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Abstract

Much of what we understand from text is
not explicitly stated. Rather, the reader
uses his/her knowledge to fill in gaps
and create a coherent, mental picture or
“scene” depicting what text appears to
convey. The scene constitutes an under-
standing of the text, and can be used to an-
swer questions that go beyond the text.

Our goal is to answer elementary science
questions, where this requirement is per-
vasive; A question will often give a partial
description of a scene and ask the student
about implicit information. We show that
by using a simple “knowledge graph” rep-
resentation of the question, we can lever-
age several large-scale linguistic resources
to provide missing background knowl-
edge, somewhat alleviating the knowledge
bottleneck in previous approaches. The
coherence of the best resulting scene, built
from a question/answer-candidate pair, re-
flects the confidence that the answer can-
didate is correct, and thus can be used to
answer multiple choice questions. Our ex-
periments show that this approach outper-
forms competitive algorithms on several
datasets tested. The significance of this
work is thus to show that a simple “knowl-
edge graph” representation allows a ver-
sion of “interpretation as scene construc-
tion” to be made viable.

1 Introduction

Elementary grade science tests are challenging as
they test a wide variety of commonsense knowl-
edge that human beings largely take for granted,
yet are very difficult for machines (Clark, 2015).
For example, consider a question from a NY Re-
gents 4th Grade science test:

∗Work was done while the author was an intern at Allen
Institute for Artificial Intelligence.

Question 1 “When a baby shakes a rattle, it
makes a noise. Which form of energy was changed
to sound energy?” [Answer: mechanical energy]

Science questions are typically quite different
from the entity-centric factoid questions exten-
sively studied in the question answering (QA)
community, e.g., “In which year was Bill Clinton
born?” (Ferrucci et al., 2010; Yao and Van Durme,
2014). While factoid questions are usually an-
swerable from text search or fact databases, sci-
ence questions typically require deeper analysis.
A full understanding of the above question in-
volves not just parsing and semantic interpreta-
tion; it involves adding implicit information to cre-
ate an overall picture of the “scene” that the text is
intended to convey, including facts such as: noise
is a kind of sound, the baby is holding the rattle,
shaking involves movement, the rattle is making
the noise, movement involves mechanical energy,
etc. This mental ability to create a scene from par-
tial information is at the heart of natural language
understanding (NLU), which is essential for an-
swering these kinds of question. It is also very dif-
ficult for a machine because it requires substantial
world knowledge, and there are often many ways
a scene can be elaborated.

We present a method for answering multiple-
choice questions that implements a simple ver-
sion of this. A scene is represented as a “knowl-
edge graph” of nodes (words) and relations, and
the scene is elaborated with (node,relation,node)
tuples drawn from three large-scale linguistic
knowledge resources: WordNet (Miller, 1995),
DART (Clark and Harrison, 2009), and the Free-
Association database (Nelson et al., 2004). These
elaborations reflect the mental process of “filling
in the gaps”, and multiple choice questions can
then be answered by finding which answer option
creates the most coherent scene.

The notion of NLU as constructing a most co-
herent scene is not new, and has has been stud-
ied in several contexts including work on scripts
(Schank and Abelson, 1977), interpretation as ab-
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duction (Hobbs et al., 1988; Hobbs, 1979; Ovchin-
nikova et al., 2014), bridging anaphora (Asher and
Lascarides, 1998; Fan et al., 2005), and para-
graph understanding (Zadrozny and Jensen, 1991;
Harabagiu and Moldovan, 1997). These meth-
ods are inspiring, but have previously been limited
by the lack of background knowledge to supply
implicit information, and with the complexity of
their representations. To make progress, we have
chosen to work with a simple “knowledge graph”
representation of nodes (words) and edges (rela-
tions). Although we lose some subtlety of expres-
sion, we gain the ability to leverage several vast
resources of world knowledge to supply implicit
information. The significance of this work is thus
to show that, by working with a simple “knowl-
edge graph” representation, we can make a viable
version of “interpretation as scene construction”.
Although the approach makes several simplifying
assumptions, our experiments show that it outper-
forms competitive algorithms on several datasets
of (real) elementary science questions.

