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Abstract

Authoring a scientific paper is a complex
process involving many decisions. We in-
troduce a probabilistic model of some of
the important aspects of that process: that
authors have individual preferences, that
writing a paper requires trading off among
the preferences of authors as well as ex-
trinsic rewards in the form of commu-
nity response to their papers, that prefer-
ences (of individuals and the community)
and tradeoffs vary over time. Variants of
our model lead to improved predictive ac-
curacy of citations given texts and texts
given authors. Further, our model’s pos-
terior suggests an interesting relationship
between seniority and author choices.

1 Introduction

Why do we write? As researchers, we write pa-
pers to report new scientific findings, but this is
not the whole story. Authoring a paper involves
a huge amount of decision-making that may be
influenced by factors such as institutional incen-
tives, attention-seeking, and pleasure derived from
research on topics that excite us.

We propose that text collections and associated
metadata can be analyzed to reveal optimizing be-
havior by authors. Specifically, we consider the
ACL Anthology Network Corpus (Radev et al.,
2013), along with author and citation metadata.
Our main contribution is a method that infers two
kinds of quantities about an author: her associ-
ations with interpretable research topics, which
might correspond to relative expertise or merely
to preferences among topics to write about; and
a tradeoff coefficient that estimates the extent to
which she writes papers that will be cited versus
papers close to her preferences.

The method is based on a probabilistic model
that incorporates assumptions about how authors

decide what to write, how joint decisions work
when papers are coauthored, and how individual
and community preferences shift over time. Cen-
tral to our model is a low-dimensional topic rep-
resentation shared by authors (in defining prefer-
ences), papers (i.e., what they are “about”), and
the community as a whole (in responding with ci-
tations). This method can be used to make predic-
tions; empirically, we find that:

1. topics discovered by generative models out-
perform a strong text regression baseline (Yo-
gatama et al., 2011) for citation count predic-
tion;

2. such models do better at that task without mod-
eling author utility as we propose; and

3. the author utility model leads to better pre-
dictive accuracy when answering the question,
“given a set of authors, what are they likely to
write?”

This method can also be used for exploration
and to generate hypotheses. We provide an in-
triguing example relating author tradeoffs to age
within the research community.

2 Notation and Representations

In the following, a document d will be represented
by a vector θd ∈ RK . The dimensions of this vec-
tor might correspond to elements of a vocabulary,
giving a “bag of words” encoding; in this work
they correspond to latent topics.

Document d is assumed to elicit from the scien-
tific community an observable response yd, which
might correspond to the number of citations (or
downloads) of the paper.

Each author a is associated with a vector ηa ∈
RK , with dimensions indexed the same as docu-
ments. Below, we will refer to this vector as a’s
“preferences,” though it is important to remember
that they could also capture an author’s expertise,
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and the model makes no attempt to distinguish be-
tween them. We use “preferences” because it is a
weaker theoretical commitment.

3 Author Utility Model

We describe the components of our model—
author utility (§3.1), coauthorship (§3.2), topics
(§3.3), and temporal dynamics (§3.4)—then give
the full form in §3.5.

3.1 Modeling Utility
Our main assumption about author a is that she is
an optimizer: when writing document d she seeks
to increase the response yd while keeping the con-
tents of d, θd, “close” to her preferences ηa. We
encode her objectives as a utility function to be
maximized with respect to θd:

U(θd) = κayd − 1
2
‖θd − (ηa + εd,a)‖22 (1)

where εd,a is an author-paper-specific idiosyn-
cratic randomness that is unobserved to us but as-
sumed known to the author. (This is a common
assumption in discrete choice models. It is often
called a “random utility model.”)

Notice the tradeoff between maximizing the re-
sponse yd and staying close to one’s preferences.
We capture these competing objectives by formu-
lating the latter as a squared Euclidean distance
between ηa and θd, and encoding the tradeoff
between extrinsic (citation-seeking) and intrinsic
(preference-satisfying) objectives as the (positive)
coefficient κa. If κa is large, a might be un-
derstood as a citation-maximizing agent; if κa is
small, a might appear to care much more about
certain kinds of papers (ηa) than about citation.

