm is competitive with a heuris-
tic loss function while the reward-rescaled objective
significantly outperforms both1. We attribute this to
reward rescaling being well suited for a ranking task
due to its max-margin loss as well as benefiting from
directly optimizing for coreference metrics. Error
analysis shows that using the reward-rescaling loss
results in a similar number of mistakes as the heuris-
tic loss, but the mistakes tend to be less severe.

1Code and trained models are available at
https://github.com/clarkkev/deep-coref.

2256

2 Neural Mention-Ranking Model

We use the neural mention-ranking model described
in Clark and Manning (2016), which we briefly
go over in this section. Given a mention m and
candidate antecedent c, the mention-ranking model
produces a score for the pair s(c,m) indicating their
compatibility for coreference with a feedforward
neural network. The candidate antecedent may be
any mention that occurs before m in the document
or NA, indicating that m has no antecedent.

Input Layer. For each mention, the model extracts
various words (e.g., the mention’s head word) and
groups of words (e.g., all words in the mention’s
sentence) that are fed into the neural network. Each
word is represented by a vector wi ∈ Rdw . Each
group of words is represented by the average of the
vectors of each word in the group. In addition to
the embeddings, a small number of additional fea-
tures are used, including distance, string matching,
and speaker identification features. See Clark and
Manning (2016) for the full set of features and an
ablation study.

These features are concatenated to produce an I-
dimensional vector h0, the input to the neural net-
work. If c = NA, features defined over pairs of
mentions are not included. For this case, we train
a separate network with an identical architecture to
the pair network except for the input layer to pro-
duce anaphoricity scores.

Hidden Layers. The input gets passed through three
hidden layers of rectified linear (ReLU) units (Nair
and Hinton, 2010). Each unit in a hidden layer is
fully connected to the previous layer:

hi(c,m) = max(0,Wihi−1(c,m) + bi)

whereW1 is aM1×I weight matrix,W2 is aM2×
M1 matrix, andW3 is a M3 ×M2 matrix.

Scoring Layer. The final layer is a fully connected
layer of size 1:

s(c,m) = W4h3(c,m) + b4

where W4 is a 1 ×M3 weight matrix. At test time,
the mention-ranking model links each mention with
its highest scoring candidate antecedent.

3 Learning Algorithms

Mention-ranking models are typically trained with
heuristic loss functions that are tuned via hyperpa-
rameters. These hyperparameters are usually given
as costs for different error types, which are used to
bias the coreference system towards making more
or fewer coreference links. In this section we first
describe a heuristic loss function incorporating this
idea from Wiseman et al. (2015). We then propose
new training procedures based on reinforcement
learning that instead directly optimize for corefer-
ence evaluation metrics.

3.1 Heuristic Max-Margin Objective

The heuristic loss from Wiseman et al. is governed
by the following error types, which were first pro-
posed by Durrett et al. (2013).

Suppose the training set consists of N mentions
m1,m2, ...,mN . Let C(mi) denote the set of can-
didate antecedents of a mention mi (i.e., mentions
preceding mi and NA) and T (mi) denote the set of
true antecedents of mi (i.e., mentions preceding mi

that are coreferent with it or {NA} if mi has no an-
tecedent). Then we define the following costs for
linking mi to a candidate antecedent c ∈ C(mi):

∆h(c,mi) =

αFN if c = NA ∧ T (mi) 6= {NA}
αFA if c 6= NA ∧ T (mi) = {NA}
αWL if c 6= NA ∧ a /∈ T (mi)

0 if a ∈ T (mi)

for “false new,” “false anaphor,” “wrong link”, and
correct coreference decisions.

The heuristic loss is a slack-rescaled max-margin
objective parameterized by these error costs. Let t̂i
be the highest scoring true antecedent of mi:

t̂i = argmax
c∈C(mi)∧∆h(c,mi)=0

s(c,mi)

Then the heuristic loss is given as

L(θ) =
N∑
i=1

max
c∈C(mi)

∆h(c,mi)(1 + s(c,mi)− s(t̂i,mi))

Finding Effective Error Penalties. We fix
αWL = 1.0 and search for αFA and αFN out of
{0.1, 0.2, ..., 1.5}with a variant of grid search. Each
new trial uses the unexplored set of hyperparame-

2257

ters that has the closest Manhattan distance to the
best setting found so far on the dev set. The search
is halted when all immediate neighbors (within 0.1
distance) of the best setting have been explored. We
found (αFN, αFA, αWL) = (0.8, 0.4, 1.0) to be best
for English and (αFN, αFA, αWL) = (0.8, 0.5, 1.0) to
be best for Chinese on the CoNLL 2012 data.

3.2 Reinforcement Learning

Finding the best hyperparameter settings for the
heuristic loss requires training many variants of the
model, and at best results in an objective that is
correlated with coreference evaluation metrics. To
address this, we pose mention ranking in the rein-
forcement learning framework (Sutton and Barto,
1998) and propose methods that directly optimize
the model for coreference metrics.

We can view the mention-ranking model as
an agent taking a series of actions a1:T =
a1, a2, ..., aT , where T is the number of mentions
in the current document. Each action ai links the
ith mention in the document mi to a candidate an-
tecedent. Formally, we denote the set of actions
available for the ith mention as Ai = {(c,mi) :
c ∈ C(mi)}, where an action (c,m) adds a corefer-
ence link between mentions m and c. The mention-
ranking model assigns each action the score s(c,m)
and takes the highest-scoring action at each step.

Once the agent has executed a sequence of ac-
tions, it observes a reward R(a1:T), which can be
any function. We use the B3 coreference metric for
this reward (Bagga and Baldwin, 1998). Although
our system evaluation also includes the MUC (Vi-
lain et al., 1995) and CEAFφ4 (Luo, 2005) metrics,
we do not incorporate them into the loss because
MUC has the flaw of treating all errors equally and
CEAFφ4 is slow to compute.

Reward Rescaling. Crucially, the actions taken
by a mention-ranking model are independent. This
means it is possible to change any action ai to a dif-
ferent one a′i ∈ Ai and see what reward the model
would have gotten by taking that action instead:
R(a1, ..., ai−1, a

′
i, ai+1, ..., aT). We use this idea to

improve the slack-rescaling parameter ∆ in the max-
margin loss L(θ). Instead of setting its value based
on the error type, we compute exactly how much

each action hurts the final reward:

∆r(c,mi) = −R(a1, ..., (c,mi), ..., aT)

+ max
a′i∈Ai

R(a1, ..., a
′
i, ..., aT)

where a1:T is the highest scoring sequence of actions
according to the model’s current parameters. Other-
wise the model is trained in the same way as with
the heuristic loss.

The REINFORCE Algorithm. We also explore
using the REINFORCE policy gradient algorithm
(Williams, 1992). We can define a probability dis-
tribution over actions using the mention-ranking
model’s scoring function as follows:

pθ(a) ∝ es(c,m)

for any action a = (c,m). The REINFORCE algo-
rithm seeks to maximize the expected reward

J(θ) = E[a1:T∼pθ]R(a1:T)

It does this through gradient ascent. Computing the
full gradient is prohibitive because of the expecta-
tion over all possible action sequences, which is ex-
ponential in the length of the sequence. Instead, it
gets an unbiased estimate of the gradient by sam-
pling a sequence of actions a1:T according to pθ and
computing the gradient only over the sample.

We take advantage of the independence of actions
by using the following gradient estimate, which has
lower variance than the standard REINFORCE gradi-
ent estimate.

∇θ J(θ) ≈
T∑
i=1

∑
a′i∈Ai

[∇θ pθ(a′i)](R(a1, ..., a
′
i, ..., aT)− bi)

where bi is a baseline used to reduce the variance,
which we set to Ea′i∈Ai∼pθ R(a1, ..., a

′
i, ..., aT).

4 Experiments and Results

We run experiments on the English and Chinese por-
tions of the CoNLL 2012 Shared Task data (Prad-
han et al., 2012) and evaluate with the MUC, B3,
and CEAFφ4 metrics. Our experiments were run us-
ing predicted mentions from Stanford’s rule-based
coreference system (Raghunathan et al., 2010).

We follow the training methodology from Clark
and Manning (2016): hidden layers of sizes M1

= 1000, M2 = M3 = 500, the RMSprop optimizer

2258

MUC B3 CEAFφ4

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Avg. F1

CoNLL 2012 English Test Data

Wiseman et al. (2016) 77.49 69.75 73.42 66.83 56.95 61.50 62.14 53.85 57.70 64.21
Clark & Manning (2016) 79.91 69.30 74.23 71.01 56.53 62.95 63.84 54.33 58.70 65.29

Heuristic Loss 79.63 70.25 74.65 69.21 57.87 63.03 63.62 53.97 58.40 65.36
REINFORCE 80.08 69.61 74.48 70.70 56.96 63.09 63.59 54.46 58.67 65.41
Reward Rescaling 79.19 70.44 74.56 69.93 57.99 63.40 63.46 55.52 59.23 65.73

CoNLL 2012 Chinese Test Data

Björkelund & Kuhn (2014) 69.39 62.57 65.80 61.64 53.87 57.49 59.33 54.65 56.89 60.06
Clark & Manning (2016) 74.45 64.73 69.25 68.71 55.54 61.43 63.14 57.48 60.18 63.62

Heuristic Loss 72.20 66.51 69.24 64.71 58.16 61.26 61.98 58.41 60.14 63.54
REINFORCE 74.05 65.38 69.44 67.52 56.43 61.48 62.38 57.77 59.98 63.64
Reward Rescaling 73.64 65.62 69.40 67.48 56.94 61.76 62.46 58.60 60.47 63.88

Table 1: Comparison of the methods together with other state-of-the-art approaches on the test sets.

(Hinton and Tieleman, 2012), dropout (Hinton et al.,
2012) with a rate of 0.5, and pretraining with the all
pairs classification and top pairs classification tasks.
However, we improve on the previous system by us-
ing using better mention detection, more effective
hyperparameters, and more epochs of training.

4.1 Results

We compare the heuristic loss, REINFORCE, and re-
ward rescaling approaches on both datasets. We find
that REINFORCE does slightly better than the heuris-
tic loss, but reward rescaling performs significantly
better than both across both languages.

We attribute the modest improvement of REIN-
FORCE to it being poorly suited for a ranking
task. During training it optimizes the model’s per-
formance in expectation, but at test-time it takes the
most probable sequence of actions. This mismatch
occurs even at the level of an individual decision:
the model only links the current mention to a single
antecedent, but is trained to assign high probability
to all correct antecedents. We believe the benefit of
REINFORCE being guided by coreference evalu-
ation metrics is offset by this disadvantage, which
does not occur in the max-margin approaches. The
reward-rescaled max-margin loss combines the best
of both worlds, resulting in superior performance.

4.2 The Benefits of Reinforcement Learning

In this section we examine the reward-based cost
function ∆r and perform error analysis to determine

	

0.0 0.2 0.4 0.6 0.8 1.0
CosW .

2

4

6

D
en

sL
Wy

Error TypesError TypesError Types
FA
F1
WL

�r

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
CosW .

0

1

2

3

4

D
en

sL
Wy

Error TypesError TypesError Types
FA
F1
WL

�r

Figure 1: Density plot of the costs ∆r associated with differ-
ent error types on the English CoNLL 2012 test set.

how reward rescaling improves the mention-ranking
model’s accuracy.

Comparison with Heuristic Costs. We compare
the reward-based cost function ∆r with the error
types used in the heuristic loss. For English, the
average value of ∆r is 0.79 for FN errors and 0.38
for FA errors when the costs are scaled so the aver-
age value of a WL error is 1.0. These are very close
to the hyperparameter values (αFN, αFA, αWL) =
(0.8, 0.4, 1.0) found by grid search. However, there
is a high variance in costs for each error type, sug-
gesting that using a fixed penalty for each type as in
the heuristic loss is insufficient (see Figure 1).

Avoiding Costly Mistakes. Embedding the costs
of actions into the loss function causes the reward-
rescaling model to prioritize getting the more im-
portant coreference decisions (i.e., the ones with the
biggest impact on the final score) correct. As a

2259

Class of Mentions Average Cost ∆r # Heuristic Loss Errors # Reward Rescaling Errors

FN FA WL FN FA WL FN FA WL

Proper nouns 0.90 0.38 1.02 403 597 221 334 660 233
Pronouns in phone conversations 0.86 0.39 1.21 82 85 81 90 78 67

Table 3: Examples of classes of mention on which the reward-rescaling loss significantly improves upon the heuristic loss due to
its reward-based cost function. Reported numbers are from the English CoNLL 2012 test set.

Model FN FA WL

Heuristic Loss 1719 1956 1258
Reward Rescaling 1725 1994 1247

Table 2: Number of “false new,” “false anaphoric,” and
“wrong link” errors produced by the models on the English
CoNLL 2012 test set.

result, it makes fewer costly mistakes at test time.
Costly mistakes often involve large clusters of men-
tions: incorrectly combining two coreference clus-
ters of size ten is much worse than incorrectly com-
bining two clusters of size one. However, the cost
of an action also depends on other factors like the
number of errors already present in the clusters and
the utilities of the other available actions.

Table 2 shows the breakdown of errors made by
the heuristic and reward-rescaling models on the
test set. The reward-rescaling model makes slightly
more errors, meaning its improvement in perfor-
mance must come from its errors being less severe.

Example Improvements. Table 3 shows two
classes of mentions where the reward-rescaling loss
particularly improves over the heuristic loss.

Proper nouns have a higher average cost for “false
new” errors (0.90) than other mentions types (0.77).
This is perhaps because proper nouns are important
for connecting clusters of mentions far apart in a
document, so incorrectly linking a proper noun to
NA could result in a large decrease in recall. Be-
cause it more heavily weights these high-cost errors
during training, the reward-rescaling model makes
fewer “false new” errors for proper nouns than the
heuristic loss. Although there is an increase in other
kinds of errors as a result, most of these are low-cost
“false anaphoric” errors.

The pronouns in the “telephone conversation”
genre often group into extremely large coreference
clusters, which means a “wrong link” error can have
a very large negative effect on the score. This is re-
flected in its high average cost of 1.21. After prior-

itizing these examples during training, the reward-
rescaling model creates significantly fewer wrong
links than the heuristic loss, which is trained using a
fixed cost of 1.0 for all wrong links.

5 Related Work

Mention-ranking models have been widely used for
coreference resolution (Denis and Baldridge, 2007;
Rahman and Ng, 2009; Durrett and Klein, 2013).
These models are typically trained with heuristic
loss functions that assign costs to different error
types, as in the heuristic loss we describe in Sec-
tion 3.1 (Fernandes et al., 2012; Durrett et al., 2013;
Björkelund and Kuhn, 2014; Wiseman et al., 2015;
Martschat and Strube, 2015; Wiseman et al., 2016).

To the best of our knowledge reinforcement learn-
ing has not been applied to coreference resolution
before. However, imitation learning algorithms such
as SEARN (Daumé III et al., 2009) have been used
to train coreference resolvers (Daumé III, 2006; Ma
et al., 2014; Clark and Manning, 2015). These algo-
rithms also directly optimize for coreference eval-
uation metrics, but they require an expert policy to
learn from instead of relying on rewards alone.

6 Conclusion

We propose using reinforcement learning to directly
optimize mention-ranking models for coreference
evaluation metrics, obviating the need for hyperpa-
rameters that must be carefully selected for each
particular language, dataset, and evaluation metric.
Our reward-rescaling approach also increases the
model’s accuracy, resulting in significant gains over
the current state-of-the-art.

Acknowledgments

We thank Kelvin Guu, William Hamilton, Will Mon-
roe, and the anonymous reviewers for their thought-
ful comments and suggestions. This work was sup-
ported by NSF Award IIS-1514268.

2260

References

Amit Bagga and Breck Baldwin. 1998. Algorithms for
scoring coreference chains. In The First International
Conference on Language Resources and Evaluation
Workshop on Linguistics Coreference, pages 563–566.

Anders Björkelund and Jonas Kuhn. 2014. Learning
structured perceptrons for coreference resolution with
latent antecedents and non-local features. In Associa-
tion of Computational Linguistics (ACL).

Kevin Clark and Christopher D. Manning. 2015. Entity-
centric coreference resolution with model stacking. In
Association for Computational Linguistics (ACL).

Kevin Clark and Christopher D. Manning. 2016. Im-
proving coreference resolution with entity-level dis-
tributed representations. In Association for Compu-
tational Linguistics (ACL).

Hal Daumé III, John Langford, and Daniel Marcu. 2009.
Search-based structured prediction. Machine Learn-
ing, 75(3):297–325.

Hal Daumé III. 2006. Practical structured learning tech-
niques for natural language processing. Ph.D. thesis,
University of Southern California, Los Angeles, CA.

Pascal Denis and Jason Baldridge. 2007. A ranking ap-
proach to pronoun resolution. In International Joint
Conferences on Artificial Intelligence (IJCAI), pages
1588–1593.

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In Empirical
Methods in Natural Language Processing (EMNLP),
pages 1971–1982.

Greg Durrett, David Leo Wright Hall, and Dan Klein.
2013. Decentralized entity-level modeling for coref-
erence resolution. In Association for Computational
Linguistics (ACL), pages 114–124.

Eraldo Rezende Fernandes, Cı́cero Nogueira Dos Santos,
and Ruy Luiz Milidiú. 2012. Latent structure percep-
tron with feature induction for unrestricted coreference
resolution. In Proceedings of the Joint Conference on
Empirical Methods in Natural Language Processing
and Conference on Computational Natural Language
Learning - Shared Task, pages 41–48.

Aria Haghighi and Dan Klein. 2010. Coreference res-
olution in a modular, entity-centered model. In Hu-
man Language Technology and North American Asso-
ciation for Computational Linguistics (HLT-NAACL),
pages 385–393.

Geoffrey Hinton and Tijmen Tieleman. 2012. Lecture
6.5-RmsProp: Divide the gradient by a running aver-
age of its recent magnitude. COURSERA: Neural Net-
works for Machine Learning, 4.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.

Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Empirical Methods in Natural
Language Processing (EMNLP), pages 25–32.

Chao Ma, Janardhan Rao Doppa, J Walker Orr, Prashanth
Mannem, Xiaoli Fern, Tom Dietterich, and Prasad
Tadepalli. 2014. Prune-and-score: Learning for
greedy coreference resolution. In Empirical Methods
in Natural Language Processing (EMNLP).

Sebastian Martschat and Michael Strube. 2015. Latent
structures for coreference resolution. Transactions of
the Association for Computational Linguistics (TACL),
3:405–418.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In International Conference on Machine Learning
(ICML), pages 807–814.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. Conll-2012
shared task: Modeling multilingual unrestricted coref-
erence in ontonotes. In Proceedings of the Joint Con-
ference on Empirical Methods in Natural Language
Processing and Conference on Computational Natural
Language Learning - Shared Task, pages 1–40.

Karthik Raghunathan, Heeyoung Lee, Sudarshan Ran-
garajan, Nathanael Chambers, Mihai Surdeanu, Dan
Jurafsky, and Christopher Manning. 2010. A multi-
pass sieve for coreference resolution. In Empirical
Methods in Natural Language Processing (EMNLP),
pages 492–501.

Altaf Rahman and Vincent Ng. 2009. Supervised models
for coreference resolution. In Empirical Methods in
Natural Language Processing (EMNLP), pages 968–
977.

Richard S Sutton and Andrew G Barto. 1998. Reinforce-
ment learning: An introduction. MIT Press.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Proceed-
ings of the 6th conference on Message understanding,
pages 45–52.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256.

Sam Wiseman, Alexander M Rush, Stuart M Shieber, and
Jason Weston. 2015. Learning anaphoricity and an-
tecedent ranking features for coreference resolution.
In Association of Computational Linguistics (ACL),
pages 92–100.

Sam Wiseman, Alexander M Rush, Stuart M Shieber,
and Jason Weston. 2016. Learning global features

2261

for coreference resolution. In Human Language Tech-
nology and North American Association for Computa-
tional Linguistics (HLT-NAACL).

2262

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2263–2270,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

A Stacking Gated Neural Architecture
for Implicit Discourse Relation Classification

Lianhui Qin1,2, Zhisong Zhang1,2, Hai Zhao1,2,∗
1Department of Computer Science and Engineering,

Shanghai Jiao Tong University, Shanghai, 200240, China
2Key Laboratory of Shanghai Education Commission for Intelligent Interaction

and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
{qinlianhui, zzs2011}@sjtu.edu.cn,zhaohai@cs.sjtu.edu.cn

Abstract

Discourse parsing is considered as one of the
most challenging natural language processing
(NLP) tasks. Implicit discourse relation clas-
sification is the bottleneck for discourse pars-
ing. Without the guide of explicit discourse
connectives, the relation of sentence pairs are
very hard to be inferred. This paper proposes
a stacking neural network model to solve the
classification problem in which a convolu-
tional neural network (CNN) is utilized for
sentence modeling and a collaborative gated
neural network (CGNN) is proposed for fea-
ture transformation. Our evaluation and com-
parisons show that the proposed model outper-
forms previous state-of-the-art systems.

1 Introduction

As a fundamental task in natural language process-
ing (NLP), discourse parsing entails the discovery of
the latent relational structure in multi-sentence level
analysis. It is also central to many practical tasks
such as question answering (Liakata et al., 2013;
Jansen et al., 2014), machine translation (Meyer
and Popescu-Belis, 2012; Meyer and Webber, 2013)
and automatic summarization (Murray et al., 2006;

∗Corresponding author. This paper was partially supported
by Cai Yuanpei Program (CSC No. 201304490199 and No.
201304490171), National Natural Science Foundation of China
(No. 61170114, No. 61672343 and No. 61272248), National
Basic Research Program of China (No. 2013CB329401), Ma-
jor Basic Research Program of Shanghai Science and Tech-
nology Committee (No. 15JC1400103), Art and Science In-
terdisciplinary Funds of Shanghai Jiao Tong University (No.
14JCRZ04), and Key Project of National Society Science Foun-
dation of China (No. 15-ZDA041).

Yoshida et al., 2014). Discourse parsing is also the
shared task of CoNLL 2015 and 2016 (Xue et al.,
2015; Xue et al., 2016), and many previous works
previous on this task (Qin et al., 2016b; Li et al.,
2016; Chen et al., 2015; Wang and Lan, 2016). In
a discourse parser, implicit relation recognition has
been the bottleneck due to lack of explicit connec-
tives (like “because” or “and”) that can be strong
indicators for the senses between adjacent clauses
(Qin et al., 2016b; Pitler et al., 2009; Lin et al.,
2014). This work therefore focuses on implicit re-
lation recognition that infers the senses of the dis-
course relations within adjacent sentence pairs.

Most previous works on PDTB implicit relation
recognition only focus on one-versus-others binary
classification problems of the top level four classes
(Pitler et al., 2009; Zhou et al., 2010; Park and
Cardie, 2012; Biran and McKeown, 2013; Ruther-
ford and Xue, 2014; Braud and Denis, 2015). Tra-
ditional classification methods directly rely on fea-
ture engineering, based on bag-of-words, produc-
tion rules, and some linguistically-informed fea-
tures (Zhou et al., 2010; Rutherford and Xue,
2014). However, discourse relations root in seman-
tics, which may be hard to recover from surface
level feature, thus these methods did not report sat-
isfactory performance. Recently, neural network
(NN) models have shown competitive or even bet-
ter results than traditional linear models with hand-
crafted sparse features (Wang et al., 2016b; Zhang
et al., 2016a; Jia and Zhao, 2014). They have been
proved to be effective for many tasks (Qin et al.,
2016a; Wang et al., 2016a; Zhang et al., 2016b;
Wang et al., 2015; Wang et al., 2014; Cai and

2263

Zhao, 2016), also including discourse parsing. Ji
and Eisenstein (2015) adopt recursive neural net-
work and incorporate with entity-augmented dis-
tributed semantics. Zhang et al. (2015) explore a
shallow convolutional neural network and achieve
competitive performance. Although simple neural
network has been shown effective, the result has not
been quite satisfactory which suggests that there is
still space for improving.

The concerned task could be straightforwardly
formalized as a sentence-pair classification problem,
which needs inferring senses solely based on the two
arguments without cues of connectives. Two prob-
lems should be carefully handled in this task: how to
model sentences and how to capture the interactions
between the two arguments. The former could be
addressed by Convolutional Neural Network (CNN)
which has been proved effective for sentence mod-
eling (Kalchbrenner et al., 2014; Kim, 2014), while
the latter is the key problem, which might need deep
semantic analysis for the interaction of two argu-
ments. To solve the latter problem, we propose
collaborative gated neural network (CGNN) which
is partially inspired by Highway Network whose
gate mechanism achieves success (Srivastava et al.,
2015). Our method will be evaluated on the bench-
mark dataset against state-of-the-art methods.

The rest of the paper is organized as follows: Sec-
tion 2 briefly describes our model, introducing the
stacking architecture of CNN and CGNN, Section 3
shows the experiments and analysis, and Section 4
concludes this paper.

2 Method

The architecture of the model, as shown in Figure 1,
is straightforward. It can be divided into three parts:
1) CNN for modeling arguments; 2) CGNN unit for
feature transformation; 3) a conventional softmax
layer for the final classification. CNN is used to
obtain the vector representations for the sentences,
CGNN further captures and transforms the features
for the final classification.

2.1 Convolutional Neural Network

As CNN has been broadly adopted for model-
ing sentences, we will explain it in brevity. For
two arguments, typical sentence modeling process

Softmax

CGNN

CNN

Convolution + Pooling

Concatenate

Convolution + PoolingParameter sharing

Arg1 Arg2

v

c

h

gi

Ĉ

go

Figure 1: Model Architecture

will be applied: sentence embedding (including
embeddings for words and part-of-speech (POS)
tags) through projection layer, convolution opera-
tions (with multiple groups of filters) through the
convolution layer, obtaining the sentence representa-
tion through one-max-pooling. The two arguments
will get their sentence vectors independently with-
out any interfering, and the convolution operation
will be the same by sharing parameters. The fi-
nal argument-pair representation will be the vector
v which is concatenated from two sentence vec-
tors and this vector will be used as the input of the
CGNN unit.

2264

COMP. CONT. EXP. TEMP. AVG

CNN Only 39.07 54.73 65.94 30.19 47.48
CNN+MLP 37.81 56.30 69.44 32.29 48.96
CNN+LSTM 39.15 53.44 68.85 29.79 47.81
CNN+Highway 37.72 56.35 68.94 30.56 48.39
CNN+CGNN 41.55 57.32 71.50 35.43 51.45

Table 1: F1 scores (%) with different models.

2.2 Collaborative Gated Neural Network

For implicit sense classification, the key is how to
effectively capture the interactions between the two
arguments. The interactions could be word pairs,
phrase pairs or even the latent meaning of the two
full arguments. Pitler et al. (2009) has shown that
word pair features are helpful. To model these in-
teractions, we have to make a full use of the sen-
tence vectors obtained from CNN. However, com-
mon neural hidden layers might be insufficient to
deal with the challenge. We need to seek more pow-
erful neural models, i.e., gated neural network.

In recent years, gated mechanism has gained pop-
ularity in neural models. Although it is first in-
troduced in the cells of recurrent neural networks,
like Long-Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) and Gated Recurrent Unit
(GRU) (Chung et al., 2014), traditional feed-forward
neural models such as the Highway Network could
also benefit from it (Srivastava et al., 2015). The
existing studies show that the gated mechanism in
highway network serves not only a means for eas-
ier training, but also a tool to route information in a
trained network.

Motivated by the idea of highway network,
we propose a collaborative gated neural network
(CGNN) for this task. The architecture of CGNN
is illustrated in Figure 1, and it contains a sequence
of transformations. First, the inner-cell ĉ is obtained
through linear transformation and non-linear activa-
tion on the input v, and this process is exactly the
operation of an ordinary neural layer.

ĉ = tanh(Wc · v + bc)

Meanwhile, the two gates gi and go are calculated
independently because they are only influenced by

the original input through different parameters:

gi = σ(Wi · v + bi)

go = σ(Wo · v + bo)

where the σ denotes sigmoid function which guar-
antees the values in the gates are in [0,1]. Two gated
operations are applied sequentially, where a gated
operation indicates the element-wise multiplication
of an inner-cell and a gate. Between the two gated
operations, a non-linear activation operation is ap-
plied. The procedure could be formulated as fol-
lows:

c = ĉ� gi

h = tanh(c)� go

where � denotes element-wise multiplication, c is
the second inner-cell and h is the output of CGNN
unit.

Although the two gates are generated indepen-
dently, they will work collaboratively because they
control the information flow of the inner-cells se-
quentially which resembles logical AND operation
in a probabilistic version. In fact, the transforma-
tions after ĉ will concern only element-wise oper-
ations which might give finer controls for each di-
mension, and the information can only flow on the
dimensions where both gates are “open”. This pro-
cedure will help select the most crucial features.

The gates in this model are mainly used for rout-
ing information from sentence-pairs vectors. When
there is only one gate in our network, the model
works similar to the highway network (Srivastava et
al., 2015).

2.3 Output and Training
After the transformation of the CGNN unit, the
transformed vector h will be sent to a conventional
softmax for classification.

2265

The training object J will be the cross-entropy er-
ror E with L2 regularization:

E(ŷ, y) = −
l∑

j

yj × log(Pr(ŷj))

J(θ) =
1

m

m∑

k

E(ŷ(k), y(k)) +
λ

2
‖θ‖2

where yj is the gold label and ŷj is the predicted one.
We adopt the diagonal variant of AdaGrad (Duchi et
al., 2011) for the optimization process.

3 Experiments

3.1 Setting

As for the benchmark dataset, Penn Discourse Tree-
bank (PDTB) (Prasad et al., 2008) corpus1 is used
for evaluation. In the PDTB, each discourse relation
is annotated between two argument spans.

To be consistent with the setups of prior works,
we formulate the implicit relation classification task
as four one-versus-other binary classification prob-
lems only using the four top level classes: COM-
PARISON (COMP.), CONTINGENCY (CONT.), EX-
PANSION (EXP.) and TEMPORAL (TEMP.). While
different works include different relations of varying
specificities, all of them include these four core rela-
tions (Pitler et al., 2009). Following dataset splitting
convention of the previous works, we use sections
2-20 for training, sections 21-22 for testing and sec-
tions 0-1 for development set. The proposed model
is possible to be extended for multi-class classifica-
tion of discourse parsing, but for the comparisons
with most of previous works, we will follow them
and focus on the binary classification problems.

For other hyper-parameters of the model and
training process, we fix the lengths of both the in-
put arguments to be 80, and apply truncating or
zero-padding when necessary. The dimensions for
word embeddings and POS embeddings are respec-
tively 300 and 50, and the embedding layer adopts
a dropout of 0.2. The word embeddings are initial-
ized with pre-trained word vectors using word2vec 2

(Mikolov et al., 2013) and other parameters are ran-
domly initialized including POS embeddings. We

1http://www.seas.upenn.edu/˜pdtb/
2http://www.code.google.com/p/word2vec

set the starting learning rate to 0.001. For CNN
model, we utilize three groups of filters with win-
dow widths of (2, 2, 2) and their filter numbers are
all set to 1024. The hyper-parameters are the same
for all models and we do not tune them individually.

3.2 Model Analysis

For transformation of sentence vectors, a sim-
ple Multilayer Perceptron (MLP) layer could be a
straightforward choice, while more complex neu-
ral modules, such as LSTM and highway network,
could also be considered. Our model utilizes a
CGNN unit with refined gated mechanism for the
transformation. Will the proposed CGNN really
bring about further performance improvement? We
now answer this question empirically.

As shown in Table 1, CNN model usually per-
forms well on its own. Utilizing an MLP layer or
a Highway layer could improve the accuracies on
CONTINGENCY, EXPANSION, TEMPORARY except
for COMPARISON. Though the primary motivation
of Highway is to ease gradient-based training of
highly deep networks through utilizing gated units,
it works merely as an ordinary MLP in the proposed
model, which explains the reason that it performs
like MLP. Despite one of four classes, COMPAR-
ISON, not receiving performance improvement, in-
troducing a non-linear transformation layer lets the
classification benefit as a whole. “CNN+LSTM” de-
notes the method of using LSTM to read the convo-
lution sequence (without pooling operation), and it
even does not perform better than MLP.

The CGNN achieves the best performance on all
classes including COMPARISON. It gains 3.97%
imrovement on average F1 score using CNN only
model. We assume that CGNN is well-suited to
work with CNN, adaptively transforming and com-
bining local features detected by the individual fil-
ters.

3.3 Results

We show the main results in Tables 2 and 3. The
metrics include precision (P), recall (R), accuracy
(Acc) and F1 score. Since not all of these metrics
are reported in previous work, the comparisons are
correspondingly in Table 2 and 3. Some previous
work merges Entrel with Expansion, which is also
explored in our study and noted as EXP.+.

2266

COMP. CONT. EXP.+ TEMP. AVG.
F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

Pitler et al. (2009) 21.96 56.59 47.13 67.30 76.42 63.62 16.76 63.49 40.57 62.75
Zhou et al. (2010) 31.79 58.22 47.16 48.96 70.11 54.54 20.30 55.48 40.32 54.30
P&C (2012) 31.32 74.66 49.82 72.09 79.22 69.14 26.57 79.32 46.73 73.80
M&B (2013) 25.40 63.36 46.94 68.09 75.87 62.84 20.23 68.35 42.11 65.66
J& (2015) 35.93 70.27 52.78 76.95 80.02 69.80 27.63 87.11 49.09 76.03
B&D(2015) 36.36 - 55.76 - 61.76 - 29.30 - 45.80 -
Chen et al. (2016) 40.17 - 54.76 - 80.62 - 31.32 - 51.72 -
Current 41.55 71.22 57.32 73.80 80.96 68.44 35.43 84.32 53.82 74.45

Table 2: Comparisons of F1 scores (%) (symbol + means EXP. with Entrel).

P R F1

COMP.
R&Xue (2014) 27.34 72.41 39.70
Zhang et al.(2015) 22.00 67.76 33.22
Current 29.48 70.39 41.55

CONT.
R&Xue (2014) 44.52 69.96 54.42
Zhang et al.(2015) 39.80 75.29 52.04
Current 50.69 65.95 57.32

EXP.
R&Xue (2014) 59.59 85.50 70.23
Zhang et al.(2015) 56.29 91.11 69.59
Current 60.81 86.76 71.50

TEMP.
R&Xue (2014) 18.52 63.64 28.69
Zhang et al.(2015) 20.22 62.35 30.54
Current 26.63 52.94 35.43

AVG.
R&Xue (2014) 37.49 72.88 48.26
Zhang et al.(2015) 34.58 74.13 46.35
Current 41.90 69.01 51.45

Table 3: Comparisons of F1 scores (%) (EXP. without Entrel).

We compare with best-performed or competitive
models including both traditional linear methods
and recent neural methods. For traditional meth-
ods: Pitler et al. (2009) use several linguistically in-
formed features, including polarity tags, Levin verb
classes, length of verb phrases, modality, context,
and lexical features; Zhou et al. (2010) improve the
performance through predicting connective words as
features; Park and Cardie (2012) propose a locally-
optimal feature set and further identify factors for
feature extraction that can have a major impact per-
formance, including stemming and lexicon look-up;
Biran and McKeown (2013) collect word pairs from
arguments of explicit examples to help the learning;
Rutherford and Xue (2014) employ Brown cluster
pair and coreference patterns for performance en-
hancement. Several neural methods have also been
included for comparison: Zhang et al. (2015) pro-
pose a simplified neural network which has only

three different pooling operations (max, min, aver-
age); Ji and Eisenstein (2015) compute distributed
semantics representation by composition up the syn-
tactic parse tree through recursive neural network;
Braud and Denis (2015) consider shallow lexical
features and word embeddings. Chen et al. (2016)
replace the original words by word embeddings to
overcome the data sparsity problem and they also
utilize gated relevance network to capture the se-
mantic interaction between word pairs. The gated
network is different from ours but also works well.

Our model achieves F-measure improvements
of 1.85% on COMPARISON, 1.56% on CONTIN-
GENCY, 1.27% on EXPANSION, 0.94% on EXPAN-
SION+, 4.89% on TEMPORAL, against the state-of-
the-art of each class. We improve by 4.73% on av-
erage F1 score when not including ENTREL in EX-
PANSION as reported in Table 2 and 3.19% on aver-
age F1 score otherwise as reported in Table 3. The
results show that our model achieves the best per-
formance and especially makes the most remarkable
progress on TEMPORAL.

4 Conclusion

In this paper, we propose a stacking gated neural ar-
chitecture for implicit discourse relation classifica-
tion. Our model includes convolution and collabo-
rative gated neural network. The analysis and ex-
periments show that CNN performs well on its own
and combining CGNN provides further gains. Our
evaluation on PTDB shows that the proposed model
outperforms previous state-of-the-art systems.

2267

References

Or Biran and Kathleen McKeown. 2013. Aggregated
word pair features for implicit discourse relation dis-
ambiguation. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 69–73, Sofia, Bulgaria, August.

Chloé Braud and Pascal Denis. 2015. Comparing word
representations for implicit discourse relation clas-
sification. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2201–2211, Lisbon, Portugal,
September.

Deng Cai and Hai Zhao. 2016. Neural Word Segmenta-
tion Learning for Chinese. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 409–420, Berlin, Germany,
August.

Changge Chen, Peilu Wang, and Hai Zhao. 2015. Shal-
low discourse parsing using constituent parsing tree.
In Proceedings of the CoNLL-15 shared task, pages
37–41, Beijing, China, July.

Jifan Chen, Qi Zhang, Pengfei Liu, Xipeng Qiu, and Xu-
anjing Huang. 2016. Implicit discourse relation detec-
tion via a deep architecture with gated relevance net-
work. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 1726–1735, Berlin, Germany, August.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-Term Memory. Neural computation, 9(8):1735–
1780.

Peter Jansen, Mihai Surdeanu, and Peter Clark. 2014.
Discourse complements lexical semantics for non-
factoid answer reranking. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 977–986, Baltimore, Mary-
land, June.

Yangfeng Ji and Jacob Eisenstein. 2015. One vector
is not enough: Entity-augmented distributed seman-
tics for discourse relations. Transactions of the Asso-
ciation for Computational Linguistics (TACL), 3:329–
344.

Zhongye Jia and Hai Zhao. 2014. A Joint Graph Model
for Pinyin-to-Chinese Conversion with Typo Correc-
tion. In Proceedings of the 52nd Annual Meeting of

the Association for Computational Linguistics (ACL),
pages 1512–1523, Baltimore, Maryland, June.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 655–665, Baltimore, Maryland,
June.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1746–1751, Doha, Qatar,
October.

Zhongyi Li, Hai Zhao, Chenxi Pang, Lili Wang, and
Huan Wang. 2016. A constituent syntactic parse tree
based discourse parser. In Proceedings of the CoNLL-
16 shared task, pages 60–64, Berlin, Germany, Au-
gust.

Maria Liakata, Simon Dobnik, Shyamasree Saha, Colin
Batchelor, and Dietrich Rebholz-Schuhmann. 2013.
A discourse-driven content model for summarising
scientific articles evaluated in a complex question an-
swering task. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 747–757, Seattle, Washington,
USA, October.

Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. 2014. A
pdtb-styled end-to-end discourse parser. Natural Lan-
guage Engineering, 20(02):151–184.

Thomas Meyer and Andrei Popescu-Belis. 2012. Us-
ing sense-labeled discourse connectives for statisti-
cal machine translation. In Proceedings of the Joint
Workshop on Exploiting Synergies between Informa-
tion Retrieval and Machine Translation (ESIRMT) and
Hybrid Approaches to Machine Translation (HyTra),
pages 129–138, Avignon, France, April.

Thomas Meyer and Bonnie Webber. 2013. Implicitation
of discourse connectives in (machine) translation. In
Proceedings of the Workshop on Discourse in Machine
Translation, pages 19–26, Sofia, Bulgaria, August.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems
(NIPS), pages 3111–3119, South Lake Tahoe, Nevada,
US, December.

Gabriel Murray, Steve Renals, Jean Carletta, and Johanna
Moore. 2006. Incorporating speaker and discourse
features into speech summarization. In Proceedings
of the main conference on Human Language Technol-
ogy Conference of the North American Chapter of the
Association of Computational Linguistics (NAACL),
pages 367–374, New York City, USA, June.

2268

Joonsuk Park and Claire Cardie. 2012. Improving im-
plicit discourse relation recognition through feature set
optimization. In Proceedings of the 13th Annual Meet-
ing of the Special Interest Group on Discourse and Di-
alogue (SIGDIAL), pages 108–112, Seoul, South Ko-
rea, July.

Emily Pitler, Annie Louis, and Ani Nenkova. 2009. Au-
tomatic sense prediction for implicit discourse rela-
tions in text. In Proceedings of the Joint Conference
of the 47th Annual Meeting of he Association for Com-
putational Linguistics and the 4th International Joint
Conference on Natural Language Processing (ACL-
IJCNLP), pages 683–691, Suntec, Singapore, August.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind K Joshi, and Bon-
nie L Webber. 2008. The Penn Discourse TreeBank
2.0. In Proceedings of the Sixth conference on Inter-
national Language Resources and Evaluation (LREC-
2008), pages 2961–2968, Marrakech, Morocco, May.

Lianhui Qin, Zhisong Zhang, and Hai Zhao. 2016a.
Implicit discourse relation recognition with context-
aware character-enhanced embeddings. In the 26th In-
ternational Conference on Computational Linguistics
(COLING), Osaka, Japan, December.

Lianhui Qin, Zhisong Zhang, and Hai Zhao. 2016b.
Shallow discourse parsing using convolutional neural
network. In Proceedings of the CoNLL-16 shared task,
pages 70–77, Berlin, Germany, August.

Attapol Rutherford and Nianwen Xue. 2014. Discov-
ering implicit discourse relations through brown clus-
ter pair representation and coreference patterns. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Linguis-
tics (EACL), pages 645–654, Gothenburg, Sweden,
April.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Highway networks. arXiv
preprint arXiv:1505.00387.

Jianxiang Wang and Man Lan. 2016. Two End-to-end
Shallow Discourse Parsers for English and Chinese
in CoNLL-2016 Shared Task. In Proceedings of the
CoNLL-16 shared task, pages 33–40, Berlin, Germany,
August.

Rui Wang, Hai Zhao, Bao-Liang Lu, Masao Utiyama, and
Eiichiro Sumita. 2014. Neural network based bilin-
gual language model growing for statistical machine
translation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 189–195, Doha, Qatar, October.

Peilu Wang, Yao Qian, Frank K Soong, Lei He, and Hai
Zhao. 2015. Word embedding for recurrent neural
network based TTS synthesis. In 2015 IEEE Inter-
national Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP), pages 4879–4883, Brisbane,
Australia.

Peilu Wang, Yao Qian, Frank K. Soong, Lei He, and Hai
Zhao. 2016a. Learning distributed word represen-
tations for bidirectional LSTM recurrent neural net-
work. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (NAACL-HLT), pages 527–533, San Diego, Cal-
ifornia, June.

Rui Wang, Masao Utiyama, Isao Goto, Eiichiro Sumita,
Hai Zhao, and Bao-Liang Lu. 2016b. Converting
continuous-space language models into n-gram lan-
guage models with efficient bilingual pruning for sta-
tistical machine translation. ACM Transactions on
Asian and Low-Resource Language Information Pro-
cessing, 15(3):11.

Nianwen Xue, Hwee Tou Ng, Sameer Pradhan, Rashmi
Prasad, Christopher Bryant, and Attapol Rutherford.
2015. The CoNLL-2015 Shared Task on Shallow
Discourse Parsing. In Proceedings of the CoNLL-15
shared task, pages 1–16, Beijing, China, July.

Nianwen Xue, Hwee Tou Ng, Sameer Pradhan, Attapol
Rutherford, Bonnie Webber, Chuan Wang, and Hong-
min Wang. 2016. CoNLL 2016 Shared Task on Multi-
lingual Shallow Discourse Parsing. In Proceedings of
the CoNLL-16 shared task, pages 1–19, Berlin, Ger-
many, August.

Yasuhisa Yoshida, Jun Suzuki, Tsutomu Hirao, and
Masaaki Nagata. 2014. Dependency-based discourse
parser for single-document summarization. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
1834–1839, Doha, Qatar, October.

Biao Zhang, Jinsong Su, Deyi Xiong, Yaojie Lu, Hong
Duan, and Junfeng Yao. 2015. Shallow convolu-
tional neural network for implicit discourse relation
recognition. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2230–2235, Lisbon, Portugal,
September.

Jingyi Zhang, Masao Utiyama, Eiichro Sumita, Hai Zhao,
Graham Neubig, and Satoshi Nakamura. 2016a.
Learning local word reorderings for hierarchical
phrase-based statistical machine translation. Machine
Translation, pages 1–18.

Zhisong Zhang, Hai Zhao, and Lianhui Qin. 2016b.
Probabilistic graph-based dependency parsing with
convolutional neural network. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 1382–1392, Berlin,
Germany, August.

Zhi-Min Zhou, Yu Xu, Zheng-Yu Niu, Man Lan, Jian Su,
and Chew Lim Tan. 2010. Predicting discourse con-

2269

nectives for implicit discourse relation recognition. In
Proceedings of the 23rd International Conference on
Computational Linguistics (COLING), pages 1507–
1514, Beijing, China, August.

2270

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2271–2277,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Insertion Position Selection Model for Flexible Non-Terminals in
Dependency Tree-to-Tree Machine Translation

Toshiaki Nakazawa
Japan Science and Technology Agency

5-3, Yonbancho, Chiyoda-ku, Tokyo, 102-8666, Japan
nakazawa@pa.jst.jp

John Richardson and Sadao Kurohashi
Kyoto University

Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
john@nlp.ist.i.kyoto-u.ac.jp kuro@i.kyoto-u.ac.jp

Abstract

Dependency tree-to-tree translation models
are powerful because they can naturally han-
dle long range reorderings which is important
for distant language pairs. The translation pro-
cess is easy if it can be accomplished only
by replacing non-terminals in translation rules
with other rules. However it is sometimes
necessary to adjoin translation rules. Flex-
ible non-terminals have been proposed as a
promising solution for this problem. A flex-
ible non-terminal provides several insertion
position candidates for the rules to be ad-
joined, but it increases the computational cost
of decoding. In this paper we propose a neu-
ral network based insertion position selection
model to reduce the computational cost by
selecting the appropriate insertion positions.
The experimental results show the proposed
model can select the appropriate insertion po-
sition with a high accuracy. It reduces the de-
coding time and improves the translation qual-
ity owing to reduced search space.

1 Introduction
Tree-to-tree machine translation models currently
receive limited attention. However, we believe that
using target-side syntax is important to achieve high-
quality translations between distant language pairs
which require long range reorderings. Especially,
using dependency trees on both source and tar-
get sides is promising for this purpose (Menezes
and Quirk, 2007; Nakazawa and Kurohashi, 2010;
Richardson et al., 2014). Tree-based translation
models naturally realize word reorderings using the
non-terminals or anchors for the attachment in the
translation rules: therefore they do not need a re-

ordering model which string-based models require.
For example, suppose we have a translation rule with
the word alignment shown in Figure 1, it is easy to
translate a new input sentence which has “図書館
(library)” instead of “公園 (park)” because we can
accomplish it by simply substituting “library” for the
target word “park” without considering the reorder-
ing. In this case, the source word “公園” and target
word “park” work as the non-terminals.

On the other hand, it is problematic when we need
to adjoin a subtree which is not presented in train-
ing sentences, which we call floating subtree in this
paper. The floating subtrees are not necessarily ad-
juncts, but any words or phrases. For example, sup-
pose the Japanese input sentence in Figure 1 has “
突然 (suddenly)”, but the training corpus provides
only a translation rule without the word. In this case
we cannot directly use the rule for the translation be-
cause it does not know where to insert the translation
of the floating word in the output. As another exam-
ple, there is no context information available for the
children of the OOV word in the input sentence, so
we need some special process to translate them.

Previous work deals with this problem by us-
ing glue rules (Chiang, 2005) or limiting the de-
pendency structures to be well-formed (Shen et al.,
2008). Richardson et al. (2016) introduces the con-
cept of flexible non-terminals. It provides multiple
possible insertion positions for the floating subtree
rather than fixed insertion positions. A possible in-
sertion position must satisfy the following condi-
tions:

• it must be a child of the aligned word of the
parent of the floating subtree

2271

• it must not violate the projectivity of the depen-
dency tree

For example, possible insertion positions for the
floating word “突然” are shown in gray arrows in
Figure 1. Since “突然” is a child of “電話する”, and
the translation of “電話する” is “called”, insertion
positions must be a child of “called”. Also, insertion
positions do not violate the projectivity of the tar-
get tree. Flexible non-terminals are analogous to the
auxiliary tree of the tree adjoining grammars (TAG)
(Joshi, 1985), which is successfully adopted in ma-
chine translation (DeNeefe and Knight, 2009). The
difference is that TAG is defined on the constituency
trees rather than the dependency trees.

Flexible non-terminals are powerful to handle
floating subtrees and it achieve better translation
quality. However the computational cost of decod-
ing becomes high even though they are compactly
represented in the lattice form (Cromieres and Kuro-
hashi, 2014). In our experiments, using flexible non-
terminals causes the decoding to be 3 to 6 times
slower than when they are not used. Flexible non-
terminals increase the number of translation rules
because the insertion positions are selected during
the decoding. However, we think it is possible to re-
strict possible insertion positions or even select only
one insertion position by looking at the tree struc-
tures on both sides.

In this paper, we propose a method to select the
appropriate insertion position before decoding. This
can not only reduce the decoding time but also
improve the translation quality because of reduced
search space.

2 Insertion Position Selection
We assume that correct insertion positions can be
determined before decoding, using the word to be
inserted (I) with the context on the source side and
the context of the insertion positions on the target
side. On the source side, we use the parent of I (Ps)
and the distance of I from Ps (Ds). On the target
side, we use the previous (Sp) and next (Sn) sibling
of the insertion position, the parent of the insertion
position (Pt) and the distance of the insertion posi-
tion from Pt (Dt). The distances are calculated on
the siblings rather than the words in the sentence,
and it is a positive or negative value if the insertion

彼	は	昨日	公園	で	彼女	に	電話した	

he	 called	 her	 in	 the	 park	 yesterday	

(to)	(nominative)	

 	 	 	 	 	 	

彼	は	昨日	公園	で	突然	彼女	に	電話した	
(suddenly)	

input	

translation 
rule	

Figure 1: Example of an input sentence and a translation rule.

We want to insert “突然 (suddenly)” which is not in the transla-

tion rule. The possible insertion positions in the target sentence

are shown in gray arrows.

position is to the left or to the right of the parent re-
spectively.

Taking the insertion position between “park” and
“yesterday” in Figure 1 as an example, I = “突然”,
Ps = “電話した”, Ds = +2, Sp = “park”, Sn = “yes-
terday”, Pt = “called” and Dt = -3. In cases where
Sp or Sn is empty, we use special words “[[LEFT-
START]]”, “[[LEFT-END]]”, “[[RIGHT-START]]”
and “[[RIGHT-END]]”. In the case of “yesterday”
in Figure 1, Sp = “in” and Sn = “[[RIGHT-END]]”.
These clues are fed into the neural network model to
solve the insertion position selection problem.

2.1 Neural Network Model
Figure 2 shows the neural network model for the in-
sertion position selection. Given an insertion posi-
tion candidate with an index k, the words (I , Ps,
Sk

p , Sk
n, Pt) are first converted into vector represen-

tations through the same three embedding layers:
surface form embedding (200 dimensions.), part-
of-speech embedding (10 dimensions) and depen-
dency type (or phrase category) embedding (10 di-
mensions), and they are concatenated to create the
220-dimension vectors. The word embedding is a
randomly initialized transformation from an one-hot
vector to a 200 or 10-dimensional vector, and it is
learned during the whole network training.

Using these words and the distances, we create
source and target context vectors ck

s and ck
t which

represent the information of source and target sides,
respectively. The distances (integer values) are di-
rectly inputted to the network. Then the context vec-

2272

�
������������

�

220
�I�

Ps�

P��

Sp1�

Sn1�

Ds�

Dt
k�

100
�

100
�

220
�

220
�
220
�
220
�

100
�

source	
context	
vector�

target	
context	
vector�

context	
vector	
of	the	
given	

inser4on	
posi4on	�

	
	
	
�

1�
1�

1�

	
	
	
�

inser4on	
posi4on	

1�

inser4on	
posi4on	

2�

inser4on	
posi4on	

N�

score	
vector�

0.1	
0.6	
		
		
		
0.1�

0	
1	
		
		
	�
0	

�
������������

�

so8max� gold�

loss	=	
so8max	cross-entropy�

word	to	be	
inserted�

parent	of	I�

previous	
sibling	

next	
sibling	

parent	of	
the	inser4on	
posi4on	

distance	from	
the	parent�

distance	from	
the	parent�

cs
1

ct
1

ci
1

s1

s2

sN

Figure 2: The neural network for the insertion position selec-

tion. The numbers inside the boxes show the dimensions of the

vectors.

tor of the given insertion position ck
i is created using

ck
s and ck

t . Finally we get the score of the given in-
sertion position sk from ck

i . These vectors are calcu-
lated as follows:

ck
s = tanh(Wcs [I; Ps; Ds])

ck
t = tanh(Wct [Sp; Sn; Pt; D

k
t])

ck
i = tanh(Wci [c

k
s ; c

k
t])

sk = Wsc
k
i

where “;” means concatenation of the vectors. The
size of ck

s , ck
t and ck

i is 100 in our experiments.
The same network is applied to all the other in-

sertion positions and get their scores. Finally the
scores are normalized by the softmax function, and
the loss is calculated by the softmax cross-entropy
as the loss function. All the links between layers
are fully-connected. We use dropout (50%) to avoid
overfitting.

2.2 Training Data Generation
The data for training the neural network model can
be automatically generated from the word-aligned
parallel corpus with dependency parses in both sides
by Algorithm 1. The ALIGNMENT function returns
the aligned word in the target tree for the given
source word1, and the ISPARENTCHILD function re-
turns TRUE if Pt is the parent of Ct.

1In case of the multiple word alignment, we only use the
root word of them in both source and target sides.

Algorithm 1 Training Data Generation for NN
for all Ps ∈ words in source tree do

Pt = ALIGNMENT(Ps)
for all Cs ∈ CHILDREN(Ps) do

Ct = ALIGNMENT(Cs)
if ISPARENTCHILD(Pt, Ct) then

GENERATEDATA(Ps, Cs, Pt, Ct)
end if

end for
end for

Ja ↔ En Ja ↔ Zh
Training 2,020,106 667,520
Development 1,789 2,115
Test 1,812 2,174

Table 1: The number of sentences in ASPEC used in our exper-

iments.

The GENERATEDATA function generates one in-
stance of training data to predict the position of Ct

from Ps, Cs and Pt with their contexts by removing
Ct in the target tree. The position where Ct exists is
regarded as the correct insertion position, and others
as incorrect insertion positions. Note that Cs corre-
sponds to I in Figure 2.

2.3 Insertion Position Selection in Translation
Once the neural network model is trained, it can be
applied to select the most appropriate insertion po-
sitions in the translation rules for the given float-
ing subtree by looking at the score of each inser-
tion position. Translation rules only contain part of
the original parallel sentence in most of the cases.
This means that the context used for selecting the in-
sertion position is different from that in the training
data for the neural network. For example, if the in-
put sentence does not have “公園で (in the park)” in
Figure 1, the number of possible insertion positions
is 6 and we do not use “in” as the context. How-
ever, this is not so problematic because similar or
same context may appear in the different part of the
corpus.

3 Experiments
We conducted two kinds of experiments: the in-
sertion position selection and translation. We used
ASPEC (Nakazawa et al., 2016) as the dataset and
the numbers of the sentences of the corpus are
shown in Table 1. The Japanese morphological ana-
lyzer (Kurohashi et al., 1994) and dependency parser
(Kurohashi and Nagao, 1994) are used for Japanese

2273

Ja → En En → Ja Ja → Zh Zh → Ja
Training 15.7M 5.7M
Development 160K 58K
Test 160K 58K
ave. # IP 3.39 3.15 3.72 3.41
best epoch 89 71 61 79
mean loss 0.089 0.058 0.105 0.056
Accuracy (%) 97.08 97.72 96.51 97.99
Logit Accuracy (%) 55.00 89.03 68.04 83.16
Table 2: The statistics of the data and results of the insertion

position selection experiments.

sentences. English sentences are first parsed by nl-
parser (Charniak and Johnson, 2005) and then con-
verted into word dependency trees using Collins’
head percolation table (Collins, 1999). We used Chi-
nese word segmenter KKN (Shen et al., 2014) and
dependency parser SKP (Shen et al., 2012) for Chi-
nese sentences. The supervised word alignment Nile
(Riesa et al., 2011) was used.

We used a state-of-the-art dependency tree-to-tree
decoder (Richardson et al., 2014) with the default
settings. The neural network is constructed and
trained using the Chainer (Tokui et al., 2015).

3.1 Insertion Position Selection
The training, development and test data for the neu-
ral network is automatically generated by the proce-
dure explained in Section 2.2. The size of the gen-
erated data from the ASPEC and the average num-
ber of insertion positions for each floating subtree
are shown in Table 2. We trained the model for 100
epochs and used the best model on the development
data for testing. The vocabulary size for the surface
form was 50,000.

For comparison, we also tried the logistic regres-
sion to predict the correct insertion positions. Be-
cause our training data is huge, we used Multi-core
LIBLINEAR2 with L2-regularized logistic regres-
sion (primal) solver. The format of training in-
stances are: one-hot (binary) vectors for surface
form, POS and dependency type, and distances
scaled to [0, 1]. We first find the best value for the C
parameter, then train the model. The best insertion
position is selected using the estimated probabilities
for each insertion position.

The experimental results are also shown in Table
2https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/multicore-

liblinear/

2. We evaluated the results by the mean loss of the
model and the accuracy on the test data. The re-
sult shows that our model can select the correct in-
sertion position with very high accuracy for every
language pair while the classical logistic regression
model cannot. This supports our claim stated in the
beginning of Section 2.

X → Ja is easier and achieved slightly better ac-
curacy than the reverse direction because Japanese
is a head-final language and all children are gener-
ally put on the left of their parents. There are some
cases judged as incorrect but acceptable insertion
positions, and hence the true accuracies are higher
than the ones reported above. We also investigated
the top-2 accuracy and found that it is above 99.0%
for Ja → X and 99.5% for X → Ja.

Table 3 shows the detailed result of Ja
rightarrow En experiment. The number of
insertion-position is at least 2 (left/right of the
parent) and it is easy to solve (more than 99%
accuracy). 3 is a situation where the parent has
one child, and it is still not so difficult (97-98%
accuracy). About 70% of the test data have only
2 or 3 insertion-positions. Difficult cases are the
sentences which have many adjuncts as in Figure 1,
but we used the scientific paper corpora, where not
so many adjuncts appear.

3.2 Translation
We conducted translation experiment using the AS-
PEC in 3 settings:

• No Flexible: not using the flexible non-
terminals and using simple glue rules as in the
baseline model of (Richardson et al., 2016) 3

• Baseline: using the flexible non-terminals
without the insertion position selection

• Proposed: using only the most appropriate in-
sertion position for the flexible non-terminals

We also report the translation quality of conven-
tional models for comparison: phrase-based SMT
(PBSMT) and hierarchical phrase-based SMT (Hi-
ero). We used the default settings of Moses except
-distortion-limit=20 for PBSMT.

The translation quality is evaluated by the auto-
matic evaluation measures BLEU (Papineni et al.,

352.5% of all the translation rules require glue rule, but it is
applied to 22.6% of the rules actually used in the translation.

2274

of ins. pos. Top N accuracy (%)
and ratio 1 2 3 4 5 6 7 8 9
2 (49.39%) 99.22
3 (18.15%) 96.37 99.60
4 (11.77%) 95.76 99.06 99.82
5 (6.30%) 94.24 98.39 99.38 99.85
6 (4.99%) 93.50 97.82 99.11 99.63 99.98
7 (3.96%) 93.13 97.40 98.87 99.56 99.89 99.98
8 (2.42%) 92.77 97.07 98.43 99.23 99.61 99.77 99.97
9 (1.50%) 92.14 96.19 97.85 99.01 99.50 99.67 99.92 100.00
10 (0.77%) 92.04 96.62 97.75 98.47 99.03 99.52 99.92 99.92 100.00

Table 3: Detailed Ja → En insertion position selection experimental result.

Ja → En En → Ja Ja → Zh Zh → Ja
BLEU RIBES Time BLEU RIBES Time BLEU RIBES Time BLEU RIBES Time

PBSMT 18.45 64.51 - 27.48 68.37 - 27.96 78.90 - 34.65 77.25 -
Hiero 18.72 65.11 - 30.19 73.47 - 27.71 80.91 - 35.43 81.04 -
No Flexible 20.28 65.08 1.00 28.77 75.21 1.00 24.85 66.60 1.00 30.51 73.08 1.00
Baseline 21.61 69.82 6.28 30.57 76.13 3.30 28.79 78.11 5.16 34.32 77.82 5.28
Proposed 22.07† 70.49† 2.25 30.50 76.69† 1.27 29.83† 79.73† 2.21 34.71† 79.25† 1.89

Table 4: The results of the translation experiments. † means the Proposed method achieved significantly better score than the

Baseline (p < 0.01).

2002) and RIBES (Isozaki et al., 2010) with the sig-
nificance testing by bootstrap resampling (Koehn,
2004). RIBES is more sensitive to word order than
BLEU, so we expect an improvement in RIBES. We
also investigated relative decoding time compared to
the No Flexible setting. Note that we used the word
“decoding” for only exploring the search space, and
it does not include constructing the search space (as
the table lookup in Phrase-based SMT). Our whole
translation process is:

1. translation rule extraction
2. insertion-position selection
3. decoding

At the time of the second step, we have all the trans-
lation rules applicable to the input sentence. The
computation time for each step is 3 ≫ 1 ≫ 2 so we
only focus on the time for step 3 in the experiments
(the computation time for step 2 is negligibly small).