2 Approach
The input to our question-answering system is
a multiple choice question Q, a set of an-
swer options ak, and one or more background
knowledge base(s) each containing a set of
(wordi, relation, wordj) tuples, each denoting
that word1 is plausibly related to wordj by
relation. The output is a ranked list of the K an-
swer options.

We define a scene S as a “knowledge graph”
of nodes (words) and edges (relations between
words), where all (wordi, relation, wordj) edges
are sanctioned by (contained in) at least one of
the background knowledge bases. Each scene
node has an associated measure of coherence (de-
scribed shortly), denoting how well-connected it
is. The question-answering objective is, for each
answer option ak, to find the most coherent scene
containing (at least) the question keywords kwi ∈
Q and answer option ak, and then return the an-
swer option with the overall highest coherence
score. Our implementation approximates this ob-
jective using a simple elaborate-and-prune algo-
rithm, illustrated in Figure 11 and now described.

1The system constructs 4 alternative graphs, each contains
only one answer option plus some additional related nodes.
Figure 1 shows just one of these 4 graphs, namely the graph
containing answer option ”food”.

Figure 1: (1) Question keywords are extracted to
form the initial scene. (2) The scene is elaborated
with background knowledge to add plausible rela-
tionships. (3) For each answer option, it is added
into the scene and connected with additional rela-
tionships. Then the scene is pruned. (4) A score is
derived from the final scene, reflecting confidence
that the answer option is correct.

2.1 Question Analyzer

The initial scene is simply the keywords (non-stop
words) KW = {kwi} in the question Q, along
with a measure of importance IS(kwi) for each
word kwi. For our purposes we compute impor-
tance by sending the question to Google, grouping
the top 20 result snippets into a document d, and
computing:

IS(kw) =
tfd(kw)
dfQ(kw)

, (1)

where tfd(kw) is the term frequency of kw in doc-
ument d, and dfQ(kw) is the document frequency
of kw in question set Q containing all the available
elementary science questions. The intuition here is
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Size
KB (# tuples) Examples
WordNet 235k (dog,isa,animal)

(sunlight,isa,energy)
DART 2.3M (nutrients,in,food)

(animal,eat,food)
FreeAssoc 64k (car,relate to,tire)

(ice,relate to,cold)

Table 1: Knowledge Bases Used

that the words frequently mentioned in variations
of the question should be important (reflected by
”tf”), while the descriptive words (e.g. ”follow-
ing”, ”example”) which are widely used in many
questions should be penalized (reflected by ”idf”).
Other methods could equally be used to compute
importance.

2.2 Builder
In this step our goal is to inject implicit knowl-
edge from the background KBs to form an elab-
orated knowledge graph. To do this, we first
fetch all the triples (kw, relation,w) that are
directly connected with any keyword kw ∈
KW from the background KBs, as well as all
(kwi, relation, kwj) triples between keywords.
In our experiments we use three background
knowledge bases to supply implicit knowledge, al-
though in principle any triple store could be used:
WordNet (Miller, 1995), DART (Clark and Har-
rison, 2009), and the FreeAssociation database
(Nelson et al., 2004). Table 1 shows examples of
each 2.

These triples introduce new nodes w into the
graph. As we may get a large number of such
nodes, we score them and retain only the top scor-
ing ones (and all edges connecting to it). Infor-
mally, a new word w is preferred if it is connected
to many important keywords kw with strong rela-
tionships. Formally, the scoring function is:

score(w) =
∑

kw∈K

IS(kw) ∗ rel(kw, w) (2)

where IS(kw) is the importance score of keyword
kw and rel(kw, w) is the relatedness score be-
tween kw and w. In this work we use the co-
sine similarity between word2vec (Mikolov et al.,
2013) word vectors to measure two words’ related-
ness, as a rough proxy for the strength of related-

2WordNet: all relationships types are used. DART: The
NVN and NPN databases with frequency counts > 10 are
used. FreeAssoc: The top 3 associations per word were used.

ness in the KBs (the KBs themselves do not pro-
vide meaningful strengths of relationship). After
the ranking, the top N ×|KW | neighbor words w
are retained3, along with their edges to keywords
kw and each other.