This utility function considers only two partic-
ular facets of author writing behavior; it does not
take into account other factors that may contribute
to an author’s objective. For this reason, some care
is required in interpreting quantities like κa. For
example, divergence between a particular ηa and
θd might suggest that a is open to new topics, not
merely hungry for citations. Other motivations,
such as reputation (notoriously difficult to mea-
sure), funding maintenance, and the preferences of
peer referees are not captured in this model. Sim-
ilarly for preferences ηa, a large value in this vec-
tor might reflect a’s skill or the preferences of a’s
sponsors rather than a’s personal interest the topic.

Next, we model the response yd. We assume
that responses are driven largely by topics, with

some noise, so that

yd = β>θd + ξd (2)

where ξd ∼ N (0, 1). Because the community’s
interest in different topics varies over time, β is
given temporal dynamics, discussed in §3.4.

Under this assumption, the author’s expected
utility assuming she is aware of β (often called
“rational expectations” in discrete choice models),
is:

E[U(θd)] = κaβ
>θd− 1

2
‖θd−(ηa+εd,a)‖22 (3)

(This is obtained by plugging the expected value
of yd, from Eq. 2, into Eq. 1.)

An author’s decision will therefore be

θ̂d = arg max
θ

κaβ
>θ− 1

2
‖θ−(ηa+εd,a)‖22 (4)

Optimality implies that θ̂d solves the first-order
equations

κaβj − (θ̂d,j − (ηa,j + εd,a,j)) = 0, ∀1 ≤ j ≤ K
(5)

Eq. 5 highlights the tradeoff the author faces:
when βj > 0, the author will write more on θd,j ,
while straying too far from ηa,j incurs a penalty.

3.2 Modeling Coauthorship
Matters become more complicated when multiple
authors write a paper together. Suppose the docu-
ment d is authored by set of authors ad. We model
the joint expected utility of ad in writing θd as the
average of the group’s utility.1

E[U(θd)] =
1
|ad|

∑
a∈ad

(
κaβ

>θd

−1
2
cd,a‖θd − (ηa + εd,a)‖22

)
(6)

where the “cost” term is scaled by cd,a, denoting
the fractional “contribution” of author a to docu-
ment d. Thus,

∑
a∈ad cd,a = 1, and we treat cd as

a latent categorical distribution to be inferred. The
first-order equation becomes∑

a∈ad
κaβ − cd,a(θd − (ηa + εd,a)) = 0 (7)

1This assumption is a convenient starting place, but we
can imagine revisiting it in future work. For example, an
economist and a linguist with different expertise might de-
rive “utility” from the collaboration that is non-linear in each
one’s individual preferences (Anderson, 2012). Further, con-
tributions by complementary authors are not expected to be
independent of each other.
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3.3 Modeling Document Content

As noted before, there are many possible ways to
represent and model document content θd. We
treat θd as (an encoding of) a mixture of topics.
Following considerable past work, a “topic” is de-
fined as a categorical distribution over observable
tokens (Blei et al., 2003; Hofmann, 1999). Letwd

be the observed bag of tokens constituting docu-
ment d. We assume each token is drawn from a
mixture over topics:

p(wd | θd) =
∑
zd

Nd∏
i=1

p(zd,i | θd)p(wd,i | φzd,i)

where Nd is the number of tokens in document d,
zd,i is the topic assignment for d’s ith token wd,i,
and φ1, . . . ,φK are topic-term distributions. Note
that θd ∈ RK ; we define p(z | θd) as a categorical
draw from the softmax-transformed θd (Blei and
Lafferty, 2007).

Using topic mixtures instead of a bag of words
provides us with a low-dimensional interpretable
representation that is useful for analyzing authors’
behaviors and preferences. Each dimension j of
an author’s preference is grounded in topic j. If
we ignore document responses, this component of
model closely resembles the author-topic model
(Rosen-Zvi et al., 2004), except that we assume
a different prior for the topic mixtures.

3.4 Modeling Temporal Dynamics

Individual preferences shift over time, as do those
of the research community. We extend our model
to allow variation at different timesteps. Let t ∈
〈1, . . . , T 〉 index timesteps (in our experiments,
each t is a calendar year). We let β(t), η(t)

a , and
κ

(t)
a denote the community’s response coefficients,

author a’s preferences, and author a’s tradeoff co-
efficient at timestep t.