The results are shown in Table 4. The Proposed
method achieved significantly better automatic eval-
uation scores than the Baseline for all the language
pairs except the BLEU score of En → Ja direction.
Also, the decoding time is reduced by about 60%
relative to that of the Baseline.

Our tree-based model is better than the conven-
tional models except C → J, where the accuracy of

Chinese parsing for the input sentences has a bad ef-
fect.

4 Conclusion
In this paper we have proposed a neural network
based insertion position selection model to reduce
the computational cost of the decoding for de-
pendency tree-to-tree translation with flexible non-
terminals. The model successfully finds the appro-
priate insertion position from the candidates and it
leads to faster translation speed and better transla-
tion quality due to the reduced search space.

Currently, we use only words as the context but
it seems promising to use subtrees as well. For ex-
ample, using the information of the subtree “in the
park” is more informative than using only “in” in
Figure 1. This is especially important for Japanese
as the target language because children of verbs are
often case markers and they do not provide enough
information when selecting the appropriate insertion
position. It is possible to adopt existing models of
creating vector representation of dependency sub-
trees such as the model using recursive neural net-
works (Liu et al., 2015) and convolutional neural
networks (Mou et al., 2015).

2275

References

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and maxent discriminative rerank-
ing. In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL’05),
pages 173–180.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proceedings of
the 43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL’05), pages 263–270. As-
sociation for Computational Linguistics.

Michael Collins. 1999. Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, Univer-
sity of Pennsylvania.

Fabien Cromieres and Sadao Kurohashi. 2014. Transla-
tion rules with right-hand side lattices. In Proceedings
of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 577–588.
Association for Computational Linguistics.

Steve DeNeefe and Kevin Knight. 2009. Synchronous
tree adjoining machine translation. In Proceedings of
the 2009 Conference on Empirical Methods in Natural
Language Processing, pages 727–736. Association for
Computational Linguistics.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito
Sudoh, and Hajime Tsukada. 2010. Automatic evalu-
ation of translation quality for distant language pairs.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, EMNLP
’10, pages 944–952, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

A. K. Joshi. 1985. Tree adjoining grammars: How
much context-sensitivity is required to provide reason-
able structural descriptions? In D. R. Dowty, L. Kart-
tunen, and A. M. Zwicky, editors, Natural Language
Parsing: Psychological, Computational, and Theoret-
ical Perspectives, pages 206–250. Cambridge Univer-
sity Press, Cambridge.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Dekang Lin and
Dekai Wu, editors, Proceedings of EMNLP 2004,
pages 388–395, Barcelona, Spain, July. Association
for Computational Linguistics.

Sadao Kurohashi and Makoto Nagao. 1994. A syntactic
analysis method of long Japanese sentences based on
the detection of conjunctive structures. Computational
Linguistics, 20(4):507–534.

Sadao Kurohashi, Toshihisa Nakamura, Yuji Matsumoto,
and Makoto Nagao. 1994. Improvements of Japanese
morphological analyzer JUMAN. In Proceedings of
The International Workshop on Sharable Natural Lan-
guage, pages 22–28.

Yang Liu, Furu Wei, Sujian Li, Heng Ji, Ming Zhou, and
Houfeng WANG. 2015. A dependency-based neu-
ral network for relation classification. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Process-
ing (Volume 2: Short Papers), pages 285–290. Associ-
ation for Computational Linguistics.

Arul Menezes and Chris Quirk, 2007. Proceedings of
the Second Workshop on Statistical Machine Transla-
tion, chapter Using Dependency Order Templates to
Improve Generality in Translation, pages 1–8. Asso-
ciation for Computational Linguistics.

Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, and
Zhi Jin. 2015. Discriminative neural sentence mod-
eling by tree-based convolution. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 2315–2325, Lisbon, Por-
tugal, September. Association for Computational Lin-
guistics.

Toshiaki Nakazawa and Sadao Kurohashi. 2010. Fully
syntactic ebmt system of kyoto team in ntcir-8. In
In Proceedings of the 8th NTCIR Workshop Meet-
ing on Evaluation of Information Access Technologies
(NTCIR-8), pages 403–410.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao Kuro-
hashi, and Hitoshi Isahara. 2016. ASPEC: Asian
scientific paper excerpt corpus. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC 2016), pages 2204–
2208, Portorož, Slovenia, May.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation. In ACL, pages 311–318.

John Richardson, Fabien Cromières, Toshiaki Nakazawa,
and Sadao Kurohashi. 2014. Kyotoebmt: An
example-based dependency-to-dependency translation
framework. In Proceedings of 52nd Annual Meeting of
the Association for Computational Linguistics: System
Demonstrations, pages 79–84. Association for Com-
putational Linguistics.

John Richardson, Fabien Cromierès, Toshiaki Nakazawa,
and Sadao Kurohashi. 2016. Flexible non-terminals
for dependency tree-to-tree reordering. In Proceed-
ings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 11–19.
Association for Computational Linguistics.

Jason Riesa, Ann Irvine, and Daniel Marcu. 2011.
Feature-rich language-independent syntax-based
alignment for statistical machine translation. In
Proceedings of the 2011 Conference on Empirical

2276

Methods in Natural Language Processing, pages
497–507. Association for Computational Linguistics.

Libin Shen, Jinxi Xu, and Ralph M Weischedel. 2008.
A new string-to-dependency machine translation algo-
rithm with a target dependency language model. In
Association for Computational Linguistics.

Mo Shen, Daisuke Kawahara, and Sadao Kurohashi.
2012. A reranking approach for dependency parsing
with variable-sized subtree features. In Proceedings
of 26th Pacific Asia Conference on Language Infor-
mation and Computing, pages 308–317.

Mo Shen, Hongxiao Liu, Daisuke Kawahara, and Sadao
Kurohashi. 2014. Chinese morphological analysis
with character-level pos tagging (short paper). In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (ACL2014), Balti-
more, USA.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clay-
ton. 2015. Chainer: a next-generation open source
framework for deep learning. In Proceedings of Work-
shop on Machine Learning Systems (LearningSys) in
The Twenty-ninth Annual Conference on Neural Infor-
mation Processing Systems (NIPS).

2277

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2278–2282,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Why Neural Translations are the Right Length

Xing Shi1, Kevin Knight1, and Deniz Yuret2
1Information Sciences Institute & Computer Science Department

University of Southern California
{xingshi,knight}@isi.edu

2Computer Engineering, Koç University
dyuret@ku.edu.tr

Abstract

We investigate how neural, encoder-decoder
translation systems output target strings of ap-
propriate lengths, finding that a collection of
hidden units learns to explicitly implement
this functionality.

1 Introduction

The neural encoder-decoder framework for machine
translation (Neco and Forcada, 1997; Castaño and
Casacuberta, 1997; Sutskever et al., 2014; Bahdanau
et al., 2014; Luong et al., 2015) provides new tools
for addressing the field’s difficult challenges. In this
framework (Figure 1), we use a recurrent neural net-
work (encoder) to convert a source sentence into a
dense, fixed-length vector. We then use another re-
current network (decoder) to convert that vector into
a target sentence. In this paper, we train long short-
term memory (LSTM) neural units (Hochreiter and
Schmidhuber, 1997) trained with back-propagation
through time (Werbos, 1990).

A remarkable feature of this simple neural MT
(NMT) model is that it produces translations of the
right length. When we evaluate the system on previ-
ously unseen test data, using BLEU (Papineni et al.,
2002), we consistently find the length ratio between
MT outputs and human references translations to be
very close to 1.0. Thus, no brevity penalty is in-
curred. This behavior seems to come for free, with-
out special design.

By contrast, builders of standard statistical MT
(SMT) systems must work hard to ensure correct
length. The original mechanism comes from the

IBM SMT group, whose famous Models 1-5 in-
cluded a learned table ε(y|x), with x and y being
the lengths of source and target sentences (Brown
et al., 1993). But they did not deploy this table when
decoding a foreign sentence f into an English sen-
tence e; it did not participate in incremental scoring
and pruning of candidate translations. As a result
(Brown et al., 1995):

“However, for a given f, if the goal is to discover
the most probable e, then the product P(e) P(f|e) is
too small for long English strings as compared with
short ones. As a result, short English strings are im-
properly favored over longer English strings. This
tendency is counteracted in part by the following
modification: Replace P(f|e) with clength(e) · P(f|e)
for some empirically chosen constant c. This modifi-
cation is treatment of the symptom rather than treat-
ment of the disease itself, but it offers some tempo-
rary relief. The cure lies in better modeling.”

More temporary relief came from Minimum
Error-Rate Training (MERT) (Och, 2003), which au-
tomatically sets c to maximize BLEU score. MERT
also sets weights for the language model P(e), trans-
lation model P(f|e), and other features. The length
feature combines so sensitively with other features
that MERT frequently returns to it as it revises one
weight at a time.

NMT’s ability to correctly model length is re-
markable for these reasons:
• SMT relies on maximum BLEU training to ob-

tain a length ratio that is prized by BLEU, while
NMT obtains the same result through generic
maximum likelihood training.
• Standard SMT models explicitly “cross off”

2278

Figure 1: The encoder-decoder framework for neural machine translation (NMT) (Sutskever et al., 2014). Here, a source sentence

C B A (fed in reverse as A B C) is translated into a target sentence W X Y Z. At each step, an evolving real-valued vector summarizes

the state of the encoder (left half) and decoder (right half).

source words and phrases as they are translated,
so it is clear when an SMT decoder has finished
translating a sentence. NMT systems lack this
explicit mechanism.
• SMT decoding involves heavy search, so if one

MT output path delivers an infelicitous ending,
another path can be used. NMT decoding ex-
plores far fewer hypotheses, using a tight beam
without recombination.

In this paper, we investigate how length regulation
works in NMT.

2 A Toy Problem for Neural MT

We start with a simple problem in which source
strings are composed of symbols a and b. The goal
of the translator is simply to copy those strings.
Training cases look like this:

a a a b b a <EOS> → a a a b b a <EOS>
b b a <EOS> → b b a <EOS>
a b a b a b a a <EOS> → a b a b a b a a <EOS>
b b a b b a b b a <EOS> → b b a b b a b b a <EOS>

The encoder must summarize the content of any
source string into a fixed-length vector, so that the
decoder can then reconstruct it.1 With 4 hidden
LSTM units, our NMT system can learn to solve
this problem after being trained on 2500 randomly
chosen strings of lengths up to 9.2 3

To understand how the learned system works,
we encode different strings and record the resulting
LSTM cell values. Because our LSTM has four hid-
den units, each string winds up at some point in four-

1We follow Sutskever et al. (2014) in feeding the input string
backwards to the encoder.

2Additional training details: 100 epochs, 100 minibatch
size, 0.7 learning rate, 1.0 gradient clipping threshold.

3We use the toolkit: https://github.com/isi-nlp/Zoph RNN

dimensional space. We plot the first two dimensions
(unit1 and unit2) in the left part of Figure 2, and we
plot the other two dimensions (unit3 and unit4) in the
right part. There is no dimension reduction in these
plots. Here is what we learn:
• unit1 records the approximate length of the

string. Encoding a string of length 7 may gen-
erate a value of -6.99 for unit1.
• unit2 records the number of b’s minus the num-

ber of a’s, thus assigning a more positive value
to b-heavy strings. It also includes a +1 bonus
if the string ends with a.
• unit3 records a prefix of the string. If its value

is less than 1.0, the string starts with b. Other-
wise, it records the number of leading a’s.
• unit4 has a more diffuse function. If its value is

positive, then the string consists of all b’s (with
a possible final a). Otherwise, its value corre-
lates with both negative length and the prepon-
derance of b’s.

For our purposes, unit1 is the interesting one. Fig-
ure 3 shows the progression of “a b a b b b” as it gets
encoded (top figure), then decoded (bottom two fig-
ures). During encoding, the value of unit1 decreases
by approximately 1.0 each time a letter is read. Dur-
ing decoding, its value increases each time a letter is
written. When it reaches zero, it signals the decoder
to output <EOS>.

The behavior of unit1 shows that the translator in-
corporates explicit length regulation. It also explains
two interesting phenomena:
• When asked to transduce previously-unseen

strings up to length 14, the system occasionally
makes a mistake, mixing up an a or b. How-
ever, the output length is never wrong.4

4Machine translation researchers have also noticed that

2279

8 6 4 2

4

2

0

2

4

6

baa

bbbba

bbbaabbaa

aab

bbbabbbb

bba

babaaaaa

bbaaaa

abab

bbb

b

aabb

ba

ab

bbba

bbab

baaaaabbb

abaa
aaabba

aabbaaabb

babaaaa

bbabaab

abbb

bbaaabaa

abbab

babbbbba

baabba

babaab

baba

aababa

a

baababb

aba

ababbaabb

baababab

abaaaabaa

baaba

bab

babbaaa

aaababa

aabbabbaa

aaaababab

aaaaaaa

aabaaaabaaabb

baabb
abbaabab

aaaa

ababa

aaaabbabb

babbbb

aababbbab

abbbbba

bbbabbbbbabaa
bbbabbaa

abaaabaa

aa

baab

bbbb

babba

aaa

bbbbaabba

bb
babab

abaabbab

babbb

abaaaabba aaab

bbaa

bbabbabab

0 1 2 3 4 5 6 7 8
8

7

6

5

4

3

2

1

0

1

baa

bbbba

bbbaabbaa

aab

bbbabbbb

bbaaaa

abab

b
ba

ab

bbab

baaaaabbb

abaa aaabba

aabbaaabb

bbabaab

abbb

bbaaabaa

abbab
baabba

babaab

aababa

a

aba

baababab

abaaaabaa

bab

aaababa

aabbabbaa

aaaababab

aaaaaaaaabaaabb

aaaa

aaaabbabb

aababbbab

bbbab

aa

baab

aaa

abaabbab

abaaaabba

aaab

bbabbabab

Figure 2: After learning, the recurrent network can convert any string of a’s and b’s into a 4-dimensional vector. The left plot

shows the encoded strings in dimensions described by the cell states of LSTM unit1 (x-axis) and unit2 (y-axis). unit1 learns to

record the length of the string, while unit2 records whether there are more b’s than a’s, with a +1 bonus for strings that end in a.

The right plot shows the cell states of LSTM unit3 (x-axis) and unit4 (y-axis). unit3 records how many a’s the string begins with,

while unit4 correlates with both length and the preponderance of b’s. Some text labels are omitted for clarity.

• When we ask the system to transduce very long
strings, beyond what it has been trained on, its
output length may be slightly off. For example,
it transduces a string of 28 b’s into a string of
27 b’s. This is because unit1 is not incremented
and decremented by exactly 1.0.

3 Full-Scale Neural Machine Translation

Next we turn to full-scale NMT. We train on
data from the WMT 2014 English-to-French task,
consisting of 12,075,604 sentence pairs, with
303,873,236 tokens on the English side, and
348,196,030 on the French side. We use 1000 hid-
den LSTM units. We also use two layers of LSTM
units between source and target.5

After the LSTM encoder-decoder is trained, we
send test-set English strings through the encoder
portion. Every time a word token is consumed, we
record the LSTM cell values and the length of the

when the translation is completely wrong, the length is still cor-
rect (anonymous).

5Additional training details: 8 epochs, 128 minibatch size,
0.35 learning rate, 5.0 gradient clipping threshold.

Top 10 units by ... 1st layer 2nd layer
Individual R2 0.868 0.947
Greedy addition 0.968 0.957
Beam search 0.969 0.958

Table 1: R2 values showing how differently-chosen sets of 10

LSTM hidden units correlate with length in the NMT encoder.

string so far. Over 143,379 token observations, we
investigate how the LSTM encoder tracks length.

With 1000 hidden units, it is difficult to build and
inspect a heat map analogous to Figure 3. Instead,
we seek to predict string length from the cell values,
using a weighted, linear combination of the 1000
LSTM cell values. We use the least-squares method
to find the best predictive weights, with resulting R2

values of 0.990 (for the first layer, closer to source
text) and 0.981 (second layer). So the entire network
records length very accurately.

However, unlike in the toy problem, no single unit
tracks length perfectly. The best unit in the second
layer is unit109, which correlates with R2=0.894.

We therefore employ three mechanisms to locate

2280

1

2

3

4

<S> b b b a b a

Encoder cell state

-6

-4

-2

 0

 2

 4

1

2

3

4

<S> a b a b b b

Decoder cell state

-6

-4

-2

 0

 2

 4

<EOS>

b

a

<S> a b a b b b

Decoder output probability

 0.001

 0.01

 0.1

 1

Figure 3: The progression of LSTM state as the recurrent net-

work encodes the string “a b a b b b”. Columns show the in-

puts over time and rows show the outputs. Red color indicates

positive values, and blue color indicates negative. The value

of unit1 decreases during the encoding phase (top figure) and

increases during the decoding phase (middle figure). The bot-

tom figure shows the decoder’s probability of ending the target

string (<EOS>).

k Best subset of LSTM’s 1000 units R2

1 109 0.894
2 334, 109 0.936
3 334, 442, 109 0.942
4 334, 442, 109, 53 0.947
5 334, 442, 109, 53, 46 0.951
6 334, 442, 109, 53, 46, 928 0.953
7 334, 442, 109, 53, 46, 433, 663 0.955

Table 2: Sets of k units chosen by beam search to optimally

track length in the NMT encoder. These units are from the

LSTM’s second layer.

0 5 10 15 20 25 0 5 10 15 20 25 30
20

15

10

5

0

5

Encoding Decoding

Unit 109
Unit 334
log P(<EOS>)

Figure 4: Action of translation unit109 and unit334 during the

encoding and decoding of a sample sentence. Also shown is the

softmax log-prob of output <EOS>.

a subset of units responsible for tracking length. We
select the top k units according to: (1) individual
R2 scores, (2) greedy search, which repeatedly adds
the unit which maximizes the set’s R2 value, and (3)
beam search. Table 1 shows different subsets we ob-
tain. These are quite predictive of length. Table 2
shows how R2 increases as beam search augments
the subset of units.

4 Mechanisms for Decoding

For the toy problem, Figure 3 (middle part) shows
how the cell value of unit1 moves back to zero as the
target string is built up. It also shows (lower part)
how the probability of target word <EOS> shoots up
once the correct target length has been achieved.

MT decoding is trickier, because source and tar-
get strings are not necessarily the same length, and

2281

target length depends on the words chosen. Figure 4
shows the action of unit109 and unit334 for a sample
sentence. They behave similarly on this sentence,
but not identically. These two units do not form a
simple switch that controls length—rather, they are
high-level features computed from lower/previous
states that contribute quantitatively to the decision
to end the sentence.

Figure 4 also shows the log P(<EOS>) curve,
where we note that the probability of outputting
<EOS> rises sharply (from 10−8 to 10−4 to 0.998),
rather than gradually.

5 Conclusion

We determine how target length is regulated in NMT
decoding. In future work, we hope to determine how
other parts of the translator work, especially with
reference to grammatical structure and transforma-
tions.

Acknowledgments

This work was supported by ARL/ARO (W911NF-
10-1-0533), DARPA (HR0011-15-C-0115), and the
Scientific and Technological Research Council of
Turkey (TÜBİTAK) (grants 114E628 and 215E201).

References

D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural ma-
chine translation by jointly learning to align and trans-
late. In Proc. ICLR.

P. Brown, S. della Pietra, V. della Pietra, and R. Mercer.
1993. The mathematics of statistical machine trans-
lation: Parameter estimation. Computational Linguis-
tics, 19(2):263–311.

P. F. Brown, J. Cocke, S. della Pietra, V. della Pietra,
F. Jelinek, J. C. Lai, and R. L. Mercer. 1995. Method
and system for natural language translation. US Patent
5,477,451.

M. A. Castaño and F. Casacuberta. 1997. A con-
nectionist approach to machine translation. In EU-
ROSPEECH.

S. Hochreiter and J. Schmidhuber. 1997. Lstm can solve
hard long time lag problems. Advances in neural in-
formation processing systems, pages 473–479.

M. Luong, H. Pham, and C. Manning. 2015. Effective
approaches to attention-based neural machine transla-
tion. In Proc. EMNLP.

R. Neco and M. Forcada. 1997. Asynchronous transla-
tions with recurrent neural nets. In International Conf.
on Neural Networks, volume 4, pages 2535–2540.

F. J. Och. 2003. Minimum error rate training in statistical
machine translation. In Proc. ACL.

K. Papineni, S. Roukos, T. Ward, and W. Zhu. 2002.
BLEU: a method for automatic evaluation of machine
translation. In Proc. ACL.

I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence
to sequence learning with neural networks. In Proc.
NIPS.

P. J. Werbos. 1990. Backpropagation through time: what
it does and how to do it. Proceedings of the IEEE,
78(10):1550–1560.

2282

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2283–2288,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Supervised Attentions for Neural Machine Translation
Haitao Mi Zhiguo Wang Abe Ittycheriah

T.J. Watson Research Center
IBM

1101 Kitchawan Rd, Yorktown Heights, NY 10598
{hmi, zhigwang, abei}@us.ibm.com

Abstract

In this paper, we improve the attention or
alignment accuracy of neural machine trans-
lation by utilizing the alignments of train-
ing sentence pairs. We simply compute
the distance between the machine attentions
and the “true” alignments, and minimize this
cost in the training procedure. Our experi-
ments on large-scale Chinese-to-English task
show that our model improves both transla-
tion and alignment qualities significantly over
the large-vocabulary neural machine transla-
tion system, and even beats a state-of-the-art
traditional syntax-based system.

1 Introduction

Neural machine translation (NMT) has gained pop-
ularity in recent two years (e.g. (Bahdanau et al.,
2014; Jean et al., 2015; Luong et al., 2015; Mi et al.,
2016b; Li et al., 2016), especially for the attention-
based models of Bahdanau et al. (2014).

The attention model plays a crucial role in NMT,
as it shows which source word(s) the model should
focus on in order to predict the next target word.
However, the attention or alignment quality of NMT
is still very low (Mi et al., 2016a; Tu et al., 2016).

In this paper, we alleviate the above issue by uti-
lizing the alignments (human annotated data or ma-
chine alignments) of the training set. Given the
alignments of all the training sentence pairs, we add
an alignment distance cost to the objective func-
tion. Thus, we not only maximize the log translation
probabilities, but also minimize the alignment dis-
tance cost. Large-scale experiments over Chinese-
to-English on various test sets show that our best
method for a single system improves the transla-
tion quality significantly over the large vocabulary
NMT system (Section 5) and beats the state-of-the-
art syntax-based system.

2 Neural Machine Translation

As shown in Figure 1, attention-based NMT (Bah-
danau et al., 2014) is an encoder-decoder network.
the encoder employs a bi-directional recurrent neu-
ral network to encode the source sentence x =
(x1, ..., xl), where l is the sentence length (includ-
ing the end-of-sentence 〈eos〉), into a sequence of
hidden states h = (h1, ..., hl), each hi is a concate-
nation of a left-to-right

−→
hi and a right-to-left

←−
hi .

Given h, the decoder predicts the target transla-
tion by maximizing the conditional log-probability
of the correct translation y∗ = (y∗1, ...y

∗
m), where

m is the sentence length (including the end-of-
sentence). At each time t, the probability of each
word yt from a target vocabulary Vy is:

p(yt|h, y∗t−1..y∗1) = g(st, y
∗
t−1), (1)

where g is a two layer feed-forward neural network
over the embedding of the previous word y∗t−1, and
the hidden state st. The st is computed as:

st = q(st−1, y∗t−1, Ht) (2)

Ht =

[∑l
i=1 (αt,i ·

←−
h i)∑l

i=1 (αt,i ·
−→
h i)

]
, (3)

where q is a gated recurrent units, Ht is a weighted
sum of h; the weights, α, are computed with a two
layer feed-forward neural network r:

αt,i =
exp{r(st−1, hi, y∗t−1)}∑l
k=1 exp{r(st−1, hk, y∗t−1)}

(4)

We put all αt,i (t = 1...m, i = 1...l) into a matrix
A′, we have a matrix (alignment) like (c) in Figure 2,
where each row (for each target word) is a probabil-
ity distribution over the source sentence x.

The training objective is to maximize the condi-
tional log-probability of the correct translation y∗

2283

�↵t1 ↵tl

st�1 st…
ot

y1…

…

y|Vy|

Atj

… …Ht =

lX

i=1

(↵ti · �h i)

lX

i=1

(↵ti ·�!h i)

x1 xl

 �
h1

 �
hl

�!
hl

�!
h1

…

…

…x2

�!
h2

 �
h2

x1 xl

 �
h1

 �
hl

�!
hl

�!
h1

…

…

…

 �
hj

�!
hj

xj

…

…

…

↵t2

y⇤
t�1

y⇤
t

et,1 et,j et,l

↵t,j =
exp(et,j)Pl
i=1 exp(et,i)

st

Figure 1: The architecture of attention-based NMT (Bahdanau et al., 2014). The source sentence x = (x1, ..., xl) with length l,

xl is an end-of-sentence token 〈eos〉 on the source side. The reference translation is y∗ = (y∗1 , ..., y
∗
m) with length m, similarly,

y∗m is the target side 〈eos〉. ←−hi and
−→
hi are bi-directional encoder states. αt,j is the attention probability at time t, position j. Ht

is the weighted sum of encoding states. st is a hidden state. ot is an output state. Another one layer neural network projects ot to

the target output vocabulary, and conducts softmax to predict the probability distribution over the output vocabulary. The attention

model (the right box) is a two layer feedforward neural network, At,j is an intermediate state, then another layer converts it into a

real number et,j , the final attention probability at position j is αt,j .

given x with respect to the parameters θ

θ∗ = argmax
θ

N∑

n=1

m∑

t=1

log p(y∗nt |xn, y∗nt−1..y∗n1),

(5)
where n is the n-th sentence pair (xn,y∗n) in the
training set, N is the total number of pairs.

3 Alignment Component

The attentions, αt,1...αt,l, in each step t play an im-
portant role in NMT. However, the accuracy is still
far behind the traditional MaxEnt alignment model
in terms of alignment F1 score (Mi et al., 2016b; Tu
et al., 2016). Thus, in this section, we explicitly add
an alignment distance to the objective function in
Eq. 5. The “truth” alignments for each sentence pair
can be from human annotated data, unsupervised or
supervised alignments (e.g. GIZA++ (Och and Ney,
2000) or MaxEnt (Ittycheriah and Roukos, 2005)).

Given an alignment matrix A for a sentence pair
(x,y) in Figure 2 (a), where we have an end-of-
source-sentence token 〈eos〉 = xl, and we align all
the unaligned target words (y∗3 in this example) to
〈eos〉, also we force y∗m (end-of-target-sentence) to
be aligned to xl with probability one. Then we con-
duct two transformations to get the probability dis-
tribution matrices ((b) and (c) in Figure 2).

3.1 Simple Transformation

The first transformation simply normalizes each
row. Figure 2 (b) shows the result matrix A∗. The
last column in red dashed lines shows the alignments
of the special end-of-sentence token 〈eos〉.

3.2 Smoothed Transformation

Given the original alignment matrix A, we create a
matrixA∗ with all points initialized with zero. Then,
for each alignment point At,i = 1, we update A∗
by adding a Gaussian distribution, g(µ, σ), with a
window sizew (t-w, ... t ... t+w). Take theA1,1 = 1
for example, we haveA∗1,1 += 1,A∗1,2 += 0.61, and
A∗1,3 += 0.14 with w=2, g(µ, σ)=g(0, 1). Then we
normalize each row and get (c). In our experiments,
we use a shape distribution, where σ = 0.5.

3.3 Objectives

Alignment Objective: Given the “true” alignment
A∗, and the machine attentions A′ produced by
NMT model, we compute the Euclidean distance
bewteen A∗ and A′.

d(A′,A∗) =

√√√√
m∑

t=1

l∑

i=1

(A′t,i −A∗t,i)2. (6)

2284

1 0 0 0 0

1 1 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 0 0

x1 x2 xl

y⇤
1

y⇤
2

y⇤
m

y⇤
3

y⇤
4

y⇤
5

x3 x4

1 0 0 0 0

0.5 0.5 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 0 0

x1 x2 x3 x4

0

0

1

0

0

1

0.57 0.35 0.08 0 0

0.39 0.39 0.18 0.04 0

0 0 0 0.08 0.35

0.26 0.42 0.26 0.06 0

0 0 0.06 0.26 0.42

0 0 0 0 0

x1 x2 x3 x4

0

0

0.57

0

0.26

1

(a) (b) (c)

0

0

1

0

0

1

x5 xlx5 xlx5

Figure 2: Alignment transformation. A special token, 〈eos〉, is introduced to the source sentence, we align all the unaligned target

words (y∗3 in this case) to 〈eos〉. (a): the original alignment matrix A from GIZA++ or MaxEnt aligner. (b): simple normalization

by rows (probability distribution over the source sentence x). (c): smoothed transformation followed by normalization by rows,

and typically, we always align end-of-source-sentence xl to end-of-target-sentence ym by probability one.

NMT Objective: We plug Eq. 6 to Eq. 5, we have

θ∗ = argmax
θ

N∑

n=1

{
m∑

t=1

log p(y∗nt |xn, y∗nt−1..y∗n1)

− d(A′n,A∗n)
}
.

(7)

There are two parts: translation and alignment, so
we can optimize them jointly, or separately (e.g. we
first optimize alignment only, then optimize transla-
tion). Thus, we divide the network in Figure 1 into
alignment A and translation T parts:

• A: all networks before the hidden state st,

• T: the network g(st, y∗t−1).

If we only optimize A, we keep the parameters in
T unchanged. We can also optimize them jointly
J. In our experiments, we test different optimization
strategies.

4 Related Work

In order to improve the attention or alignment ac-
curacy, Cheng et al. (2016) adapted the agreement-
based learning (Liang et al., 2006; Liang et
al., 2008), and introduced a combined objective
that takes into account both translation directions
(source-to-target and target-to-source) and an agree-
ment term between the two alignment directions.

By contrast, our approach directly uses and op-
timizes NMT parameters using the “supervised”
alignments.

5 Experiments

5.1 Data Preparation
We run our experiments on Chinese to English task.
The training corpus consists of approximately 5 mil-
lion sentences available within the DARPA BOLT
Chinese-English task. The corpus includes a mix of
newswire, broadcast news, and webblog. We do not
include HK Law, HK Hansard and UN data. The
Chinese text is segmented with a segmenter trained
on CTB data using conditional random fields (CRF).
Our development set is the concatenation of sev-
eral tuning sets (GALE Dev, P1R6 Dev, and Dev
12) initially released under the DARPA GALE pro-
gram. The development set is 4491 sentences in to-
tal. Our test sets are NIST MT06 (1664 sentences)
, MT08 news (691 sentences), and MT08 web (666
sentences).

For all NMT systems, the full vocabulary size of
the training set is 300k. In the training procedure,
we use AdaDelta (Zeiler, 2012) to update model
parameters with a mini-batch size 80. Following
Mi et al. (2016a), the output vocabulary for each
mini-batch or sentence is a sub-set of the full vo-
cabulary. For each source sentence, the sentence-
level target vocabularies are union of top 2k most
frequent target words and the top 10 candidates of
the word-to-word/phrase translation tables learned

2285

MT06
MT08

avg.
single system News Web

BP BLEU T-B BP BLEU T-B BP BLEU T-B T-B

Tree-to-string 0.95 34.93 9.45 0.94 31.12 12.90 0.90 23.45 17.72 13.36
Cov. LVNMT (Mi et al., 2016b) 0.92 35.59 10.71 0.89 30.18 15.33 0.97 27.48 16.67 14.24

+A
lig

nm
en

t Zh→ En

A→ J 0.95 35.71 10.38 0.93 30.73 14.98 0.96 27.38 16.24 13.87
A→ T 0.95 28.59 16.99 0.92 24.09 20.89 0.97 20.48 23.31 20.40

A→ T→ J 0.95 35.95 10.24 0.92 30.95 14.62 0.97 26.76 17.04 13.97
J 0.96 36.76 9.67 0.94 31.24 14.80 0.96 28.35 15.61 13.36

GDFA J 0.96 36.44 10.16 0.94 30.66 15.01 0.96 26.67 16.72 13.96

MaxEnt J 0.95 36.80 9.49 0.93 31.74 14.02 0.96 27.53 16.21 13.24
J + Gau. 0.96 36.95 9.71 0.94 32.43 13.61 0.97 28.63 15.80 13.04

Table 1: Single system results in terms of (TER-BLEU)/2 (T-B, the lower the better) on 5 million Chinese to English training set.

BP denotes the brevity penalty. NMT results are on a large vocabulary (300k) and with UNK replaced. The second column shows

different alignments (Zh→ En (one direction), GDFA (“grow-diag-final-and”), and MaxEnt (Ittycheriah and Roukos, 2005). A,

T, and J mean optimize alignment only, translation only, and jointly. Gau. denotes the smoothed transformation.

from ‘fast align’ (Dyer et al., 2013). The maximum
length of a source phrase is 4. In the training time,
we add the reference in order to make the translation
reachable.

The Cov. LVNMT system is a re-implementation
of the enhanced NMT system of Mi et al. (2016a),
which employs a coverage embedding model and
achieves better performance over large vocabulary
NMT Jean et al. (2015). The coverage embedding
dimension of each source word is 100.

Following Jean et al. (2015), we dump the align-
ments, attentions, for each sentence, and replace
UNKs with the word-to-word translation model or
the aligned source word.

Our SMT system is a hybrid syntax-based tree-to-
string model (Zhao and Al-onaizan, 2008), a simpli-
fied version of the joint decoding (Liu et al., 2009;
Cmejrek et al., 2013). We parse the Chinese side
with Berkeley parser, and align the bilingual sen-
tences with GIZA++ and MaxEnt. and extract Hi-
ero and tree-to-string rules on the training set. Our
two 5-gram language models are trained on the En-
glish side of the parallel corpus, and on monolin-
gual corpora (around 10 billion words from Giga-
word (LDC2011T07), respectively.As suggested by
Zhang (2016), NMT systems can achieve better re-
sults with the help of those monolingual corpora. In
this paper, our NMT systems only use the bilingual
data. We tune our system with PRO (Hopkins and

May, 2011) to minimize (TER- BLEU)/2 1 on the de-
velopment set.

5.2 Translation Results

Table 1 shows the translation results of all sys-
tems. The syntax-based statistical machine trans-
lation model achieves an average (TER-BLEU)/2 of
13.36 on three test sets. The Cov. LVNMT system
achieves an average (TER-BLEU)/2 of 14.24, which
is about 0.9 points worse than Tree-to-string SMT
system. Please note that all systems are single sys-
tems. It is highly possible that ensemble of NMT
systems with different random seeds can lead to bet-
ter results over SMT.

We test three different alignments:

• Zh→ En (one direction of GIZA++),

• GDFA (the “grow-diag-final-and” heuristic
merge of both directions of GIZA++),

• MaxEnt (trained on 67k hand-aligned sen-
tences).

1The metric used for optimization in this work is (TER-
BLEU)/2 to prevent the system from using sentence length alone
to impact BLEU or TER. Typical SMT systems use target word
count as a feature and it has been observed that BLEU can be
optimized by tweaking the weighting of the target word count
with no improvement in human assessments of translation qual-
ity. Conversely, in order to optimize TER shorter sentences can
be produced. Optimizing the combination of metrics alleviates
this effect (Arne Mauser and Ney, 2008).

2286

The alignment quality improves from Zh → En to
MaxEnt. We also test different optimization strate-
gies: J (jointly), A (alignment only), and T (trans-
lation model only). A combination, A→ T, shows
that we optimize A only first, then we fix A and only
update T part. Gau. denotes the smoothed trans-
formation (Section 3.2). Only the last row uses the
smoothed transformation, all others use the simple
transformation.

Experimental results in Table 1 show some in-
teresting results. First, with the same alignment, J
joint optimization works best than other optimiza-
tion strategies (lines 3 to 6). Unfortunately, break-
ing down the network into two separate parts (A and
T) and optimizing them separately do not help (lines
3 to 5). We have to conduct joint optimization J in
order to get a comparable or better result (lines 3, 5
and 6) over the baseline system.

Second, when we change the training alignment
seeds (Zh→En, GDFA, and MaxEnt) NMT model
does not yield significant different results (lines 6 to
8).

Third, the smoothed transformation (J + Gau.)
gives some improvements over the simple transfor-
mation (the last two lines), and achieves the best
result (1.2 better than LVNMT, and 0.3 better than
Tree-to-string). In terms of BLEU scores, we con-
duct the statistical significance tests with the sign-
test of Collins et al. (2005), the results show that the
improvements of our J + Gau. over LVNMT are
significant on three test sets (p < 0.01).

At last, the brevity penalty (BP) consistently gets
better after we add the alignment cost to NMT objec-
tive. Our alignment objective adjusts the translation
length to be more in line with the human references
accordingly.

5.3 Alignment Results
Table 2 shows the alignment F1 scores on the align-
ment test set (447 hand aligned sentences). The
MaxEnt model is trained on 67k hand-aligned sen-
tences, and achieves an F1 score of 75.96. For NMT
systems, we dump the alignment matrixes and con-
vert them into alignments with following steps. For
each target word, we sort the alphas and add the max
probability link if it is higher than 0.2. If we only
tune the alignment component (A in line 3), we im-
prove the alignment F1 score from 45.76 to 47.87.

system pre. rec. F1
MaxEnt 74.86 77.10 75.96

Cov LVNMT (Mi et al., 2016b) 51.11 41.42 45.76

+A
lig

nm
en

t Zh→ En

A 50.88 45.19 47.87
A→ J 53.18 49.37 51.21
A→ T 50.29 44.90 47.44

A→ T→ J 53.71 49.33 51.43
J 54.29 48.02 50.97

GDFA J 53.88 48.25 50.91

MaxEnt J 44.42 55.25 49.25
J + Gau. 48.90 55.38 51.94

Table 2: Alignment F1 scores of different models.

And we further boost the score to 50.97 by tuning
alignment and translation jointly (J in line 7). Inter-
estingly, the system using MaxEnt produces more
alignments in the output, and results in a higher re-
call. This suggests that using MaxEnt can lead to a
sharper attention distribution, as we pick the align-
ment links based on the probabilities of attentions,
the sharper the distribution is, more links we can
pick. We believe that a sharp attention distribution
is a great property of NMT.

Again, the best result is J + Gau. in the last row,
which significantly improves the F1 by 5 points over
the baseline Cov. LVNMT system. When we use
MaxEnt alignments, J + Gau. smoothing gives us
about 1.7 points gain over J system. So it looks in-
teresting to run another J + Gau. over GDFA align-
ment.

Together with the results in Table 1, we conclude
that adding the alignment cost to the training ob-
jective helps both translation and alignment signif-
icantly.

6 Conclusion

In this paper, we utilize the “supervised” alignments,
and put the alignment cost to the NMT objective
function. In this way, we directly optimize the at-
tention model in a supervised way. Experiments
show significant improvements in both translation
and alignment tasks over a very strong LVNMT sys-
tem.

Acknowledgment

We thank the anonymous reviewers for their useful
comments.

2287

References
Sasa Hasan Arne Mauser and Hermann Ney. 2008. Au-

tomatic evaluation measures for statistical machine
translation system optimization. In Proceedings of
LREC 2008, Marrakech, Morocco, may.

D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural
Machine Translation by Jointly Learning to Align and
Translate. ArXiv e-prints, September.

Yong Cheng, Shiqi Shen, Zhongjun He, Wei He, Hua Wu,
Maosong Sun, and Yang Liu. 2016. Agreement-based
joint training for bidirectional attention-based neural
machine translation. In Proceedings of IJCAI, New
York, USA, July.

Martin Cmejrek, Haitao Mi, and Bowen Zhou. 2013.
Flexible and efficient hypergraph interactions for joint
hierarchical and forest-to-string decoding. In Proceed-
ings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 545–555, Seat-
tle, Washington, USA, October. Association for Com-
putational Linguistics.

Michael Collins, Philipp Koehn, and Ivona Kucerova.
2005. Clause restructuring for statistical machine
translation. In Proceedings of ACL, pages 531–540,
Ann Arbor, Michigan, June.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameterization
of ibm model 2. In Proceedings of the 2013 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 644–648, Atlanta, Georgia, June.
Association for Computational Linguistics.

Mark Hopkins and Jonathan May. 2011. Tuning as rank-
ing. In Proceedings of EMNLP.

Abraham Ittycheriah and Salim Roukos. 2005. A maxi-
mum entropy word aligner for arabic-english machine
translation. In HLT ’05: Proceedings of the HLT and
EMNLP, pages 89–96.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and
Yoshua Bengio. 2015. On using very large target vo-
cabulary for neural machine translation. In Proceed-
ings of ACL, pages 1–10, Beijing, China, July.

Xiaoqing Li, Jiajun Zhang, and Chengqing Zong. 2016.
Towards zero unknown word in neural machine trans-
lation. In Proceedings of IJCAI 2016, pages 2852–
2858, New York, NY, USA, July.

P. Liang, B. Taskar, and D. Klein. 2006. Alignment by
agreement. In North American Association for Com-
putational Linguistics (NAACL), pages 104–111.

P. Liang, D. Klein, and M. I. Jordan. 2008. Agreement-
based learning. In Advances in Neural Information
Processing Systems (NIPS).

Yang Liu, Haitao Mi, Yang Feng, and Qun Liu. 2009.
Joint decoding with multiple translation models. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP: Volume 2 - Volume 2, ACL ’09,
pages 576–584, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neu-
ral machine translation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1412–1421, Lisbon, Portu-
gal, September. Association for Computational Lin-
guistics.

Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe
Ittycheriah. 2016a. A coverage embedding model for
neural machine translation. ArXiv e-prints.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016b.
Vocabulary manipulation for neural machine transla-
tion. In Proceedings of ACL, Berlin, Germany, Au-
gust.

Franz Josef Och and Hermann Ney. 2000. Improved
statistical alignment models. In Proceedings of the
38th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’00, pages 440–447, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Z. Tu, Z. Lu, Y. Liu, X. Liu, and H. Li. 2016. Coverage-
based Neural Machine Translation. ArXiv e-prints,
January.

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR.

Jiajun Zhang. 2016. Exploiting source-side monolingual
data in neural machine translation. In Proceedings of
EMNLP 2016, Austin, Texas, USA, November.

Bing Zhao and Yaser Al-onaizan. 2008. Generalizing lo-
cal and non-local word-reordering patterns for syntax-
based machine translation. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP ’08, pages 572–581, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

2288

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2289–2294,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning principled bilingual mappings of word embeddings while
preserving monolingual invariance

Mikel Artetxe, Gorka Labaka, Eneko Agirre
IXA NLP Group, University of the Basque Country (UPV/EHU)

{mikel.artetxe, gorka.labaka, e.agirre}@ehu.eus

Abstract

Mapping word embeddings of different lan-
guages into a single space has multiple appli-
cations. In order to map from a source space
into a target space, a common approach is to
learn a linear mapping that minimizes the dis-
tances between equivalences listed in a bilin-
gual dictionary. In this paper, we propose
a framework that generalizes previous work,
provides an efficient exact method to learn the
optimal linear transformation and yields the
best bilingual results in translation induction
while preserving monolingual performance in
an analogy task.

1 Introduction

Bilingual word embeddings have attracted a lot of
attention in recent times (Zou et al., 2013; Kočiský
et al., 2014; Chandar A P et al., 2014; Gouws et al.,
2014; Gouws and Søgaard, 2015; Luong et al., 2015;
Wick et al., 2016). A common approach to obtain
them is to train the embeddings in both languages
independently and then learn a mapping that mini-
mizes the distances between equivalences listed in a
bilingual dictionary. The learned transformation can
also be applied to words missing in the dictionary,
which can be used to induce new translations with
a direct application in machine translation (Mikolov
et al., 2013b; Zhao et al., 2015).

The first method to learn bilingual word em-
bedding mappings was proposed by Mikolov et al.
(2013b), who learn the linear transformation that
minimizes the sum of squared Euclidean distances
for the dictionary entries. Subsequent work has pro-
posed alternative optimization objectives to learn

better mappings. Xing et al. (2015) incorporate
length normalization in the training of word embed-
dings and try to maximize the cosine similarity in-
stead, introducing an orthogonality constraint to pre-
serve the length normalization after the projection.
Faruqui and Dyer (2014) use canonical correlation
analysis to project the embeddings in both languages
to a shared vector space.

Beyond linear mappings, Lu et al. (2015) apply
deep canonical correlation analysis to learn a non-
linear transformation for each language. Finally, ad-
ditional techniques have been used to address the
hubness problem in Mikolov et al. (2013b), both
through the neighbor retrieval method (Dinu et al.,
2015) and the training itself (Lazaridou et al., 2015).
We leave the study of non-linear transformation and
other additions for further work.

In this paper, we propose a general framework to
learn bilingual word embeddings. We start with a
basic optimization objective (Mikolov et al., 2013b)
and introduce several meaningful and intuitive con-
straints that are equivalent or closely related to pre-
viously proposed methods (Faruqui and Dyer, 2014;
Xing et al., 2015). Our framework provides a more
general view of bilingual word embedding map-
pings, showing the underlying connection between
the existing methods, revealing some flaws in their
theoretical justification and providing an alterna-
tive theoretical interpretation for them. Our exper-
iments on an existing English-Italian word transla-
tion induction and an English word analogy task
give strong empirical evidence in favor of our the-
oretical reasoning, while showing that one of our
models clearly outperforms previous alternatives.

2289

2 Learning bilingual mappings

Let X and Z denote the word embedding matrices
in two languages for a given bilingual dictionary so
that their ith row Xi∗ and Zi∗ are the word embed-
dings of the ith entry in the dictionary. Our goal is to
find a linear transformation matrix W so that XW
best approximates Z, which we formalize minimiz-
ing the sum of squared Euclidean distances follow-
ing Mikolov et al. (2013b):

arg min
W

∑

i

‖Xi∗W − Zi∗‖2

Alternatively, this is equivalent to minimizing the
(squared) Frobenius norm of the residual matrix:

arg min
W

‖XW − Z‖2F

Consequently, W will be the so called least-
squares solution of the linear matrix equation
XW = Z. This is a well-known problem in lin-
ear algebra and can be solved by taking the Moore-
Penrose pseudoinverse X+ =

(
XTX

)−1
XT as

W = X+Z, which can be computed using SVD.

2.1 Orthogonality for monolingual invariance

Monolingual invariance is needed to preserve the
dot products after mapping, avoiding performance
degradation in monolingual tasks (e.g. analogy).
This can be obtained requiring W to be an orthog-
onal matrix (W TW = I). The exact solution un-
der such orthogonality constraint is given by W =
V UT , where ZTX = UΣV T is the SVD factoriza-
tion of ZTX (cf. Appendix A). Thanks to this, the
optimal transformation can be efficiently computed
in linear time with respect to the vocabulary size.
Note that orthogonality enforces an intuitive prop-
erty, and as such it could be useful to avoid degen-
erated solutions and learn better bilingual mappings,
as we empirically show in Section 3.

2.2 Length normalization for maximum cosine

Normalizing word embeddings in both languages to
be unit vectors guarantees that all training instances
contribute equally to the optimization goal. As long
as W is orthogonal, this is equivalent to maximiz-
ing the sum of cosine similarities for the dictionary

entries, which is commonly used for similarity com-
putations:

arg min
W

∑

i

∥∥∥∥
Xi∗
‖Xi∗‖

W − Zi∗
‖Zi∗‖

∥∥∥∥
2

= arg max
W

∑

i

cos (Xi∗W,Zi∗)

This last optimization objective coincides with
Xing et al. (2015), but their work was motivated
by an hypothetical inconsistency in Mikolov et al.
(2013b), where the optimization objective to learn
word embeddings uses dot product, the objective
to learn mappings uses Euclidean distance and the
similarity computations use cosine. However, the
fact is that, as long as W is orthogonal, optimizing
the squared Euclidean distance of length-normalized
embeddings is equivalent to optimizing the cosine,
and therefore, the mapping objective proposed by
Xing et al. (2015) is equivalent to that used by
Mikolov et al. (2013b) with orthogonality constraint
and unit vectors. In fact, our experiments show that
orthogonality is more relevant than length normal-
ization, in contrast to Xing et al. (2015), who intro-
duce orthogonality only to ensure that unit length is
preserved after mapping.

2.3 Mean centering for maximum covariance
Dimension-wise mean centering captures the intu-
ition that two randomly taken words would not be
expected to be semantically similar, ensuring that
the expected product of two random embeddings in
any dimension and, consequently, their cosine sim-
ilarity, is zero. As long as W is orthogonal, this
is equivalent to maximizing the sum of dimension-
wise covariance for the dictionary entries:

arg min
W

‖CmXW − CmZ‖2F

= arg max
W

∑

i

cov (XW∗i, Z∗i)

where Cm denotes the centering matrix
This equivalence reveals that the method pro-

posed by Faruqui and Dyer (2014) is closely re-
lated to our framework. More concretely, Faruqui
and Dyer (2014) use Canonical Correlation Analysis
(CCA) to project the word embeddings in both lan-
guages to a shared vector space. CCA maximizes

2290

the dimension-wise covariance of both projections
(which is equivalent to maximizing the covariance
of a single projection if the transformations are con-
strained to be orthogonal, as in our case) but adds
an implicit restriction to the two mappings, making
different dimensions have the same variance and be
uncorrelated among themselves1:

arg max
A,B

∑

i

cov (XA∗i, ZB∗i)

s.t. ATXTCmXA = BTZTCmZB = I

Therefore, the only fundamental difference be-
tween both methods is that, while our model en-
forces monolingual invariance, Faruqui and Dyer
(2014) do change the monolingual embeddings to
meet this restriction. In this regard, we think that
the restriction they add could have a negative im-
pact on the learning of the bilingual mapping, and
it could also degrade the quality of the monolingual
embeddings. Our experiments (cf. Section 3) show
empirical evidence supporting this idea.

3 Experiments

In this section, we experimentally test the proposed
framework and all its variants in comparison with
related methods. For that purpose, we use the trans-
lation induction task introduced by Mikolov et al.
(2013b), which learns a bilingual mapping on a
small dictionary and measures its accuracy on pre-
dicting the translation of new words. Unfortunately,
the dataset they use is not public. For that reason,
we use the English-Italian dataset on the same task
provided by Dinu et al. (2015)2. The dataset con-
tains monolingual word embeddings trained with the
word2vec toolkit using the CBOW method with neg-
ative sampling (Mikolov et al., 2013a)3. The English
embeddings were trained on a 2.8 billion word cor-
pus (ukWaC + Wikipedia + BNC), while the 1.6 bil-
lion word corpus itWaC was used to train the Italian

1While CCA is typically defined in terms of correlation (thus
its name), correlation is invariant to the scaling of variables, so
it is possible to constrain the canonical variables to have a fixed
variance, as we do, in which case correlation and covariance
become equivalent

2http://clic.cimec.unitn.it/˜georgiana.
dinu/down/

3The context window was set to 5 words, the dimension of
the embeddings to 300, the sub-sampling to 1e-05 and the num-
ber of negative samples to 10

embeddings. The dataset also contains a bilingual
dictionary learned from Europarl, split into a train-
ing set of 5,000 word pairs and a test set of 1,500
word pairs, both of them uniformly distributed in
frequency bins. Accuracy is the evaluation measure.

Apart from the performance of the projected em-
beddings in bilingual terms, we are also interested in
the monolingual quality of the source language em-
beddings after the projection. For that purpose, we
use the word analogy task proposed by Mikolov et
al. (2013a), which measures the accuracy on answer-
ing questions like “what is the word that is similar to
small in the same sense as biggest is similar to big?”
using simple word vector arithmetic. The dataset
they use consists of 8,869 semantic and 10,675 syn-
tactic questions of this type, and is publicly avail-
able4. In order to speed up the experiments, we fol-
low the authors and perform an approximate eval-
uation by reducing the vocabulary size according
to a frequency threshold of 30,000 (Mikolov et al.,
2013a). Since the original embeddings are the same
in all the cases and it is only the transformation that
is applied to them that changes, this affects all the
methods in the exact same way, so the results are
perfectly comparable among themselves. With these
settings, we obtain a coverage of 64.98%.

We implemented the proposed method in Python
using NumPy, and make it available as an open
source project5. The code for Mikolov et al. (2013b)
and Xing et al. (2015) is not publicly available, so
we implemented and tested them as part of the pro-
posed framework, which only differs from the origi-
nal systems in the optimization method (exact solu-
tion instead of gradient descent) and the length nor-
malization approach in the case of Xing et al. (2015)
(postprocessing instead of constrained training). As
for the method by Faruqui and Dyer (2014), we used
their original implementation in Python and MAT-
LAB6, which we extended to cover cases where the
dictionary contains more than one entry for the same
word.

4https://code.google.com/archive/p/
word2vec/

5https://github.com/artetxem/vecmap
6https://github.com/mfaruqui/

crosslingual-cca

2291

EN-IT EN AN.
Original embeddings - 76.66%
Unconstrained mapping 34.93% 73.80%
+ length normalization 33.80% 73.61%
+ mean centering 38.47% 73.71%
Orthogonal mapping 36.73% 76.66%
+ length normalization 36.87% 76.66%
+ mean centering 39.27% 76.59%

Table 1: Our results in bilingual and monolingual tasks.

3.1 Results of our framework

The rows in Table 1 show, respectively, the results
for the original embeddings, the basic mapping pro-
posed by Mikolov et al. (2013b) (cf. Section 2) and
the addition of orthogonality constraint (cf. Section
2.1), with and without length normalization and, in-
crementally, mean centering. In all the cases, length
normalization and mean centering were applied to
all embeddings, even if missing from the dictionary.

The results show that the orthogonality constraint
is key to preserve monolingual performance, and
it also improves bilingual performance by enforc-
ing a relevant property (monolingual invariance) that
the transformation to learn should intuitively have.
The contribution of length normalization alone is
marginal, but when followed by mean centering
we obtain further improvements in bilingual perfor-
mance without hurting monolingual performance.

3.2 Comparison to other work

Table 2 shows the results for our best performing
configuration in comparison to previous work. As
discussed before, (Mikolov et al., 2013b) and (Xing
et al., 2015) were implemented as part of our frame-
work, so they correspond to our uncostrained map-
ping with no preprocessing and orthogonal mapping
with length normalization, respectively.

As it can be seen, the method by Xing et al.
(2015) performs better than that of Mikolov et al.
(2013b) in the translation induction task, which is in
line with what they report in their paper. Moreover,
thanks to the orthogonality constraint their mono-
lingual performance in the word analogy task does
not degrade, whereas the accuracy of Mikolov et al.
(2013b) drops by 2.86% in absolute terms with re-
spect to the original embeddings.

Since Faruqui and Dyer (2014) take advantage of

EN-IT EN AN.
Original embeddings - 76.66%
Mikolov et al. (2013b) 34.93% 73.80%
Xing et al. (2015) 36.87% 76.66%
Faruqui and Dyer (2014) 37.80% 69.64%
Our method 39.27% 76.59%

Table 2: Comparison of our method to other work.

CCA to perform dimensionality reduction, we tested
several values for it and report the best (180 dimen-
sions). This beats the method by Xing et al. (2015)
in the bilingual task, although it comes at the price of
a considerable degradation in monolingual quality.

In any case, it is our proposed method with the
orthogonality constraint and a global preprocessing
with length normalization followed by dimension-
wise mean centering that achieves the best accuracy
in the word translation induction task. Moreover, it
does not suffer from any considerable degradation
in monolingual quality, with an anecdotal drop of
only 0.07% in contrast with 2.86% for Mikolov et
al. (2013b) and 7.02% for Faruqui and Dyer (2014).

When compared to Xing et al. (2015), our results
in Table 1 reinforce our theoretical interpretation
for their method (cf. Section 2.2), as it empirically
shows that its improvement with respect to Mikolov
et al. (2013b) comes solely from the orthogonality
constraint, and not from solving any inconsistency.

It should be noted that the implementation by
Faruqui and Dyer (2014) also length-normalizes the
word embeddings in a preprocessing step. Follow-
ing the discussion in Section 2.3, this means that our
best performing configuration is conceptually very
close to the method by Faruqui and Dyer (2014),
as they both coincide on maximizing the average
dimension-wise covariance and length-normalize
the embeddings in both languages first, the only dif-
ference being that our model enforces monolingual
invariance after the normalization while theirs does
change the monolingual embeddings to make differ-
ent dimensions have the same variance and be un-
correlated among themselves. However, our model
performs considerably better than any configuration
from Faruqui and Dyer (2014) in both the monolin-
gual and the bilingual task, supporting our hypoth-
esis that these two constraints that are implicit in
their method are not only conceptually confusing,

2292

but also have a negative impact.

4 Conclusions

This paper develops a new framework to learn bilin-
gual word embedding mappings, generalizing previ-
ous work and providing an efficient exact method
to learn the optimal transformation. Our experi-
ments show the effectiveness of the proposed model
and give strong empirical evidence in favor of our
reinterpretation of Xing et al. (2015) and Faruqui
and Dyer (2014). It is the proposed method with
the orthogonality constraint and a global preprocess-
ing with length normalization and dimension-wise
mean centering that achieves the best overall results
both in monolingual and bilingual terms, surpassing
those previous methods. In the future, we would like
to study non-linear mappings (Lu et al., 2015) and
the additional techniques in (Lazaridou et al., 2015).

Acknowledgments

This research was partially supported by the Eu-
ropean Commision (QTLeap FP7-ICT-2013-10-
610516), a Google Faculty Award, and the Span-
ish Ministry of Economy and Competitiveness
(TADEEP TIN2015-70214-P). Mikel Artetxe enjoys
a doctoral grant from the Spanish Ministry of Edu-
cation, Culture and Sports.

A Proof of solution under orthogonality

Constraining W to be orthogonal (W TW = I), the
original minimization problem can be reformulated
as follows (cf. Section 2.1):

arg min
W

∑

i

‖Xi∗W − Zi∗‖2

= arg min
W

∑

i

(
‖Xi∗W‖2 + ‖Zi∗‖2 − 2Xi∗WZT

i∗
)

= arg max
W

∑

i

Xi∗WZT
i∗

= arg max
W

Tr
(
XWZT

)

= arg max
W

Tr
(
ZTXW

)

In the above expression, Tr(·) denotes the trace
operator (the sum of all the elements in the main di-
agonal), and the last equality is given by its cyclic

property. At this point, we can take the SVD of
ZTX as ZTX = UΣV T , so Tr

(
ZTXW

)
=

Tr
(
UΣV TW

)
= Tr

(
ΣV TWU

)
. Since V T ,

W and U are orthogonal matrices, their product
V TWU will also be an orthogonal matrix. In ad-
dition to that, given that Σ is a diagonal matrix,
its trace after an orthogonal transformation will be
maximal when the values in its main diagonal are
preserved after the mapping, that is, when the or-
thogonal transformation matrix is the identity ma-
trix. This will happen when V TWU = I in our
case, so the optimal solution will be W = V UT .

References
Sarath Chandar A P, Stanislas Lauly, Hugo Larochelle,

Mitesh Khapra, Balaraman Ravindran, Vikas C
Raykar, and Amrita Saha. 2014. An autoencoder ap-
proach to learning bilingual word representations. In
Advances in Neural Information Processing Systems
27, pages 1853–1861.

Georgiana Dinu, Angeliki Lazaridou, and Marco Baroni.
2015. Improving zero-shot learning by mitigating
the hubness problem. In Proceedings of the 3rd In-
ternational Conference on Learning Representations
(ICLR2015), workshop track.

Manaal Faruqui and Chris Dyer. 2014. Improving vector
space word representations using multilingual correla-
tion. In Proceedings of the 14th Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics, pages 462–471.

Stephan Gouws and Anders Søgaard. 2015. Simple task-
specific bilingual word embeddings. In Proceedings
of the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1386–1390.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2014. Bilbowa: Fast bilingual distributed repre-
sentations without word alignments. arXiv preprint
arXiv:1410.2455.

Tomáš Kočiský, Karl Moritz Hermann, and Phil Blun-
som. 2014. Learning bilingual word representations
by marginalizing alignments. In Proceedings of the
52nd Annual Meeting of the Association for Computa-
tional Linguistics, volume 2, pages 224–229.

Angeliki Lazaridou, Georgiana Dinu, and Marco Baroni.
2015. Hubness and pollution: Delving into cross-
space mapping for zero-shot learning. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Process-
ing, volume 1, pages 270–280.

2293

Ang Lu, Weiran Wang, Mohit Bansal, Kevin Gimpel, and
Karen Livescu. 2015. Deep multilingual correlation
for improved word embeddings. In Proceedings of
the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 250–256.

Min-Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Bilingual word representations with
monolingual quality in mind. In NAACL Workshop on
Vector Space Modeling for NLP, pages 151–159.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013b.
Exploiting similarities among languages for machine
translation. arXiv preprint arXiv:1309.4168.

Michael Wick, Pallika Kanani, and Adam Pocock. 2016.
Minimally-constrained multilingual embeddings via
artificial code-switching. In Thirtieth AAAI confer-
ence on Artificial Intelligence (AAAI).

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015.
Normalized word embedding and orthogonal trans-
form for bilingual word translation. In Proceedings
of the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1006–1011.

Kai Zhao, Hany Hassan, and Michael Auli. 2015. Learn-
ing translation models from monolingual continuous
representations. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 1527–1536.

Will Y. Zou, Richard Socher, Daniel Cer, and Christo-
pher D. Manning. 2013. Bilingual word embeddings
for phrase-based machine translation. In Proceedings
of the 2013 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1393–1398.