Note that at this point the elaboration process
is independent of any answer option; rather, the
graph depicts the question scenario.

2.3 Elaborate and Prune

To score the K different answer options, the sys-
tem now builds K alternative elaborations of the
scene so far, each one with answer option ak

added, and assesses the coherence of the addition.
The answer option ak that fits “most coherently”
with the scene is returned as the answer to the
question.

To do this for a given option ak, we add ak to
the graph along with all triples (wi, relation, ak)
in the KBs that relate any node wi in the graph
to ak. Now that the focus ak of the question is
known, some of the earlier added nodes w in the
graph may be only weakly relevant to the question
and answer, and so we add a pruning step to re-
move these nodes. The goal of this pruning is to
find a dense subgraph (i.e. the coherent scene) that
would ideally contain all the question keywords
kw, the answer option ak, and extra words wk that
are highly connected with them.

Inspired by Sozio et al’s work (Sozio and Gio-
nis, 2010) on finding strongly interconnected sub-
groups in social networks, we have developed an
iterative node removal algorithm for extracting
this subgraph. We define the coherence of a node
as the summed weight of its incident edges:

coherence(w) =
∑

w′∈{(w,r,w′)}
rel(w, w′) (3)

where rel(w, w′) is the weight of edge (w, r, w′)
in the graph, again computed using cosine similar-
ity between w and w′. We then iteratively remove
the non-keyword node (and attached edges) with
least coherence until the answer option ak is about
to removed. The resulting graph is thus maximally
pruned, subject to the constraint it must still de-
scribe the question plus answer option.

Finally, we use the coherence of the answer op-
tion ak in this final scene as the confidence that
ak is the correct answer. The system repeats this

3The optimal N (here 6) was selected using an indepen-
dent set of training questions
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for all K answer options and selects the ak with
highest confidence.

3 Evaluation

The system was developed using a dataset of natu-
ral (unedited) elementary science exam questions,
and then tested on three similar, unseen (hidden)
datasets. Its performance was compared with two
other state-of-the-art systems for this task. As our
system only fields questions where the answer op-
tions are all single words, we evaluate it, and the
other systems, only on these subsets. These sub-
sets are in general easier than other questions, but
this advantage is the same for all systems being
compared so it is still a fair test.

3.1 Evaluation Datasets

The datasets used are the non-diagram, multiple-
choice questions with single-word answer options
drawn from the following exams:
• Dev (System Development): New York Re-

gents 4th Grade Science 4 (47 questions in 6
years)
• Test1: New York Regents 4th Grade Science

(23 questions in 3 years)
• Test2: Additional 4th Grade Science (from

multiple States) (26 questions)
• Test3: 5th Grade Science (from multiple

States) (197 questions)
Although these datasets are small (real exam ques-
tions of this type are in limited supply), the num-
bers are large enough to draw conclusions.

3.2 Experiments

We compared our system (called SceneQA) with
two other state-of-the-art systems for this task:

• LSModel (Lexical semantics model): SVM
combination of several language models (likeli-
hood of answer given question) and information
retrieval scores (score of top retrieved sentence
matching question plus answer), trained on a set
of questions plus answers. (An expanded ver-
sion of Section 4.3 of (Jansen et al., 2014))

• A*Rules: “Prove” the answer option from the
question by applying lexical inference rules au-
tomatically extracted from science texts. Select
the option with the strongest “proof”. (Clark et
al., 2014)

4http://www.nysedregents.org/Grade4/Science/home.html

Dev Test1 Test2 Test3
LSModel 65.96 58.70 28.85 30.08
A*Rules 65.96 67.00 47.00 29.22
SceneQA 83.51 66.30 65.38 55.20

Table 2: SceneQA outperforms two competitive
systems on two of the three test sets. The high-
lighted improvements are statistically significant.

