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Abstract

In order to reduce noise in training data,
most natural language crowdsourcing an-
notation tasks gather redundant labels and
aggregate them into an integrated label,
which is provided to the classifier. How-
ever, aggregation discards potentially use-
ful information from linguistically am-
biguous instances.

For five natural language tasks, we pass
item agreement on to the task classifier
via soft labeling and low-agreement filter-
ing of the training dataset. We find a sta-
tistically significant benefit from low item
agreement training filtering in four of our
five tasks, and no systematic benefit from
soft labeling.

1 Introduction

Crowdsourcing is a cheap and increasingly-
utilized source of annotation labels. In a typical
annotation task, five or ten labels are collected for
an instance, and are aggregated together into an
integrated label. The high number of labels is
used to compensate for worker bias, task misun-
derstanding, lack of interest, incompetance, and
malicious intent (Wauthier and Jordan, 2011).

Majority voting for label aggregation has been
found effective in filtering noisy labels (Nowak
and Rüger, 2010). Labels can be aggregated un-
der weighted conditions reflecting the reliability
of the annotator (Whitehill et al., 2009; Welinder
et al., 2010). Certain classifiers are also robust
to random (unbiased) label noise (Tibshirani and
Manning, 2014; Beigman and Beigman Klebanov,
2009). However, minority label information is dis-
carded by aggregation, and when the labels were

gathered under controlled circumstances, these la-
bels may reflect linguistic intuition and contain
useful information (Plank et al., 2014b). Two al-
ternative strategies that allow the classifier to learn
from the item agreement include training instance
filtering and soft labeling. Filtering training in-
stances by item agreement removes low agree-
ment instances from the training set. Soft labeling
assigns a classifier weight to a training instance
based on the item agreement.

Consider two Affect Recognition instances and
their Krippendorff (1970)’s α item agreement :

Text: India’s Taj Mahal gets facelift
Sadness Rating (0-100): 8.0
α Agreement (-1.0 – 1.0): 0.7

Figure 1: Affect Recognition Easy Case.

Text: After Iraq trip, Clinton proposes war limits
Sadness Rating (0-100): 12.5
α Agreement (-1.0 – 1.0): -0.1

Figure 2: Affect Recognition Hard Case.

In Figure 1, annotators mostly agreed that the
headline expresses little sadness. But in Figure 2,
the low item agreement may be caused by instance
difficulty (i.e., Is a war zone sad or just bad?):
a Hard Case (Zeman, 2010). Previous work
(Beigman Klebanov and Beigman, 2014; Beigman
and Beigman Klebanov, 2009) has shown that
training strategy may affect Hard and Easy Case
test instances differently.

In this work, for five natural language tasks,
we examine the impact of passing crowdsource
item agreement on to the task classifier, by means
of training instance filtering and soft labeling.
We construct classifiers for Biased Text Detec-
tion, Stemming Classification, Recognizing Tex-
tual Entailment, Twitter POS Tagging, and Affect
Recognition, and evaluate the effect of our dif-
ferent training strategies on the accuracy of each
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task. These tasks represent a wide range of ma-
chine learning tasks typical in NLP: sentence-level
SVM regression using n-grams; word pairs with
character-based features and binary SVM classi-
fication; pairwise sentence binary SVM classi-
fication with similarity score features; CRF se-
quence word classification with a range of fea-
ture types; and sentence-level regression using a
token-weight averaging, respectively. We use pre-
existing, freely-available crowdsourced datasets
and post all our experiment code on GitHub1.

Contributions This is the first work (1) to ap-
ply item-agreement-weighted soft labeling from
crowdsourced labels to multiple real natural lan-
guage tasks; (2) to filter training instances by item
agreement from crowdsourced labels, for multiple
natural language tasks; (3) to evaluate classifier
performance on high item agreement (Easy Case)
instances and low item agreement (Hard Case) in-
stances across multiple natural language tasks.