2294

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2295–2299,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Measuring the behavioral impact of machine translation quality
improvements with A/B testing

Benjamin Russell and Duncan Gillespie
Etsy

{brussell, dgillespie}@etsy.com

Abstract

In this paper we discuss a process for quan-
tifying the behavioral impact of a domain-
customized machine translation system de-
ployed on a large-scale e-commerce platform.
We discuss several machine translation sys-
tems that we trained using aligned text from
product listing descriptions written in mul-
tiple languages. We document the qual-
ity improvements of these systems as mea-
sured through automated quality measures and
crowdsourced human quality assessments. We
then measure the effect of these quality im-
provements on user behavior using an au-
tomated A/B testing framework. Through
testing we observed an increase in key e-
commerce metrics, including a significant in-
crease in purchases.

1 Introduction

Quality evaluation is an essential task when train-
ing a machine translation (MT) system. While au-
tomatic evaluation methods like BLEU (Papineni et
al., 2002) can be useful for estimating translation
quality, a higher score is no guarantee of quality
improvement (Callison-Burch et al., 2006). Previ-
ous studies (e.g. Coughlin, 2003) have compared
human evaluations of MT to metrics like BLEU
and found close correspondence between the two.
Koehn (2004) argued that relatively small differ-
ences in BLEU can indicate significant MT qual-
ity differences and suggested that human evaluation,
the traditional alternative to automated metrics like
BLEU, is therefore unnecessarily time-consuming
and costly. Callison-Burch (2009) explored the use

of crowdsourcing platforms for evaluating MT qual-
ity, with good results. However, we are not aware
of any research that investigates the effect of im-
proved MT on human behavior. In a commercial
application, like an e-commerce platform, it is de-
sirable to have a high degree of confidence in the
material effect of MT quality differences: any MT
system change should positively impact user experi-
ences.

Etsy is an online marketplace for handmade and
vintage items, with over 40 million active listings
and a community of buyers and sellers located
around the world. Visitors can use MT to translate
the text of product descriptions, product reviews,
and private messages, making it possible for mem-
bers to communicate effectively with one another,
even when they speak different languages. These
multilingual interactions facilitated by MT, such as
reading nonnative listing descriptions or conversing
with a foreign seller, are integral to the user experi-
ence.

However, due to the unique nature of the products
available in the marketplace, a generic third party
MT system1 often falls short when translating user-
generated content. One challenging lexical item is
“clutch.” A generic engine, trained on commonly
available parallel text, translates clutch as an “auto-
motive clutch.” In this marketplace, however, clutch
almost always means “purse.” A mistake like this is
problematic: a user who sees this incorrect machine
translation may lose confidence in that listing and
possibly in the marketplace as a whole.

1We use Microsoft’s Bing Translator for our machine trans-
lations.

2295

Figure 1: An example review translation on the website.

To improve the translation quality for terms like
clutch, we used an interface provided by a third
party machine translation service2 to train a cus-
tom MT engine for English to French translations.
To validate that the retrained MT systems were
materially improved, we used a two step valida-
tion process, first using crowd-sourced evaluations
with Amazon’s Mechanical Turk, and secondly us-
ing A/B testing, a way of conducting randomized
experiments on web sites, to measure the effect of
the trained system on user behavior.

2 Data Collection

Our online marketplace contains millions of listing
descriptions posted by tens of thousands of multilin-
gual sellers. We conducted an MT system training
using aligned texts from these product listings. We
used our third-party translation service’s automated
retraining framework to train multiple MT systems
that were specifically tuned to the marketplace’s cor-
pus. To gather this data, we used a Hadoop job to
parse through 130 million active and expired prod-
uct listings to find listing descriptions that were writ-
ten in both English and French. Once we found
these listing descriptions, we tokenized the text on
sentence boundary. We removed any descriptions
where there was a mismatch in the number of sen-
tences between the source and target descriptions.

Next, we used a language detection service to en-
sure the source and target strings were the correct
languages (source: English, target: French). After
language detection, we removed all sentences where

2http://hub.microsofttranslator.com

the ratio of alphabetic characters to total characters
was below 70%. This 70% threshold was deter-
mined through manual assessment of the result set,
and was used to eliminate strings with low numbers
of alphabetic characters, such as “25.5 in x 35.5 in”.

After these preliminary filtering steps, our train-
ing set consisted of 885,732 aligned sentences.
To supplement the aligned text, we also collected
2,625,162 monolingual French sentences for the
training. The monolingual text was parsed and
cleaned in the same manner as the aligned sentences.

The commercial MT system’s automatic training
framework provides tools for the upload of bilingual
and monolingual training data, tuning data, and test-
ing data for customization of the underlying statis-
tical MT system. Bilingual training data is used to
modify the base translation model; monolingual data
customizes the language model; the system is opti-
mized for the tuning data; and the testing data is used
to calculate a BLEU score. We trained over a dozen
systems with a variety of datasets and selected the
three systems that had the highest BLEU scores.

System 1 was trained using the aligned sentences,
along with the 2.6 million monolingual sentences.
The system was tuned using 2,500 sentences auto-
matically separated from the training sentences by
the third party’s training system, and used an ad-
ditional 2,500 automatically separated sentences for
testing.

For System 2, we used a variation of the Gale-
Church alignment algorithm (1993) to remove sen-
tences predicted to be misaligned based on their
length differences. The subject of sentence align-
ment in parallel texts has been researched exten-

2296

Training Data Sys. 1 Sys. 2 Sys. 3
886K aligned sentences x
766K aligned sentences
after Gale-Church applied x x

2.6M monolingual
segments x x x

Auto tuning* x x
Tuning with 2K
in-domain sentences x

Table 1: Data sets used for three MT system retrainings. *The

third party’s training platform automatically sets aside data to

use for the parameter tuning.

sively (e.g. Brown et al., 1991; Gale and Church,
1993). Although more sophisticated methods ex-
ist (e.g. Chen, 1993; Wu, 1994; Melamed, 1996;
Munteanu and Marcu, 2005), we used Gale-Church
due to its relatively high accuracy and low im-
plementation overhead. Misalignment between the
same listing descriptions written in multiple lan-
guages could be caused by several factors, the most
common problem being that sellers do not trans-
late descriptions sentence for sentence from one lan-
guage to the next. We detected possible misalign-
ments in 13.5% of the original 886K aligned sen-
tences, leaving 776K sentences to use for training
System 2. We used auto-tuning and auto-testing for
this engine, as we did for System 1.

System 3 was trained using the same training data
as the second engine, but was tuned using 2,000
professionally-translated sentences taken from list-
ing descriptions. Two hundred of these sentences
were drawn semi-randomly to represent a general
sample of listing description text; the remaining
1,800 contained terms, like “clutch,” that were be-
ing mistranslated by the generic system. This sys-
tem used the same automatically-generated testing
data as the other two to calculate a BLEU score. Ta-
ble 1 shows the training and tuning data used for the
three systems.

3 Crowdsourced Evaluation

For evaluation of the trained translation systems, we
generated translations of sentences drawn randomly
from our monolingual English corpus (product list-
ings that sellers had not translated into languages
other than English). We excluded segments that
were translated the same by both the trained and

BLEU Score
BLEU Score

Improvement Over
Generic System

System 1 48.16 +9.82
System 2 50.36 +12.02
System 3 46.85 +8.51

Table 2: BLEU score improvements for three translation sys-

tems over a baseline BLEU for the generic system of 38.34.

generic systems. (For System 1, 48 of 2,000 test
sentences had the same translation as the generic
system, for System 2 that number was 42, and for
System 3 that number was 148.)

To obtain judgments about the quality of these
translations, we used Mechanical Turk to obtain hu-
man evaluations of our candidate translation sys-
tems (Callison-Burch, 2009). To recruit Mechan-
ical Turk workers with bilingual competence, we
required workers to achieve at least 80% accuracy
in a binary translation judgment task (workers were
asked to judge whether each of 20 translations was
“Good” or “Bad”; their answers were compared with
those of professional translators).

Qualified workers completed a survey indicating
their preference for the translation of a particular
trained system compared to the generic commercial
translation system. Translation pairs were presented
in random order with no indication of whether a
translation was produced by a human, a generic
translation system, or an untrained translation sys-
tem. Workers were asked to choose the better of
the two translations or to indicate, “Neither is bet-
ter”. Workers were offered $2.00 to complete a 50-
question survey. Each survey contained five hid-
den questions with known answers (translation pairs
judged by professional translators) for quality con-
trol (we excluded responses from workers who did
not answer the hidden questions with at least 80%
accuracy).

4 Results

4.1 BLEU Evaluation

We used the automated BLEU calculation provided
by the third-party translation service to obtain scores
for each of the three translation systems.

All three systems had significant BLEU improve-
ments after retraining, as shown in Table 2. We be-

2297

Trained Generic Neither Ratio
Sys. 1 129 (34%) 109 (29%) 138 (36%) 1.18
Sys. 2 71 (25%) 85 (31%) 123 (44%) 0.84
Sys. 3 203 (36%) 150 (27%) 205 (37%) 1.35

Table 3: Results from crowdsourced evaluations of three trans-

lation systems. Columns labeled Trained, Generic, and Nei-
ther include the number of responses and percentage of total

responses for each response type. The Ratio column shows the

number of responses that favored the trained system to the num-

ber of responses that favored the generic system.

lieve System 3 has a lower BLEU score than the oth-
ers because it was tuned on a different data set: the
professionally-translated, in-domain sentences from
product listing descriptions. This made the system’s
output less like the automatically-selected test set
than the others, but closer, presumably, to the high-
quality, low-noise tuning translations sourced from
professional translators.

4.2 Crowdsourced evaluation

The crowdsourced evaluation of the three systems
favored System 3. Table 3 provides a summary of
the results. Neither System 1 nor System 2 showed
a significant difference between selection of transla-
tions provided by the trained or untrained system:
chi-squared tests did not detect a significant dif-
ference between number of responses favoring the
trained system and number of responses favoring the
generic system (p = 0.1948 and p = 0.26, respec-
tively, for the two systems). However, a chi-squared
test indicated a significant preference for System 3,
which was chosen 35% more often than the generic
system (p = 0.0048). Based on the crowd-sourced
results, we proceeded to A/B test System 3 against
the generic translation system baseline.

The lack of improvements for System 1 and Sys-
tem 2 detected using the crowd-sourcing methods
was somewhat surprising, given the large BLEU
score improvements observed for all three systems.
We believe this lends further support to Callison-
Burch, et al.’s (2006) critiques of BLEU as a stand-
alone machine translation quality metric. In this
case, it is possible that Systems 1 and 2 achieved
high BLEU improvements due to over-fitting the
training data from which the test set was drawn. We
might speculate that this is due to the presence of
low-quality translations from limited-bilingual sell-

ers, or the presence of MT generated by a different
online tool in some sellers’ translations. By tun-
ing the system using a high-quality, professionally-
translated test set, we reduced overall BLEU but in-
creased quality as judged by bilingual evaluators.

4.3 A/B testing

A/B testing is a strategy for comparing two differ-
ent versions of a website to see which one performs
better. Traditionally, one of these experiences is the
existing, A, control experience, and the other expe-
rience is a new, B, variant experience. By randomly
grouping users into one of the two experiences, and
measuring the on-site behavior (e.g., clicks on a
listing or items purchased) of each group, we can
make data-driven decisions about whether new ex-
periences are actually an improvement for our users.
For our use case, the control experience is showing
users content machine translated with the generic
engine, and the variant experience is showing con-
tent translated with the retrained engine. A/B test-
ing allows us to answer the following question: will
users who read a product description translated by
a domain-customized translation engine be more or
less likely to purchase a product?

To test the effects of the quality improvement ob-
tained, we used our in-house automated A/B test-
ing framework to compare the behavioral effects on
users who translated text using the generic engine
and those who translated using System 3. Visitors to
the online marketplace were randomly ”bucketed”
into an experimental group or a control group. Ran-
dom bucketing was achieved via a hash of a user’s
browser ID, which allows users who return to the
site during the experimental period to be bucketed
consistently across visits. For visitors who requested
translations from English into French, the generic
system’s translations were displayed to visitors in
the control group, and System 3 translations were
displayed to visitors in the experimental group.

The experiment ran for 66 days for a total of
88,106 visitors (43,306 control and 44,800 experi-
mental). The key metrics tracked were pages per
visit (the number of pages seen in one user session),
conversion rate (the percent of visits that include at
least one purchase), and add-to-cart rate (the per-
cent of visits in which a user adds an item to their
shopping cart). We observed a significant positive

2298

Metric Trained engine
Conversion rate +8.72%
Visit add-to-cart rate +2.92%
Pages per visit +3.37%

Table 4: The trained translation system’s (System 3) improve-

ment over the generic engine on key business metrics. All dif-

ferences are statistically significant (p < 0.05). Base rates are

omitted for data privacy reasons.

effect of the trained system on all three metrics, as
shown in Table 4: a 3.37% increase in pages per
visit (p = 0.00153 95% CI [1.29, 5.46]), an 8.72%
increase in purchase rate (p = 0.00513 95% CI
[2.61, 14.82]), and a 2.92% increase in add-to-cart
(p = 0.04689 95% CI [0.04, 5.8]).

5 Conclusion

Numerous studies have shown that automatic ma-
chine translation quality estimates, such as BLEU,
are correlated with human evaluations of translation
quality. Our work shows that those improvements
in translation quality can have a positive effect on
user behavior in a commercial setting, as measured
through conversion rate. These considerations sug-
gest that, in domains where machine translation con-
veys information upon which individuals base deci-
sions, the effort needed to gather and process data
to customize a machine translation system can be
worthwhile. Additionally, our experiments show
A/B testing can be a valuable tool to evaluate ma-
chine translation quality. A/B testing goes beyond
measuring the quality of translation improvements:
it allows us to see the positive impact that quality im-
provements are having on users’ purchase behavior
in a measurable way.

References

Peter F. Brown, Jennifer C. Lai, and Robert L Mercer.
1991. Aligning sentences in parallel corpora. In Pro-
ceedings of the 29th Annual Meeting on Association
for Computational Linguistics, pages 169–176.

Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. 2006. Re-evaluating the role of BLEU in ma-
chine translation research. In Proceedings of EACL,
volume 6, pages 249–256.

Chris Callison-Burch. 2009. Fast, cheap, and cre-
ative: evaluating translation quality using Amazon’s

Mechanical Turk. In Proceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, volume 1, pages 286–295.

Stanley F. Chen. 1993. Aligning sentences in bilingual
corpora using lexical information. In Proceedings of
the 31st Annual Meeting on Association for Computa-
tional Linguistics, pages 9–16.

Deborah Coughlin. 2003. Correlating automated and
human assessments of machine translation quality. In
Proceedings of MT Summit IX, pages 63–70.

William A. Gale and Kenneth W. Church. 1993. A
program for aligning sentences in bilingual corpora.
Computational Linguistics, 19(1):75–102.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of the
2004 Conference on Empirical Methods in Natural
Language Processing, pages 388–395.

I Dan Melamed. 1996. A geometric approach to map-
ping bitext correspondence. In Proceedings of the
First Conference on Empirical Methods in Natural
Language Processing.

Dragos Stefan Munteanu and Daniel Marcu. 2005. Im-
proving machine translation performance by exploit-
ing non-parallel corpora. Computational Linguistics,
31(4):477–504.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Computa-
tional Linguistics, pages 311–318.

Dekai Wu. 1994. Aligning a parallel English-Chinese
corpus statistically with lexical criteria. In Proceed-
ings of the 32nd Annual Meeting on Association for
Computational Linguistics, pages 80–87.

2299

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2300–2305,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Creating a Large Benchmark for Open Information Extraction

Gabriel Stanovsky and Ido Dagan
Computer Science Department,

Bar-Ilan University, Ramat Gan, Israel
gabriel.satanovsky@gmail.com

dagan@cs.biu.ac.il

Abstract

Open information extraction (Open IE) was
presented as an unrestricted variant of tra-
ditional information extraction. It has been
gaining substantial attention, manifested by a
large number of automatic Open IE extractors
and downstream applications. In spite of this
broad attention, the Open IE task definition
has been lacking – there are no formal guide-
lines and no large scale gold standard annota-
tion. Subsequently, the various implementa-
tions of Open IE resorted to small scale post-
hoc evaluations, inhibiting an objective and re-
producible cross-system comparison. In this
work, we develop a methodology that lever-
ages the recent QA-SRL annotation to create
a first independent and large scale Open IE an-
notation,1 and use it to automatically compare
the most prominent Open IE systems.

1 Introduction

Open Information Extraction (Open IE) was origi-
nally formulated as a function from a document to a
set of tuples indicating a semantic relation between
a predicate phrase and its arguments (Banko et al.,
2007). Wu and Weld (2008) further defined that an
Open IE extractor should “produce one triple for ev-
ery relation stated explicitly in the text, but is not
required to infer implicit facts”. For example, given
the sentence “John managed to open the door” an
Open IE extractor should produce the tuple (John;
managed to open; the door) but is not required to pro-
duce the extraction (John; opened; the door).

1Publicly available at http://www.cs.biu.ac.il/
nlp/resources/downloads

Following this initial presentation of the task,
Open IE has gained substantial and consistent atten-
tion. Many automatic extractors were created (e.g.,
(Fader et al., 2011; Mausam et al., 2012; Del Corro
and Gemulla, 2013)) and were put to use in various
downstream applications.

In spite of this wide attention, Open IE’s for-
mal definition is lacking. There are no clear guide-
lines as to what constitutes a valid proposition to be
extracted, and subsequently there is no large scale
benchmark annotation. Open IE evaluations there-
fore usually consist of a post-hoc manual evaluation
of a small output sample.

This evaluation practice lacks in several respects:
(1) Most works provide a precision oriented metric,
whereas recall is often not measured, (2) the num-
bers are not comparable across systems, as they use
different guidelines and datasets, and (3) the experi-
ments are hard to replicate.

In this work, we aim to contribute to the standard-
ization of Open IE evaluation by providing a large
gold benchmark corpus. For that end, we first iden-
tify consensual guiding principles across prominent
Open IE systems, resulting in a clearer formulation
of the Open IE task. Following, we find that the re-
cent formulation of QA-SRL (He et al., 2015) in fact
subsumes these requirements for Open IE. This en-
ables us to automatically convert the annotations of
QA-SRL to a high-quality Open IE corpus of more
than 10K extractions, 13 times larger than the previ-
ous largest Open IE annotation.

Finally, we automatically evaluate the perfor-
mance of various Open IE systems against our cor-
pus, using a soft matching criterion. This is the first

2300

time such a comparative evaluation is performed on
a large scale gold corpus.

Future Open IE systems (and its applicative users)
can use this large benchmark, along with the auto-
matic evaluation measure, to easily compare their
performance against previous baselines, alleviating
the current need for ad-hoc evaluation.

2 Background

2.1 Open IE

Open Information Extraction (Open IE) was intro-
duced as an open variant of traditional Information
Extraction (Etzioni et al., 2008). As mentioned in
the Introduction, its primary goal is to extract coher-
ent propositions from a sentence, each comprising of
a relation phrase and two or more argument phrases
(e.g., (Barack Obama, born in, Hawaii)). Since its
inception, Open IE has gained consistent attention,
mostly used as a component within larger frame-
works (Christensen et al., 2013; Balasubramanian et
al., 2013).

In parallel, many Open IE extractors were de-
veloped. TextRunner (Banko et al., 2007) and
WOE (Wu and Weld, 2010) take a self-supervised
approach over automatically produced dependency
parses. Perhaps more dominant is the rule based ap-
proach taken by ReVerb (Fader et al., 2011), OLLIE
(Mausam et al., 2012), KrakeN (Akbik and Löser,
2012) and ClausIE (Del Corro and Gemulla, 2013).

Two recent systems take a semantically-oriented
approach. Open IE-42 uses semantic role labeling to
extract tuples, while Stanford Open Information Ex-
traction (Angeli et al., 2015) uses natural logic infer-
ence to arrive at shorter, more salient, arguments.

Recently, Stanovsky et al. (2016b) presented
PropS, a proposition oriented representation, ob-
tained via conversion rules from dependency trees.
Performing Open IE extraction over PropS struc-
tures is straightforward – follow the clearly marked
predicated nodes to their direct arguments.

Contrary to the vast interest in Open IE, its task
formulation has been largely overlooked. There are
currently no common guidelines defining a valid ex-
traction, which consequently hinders the creation of
an evaluation benchmark for the task. Most Open

2https://github.com/knowitall/openie

IE extractors3 evaluate performance by manually ex-
amining a small sample of their output. Table 1 sum-
marizes the evaluations taken by the most prominent
Open IE systems.

2.2 QA-SRL

Semantic Role Labeling (SRL) (Carreras and
Màrquez, 2005) is typically perceived as answer-
ing argument role questions, such as who, what, to
whom, when, or where, regarding a target predicate.
For instance, PropBank’s ARG0 for the predicate
say answers the question “who said something?”.

QA-SRL (He et al., 2015) suggests that answering
explicit role questions is an intuitive means to solicit
predicate-argument structures from non-expert an-
notators. Annotators are presented with a sentence
in which a target predicate4 was marked, and are re-
quested to annotate argument role questions and cor-
responding answers.

Consider the sentence “Giles Pearman, Mi-
crosoft’s director of marketing, left his job” and the
target predicate left. The QA-SRL annotation con-
sists of the following pairs: (1) Who left something?
{Giles Pearman; Microsoft’s director of market-
ing} and (2) what did someone leave? his job.5

He et al. assessed the validity of QA-SRL
by annotating 3200 sentences from PropBank and
Wikipedia, showing high agreement with the Prop-
Bank annotations. In the following section we au-
tomatically derive an Open IE benchmark from this
QA-SRL annotation.

3 Creating an Open IE Benchmark

3.1 Open IE Guidelines

Before creating a generic benchmark for evaluat-
ing Open IE systems, it is first needed to obtain a
clearer specification of the common task that they
address. Despite some nuances, we identified the
following core aspects of the Open IE task as con-
sensual across all systems mentioned in Section 2:

3Except for (Wu and Weld, 2010) who evaluated recall.
4Currently consisting of automatically annotated verbs.
5Three cases give rise to multiple answers for the same ques-

tion: appositives (as illustrated in this example), co-reference
(“Jimmy Hendrix played the guitar, he was really good at it”),
and distributive coordinations (“Bob and Mary were born in
America”).

2301

System #Sentences Genre Metric #Annot. Agreement
TextRunner 400 Web % Correct 3 -
WOE 300 Web, Wiki, News Precision / Recall 5 -
ReVerb 500 Web Precision / AUC 2 86%, .68 k
KrakeN 500 Web % Correct 2 87%

Ollie 300 News, Wiki, Biology
Precision/Yield
AUC

2 96%

ClauseIE 300 Web, Wiki, News Precision/Yield 2 57% / 68% / 63%

Table 1: The post-hoc evaluation metrics taken by the different systems described in Section 2. In contrast,
Stanford Open IE and PropS took an extrinsic evaluation approach.

Assertedness Extracted propositions should be
asserted by the original sentence. For example,
given the sentence “Sam succeeded in convincing
John”, ReVerb and ClausIE produce the extraction:
(Sam; succeeded in convincing; John). Most Open IE
systems do not attempt to recover implied embedded
propositions (e.g., (Sam; convinced; John)), but rather
include matrix verbs (e.g., succeeded) in the predi-
cate slot. Other elements that affect assertedness,
like negations and modals, are typically included in
the predicate slot as well (e.g. (John; could not join;
the band)).

Minimal propositions Open IE systems aim to
”break down” a sentence into a set of small isolated
propositions. Accordingly, the span of each individ-
ual proposition, and hence the span of each of its
predicate and argument slots, should be as minimal
as possible, as long as the original information (truth
conditions) is preserved. For example, this leads
to splitting distributive coordination in the sentence
“Bell distributes electronic and building products”,
for which ClausIE produces: (Bell, distributes, elec-
tronic products) and (Bell, distributes, building prod-
ucts). Having shorter entities as Open IE arguments
was further found to be useful in several semantic
tasks (Angeli et al., 2015; Stanovsky et al., 2015).

Completeness and open lexicon Open IE systems
aim to extract all asserted propositions from a sen-
tence. In practice, most current Open IE systems
limit their scope to extracting verbal predicates, but
consider all possible verbs without being bound to a
pre-specified lexicon.

3.2 From QA-SRL to Open IE

SRL and Open IE have been defined with differ-
ent objectives. Particularly, SRL identifies argument
role labels, which is not addressed in Open IE. Yet,
the two tasks overlap as they both need to recover
predicate-argument structures in sentences. We now
examine the above Open IE requirements and sug-
gest that while they are only partly embedded within
SRL structures, they can be fully recovered from
QA-SRL.

Asserted (matrix) propositions appear in SRL as
non-embedded predicates (e.g., succeeded in the
“Sam succeeded to convince John”). However,
SRL’s predicates are grounded to a lexicon such as
PropBank (Palmer et al., 2005) or FrameNet (Baker
et al., 1998), which violates the completeness and
open lexicon principle. Further, in contrast to the
minimal propositions principle, arguments in SRL
annotations are inclusive, each marked as full sub-
trees in a syntactic parse.

Yet, QA-SRL seems to bridge this gap between
traditional SRL structures and Open IE require-
ments. Its predicate vocabulary is open, and its
question-answer format solicits minimal proposi-
tions, as was found in a recent study by (Stanovsky
et al., 2016a). This correlation suggests that the QA-
SRL methodology is in fact also an attractive means
for soliciting Open IE extractions from non-experts
annotators. Evidently, it enables automatically de-
riving high quality Open IE annotations from (cur-
rent or future) QA-SRL gold annotations, as de-
scribed in the following section

2302

3.3 Generating Open-IE Extractions
Formally, we extract an Open-IE dataset from the
QA-SRL dataset by the following algorithm, which
is illustrated in more detail further below:

1. Given:

• s - a sentence from the QA-SRL dataset.
• p - a predicate in s.
• tq1, ..., qnu - a list of questions over p.
• tta1,1, ..., a1,l1u, ...tan,1, ..., an,lnuu - a

list of sets of corresponding answers,
where question qi has li answers.

2. If p is a non-embedded (matrix) verb:

(a) Remove answers which are composed
only of pronouns, as these are not ex-
pected to be extracted by Open-IE (and ac-
cordingly adjust the li’s).

(b) Return extractions composed of p
and every combination of answers in
tta1,1, ..., a1,l1u ˆ ... ˆ tan,1, ..., an,lnuu
(the Cartesian product of the answers).
This process results in a list of l1 ¨ l2 ¨ ... ¨ ln
Open IE extractions.

For example, consider the sentence: “Barack
Obama, the U.S. president, was determined to win
the majority vote in Washington and Arizona”. The
questions corresponding to the predicate determine
are: {who was determined?, what was someone de-
termined to do?}, and the corresponding answer
sets are: {{“Barack Obama”, “the U.S president”},
{“win the majority vote in Washington”, “win the
majority vote in Arizona”}}.

Following, our algorithm will produce these Open
IE extractions: (Barack Obama; was determined; to
win the majority vote in Washington), (the U.S. presi-
dent; was determined; to win the majority vote in Wash-
ington), (Barack Obama; was determined; to win the
majority vote in Arizona), and (the U.S. president; was
determined; to win the majority vote in Arizona).

Note that we do not produce extractions for em-
bedded predicates (e.g., win) to conform with the
assertedness principle, as discussed earlier.

With respect to pronoun removal (step 2(a)), we
would remove the pronoun “he” as the answer to the
question who was tired? in “John went home, he was

Corpus WSJ WIKI ALL
#Sentences 1241 1959 3200
#Predicates 2020 5690 7710
#Questions 8112 10798 18910
#Extractions 4481 5878 10359

Table 2: Corpus statistics.

System #Extractions
WSJ WIKI ALL

Stanford 6423 14104 20527
ClausIE 5295 8265 13560
Open IE4 3634 5113 8747
OLLIE 2976 5250 8226
PropS 2852 4990 7842
ReVerb 1624 2552 4716

Table 3: The yield of the different Open IE systems.

tired”. Notice that in this sentence “John” would be
a second answer for the above question, yielding the
extraction (John; was tired). When the only answer to
a question is a pronoun this question will be ignored
in the extraction process, since the QA-SRL corpus
does not address cross-sentence co-references. This
issue may be addressed in future work.

Applying this process to the QA-SRL corpus
yielded a total of 10,359 Open IE extractions
over 3200 sentences from 2 domains (see Ta-
ble 2). This corpus is about 13 times larger
than the previous largest annotated Open IE cor-
pus (Fader et al., 2011). The corpus is avail-
able at: http://www.cs.biu.ac.il/nlp/
resources/downloads.

Corpus validation We assess the validity of our
dataset by performing expert annotation6 of Open
IE extractions, following the principles discussed in
Section 3.1, for 100 random sentences. We find
that our benchmark extractions, derived automati-
cally from QA-SRL, highly agree with the expert
annotation, reaching 95.8 F1 by the head-agreement
criterion defined in the next section.

2303

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Recall

Pr
ec

is
io

n

OLLIE

ReVerb

ClausIE

OpenIE-4

PropS

Stanford

Figure 1: Precision-recall curve for the different
Open IE systems on our corpus (see discussion in
Section 4).

4 Comparative Evaluation

In this section, we illustrate the utility of our new
corpus by testing the performance of 6 promi-
nent Open IE systems: OpenIE-4, ClausIE, OLLIE,
PropS, Stanford, and ReVerb (see Section 2).7

In order to evaluate these systems in terms of pre-
cision and recall, we need to match between their au-
tomated extractions and the benchmark extractions.
To allow some flexibility (e.g., omissions of preposi-
tions or auxiliaries), we follow (He et al., 2015) and
match an automated extraction with a gold proposi-
tion if both agree on the grammatical head of all of
their elements (predicate and arguments). We then
analyze the recall and precision of Open IE systems
on different confidence thresholds (Figure 1). Fur-
thermore, we calculate the area under the PR curve
for each of the different corpora (Figure 2) and the
explicit yield per system (Table 3).

To the best of our knowledge, this is the first ob-
jective comparative evaluation of prominent Open-
IE systems, over a large and independently created
dataset. This comparison gives rise to several ob-
servations; which can be useful for future research
and for choosing a preferred system for a particular
application setting, such as:

6Carried by the first author.
7Currently, we test only the common case of verbal predi-

cates.

Figure 2: Area Under the PR Curve (AUC) measure
for the evaluated systems.

1. Open IE-4 achieves best precision above 3% re-
call (ě 78.67) and best AUC score (54.02),

2. ClausIE is best at recall (81.38), and

3. Stanford Open IE assigns confidence of 1 to
94% of its extractions, explaining its low pre-
cision.

5 Conclusions

We presented the first independent and large scale
Open IE benchmark annotation, and tested the most
prominent systems against it. We hope that future
Open IE systems can make use of this new resource
to easily and objectively measure and compare their
performance.

Acknowledgments

We would like to thank Mausam for fruitful discus-
sions, and the anonymous reviewers for their helpful
comments.

This work was supported in part by grants from
the MAGNET program of the Israeli Office of the
Chief Scientist (OCS), the Israel Science Founda-
tion grant 880/12, and the German Research Foun-
dation through the German-Israeli Project Coopera-
tion (DIP, grant DA 1600/1-1).

References
Alan Akbik and Alexander Löser. 2012. Kraken: N-ary

facts in open information extraction. In NAACL-HLT
2012: Proceedings of the The Knowledge Extraction
Workshop.

Gabor Angeli, Melvin Johnson Premkumar, and Christo-
pher D. Manning. 2015. Leveraging linguistic struc-
ture for open domain information extraction. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics (ACL 2015).

2304

Collin F Baker, Charles J Fillmore, and John B Lowe.
1998. The berkeley framenet project. In Proceedings
of ACL, pages 86–90. Association for Computational
Linguistics.

Niranjan Balasubramanian, Stephen Soderland, Oren Et-
zioni Mausam, and Oren Etzioni. 2013. Generating
coherent event schemas at scale. In EMNLP, pages
1721–1731.

Michele Banko, Michael J. Cafarella, Stephen Soderland,
Matthew Broadhead, and Oren Etzioni. 2007. Open
information extraction from the web. In IJCAI 2007,
Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence, Hyderabad, India, Jan-
uary 6-12, 2007, pages 2670–2676.

Xavier Carreras and Lluı́s Màrquez. 2005. Introduction
to the conll-2005 shared task: Semantic role labeling.
In Proceedings of CONLL, pages 152–164.

Janara Christensen, Stephen Soderland Mausam, Stephen
Soderland, and Oren Etzioni. 2013. Towards coher-
ent multi-document summarization. In HLT-NAACL,
pages 1163–1173. Citeseer.

Luciano Del Corro and Rainer Gemulla. 2013. Clausie:
clause-based open information extraction. In Proceed-
ings of the 22nd international conference on World
Wide Web, pages 355–366. International World Wide
Web Conferences Steering Committee.

Oren Etzioni, Michele Banko, Stephen Soderland, and
Daniel S Weld. 2008. Open information extrac-
tion from the Web. Communications of the ACM,
51(12):68–74.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
1535–1545. Association for Computational Linguis-
tics.

Luheng He, Mike Lewis, and Luke Zettlemoyer. 2015.
Question-answer driven semantic role labeling: Us-
ing natural language to annotate natural language. In
the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Mausam, Michael Schmitz, Stephen Soderland, Robert
Bart, and Oren Etzioni. 2012. Open language learn-
ing for information extraction. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning, pages 523–534, Jeju Island, Ko-
rea, July. Association for Computational Linguistics.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational linguistics, 31(1):71–
106.

Gabriel Stanovsky, Ido Dagan, and Mausam. 2015.
Open IE as an intermediate structure for semantic

tasks. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics (ACL
2015).

Gabriel Stanovsky, Ido Dagan, and Meni Adler. 2016a.
Specifying and annotating reduced argument span via
qa-srl. In Proceedings of the 54rd Annual Meeting
of the Association for Computational Linguistics (ACL
2015).

Gabriel Stanovsky, Jessica Ficler, Ido Dagan, and Yoav
Goldberg. 2016b. Getting more out of syntax with
props. arXiv preprint.

Fei Wu and Daniel S. Weld. 2010. Open information ex-
traction using wikipedia. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics, pages 118–127, Uppsala, Sweden, July.
Association for Computational Linguistics.

Fei Wu, Raphael Hoffmann, and Daniel S Weld. 2008.
Information extraction from wikipedia: Moving down
the long tail. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 731–739. ACM.

2305

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2306–2312,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Bilingually-constrained Synthetic Data for Implicit Discourse Relation
Recognition

Changxing Wu1,2, Xiaodong Shi1,2∗, Yidong Cheng1,2, Yanzhou Huang1,2, Jinsong Su3

Fujian Key Lab of the Brain-like Intelligent Systems, Xiamen University, China1

School of Information Science and Technology, Xiamen University, China2

School of Software, Xiamen University, China3

{wcxnlp, huangyanzhou163}@163.com
{mandel, ydchen, jssu}@xmu.edu.cn

Abstract

To alleviate the shortage of labeled data, we
propose to use bilingually-constrained syn-
thetic implicit data for implicit discourse re-
lation recognition. These data are extracted
from a bilingual sentence-aligned corpus ac-
cording to the implicit/explicit mismatch be-
tween different languages. Incorporating
these data via a multi-task neural network
model achieves significant improvements over
baselines, on both the English PDTB and Chi-
nese CDTB data sets.

1 Introduction

Discovering the discourse relation between two sen-
tences is crucial to understanding the meaning of
a coherent text, and also beneficial to many down-
stream NLP applications, such as question answer-
ing and machine translation. Implicit discourse re-
lation recognition (DRRimp) remains a challenging
task due to the absence of strong surface clues like
discourse connectives (e.g. but). Most work re-
sorts to large amounts of manually designed features
(Soricut and Marcu, 2003; Pitler et al., 2009; Lin et
al., 2009; Louis et al., 2010; Rutherford and Xue,
2014), or distributed features learned via neural net-
work models (Braud and Denis, 2015; Zhang et al.,
2015; Ji and Eisenstein, 2015). The above methods
usually suffer from limited labeled data.

Marcu and Echihabi (2002) attempt to create la-
beled implicit data automatically by removing con-
nectives from explicit instances, as additional train-
ing data. These data are usually called as syn-

∗Corresponding author.

thetic implicit data (hereafter SynData). How-
ever, Sporleder and Lascarides (2008) argue that
SynData has two drawbacks: 1) meaning shifts
in some cases when removing connectives, and 2)
a different word distribution with the real implicit
data. They also show that using SynData directly
degrades the performance. Recent work seeks to de-
rive valuable information from SynData while fil-
tering noise, via domain adaptation (Braud and De-
nis, 2014; Ji et al., 2015), classifying connectives
(Rutherford and Xue, 2015) or multi-task learning
(Lan et al., 2013; Liu et al., 2016), and shows
promising results.

ch: [社会 认为 有 青少年 问题,]Arg1

en: [society reckons the existence of youth problems,]Arg1

implicit=但是 [很多 青少年 认为 自己 没 问题.]Arg2

but [many young people do not think there is anything

wrong with them.]Arg2

 society reckon existence youth problems,

but many young people think themselves no problems.

Figure 1: An example illustrating the implicit/explicit mis-

match between Chinese (ch) and English (en). A Chinese im-

plicit instance is translated into an English explicit one. In the

PDTB, a discourse instance is defined as a connective (e.g. but)

taking two arguments (Arg1 and Arg2).

Different from previous work, we propose to con-
struct bilingually-constrained synthetic implicit data
(called BiSynData) for DRRimp, which can alle-
viate the drawbacks of SynData. Our method is
inspired by the findings that a discourse instance ex-
pressed implicitly in one language may be expressed
explicitly in another. For example, Zhou and Xue

2306

(2012) show that the connectives in Chinese omit
much more frequently than those in English with
about 82.0% vs. 54.5%. Li et al. (2014a) further
argue that there are about 23.3% implicit/explicit
mismatchs between Chinese/English instances. As
illustrated in Figure 1, a Chinese implicit instance
where the connective �´ is absent, is translated
into an English explicit one with the connective but.
Intuitively, the Chinese instance is a real implicit
one which can be signaled by but. Hence, it could
potentially serve as additional training data for the
Chinese DRRimp, avoiding the different word dis-
tribution problem of SynData. Meanwhile, for the
English explicit instance, it is very likely that remov-
ing butwould not lose any information since its Chi-
nese counterpart �´ can be omitted. Therefore it
could be used for the English DRRimp, alleviating
the meaning shift problem of SynData.

We extract our BiSynData from a Chinese-
English sentence-aligned corpus (Section 2). Then
we design a multi-task neural network model to in-
corporate the BiSynData (Section 3). Experimen-
tal results, on both the English PDTB (Prasad et al.,
2008) and Chinese CDTB (Li et al., 2014b), show
that BiSynData is more effective than SynData
used in previous work (Section 4). Finally, we re-
view the related work (Section 5) and draw conclu-
sions (Section 6).

2 BiSynData

Formally, given a Chinese-English sentence pair
(Sch, Sen), we try to find an English explicit in-
stance (Arg1en, Arg2en, Connen) in Sen

1, and a
Chinese implicit instance (Arg1ch, Arg2ch) in Sch,
where (Arg1en, Arg2en, Connen) is the transla-
tion of (Arg1ch, Arg2ch). In most cases, dis-
course relations should be preserved during trans-
lating, so the connective Connen is potentially
a strong indicator of the discourse relation be-
tween not only Arg1en and Arg2en, but also
Arg1ch and Arg2ch. Therefore, we can con-
struct two synthetic implicit instances labeled by
Connen, denoted as 〈(Arg1en, Arg2en), Connen〉
and 〈(Arg1ch, Arg2ch), Connen〉, respectively. We
refer to these synthetic instances asBiSynData be-

1In our experiments, we use the pdtb-parser toolkit (Lin et
al., 2014) to identify English explicit instances.

cause they are constructed according to the bilingual
implicit/explicit mismatch.

Conn. Freq. Conn. Freq.
and 14294 while 1031
if 2580 before 822
as 1951 also 552

when 1521 since 511
but 1122 because 503

Table 1: Top 10 most frequent connectives in ourBiSynData.

In our experiments, we extract our BiSynData
from a combined corpus (FBIS and HongKong
Law), with about 2.38 million Chinese-English sen-
tence pairs. We generate 30,032 synthetic En-
glish instances and the same number of Chinese in-
stances, with 80 connectives, as our BiSynData.
Table 1 lists the top 10 most frequent connec-
tives in our BiSynData, which are roughly con-
sistent with the statistics of Chinese/English im-
plicit/explicit mismatches in (Li et al., 2014a). Ac-
cording to connectives and their related relations
in the PDTB, in most cases, and and also indi-
cate the Expansion relation, if and because the
Contigency relation, before the Temporal rela-
tion, and but the Comparison relation. Connec-
tives as, when, while and since are ambiguous.
For example, while can indicate the Comparison
or Temporal relation. Overall, our constructed
BiSynData covers all four main discourse rela-
tions defined in the PDTB.

With our BiSynData, we define two connec-
tive classification tasks: 1) given (Arg1en, Arg2en)
to predict the connective Connen, and 2) given
(Arg1ch, Arg2ch) to predict Connen. We incorpo-
rate the first task to help the English DRRimp, and
the second for the Chinese DRRimp. It is worthy
to note that we use English connectives themselves
as classification labels rather than mapping them to
relations in both tasks.

3 Multi-Task Neural Network Model

We design a Multi-task Neural Network Model (de-
noted as MTN), which incorporates a connective
classification task on BiSynData (auxiliary task)
to benefitDRRimp (main task). In general, the more
related two tasks are, the more powerful a multi-task
learning method will be. In the current problem, the

2307

two tasks are essentially the same, just with differ-
ent output labels. Therefore, as illustrated in Fig-
ure 2, MTN shares parameters in all feature layers
(L1-L3) and uses two separate classifiers in the clas-
sifier layer (L4). For each task, given an instance
(Arg1, Arg2), MTN simply averages embeddings
of words to represent arguments, as vArg1 and vArg2 .
These two vectors are then concatenated and trans-
formed through two non-linear hidden layers. Fi-
nally, the corresponding softmax layer is used to
perform classification.

3

mainw

3

auxw

1w 2w

Main Task

Aux Task

1L
2L 3L 4L

1Argv

2Argv

Figure 2: MTN with four layers L1-L4.

MTN ignores the word order in arguments and
uses two hidden layers to capture the interactions
between two arguments. The idea behind MTN is
borrowed from (Iyyer et al., 2015), where a deep
averaging network achieves close to the state-of-
the-art performance on text classification. Though
MTN is simple, it is easy to train and efficient on
both memory and computational cost. In addition,
the simplicity of MTN allows us to focus on mea-
suring the quality of BiSynData.

We use the cross-entropy loss function and mini-
batch AdaGrad (Duchi et al., 2011) to optimize pa-
rameters. Pre-trained word embeddings are fixed.
We find that fine-tuning word embeddings during
training leads to severe overfitting in our experi-
ments. Following Liu et al. (2016), we alternately
use two tasks to train the model, one task per epoch.
For tasks on both the PDTB and CDTB, we use the
same hyper-parameters. The dimension of word em-
bedding is 100. We set the size of L2 to 200, and
L3 to 100. ReLU is used as the non-linear func-
tion. Different learning rates 0.005 and 0.001 are
used in the main and auxiliary tasks, respectively. To
avoid overfitting, we randomly drop out 20% words

in each argument following Iyyer et al. (2015). All
hyper-parameters are tuned on the development set.

4 Experiments

We evaluate our method on both the English PDTB
and Chinese CDTB data sets. We tokenize English
data and segment Chinese data using the Stanford
CoreNLP toolkit (Manning et al., 2014). The En-
glish/Chinese Gigaword corpus (3rd edition) is used
to train the English/Chinese word embeddings via
word2vec (Mikolov et al., 2013), respectively. Due
to the skewed class distribution of test data (see Sec-
tion 4.1), we use the macro-averaged F1 for perfor-
mance evaluation.

4.1 On the PDTB

Following Rutherford and Xue (2015), we perform a
4-way classification on the top-level discourse rela-
tions: Temporal (Temp), Comparison (Comp),
Contigency (Cont) and Expansion (Expa). Sec-
tions 2-20 are used as training set, sections 0-1
as development set and sections 21-22 as test set.
The training/test set contains 582/55 instances for
Temp, 1855/145 for Comp, 3235/273 for Cont
and 6673/538 for Expa. The top 20 most frequent
connectives in our BiSynData are considered in
the auxiliary task, with 28,013 synthetic English in-
stances in total.

STN MTNbi

Temp P 33.33 34.48
R 14.55 18.18
F1 20.25 23.81

Comp P 38.54 42.11
R 25.52 33.10
F1 30.71 37.07

Cont P 38.36 44.22
R 41.03 40.66
F1 39.65 42.37

Expa P 59.60 62.56
R 66.36 71.75
F1 62.80 66.84

macro F1 38.35 42.52
Table 2: Results of 4-way classification on the PDTB.

Table 2 shows the results ofMTN combining our
BiSynData (denoted as MTNbi) on the PDTB.

2308

STN means we train MTN with only the main
task. On the macro F1, MTNbi gains an improve-
ment of 4.17% over STN . The improvement is sig-
nificant under one-tailed t-test (p<0.05). A closer
look into the results shows that MTNbi performs
better across all relations, on the precision, recall
and F1 score, except a little drop on the recall of
Cont. The reason for the recall drop of Cont is
not clear. The greatest improvement is observed on
Comp, up to 6.36% F1 score. The possible reason
is that only while is ambiguous about Comp and
Temp, while as, when and since are all ambigu-
ous about Temp and Cont, among top 10 connec-
tives in our BiSynData. Meanwhile the amount
of labeled data for Comp is relatively small. Over-
all, using BiSynData under our multi-task model
achieves significant improvements on the English
DRRimp. We believe the reasons for the improve-
ments are twofold: 1) the added synthetic English
instances from our BiSynData can alleviate the
meaning shift problem, and 2) a multi-task learning
method is helpful for addressing the different word
distribution problem between implicit and explicit
data.

Considering some of the English connectives
(e.g., while) are highly ambiguous, we compare our
method with ones that uses only unambiguous con-
nectives. Specifically, we first discard as, when,
while and since in top 20 connectives, and get
22,999 synthetic instances. Then, we leverage these
instances in two different ways: 1) using them in our
multi-task model as above, and 2) using them as ad-
ditional training data directly after mapping unam-
biguous connectives into relations. Both methods
using only unambiguous connectives do not achieve
better performance. One possible reason is that these
synthetic instances become more unbalanced after
discarding ones with ambiguous connectives.

We also compareMTNbi with recent systems us-
ing additional training data. Rutherford and Xue
(2015) select explicit instances that are similar to the
implicit ones via connective classification, to enrich
the training data. Liu et al. (2016) use a multi-task
model with three auxiliary tasks: 1) conn: connec-
tive classification on explicit instances, 2) exp: re-
lation classification on the labeled explicit instances
in the PDTB, and 3) rst: relation classification on
the labeled RST corpus (William and Thompson,

System macro F1

1 Rutherford and Xue (2015) 40.50
2 Liu et al. (2016) conn 38.09
3 Liu et al. (2016) exp 39.03
4 Liu et al. (2016) rst 40.67
5 Liu et al. (2016) conn+exp+rst 44.98
6 MTNbi 42.52

Table 3: Comparison with recent systems on the PDTB. conn+

exp+ rst means using three auxiliary tasks simultaneously.

1988), which defines different discourse relations
with that in the PDTB. The results are shown in Ta-
ble 3. Although Liu et al. (2016) achieve the state-
of-the-art performance (Line 5), they use two ad-
ditional labeled corpora. We can find that MTNbi

(Line 6) yields better results than those systems in-
corporating SynData (Line 1, 2 and 3), or even the
labeled RST (Line 4). These results confirm that
BiSynData can indeed alleviate the disadvantages
of SynData effectively.

4.2 On the CDTB

Four top-level relations are defined in the CDTB,
including Transition (Tran), Causality (Caus),
Explanation (Expl) and Coordination (Coor).
We use instances in the first 50 documents as test
set, second 50 documents as development set and re-
maining 400 documents as training set. We conduct
a 3-way classification because of only 39 instances
for Tran. The training/test set contains 682/95 in-
stances for Caus, 1143/126 for Expl and 2300/347
for Coor. The top 20 most frequent connectives
(excluding and)2 in our BiSynData are consid-
ered in the auxiliary task, with 13,899 synthetic Chi-
nese instances in total. The results are shown in
Table 4. Compared with STN , MTNbi raises the
macro F1 from 55.44% to 58.28%. The improve-
ment is significant under one-tailed t-test (p<0.05).
Therefore, BiSynData is also helpful for the Chi-
nese DRRimp.

Because of no reported results on the CDTB, we
useMTN with two different auxiliary tasks as base-
lines: 1) exp: relation classification on the labeled

2Including and degrades the performance slightly. A pos-
sible reason is that and can be related to both the Expl and
Coor relations in the CDTB, and instances marked by and ac-
count for about half of our BiSynData.

2309

STN MTNbi

Caus P 47.92 52.94
R 24.21 28.42
F1 32.17 36.99

Expl P 54.62 53.47
R 56.35 61.11
F1 55.47 57.04

Coor P 74.36 78.02
R 83.57 83.86
F1 78.70 80.83

macro F1 55.44 58.28
Table 4: Results of 3-way classification on the CDTB.

explicit instances in the CDTB, including 466 in-
stances for Caus, 201 for Expl and 974 for Coor.
2) conn: connective classification on explicit in-
stances from the Xinhua part of the Chinese Giga-
word corpus. We collect explicit instances with the
top 20 most frequent Chinese connectives and sam-
ple 20,000 instances for the experiment. Both exp
and conn can be considered as tasks on SynData.
The results in Table 5 show that MTN incorporat-
ingBiSynData (Line 3) performs better than using
SynData (Line 1 and 2), for the task on the CDTB.

System macro F1

1 MTNexp 56.42
2 MTNconn 56.86
3 MTNbi 58.28

Table 5: MTN with different auxiliary tasks on the CDTB.

5 Related Work

One line of research related to DRRimp tries to
take advantage of explicit discourse data. Zhou et
al. (2010) predict the absent connectives based on
a language model. Using these predicted connec-
tives as features is proven to be helpful. Biran and
McKeown (2013) aggregate word-pair features that
are collected around the same connectives, which
can effectively alleviate the feature sparsity prob-
lem. More recently, Braud and Denis (2014) and Ji
et al. (2015) consider explicit data from a different
domain, and use domain adaptation methods to ex-
plore the effect of them. Rutherford and Xue (2015)
propose to gather weakly labeled data from explicit
instances via connective classification, which are

used as additional training data directly. Lan et al.
(2013) and Liu et al. (2016) combine explicit and
implicit data using multi-task learning models and
gain improvements. Different from all the above
work, we construct additional training data from a
bilingual corpus.

Multi-task neural networks have been success-
fully used for many NLP tasks. For example, Col-
lobert et al. (2011) jointly train models for the Part-
of-Speech tagging, chunking, named entity recogni-
tion and semantic role labeling using convolutional
network. Liu et al. (2015) successfully combine the
tasks of query classification and ranking for web
search using a deep multi-task neural network. Lu-
ong et al. (2016) explore multi-task sequence to
sequence learning for constituency parsing, image
caption generation and machine translation.

6 Conclusion

In this paper, we introduce bilingually-constrained
synthetic implicit data (BiSynData), which are
generated based on the bilingual implicit/explicit
mismatch, into implicit discourse relation recogni-
tion for the first time. On both the PDTB and CDTB,
usingBiSynData as the auxiliary task significantly
improves the performance of the main task. We
also show that BiSynData is more beneficial than
the synthetic implicit data typically used in previous
work. Since the lack of labeled data is a major chal-
lenge for implicit discourse relation classification,
our proposed BiSynData can enrich the training
data and then benefit future work.

Acknowledgments

We would like to thank all the reviewers for their
constructive and helpful suggestions on this paper.
This work is partially supported by the Natural Sci-
ence Foundation of China (Grant Nos. 61573294,
61303082, 61672440), the Ph.D. Programs Founda-
tion of Ministry of Education of China (Grant No.
20130121110040), the Fund of Research Project
of Tibet Autonomous Region of China (Grant No.
Z2014A18G2-13), and the Natural Science Founda-
tion of Fujian Province (Grant No. 2016J05161).

2310

References

Or Biran and Kathleen McKeown. 2013. Aggregated
Word Pair Features for Implicit Discourse Relation
Disambiguation. In Proceedings of ACL (Volume 2:
Short Papers), pages 69–73, Sofia, Bulgaria.

Chloé Braud and Pascal Denis. 2014. Combining
Natural and Artificial Examples to Improve Implicit
Discourse Relation Identification. In Proceedings of
COLING, pages 1694–1705, Dublin, Ireland.

Chloé Braud and Pascal Denis. 2015. Comparing Word
Representations for Implicit Discourse Relation Clas-
sification. In Proceedings of EMNLP, pages 2201–
2211, Lisbon, Portugal.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural Language Processing (Almost) from Scratch.
Journal of Machine Learning Research, 12(1):2493–
2537.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep Unordered Com-
position Rivals Syntactic Methods for Text Classifi-
cation. In Proceedings of ACL-IJCNLP, pages 1681–
1691, Beijing, China.

Yangfeng Ji and Jacob Eisenstein. 2015. One Vector is
Not Enough: Entity-Augmented Distributed Seman-
tics for Discourse Relations. In Transactions of the
Association for Computational Linguistics, volume 3,
pages 329–344.

Yangfeng Ji, Gongbo Zhang, and Jacob Eisenstein. 2015.
Closing the Gap: Domain Adaptation from Explicit
to Implicit Discourse Relations. In Proceedings of
EMNLP, pages 2219–2224, Lisbon, Portugal.

Man Lan, Yu Xu, and Zhengyu Niu. 2013. Leveraging
Synthetic Discourse Data via Multi-task Learning for
Implicit Discourse Relation Recognition. In Proceed-
ings of ACL, pages 476–485, Sofia, Bulgaria.

Junyi Jessy Li, Marine Carpuat, and Ani Nenkova.
2014a. Cross-lingual Discourse Relation Analysis:
A Corpus Study and a Semi-supervised Classification
System. In Proceedings of COLING : Technical Pa-
pers, pages 577–587, Dublin, Ireland.

Yancui Li, Wenhe Feng, Jing Sun, Fang Kong, and
Guodong Zhou. 2014b. Building Chinese Dis-
course Corpus with Connective-driven Dependency
Tree Structure. In Proceedings of EMNLP, pages
2105–2114, Doha, Qatar.

Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. 2009.
Recognizing Implicit Discourse Relations in the Penn

Discourse Treebank. In Proceedings of EMNLP,
pages 343–351, PA, USA.

Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. 2014. A
PDTB-styled End-to-end Discourse Parser. Natural
Language Engineering, 20(02):151–184.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng,
Kevin Duh, and Ye-Yi Wang. 2015. Representation
Learning Using Multi-task Deep Neural Networks for
Semantic Classification and Information Retrieval. In
Proceedings of NAACL, pages 912–921, Denver, Col-
orado.

Yang Liu, Sujian Li, Xiaodong Zhang, and Zhifang Sui.
2016. Implicit Discourse Relation Classification via
Multi-Task Neural Networks. In Proceedings of AAAI,
pages 2750–2756, Arizona, USA.

Annie Louis, Aravind Joshi, Rashmi Prasad, and Ani
Nenkova. 2010. Using Entity Features to Classify
Implicit Discourse Relations. In Proceedings of SIG-
DIAL, pages 59–62, PA, USA.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task Se-
quence to Sequence Learning. In Proceedings of
ICLR, pages 1–10, San Juan, Puerto Rico.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP Natural Language Pro-
cessing Toolkit. In Proceedings of ACL (System
Demonstrations), pages 55–60, Maryland, USA.

Daniel Marcu and Abdessamad Echihabi. 2002. An Un-
supervised Approach to Recognizing Discourse Rela-
tions. In Proceedings of ACL, pages 368–375, PA,
USA.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. CoRR, abs/1301.3781.

Emily Pitler, Annie Louis, and Ani Nenkova. 2009. Au-
tomatic Sense Prediction for Implicit Discourse Rela-
tions in Text. In Proceedings of ACL-IJCNLP, pages
683–691, PA, USA.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2008. The Penn Discourse TreeBank 2.0. In
Proceedings of LREC, volume 24, pages 2961–2968,
Marrakech, Morocco.

Attapol T. Rutherford and Nianwen Xue. 2014. Dis-
covering Implicit Discourse Relations Through Brown
Cluster Pair Representation and Coreference Patterns.
In Proceedings of EACL, pages 645–654, Gothenburg,
Sweden.

Attapol Rutherford and Nianwen Xue. 2015. Improving
the Inference of Implicit Discourse Relations via Clas-
sifying Explicit Discourse Connectives. In Proceed-
ings of NAACL, pages 799–808, Denver, Colorado.

2311

Radu Soricut and Daniel Marcu. 2003. Sentence Level
Discourse Parsing Using Syntactic and Lexical Infor-
mation. In Proceedings of NAACL, pages 149–156,
PA, USA.

Caroline Sporleder and Alex Lascarides. 2008. Using
Automatically Labelled Examples to Classify Rhetori-
cal Relations: An Assessment. Natural Language En-
gineering, 14(3):369–416.

Mann William and Sandra Thompson. 1988. Rhetorical
structure theory: Towards a Functional Theory of Text
Organization. Text, 8(3):243–281.

Biao Zhang, Jinsong Su, Deyi Xiong, Yaojie Lu, Hong
Duan, and Junfeng Yao. 2015. Shallow Convolu-
tional Neural Network for Implicit Discourse Relation
Recognition. In Proceedings of EMNLP, pages 2230–
2235, Lisbon, Portugal.

Yuping Zhou and Nianwen Xue. 2012. PDTB-style dis-
course annotation of Chinese text. In Proceedings of
ACL, pages 69–77, Jeju Island, Korea.

Zhi-Min Zhou, Yu Xu, Zheng-Yu Niu, Man Lan, Jian
Su, and Chew Lim Tan. 2010. Predicting Discourse
Connectives for Implicit Discourse Relation Recogni-
tion. In Proceedings of COLING, pages 1507–1514,
PA, USA.

2312

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2313–2318,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Transition-Based Dependency Parsing with Heuristic Backtracking

Jacob Buckman♣ Miguel Ballesteros♦ Chris Dyer♠♣
♣School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

♦NLP Group, Pompeu Fabra University, Barcelona, Spain
♠Google DeepMind, London, UK

jacobbuckman@cmu.edu, miguel.ballesteros@upf.edu, cdyer@google.com

Abstract

We introduce a novel approach to the decoding
problem in transition-based parsing: heuris-
tic backtracking. This algorithm uses a se-
ries of partial parses on the sentence to locate
the best candidate parse, using confidence es-
timates of transition decisions as a heuristic to
guide the starting points of the search. This
allows us to achieve a parse accuracy compa-
rable to beam search, despite using fewer tran-
sitions. When used to augment a Stack-LSTM
transition-based parser, the parser shows an
unlabeled attachment score of up to 93.30%
for English and 87.61% for Chinese.

1 Introduction

Transition-based parsing, one of the most prominent
dependency parsing techniques, constructs a depen-
dency structure by reading words sequentially from
the sentence, and making a series of local decisions
(called transitions) which incrementally build the
structure. Transition-based parsing has been shown
to be both fast and accurate; the number of transi-
tions required to fully parse the sentence is linear
relative to the number of words in the sentence.

In recent years, the field has seen dramatic im-
provements in the ability to correctly predict tran-
sitions. Recent models include the greedy Stack-
LSTM model of Dyer et al. (2015) and the globally
normalized feed-forward networks of Andor et al.
(2016). These models output a local decision at each
transition point, so searching the space of possible
paths to the predicted tree is an important compo-
nent of high-accuracy parsers.

One common search technique is beam search.
(Zhang and Clark, 2008; Zhang and Nivre, 2011;
Bohnet and Nivre, 2012; Zhou et al., 2015; Weiss et
al., 2015; Yazdani and Henderson, 2015) In beam-
search, a fixed number of candidate transition se-
quences are generated, and the highest-scoring se-
quence is chosen as the answer. One downside to
beam search is that it often results in a significant
amount of wasted predictions. A constant number
of beams are explored at all points throughout the
sentence, leading to some unnecessary exploration
towards the beginning of the sentence, and poten-
tially insufficient exploration towards the end.

One way that this problem can be mitigated is by
using a dynamically-sized beam (Mejia-Lavalle and
Ramos, 2013). When using this technique, at each
step, prune all beams whose scores are below some
value s, where s is calculated based upon the distri-
bution of scores of available beams. Common meth-
ods for pruning are removing all beams below some
percentile, or any beams which scored below some
constant percentage of the highest-scoring beam.

Another approach to solving this issue is given by
Choi and McCallum (2013). They introduced se-
lectional branching, which involves performing an
initial greedy parse, and then using confidence esti-
mates on each prediction to spawn additional beams.
Relative to standard beam-search, this reduces the
average number of predictions required to parse a
sentence, resulting in a speed-up.

In this paper, we introduce heuristic backtracking,
which expands on the ideas of selectional branching
by integrating a search strategy based on a heuristic
function (Pearl, 1984): a function which estimates

2313

the future cost of taking a particular decision. When
paired with a good heuristic, heuristic backtracking
maintains the property of reducing wasted predic-
tions, but allows us to more fully explore the space
of possible transition sequences (as compared to se-
lectional branching). In this paper, we use a heuristic
based on the confidence of transition predictions.

We also introduce a new optimization: heuristic
backtracking with cutoff. Since heuristic backtrack-
ing produces results incrementally, it is possible to
stop the search early if we have found an answer that
we believe to be the gold parse, saving time propor-
tional to the number of backtracks remaining.

We compare the performance of these various
decoding algorithms with the Stack-LSTM parser
(Dyer et al., 2015), and achieve slightly higher ac-
curacy than beam search, in significantly less time.