Again, we must take care in interpreting these
quantities. Do changes in community interest
drive authors to adjust their preferences or exper-
tise? Or do changing author preferences aggregate
into community-wide shifts? Or do changes in the
economy or funding availability change authors’
tradeoffs? Our model cannot differentiate among
these different causal patterns. Our method is use-
ful for tracking these changes, but it does not pro-
vide an explanation for why they take place.

Modeling the temporal dynamics of a vector-
valued random variable can be accomplished us-

ing a multivariate Gaussian distribution. Follow-
ing Yogatama et al. (2011), we assume the prior
for β(·)

j = 〈β(1)
j , . . . , β

(T )
j 〉 has a tridiagonal pre-

cision matrix Λ(λ, α) ∈ RT×T :

Λ(λ, α) = λ


1 + α −α 0 0 . . .
−α 1 + 2α −α 0 . . .
0 −α 1 + 2α −α . . .
0 0 −α 1 + 2α . . .
...

...
...

...
. . .



The two hyperparameters α and λ capture, respec-
tively, autocorrelation (the tendency of β(t+1)

j to

be similar to β(t)
j ) and overall variance. This ap-

proach to modeling time series allows us to cap-
ture temporal dynamics while sharing statistical
strength of evidence across all time steps.

We use the notation T (λ, α) ≡ N (0,Λ(λ, α))
for this multivariate Gaussian distribution, in-
stances of which are used as priors over response
coefficients β, author preferences ηa, and (trans-
formed) author tradeoffs log κa.

.

Observed evidence
wd,i ith token in document d
V vocabulary size
Nd number of tokens in document d
yd response to document d
A the set of authors
ad set of authors of document d (⊆ A)
T number of timesteps
Dt the set of documents from timestep t
D the set of all documents (=

⋃T
t=1Dt)

Latent variables
β(t) response coefficients at time t (∈ RK )
η

(t)
a author a’s topic preferences at time t

(∈ RK )
κ

(t)
a author a’s tradeoff coefficient at time t

(∈ R≥0)
θd document d topic associations (∈ RK )
cd,a author a contrtibution to document d

(
∑
a∈ad

cd,a = 1)
φk distribution over terms for topic k
zd,i topic assignment of wd,i

Constants and hyperparameters
K number of topics
ρ symmetric Dirichlet hyperparameter

for φk
σ2
c variance hyperparameter for author

contributions cd
{λ(β), α(β)},
{λ(η), α(η)},
{λ(κ), α(κ)}

hyperparameters for priors of β,η,
and log κ respectively

Table 1: Table of notation.
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3.5 Full Model
Table 1 summarizes all of the notation. The log-
likelihood of our model is:

L = log p(β) +
∑
d∈D

log p(cd)

+
∑
d∈D

log p(yd | θd,β) + log p(wd | θd)

+
∑
a∈A

log p(ηa) + log p(κa)

+
∑
d∈D

∑
a∈ad

log p(θd | β,ηa, κa, cd,a) (8)

We adopt a Bayesian approach to parameter esti-
mation. The generative story, including all priors,
is as follows. Recall that T (·, ·) denotes the time
series prior discussed in §3.4. See also the plate
diagram for the graphical model in Fig. 1.

1. For each topic k ∈ {1, . . . ,K}:
(a) Draw response coefficients β

(·)
k ∼

T (λ(β), α(β)) and term distribution φk ∼
Dirichlet(ρ).

(b) For each author a ∈ A, draw pref-
erence strengths for topic k over time,
〈η(1)
a,k, . . . , η

(t)
a,k〉 ∼ T (λ(η), α(η)).

2. For each author a ∈ A, draw (transformed)
tradeoff parameters 〈log κ(1)

a , . . . , log κ(T )
a 〉 ∼

T (λ(κ), α(κ)).
3. For each timestep t ∈ {1, . . . , T}, and each

document d ∈ Dt:
(a) Draw author contributions cd ∼

Softmax(N (0, σ2
c I)). This is known

as a logistic normal distribution (Aitchi-
son, 1986).