2 Related Work

Dekel and Shamir (2009) calculated integrated
labels for an information retrieval crowdsourced
dataset, and identified low-quality workers by de-
viation from the integrated label. Removal of
these workers’ labels improved classifier perfor-
mance on data that was not similarly filtered.
While much work (Dawid and Skene, 1979;
Ipeirotis et al., 2010; Dalvi et al., 2013) has ex-
plored techniques to model worker ability, bias,
and instance difficulty while aggregating labels,
there is no evaluation comparing classifiers trained
on the new integrated labels with other options, on
their respective NLP tasks.

Training instance filtering aims to remove mis-
labeled instances from the training dataset. Scul-
ley and Cormack (2008) learned a logistic regres-
sion classifier to identify and filter noisy labels in
a spam email filtering task. They also proposed
a label correcting technique that replaces identi-
fied noisy labels with “corrected” labels, at the risk
of introducing noise into the corpus. Rebbapra-
gada et al. (2009) developed a label noise detection
technique to cluster training instances and remove
label outliers. Raykar et al. (2010) jointly learned
a classifier/regressor, annotator accuracy, and the
integrated label on datasets with multiple noisy la-
bels, outperforming Smyth et al. (1995)’s model

1github.com/EmilyKJamison/crowdsourcing

of estimating ground truth labels.
Soft labeling, or the association of one train-

ing instance with multiple, weighted, conflict-
ing labels, is a technique to model noisy training
data. Thiel (2008) found that soft labeled train-
ing data produced more accurate classifiers than
hard labeled training data, with both Radial Ba-
sis Function Networks and Fuzzy-Input Fuzzy-
Output SVMs. Shen and Lapata (2007) used soft
labeling to model their semantic frame structures
in a question answering task, to represent that the
semantic frames can bear multiple sematic roles.

Previous research has found that, for a few in-
dividual NLP tasks, training while incorporating
label noise weight may produce a better model.
Martı́nez Alonso et al. (2015) show that inform-
ing a parser of annotator disagreement via loss
function reduced error in labeled attachments by
6.4%. Plank et al. (2014a) incorporate annota-
tor disagreement in POS tags into the loss func-
tion of a POS-tag machine learner, resulting in
improved performance on downstream chunking.
Beigman Klebanov and Beigman (2014) observed
that, on a task classifying text as semantically old
or new, the inclusion of Hard Cases in training
data resulted in reduced classifier performance on
Easy Cases.

3 Overview of Experiments

We built systems for the five NLP tasks, and
trained them using aggregation, soft labeling, and
instance screening strategies. When labels were
numeric, the integrated label was the average2.
When labels were nominal, the integrated label
was majority vote. Krippendorff (1970)’s α item
agreement was used to filter ambiguous train-
ing instances. For soft labeling, percentage item
agreement was used to assign instance weights.
We followed Sheng et al. (2008)’s suggested Mul-
tiplied Examples procedure: for each unlabeled in-
stance xi and each existing label yi ∈ Li = {yij}
(as annotated by worker j), we create one replica
of xi, assign it yi, and weight the instance accord-
ing to the count of yi in Li (i.e., the percentage
item agrement). For each training strategy (Soft-
Label, etc), the training instances were changed
by the strategy, but the test instances were unaf-
fected. For the division of test instances into Hard

2We followed Yano et al. (2010) and Strapparava and Mi-
halcea (2007) in using mean as gold standard. Although an-
other aggregation such as as median might be more represen-
tative, such discussion is beyond the scope of this paper.
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and Easy Cases, the training instances were un-
affected, but the test instances were filtered by α
item agreement. Hard/Easy Case parameters were
chosen to divide the corpus by item agreement into
roughly equal portions3, relative to the corpus, for
post-hoc error analysis.

All systems except Affect Recognition were
constructed using DKPro Text Classification
(Daxenberger et al., 2014), and used Weka’s SMO
(Platt, 1999) or SMOreg (Shevade et al., 2000) im-
plementations with default parameters, with 10-
fold (or 5-fold, for computationally-intensive POS
Tagging) cross-validation. More details are avail-
able in the Supplemental Notes document.