2 Transition-Based Parsing With
Stack-LSTM

Our starting point is the model described by Dyer et
al. (2015).1 The parser implements the arc-standard
algorithm (Nivre, 2004) and it therefore makes use
of a stack and a buffer. In (Dyer et al., 2015), the
stack and the buffer are encoded with Stack-LSTMs,
and a third sequence with the history of actions taken
by the parser is encoded with another Stack-LSTM.
The three encoded sequences form the parser state
pt defined as follows,

pt = max {0,W[st;bt;at] + d} , (1)

where W is a learned parameter matrix, bt, st and
at are the stack LSTM encoding of buffer, stack and
the history of actions, and d is a bias term. The out-
put pt (after a component-wise rectified linear unit
(ReLU) nonlinearity (Glorot et al., 2011)) is then
used to compute the probability of the parser action
at time t as:

p(zt | pt) =
exp

(
g>ztpt + qzt

)
∑

z′∈A(S,B) exp
(
g>z′pt + qz′

) , (2)

where gz is a column vector representing the (out-
put) embedding of the parser action z, and qz is a
bias term for action z. The set A(S,B) represents

1We refer to the original work for details.

the valid transition actions that may be taken in the
current state. The objective function is:

Lθ(w, z) =
|z|∑

t=1

log p(zt | pt) (3)

where z refers to parse transitions.

3 Heuristic Backtracking

Using the Stack-LSTM parsing model of Dyer et
al. (2015) to predict each decision greedily yields
very high accuracy; however, it can only explore one
path, and it therefore can be improved by conduct-
ing a larger search over the space of possible parses.
To do this, we introduce a new algorithm, heuristic
backtracking. We also introduce a novel cutoff ap-
proach to further increase speed.

3.1 Decoding Strategy
We model the space of possible parses as a tree,
where each node represents a certain parse state
(with complete values for stack, buffer, and action
history). Transitions connect nodes of the tree, and
leaves of the tree represent final states.

During the first iteration, we start at the root of the
tree, and greedily parse until we reach a leaf. That
is, for each node, we use the Stack-LSTM model
to calculate scores for each transition (as described
in Section 2), and then execute the highest-scoring
transition, generating a child node upon which we
repeat the procedure. Additionally, we save an or-
dered list of the transition scores, and calculate the
confidence of the node (as described in Section 3.2).

When we reach the leaf node, we backtrack to the
location that is most likely to fix a mistake. To find
this, we look at all explored nodes that still have at
least one unexplored child, and choose the node with
the lowest heuristic confidence (see Section 3.2).
We rewind our stack, buffer, and action history to
that state, and execute the highest-scoring transition
from that node that has not yet been explored. At
this point, we are again in a fully-unexplored node,
and can greedily parse just as before until we reach
another leaf.

Once we have generated b leaves, we score them
all and return the transition sequence leading up to
the highest-scoring leaf as the answer. Just as in pre-
vious studies (Collins and Roark, 2004), we use the

2314

n1
1 n1

2

n2
2

n3
2

n4
2

n1
3

n2
3

n3
3

n4
3

n1
4

n2
4

n3
4

n4
4

n1
l

n2
l

n3
l

n4
l

. . .

. . .

. . .

. . .

(a) Beam Search

n1
1 n1

2

n2
2

n3
2

n4
2

n1
3

n2
3

n1
4

n2
4

n3
4

n1
l

n2
l

n3
l

n4
l

. . .

. . .

. . .

(b) Dynamic Beam Search

n1
1 n1

2

n2
2

n1
3

n2
3

n3
3

n1
4

n2
4

n3
4

n4
4

n1
l

n2
l

n3
l

n4
l

. . .

. . .

. . .

. . .

(c) Selectional Branching

n1
1 n1

2

n2
2

n1
3

n2
3

n1
4

n2
4

n3
4

n4
4

n1
l

n2
l

n3
l

n4
l

. . .

. . .

. . .

. . .

(d) Heuristic Backtracking

Figure 1: Visualization of various decoding algorithms

sum of the log probabilities of all individual transi-
tions as the overall score for the parse.

3.2 Calculating Error Likelihood

Let n indicate a node, which consists of a state, a
buffer, and an action history. We may refer to a
specific node as nji , which means it has i actions
in its action history and it is part of the history of
the jth leaf (and possibly subsequent leaves). Let
the function T (n) represent a sorted vector contain-
ing all possible transitions from n, and S(n) rep-
resent a sorted vector containing the scores of all of
these transitions, in terms of log probabilities of each
score. We can index the scores in order of value, so
T1(n) is the highest-scoring transition and S1(n) is
its score, T2(n) is the second-highest-scoring tran-
sition, etc. Here, let un indicate the ranking of the
transition leading to the first unexplored child of a
node n. Also, let V (n) represent the total score of
all nodes in the history of n, i.e. the sum of all the
scores of individual transitions that allowed us to get
to n.

To calculate the confidence of an individual node,
Choi and McCallum (2013) simply found the score
margin, or difference in probability between the top-
scoring transition and the second-highest scoring
transition: C(n) = S1(n) − S2(n). In selectional
branching, the only states for which the confidence
was relevant were the states in the first greedy parse,
i.e. states n1i for all i. For heuristic backtracking, we
wish to generalize this to any state nji for all i and j.

We do this in the following way:

H(nji) = (V (n1i)− V (nji)) + (S(u
n
j
i

)−1(n
j
i) + S(u

n
j
i

)(n
j
i))

(4)
Intuitively, this formula means that the node that will
be explored first is the node that will yield a parse
that scores as close to the greedy choice as possible.
The first term ensures that it has a history of good
choices, and the second term ensures that the new
child node being explored will be nearly as good as
the prior child.

3.3 Number of Predictions

As discussed earlier, we use number of predictions
made by the model as a proxy for the speed; exe-
cution speed may vary based on system and algo-
rithmic implementation, but prediction count gives
a good estimate of the overall work done by the al-
gorithm.

Consider a sentence of length l, which requires at
most 2l transitions with the greedy decoder (Nivre,
2004). The number of predictions required for
heuristic backtracking for b leaves is guaranteed to
be less than or equal to a beam search with b beams.

When doing a beam search, the first transition will
require 1 prediction, and then every subsequent tran-
sition will require 1 prediction per beam, or b predic-
tions. This results in a total of b(2l − 1) + 1 predic-
tions.

When doing heuristic backtracking, the first
greedy search will require 2l predictions. Every

2315

subsequent prediction will require a number of pre-
dictions dependent on the target of the backtrack:
backtracking to nji will require 2l − (i + 1) pre-
dictions. Note that 0 < i < 2l. Thus, each back-
track will require at maximum 2l − 1 predictions.
Therefore, the maximum total amount of predictions
is 2l + (b− 1)(2l − 1) = b(2l − 1) + 1.

However, note that on average, there are signifi-
cantly fewer. Assuming that all parts of a sentence
have approximately equal score distributions, the av-
erage backtrack will be where i = l, and reduce pre-
dictions by 50%.

An intuitive understanding of this difference can
be gained by viewing the graphs of various decoding
methods in Figure 1. Beam search has many nodes
which never yield children that reach an end-state;
dynamic beam search has fewer, but still several. Se-
lectional branching has none, but suffers from the re-
striction that every parse candidate can be no more
than one decision away from the greedy parse. With
heuristic backtracking, there is no such restriction,
but yet every node explored is directly useful for
generating a candidate parse.

3.4 Early Cutoff

Another inefficiency inherent to beam search is the
fact that all b beams are always fully explored.
Since the beams are calculated in parallel, this is in-
evitable. However, with heuristic backtracking, the
beams are calculated incrementally; this gives us the
opportunity to cut off our search at any point. In or-
der to leverage this into more efficient parsing, we
constructed a second Stack-LSTM model, which we
call the cutoff model. The cutoff model uses a sin-
gle Stack-LSTM2 that takes as input the sequence of
parser states (see Eq 1), and outputs a boolean vari-
able predicting whether the entire parse is correct or
incorrect.

To train the cutoff model, we used stochastic gra-
dient descent over the training set. For each training
example, we first parse it greedily using the Stack-
LSTM parser. Then, for as long as the parse has at
least one mistake, we pass it to the cutoff model as
a negative training example. Once the parse is com-
pletely correct, we pass it to the cutoff model as a
positive training example. The loss function that we

22 layers and 300 dimensions.

use is:

Lθ = − log p(t | s) (5)

where s is the LSTM encoded vector and t is the
truth (parse correct/incorrect).

When decoding using early cutoff, we follow the
exact same procedure as for normal heuristic back-
tracking, but after every candidate parse is gener-
ated, we use it as input to our cutoff model. When
our cutoff model returns our selection as correct, we
stop backtracking and return it as the answer. If we
make b attempts without finding a correct parse, we
follow the same procedure as before.

4 Experiments and Results

To test the effectiveness of heuristic backtrack-
ing, we compare it with other decoding tech-
niques: greedy, beam search,3, dynamic beam
search (Mejia-Lavalle and Ramos, 2013), and selec-
tional branching (Choi and McCallum, 2013). We
then try heuristic backtracking (see Section 3.1), and
heuristic backtracking with cutoff (see Section 3.4).
Note that beam search was not used for early-update
training (Collins and Roark, 2004). We use the same
greedy training strategy for all models, and we only
change the decoding strategy.

We tested the performance of these algorithms on
the English SD and Chinese CTB.4 A single model
was trained using the techniques described in Sec-
tion 2, and used as the transition model for all decod-
ing algorithms. Each decoding technique was tested
with varying numbers of beams; as b increased, both
the predictions per sentence and accuracy trended
upwards. The results are summarized in Table 1.5

Note that we report results for only the highest-
accuracy b (in the development set) for each.

We also report the results of the cutoff model in
Table 2. The same greedily-trained model as above
was used to generate candidate parses and confi-
dence estimates for each transition, and then the cut-
off model was trained to use these confidence esti-

3Greedy and beam-search were already explored by Dyer et
al. (2015)

4Using the exact same settings as Dyer et al. (2015) with
pretrained embeddings and part-of-speech tags.

5The development sets are used to set the model parameters;
results on the development sets are similar to the ones obtained
in the test sets.

2316

English
Decoding Pred/Sent UAS LAS

Greedy – Dyer et al. 47.92 93.04% 90.87%
Beam Search 542.09 93.32% 91.19%

Dynamic Beam Search 339.42 93.32% 91.19%
Sel. Branching 59.66 93.24% 91.12%
Heur. Backtr. 198.03 93.30% 91.18%

Heur. Backtr. w/ Cutoff 108.32 93.27% 91.16%
Chinese

Decoding Pred/Sent UAS LAS
Greedy – Dyer et al. 53.79 87.31% 85.88%

Beam Search 815.65 87.62% 86.17%
Dynamic Beam Search 282.32 87.62% 86.17%

Sel. Branching 91.51 87.53% 86.08%
Heur. Backtr. 352.30 87.61% 86.16%

Heur. Backtr. w/ Cutoff 162.37 87.60% 86.15%

Table 1: UAS and LAS of various decoding meth-
ods. Pred/Sent refers to number of predictions made
by the Stack-LSTM per sentence.

mates to discriminate between correctly-parsed and
incorrectly-parsed sentences.

5 Discussion

In Table 1 we see that in both English and Chi-
nese, the best heuristic backtracking performs ap-
proximately as well as the best beam search, while
making less than half the predictions. This supports
our hypothesis that heuristic backtracking can per-
form at the same level as beam search, but with in-
creased efficiency.

Dynamic beam search also performed as well
as full beam search, despite demonstrating a re-
duction in predictions on par with that of heuris-
tic backtracking. Since the implementation of dy-
namic beam search is very straightforward for sys-
tems which have already implemented beam search,
we believe this will prove to be a useful finding.

Heuristic backtracking with cutoff outperformed
greedy decoding, and reduced transitions by an addi-
tional 50%. However, it increased accuracy slightly
less than full heuristic backtracking. We believe this
difference could be mitigated with an improved cut-
off model; as can be seen in Table 2, the cutoff
model was only able to discriminate between correct
and incorrect parses around 75% of the time. Also,
note that while predictions per sentence were low,
the overall runtime was increased due to running the
cutoff LSTM multiple times per sentence.

Language Cutoff Accuracy
English 72.43%
Chinese 75.18%

Table 2: Test-set accuracy of cutoff model on En-
glish and Chinese.

6 Related Work

Heuristic backtracking is most similar to the work
of Choi and McCallum (2013), but is distinguished
from theirs by allowing new beams to be initialized
from any point in the parse, rather than only from
points in the initial greedy parse. Heuristic back-
tracking also bears similarity to greedy-best-first-
search (Pearl, 1984), but is unique in that it guaran-
tees that b candidate solutions will be found within
b(2l − 1) + 1 predictions. Our work also relates to
beam-search parsers (Zhang and Clark, 2008, inter
alia).

7 Conclusions

We have introduced a novel decoding algorithm,
called heuristic backtracking, and presented evi-
dence that it performs at the same level as beam
search for decoding, while being significantly more
efficient. We have demonstrated this for both En-
glish and Chinese, using a parser with strong re-
sults with a greedy decoder. We expect that heuris-
tic backtracking could be applied to any other
transition-based parser with similar benefits.

We plan on experimenting with various heuristics
and cutoff models, such as adapting the attention-
based models of Bahdanau et al. (2014) to act as a
guide for both the heuristic search and cutoff.

Acknowledgments

Miguel Ballesteros was supported by the Euro-
pean Commission under the contract numbers FP7-
ICT-610411 (project MULTISENSOR) and H2020-
RIA-645012 (project KRISTINA).

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. CoRR,
abs/1603.06042.

2317

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Proceed-
ings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning, EMNLP-CoNLL
’12, pages 1455–1465, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Jinho D. Choi and Andrew McCallum. 2013. Transition-
based dependency parsing with selectional branching.
In Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1052–1062, Sofia, Bulgaria, Au-
gust. Association for Computational Linguistics.

Michael Collins and Brian Roark. 2004. Incremen-
tal parsing with the perceptron algorithm. In Pro-
ceedings of the 42Nd Annual Meeting on Association
for Computational Linguistics, ACL ’04, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing of the Asian Federation of
Natural Language Processing, ACL 2015, July 26-31,
2015, Beijing, China, Volume 1: Long Papers, pages
334–343. The Association for Computer Linguistics.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier neural networks. In Proc.
AISTATS.

Manuel Mejia-Lavalle and Cesar Geovani Pereyra
Ramos. 2013. Beam search with dynamic pruning for
artificial intelligence hard problems. In Proceedings of
the 2013 International Conference on Mechatronics,
Electronics and Automotive Engineering, November.

Joakim Nivre. 2004. Incrementality in deterministic de-
pendency parsing. In Proceedings of the Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together.

Judea Pearl. 1984. Heuristics: Intelligent Search Strate-
gies for Computer Problem Solving. Addison-Wesley.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Pa-
pers), pages 323–333, Beijing, China, July. Associa-
tion for Computational Linguistics.

Majid Yazdani and James Henderson. 2015. Incremen-
tal recurrent neural network dependency parser with
search-based discriminative training. In CoNLL, pages
142–152. ACL.

Yue Zhang and Stephen Clark. 2008. A tale of
two parsers: Investigating and combining graph-based
and transition-based dependency parsing using beam-
search. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP ’08, pages 562–571, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: Short Papers - Volume 2, HLT
’11, pages 188–193, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Hao Zhou, Yue Zhang, Shujian Huang, and Jiajun Chen.
2015. A neural probabilistic structured-prediction
model for transition-based dependency parsing. In
Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1213–1222,
Beijing, China, July. Association for Computational
Linguistics.

2318

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2319–2324,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Word Ordering Without Syntax

Allen Schmaltz and Alexander M. Rush and Stuart M. Shieber
Harvard University

{schmaltz@fas,srush@seas,shieber@seas}.harvard.edu

Abstract

Recent work on word ordering has argued that
syntactic structure is important, or even re-
quired, for effectively recovering the order of
a sentence. We find that, in fact, an n-gram
language model with a simple heuristic gives
strong results on this task. Furthermore, we
show that a long short-term memory (LSTM)
language model is even more effective at re-
covering order, with our basic model outper-
forming a state-of-the-art syntactic model by
11.5 BLEU points. Additional data and larger
beams yield further gains, at the expense of
training and search time.

1 Introduction

We address the task of recovering the original word
order of a shuffled sentence, referred to as bag gen-
eration (Brown et al., 1990), shake-and-bake genera-
tion (Brew, 1992), or more recently, linearization, as
standardized in a recent line of research as a method
useful for isolating the performance of text-to-text
generation models (Zhang and Clark, 2011; Liu et
al., 2015; Liu and Zhang, 2015; Zhang and Clark,
2015). The predominant argument of the more re-
cent works is that jointly recovering explicit syn-
tactic structure is crucial for determining the correct
word order of the original sentence. As such, these
methods either generate or rely on given parse struc-
ture to reproduce the order.

Independently, Elman (1990) explored lineariza-
tion in his seminal work on recurrent neural net-
works. Elman judged the capacity of early recurrent
neural networks via, in part, the network’s ability to
predict word order in simple sentences. He notes,

The order of words in sentences reflects a num-
ber of constraints. . . Syntactic structure, selective
restrictions, subcategorization, and discourse con-
siderations are among the many factors which
join together to fix the order in which words oc-
cur. . . [T]here is an abstract structure which un-
derlies the surface strings and it is this structure
which provides a more insightful basis for under-
standing the constraints on word order. . . . It is,
therefore, an interesting question to ask whether a
network can learn any aspects of that underlying
abstract structure (Elman, 1990).

Recently, recurrent neural networks have
reemerged as a powerful tool for learning the latent
structure of language. In particular, work on long
short-term memory (LSTM) networks for language
modeling has provided improvements in perplexity.

We revisit Elman’s question by applying LSTMs
to the word-ordering task, without any explicit syn-
tactic modeling. We find that language models are
in general effective for linearization relative to ex-
isting syntactic approaches, with LSTMs in particu-
lar outperforming the state-of-the-art by 11.5 BLEU
points, with further gains observed when training
with additional text and decoding with larger beams.

2 Background: Linearization

The task of linearization is to recover the original or-
der of a shuffled sentence. We assume a vocabulary
V and are given a sequence of out-of-order phrases
x1, . . . , xN , with xn ∈ V+ for 1 ≤ n ≤ N . Define
M as the total number of tokens (i.e., the sum of the
lengths of the phrases). We consider two varieties of
the task: (1) WORDS, where each xn consists of a
single word and M = N , and (2) WORDS+BNPS,

2319

where base noun phrases (noun phrases not con-
taining inner noun phrases) are also provided and
M ≥ N . The second has become a standard for-
mulation in recent literature.

Given input x, we define the output set Y to be
all possible permutations over the N elements of x,
where ŷ ∈ Y is the permutation generating the true
order. We aim to find ŷ, or a permutation close to
it. We produce a linearization by (approximately)
optimizing a learned scoring function f over the set
of permutations, y∗ = arg maxy∈Y f(x, y).

3 Related Work: Syntactic Linearization

Recent approaches to linearization have been based
on reconstructing the syntactic structure to produce
the word order. Let Z represent all projective de-
pendency parse trees over M words. The objective
is to find y∗, z∗ = arg maxy∈Y,z∈Z f(x, y, z) where
f is now over both the syntactic structure and the lin-
earization. The current state of the art on the Penn
Treebank (PTB) (Marcus et al., 1993), without ex-
ternal data, of Liu et al. (2015) uses a transition-
based parser with beam search to construct a sen-
tence and a parse tree. The scoring function is a
linear model f(x, y) = θ>Φ(x, y, z) and is trained
with an early update structured perceptron to match
both a given order and syntactic tree. The feature
function Φ includes features on the syntactic tree.
This work improves upon past work which used
best-first search over a similar objective (Zhang and
Clark, 2011).

In follow-up work, Liu and Zhang (2015) argue
that syntactic models yield improvements over pure
surface n-gram models for the WORDS+BNPS case.
This result holds particularly on longer sentences
and even when the syntactic trees used in training
are of low quality. The n-gram decoder of this work
utilizes a single beam, discarding the probabilities
of internal, non-boundary words in the BNPs when
comparing hypotheses. We revisit this comparison
between syntactic models and surface-level models,
utilizing a surface-level decoder with heuristic fu-
ture costs and an alternative approach for scoring
partial hypotheses for the WORDS+BNPS case.

Additional previous work has also explored n-
gram models for the word ordering task. The work
of de Gispert et al. (2014) demonstrates improve-

ments over the earlier syntactic model of Zhang et al.
(2012) by applying an n-gram language model over
the space of word permutations restricted to concate-
nations of phrases seen in a large corpus. Horvat and
Byrne (2014) models the search for the highest prob-
ability permutation of words under an n-gram model
as a Travelling Salesman Problem; however, direct
comparisons to existing works are not provided.

4 LM-Based Linearization

In contrast to the recent syntax-based approaches,
we use an LM directly for word ordering. We
consider two types of language models: an n-
gram model and a long short-term memory network
(Hochreiter and Schmidhuber, 1997). For the pur-
pose of this work, we define a common abstraction
for both models. Let h ∈ H be the current state of
the model, with h0 as the initial state. Upon seeing
a word wi ∈ V , the LM advances to a new state
hi = δ(wi,hi−1). At any time, the LM can be
queried to produce an estimate of the probability of
the next word q(wi,hi−1) ≈ p(wi | w1, . . . , wi−1).
For n-gram language models, H, δ, and q can natu-
rally be defined respectively as the state space, tran-
sition model, and edge costs of a finite-state ma-
chine.

LSTMs are a type of recurrent neural network
(RNN) that are conducive to learning long-distance
dependencies through the use of an internal memory
cell. Existing work with LSTMs has generated state-
of-the-art results in language modeling (Zaremba et
al., 2014), along with a variety of other NLP tasks.

In our notation we define H as the hidden states
and cell states of a multi-layer LSTM, δ as the
LSTM update function, and q as a final affine trans-
formation and softmax given as q(∗,hi−1; θq) =

softmax(Wh
(L)
i−1 + b) where h(L)

i−1 is the top hid-
den layer and θq = (W , b) are parameters. We di-
rect readers to the work of Graves (2013) for a full
description of the LSTM update.

For both models, we simply define the scoring
function as

f(x, y) =

N∑

n=1

log p(xy(n) | xy(1), . . . , xy(n−1))

where the phrase probabilities are calculated word-
by-word by our language model.

2320

Algorithm 1 LM beam-search word ordering
1: procedure ORDER(x1 . . . xN , K, g)
2: B0 ← 〈(〈〉, {1, . . . , N}, 0,h0)〉
3: for m = 0, . . . ,M − 1 do
4: for k = 1, . . . , |Bm| do
5: (y,R, s,h)← B

(k)
m

6: for i ∈ R do
7: (s′,h′)← (s,h)
8: for word w in phrase xi do
9: s′ ← s′ + log q(w,h′)

10: h′ ← δ(w,h′)

11: j ← m+ |xi|
12: Bj ← Bj + (y + xi,R− i, s′,h′)
13: keep top-K of Bj by f(x, y) + g(R)

14: return BM

Searching over all permutations Y is intractable,
so we instead follow past work on linearization (Liu
et al., 2015) and LSTM generation (Sutskever et
al., 2014) in adapting beam search for our genera-
tion step. Our work differs from the beam search
approach for the WORDS+BNPS case of previ-
ous work in that we maintain multiple beams, as
in stack decoding for phrase-based machine trans-
lation (Koehn, 2010), allowing us to incorporate
the probabilities of internal, non-boundary words
in the BNPs. Additionally, for both WORDS and
WORDS+BNPS, we also include an estimate of fu-
ture cost in order to improve search accuracy.

Beam search maintains M + 1 beams,
B0, . . . , BM , each containing at most the top-
K partial hypotheses of that length. A partial
hypothesis is a 4-tuple (y,R, s,h), where y is a
partial ordering,R is the set of remaining indices to
be ordered, s is the score of the partial linearization
f(x, y), and h is the current LM state. Each step
consists of expanding all next possible phrases and
adding the next hypothesis to a later beam. The full
beam search is given in Algorithm 1.

As part of the beam search scoring function we
also include a future cost g, an estimate of the score
contribution of the remaining elements in R. To-
gether, f(x, y) + g(R) gives a noisy estimate of the
total score, which is used to determine the K best
elements in the beam. In our experiments we use a
very simple unigram future cost estimate, g(R) =∑

i∈R
∑

w∈xi
log p(w).

Model WORDS WORDS+BNPS

ZGEN-64 30.9 49.4
ZGEN-64+POS – 50.8

NGRAM-64 (NO g) 32.0 51.3
NGRAM-64 37.0 54.3
NGRAM-512 38.6 55.6
LSTM-64 40.5 60.9
LSTM-512 42.7 63.2

ZGEN-64+LM+GW+POS – 52.4
LSTM-64+GW 41.1 63.1
LSTM-512+GW 44.5 65.8

Table 1: BLEU score comparison on the PTB test
set. Results from previous works (for ZGEN) are
those provided by the respective authors, except for
the WORDS task. The final number in the model
identifier is the beam size, +GW indicates additional
Gigaword data. Models marked with +POS are pro-
vided with a POS dictionary derived from the PTB
training set.

5 Experiments

Setup Experiments are on PTB with sections 2-
21 as training, 22 as validation, and 23 as test1.
We utilize two UNK types, one for initial upper-
case tokens and one for all other low-frequency to-
kens; end sentence tokens; and start/end tokens,
which are treated as words, to mark BNPs for the
WORDS+BNPS task. We also use a special symbol
to replace tokens that contain at least one numeric
character. We otherwise train with punctuation and
the original case of each token, resulting in a vocab-
ulary containing around 16K types from around 1M
training tokens.

For experiments marked GW we augment the
PTB with a subset of the Annotated Gigaword cor-
pus (Napoles et al., 2012). We follow Liu and
Zhang (2015) and train on a sample of 900k Agence
France-Presse sentences combined with the full PTB
training set. The GW models benefit from both ad-
ditional data and a larger vocabulary of around 25K
types, which reduces unknowns in the validation and
test sets.

We compare the models of Liu et al. (2015)

1In practice, the results in Liu et al. (2015) and Liu and
Zhang (2015) use section 0 instead of 22 for validation (author
correspondence).

2321

BNP g GW 1 10 64 128 256 512

LSTM
• 41.7 53.6 58.0 59.1 60.0 60.6
• • 47.6 59.4 62.2 62.9 63.6 64.3
• • • 48.4 60.1 64.2 64.9 65.6 66.2

15.4 26.8 33.8 35.3 36.5 38.0
• 25.0 36.8 40.7 41.7 42.0 42.5
• • 23.8 35.5 40.7 41.7 42.9 43.7

NGRAM

• 40.6 49.7 52.6 53.2 54.0 54.7
• • 45.7 53.6 55.6 56.2 56.6 56.6

14.6 27.1 32.6 33.8 35.1 35.8
• 27.1 34.6 37.5 38.1 38.4 38.7

Table 2: BLEU results on the validation set for
the LSTM and NGRAM model with varying beam
sizes, future costs, additional data, and use of base
noun phrases.

(known as ZGEN), a 5-gram LM using Kneser-Ney
smoothing (NGRAM)2, and an LSTM. We experi-
ment on the WORDS and WORDS+BNPS tasks, and
we also experiment with including future costs (g),
the Gigaword data (GW), and varying beam size.
We retrain ZGEN using publicly available code3 to
replicate published results.

The LSTM model is similar in size and architec-
ture to the medium LSTM setup of Zaremba et al.
(2014)4. Our implementation uses the Torch5 frame-
work and is publicly available6.

We compare the performance of the models using
the BLEU metric (Papineni et al., 2002). In gener-
ation if there are multiple tokens of identical UNK
type, we randomly replace each with possible un-
used tokens in the original source before calculating
BLEU. For comparison purposes, we use the BLEU
script distributed with the publicly available ZGEN

code.

Results Our main results are shown in Table 1.
On the WORDS+BNPS task the NGRAM-64 model
scores nearly 5 points higher than the syntax-based
model ZGEN-64. The LSTM-64 then surpasses

2We use the KenLM Language Model Toolkit (https://
kheafield.com/code/kenlm/).

3https://github.com/SUTDNLP/ZGen
4We hypothesize that additional gains are possible via a

larger model and model averaging, ceteris paribus.
5http://torch.ch
6https://github.com/allenschmaltz/word_

ordering

5 10 15 20 25 30 35 40
Sentence length

30

50

70

90

B
L
E
U

(%
)

LSTM-512

LSTM-64

ZGen-64

LSTM-1

0.0 0.2 0.4 0.6 0.8 1.0
Distortion rate

0

4000

8000

12000

T
ok
en
s

ZGen-64

LSTM-64

Figure 1: Experiments on the PTB validation on the
WORDS+BNPS models: (a) Performance on the set
by length on sentences from length 2 to length 40.
(b) The distribution of token distortion, binned at 0.1
intervals.

NGRAM-64 by more than 5 BLEU points. Differ-
ences on the WORDS task are smaller, but show a
similar pattern. Incorporating Gigaword further in-
creases the result another 2 points. Notably, the
NGRAM model outperforms the combined result
of ZGEN-64+LM+GW+POS from Liu and Zhang
(2015), which uses a 4-gram model trained on Gi-
gaword. We believe this is because the combined
ZGEN model incorporates the n-gram scores as dis-
cretized indicator features instead of using the prob-
ability directly.7 A beam of 512 yields a further im-
provement at the cost of search time.

To further explore the impact of search accuracy,
Table 2 shows the results of various models with
beam widths ranging from 1 (greedy search) to 512,
and also with and without future costs g. We see that
for the better models there is a steady increase in ac-
curacy even with large beams, indicating that search
errors are made even with relatively large beams.

7In work of Liu and Zhang (2015), with the given decoder,
N-grams only yielded a small further improvement over the syn-
tactic models when discretized versions of the LM probabilities
were incorporated as indicator features in the syntactic models.

2322

Model WORDS WORDS+BNPS

ZGEN-64(z∗) 39.7 64.9
ZGEN-64 40.8 65.2

NGRAM-64 46.1 67.0
NGRAM-512 47.2 67.8
LSTM-64 51.3 71.9
LSTM-512 52.8 73.1

Table 3: Unlabeled attachment scores (UAS) on
the PTB validation set after parsing and aligning
the output. For ZGEN we also include a result us-
ing the tree z∗ produced directly by the system.
For WORDS+BNPS, internal BNP arcs are always
counted as correct.

One proposed advantage of syntax in lineariza-
tion models is that it can better capture long-distance
relationships. Figure 1 shows results by sentence
length and distortion, which is defined as the abso-
lute difference between a token’s index position in
y∗ and ŷ, normalized by M . The LSTM model ex-
hibits consistently better performance than existing
syntax models across sentence lengths and generates
fewer long-range distortions than the ZGEN model.

Finally, Table 3 compares the syntactic fluency
of the output. As a lightweight test, we parse the
output with the Yara Parser (Rasooli and Tetreault,
2015) and compare the unlabeled attachment scores
(UAS) to the trees produced by the syntactic system.
We first align the gold head to each output token. (In
cases where the alignment is not one-to-one, we ran-
domly sample among the possibilities.) The models
with no knowledge of syntax are able to recover a
higher proportion of gold arcs.

6 Conclusion

Strong surface-level language models recover word
order more accurately than the models trained with
explicit syntactic annotations appearing in a recent
series of papers. This has implications for the utility
of costly syntactic annotations in generation mod-
els, for both high- and low- resource languages and
domains.

Acknowledgments

We thank Yue Zhang and Jiangming Liu for assis-
tance in using ZGen, as well as verification of the

task setup for a valid comparison. Jiangming Liu
also assisted in pointing out a discrepancy in the im-
plementation of an earlier version of our NGRAM

decoder, the resolution of which improved BLEU
performance.

References

[Brew1992] Chris Brew. 1992. Letting the cat out of the
bag: Generation for shake-and-bake MT. In Proceed-
ings of the 14th Conference on Computational Lin-
guistics - Volume 2, COLING ’92, pages 610–616,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

[Brown et al.1990] Peter F Brown, John Cocke, Stephen
A Della Pietra, Vincent J Della Pietra, Fredrick Je-
linek, John D Lafferty, Robert L Mercer, and Paul S
Roossin. 1990. A statistical approach to machine
translation. Computational linguistics, 16(2):79–85.

[de Gispert et al.2014] Adrià de Gispert, Marcus Tomalin,
and Bill Byrne. 2014. Word ordering with phrase-
based grammars. In Proceedings of the 14th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 259–268, Gothen-
burg, Sweden, April. Association for Computational
Linguistics.

[Elman1990] Jeffrey L. Elman. 1990. Finding structure
in time. Cognitive Science, 14(2):179 – 211.

[Graves2013] Alex Graves. 2013. Generating se-
quences with recurrent neural networks. CoRR,
abs/1308.0850.

[Hochreiter and Schmidhuber1997] Sepp Hochreiter and
Jürgen Schmidhuber. 1997. Long short-term memory.
Neural Comput., 9(8):1735–1780, November.

[Horvat and Byrne2014] Matic Horvat and William
Byrne. 2014. A graph-based approach to string
regeneration. In Proceedings of the Student Research
Workshop at the 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 85–95, Gothenburg, Sweden, April.
Association for Computational Linguistics.

[Koehn2010] Philipp Koehn. 2010. Statistical Machine
Translation. Cambridge University Press, New York,
NY, USA, 1st edition.

[Liu and Zhang2015] Jiangming Liu and Yue Zhang.
2015. An empirical comparison between n-gram and
syntactic language models for word ordering. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 369–378,
Lisbon, Portugal, September. Association for Compu-
tational Linguistics.

2323

[Liu et al.2015] Yijia Liu, Yue Zhang, Wanxiang Che, and
Bing Qin. 2015. Transition-based syntactic lineariza-
tion. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 113–122, Denver, Colorado, May–June.
Association for Computational Linguistics.

[Marcus et al.1993] Mitchell P. Marcus, Beatrice San-
torini, and Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of english: The penn tree-
bank. Computational Linguistics, 19(2):313–330.

[Napoles et al.2012] Courtney Napoles, Matthew Gorm-
ley, and Benjamin Van Durme. 2012. Annotated gi-
gaword. In Proceedings of the Joint Workshop on Au-
tomatic Knowledge Base Construction and Web-scale
Knowledge Extraction, AKBC-WEKEX ’12, pages
95–100, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

[Papineni et al.2002] Kishore Papineni, Salim Roukos,
Todd Ward, and Wei-Jing Zhu. 2002. Bleu: A
method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, ACL ’02,
pages 311–318, Stroudsburg, PA, USA. Association
for Computational Linguistics.

[Rasooli and Tetreault2015] Mohammad Sadegh Rasooli
and Joel R. Tetreault. 2015. Yara parser: A fast and
accurate dependency parser. CoRR, abs/1503.06733.

[Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals, and
Quoc VV Le. 2014. Sequence to sequence learning
with neural networks. In Advances in Neural Informa-
tion Processing Systems, pages 3104–3112.

[Zaremba et al.2014] Wojciech Zaremba, Ilya Sutskever,
and Oriol Vinyals. 2014. Recurrent neural network
regularization. CoRR, abs/1409.2329.

[Zhang and Clark2011] Yue Zhang and Stephen Clark.
2011. Syntax-based grammaticality improvement us-
ing ccg and guided search. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP ’11, pages 1147–1157, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

[Zhang and Clark2015] Yue Zhang and Stephen Clark.
2015. Discriminative syntax-based word ordering for
text generation. Comput. Linguist., 41(3):503–538,
September.

[Zhang et al.2012] Yue Zhang, Graeme Blackwood, and
Stephen Clark. 2012. Syntax-based word ordering in-
corporating a large-scale language model. In Proceed-
ings of the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
EACL ’12, pages 736–746, Stroudsburg, PA, USA.
Association for Computational Linguistics.

2324

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2325–2330,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Morphological Segmentation Inside-Out

Ryan Cotterell
Department of Computer Science

Johns Hopkins University
ryan.cotterell@jhu.edu

Arun Kumar
Faculty of Arts and Humanities
Universitat Oberta de Catalunya

Hinrich Schütze
CIS

LMU Munich

Abstract

Morphological segmentation has traditionally
been modeled with non-hierarchical models,
which yield flat segmentations as output. In
many cases, however, proper morphologi-
cal analysis requires hierarchical structure—
especially in the case of derivational morphol-
ogy. In this work, we introduce a discrimina-
tive joint model of morphological segmenta-
tion along with the orthographic changes that
occur during word formation. To the best
of our knowledge, this is the first attempt to
approach discriminative segmentation with a
context-free model. Additionally, we release
an annotated treebank of 7454 English words
with constituency parses, encouraging future
research in this area.

1 Introduction

In NLP, supervised morphological segmentation has
typically been viewed as either a sequence labeling
or a segmentation task (Ruokolainen et al., 2016). In
contrast, we consider a hierarchical approach, em-
ploying a context-free grammar (CFG). CFGs pro-
vide a richer model of morphology: they capture
(i) the intuition that words themselves have internal
constituents, which belong to different categories,
as well as (ii) the order in which affixes are at-
tached. Moreover, many morphological processes,
e.g., compounding and reduplication, are best mod-
eled as hierarchical; thus, context-free models are
expressively more appropriate.

The purpose of morphological segmentation is to
decompose words into smaller units, known as mor-
phemes, which are typically taken to be the smallest

meaning bearing units in language. This work con-
cerns itself with modeling hierarchical structure over
these morphemes. Note a simple flat morphological
segmentation can also be straightforwardly derived
from the CFG parse tree. Segmentations have found
use in a diverse set of NLP applications, e.g., auto-
matic speech recognition (Afify et al., 2006), key-
word spotting (Narasimhan et al., 2014), machine
translation (Clifton and Sarkar, 2011) and parsing
(Seeker and Çetinoğlu, 2015). In contrast to prior
work, we focus on canonical segmentation, i.e., we
seek to jointly model orthographic changes and seg-
mentation. For instance, the canonical segmentation
of untestably is un+test+able+ly, where we map
ably to able+ly, restoring the letters le.

We make two contributions: (i) We introduce a
joint model for canonical segmentation with a CFG
backbone. We experimentally show that this model
outperforms a semi-Markov model on flat segmenta-
tion. (ii) We release the first morphology treebank,
consisting of 7454 English word types, each anno-
tated with a full constituency parse.

2 The Case For Hierarchical Structure

Why should we analyze morphology hierarchically?
It is true that we can model much of morphol-
ogy with finite-state machinery (Beesley and Kart-
tunen, 2003), but there are, nevertheless, many
cases where hierarchical structure appears requi-
site. For instance, the flat segmentation of the word
untestably7→un+test+able+ly is missing important
information about how the word was derived. The
correct parse [[un[[test]able]]ly], on the other hand,
does tell us that this is the order in which the com-

2325

WORD

PREFIX

un

WORD

WORD

test

SUFFIX

able

SUFFIX

ly

(a)

WORD

WORD

WORD

PREFIX

un

WORD

test

SUFFIX

able

SUFFIX

ly

(b)

WORD

WORD

PREFIX

un

WORD

lock

SUFFIX

able

(c)

WORD

PREFIX

un

WORD

WORD

lock

SUFFIX

able

(d)

Figure 1: Canonical segmentation parse trees for untestably and unlockable. For both words, the scope of
un is ambiguous. Arguably, (a) is the only correct parse tree for untestably; the reading associated with (b)
is hard to get. On the other hand, unlockable is truly ambiguous between “able to be unlocked” (c) and
“unable to be locked” (d).

plex form was derived:

test able7−−→testable un7−→untestable
ly7−→untestably.

This gives us clear insight into the structure of the
lexicon—we should expect that the segment testable
exists as an independent word, but ably does not.

Moreover, a flat segmentation is often semanti-
cally ambiguous. There are two potentially valid
readings of untestably depending on how the nega-
tive prefix un scopes. The correct tree (see Figure 1)
yields the reading “in the manner of not able to
be tested”. A second—likely infelicitous reading—
where the segment untest forms a constituent yields
the reading “in a manner of being able to untest”.
Recovering the hierarchical structure allows us to se-
lect the correct reading; note there are even cases of
true ambiguity; e.g., unlockable has two readings:
“unable to be locked” and “able to be unlocked”.

Theoretical linguists often implicitly assume a
context-free treatment of word formation, e.g., by
employing brackets to indicate different levels of
affixation. Others have explicitly modeled word-
internal structure with grammars (Selkirk, 1982;
Marvin, 2002).

3 Parsing the Lexicon

A novel component of this work is the development
of a discriminative parser (Finkel et al., 2008; Hall
et al., 2014) for morphology. The goal is to define a
probability distribution over all trees that could arise
from the input word, after reversal of orthographic
and phonological processes. We employ the simple

grammar shown in Table 1. Despite its simplicity, it
models the order in which morphemes are attached.

More formally, our goal is to map a surface form
w (e.g., w=untestably) into its underlying canonical
form u (e.g., u=untestablely) and then into a parse
tree t over its morphemes. We assume u,w ∈ Σ∗,
for some discrete alphabet Σ.1 Note that a parse
tree over the string implicitly defines a flat segmen-
tation given our grammar—one can simply extract
the characters spanned by all preterminals in the re-
sulting tree. Before describing the joint model in
detail, we first consider its pieces individually.

3.1 Restoring Orthographic Changes
To extract a canonical segmentation (Naradowsky
and Goldwater, 2009; Cotterell et al., 2016), we re-
store orthographic changes that occur during word
formation. To this end, we define the score function,

scoreη(u,w) =
∑

a∈A(u,w)

exp
(
g(u, a, w)>η

)
, (1)

whereA(u,w) is the set of all monotonic alignments
between the strings u and w. The goal is for scoreη
to assign higher values to better matched pairs, e.g.,
(w=untestably, u=untestablely).

We have left these out of the equation for simplic-
ity, but we refer to the reader Dreyer et al. (2008) for
a more thorough exposition. To ensure that the par-
tition function Zη(w) is finite, we cap the maximum
string length u, which yields

Zη(w) =
∑

u′∈Σ|w|+k

exp
(
g(u′, w)>η

)
, (2)

1For efficiency, we assume u ∈ Σ|w|+k, k = 5.

2326

ROOT → WORD

WORD → PREFIX WORD

WORD → WORD SUFFIX

WORD → Σ+

PREFIX → Σ+

SUFFIX → Σ+

Table 1: The context-free grammar used in this work
to model word formation. The productions closely
resemble those of Johnson et al. (2006)’s Adaptor
Grammar.

where |w|+ k is the maximum length for u.
For ease of computation, we can encode this

function as a weighted finite-state machine (WFST)
(Mohri et al., 2002). This requires, however, that the
feature function g factors over the topology of the
finite-state encoding. Since our model conditions on
the word w, the feature function g can extract fea-
tures from any part of this string. Features on the
output string, u, however, are more restricted. In this
work, we employ a bigram model over output char-
acters. This implies that each state remembers ex-
actly one character, the previous one. See Cotterell
et al. (2014) for details. We can compute the score
for two strings u and w using a weighted generaliza-
tion of the Levenshtein algorithm. Computing the
partition function requires a different dynamic pro-
gram, which runs in O(|w|2 · |Σ|2) time. Note that
since |Σ| ≈ 26 (lower case English letters), it takes
roughly 262 = 676 times longer to compute the par-
tition function than to score a pair of strings.

Our model includes several simple feature tem-
plates, including features that fire on individual edit
actions as well as conjunctions of edit actions and
characters in the surrounding context. See Cotterell
et al. (2016) for details.

3.2 Morphological Analysis as Parsing

Next, we need to score an underlying canonical
form (e.g., u=untestablely) together with a parse
tree (e.g., t=[[un[[test]able]]ly]). Thus, we define
the parser score

scoreω(t, u) = exp

 ∑

π∈Π(t)

f(π, u)>ω

 , (3)

where Π(t) is the set of anchored productions in
the tree t. An anchored production π is a grammar
rule in Chomsky normal form attached to a span,
e.g., Ai,k → Bi,jCj+1,k. Each π is then assigned
a weight by the linear function f(π, u)>ω, where
the function f extracts relevant features from the an-
chored production as well as the corresponding span
of the underlying form u. This model is typically
referred to as a weighted CFG (WCFG) (Smith and
Johnson, 2007) or a CRF parser.

Luckily, we can exploit the structure of the prob-
lem to efficiently compute the partition function,

Zω(u) =
∑

t∈T (u)

exp

 ∑

π∈Π(t)

f(π, u)>ω

 , (4)

where T (u) is the set of all trees under the gram-
mar that have yield u. Specifically, we make use of
the inside algorithm, which is just CKY (Aho and
Ullman, 1979) in the (+,×) semiring (Goodman,
1998), which runs inO(|G| · |u|3) time, where |G| is
the size of the grammar.

For f , we define three span features: (i) indicator
features on the span’s segment, (ii) an indicator fea-
ture that fires if the segment appears in an external
corpus2 and (iii) the conjunction of the segment with
the label (e.g., PREFIX) of the subtree root. Follow-
ing Hall et al. (2014), we employ an indicator feature
for each production as well as production backoff
features.

4 A Joint Model

Our complete model is a joint CRF (Koller and
Friedman, 2009) where each of the above scores are
factors. We define the likelihood as

pθ(t, u | w) =
1

Zθ
scoreω(t, u) · scoreη(u,w), (5)

where θ = {ω,η} is the parameter vector and

Zθ =
∑

u′∈Σ∗

∑

t′∈Tu′
scoreω(t′, u′) · scoreη(u′, w) (6)

is the partition function and Tu′ is set of all parse
trees for the string u′. We see now that both WFST
and WCFG are just structured factors in the model.

2We use the Wikipedia dump from 2016-05-01.

2327

The joint approach has the advantage that it allows
both factors to work together to influence the choice
of the underlying form u. This is useful as the parser
now has access to which words are attested in the
language; this helps guide the relatively weak trans-
duction model. On the downside, the partition func-
tion Zθ now involves a sum over both all strings in
Σ|w|+k and all possible parses of each string! Infer-
ence in this joint model is intractable, so we resort
to approximate methods.

4.1 Learning and Inference
We use stochastic gradient descent to opti-
mize the log-probability of the training data∑N

i=1 log pθ(t(i), u(i) | w(i)); this requires the com-
putation of the gradient of the partition function
∇θ logZθ, which is intractable. As in all CRFs, this
gradient is in fact an expectation:

∇θ logZθ = (7)

E(u,t)∼pθ [log (scoreω(t, u) · scoreη(u,w))] .

To approximate this expectation, we use an impor-
tance sampling routine. Roughly speaking, we ap-
proximate the hard-to-sample-from distribution pθ
by taking samples from an easy-to-sample-from pro-
posal distribution q. We then reweight the samples
using the unnormalized score from pθ. Due to a lack
of space, we omit the derivation of the approximate
gradient.

4.2 Decoding
We also decode by importance sampling. Given w,
we sample canonical forms u and then run the CKY
algorithm to get the highest scoring tree.

5 Related Work

We believe our attempt to train discriminative gram-
mars for morphology is novel. Nevertheless, other
researchers have described parsers for morphology.
Most of this work is unsupervised: Johnson et al.
(2007) applied a Bayesian PCFG to unsupervised
morphological segmentation. Similarly, Adaptor
Grammars (Johnson et al., 2006), a non-parametric
Bayesian generalization of PCFGs, have been ap-
plied to the unsupervised version of the task (Botha
and Blunsom, 2013; Sirts and Goldwater, 2013).
Relatedly, Schmid (2005) performed unsupervised

disambiguation of a German morphological ana-
lyzer (Schmid et al., 2004) using a PCFG, using the
inside-outside algorithm (Baker, 1979). Also, dis-
criminative parsing approaches have been applied to
the related problem of Chinese word segmentation
(Zhang et al., 2014).

6 Morphological Treebank

Supervised morphological segmentation has histor-
ically been treated as a segmentation problem, de-
void of hierarchical structure. A core reason behind
this is that—to the best of our knowledge—there are
no hierarchically annotated corpora for the task. To
remedy this, we provide tree annotations for a sub-
set of the English portion of CELEX (Baayen et al.,
1993). We reannotated 7454 English types with a
full constituency parse.3 The resource will be freely
available for future research.

6.1 Annotation Guidelines

The annotation of the morphology treebank was
guided by three core principles. The first princi-
ple concerns productivity: we exclusively anno-
tate productive morphology. In the context of mor-
phology, productivity refers to the degree that na-
tive speakers actively employ the affix to create new
words (Aronoff, 1976). We believe that for NLP ap-
plications, we should focus on productive affixation.
Indeed, this sets our corpus apart from many existing
morphologically annotated corpora such as CELEX.
For example, CELEX contains warmth7→warm+th,
but th is not a productive suffix and cannot be
used to create new words. Thus, we do not want
to analyze hearth7→hear+th or, in general, allow
wug7→wug+th. Second, we annotate for semantic
coherence. When there are several candidate parses,
we choose the one that is best compatible with the
compositional semantics of the derived form.

Interestingly, multiple trees can be considered
valid depending on the linguistic tier of interest.
Consider the word unhappier. From a semantic per-
spective, we have the parse [[un [happy]] er] which
gives us the correct meaning “not happy to a greater
degree”. However, since the suffix er only attaches
to mono- and bisyllabic words, we get [un[[happy]
er]] from a phonological perspective. In the linguis-

3In many cases, we corrected the flat segmentation as well.

2328

Segmentation Tree
Morph. F1 Edit Acc. Const. F1

Flat 78.89 (0.9) 0.72 (0.04) 72.88 (1.21) N/A
Hier 85.55 (0.6) 0.55 (0.03) 73.19 (1.09) 79.01 (0.5)

Table 2: Results for the 10 splits of the treebank. Segmentation quality is measured by morpheme F1, edit
distance and accuracy; tree quality by constituent F1.

tics literature, this problem is known as the brack-
eting paradox (Pesetsky, 1985; Embick, 2015). We
annotate exclusively at the syntactic-semantic tier.

Thirdly, in the context of derivational morphol-
ogy, we force spans to be words themselves.
Since derivational morphology—by definition—
forms new words from existing words (Lieber and
Štekauer, 2014), it follows that each span rooted
with WORD or ROOT in the correct parse corre-
sponds to a word in the lexicon. For example,
consider unlickable. The correct parse, under our
scheme, is [un [[lick] able]]. Each of the spans (lick,
lickable and unlickable) exists as a word. By con-
trast, the parse [[un [lick]] able] contains the span
unlick, which is not a word in the lexicon. The
span in the segmented form may involve changes,
e.g., [un [[achieve] able]], where achieveable is not
a word, but achievable (after deleting e) is.

7 Experiments

We run a simple experiment to show the empiri-
cal utility of parsing words—we compare a WCFG-
based canonical segmenter with the semi-Markov
segmenter introduced in Cotterell et al. (2016). We
divide the corpus into 10 distinct train/dev/test splits
with 5454 words for train and 1000 for each of dev
and test. We report three evaluation metrics: full
form accuracy, morpheme F1 (Van den Bosch and
Daelemans, 1999) and average edit distance to the
gold segmentation with boundaries marked by a dis-
tinguished symbol. For the WCFG model, we also
report constituent F1—typical for sentential con-
stituency parsing— as a baseline for future systems.
This F1 measures how well we predict the whole
tree (not just a segmentation). For all models, we use
L2 regularization and run 100 epochs of ADAGRAD

(Duchi et al., 2011) with early stopping. We tune the
regularization coefficient by grid search considering
λ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}.

7.1 Results and Discussion

Table 2 shows the results. The hierarchical WCFG
model outperforms the flat semi-Markov model on
all metrics on the segmentation task. This shows that
modeling structure among the morphemes, indeed,
does help segmentation. The largest improvements
are found under the morpheme F1 metric (≈ 6.5
points). In contrast, accuracy improves by < 1%.
Edit distance is in between with an improvement of
0.2 characters. Accuracy, in general, is an all or
nothing metric since it requires getting every canon-
ical segment correct. Morpheme F1, on the other
hand, gives us partial credit. Thus, what this shows
us is that the WCFG gets a lot more of the mor-
phemes in the held-out set correct, even if it only
gets a few complete forms correct. We provide ad-
ditional results evaluating the entire tree with con-
stituency F1 as a future baseline.

8 Conclusion

We presented a discriminative CFG-based model for
canonical morphological segmentation and showed
empirical improvements on its ability to seg-
ment words under three metrics. We argue
that our hierarchical approach to modeling mor-
phemes is more often appropriate than the tradi-
tional flat segmentation. Additionally, we have
annotated 7454 words with a morphological con-
stituency parse. The corpus is available online
at http://ryancotterell.github.io/data/
morphological-treebank to allow for exact
comparison and to spark future research.

Acknowledgements

The first author was supported by a DAAD Long-
Term Research Grant and an NDSEG fellowship.
The third author was supported by DFG (SCHU
2246/10-1).

2329

References
Mohamed Afify, Ruhi Sarikaya, Hong-Kwang Jeff Kuo,

Laurent Besacier, and Yuqing Gao. 2006. On the use
of morphological analysis for dialectal Arabic speech
recognition. In INTERSPEECH.

Alfred W Aho and Jeffrey Ullman. 1979. Introduc-
tion to Automata theory, Languages and Computation.
Addison-Wesley.

Mark Aronoff. 1976. Word Formation in Generative
Grammar. MIT Press.

R Harald Baayen, Richard Piepenbrock, and Rijn van H.
1993. The CELEX lexical data base on CD-ROM.

James K Baker. 1979. Trainable grammars for speech
recognition. The Journal of the Acoustical Society of
America, 65(S1):S132–S132.

Kenneth R Beesley and Lauri Karttunen. 2003. Finite-
state Morphology: Xerox Tools and Techniques. CSLI,
Stanford.

Jan A Botha and Phil Blunsom. 2013. Adaptor gram-
mars for learning non-concatenative morphology. In
EMNLP, pages 345–356.

Ann Clifton and Anoop Sarkar. 2011. Combin-
ing morpheme-based machine translation with post-
processing morpheme prediction. In ACL.

Ryan Cotterell, Nanyun Peng, and Jason Eisner. 2014.
Stochastic contextual edit distance and probabilistic
FSTs. In ACL.

Ryan Cotterell, Tim Vieira, and Hinrich Schütze. 2016.
A joint model of orthography and morphological seg-
mentation. In NAACL.

Markus Dreyer, Jason R Smith, and Jason Eisner. 2008.
Latent-variable modeling of string transductions with
finite-state methods. In EMNLP.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 12:2121–2159.

David Embick. 2015. The Morpheme: A Theoretical
Introduction, volume 31. Walter de Gruyter GmbH &
Co KG.

Jenny Rose Finkel, Alex Kleeman, and Christopher D
Manning. 2008. Efficient, feature-based, conditional
random field parsing. In ACL, volume 46, pages 959–
967.

Joshua Goodman. 1998. Parsing Inside-out. Ph.D. the-
sis, Harvard University.

David Leo Wright Hall, Greg Durrett, and Dan Klein.
2014. Less grammar, more features. In ACL, pages
228–237.

Mark Johnson, Thomas L Griffiths, and Sharon Goldwa-
ter. 2006. Adaptor grammars: A framework for spec-
ifying compositional nonparametric Bayesian models.
In NIPS, pages 641–648.

Mark Johnson, Thomas L Griffiths, and Sharon Goldwa-
ter. 2007. Bayesian inference for PCFGs via Markov
Chain Monte Carlo. In HLT-NAACL, pages 139–146.

Daphne Koller and Nir Friedman. 2009. Probabilistic
Graphical Models: Principles and Techniques. MIT
press.

Rochelle Lieber and Pavol Štekauer. 2014. The Oxford
Handbook of Derivational Morphology. Oxford Uni-
versity Press, USA.

Tatjana Marvin. 2002. Topics in the Stress and Syntax of
Words. Ph.D. thesis, Massachusetts Institute of Tech-
nology.

Mehryar Mohri, Fernando Pereira, and Michael Ri-
ley. 2002. Weighted finite-state transducers in
speech recognition. Computer Speech & Language,
16(1):69–88.

Jason Naradowsky and Sharon Goldwater. 2009. Im-
proving morphology induction by learning spelling
rules. In IJCAI.

Karthik Narasimhan, Damianos Karakos, Richard
Schwartz, Stavros Tsakalidis, and Regina Barzilay.
2014. Morphological segmentation for keyword spot-
ting. In EMNLP.

David Pesetsky. 1985. Morphology and logical form.
Linguistic Inquiry, 16(2):193–246.

Teemu Ruokolainen, Oskar Kohonen, Kairit Sirts, Stig-
Arne Grönroos, Mikko Kurimo, and Sami Virpioja.
2016. Comparative study of minimally supervised
morphological segmentation. Computational Linguis-
tics.

Helmut Schmid, Arne Fitschen, and Ulrich Heid. 2004.
SMOR: A German computational morphology cover-
ing derivation, composition and inflection. In LREC.

Helmut Schmid. 2005. Disambiguation of morpholog-
ical structure using a PCFG. In EMNLP, pages 515–
522. Association for Computational Linguistics.

Wolfgang Seeker and Özlem Çetinoğlu. 2015. A graph-
based lattice dependency parser for joint morphologi-
cal segmentation and syntactic analysis. TACL.

Elisabeth Selkirk. 1982. The Syntax of Words. Number 7
in Linguistic Inquiry Monograph Series. MIT Press.

Kairit Sirts and Sharon Goldwater. 2013. Minimally-
supervised morphological segmentation using adaptor
grammars. TACL, 1:255–266.

Noah A Smith and Mark Johnson. 2007. Weighted and
probabilistic context-free grammars are equally ex-
pressive. Computational Linguistics, 33(4):477–491.

Antal Van den Bosch and Walter Daelemans. 1999.
Memory-based morphological analysis. In ACL.

Meishan Zhang, Yue Zhang, Wanxiang Che, and Ting
Liu. 2014. Character-level Chinese dependency pars-
ing. In ACL, pages 1326–1336.

2330

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2331–2336,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Parsing as Language Modeling

Do Kook Choe
Brown University

Providence, RI
dc65@cs.brown.edu

Eugene Charniak
Brown University

Providence, RI
ec@cs.brown.edu

Abstract

We recast syntactic parsing as a language
modeling problem and use recent advances in
neural network language modeling to achieve
a new state of the art for constituency Penn
Treebank parsing — 93.8 F1 on section 23, us-
ing 2-21 as training, 24 as development, plus
tri-training. When trees are converted to Stan-
ford dependencies, UAS and LAS are 95.9%
and 94.1%.

1 Introduction

Recent work on deep learning syntactic parsing
models has achieved notably good results, e.g., Dyer
et al. (2016) with 92.4 F1 on Penn Treebank con-
stituency parsing and Vinyals et al. (2015) with
92.8 F1. In this paper we borrow from the ap-
proaches of both of these works and present a
neural-net parse reranker that achieves very good re-
sults, 93.8 F1, with a comparatively simple architec-
ture.

In the remainder of this section we outline the ma-
jor difference between this and previous work —
viewing parsing as a language modeling problem.
Section 2 looks more closely at three of the most
relevant previous papers. We then describe our ex-
act model (Section 3), followed by the experimental
setup and results (Sections 4 and 5).

(a)

S

VP

NP

cats

chase

NP

dogs

(b)

(S (NP dogs)NP (VP chase (NP cats)NP)VP)S

Figure 1: A tree (a) and its sequential form (b).
There is a one-to-one mapping between a tree and its
sequential form. (Part-of-speech tags are not used.)

1.1 Language Modeling
Formally, a language model (LM) is a probability
distribution over strings of a language:

P (x) = P (x1, · · · , xn)

=

n∏

t=1

P (xt|x1, · · · , xt−1), (1)

where x is a sentence and t indicates a word posi-
tion. The efforts in language modeling go into com-
puting P (xt|x1, · · · , xt−1), which as described next
is useful for parsing as well.

1.2 Parsing as Language Modeling
A generative parsing model parses a sentence (x)
into its phrasal structure (y) according to

argmax
y′∈Y(x)

P (x,y′),

where Y(x) lists all possible structures of x. If we
think of a tree (x,y) as a sequence (z) (Vinyals et

2331

al., 2015) as illustrated in Figure 1, we can define a
probability distribution over (x,y) as follows:

P (x,y) = P (z) = P (z1, · · · , zm)

=
m∏

t=1

P (zt|z1, · · · , zt−1), (2)

which is equivalent to Equation (1). We have
reduced parsing to language modeling and can
use language modeling techniques of estimating
P (zt|z1, · · · , zt−1) for parsing.

2 Previous Work

We look here at three neural net (NN) models clos-
est to our research along various dimensions. The
first (Zaremba et al., 2014) gives the basic language
modeling architecture that we have adopted, while
the other two (Vinyals et al., 2015; Dyer et al., 2016)
are parsing models that have the current best results
in NN parsing.

2.1 LSTM-LM

The LSTM-LM of Zaremba et al. (2014) turns
(x1, · · · , xt−1) into ht, a hidden state of an
LSTM (Hochreiter and Schmidhuber, 1997; Gers et
al., 2003; Graves, 2013), and uses ht to guess xt:

P (xt|x1, · · · , xt−1) = P (xt|ht)
= softmax(Wht)[xt],

where W is a parameter matrix and [i] indexes ith
element of a vector. The simplicity of the model
makes it easily extendable and scalable, which has
inspired a character-based LSTM-LM that works
well for many languages (Kim et al., 2016) and
an ensemble of large LSTM-LMs for English with
astonishing perplexity of 23.7 (Jozefowicz et al.,
2016). In this paper, we build a parsing model based
on the LSTM-LM of Zaremba et al. (2014).