(b) Draw d’s topic distributions (this distribu-
tion is discussed further below):

θd ∼ N
 ∑
a∈ad

κ(t)
a β

(t) + cd,aη
(t)
a , ‖cd‖22I


(9)

(c) For each token i ∈ {1, . . . , Nd}, draw
topic zd,i ∼ Categorical(Softmax(θd))
and term wd,i ∼ Categorical(φzd,i).

(d) Draw response yd ∼ N (β(td)>θd, 1
)
;

note that it collapses out ξd, which is
drawn from a standard normal.

Eq. 9 captures the choice by authors ad of a dis-
tribution over topics θd. Assuming that the εd,as
are i.i.d. and Gaussian, from Eq. 7, we get

θd =
∑
a∈ad

κaβ + cd,aηa + cd,aεd,a,

w z θ y

ηφ βκ

c

N

A

D

K A T

Figure 1: Plate diagram for author utility model.
Hyperparameters and edges between consecutive
time steps of β,η and κ are omitted for clarity.

and the linear additive property of Gaussians gives
us

θd ∼ N
(∑
a∈ad

κaβ + cd,aηa, ‖cd‖22I
)

In §3.1 we described a utility function for each
author. The model we are estimating is similar
to those estimated in discrete choice economet-
rics (McFadden, 1974). We assumed that authors
are utility maximizing (optimizing) and that their
optimal topic distribution satisfies the first-order
conditions (Eq. 7). However, we cannot see the
idiosyncratic component, εd,a, which is assumed
to be Gaussian; as noted, this is known as a ran-
dom utility model. Together, these assumptions
give the structure of the distribution over topics
in terms of (estimated) utility, which allows us to
naturally incorporate the utility function into our
probabilistic model in a familiar way (Sim et al.,
2015).

4 Learning and Inference

Exact inference in our model is intractable, so
we resort to an approximate inference technique
based on Monte Carlo EM (Wei and Tanner,
1990). During the E-step, we perform Bayesian
inference over latent parameters (η,κ, z,θ, c,φ)
using a Metropolis-Hastings within Gibbs algo-
rithm (Tierney, 1994), and in the M-step, we
compute maximum a posteriori estimates of β
by directly optimizing the log-likelihood function.
Since we are using conjugate priors for φ, we can
integrate it out. We did not perform Bayesian pos-
terior inference over β because the coupling of β
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would slow mixing of the MCMC chain.

E-step. We sample each η(td)
a , cd, logκ(·)

a , and
θd blockwise using the Metropolis-Hastings algo-
rithm with a multivariate Gaussian proposal distri-
bution, tuning the diagonal covariance matrix to a
target acceptance rate of 15-45% (see appendix §A
for sampling equations).

For z, we integrate out φ and sample each zd,i
directly from

p(zd,i = k | θd,φk) ∝ exp(θd,k)
C−d,ik,wd,i

+ ρ

C−d,ik,· + V ρ

where C−d,ik,w and C−d,ik,· are the number of times
w is associated with topic k, and the number of
tokens associated with topic k respectively.

We run the E-step Gibbs sampler to collect
3,500 samples, discarding the first 500 samples for
burn-in and only saving samples at every third it-
eration.

M-step. We approximate the expectations of our
latent variables using the samples collected dur-
ing the E-step, and directly optimize β(t) using L-
BFGS (Liu and Nocedal, 1989),2 which requires a
gradient. The gradient of the log-likelihood with
respect to β(t)

j is

∂L
∂β

(t)
j

= −2λ(β)β
(t)
j

− 2λ(β)α(β)1{t > 1}(β(t)
j − β(t−1)

j )

− 2λ(β)α(β)1{t < T}(β(t)
j − β(t+1)

j )

+ 2
∑
d∈Dt

θd,j(yd − β(t)
j θd,j)

+ 2
∑
d∈Dt

κ
(t)
d

(
θd,j − κ(t)

d β
(t)
j −

∑
a∈ad

η
(t)
a,j

|ad|

)
(10)

where κ(t)
d = 1

|ad|
∑

a∈ad κ
(t)
a .

We ran L-BFGS until convergence3 and slice
sampled the hyperparameters λ(η), α(η), λ(κ), α(κ)

(with vague priors) at the end of the M-step. We
fix the symmetric Dirichlet hyperparameter ρ =
1/V , and tuned λ(β), α(β) on a held-out develope-
ment dataset by grid search over {0.01, 0.1, 1, 10}.

