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Abstract
PCFGs with latent annotations have been
shown to be a very effective model for phrase
structure parsing. We present a Bayesian
model and algorithms based on a Gibbs sam-
pler for parsing with a grammar with latent an-
notations. For PCFG-LA, we present an ad-
ditional Gibbs sampler algorithm to learn an-
notations from training data, which are parse
trees with coarse (unannotated) symbols. We
show that a Gibbs sampling technique is ca-
pable of parsing sentences in a wide variety
of languages and producing results that are
on-par with or surpass previous approaches.
Our results for Kinyarwanda and Malagasy in
particular demonstrate that low-resource lan-
guage parsing can benefit substantially from a
Bayesian approach.

1 Introduction
Despite great progress over the past two decades on
parsing, relatively little work has considered the prob-
lem of creating accurate parsers for low-resource lan-
guages. Existing work in this area focuses primarily on
approaches that use some form of cross-lingual boot-
strapping to improve performance. For instance, Hwa
et al. (2005) use a parallel Chinese/English corpus and
an English dependency grammar to induce an anno-
tated Chinese corpus in order to train a Chinese de-
pendency grammar. Kuhn (2004b) also considers the
benefits of using multiple languages to induce a mono-
lingual grammar, making use of a measure for data re-
liability in order to weight training data based on confi-
dence of annotation. Bootstrapping approaches such as
these achieve markedly improved results, but they are
dependent on the existence of a parallel bilingual cor-
pus. Very few such corpora are readily available, par-
ticularly for low-resource languages, and creating such
corpora obviously presents a challenge for many practi-
cal applications. Kuhn (2004a) shows some of the diffi-
culty in handling low-resource languages by examining
various tasks using Q’anjob’al as an example. Another
approach is that of Bender et al. (2002), who take a
more linguistically-motivated approach by making use
of linguistic universals to seed newly developed gram-
mars. This substantially reduces the effort by making

it unnecessary to learn the basic parameters of a lan-
guage, but it lacks the robustness of grammars learned
from data.

Recent work on Probabilistic Context-Free Gram-
mars with latent annotations (PCFG-LA) (Matsuzaki et
al., 2005; Petrov et al., 2006) have shown them to be
effective models for syntactic parsing, especially when
less training material is available (Liang et al., 2009;
Shindo et al., 2012). The coarse nonterminal symbols
found in vanilla PCFGs are refined by latent variables;
these latent annotations can model subtypes of gram-
mar symbols that result in better grammars and enable
better estimates of grammar productions. In this pa-
per, we provide a Gibbs sampler for learning PCFG-
LA models and show its effectiveness for parsing low-
resource languages such as Malagasy and Kinyawanda.

Previous PCFG-LA work focuses on the prob-
lem of parameter estimation, including expectation-
maximization (EM) (Matsuzaki et al., 2005; Petrov et
al., 2006), spectral learning (Cohen et al., 2012; Co-
hen et al., 2013), and variational inference (Liang et
al., 2009; Wang and Blunsom, 2013). Regardless of
inference method, previous work has used the same
method to parse new sentences: a Viterbi parse un-
der a new sentence-specific PCFG obtained from an
approximation of the original grammar (Matsuzaki et
al., 2005). Here, we provide an alternative approach to
parsing new sentences: an extension of the Gibbs sam-
pling algorithm of Johnson et al. (2007), which learns
rule probabilities in an unsupervised PCFG.

We use a Gibbs sampler to collect sampled trees
theoretically distributed from the true posterior distri-
bution in order to parse. Priors in a Bayesian model
can control the sparsity of grammars (which the inside-
outside algorithm fails to do), while naturally incorpo-
rating smoothing into the model (Johnson et al., 2007;
Liang et al., 2009). We also build a Bayesian model
for parsing with a treebank, and incorporate informa-
tion from training data as a prior. Moreover, we ex-
tend the Gibbs sampler to learn and parse PCFGs with
latent annotations. Learning the latent annotations is
a compute-intensive process. We show how a small
amount of training data can be used to bootstrap: af-
ter running a large number of sampling iterations on a
small set, the resulting parameters are used to seed a
smaller number of iterations on the full training data.
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This allows us to employ more latent annotations while
maintaining reasonable training times and still making
full use of the available training data.

To determine the cross-linguistic applicability of
these methods, we evaluate on a wide variety of lan-
guages with varying amounts of available training data.
We use English and Chinese as examples of languages
with high data availability, while Italian, Malagasy, and
Kinyarwanda provide examples of languages with little
available data.

We find that our technique comes near state of the
art results on large datasets, such as those for Chinese
and English, and it provides excellent results on limited
datasets – both artificially limited in the case of En-
glish, and naturally limited in the case of Italian, Mala-
gasy, and Kinyarwanda. This, combined with its abil-
ity to run off-the-shelf on new languages without any
supporting materials such as parallel corpora, make it a
valuable technique for the parsing of low-resource lan-
guages.