2.2 MTP

Vinyals et al. (2015) observe that a phrasal struc-
ture (y) can be expressed as a sequence and build
a machine translation parser (MTP), a sequence-to-
sequence model, which translates x into y using a

conditional probability:

P (y|x) = P (y1, · · · , yl|x)

=
l∏

t=1

P (yt|x, y1, · · · , yt−1),

where the conditioning event (x, y1, · · · , yt−1) is
modeled by an LSTM encoder and an LSTM de-
coder. The encoder maps x into he, a set of vectors
that represents x, and the decoder obtains a sum-
mary vector (h′t) which is concatenation of the de-
coder’s hidden state (hdt) and weighted sum of word
representations (

∑n
i=1 αih

e
i) with an alignment vec-

tor (α). Finally the decoder predicts yt given h′t.
Inspired by MTP, our model processes sequential
trees.

2.3 RNNG
Recurrent Neural Network Grammars (RNNG), a
generative parsing model, defines a joint distribution
over a tree in terms of actions the model takes to gen-
erate the tree (Dyer et al., 2016):

P (x,y) = P (a) =

m∏

t=1

P (at|a1, · · · , at−1), (3)

where a is a sequence of actions whose output pre-
cisely matches the sequence of symbols in z, which
implies Equation (3) is the same as Equation (2).
RNNG and our model differ in how they compute
the conditioning event (z1, · · · , zt−1): RNNG com-
bines hidden states of three LSTMs that keep track
of actions the model has taken, an incomplete tree
the model has generated and words the model has
generated whereas our model uses one LSTM’s hid-
den state as shown in the next section.

3 Model

Our model, the model of Zaremba et al. (2014) ap-
plied to sequential trees and we call LSTM-LM from
now on, is a joint distribution over trees:

P (x,y) = P (z) =
m∏

t=1

P (zt|z1, · · · , zt−1)

=

m∏

t=1

P (zt|ht)

=
m∏

t=1

softmax(Wht)[zt],

2332

where ht is a hidden state of an LSTM. Due to lack
of an algorithm that searches through an exponen-
tially large phrase-structure space, we use an n-best
parser to reduce Y(x) to Y ′(x), whose size is poly-
nomial, and use LSTM-LM to find y that satisfies

argmax
y′∈Y ′(x)

P (x,y′). (4)

3.1 Hyper-parameters
The model has three LSTM layers with 1,500 units
and gets trained with truncated backpropagation
through time with mini-batch size 20 and step size
50. We initialize starting states with previous mini-
batch’s last hidden states (Sutskever, 2013). The
forget gate bias is initialized to be one (Jozefowicz
et al., 2015) and the rest of model parameters are
sampled from U(−0.05, 0.05). Dropout is applied
to non-recurrent connections (Pham et al., 2014)
and gradients are clipped when their norm is big-
ger than 20 (Pascanu et al., 2013). The learning
rate is 0.25 · 0.85max(ε−15, 0) where ε is an epoch
number. For simplicity, we use vanilla softmax over
an entire vocabulary as opposed to hierarchical soft-
max (Morin and Bengio, 2005) or noise contrastive
estimation (Gutmann and Hyvärinen, 2012).

4 Experiments

We describe datasets we use for evaluation, detail
training and development processes.1

4.1 Data
We use the Wall Street Journal (WSJ) of the Penn
Treebank (Marcus et al., 1993) for training (2-21),
development (24) and testing (23) and millions of
auto-parsed “silver” trees (McClosky et al., 2006;
Huang et al., 2010; Vinyals et al., 2015) for tri-
training. To obtain silver trees, we parse the en-
tire section of the New York Times (NYT) of the
fifth Gigaword (Parker et al., 2011) with a prod-
uct of eight Berkeley parsers (Petrov, 2010)2 and
ZPar (Zhu et al., 2013) and select 24 million trees
on which both parsers agree (Li et al., 2014). We do
not resample trees to match the sentence length dis-
tribution of the NYT to that of the WSJ (Vinyals et

1The code and trained models used for experiments are
available at github.com/cdg720/emnlp2016.

2We use the reimplementation by Huang et al. (2010).

Figure 2: Perplexity and F1 on the development set
at each epoch during training.

n Oracle Final Exact
10 94.0 91.2 39.8
50 96.7 91.7 40.0
51o 100 93.9 49.7
100 96.3 91.7 39.9
500 97.0 91.8 40.0

Table 1: The performance of LSTM-LM (G) with
varying n-best parses on the dev set. Oracle refers
to Charniak parser’s oracle F1. Final and Exact re-
port LSTM-LM (G)’s F1 and exact match percent-
age respectively. To simulate an optimal scenario,
we include gold trees to 50-best trees and rerank
them with LSTM-LM (G) (51o).

al., 2015) because in preliminary experiments Char-
niak parser (Charniak, 2000) performed better when
trained on all of 24 million trees than when trained
on resampled two million trees.

Given x, we produce Y ′(x), 50-best trees, with
Charniak parser and find y with LSTM-LM as Dyer
et al. (2016) do with their discriminative and gener-
ative models.3

4.2 Training and Development
4.2.1 Supervision

We unk words that appear fewer than 10 times
in the WSJ training (6,922 types) and drop activa-
tions with probability 0.7. At the beginning of each
epoch, we shuffle the order of trees in the training
data. Both perplexity and F1 of LSTM-LM (G) im-
prove and then plateau (Figure 2). Perplexity, the

3Dyer et al. (2016)’s discriminative model performs compa-
rably to Charniak (89.8 vs. 89.7).

2333

Base Final
Vinyals et al. (2015) 88.3 90.5
Dyer et al. (2016) 89.8 92.4
LSTM-LM (G) 89.7 92.6

Table 2: F1 of models trained on WSJ. Base refers
to performance of a single base parser and Final that
of a final parser.

model’s training objective, nicely correlates with F1,
what we care about. Training takes 12 hours (37
epochs) on a Titan X. We also evaluate our model
with varying n-best trees including optimal 51-best
trees that contain gold trees (51o). As shown in Ta-
ble 1, the LSTM-LM (G) is robust given sufficiently
large n, i.e. 50, but does not exhibit its full capac-
ity because of search errors in Charniak parser. We
address this problem in Section 5.3.

4.2.2 Semi-supervision
We unk words that appear at most once in the

training (21,755 types). We drop activations with
probability 0.45, smaller than 0.7, thanks to many
silver trees, which help regularization. We train
LSTM-LM (GS) on the WSJ and a different set of
400,000 NYT trees for each epoch except for the
last one during which we use the WSJ only. Training
takes 26 epochs and 68 hours on a Titan X. LSTM-
LM (GS) achieves 92.5 F1 on the development.

5 Results

5.1 Supervision

As shown in Table 2, with 92.6 F1 LSTM-LM (G)
outperforms an ensemble of five MTPs (Vinyals et
al., 2015) and RNNG (Dyer et al., 2016), both of
which are trained on the WSJ only.

5.2 Semi-supervision

We compare LSTM-LM (GS) to two very strong
semi-supervised NN parsers: an ensemble of five
MTPs trained on 11 million trees of the high-
confidence corpus4 (HC) (Vinyals et al., 2015); and
an ensemble of six one-to-many sequence models

4The HC consists of 90,000 gold trees, from the WSJ, En-
glish Web Treebank and Question Treebank, and 11 million sil-
ver trees, whose sentence length distribution matches that of the
WSJ, parsed and agreed on by Berkeley parser and ZPar.

trained on the HC and 4.5 millions of English-
German translation sentence pairs (Luong et al.,
2016). We also compare LSTM-LM (GS) to
best performing non-NN parsers in the literature.
Parsers’ parsing performance along with their train-
ing data is reported in Table 3. LSTM-LM (GS) out-
performs all the other parsers with 93.1 F1.

5.3 Improved Semi-supervision
Due to search errors – good trees are missing in
50-best trees – in Charniak (G), our supervised and
semi-supervised models do not exhibit their full po-
tentials when Charniak (G) provides Y ′(x). To mit-
igate the search problem, we tri-train Charniak (GS)
on all of 24 million NYT trees in addition to the
WSJ, to yield Y ′(x). As shown in Table 3, both
LSTM-LM (G) and LSTM-LM (GS) are affected
by the quality of Y ′(x). A single LSTM-LM (GS)
together with Charniak (GS) reaches 93.6 and an
ensemble of eight LSTM-LMs (GS) with Charniak
(GS) achieves a new state of the art, 93.8 F1. When
trees are converted to Stanford dependencies,5 UAS
and LAS are 95.9% and 94.1%,6 more than 1%
higher than those of the state of the art dependency
parser (Andor et al., 2016). Why an indirect method
(converting trees to dependencies) is more accu-
rate than a direct one (dependency parsing) remains
unanswered (Kong and Smith, 2014).

6 Conclusion

The generative parsing model we presented in this
paper is very powerful. In fact, we see that a gen-
erative parsing model, LSTM-LM, is more effec-
tive than discriminative parsing models (Dyer et al.,
2016). We suspect building large models with char-
acter embeddings would lead to further improve-
ment as in language modeling (Kim et al., 2016;
Jozefowicz et al., 2016). We also wish to de-
velop a complete parsing model using the LSTM-
LM framework.

Acknowledgments

We thank the NVIDIA corporation for its dona-
tion of a Titan X GPU, Tstaff of Computer Science

5Version 3.3.0.
6We use the CoNLL evaluator available through the CoNLL

website: ilk.uvt.nl/conll/software/eval.pl. Following the con-
vention, we ignore punctuation.

2334

Base Oracle Final Gold Silver
Huang et al. (2010) - - 92.8 WSJ (40K) BLLIP (1.8M)
Shindo et al. (2012) - - 92.4 WSJ (40K) -
Choe et al. (2015) - - 92.6 WSJ (40K) NYT (2M)
Vinyals et al. (2015) - - 92.8 HC (90K) HC (11M)
Luong et al. (2016) - - 93.0 HC (90K) HC (11M)
Charniak (G) + LSTM-LM (G) 89.7 96.7 92.6 WSJ (40K) -
Charniak (G) + LSTM-LM (GS) 89.7 96.7 93.1 WSJ (40K) NYT (0/10M)
Charniak (GS) + LSTM-LM (G) 91.2 97.1 92.9 WSJ (40K) NYT (24M/0)
Charniak (GS) + LSTM-LM (GS) 91.2 97.1 93.6 WSJ (40K) NYT (24M/10M)
Charniak (GS) + E(LSTM-LMs (GS)) 91.2 97.1 93.8 WSJ (40K) NYT (24M/11.2M)

Table 3: Evaluation of models trained on the WSJ and additional resources. Note that the numbers of Vinyals
et al. (2015) and Luong et al. (2016) are not directly comparable as their models are evaluated on OntoNotes-
style trees instead of PTB-style trees. E(LSTM-LMs (GS)) is an ensemble of eight LSTM-LMs (GS). X/Y
in Silver column indicates the number of silver trees used to train Charniak parser and LSTM-LM. For the
ensemble model, we report the maximum number of trees used to train one of LSTM-LMs (GS).

at Brown University for setting up GPU machines
and David McClosky for helping us train Charniak
parser on millions trees.

References

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally normal-
ized transition-based neural networks. Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In 1st Meeting of the North American Chapter
of the Association for Computational Linguistics.

Do Kook Choe, David McClosky, and Eugene Charniak.
2015. Syntactic parse fusion. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and
Noah A Smith. 2016. Recurrent neural network gram-
mars. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies.

Felix A Gers, Nicol N Schraudolph, and Jürgen Schmid-
huber. 2003. Learning precise timing with lstm re-
current networks. The Journal of Machine Learning
Research.

Alex Graves. 2013. Generating sequences with recurrent
neural networks. arXiv preprint arXiv:1308.0850.

Michael U. Gutmann and Aapo Hyvärinen. 2012.
Noise-contrastive estimation of unnormalized statisti-
cal models, with applications to natural image statis-
tics. The Journal of Machine Learning Research.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation.

Zhongqiang Huang, Mary Harper, and Slav Petrov. 2010.
Self-training with products of latent variable gram-
mars. In Proceedings of the 2010 Conference on Em-
pirical Methods in Natural Language Processing.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever.
2015. An empirical exploration of recurrent network
architectures. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural language
models. In Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence.

Lingpeng Kong and Noah A Smith. 2014. An empirical
comparison of parsing methods for stanford dependen-
cies. arXiv preprint arXiv:1404.4314.

Zhenghua Li, Min Zhang, and Wenliang Chen.
2014. Ambiguity-aware ensemble training for semi-
supervised dependency parsing. In Proceedings of the
52nd Annual Meeting of the Association for Computa-
tional Linguistics.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-

2335

quence to sequence learning. International Confer-
ence on Learning Representations.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of english: The penn treebank. Computational lin-
guistics.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Proceed-
ings of the Human Language Technology Conference
of the NAACL.

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In
Proceedings of the Tenth International Workshop on
Artificial Intelligence and Statistics.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English gigaword fifth edition.
Linguistic Data Consortium, LDC2011T07.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural net-
works. In Proceedings of the 30th International Con-
ference on Machine Learning.

Slav Petrov. 2010. Products of random latent variable
grammars. In Human Language Technologies: The
2010 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics.
Association for Computational Linguistics.

Vu Pham, Théodore Bluche, Christopher Kermorvant,
and Jérôme Louradour. 2014. Dropout improves re-
current neural networks for handwriting recognition.
In 2014 14th International Conference on Frontiers in
Handwriting Recognition.

Hiroyuki Shindo, Yusuke Miyao, Akinori Fujino, and
Masaaki Nagata. 2012. Bayesian symbol-refined tree
substitution grammars for syntactic parsing. In Pro-
ceedings of the 50th Annual Meeting of the Association
for Computational Linguistics.

Ilya Sutskever. 2013. Training recurrent neural net-
works. Ph.D. thesis, University of Toronto.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar
as a foreign language. In Advances in Neural Informa-
tion Processing Systems 28.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang, and
Jingbo Zhu. 2013. Fast and accurate shift-reduce con-
stituent parsing. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguis-
tics.

2336

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2337–2342,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Human-in-the-Loop Parsing

Luheng He Julian Michael Mike Lewis Luke Zettlemoyer
Computer Science & Engineering

University of Washington
Seattle, WA

{luheng,julianjm,mlewis,lsz}@cs.washington.edu

Abstract

This paper demonstrates that it is possible for
a parser to improve its performance with a hu-
man in the loop, by posing simple questions
to non-experts. For example, given the first
sentence of this abstract, if the parser is un-
certain about the subject of the verb “pose,” it
could generate the question What would pose
something? with candidate answers this pa-
per and a parser. Any fluent speaker can
answer this question, and the correct answer
resolves the original uncertainty. We apply
the approach to a CCG parser, converting un-
certain attachment decisions into natural lan-
guage questions about the arguments of verbs.
Experiments show that crowd workers can an-
swer these questions quickly, accurately and
cheaply. Our human-in-the-loop parser im-
proves on the state of the art with less than
2 questions per sentence on average, with a
gain of 1.7 F1 on the 10% of sentences whose
parses are changed.

1 Introduction

The size of labelled datasets has long been recog-
nized as a bottleneck in the performance of nat-
ural language processing systems (Marcus et al.,
1993; Petrov and McDonald, 2012). Such datasets
are expensive to create, requiring expert linguists
and extensive annotation guidelines. Even rela-
tively large datasets, such as the Penn Treebank,
are much smaller than required—as demonstrated
by improvements from semi-supervised learning
(Søgaard and Rishøj, 2010; Weiss et al., 2015).

We take a step towards cheap, reliable annotations
by introducing human-in-the-loop parsing, where

Temple also said Sea Containers’ plan raises numer-
ous legal, regulatory, financial and fairness issues, but
didn’t elaborate.
Q: What didn’t elaborate?
[1] **** Temple
[2] * Sea Containers’ plan
[3] None of the above.

Table 1: An automatically generated query from CCGbank.

4 out of 5 annotators correctly answered Temple, providing a

signal that can be used to improve parse predictions.

non-experts improve parsing accuracy by answering
questions automatically generated from the parser’s
output. We develop the approach for CCG parsing,
leveraging the link between CCG syntax and seman-
tics to convert uncertain attachment decisions into
natural language questions. The answers are used as
soft constraints when re-parsing the sentence.

Previous work used crowdsourcing for less struc-
tured tasks such as named entity recognition (Wer-
ling et al., 2015) and prepositional phrase attach-
ment (Jha et al., 2010). Our work is most related
to that of Duan et al. (2016), which automatically
generates paraphrases from n-best parses and gained
significant improvement by re-training from crowd-
sourced judgments on two out-of-domain datasets.
Choe and McClosky (2015) improve a parser by cre-
ating paraphrases of sentences, and then parsing the
sentence and its paraphrase jointly. Instead of using
paraphrases, we build on the approach of QA-SRL
(He et al., 2015), which shows that untrained crowd
workers can annotate predicate–argument structures
by writing question–answer pairs.

Our experiments for newswire and biomedical

2337

text demonstrate improvements to parsing accuracy
of 1.7 F1 on the sentences changed by re-parsing,
while asking only less than 2 questions per sentence.
The annotations we collected1 are a representation-
independent resource that could be used to develop
new models or human-in-the-loop algorithms for
related tasks, including semantic role labeling and
syntactic parsing with other formalisms.

2 Mapping CCG Parses to Queries

Our annotation task consists of multiple-choice
what-questions that admit multiple answers. To gen-
erate them, we produce question–answer (QA) pairs
from each parse in the 100-best scored output of a
CCG parser and aggregate the results together.

We designed the approach to generate queries
with high question confidence—questions should
be simple and grammatical, so annotators are more
likely to answer them correctly—and high answer
uncertainty—the parser should be uncertain about
the answers, so there is potential for improvement.

Our questions only apply to core arguments of
verbs where the argument phrase is an NP, which
account for many of the parser’s mistakes. Preposi-
tional phrase attachment mistakes are also a large
source of errors—we tried several approaches to
generate questions for these, but the greater ambi-
guity and inconsistency among both annotators and
the gold parses made it difficult to extract meaning-
ful signal from the crowd.

Generating Question–Answer Pairs Figure 1
shows how we generate QA pairs. Each QA pair cor-
responds to a dependency such that if the answer is
correct, it indicates that the dependency is in the cor-
rect parse. We determine a verb’s set of arguments
by the CCG supertag assigned to it in the parse (see
Steedman (2000) for an introduction to CCG). For
example, in Figure 1 the word put takes the category
((S\NP)/PP)/NP (not shown), indicating that it has
a subject, a prepositional phrase argument, and an
object. CCG parsing assigns dependencies to each
argument position, even when the arguments are re-
ordered (as with put→ pizza) or span long distances
(as with eat→ I).

1Our code and data are available at https://github.
com/luheng/hitl_parsing.

I want to eat the pizza you put on the table

subj
xcomp
subj

obj obj

subj prep
pobj

subj Verb obj prep xcomp
you put the pizza on the table

I want to eat the pizza

I eat the pizza

Dependency Question Answer
want→ I What wants to eat something? I

eat→ I What would eat something? I
eat→pizza What would something eat? the pizza
put→you What put something? you
put→pizza What did something put? the pizza
on→ table What did something put something on? the table

Figure 1: From a labeled dependency graph, we extract phrases

corresponding to every argument of every verb using sim-

ple heuristics. We then create questions about dependencies,

adding a would modal to untensed verbs and placing arguments

to the left or right of the verb based on its CCG category. We

only generate QA pairs for subj, obj, and pobj dependencies.

To identify multiple answer options, we create QA pairs from

all parses in the 100-best list and pool equivalent questions with

different answers. See Table 2 for example queries.

To reduce the chance of parse errors causing non-
sensical questions (for example, What did the pizza
put something on?), we replace all noun phrases
with something and delete unnecessary prepositional
phrases. The exception to this is with copular predi-
cates, where we include the span of the argument in
the question (see Example 4 in Table 2).

Grouping QA Pairs into Queries After generat-
ing QA pairs for every parse in the 100-best output
of the parser, we pool the QA pairs by the head of
the dependency used to generate them, its CCG cat-
egory, and their question strings. We also compute
marginalized scores for each question and answer
phrase by summing over the scores of all the parses
that generated them. Each pool becomes a query,
and for each unique dependency used to generate
QA pairs in that pool, we add a candidate answer to
the query by choosing the answer phrase that has the
highest marginalized score for that dependency. For
example, if some parses generated the answer phrase
pizza for the dependency eat → pizza, but most of
the high-scoring parses generated the answer phrase
the pizza, then only the pizza appears as an answer.

2338

Sentence Question Votes Answers
(1) Structural Dynamics Research Corp. . . . said it
introduced new technology in mechanical design
automation that will improve mechanical engineering
productivity.

What will improve
something?

0 Structural Dynamics Research
Corp

5 new technology
0 mechanical design automation

(2) He said disciplinary proceedings are confidential
and declined to comment on whether any are being held
against Mr. Trudeau.

What would
comment?

5 he
0 disciplinary proceedings

(3) To avoid these costs, and a possible default,
immediate action is imperative.

What would
something avoid?

4 these costs
3 a possible default

(4) The price is a new high for California Cabernet
Sauvignon, but it is not the highest.

What is not the
highest?

2 the price
3 it

(5) Kalipharma is a New Jersey-based pharmaceuticals
concern that sells products under the Purepac label.

What sells
something?

5 Kalipharma
0 a New Jersey-based pharma-

ceuticals concern
(6) Further, he said, the company doesn’t have the
capital needed to build the business over the next year
or two.

What would build
something?

4 the company
1 the capital

(7) Timex had requested duty-free treatment for many
types of watches, covered by 58 different U.S. tariff
classifications.

What would be
covered?

0 Timex
0 duty-free treatment
2 many types of watches
3 watches

(8) You either believe Seymour can do it again or you
do n’t .

What does?
3 you
0 Seymour
2 None of the above

Table 2: Example annotations from the CCGbank development set. Answers that agree with the gold parse are in bold. The answer

choice None of the above was present for all examples, but we only show it when it was chosen by annotators.

From the resulting queries, we filter out questions
and answers whose marginalized scores are below a
certain threshold and queries that only have one an-
swer choice. This way we only ask confident ques-
tions with uncertain answer lists.

3 Crowdsourcing

We collected data on the crowdsourcing platform
CrowdFlower.2 Annotators were shown a sentence,
a question, and a list of answer choices. Annota-
tors could choose multiple answers, which was use-
ful in case of coordination (see Example 3 in Ta-
ble 2). There was also a None of the above option
for when no answer was applicable or the question
was nonsensical.

We instructed annotators to only choose options
that explicitly and directly answer the question,
to encourage their answers to closely mirror syn-
tax. We also instructed them to ignore who/what
and someone/something distinctions and overlook
mistakes where the question was missing a nega-
tion. The instructions included 6 example queries

2www.crowdflower.com

with answers and explanations. We used Crowd-
Flower’s quality control mechanism, displaying pre-
annotated queries 20% of the time and requiring an-
notators to maintain high accuracy.

Dataset Statistics Table 3 shows how many sen-
tences we asked questions for and the total number
of queries annotated. We collected annotations for
the development and test set for CCGbank (Hock-
enmaier and Steedman, 2007) as in-domain data
and the test set of the Bioinfer corpus (Pyysalo et
al., 2007) as out-of-domain. The CCGbank devel-
opment set was used for building question genera-
tion heuristics and setting hyperparameters for re-
parsing.

5 annotators answered each query; on CCGbank
we required 85% accuracy on test questions and
on Bioinfer we set the threshold at 80% because
of the difficulty of the sentences. Table 4 shows
inter-annotator agreement. Annotators unanimously
chose the same set of answers for over 40% of the
queries; an absolute majority is achieved for over
90% of the queries.

2339

Dataset Sentences Covered Queries Q/S
CCG-Dev 1913 1155 1904 1.7
CCG-Test 2407 1460 2511 1.7
Bioinfer 500 360 680 1.9

Table 3: Sentence coverage, number of queries annotated, and

average number of queries per sentence (Q/S).

k-Agreed CCG-Dev CCG-Test Bioinfer
5 48.0% 40.2% 47.7%
≥ 4 76.6% 68.0% 75.0%
≥ 3 94.9% 91.5% 94.0%

Table 4: The percentage of queries with at least k annotators

agreeing on the exact same set of answers.

Qualitative Analysis Table 2 shows example
queries from the CCGbank development set. Exam-
ples 1 and 2 show that workers could annotate long-
range dependencies and scoping decisions, which
are challenging for existing parsers.

However, there are some cases where annota-
tors disagree with the gold syntax, mostly involv-
ing semantic phenomena which are not reflected
in the syntactic structure. Many cases involve co-
reference, where annotators often prefer a proper
noun referent over a pronoun or indefinite (see Ex-
amples 4 and 5), even if it is not the syntactic ar-
gument of the verb. Example 6 shows a complex
control structure, where the gold CCGbank syntax
does not recover the true agent of build. CCGbank
also does not distinguish between subject and object
control. For these cases, our method could be used
to extend existing treebanks. Another common error
case involved partitives and related constructions,
where the correct attachment is subtle—as reflected
by the annotators’ split decision in Example 7.

Question Quality Table 5 shows the percentage of
questions that are answered with None of the above
(written N/A below) by at most k annotators. On all
domains, about 80% of the queries are considered
answerable by all 5 annotators. To have a better
understanding of the quality of automatically gen-
erated questions, we did a manual analysis on 50
questions for sentences from the CCGbank devel-
opment set that are marked N/A by more than one
annotator. Among the 50 questions, 31 of them are
either generated from an incorrect supertag or unan-
swerable given the candidates. So the N/A answer

k-N/A CCG-Dev CCG-Test Bioinfer
0 77.6% 81.6% 79.3%
≤ 1 89.6% 92.6% 89.1%
≤ 2 93.8% 96.1% 92.8%

Table 5: The percentage of queries with at most k annotators

choosing the None of the above (N/A) option.

can provide useful signal that the parses that gen-
erated the question are likely incorrect. Common
mistakes in question generation include: bad argu-
ment span in a copula question (4 questions), bad
modality/negation (3 questions), and missing argu-
ment or particle (5 questions). Example 8 in Table 2
shows an example of a nonsensical question. While
the parses agreed with the gold category S\NP, the
question they generated omitted the negation and the
verb phrase that was elided in the original sentence.
In this case, 3 out of 5 annotators were able to an-
swer with the correct dependency, but such mistakes
can make re-parsing more challenging.

Cost and Speed We paid 6 cents for each answer.
With 5 judgments per query, 20% test questions, and
CrowdFlower’s 20% service fee, the average cost
per query was about 46 cents. On average, we col-
lected about 1000 judgments per hour, so we were
able to annotate all the queries generated from the
CCGbank test set within 15 hours.

4 Re-Parsing with QA Annotation

To improve the output of the parser, we re-parse
each sentence with an augmented scoring function
that penalizes parses for disagreeing with annota-
tors’ choices. If q is a question, a is an answer to q, d
is the dependency that produced the QA pair 〈q, a〉,
and v(a) annotators chose a, we add re-parsing con-
straints as follows:
• If v(None of the above) ≥ T+, penalize parses

that agree with q’s supertag on the verb by wt

• If v(a) ≤ T−, penalize parses containing d byw−

• If v(a) ≥ T+, penalize parses that do not contain
d by w+

where T+, T−, wt, w−, and w+ are hyperparame-
ters. We incorporate these penalties into the parsing
model during decoding. By using soft constraints,
we mitigate the risk of incorrect annotations wors-
ening a high-confidence parse.

2340

Data L16 HITL
CCG-Dev 87.9 88.4
CCG-Test 88.1 88.3
Bioinfer 82.2 82.8

Table 6: CCG parsing accuracy with human in the loop (HITL)

versus the state-of-the-art baseline (L16) in terms of labeled F1

score. For both in-domain and out-domain, we have a modest

gain over the entire corpus.

Some errors are predictable: for example, if a is
a non-possessive pronoun and is closer to the verb
than its referent a′, annotators often choose a′ when
a is correct (See Example 4 in Table 2). If a is a sub-
span of another answer a′ and their votes differ by at
most one (See Example 7 in Table 2), it is unlikely
that both a and a′ are correct. In these cases we
use disjunctive constraints, where the parse needs to
have at least one of the desired dependencies.

Experimental Setup We use Lewis et al. (2016)’s
state-of-the-art CCG parser for our baseline. We
chose the following set of hyperparameters based
on performance on development data (CCG-Dev):
w+ = 2.0, w− = 1.5, wt = 1.0, T+ = 3, T− = 0.
In the Bioinfer dataset, we found during develop-
ment that the pronoun/subspan heuristics were not
as useful, so we did not use them in re-parsing.

Results Table 6 shows our end-to-end parsing re-
sults. The larger improvement on out-of-domain
sentences shows the potential for using our method
for domain adaptation. There is a much smaller
improvement on test data than development data,
which may be related to the lower annotator agree-
ment reported in Table 4.

There was much larger improvement (1.7 F1) on
the subset of sentences that are changed after re-
parsing, as shown in Table 7. This suggests that our
method could be effective for semi-supervised learn-
ing or re-training parsers. Overall improvements on
CCGbank are modest, due to only modifying 10%
of sentences.

5 Discussion and Future Work

We introduced a human-in-the-loop framework for
automatically correcting certain parsing mistakes.
Our method identifies attachment uncertainty for
core arguments of verbs and automatically generates

Data L16 HITL Pct.
CCG-Dev 83.9 87.1 12%
CCG-Test 84.2 85.9 10%

Table 7: Improvements of CCG parsing accuracy on changed

sentences for in-domain data. We achieved significant improve-

ment over the 10%–12% (Pct.) sentences that were changed by

re-parsing.

questions that can be answered by untrained annota-
tors. These annotations improve performance, par-
ticularly on out-of-domain data, demonstrating for
the first time that untrained annotators can improve
state-of-the-art parsers.

Sentences modified by our framework show sub-
stantial improvements in accuracy, but only 10% of
sentences are changed, limiting the effect on overall
accuracy. This work is a first step towards a com-
plete approach to human-in-the-loop parsing.

Future work will explore the possibility of asking
questions about other types of parsing uncertainties,
such as nominal and adjectival argument structure,
and a more thorough treatment of prepositional-
phrase attachment, including distinctions between
arguments and adjuncts. We hope to scale these
methods to large unlabelled corpora or other lan-
guages, to provide data for re-training parsers.

Acknowledgments

This work was supported by the NSF (IIS-1252835,
IIS-1562364), DARPA under the DEFT program
through the AFRL (FA8750-13-2-0019), an Allen
Distinguished Investigator Award, and a gift from
Google. We are grateful to Chloé Kiddon for help-
ful comments on the paper, and Kenton Lee for help
with the CCG parser. We would also like to thank
our workers on Crowdflower for their annotation and
the anonymous reviewers for their valuable feed-
back.

References

Do Kook Choe and David McClosky. 2015. Parsing
paraphrases with joint inference. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics.

Manjuan Duan, Ethan Hill, and Michael White. 2016.
Generating disambiguating paraphrases for struc-

2341

turally ambiguous sentences. In Proceedings of the
10th Linguistic Annotation Workshop.

Luheng He, Mike Lewis, and Luke Zettlemoyer. 2015.
Question-answer driven semantic role labeling: Using
natural language to annotate natural language. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing.

Julia Hockenmaier and Mark Steedman. 2007. Ccgbank:
a corpus of ccg derivations and dependency structures
extracted from the penn treebank. Computational Lin-
guistics.

Mukund Jha, Jacob Andreas, Kapil Thadani, Sara Rosen-
thal, and Kathleen McKeown. 2010. Corpus creation
for new genres: A crowdsourced approach to pp at-
tachment. In Proceedings of the NAACL HLT 2010
Workshop on Creating Speech and Language Data
with Amazon’s Mechanical Turk.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016.
Lstm ccg parsing. In Proceedings of the Human Lan-
guage Technology Conference of the North American
Chapter of the Association of Computational Linguis-
tics.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of english: The penn treebank. Computational
Linguistics.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 Shared Task on Parsing the Web. Notes
of the First Workshop on Syntactic Analysis of Non-
Canonical Language (SANCL).

Sampo Pyysalo, Filip Ginter, Juho Heimonen, Jari
Björne, Jorma Boberg, Jouni Järvinen, and Tapio
Salakoski. 2007. Bioinfer: a corpus for information
extraction in the biomedical domain. BMC bioinfor-
matics.

Anders Søgaard and Christian Rishøj. 2010. Semi-
supervised dependency parsing using generalized tri-
training. In Proceedings of the 23rd International
Conference on Computational Linguistics.

Mark Steedman. 2000. The syntactic process.
David Weiss, Chris Alberti, Michael Collins, and Slav

Petrov. 2015. Structured training for neural network
transition-based parsing. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing.

Keenon Werling, Arun Tejasvi Chaganty, Percy S Liang,
and Christopher D Manning. 2015. On-the-job learn-
ing with bayesian decision theory. In Advances in
Neural Information Processing Systems.

2342

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2343–2349,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Unsupervised Timeline Generation for Wikipedia History Articles

Sandro Bauer and Simone Teufel
Computer Laboratory

University of Cambridge
Cambridge, United Kingdom

{sandro.bauer, simone.teufel}@cl.cam.ac.uk

Abstract

This paper presents a generic approach to con-
tent selection for creating timelines from in-
dividual history articles for which no exter-
nal information about the same topic is avail-
able. This scenario is in contrast to existing
works on timeline generation, which require
the presence of a large corpus of news arti-
cles. To identify salient events in a given his-
tory article, we exploit lexical cues about the
article’s subject area, as well as time expres-
sions that are syntactically attached to an event
word. We also test different methods of en-
suring timeline coverage of the entire histori-
cal time span described. Our best-performing
method outperforms a new unsupervised base-
line and an improved version of an existing
supervised approach. We see our work as a
step towards more semantically motivated ap-
proaches to single-document summarisation.

1 Introduction

While there has been much work on generating his-
tory timelines automatically, these approaches are
commonly evaluated on events that took place in re-
cent decades, as they depend on the availability of
large numbers of articles describing the same his-
torical period. If such a rich data source is avail-
able, it is possible to exploit document creation
times, redundancy across documents, as well as
back-references to earlier events in order to identify
salient events. For instance, the start of the Iraq War
in 2003 is mentioned frequently in a general news
corpus, including in articles published years after the

event took place. The high number of mentions sug-
gests that the beginning of the Iraq War was an im-
portant historical event.

However, for most historical periods covered in
history articles (e.g., Antiquity or the Middle Ages),
such cues are not commonly available, as no news
articles from these eras exist. Generating event time-
lines for arbitrary historical periods is therefore a
much harder problem, which requires methods that
rely less heavily on the types of rich, parallel and
dense information contained in news clusters.

To investigate this problem, we approach timeline
generation as a special single-document summarisa-
tion task. In other words, we assume that the in-
formation to be summarised is contained in a single
history article, and that no further mentions of spe-
cific events exist externally. This is a realistic sce-
nario, for instance, for a specialist article describing
the history of music in Ancient China.

We introduce a method for selecting salient con-
tent in history articles of any subject area, as long as
the events in the text are roughly ordered chronolog-
ically. The hypothesis is that knowledge of an text’s
subject area can help decide which content should
be selected. Another intuition is that certain com-
binations of events should be avoided in a timeline.
We therefore investigate ways of encouraging a bal-
anced selection of content from all parts of the text.

2 Related work

Timeline extraction has mostly been explored in
a multi-document summarisation setting using cor-
pora of news articles (Tran et al., 2015; Swan and
Allan, 2000; Yan et al., 2011; Chieu and Lee, 2004;

2343

Allan et al., 2001). This task definition allows the
exploitation of features such as document creation
times and headlines. The most important feature
is redundancy between articles, which facilitates the
identification of salient events.

A second important strand of work focuses on ex-
tracting all events from a single input text and an-
choring them in time. The creation of the TimeML
specification language (Pustejovsky et al., 2003) laid
the foundations for the TempEval series of shared
tasks (Verhagen et al., 2007; Verhagen et al., 2010;
UzZaman et al., 2013), in which systems had to
identify TimeML events and temporal expressions
in free-form text. Further subtasks included the nor-
malisation of temporal expressions and the creation
of links between events and temporal expressions. A
further shared task investigated the use of TimeML
annotation for the downstream task of question an-
swering (Llorens et al., 2015). Kolomiyets et al.
(2012) created a connected timeline for a text based
on TimeML annotations; a dependency parser infers
dependency structures between events. Finally, a re-
cent SemEval task (Minard et al., 2015) explored the
related problem of cross-document event ordering.
Here, relevant events and temporal expressions con-
cerning a single target entity of interest have to be
identified in more than one input document.

Chasin et al. (2014) try to identify important
events in single texts, but their approach is limited to
articles on wars and battles, and the problem is not
approached as a summarisation task. Their method
is lightly supervised, using features such as the pres-
ence of negation or past tense verbs in the sentence,
and TextRank (Mihalcea and Tarau, 2004) for identi-
fying salient sentences. We use an improved version
of this system as a baseline.

3 Overall approach

Our problem is that of finding an optimal sequence
of events (of a given maximum length) in a given
input article. We follow the literature on event ex-
traction and use TimeML events (Pustejovsky et
al., 2003). Most TimeML events are verbs, but
some are nominalisations such as “invasion” or
other event-like words such as “war”. The use of
TimeML events, aside from the practical advan-
tage that commonly-available event extraction algo-

rithms exist, allows us to evaluate content selection
at the event rather than at the sentence level.

We assume that there are both local and global
factors that determine which events should be con-
tained in the timeline. Local factors reflect how
important an event is in its own right. Global fac-
tors represent intuitions about which combinations
of events should or should not be selected. Our ap-
proach, which is unsupervised, takes into account
the factors described in what follows.

3.1 Date presence

Intuitively, we expect that many important events
have a date attached to them, as authors tend to give
the reader this information if it is available. This
is true for all historical periods from prehistory on-
wards, since for most events at least an approxi-
mate date is known. We considered two alternatives:
The simplest approach is to only use sentences that
contain a date, regardless of where in the sentence
the date is located. A more sophisticated alterna-
tive verifies that the date is syntactically attached to
the event, such as in “Richelieu died in 1642”. To
identify such cases, we constructed a parse tree us-
ing the C&C dependency parser (Clark and Curran,
2007) and only considered a TimeML event to be
“dated” if it is at most two outgoing dependencies
away from a temporal expression. We used Heidel-
Time (Strötgen and Gertz, 2013), a the state-of-the-
art temporal expression software package, to iden-
tify such temporal expressions.

3.2 Lexical cues

The key component we use to judge the importance
of any event are lexical cues about the input text’s
subject area. Examples of such subject areas in-
clude INVENTION and FOOD/DRINK. The subject
area of a text should give us prior knowledge about
which types of events are likely to be important. For
instance, we would expect that a timeline describing
the history of a country should contain information
about revolutions, invasions, elections and similar
events, whereas a timeline about science will instead
focus on discoveries, publications, and Nobel prizes.

To mine knowledge about such subject-area-
specific preferences, we make use of Wikipedia as
a background corpus. Only history-specific articles
whose title starts with “History of” are considered.

2344

We start by generating sets of all Wikipedia history
articles belonging to a given subject area, e.g. AGPE

or AINVENTION. To do this, we make use of the
Wikipedia category system. For instance, for con-
structing a set of articles for the subject area FIELD
OF SCIENCE, we collected all history articles that
belong to the Wikipedia category “History of sci-
ence by discipline”. For each subject area g, we then
calculate a preference score for each word lemma l
found in any of the articles in the corresponding list
Ag, using the following formula:

sc(g, l) =

freq(Ag ,l)
freq(Ag ,∗)
freq(∗,l)
freq(∗,∗)

where freq(Ag, l) is the summed frequency of word
lemma l in all documents belonging to subject area
g, and “*” stands for any. The numerator de-
notes how often lemma l appears in the subject-area-
specific set of articles Ag, normalised by the total
number of tokens found in this set. The denomina-
tor is invariant across all subject areas. If the ratio is
high, lemma l is more likely to appear in articles of
subject area g than in Wikipedia overall, suggesting
that it is typical for the given subject area.

For each event e in the input text, a local impor-
tance score imp(e) is calculated as

imp(e) =

∑
w∈R(e)

sc(g,l)
1+dist(we,w)

N

where R(e) is a window of words around the word
representing the event (including the event word
we itself), and dist(w1, w2) refers to the absolute
distance in words between two words w1 and w2.
imp(e) is a weighted average of the preference
scores of all words in a window. The intuition is
that context words of the event word can also be ex-
pected to be indicative of the subject area (consider
“publish a paper”) in many cases. 1+dist(we, w) is
used as a distance penalty in order to give more im-
portance to words that are closer to the event word
we. N is a constant which normalises the score by
the sum of all distance penalties, to account for cases
where the event word occurs at the beginning or end
of a sentence. Table 1 shows examples of words with
high and low preference scores.

3.3 Temporal coverage
We would like to avoid cases where too many events
are selected from a small portion of the document,

GPE INVENTION FOOD/DRINK
absolutism gas-works yerba
protectorate reverse-angle hamburger

serfdom flashback saffron
club season play
game team member

season school bear
Table 1: Words with high (top) and low (bottom) preference

scores for three subject areas

even if all these events are relevant. For instance,
an article might list all a country’s elections of the
past few years, while mentioning only very impor-
tant elections in earlier time periods. In this case,
knowing that elections are important in the history
of a country is not helpful, since this would lead to
insufficient coverage of the remaining events in the
article. We therefore take into account global factors
as well. We experiment with two different methods:

Exploiting document structure. We select
salient events from each section of the Wikipedia
article in a round-robin fashion. The algorithm
operates in a greedy fashion by selecting the most
locally important remaining event for each section,
until the desired timeline length has been reached.

Integer linear program. We use an integer linear
program to encode the intuition that no two timeline
entries should have the same year. The ILP max-
imises the following objective function for each ar-
ticle (E refers to the set of all dated events):

∑
ei∈E

xi · imp(ei)−
∑
ei∈E

∑
ej∈E

bij · pen(ei, ej)

subject to the constraints:

bij ≤ xi ∀i, j ∈ E
xi + xj − bij ≤ 1 ∀i, j ∈ E

xi ∈ {0, 1} ∀i ∈ E bij ∈ {0, 1} ∀i, j ∈ E∑
ei∈E

xi = Lmax

This is similar to the model used by McDon-
ald (2007) for multi-document summarisation. The
model tries to find a set of locally important events
while discouraging the selection of events that have
the same date. xi is a variable denoting whether
the corresponding event ei has been selected. bij
is a variable which is 1 if and only if both events i
and j have been selected. pen(ei, ej) is a penalty
function that is 1 if the two events ei and ej have

2345

the same date, otherwise 0. Each event was linked
to the preceding temporal expression identified by
HeidelTime; this heuristic was found to work well.
The last constraint ensures that not more than Lmax

events are chosen, where Lmax is the desired time-
line length for the article considered.

4 Evaluation

For evaluating our algorithms, the methodology we
introduced in (Bauer and Teufel, 2015) is used,
along with the accompanying Cambridge Single-
Document Timeline Corpus (CSDTC, version 2.0),
which has been made publicly available1.

4.1 Cambridge Single-Document Timeline
Corpus

The CSDTC contains 10 articles from 3 sub-
ject areas: GPE (geo-political entities such as
countries and cities), FIELD OF SCIENCE and
INVENTION. To tune our algorithms, we con-
structed a development set of a further 30 annotated
history articles from the subject areas in the CSDTC
and one additional subject area (FOOD/DRINK).
Due to the high annotation cost, only a single time-
line creator was used. Important events were di-
rectly marked up in the source text (as opposed to
the CSDTC, where timeline entries were written by
hand), and exactly one HCU2 was created per event.
Using this development corpus, the window size of
words considered for calculating local importance
scores (cf. Section 3.2) was set to 3. We report the
performance of all algorithms on both the develop-
ment set and the test set (the CSDTC).

Although the number of subject areas in the two
corpora is rather small owing to the considerable an-
notation effort, we believe that the resulting system
would generalise rather well to other subject areas,
were they added, as the subject areas in the corpus
are very different in nature from each other. Care
was taken when constructing the CSDTC to use a
set of subject areas that is representative for human-
written timelines on the Web.

1The corpus is available on the first author’s website:
http://www.cl.cam.ac.uk/˜smb89/form.html

2As opposed to the CSDTC, HCUs in the development set
always have a weight of 1, as only timeline writer was used.

4.2 Evaluation based on Historical Content
Units

The evaluation is based on abstract (“deep”) mean-
ing units called Historical Content Units (HCUs).
HCUs were derived on the basis of human-created
timelines. Between 32 and 80 HCUs per article were
annotated for the articles in the CSDTC.

Each HCU is weighted by the number of time-
line creators who expressed its semantic content
in their timelines. Because HCUs are linked to
TimeML events in the surface text, it is possible to
perform automatic deep evaluation without requir-
ing any manual annotation of system summaries.

Algorithms are evaluated on a given input arti-
cle using an adapted version of the pyramid score
(Nenkova and Passonneau, 2004), which is calcu-
lated as the ratio between the sum of all rewards for
HCUs chosen by the algorithm normalised by the
maximum possible score scoremax:

score =

∑
h∈HCUs

wh·Cov(h,E,T)

scoremax

where wh is the weight of HCU h (a number be-
tween 1 and the number of annotators), E is the set
of events in the article, T are the events in the sys-
tem timeline, and the coverage score Cov(h,E, T)
is a number between 0 and 1 that indicates to what
extent the events chosen by the algorithm jointly ex-
press the semantic content of HCU h. The basic ver-
sion of Cov(h,E, T) is defined as follows:

Cov(h,E, T) = min(1.0,
∑

ej∈E vh,ej · s(T, ej))
where vh,ej is an anchor weight between 0 and 1
which denotes to what extent event ej expresses the
semantic content of HCU h, and s(T, e) is a helper
function that returns 1 if the set of selected events T
includes event e, and 0 otherwise.

The coverage score for each HCU is calculated
by summing up the anchor weights of those events
that the algorithm has selected. A coverage score of
0 means that the events mentioned in the timeline
do not express the HCU’s semantic content at all,
while a score of 1 occurs where the HCU’s content
is fully expressed by the timeline. Scores between 0
and 1 occur in a large number of cases. For instance,
an HCU may express the fact that a country was in-
vaded and destroyed. If the system timeline merely
contains a TimeML event that refers to the invasion,
it is assigned a coverage score of 0.5 for this HCU,

2346

as it expresses only half of the HCU’s semantic con-
tent. Where the sum exceeds 1, the coverage score is
set to a hard upper limit of 1. This ensures that algo-
rithms are not doubly rewarded for selecting mul-
tiple TimeML events expressing the same seman-
tic content. The final formula we used to calculate
coverage scores is slightly more complex, as some
TimeML events in the CSDTC have been grouped
together into event groups. A detailed description is
given in the documentation of the corpus.

Pyramid scores are recall-based: The evaluation
assumes a maximum number of timeline entries n,
and the maximum possible score is the sum of the
HCU weights of the n most highly weighted HCUs.
The values for n are given in the CSDTC.

4.3 System and baselines

We report the performance of two systems. Both
systems first remove all events that do not have a
date, or whose date is too far away, as described
in Section 3.1. Our first system (“ILP-based”) se-
lects events based on the integer linear program de-
scribed, while the second system (“Round-robin”)
selects locally important events per section.

We have speculated above that dates are impor-
tant for our task. We therefore compare against a
date baseline which selects events randomly from
the list of all dated events. We also compare against
several modified versions of our method: To inves-
tigate the influence of the parser in identifying suit-
able dated events, we report the results for a simpler
method which considers all events that have a date in
the same sentence (“Round-robin, simple date crite-
rion”). Two alternative systems select locally impor-
tant events from all (not only dated) events (“Round-
robin, without date criterion”) or salient dated events
from the entire article without considering document
structure (“Local importance + date criterion”).

The supervised baseline (“Chasin et al. (2014)”)
was re-implemented using LibSVM (Chang and Lin,
2011), and SVM parameters were tuned using grid
search. 25 of the 30 articles were used for training
and 5 for development. We improved their system
by defining some of their sentence-level features at
the event level. Probability estimates as described
by Platt (2000) were used as importance scores.

System Dev Test
ILP-based 0.22N 0.30N

Round-robin 0.20N 0.30N

Round-robin w/o local importance 0.18 0.26
Local importance + date criterion 0.21N 0.29
Round-robin, simple date criterion 0.19 0.25
Round-robin without date criterion 0.14 0.18
Date baseline 0.18 0.25
Chasin et al. (2014) (improved) – 0.12
Random baseline 0.08 0.10

Table 2: Average pyramid scores across all articles (N = signif-

icantly better than the date baseline)

4.4 Results

The results in Table 2 show that only a combina-
tion of all three factors (date presence, local impor-
tance, coverage) results in a statistically significant
improvement over the date baseline at α = 0.05 ac-
cording to Wilcoxon’s signed-rank test on the test
set. Both our systems perform comparably on the
test set; removing any of the three components re-
sults in lower performance. Using a parser to iden-
tify dated events has a strong positive effect (see
“Round-robin, simple date criterion”). Our system
also outperforms the improved supervised baseline
by a large margin. The fact that a completely un-
supervised system performs best is encouraging, as
training data for this task is very expensive to ob-
tain. Our results suggest that it might be worth in-
vestigating other types of prior knowledge about the
semantics of an input text in further research. The
crucial advantage of such generic methods is that no
texts on exactly the same topic are needed, which is
a requirement with texts about niche topics.

5 Conclusion

We have introduced an unsupervised method for
the challenging problem of timeline generation from
single history articles, a scenario where parallel texts
cannot be assumed to exist. Our method results in a
significant improvement over a novel unsupervised
baseline as well as an existing supervised approach.

Acknowledgments

The first author received financial support from Mi-
crosoft Research, St John’s College Cambridge and
the Cambridge University Computer Laboratory.

2347

References
James Allan, Rahul Gupta, and Vikas Khandelwal. 2001.

Temporal Summaries of New Topics. In Proceedings
of the 24th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Re-
trieval, SIGIR ’01, pages 10–18, New York, NY, USA.
ACM.

Sandro Bauer and Simone Teufel. 2015. A Methodology
for Evaluating Timeline Generation Algorithms based
on Deep Semantic Units. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing of the Asian Federa-
tion of Natural Language Processing, ACL 2015, July
26-31, 2015, Beijing, China, Volume 2: Short Papers,
pages 834–839.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM:
A library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology, 2:27:1–
27:27. Software available at http://www.csie.
ntu.edu.tw/˜cjlin/libsvm.

Rachel Chasin, Daryl Woodward, Jeremy Witmer, and
Jugal Kalita. 2014. Extracting and Displaying Tempo-
ral and Geospatial Entities from Articles on Historical
Events. Comput. J., 57(3):403–426.

Hai Leong Chieu and Yoong Keok Lee. 2004. Query
Based Event Extraction Along a Timeline. In Pro-
ceedings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’04, pages 425–432, New York,
NY, USA. ACM.

Stephen Clark and James R. Curran. 2007. Wide-
Coverage Efficient Statistical Parsing with CCG and
Log-Linear Models. Computational Linguistics,
33(4):493–552.

Oleksandr Kolomiyets, Steven Bethard, and Marie-
Francine Moens. 2012. Extracting Narrative Time-
lines as Temporal Dependency Structures. In The 50th
Annual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference, July 8-14,
2012, Jeju Island, Korea - Volume 1: Long Papers,
pages 88–97.

Hector Llorens, Nathanael Chambers, Naushad UzZa-
man, Nasrin Mostafazadeh, James Allen, and James
Pustejovsky. 2015. SemEval-2015 Task 5: QA Tem-
pEval - Evaluating Temporal Information Understand-
ing with Question Answering. In Proceedings of the
9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 792–800, Denver, Colorado,
June. Association for Computational Linguistics.

Ryan McDonald. 2007. A Study of Global Inference Al-
gorithms in Multi-document Summarization. In Pro-
ceedings of the 29th European Conference on IR Re-

search, ECIR’07, pages 557–564, Berlin, Heidelberg.
Springer-Verlag.

Rada Mihalcea and Paul Tarau. 2004. TextRank: Bring-
ing Order into Text. In Proceedings of the 2004 Con-
ference on Empirical Methods in Natural Language
Processing , EMNLP 2004, A meeting of SIGDAT, a
Special Interest Group of the ACL, held in conjunction
with ACL 2004, 25-26 July 2004, Barcelona, Spain,
pages 404–411.

Anne-Lyse Minard, Manuela Speranza, Eneko Agirre,
Itziar Aldabe, Marieke van Erp, Bernardo Magnini,
German Rigau, and Ruben Urizar. 2015. SemEval-
2015 Task 4: TimeLine: Cross-Document Event Or-
dering. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages
778–786, Denver, Colorado, June. Association for
Computational Linguistics.

Ani Nenkova and Rebecca Passonneau. 2004. Evaluat-
ing Content Selection in Summarization: The Pyramid
Method. In Daniel Marcu Susan Dumais and Salim
Roukos, editors, HLT-NAACL 2004: Main Proceed-
ings, pages 145–152, Boston, Massachusetts, USA,
May 2 - May 7. Association for Computational Lin-
guistics.

J. Platt. 2000. Probabilistic outputs for support vector
machines and comparisons to regularized likelihood
methods. In Advances in Large Margin Classifiers.

James Pustejovsky, José Castaño, Robert Ingria, Roser
Saurı́, Robert Gaizauskas, Andrea Setzer, and Graham
Katz. 2003. TimeML: Robust specification of event
and temporal expressions in text. In Fifth Interna-
tional Workshop on Computational Semantics (IWCS-
5), pages 1–11.

Jannik Strötgen and Michael Gertz. 2013. Multilingual
and Cross-domain Temporal Tagging. Language Re-
sources and Evaluation, 47(2):269–298.

Russell Swan and James Allan. 2000. TimeMine
(Demonstration Session): Visualizing Automatically
Constructed Timelines. In Proceedings of the 23rd
Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SI-
GIR ’00, pages 393–, New York, NY, USA. ACM.

Giang Tran, Eelco Herder, and Katja Markert. 2015.
Joint Graphical Models for Date Selection in Timeline
Summarization. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 1598–1607, Beijing, China, July. Association
for Computational Linguistics.

Naushad UzZaman, Hector Llorens, Leon Derczynski,
James Allen, Marc Verhagen, and James Pustejovsky.
2013. SemEval-2013 Task 1: TempEval-3: Evaluating
Time Expressions, Events, and Temporal Relations.

2348

In Second Joint Conference on Lexical and Compu-
tational Semantics (*SEM), Volume 2: Proceedings of
the Seventh International Workshop on Semantic Eval-
uation (SemEval 2013), pages 1–9, Atlanta, Georgia,
USA, June. Association for Computational Linguis-
tics.

Marc Verhagen, Robert Gaizauskas, Frank Schilder,
Mark Hepple, Graham Katz, and James Pustejovsky.
2007. SemEval-2007 Task 15: TempEval Temporal
Relation Identification. In Proceedings of the 4th In-
ternational Workshop on Semantic Evaluations, Se-
mEval ’07, pages 75–80, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Marc Verhagen, Roser Saurı́, Tommaso Caselli, and
James Pustejovsky. 2010. SemEval-2010 Task 13:
TempEval-2. In Proceedings of the 5th Interna-
tional Workshop on Semantic Evaluation, SemEval
’10, pages 57–62, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Rui Yan, Xiaojun Wan, Jahna Otterbacher, Liang Kong,
Xiaoming Li, and Yan Zhang. 2011. Evolutionary
Timeline Summarization: A Balanced Optimization
Framework via Iterative Substitution. In Proceedings
of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’11, pages 745–754, New York, NY, USA.
ACM.

2349

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2350–2354,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Encoding Temporal Information for Time-Aware Link Prediction

Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Sujian Li, Baobao Chang and Zhifang Sui
Key Laboratory of Computational Linguistics, Ministry of Education

School of Electronics Engineering and Computer Science, Peking University
Collaborative Innovation Center for Language Ability, Xuzhou 221009 China

{tingsong,tianyu0421,taoge,shalei,lisujian,chbb,szf}@pku.edu.cn

Abstract

Most existing knowledge base (KB) embed-
ding methods solely learn from time-unknown
fact triples but neglect the temporal informa-
tion in the knowledge base. In this paper,
we propose a novel time-aware KB embed-
ding approach taking advantage of the hap-
pening time of facts. Specifically, we use tem-
poral order constraints to model transforma-
tion between time-sensitive relations and en-
force the embeddings to be temporally consis-
tent and more accurate. We empirically eval-
uate our approach in two tasks of link predic-
tion and triple classification. Experimental re-
sults show that our method outperforms other
baselines on the two tasks consistently.

1 Introduction

Knowledge bases (KBs) such as Freebase (Bollacker
et al., 2008) and YAGO (Fabian et al., 2007) play a
pivotal role in many NLP related applications. KB-
s consist of facts in the form of triplets (ei, r, ej),
indicating that head entity ei and tail entity ej is
linked by relation r. Although KBs are large, they
are far from complete. Link prediction is to predict
relations between entities based on existing triplet-
s, which can alleviate the incompleteness of cur-
rent KBs. Recently a promising approach for this
task called knowledge base embedding (Nickel et
al., 2011; Bordes et al., 2011; Socher et al., 2013)
aims to embed entities and relations into a continu-
ous vector space while preserving certain informa-
tion of the KB graph. TransE (Bordes et al., 2013) is
a typical model considering relation vector as trans-

lating operations between head and tail vector, i.e.,
ei + r ≈ ej when (ei, r, ej) holds.

Most existing KB embedding methods solely
learn from time-unknown facts but ignore the use-
ful temporal information in the KB. In fact, there
are many temporal facts (or events) in the KB, e.g.,
(Obama, wasBornIn, Hawaii) happened at August
4, 1961. (Obama, presidentOf, USA) is true since
2009. Current KBs such as YAGO and Freebase
store such temporal information either directly or
indirectly. The happening time of time-sensitive
facts may indicate special temporal order of fact-
s and time-sensitive relations. For example, (Ein-
stein, wasBornIn, Ulm) happened in 1879, (Einstein,
wonPrize, Nobel Prize) happened in 1922, (Einstein,
diedIn, Princeton) occurred in 1955. We can infer
the temporal order of time-sensitive relations from
all such kinds of facts: wasBornIn → wonPrize →
diedIn. Traditional KB embedding models such as
TransE often confuse relations such as wasBornIn
and diedIn when predicting (person,?,location) be-
cause TransE learns only from time-unknown facts
and cannot distinguish relations with similar seman-
tic meaning. To make more accurate predictions, it
is non-trivial for existing KB embedding methods to
incorporate temporal order information.

This paper mainly focuses on incorporating the
temporal order information and proposes a time-
aware link prediction model. A new temporal di-
mension is added to fact triples, denoted as a quadru-
ple: (ei, r, ej , tr), indicating the fact happened at
time tr1. To make the embedding space compati-

1tr is the absolute beginning time when the fact is true, e.g.,
”1961-08-04” for (Obama, wasBornIn, Hawaii).

2350

ble with the observed triple in the fact dimension,
relation vectors behave as translations between enti-
ty vectors similarly as TransE models. To incorpo-
rate temporal order information between pair-wise
temporal facts, we assume that prior time-sensitive
relation vector can evolve into a subsequent time-
sensitive relation vector through a temporal tran-
sition. For example, we have two temporal fact-
s sharing the same head entity: (ei, ri, ej , t1) and
(ei, rj , ek, t2) and the temporal order constraint t1<
t2, i.e., ri happens before rj , then we propose the
assumption that prior relation ri after temporal tran-
sition should lie close to subsequent relation rj , i.e.,
riM ≈ rj , here matrix M captures the temporal
order information between relations. In this way,
both semantic and temporal information are embed-
ded into a continuous vector space during learning.
To the best of our knowledge, we are the first to con-
sider such temporal information for KB embedding.

We evaluate our approach on public available
datasets and our method outperforms state-of-the-art
methods in the time-aware link prediction and triple
classification tasks.

2 Time-Aware KB Embedding

Traditional KB embedding methods encode only ob-
served fact triples but neglect temporal constraints
between time-sensitive entities and facts. To deal
with this limitation, we introduce Time-Aware KB
Embedding which constrains the task by incorporat-
ing temporal constraints.

To consider the happening time of facts, we for-
mulate a temporal order constraint as an optimiza-
tion problem based on a manifold regularization ter-
m. Specially, temporal order of relations in time-
sensitive facts should affect KB representation. If ri
and rj share the same head entity ei, and ri occurs
before rj , then prior relation’s vector ri could evolve
into subsequent relation’s vector rj in the temporal
dimension.

To encode the transition between time-sensitive
relations, we define a transition matrix M ∈ Rn×n

between pair-wise temporal ordering relation pair
(ri, rj). Our optimization requires that positive tem-
poral ordering relation pairs should have lower s-
cores (energies) than negative pairs, so we define a

temporal order score function as

g(ri, rj) = ‖riM− rj‖1, (1)

which is expected to be a low score when the relation
pair is in chronological order, and high otherwise.

To make the embedding space compatible with
the observed triples, we make use of the triple set
∆ and follow the same strategy adopted in previous
methods such as TransE.

f(ei, r, ej) = ‖ei + r− ej‖1. (2)

For each candidate triple, it requires positive triples
to have lower scores than negative triples.

The optimization is to minimize the joint score
function,

L=
∑

x+∈∆

[∑

x−∈∆′

[γ1 + f(x+)− f(x−)]+

+λ
∑

y+∈Ωei
,y−∈Ω′ei

[γ2 + g(y+)− g(y−)]+
] (3)

where x+ = (ei, ri, ej) ∈ ∆ is the positive triple
(quad), x−=(e′i, ri, e

′
j)∈∆′ is corresponding the

negative triple. y+ = (ri, rj)∈Ωei is the positive
relation ordering pair with respect to (ei, ri, ej , tx).
It’s defined as

Ωei = {(ri, rj)|(ei, ri, ej , tx)∈∆τ ,

(ei, rj , ek, ty)∈∆τ , tx< ty},
(4)

where ri and rj share the same head entity ei, and
y− = (rj , ri) ∈ Ω′ei are the corresponding negative
relation order pairs by inverse. In experiments, we
enforce constrains as ‖ei‖2 ≤ 1, ‖ri‖2 ≤ 1, ‖rj‖ ≤
1 and ‖riM‖2 ≤ 1.