2We used libLBFGS, an open source C++ implementation
(https://github.com/chokkan/liblbfgs).

3Relative tolerance of 10−4.

During initialization, we randomly set the topic as-
signments, while the other latent parameters are
set to 0. We ran the model for 10 EM iterations.

Inference. During inference, we fix the model
parameters and only sample (θ, z) for each doc-
ument. As in the E-step, we discard the first 500
samples, and save samples at every third iteration,
until we have 500 posterior samples. In our ex-
periments, we found the posterior samples to be
reasonably stable after the initial burn in.

5 Experiments

Data. The ACL Anthology Network Corpus
contains 21,212 papers published in the field of
computational linguistics between 1965 and 2013
and written by 17,792 authors. Additionally, the
corpus provides metadata such as authors, venue
and in-community citation networks. For our ex-
periments, we focused on conference papers pub-
lished between 1980 and 2010.4 We tokenized the
texts, tagged the tokens using the Stanford POS
tagger (Toutanova et al., 2003), and extracted n-
grams with tags that follow the simple (but effec-
tive) pattern of (Adj|Noun)∗ Noun (Justeson
and Katz, 1995), representing the dth document
as a bag of phrases (wd). Note that phrases can
also be unigrams. We pruned phrases that appear
in < 1% or > 95% of the documents, obtaining
a vocabulary of V = 6,868 types. The pruned
corpus contains 5,498 documents and 2,643,946
phrase tokens written by 5,575 authors. We let re-
sponses

yd = log(1 + # of incoming citations in 3 years)

For our experiments, we used 3 different ran-
dom splits of our data (70% train, 20% test, and
10% development) and averaged quantities of in-
terest. Furthermore, we remove an author from a
paper in the development or test set if we have not
seen him before in the training data.

5.1 Examples of Authors and Topics

Table 2 illustrates ten manually selected topics
(out of 64) learned by the author utility model.
Each topic is labeled with the top 10 words most
likely to be generated conditioned on the topic

4The conferences we included are: ACL, CoNLL, EACL,
EMNLP, HLT, and NAACL. We ignored journal papers, as
well as workshop papers, since they are characteristically dif-
ferent from conference papers.
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(φk). For each topic, we compute an author’s topic
preference score:

TPS(a, k) = η
(td)
a,k

∑
d∈Da

[Softmax(θd)]k × yd

where Softmax(x) = exp(x)∑
i exp(xi)

. The TPS scales
the author’s η preferences by the relative num-
ber of citations that the author received for the
topic. This way, we can account for different
ηs over time, and reduce variance due to authors
who publish less frequently.5 For each topic, the
five authors with the highest TPS are displayed
in the rightmost column of Table 2. These top-
ics were among the roughly one third (out of 64)
that seemed to coherently map to research topics
within NLP. Some others corresponded to parts of
a paper (e.g., explaining notation and formulae,
experiments) or to stylistic groups (e.g., “ratio-
nal words” including rather, fact, clearly, argue,
clear, perhaps). Others were not interpretable to
us.

5.2 Predicting Responses

We compare against two baselines for predicting
in-community citations. Yogatama et al. (2011) is
a strong baseline for predicting responses; they in-
corporated n-gram features and metadata features
in a generalized linear model with the time series
prior discussed in §3.4.6 We also compare against
a version of our model without the author utility
component. This equates to replacing Yogatama
et al.’s features with LDA topic mixtures, and per-
forming joint learning of the topics and citations;
we therefore call it “TimeLDA.” Without the time
series component, TimeLDA would instantiate su-
pervised LDA (McAuliffe and Blei, 2008). Fig-
ure 2 shows the mean absolute error (MAE) for
the three models.

With sufficiently many topics (K ≥ 16), topic
representations achieve lower error than surface
features. Removing the author utility component
from our model leads to better predictive perfor-
mance. This is unsurprising, since our model
forces β to explain both the responses (what is

5The TPS is only a measure of an author’s propensity to
write papers in a specific topic area and is not meant to be
a measure of an author’s reputation in a particular research
sub-field.

6For the ACL dataset, Yogatama et al. (2011)’s model
predicts whether a paper will receive at least 1 citation
within three years, while here, we train it to predict log(1 +
#citations) instead.