2 Gibbs sampling for PCFGs

Our starting point is a Gibbs Sampling algorithm for
vanilla PCFGs introduced by Johnson et al. (2007) for
estimating rule probabilities in an unsupervised PCFG.
We focus instead on using this algorithm for parsing
new sentences and then extending it to learn PCFGs
with latent annotations. We begin by summarizing the
Bayesian PCFG and Gibbs sampler defined by Johnson
et al. (2007).

Bayesian PCFG For a grammarG, each rule r in the
set of rules R has an associated probability θr. The
probabilities for all the rules that expand the same non-
terminal A must sum to one:

∑
A→β∈R θA→β = 1.

Given an input corpusw=(w(1), · · · ,w(n)), we in-
troduce a latent variable t=(t(1), · · · , t(n)) for trees
generated by G for each sentence. The joint posterior
distribution of t and θ conditioned on w is:

p(t, θ | w) ∝ p(θ)p(w | t)p(t | θ)
= p(θ)(

∏n

i=1
p(w(i) | t(i))p(t(i) | θ))

= p(θ)(
∏n

i=1
p(w(i) | t(i))

∏
r∈R θ

fr(t(i)

r )) (1)

Here fr(t) is the number of occurrences of rule r in the
derivation of t; p(w(i) | t(i)) = 1 if the yield of t(i) is
the sequence w(i), and 0 otherwise.

We use a Dirichlet distribution parametrized by αA:
Dir(αA) as the prior of the probability distribution for
all rules expanding non-terminal A (p(θA)). The prior
for all θ, p(θ), is the product of all Dirichlet distri-
butions over all non-terminals A ∈ N : p(θ | α) =∏
A∈N p(θA | αA).
Since the Dirichlet distribution is conjugate to the

Multinomial distribution, which we use to model the
likelihood of trees, the conditional posterior of θA can

be updated as follows:

pG(θ | t, α) ∝ pG(t | θ)p(θ | α)

∝ (
∏

r∈R θ
fr(t)
r )(

∏
r∈R θ

αr−1
r )

=
∏

r∈R θ
fr(t)+αr−1
r (2)

which is still a Dirichlet distribution with updated pa-
rameter fr(t) + αr for each rule r ∈ R.

Gibbs sampler The parameters of the PCFG model
can be learned from an annotated corpus by simply
counting rules. However, parsing cannot be done di-
rectly with standard CKY as with standard PCFGs,
so we use the Gibbs sampling algorithm presented in
Johnson et al. (2007). An additional motivation for us-
ing this algorithm is that Johnson et al. use it for learn-
ing without annotated structures, and in future work we
seek to learn from fewer, and at times partial, annota-
tions.

An advantage of using Gibbs sampling for Bayesian
inference, as opposed to other approximation algo-
rithms such as Variational Bayesian inference (VB) and
Collapsed Variational Bayesian inference (CVB), is
that Markov Chain Monte Carlo (MCMC) algorithms
are guaranteed to converge to a sample from the true
posterior under appropriate conditions (Taddy, 2011).
Both VB and CVB converge to inaccurate and locally
optimal solutions, like EM. In some models, CVB can
achieve more accurate results due to weaker assump-
tions (Wang and Blunsom, 2013). Another advantage
of Gibbs sampling is that the sampler allows for parallel
computation by allowing each sentence to be sampled
entirely independently of the others. After each paral-
lel sampling stage, all model parameters are updated in
a single step, and the process then repeats (see §2).

To sample the joint posterior p(t, θ | w), we sample
production probabilities θ and then trees t from these
conditional distributions:

p(t | θ,w, α) =
∏n

i=1
p(ti | wi, θ) (3)

p(θ | t,w, α) =
∏

A∈N Dir(θA | fA(t) + αA) (4)

Step 1: Sample Rule Probabilities. Given trees t and
prior α, the production probabilities θA for each non-
terminal A∈N are sampled from a Dirichlet distribu-
tion with parameters fA(t) + αA. fA(t) is a vector,
and each component of fA(t), is the number of occur-
rences of one rule expanding nonterminal A.
Step 2: Sample Tree Structures. To sample trees from
p(ti | wi, θ), we use the efficient sampling scheme
used in previous work (Goodman, 1998; Finkel et al.,
2006; Johnson et al., 2007). There are two parts to this
algorithm. The first constructs an inside table as in the
Inside-Outside algorithm for PCFGs (Lary and Young,
1990). The second selects the tree by recursively sam-
pling productions from top to bottom.
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Require: A is parent node of binary rule; wi,k is a
span of words: i+ 1 < k
function TREESAMPLER(A, i, k)

for i < j < k and pair of child nodes of
A:B,C do

P (j, B,C) = θA→BC ·pB,i,j ·pC,j,k

· pA,i,k
end for

Sample j∗, B∗, C∗ from multinomial distribution
for (j, B,C) with probabilities calculated above

return j∗, B∗, C∗
end function

Algorithm 1: Sampling split position and rule to ex-
pand parent node

Consider a sentence w, with sub-spans wi,k =
(wi+1, · · · , wk). Given θ, we construct the inside ta-
ble with entries pA,i,k for each nonterminal and each
word span wi,k : 0 ≤ i < k ≤ l, where pA,i,k =
PGA