The first term in Equation (3) enforces the resul-
tant embedding space compatible with all the ob-
served triples, and the second term further requires
the space to be temporally consistent and more accu-
rate. Hyperparameter λ makes a trade-off between
the two cases. Stochastic gradient descent (in mini-
batch mode) is adopted to solve the minimization
problem.

3 Experiments

We adopt the same evaluation metrics for time-
aware KB embedding in two tasks: link prediction
(Bordes et al., 2013) and triple classification (Socher
et al., 2013).

2351

Dataset #Rel #Ent #Train/#Valid/#Test #Trip. #Quad
YG15k 10 9513 13345/1320/1249 15914 15914
YG36k 10 9513 29757/3252/3058 36067 15914

Table 1: Statistics of data sets.

3.1 Datasets

We create two temporal datasets from YAGO2 (Hof-
fart et al., 2013), consisting of time-sensitive facts.
In YAGO2, MetaFacts contains all happening time
for facts. DateFacts contains all creation time for
entities. First, to make a pure time-sensitive dataset
where all facts have time annotations, we selected
the subset of entities that have at least 2 mentions in
MetaFacts and DateFacts. This resulted in 15,914
triples (quadruples) which were randomly split with
the ratio shown in Table 1. This dataset is denoted
YG15k. Second, to make a mixed dataset, we created
YG36k where 50% facts have time annotations and
50% do not. We will release the data upon request.

3.2 Link Prediction

Link prediction is to complete the triple (h, r, t)
when h, r or t is missing.

3.2.1 Entity Prediction
Evaluation protocol. For each test triple with

missing head or tail entity, various methods are used
to compute the scores for all candidate entities and
rank them in descending order. We use two metric-
s for our evaluation as in (Bordes et al., 2013): the
mean of correct entity ranks (Mean Rank) and the
proportion of valid entities ranked in top-10 (Hit-
s@10). As mentioned in (Bordes et al., 2013), the
metrics are desirable but flawed when a corrupted
triple exists in the KB. As a countermeasure, we fil-
ter out all these valid triples in the KB before rank-
ing. We name the first evaluation set as Raw and the
second as Filter.
Baseline methods. For comparison, we select trans-
lating methods such as TransE (Bordes et al., 2013),
TransH (Wang et al., 2014b) and TransR (Lin et al.,
2015b) as our baselines. We then use time-aware
embedding based on these methods to obtain the cor-
responding time-aware embedding models. A model
with time-aware embedding is denoted as ”tTransE”
for example.
Implementation details. For all methods, we cre-
ate 100 mini-batches on each data set. The di-

Mean Rank Hits@1 (%)
Metric Raw Filter Raw Filter
TransE 1.53 1.48 69.4 73.0

tTransE 1.42 1.35 71.1 75.7
TransH 1.51 1.37 70.5 72.2

tTransH 1.38 1.30 74.6 76.9
TransR 1.40 1.28 71.1 74.3

tTransR 1.27 1.12 74.5 78.9

Table 3: Evaluation results on relation prediction.

mension of the embedding n is set in the range of
{20,50,100}, the margin γ1 and γ2 are set in the
range {1,2,4,10}. The learning rate is set in the
range {0.1, 0.01, 0.001}. The regularization hy-
perparameter λ is tuned in {10−1,10−2,10−3,10−4}.
The best configuration is determined according to
the mean rank in validation set. The optimal config-
urations are n=100,γ1=γ2=4,λ=10−2, learning rate
is 0.001 and taking `1−norm.
Results. Table 2 reports the results on the test set.
From the results, we can see that time-aware em-
bedding methods outperform all the baselines on al-
l the data sets and with all the metrics. The im-
provements are usually quite significant. The Mean
Rank drops by about 75%, and Hits@10 rises about
19% to 30%. This demonstrates the superiority and
generality of our method. When dealing with s-
parse data YG15k, all the temporal information is u-
tilized to model temporal associations and make the
embeddings more accurate, so it obtains better im-
provement than mixing the time-unknown triples in
YG36k.

3.2.2 Relation Prediction
Relation prediction aims to predict relations giv-

en two entities. Evaluation results are shown
in Table 3 on only YG15K due to limited s-
pace, where we report Hits@1 instead of Hit-
s@10. Example prediction results for TransE
and tTransE are compared in Table 4. For ex-
ample, when testing (Billy Hughes,?,London,1862),
it’s easy for TransE to mix relations wasBornIn
and diedIn because they act similarly for a per-
son and a place. But known that (Billy Hughes,
isAffiliatedTo, National Labor Party) happened in
1916, and tTransE have learnt temporal order that
wasBornIn→isAffiliatedTo→diedIn, so the regular-
ization term |rbornT − raffiliated| is smaller than
|rdiedT− raffiliated|, so correct answer wasBornIn
ranks higher than diedIn.

2352

Dataset YG15k YG36k

Metric MeanRank Hits@10(%) MeanRank Hits@10(%)
Raw Filter Raw Filter Raw Filter Raw Filter

TransE 990 971 26.6 29.5 179 163 65.7 75.6
tTransE 235 233 35.4 36.1 60 55 76.1 82.8
TransH 986 966 25.7 28.0 174 158 65.3 77.8

tTransH 232 230 36.1 37.2 61 54 76.6 82.9
TransR 976 955 29.5 30.2 175 153 68.3 80.1

tTransR 228 221 37.3 38.4 55 46 79.5 84.2

Table 2: Evaluation results on link prediction.

Testing quad TransE predictions tTransE predictions
(Billy Hughes,?,London,1862) diedIn,wasBornIn wasBornIn,diedIn
(John Schoenherr,?,Caldecott Medal,1988) owns,hasWonPrize hasWonPrize,owns
(John G. Thompson,?,University of Cambridge,1961) graduatedFrom,worksAt worksAt,graduatedFrom
(Tommy Douglas,?,New Democratic Party,1961) isMarriedTo,isAffiliatedTo isAffiliatedTo,worksAt

Table 4: Example results of relation prediction in descending order. Correct predictions are in bold.

3.3 Triple Classification

Triple classification aims to judge whether an un-
seen triple is correct or not.
Evaluation protocol. We follow the same evalua-
tion protocol used in Socher et al. (2013). To create
labeled data for classification, for each triple in the
test and validation sets, we construct a correspond-
ing negative triple by randomly corrupting the enti-
ties. To corrupt a position (head or tail), only entities
that have appeared in that position are allowed. Dur-
ing triple classification, a triple is predicted as posi-
tive if the score is below a relation-specific threshold
δr; otherwise as negative. We report averaged accu-
racy on the test sets.
Implementation details. We use the same hyperpa-
rameter settings as in the link prediction task. The
relation-specific threshold δr is determined by max-
imizing averaged accuracy on the validation sets.
Results. Table 5 reports the results on the test set-
s. The results indicate that time-aware embedding
outperforms all the baselines consistently. Temporal
order information may help to distinguish positive
and negative triples as different head entities may
have different temporally associated relations. If the
temporal order is the same with most facts, the reg-
ularization term helps it get lower energies and vice
versa.

4 Related Work

Many models have been proposed for KB embed-
ding (Nickel et al., 2011; Bordes et al., 2013; Socher
et al., 2013). External information is employed to
improve KB embedding such as text (Riedel et al.,

Datasets YG15K YG36K
TransE 63.9 71.9
tTransE 75.0 82.7
TransH 63.4 72.1
tTransH 75.1 82.3
TransR 64.5 74.9
tTransR 78.5 83.9

Table 5: Evaluation results on triple classification (%).

2013; Wang et al., 2014a; Zhao et al., 2015), enti-
ty type and relationship domain (Guo et al., 2015;
Chang et al., 2014), and relation path (Lin et al.,
2015a; Gu et al., 2015). However, these methods
solely rely on triple facts but neglect temporal or-
der constraints between facts. Temporal informa-
tion such as relation ordering in text has been ex-
plored (Talukdar et al., 2012; Chambers et al., 2014;
Bethard, 2013; Cassidy et al., 2014; Chambers et
al., 2007; Chambers and Jurafsky, 2008). This pa-
per proposes a time-aware embedding approach that
employs temporal order constraints to improve KB
embedding.

5 Conclusion and Future Work

In this paper, we propose a general time-aware KB
embedding, which incorporates creation time of en-
tities and imposes temporal order constraints on the
geometric structure of the embedding space and en-
force it to be temporally consistent and accurate. As
future work: (1) We will incorporate the valid time
of facts. (2) Some time-sensitive facts lack temporal
information in YAGO2, we will mine such temporal
information from texts.

2353

Acknowledgments

This research is supported by National Key Basic
Research Program of China (No.2014CB340504)
and National Natural Science Foundation of China
(No.61375074,61273318). The contact author for
this paper is Baobao Chang and Zhifang Sui.

References
Steven Bethard. 2013. Cleartk-timeml: A minimalist ap-

proach to tempeval 2013. In Second Joint Conference
on Lexical and Computational Semantics (*SEM), Vol-
ume 2: Proceedings of the Seventh International Work-
shop on Semantic Evaluation (SemEval 2013), pages
10–14. Association for Computational Linguistics.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim S-
turge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of da-
ta, pages 1247–1250. ACM.

Antoine Bordes, Jason Weston, Ronan Collobert, and
Yoshua Bengio. 2011. Learning structured embed-
dings of knowledge bases. In Conference on Artificial
Intelligence, number EPFL-CONF-192344.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran,
Jason Weston, and Oksana Yakhnenko. 2013. Trans-
lating embeddings for modeling multi-relational data.
In Advances in Neural Information Processing System-
s, pages 2787–2795.

Taylor Cassidy, Bill McDowell, Nathanael Chambers,
and Steven Bethard. 2014. An annotation framework
for dense event ordering. In ACL.

Nathanael Chambers and Daniel Jurafsky. 2008. Un-
supervised learning of narrative event chains. ACL,
94305:789–797.

Nathanael Chambers, Shan Wang, and Dan Jurafsky.
2007. Classifying temporal relations between events.
In Proceedings of the 45th Annual Meeting of the A-
CL on Interactive Poster and Demonstration Session-
s, pages 173–176. Association for Computational Lin-
guistics.

Nathanael Chambers, Taylor Cassidy, Bill McDowell,
and Steven Bethard. 2014. Dense event ordering with
a multi-pass architecture. Transactions of the Associ-
ation for Computational Linguistics, 2:273–284.

Kai-Wei Chang, Wen-tau Yih, Bishan Yang, and Christo-
pher Meek. 2014. Typed tensor decomposition of
knowledge bases for relation extraction. In EMNLP,
pages 1568–1579.

MS Fabian, K Gjergji, and W Gerhard. 2007. Ya-
go: A core of semantic knowledge unifying wordnet

and wikipedia. In 16th International World Wide Web
Conference, WWW, pages 697–706.

Kelvin Gu, John Miller, and Percy Liang. 2015. Travers-
ing knowledge graphs in vector space. arXiv preprint
arXiv:1506.01094.

Shu Guo, Quan Wang, Bin Wang, Lihong Wang, and
Li Guo. 2015. Semantically smooth knowledge graph
embedding. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing, pages 84–94.

Johannes Hoffart, Fabian M Suchanek, Klaus Berberich,
and Gerhard Weikum. 2013. Yago2: A spatially and
temporally enhanced knowledge base from wikipedia.
Artificial Intelligence, 194:28–61.

Yankai Lin, Zhiyuan Liu, and Maosong Sun. 2015a.
Modeling relation paths for representation learning of
knowledge bases. arXiv preprint arXiv:1506.00379.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015b. Learning entity and relation em-
beddings for knowledge graph completion.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Proceedings of
the 28th international conference on machine learning
(ICML-11), pages 809–816.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M Marlin. 2013. Relation extraction with
matrix factorization and universal schemas.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In
Advances in Neural Information Processing Systems,
pages 926–934.

Partha Pratim Talukdar, Derry Wijaya, and Tom Mitchel-
l. 2012. Acquiring temporal constraints between rela-
tions. In CIKM.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014a. Knowledge graph and text jointly em-
bedding. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP)., pages 1591–1601.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014b. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence,
pages 1112–1119.

Yu Zhao, Zhiyuan Liu, and Maosong Sun. 2015. Rep-
resentation learning for measuring entity relatedness
with rich information. In Proceedings of the 24th
International Conference on Artificial Intelligence,
pages 1412–1418. AAAI Press.

2354

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2355–2365,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Improving Information Extraction by Acquiring External Evidence with
Reinforcement Learning

Karthik Narasimhan
CSAIL, MIT

karthikn@mit.edu

Adam Yala
CSAIL, MIT

adamyala@mit.edu

Regina Barzilay
CSAIL, MIT

regina@csail.mit.edu

Abstract

Most successful information extraction sys-
tems operate with access to a large collec-
tion of documents. In this work, we explore
the task of acquiring and incorporating exter-
nal evidence to improve extraction accuracy
in domains where the amount of training data
is scarce. This process entails issuing search
queries, extraction from new sources and rec-
onciliation of extracted values, which are re-
peated until sufficient evidence is collected.
We approach the problem using a reinforce-
ment learning framework where our model
learns to select optimal actions based on con-
textual information. We employ a deep Q-
network, trained to optimize a reward func-
tion that reflects extraction accuracy while pe-
nalizing extra effort. Our experiments on
two databases – of shooting incidents, and
food adulteration cases – demonstrate that our
system significantly outperforms traditional
extractors and a competitive meta-classifier
baseline.1

1 Introduction

In many realistic domains, information extraction
(IE) systems require exceedingly large amounts of
annotated data to deliver high performance. In-
creases in training data size enable models to han-
dle robustly the multitude of linguistic expressions
that convey the same semantic relation. Consider,
for instance, an IE system that aims to identify en-
tities such as the perpetrator and the number of vic-

1Code is available at http://people.csail.mit.
edu/karthikn/rl-ie/

ShooterName: Scott Westerhuis
NumKilled: 6

A couple and four children found dead in their
burning South Dakota home had been shot in an
apparent murder-suicide, officials said Monday.
...
Scott Westerhuis’s cause of death was "shotgun
wound with manner of death as suspected sui-
cide," it added in a statement.

Figure 1: Sample news article on a shooting case. Note
how the article contains both the name of the shooter and
the number of people killed but both pieces of informa-
tion require complex extraction schemes.

tims in a shooting incident (Figure 1). The docu-
ment does not explicitly mention the shooter (Scott
Westerhuis), but instead refers to him as a suicide
victim. Extraction of the number of fatally shot vic-
tims is similarly difficult, as the system needs to in-
fer that "A couple and four children" means six peo-
ple. Even a large annotated training set may not pro-
vide sufficient coverage to capture such challenging
cases.

In this paper, we explore an alternative approach
for boosting extraction accuracy, when a large train-
ing corpus is not available. Instead, the proposed
method utilizes external information sources to re-
solve ambiguities inherent in text interpretation.
Specifically, our strategy is to find other documents
that contain the information sought, expressed in a
form that a basic extractor can "understand". For
instance, Figure 2 shows two other articles describ-
ing the same event, wherein the entities of interest

2355

The six members of a South Dakota family found
dead in the ruins of their burned home were fa-
tally shot, with one death believed to be a suicide,
authorities said Monday.

AG Jackley says all evidence supports the story
he told based on preliminary findings back in
September: Scott Westerhuis shot his wife and
children with a shotgun, lit his house on fire with
an accelerant, then shot himself with his shotgun.

Figure 2: Two other articles on the same shooting case.
The first article clearly mentions that six people were
killed. The second one portrays the shooter in an easily
extractable form.

– the number of people killed and the name of the
shooter – are expressed explicitly. Processing such
stereotypical phrasing is easier for most extraction
systems, compared to analyzing the original source
document. This approach is particularly suitable for
extracting information from news where a typical
event is covered by multiple news outlets.

The challenges, however, lie in (1) performing
event coreference (i.e. retrieving suitable articles de-
scribing the same incident) and (2) reconciling the
entities extracted from these different documents.
Querying the web (using the source article’s title for
instance) often retrieves documents about other inci-
dents with a tangential relation to the original story.
For example, the query “4 adults, 1 teenager shot in
west Baltimore 3 april 2015” yields only two rele-
vant articles among the top twenty results on Bing
search, while returning other shooting events at the
same location. Moreover, the values extracted from
these different sources require resolution since some
of them might be inaccurate.

One solution to this problem would be to perform
a single search to retrieve articles on the same event
and then reconcile values extracted from them (say,
using a meta-classifier). However, if the confidence
of the new set of values is still low, we might wish
to perform further queries. Thus, the problem is in-
herently sequential, requiring alternating phases of
querying to retrieve articles and integrating the ex-
tracted values.

We address these challenges using a Reinforce-
ment Learning (RL) approach that combines query
formulation, extraction from new sources, and value

reconciliation. To effectively select among possible
actions, our state representation encodes informa-
tion about the current and new entity values along
with the similarity between the source article and
the newly retrieved document. The model learns
to select good actions for both article retrieval and
value reconciliation in order to optimize the reward
function, which reflects extraction accuracy and in-
cludes penalties for extra moves. We train the RL
agent using a Deep Q-Network (DQN) (Mnih et al.,
2015) that is used to predict both querying and rec-
onciliation choices simultaneously. While we use a
maximum entropy model as the base extractor, this
framework can be inherently applied to other extrac-
tion algorithms.

We evaluate our system on two datasets where
available training data is inherently limited. The
first dataset is constructed from a publicly available
database of mass shootings in the United States. The
database is populated by volunteers and includes
the source articles. The second dataset is derived
from a FoodShield database of illegal food adulter-
ations. Our experiments demonstrate that the final
RL model outperforms basic extractors as well as
a meta-classifier baseline in both domains. For in-
stance, in the Shootings domain, the average accu-
racy improvement over the meta-classifier is 7%.

2 Related Work

Open Information Extraction Existing work in
open IE has used external sources from the
web to improve extraction accuracy and cover-
age (Agichtein and Gravano, 2000; Etzioni et al.,
2011; Fader et al., 2011; Wu and Weld, 2010).
Such research has focused on identifying multiple
instances of the same relation, independent of the
context in which this information appears. In con-
trast, our goal is to extract information from addi-
tional sources about a specific event described in a
source article. Therefore, the novel challenge of our
task resides in performing event coreference (Lee et
al., 2012; Bejan and Harabagiu, 2014) (i.e identify-
ing other sources describing the same event) while
simultaneously reconciling extracted information.
Moreover, relations typically considered by open IE
systems have significantly higher coverage in on-
line documents than a specific incident described in

2356

a few news sources. Hence, we require a different
mechanism for finding and reconciling online infor-
mation.

Entity linking, multi-document extraction and
event coreference Our work also relates to the
task of multi-document information extraction,
where the goal is to connect different mentions of
the same entity across input documents (Mann and
Yarowsky, 2005; Han et al., 2011; Durrett and Klein,
2014). Since this setup already includes multiple in-
put documents, the model is not required to look
for additional sources or decide on their relevance.
Also, while the set of input documents overlap in
terms of entities mentioned, they do not necessarily
describe the same event. Given these differences in
setup, the challenges and opportunities of the two
tasks are distinct.

Knowledge Base Completion and Online Search
Recent work has explored several techniques to per-
form Knowledge Base Completion (KBC) such as
vector space models and graph traversal (Socher et
al., 2013; Yang et al., 2014; Gardner et al., 2014;
Neelakantan et al., 2015; Guu et al., 2015). Though
our work also aims at increasing extraction recall
for a database, traditional KBC approaches do not
require searching for additional sources of informa-
tion. West et al. (2014) explore query reformula-
tion in the context of KBC. Using existing search
logs, they learn how to formulate effective queries
for different types of database entries. Once query
learning is completed, the model employs several se-
lected queries, and then aggregates the results based
on retrieval ranking. This approach is complemen-
tary to the proposed method, and can be combined
with our approach if search logs are available.

Kanani and McCallum (2012) also combine
search and information extraction. In their task of
faculty directory completion, the system has to find
documents from which to extract desired informa-
tion. They employ reinforcement learning to address
computational bottlenecks, by minimizing the num-
ber of queries, document downloads and extraction
action. The extraction accuracy is not part of this
optimization, since the baseline IE system achieves
high performance on the relations of interest. Hence,
given different design goals, the two RL formula-
tions are very different. Our approach is also close

in spirit to the AskMSR system (Banko et al., 2002)
which aims at using information redundancy on the
web to better answer questions. Though our goal is
similar, we learn to query and consolidate the dif-
ferent sources of information instead of using pre-
defined rules. Several slot-filling methods have ex-
perimented with query formulation over web-based
corpora to populate knowledge bases (Surdeanu et
al., 2010; Ji and Grishman, 2011).

3 Framework

We model the information extraction task as a
markov decision process (MDP), where the model
learns to utilize external sources to improve upon
extractions from a source article (see Figure 3). The
MDP framework allows us to dynamically incorpo-
rate entity predictions while also providing flexibil-
ity to choose the type of articles to extract from. At
each step, the system has to reconcile extracted val-
ues from a related article (enew) with the current set
of values (ecur), and decide on the next query for
retrieving more articles.

We represent the MDP as a tuple 〈S,A, T,R〉,
where S = {s} is the space of all possible states,
A = {a = (d, q)} is the set of all actions, R(s, a) is
the reward function, and T (s′|s, a) is the transition
function. We describe these in detail below.

States The state s in our MDP consists of the ex-
tractor’s confidence in predicted entity values, the
context from which the values are extracted and the
similarity between the new document and the origi-
nal one. We represent the state as a continuous real-
valued vector (Figure 3) incorporating these pieces
of information:
1. Confidence scores of current and newly extracted

entity values.
2. One-hot encoding of matches between current

and new values.
3. Unigram/tf-idf counts2 of context words. These

are words that occur in the neighborhood of the
entity values in a document (e.g. the words
which, left, people and wounded in the phrase
“which left 5 people wounded”).

4. tf-idf similarity between the original article and
the new article.
2Counts are computed on the documents used to train the

basic extraction system.

2357

select

Reconcile

Q
extractsearch

ShooterName Scott
Westerhuis

NumKilled 4

NumWounded 2

City Platte

ShooterName Scott
Westerhuis

NumKilled 6

NumWounded 0

City Platte

query

ShooterName Scott
Westerhuis

NumKilled 6

NumWounded 2

City Platte

ShooterName Scott
Westerhuis

NumKilled 5

NumWounded 0

City S.D.

State	1 State	2

Current Values:
ShooterName→ Scott Westerhuis
NumKilled→ 4
NumWounded→ 2
City→ Platte

New Values:
ShooterName→ Scott Westerhuis
NumKilled→ 6
NumWounded→ 0
City→ Platte

State:
〈0.3, 0.2, 0.5, 0.1, ← currentConf
0.4, 0.6, 0.2, 0.4, ← newConf
1, 0, 0, 1, 0, 1, 1, 0, ← matches
0.2, 0.3, ..., 0.1, 0.5, ← contextWords
0.65〉 ← document tf-idf similarity

Figure 3: Left: Illustration of a transition in the MDP – the top box in each state shows the current entities and the
bottom one consists of the new entities extracted from a downloaded article on the same event. Right: Sample state
representation (bottom) in the MDP based on current and new values of entities (top). currentConf : confidence scores
of current entities, newConf : confidence scores of new entities, contextWords: tf-idf counts of context words.

Actions At each step, the agent is required to take
two actions - a reconciliation decision d and a query
choice q. The decision d on the newly extracted val-
ues can be one of the following types: (1) accept a
specific entity’s value (one action per entity)3, (2)
accept all entity values, (3) reject all values or (4)
stop. In cases 1-3, the agent continues to inspect
more articles, while the episode ends if a stop ac-
tion (4) is chosen. The current values and confidence
scores are simply updated with the accepted values
and the corresponding confidences.4 The choice q is
used to choose the next query from a set of automat-
ically generated alternatives (details below) in order
to retrieve the next article.

Rewards The reward function is chosen to maxi-
mize the final extraction accuracy while minimizing
the number of queries. The accuracy component is
calculated using the difference between the accuracy
of the current and the previous set of entity values:

R(s, a) =
∑

entity j

Acc(ejcur)− Acc(ejprev)

There is a negative reward per step to penalize the
agent for longer episodes.

3No entity-specific features are used for action selection.
4We also experiment with other forms of value reconcilia-

tion. See Section 5 for details.

Queries The queries are based on automatically
generated templates, created using the title of an ar-
ticle along with words5 most likely to co-occur with
each entity type in the training data. Table 1 pro-
vides some examples – for instance, the second tem-
plate contains words such as arrested and identified
which often appear around the name of the shooter.

〈title〉
〈title〉 + (police | identified | arrested | charged)
〈title〉 + (killed | shooting | injured | dead | people)

〈title〉 + (injured | wounded | victim)
〈title〉 + (city | county | area)

Table 1: Examples of different query templates for web
search for articles on mass shootings. The | symbol repre-
sents logical OR. The last 4 queries contain context words
around values for entity types ShooterName, NumKilled,
NumWounded and City, respectively. At query time,
〈title〉 is replaced by the source article’s title.

We use a search engine to query the web for arti-
cles on the same event as the source article and re-
trieve the top k links per query.6 Documents that are
more than a month older than the original article are
filtered out of the search results.

Transitions Each episode starts off with a single
source article xi from which an initial set of entity

5Stop words, numeric terms and proper nouns are filtered.
6We use k=20 in our experiments.

2358

values are extracted. The subsequent steps in the
episode involve the extra articles, downloaded using
different types of query formulations based on the
source article. A single transition in the episode con-
sists of the agent being given the state s containing
information about the current and new set of values
(extracted from a single article) using which the next
action a = (d, q) is chosen. The transition function
T (s′|s, a) incorporates the reconciliation decision d
from the agent in state s along with the values from
the next article retrieved using query q and produces
the next state s′. The episode stops whenever d is a
stop decision.

Algorithm 1 details the entire MDP framework
for the training phase. During the test phase, each
source article is handled only once in a single
episode (lines 8-23).

Algorithm 1 MDP framework for Information Extrac-
tion (Training Phase)

1: Initialize set of original articles X
2: for xi ∈ X do
3: for each query template T q do
4: Download articles with query T q(xi)
5: Queue retrieved articles in Y q

i

6: for epoch = 1,M do
7: for i = 1, |X| do //episode
8: Extract entities e0 from xi
9: ecur ← e0

10: q← 0, r← 0 //query type, reward
11: while Y q

i not empty do
12: Pop next article y from Y q

i

13: Extract entities enew from y
14: Compute tf-idf similarity Z(xi, y)
15: Compute context vector C(y)
16: Form state s using ecur, enew, Z(xi, y)

and C(y)
17: Send (s, r) to agent
18: Get decision d, query q from agent
19: if q == “end_episode” then break
20: eprev ← ecur
21: ecur ← Reconcile(ecur, enew, d)
22: r ←∑

entity j Acc(ejcur)− Acc(ejprev)

23: Send (send, r) to agent

4 Reinforcement Learning for Information
Extraction

In order to learn a good policy for an agent, we uti-
lize the paradigm of reinforcement learning (RL).

The MDP described in the previous section can
be viewed in terms of a sequence of transitions
(s, a, r, s′). The agent typically utilizes a state-
action value function Q(s, a) to determine which
action a to perform in state s. A commonly used
technique for learning an optimal value function is
Q-learning (Watkins and Dayan, 1992), in which
the agent iteratively updates Q(s, a) using the re-
wards obtained from episodes. The updates are de-
rived from the recursive Bellman equation (Sutton
and Barto, 1998) for the optimal Q:

Qi+1(s, a) = E[r + γmax
a′

Qi(s
′, a′) | s, a]

Here, r = R(s, a) is the reward and γ is a factor
discounting the value of future rewards and the ex-
pectation is taken over all transitions involving state
s and action a.

Since our problem involves a continuous
state space S, we use a deep Q-network
(DQN) (Mnih et al., 2015) as a function ap-
proximator Q(s, a) ≈ Q(s, a; θ). The DQN, in
which the Q-function is approximated using a deep
neural network, has been shown to learn better value
functions than linear approximators (Narasimhan
et al., 2015; He et al., 2015) and can capture
non-linear interactions between the different pieces
of information in our state.

We use a DQN consisting of two linear layers (20
hidden units each) followed by rectified linear units
(ReLU), along with two separate output layers.7 The
network takes the continuous state vector s as input
and predicts Q(s, d) and Q(s, q) for reconciliation
decisions d and query choices q simultaneously us-
ing the different output layers (see Supplementary
material for the model architecture).

Parameter Learning The parameters θ of the
DQN are learnt using stochastic gradient de-
scent with RMSprop (Tieleman and Hinton, 2012).
Each parameter update aims to close the gap be-
tween the Q(st, at; θ) predicted by the DQN and
the expected Q-value from the Bellman equation,
rt + γmaxaQ(st+1, a; θ). Following Mnih et al.
(2015), we make use of a (separate) target Q-
network to calculate the expected Q-value, in order

7We did not observe significant differences with additional
linear layers or the choice of non-linearity (Sigmoid/ReLU).

2359

Algorithm 2 Training Procedure for DQN agent with
ε-greedy exploration

1: Initialize experience memory D
2: Initialize parameters θ randomly
3: for episode = 1,M do
4: Initialize environment and get start state s1
5: for t = 1, N do
6: if random() < ε then
7: Select a random action at
8: else
9: Compute Q(st, a) for all actions a

10: Select at = argmax Q(st, a)

11: Execute action at and observe reward rt and
new state st+1

12: Store transition (st, at, rt, st+1) in D
13: Sample random mini batch of transitions

(sj , aj , rj , sj+1) from D
14: yj =

{
rj , if sj+1 is terminal
rj + γ maxa′ Q(sj+1, a

′; θt), else
15: Perform gradient descent step on the loss
L(θ) = (yj −Q(sj , aj ; θ))

2

16: if st+1 == send then break

to have ‘stable updates’. The target Q-network is
periodically updated with the current parameters θ.
We also make use of an experience replay memory
D to store transitions. To perform updates, we sam-
ple a batch of transitions (ŝ, â, ŝ′, r) at random from
D and minimize the loss function8:

L(θ) = Eŝ,â[(y −Q(ŝ, â; θ))2]

where y = r + γmaxa′ Q(ŝ′, a′; θt) is the target Q-
value. The learning updates are made every training
step using the following gradients:

∇θL(θ) = Eŝ,â[2(y −Q(ŝ, â; θ))∇θQ(ŝ, â; θ)]

Algorithm 2 details the DQN training procedure.

5 Experimental Setup

Data We perform experiments on two different
datasets. For the first set, we collected data from the
Gun Violence archive,9 a website tracking shootings
in the United States. The data contains a news article
on each shooting and annotations for (1) the name of
the shooter, (2) the number of people killed, (3) the
number of people wounded, and (4) the city where

8The expectation is over the transitions sampled uniformly
at random from D.

9www.shootingtracker.com/Main_Page

Number Shootings Adulteration
Train Test Dev Train Test Dev

Source articles 306 292 66 292 148 42
Downloaded articles 8201 7904 1628 7686 5333 1537

Table 2: Stats for Shootings and Adulteration datasets

the incident took place. We consider these as the
entities of interest, to be extracted from the articles.
The second dataset we use is the Foodshield EMA
database10 documenting adulteration incidents since
1980. This data contains annotations for (1) the af-
fected food product, (2) the adulterant and (3) the
location of the incident. Both datasets are classic
examples where the number of recorded incidents is
insufficient for large-scale IE systems to leverage.

For each source article in the above databases, we
download extra articles (top 20 links) using the Bing
Search API11 with different automatically generated
queries. We use only the source articles from the
train portion to learn the parameters of the base ex-
tractor. The entire train set with downloaded arti-
cles is used to train the DQN agent and the meta-
classifier baseline (described below). All parame-
ters are tuned on the dev set. For the final results,
we train the models on the combined train and dev
sets and use the entire test set (source + downloaded
articles) to evaluate. Table 2 provides data statistics.

Extraction model We use a maximum entropy
classifier as the base extraction system, since it pro-
vides flexibility to capture various local context fea-
tures and has been shown to perform well for in-
formation extraction (Chieu and Ng, 2002). The
classifier is used to tag each word in a document
as one of the entity types or not (e.g. {Shooter-
Name, NumKilled, NumWounded, City, Other} in
the Shootings domain). Then, for each tag except
Other, we choose the mode of the values to obtain
the set of entity extractions from the article.12 Fea-
tures used in the classifier are provided in the Sup-
plementary material.

The features and context window c = 4 of neigh-
boring words are tuned to maximize performance on
a dev set. We also experimented with a conditional
random field (CRF) (with the same features) for
the sequence tagging (Culotta and McCallum, 2004)

10www.foodshield.org/member/login/
11www.bing.com/toolbox/bingsearchapi
12We normalize numerical words (e.g. "one" to "1") before

taking the mode.

2360

but obtained worse empirical performance (see Sec-
tion 6). The parameters of the base extraction model
are not changed during training of the RL model.

Evaluation We evaluate the extracted entity val-
ues against the gold annotations and report the
corpus-level average accuracy on each entity type.
For entities like ShooterName, the annotations (and
the news articles) often contain multiple names (first
and last) in various combinations, so we consider re-
trieving either name as a successful extraction. For
all other entities, we look for exact matches.

Baselines We explore 4 types of baselines:
Basic extractors: We use the CRF and the Maxent

classifier mentioned previously.
Aggregation systems: We examine two systems

that perform different types of value reconciliation.
The first model (Confidence) chooses entity values
with the highest confidence score assigned by the
base extractor. The second system (Majority) takes
a majority vote over all values extracted from these
articles. Both methods filter new entity values using
a threshold τ on the cosine similarity over the tf-idf
representations of the source and new articles.

Meta-classifer: To demonstrate the importance of
modeling the problem in the RL framework, we con-
sider a meta-classifier baseline. The classifier oper-
ates over the same input state space and produces
the same set of reconciliation decisions {d} as the
DQN. For training, we use the original source arti-
cle for each event along with a related downloaded
article to compute the state. If the downloaded ar-
ticle has the correct value and the original one does
not, we label it as a positive example for that entity
class. If multiple such entity classes exist, we cre-
ate several training instances with appropriate labels,
and if none exist, we use the label corresponding to
the reject all action. For each test event, the clas-
sifier is used to provide decisions for all the down-
loaded articles and the final extraction is performed
by aggregating the value predictions using the Con-
fidence-based scheme described above.

Oracle: Finally, we also have an ORACLE score
which is computed assuming perfect reconciliation
and querying decisions on top of the Maxent base
extractor. This helps us analyze the contribution of
the RL system in isolation of the inherent limitations
of the base extractor.

RL models We perform experiments using three
variants of RL agents – (1) RL-Basic, which per-
forms only reconciliation decisions13, (2) RL-Query,
which takes only query decisions with the reconcil-
iation strategy fixed (similar to Kanani and McCal-
lum (2012)), and (3) RL-Extract, our full system in-
corporating both reconciliation and query decisions.

We train the models for 10000 steps every epoch
using the Maxent classifier as the base extractor, and
evaluate on the entire test set every epoch. The final
accuracies reported are averaged over 3 independent
runs; each run’s score is averaged over 20 epochs af-
ter 100 epochs of training. The penalty per step is set
to -0.001. For the DQN, we use the dev set to tune
all parameters. We used a replay memory D of size
500k, and a discount (γ) of 0.8. We set the learn-
ing rate to 2.5E−5. The ε in ε-greedy exploration is
annealed from 1 to 0.1 over 500k transitions. The
target-Q network is updated every 5k steps.

6 Results

Performance Table 3 demonstrates that our sys-
tem (RL-Extract) obtains a substantial gain in ac-
curacy over the basic extractors on all entity types
over both domains. For instance, RL-Extract is
11.4% more accurate than the basic Maxent extrac-
tor on City and 7.1% better on NumKilled, while
also achieving gains of more than 5% on the other
entities on the Shootings domain. The gains on
the Adulteration dataset are also significant, up to
a 11.5% increase on the Location entity.

We can also observe that simple aggregation
schemes like the Confidence and Majority base-
lines don’t handle the complexity of the task well.
RL-Extract outperforms these by 7.2% on Shoot-
ings and 5% on Adulteration averaged over all enti-
ties. Further, the importance of sequential decision-
making is established by RL-Extract performing sig-
nificantly better than the meta-classifier (7.0% on
Shootings over all entities). This is also due to the
fact that the meta-classifier aggregates over the en-
tire set of extra documents, including the long tail of
noisy, irrelevant documents. Finally, we see the ad-
vantage of enabling the RL system to select queries
as our full model RL-Extract obtains significant im-

13Articles are presented to the agent in a round-robin fashion
from the different query lists.

2361

System Shootings Adulteration
ShooterName NumKilled NumWounded City Food Adulterant Location

CRF extractor 9.5 65.4 64.5 47.9 41.2 28.3 51.7
Maxent extractor 45.2 69.7 68.6 53.7 56.0 52.7 67.8

Confidence Agg. (τ) 45.2 (0.6) 70.3 (0.6) 72.3 (0.6) 55.8 (0.6) 56.0 (0.8) 54.0 (0.8) 69.2 (0.6)
Majority Agg. (τ) 47.6 (0.6) 69.1 (0.9) 68.6 (0.9) 54.7 (0.7) 56.7 (0.5) 50.6 (0.95) 72.0 (0.4)

Meta-classifier 45.2 70.7 68.4 55.3 55.4 52.7 72.0
RL-Basic 45.2 71.2 70.1 54.0 57.0 55.1 76.1

RL-Query (conf) 39.6 66.6 69.4 44.4 39.4 35.9 66.4
RL-Extract 50.0 77.6∗ 74.6∗ 65.6∗ 59.6∗ 58.9∗ 79.3∗

ORACLE 57.1 86.4 83.3 71.8 64.8 60.8 83.9

Table 3: Accuracy of various baselines (italics), our system (DQN) and the Oracle on Shootings and Adulteration
datasets. Agg. refers to aggregation baselines. Bold indicates best system scores. ∗statistical significance of p <
0.0005 vs basic Maxent extractor using the Student-t test. Numbers in parentheses indicate the optimal threshold (τ)
for the aggregation baselines. Confidence-based reconciliation was used for RL-Query.

Entity System: Value Example

ShooterName
Basic: Stewart

A source tells Channel 2 Action News that Thomas Lee has been arrested in
Mississippi ... Sgt . Stewart Smith, with the Troup County Sheriff’s office, said.

RL-Extract: Lee Lee is accused of killing his wife, Christie; ...

NumKilled
Basic: 0 Shooting leaves 25 year old Pittsfield man dead , 4 injured

RL-Extract: 1
One man is dead after a shooting Saturday night at the intersection of Dewey
Avenue and Linden Street.

NumWounded
Basic: 0 Three people are dead and a fourth is in the hospital after a murder suicide

RL-Extract: 1 3 dead, 1 injured in possible Fla. murder-suicide

City
Basic: Englewood

A 2 year old girl and four other people were wounded in a shooting in West
Englewood Thursday night, police said

RL-Extract: Chicago
At least 14 people were shot across Chicago between noon and 10:30 p.m.
Thursday. The last shooting left five people wounded.

Table 4: Sample outputs (along with corresponding article snippets) on the Shootings domain showing correct predic-
tions from RL-Extract where the basic extractor (Maxent) fails.

0 20 40 60 80 100
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

R
e
w

a
rd

35

40

45

50

55

60

65

70

75

80

A
cc

u
ra

cy
 (

%
)

Figure 4: Evolution of average reward (solid
black) and accuracy on various entities (dashed
lines; red=ShooterName, magenta=NumKilled,
blue=NumWounded, green=City) on the test set of
the Shootings domain.

provements over RL-Basic on both domains. The
full model also outperforms RL-Query, demonstrat-
ing the importance of performing both query selec-
tion and reconciliation in a joint fashion.

Figure 4 shows the learning curve of the agent by
measuring reward on the test set after each training
epoch. The reward improves gradually and the ac-
curacy on each entity increases simultaneously. Ta-
ble 4 provides some examples where our model is
able to extract the right values when the baseline
fails. One can see that in most cases this is due to
the model making use of articles with prototypical
language or articles containing the entities in readily
extractable form.

Analysis We also analyze the importance of dif-
ferent reconciliation schemes, rewards and context-
vectors in RL-Extract on the Shootings domain (Ta-
ble 5). In addition to simple replacement (Re-

2362

Reconciliation Context Reward Accuracy Steps(RL-Extract) S K W C
Confidence tf-idf Step 47.5 71.5 70.4 60.1 8.4
Majority tf-idf Step 43.6 71.8 69.0 59.2 9.9
Replace No context Step 44.4 77.1 72.5 63.4 8.0
Replace Unigram Step 48.9 76.8 74.0 63.2 10.0
Replace tf-idf Episode 42.6 62.3 68.9 52.7 6.8
Replace tf-idf Step 50.0 77.6 74.6 65.6 9.4

Table 5: Effect of using different reconciliation schemes, context-vectors, and rewards in our RL framework (Shoot-
ings domain). The last row is the overall best scheme (deviations from this are in italics). Context refers to the
type of word counts used in the state vector to represent entity context. Rewards are either per step or per episode.
(S: ShooterName, K: NumKilled, W: NumWounded, C: City, Steps: Average number of steps per episode)

place), we also experiment with using Confidence
and Majority-based reconciliation schemes for RL-
Extract. We observe that the Replace scheme per-
forms much better than the others (2-6% on all enti-
ties) and believe this is because it provides the agent
with more flexibility in choosing the final values.

From the same table, we see that using the tf-
idf counts of context words as part of the state pro-
vides better performance than using no context or
using simple unigram counts. In terms of reward
structure, providing rewards after each step is em-
pirically found to be significantly better (>10% on
average) compared to a single delayed reward per
episode. The last column shows the average number
of steps per episode – the values range from 6.8 to
10.0 steps for the different schemes. The best sys-
tem (RL-Extract with Replace, tf-idf and step-based
rewards) uses 9.4 steps per episode.

7 Conclusions

In this paper, we explore the task of acquiring and
incorporating external evidence to improve informa-
tion extraction accuracy for domains with limited
access to training data. This process comprises is-
suing search queries, extraction from new sources
and reconciliation of extracted values, repeated until
sufficient evidence is obtained. We use a reinforce-
ment learning framework and learn optimal action
sequences to maximize extraction accuracy while
penalizing extra effort. We show that our model,
trained as a deep Q-network, outperforms traditional
extractors by 7.2% and 5% on average on two differ-
ent domains, respectively. We also demonstrate the

importance of sequential decision-making by com-
paring our model to a meta-classifier operating on
the same space, obtaining up to a 7% gain.

Acknowledgements

We thank David Alvarez, Tao Lei and Ramya Ra-
makrishnan for helpful discussions and feedback,
and the members of the MIT NLP group and the
anonymous reviewers for their insightful comments.
We also gratefully acknowledge support from a
Google faculty award.

References

Eugene Agichtein and Luis Gravano. 2000. Snowball:
Extracting relations from large plain-text collections.
In Proceedings of the fifth ACM conference on Digital
libraries, pages 85–94. ACM.

Michele Banko, Eric Brill, Susan Dumais, and Jimmy
Lin. 2002. Askmsr: Question answering using the
worldwide web. In Proceedings of 2002 AAAI Spring
Symposium on Mining Answers from Texts and Knowl-
edge Bases, pages 7–9.

Cosmin Adrian Bejan and Sanda Harabagiu. 2014. Un-
supervised event coreference resolution. Computa-
tional Linguistics, 40(2):311–347.

Hai Leong Chieu and Hwee Tou Ng. 2002. A maximum
entropy approach to information extraction from semi-
structured and free text. In Proceedings of AAAI.

Aron Culotta and Andrew McCallum. 2004. Confidence
estimation for information extraction. In Proceedings
of HLT-NAACL 2004: Short Papers, pages 109–112.
Association for Computational Linguistics.

Greg Durrett and Dan Klein. 2014. A joint model for en-
tity analysis: Coreference, typing, and linking. Trans-

2363

actions of the Association for Computational Linguis-
tics, 2:477–490.

Oren Etzioni, Anthony Fader, Janara Christensen,
Stephen Soderland, and Mausam Mausam. 2011.
Open information extraction: The second generation.
In IJCAI, volume 11, pages 3–10.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
1535–1545. Association for Computational Linguis-
tics.

Matt Gardner, Partha Talukdar, Jayant Krishnamurthy,
and Tom Mitchell. 2014. Incorporating vector space
similarity in random walk inference over knowledge
bases. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 397–406, Doha, Qatar, October. As-
sociation for Computational Linguistics.

Kelvin Guu, John Miller, and Percy Liang. 2015.
Traversing knowledge graphs in vector space. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 318–327,
Lisbon, Portugal, September. Association for Compu-
tational Linguistics.

Xianpei Han, Le Sun, and Jun Zhao. 2011. Collective
entity linking in web text: a graph-based method. In
Proceedings of the 34th international ACM SIGIR con-
ference on Research and development in Information
Retrieval, pages 765–774. ACM.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong
Li, Li Deng, and Mari Ostendorf. 2015. Deep re-
inforcement learning with an action space defined by
natural language. arXiv preprint arXiv:1511.04636.

Heng Ji and Ralph Grishman. 2011. Knowledge base
population: Successful approaches and challenges. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies - Volume 1, HLT ’11, pages 1148–
1158, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Pallika H Kanani and Andrew K McCallum. 2012. Se-
lecting actions for resource-bounded information ex-
traction using reinforcement learning. In Proceed-
ings of the fifth ACM international conference on Web
search and data mining, pages 253–262. ACM.

Heeyoung Lee, Marta Recasens, Angel Chang, Mihai
Surdeanu, and Dan Jurafsky. 2012. Joint entity and
event coreference resolution across documents. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, EMNLP-
CoNLL ’12, pages 489–500, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Gideon S Mann and David Yarowsky. 2005. Multi-field
information extraction and cross-document fusion. In
Proceedings of the 43rd annual meeting on association
for computational linguistics, pages 483–490. Associ-
ation for Computational Linguistics.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A. Rusu, Joel Veness, Marc G. Bellemare,
Alex Graves, Martin Riedmiller, Andreas K. Fidje-
land, Georg Ostrovski, Stig Petersen, Charles Beat-
tie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. 2015. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–
533, 02.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzi-
lay. 2015. Language understanding for text-based
games using deep reinforcement learning. In Proceed-
ings of the Conference on Empirical Methods in Natu-
ral Language Processing.

Arvind Neelakantan, Benjamin Roth, and Andrew Mc-
Callum. 2015. Compositional vector space models
for knowledge base completion. In Proceedings of the
53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers), pages 156–166, Beijing, China, July.
Association for Computational Linguistics.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In
Advances in Neural Information Processing Systems,
pages 926–934.

Mihai Surdeanu, David McClosky, Julie Tibshirani, John
Bauer, Angel X Chang, Valentin I Spitkovsky, and
Christopher D Manning. 2010. A simple distant su-
pervision approach for the tac-kbp slot filling task. In
Proceedings of Text Analysis Conference 2010 Work-
shop.

Richard S Sutton and Andrew G Barto. 1998. Introduc-
tion to reinforcement learning. MIT Press.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running aver-
age of its recent magnitude. COURSERA: Neural Net-
works for Machine Learning, 4.

Christopher JCH Watkins and Peter Dayan. 1992. Q-
learning. Machine learning, 8(3-4):279–292.

Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shao-
hua Sun, Rahul Gupta, and Dekang Lin. 2014.
Knowledge base completion via search-based question
answering. In Proceedings of the 23rd international
conference on World wide web, pages 515–526. ACM.

Fei Wu and Daniel S Weld. 2010. Open information ex-
traction using wikipedia. In Proceedings of the 48th

2364

Annual Meeting of the Association for Computational
Linguistics, pages 118–127. Association for Computa-
tional Linguistics.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2014. Embedding entities and relations
for learning and inference in knowledge bases. arXiv
preprint arXiv:1412.6575.

2365

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2366–2376,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Global Neural CCG Parsing with Optimality Guarantees

Kenton Lee Mike Lewis Luke Zettlemoyer
Computer Science & Engineering

University of Washington
Seattle, WA 98195

{kentonl,mlewis,lsz}@cs.washington.edu

Abstract

We introduce the first global recursive neural
parsing model with optimality guarantees dur-
ing decoding. To support global features, we
give up dynamic programs and instead search
directly in the space of all possible subtrees.
Although this space is exponentially large in
the sentence length, we show it is possible
to learn an efficient A* parser. We augment
existing parsing models, which have informa-
tive bounds on the outside score, with a global
model that has loose bounds but only needs
to model non-local phenomena. The global
model is trained with a novel objective that en-
courages the parser to search both efficiently
and accurately. The approach is applied to
CCG parsing, improving state-of-the-art accu-
racy by 0.4 F1. The parser finds the optimal
parse for 99.9% of held-out sentences, explor-
ing on average only 190 subtrees.

1 Introduction

Recursive neural models perform well for many
structured prediction problems, in part due to their
ability to learn representations that depend globally
on all parts of the output structures. However, global
models of this sort are incompatible with existing
exact inference algorithms, since they do not de-
compose over substructures in a way that allows ef-
fective dynamic programming. Existing work has
therefore used greedy inference techniques such as
beam search (Vinyals et al., 2015; Dyer et al., 2015)
or reranking (Socher et al., 2013). We introduce
the first global recursive neural parsing approach

with optimality guarantees for decoding and use it
to build a state-of-the-art CCG parser.

To enable learning of global representations, we
modify the parser to search directly in the space of
all possible parse trees with no dynamic program-
ming. Optimality guarantees come from A∗ search,
which provides a certificate of optimality if run to
completion with a heuristic that is a bound on the
future cost. Generalizing A∗ to global models is
challenging; these models also break the locality as-
sumptions used to efficiently compute existing A∗

heuristics (Klein and Manning, 2003; Lewis and
Steedman, 2014). Rather than directly replacing lo-
cal models, we show that they can simply be aug-
mented by adding a score from a global model that
is constrained to be non-positive and has a trivial
upper bound of zero. The global model, in effect,
only needs to model the remaining non-local phe-
nomena. In our experiments, we use a recent fac-
tored A∗ CCG parser (Lewis et al., 2016) for the
local model, and we train a Tree-LSTM (Tai et al.,
2015) to model global structure.

Finding a model that achieves these A∗ guar-
antees in practice is a challenging learning prob-
lem. Traditional structured prediction objectives fo-
cus on ensuring that the gold parse has the high-
est score (Collins, 2002; Huang et al., 2012). This
condition is insufficient in our case, since it does
not guarantee that the search will terminate in sub-
exponential time. We instead introduce a new ob-
jective that optimizes efficiency as well as accuracy.
Our loss function is defined over states of the A∗

search agenda, and it penalizes the model whenever
the top agenda item is not a part of the gold parse.

2366

∅

Fruit
NP

flies

S\NP
like

(S\S)/NP

flies

NP\NP
Fruit

NP/NP

flies
NP

like

(S\NP)/NP
bananas
NP

Fruit flies
?

NP

like bananas
?

S\NP

like bananas
?

S\S
Fruit flies

?
S

Fruit flies like bananas
?

S

explored

agenda

unexplored

(a) The search space in chart parsing, with one node for
each labeling of a span.

∅

Fruit
NP

flies

S\NP
like

(S\S)/NP

flies

NP\NP
Fruit

NP/NP

flies
NP

like

(S\NP)/NP
bananas
NP

Fruit flies

NP/NP NP
>

NP

Fruit flies

NP NP\NP
<

NP

like bananas

(S\NP)/NP NP
>

S\NP

like bananas

(S\S)/NP NP
>

S\S

Fruit flies

NP S\NP
<

S

Fruit flies like bananas

NP/NP NP (S\NP)/NP NP
> >

NP S\NP
<

S

Fruit flies like bananas

NP NP\NP (S\NP)/NP NP
< >

NP S\NP
<

S

Fruit flies like bananas

NP S\NP (S\S)/NP NP
< >

S S\S
<

S

(b) The search space in this work, with one node for each
partial parse.

Figure 1: Illustrations of CCG parsing as hypergraph search, showing partial views of the search space. Weighted hyperedges

from child nodes to a parent node represent rule productions scored by a parsing model. A path starting at ∅, for example the

set of bolded hyperedges, represents the derivation of a parse. During decoding, we find the highest scoring path to a complete

parse. Both figures show an ideal exploration that efficiently finds the optimal path. Figure 1a depicts the traditional search space,

and Figure 1b depicts the search space in this work. Hyperedge scores can only depend on neighboring nodes, so our model can

condition on the entire parse structure, at the price of an exponentially larger search space.

Minimizing this loss encourages the model to return
the correct parse as quickly as possible.

The combination of global representations and
optimal decoding enables our parser to achieve
state-of-the-art accuracy for Combinatory Catego-
rial Grammar (CCG) parsing. Despite being in-
tractable in the worst case, the parser in practice is
highly efficient. It finds optimal parses for 99.9% of
held out sentences while exploring just 190 subtrees
on average—allowing it to outperform beam search
in both speed and accuracy.

2 Overview

Parsing as hypergraph search Many parsing al-
gorithms can be viewed as a search problem, where
parses are specified by paths through a hypergraph.

A node y in this hypergraph is a labeled span, rep-
resenting structures within a parse tree, as shown in
Figure 1. Each hyperedge e in the hypergraph rep-
resents a rule production in a parse. The head node

of the hyperedge HEAD(e) is the parent of the rule
production, and the tail nodes of the hyperedge are
the children of the rule production. For example,
consider the hyperedge in Figure 1b whose head is
like bananas. This hyperedge represents a forward
application rule applied to its tails, like and bananas.

To define a path in the hypergraph, we first in-
clude a special start node ∅ that represents an empty
parse. ∅ has outgoing hyperedges that reach ev-
ery leaf node, representing assignments of labels to
words (supertag assignments in Figure 1). We then
define a path to be a set of hyperedges E starting at
∅ and ending at a single destination node. A path
therefore specifies the derivation of the parse con-
structed from the labeled spans at each node. For
example, in Figure 1, the set of bolded hyperedges
form a path deriving a complete parse.

Each hyperedge e is weighted by a score s(e)
from a parsing model. The score of a path E is the

2367

sum of its hyperedge scores:

g(E) =
∑

e∈E
s(e)

Viterbi decoding is equivalent to finding the highest
scoring path that forms a complete parse.

Search on parse forests Traditionally, the hyper-
graph represents a packed parse chart. In this work,
our hypergraph instead represents a forest of parses.
Figure 1 contrasts the two representations.

In the parse chart, labels on the nodes represent
local properties of a parse, such as the category of a
span in Figure 1a. As a result, multiple parses that
contain the same property include the same node in
their path, (e.g. the node spanning the phrase Fruit
flies with category NP). The number of nodes in
this hypergraph is polynomial in the sentence length,
permitting exhaustive exploration (e.g. CKY pars-
ing). However, the model scores can only depend on
local properties of a parse. We refer to these models
as locally factored models.

In contrast, nodes in the parse forest are labeled
with entire subtrees, as shown in Figure 1b. For ex-
ample, there are two nodes spanning the phrase Fruit
flies with the same category NP but different inter-
nal substructures. While the parse forest requires an
exponential number of nodes in the hypergraph, the
model scores can depend on entire subtrees.

A∗ parsing A∗ parsing has been successfully ap-
plied in locally factored models (Klein and Man-
ning, 2003; Lewis and Steedman, 2014; Lewis et
al., 2015; Lewis et al., 2016). We present a special
case of A∗ parsing that is conceptually simpler, since
the parse forest constrains each node to be reachable
via a unique path. During exploration, we maintain
the unique (and therefore highest scoring) path to a
hyperedge e, which we define as PATH(e).

Similar to the standard A∗ search algorithm, we
maintain an agenda A of hyperedges to explore and
a forest F of explored nodes that initially contains
only the start node ∅.

Each hyperedge e in the agenda is sorted by the
sum of its inside score g(PATH(e)) and an admissible
heuristic h(e). A heuristic h(e) is admissible if it
is an upper bound of the sum of hyperedge scores
leading to any complete parse reachable from e (the
Viterbi outside score). The efficiency of the search

improves when this bound is tighter.
At every step, the parser removes the top of the

agenda, emax = argmaxe∈A(g(PATH(e)) + h(e)).
emax is expanded by combining HEAD(emax) with
previously explored parses from F to form new hy-
peredges. These new hyperedges are inserted into
A, and HEAD(emax) is added it to F . We repeat
these steps until the first complete parse y∗ is ex-
plored. The bounds provided by h(e) guarantee that
the path to y∗ has the highest possible score. Fig-
ure 1b shows an example of the agenda and the ex-
plored forest at the end of perfectly efficient search,
where only the optimal path is explored.

Approach The enormous search space described
above presents a challenge for an A∗ parser, since
computing a tight and admissible heuristic is diffi-
cult when the model does not decompose locally.

Our key insight in addressing this challenge is that
existing locally factored models with an informative
A∗ heuristic can be augmented with a global score
(Section 3). By constraining the global score to be
non-positive, the A∗ heuristic from the locally fac-
tored model is still admissible.

While the heuristic from the local model offers
some estimate of the future cost, the efficiency of
the parser requires learning a well-calibrated global
score, since the heuristic becomes looser as the
global score provides stronger penalties (Section 5).

As we explore the search graph, we incrementally
construct a neural network, which computes repre-
sentations of the parses and allows backpropagation
of errors from bad search steps (Section 4).

In the following sections, we present our ap-
proach in detail, assuming an existing locally fac-
tored model slocal(e) for which we can efficiently
compute an admissible A∗ heuristic h(e).

In the experiments, we apply our model to CCG
parsing, using the locally factored model and A∗

heuristic from Lewis et al. (2016).

3 Model

Our model scores a hyperedge e by combining the
score from the local model with a global score that
conditions on the entire parse at the head node:

s(e) = slocal(e) + sglobal(e)

2368

In sglobal(e), we first compute a hidden representa-
tion encoding the parse structure of y = HEAD(e).
We use a variant of the Tree-LSTM (Tai et al., 2015)
connected to a bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) at the leaves. The combination
of linear and tree LSTMs allows the hidden repre-
sentation of partial parses to condition on both the
partial structure and the full sentence. Figure 2 de-
picts the neural network that computes the hidden
representation for a parse.

Formally, given a sentence 〈w1, w2, . . . , wn〉, we
compute hidden states ht and cell states ct in the for-
ward LSTM for 1 < t ≤ n:

it =σ(Wi[ct−1, ht−1, xt] + bi)

ot =σ(Wo[c̃t, ht−1, xt] + bo)

c̃t =tanh(Wc[ht−1, xt] + bc)

ct =it ◦ c̃t + (1− it) ◦ ct−1
ht =ot ◦ tanh(ct)

where σ is the logistic sigmoid, ◦ is the component-
wise product, and xt denotes a learned word embed-
ding for wt. We also construct a backward LSTM,
which produces the analogous hidden and cell states
starting at the end of the sentence, which we denote
as c′t and h′t respectively. The start and end latent
states, c−1, h−1, c′n+1, and h′n+1, are learned embed-
dings. This variant of the LSTM includes peephole
connections and couples the input and forget gates.

The bidirectional LSTM over the words serves
as a base case when we recursively compute a hid-
den representation for the parse y using the tree-
structured generalization of the LSTM:

iy = σ(WR
i [cl, hl, cr, hr, xy] + bRi)

fy = σ(WR
f [cl, hl, cr, hr, xy] + bRf)

oy = σ(WR
o [c̃y, hl, hr, xy] + bRo)

clr = fy ◦ cl + (1− fy) ◦ cr
c̃y = tanh(WR

c [hl, hr, xy] + bRc)

cy = iy ◦ c̃y + (1− iy) ◦ clr
hy = oy ◦ tanh(cy)

where the weights and biases are parametrized by
the rule R that produces y from its children, and xy
denotes a learned embedding for the category at the
root of y. For example, in CCG, the rule would cor-
respond to the CCG combinator, and the label would

Fruit

NP/NP

flies

NP

like

(S\NP)/NP

bananas

NP

S

NP S\NP

Figure 2: Visualization of the Tree-LSTM which computes

vector embeddings for each parse node. The leaves of the Tree-

LSTM are connected to a bidirectional LSTM over words, en-

coding lexical information within and outside of the parse.

correspond to the CCG category.
We assume that nodes are binary, unary, or leaves.

Their left and right latent states, cl, hl, cr, and hr are
defined as follows:

• In a binary node, cl and hl are the cell and hid-
den states of the left child, and cr and hr are
the cell and hidden states of the right child.
• In a unary node, cl and hl are learned embed-

dings, and cr and hr are the cell and hidden
states of the singleton child.
• In a leaf node, let w denote the index of the

corresponding word. Then cl and hl are cw and
hw from the forward LSTM, and cr and hr are
c′w and h′w from the backward LSTM.

The cell state of the recursive unit is a linear com-
bination of the intermediate cell state c̃y, the left cell
state cl, and the right cell state cr. To preserve the
normalizing property of coupled gates, we perform
coupling in a hierarchical manner: the input gate iy
decides the weights for c̃y, and the forget gate fy
shares the remaining weights between cl and cr.

Given the hidden representation hy at the root, we
score the global component as follows:

sglobal(e) = log(σ(W · hy))
This definition of the global score ensures that it is

non-positive—an important property for inference.

4 Inference

Using the hyperedge scoring model s(e) described
in Section 3, we can find the highest scoring path
that derives a complete parse tree by using the A∗

parsing algorithm described in Section 2.