8 16 32 64 1282.6

2.8

3.0

3.2

3.4

Yogatama et al (2011)

TimeLDA

Author utility

Figure 2: Mean absolute error (in citation counts)
for predicted citation counts (y-axis) against the
number of topics K (x-axis). Errors are in ac-
tual citation counts, while the models are trained
with log counts. TimeLDA significantly outper-
forms Yogatama et al. (2011) for K ≥ 64 (paired
t-test, p < 0.01), while the differences between
Yogatama et al. (2011) and author utility are not
significant. The MAE is calculated over 3 random
splits of the data with 809, 812, and 811 docu-
ments in the test set respectively.

evaluated here) and the divergence between author
preferences ηa and what is actually written. The
utility model is nonetheless competitive with the
Yogatama et al. baseline.

5.3 Predicting Words
“Given a set of authors, what are they likely to
write?” — we use perplexity as a proxy to mea-
sure the content predictive ability of our model.
Perplexity on a test set is commonly used to quan-
tify the generalization ability of probabilistic mod-
els and make comparisons among models over the
same observation space. For a document wd writ-
ten by authors ad, perplexity is defined as

perplexity(wd | ad) = exp
(
− log p(wd | ad)

Nd

)
and a lower perplexity indicates better generaliza-
tion performance. Using S samples from the in-
ference step, we can compute

p(wd | ad) =
1
S

S∑
s=1

Nd∏
i=1

1
|ad|

∑
a∈ad,k

θsd,kφ
s
k,wdi

where θs is the sth sample of θ, and φs is the
topic-word distribution estimated from the sth
sample of z.

We compared the Author-Topic model of
Rosen-Zvi et al. (2004). The AT model is simi-
lar to setting κa = 0 for all authors, cd = 1

|ad| ,
and using a Dirichlet prior instead of logistic nor-
mal on ηa. Figure 3 present the perplexity of these
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Topic Top words Authors
“MT” alignment, translation, align, decode, phrase, och,

bleu, ney, bleu score, target language
Philipp Koehn, Chris Dyer, Qun Liu, Hermann
Ney, David Chiang

“Empirical
methods”

model, parameter, learn, iteration, maximize, prior,
initialize, distribution, weight, crf

Noah Smith, Dan Klein, Percy Liang, John DeN-
ero, Andrew McCallum

“Parsing” parse, sentence, parser, accuracy, collins, depen-
dency, tree, parse tree, head, charniak

Michael Collins, Joakim Nivre, Jens Nilsson, Dan
Klein, Ryan McDonald

“Dialogue
systems”

speak, speech, utterance, user, speaker, dialogue
system, turn, act, recognition, transcription

Diane Litman, Marilyn Walker, Julia Hirschberg,
Oliver Lemon, Amanda Stent

“NER” name, entity, identify, person, location, list, organi-
zation, system, entity recognition, mention

Jenny Rose Finkel, Satoshi Sekine, Rion Snow,
Christopher Manning, Abraham Ittycheriah

“Semantics” argument, verb, predicate, syntactic, relation, se-
mantic role, annotated, frame, assign

Martha Palmer, Alessandro Moschitti, Daniel Ju-
rafsky, Sanda Harabagiu, Mirella Lapata

“Lexical
semantics”

wordnet, noun, sense, concept, context, sens, rela-
tion, meaning, pair, disambiguate

Rion Snow, Rob Koeling, Eneko Agirre, Ido Da-
gan, Patrick Pantel

“Tagging &
chunking”

method, sentence, propose, japanese, noun phrase,
extract, table, analyze, precision, technology

Yuji Matsumoto, Hitoshi Isahara, Junichi Tsujii,
Sadao Kurohashi, Kentaro Torisawa

“Coreference” mention, instance, create, approach, report, due,
text, pair, exist, system

Vincent Ng, Aria Haghighi, Xiaofeng Yang, Claire
Cardie, Pascal Denis

“Sentiment
classification”

classify, label, accuracy, positive, classification, an-
notated, annotator, classifier, review, negative

Janyce Wiebe, Soo Min Kim, Eduard Hovy, Car-
men Banea, Ryan McDonald

Table 2: Top words from selected topics and authors with preferences in those topics. We manually
labeled each of these topics.