(wi,k|θ) is the probability that words i through k
were produced by the non-terminal A. The table is
computed recursively by

pA,k−1,k = θA→wk
(5)

pA,i,k =
∑

A→BC∈R

∑
i<j<k

θA→BC · pB,i,j · pC,j,k (6)

for all A,B,C ∈ N and 0 ≤ i < j < k ≤ l.
The resulting inside probabilities are then used to

generate trees from the distribution of all valid trees of
the sentence. The tree is generated from top to bottom
recursively with the function TreeSampler defined in
Algorithm 1.

In unsupervised PCFG learning, the rule probabil-
ities can be resampled using the sampled trees, then
used to reparse the corpus, and so on. We use this
property to refine latent annotations for the PCFG-LA
model described in the next section.

3 PCFG with latent annotations
When labeled trees are available, rule frequencies can
be directly extracted and used as priors for a PCFG.
However, when learning PCFG-LAs, we must learn the
fine-grained rules from the coarse trees, so we extend
the Gibbs sampler to assign latent annotations to unan-
notated trees. The resulting learned PCFG-LA parser
outputs samples of annotated trees so that we can ob-
tain unannotated trees after marginalizing.

3.1 Model
With the PCFG-LA model (Matsuzaki et al., 2005;
Petrov et al., 2006) fine-grained CFG rules are auto-
matically induced from training, effectively providing
a form of feature engineering without human interven-
tion. GivenH = {1, · · · ,K}, a set of latent annotation
symbols, and x ∈ H:

• θA[x]→U is the probability of rule A[x] → U ,
where U ∈ N ×N ∪ T . The probabilities for all

rules that expand the same annotated non-terminal
must sum to one.

• βA[x],B,C→y,z is the probability of assigning la-
tent annotation y, z to child nodes B,C of A[x].∑
y,z∈H×H βA[x],B,C→y,z = 1.

The inputs to the PCFG-LA are a CFG G with finite
number of latent annotations for each non-terminal, an
initial guess of probabilities of grammar rule θ0, and a
prior αθ is learned from training.

The joint posterior distribution of t and θ, β condi-
tioned on w is:

p(t, θ, β | w) ∝ p(θ, β)p(w | t)p(t | θ, β)

= p(θ)p(β)(
∏n

i=1
p(wi | ti)p(ti | θ, β)) (7)

We assume that θ and β are independent to get
P (θ, β) = P (θ)P (β).

To learn parameters θ, β, we use a Dirichlet distribu-
tion as a prior for both θ and β. The distribution for all
rules expanding A[x] is:

P (θ | αθ) =
∏

A∈N,x∈H
P (θA[x] | αθA[x]) (8)

The distribution for latent annotations associated
with child nodes of A[x]→ BC is:

P (β | αβ) =
∏

y,z∈H×H
P (βA[x],B,C | αβA[x],B,C).

(9)

With this setting, the conditional posterior of θA[x]

and βA[x],B,C can be updated, as in §2. For all unary
and binary rules r expanding A[x]:

θA[x] | t, αθ ∼ Dir(fr(t) + αθr) (10)

Here, fr(t) is the number of occurrence of annotated
rule r in t. Also, for combination of latent annotations
y, z ∈ H ×H assigned to B,C in rule A[x]→ B,C:

βA[x],B,C | t, αβ ∼ Dir(fd(t) + αβd ) (11)

Here, fd(t) is the number of occurrences of combina-
tion d in t.

3.2 Learning PCFG-LAs from raw text
To learn from raw text, we extend the sampler in §2
to PCFG-LA. Given priors αθ, αβ and raw text, the al-
gorithm alternates between two steps. The first sam-
ples trees for the entire corpus; the second samples θ
and β from Dirichlet distributions with updated param-
eters, combining priors and counts from sampled trees.
The algorithm then alternates between these steps un-
til convergence. The outputs are samples of θ, β and
annotated trees.