Agreement Parameters Training strategies
HighAgree and VeryHigh utilize agreement cutoff
parameters that vary per corpus. These strategies
are a discretized approximation of the gradual
effect of filtering low agreement instances from
the training data. For any given corpus, we could
not use a cutoff value equal to no filtering, or
that eliminated a class. If there were only 2
remaining cutoffs, we used these. If there were
more candidate cutoff values, we trained and
evaluated a classifier on a development set and
chose the value for HighAgree that maximized
Hard Case performance on the development set.

Percentage Agreement In this paper, we follow
Beigman Klebanov and Beigman (2014) in us-
ing the nominal agreement categories Hard Cases
and Easy Cases to separate instances by item
agreement. However, unlike Beigman Klebanov
and Beigman (2014) who use simple percentage
agreement, we calculate item-specific agreement
via Krippendorff (1970)’s α item agreement4, with
Nominal, Ordinal, or Ratio distance metrics as ap-
propriate. The agreement is expressed in the range
(-1.0 – 1.0); 1.0 is perfect agreement.

3.1 Biased Language Detection
This task detects the use of bias in political text.
The corpus (Yano et al., 2010)5 consists of 1,041
sentences from American political blogs. For each
sentence, five crowdsource annotators chose a la-
bel no bias, some bias, and very biased. We follow
Yano et al. (2010) in representing the amount of
bias on a numerical scale (1-3). Hard/Easy Case

3Limited by the discrete nature of our agreement.
4From the DKPro Statistics library (Meyer et al., 2014)
5Available at sites.google.com/site/

amtworkshop2010/data-1

cutoffs were <-.21 and >.20. Of 1041 total in-
stances, 161 were Hard Cases (<-.21) and 499
were Easy Cases (>.20).

We built an SVM regression task using uni-
grams, to predict the numerical amount of bias.
The gold standard was the integrated labels. Item-
specific agreement was calculated with Ordinal
Distance Function (Krippendorff, 1980).

We used the following training strategies:
VeryHigh Filtered for agreement >0.4.
HighAgree Filtered for agreement >-0.2.
SoftLabel One training instance is generated for
each label from a text, and weighted by how many
times that label occurred with the text.
SLLimited SoftLabel, except that training in-
stances with a label distance >1.0 from the origi-
nal text label average are discarded.

3.2 Morphological Stemming

The goal of this binary classification task is to pre-
dict, given an original word and a stemmed ver-
sion of the word, whether the stemmed version
has been correctly stemmed. The word pair was
correct if: the stemmed word contained one less
affix; or if the original word was a compound,
the stemmed word had a space inserted between
the components; or if the original word was mis-
spelled, the stemmed word was deleted; or if the
original word had no affixes and was not a com-
pound and was not misspelled, then the stemmed
word had no changes.

This dataset was compiled by Carpenter et al.
(2009)6. The dataset contains 6679 word pairs;
most pairs have 5 labels each. In the cross-
validation division, no pairs with the same original
word could be split across training and test data.
The gold standard was the integrated label, with
4898 positive and 1781 negative pairs. Hard/Easy
Case cutoffs were <-.5 and >.5. Of 6679 total
instances, 822 were Hard Cases (<-.5) and 3615
were Easy Cases (>.5). Features used are combi-
nations of the characters after the removal of the
longest common substring between the word pair,
including 0-2 additional characters from the sub-
string; word boundaries are marked.

Stemming-new training strategies include:
HighAgree Filtered for agreement >-0.1.
SLLimited MajVote with instances weighted by
the frequency of the label for the text pair.

6Available at github.com/bob-carpenter/anno
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3.3 Recognising Textual Entailment
Recognizing textual entailment is the process of
determining if, given two sentences text and hy-
pothesis, the meaning of the hypothesis can be in-
ferred from the text.