2369

Fruit

NP/NP

flies
NP

Fruit flies

NP/NP NP
>

NP

Fruit flies like bananas

NP/NP NP (S\NP)/NP NP
> >

NP S\NP
<

S

sglobal(e)

+ slocal(e)

→

Fruit

NP/NP

flies
NP

Fruit flies

NP/NP NP
>

NP

Fruit flies

NP/NP NP
>

NP

Fruit flies like bananas

NP/NP NP (S\NP)/NP NP
> >

NP S\NP
<

S

sglobal(eglobal)

slocal(elocal)

Figure 3: The hyperedge on the left requires computing both

the local and global score when placed on the agenda. Splitting

the hyperedge, as shown on the right, saves expensive compu-

tation of the global score if the local score alone indicates that

the parse is not worth exploring.

Admissible A∗ heuristic Since our full model
adds non-positive global scores to the existing lo-
cal scores, path scores under the full model cannot
be greater than path scores under the local model.
Upper bounds for path scores under the local model
also hold for path scores under the full model, and
we simply reuse the A∗ heuristic from the local
model to guide the full model during parsing without
sacrificing optimality guarantees.

Incremental neural network construction The
recursive hidden representations used in sglobal(e)
can be computed in constant time during parsing.
When scoring a new hyperedge, its children must
have been previously scored. Instead of computing
the full recursion, we reuse the existing latent states
of the children and compute sglobal(e) with an in-
cremental forward pass over a single recursive unit
in the neural network. By maintain the latent states
of each parse, we incrementally build a single DAG-
structured LSTM mirroring the explored subset of
the hypergraph. This not only enables quick for-
ward passes during decoding, but also allows back-
propagation through the search space after decoding,
which is crucial for efficient learning (see Section 5).

Lazy global scoring The global score is expensive
to compute. We introduce an optimization to avoid
computing it when provably unnecessary. We split
each hyperedge e into two successive hyperedges,
elocal and eglobal, as shown in Figure 3. The score
for e, previously s(e) = slocal(e) + sglobal(e), is

also split between the two new hyperedges:

s(elocal) = slocal(elocal)

s(eglobal) = sglobal(eglobal)

Intuitively, this transformation requires A∗ to verify
that the local score is good enough before comput-
ing the global score, which requires an incremental
forward pass over a recursive unit in the neural net-
work. In the example, this involves first summing
the supertag scores of Fruit and flies and inserting
the result back into the agenda. The score for ap-
plying the forward application rule to the recursive
representations is only computed if that item appears
again at the head of the agenda. In practice, the lazy
global scoring reduces the number of recursive units
by over 91%, providing a 2.4X speed up.

5 Learning

During training (Algorithm 1), we assume access to
sentences labeled with gold parse trees ŷ and gold
derivations Ê. The gold derivation Ê is a path from
∅ to ŷ in the parse forest.

A∗ search with our global model is not guar-
anteed to terminate in sub-exponential time. This
creates challenges for learning—for example, it is
not possible in practice to use the standard struc-
tured perceptron update (Collins, 2002), because the
search procedure rarely terminates early in training.
Other common loss functions assume inexact search
(Huang et al., 2012), and do not optimize efficiency.

Instead, we optimize a new objective that is
tightly coupled with the search procedure. During
parsing, we would like hyperedges from the gold
derivation to appear at the top of the agenda A.
When this condition does not hold, A∗ is searching
inefficiently, and we refer to this as a violation of the
agenda, which we formally define as:

v(Ê,A) = max
e∈A

(g(PATH(e)) + h(e))

− max
e∈A∩Ê

(g(PATH(e)) + h(e))

where g(PATH(e)) is the score of the unique path to
e, and h(e) is the A∗ heuristic. If all violations are
zero, we find the gold parse without exploring any
incorrect partial parses—maximizing both accuracy
and efficiency. Figure 1b shows such a case—if any
other nodes were explored, they would be violations.

2370

Update LOSS(V)
Greedy V1
Max violation maxTt=1 Vt
All violations

∑T
t=1 Vt

Table 1: Loss functions optimized by the different update meth-

ods. The updates depend on the list of T non-zero violations,

V = 〈V1,V2, . . . ,VT 〉, as defined in Section 5.

In existing work on violation-based updates, com-
parisons are only made between derivations with the
same number of steps (Huang et al., 2012; Clark et
al., 2015)—whereas our definition allows subtrees
of arbitrary spans to compete with each other, be-
cause hyperedges are not explored in a fixed order.
Our violations also differ from Huang et al.’s in that
we optimize efficiency as well as accuracy.

We define loss functions over these violations,
which are minimized to encourage correct and ef-
ficient search. During training, we parse each sen-
tence until either the gold parse is found or we reach
computation limits. We record V , the list of non-
zero violations of the agenda A observed:

V = 〈v(Ê,A) | v(Ê,A) > 0〉
We can optimize several loss functions over V , as

defined in Table 1. The greedy and max-violation
updates are roughly analogous to the violation-
fixing updates proposed by Huang et al. (2012), but
adapted to exact agenda-based parsing. We also
introduce a new all-violations update, which min-
imizes the sum of all observed violations. The all-
violations update encourages correct parses to be ex-
plored early (similar to the greedy update) while be-
ing robust to parses with multiple deviations from
the gold parse (similar to the max-violation update).

The violation losses are optimized with subgra-
dient descent and backpropagation. For our experi-
ments, slocal(e) and h(e) are kept constant. Only the
parameters θ of sglobal(e) are updated. Therefore, a
subgradient of a violation v(Ê,A) can be computed
by summing subgradients of the global scores.

∂v(Ê,A)
∂θ

=
∑

e∈PATH(emax)

∂sglobal(e)

∂θ
−
∑

e∈PATH(êmax)

∂sglobal(e)

∂θ

where emax denotes the hyperedge at the top of the
agenda A and êmax denotes the hyperedge in the
gold derivation Ê that is closest to the top of A.

Algorithm 1 Violation-based learning algorithm
Definitions D is the training data containing input sentences
x and gold derivations Ê. e variables denote scored hyper-
edges. TAG(x) returns a set of scored pre-terminals for every
word. ADD(F , y) adds partial parse y to forest F . RULES(F ,
y) returns the set of scored hyperedges that can be created by
combining y with entries in F . SIZE OK(F ,A) returns whether
the sizes of the forest and agenda are within predefined limits.
1: function VIOLATIONS(Ê, x, θ)
2: V ← ∅ . Initialize list of violations V
3: F ← ∅ . Initialize forest F
4: A← ∅ . Initialize agenda A
5: for e ∈ TAG(x) do
6: PUSH(A, e)
7: while |A ∩ Ê| > 0 and SIZE OK(F ,A) do
8: if v(Ê,A) > 0 then
9: APPEND(V, v(Ê,A)) . Record violation

10: emax← EXTRACT MAX(A) . Pop agenda
11: ADD(F , HEAD(emax)) . Explore hyperedge
12: for e ∈ RULES(F , HEAD(emax), θ) do
13: PUSH(A, e) . Expand hyperedge
14: return V
15:
16: function LEARN(D)
17: for i = 1 to T do
18: for x, Ê ∈ D do
19: V ← VIOLATIONS(Ê, x, θ)
20: L← LOSS(V)
21: θ← OPTIMIZE(L, θ)

22: return θ

6 Experiments

6.1 Data

We trained our parser on Sections 02-21 of CCG-
bank (Hockenmaier and Steedman, 2007), using
Section 00 for development and Section 23 for test.
To recover a single gold derivation for each sentence
to use during training, we find the right-most branch-
ing parse that satisfies the gold dependencies.

6.2 Experimental Setup

For the local model, we use the supertag-factored
model of Lewis et al. (2016). Here, slocal(e) cor-
responds to a supertag score if a HEAD(e) is a leaf
and zero otherwise. The outside score heuristic is
computed by summing the maximum supertag score
for every word outside of each span. In the reported
results, we back off to the supertag-factored model
after the forest size exceeds 500,000, the agenda size
exceeds 2 million, or we build more than 200,000 re-
cursive units in the neural network.

2371

Model Dev F1 Test F1
C & C 83.8 85.2
C & C + RNN 86.3 87.0
Xu (2016) 87.5 87.8
Vaswani et al. (2016) 87.8 88.3
Supertag-factored 87.5 88.1
Global A∗ 88.4 88.7

Table 2: Labeled F1 for CCGbank dependencies on the CCG-

bank development and test set for our system Global A∗ and

the baselines.

Our full system is trained with all-violations up-
dates. During training, we lower the forest size
limit to 2000 to reduce training times. The model is
trained for 30 epochs using ADAM (Kingma and Ba,
2014), and we use early stopping based on develop-
ment F1. The LSTM cells and hidden states have 64
dimensions. We initialize word representations with
pre-trained 50-dimensional embeddings from Turian
et al. (2010). Embeddings for categories have 16 di-
mensions and are randomly initialized. We also ap-
ply dropout with a probability of 0.4 at the word em-
bedding layer during training. Since the structure of
the neural network is dynamically determined, we
do not use mini-batches. The neural networks are
implemented using the CNN library,1 and the CCG
parser is implemented using the EasySRL library.2

The code is available online.3

6.3 Baselines

We compare our parser to several baseline CCG
parsers: the C&C parser (Clark and Curran, 2007);
C&C + RNN (Xu et al., 2015), which is the C&C
parser with an RNN supertagger; Xu (2016), a
LSTM shift-reduce parser; Vaswani et al. (2016)
who combine a bidirectional LSTM supertagger
with a beam search parser using global features
(Clark et al., 2015); and supertag-factored (Lewis
et al., 2016), which uses deterministic A∗ decoding
and an LSTM supertagging model.

6.4 Parsing Results

Table 2 shows parsing results on the test set. Our
global features let us improve over the supertag-
factored model by 0.6 F1. Vaswani et al. (2016) also

1https://github.com/clab/cnn
2https://github.com/mikelewis0/EasySRL
3https://github.com/kentonl/neuralccg

Model Dev F1 Optimal Explored
Supertag-factored 87.5 100.0% 402.5
− dynamic program 87.5 97.1% 17119.6
Span-factored 87.9 99.9% 176.5
− dynamic program 87.8 99.5% 578.5
Global A∗ 88.4 99.8% 309.6
− lexical inputs 87.8 99.6% 538.5
− lexical context 88.1 99.4% 610.5

Table 3: Ablations of our full model (Global A∗) on the de-

velopment set. Explored refers to the size of the parse forest.

Results show the importance of global features and lexical in-

formation in context.

use global features, but our optimal decoding leads
to an improvement of 0.4 F1.

Although we observed an overall improvement in
parsing performance, the supertag accuracy was not
significantly different after applying the parser.

On the test data, the parser finds the optimal parse
for 99.9% sentences before reaching our computa-
tional limits. On average, we parse 27.1 sentences
per second,4 while exploring only 190.2 subtrees.

6.5 Model Ablations

We ablate various parts of the model to determine
how they contribute to the accuracy and efficiency of
the parser, as shown in Table 3. For each model, the
comparisons include the average number of parses
explored and the percentage of sentences for which
an optimal parse can be found without backing off.

Structure ablation We first ablate the global
score, sglobal(y), from our model, thus relying en-
tirely on the local supertag-factors that do not explic-
itly model the parse structure. This ablation allows
dynamic programming and is equivalent to the back-
off model (supertag-factored in Table 3). Surpris-
ingly, even in the exponentially larger search space,
the global model explores fewer nodes than the
supertag-factored model—showing that the global
model efficiently prune large parts of the search
space. This effect is even larger when not using dy-
namic programming in the supertag-factored model.

Global structure ablation To examine the impor-
tance of global features, we ablate the recursive hid-
den representation (span-factored in Table 3). The
model in this ablation decomposes over labels for

4We use a single 3.5GHz CPU core.

2372

U.S. small business is one

N/N (N/N)\(N/N) N (Sdcl\NP)/NP N
<

N/N NP
> >

N Sdcl\NP
NP

<
Sdcl

Figure 4: Example of an incorrect partial parse that appears

syntactically plausible in isolation. The full sentence is ‘Indeed,

for many Japanese trading companies, the favorite U.S. small
business is one whose research and development can be milked

for future Japanese use.’ The global model heavily penalizes

this garden path, thereby avoiding regions that lead to dead ends

and allowing the global model to explore fewer nodes.

spans, as in Durrett and Klein (2015). In this model,
the recursive unit uses, instead of latent states from
its children, the latent states of the backward LSTM
at the start of the span and the latent states of the for-
ward LSTM at the end of the span. Therefore, this
model encodes the lexical information available in
the full model but does not encode the parse struc-
ture beyond the local rule production. While the dy-
namic program allows this model to find the optimal
parse with fewer explorations, the lack of global fea-
tures significantly hurts its parsing accuracy.

Lexical ablation We also show lexical ablations
instead of structural ablations. We remove the bidi-
rectional LSTM at the leaves, thus delexicalizing the
global model. This ablation degrades both accuracy
and efficiency, showing that the model uses lexical
information to discriminate between parses.

To understand the importance of contextual infor-
mation, we also perform a partial lexical ablation by
using word embeddings at the leaves instead of the
bidirectional LSTM, thus propagating only lexical
information from within the span of each parse. The
degradation in F1 is about half of the degradation
from the full lexical ablation, suggesting that a sig-
nificant portion of the lexical cues comes from the
context of a parse. Figure 4 illustrates the impor-
tance of context with an incorrect partial parse that
appears syntactically plausible in isolation. These
bottom-up garden paths are typically problematic
for parsers, since their incompatibility with the re-
maining sentence is difficult to recognize until later
stages of decoding. However, our global model
learns to heavily penalize these garden paths by us-
ing the context provided by the bidirectional LSTM

Update Dev F1 Optimal Explored
Greedy 87.9 99.2% 2313.8
Max-violation 88.1 99.9% 217.3
All-violations 88.4 99.8% 309.6

Table 4: Parsing results trained with different update methods.

Our system uses all-violations updates and is the most accurate.

1 2 3

83

84

85

86

87

88

Training epoch

F1
%

All violations
Greedy

Max violation

Figure 5: Learning curves for the first 3 training epochs on the

development set when training with different updates strategies.

The all-violations update shows the fastest convergence.

and avoid paths that lead to dead ends or bad regions
of the search space.

6.6 Update Comparisons

Table 4 compares the different violation-based
learning objectives, as discussed in Section 5. Our
novel all-violation updates outperform the alterna-
tives. We attribute this improvement to the robust-
ness over poor search spaces, which the greedy up-
date lacks, and the incentive to explore good parses
early, which the max-violation update lacks. Learn-
ing curves in Figure 5 show that the all-violations
update also converges more quickly.

6.7 Decoder Comparisons

Lastly, to show that our parser is both more accurate
and efficient than other decoding methods, we de-
code our full model using best-first search, rerank-
ing, and beam search. Table 5 shows the F1 scores
with and without the backoff model, the portion of
the sentences that each decoder is able to parse, and
the time spent decoding relative to the A∗ parser.

In the best-first search comparison, we do not in-
clude the informative A∗ heuristic, and the parser
completes very few parses before reaching computa-
tional limits—showing the importance of heuristics
in large search spaces. In the reranking comparison,

2373

Decoder Dev F1 Dev F1 Relative
− backoff Time

Global A∗ 88.4 88.4 (99.8%) 1X
Best-first 87.5 2.8 (6.7%) 293.4X
10-best reranking 87.9 87.9 (99.7%) 8.5X
100-best reranking 88.2 88.0 (99.4%) 72.3X
2-best beam search 88.2 85.7 (94.0%) 2.0X
4-best beam search 88.3 88.1 (99.2%) 6.7X
8-best beam search 88.2 86.8 (98.1%) 26.3X

Table 5: Comparison of various decoders using the same model

from our full system (Global A∗). We report F1 with and with-

out the backoff model, the percentage of sentences that the de-

coder can parse, and the time spent decoding relative to A∗.

we obtain n-best lists from the backoff model and
rerank each result with the full model. In the beam
search comparison, we use the approach from Clark
et al. (2015) which greedily finds the top-n parses
for each span in a bottom-up manner. Results indi-
cate that both approximate methods are less accurate
and slower than A∗.

7 Related Work

Many structured prediction problems are based
around dynamic programs, which are incompatible
with recursive neural networks because of their real-
valued latent variables. Some recent models have
neural factors (Durrett and Klein, 2015), but these
cannot condition on global parse structure, making
them less expressive. Our search explores fewer
nodes than dynamic programs, despite an exponen-
tially larger search space, by allowing the recursive
neural network to guide the search.

Previous work on structured prediction with re-
cursive or recurrent neural models has used beam
search–e.g. in shift reduce parsing (Dyer et al.,
2015), string-to-tree transduction (Vinyals et al.,
2015), or reranking (Socher et al., 2013)–at the cost
of potentially recovering suboptimal solutions. For
our model, beam search is both less efficient and
less accurate than optimal A∗ decoding. In the
non-neural setting, Zhang et al. (2014) showed that
global features with greedy inference can improve
dependency parsing. The CCG beam search parser
of Clark et al. (2015), most related to this work, also
uses global features. By using neural representations
and exact search, we improve over their results.

A∗ parsing has been previously proposed for lo-

cally factored models (Klein and Manning, 2003;
Pauls and Klein, 2009; Auli and Lopez, 2011; Lewis
and Steedman, 2014). We generalize these methods
to enable global features. Vaswani and Sagae (2016)
apply best-first search to an unlabeled shift-reduce
parser. Their use of error states is related to our
global model that penalizes local scores. We demon-
strated that best-first search is infeasible in our set-
ting, due to the larger search space.

A close integration of learning and decoding has
been shown to be beneficial for structured predic-
tion. SEARN (Daumé III et al., 2009) and DAG-
GER (Ross et al., 2011) learn greedy policies to pre-
dict structure by sampling classification examples
over actions from single states. We similarly gen-
erate classification examples over hyperedges in the
agenda, but actions from multiple states compete
against each other. Other learning objectives that up-
date parameters based on a beam or agenda of par-
tial structures have also been proposed (Collins and
Roark, 2004; Daumé III and Marcu, 2005; Huang et
al., 2012; Andor et al., 2016; Wiseman and Rush,
2016), but the impact of search errors is unclear.

8 Conclusion

We have shown for the first time that a parsing model
with global features can be decoded with optimal-
ity guarantees. This enables the use of powerful re-
cursive neural networks for parsing without resort-
ing to approximate decoding methods. Experiments
show that this approach is effective for CCG pars-
ing, resulting in a new state-of-the-art parser. In fu-
ture work, we will apply our approach to other struc-
tured prediction tasks, where neural networks—and
greedy beam search—have become ubiquitous.

Acknowledgements

We thank Luheng He, Julian Michael, and Mark
Yatskar for valuable discussion, and the anonymous
reviewers for feedback and comments.

This work was supported by the NSF (IIS-
1252835, IIS-1562364), DARPA under the DEFT
program through the AFRL (FA8750-13-2-0019),
an Allen Distinguished Investigator Award, and a
gift from Google.

2374

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally Normal-
ized Transition-Based Neural Networks. In Proceed-
ings of the 54th Annual Meeting of the Association for
Computational Linguistics, pages 2442–2452.

Michael Auli and Adam Lopez. 2011. Efficient CCG
parsing: A* versus Adaptive Supertagging. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies-Volume 1.

Stephen Clark and James R Curran. 2007. Wide-
coverage Efficient Statistical Parsing with CCG and
Log-Linear Models. Computational Linguistics,
33(4).

Stephen Clark, Darren Foong, Luana Bulat, and Wenduan
Xu. 2015. The Java Version of the C&C Parser: Ver-
sion 0.95. Technical report, University of Cambridge
Computer Laboratory, August.

Michael Collins and Brian Roark. 2004. Incremental
Parsing with the Perceptron Algorithm. In Proceed-
ings of the 42nd Annual Meeting on Association for
Computational Linguistics, page 111. Association for
Computational Linguistics.

Michael Collins. 2002. Discriminative Training Meth-
ods for Hidden Markov Models: Theory and Experi-
ments with Perceptron Algorithms. In Proceedings of
the ACL-02 conference on Empirical methods in nat-
ural language processing-Volume 10. Association for
Computational Linguistics.

Hal Daumé III and Daniel Marcu. 2005. Learning
as search optimization: Approximate Large Margin
Methods for Structured Prediction. In Proceedings of
the 22nd international conference on Machine learn-
ing, pages 169–176. ACM.

Hal Daumé III, John Langford, and Daniel Marcu. 2009.
Search-based structured prediction. Machine learn-
ing, 75(3):297–325.

Greg Durrett and Dan Klein. 2015. Neural CRF Parsing.
In Proceedings of the Association for Computational
Linguistics.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based Dependency Parsing with Stack Long Short-
Term Memory. In Proc. ACL.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-term Memory. Neural computation, 9(8):1735–
1780.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: a Corpus of CCG derivations and Dependency
Structures Extracted from the Penn Treebank. Com-
putational Linguistics, 33(3).

Liang Huang, Suphan Fayong, and Yang Guo. 2012.
Structured Perceptron with Inexact Search. In Pro-
ceedings of the 2012 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 142–
151. Association for Computational Linguistics.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980.

Dan Klein and Christopher D Manning. 2003. A* Pars-
ing: Fast Exact Viterbi Parse Selection. In Proceed-
ings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguis-
tics on Human Language Technology-Volume 1.

Mike Lewis and Mark Steedman. 2014. A* CCG Pars-
ing with a Supertag-factored Model. In Proceedings of
the 2014 Conference on Empirical Methods in Natural
Language Processing.

Mike Lewis, Luheng He, and Luke Zettlemoyer. 2015.
Joint A* CCG Parsing and Semantic Role Labelling.
In Empirical Methods in Natural Language Process-
ing.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016.
LSTM CCG Parsing. In Proceedings of the 15th An-
nual Conference of the North American Chapter of the
Association for Computational Linguistics.

Adam Pauls and Dan Klein. 2009. K-best A* Pars-
ing. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of
the AFNLP: Volume 2-Volume 2, pages 958–966. As-
sociation for Computational Linguistics.

Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell.
2011. A Reduction of Imitation Learning and Struc-
tured Prediction to No-Regret Online Learning. In
Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence and Statistics, AISTATS
2011, Fort Lauderdale, USA, April 11-13, 2011, pages
627–635.

Richard Socher, John Bauer, Christopher D Manning, and
Andrew Y Ng. 2013. Parsing with Compositional
Vector Grammars. In Proceedings of the ACL confer-
ence.

Kai Sheng Tai, Richard Socher, and Christopher D Man-
ning. 2015. Improved Semantic Representations from
Tree-structured Long Short-term Memory Networks.
arXiv preprint arXiv:1503.00075.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: A Simple and General Method
for Semi-supervised Learning. In Proceedings of the
48th Annual Meeting of the Association for Computa-
tional Linguistics.

Ashish Vaswani and Kenji Sagae. 2016. Efficient Struc-
tured Inference for Transition-Based Parsing with

2375

Neural Networks and Error States. Transactions of the
Association for Computational Linguistics.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan
Musa. 2016. Supertagging With LSTMs. In Pro-
ceedings of the 15th Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a Foreign Language. In Advances in Neural
Information Processing Systems.

Sam Wiseman and Alexander M Rush. 2016. Sequence-
to-Sequence Learning as Beam-Search Optimization.
In Proceedings of EMNLP.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.
CCG Supertagging with a Recurrent Neural Network.
Volume 2: Short Papers, page 250.

Wenduan Xu. 2016. LSTM Shift-Reduce CCG Parsing
. In Empirical Methods in Natural Language Process-
ing.

Yuan Zhang, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2014. Greed is Good if Randomized: New
Inference for Dependency Parsing. In Proceedings of
EMNLP.

2376

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2377–2382,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Learning a Lexicon and Translation Model from Phoneme Lattices

Oliver Adams,♠♥ Graham Neubig,♣♥ Trevor Cohn,♠
Steven Bird,♠ Quoc Truong Do,♥ Satoshi Nakamura♥

♠The University of Melbourne, Australia
♣Carnegie Mellon University, Pittsburgh, PA, USA
♥Nara Institute of Science and Technology, Japan

Abstract

Language documentation begins by gather-
ing speech. Manual or automatic transcrip-
tion at the word level is typically not possi-
ble because of the absence of an orthography
or prior lexicon, and though manual phone-
mic transcription is possible, it is prohibitively
slow. On the other hand, translations of the
minority language into a major language are
more easily acquired. We propose a method
to harness such translations to improve auto-
matic phoneme recognition. The method as-
sumes no prior lexicon or translation model,
instead learning them from phoneme lattices
and translations of the speech being tran-
scribed. Experiments demonstrate phoneme
error rate improvements against two baselines
and the model’s ability to learn useful bilin-
gual lexical entries.

1 Introduction

Most of the world’s languages are dying out and
have little recorded data or linguistic documentation
(Austin and Sallabank, 2011). It is important to ad-
equately document languages while they are alive
so that they may be investigated in the future. Lan-
guage documentation traditionally involves one-on-
one elicitation of speech from native speakers in or-
der to produce lexicons and grammars that describe
the language. However, this does not scale: lin-
guists must first transcribe the speech phonemically
as most of these languages have no standardized
orthography. This is a critical bottleneck since it
takes a trained linguist about 1 hour to transcribe the
phonemes of 1 minute of speech (Do et al., 2014).

Smartphone apps for rapid collection of bilin-
gual data have been increasingly investigated (De
Vries et al., 2011; De Vries et al., 2014; Reiman,
2010; Bird et al., 2014; Blachon et al., 2016). It is
common for these apps to collect speech segments
paired with spoken translations in another language,
making spoken translations quicker to obtain than
phonemic transcriptions.

We present a method to improve automatic
phoneme transcription by harnessing such bilingual
data to learn a lexicon and translation model directly
from source phoneme lattices and their written tar-
get translations, assuming that the target side is a
major language that can be efficiently transcribed.1

A Bayesian non-parametric model expressed with a
weighted finite-state transducer (WFST) framework
represents the joint distribution of source acoustic
features, phonemes and latent source words given
the target words. Sampling of alignments is used
to learn source words and their target translations,
which are then used to improve transcription of the
source audio they were learnt from. Importantly,
the model assumes no prior lexicon or translation
model.

This method builds on work on phoneme transla-
tion modeling (Besacier et al., 2006; Stüker et al.,
2009; Stahlberg et al., 2012; Stahlberg et al., 2014;
Adams et al., 2015; Duong et al., 2016), speech
translation (Casacuberta et al., 2004; Matusov et
al., 2005), computer-aided translation, (Brown et al.,
1994; Vidal et al., 2006; Khadivi and Ney, 2008;
Reddy and Rose, 2010; Pelemans et al., 2015),
translation modeling from automatically transcribed

1Code is available at https://github.com/oadams/latticetm.

2377

speech (Paulik and Waibel, 2013), word segmenta-
tion and translation modeling (Chang et al., 2008;
Dyer, 2009; Nguyen et al., 2010; Chen and Xu,
2015), Bayesian word alignment (Mermer et al.,
2013; Zezhong et al., 2013) and language model
learning from lattices (Neubig et al., 2012). While
we previously explored learning a translation model
from word lattices (Adams et al., 2016), in this paper
we extend the model to perform unsupervised word
segmentation over phoneme lattices in order to im-
prove phoneme recognition.

Experiments demonstrate that our method signifi-
cantly reduces the phoneme error rate (PER) of tran-
scriptions compared with a baseline recogniser and
a similar model that harnesses only monolingual in-
formation, by up to 17% and 5% respectively. We
also find that the model learns meaningful bilingual
lexical items.

2 Model description

Our model extends the standard automatic speech
recognition (ASR) problem by seeking the best
phoneme transcription φ̂ of an utterance in a joint
probability distribution that incorporates acoustic
features x, phonemes φ, latent source words f and
observed target transcriptions e:

φ̂ = argmax
φ,f

P (x|φ)P (φ|f)P (f |e) , (1)

assuming a Markov chain of conditional indepen-
dence relationships (bold symbols denote utter-
ances as opposed to tokens). Deviating from stan-
dard ASR, we replace language model probabilities
with those of a translation model, and search for
phonemes instead of words. Also, no lexicon or
translation model are given in training.

2.1 Expression of the distribution using
finite-state transducers

We use a WFST framework to express the factors of
(1) since it offers computational tractability and sim-
ple inference in a clear, modular framework. Fig-
ure 1 uses a toy German–English error resolution
example to illustrate the components of the frame-
work: a phoneme lattice representing phoneme un-
certainty according to P (x|φ); a lexicon that trans-
duces phoneme substrings φs of φ to source tokens
f according to P (φs|f); and a lexical translation

model representing P (f |e) for each e in the written
translation. The composition of these components
is also shown at the bottom of Figure 1, illustrating
how would-be transcription errors can be resolved.
This framework is reminiscent of the WFST frame-
work used by Neubig et al. (2012) for lexicon and
language model learning from monolingual data.

2.2 Learning the lexicon and translation model
Because we do not have knowledge of the source
language, we must learn the lexicon and translation
model from the phoneme lattices and their written
translation. We model lexical translation probabil-
ities using a Dirichlet process. Let A be both the
transcription of each source utterance f and its word
alignments to the translation e that generated them.
The conditional posterior can be expressed as:

P (f |e;A) = cA(f, e) + αP0(f)

cA(e) + α
, (2)

where cA(f, e) is a count of how many times f has
aligned to e in A and cA(e) is a count of how many
times e has been aligned to; P0 is a base distribution
that influences how phonemes are clustered; and α
determines the emphasis on the base distribution.

In order to express the Dirichlet process using the
WFST components, we take the union of the lexi-
con with a spelling model base distribution that con-
sumes phonemes φi . . . φj and produces a special
〈unk〉 token with probability P0(φi . . . φj). This
〈unk〉 token is consumed by a designated arc in the
translation model WFST with probability α

cA(e)+α ,

yielding a composed probability of αP0(f)
cA(e)+α . Other

arcs in the translation model express the probability
cA(f,e)
cA(e)+α of entries already in the lexicon. The sum
of these two probabilities equates to (2).

As for the spelling model P0, we consider three
distributions and implement WFSTs to represent
them: a geometric distribution, Geometric(γ), a
Poisson distribution, Poisson(λ),2 and a ‘shifted’ ge-
ometric distribution, Shifted(α, γ). The shifted ge-
ometric distribution mitigates a shortcoming of the
geometric distribution whereby words of length 1
have the highest probability. It does so by having

2While the geometric distribution can be expressed recur-
sively, we cap the number of states in the Poisson WFST to
100.

2378

start
[h]/1.0

[aU]/0.6

[o:]/0.4

[s]/0.6

[f]/0.4

start

[h]:ε/1

[aU]:ε/1 [s]:ε/1

ε:[haUs]/1

[h]:ε/1

[o:]:ε/1 [f]:ε/1

ε:[ho:f]/1

start

[haUs]:yard/0.1

[ho:f]:yard/0.9

start

[h]:ε/1.0
[aU]:ε/0.6 [s]:ε/0.6

ε:yard/0.1

[h]:ε/1.0
[o:]:ε/0.4 [f]:ε/0.4

ε:yard/0.9

Figure 1: Top left to right: the phoneme lattice, the lexicon, and the translation model. Bottom: the resulting
composed WFST. Given an English translation ‘yard’, the most likely transcription is corrected to [ho:f]
(‘Hof’) in the composed WFST, while in the original phoneme lattice it is [haUs] (‘Haus’). Solid edges
represent most likely paths.

another parameter α that specifies the probability of
a word of length 1, with the remaining probability
mass distributed geometrically. All phonemes types
are treated the same in these distributions, with uni-
form probability.

2.3 Inference

In order to determine the translation model param-
eters as described above, we require the alignments
A. We sample these proportionally to their probabil-
ity given the data and our prior, in effect integrating
over all parameter configurations T :

P (A|X ;α, P0) =

∫

T
P (A|X , T)P (T ;α, P0)dT ,

(3)
where X is our dataset of source phoneme lattices
paired with target sentences.

This is achieved using blocked Gibbs sam-
pling, with each utterance constituting one
block. To sample from WFSTs, we use forward-
filtering/backward-sampling (Scott, 2002; Neubig
et al., 2012), creating forward probabilities using
the forward algorithm for hidden Markov models
before backward-sampling edges proportionally to
the product of the forward probability and the edge
weight.3

3No Metropolis-Hastings rejection step was used.

3 Experimental evaluation

We evaluate the lexicon and translation model by
their ability to improve phoneme recognition, mea-
suring phoneme error rate (PER).

3.1 Experimental setup

We used less than 10 hours of English–Japanese data
from the BTEC corpus (Takezawa et al., 2002), com-
prised of spoken utterances paired with textual trans-
lations. This allows us to assess the approach as-
suming quality acoustic models. We used acous-
tic models similar to Heck et al. (2015) to obtain
source phoneme lattices. Gold phoneme transcrip-
tions were obtained by transforming the text with
pronunciation lexicons and, in the Japanese case,
first segmenting the text into tokens using KyTea
(Neubig et al., 2011).

We run experiments in both directions: English–
Japanese and Japanese–English (en–ja and ja–en),
while comparing against three settings: the ASR 1-
best path uninformed by the model (ASR); a mono-
lingual version of our model that is identical except
without conditioning on the target side (Mono); and
the model applied using the source language sen-
tence as the target (Oracle).

We tuned on the first 1,000 utterences (about 1
hour) of speech and trained on up to 9 hours of the

2379

English (en) Japanese (ja)
Mono –ja Oracle Mono –en Oracle

ASR 22.1 24.3
Vague 17.7 18.5 17.2 21.5 20.8 21.6
Shifted 17.4 16.9 16.6 21.2 20.1 20.2
Poisson 17.3 17.2 16.8 21.3 20.1 20.8

Table 1: Phoneme error rates (percent) when train-
ing on 9 hours of speech, averaged over 4 runs.

2 4 6 8 10
20

21

22

23

24

25

Training hours

Ph
on

em
e

er
ro

rr
at

e
(%

)

ASR; Oracle; –en; Mono

Figure 2: Japanese phoneme error rates using the
shifted geometric prior when training data is scaled
up from 1–9 hours, averaged over 3 runs.

remaining data.4 Only the oracle setup was used
for tuning, with Geometric(0.01) (taking the form of
a vague prior), Shifted(10−5, 0.25) and Poisson(7)
performing best.

3.2 Results and Discussion

Table 1 shows en–ja and ja–en results for all meth-
ods with the full training data. Figure 2 shows im-
provements of ja–en over both the ASR baseline and
the Mono method as the training data increases, with
translation modeling gaining an increasing advan-
tage with more training data.

Notably, English recognition gains less from us-
ing Japanese as the target side (en–ja) than the
other way around, while the ‘oracle’ approach for
Japanese recognition, which also uses Japanese as
the target, underperforms ja–en. These observations
suggest that using the Japanese target is less help-
ful, likely explained by the fine-grained morpholog-
ical segmentation we used, making it harder for the
model to relate source phonemes to target tokens.

The vague geometric prior significantly underper-
forms the other priors. In the en–ja/vague case, the

4A 1 hour subset was used for PER evaluation.

model actually underperforms its monolingual coun-
terpart. The vague prior biases slightly towards fine-
grained English source segmentation, with words of
length 1 most common. In this case, fine-grained
Japanese is also used as the target which results
in most lexical entries arising from uninformative
alignments between single English phonemes and
Japanese syllables, such as [t]⇔す. For similar rea-
sons, the shifted geometric prior gains an advantage
over Poisson, likely because of its ability to even fur-
ther penalize single-phoneme lexical items, which
regularly end up in all lexicons anyway due to their
combinatorical advantage when sampling.

While many bilingual lexical entries are correct,
such as [w2n]⇔一 (‘one’), most are not. Some
have segmentation errors [li:z]⇔くださ (‘please’);
some are correctly segmented but misaligned to
commonly co-occurring words [w2t]⇔時 (‘what’
aligned to ‘time’); others do not constitute indi-
vidual words, but morphemes aligned to common
Japanese syllables [i:N]⇔く (‘-ing’); others still
align multi-word units correctly [haUm2tS]⇔いく
ら (‘how much’). Note though that entries such as
those listed above capture information that may nev-
ertheless help to reduce phoneme transcription er-
rors.

4 Conclusion and Future Work

We have demonstrated that a translation model and
lexicon can be learnt directly from phoneme lattices
in order to improve phoneme transcription of those
very lattices.

One of the appealing aspects of this modular
framework is that there is much room for exten-
sion and improvement. For example, by using adap-
tor grammars to encourage syllable segmentation
(Johnson, 2008), or incorporating language model
probabilities in addition to our translation model
probabilities (Neubig et al., 2012).

We assume a good acoustic model with phoneme
error rates between 20 and 25%. In a language doc-
umentation scenario, acoustic models for the low-
resource source language won’t exist. Future work
should use a universal phoneme recognizer or acous-
tic model of a similar language, thus making a step
towards true generalizability.

2380

Acknowledgments

We gratefully acknowledge support from the
DARPA LORELEI program.

References

Oliver Adams, Graham Neubig, Trevor Cohn, and Steven
Bird. 2015. Inducing bilingual lexicons from small
quantities of sentence-aligned phonemic transcrip-
tions. In Proceedings of the International Workshop
on Spoken Language Translation (IWSLT 2015), Da
Nang, Vietnam.

Oliver Adams, Graham Neubig, Trevor Cohn, and Steven
Bird. 2016. Learning a translation model from word
lattices. In 17th Annual Conference of the Interna-
tional Speech Communication Association (INTER-
SPEECH 2016), San Francisco, California, USA.

Peter Austin and Julia Sallabank. 2011. The Cam-
bridge Handbook of Endangered Languages. Cam-
bridge Handbooks in Language and Linguistics. Cam-
bridge University Press.

Laurent Besacier, Bowen Zhou, and Yuqing Gao. 2006.
Towards speech translation of non written languages.
In 2006 IEEE Spoken Language Technology Workshop
(SLT 2006), pages 222–225, Palm Beach, Aruba.

Steven Bird, Florian R Hanke, Oliver Adams, and Hae-
joong Lee. 2014. Aikuma: A mobile app for collabo-
rative language documentation. In Proceedings of the
2014 Workshop on the Use of Computational Meth-
ods in the Study of Endangered Languages, pages 1–5,
Baltimore, Maryland, USA.

David Blachon, Elodie Gauthier, Laurent Besacier, Guy-
Noël Kouarata, Martine Adda-Decker, and Annie Ri-
alland. 2016. Parallel speech collection for under-
resourced language studies using the lig-aikuma mo-
bile device app. Procedia Computer Science, 81:61–
66.

Peter F Brown, Stanley F Chen, Stephen A Della Pietra,
Vincent J Della Pietra, Andrew S Kehler, and Robert L
Mercer. 1994. Automatic speech recognition in
machine-aided translation. Computer Speech & Lan-
guage, 8(3):177–187.

Francisco Casacuberta, Hermann Ney, Franz Josef Och,
Enrique Vidal, Juan Miguel Vilar, Sergio Barrachina,
Ismael Garcı́a-Varea, David Llorens, César Martı́nez,
Sirko Molau, and Others. 2004. Some approaches to
statistical and finite-state speech-to-speech translation.
Computer Speech & Language, 18(1):25–47.

Pi-Chuan Chang, Michel Galley, and Christopher D Man-
ning. 2008. Optimizing Chinese word segmentation
for machine translation performance. In Proceedings

of the Third Workshop on Statistical Machine Trans-
lation (WMT 2008), pages 224–232, Columbus, Ohio,
USA.

Wei Chen and Bo Xu. 2015. Semi-supervised Chinese
word segmentation based on bilingual information.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2015), pages 1207–1216, Lisbon, Portugal.

Nic J De Vries, Jaco Badenhorst, Marelie H Davel, Eti-
enne Barnard, and Alta De Waal. 2011. Woefzela
- an open-source platform for ASR data collection in
the developing world. In 12th Annual Conference of
the International Speech Communication Association
(INTERSPEECH 2011), pages 3177–3180, Florence,
Italy.

Nic J De Vries, Marelie H Davel, Jaco Badenhorst,
Willem D Basson, Febe De Wet, Etienne Barnard, and
Alta De Waal. 2014. A smartphone-based ASR data
collection tool for under-resourced languages. Speech
Communication, 56:119–131.

Thi-Ngoc-Diep Do, Alexis Michaud, and Eric Castelli.
2014. Towards the automatic processing of Yongn-
ing Na (Sino-Tibetan): developing a ‘light’ acoustic
model of the target language and testing ‘heavyweight’
models from five national languages. In 4th Inter-
national Workshop on Spoken Language Technologies
for Under-resourced Languages (SLTU 2014), pages
153–160, St Petersburg, Russia.

Long Duong, Antonios Anastasopoulos, David Chiang,
Steven Bird, and Trevor Cohn. 2016. An atten-
tional model for speech translation without transcrip-
tion. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (NAACL HLT 2016), pages 949–959, San Diego,
California, USA.

Chris Dyer. 2009. Using a maximum entropy model to
build segmentation lattices for MT. In Proceedings
of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics (NAACL HLT
2009), pages 406–414, Boulder, Colorado, USA.

M Heck, Q T Do, S Sakti, G Neubig, T Toda, and S Naka-
mura. 2015. The NAIST ASR system for IWSLT
2015. In Proceedings of the International Workshop
on Spoken Language Translation (IWSLT 2015), Da
Nang, Vietnam.

Mark Johnson. 2008. Unsupervised word segmenta-
tion for Sesotho using adaptor grammars. In Pro-
ceedings of the Tenth Meeting of ACL Special Inter-
est Group on Computational Morphology and Phonol-
ogy (SIGMORPHON 2008), pages 20–27, Columbus,
Ohio, USA.

2381

Shahram Khadivi and Hermann Ney. 2008. Inte-
gration of speech recognition and machine transla-
tion in computer-assisted translation. Audio, Speech,
and Language Processing, IEEE Transactions on,
16(8):1551–1564.

Evgeny Matusov, Stephan Kanthak, and Hermann Ney.
2005. On the integration of speech recognition and
statistical machine translation. In 6th Interspeech
2005 and 9th European Conference on Speech Com-
munication and Technology (INTERSPEECH 2005),
pages 3177–3180, Lisbon, Portugal.

Coskun Mermer, Murat Saraçlar, and Ruhi Sarikaya.
2013. Improving statistical machine translation using
Bayesian word alignment and Gibbs sampling. Audio,
Speech, and Language Processing, IEEE Transactions
on, 21(5):1090–1101.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise prediction for robust, adaptable
Japanese morphological analysis. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies: short papers-Volume 2 (ACL HLT 2011), pages
529–533, Portland, Oregon, USA.

Graham Neubig, Masato Mimura, and Tatsuya Kawa-
hara. 2012. Bayesian learning of a language model
from continuous speech. IEICE TRANSACTIONS on
Information and Systems, 95(2):614–625.

ThuyLinh Nguyen, Stephan Vogel, and Noah A Smith.
2010. Nonparametric word segmentation for machine
translation. In Proceedings of the 23rd International
Conference on Computational Linguistics (COLING
2010), pages 815–823, Beijing, China.

Matthias Paulik and Alex Waibel. 2013. Training speech
translation from audio recordings of interpreter-
mediated communication. Computer Speech & Lan-
guage, 27(2):455–474.

Joris Pelemans, Tom Vanallemeersch, Kris Demuynck,
Patrick Wambacq, and Others. 2015. Efficient lan-
guage model adaptation for automatic speech recog-
nition of spoken translations. In 16th Annual Confer-
ence of the International Speech Communication As-
sociation (INTERSPEECH 2015), pages 2262–2266,
Dresden, Germany.

Aarthi Reddy and Richard C Rose. 2010. Integration
of statistical models for dictation of document transla-
tions in a machine-aided human translation task. Au-
dio, Speech, and Language Processing, IEEE Trans-
actions on, 18(8):2015–2027.

D Will Reiman. 2010. Basic oral language documen-
tation. In Language Documentation & Conservation,
pages 254–268.

Steven L Scott. 2002. Bayesian methods for hidden
Markov models. Journal of the American Statistical
Association, pages 337–351.

Felix Stahlberg, Tim Schlippe, Sue Vogel, and Tanja
Schultz. 2012. Word segmentation through cross-
lingual word-to-phoneme alignment. In 2012 IEEE
Workshop on Spoken Language Technology (SLT
2012), pages 85–90, Miami, Florida, USA.

Felix Stahlberg, Tim Schlippe, Stephan Vogel, and Tanja
Schultz. 2014. Word segmentation and pronun-
ciation extraction from phoneme sequences through
cross-lingual word-to-phoneme alignment. Computer
Speech & Language, pages 234–261.

Sebastian Stüker, Laurent Besacier, and Alex Waibel.
2009. Human translations guided language discov-
ery for ASR systems. In 10th Annual Conference of
the International Speech Communication Association
(INTERSPEECH 2009), pages 3023–3026, Brighton,
United Kingdom.

Toshiyuki Takezawa, Eiichiro Sumita, Fumiaki Sugaya,
Hirofumi Yamamoto, and Seiichi Yamamoto. 2002.
Toward a broad-coverage bilingual corpus for speech
translation of travel conversations in the real world.
In Third International Conference on Language Re-
sources and Evaluation (LREC 2002), pages 147–152,
Las Palmas, Canary Islands.

Enrique Vidal, Francisco Casacuberta, Luis Rodriguez,
Jorge Civera, and Carlos D Martı́nez Hinarejos. 2006.
Computer-assisted translation using speech recogni-
tion. Audio, Speech, and Language Processing, IEEE
Transactions on, 14(3):941–951.

L I Zezhong, Hideto Ikeda, and Junichi Fukumoto. 2013.
Bayesian word alignment and phrase table training
for statistical machine translation. IEICE TRANSAC-
TIONS on Information and Systems, 96(7):1536–1543.

2382

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2383–2392,
Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

SQuAD: 100,000+ Questions for Machine Comprehension of Text

Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang
{pranavsr,zjian,klopyrev,pliang}@cs.stanford.edu

Computer Science Department
Stanford University

Abstract

We present the Stanford Question Answer-
ing Dataset (SQuAD), a new reading compre-
hension dataset consisting of 100,000+ ques-
tions posed by crowdworkers on a set of
Wikipedia articles, where the answer to each
question is a segment of text from the cor-
responding reading passage. We analyze the
dataset to understand the types of reason-
ing required to answer the questions, lean-
ing heavily on dependency and constituency
trees. We build a strong logistic regression
model, which achieves an F1 score of 51.0%,
a significant improvement over a simple base-
line (20%). However, human performance
(86.8%) is much higher, indicating that the
dataset presents a good challenge problem for
future research. The dataset is freely available
at https://stanford-qa.com.

1 Introduction

Reading Comprehension (RC), or the ability to read
text and then answer questions about it, is a chal-
lenging task for machines, requiring both under-
standing of natural language and knowledge about
the world. Consider the question “what causes pre-
cipitation to fall?” posed on the passage in Figure 1.
In order to answer the question, one might first lo-
cate the relevant part of the passage “precipitation ...
falls under gravity”, then reason that “under” refers
to a cause (not location), and thus determine the cor-
rect answer: “gravity”.

How can we get a machine to make progress
on the challenging task of reading comprehension?
Historically, large, realistic datasets have played

In meteorology, precipitation is any product
of the condensation of atmospheric water vapor
that falls under gravity. The main forms of pre-
cipitation include drizzle, rain, sleet, snow, grau-
pel and hail... Precipitation forms as smaller
droplets coalesce via collision with other rain
drops or ice crystals within a cloud. Short, in-
tense periods of rain in scattered locations are
called “showers”.

What causes precipitation to fall?
gravity

What is another main form of precipitation be-
sides drizzle, rain, snow, sleet and hail?
graupel

Where do water droplets collide with ice crystals
to form precipitation?
within a cloud

Figure 1: Question-answer pairs for a sample passage in the

SQuAD dataset. Each of the answers is a segment of text from

the passage.

a critical role for driving fields forward—famous
examples include ImageNet for object recognition
(Deng et al., 2009) and the Penn Treebank for
syntactic parsing (Marcus et al., 1993). Existing
datasets for RC have one of two shortcomings: (i)
those that are high in quality (Richardson et al.,
2013; Berant et al., 2014) are too small for training
modern data-intensive models, while (ii) those that
are large (Hermann et al., 2015; Hill et al., 2015) are
semi-synthetic and do not share the same character-
istics as explicit reading comprehension questions.

To address the need for a large and high-quality
reading comprehension dataset, we present the Stan-

2383

ford Question Answering Dataset v1.0 (SQuAD),
freely available at https://stanford-qa.com, con-
sisting of questions posed by crowdworkers on a
set of Wikipedia articles, where the answer to ev-
ery question is a segment of text, or span, from the
corresponding reading passage. SQuAD contains
107,785 question-answer pairs on 536 articles, and
is almost two orders of magnitude larger than previ-
ous manually labeled RC datasets such as MCTest
(Richardson et al., 2013).

In contrast to prior datasets, SQuAD does not
provide a list of answer choices for each question.
Rather, systems must select the answer from all pos-
sible spans in the passage, thus needing to cope with
a fairly large number of candidates. While ques-
tions with span-based answers are more constrained
than the more interpretative questions found in more
advanced standardized tests, we still find a rich di-
versity of questions and answer types in SQuAD.
We develop automatic techniques based on distances
in dependency trees to quantify this diversity and
stratify the questions by difficulty. The span con-
straint also comes with the important benefit that
span-based answers are easier to evaluate than free-
form answers.

To assess the difficulty of SQuAD, we imple-
mented a logistic regression model with a range of
features. We find that lexicalized and dependency
tree path features are important to the performance
of the model. We also find that the model perfor-
mance worsens with increasing complexity of (i) an-
swer types and (ii) syntactic divergence between the
question and the sentence containing the answer; in-
terestingly, there is no such degradation for humans.
Our best model achieves an F1 score of 51.0%,1

which is much better than the sliding window base-
line (20%). Over the last four months (since June
2016), we have witnessed significant improvements
from more sophisticated neural network-based mod-
els. For example, Wang and Jiang (2016) obtained
70.3% F1 on SQuAD v1.1 (results on v1.0 are sim-
ilar). These results are still well behind human
performance, which is 86.8% F1 based on inter-
annotator agreement. This suggests that there is
plenty of room for advancement in modeling and
learning on the SQuAD dataset.

1All experimental results in this paper are on SQuAD v1.0.

Dataset Question
source

Formulation Size

SQuAD crowdsourced RC, spans
in passage

100K

MCTest
(Richardson et al., 2013)

crowdsourced RC, multiple
choice

2640

Algebra
(Kushman et al., 2014)

standardized
tests

computation 514

Science
(Clark and Etzioni, 2016)

standardized
tests

reasoning,
multiple
choice

855

WikiQA
(Yang et al., 2015)

query logs IR, sentence
selection

3047

TREC-QA
(Voorhees and Tice, 2000)

query logs +
human editor

IR, free form 1479

CNN/Daily Mail
(Hermann et al., 2015)

summary +
cloze

RC, fill in
single entity

1.4M

CBT
(Hill et al., 2015)

cloze RC, fill in
single word

688K

Table 1: A survey of several reading comprehension and ques-

tion answering datasets. SQuAD is much larger than all datasets

except the semi-synthetic cloze-style datasets, and it is similar

to TREC-QA in the open-endedness of the answers.

2 Existing Datasets

We begin with a survey of existing reading com-
prehension and question answering (QA) datasets,
highlighting a variety of task formulation and cre-
ation strategies (see Table 1 for an overview).

Reading comprehension. A data-driven approach
to reading comprehension goes back to Hirschman
et al. (1999), who curated a dataset of 600 real 3rd–
6th grade reading comprehension questions. Their
pattern matching baseline was subsequently im-
proved by a rule-based system (Riloff and Thelen,
2000) and a logistic regression model (Ng et al.,
2000). More recently, Richardson et al. (2013) cu-
rated MCTest, which contains 660 stories created
by crowdworkers, with 4 questions per story and
4 answer choices per question. Because many of
the questions require commonsense reasoning and
reasoning across multiple sentences, the dataset re-
mains quite challenging, though there has been no-
ticeable progress (Narasimhan and Barzilay, 2015;
Sachan et al., 2015; Wang et al., 2015). Both curated
datasets, although real and difficult, are too small to
support very expressive statistical models.

Some datasets focus on deeper reasoning abili-
ties. Algebra word problems require understanding
a story well enough to turn it into a system of equa-

2384

tions, which can be easily solved to produce the an-
swer (Kushman et al., 2014; Hosseini et al., 2014).
BAbI (Weston et al., 2015), a fully synthetic RC
dataset, is stratified by different types of reasoning
required to solve each task. Clark and Etzioni (2016)
describe the task of solving 4th grade science exams,
and stress the need to reason with world knowledge.

Open-domain question answering. The goal of
open-domain QA is to answer a question from a
large collection of documents. The annual eval-
uations at the Text REtreival Conference (TREC)
(Voorhees and Tice, 2000) led to many advances
in open-domain QA, many of which were used in
IBM Watson for Jeopardy! (Ferrucci et al., 2013).
Recently, Yang et al. (2015) created the WikiQA
dataset, which, like SQuAD, use Wikipedia pas-
sages as a source of answers, but their task is sen-
tence selection, while ours requires selecting a spe-
cific span in the sentence.

Selecting the span of text that answers a question
is similar to answer extraction, the final step in the
open-domain QA pipeline, methods for which in-
clude bootstrapping surface patterns (Ravichandran
and Hovy, 2002), using dependency trees (Shen and
Klakow, 2006), and using a factor graph over mul-
tiple sentences (Sun et al., 2013). One key differ-
ence between our RC setting and answer extraction
is that answer extraction typically exploits the fact
that the answer occurs in multiple documents (Brill
et al., 2002), which is more lenient than in our set-
ting, where a system only has access to a single read-
ing passage.

Cloze datasets. Recently, researchers have con-
structed cloze datasets, in which the goal is to pre-
dict the missing word (often a named entity) in a
passage. Since these datasets can be automatically
generated from naturally occurring data, they can be
extremely large. The Children’s Book Test (CBT)
(Hill et al., 2015), for example, involves predicting
a blanked-out word of a sentence given the 20 previ-
ous sentences. Hermann et al. (2015) constructed a
corpus of cloze style questions by blanking out enti-
ties in abstractive summaries of CNN / Daily News
articles; the goal is to fill in the entity based on the
original article. While the size of this dataset is im-
pressive, Chen et al. (2016) showed that the dataset
requires less reasoning than previously thought, and

Figure 2: The crowd-facing web interface used to collect the

dataset encourages crowdworkers to use their own words while

asking questions.

concluded that performance is almost saturated.
One difference between SQuAD questions and

cloze-style queries is that answers to cloze queries
are single words or entities, while answers in
SQuAD often include non-entities and can be much
longer phrases. Another difference is that SQuAD
focuses on questions whose answers are entailed
by the passage, whereas the answers to cloze-style
queries are merely suggested by the passage.

3 Dataset Collection

We collect our dataset in three stages: curating
passages, crowdsourcing question-answers on those
passages, and obtaining additional answers.

Passage curation. To retrieve high-quality arti-
cles, we used Project Nayuki’s Wikipedia’s internal
PageRanks to obtain the top 10000 articles of En-
glish Wikipedia, from which we sampled 536 arti-
cles uniformly at random. From each of these ar-
ticles, we extracted individual paragraphs, stripping
away images, figures, tables, and discarding para-
graphs shorter than 500 characters. The result was
23,215 paragraphs for the 536 articles covering a
wide range of topics, from musical celebrities to ab-
stract concepts. We partitioned the articles randomly
into a training set (80%), a development set (10%),

2385

and a test set (10%).

Question-answer collection. Next, we employed
crowdworkers to create questions. We used the
Daemo platform (Gaikwad et al., 2015), with Ama-
zon Mechanical Turk as its backend. Crowdworkers
were required to have a 97% HIT acceptance rate, a
minimum of 1000 HITs, and be located in the United
States or Canada. Workers were asked to spend 4
minutes on every paragraph, and paid $9 per hour for
the number of hours required to complete the article.
The task was reviewed favorably by crowdworkers,
receiving positive comments on Turkopticon.

On each paragraph, crowdworkers were tasked
with asking and answering up to 5 questions on the
content of that paragraph. The questions had to be
entered in a text field, and the answers had to be
highlighted in the paragraph. To guide the work-
ers, tasks contained a sample paragraph, and exam-
ples of good and bad questions and answers on that
paragraph along with the reasons they were cate-
gorized as such. Additionally, crowdworkers were
encouraged to ask questions in their own words,
without copying word phrases from the paragraph.
On the interface, this was reinforced by a reminder
prompt at the beginning of every paragraph, and by
disabling copy-paste functionality on the paragraph
text.

Additional answers collection. To get an indica-
tion of human performance on SQuAD and to make
our evaluation more robust, we obtained at least 2
additional answers for each question in the develop-
ment and test sets. In the secondary answer gener-
ation task, each crowdworker was shown only the
questions along with the paragraphs of an article,
and asked to select the shortest span in the para-
graph that answered the question. If a question was
not answerable by a span in the paragraph, workers
were asked to submit the question without marking
an answer. Workers were recommended a speed of 5
questions for 2 minutes, and paid at the same rate of
$9 per hour for the number of hours required for the
entire article. Over the development and test sets,
2.6% of questions were marked unanswerable by at
least one of the additional crowdworkers.

Answer type Percentage Example

Date 8.9% 19 October 1512
Other Numeric 10.9% 12
Person 12.9% Thomas Coke
Location 4.4% Germany
Other Entity 15.3% ABC Sports
Common Noun Phrase 31.8% property damage
Adjective Phrase 3.9% second-largest
Verb Phrase 5.5% returned to Earth
Clause 3.7% to avoid trivialization
Other 2.7% quietly

Table 2: We automatically partition our answers into the fol-

lowing categories. Our dataset consists of large number of an-

swers beyond proper noun entities.

4 Dataset Analysis

To understand the properties of SQuAD, we analyze
the questions and answers in the development set.
Specifically, we explore the (i) diversity of answer
types, (ii) the difficulty of questions in terms of type
of reasoning required to answer them, and (iii) the
degree of syntactic divergence between the question
and answer sentences.

Diversity in answers. We automatically catego-
rize the answers as follows: We first separate
the numerical and non-numerical answers. The
non-numerical answers are categorized using con-
stituency parses and POS tags generated by Stan-
ford CoreNLP. The proper noun phrases are further
split into person, location and other entities using
NER tags. In Table 2, we can see dates and other
numbers make up 19.8% of the data; 32.6% of the
answers are proper nouns of three different types;
31.8% are common noun phrases answers; and the
remaining 15.8% are made up of adjective phrases,
verb phrases, clauses and other types.

Reasoning required to answer questions. To get
a better understanding of the reasoning required to
answer the questions, we sampled 4 questions from
each of the 48 articles in the development set, and
then manually labeled the examples with the cate-
gories shown in Table 3. The results show that
all examples have some sort of lexical or syntactic
divergence between the question and the answer in
the passage. Note that some examples fall into more
than one category.

2386

Reasoning Description Example Percentage

Lexical variation
(synonymy)

Major correspondences between
the question and the answer sen-
tence are synonyms.

Q: What is the Rankine cycle sometimes called?
Sentence: The Rankine cycle is sometimes re-
ferred to as a practical Carnot cycle.

33.3%

Lexical variation
(world knowledge)

Major correspondences between
the question and the answer sen-
tence require world knowledge to
resolve.

Q: Which governing bodies have veto power?
Sen.: The European Parliament and the Council of
the European Union have powers of amendment
and veto during the legislative process.

9.1%

Syntactic variation After the question is paraphrased
into declarative form, its syntac-
tic dependency structure does not
match that of the answer sentence
even after local modifications.

Q: What Shakespeare scholar is currently on the
faculty?
Sen.: Current faculty include the anthropol-
ogist Marshall Sahlins, ..., Shakespeare scholar
David Bevington.

64.1%

Multiple sentence
reasoning

There is anaphora, or higher-level
fusion of multiple sentences is re-
quired.

Q: What collection does the V&A Theatre & Per-
formance galleries hold?
Sen.: The V&A Theatre & Performance gal-
leries opened in March 2009. ... They
hold the UK’s biggest national collection of
material about live performance.

13.6%

Ambiguous We don’t agree with the crowd-
workers’ answer, or the question
does not have a unique answer.

Q: What is the main goal of criminal punishment?
Sen.: Achieving crime control via incapacitation
and deterrence is a major goal of criminal punish-
ment.

6.1%

Table 3: We manually labeled 192 examples into one or more of the above categories. Words relevant to the corresponding

reasoning type are bolded, and the crowdsourced answer is underlined.

Q: What department store is thought to be the first in the world?
S: Bainbridge’s is often cited as the world’s first department store.

Path:

first
xcomp←−−−−thought

nsubjpass−−−−−→ store
det−−→what

⇓delete ⇓substitute ⇓insert

first
amod←−−−store

nmod←−−− cited
nsubjpass−−−−−→Bainbridge’s

Edit cost:
1 +2 +1=4

Figure 3: An example walking through the computation of the

syntactic divergence between the question Q and answer sen-

tence S.

Stratification by syntactic divergence. We also
develop an automatic method to quantify the syntac-
tic divergence between a question and the sentence
containing the answer. This provides another way to
measure the difficulty of a question and to stratify
the dataset, which we return to in Section 6.3.

We illustrate how we measure the divergence with
the example in Figure 3. We first detect anchors
(word-lemma pairs common to both the question
and answer sentences); in the example, the anchor
is “first”. The two unlexicalized paths, one from

the anchor “first” in the question to the wh-word
“what”, and the other from the anchor in the answer
sentence and to the answer span “Bainbridge’s”, are
then extracted from the dependency parse trees. We
measure the edit distance between these two paths,
which we define as the minimum number of dele-
tions or insertions to transform one path into the
other. The syntactic divergence is then defined as
the minimum edit distance over all possible anchors.
The histogram in Figure 4a shows that there is a
wide range of syntactic divergence in our dataset.
We also show a concrete example where the edit dis-
tance is 0 and another where it is 6. Note that our
syntactic divergence ignores lexical variation. Also,
small divergence does not mean that a question is
easy since there could be other candidates with sim-
ilarly small divergence.