The parsing process is specified in Algorithm 2. The
first step assigns a tree to a sentence, say w0,l. We first

292



Require: w1, · · · , wn are raw sentences; θ0, β0 are
initial values; αθ, αβ are priors; M is the number
of iterations
function PARSE(w1, .., wn, θ0, β0, α

θ, αβ ,M )
for iteration i = 1 to M do

for sentence s = 1 to n do
Calculate Inside Table
Sample tree nodes and associated latent

annotations, get tree structure t(i)s
end for
Sample θ(i), β(i)

end for
for sentence s = 1 to n do

Marginalize the latent annotations to get
unannotated trees T (1)

s , · · · , T (M)
s

Find the mode of T (1)
s , · · · , T (M)

s : Ts
end for
return T1, · · · , Tn

end function

Algorithm 2: Parsing new sentences

construct an inside table (see §2). Each entry in the ta-
ble stores the probability that a word span is produced
by a given annotated nonterminal. For root node S,
with θ, β and inside table pA[x],i,k, we sample one an-
notation based on all pS[x],0,l, x ∈ H . Assume that
we sampled x for S, we further sample a rule to ex-
pand S[x] and possible splits of the span w0,l jointly.
Assume that we sampled nonterminals B,C to expand
S[x], where B is responsible for w0,j and C is respon-
sible for wj,l. We further sample annotations for B,C
together, say y, z. Then we sample rules and split po-
sitions to expand B[y] and C[z], and continue until
reaching the terminals.

This algorithm alone could be used for unsupervised
learning of PCFG-LA if we input a non-informed or
weakly-informed prior αθ and αβ . With access to
unannotated trees for training, we only need to assign
latent annotations to them and then use the frequen-
cies of these annotated rules as the prior when parsing.
The details of training when trees are available are il-
lustrated in §3.3.

Once we have trees (with latent annotations), the
step of sampling θ and β from a Dirichlet distribution
is direct. We need to count the number of occurrences
fr(t) for each rule r like A[x] → U,U ∈ N ×N ∪ T
in updated annotated trees t, and draw θA[x] from the
updated Dirichlet distribution Dir(fA[x](t) + αθA[x]).
We also need to count the number of occurrences of
fd(t) for each combination of yz ∈ H×H assigned to
B,C givenA[x]→ B,C in t, and draw βA[x],B,C from
the updated Dirichlet distribution Dir(fA[x],B,C(t) +
αβA[x],B,C) similarly.

To parse a sentence, we first calculate the inside table
and then sample the tree.

Calculate the inside table. Given θ,β and a string

w=w0,l, we construct a table with entries pA[x],i,k for
each A∈N , x ∈ H and 0 ≤ i < k ≤ l, where
pA[x],i,k = PGA[x](wi,k|θ, β) is the probability that
words i through k were produced by the annotated non-
terminal A[x]. The table can be computed recursively,
for all A ∈ N , x ∈ H , by

pA[x],k−1,k = θA[x]→wk
(12)

pA[x],i,k =
∑

A[x]→BC:BC∈N×N

∑
j:i<j<k

∑
yz∈H×H

θA[x]→BCβA[x]BC→yzpB[y],i,jpC[z],j,k (13)

Sample the tree, top to bottom. First, from start sym-
bol S, sample latent annotation from multinomial with
probability πS[x]pS[x],0,l for each x ∈ H . Next, given
annotated non-terminal A[x] and i, k, sample possible
child nodes and split positions from multinomial with
probability:

p(B,C, j) =
1

pA[x],i,k
·∑

y,z∈H
θA[x]→BCβA[x]BC→yzpB[y],i,jpC[z],j,k (14)

Here the probability is calculated by marginaliz-
ing all possible latent annotations for B,C, and
θA[x]→BCβA[x]BC→yz is the probability of choosing
B[y], C[z] to expandA[x], and pB[y],i,jpC[z],j,k are the
probabilities for B[y] and C[z] to be responsible for
word span wi,j and wj,k respectively. And pA[x],i,k is
the normalizing term.

Third, given A[x], B,C, i, j, k, sample annotations
for B,C from multinomial with probability:

p(y, z) =
βA[x]BC→yzpB[y],i,jpC[z],j,k∑
y,z βA[x]BC→yzpB[y],i,jpC[z],j,k

(15)

A crucial aspect of this procedure is that all trees can
be sampled independently. This parallel process pro-
duces a substantial speed gain that is important partic-
ularly when using more latent annotations. After all
trees have been sampled (independently), the counts
from each individual tree are combined prior to the next
sampling iteration.

3.3 Learning from coarse training trees
In training, we need to learn the probabilities of fine-
grained rules given coarsely-labeled trees. We perform
Gibbs sampling on the training data by first iteratively
sampling probabilities and then assigning annotations
to tree nodes. We use the average counts of anno-
tated production rules from sampled trees to produce
the prior αθ and αβ incorporated into parsing raw sen-
tences.