We used the dataset from the PASCAL RTE-1,
which contains 800 sentence pairs. The crowd-
source annotations of 10 labels per pair were ob-
tained by Snow et al. (2008)7. We reproduced the
basic system described in (Dagan et al., 2006) of
TF-IDF weighted Cosine Similarity between lem-
mas of the text and hypothesis. The weight of each
wordi in documentj , n total documents, is the
log-plus-one termi frequency normalized by raw
termi document frequency, with Euclidean nor-
malization.

weight(i, j) =
{

(1 + log(tfi,j)) N
dfi

if tfi,j ≥ 1
0 if tfi,j = 0

Additionally, we used features including the dif-
ference in noun chunk character and token length,
the difference in number of tokens, shared named
entities, and subtask names. The gold standard
was the original labels from Dagan et al. (2006).
Hard/Easy Case cutoffs were<0.0 and>.3. Train-
ing strategies are from Biased Language (Very-
High) and Stem (others) experiments, except the
HighAgree cutoff was 0.0 and the VeryHigh cutoff
was 0.3. Of 800 total instances, 230 were Hard
Cases (<0.0) and 207 were Easy Cases (>.30).

3.4 POS tagging
We built a POS-tagger for Twitter posts. We used
the training section of the dataset from Gimpel et
al. (2011). The POS tagset was the universal tag
set (Petrov et al., 2012); we converted Gimpel et
al. (2011)’s tags to the universal tagset using Hovy
et al. (2014)’s mapping. Crowdsource labels for
this data came from Hovy et al. (2014)8, who ob-
tained 5 labels for each tweet. After aligning and
cleaning, our dataset consisted of 953 tweets of
14,439 tokens.

We followed Hovy et al. (2014) in constructing
a CRF classifier (Lafferty et al., 2001), using a list
of English affixes, Hovy et al. (2014)’s set of or-
thographic features, and word clusters (Owoputi
et al., 2013). In the cross-validation division, in-
dividual tweets were assigned to folds. The gold
standard was the integrated label. Hard/Easy Case

7Available at sites.google.com/site/
nlpannotations/

8Available at lowlands.ku.dk/results/

cutoffs were <0.0 and >.49. Of 14,439 tokens,
649 were Hard Cases (<0.0) and 10830 were Easy
Cases (>.49).

We used the following strategies:
VeryHigh For each token t in sequence s where
agreement(t)<0.5, s is broken into two separate
sequences s1 and s2 and t is deleted (i.e. filtered).
HighAgree VeryHigh with agreement <0.2.
SoftLabel For each proto-sequence s, we generate
5 sequences {s0, s1, ..., si}, in which each token t
is assigned a crowdsource label drawn at random:
lt,si ∈ Lt.
SLLimited, Each token t in sequence s is assigned
its MajVote label. Then s is given a weight repre-
senting the average item agreement for all t ∈ s.
3.5 Affect Recognition

Our Affect Recognition experiments are based on
the affective text annotation task in Strapparava
and Mihalcea (2007), using the Sadness dataset.
Each headline is rated for “sadness” using a scale
of 0-100. Examples are in Figures 1 and 2.
We use the crowdsourced annotation for a 100-
headline sample of this dataset provided by Snow
et al. (2008)9, with 10 annotations per emotion per
headline. Of 100 total instances, 20 were Hard
Cases (<0.0) and 49 were Easy Cases (>.30).

Our system design is identical to Snow et al.
(2008), which is similar to the SWAT system (Katz
et al., 2007), a top-performing system on the Se-
mEval Affective Text task. Hard/Easy Case cut-
offs were <0.0 and >.3.
Training strategies are the same as for the Biased
Language experiments, except:
VeryHigh Filtered for agreement >0.3.
HighAgree Filtered for agreement >0.
SLLimited SoftLabel, except that instances with
a label distance >20.0 from the original label av-
erage are discarded.