5 Methods

We developed a logistic regression model and com-
pare its accuracy with that of three baseline methods.

2387

0 1 2 3 4 5 6 7 8
Syntactic divergence

0.0

5.0

10.0

15.0

20.0

25.0

30.0

P
e
rc

e
n
ta

g
e

(a) Histogram of syntactic divergence.

Q: Who went to Wittenberg to hear Luther speak?
S: Students thronged to Wittenberg to hear Luther
speak.
Path:

Wittenberg nmod←−−− went
nsubj−−−→ Who

Wittenberg nmod←−−− thronged
nsubj−−−→ Students

(b) An example of a question-answer pair with edit distance 0 be-
tween the dependency paths (note that lexical variation is ignored
in the computation of edit distance).

Q: What impact did the high school education movement have on the presence of skilled workers?
S: During the mass high school education movement from 1910 – 1940 , there was an increase in skilled workers.
Path:

school
compound←−−−−− movement

nsubj←−−− have
dobj−−→ impact det−→ What

school
compound←−−−−− movement nmod−−−→ 1910 acl−→ was

nsubj−−−→ increase

(c) An example of a question-answer pair with edit distance 6.

Figure 4: We use the edit distance between the unlexicalized dependency paths in the question and the sentence containing the

answer to measure syntactic divergence.

Candidate answer generation. For all four meth-
ods, rather than considering all O(L2) spans as can-
didate answers, where L is the number of words
in the sentence, we only use spans which are con-
stituents in the constituency parse generated by
Stanford CoreNLP. Ignoring punctuation and arti-
cles, we find that 77.3% of the correct answers in the
development set are constituents. This places an ef-
fective ceiling on the accuracy of our methods. Dur-
ing training, when the correct answer of an example
is not a constituent, we use the shortest constituent
containing the correct answer as the target.

5.1 Sliding Window Baseline

For each candidate answer, we compute the uni-
gram/bigram overlap between the sentence contain-
ing it (excluding the candidate itself) and the ques-
tion. We keep all the candidates that have the max-
imal overlap. Among these, we select the best
one using the sliding-window approach proposed
in Richardson et al. (2013).

In addition to the basic sliding window ap-
proach, we also implemented the distance-based ex-
tension (Richardson et al., 2013). Whereas Richard-
son et al. (2013) used the entire passage as the con-
text of an answer, we used only the sentence con-
taining the candidate answer for efficiency.

5.2 Logistic Regression

In our logistic regression model, we extract several
types of features for each candidate answer. We
discretize each continuous feature into 10 equally-
sized buckets, building a total of 180 million fea-
tures, most of which are lexicalized features or de-
pendency tree path features. The descriptions and
examples of the features are summarized in Table 4.

The matching word and bigram frequencies as
well as the root match features help the model pick
the correct sentences. Length features bias the
model towards picking common lengths and posi-
tions for answer spans, while span word frequencies
bias the model against uninformative words. Con-
stituent label and span POS tag features guide the
model towards the correct answer types. In addi-
tion to these basic features, we resolve lexical vari-
ation using lexicalized features, and syntactic varia-
tion using dependency tree path features.

The multiclass log-likelihood loss is optimized
using AdaGrad with an initial learning rate of 0.1.
Each update is performed on the batch of all ques-
tions in a paragraph for efficiency, since they share
the same candidates. L2 regularization is used, with
a coefficient of 0.1 divided by the number of batches.
The model is trained with three passes over the train-

2388

Feature Groups Description Examples

Matching Word
Frequencies

Sum of the TF-IDF of the words that occur in both the question and the
sentence containing the candidate answer. Separate features are used
for the words to the left, to the right, inside the span, and in the whole
sentence.

Span: [0 ≤ sum < 0.01]
Left: [7.9 ≤ sum < 10.7]

Matching Bigram
Frequencies

Same as above, but using bigrams. We use the generalization of the
TF-IDF described in Shirakawa et al. (2015).

Span: [0 ≤ sum < 2.4]
Left: [0 ≤ sum < 2.7]

Root Match Whether the dependency parse tree roots of the question and sentence
match, whether the sentence contains the root of the dependency parse
tree of the question, and whether the question contains the root of the
dependency parse tree of the sentence.

Root Match = False

Lengths Number of words to the left, to the right, inside the span, and in the
whole sentence.

Span: [1 <= num < 2]
Left: [15 ≤ num < 19]

Span Word
Frequencies

Sum of the TF-IDF of the words in the span, regardless of whether they
appear in the question.

Span: [5.2 ≤ sum < 6.9]

Constituent Label Constituency parse tree label of the span, optionally combined with the
wh-word in the question.

Span: NP
Span: NP, wh-word: “what”

Span POS Tags Sequence of the part-of-speech tags in the span, optionally combined
with the wh-word in the question.

Span: [NN]
Span: [NN], wh-word: “what”

Lexicalized Lemmas of question words combined with the lemmas of words within
distance 2 to the span in the sentence based on the dependency parse
trees. Separately, question word lemmas combined with answer word
lemmas.

Q: “cause”, S: “under” case←−−
Q: “fall”, A: “gravity”

Dependency Tree
Paths

For each word that occurs in both the question and sentence, the path
in the dependency parse tree from that word in the sentence to the span,
optionally combined with the path from the wh-word to the word in the
question. POS tags are included in the paths.

VBZ nmod−−−→ NN
what

nsubj←−− VBZ advcl−−→
+ VBZ nmod−−−→NN

Table 4: Features used in the logistic regression model with examples for the question “What causes precipitation to fall?”, sentence

“In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity.” and answer

“gravity”. Q denotes question, A denotes candidate answer, and S denotes sentence containing the candidate answer.

ing data.

6 Experiments

6.1 Model Evaluation

We use two different metrics to evaluate model accu-
racy. Both metrics ignore punctuations and articles
(a, an, the).

Exact match. This metric measures the percent-
age of predictions that match any one of the ground
truth answers exactly.

(Macro-averaged) F1 score. This metric mea-
sures the average overlap between the prediction and
ground truth answer. We treat the prediction and
ground truth as bags of tokens, and compute their
F1. We take the maximum F1 over all of the ground
truth answers for a given question, and then average
over all of the questions.

6.2 Human Performance

We assess human performance on SQuAD’s devel-
opment and test sets. Recall that each of the ques-
tions in these sets has at least three answers. To eval-
uate human performance, we treat the second an-
swer to each question as the human prediction, and
keep the other answers as ground truth answers. The
resulting human performance score on the test set is
77.0% for the exact match metric, and 86.8% for F1.
Mismatch occurs mostly due to inclusion/exclusion
of non-essential phrases (e.g., monsoon trough ver-
sus movement of the monsoon trough) rather than
fundamental disagreements about the answer.

6.3 Model Performance

Table 5 shows the performance of our models along-
side human performance on the v1.0 of development
and test sets. The logistic regression model signifi-
cantly outperforms the baselines, but underperforms

2389

Exact Match F1

Dev Test Dev Test

Random Guess 1.1% 1.3% 4.1% 4.3%
Sliding Window 13.2% 12.5% 20.2% 19.7%
Sliding Win. + Dist. 13.3% 13.0% 20.2% 20.0%
Logistic Regression 40.0% 40.4% 51.0% 51.0%
Human 80.3% 77.0% 90.5% 86.8%

Table 5: Performance of various methods and humans. Logis-

tic regression outperforms the baselines, while there is still a

significant gap between humans.

F1

Train Dev

Logistic Regression 91.7% 51.0%
– Lex., – Dep. Paths 33.9% 35.8%
– Lexicalized 53.5% 45.4%
– Dep. Paths 91.4% 46.4%
– Match. Word Freq. 91.7% 48.1%
– Span POS Tags 91.7% 49.7%
– Match. Bigram Freq. 91.7% 50.3%
– Constituent Label 91.7% 50.4%
– Lengths 91.8% 50.5%
– Span Word Freq. 91.7% 50.5%
– Root Match 91.7% 50.6%

Table 6: Performance with feature ablations. We find that lexi-

calized and dependency tree path features are most important.

humans. We note that the model is able to select
the sentence containing the answer correctly with
79.3% accuracy; hence, the bulk of the difficulty lies
in finding the exact span within the sentence.

Feature ablations. In order to understand the fea-
tures that are responsible for the performance of the
logistic regression model, we perform a feature ab-
lation where we remove one group of features from
our model at a time. The results, shown in Table 6,
indicate that lexicalized and dependency tree path
features are most important. Comparing our analy-
sis to the one in Chen et al. (2016), we note that the
dependency tree path features play a much bigger
role in our dataset. Additionally, we note that with
lexicalized features, the model significantly overfits
the training set; however, we found that increasing
L2 regularization hurts performance on the develop-
ment set.

Performance stratified by answer type. To gain
more insight into the performance of our logistic re-
gression model, we report its performance across

Logistic Regression Human
Dev F1 Dev F1

Date 72.1% 93.9%
Other Numeric 62.5% 92.9%
Person 56.2% 95.4%
Location 55.4% 94.1%
Other Entity 52.2% 92.6%
Common Noun Phrase 46.5% 88.3%
Adjective Phrase 37.9% 86.8%
Verb Phrase 31.2% 82.4%
Clause 34.3% 84.5%
Other 34.8% 86.1%

Table 7: Performance stratified by answer types. Logistic re-

gression performs better on certain types of answers, namely

numbers and entities. On the other hand, human performance is

more uniform.

0 1 2 3 4 5 6 7 8
Syntactic divergence

20

30

40

50

60

70

80

90

100

P
re

fo
rm

a
n
ce

 (
%

)

Logistic Regression Dev F1

Human Dev F1

Figure 5: Performance stratified by syntactic divergence of

questions and sentences. The performance of logistic regres-

sion degrades with increasing divergence. In contrast, human

performance is stable across the full range of divergence.

the answer types explored in Table 2. The re-
sults (shown in Table 7) show that the model per-
forms best on dates and other numbers, categories
for which there are usually only a few plausible can-
didates, and most answers are single tokens. The
model is challenged more on other named entities
(i.e., location, person and other entities) because
there are many more plausible candidates. How-
ever, named entities are still relatively easy to iden-
tify by their POS tag features. The model performs
worst on other answer types, which together form
47.6% of the dataset. Humans have exceptional per-
formance on dates, numbers and all named entities.
Their performance on other answer types degrades
only slightly.

2390

Performance stratified by syntactic divergence.
As discussed in Section 4, another challenging as-
pect of the dataset is the syntactic divergence be-
tween the question and answer sentence. Figure 5
shows that the more divergence there is, the lower
the performance of the logistic regression model.
Interestingly, humans do not seem to be sensitive
to syntactic divergence, suggesting that deep under-
standing is not distracted by superficial differences.
Measuring the degree of degradation could therefore
be useful in determining the extent to which a model
is generalizing in the right way.

7 Conclusion

Towards the end goal of natural language under-
standing, we introduce the Stanford Question An-
swering Dataset, a large reading comprehension
dataset on Wikipedia articles with crowdsourced
question-answer pairs. SQuAD features a diverse
range of question and answer types. The perfor-
mance of our logistic regression model, with 51.0%
F1, against the human F1 of 86.8% suggests ample
opportunity for improvement. We have made our
dataset freely available to encourage exploration of
more expressive models. Since the release of our
dataset, we have already seen considerable interest
in building models on this dataset, and the gap be-
tween our logistic regression model and human per-
formance has more than halved (Wang and Jiang,
2016). We expect that the remaining gap will be
harder to close, but that such efforts will result in
significant advances in reading comprehension.

Reproducibility

All code, data, and experiments for this paper are
available on the CodaLab platform:
https://worksheets.codalab.org/worksheets/

0xd53d03a48ef64b329c16b9baf0f99b0c/ .

Acknowledgments

We would like to thank Durim Morina and Professor
Michael Bernstein for their help in crowdsourcing
the collection of our dataset, both in terms of fund-
ing and technical support of the Daemo platform.

References
J. Berant, V. Srikumar, P. Chen, A. V. Linden, B. Harding,

B. Huang, P. Clark, and C. D. Manning. 2014. Mod-
eling biological processes for reading comprehension.
In Empirical Methods in Natural Language Process-
ing (EMNLP).

E. Brill, S. Dumais, and M. Banko. 2002. An analysis of
the AskMSR question-answering system. In Associa-
tion for Computational Linguistics (ACL), pages 257–
264.

D. Chen, J. Bolton, and C. D. Manning. 2016. A
thorough examination of the CNN / Daily Mail read-
ing comprehension task. In Association for Computa-
tional Linguistics (ACL).

P. Clark and O. Etzioni. 2016. My computer is an honor
student but how intelligent is it? standardized tests as
a measure of AI. AI Magazine, 37(1):5–12.

J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-
Fei. 2009. ImageNet: A large-scale hierarchical im-
age database. In Computer Vision and Pattern Recog-
nition (CVPR), pages 248–255.

D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek,
A. A. Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg,
J. Prager, N. Schlaefer, and C. Welty. 2013. Build-
ing Watson: An overview of the DeepQA project. AI
Magazine, 31(3):59–79.

S. N. Gaikwad, D. Morina, R. Nistala, M. Agarwal,
A. Cossette, R. Bhanu, S. Savage, V. Narwal, K. Raj-
pal, J. Regino, et al. 2015. Daemo: A self-governed
crowdsourcing marketplace. In Proceedings of the
28th Annual ACM Symposium on User Interface Soft-
ware & Technology, pages 101–102.

K. M. Hermann, T. Kočiský, E. Grefenstette, L. Espeholt,
W. Kay, M. Suleyman, and P. Blunsom. 2015. Teach-
ing machines to read and comprehend. In Advances in
Neural Information Processing Systems (NIPS).

F. Hill, A. Bordes, S. Chopra, and J. Weston. 2015.
The goldilocks principle: Reading children’s books
with explicit memory representations. In International
Conference on Learning Representations (ICLR).

L. Hirschman, M. Light, E. Breck, and J. D. Burger.
1999. Deep read: A reading comprehension system.
In Association for Computational Linguistics (ACL),
pages 325–332.

M. J. Hosseini, H. Hajishirzi, O. Etzioni, and N. Kush-
man. 2014. Learning to solve arithmetic word prob-
lems with verb categorization. In Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
523–533.

N. Kushman, Y. Artzi, L. Zettlemoyer, and R. Barzilay.
2014. Learning to automatically solve algebra word
problems. In Association for Computational Linguis-
tics (ACL).

2391

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini.
1993. Building a large annotated corpus of En-
glish: the Penn Treebank. Computational Linguistics,
19:313–330.

K. Narasimhan and R. Barzilay. 2015. Machine compre-
hension with discourse relations. In Association for
Computational Linguistics (ACL).

H. T. Ng, L. H. Teo, and J. L. P. Kwan. 2000. A machine
learning approach to answering questions for reading
comprehension tests. In Joint SIGDAT conference on
empirical methods in natural language processing and
very large corpora - Volume 13, pages 124–132.

D. Ravichandran and E. Hovy. 2002. Learning surface
text patterns for a question answering system. In As-
sociation for Computational Linguistics (ACL), pages
41–47.

M. Richardson, C. J. Burges, and E. Renshaw. 2013.
Mctest: A challenge dataset for the open-domain ma-
chine comprehension of text. In Empirical Methods in
Natural Language Processing (EMNLP), pages 193–
203.

E. Riloff and M. Thelen. 2000. A rule-based question
answering system for reading comprehension tests. In
ANLP/NAACL Workshop on reading comprehension
tests as evaluation for computer-based language un-
derstanding sytems - Volume 6, pages 13–19.

M. Sachan, A. Dubey, E. P. Xing, and M. Richardson.
2015. Learning answer-entailing structures for ma-
chine comprehension. In Association for Computa-
tional Linguistics (ACL).

D. Shen and D. Klakow. 2006. Exploring correlation of
dependency relation paths for answer extraction. In In-
ternational Conference on Computational Linguistics
and Association for Computational Linguistics (COL-
ING/ACL), pages 889–896.

M. Shirakawa, T. Hara, and S. Nishio. 2015. N-gram idf:
A global term weighting scheme based on information
distance. In World Wide Web (WWW), pages 960–970.

H. Sun, N. Duan, Y. Duan, and M. Zhou. 2013. Answer
extraction from passage graph for question answering.
In International Joint Conference on Artificial Intelli-
gence (IJCAI).

E. M. Voorhees and D. M. Tice. 2000. Building a ques-
tion answering test collection. In ACM Special Interest
Group on Information Retreival (SIGIR), pages 200–
207.

Shuohang Wang and Jing Jiang. 2016. Machine compre-
hension using match-lstm and answer pointer. CoRR,
abs/1608.07905.

H. Wang, M. Bansal, K. Gimpel, and D. McAllester.
2015. Machine comprehension with syntax, frames,
and semantics. In Association for Computational Lin-
guistics (ACL).

J. Weston, A. Bordes, S. Chopra, and T. Mikolov. 2015.
Towards AI-complete question answering: A set of
prerequisite toy tasks. arXiv.

Y. Yang, W. Yih, and C. Meek. 2015. WikiQA: A chal-
lenge dataset for open-domain question answering. In
Empirical Methods in Natural Language Processing
(EMNLP), pages 2013–2018.

2392

Author Index

Abdelwahab, Ahmed, 585
Abdul-Mageed, Muhammad, 2042
Abend, Omri, 1264
Adams, Oliver, 2377
Adar, Eytan, 1066
Agirre, Eneko, 2289
Agrawal, Aishwarya, 1493, 1955
Agrawal, Harsh, 925, 932
Akbik, Alan, 993
Al-Onaizan, Yaser, 268
Allegretti, Stefani, 1421
Amershi, Saleema, 340
Anand, Pranav, 1234
Anastasopoulos, Antonios, 1255
Andreas, Jacob, 1173
Antol, Stanislaw, 1493
Apidianaki, Marianna, 2028
Artetxe, Mikel, 2289
Arthur, Philip, 1557
Artzi, Yoav, 1775
Aubakirova, Malika, 2035
Augenstein, Isabelle, 876, 987
Auli, Michael, 1203
Avery, Cordelia, 1930

B. Hashemi, Homa, 1765
Bachman, Philip, 128
Badgett, Allison, 906
Balasubramanian, Niranjan, 1442
Baldwin, Timothy, 899, 1979
Bali, Kalika, 1131
Ballesteros, Miguel, 1048, 1744, 2005, 2313
Bamman, David, 2048
Bansal, Mohit, 919, 925, 1504, 2035, 2230
Barak, Libby, 96
Barbu, Andrei, 2215
Barzilay, Regina, 107, 1918, 2103, 2355
Batra, Dhruv, 919, 925, 932, 1493, 1955

Bauer, Sandro, 2343
Begum, Rafiya, 1131
Bekki, Daisuke, 2236
Bentivogli, Luisa, 257
Bertero, Dario, 1042
Berzak, Yevgeni, 2215
Bharadwaj, Akash, 1462
Bhatia, Parminder, 490
Bhattacharyya, Pushpak, 1006, 1912
Bhutani, Nikita, 55
Bian, Jiang, 541
Birch, Alexandra, 1264
Bird, Steven, 1285, 2377
Bisazza, Arianna, 257
Bisk, Yonatan, 2022
Bizzoni, Yuri, 1849
Blache, Philippe, 1967
Blanco, Eduardo, 1098, 1108
Blei, David, 1142
Blitzer, John, 2022
Blodgett, Su Lin, 1119
Blunsom, Phil, 319, 1078, 1307
Bojar, Ondřej, 1264
Boleda, Gemma, 1153
Bontcheva, Kalina, 876
Bordes, Antoine, 1400
Boschee, Elizabeth, 573
Bouchard, Guillaume, 1608
Boydstun, Amber, 1410
Braud, Chloé, 203
Breslin, John G., 999
Brockett, Chris, 340
Brunato, Dominique, 351
Brychcín, Tomáš, 436
Büchler, Marco, 1849
Buckman, Jacob, 2313
Buffone, Anneke, 2042, 2054
Burgess, Matthew, 1066

2393

Buys, Jan, 1307

Cai, Rangjia, 501
Callison-Burch, Chris, 1018, 2225
Camacho-Collados, Jose, 424
Caragea, Cornelia, 1924
Carbonell, Jaime, 1462
Card, Dallas, 1410
Carman, Mark, 1006
Cases, Ignacio, 44
Cettolo, Mauro, 257
Chai, Joyce, 1482
Chakraborty, Sunandan, 2096
Chakraborty, Tanmoy, 1348
Chan, Ricky Ho Yin, 1042
Chandrasekaran, Arjun, 925
Chaney, Allison, 1142
Chang, Baobao, 362, 784, 2011, 2350
Chang, Kai-Wei, 297
Chang, Ming-Wei, 297, 1452
Chao, Jiayuan, 753
Charlin, Laurent, 2122
Charniak, Eugene, 2331
Chen, Danlu, 1660
Chen, Hongshen, 731
Chen, Huimin, 1650
Chen, Jianshu, 1838
Chen, Jifan, 1703
Chen, Yidong, 2306
Cheng, Hao, 2204
Cheng, Jianpeng, 551
Cheng, Peng, 1817
Chersoni, Emmanuele, 1967
Cheung, Jackie Chi Kit, 1734
Chiang, David, 1255
Chieu, Hai Leong, 950, 2090
Cho, Kyunghyun, 268, 1992
Choe, Do Kook, 2331
Choi, Yejin, 329, 1183
Chollampatt, Shamil, 1901
Choudhury, Monojit, 1131
Christie, Gordon, 919, 1493
Cimino, Andrea, 351
Clark, Kevin, 595, 2256
Clark, Peter, 138, 1442
Clark, Stephen, 447

Cohen, Shay B., 287
Cohn, Trevor, 944, 1285, 1979, 2377
Collier, Nigel, 1680
Collins, Michael, 531
Collins-Thompson, Kevyn, 1871
Condoravdi, Cleo, 44
Connelly, Matthew, 1142
Cornegruta, Savelie, 1936
Cotterell, Ryan, 961, 1973, 2325
Cross, James, 1
Cui, Lei, 784

Dagan, Ido, 892, 2300
Dahlmeier, Daniel, 616
Darrell, Trevor, 457
Das, Abhishek, 932
Das, Dipanjan, 2249
De Leon, Eduardo, 1918
Dell’Orletta, Felice, 351
Delli Bovi, Claudio, 424
Demberg, Vera, 171
Demeester, Thomas, 1389, 1924
Deng, Li, 1838, 2204
Deng, Zhi-Hong, 65
Denis, Pascal, 203
Develder, Chris, 1924
Ding, Tao, 1432
Do, Quoc Truong, 2377
Dodge, Jesse, 1400
Dollmann, Markus, 1807
Dong, Daxiang, 372
Dong, Fei, 1072
Dong, Li, 551, 846
Dou, Dejing, 1012
Dror, Rotem, 469
Duan, Hong, 382, 521
Duong, Long, 1255, 1285
Dyer, Chris, 1078, 1163, 1462, 1744, 1949, 2005,

2313

Ebert, Sebastian, 742
Ebrahimi, Javid, 1012
Eichstaedt, Johannes, 2042
Eisenstein, Jacob, 490, 1452
Eisner, Jason, 1973
Erk, Katrin, 2163

Eskenazi, Maxine, 1871
Espinosa Anke, Luis, 424

Falke, Tobias, 892
Fang, Hao, 2204
Fast, Ethan, 690
Federico, Marcello, 257
Felshin, Sue, 1930
Ferraro, Gabriela, 899
Ficler, Jessica, 23
Firat, Orhan, 268
Fisch, Adam, 1400
Florian, Radu, 1275
Frishkoff, Gwen, 1871
Fukui, Akira, 457
Funakoshi, Kotaro, 2144
Fung, Pascale, 1042
Fyshe, Alona, 1339, 2017

Galley, Michel, 1192
Ganguly, Niloy, 1131
Gao, Bin, 541
Gao, Jianfeng, 1192, 1838, 2204
Gasic, Milica, 2153
Ge, Tao, 784, 2350
Geierhos, Michaela, 1807
Geng, Xin, 638
Gerz, Daniela, 2173
Ghaffari, Parsa, 999
Ghazvininejad, Marjan, 1183
Gildea, Daniel, 2084
Gillespie, Duncan, 2295
Gimpel, Kevin, 1504, 2230
Giorgi, Salvatore, 2042
Goldberg, Adele E., 96
Goldberg, Yoav, 23, 2005
Golub, David, 1598
Gong, Yeyun, 836
Goodman, Noah D., 2243
Goyal, Yash, 1493
Grangier, David, 1203
Green, Lisa, 1119
Greenberg, Clayton, 1473
Grefenstette, Edward, 1078
Grishman, Ralph, 886
Gross, Justin, 1410

Grundkiewicz, Roman, 1546
Grycner, Adam, 2183
Gu, Yanhui, 680
Gu, Youyang, 2103
Gui, Lin, 1639
Guo, Li, 192
Guo, Shu, 192
Guo, Ya, 721
Gur, Izzeddin, 149, 562
Gurevych, Iryna, 892, 1214
Guthrie, Robert, 490
Guzmán, Francisco, 1586

Habernal, Ivan, 1214
Haddow, Barry, 1264
Haffari, Gholamreza, 944
Hahn, Michael, 85
Hai, Zhen, 1817
Hajishirzi, Hannaneh, 1617
Hamilton, William L., 595, 2116
Hammond, Michael, 138
Han, Jiawei, 1369
Han, Wenjuan, 763
Hardt, Daniel, 1234
He, Ji, 1838
He, Luheng, 2337
He, Shizhu, 866
He, Wenqi, 1369
He, Xiaodong, 1598, 1838, 2204
He, Yunzhong, 1482
Hendricks, Lisa Anne, 1961
Hermann, Karl Moritz, 1078
Hill, Felix, 2173
Hirao, Tsutomu, 1054
Hoang, Duc Tam, 1901
Hockenmaier, Julia, 2022
Horvitz, Eric, 690
Hospedales, Timothy, 912
Hou, Weiwei, 899
Hu, Yu, 669
Hu, Zhiting, 1670
Huang, Chu-Ren, 1967
Huang, Liang, 1
Huang, Lifu, 1369
Huang, Minlie, 606
Huang, Ruihong, 44, 906

Huang, Xuanjing, 118, 721, 826, 836, 1660, 1703
Huang, Yan, 2215
Huang, Yanzhou, 2306
Huang, Yu-Yang, 805
Hui, Siu Cheung, 403
Hullman, Jessica, 1066
Hwa, Rebecca, 1765

Iida, Ryu, 1244
Islam, Aminul, 1892
Ittycheriah, Abe, 955, 2283

Jaakkola, Tommi, 107, 2103
Jagadish, H V, 55
Jagannatha, Abhyuday, 856
Jain, Hirsh, 2066
Jansen, Peter, 138
Ji, Heng, 1018, 1369
Ji, Rongrong, 382
Ji, Shihao, 658
Jiang, Jing, 236
Jiang, Tingsong, 2011, 2350
Jiang, Wenbin, 501
Jiang, Yong, 763
Jin, Zhi, 479
Johnson, Mark, 33
Joshi, Aditya, 1006
Junczys-Dowmunt, Marcin, 1546
Jurafsky, Dan, 44, 595, 1192, 2116

Kamigaito, Hidetaka, 1998
Kanayama, Hiroshi, 1285
Kann, Katharina, 961
Karimi, Amir-Hossein, 1400
Katz, Boris, 1930, 2215
Kawahara, Daisuke, 511
Kawakami, Kazuya, 1949
Kekec, Taygun, 1060
Keller, Frank, 85
Kembhavi, Aniruddha, 160
Kenyon-Dean, Kian, 1734
Kiddon, Chloé, 329
Kiela, Douwe, 447
Kikuchi, Yuta, 1328
Kim, Annice, 225
Kim, Yea Seul, 1066
Kim, Yoon, 1317

Kim, Young-Bum, 2071
Klakow, Dietrich, 171, 1473
Klein, Dan, 1173
Kliegl, Reinhold, 585
Kloetzer, Julien, 1244
Knight, Kevin, 1183, 1526, 1568, 2278
Kober, Thomas, 1691
Kochersberger, Kevin, 1493
Kočiský, Tomáš, 1078
Koncel-Kedziorski, Rik, 1617
Kong, Lingpeng, 1744
Konstas, Ioannis, 1617
Korhonen, Anna, 2173, 2215
Kraft, Peter, 2066
Krishnamurthy, Jayant, 160
Kruengkrai, Canasai, 1244
Kruszewski, Germán, 1153
Kumar, Arun, 2325
kumar, vishwajeet, 993
Kumaravel, Sadhana, 1442
Kunchukuttan, Anoop, 1912
Kuncoro, Adhiguna, 1744
Kurata, Gakuto, 2077
Kurohashi, Sadao, 511, 2271
Kushman, Nate, 1918
Kwon, Heeyoung, 1442

Labaka, Gorka, 2289
Laddha, Abhishek, 627
Laddha, Ankit, 1493
Lalor, John, 648
Landwehr, Niels, 585
Lapata, Mirella, 551
Lawless, Séamus, 700
Lebret, Rémi, 1203
Lee, Kenton, 2366
Lei, Tao, 107, 2103
Lenci, Alessandro, 975, 1967
Leskovec, Jure, 595, 2116
Lewis, Mike, 2337, 2366
Li, Ge, 479
Li, Guangxia, 1817
Li, Hang, 278
Li, Jiwei, 1192
Li, Lihong, 1838
Li, Peifeng, 815

Li, Peng, 981
Li, Qi, 362
Li, Ran, 680
Li, Rui, 981
Li, Sujian, 784, 1224, 2011, 2350
Li, Tao, 2193
Li, Tianshi, 362
Li, Xiao-Li, 1817
Li, Yitong, 1979
Li, Yunyao, 993
Li, Zhenghua, 753
Liang, Percy, 2383
Lin, Shou-De, 805
Lin, Yankai, 1650
Ling, Wang, 1078
Ling, Zhen-Hua, 669
Lippincott, Tom, 1025
Litman, Diane, 1421
Liu, Bing, 225
Liu, Changsong, 1482
Liu, Chia-Wei, 2122
Liu, Jianxun, 700
Liu, Kang, 866, 1379
Liu, Pengfei, 118, 1703
Liu, Qun, 278, 382, 731
Liu, Tianyu, 2350
Liu, Tie-Yan, 541
Liu, Ting, 214
Liu, Xuan, 372
Liu, Yang, 1224
Liu, Zhiyuan, 1650
Livescu, Karen, 1504
Locascio, Nicholas, 1918
Löfgren, Jonathan, 950
Lopyrev, Konstantin, 2383
Louvan, Samuel, 1442
Lowd, Daniel, 1012
Lowe, Ryan, 2122
Lu, Qin, 1639
Lu, Wei, 75, 950, 2090
Lu, Zhengdong, 278
Luo, Wei, 815
Luo, Zhunchen, 815
Luu Anh, Tuan, 403
Lv, Weifeng, 846

Ma, Chao, 1359
Ma, Shulei, 65
Ma, Tengfei, 1285
Malliaros, Fragkiskos, 1860
Manning, Christopher D., 2256
Marinho, Zita, 287
Màrquez, Lluís, 1586
Marshall, Iain, 795
Martínez-Gómez, Pascual, 12, 2236
Martins, André F. T., 287
Matsumoto, Yuji, 1036
Matsushima, Shin, 658
May, Jonathan, 1568
McAllester, David, 2230
Melis, Gábor, 1078
Meng, Zhao, 479
Mesgar, Mohsen, 772
Mi, Haitao, 955, 2283
Miao, Yishu, 319
Michael, Julian, 2337
Milios, Evangelos, 1892
Miller, Alexander, 1400
Milli, Smitha, 2048
Mineshima, Koji, 2236
Misra, Dipendra Kumar, 1775
Miyamoto, Yasumasa, 1992
Miyao, Yusuke, 12, 33, 2236
Moh’d, Abidalrahman, 1892
Monroe, Will, 1192, 2243
Mooney, Raymond, 1943, 1961
Morales, Alvaro, 1930
Morency, Louis-Philippe, 1797
Moritz, Maria, 1849
Mortensen, David, 1462
Mou, Lili, 479
Mrkšić, Nikola, 2153
Muis, Aldrian Obaja, 75
Mukherjee, Arjun, 627
Mukherjee, Tanmoy, 912
Müller, Thomas, 742
Murphy, Brian, 2017

Nagata, Masaaki, 1054
Naik, Chetan, 1442
Nakamura, Satoshi, 1557, 2377
Nakano, Mikio, 2144

Nakazawa, Toshiaki, 511, 2271
Nakov, Preslav, 1586
Napoles, Courtney, 2109
Narasimhan, Karthik, 1918, 2355
Narayanam, Ramasuri, 1348
Neubig, Graham, 1163, 1328, 1557, 2377
Ng, Hwee Tou, 1882, 1901
Ng, See Kiong, 403
Nguyen, Thien Huu, 886
Ni, Jian, 1275
Nimishakavi, Madhav, 414
Noji, Hiroshi, 33
Noseworthy, Mike, 2122

O’Connor, Brendan, 1119
Oh, Jong-Hoon, 1244
Okazaki, Naoaki, 1054
Okumura, Manabu, 1328, 1998
Onishi, Takeshi, 2230
Ostendorf, Mari, 1030, 1838
Otani, Naoki, 511
Oualil, Youssef, 1473
Ouchi, Hiroki, 2133
Özbal, Gözde, 2060

P, Deepak, 1576
Padhi, Inkit, 1526
Paletz, Susannah, 1421
Pan, Shimei, 1432
Pan, Sinno Jialin, 616
Pan, Xiaoman, 1018
Parikh, Ankur, 2249
Parikh, Devi, 919, 925, 932, 1955
Park, Dong Huk, 457
Parveen, Daraksha, 772
Patel, Kevin, 1006
Pavlek, Barbara, 1849
Pavlick, Ellie, 1018, 2225
Peng, Haoruo, 392
Peng, Xiaochang, 2084
Peterson, Cole, 1339
Pham, Ngoc-Quan, 1153
Pighin, Daniele, 2060
Pilehvar, Mohammad Taher, 1680
Pineau, Joelle, 2122
Potts, Christopher, 2243

Precup, Doina, 1734
Premtoon, Varot, 1930

Qian, Jin, 721
Qian, Peng, 826
Qian, Zhong, 815
Qin, Bing, 214
Qin, Lianhui, 2263
Qiu, Lin, 183
Qiu, Xipeng, 118, 826, 1660, 1703
Qu, Lizhen, 899
Qu, Meng, 1369
QU, Weiguang, 680

Radev, Dragomir, 55
Rahimi, Zahra, 1421
Rajani, Nazneen Fatema, 1943
Rajpurkar, Pranav, 2383
Rawlins, Kyle, 1713
Ray, Arijit, 919
Reddy, Siva, 2022
Reffin, Jeremy, 1691
Reichart, Roi, 469, 711, 2173
Reisinger, Drew, 1713
Ren, Xiang, 1369
Rice, Caitlin, 1421
Richardson, John, 2271
Riedel, Sebastian, 987, 1389, 1608
Rijhwani, Shruti, 1131
Riloff, Ellen, 44
Ritter, Alan, 307, 1192
Rochette, Alexandre, 2071
Rocktäschel, Tim, 876, 1389
Rohlfs, Christopher, 2096
Rohrbach, Anna, 457
Rohrbach, Marcus, 457
Rojas Barahona, Lina M., 2153
Roller, Stephen, 2163
Roth, Dan, 392, 1088
Rouhizadeh, Masoud, 2054
Rousseau, Francois, 1827
Routledge, Bryan, 1724, 1949
Roy, Subhro, 1088
Ruan, Yu-Ping, 669
Ruder, Sebastian, 999
Rudinger, Rachel, 1713

Rudra, Koustav, 1131
Rush, Alexander M., 1296, 1317, 2066, 2319
Russell, Ben, 2295

Saba-Sadiya, Sari, 1482
Sadler, Brian, 562
Saenko, Kate, 1961
Saggion, Horacio, 424
Sahlgren, Magnus, 975
Saini, Uday Singh, 414
Sakaguchi, Keisuke, 1713, 2109
Salakhutdinov, Ruslan, 1670
Sanders, Jordan, 1098
Sankaran, Baskaran, 268, 955
Santus, Enrico, 1967
Sarabi, Zahra, 1108
Sarawagi, Sunita, 1516
Sarikaya, Ruhi, 2071
Sasano, Ryohei, 1328
Sayeed, Asad, 171
Schmaltz, Allen, 2319
Schumacher, Elliot, 1871
Schütze, Hinrich, 742, 961, 2325
Schwartz, H. Andrew, 2042, 2054
Serban, Iulian, 2122
Sha, Lei, 2011, 2350
Shareghi, Ehsan, 944
Sharp, Rebecca, 138
Shi, Peng, 968
shi, xiaodong, 2306
Shi, Xing, 1183, 1526, 2278
Shieber, Stuart, 2319
Shindo, Hiroyuki, 1036
Shu, Lei, 225
Shukla, Nishant, 1482
Siddique, Farhad Bin, 1042
Sim, Yanchuan, 1724
Simion, Andrei, 531
Singh, Mittul, 1473
Skianis, Konstantinos, 1827
Smith, Laura, 2042
Smith, Noah A., 287, 1410, 1724, 1744, 1949,

2005
Solanki, Rishi, 2042
Song, Linfeng, 2084
Song, Yangqiu, 392

Sordoni, Alessandro, 128
Soto, Axel, 1892
Sountsov, Pavel, 1516
Spithourakis, Georgios, 987
Srikumar, Vivek, 2193
Srivatsa, Mudhakar, 149, 562
Stanovsky, Gabriel, 892, 2300
Steedman, Mark, 2022
Stein, Cliff, 531
Stenetorp, Pontus, 1608
Sterckx, Lucas, 1924
Stevenson, Suzanne, 96
Strapparava, Carlo, 2060
Strube, Michael, 772
su, jinsong, 382, 521, 2306
Su, Pei-Hao, 2153
Su, Yu, 149, 562
Subramanian, Lakshminarayanan, 2096
Sui, Zhifang, 784, 2011, 2350
Suleman, Kaheer, 128
Sumita, Eiichiro, 1998
Sun, Huan, 562
Sun, Maosong, 1650
Sun, Xiangyan, 1787
Surdeanu, Mihai, 138
Susanto, Raymond Hendy, 2090
Suzuki, Jun, 1054

Tabassum, Jeniya, 307
Täckström, Oscar, 2249
Tafjord, Oyvind, 160
Taghipour, Kaveh, 1882
Takamura, Hiroya, 1328, 1998
Takase, Sho, 1054
Takeuchi, Johane, 2144
Talukdar, Partha, 414
Tamura, Akihiro, 1998
Tan, Chuanqi, 846
Tanaka, Ribeka, 2236
Tang, Duyu, 214
Tax, David M. J., 1060
Tay, Yi, 403
Tchernowitz, Ilan, 711
Tekiroglu, Serra Sinem, 2060
Teng, Zhiyang, 968, 1629
Tetreault, Joel, 2109

Teufel, Simone, 2343
Thater, Stefan, 171
Tian, Fei, 541, 938
Tian, Hao, 372
Tilk, Ottokar, 171
Tixier, Antoine, 1860
Tong, Yunhai, 65
Torisawa, Kentaro, 1244
Toutanova, Kristina, 340
Tran, Ke M., 340
Tran, Trang, 1030
Tripathi, Vaibhav, 1006
Trischler, Adam, 128
Tsuboi, Yuta, 2133
Tu, Cunchao, 1650
Tu, Kewei, 183, 763, 1986
Ture, Ferhan, 573

Ultes, Stefan, 2153
Ungar, Lyle, 2042, 2054
Upadhyay, Shyam, 297, 1088
Uszkoreit, Hans, 680
Uszkoreit, Jakob, 2249

Van Durme, Benjamin, 1025, 1713
Vandyke, David, 2153
Vazirgiannis, Michalis, 1827, 1860
Venturi, Giulia, 351
Venugopalan, Subhashini, 1961
Verő, Anita Lilla, 447
Vieira, Tim, 1713, 1973
Vishwanathan, S. V. N., 658
Vlachos, Andreas, 876, 1936
Vo, Duy Tin, 1629
Vulić, Ivan, 2173

Wakabayashi, Kei, 2144
Wallace, Byron C., 795
Wallach, Hanna, 1142
Wan, Xiaojun, 247
Wan, Yan, 1042
Wang, Bin, 192, 981
Wang, Hai, 2230
Wang, Haixun, 1787
Wang, Huazheng, 541
Wang, Lihong, 192
Wang, Mingxuan, 278

Wang, Quan, 192, 981
Wang, Weibo, 1892
Wang, Wenya, 616
Wang, Xuepeng, 866
Wang, Yang, 836
Wang, Yequan, 606
Wang, Yiren, 938
Wang, Yuan, 1359
Wang, Zhiguo, 955, 2084, 2283
Wang, Zhongyuan, 1787
Wanner, Leo, 1048
Weeds, Julie, 1691
Wei, Furu, 846
Wei, Zhuoyu, 1379
Weikum, Gerhard, 2183
Weir, David, 1691
Wen, Tsung-Hsien, 2153
Weston, Jason, 1400
White, Aaron Steven, 1713
Wiederhold, Andreas, 1849
Wieting, John, 1504
Wiseman, Sam, 1296
Wu, Changxing, 2306
Wu, Chien-Sheng, 1042
Wu, Dongyin, 1639
Wu, Hao, 648
Wu, Hua, 372
Wu, Xuan, 700

Xiang, Bing, 2077
Xiao, Jianguo, 247
Xiao, Xiaokui, 616
Xiao, Yang, 1359
Xiao, Yanghua, 1787
Xiao, Zhen, 1359
Xing, Eric, 1670
Xiong, Deyi, 382, 521
Xu, Feiyu, 680
Xu, Haoyan, 2017
Xu, Hu, 225
Xu, Jiacheng, 1660
Xu, Jinan, 501
Xu, Ruifeng, 1639
Xu, Wei, 307
Xu, Wenduan, 1754
Xu, Yan, 479

Yala, Adam, 2355
Yan, Rui, 372, 479
Yan, Xifeng, 149, 562
Yan, Zenghui, 562
Yanardag, Pinar, 658
Yang, Daylen, 457
Yang, Jiwen, 753
Yang, Peng, 1817
Yang, Shaohua, 1482
Yang, Yi, 1452
Yang, Yunlun, 65
Yang, Zichao, 1670
Yarman Vural, Fatos T., 268
Yavuz, Semih, 149
Ye, Zheng, 128
Yedidsion, Liron, 711
Yih, Wen-tau, 297
Yin, Rongchao, 981
Yoshikawa, Masashi, 1036
Young, Steve, 2153
Yu, Dianhai, 372
yu, hong, 648, 856
Yu, Hongliang, 1797
Yu, Jianfei, 236
Yu, Lei, 1307
Yu, Mo, 2077
Yu, Yong, 183
Yuan, Xingdi, 128
Yun, Hyokun, 658
Yuret, Deniz, 1568, 2278

Zettlemoyer, Luke, 329, 1617, 2337, 2366
Zhang, Biao, 382, 521
Zhang, Jiajun, 1535
Zhang, Jian, 2383
Zhang, Lu, 479
Zhang, Min, 382, 521, 753
Zhang, Qi, 721, 836
Zhang, Sheng, 1713
Zhang, Shikun, 1797
Zhang, Wen, 501
Zhang, Xuan, 638
Zhang, Ye, 795
Zhang, Yue, 731, 968, 1072, 1629, 2084
Zhang, Zhisong, 2263
Zhao, Hai, 2263

Zhao, Jun, 866, 1379
Zhao, Li, 606
Zhao, Peilin, 1817
Zhao, Quan, 638
Zhao, Shiqi, 372
Zhao, Wenyu, 700
Zhou, Bowen, 2077
ZHOU, Deyu, 638
Zhou, Dong, 700
Zhou, Guodong, 815
Zhou, Junsheng, 680
Zhou, Liyuan, 899
Zhou, Ming, 784, 846
Zhou, Xiangyang, 372
Zhou, Xinjie, 247
Zhou, Yaqian, 721, 1703
Zhou, Yin, 638
Zhou, Yu, 1639
Zhu, Chengjieren, 541
Zhu, Qiaoming, 815
Zhu, Song-chun, 1482
zhu, xiaoyan, 606
Zitnick, Larry, 932
Zong, Chengqing, 1535
Zoph, Barret, 1568

	Program
	Span-Based Constituency Parsing with a Structure-Label System and Provably Optimal Dynamic Oracles
	Rule Extraction for Tree-to-Tree Transducers by Cost Minimization
	A Neural Network for Coordination Boundary Prediction
	Using Left-corner Parsing to Encode Universal Structural Constraints in Grammar Induction
	Distinguishing Past, On-going, and Future Events: The EventStatus Corpus
	Nested Propositions in Open Information Extraction
	A Position Encoding Convolutional Neural Network Based on Dependency Tree for Relation Classification
	Learning to Recognize Discontiguous Entities
	Modeling Human Reading with Neural Attention
	Comparing Computational Cognitive Models of Generalization in a Language Acquisition Task
	Rationalizing Neural Predictions
	Deep Multi-Task Learning with Shared Memory for Text Classification
	Natural Language Comprehension with the EpiReader
	Creating Causal Embeddings for Question Answering with Minimal Supervision
	Improving Semantic Parsing via Answer Type Inference
	Semantic Parsing to Probabilistic Programs for Situated Question Answering
	Event participant modelling with neural networks
	Context-Dependent Sense Embedding
	Jointly Embedding Knowledge Graphs and Logical Rules
	Learning Connective-based Word Representations for Implicit Discourse Relation Identification
	Aspect Level Sentiment Classification with Deep Memory Network
	Lifelong-RL: Lifelong Relaxation Labeling for Separating Entities and Aspects in Opinion Targets
	Learning Sentence Embeddings with Auxiliary Tasks for Cross-Domain Sentiment Classification
	Attention-based LSTM Network for Cross-Lingual Sentiment Classification
	Neural versus Phrase-Based Machine Translation Quality: a Case Study
	Zero-Resource Translation with Multi-Lingual Neural Machine Translation
	Memory-enhanced Decoder for Neural Machine Translation
	Semi-Supervised Learning of Sequence Models with Method of Moments
	Learning from Explicit and Implicit Supervision Jointly For Algebra Word Problems
	TweeTime : A Minimally Supervised Method for Recognizing and Normalizing Time Expressions in Twitter
	Language as a Latent Variable: Discrete Generative Models for Sentence Compression
	Globally Coherent Text Generation with Neural Checklist Models
	A Dataset and Evaluation Metrics for Abstractive Compression of Sentences and Short Paragraphs
	PaCCSS-IT: A Parallel Corpus of Complex-Simple Sentences for Automatic Text Simplification
	Discourse Parsing with Attention-based Hierarchical Neural Networks
	Multi-view Response Selection for Human-Computer Conversation
	Variational Neural Discourse Relation Recognizer
	Event Detection and Co-reference with Minimal Supervision
	Learning Term Embeddings for Taxonomic Relation Identification Using Dynamic Weighting Neural Network
	Relation Schema Induction using Tensor Factorization with Side Information
	Supervised Distributional Hypernym Discovery via Domain Adaptation
	Latent Tree Language Model
	Comparing Data Sources and Architectures for Deep Visual Representation Learning in Semantics
	Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding
	The Structured Weighted Violations Perceptron Algorithm
	How Transferable are Neural Networks in NLP Applications?
	Morphological Priors for Probabilistic Neural Word Embeddings
	Automatic Cross-Lingual Similarization of Dependency Grammars for Tree-based Machine Translation
	IRT-based Aggregation Model of Crowdsourced Pairwise Comparison for Evaluating Machine Translations
	Variational Neural Machine Translation
	Towards a Convex HMM Surrogate for Word Alignment
	Solving Verbal Questions in IQ Test by Knowledge-Powered Word Embedding
	Long Short-Term Memory-Networks for Machine Reading
	On Generating Characteristic-rich Question Sets for QA Evaluation
	Learning to Translate for Multilingual Question Answering
	A Semiparametric Model for Bayesian Reader Identification
	Inducing Domain-Specific Sentiment Lexicons from Unlabeled Corpora
	Attention-based LSTM for Aspect-level Sentiment Classification
	Recursive Neural Conditional Random Fields for Aspect-based Sentiment Analysis
	Extracting Aspect Specific Opinion Expressions
	Emotion Distribution Learning from Texts
	Building an Evaluation Scale using Item Response Theory
	WordRank: Learning Word Embeddings via Robust Ranking
	Exploring Semantic Representation in Brain Activity Using Word Embeddings
	AMR Parsing with an Incremental Joint Model
	Identifying Dogmatism in Social Media: Signals and Models
	Enhanced Personalized Search using Social Data
	Effective Greedy Inference for Graph-based Non-Projective Dependency Parsing
	Generating Abbreviations for Chinese Named Entities Using Recurrent Neural Network with Dynamic Dictionary
	Neural Network for Heterogeneous Annotations
	LAMB: A Good Shepherd of Morphologically Rich Languages
	Fast Coupled Sequence Labeling on Heterogeneous Annotations via Context-aware Pruning
	Unsupervised Neural Dependency Parsing
	Generating Coherent Summaries of Scientific Articles Using Coherence Patterns
	News Stream Summarization using Burst Information Networks
	Rationale-Augmented Convolutional Neural Networks for Text Classification
	Transferring User Interests Across Websites with Unstructured Text for Cold-Start Recommendation
	Speculation and Negation Scope Detection via Convolutional Neural Networks
	Analyzing Linguistic Knowledge in Sequential Model of Sentence
	Keyphrase Extraction Using Deep Recurrent Neural Networks on Twitter
	Solving and Generating Chinese Character Riddles
	Structured prediction models for RNN based sequence labeling in clinical text
	Learning to Represent Review with Tensor Decomposition for Spam Detection
	Stance Detection with Bidirectional Conditional Encoding
	Modeling Skip-Grams for Event Detection with Convolutional Neural Networks
	Porting an Open Information Extraction System from English to German
	Named Entity Recognition for Novel Types by Transfer Learning
	Extracting Subevents via an Effective Two-phase Approach
	Gaussian Visual-Linguistic Embedding for Zero-Shot Recognition
	Question Relevance in VQA: Identifying Non-Visual And False-Premise Questions
	Sort Story: Sorting Jumbled Images and Captions into Stories
	Human Attention in Visual Question Answering: Do Humans and Deep Networks look at the same regions?
	Recurrent Residual Learning for Sequence Classification
	Richer Interpolative Smoothing Based on Modified Kneser-Ney Language Modeling
	A General Regularization Framework for Domain Adaptation
	Coverage Embedding Models for Neural Machine Translation
	Neural Morphological Analysis: Encoding-Decoding Canonical Segments
	Exploiting Mutual Benefits between Syntax and Semantic Roles using Neural Network
	The Effects of Data Size and Frequency Range on Distributional Semantic Models
	Multi-Granularity Chinese Word Embedding
	Numerically Grounded Language Models for Semantic Error Correction
	Towards Semi-Automatic Generation of Proposition Banks for Low-Resource Languages
	A Hierarchical Model of Reviews for Aspect-based Sentiment Analysis
	Are Word Embedding-based Features Useful for Sarcasm Detection?
	Weakly Supervised Tweet Stance Classification by Relational Bootstrapping
	The Gun Violence Database: A new task and data set for NLP
	Fluency detection on communication networks
	Characterizing the Language of Online Communities and its Relation to Community Reception
	Joint Transition-based Dependency Parsing and Disfluency Detection for Automatic Speech Recognition Texts
	Real-Time Speech Emotion and Sentiment Recognition for Interactive Dialogue Systems
	A Neural Network Architecture for Multilingual Punctuation Generation
	Neural Headline Generation on Abstract Meaning Representation
	Robust Gram Embeddings
	SimpleScience: Lexical Simplification of Scientific Terminology
	Automatic Features for Essay Scoring – An Empirical Study
	Semantic Parsing with Semi-Supervised Sequential Autoencoders
	Equation Parsing : Mapping Sentences to Grounded Equations
	Automatic Extraction of Implicit Interpretations from Modal Constructions
	Understanding Negation in Positive Terms Using Syntactic Dependencies
	Demographic Dialectal Variation in Social Media: A Case Study of African-American English
	Understanding Language Preference for Expression of Opinion and Sentiment: What do Hindi-English Speakers do on Twitter?
	Detecting and Characterizing Events
	Convolutional Neural Network Language Models
	Generalizing and Hybridizing Count-based and Neural Language Models
	Reasoning about Pragmatics with Neural Listeners and Speakers
	Generating Topical Poetry
	Deep Reinforcement Learning for Dialogue Generation
	Neural Text Generation from Structured Data with Application to the Biography Domain
	What makes a convincing argument? Empirical analysis and detecting attributes of convincingness in Web argumentation
	Recognizing Implicit Discourse Relations via Repeated Reading: Neural Networks with Multi-Level Attention
	Antecedent Selection for Sluicing: Structure and Content
	Intra-Sentential Subject Zero Anaphora Resolution using Multi-Column Convolutional Neural Network
	An Unsupervised Probability Model for Speech-to-Translation Alignment of Low-Resource Languages
	HUME: Human UCCA-Based Evaluation of Machine Translation
	Improving Multilingual Named Entity Recognition with Wikipedia Entity Type Mapping
	Learning Crosslingual Word Embeddings without Bilingual Corpora
	Sequence-to-Sequence Learning as Beam-Search Optimization
	Online Segment to Segment Neural Transduction
	Sequence-Level Knowledge Distillation
	Controlling Output Length in Neural Encoder-Decoders
	Poet Admits // Mute Cypher: Beam Search to find Mutually Enciphering Poetic Texts
	All Fingers are not Equal: Intensity of References in Scientific Articles
	Improving Users' Demographic Prediction via the Videos They Talk about
	AFET: Automatic Fine-Grained Entity Typing by Hierarchical Partial-Label Embedding
	Mining Inference Formulas by Goal-Directed Random Walks
	Lifted Rule Injection for Relation Embeddings
	Key-Value Memory Networks for Directly Reading Documents
	Analyzing Framing through the Casts of Characters in the News
	The Teams Corpus and Entrainment in Multi-Party Spoken Dialogues
	Personalized Emphasis Framing for Persuasive Message Generation
	Cross Sentence Inference for Process Knowledge
	Toward Socially-Infused Information Extraction: Embedding Authors, Mentions, and Entities
	Phonologically Aware Neural Model for Named Entity Recognition in Low Resource Transfer Settings
	Long-Short Range Context Neural Networks for Language Modeling
	Jointly Learning Grounded Task Structures from Language Instruction and Visual Demonstration
	Resolving Language and Vision Ambiguities Together: Joint Segmentation & Prepositional Attachment Resolution in Captioned Scenes
	Charagram: Embedding Words and Sentences via Character n-grams
	Length bias in Encoder Decoder Models and a Case for Global Conditioning
	Does String-Based Neural MT Learn Source Syntax?
	Exploiting Source-side Monolingual Data in Neural Machine Translation
	Phrase-based Machine Translation is State-of-the-Art for Automatic Grammatical Error Correction
	Incorporating Discrete Translation Lexicons into Neural Machine Translation
	Transfer Learning for Low-Resource Neural Machine Translation
	MixKMeans: Clustering Question-Answer Archives
	It Takes Three to Tango: Triangulation Approach to Answer Ranking in Community Question Answering
	Character-Level Question Answering with Attention
	Learning to Generate Textual Data
	A Theme-Rewriting Approach for Generating Algebra Word Problems
	Context-Sensitive Lexicon Features for Neural Sentiment Analysis
	Event-Driven Emotion Cause Extraction with Corpus Construction
	Neural Sentiment Classification with User and Product Attention
	Cached Long Short-Term Memory Neural Networks for Document-Level Sentiment Classification
	Deep Neural Networks with Massive Learned Knowledge
	De-Conflated Semantic Representations
	Improving Sparse Word Representations with Distributional Inference for Semantic Composition
	Modelling Interaction of Sentence Pair with Coupled-LSTMs
	Universal Decompositional Semantics on Universal Dependencies
	Friends with Motives: Using Text to Infer Influence on SCOTUS
	Verb Phrase Ellipsis Resolution Using Discriminative and Margin-Infused Algorithms
	Distilling an Ensemble of Greedy Dependency Parsers into One MST Parser
	LSTM Shift-Reduce CCG Parsing
	An Evaluation of Parser Robustness for Ungrammatical Sentences
	Neural Shift-Reduce CCG Semantic Parsing
	Syntactic Parsing of Web Queries
	Unsupervised Text Recap Extraction for TV Series
	On- and Off-Topic Classification and Semantic Annotation of User-Generated Software Requirements
	Deceptive Review Spam Detection via Exploiting Task Relatedness and Unlabeled Data
	Regularizing Text Categorization with Clusters of Words
	Deep Reinforcement Learning with a Combinatorial Action Space for Predicting Popular Reddit Threads
	Non-Literal Text Reuse in Historical Texts: An Approach to Identify Reuse Transformations and its Application to Bible Reuse
	A Graph Degeneracy-based Approach to Keyword Extraction
	Predicting the Relative Difficulty of Single Sentences With and Without Surrounding Context
	A Neural Approach to Automated Essay Scoring
	Non-uniform Language Detection in Technical Writing
	Adapting Grammatical Error Correction Based on the Native Language of Writers with Neural Network Joint Models
	Orthographic Syllable as basic unit for SMT between Related Languages
	Neural Generation of Regular Expressions from Natural Language with Minimal Domain Knowledge
	Supervised Keyphrase Extraction as Positive Unlabeled Learning
	Learning to Answer Questions from Wikipedia Infoboxes
	Timeline extraction using distant supervision and joint inference
	Combining Supervised and Unsupervised Enembles for Knowledge Base Population
	Character Sequence Models for Colorful Words
	Analyzing the Behavior of Visual Question Answering Models
	Improving LSTM-based Video Description with Linguistic Knowledge Mined from Text
	Representing Verbs with Rich Contexts: an Evaluation on Verb Similarity
	Speed-Accuracy Tradeoffs in Tagging with Variable-Order CRFs and Structured Sparsity
	Learning Robust Representations of Text
	Modified Dirichlet Distribution: Allowing Negative Parameters to Induce Stronger Sparsity
	Gated Word-Character Recurrent Language Model
	Unsupervised Word Alignment by Agreement Under ITG Constraint
	Training with Exploration Improves a Greedy Stack LSTM Parser
	Capturing Argument Relationship for Chinese Semantic Role Labeling
	BrainBench: A Brain-Image Test Suite for Distributional Semantic Models
	Evaluating Induced CCG Parsers on Grounded Semantic Parsing
	Vector-space models for PPDB paraphrase ranking in context
	Interpreting Neural Networks to Improve Politeness Comprehension
	Does ‘well-being’ translate on Twitter?
	Beyond Canonical Texts: A Computational Analysis of Fanfiction
	Using Syntactic and Semantic Context to Explore Psychodemographic Differences in Self-reference
	Learning to Identify Metaphors from a Corpus of Proverbs
	An Embedding Model for Predicting Roll-Call Votes
	Natural Language Model Re-usability for Scaling to Different Domains
	Leveraging Sentence-level Information with Encoder LSTM for Semantic Slot Filling
	AMR-to-text generation as a Traveling Salesman Problem
	Learning to Capitalize with Character-Level Recurrent Neural Networks: An Empirical Study
	The Effects of the Content of FOMC Communications on US Treasury Rates
	Learning to refine text based recommendations
	There's No Comparison: Reference-less Evaluation Metrics in Grammatical Error Correction
	Cultural Shift or Linguistic Drift? Comparing Two Computational Measures of Semantic Change
	How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation
	Addressee and Response Selection for Multi-Party Conversation
	Nonparametric Bayesian Models for Spoken Language Understanding
	Conditional Generation and Snapshot Learning in Neural Dialogue Systems
	Relations such as Hypernymy: Identifying and Exploiting Hearst Patterns in Distributional Vectors for Lexical Entailment
	SimVerb-3500: A Large-Scale Evaluation Set of Verb Similarity
	POLY: Mining Relational Paraphrases from Multilingual Sentences
	Exploiting Sentence Similarities for Better Alignments
	Bi-directional Attention with Agreement for Dependency Parsing
	Anchoring and Agreement in Syntactic Annotations
	Tense Manages to Predict Implicative Behavior in Verbs
	Who did What: A Large-Scale Person-Centered Cloze Dataset
	Building compositional semantics and higher-order inference system for a wide-coverage Japanese CCG parser
	Learning to Generate Compositional Color Descriptions
	A Decomposable Attention Model for Natural Language Inference
	Deep Reinforcement Learning for Mention-Ranking Coreference Models
	A Stacking Gated Neural Architecture for Implicit Discourse Relation Classification
	Insertion Position Selection Model for Flexible Non-Terminals in Dependency Tree-to-Tree Machine Translation
	Why Neural Translations are the Right Length
	Supervised Attentions for Neural Machine Translation
	Learning principled bilingual mappings of word embeddings while preserving monolingual invariance
	Measuring the behavioral impact of machine translation quality improvements with A/B testing
	Creating a Large Benchmark for Open Information Extraction
	Bilingually-constrained Synthetic Data for Implicit Discourse Relation Recognition
	Transition-Based Dependency Parsing with Heuristic Backtracking
	Word Ordering Without Syntax
	Morphological Segmentation Inside-Out
	Parsing as Language Modeling
	Human-in-the-Loop Parsing
	Unsupervised Timeline Generation for Wikipedia History Articles
	Encoding Temporal Information for Time-Aware Link Prediction
	Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning
	Global Neural CCG Parsing with Optimality Guarantees
	Learning a Lexicon and Translation Model from Phoneme Lattices
	SQuAD: 100,000+ Questions for Machine Comprehension of Text