We first index the non-terminal nodes of each tree T
by 1, 2, · · · from top to bottom, and left to right. Then
the sampler iterates between two steps. The first sam-
ples θ, β given annotated trees (as in §3.2). The sec-
ond samples latent annotations for nonterminal nodes
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Require: T1, · · · , Tn are fully parsed trees; θ0, β0

are initial values; αθ0 , αβ0 are priors; M is the
number of iterations
function ANNO(T1, · · · , Tn, θ0, β0, α

θ0 , αβ0 ,M )
for iteration i = 1 to M do

for sentence s = 1 to n do
Calculate inside probability
Sample latent annotations for each node

in the tree, get tree with latent annotations t(i)s
end for
Sample θ(i), β(i)

end for
return Mean of number of occurrences of

production rules and associated latent annotations
from all sampled annotated trees
end function

Algorithm 3: Learning prior from training

in parsed trees, which also takes two steps. The first
step is to, for each node in the tree, calculate and store
the probability that the node is annotated by x. The
second step is to jointly sample latent annotations for
child nodes of root nodes, and then continue this pro-
cess from top to bottom until reaching the pre-terminal
nodes.

Step one: inside probabilities. Given tree T , com-
pute biT [x] for each non-terminal i recursively:

1. If node Ni is a pre-terminal node above terminal
symbol w, then for x∈H

biT [x] = θNi[x]→w (16)

2. Otherwise, let j, k be two child nodes of i, then
for x ∈ H
biT [x] =

∑
y,z∈H

θNi[x]→NjNk
βNi[x]NjNk→y,zb

j
T [y]bkT [z] (17)

Step two: outside sampling. Given inside probabil-
ity biT [x] for every non-terminal i and all latent annota-
tions x∈H , we sample the latent annotations from top
to bottom:

1. If node i is the root node (i = 1), then sample x ∈
H from a multinomial distribution with f iT [x] =
π(Ni[x]).

2. For a parent node with sampled latent annotation
Ni[x] with childrenNj , Nk, sample latent annota-
tions for these two nodes from a multinomial dis-
tribution with

f iT [y, z] =
1

biT [x]
·

θNi[x]→NjNk
βNi[x]NjNk→y,zb

j
T [y]bkT [z] (18)

After training, we take the average counts of sampled
annotated rules and combinations of latent annotations
as priors to parse raw sentences.

4 Experiments1

Our goal is to understand parsing efficacy using sam-
pling and latent annotations for low-resource lan-
guages, so we perform experiments on five languages
with varying amount of training data. We compare
our results to a number of previously established base-
lines. First, for all languages, we use both a stan-
dard unsmoothed PCFG and the Bikel parser, trained
on the training corpus. Additionally, we compare to
state-of-the-art results for both English and Chinese,
which have an existing body of work in PCFGs using
a Bayesian framework. For Chinese, we compare to
Huang & Harper (2009), using their results that only
use the Chinese Treebank (CTB). For English, we com-
pare to Liang et al. (2009). Prior results for parsing
the constituency version of the Italian data are avail-
able from Alicante et al. (2012), but as they make use
of a different version of the treebank including extra
sentences, and additionally use the extensive functional
tags present in the corpus, we do not directly compare
our results to theirs.2

4.1 Data
English (ENG) and Chinese (CHI) are the two main
languages used for this work; they are commonly used
in parser evaluation and have previous examples of sta-
tistical parsers using a Bayesian framework. And since
we primarily are interested in parsing low-resource lan-
guages, we include results for Kinyarwanda (KIN) and
Malagasy (MLG) as examples of languages without
substantial existing treebanks. Finally, as a middle-
ground language, we use Italian (ITL).

For English, we use the Wall-Street Journal section
of the Penn Treebank (WSJ) (Marcus et al., 1993). The
data split is sections 02-21 for training, section 22 for
development, and section 23 for testing. For Chinese,
the Chinese Treebank (CTB5) (Xue et al., 2005) was
used. The data split is files 81-899 for training, files 41-
80 for development, and files 1-40/900-931 for testing.

The ITL data is from the Turin University Treebank
(TUT) (Bosco et al., 2000) and consists of 2,860 Italian
sentences from a variety of domains. It was split into
training, development, and test sets with a 70/15/15
percentage split.

The KIN texts are transcripts of testimonies by sur-
vivors of the Rwandan genocide provided by the Ki-
gali Genocide Memorial Center, along with a few BBC
news articles. The MLG texts are articles from the
websites Lakroa and La Gazette and Malagasy Global
Voices. Both datasets are described in Garrette and
Baldridge (2013). The KIN and MLG data is very
small compared to ENG and CHI: the KIN dataset con-

1Code available at github.com/jmielens/gibbs-pcfg-2014,
along with instructions for replicating experiments when pos-
sible

2As part of a standardized pre-processing step, we strip
functional tags, which makes a direct comparison to their re-
sults inappropriate.
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tains 677 sentences, while the MLG dataset has only
113. Also, we simulated a small training set for ENG
data by using only section 02 of the WSJ for training.