4 Results

Our results on all five tasks, using each of the
training strategies and variously evaluating on all,
Easy, or Hard Cases, can be seen in Table 1.
Systems outputing numeric values show results in
Pearson correlation, and systems outputing nomi-
nal labels show micro F1. Soft labeling (SoftLa-
bel) failed to outperform integrated labels for 4
of the 5 complete test sets. Likewise, SLLimited

9Available at sites.google.com/site/
nlpannotations/
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Biased Lang Stemming RTE POS Affective Text
Training All Hard Easy All Hard Easy All Hard Easy All Hard Easy All Hard Easy

Integrated .236 .144 .221 .797 .568 .927 .513 .330 .831 .790 .370 .878 .446 .115 .476
VeryHigh .140 .010 .158 – – – .499 .304 .836 .771 .310 .869 .326 .059 .376

HighAgree .231 .210 .222 .796 .569 .924 .543 .361 .831 .810 .382 .901 .453 .265 .505
SoftLabel .223 .131 .210 .766 .539 .957 .499 .304 .836 .789 .353 .880 .450 .112 .477

SLLimited .235 .158 .208 .799 .569 .930 .493 .291 .831 .797 .376 .882 .450 .139 .472

Table 1: Results (Pearson or micro F1) with different training strategies and all, Hard, and Easy Cases.
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Figure 3: Biased Language.
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Figure 4: RTE.
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Figure 5: POS Tags.
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Figure 6: Affective Text.

did not significantly outperform Integrated. How-
ever, HighAgree does outperform Integrated on 4
or the 5 tasks, especially for Hard Cases: Hard
Case improvements for Biased Language and POS
Tagging, and Affective Text, and overall improve-
ments for RTE, POS Tagging, and Affective Text
were significant (Paired TTest, p < 0.05, for nu-
merical output, or McNemar’s Test10 (McNemar,
1947), p < 0.05, for nominal classes). The fifth
task, Stemming, had the lowest number of item
agreement categories of the five tasks, preventing
fine-grained agreement training filtering, which
explains why filtering shows no benefit.

All training strategies used the same amount of
annotated data as input, and for filtering strategies
such as HighAgree, a reduced number of strategy-
output instances are used to train the model. As a
higher cutoff is used for HighAgree, the lack of
training data results in a worse model; this can
be seen in the downward curves of Figures 3 – 6,
where the curved line is HighAgree and the match-
ing pattern straight line is Integrated. (Due to the
low number of item agreement categories, Stem-
ming results are not displayed in an item agree-
ment cutoff table.) However, Figures 4 – 6 show
the overall performance boost, and Figure 3 shows
the Hard Case performance boost, right before the
downward curves from too little training data, us-
ing HighAgree.

Comparability We found the accuracy of our
systems was similar to that reported in previous lit-
erature. Dagan et al. (2006) report performance of
the RTE system, on a different data division, with
accuracy=0.568. Hovy et al. (2014) report major-
ity vote results (from acc=0.805 to acc=0.837 on
a different data section) similar to our results of

10See Japkowicz and Shah (2011) for usage description.

0.790 micro-F1. For Affective Text, Snow et al.
(2008) report results on a different data section of
r=0.174, a merged result from systems trained on
combinations of crowdsource labels and evaluated
against expert-trained systems. The SWAT sys-
tem (Katz et al., 2007), which also used lexical
resources and additional training data, acheived
r=0.3898 on a different section of data. These re-
sults are comparable with ours, which range from
r=0.326 to r=0.453.

5 Conclusions and Future Work

In this work, for five natural langauge tasks, we
have examined the impact of informing the classi-
fier of crowdsource item agreement, by means of
soft labeling and removal of low-agreement train-
ing instances. We found a statistically significant
benefit from low-agreement training filtering in
four of our five tasks, and strongest improvements
for Hard Cases. Previous work (Beigman Kle-
banov and Beigman, 2014) found a similar effect,
but only evaluated a single task, so generalizabil-
ity was unknown. We also found that soft labeling
was not beneficial compared to aggregation. Our
findings suggest that the best crowdsource label
training strategy is to remove low item agreement
instances from the training set.
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