8 16 32 64 128

1.8

2.2

2.6

3.0 Author-Topic
Author utility (-Time)
Author utility

Figure 3: Held-out perplexity (×103, y-axis) with
varying number of topics K (x-axis). The differ-
ences are significant between all models at K ≥
64 (paired t-test, p < 0.01). There are 523,381,
529,397, 533,792 phrase tokens in the random test
sets.

models at different values of K. We include a ver-
sion of our author utility model that ignores tem-
poral information (“–time”), i.e., setting T = 1
and collapsing all timesteps. We find that perplex-
ity improves with the addition of the utility model
as well as the temporal dynamics.

5.4 Exploration: Tradeoffs and Seniority

Recall that κa encodes author a’s tradeoff between
increasing citations (high κa) and writing papers
on topics a prefers (low κa). We do not claim
that individual κa values consistently represent
authors’ tradeoffs between citations and writing
about preferred topics. We have noted a number
of potentially confounding factors that affect au-
thors’ choices, for which our data do not allow us
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Figure 4: Plot of authors’ median κ (blue,
solid) and mean citation counts (magenta, dashed)
against their academic age in this dataset (see text
for explanation).

to control.
However, in aggregate, κa values can be ex-

plored in relation to other quantities. Given our
model’s posterior, one question we can ask is:
do an author’s tradeoffs tend to change over the
course of her career? In Figure 4, we plot the me-
dian of κ (and 95% credible intervals) for authors
at different “ages.” Here, “age” is defined as the
number of years since an author’s first publication
in this dataset.7

A general trend over the long term is observed:
researchers appear to move from higher to lower
κa. Statistically, there is significant dependence
between κ of an author and her age; the Spear-
man’s rank correlation coefficient is ρ = −0.870
with p-value < 10−5. This finding is consis-

7This means that larger ages correspond to seniority, but
smaller ages are a blend of junior researchers and researchers
of any seniority new to this publication community.
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tent with the idea that greater seniority brings
increased and more stable resources and greater
freedom to pursue idiosyncratic interests with less
concern about extrinsic payoff. It is also consistent
with decreased flexibility or openness to shifting
topics over time.

To illustrate the importance of our model in
making these observations, we also plot the mean
number of citations per paper published (across
all authors) against their academic age (magenta
lines). There is no clear statistical trend between
the two variables (ρ = −0.017). This suggests
that through κ, our model is able to pick up evi-
dence of author’s optimizing behaviors, which is
not possible using simple citation counts.

There is a noticeable effect during years 5–10,
in which κ tends to rise by around 40% and then
fall back. (Note that the model maintains consider-
able uncertainty—wider intervals—about this ef-
fect.) Recall that, for a researcher trained within
the field and whose primary publication venue is
in the ACL community, our measure of age cor-
responds roughly to academic age. Years 5–10
would correspond to the later part of a Ph.D. pro-
gram and early postgraduate life, when many re-
searchers begin faculty careers. Insofar as it re-
flects a true effect, this rise and fall suggests a
stage during which a researcher focuses more on
writing papers that will attract citations. How-
ever, more in-depth study based on data that is not
merely observational is required to quantify this
effect and, if it persists under scrutiny, determine
its cause.

The effect in year 24 of mean citations per paper
(magenta line) can be attributed to well cited pa-
pers co-authored by senior researchers in the field
who published very few papers in their 24th year.
Since there are relatively few authors in the dataset
at that academic age, there is more variance in
mean citations counts.

6 Related Work

Previous work on modeling author interests
mostly focused on characterizing authors by their
style (Holmes and Forsyth, 1995, inter alia),8

through latent topic mixtures of documents they
have co-authored (Rosen-Zvi et al., 2004) and
their collaboration networks (Johri et al., 2011).

8A closely related problem is that of authorship attribu-
tion. There has been extensive research on authorship attri-
bution focusing mainly on learning “stylometric” features of
authors; see Stamatatos (2009) for a detailed review.

Like our paper, the latter two are based on topic
models, which have been popular for modeling the
content of scientific articles. For instance, Gerrish
and Blei (2010) measured scholarly impact using
dynamic topic models, while Hall et al. (2008) an-
alyzed the output of topic models to study the “his-
tory of ideas.”