4.2 Experimental Setup

As a preprocessing step, all trees are converted into
Chomsky Normal-Form such that all non-terminal pro-
ductions are binary and all unary chains are removed.

Additional standard normalization is performed.
Functional tags (e.g. the SBJ part of NP-SBJ), empty
nodes (traces), and indices are removed. Our binariza-
tion is simple: given a parent, select the rightmost child
as the head and add a stand-in node that contains the
remainder of the original children; the process then re-
curses. This simple technique uses no explicit head-
finding rules, which eases cross-linguistic applicability.

From this normalized data, we train latent PCFGs
with K=1,2,4,8,16,32 (where K=1 is equivalent to the
plain PCFG described in section 2).

4.3 Practical refinements

Unknown word handling. We use a similar unknown
word handling procedure to Liang et al. (2009). From
our raw corpus we extract features associated with ev-
ery word, these features include surrounding context
words as well as substring suffix/prefix features. Using
these features we produce fifty clusters using k-means.
Then, as a pre-parsing step, we replace all words oc-
curring less than five times with their cluster label -
this simulates unknown words for training. Finally,
during evaluation, any word not seen in training was
also replaced with its corresponding cluster label. This
final step is simple because there are no ‘unknown un-
knowns’ in our corpus, as the clustering has been per-
formed over the entire corpus prior to training. This
approach is similar to methods for unsupervised POS-
tag induction that also utilize clusters in this manner
(Dasgupta & Ng, 2007).

We compare this unknown word handling method to
one in which the clustering and a classifier is trained
not on the corpus under consideration, but rather on a
separate corpus of unrelated data. This comparison was
made to understand the effects of including the eval-
uation set in the training data (without labels) versus
training on out-of-domain texts. This is a more real-
istic measurement of out-of-the-box performance of a
trained model.

Jump-starting sampling. In the basic setup, train-
ing high K-value models takes a prohibitively long
time, so we also consider a jump-start technique that
allows larger annotation values (such as K=16) to be
run in less time. We train these high-K value models
first on a highly reduced training set (5% of the full
training set) for a large number of iterations, and then
use the found θ values as the starting point for training
on the full training set for a small number of iterations.
Although many of the estimated parameters on the re-
duced set will be zero, the prior allows us to eventually

System K=1 K=2 K=4 K=8 K=16
Unsmoothed PCFG 40.2 — — — —
Bikel Parser 57.9 — — — —
Liang et al. 07 60.5 71.1 77.2 79.2 78.2
Berkeley Parser 60.8 74.4 78.4 79.1 78.7
Gibbs PCFG 61.0 71.3 76.6 78.7 78.0

Table 1: F1 scores for small English training data ex-
periments. ‘K’ is the number of latent annotations –
K=1 represents a vanilla, unannotated PCFG.

recover this information in the full set. This allows us
to train on the full training set, which is desirable rela-
tive to training on a reduced set, while still allowing the
model sufficient iterations to burn in. The fact that we
are likely starting in a fairly good position within the
search space (due to estimating θ from the corpus) also
likely helps enable these lower iteration counts.

5 Results
We start with Tables 1 and 2, which show performance
when training on section 02 of the WSJ (pretending En-
glish is a “low-resource” language). The results show
that the basic Gibbs PCFG (where K=1), with an F-
score of 61.0, substantially outperforms not only an
unsmoothed PCFG (the simplest baseline), but also the
Bikel parser (Bikel, 2004b) trained on the same amount
of data. Table 1 also shows further large gains are
obtained from using latent annotations—from 60.5 for
K=1 to 78.7 for K=8.

The Gibbs PCFG also compares quite favorably to
the PCFG-LA of Liang et al. (2009)—slightly better
for K=1 and K=2 and slightly worse for K=4 and K=8.
Table 2 shows that the Gibbs PCFG is able to produce
results with a smaller amount of variance relative to
the Berkeley Parser, even at low training sizes. This
trend is repeated in Table 3, which shows that the Gibbs
PCFG also produces less variance when training on dif-
ferent single sections of the WSJ relative to the Berke-
ley Parser, although it again produces slightly lower F1
scores.

We also use the small English corpus to determine
the effects of weighting the prior when sampling anno-
tations, varying α between 0.1 and 10.0. Though per-
formance is not sensitive to varying α for larger cor-
pora, Figure 1 shows it can make a substantial differ-
ence for smaller corpora (with an optimal value was
obtained with an α value of 5 for this small training
set). This seems to indicate that the lower counts asso-
ciated with the smaller training sets should be compen-
sated for by weighting those counts more heavily when
processing the evaluation set, as we had anticipated.