The results (% scores, Table 2) show SceneQA
significantly outperforms the two other systems on
two of the three test sets, including the largest
(Test3, 197 questions), suggesting the approach
has merit.

We also performed some case studies to identify
what kinds of questions SceneQA does well on,
relative to the baselines. In general, SceneQA per-
forms well when the question words and the (cor-
rect) answer can be tightly related by background
knowledge, including through intermediate nodes
(words). For example, in Question 2 below:

Question 2 Which type of energy does a person
use to pedal a bicycle? (A) light (B) sound (C)
mechanical (D) electrical

the KB relates the correct answer ”mechanical” to
the question words ”energy”, ”pedal”, ”bicycle”,
and the intermediate node ”power” forming a tight
graph. In contrast, the other algorithms select the
wrong answer ”light” due to frequent mentions of
”bicycle lights” in their supporting text corpora
that confuses their algorithms.

3.3 Ablations
We also performed ablations to assess which parts
of our method are contributing the most:
• -NewNodes: Only add edges but no new nodes

w during the Build step.
• -Prune: Do not prune nodes during the Elabo-

rate and Prune step.
• -Both: No new nodes, no pruning

Dev Test1 Test2 Test3
SceneQA 83.51 66.30 65.38 55.20
-NewNodes 65.96 69.57 42.31 51.78
-Prune 70.74 57.61 47.12 50.13
-Both 59.57 65.22 42.31 50.25

Table 3: SceneQA outperforms all the ablations
on two of the three test sets. The highlighted im-
provements are statistically significant.

The results (% scores, Table 3) suggest that the
two most important algorithmic features - adding
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concepts implied but not explicitly stated in the
text (NewNodes), and later removing implied in-
formation that is of low relevance to the answer
(Prune) - are important for answering the ques-
tions correctly. (The small gain without adding
NewNodes on Test1 is not statistically significant).

3.4 Error Analysis

We also examined cases where SceneQA gave the
wrong answer. Two problems were particularly
common:

(1) There were two answer options with oppo-
site meanings, and one of them was correct. For
example:

Question 3 An animal that has a backbone is
called a(n) (A) invertebrate (B) vertebrate (C) ex-
oskeleton (D) sponge

Since the relatedness measure we use (i.e.
word2vec) cannot distinguish words with similar
distributional semantics (a common property of
antonyms), our method cannot confidently iden-
tify which of the opposites (e.g., here, vertebrate
vs. invertebrate) is correct.

(2) The word ordering in the question is particu-
larly important, e.g., questions about processes or
sequences. For example:

Question 4 The process that changes a gas to liq-
uid is called (A) condensation (B) melting (C)
evaporation (D) vaporization

Because our method ignores word order (the
knowledge graph is initially populated with key-
words in the question), the representation is inher-
ently incapable of capturing sequential informa-
tion (e.g., here, gas to liquid vs. liquid to gas).
As a result, it struggles with such questions.

4 Discussion and Conclusion

Our goal is to answer simple science questions.
Unlike entity-centric factoid QA tasks, science
questions typically involve general concepts, and
answering them requires identifying implicit re-
lationships in the question. Our approach is to
view question-answering as constructing a coher-
ent scene. While the notion of scene construction
is not new, our insight is that this can be done
with a simple “knowledge graph” representation,
allowing several massive background KBs to be
applied, somewhat alleviating the knowledge bot-
tleneck. Our contribution is to show this works
well in the elementary science domain.

Despite this, there are clearly many limitations
with our approach: we are largely ignoring syn-
tactic structure in the questions; the KBs are
noisy, contributing errors to the scenes; the graph
representation has limited expressivity (e.g., no
quantification or negation); the word2vec measure
of relationship strength does not account for the
question context; and contradictions are not de-
tected within the scene. These all contributed to
QA failures in the tests. However, the approach is
appealing as it takes a step towards a richer picture
of language understanding, the empirical results
are encouraging, and there are many ways these
initial limitations can be addressed going forward.
We are confident that this is a rich and exciting
space, worthy of further exploration.
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