Predicting responses to scientific articles was
explored in two shared tasks at KDD Cup 2003
(Brank and Leskovec, 2003; McGovern et al.,
2003) and by Yogatama et al. (2011), which served
as a baseline for our experiments and whose time-
series prior we used in our model. Furthermore,
there has been considerable research using topic
models to predict (or recommend) citations (in-
stead of aggregate counts), such as modeling link
probabilities within the LDA framework (Cohn
and Hofmann, 2000; Erosheva et al., 2004; Nal-
lapati and Cohen, 2008; Kataria et al., 2010; Zhu
et al., 2013) and augmenting topics with discrimi-
native author features (Liu et al., 2009; Tanner and
Charniak, 2015).

We modeled both interests of authors and re-
sponses to their articles jointly, by assuming
authors’ text production is an expected utility-
maximizing decision. This approach is similar
to our earlier work (Sim et al., 2015), where au-
thors are rational agents writing texts to maximize
the chance of a favorable decision by a judicial
court. In that study, we did not consider the unique
preferences of each decision making agent, nor
the extrinsic-intrinsic reward tradeoffs that these
agents face when authoring a document.

Our utility model can also be viewed as a form
of natural language generator, where we take into
account the context of an author (i.e., his prefer-
ences, the tradeoff coefficient, and what is popu-
lar) to generate his document. This is related to
natural language pragmatics, where text is influ-
enced by context.9 Hovy (1990) approached the
problem of generating text under pragmatic cir-
cumstances from a planning and goal-orientation
perspective, while Vogel et al. (2013) used multi-
agent decision-theoretic models to show cooper-
ative pragmatic behavior. Vogel et al.’s models
suggest an interesting extension of ours for future
work: modeling cooperation among co-authors
and, perhaps, in the larger scientific discourse.

9The β vectors can be seen as a naı̈ve representation of
world knowledge that motivates an author to select content
that reflects his behavioral preferences and intentions.
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7 Conclusions

We presented a model of scientific authorship in
which authors trade off between seeking citation
by others and staying true to their individual pref-
erences among research topics. We find that topic
modeling improves over state-of-the-art text re-
gression models for predicting citation counts, and
that the author utility model generalizes better than
simpler models when predicting what a particular
group of authors will write. Inspecting our model
suggests interesting patterns in behavior across a
researcher’s career.
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A Appendix: Sampling equations

We sample each ηa,j , for j = 1 . . .K, and
κa blockwise across time steps using Metropolis-
Hastings algorithm with a multivariate Gaussian
proposal distribution and likelihood:

p(ηa,j | η−(a,j),θ, c,κ,β,Λ
(η))

∝ exp
(
−1

2
ηa,jΛ(η)η>a,j

−
∑
t∈T
d∈Dt

(
θd,j −

∑
a′∈ad κ

(t)
a′ β

(t)
j + cd,a′η

(t)
a′,j

)2

2‖cd‖22



p(κa | κ−(a),θ, c,η,β,Λ
(κ))

∝ exp
(
−1

2
log(κa)Λ(κ) log(κ>a )

−
∑
t∈T
d∈Dt

‖θd −
∑

a′∈ad κ
(t)
a′ β

(t) + cd,a′η
(t)
a′ ‖22

2‖cd‖22


Λ(η) and Λ(κ) are shorthands for the precision ma-
trices Λ(λ(η), α(η)) and Λ(λ(κ), α(κ)) respectively.
Likewise, θd is sampled blockwise for each docu-
ment with a multivariate Gaussian distribution and

likelihood:

p(θd | cd,η,κ,β)

∝ exp

(
−(yd − β(td)>θd)2

2

− ‖θd −
∑

a∈ad κ
(td)
a β(td) + cd,aη

(td)
a ‖22

2‖cd‖22

)
For cd, we first sampled each cd from a multivari-
ate Gaussian distribution, and applied a logistic
transformation to map it onto the simplex. The
likelihood for cd is:

p(cd | θd,η,κ,β)

∝ exp

(
− 1

2σ2
c

∥∥∥∥log
(

cd
cd,|ad|

)∥∥∥∥2

2

− ‖θd −
∑

a∈ad κ
(td)
a β(td) + cd,aη

(td)
a ‖22

2‖cd‖22

)
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