System WSJ Sec. 02 KIN MLG
Berkeley Parser 78.3 ± 0.93 60.6 ± 1.1 52.2 ± 2.0
Gibbs PCFG 76.7 ± 0.63 67.2 ± 0.92 57.5 ± 1.1

Table 2: F1 scores with standard deviation over ten runs
of small training data, K=4.
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System F1 / StDev
Berkeley Parser 77.5 ± 2.1
Gibbs PCFG 77.0 ± 1.4

Table 3: F1 scores with standard deviations over twenty
runs, training on individual WSJ sections (02-21).

Figure 1: Accuracy by varying α levels for small En-
glish data.

To evaluate the effectiveness of the jump-start tech-
nique, we ran the full ENG data set with K=4 to com-
pare the results from the full training setup to jump-
starting. For this, we performed 100 training iterations
on the reduced training set (WSJ section 02) and then
used the resulting θ values to seed training on the full
training set. Those training runs varied between three
and nine iterations, and the results are shown in Figure
2. The full ENG K=4 F-score is 86.2, so these results
represent a slight step back. Nonetheless, the technique
is still valuable in that it allows for inferring latent an-
notations for higher K-values than would typically be
available to us in a reasonable timeframe.

Table 4 shows the results for the main experiments.
Sampling a vanilla PCFG (K=1) produces results that
are not state-of-the-art, but still good overall and al-
ways better than an unsmoothed PCFG. The benefits of
the latent annotations are further shown in the increase

Condition ENG CHI ITA KIN MLG
Unsmoothed PCFG 69.9 66.8 62.1 45.9 49.2
Liang et al. 07 87.1 — — — —
Huang & Harper09 — 84.1 — — —
Bikel Parser 86.9 81.1 74.5 55.7 49.5
Berkeley Parser 90.1 83.4 71.6 61.4 51.8
Gibbs PCFG,K=1 79.3 75.4 66.3 58.5 55.1
Gibbs PCFG,K=2 82.6 79.8 69.3 65.0 57.0
Gibbs PCFG,K=4 86.0 82.3 71.9 67.2 57.8
Gibbs PCFG,K=16 87.2 83.2 72.4 68.1 58.2
Gibbs PCFG,K=32 87.4 83.4 71.0 66.8 55.3

Table 4: F1 scores for experiments on sampled PCFGs.
Note that Wang and Blunsom (2013) obtain an ENG F-
score of 77.9% using collapsed VB for K=2. Though
they do not give exact numbers, their Fig. 7 indicates
an F-score of about 87% for K=16.

Figure 2: F-Score for K=4, varying full-set training it-
erations (with and without 100x jump start).

of F1 score in all languages, as compared to the vanilla
PCFG. Experiments were run up to K=32 primarily due
to time constraint. Although previous literature results
report increases up to the equivalent of K=64, it may
be the case that higher K values with no merge step
more easily lead to overfitting in our model – reduc-
ing the effectiveness of those high values, as shown by
the overall poorer performance on several languages at
K=32 when compared to K=16 as well as the general
levelling-off seen at the high K values.

For English and Chinese, the previous Bayesian
framework parsers outperform our own, but only by
around two points. Additionally, our parsing of Chi-
nese improves on the Bikel parser (trained on our train-
ing data) despite the fact that the Bikel parser makes
use of language specific optimizations. Our parser
needs no changes to switch languages.

The Gibbs PCFG with K=16 is superior to the strong
Bikel and Berkeley Parser benchmarks for both KIN
and MLG, a promising result for future work on pars-
ing low-resource languages in general. Note also that
our parser exhibits less variance than Berkeley Parser
especially for KIN and MLG, which supports the fact
that the variance of Berkeley Parser is higher for mod-
els with few subcategories (Petrov et al., 2006).

Examples of the improvement across latent annota-
tions for a given tree are shown in Figure 3. The details
of the noun phrase ‘no major bond offerings’ were the
same for each tree, and are thus abstracted here. The
low K-value tree (K=2) is shown in 3a, and primarily
suffers from issues related to the prepositional phrase,
‘in Europe friday’. In particular, the low K-value tree
incorrectly groups ‘Europe friday’ as a noun phrase ob-
ject of ‘in’.

The higher K-value tree (K=8) is shown in 3b.
This tree manages to correctly analyze the preposi-
tional phrase, accurately separately the temporal loca-
tive ‘Friday’ from the actual prepositional phrase of
‘in Europe’. However, the high K-value tree makes a
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Figure 3: Examples of tree progression in the Gibbs PCFG with a) K=2, b) K=8, and c) gold tree.

different mistake that the low K-value tree did not; it
groups ‘no major bond offerings in Europe Friday’ as a
noun phrase, when it should be three separate phrases
(two noun phrases and a prepositional phrase). This er-
ror may be related to the additional latent annotations.
With more available noun phrase subtypes, it may be
the case that a more unusual noun phrase could be per-
mitted that would have been too low probability with
only a few subtypes.

To determine whether the substantial range in F1
scores across languages are primarily the result of the
much larger training corpora available for certain lan-
guages, two extreme training set reduction experiments
were conducted. The training sets for all languages
were reduced to a total of either 100 or 500 sen-
tences. This process was repeated 10 times in a cross-
validation setup, where 10 separate sets of sentences
were selected for each language. The results of these
experiments are shown in Table 5.

We conclude that while data availability is a major
factor in the higher performance of English and Chi-
nese in our original experiments, it is not the only is-
sue. Clearly, either the linguistic facts of particular
languages or perhaps choices of formalism and annota-
tion conventions in the corpora make some of the lan-
guages more difficult to parse than others. The primary
questions is why Gibbs-PCFG is able to achieve higher
relative performance on the KIN/MLG datasets when
compared to the other parsers, and why this advantage
does not necessarily transfer to the extreme small-scale
versions of the ENG/CHI/ITL data. Preliminary inves-
tigation into the properties of the corpora have revealed
a number of potential answers. For instance, the POS
tagsets for KIN/MLG are substantially reduced com-
pared to the other corpora, and there are differences
in the branching factor of the native versions of the
corpora as well: a typical maximum branching fac-
tor for a tree in ENG/CHI/ITL is around 4-5, while
for KIN/MLG it is almost always 2 (natively binary).
Branching factors above 5 essentially never occur in
KIN/MLG, while they are not rare in ENG/CHI/ITL.
The question of exactly why the Gibbs-PCFG seems to
perform well on these corpora remains an open ques-
tion, but these differences could provide a starting point

Condition In-Domain Out-of-Domain
Full English (K=4) 86.0 83.3
Small English (K=4) 76.6 75.7
Kinyarwanda (K=4) 67.2 65.1
Malagasy (K=4) 57.8 55.4

Table 6: Effect of differing regimes for handling un-
known words.

for future analysis.
In addition to the actual F1 scores, the relative uni-

formity of the standard deviation results indicates that
the individual parsers are not that much different in
terms of their ability to provide consistent results at
these small data extremes, as opposed to the slightly
higher training levels where the Gibbs-PCFG generated
smaller variances.

Considering the effects of unknown word handling,
Table 6 shows that using the evaluation set when creat-
ing the unknown word classifier does improve overall
parsing accuracy when compared to an unknown word
handler that is trained on out-of-domain texts. This
shows that results reported in previous work somewhat
overstate the accuracy of these parsers when used in the
wild—which matters greatly in the low-resource set-
ting.

6 Conclusion

Our experiments demonstrate that sampling vanilla
PCFGs, as well as PCFGs with latent annotations, is
feasible with the use of a Gibbs sampler technique
and produces results that are in line with previous
parsers on controlled test sets. Our results also show
that our methods are effective on a wide variety of
languages—including two low-resource languages—
with no language-specific model modifications needed.

Additionally, although not a uniform winner, the
Gibbs-PCFG shows a propensity for performing well
on naturally small corpora (here, KIN/MLG). The ex-
act reason for this remains slightly unclear, but the
fact that a similar advantage is not found for extremely
small versions of large corpora indicates that our ap-
proach may be particularly well-suited for application
in real low-resource environments as opposed to a sim-
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Parser Size ENG CHI ITL KIN MLG
Bikel 100 54.7 ± 2.2 51.4 ± 3.0 51 ± 2.4 47.1 ± 2.3 44.4 ± 2.0
Berkeley 100 55.2 ± 2.6 53.9 ± 2.9 50 ± 2.8 47.8 ± 2.1 44.5 ± 2.3
Gibbs-PCFG 100 54.5 ± 2.0 51.7 ± 2.4 49.5 ± 3.6 50.3 ± 2.3 45.8 ± 1.8
Bikel 500 56.2 ± 2.0 54.1 ± 2.7 54.2 ± 2.4 — —
Berkeley 500 58.9 ± 2.2 56.4 ± 2.7 52.5 ± 2.7 — —
Gibbs-PCFG 500 58.1 ± 2.0 55.7 ± 2.3 51.1 ± 3.2 — —

Table 5: 100/500 sentence training set results, including st.dev over 10 runs. KIN/MLG did not have enough data
to run the 500 sentence version.

ulated environment.
Having established this procedure and its relative tol-

erance for low amounts of data, we would like to extend
the model to make use of partial bracketing information
instead of complete trees, perhaps in the form of Frag-
mentary Unlabeled Dependency Grammar annotations
(Schneider et al., 2013). This would allow the sam-
pling procedure to potentially operate using corpora
with lighter annotations than full trees, making initial
annotation effort not quite as heavy and potentially in-
creasing the amount of available data for low-resource
languages. Additionally, using the expert partial anno-
tations to help restrict the sample space could provide
good gains in terms of training time.
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